


Lecture Notes in Computer Science 4437
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Jan L. Camenisch Christian S. Collberg
Neil F. Johnson Phil Sallee (Eds.)

Information Hiding

8th International Workshop, IH 2006
Alexandria, VA, USA, July 10-12, 2006
Revised Selcted Papers

13



Volume Editors

Jan L. Camenisch
IBM Research
CH-8803 Rüschlikon, Switzerland
E-mail: jca@zurich.ibm.com

Christian S. Collberg
The University of Arizona
Tucson, AZ 85721, USA
E-mail: collberg@cs.arizona.edu

Neil F. Johnson
Johnson & Johnson Technology Consultants
Vienna, VA 22183, USA
E-mail: nfi@jjtc.com
and
Booz Allen Hamilton
B-8042, 8283 Greensboro Drive, MCLean
VA 22102, USA
E-mail: Johnson_neil@bah.com

Phil Sallee
Booz Allen Hamilton
B-8042, 8283 Greensboro Drive, MCLean
VA 22102, USA
E-mail: sallee_phil@bah.com

Library of Congress Control Number: 2007935081

CR Subject Classification (1998): E.3, K.6.5, K.4.1, K.5.1, D.4.6, E.4, C.2, H.4.3,
H.3, H.5.1

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-74123-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-74123-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12104833 06/3180 5 4 3 2 1 0



Preface

These proceedings contain the 25 papers that were accepted for presentation at
the Eighth Information Hiding Conference, held July 10–12, 2006 in Old Town
Alexandria, Virginia. The papers were selected by the Program Committee from
more than 70 submissions on the basis of their novelty, originality, and scientific
merit. We are grateful to all authors who submitted their work for consideration.
The papers were divided into ten sessions [Watermarking, Information Hiding
and Networking, Data Hiding in Unusual Content (2 sessions), Fundamentals,
Software Protection, Steganalysis, Steganography (2 sessions), and Subliminal
Channels], showing the breadth of research in the field. This year was an impor-
tant one in the history of the IHW: “Workshop” was dropped from the name to
show that the field has matured and that the conference has become the premier
venue for the dissemination of new results.

The conference employed a double-blind reviewing process. Each paper was
examined by at least three reviewers. Papers submitted by Program Committee
members were held to a higher standard. We relied on the advice of outside
colleagues and would like to extend our thanks for their contribution to the
paper selection process and their dedication to excellence in research.

We thank our sponsors Booz Allen Hamilton and Johnson & Johnson Tech-
nology Consultants for their financial and logistic support, including local ar-
rangements, printing the pre-proceedings, and organizing the registration. The
walking tour of Old Town Alexandria organized by Ira Moskowitz and the dessert
cruise on board the Miss Christin were enjoyable highlights of the social program
and we thank the organizers! Roger Zimmermann helped to run the submission
server and without the help of Björn Assmann you would not be holding these
proceedings in your hands. Thank you guys!

Finally, we wish to thank the many researchers who have contributed to
extending the state of the art for information hiding research and hope these
proceedings will be helpful for future developments.

January 2007 Jan Camenisch
Christian Collberg

Neil F. Johnson
Phil Sallee
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Natural Watermarking: A Secure Spread

Spectrum Technique for WOA

Patrick Bas1,2 and François Cayre2

1 CIS / Helsinki University of Technology
P.O. Box 5400

FI-02015 HUT FINLAND
2 LIS/INPG

961, rue de la Houille Blanche BP 46
F-38042 St. Martin d’Hères Cedex, France

Abstract. This paper presents a spread spectrum (SS) watermarking
technique that is secure against carriers estimation in a Watermark Only
Attack framework. After reviewing the sufficient conditions to design se-
cure algorithms for watermarking and steganography, we present a setup
based on Blind Source Separation (BSS) theory to assess the lack of
security of classical SS techniques such as classical SS or ISS. We mo-
tivate a new SS watermarking algorithm called Natural Watermarking
(NW) where the estimation of the secret carriers is impossible and which
achieves perfect secrecy thanks to unchanged Gaussian distributions of
the secret carriers. The theoretical evaluation of the NW security is
carried out and the case of multi-bit embedding is addressed. Finally,
a robust extension of NW is presented and the properties of NW and
Robust-NW are both practically verified.

1 Introduction

Robustness, capacity and imperceptibility have always been considered, since the
very beginning of watermarking, as the main three constraints to respect in order
to build a valuable watermarking scheme. Recently the watermarking commu-
nity has thrown light on the problem of security which appears also to be a
fundamental constraint to respect in order to guaranty the usability of a wa-
termarking technology. Several authors [1][2][3] showed that some information
about the secret key may leak from several observations of watermarked pieces
of content. Using this information, it may be possible to estimate the secret key,
and then to destroy the security of the considered scheme by removing, copying
or altering the embedded messages. Several studies address also the security of
practical watermarking techniques for digital images [4][5].

In this paper, we tackle the problem of security for the well-known class of
spread spectrum (SS) watermarking schemes. In this case, the secret key which
practically is the seed of a random generator, corresponds to the set of secret
carriers that is used to convey the information. It is important to note that an
attacker does not need the seed used to initialiaze the random number genera-
tor: the secret carriers are good enough to attack the watermark. We propose a

J. Camenisch et al. (Eds.): IH 2006, LNCS 4437, pp. 1–14, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 P. Bas and F. Cayre

watermarking scheme that is secure (e.g. it does not offer information leakage of
the secret key) for the class of Watermark Only Attacks (WOA). This class of
attacks, proposed by [1], considers an attack that is based on the observation of
watermarked contents, watermarked with the same key but conveying different
messages. We named the proposed scheme natural spread spectrum watermark-
ing because embedding is achieved without altering the natural distribution of
each secret carrier before and after embedding. As shown in the paper, this char-
acteristic enables to achieve perfect secrecy. Moreover, when embedding several
bits, we show that if each carrier is embedded in the contents with an amplitude
following a Gaussian distribution, it is impossible to individually estimate the
carriers.

The rest of the paper is divided into five sections. First, the security of clas-
sical SS techniques for WOA are analysed as a Blind Source Separation (BSS)
problem: in section 2 we show that the characterisation of the distributions of
each carrier for the observed contents enables to estimate the different carriers.
Section 3 presents the constraints, principles and characteristics of Natural Wa-
termarking (NW). The embedding, decoding and distortion related to NW are
presented and the link with the Scalar Costa’s Scheme, another scheme preserv-
ing perfect secrecy, is outlined. An extension of NW to increase the robustness
is presented in section 4, the implications in term of security are also mentioned.
Section 5 presents a comparison between the estimations of the secret carriers
for different SS watermarking schemes including NW. We show that for NW it
is impossible to estimate the carriers. For Robust-NW only the estimation of
the watermark subspace is possible. Finally section 6 concludes this paper and
presents open research lines for future works.

2 Assessing the Security of Spread-Spectrum Techniques
Using BSS Techniques

2.1 Notations

Vectors are denoted in bold face (v) and coefficients of vectors with parenthesis
(v(i) is the coefficient number i in vector v). Matrices are denoted in capital
bold face and are generally composed of several realizations of vectors of the
same name, column-wise: the columns of V are several realizations v1 . . .vN of
a “template” vector v.

Let us denote x the host vector of Nv coefficients into which we want to hide a
binary message vector m of Nc bits. The resulting watermarked vector is denoted
y. To this aim, we use ui orthogonal carriers, 1 ≤ i ≤ Nc. The decoded message
is denoted m̂. It is to be estimated from y′, a potentially degraded version of y.
Let us further denote zv,ui the correlation between a vector v and a carrier ui:

zv,ui =< v|ui >=
1

Nv

Nv∑

k=1

v(k)ui(k) (1)
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2.2 Information Theoretical Constraints for Perfect Secrecy

Perfect secrecy has different meanings according to the domain of application.
For steganography, perfect secrecy means the impossibility to distinguish be-
tween an original content (x) and a stego content (y). Cachin studied the nec-
essary conditions to obtain a secure steganographic scheme and claims that a
scheme is secure if the Kullback-Leibler divergence DKL between the distribu-
tions Px and Py of x and y is null. The quantity DKL is defined by:

DKL(Px||Py) =
∑

i

Px(i) log
Px(i)
Py(i)

(2)

which means that perfect secrecy may be achieved if and only if the distributions
of x and y are identical. A practical implementation of a steganographic scheme
satisfying the perfect secrecy constraint has been proposed in [6].

For robust watermarking, the problem does not concern a possible distinction
between the original and the watermarked content: it is not important to know
wether a content is watermarked or not, but is it important not to disclose the
secret carriers based on observations of pieces of watermarked contents. The
concept of information leakage in the context of robust watermarking has been
proposed in [1] and developed in [2][3]. The notion of information leakage stems
from the definition of the mutual information between No watermarked contents
Y and the secret carriers U (where the ui are the columns of U and the No

observed y are the columns of Y):

I(U,Y) = H(Y)−H(Y|U) = H(U) −H(U|Y) (3)

then a watermarking scheme is secure if the mutual information between U and
Y is null: in this case there is no information leakage.

2.3 Spread Spectrum Carriers Estimation

As mentioned previously, a SS watermarking scheme is secure if it is impossible
to estimate the secret carriers using observed signals. On the contrary, if a given
technique enables to estimate the secret carriers ui based only on the observa-
tions of y, then the security of the watermarking scheme is greatly reduced. Such
a tool can be provided using BSS theory. The goal of BSS is to decompose the
observations as a mixture of signals having special statistical properties.

For example, a Principal Component Analysis decomposes observations into
orthogonal components according to their variances, and an Independent Com-
ponent Analysis decomposes the observations into independent signals. Making
connections between BSS and SS watermarking is straightforward. A noteworthy
property of the class of spread spectrum watermarking schemes is the fact that
the embedding part of a SS scheme can be formulated exactly as a blind source
separation problem:

Y = X + USm. (4)
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In this equation, the matrix U is an Nv×Nc matrix called the mixing matrix
(in a BSS framework) and which represents in our case the different carriers
ui column-wise. The matrix Sm denotes the different sources that have to be
extracted and represents the modulation signal for each carrier that is a function
of the embedded message m. The matrix X represents the host signals (column-
wise) and shall be considered as noise in a BSS framework. The goal of BSS
is to estimate the matrices U (the secret carriers) and Sm according to the
observation matrix Y.

In the case of WOA, this decomposition is possible thanks to the fact that each
message is embedded independently from another one. It is consequently possible
to use Independent Component Analysis techniques to break the security of
many spread spectrum watermarking schemes.

The principle of ICA techniques is to find directions in the observed data space
whose projections give singular distributions [7]. Based on the fact that the sum
of independent variables tends to a Gaussian law, independent components are
defined as the most “non-gaussian” components. Moreover, if the watermark
components have a different variance than the host data, principal component
analysis can be used to perform a reduction of dimension that makes the search
of independent components easier.

We now focus on the estimation process of the secret carriers for two popular
SS schemes (classical SS and ISS). The ability to estimate their secret carriers
is presented.

Classical Spread Spectrum Watermarking. In the case of classical SS, the
embedding is given for each vector by:

y = x +
Nc∑

i=1

b(i)ui (5)

where b ∈ {−1; +1}Nc is the BPSK modulation of the embedded message m.

Improved Spread Spectrum Watermarking (ISS). ISS was proposed in
[8], it can be considered an informed-embedding variation of classical SS. The
embedding is given in this case by:

y = x +
Nc∑

i=1

(αb(i)− λ
zx,ui

||ui||
)ui (6)

where α and λ are respectively calculated to respect the targeted distortion and
to achieve the most little error probability after addition of white Gaussian noise.

Eq. 5 and Eq. 6 can be easily transposed in the multidimensional case to ob-
tain a formulation similar to Eq. 4: the matrix U still contains the carriers and
the matrix Sm contains the modulation signals for each carrier.

To assess the security of a SS-based technique, we have decided to adopt the
following methodology which is generally used in BSS benchmarks:
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1. We generate No observa tions of watermarked contents and generate the
matrix of observations Y.

2. We whiten the observed signals using principal component analysis. To re-
duce the searching time, a reduction of dimension is therefore performed.
If we consider that the host signal is generated from an i.i.d. process, the
subspace containing the watermark generated by Nc carriers will be included
into a Nc-dimensional space of different variance [9]. We consequently select
the subspace generated by eigenvectors presenting singular (lower or higher)
eigenvalues.

3. We run the FastICA algorithm [10] on this subspace to estimate the in-
dependent components and the independent basis vectors (e.g. the secret
carriers).

4. We compute the normalized correlation c between each original and esti-
mated carriers. A value of c close to 1 means that the estimation of the
component is accurate. An estimation close to 0 means that the estimation
is erroneous. If Nc = 2, we evaluate the estimation accuracy by plotting a
2D constellation of points of coordinates (c1; c2). A successful estimation will
then provide a point close to one of the four cardinal points (0, 1), (0,−1),
(1, 0), (−1, 0)1.

-50 0 50 100
-100

-50

0

50

100

Fig. 1. Joint distributions of two carriers for original contents. No = 10000, Nv = 512,
σ2
x = 1.

We have depicted the empirical joint distributions of two carriers in the ob-
served watermarked signals (see Fig. 2) and applied our estimation setup for
Nc = 2 secret carriers (see Fig. 3). In both cases the host vectors are Gaussian

1 We use Nc = 2 for illustration purposes, hiding more bits would require to use
the Hungarian method [11] to assign original and estimated carriers prior to the
computation of the normalized correlation c.
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i.i.d. signals of law N (0, 1) and two carriers where used during the embedding.
The Watermark to Content Ratio (WCR) was fixed in both case to −21dB. For
each SS scheme, the joint distribution of the carriers in the observed content is
the sum of four bi-dimensional Gaussian distributions. Note that the variance of
each distribution is less important for ISS embedding than for SS because of the
embedding optimization performed by ISS. Note also that the global variance of
the distribution for SS is more important than for ISS. For each distribution, the
directions of the two carriers (horizontal and vertical axis) are easily identifiable
by the ICA algorithm.

Additionally we see that the Cachin criterion which considers the distributions
of original and watermarked contents is not fulfilled for this two schemes. Fig. 1
depicts the distribution of the two same carriers for original contents. This dis-
tribution is rather different than the distributions after SS watermarking.

-200 -100 0 100 200
-200

-100

0

100

200

-200 -100 0 100 200
-200

-100

0

100

200

SS embedding ISS embedding (NDR = 2)

Fig. 2. Joint distributions of two carriers for SS and ISS schemes. For both schemes
No = 10000, WCR = −21dB and Nv = 512, σ2

x = 1.

Fig. 3 depicts the normalized correlation between the original and estimated
carriers for 100 trials considering every 1000 watermarked vectors. We can notice
that the estimations are globally more accurate for SS than for ISS. In this case,
this is mainly due to the fact that the variance of the embedding for ISS is
lower than for SS and consequently the estimation of the subspace relative to
the watermark is less accurate in the second case.

3 Natural Spread Spectrum Watermarking

In this section, we show how to build a SS-based watermarking scheme in such a
way that the identification of the watermarking subspace spanned by the secret
carriers is impossible.
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SS embedding ISS embedding (NDR = 2)

Fig. 3. Normalized correlations between the two estimated carriers and the real ones.
For both schemes No = 1000, WCR = −21dB and Nv = 512.

3.1 Embedding and Decoding

If we consider a carrier ui such that its coefficients follows a Gaussian model
(ui ∼ N (0, σ2

ui
)), and host signals x ∼ N (0, σ2

x) then the random variable
zx,ui follows a Gaussian law of parameters zx,ui ∼ N (0, σ2

ui
σ2
x). Note that this

property is true because of the Central limit theorem as far as Nv is important.
Moreover, this property is still valid if x does not follow a Gaussian model. The
goal of NW is to design the embedding in such a way that the distribution of zx,ui

before and after embedding will remain identical. Moreover, as it is shown at
the end of this section, the fact that each carrier follows a Gaussian distribution
prevents the estimation of the different carriers and guarantees the security of
the scheme.

The decoding rule remains the same than for usual SS schemes:

m̂(i) = 1 if zy′,ui > 0 (7)
m̂(i) = 0 if zy′,ui < 0 (8)

The watermarked vector y is:

y = x + w (9)

where the watermark signal w is computed as follows:

w = −
Nc∑

i=1

(
1 + (−1)m(i)sign(zx,ui)

) zx,ui

‖ui‖2
ui (10)

which means that the watermark wi associated to each carrier ui follows this
simple embedding rule:

wi = 0 if m(i) = 1 ; zx,ui > 0 (11)
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or m(i) = −1 ; zx,ui < 0 (12)

wi = −2
zx,ui

‖ui‖2
ui if m(i) = 1 ; zx,ui < 0 (13)

or m(i) = −1 ; zx,ui > 0 (14)

Eq. 10 states that x is symetrically modified iff sign(zx,ui) �= (−1)m(i). This
embedding rule is depicted on Fig. 4.

Note that the embedding rule used for NW is quite similar to the rule used for
ISS. In both cases, each carrier ui is modulated according to the correlation zx,ui .
For ISS, zx,ui is used to increase the distance between the different codewords
and increase the robustness. For NW, zx,ui is used to not modify the natural
distribution of the carriers and consequently to increase the security.

zx,u0

Pzx,u

zx,u0

zx,u1

zw

x,u2 = zy,w2
zx,u2

Fig. 4. Natural watermarking for m = {1, 1, 1} (Nc = 3). Only the third bit calls for
a model-based symmetry.

3.2 Distortion

Distortion is usually expressed by means of the WCR (Watermark to Content
Ratio), in dB. Under the assumption that, on average, one bit out of two calls
for a symmetry, we are able to compute the MSE.

The pdf of the watermark (on each sample) is the following:

if x < 0 f(x) ∼ N (0, 4σ2
xσ2

u/Nv) (15)
if x ≥ 0 f(x) = δ(x)/2 (16)

Then:

σ2
W =

2σ2
xσ2

u

Nv
(17)

and the Watermark-to-Content-Ratio is expressed as follows:

WCR = 10 logσ2
W /σ2

x = 10 log
2σ2

u

Nv
(18)
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Fig. 5. Comparison between theoretical and practical WCR

We shall stay with this last approximation, since Fig. 5 shows no difference
between this theoretical approximation and the practical measurements.

If targeting a classical WCR = −20dB, Eq. 18 leads to the trivial relation
Nv = 200Nc if we set u ∼ N (0, 1) and x ∼ N (0, 1).

3.3 Theoretical Evaluation of the Security of Natural Watermarking

The goal of this section is to show that NW enables to have no information
leakage in the case of a WOA setup. We first compute the mutual information
for a scheme using only one carrier u (Nc = 1: therefore the message m is a
scalar binary value).

We consider the case zx,u > 0 but the equations are similar if zx,u < 0. The
embedding formula can be expressed as:

If m = 1 then y = x (19)

If m = 0 then y = x− 2
uu�

Nv
x. (20)

By construction, y can also be modelled as an i.i.d. Gaussian process: y ∼
N (0, 1). Then:

H(y) = H(x) =
Nv

2
log(2πe). (21)
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We recall that the mutual information between one observation y and a secret
carrier u is given by:

I(y;u) = H(y) −H(y|u). (22)

Because the pdfs fy|u,m=1(x) and fy|u,m=0(x) are disjoint, and supposing that
Pr[m = 1] = Pr[m = 0] = 1/2, the conditional H(y|u) is given by:

H(y|u) =
1
2
(H(y|u, m = 1) + H(y|u, m = 0)) + log(2). (23)

Using Eq.19, Eq.20 and the definition of differential entropy, it is easy to show
that H(y|u, m = 1) = H(x) − log 2 and H(y|u, m = 0) = H(x− 2uu�x/Nv)−
log 2.

We obtain then the following expression of conditional entropy for NW:

H(y|u) =
1
2
H(x) +

1
2
H(x− 2

uu�

Nv
x) (24)

where

H(x− 2
uu�

Nv
x) = H((I− 2

uu�

Nv
)x) = H(x) + ln | det(I− 2

uu�

Nv
)|. (25)

Because ||u||2 = Nv, the matrix I− 2uu�/Nv is an elementary reflection which
corresponds to an orthogonal matrix:

(I− 2
uu�

Nv
)(I− 2

uu�

Nv
)� = I− 4

uu�

N2
v

+ 4
uu�uu�

N4
v

= I

since u�u/N2
v =1. Consequently | det(I− 2uu�/Nv)| = 1 and we obtain:

H(y|u, m = −1) = H(x) (26)

and:
I(y;u) = H(y) −H(x) = H(x)−H(x) = 0. (27)

If we now consider No observations, and because x1, ...,xNo are independent
random vectors, then due to Eq.19 and Eq.20, y1, ...,yNo and y1|u, ...,yN0 |u are
also independent vectors. Consequently we have the following properties:

H(yNo |yNo−1, ...,y1) = H(y) (28)

H(y1, ..,yNo) = NoH(y) = NoH(x) (29)

H(y1, ..,yNo |u) = NoH(y|u) = NoH(x) (30)

and finally using Eq. 29 and Eq. 30:

I(Y;U) = NoH(X)−NoH(X) = 0 (31)
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Note that having a mutual information between the secret key and the ob-
served content being null has already been found for another watermarking
scheme. In [3], authors show that for the Scalar Costa’s Scheme [12] and an
embedding parameter α = 1

2 , there is no information leakage too. Such a similar
result is not surprising because in both cases, the distributions of x and y are
the same.

Note also that natural watermarking also theoretically satisfies to the stegano-
graphic definition of security recalled in section 2.2. Because the distributions of
x and y are the same, DKL(Px||Py) = 0.

3.4 Multi-bits Embedding

When Nc > 1 carriers are used, the security of the scheme can be seen as
a problem of blind source separation: is it possible to separate a mixture of
independent Gaussian variables with equal variance ?

ICA theory claims that it is impossible to perform such a separation because
the joint distribution of such a mixture is rotationally symmetric [7]. Here, it
is not possible for an BSS technique to find singular directions observing NW-
watermarked vectors as it was possible with classical SS or ISS. Fig 6 illustrates
the joint distribution of two original carriers obtained after Natural Watermark-
ing. The distribution cannot be used to find the direction of the carriers.

-100 -50 0 50 100

-100

-50

0

50

100

Fig. 6. Joint distributions of two carriers for NW. No = 10000, WCR = −21dB,
Nv = 512, σ2

x = 1. The direction of the original carriers (horizontal and vertical axis)
can not be estimated on a multivariate Gaussian distribution.

4 Toward Robust Natural Watermarking

One solution to increase the robustness of the NW scheme is to increase the
variance of the Gaussian distribution associated with each carrier. We can modify
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the embedding rule of NW (cf. Eq. 10) in such a way that the distribution
of each carriers will still remain Gaussian, but will have a standard deviation
proportional to a scale factor s. This modification enables to increase the average
distance between codewords coding different symbols but also to increase the
embedding distortion. The new modulation for Robust-NW is then given by:

w = −
Nc∑

i=1

(
1 + s(−1)m(i)sign(zx,ui)

) zx,ui

‖ui‖2
ui (32)

and the distribution of the correlation zx,ui of one carrier ui now follows the
model zx,ui ∼ N (0, s2σ2

ui
σ2
x). If s = 1, the embedding rule corresponds to NW,

if s > 1, the robustness is increased and this leads to Robust-NW. The expression
of the WCR becomes:

WCR = 10 log
(s2 + 1)σ2

u

Nv
(33)

Using Robust-NW leads also to another important consequence. Because dis-
tributions of carriers are now distinct from distributions of other components
of watermarked contents, it is then possible to estimate the subspace related to
the watermark using, for example, principal component analysis (PCA). But, if
Nc > 1, it is still not possible to estimate each carrier separately. Consequently
the attacker can remove the watermark by zeroing all the projections on every
carriers but still he has no access to the hidden message itself: he cannot copy
it to another content or modify the embedded message because he does not
know the values of zx,ui. Consequently the very security of the system is still
preserved2.

As a remark, we have also to point out that, even if this implementation
enables to obtain robustness on one hand, on the other hand the degradation of
the host signal become rather significant. For example, if σ2

n = σ2
x = 1 (which is

equivalent to a NDR = 1 for ISS) and Nv = 512, for a same BER = 12% for
both schemes, then the distortion is far more important for NW than for ISS
(WCR = −15dB for NW and WCR = −21dB for ISS). For comparison, in the
case of NW with WCR = −21dB, we have BER = 25%.

5 Results

The aim of this section is to assess the theoretical properties of NW and Robust-
NW. We have used the estimation setup proposed in section 2.3 for classical SS
and ISS considering the same parameters (Nc = 2, No = 1000). The distortion
for NW remains the same (WCR = −21dB) but is different for Robust-NW
(WCR = −14dB, s = 3). Normalized correlations between the two estimated
and original carriers are depicted on Fig. 7 for 100 different trials. For NW (left
2 One may argue that the whole private subspace is already an important information

about the secret. We would like to emphasise however that Robust-NW is proved to
deliver better security since it explicitly does not allow for estimation of the carriers.
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plot), the estimation of the secret carriers is unsuccessful because every point is
very close to the origin for each trial. The right plot, obtained for Robust-NW,
illustrates the fact that in this case the watermark subspace is estimated (the
distance between each point and the origin is close to 1), but that the estimation
of the two carriers is not possible because each trial leads to a point which is
randomly chosen on the unitary circle.

-1 -0.5 0 0.5 1
-1
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0

0.5

1
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-0.5

0

0.5

1

NW embedding, WCR = −21dB Robust-NW embedding, WCR = −14dB

Fig. 7. Normalized correlations between the two estimated carriers and the original
ones. For both schemes: No = 1000 and Nv = 512.

6 Conclusions and Future Works

This paper has presented a solution to obtain a secure spread spectrum water-
marking scheme called Natural Spread Spectrum Watermarking for WOA. The
security is guaranteed by two important properties:

- The distribution of each secret carrier is the same for the marked and original
contents. From this property stems the fact that the mutual information between
the secret carrier and the observed contents is null (condition of perfect secrecy
for watermarking). Additionally, the embedding satisfies also the condition of
secrecy for steganography. Note however that this first property is not true for
Robust-NW (s > 1).
- The watermark subspace is equivalent to a mixture of Gaussian components
having the same variance. BSS theory demonstrates that it is impossible to es-
timate each component (carrier) in this particular case.

We have also proposed a extension of NW to increase the robustness called
Robust-NW which increases the variance of distributions of each carrier while
preserving a multivariate Gaussian distribution. However, the compromises done
to obtain a secure watermarking scheme have to balanced with the relative weak
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robustness of NW in comparison with SS or ISS. Our future works will con-
centrate on this point to discover if such a compromise is mandatory or if it is
possible to obtain a more robust extension of NW. Anyway, Natural Watermark-
ing should already be considered a secure alternative for fragile watermarking
applications.

We would like also to propose a practical implementation of NW for real-life
contents such as images or sounds. This will enable to evaluate specifically the
perceptual distortion of the proposed system.
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An Improved Asymmetric Watermarking

System Using Matrix Embedding

Scott Craver

Department of Electrical and Computer Engineering
Binghamton University

Abstract. In the asymmetric watermarking problem, we wish to embed
a signal in a piece of multimedia and later prove that we have done so,
but without revealing information that can be used by an adversary to
remove the signal later.

There have been several published solutions to this problem, which
suffer from the twin problems of size and time complexity. We provide a
protocol similar to the one described in [5], but with substantial improve-
ments in time and space. Our protocol is non-interactive, and each ex-
change of information between the prover and verifier involves a smaller
payload of data. The algorithm uses a form of matrix embedding with
pseudo-random Gaussian matrices. Aside from an improvement in effi-
ciency, it possesses other practical advantages over previous protocols.

1 Introduction

Asymmetric watermarking refers to the problem of embedding a signal, and
proving that it has been embedded, without actually revealing it or otherwise
revealing information allowing an attacker to damage the hidden data. Several
protocols for accomplishing this have been published, by placing detection within
the framework of a zero-knowledge protocol [5,4,1] or by creating statistical
artefacts which can be exhibited without revealing the signal [10].

Some of these systems suffer from inversion attack vulnerabilities: the attacker
can simply pick a signal that correlates with the image, and prove asymmetri-
cally that he knows it [6]. Because the prover is no longer allowed to reveal the
watermark, verifying that it is a valid watermark becomes difficult. Those which
are not vulnerable still have high space and time complexity, due to interactive
protocols in which amounts of data comparable to the multimedia data itself are
exchanged repeatedly.

In this paper we outline an asymmetric embedding method using pseudo-
random Gaussian matrix embedding. A key K is used to generate a pseudo-
random matrix G[K]M×N . Given a data vector xN×1 extracted from the multi-
media object, we tune in to one “channel” of the data by computing the product
y = G[K]x. Embedding consists of determining the watermark signal w such
that ŷ = G[K](x + w) is the message we want to transmit. In practice we will
embed multiple messages in multiple channels using multiple keys Ki by solving
one system of linear equations.

J. Camenisch et al. (Eds.): IH 2006, LNCS 4437, pp. 15–25, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The asymmetric part uses the inversion attack principle described in [5]
and [4]. There, the authors embed a few watermarks in an image and use inver-
sion attacks to generate a large number of counterfeit ones. All of the watermarks
are detectable in the test image, and a zero-knowledge proof is used to show that
at least one watermark is real. An attacker who wants to render the real water-
marks undetectable can attempt to damage a large number of the counterfeit
marks; but since these counterfeit marks are the image’s content, this amounts
to damaging the image significantly.

In our algorithm, we embed a few watermarks using specific keys Ki, and
supply a prover with a large number of extra random keys. Extracting a signal
using most of these keys will result in channel noise, which serves the same role
as the counterfeit watermarks of the previous protocol.

1.1 Why This New Method Is an Improvement

There are several factors that make this new system an improvement over the
previous protocol. First, in this new protocol Alice only needs to provide Bob
with a list of generating keys, not a list of watermarks themselves. In [5], the wa-
termarks are as large as the watermarked data vector X , and hundreds must be
provided as part of the proof. Owing to the construction of that secret watermark
vector, Alice cannot provide the PRNG seed that generates the watermarks—
doing so would reveal crucial information about how the watermarks are created,
revealing which are real and which are fake. In our algorithm, Alice can provide
Bob with a list of embedding keys which generate the watermarks. This results
in a considerable size reduction in representing the watermark data. Instead of
providing a bundle of watermarks M times the size of the “image,” we can pro-
vide a bundle of keys M times some small size, such as 56 bits. The keys do not
even need to be large enough to prevent brute force, because they are not kept
secret. They are simply pseudo-random seeds.

Second, our verification protocol is non-interactive. This is not a trivial form
of non-interactive protocol in which the same data payload is sent all at once;
rather, we provide a single-step protocol whose payload is comparable to a single
step of the interactive one. This provides a substantial reduction in protocol
traffic.

Another advantage of our system is that Alice does not need to fix the number
of counterfeit watermarks in advance. The protocol in [5] requires the image to be
divided into shares in advance, that all counterfeit watermarks are constructed
at the same time as the new watermarks are added. In our protocol, Alice need
not perform any inversion attacks during embedding; she can invent as many
false watermarks as she wants during verification.

A final advantage of our system is that the image data size is not strictly
bound to the payload size. In other words, the cryptographic objects we embed
do not have to be too large or too small owing to the size or nature of the data.

In [1], watermark vector elements are blinded by using them as exponents, for
example Bi = awi (mod p). Cryptographic protocols have certain requirements
for the bit-sizes of this data; a watermark vector element wi needs to have
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sufficiently many bits in order for this kind of commitment to be secure. To be
completely secure, wi should be uniformly distributed over Zp−1. Natural data
needs to be carefully shaped to meet the requirements of the protocol.

Meanwhile in [5], the data objects are of length comparable to the image
vector x. If we have a very large watermark vector relative to the bitstring we
want to embed, we lose embedding efficiency, and allow an attacker to target
those particular components of the vector in which our payload is stored. In
our algorithm, the matrix G[K] reduces the data vector to whatever size is
appropriate for embedding. This allows the data size to be as large as we want.

The main disadvantage of our system is the amount of cover data needed. The
embedding strength of the watermark depends on the number of bits embedded
and the vector size. This means that for an appropriate embedding strength, the
number of coefficients used for embedding may be on the order of 104 or 105.
While this seems large, consider that the features we use for embedding should
contain as much of the image’s content as possible.

2 Asymmetric Watermarking with a Selection Channel

The concept of a selection channel is described by Anderson and Petitcolas in [2].
It consists of a method of selecting a “location” in a media object for embedding
data, indexed by a parameter such as a secret key. This general approach to data
hiding provides security through the multiplicity of choices available to both the
embedder and the attacker. An attack must target many different locations in
order to damage the hidden data, analogous to a pirate digging up half an island
to find a treasure chest without a map.

For a chosen algorithm, we will denote X(ω) as the message extracted from
the media object X using the selection channel parameter ω.

For asymmetric watermarking, we employ the following technique:

1. Alice chooses a large prime p and element g ∈ Z/pZ of high order.
2. Alice chooses an appropriate selection channel algorithm.
3. For various channel parameters ωi, Alice embeds integers X(ωi) = Hi = ghi

(mod p). This is embedding by replacement. The values hi are random seeds
which constitute the secret watermark information.

4. Alice distributes the resulting media object X .

Mathematical objects used in cryptography are usually fragile, and can not
be trusted to survive an attack. Thus we employ a proof that uses the image
after embedding as a “digital negative.” We can prove facts about the negative,
while also showing that it corresponds closely to the suspect pirate image.

1. Bob is caught distributing a modified object Y .
2. Alice presents X , her selection channel algorithm, p and g, and a large set of

random parameters {ωk} of which some of her real embedding parameters
{ωi} are a subset.
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3. For each parameter, Bob extracts messages X(ωk) and Y (ωk), and tests for
correlation on each pair.

4. Bob records the subset of parameters {ωk} for which a correlation was found
between X(ω) and Y (ω). With hope, there will be an ωk for which the
message X(ωk) is one of Alice’s embedded integers.

5. Alice proves that she knows the discrete logarithm for at least one unspecified
message.

That last step can be performed in zero-knowledgewith a large number of trans-
missions as described in [5]. We have a more efficient algorithm for verification,
described below. A key point, however, is that detection and verification are sepa-
rated. This postponement of watermark verification permits this general approach
of watermarking using inversion attacks. To Bob, every parameter ωk potentially
points to a watermark, and a minority of them actually are. If Bob cannot distin-
guish between real watermarks and random channel noise, then a careful verifica-
tion protocol can prove the existence of a watermark without locating it.

In summary: Alice uses a selection channel to “tune in” to various parts of
the image X . She embeds messages in those parts. Later, when a suspect image
Y appears, Alice provides a long list of channels, and Bob can “tune in” to the
same channel of both images and verify that the data in those channels match.
It is then up to Alice to prove using a protocol that at least one channel of X
contains not noise but a carefully constructed message.

3 Embedding with Pseudo-random Gaussian Matrices

This technique is inspired by the matrix embedding codes of Fridrich and Soukal
[8]. In their protocol, they employ a general procedure of transforming a bit
string into a message using matrix arithmetic over Z/2Z. We can employ similar
techniques; however, the field Z/2Z does not possess topological properties which
are necessary for robustness. We use matrices over R instead, whose components
are N(0, σ2) Gaussian.

3.1 The Matrix Embedding Framework

Suppose we have extracted a real data vector xN×1 from a media object, which
we want to watermark. To be specific we want to add a vector wN×1, whose
power is a fraction α of the original:

∑
w2

i = α
∑

x2
i . We will see that the vector

dimension N and α are tied together by the number of bits we want to embed,
so that N must be large. On the other hand there are only so many features we
can extract from some media, such as images. In practice, the dimension N of
the vector will be on the order of 104 or 105.

Next, we have a set of messages {mi} of equal length. In practice, 4096 bits
is a fair datagram length. We want to embed cryptographic objects which we
can use in a zero-knowledge proof or other asymmetric protocol. The way our
architecture works, the embedding does not have to be robust, which is helpful
because the objects we embed are inherently sensitive to single bit errors.
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Next, we will encode each message {mi} as a vector yM×1 of double-precision
reals. The value must be chosen to follow a Gaussian distribution, which we
achieve by companding. Each double-precision real holds a 52-bit mantissa, but
we cannot embed 52 datagram bits bits per real owing to arithmetic errors which
occur when this vector is operated upon. In experiments, we have been able to
rely on 32 bits per mantissa, with more if we want to code our data appropriately.
This represents a 4096-bit datagram as a 128-element vector.

We now have a set of vectors {yi} of dimension M , and a message vector x
of dimension N . For each vector yi we pick a secret key Ki and use it as a seed
to generate a pseudo-random Gaussian matrix G[Ki]M×N . Each row of G[Ki]
is a vector of i.i.d. N(0, σ2) Gaussian variables. This is our selection channel
algorithm: the matrix product z[Ki]M×1 = G[Ki]x is the message extracted
from the data vector. For selected keys Ki, we want to set z[Ki] = yi, so that
our message is “located” in that channel.

Finally, for embedding purposes, we will combine all of the datagram vectors
{yi} into a single vector yDM×1, where D is the number of datagrams. Our
gaussian matrices similarly combine into a matrix GDM×N , and the product
of our embedding should be Gx = y. To be exact, y = [yT

1 |yT
2 | · · · |yT

D]T and,
G = [G[K1]T |G[K2]T | · · · |G[KD]T ]T .

During the watermark verification phase, we will need to treat each G[Ki]
separately; for embedding, it is best to treat all the message data as a single
vector, and all of the Gaussian matrices as a single matrix G.

Table 3.1 summarizes the notation thus far.

Symbol meaning

xN×1 The data vector extracted from the multimedia, of dimension N
wN×1 The signal vector we will ultimately add to x
α The power ratio

∑
w2

i /
∑

x2
i

{mi}D
i=1 Message datagrams

{yi}D
i=1 Message datagrams encoded as double-precision reals

{Ki}D
i=1 Message embedding keys

{G[Ki]M×N}D
i=1 Pseudo-random Gaussian matrices derived from keys

z[K]M×1 = G[K]x Message extracted from x using key K
GDM×N All Pseudo-random matrices concatenated into single matrix
yDM×1 All datagram vectors concatenated into single vector

Fig. 1. The notation used in this section

3.2 Embedding

Embedding is actually very simple. We want to choose vector w so that G(x +
w) = y, or Gw = (y−Gx). With DM � N this is an underdetermined system,
and since each row is a vector of i.i.d. Gaussians, GGT is a DM ×DM matrix
that is invertible with very high probability.

To embed, we construct our watermark vector as a weighted sum of columns
from GT : only components within the span of these vectors will have any useful
embedding effect. The solution is the vector
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w = GT (GGT )−1(y −Gx)

which will place all of our datagrams {yk} into their respective channels.
Note that this is really embedding by replacement. True, we are adding a

vector w to the data vector x, and we will detect later via correlation; however,
within the scope of our selection channel algorithm, we have caused whatever
signal was present in z[Ki] to be completely replaced with yi.

3.3 Encoding of Datagram Vectors

The datagram vectors should be chosen so that they statistically resemble chan-
nel noise. Thankfully this is easy, because each element of the channel noise
vector z[Ki] is the dot product of x with a distinct vector of i.i.d. N(0, σ2)
Gaussians. Hence the noise vector elements are i.i.d. N(0, (

∑
x2

i )σ
2).

This means that each vector element of y must also be chosen to be an
i.i.d. N(0, (

∑
x2

i )σ
2) Gaussian variable. To encode our data packets this way we

compand, scaling each n-bit parcel to a value v ∈ [0, 1] and computing Φ−1(v)
where Φ(x) = 0.5(1 + erf(x/

√
2)).

3.4 What Is the Watermark Strength?

The reader has probably noticed that something is missing from the embedding
procedure: any parameter to control the watermark power. The watermark is
completely determined from the data vector x, the specific bit strings mi, and
their keys which generate the matrix G. There is no opportunity to scale this
vector to make it strong or weak.

In fact, the relative strength of the watermark is determined by the dimension
parameters M and N , and the number of datagrams D we wish to embed. In
turn, M and D derive from the number of bits we want to embed—almost! The
dimensionality of these vectors effects the overall arithmetic error in the embed-
ding process, which in turn restricts the number of bits that can be embedded
per coefficient. This factor can be ignored for the time being, however, as we
determine the embedding strength as a function of DM and N .

For the equation we need to solve, w = GT (GGT )−1(y − Gx), the vector
(y−Gx) will contain elements that are N(0, 2(

∑
x2

i )σ
2). The total vector power

will have an expected value of 2DM(
∑

x2
i )σ

2.
Meanwhile, the pseudo-random matrix GGT will have diagonal elements

with a mean of Nσ2, and non-diagonal elements with a mean of 0. Thus we
should expect the intermediate vector pDM×1 = (GGT )−1(y − Gx) to have a
power of

∑
p2

i = 2MD(
∑

x2
i )/N

2σ2). Finally, the watermark w = Gp will have
elements that are N(0, 2MD(

∑
x2

i )/N
2). Its power will be

∑
i w2

i = 2MD
N

∑
x2

i .
In other words, the fraction α will be 2MD/N . For example, if we have an

M = 128 and D = 5, and we want an α = 0.04, then we need N = 1280× 25 =
32000. For small data objects, extracting 32000 elements to watermark may
be a challenge. Remember, however, that the goal is to choose a vector which
represents as much of the image’s content as possible.
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To summarize, we control the weakness of the added watermark through the
length of the data vectors we extract from the media, and the bitrate we want to
achieve. The bad news is that we generally need a long data vector for embedding,
which is easy for audio or video, but difficult for images. The good news is that
we can make the impact of the watermark arbitrarily weak by increasing the
dimension N .

3.5 Detection and Robustness

In the detection phase, Bob takes an individual block G[Ki] and computes
G[Ki]x on Alice’s image, and G[Ki]x̂ on his own copy. In the naive case in
which x̂ = x + εN×1, then G[Ki]ε will be a vector of N(0, σ2

∑
ε2i ). This versus

G[Ki]x, a vector whose elements are N(0, σ2
∑

x2
i ). The signal-to-noise ratio in

the transformed domain is the same as in the real domain. This is confirmed by
observation, as described in section 5.

4 Verification Protocol

If we wish, we can use the zero-knowledge protocol described in [5]. In this
protocol, all messages mk are sent from Alice to Bob in a blinded format, and
on a coin flip Alice either reveals the discrete logarithm of one of these blinded
messages, or reveals the blinding algorithm.

Instead, we use an asymmetric algorithm that is not strictly zero-knowledge.
This uses public-key encryption using the El Gamal cipher [11].

1. Alice provides Bob with a large number of selection channel parameters {ωi}.
A few of them point to real messages.

2. Bob extracts the messages mi = X(ωi), after verifying that they are indeed
detectable in his own image Y .

3. Bob uses a pseudo-random seed s to generate a set of encryption parameters
{ri}. He also chooses an arbitrary challenge message M .

4. For each mi, Bob uses El Gamal to compute the ciphertext Ci, Ri =
Encrypt(M, s)

Ci = {M |s} ·Xri

i (mod p), Ri = gri (mod p)

5. Bob sends all pairs {Ci, Ri} to Alice.
6. For one index i for which Alice knows the discrete log of Xi, Alice computes
{M |s} = Ci ·R−hi

i (mod p).
7. Alice then uses the PRNG seed s to compute all other parameters {ri} and

decrypts all of Bob’s messages. She can now verify that the messages are
identical, and contain no tracing information.

8. Alice sends Bob M , or a hash h(M).

The penultimate step ensures that Bob is not placing distinct information
in each message to determine which one Alice is decrypting. This requires the
PRNG hash for generating Bob’s nonces to be sent with each encrypted message.
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Fig. 2. Number of mantissa bits lost during embedding. There are 52 mantissa bits in
a double-precision floating point number.

Fig. 3. Peppers image before and after embedding

The payload size of this protocol is still large. It requires a one-time trans-
mission of 2BM , where B is the size of a message (on the order of thousands
of bits), and M is the number of parameters {ωk} originally sent by Alice. All
other transmissions are smaller: Alice initially sends M parameters, which can be
smaller than a discrete exponential, and ultimately sends one hash value, which
is smaller than a discrete exponential.

In contrast, the protocol in [5] required an initial transmission of M shares (not
the parameters that generated them, but the messages themselves) followed by
an interactive protocol of t trials. In each protocol step Alice sends M messages,
and with probability 1

2 sends a discrete logarithm of one message (in the other
case Alice must send the M blinding factors, but if they are securely generated
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from an PRNG seed she could simply send that). This produces a payload size
of (t + 1)BM + tB. The number of interactive trials t is the log base 2 of the
cheater’s success rate. A reasonable value for t would be between 10 and 30.
Thus this protocol is more size efficient by a decimal order of magnitude.

In terms of time efficiency, the above protocol requires M encryptions and
M decryptions, or 2M discrete exponentials. The algorithm in [5] requires tM
discrete exponentials for Alice, and an expected t(M/2+1) discrete exponentials
by Bob. Hence, t(3M/2 + 1) operations are needed for the old protocol, giving
us a work reduction of approximately 3t/4.

5 Implementation

We implemented the embedding algorithm for computer images with varying
values of DM and N . Figure 3 illustrates additive embedding in full-frame DCT

Fig. 4. Severely damaged images. Left, channel noise is 0.25 the signal power. Right,
channel noise is same as signal power. Below, normalized correlation of random selection
channels in the noisy images.
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coefficients with N = 160000 and DM = 256. The expected embedding power
is α = 0.0032; in experiments the actual value ranged from 0.0029 to 0.0034.

Figure 2 shows the bit errors resulting from the entire process of encoding,
embedding, extraction and decoding. Our simple encoding scheme places 32 bits
in each coefficient, which survive the process. More sophisticated coding can
exploit the remaining bits.

In figure 4 we see the result of a simple attack on the data vector x. Here, a
noise vector e of 1/4 the signal variance is added to the data vector. From our
previous analysis, we expect the correlation within each channel to be the same
as the overall correlation between x and x + e. Hence we expect a normalized
correlation of 0.89, which we observe. Figure 4 also shows the results for more
severe degredation in which the signal and noise are of equal variance.

6 Conclusions

In this paper we have outlined a matrix embedding method for asymmetric
watermarking. This utilizes the technique of Craver, Liu and Wolf to hide a
collection of watermarks among a list of false watermarks, and later prove that
at least one watermark is legitimate.

Our method uses a selection channel in which watermark keys, rather than
watermarks themselves, can be transmitted to the verifier—a huge size improve-
ment over the algorithm in [5]. The prover can provide as many false watermarks
as she wants, or change them from detection to detection, whereas in [5] the num-
ber of false watermarks is fixed at embedding. Finally, a one-step protocol is used
rather than an interactive zero-knowledge protocol, which reduces the amount
of data exchanged as well as compute time by a decimal order of magnitude.
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Abstract. We present a semi-public key implementation of quantiza-
tion index modulation (QIM) watermarking called Secure QIM (SQIM).
Given a signal, a watermark detector can learn the presence of an SQIM
watermark without learning anything anything else from the detection
process. The watermark detector first transforms the signal with a secret
transform, unknown to the detector, and then quantizes the transform
coefficients with secret quantizers, also unknown to the detector. This
is done with the use of homomorphic cryptosystems, where calculations
are performed in an encrypted domain. A low-power, trusted, secure
module is used at the end of the process and reveals only if the signal
was watermarked or not. Even after repeated watermark detections, no
more information is revealed than the watermarked status of the signals.
The methods we present are for watermark systems with quantizers of
stepsize 2.

1 Introduction

When watermarking occurs for the purposes of digital rights management
(DRM), watermark embedding is performed in a trusted environment, while
watermark detection is performed “in the wild”. That is, the watermark detec-
tor is assumed to be a trusted party, but it is generally operating in a hostile
environment where the end-user would like to circumvent the DRM. One way
to keep the watermarking secret and functionality out of the hands of hostile
parties is to embed it in a physically secure device, such as a smartcard, which
can be operated in a black-box manner. However, such devices generally have
very low computing capacity, and will be unable to perform watermark detection
very quickly on their own. Our strategy, also proposed in other papers, is to have
the watermark detector work in an encrypted domain and use a trusted secure
device, called the secure module, to finish the detection process.

Secure QIM (SQIM) uses public and private keys much like public key cryp-
tosystems such as RSA. The private key is used by the watermark embedder to
generate watermarks while the public key is used by the watermark detector to

J. Camenisch et al. (Eds.): IH 2006, LNCS 4437, pp. 26–41, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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perform watermark detection in an encrypted domain. Finally, the secure module
uses the private key to decrypt the results produced by the watermark detector.
The secure module must be initialized by communication with the watermark
embedder to receive the private key information. In a sense, this system is not
truly asymmetric but rather semi-asymmetric, since the aid of a trusted third
party (the secure module) is required.

Our first goal is to ensure that the act of detecting a watermark reveals as
little information as possible to the watermark detector. Because the secure
module is low-power and low-bandwidth, our second goal is to ensure that the
watermark detector takes on as much of the computational burden as is possible,
and transmits a few bits to the secure module as possible. Two cryptosystems
are used to allow the watermark detector to perform the necessary calculations
without learning any information about the watermarking secrets. These sys-
tems are homomorphic, meaning that an operation performed on ciphertexts
corresponds to another operation performed on plaintexts. For example, in the
Paillier cryptosystem (see Section 3.1), if E(·) is the encryption function, then
E(x)E(y) = E(x + y). The homomorphic properties of these cryptosystems are
what make it possible for the watermark detector to run the algorithm without
learning anything.

However, even though the watermark detector gains no extra knowledge
through the detection process, knowledge of the presence or absence of wa-
termarks is sufficient to mount oracle attacks (see Cox and Linnartz [5], Ven-
turini [18], and Li and Chang [14], for example). The purpose of these attacks
is to find the boundary separating watermarked signals from non-watermarked
signals, and use this boundary to learn the watermarking secret. Such attacks are
much more powerful than attacks on the cryptosystems presented in this paper,
and are possible whenever a watermark detector can test signals for watermarks.

One defense against oracle attacks is to increase the time required for water-
mark detection, effectively limiting the speed of the “oracle” (See Venturini [18]).
This would not be possible with a fully assymetric watermarking scheme, since
the speed of such a watermark detector would be limited only by the speed of
the machine that is running it. A trusted secure module could have a built-in
delay, or a limit on the number of watermark detections per minute, and could
thereby help to slow the rate of convergence of oracle attacks.

On the other hand, the use of a secure module introduces side channel attacks,
for example timing attacks (see Kocher [10], and Brumley and Boneh [2]), and
power attacks (see Kocher et al. [12]). In these attacks, the secure module is
monitored externally to guess at the operations occurring internally. An imple-
mentation of SQIM would have to take side channel attacks into account, but a
detailed discussion of these attacks is beyond the scope of this paper.

Quantization Index Modulation (QIM), developed by Chen and Wornell [4],
embeds a watermark into an signal by manipulating the signal so that transform
coefficients are quantized in a specific manner. A watermark detector trans-
forms a signal and checks to see if the transform coefficients are appropriately
quantized. There are two phases to securely detecting a QIM watermark. First
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a hidden transform is performed on the signal, and second the transform co-
efficients are quantized via hidden quantization. After hidden quantization the
secure module counts the number of watermarked transform coefficients and
reveals whether a threshold of the coefficients were watermarked. The method
presented in the paper only works for quantizers with stepsize 2.

Attempts have been made at completely asymmetric watermarking schemes
(see Eggers et al. [6] and Hachez and Quisquater [7]), but these have generally
not been completely successful. Another specific method of performing asym-
metric watermarking involves multi-round zero knowledge proofs (see Adelsbach
and Sadeghi [1], for example). Kalker [8] introduced the idea of using a secure
module to enable semi-public key watermarking, using a variant of the Paillier
cryptosystem to perform secure spread spectrum watermarking. In comparison
with the spread spectrum scheme, a SQIM scheme must implement a nonlinear
operation in an encrypted domain, namely quantization. For more discussion of
secure watermarking and the SQIM system, see Malkin [11].

Section 2 outlines the QIM watermarking scheme. Section 3 reviews homo-
morphic cryptography and introduces the two cryptosystems used in this paper.
Section 4 discusses how to perform a hidden transform, while Section 5 discusses
how to perform hidden quantization. Section 6 presents the full Secure QIM sys-
tem. Finally, in Section 7 we discuss the efficiency of SQIM and in Section 8 we
prove that SQIM is zero knowledge and that it is secure.

2 QIM

We consider a simple variant of QIM with dithered scalar quantizers. Our pur-
pose is not to improve the watermarking aspects of QIM, but to ensure that
watermark detection is secure. Therefore, watermark embedding is not changed
at all, and watermark detection is changed only in that all calculations are per-
formed in a secure manner. We will discuss watermark detection first, and then
explain how a watermark is embedded into a signal. We are only concerned with
whether or not a signal was watermarked, so we do not use the watermark to
embed data into a signal.

To detect a watermark in a signal, the signal is first transformed with a secret,
random linear transform, for example a DCT or wavelet transform. For every
transform coefficient ti, there are two secret quantizers, Qi

0 and Qi
1. If ti is closer

to a quantization point on Qi
0, then it corresponds to 0, otherwise it corresponds

to 1. In this way, each transform coefficient is assigned a value. If a threshold
of transform coefficients have the correct, watermarked value, then the signal is
considered to be watermarked. If not, the signal is considered not watermarked.

Embedding a watermark into a signal involves changing the signal so that
the correct values are obtained after quantizing the transform coefficients. The
most straightforward approach is to transform the signal, quantize the transform
coefficients, and perform the inverse transform. Other embedding schemes, such
as distortion-compensated QIM [4], may also be used.
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3 Homomorphic Cryptosystems

We use two cryptosystems, the Paillier cryptosystem and the Goldwasser-Micali
cryptosystem, both of which are probabilistic public-key cryptosystems. They
are public key in that a public key is used to encrypt plaintext, while a private
key is needed to decrypt a ciphertext, and the two keys are computationally
not easily derived from each other. They are probabilistic in the sense that the
same plaintext is represented by a large number of ciphertexts. This is important
when the range of possible plaintexts is small. For example, when encrypting 0
or 1, a non-probabilistic cryptosystem can produce only 2 possible ciphertexts,
whereas a probabilistic cryptosystem can produce many different ciphertexts.

This last property is especially important in the current application. For
example, if samples were in the range [0, ..., 255], then there would be only
256 possible encryptions of the samples. This would make it much easier to
break the system by looking at the transcripts of many watermark detections.
Even relabelling the sample values would not solve the problem; there would
be 256! possible relabellings, but statistical analysis could be used to easily find
the correct one. With probabilistic cryptosystems, the values would be effec-
tively blinded, so that this essentially brute-force searching attack would not be
possible.

Both of these cryptosystems share another important property: they are ho-
momorphic. This means that a mathematical operation performed on ciphertexts
corresponds to a mathematical operation performed on plaintexts. For example,
if E(·) corresponds to encryption in the Paillier cryptosystem, then we can write
the homomorphism of the Paillier cryptosystem as

E(a1)E(a2) = E(a1 + a2).

Homomorphic cryptosystems enable the watermark detector to perform cal-
culations without explicitly knowing what is being calculated or finding out the
results of the calculation. For example, given α = E(a), but not knowing the
value of a, we could compute the encryption of 7a + 3 as

α7E(3) = E(7a + 3).

Furthermore, with the right public values, it would be possible for us to com-
pute, in the encrypted domain, any polynomial function of a given public input.
For example, say α1 = E(a1), α2 = E(a2), and α3 = E(a3) were public, and we
were asked to compute a1x

2 + a2x + a3 in the encrypted domain. We could do
this as

α
(x2)
1 αx

2α3 = E(a1x
2 + a2x + a3).

We would know the encryption of the polynomial, but have no knowledge of the
actual value.

3.1 Paillier Cryptosystem

The Paillier cryptosystem is homomorphic, with multiplication of ciphertexts
corresponding to the addition of the plaintexts. Furthermore, exponentiation of
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a ciphertext corresponds to multiplication of the plaintext. We present a very
brief summary of the system. See Paillier [13] for more details.

Let N = pq, where p and q are primes. Choose g ∈ Z∗
N2 such that the order

of g is divisible by N . Any such g is of the form g ≡ (1 + N)abN mod N2 for a
pair (a, b), where a ∈ ZN and b ∈ Z∗

N . Note that (1 + N)a ≡ 1 + aN mod N2, so
g ≡ (1+aN)bN mod N2. Let λ = lcm(p−1, q−1). The public key is (g, N), the
private key is λ. For message m and blinding factor r ∈ Z∗

N , Paillier encryption
is defined as

EP (m, r; g, N) = gmrN mod N2.

Note the equalities:

EP (m1, r1; g, N) ·EP (m1, r1; g, N) = EP (m1 + m2, r1r2; g, N) ,

EP (m, r; g, N)k = EP (mk, rk; g, N).

In the Paillier cryptosystem, decryption is more complicated than encryption.
First note that for any x ∈ Z∗

N2 ,

xλ ≡ 1 (mod N),
xNλ ≡ 1 (mod N2).

Given c = EP (m, r; g, N) = gmrN mod N2, we can see that

cλ ≡ gmλrNλ

≡ (1 + N)amλbλNm

≡ 1 + amλN (mod N2).

Note also that gλ ≡ [(1 + N)abN ]λ ≡ 1 + aλN (mod N2). Therefore,

(cλ mod N2)− 1
N

= aλm and
(gλ mod N2)− 1

N
= aλ

To simplify, let fN(x) = (x mod N2)−1
N . Then we decrypt by computing

m = DP (c; g, λ, N) =
fN (cλ)
fN (gλ)

mod N.

Optimizations are discussed by Catalano et al. [3], Damg̊ard and Jurik [15],
and Kalker [8].

3.2 Goldwasser-Micali Cryptosystem

The Goldwasser-Micali cryptosystem was developed in 1984 by Goldwasser and
Micali [16]. It encrypts a single bit of information and is homomorphic in that
multiplying ciphertexts corresponds to finding the XOR of the plaintexts. This
cryptosystem is based on quadratic residues. A number is a quadratic residue
modulo an odd prime p if it is the square of some number modulo p.
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Definition 1 (Legendre symbol). The Legendre symbol is defined as

(
x

p

)
=

⎧
⎨

⎩

0 if x ≡ 0 (mod p)
1 if x is a quadratic residue modulo p
−1 if x is a quadratic non-residue modulo p

By Euler’s criterion[17], we compute
(

x
p

)
= x

p−1
2 (mod p).

In the case of a composite modulus, the Jacobi symbol is used instead of the
Legendre symbol.

Definition 2 (Jacobi symbol). For N = pq, where p and q are odd primes,
the Jacobi symbol is

( x

N

)
=

⎧
⎪⎪⎨

⎪⎪⎩

0 if gcd(x, N) > 1
1 if

(
x
p

)
=
(

x
q

)

−1 if
(

x
p

)
= −

(
x
q

)

Definition 3 (QR). Let QR(N) be the set of all quadratic residues modulo N .

Lemma 1. x is a quadratic residue modulo N iff
(

x
p

)
=
(

x
q

)
= 1. If x is a

quadratic residue modulo N2 then it is a quadratic residue modulo N .

Proof. If x ∈ QR(N) then x = y2 + kN = y2 + kpq for some y, k, so x ≡ y2

(mod p) and x mod p ∈ QR(p). The same holds for q, so
(

x
p

)
=
(

x
q

)
= 1. Given

x such that
(

x
p

)
=
(

x
q

)
= 1, we know that there exist a and b such that a2 ≡

x (mod p) and b2 ≡ x (mod q). By the Chinese Remainder Theorem [9], there
exists a y such that y ≡ a (mod p) and y ≡ b (mod q). Since, y2 ≡ x (mod p)
and y2 ≡ x (mod q), we know that y2 ≡ x (mod N), and therefore x ∈ QR(N).
If x ∈ QR(N2) then x = y2 + kN2 for some y, k, so x mod N ∈ QR(N). ��

Definition 4 (Q̃R). x is a pseudosquare modulo N if
(

x
p

)
=
(

x
q

)
= −1.

Define Q̃R(N) to be the set of pseudosquares modulo N.

It is easy to calculate Jacobi symbols, even if the factors of N are unknown (see
Koblitz [9]). However, if the factorization of N is unknown, it is not always easy
to determine quadratic residuosity. For any x ∈ QR(N)∪ Q̃R(N),

(
x
N

)
= 1, but

determining if x ∈ QR(N) is a classical hard problem in cryptography and is
assumed to be impossible without factoring N . If p and q are known, it is easy to
determine if such an x is a quadratic residue by computing

(
x
p

)
= x

p−1
2 (modp)

as above.
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The Goldwasser-Micali Cryptosystem. Let N = pq, where p and q are safe
primes. Choose g ∈ Q̃R(N). N and g are public while the factorization of N is
private. Encryption takes as input a single bit b and a random blinding factor
r ∈ Z∗

N . The Goldwasser-Micali cryptosystem is defined as

Egm(b, r; g, N) = gbr2 mod N.

Decryption is defined as

Dgm(x; p, q) =
{

0 if x ∈ QR(N)
1 if x ∈ Q̃R(N)

If the factorization of N is known, decryption can easily be done by computing(
x
p

)
= x(p−1)/2 mod p. Otherwise decryption is not possible, since it requires

distinguishing members of QR(N) from members of Q̃R(N) (see Section 3.2).
This system is homomorphic in that multiplying ciphertexts is equivalent to

XORing plaintexts. Note the following equalities:

Egm(b1, r1; g, N) · Egm(b2, r2; g, N) ≡ gb1+b2(r1r2)2 (mod N).

≡ Egm(b1 ⊕ b2, r1r2; g, N) (mod N).

The last equality holds because only the least bit of b1 + b2 matters, and ⊕ is
equivalent to modulo 2 addition.

4 Phase I: Hidden Transform

The first phase of Secure QIM is a hidden linear transform. This means that
the watermark detector takes the sample values from the signal and performs a
transform on the sample values without learning the transform or the resulting
transform coefficients.

Using the Paillier cryptosystem, we know how to perform addition and multi-
plication in the plaintext domain by performing the corresponding operations of
multiplication and exponentiation in the ciphertext domain. Let a signal consist
of m samples, y = (y1, ..., ym)T . The random transform takes y as input and
produces n transform coefficients, t = (t1, ..., tn)T . Let the watermark embedder
choose an orthogonal transform S = {sij}, for i = 1...n and j = 1...m, and let
si be row i of the transform. Note that t = Sy and ti = si · y.

The watermark detector is not allowed to know any of the values of S, nor
any of the values of t. This is achieved by performing all the calculations in
the Paillier encrypted domain. First, the watermark embedder chooses N = pq,
where p and q are primes, and chooses a random g ∈ Z∗

N2 such that the order of
g is divisible by N . Next, for i ∈ [1, n], j ∈ [1, m], it generates random βij ∈ Z∗

N .
The public key consists of encryptions of the transform matrix V = {vij} where
vij = EP (sij , βij ; g, N).



A Cryptographic Method for Secure Watermark Detection 33

The watermark detector wants to find c = (c1, ..., cm) , the hidden transform
coefficients. It does so by computing

ci =
∏

j

(vij)yj mod N2.

For later convenience in notation, define wi =
∏m

j=1 β
yj

ij . Then by the homomor-
phic properties of the Paillier cryptosystem, we have

ci =
∏

j

v
yj

ij mod N2 =
∏

j

EP (sij , βij ; g, N)yj mod N2

=
∏

j

EP (sijyj , β
yj

ij ; g, N) mod N2 = EP (
∑

j

sijyj ,
∏

j

β
yj

ij ; g, N)

= EP (si · y, wi; g, N) = EP (ti, wi; g, N).

5 Phase II: Hidden Quantization

This section will present a simplified version of the hidden quantization scheme,
uncoupled from the hidden transform, for a clearer presentation. The full version
will be presented in Section 6.

The watermark embedder chooses N = pq, where p and q are safe primes, and
g ∈ Q̃R(N). It also chooses private quantization values q = (q1, ..., qn) where
each qi ∈ {0, 1}, and blinding values γ = (γ1, ..., γn) where each γi ∈ Z∗

N , and
calculates k = (k1, ..., kn), ki = Egm(qi, γi; g, N). It publishes g, N , and k, and
reveals the value of p to the secure module.

The watermark detector knows the public values g, N , and k. Assume in
this section that it has n unencrypted transform coefficients, t = (t1, ..., tn) . If
the signal is watermarked, these coefficients will each quantized so that ti ≡
qi (mod2) , but for any given coefficient, the watermark detector does not know
the correct quantization value. The key point to notice is that if the signal is
watermarked, ti ⊕ qi ≡ 0 (mod2) .

First, the watermark detector chooses α = (α1, ..., αn), with αi ∈ Z∗
N , and

encrypts the transform coefficients,

ci = Egm(ti mod 2, αi; g, N).

Then it computes

fi = ciki

= Egm(ti mod 2, αi; g, N)Egm(qi, γi; g, N)
= E((ti mod 2)⊕ qi, ri; g, N).

Note that fi is a Goldwasser-Micali encryption of 0 if ti is watermarked, 1
otherwise.
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The secure module has a threshold function, T (n). It is given as input
f1, ..., fn, decrypts each fi, sums the values, and announces that the data is
watermarked if

n∑

i=1

Dgm(fi; p, q) ≤ T (n).

6 Secure QIM

This section presents the full system, in which the watermark detector performs a
hidden transform on the input data and then quantizes the transform coefficients
while still in the encrypted domain. It is a combination of the systems from
Sections 4 and 5 with a careful choice of g and the blinding factors so that
the ciphertexts of the hidden transform can be used for hidden quantization. In
Sections 6.1, 6.2, and 6.3, we discuss the basic SQIM scheme, and in Section 6.4
we present modifications that prevent abuse by a malicious adversary.

6.1 Initialization

The watermark embedder chooses N = pq, where p and q are safe primes.
Recall that for such N , λ = lcm(p − 1, q − 1). g ∈ Z∗

N2 is chosen so that
g mod N ∈ Q̃R(N) and the order of g, denoted ord(g), is kN , where k|λ. All
such g can be generated as follows. Choose a ∈ Z∗

N , so gcd(a, N) = 1, and
b ∈ Q̃R(N). Let g = (1 + N)abN mod N2. Because (1 + N)a ≡ 1 + aN mod N ,
we can write

g = (1 + aN)bN mod N2.

Claim. g mod N ∈ Q̃R(N) and ord(g) = kN .

Proof. Notice that g ≡ bN (mod N). Since N is odd, bN mod N ∈ Q̃R(N), so
g mod N ∈ Q̃R(N). Because ord(1 + N) = N and gcd(a, N) = 1, ord(1 +
N)a = N . Let k = ord(bN ). Since bN ∈ Z∗

N , k|φ(N), and since N and φ(N)
share no factors, gcd(k, N) = 1. Therefore, ord(g) = ord(1 + N)ord(bN ) =
kN . ��

6.2 Watermark Embedding

The watermark embedder chooses an orthogonal transform S = {sij}, for i =
1...n and j = 1...m. Let si be row i of the transform. The embedder also
chooses q = (q1, ..., qn), with each qi ∈ {0, 1}. It takes as input the signal
x = (x1, ..., xm) and produces a watermarked signal y = (y1, ..., yn) such that
for all i, si · y ≡ qi (mod 2) .

For i ∈ [1, n], j ∈ [1, m], βij is chosen such that βij ∈ QR(N). For i ∈ [1, n],
γi is chosen so that γi ∈ QR(N). Let V = {vij} where vij = EP (sij , βij ; g, N) ,
and k = (k1, ..., kn) where ki = Egm(qi, γi; g, N). The public watermarking key
consists of N , V , and k.
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6.3 Watermark Detection

First, the watermark detector finds the encrypted transform coefficients c =
(c1, ..., cm) . Recall that ti = si · y. Let wi =

∏m
j=1 β

yj

ij . Then

ci =
∏

j

v
yj

ij mod N2 = EP (ti, wi; g, N) = gtiwN
i mod N2.

At this point we change from looking at ciphertexts modulo N2 and begin
looking at them modulo N . This is done so that the ciphertexts will be compat-
ible with the Goldwasser-Micali cryptosystem.

We will now show that if ti mod 2 = 0, then ci mod N ∈ QR(N), otherwise
ci mod N ∈ Q̃R(N). Since each βij ∈ QR(N), then wi ∈ QR(N) and therefore
(wi)N mod N ∈ QR(N). If ti mod 2 = 0, then gti mod N ∈ QR(N). Otherwise,
since g mod N ∈ Q̃R(N), gti mod N ∈ Q̃R(N). Therefore, if ti mod 2 = 0 then
ci ∈ QR(N) otherwise, ci ∈ Q̃R(N). In both cases

(
ci

N

)
= 1. Therefore,

ci mod N = Egm(ti mod 2, wN
i g2� ti

2 �; g, N).

Now we begin hidden quantization. Let fi = ciki mod N and zi = wN
i g2� ti

2 �.

fi = ciki mod N = Egm(ti mod 2, zi; g, N)Egm(qi, γi; g, N) mod N

= Egm((ti mod 2)⊕ qi, γizi; g, N).

So, Dgm(fi; p, q) = (ti mod 2)⊕ qi, which is 0 if ti was correctly quantized, 1
otherwise.

The secure module is given as input f1, ..., fn and knows a threshold function
T (n). It decrypts each fi, sums the values, and announces that the data is
watermarked if

n∑

i=1

Dgm(fi; p, q) ≤ T (n).

6.4 Verification

It is possible for a malicious watermark detector to abuse the secure module.
For example, if a watermark detector has a Goldwasser-Micali ciphertext y =
Egm(x, r; g, N) but does not know x, it can set the input to the secure module
to be n copies of y. If the secure module says “watermarked”, then the detector
knows x = 0, otherwise it knows that x = 1. The watermark detector can trick
the secure module into functioning as a Goldwasser-Micali decryption oracle.

To prevent this sort of abuse, we force the watermark detector to prove that
each query to the secure module is valid in that is comes from an honest execution
of the SQIM algorithm. If the a query is not proved to be valid, the secure module
refuses to respond.

There are two steps to prove validity. First the detector proves legitimacy,
the fact that the inputs to the secure module are the result of homomorphic
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operations on ciphertexts from existing public watermarking keys. This prevents
the detector from inventing new ciphertexts to use as input to the secure module,
as in the example above. Next the detector proves wholeness, which prevents
mixing and matching attacks. This prevents the watermark detector from mixing
parts of multiple transform matrices, and forces it to calculate all transform
coefficients with the same signal.

We now describe the modifications to the Secure QIM scheme that are nec-
essary to prove legitimacy and wholeness. Section 8.1 describes how the modifi-
cations prove these properties.

Legitimacy. Each public watermarking key must now include two encryptions
of the transform matrix: V = {vij}, vij = EP (sij , βij ; g, N); and W = {wij},
wij = EP (sij , βij ; h, N); where h is formed as g is in Section 6.1, but h �= g. The
watermark detector uses V to compute c = {ci} as in Section 6.3, and likewise
uses W to compute c′ = {c′i}. Note that the decryptions of ci and c′i are equal,
but the ciphertexts that were used to generate ci were encrypted with g, while
those that were used to generate c′i were encrypted with h.

Queries to the secure module now consist of n 4-tuples: (ci, c
′
i, ki, fi). The

secure module checks that for all i,

DP (ci; g, λ, N) = DP (c′i; h, λ, N), (1)

then checks that
fi = ciki mod N. (2)

If either of these conditions do not hold for any i, then fi is not legitimate and
the secure module does not respond to the query.

Wholeness. The wholeness constructions make use of a public hash function,
H(·). Any hash function will do as long as it is collision-resistant. This means
that it is difficult to find any pairs (x, y) where x �= y but H(x) = H(y).

During initialization, the watermark embedder chooses a random
θ = {θ1, ..., θn} where θi ∈ Z∗

N . It includes in the watermarking public key σ =
EP (H(θ), ρ0; g, N) as well as Θ = {Θ1, ..., Θn}, where Θi = EP (θi, ρi; g, N) and
the ρi are random blinding factors. It also includes Δ = EP (H(θ, k), τ ; g, N),
with blinding factor τ . Note that the hash in Δ includes k, not q.

In Section 6.2, the hidden transform was chosen as S = {sij}, for i = 1...n
and j = 1...m. We now add an extra row, s0, to the top of the matrix S. s0 is
formed as a random linear combination of the all the other rows, si:

s0 =
n∑

i=1

θisi.

Letting k0 = 0 and f0 = 0, we can say that the 4-tuple corresponding to s0 is
(c0, c

′
0, k0, f0).
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When the secure module receives a query, it is first given σ, Θ, and Δ. It
decrypts σ and Θ and checks if DP (σ; g, λ, N) = H(θ1, ..., θn). If not, θ is corrupt
and the secure module refuses to respond. Next it checks if that DP (Δ; g, λ, N) =
H(θ1, ..., θn, k1, ..., kn). If not, k is corrupt and the secure module refuses to
respond. Finally, it checks if

DP (c0; g, λ, N) =
n∑

i=1

θiDP (ci; g, λ, N). (3)

If equation 3 does not hold, the transform was corrupt and the secure module
does not respond.

7 Efficiency

In this section we will compare the efficiency of standard QIM with that of Secure
QIM. Note that in both cases, the secure module starts off knowing the Paillier
and Goldwasser-Micali private keys, but does not know any transform matrices
or quantization values. In standard QIM, performed with a random transform
on a secure module, the secure module is given a signal, an encrypted trans-
form matrix, and encrypted quantization values, and performs QIM watermark
detection by itself.

In our analysis we are concerned with the communication and computation
required of the secure module. Let signals be of length m and let there be n
transform coefficients. Samples of the signal are k-bit numbers and encryptions
modulo N have � = log2 N bits.

Communication. In standard QIM, the secure module can receive all the infor-
mation in an efficiently encrypted form. As such, we will calculate the number
of bits that would be required unencrypted, and will assume that encryption
adds negligible overhead. The secure module receives the signal (mk bits), the
encrypted transform matrix (mnk bits), and the encrypted quantization values
(n bits), for a total of mnk + mk + n bits. The mnk term will dominate.

In SQIM, each number is encrypted individually modulo N or N2. The secure
module receives (n + 1) 4-tuples of 6� bits (6(n + 1)� bits), σ (2� bits), Θ (2n�
bits), and Δ (2� bits), for a total of 8n� + 10�. The 8n� term dominates.

In comparison, standard QIM requires m
8

k
� times more bits than SQIM. Since

m is the number of samples in the signal, this is a very large difference. For ex-
ample, consider a signal of m = 105 samples, with k = 24, n = 25, and � = 1024.
Then SQIM requires 26.3 kilobytes while standard QIM requires 7.4 megabytes.
At a rate of 9600 bits per second, it would take 22.4 seconds to complete the
SQIM data transfer, whereas it would take 1.8 hours for the standard QIM data
transfer.

Computation. The computational costs are harder to compute and more de-
pendent on specific implementation. We estimate the cost of standard QIM as
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the cost of performing the transform. Assuming straightforward matrix multi-
plication, this will have a running time of O(nmk2). We estimate the cost of
SQIM based on the total number of decryptions. There are approximately 5n
decryptions, which results in a running time of O(n�3). �3 very large, but � is
fixed based on security needs. k is generally in a small range, say 8 to 24 bits.
So, the relative performance is highly dependent on the number of samples in
the signal. With a small number of samples, standard QIM will be faster, while
with a very large number of samples SQIM will be faster.

8 Security

Given the security of the Goldwasser-Micali and Paillier cryptosystems, our sys-
tem is secure and zero knowledge. Length limitations prevent detailed proofs, so
we offer proof sketches instead. More detailed proofs appear in Malkin [11].

8.1 Proof of Verification

The proof of zero knowledge rests upon the fact that invalid queries to the secure
module will be rejected. Now we sketch proofs of this fact, taking our notation
from Sections 6.2 and 6.3.

Legitimacy. Recall that equation 1 requires that

DP (ci; g, λ, N) = DP (c′i; h, λ, N).

It is impossible for a watermark detector to produce c and c′ such that this
equation holds, other than by generating them homomorphically from hidden
transform values.

Assume that algorithm A can produce c and c′ that satisfy equation 1. By
definition of Paillier decryption, that is equivalent to saying

c = gmrN
1 mod N2 (4)

c′ = hmrN
2 mod N2 (5)

for some m and some blinding factors r1 and r2. Note however, that A doesn’t
know g or h. This means that equations 4 and 5 must simultaneously be true
for all possible pairs (g, h) (perhaps with a different m per pair). This is not
possible, so A can not exist. Note that this proof can also be extended to work
when the algorithm A is probabilistic.

The only access to g and h that the detector has is through the encrypted val-
ues in the public watermarking key, so all c and c′ are the result of homomorphic
operations on such values.

Equation 2 (fi = ciki mod N) guarantees that the fi were generated by per-
forming hidden quantization on ci with the supplied ki. This means that hidden
quantization was legitimately performed on a legitimate hidden transform.
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Wholeness. The watermark detector can not mix and match Θi from different
public watermarking keys, because σ would not match Θ and the collision re-
sistance of H prevents the detector from constructing a match. Likewise, all the
ki must come from the same k or Δ won’t match. Furthermore, Θ and k must
come from the same public watermarking key, or Δ won’t match.

In any watermark detection, all the vij must come from the same V , and that
V is the one associated with Θ. If a watermark detector mixes and matches
coefficients from different V it can not fulfill equation 3:

DP (c0; g, λ, N) =
n∑

i=1

θiDP (ci; g, λ, N).

Encrypting both sides of equation 3, we see

c0 =
n∏

i=1

ci
θi =

n∏

i=1

Θi
DP (ci;g,λ,N).

A mix-and-match attack would have to generate c0, but neither of these equal-
ities can be formed homomorphically. An algorithm A that can generate c0

without knowing these decryptions can be used to compute the computational
Diffie-Hellman problem: given ga and gb, compute gab. This is assumed to be
impossible, so A can’t exist.

We showed that for a given Θ there is only one possible k that will be accepted,
and also for a given Θ there is only one possible V that will be accepted, and
that no mixing and matching is possible

8.2 Proof of Zero Knowledge

By definition, SQIM is zero knowledge if the watermark detector can simulate
what it sees during watermark detections. This is easy if the detector is honest.

The detector has a watermarking public key, is given (or chooses) a signal s,
and receives a bit b from the secure module, so its view is v = (s, b). s is chosen
from a distribution D that includes whether or not s is watermarked. To simulate
this view, first choose a transform matrix and quantization values, then choose
a signal s′ according to D. Since the transform matrix and quantization values
are known, it is easy to see if s′ is watermarked. Let b′ = 1 if s′ is watermarked,
b′ = 0 otherwise, and let the view of the simulation be v′ = (s′, b′). v and v′ are
identically distributed, so SQIM is honest-detector zero knowledge.

The verification system ensures that the view of a dishonest watermark de-
tector is the same as that of an honest watermark detector because dishonest
queries are ignored. Therefore, SQIM is zero knowledge from the perspective of
the watermark detector.

Note that there are no zero knowledge proofs here. The secure module is
trusted, so it does not have to prove that its calculations are correct.
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8.3 Proof of Security

In both the Paillier and Goldwasser-Micali cryptosystems, any properly-formed
N with large-enough factors is secure. The security of the Paillier cryptosystem is
independent of the choice of g, and any g such that g mod N ∈ Q̃R(N) is secure
for the Goldwasser-Micali cryptosystem. Therefore, even though we choose g in
a unique manner, it is still secure.

The security of Paillier encryption depends on the blinding factors, which we
also choose in a unique manner. Since the blinding factors in standard Paillier
encryption are chosen at random from Z∗

N , choosing them from a subset of
non-negligible size does not introduce security problems; if it did, then choosing
them at random from Z∗

N would have a non-negligible chance of encountering the
same problems. A problem would exist if the subset were small enough to make
a brute-force search possible, but |QR(N)| = 1

4 |Z∗
N |, so this is not a concern.

Therefore, our choice of blinding factors is secure.
The only public watermarking values are either Paillier ciphertexts or

Goldwasser-Micali ciphertexts which are acted upon homomorphically. Since N ,
g, and the blinding factors are chosen securely, these ciphertexts are as secure
as the Paillier and Goldwasser-Micali cryptosystems, respectively.

The only area where the security of SQIM does not derive immediately from
the Paillier and Goldwasser-Micali cryptosystems is when Paillier ciphertexts
are taken modulo N and converted into Goldwasser-Micali ciphertexts. How-
ever, this is still provably secure. Consider these ciphertexts to belong to a new,
hybrid cryptosystem. The essence of the proof is that any algorithm that has
an advantage in decrypting these hybrid ciphertexts can be shown to have an
advantage decrypting Goldwasser-Micali ciphertexts. Since we assume the secu-
rity of the Goldwasser-Micali cryptosystem, no such algorithm can exist, and
the hybrid cryptosystem is secure.

9 Conclusion

We have presented a Secure QIM system, one in which most of the work of
watermark detection can be performed in the open without any information
about the private key being leaked. A secure module, such as a smartcard, is used
to perform the final portion of watermark detection, revealing only if the signal
is watermarked and no other information about the watermark. Our hidden
transform utilizes the Paillier cryptosystem, while our hidden quantization uses
the Goldwasser-Micali cryptosystem, and a robust verification system is used to
force all watermark detectors to honestly follow the SQIM algorithm.

The novelty of SQIM lies in the coupling of two cryptosystems to implement a
semi-private key QIM, and in the verification system which prevents watermark
detectors from cheating. Furthermore, our system is provably secure, assuming
the security of the Paillier and Goldwasser-Micali cryptosystems.
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Abstract. In this paper we focus on estimating the amount of informa-
tion that can be embedded in the sequencing of packets in ordered chan-
nels. Ordered channels, e.g. TCP, rely on sequence numbers to recover
from packet loss and packet reordering. We propose a formal model for
transmitting information by packet-reordering. We present natural and
well-motivated channel models and jamming models including the k-
distance permuter, the k-buffer permuter and the k-stack permuter. We
define the natural information-theoretic (continuous) game between the
channel processes (max-min) and the jamming process (min-max) and
prove the existence of a Nash equilibrium for the mutual information rate.
We study the zero-error (discrete) equivalent and provide error-correcting
codes with optimal performance for the distance-bounded model, along
with efficient encoding and decoding algorithms. One outcome of our
work is that we extend and complete D. H. Lehmer’s attempt to char-
acterize the number of distance bounded permutations by providing the
asymptotically optimal bound - this also tightly bounds the first eigen-
value of a related state transition matrix [1].

1 Introduction

In this paper we model and prove the existence of a novel covert channel in any
ordered channel. We define a ordered channel as one in which the basic units of
communication (eg. packets in network channels) are linearly ordered. A common
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example of an ordered channel is the TCP communication channel which uses
the sequence number field to order the packets. The crux of our hiding scheme is
to re-order the packets, and thus sending information. Thus, the scheme involved
coding by permuting the packets in the channel.

Communication in covert channels is usually modeled using five players
namely, Alice, stego-Alice, Jammer, stego-Bob, Bob, in the order of access to
a basic unit of communication (eg. packet). Alice and Bob are the legitimate
senders using the ordered channel. stego-Alice and stego-Bob are the players
involved in extracting a covert channel. stego-Alice works by permuting the
packets sent by Alice and thus trying to communicate with stego-Bob. We use
the notion of a Jammer to encapsulate the effects of attempts to intercept such
covert channels. The Jammer works by permuting the packets, after they are
sent by stego-Alice and before received by stego-Bob1.

The capacity of the channel is measured by the information rate [2] of the
channel. Since the channel is covert, stego-Alice should not inordinately permute
the packets. Similarly, giving the Jammer, complete permuting power would
render any stego-Alice useless2. Hence, we assign permuting power to the stego-
Alice and the Jammer. Also, stego-Alice and Jammer are usually implemented
in hardware and the permuting powers come up due to restricting the hardware
complexity.

We formalize a variety of natural models of permuting power for the stego-
Alice and the Jammer. We consider two distinct ways of analyzing the capacity
of the channel. In the continuous case, we formulate the channel as a zero-sum
game played by the stego-Alice and the Jammer where the stego-Alice tries to
maximize the capacity of the channel. We prove the existence of a nash equilib-
rium for any given power (strategy space) of the stego-Alice and the Jammer. On
the other hand, we have the discrete case, where we provide concrete encoding
and decoding algorithms, parametrized on the stego-Alice and Jammer power,
to communicate. We obtain tight bounds on the capacity of the covert channel
were possible.

The rest of the paper is organized as follows. The following section talks about
the related works. In section III, we formalize the channel model and introduce
the various models to restrict the stego players and the jammers. In Section
IV we analyze the general channel capacity as a two player game and prove
that a Nash equilibrium exists. We set the stage for the following sections by
characterizing the zero-error capacity of the channel. Section V is an analysis
of restricted permutations, and in particular distance restricted permutations.
In section VI, VII we prove bounds on zero-error the channel capacity in the
models that we introduce and provide polynomial time encoding and decoding
schemes.

1 The concept of Jammer also encapsulates the inherent errors (eg. re-ordering of
packets due to routing) that exist in the ordered channel.

2 As we prove, for many natural models, the stego-Alice needs more power than the
Jammer to effectively communicate.
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2 Related Work

Considering the set of codewords to be a set of permutations for traditional
channels has been studied in theory [3]. However, in our model channel errors
are permutations, rather than symbol errors. In [4], asymptotically good error-
correcting codes for correcting transposition, insertion and deletion errors have
been designed. However their codebook is not restricted to only permutations.
To the best of our knowledge considering only permutations as both codewords
and errors is novel and also well suited for the covert TCP channel that we
consider.

A partial characterization of “k-distance” permutations[Sec.3] have been done
in the past [1]. Lehmer gives explicit ways to derive the number of permutations
satisfying this condition for small values of k (1, 2 and 3).For every k, the number
of “k-distance” permutations of length n equals to O(μn

k ). In course of our work,
we obtain tight asymptotic bounds on the value of μk.

Our work is in part a logical extension to the reordering scheme proposed
in [5]. We analyze the reordering channel in a suitably defined mathematical
model and provide bounds on the channel capacities. The scheme proposed
in [5] has the following defects. Firstly, the encoding and decoding algorithm
are not optimal and are not polynomial time. We have very simple polynomial
time encoding and decoding schemes which asymptotically achieve the maxi-
mum channel capacity. Further, there is no characterization of the capacity, nor
any model describing it.

3 Preliminaries

3.1 The Steganographic Channel

We consider as the underlying host channel one where Alice communicates with
Bob using a stream of ordered packets. Since we are interested in hiding addi-
tional information into the channel by reordering the packets, the fundamental
operations performed by the stego players are permutations. The stego play-
ers are assumed to know the total ordering among the packets and decide be-
forehand on the block length n and number the packets in order from the set
{1, 2, . . . , n− 1, n}. Let Sn denote the symmetric group of n elements and e its
identity element. Assume Alice sends the packets to Bob in the natural order
e = (1 . . . n). Denote by π = (π(1), . . . π(n)) a permutation where the ith element
is π(i). A code, in this scenario, is C ⊆ Sn whose rate we define to be log2(|C|)

n . We
define the following models of permuters to restrict the permutations possible
for the stego players and the jammer.

3.2 Distance Bounded Permuters

In any ordered communication channel, the latency of the channel is increased
if the packets are reordered. For a covert communication with a bound on the
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maximum latency in receiving a packet at the actual receiver we define the
following permuter.

Definition 1. A k-distance permuter is one in which the permutation π of the
input is such that |i− π(i)| ≤ k, ∀i ∈ {1, . . . , n}.

3.3 Buffer Bounded Permuters

Definition 2. A k-buffer permuter uses a random access buffer of size k ele-
ments. There are two operations that a k-buffer permuter can perform.

1. put: The k-buffer permuter removes one element from the input stream and
places it in the buffer. This operation can be performed iff the buffer is not
full.

2. remove: The permuter removes one element from the buffer and places it
in the output stream. This operation can be performed iff the buffer is not
empty.

Define a k-buffer permutation to be a permutation realizable by a valid sequence
of put ’s and remove’s a k-buffer permuter. We note that the only possible 1-
buffer permutation is the identity permutation e. Let B

(k)
n denote the number

of different k-buffer permutations of n elements. Note that unlike k-distance
permuters, k-buffer permuters are not reversible; there exists a permutation π
that is a k-buffer permutation such that π−1 is not a k-buffer permutation.

3.4 Restrictions on the Nature of the Buffer

Definition 3. A k-stack permuter is a k-buffer permuter where the buffer ac-
cessible to the k-buffer permuter is not a random access buffer but a stack.

4 A Game Theoretic Approach

In this section, we study the covert communication as a information-theoretic
game. We define the strategies of the “players” as follows. Let S denote the set
of all permutations to which the sender can permute e. Let T denote the set of
all permutations to which the adversary can permute any element of S. Consider
the directed graph G(V, E), where V = S ∪ T . A directed edge (p → q) ∈ E iff
the adversary can permute p ∈ S to q ∈ T .

To communicate, the sender selects a probability distribution over S and does
source coding [2] to transmit information. The adversary selects, for each vertex
in S a probability over the set of neighbours3 in G to reduce the information
rate. Extending the distribution chosen by the sender to the whole of V (by
assigning zero probability mass on the vertices that the sender cannot “reach”),

3 Typically, an adversary is allowed to leave the permutation sent by the sender as it
is, leading to self loops in the graph G.
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we have a probability distribution X over V . The adversary chooses the con-
ditional probability p(y|x) of the permutation x being transformed into y for
every edge (x → y) in E. Extending the conditional probabilities to all pairs of
vertices, we have a distribution Y over V , representing the probability of the
final permutation (after both sender and adversary have made their “move”).
Then, the information rate is given by,

I(X ; Y ) = H(X)−H(X |Y )

where, H(X) and H(X |Y ) are the entropy functions.
This naturally leads to a zero-sum game [6] with objective function I(X ; Y )

where the strategies of the players are as defined above. Suppose U and V denote
the set of all strategies of the sender and the adversary of choosing a distribution
and a conditional “transition” probabilities respectively, we have the following
theorem that proves the existence of a saddle point.

Theorem 1. The game as defined above satisfies the min-max equation

min
v∈V

max
u∈U

I(X ; Y ) = max
u∈U

min
v∈V

I(X ; Y )

Any pair of strategies that achieves this value of the game is said to be “optimal”
to each other. In particular, the above theorem also proves the existence of a
Nash equilibrium. Hence there exists optimal strategies for the sender and the
adversary such that no player has anything to gain by changing his own strategy.

4.1 Characterization of Nash Equilibrium

The structure of the graph could help in obtaining the value of the game. The
following lemmas are useful in determining the value of the graph. The proofs
of the lemmas are omitted due to lack of space.

Lemma 1. If there exist two vertices x1 and x2 such that there is an edge (x1 →
y) iff (x2 → y), then, there is an optimal strategy set where the sender assigns
p(x2) = 0

Similarly, we have the following lemma for the edge player. The proof of the
lemma is very much along the lines of the above proof and hence omitted.

Lemma 2. Suppose there exists two vertices y1 and y2 such that (x → y1) iff
(x → y2), then there is an optimal strategy set where the adversary assigns
p(y2|x) = 0∀x.

For the purpose of constructing error-correcting codes, we need to find the largest
set of symbols in S such that the adversary cannot “confuse” two symbols by
permuting the them to the same element. Thus, for the general graph game, we
have the following theorem.
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Lemma 3. (Confusion Graph Lemma.) Given the directed graph G, with
adjacency matrix A, defined as in 4. Let H denote the underlying undirected
graph with adjacency matrix A + AAT . This graph contains an edge between
every pair of elements that can be confused and hence the largest independent
set of subgraph of H induced by the vertices of S gives the set of symbols over
which an optimal error-correcting code can be constructed.

5 Restricted Permutations

Note: Due to space constraints, we use the symbol � to denote proofs are found
in the appendix section of the extended version [7].

The information theoretic results show the existence of a game theoretic equi-
librium. However the zero-error model, when one would like to decode exactly to
the correct code word, is also important in the practical sense. Below we show
for several noise models what the zero-error capacity is and provide codes to
communicate in this situation.

k-distance permutations accurately capture the real world constraints of mem-
ory and latency. In this section we study in detail the properties of k-distance
permutations. The nature of permutations of n elements, given for each element i
a set of possible positions it can move to have been extensively studied [1], [8], [9].
We reproduce some relevant parts for the sake of completeness.

For k = 1, observe that P
(1)
n = Fn+1 the (n+1)-th Fibonacci number. Finding

the recurrence for P
(k)
n is in general difficult. So is computing it as a function

of n and k. [1] provides a computational method to evaluate P
(k)
n . However the

method has exponential complexity in k. Further they leave the exact asymp-
totics open. We briefly outline the method below.

Consider an intermediate position in the construction of any permutation of
length n obeying the k-distance property. Let this be denoted as (π(1), . . . , π(h−
1)). Suppose also that h is much larger than k; we have to decide on the value of
π(h) depending on the values of (π(h−1)−(h−1), . . . , π(h−k)−(h−1)), which
we call a state. The state contains information as to the relative displacement
of each of the previous k elements, using which we could determine the set of
values that π(h) can take. Upon choosing a feasible π(h), we move to a new
state, (π(h)− h, . . . , π(h− k + 1)− h). Construct a directed graph with vertices
as all possible states, a directed arc between states a and b iff state b is reachable
from a via a feasible extension of the permutation terminating with the state
a. Let the adjacency matrix of this graph be denoted by A. The number of
ways of extending a partially built permutation π(1 . . . h) to π(1 . . . h + i), is
the number of directed paths of length i in the graph, starting with the state
(π(h)−h, π(h−1)−h, . . . , π(h−k +1)−h), and ending at the state (π(h+ i)−
h− i, . . . , π(h + i− k + 1)− h− i), which is the corresponding entry in Ai. The
growth of this entry is of the order of μi

k, where μk is the largest eigenvalue of

the matrix A. Hence, limn→∞
P (k)

n

μn
k

= 1 where μk is the eigenvalue of the state
matrix A corresponding to k-distance permutations.
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As an illustration, consider the simple case of 1-distance permutations. The
state information consists of just (π(h) − h), and thus the set of states V =
{(0), (−1), (1)}, since an object h cannot move more than one place away from
its initial position. From the restrictions of 1-distance permutations, the state

transition matrix is seen to be

⎛

⎝
1 0 1
1 0 1
0 1 0

⎞

⎠ Evaluating the largest eigen-value of

this matrix we find that its equal to μ1 = 1+
√

5
2 , and thus the number of 1-

distance permutations goes as
(

1+
√

5
2

)n

, as expected. During the course of our
work, by having provided an upper bound and lower bound for the values of
P

(k)
n , we also have provided bounds on the value of the eigen-value of this state

transition matrix.

6 Bounds

We begin with a lemma on the k-buffer model.

Lemma 4. B
(k)
n = kn−kk! if n > k and B

(k)
n = n! if n ≤ k. �

6.1 Upper Bound

Any k-distance permutation can be trivially obtained as an output of k + 1-
buffer. Thus a trivial upper bound for the number of k-distance permutations is
B

(k+1)
n . We provide a tighter upper bound using Bregman’s theorem as follows.

Lemma 5. For n > k, P
(k)
n ≤ ((2k + 1)!)n/(2k+1) �

Corollary 1. limk→∞ μk ≤ 2k+1
e + o(1), by the Stirling’s approximation.

6.2 Lower Bound

A naive lower bound for P
(k)
n that is also constructive in yielding an encoding

scheme when the Stego players are k-distance permuters is as follows.

Lemma 6. P
(k)
n > (k + 1)!n/(k+1) if n > k + 1 and P

(k)
n = k! if n ≤ k + 1. �

In the absence of a jammer the stego player could encode information as k-
distance permutation using the above lemma since it is simple to index the set of
permutations Sk+1 [10], it is also straightforward to extend this indexing scheme
to (Sk+1))

n
k+1 . Thus given a single index from {0, . . . , (k + 1)!n/(k+1) − 1}, one

can output the corresponding k-distance permutation.

6.3 A Limiting Bound on μk

Lemma 7. limk→∞ μk ≥ 2k+1
e + o(1).
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Proof. Define permutations, p, where |i − p(i)| mod n ≤ k as k-circular per-
mutations. Let C

(k)
n be the number of such permutations. From [1], using

Van der Warden’s theorem on permanents of doubly stochastic matrices [11],
limn→∞(C(k)

n )
1
n ≥ 2k+1

e .

Also, limn→∞(P (k)
n

C
(k)
n

)
1
n = 1, hence limk→∞ μk ≥ 2k+1

e .
We provide a mapping from every circular permutation to some set of linear

permutations. Consider any circularly permuted, k-distance permutations p =
(p1, . . . , pn). Let there be y elements in p1, . . . , pk that are from the set {n− k +
1, n−k+2, . . . , n} and x elements in pn−k+1, . . . , pn from the set {1, . . . , k}. These
elements make this circular permutation not a linear order permutation. Move
the elements in p1, . . . , pk which belong to {n−k+1, n−k+2, . . . , n}, to the end
of the permutation in that order. Similarly move the elements in pn−k+1, . . . , pn

from the set {1, . . . , k} to the front of the permutation in that order. It is easy
to see that we have moved each object only closer to its initial position and thus
the property that it is a k-distance permutation is satisfied. The total number
of such circular permutations which can map to a linear permutation is seen
to be

∑
x,s

kPx
kPs ≤ (k!e)2. Since this is a constant factor independent of n,

limn→∞(P (k)
n

C
(k)
n

)
1
n = ((e(k)!)2)

1
n = 1, and hence the theorem follows.

Theorem 2. limLimk−−>∞ μk
2k+1

e

= 1.

Proof. Follows from lemma 7, lemma 1.

7 Encoding and Decoding Schemes

In this section, we provide error correcting codes for different stego sender and
jammer powers. For each of the models defined in 3 we provide error correcting
codes and bounds when possible.

7.1 Error Free Channel

We first consider the case where the channel is error-free. We provide codes,
encoding and decoding algorithms. The maximum information capacity of the
channel is just the logarithm of the number of different symbols that can be
transmitted across in the absence of any error. Thus we would like to aim for
encoding schemes where given an index between 0 and the maximum possible
number of different symbols, we want the encoder the output a symbol.

Buffer bounded permuters. An algorithm to encode any index between 0
and B

(k)
n into a k-buffer permutation is as follows.
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Encode any 0 ≤ x < B
(k)
n into a k-buffer permutation using n elements

1: while n > 1 do
2: Fill thek-bufferwithasmany elements fromthe inputaspossible (min(n, k)).
3: Sort the k-buffer.
4: for i = 1 to k do
5: if x < iB

(k)
n−1 then

6: Output the i-th element of the sorted buffer.
7: x ← x− (i− 1)B(k)

n−1

8: n ← n− 1
9: break

10: end if
11: end for
12: end while
13: Output the last packet left. {n = 1 here.}

The above algorithm is a direct modification of the counting procedure 4. The
decoding procedure is to reconstruct the entire encoding algorithm’s working by
looking at the values of the output symbol one after another.

Buffer bounded stack permuters. Consider a steganographer who is k-buffer
bounded stack permuter. This is typically the ideal model for a high-speed mem-
ory restricted device. Stacks are immensely fast to implement on hardware and
thus provide great practical advantage. The number of permutations achievable
by a k-buffer stack permuter is a generalization of the n-th Catalan number.
The n-th Catalan number Cn is the number of well bracketed expressions of
say, ′(′ and ′)′, of length 2n and also the number of different possible output per-
mutation of an n-buffer (or when k > n) [12]. A generalization of the Catalan
number is kCn which counts the number of bracketed expressions of maximum
depth k, or in other words, the number of permutations output by a k-buffer
stack permuter.

A recurrence for the generalized Catalan number is

kCn =
n−1∑

i=0

k−1Ci · kCn−1−i

The recurrence can be used to construct an index/encoding for the k-buffer stack
permuter as follows. Note that a table of values, kCn can be constructed in
time O(n2k) using a dynamic programming approach. Assume that the values
are available tabulated. We constructed a well-balanced bracketing of length 2n
with maximum depth k. Clearly this can be translated into k-buffer stack per-
mutation by interpreting the opening braces, ′(′ as a push into the buffer and
the closing brace ′)′ as a pop from the buffer. Consider the following recursive
algorithm,
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Given 0 ≤ x < kCn, output a well-bracketed expression of length 2n
and maximum depth k

Encode(n, k, x)

1: sum ← 0
2: if n equals 0 then
3: return { Output the NULL string (nothing)}
4: end if
5: if k equals 1. then
6: Output n pairs ().
7: end if
8: for i = 0 to n− 1 do
9: if x < sum +k−1Ci · kCn−1−i then

10: x ← x− sum
11: y = x÷ k−1Ci {The floor function}
12: z = x mod k−1Ci

13: Output ′(′

14: Encode(i, k-1, z)
15: Output ′)′

16: Encode(n-1-i, k, y)
17: return
18: else
19: sum ← sum +k−1Ci · kCn−1−i

20: end if
21: end for

The above algorithm is just an implementation of two ideas. First, similar to
the general k-buffer permutations, we use the recurrence relation to try and en-
code. Second, if X , Y are two sets, then to output an element of X×Y given any
integer 0 ≤ z < |X ||Y |, the easiest way is to output the (z÷|Y |)-th element from
X and (z mod |Y |)-th element from Y . Using this fact, we have constructed an
algorithm to encode into the set of all k-buffer stack permutations. A decoder
can again simulate the actions of the encoder as it can simulate the k-buffer
stack, and get a well balanced parenthesis expression and invert it to get the
corresponding index according to the above algorithm.

Distance bounded permuters. Similar to the idea for buffer bounded per-
muters, the outputs of a 1-distance permuter can easily be indexed [13]. However
the problem is no longer trivial when considering values of k ≥ 2. One way around
is to convert the proof 6.2 into an encoding scheme in a straight forward manner
using the fact that permutations can be indexed. This technique however results
in under utilization of the channel capacity. More precisely, since we have an
upper bound on the rate of the channel as log (2k+1

e ), using this simple scheme,

we achieve a rate of log((k+1)!
n

k+1 )
n � log (k+1

e ), asymptotically reaching the best
bound.
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7.2 Channel with Adversarial Errors

In this section we consider channels with error or a jammer who tries to disrupt
the stego communication. Under different models of jammer and steganographer
capabilities, we discuss the possibility of error free communication and develop
codes.

Buffer bounded permuters. k-buffer permutations are not reversible, and so
it is not obvious as to whether stego players do need more “power” than the
jammer. We show below that indeed the stego players do need more power.

Theorem 3. Let p = (p1, p2, . . . , pn), q = (q1, q2, . . . , qn) be any two permu-
tations obtained from the output of a k-buffer with input e. Then there exists
another permutation r = (r1, r2, . . . , rn) such that r can be obtained as the out-
put when p and q are passed through two separate k-buffers.

Proof. Consider the following figure which is self explanatory. Without loss of
generality, assume that both the buffers are full. If not one could always move
the packets in from the input stream as long as both the buffers are filled. We

prove the theorem using mathematical induction. Let the number of packets be
n. We prove inductively on n as follows.

1. Base case. True for n < 2k. Clear true for n <= k.
2. Inductive case 1. Consider the theorem true for n−1 ≥ k and n−1 < 2k−1.

Assume that A2 and B2 are both filled. If not, we can move elements into
them from A1 and B1. |A2 ∪B2| = n = |A2| + |B2| - |A2 ∩B2|.
n = k +k−|A2 ∩B2|. Since n < 2k, there is at least one element in A2 ∩B2,
which can be output. Renumbering the packets now from 1 to n− 1, gives a
proof by the inductive hypothesis for n− 1 elements.
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3. Inductive case 2. From case 1, the theorem is true up till n = 2k − 1. If
n ≥ 2k, assume that all the buffers are filled. The last element to be filled
was filled into A1 and B1 respectively. Thus A2 ∪ B2 < 2k and hence once
again, they have an element in common. Output this element and renumber
the packets thus reducing the problem to the case of n − 1 elements. By
induction, the theorem is true for all n.

This rules out the possibility of an error-correcting code when both Stego-Alice
and the Jammer use the same “power” of the jammer. Although the zero-error
capacity for this case is 0, the mutual information rate I(X ; Y ) is non-zero for
this case.

7.3 Distance Bounded Permuters

Since inverse of k-distance permutations are k-distance permutations, we cannot
transfer any information (in the adversarial model) when the sender is only as
much capable as the jammer. Hence assume that the steganographic sender can
send k+t-distance permutations and the jammer is allowed to use only k-distance
permutations as errors. In this section we assume that n, the block length and
k are sufficiently large quantities that the stirling’s approximation is valid.

Lemma 8. Sphere packing bound Note that the following definition of a dis-
tance between two permutations, p = (p1, . . . , pn), q = (q1, . . . , qn) as d(a, b) =
max(|i− j||pi = qj , 0 ≤ i < n, 0 ≤ j < n), is metric space on the set of all per-
mutations. There are various definitions of metric spaces on permutation [14].
Our definition is motivated by the fact that k-distance permutations are nothing
but those permutations p, with d(p, e) ≤ k.

Suppose the jammer is a k-distance permuter and the sender is a k+t-distance
permuter, t > 0. Then, if the sender chooses a set of codewords C, from each
code word, draw spherical balls of radius k. These balls must be disjoint. If each
ball of radius k, contains Nk elements of this space, Hence we have,

|C|Nk ≤ Nk+t

log (|C|) + log Nk ≤ log Nk+t

log (|C|) ≤ logNk+t − log Nk

Note that Nk is nothing but the number of different k distance permutations,
which asymptotically tends to (2k+1

e )n. Using this, we get

logNk+t − log Nk ≤ n log
2k + 2t + 1

2k + 1

Consider the following lower bound which is also converted into an encoding
scheme.
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Lemma 9. For each value of r = �(k + t)/(2k)�, r > 1, consider for any per-
mutation p = (p1, . . . , pn), the elements (pi, pi+2k, . . .), i < 2k, the relative or-
der of none of these elements can be changed by a k-distance permuter since
each element is at least 2k away from the rest. Suppose thus, one chooses to
permute only these elements (pi, pi+2k, . . . using any r-distance permutation on
them (note that the sender is capable of doing this from the defn. of r), then the
maximum amount of information transfer possible is atleast equal to, when r is
large, log ((2r+1

e )
n
2k )2k. (The block length of each r distance subsequence is n

2k
and there are 2k such subsequences.

log (|C|) ≥ n log (
2r + 1

e
)

log (|C|) ≥ n log (
(2(k + t)/2k + 1)

e
)

We thus acheive a rate asymptotically equal to the upper bound even in the
presence of error. To convert this result into a practical coding scheme, one needs
an efficient encoding coding scheme for the case of r-distance permutations in
the absence of error.

We now prove that on the minimum block length required to transfer infor-
mation across a k-distance jammer is 2k + 1. The code length requirement is
irrespective of the sender’s power. Thus even if the sender could send any per-
mutation involving 2k elements, the adversary would still be able to perform
k-distance operation on the two permutations to coalesce them to the same per-
mutation. We infer that if at all any information transfer has to be made by the
sender then n ≥ 2k + 1.

Lemma 10. Any permutation in S2k is reachable from the identity permutation
using at the most two k-distance operations.

Proof. From any permutation π ∈ S2k, we can sort the first k elements and
the second k elements parallelly in one k-distance move. Any element x ≤ k
in the second block will be within k distance from its position in the identity
permutation. Similarly, any element x > k in the first block will be within
k distance from its position in the identity permutation. Another k-distance
operation will take this permutation to the identity permutation. Since the k-
distance operations are reversible, the lemma follows.

We now focus on providing error correcting codes. When there is no adversary,
a sender with 1-distance is capable of Fn+1 number of permutations of Sn [1].
We briefly explain a code that achieves the limit by describing a function from
{0, 1, . . . Fn+1 − 1} to the set of all 1-distance permutations on n elements. Any
number in the domain can be encoded in the Fibonacci numbering system [15],
represented by a binary tuple of length n − 1 with no consecutive ones. The
required permutation is obtained by composing the permutations πi = (i, i + 1)
for every 1 in the ith position. We note that since no two consecutive binary
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digits in the tuple are 1, the πis do not overlap and thus can be composed in
any order.

Next, we show that when the sender is capable of just k + 1 distance and the
channel has a k-distance jammer, with a block length of n ≥ 2k+1, we can send
Θ(n), bits of information.

If the sender is k-distance and the adversary is k − 1-distance, there are two
permutations in S2k−1 such that, the sender can permute the identity to any of
them using only k-distance but the adversary cannot reduce both to the same
permutation using k − 1 distance.

Lemma 11. The permutation (k + 1, . . . 2k − 1, k, 1, . . . k − 1) and the identity
permutation (1, . . . 2k − 1) cannot be both reduced to the same permutation by a
k − 1 distance operation.

Proof. Suppose that there exists such a permutation π. Then π(1) = k, as only k
can reach the first position from both the above permutations. Similarly π(2k−
1) = k. Hence, π is no longer a permutation.

Further, in the identity permutation, (1 . . . 2k − 1), only the first k elements
need to be fixed. Thus for a block of size n, we can either fix the first k elements
and encode the rest n − k elements or apply the permutation (k + 1, . . . 2k −
1, k, 1, . . . k − 1) and recursively encode the rest n − 2k + 1 elements. Thus we
obtain the recurrence Pn = Pn−k + Pn−2k+1 for the size of the code of block
size n.

The decoding strategy involves looking at the first element of the encoded
permutation p1 = π(1). If p1 < k, we can deduce that the first k elements
were fixed and thus scratch out all numbers from 1 . . . k, substitute x − k for x
and recursively decode the resultant string. If p1 > k, we can deduce that the
first 2k− 1 elements were permuted and hence scratch them out and, substitute
x− 2k+1 for x and add Pn−k to the result of recursively decoding the resultant
string.

8 Practical Results on TCP

Any communication protocol which requires packet sequence numbers can be
used for steganography using our algorithms. We consider the TCP for our sim-
ulation because it is the most prevalent protocol in the Internet today. Also it is
interesting to look at the interplay between TCP and our algorithms especially
considering the fact that excessive packet reordering affects TCP congestion con-
trol adversely. For our purposes we use the 32-bit Sequence Number field in the
TCP packet header. Alternatively one could also use the Sequence Number [5]
field of the Authentication Header and Encapsulating Security Payload in the
IPSec.

We performed simulations using ns-2.28 Network Simulator to study the be-
haviour of TCP under packet re-orderings. Our simulations are based on the
TCP Tahoe variant. We used the BRITE topology generator for generating a
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50 node 2-level hierarchical network topology which was created based on the
Waxman’s probability model. In this model, the probability of interconnecting
two nodes u, v is given by

P (u, v) = αe−d/βL

where 0 < α, β ≤ 1, d is the Euclidean distance from node u to v, and L is the
maximum distance between any two nodes.

We chose α = 0.15,β = 0.2. From the resulting topology, 25 pairs of nodes
were chosen and TCP flows were started by choosing one node as a sink and
the other as the source. An ftp agent was started on each of the TCP sources.
Keeping this as the minimum network traffic, we performed 200 simulations
choosing a pair of nodes si and di for i ∈ {1, 2, 3...200}, each time with si as the
source node and di as the destination node. The experiment was conducted for
200 such pairs of nodes and the ratio of new throughput to the actual channel
throughput (without reordering) was computed for each value of k ∈ {1, 2, 3}.

From the histograms thus obtained, we observe that the throughput obtained
using k-distance permutations is greater than 91% for more than 68%,60% and
30% of the source-destination pairs, for k = 1,2 and 3 respectively. The cor-
responding average stego-information rates are 8.21bps, 11.42bps and 3.54bps.
Even here, we observe that a 2 − distance scheme performs better than the
1−distance in terms of stego-information rate, though the ratio tr gets affected.
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9 Conclusion

We formalize various models for packet re-ordering channels. We analyze the
channel as information-theoretic game and prove the existence of Nash equi-
librium. Motivated by ordered channels, eg. TCP, we introduce a new distance
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metric on permutations and provide error correcting codes in this metric and
prove combinatorial bounds. Our codes asymptotically reach the upper bound.
We simulated in detail the effects of our covert channel in various topologies and
found a good correlation between the theoretical and simulated results. Being a
preliminary work, this paper opens up a lot of research in this direction.
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Abstract. A crucial security practice is the elimination of network covert chan-
nels. Recent research in IPv6 discovered that there exist, at least, 22 different
covert channels, suggesting the use of advanced active wardens as an appropri-
ate countermeasure. The described covert channels are particularly harmful not
only because of their potential to facilitate deployment of other attacks but also
because of the increasing adoption of the protocol without a parallel deployment
of corrective technology. We present a pioneer implementation of network-aware
active wardens that eliminates the covert channels exploiting the Routing Header
and the hop limit field as well as the well-known Short TTL Attack. Network-
aware active wardens take advantage of network-topology information to detect
and defeat covert protocol behavior. We show, by analyzing their performance
over a controlled network environment, that the wardens eliminate a significant
percentage of the covert channels and exploits with minimal impact over the
end-to-end communications (approximately 3% increase in the packet roundtrip
time).

Keywords: covert channels, evasion attacks, active wardens, stateless, stateful,
network-aware, traffic analysis, traffic normalizers, active mappers.

1 Introduction

Although as of today publicly-accessible Internet addresses are primarily IPv4, the
adoption of the Internet Protocol version 6 (IPv6)1 is becoming imminent. For exam-
ple, news from the IPv6 Task Force [1] report significant progress in both deployment
and policy regarding networks using IPv6 technology in various continents [2,3]. IPv6
summits and other events present applications and services that will drive commercial
implementations of IPv6 [4,5,6,7]. The U.S. government established that all federal
agencies must deploy IPv6 by June 2008 [8], without disregarding the challenge of the
Department of Defense (DoD) of monitoring operational IPv6 networks for unautho-
rized IPv6 traffic [9]. That global embracement of IPv6 calls for closer examination of
its security risks, especially of those which are not so obvious nor possibly overcome
by IPv4 security technologies.

Lucena, et al. [10] presents a comprehensive examination of covert channels in IPv6.
It analyses 22 different network storage channels at the IP level, classifying them by

1 IPv6 is also referred as the Next Generation Internet Protocol or IPng.

J. Camenisch et al. (Eds.): IH 2006, LNCS 4437, pp. 58–77, 2007.
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type of header. To defeat the identified channels, it defines three types of active war-
dens: stateless, stateful, and network-aware, which differ in complexity and ability to
block some types of covert channels. A stateless active warden normalizes IPv6 traffic
according to a protocol specification, without remembering anything about the packet
that have already passed by. A stateful active warden records and recalls previous packet
behaviors to discover a conceivably larger spectrum of hidden channels. A network-
aware active warden is a stateful active warden with knowledge of network topology.
The description of those active wardens is only conceptual. Until now, there has not
been discussion of how one can implement network-aware wardens.

The IPv6 covert channels appear to be subtle types of aggression, when comparing
to well-known buffer overflow attacks, for example. However, they are as harmful, es-
pecially under the presence of sophisticated adversaries2. It is feasible for an attacker
to secretly transmit information into or out of a compromised machine residing on a
secure network through the use of covert channels. For example, hacker Alice, after
installing a key stroke logger and obtaining users’ credentials, retrieves stolen infor-
mation employing a covert channel. Alternatively, after installing a backdoor program,
cracker Bob sends commands via a covert channel. Understanding that the use of IPv6
covert channels might be particularly damaging when an attacker utilizes them with the
purpose of maintaining long-term control over a compromised machine, we present and
evaluate an implementation of network-aware active wardens.

In this study, we consider two of the channels described in [10] and a well-known
aggression in IPv4 [11,12,13,14]: the Routing Header covert channel, the Hop Limit
channel, and the Short TTL Attack, respectively. The first two covert channels exem-
plify secret communication mechanisms of high and low bandwidth, respectively. The
last one defines a relevant crossover point between the two versions of the IP protocol.
The Routing Header covert channel takes advantage of the IPv6 source routing func-
tionality to transfer data in a way that violates system security policies. The Hop Limit
channel achieves a similar goal by manipulating the hop limit field of the IPv6
header. The Short TTL Attack allows an attacker to mask malicious communications or
another attack from a Network Intrusion Detection System (NIDS). For a more detailed
description of these attacks, please see Appendix A.

To prove that network-aware active wardens constitute an appropriate countermea-
sure against the selected IPv6 covert channels, we measure their effectiveness within a
controlled network environment, by estimating a percentage of extermination per case
and by measuring the increase over the roundtrip time of end-to-end traffic flows. We
aim to defeat the selected channels, while causing roundtrip times increments no higher
than 5%.

The remainder of this document is organized as follows. Section 2 compiles previous
work on network covert channels in both IPv4 and IPv6, summarizing existing coun-
termeasures. Section 3 specifies the design and implementation of the network-aware
active wardens, presents results of performance tests set up on a controlled network,
and discusses the implication of the obtained outcomes. Finally, Section 4 draws con-
clusions and suggests future directions of research related with the topic.

2 The more secure nature of IPv6 in relation to IPv4 demands even more knowledgeable foes.
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2 Related Work

Research in network covert channels [15] comprises the study of both network- and
transport-layer protocols, such as IP, TCP, ICMP, and application-layer protocols, such
as HTTP. It is not surprising to observe that the majority of the literature relates to
network storage channels [10,16,17,18,19,20,21,22,23,24] rather than network timing
channels [15,25,26,27,28]. Timing channels are presumably less attractive because of
their synchronization issues and their low bandwidth in comparison to storage channels.
However, it is somewhat peculiar that given the increasing use of IPv6, most of the
research still concerns IPv4.

The most effective defensive mechanisms against network storage channels for IPv4
are protocol scrubbers [13], traffic normalizers [11], and active wardens [29,30,31,32].
Protocol scrubbers and traffic normalizers focus on eliminating ambiguities found in
the traffic stream, carefully crafted with the purpose of evading network intrusion de-
tection systems. Ambiguous network packets are those that could have different inter-
pretations at endpoints depending on the implementation of the protocol stack. Covert
channels are certainly a form of ambiguous traffic. Handley and Paxson [11] describes
IP, UDP, TCP, and ICMP normalizations based on protocol semantics, highlighting the
importance of preserving the end-to-end protocol semantics. In the same order of ideas,
active wardens, as presented by Fisk et al. [32], are network services resembling a fire-
wall that modify all traffic under the assumption that it is carrying steganographic con-
tent. Active wardens defeat steganography by making semantics-preserving alterations
to packet headers (e.g. zeroing the padding bits in a TCP packet). These techniques,
although effective for most IPv4 covert channels, do not record any state or gather net-
work topology information.

Among the approaches and technologies that gather topology information with the
purpose of detecting undesired traffic on the network are active mappers [14], NetFlow
[33], network monitors such as Ntop [34], and certain implementations of the Sim-
ple Network Management Protocol (SNMP) [35], such as IBM Tivoli NetView [36],
HP OpenView Network Node Manager [37], Marconi ForeView, and Sun Solstice Site
Manager [38]. Shankar and Paxson [14] proposes an alternative approach to traffic nor-
malizers [11] called active mappers that minimizes the performance penalties caused by
packet reassembling. Active mapping involves building profiles of the network topol-
ogy and the TCP/IP policies of hosts to help NIDSs disambiguate the interpretation of
network traffic. The mappers gather topology information actively, sending specially
crafted probing messages to each host on the network. Ntop, from www.ntop.org, is
a traffic measurement and monitoring system with an embedded NIDS that gathers cer-
tain information about network topology and host relationships [34]. Ntop learns about
topology based on network flows, so it actually depends on the existence of those flows:
there is no knowledge without flow. Therefore, the view of the topology drawn by Ntop
might be incomplete in certain situations (for example, when flows traveling to adja-
cent subnets do not pass by the system). NetFlow version 9, supporting IPv6, provides
several services being the most important flow recording. It also provides information
about traffic routing. The commercial SNMP products provide an understanding of the
physical network topology through different information gathering mechanisms.
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Network-aware active wardens are not exactly traffic normalizers nor active map-
pers, but an innovative technology that comprises some of the best features of both.
Active mapping is meant to work in conjunction with NIDSs, assisting them in resolv-
ing network ambiguity. In consequence, they do not eliminate the ambiguities. They
aid NIDSs to alert network administrators of unwanted protocol behavior with more
precision (than without the mappers). Active wardens, with knowledge of the network
topology, defeat covert channels based on network ambiguities without significant over-
head, actually alleviating the workload of a NIDS positioned after the warden.

3 Network-Aware Active Wardens

As originally defined in Lucena, et al. [10], network-aware active wardens are the most
sophisticated type of wardens. A network-aware active warden can not only reinforce
protocol syntax and semantics preservation (both passively or actively), but also per-
form address verification using topology information about the surrounding networks.
The following subsections explain the design of our implementation of a network-aware
active warden, list assumptions made, and analyze performance measurements. To sim-
plify the discussion, from this point on, a network-aware active warden will be referred
simply as warden, active warden, or just Wendy.

3.1 Overview and Rationale

Objectives. The main purpose of an active warden is to the break covert channel com-
munication or to remove the cover traffic masking an attack from a NIDS, as in the
Short TTL scenario. In the former case, the goal is to disable the covert channel without
affecting the legitimate usage of the exploited header. That is, only packets carrying
covert data in their headers should be modified, preserving the protocol semantics3. In
the latter case, the purpose is to remove the “mask” so the ulterior attack becomes vis-
ible to a NIDS. The warden itself does not perform the detection, but eliminates the
evasion.

Assumption 1. The warden always attempts not to break the overt communication tak-
ing place through a suspicious flow.

A secondary, but no less important, goal of a network-aware active warden is to take
advantage of network topology information to properly defeat the covert channels. As
detailed in Section 2, there exist multiple ways for a warden to gather such informa-
tion: scanning network administrators’ topology tables, sending probing messages to
individual hosts on the network [14], and using network-monitoring tools [33,34] or
particular applications implementing SNMP [36,37,38].

Assumption 2. The warden already possesses the topology information of the guarded
network, previously acquired through complementary technologies.

3 When preserving header functionality is not a concern, the covert channels can be defeated by
simply disabling specific header support on a given network.
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Location. The Internet comprises a collection of autonomous systems. An autonomous
system4 (AS) is a subset of routers that make up an internetwork and exchange infor-
mation through a common routing protocol [39]. An autonomous system border router
(ASBR) exchanges information between two ASs, maintaining separate topological
databases for each. The location of the warden within the network topology, formed
by those ASs, significantly affects her ability to detect covert communication.

There are two prevailing locations where to place the warden, depending on the
network architecture Wendy wants to protect. A warden who sits on or near an ASBR
(see Figure 1) is a border warden. A warden who sits on or near an internal router is a
link warden. Border wardens aim to block covert communication channels established
between an interior host and a point outside the local autonomous system (regardless
of which participant originates the inter-AS channel). Link wardens disable intra-AS
channels.

Warden

Autonomous System

Inbound / Outbound
Traffic

Autonomous System B

Border Router

Autonomous System B

Fig. 1. Border Warden

Consequently, the location within the network topology determines the type of in-
formation the warden has available as well as the actions she can take. If Wendy is a
link-level warden, she has information about all the nodes of the subnet. However, all
that information is useful only to local or internal traffic verification. On the other hand,
if Wendy is a border warden, she can observe inbound and outbound AS traffic, which
is presumably more susceptible to attack.

Assumption 3. Wendy is a border warden.

4 In the Internet protocol context, autonomous systems are called routing domains.
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3.2 Attack Model

The implemented active warden relies on several assumptions about the adversary’s
capabilities. Those assumptions agree with the ones presented in [10], and generally
are not stronger.

The opponents behave actively [30]. They have both the resources and skills to alter
packets in transit, by either modifying values of protocol fields or by injecting an entire
field, a header, or a crafted packet.

Assumption 4. Adversaries can modify network packets traveling between nodes.

As it is for the wardens, the location within the protected AS is relevant for the attackers.

Assumption 5. Adversary Alice is located within the protected AS. Adversary Bob is
located outside of Alice’s network.

Following Shannon’s maxim ”the enemy knows the system” [40], it is possible that
Alice knows about both the existence and the location of the warden. In addition, if
Alice learns about Wendy, she can also learn about the topology of the network under
her attack.

Assumption 6. Adversaries may or may not have knowledge of the existence of the
warden and her location.

Adversaries who do not know about the wardens are said to be blind.

3.3 Covert Channel Defense

This subsection describes the countermeasures taken by the implemented warden to
eliminate the Routing Header covert channel, the Hop Limit channel, and the Short TTL
Attack. Relevant details about the operation of these channels appear in Appendix A.

Eliminating the Routing Header Covert Channels. To defeat the covert channels
in the Routing Header, an active warden has to perform several checks on the protocol
semantics and behavior. We identify for different ones. The first check is somewhat sim-
pler than the remainder four being based exclusively on the IPv6 specifications [41,42]
and the address space allocation document [43].

• Hop Address Check. This check relies on the fact that only aggregatable global
unicast addresses are meaningful within a packet’s Routing Header [41]. Multicast
addresses are explicitly forbidden, plus local addresses (both unique-local and link-
local) are not supposed to cross site the boundary of the protected AS. Hence, the
border warden should not observe any of the last two address types.

In addition, “a routing header is not examined or processed until it reaches the
node identified in the destination address field” [41], giving Alice and Bob
enough opportunities through intermediate hosts of interpreting the covert message.
Our implementation of active warden performs a more aggressive check, verifying
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at the border router that all addresses contained in the Routing Header are, in fact,
aggregatable global unicast addresses.

Aggregatable global unicast addresses begin with the bit pattern 001. Assuming
that the covert messages follow a uniform random distribution, there is one in eight
chance of beginning with the bits 001. Therefore, a blind attacker will have, at least,
87.5% chance of being caught when injecting messages crafted as addresses in a
Routing Header (see Appendix B for details).

For the following checks, it is important to distinguish between incoming and outgo-
ing traffic. Incoming traffic refers to packets whose source address is outside the AS and
whose destination address belongs to the AS. Outgoing traffic, contrarily, has a source
address within the AS and a destination address outside the AS. The direction in which
the traffic flows determines what types of checks are needed. Table 1 summarizes the
corresponding required checks. Because the analysis of both directions is symmetric,
we discuss only the case of outgoing traffic.

Table 1. Topology Checks Required Depending on the Segments Left Field Value (Visited or Not
Visited) for Both Incoming and Outgoing Traffic

Router Address Check IP Range Check

Addresses Marked as Visited outgoing incoming
Addresses Not Visited incoming outgoing

• Router Address Check. For outgoing packets whose Routing Header addresses are
marked as visited, Wendy verifies whether or not they are valid inside the protected
AS. In addition, because only routers perform packet forwarding, those addresses
must correspond to routers. Therefore, if already-visited addresses in the Routing
Header of an outgoing packet do not belong to addresses of internal AS routers, she
concludes that a covert channel exists.

• IP Range Check. Alternatively, if the addresses in the Routing Header of an outgo-
ing packet are marked as not visited, the warden inspects if they fall within the range
of addresses assigned to the AS. If so, it means that the packet will eventually come
back to the system. Appropriately, Wendy will also suspect that a covert communi-
cation is taking place. This check is a more elaborate version of the address-based
ingress/egress filtering performed by some firewalls.

• Tandem Check. It is possible to circumvent the last two checks by crafting an out-
going packet whose Routing Header addresses are marked as not visited and do
not match the IP range of the AS. The converse deception also holds for incom-
ing packets. However, if there are active wardens positioned near both the origin
and the destination of the covert communication, an attacker cannot easily gener-
ate covert packets without being detected. For example, an attacker Alice wants to
transmit a covert message from A to B in the scenario of Figure 2. To be able to
deceive the active warden sitting on A’s border router, she will have to mark all the
fake addresses as not visited while making them different from any address within
A’s IP address range. However, when a packet formatted in such manner arrives to
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Autonomous System A
Autonomous System B

Fig. 2. Example of Tandem Wardens Performing Topology Checks

B, the active warden residing in B’s border router will perform the usual verifica-
tion. The only way then for the attacker be able to bypass that second warden is
to have knowledge about B’s router addresses. While not impossible that particu-
lar situation requires additional effort from the adversary. That is, even when Alice
possesses knowledge of B’s topology, she can only conceal messages that mimic
actual router addresses within B’s routing domain, not just any arbitrary data. The
only option left for the adversary then is to manipulate the order of legitimate router
addresses in the header to convey a message. That channel however has low band-
width in comparison to the original channel, specifically, 128/log2(r) times lower,
where r stands for the number of router within the AS (refer to Appendix B for
bandwidth calculations).

Once Wendy identifies the presence of a covert channel, she proceeds to eliminate it.
The trivial way of eliminating any channel is to simply drop the suspicious packet. That
action might, in most cases, break the overt communication. As stated in assumption 1,
Wendy will always prefer less disruptive methods. A more appropriate solution is to
strip the covert message from a packet and allow it to proceed normally. Whether the
warden can actually modify the Routing Header or not depends on whether the packet
is IPSec protected or not5. For the purposes of this study, the IPv6 traffic is not IPSec
protected.

Eliminating the Hop Limit Covert Channels. The Hop Limit covert channel makes
use of a hop limit field in IPv6 packet headers to transmit covert messages. The
detection of this channel is troublesome because the value of the hop count can vary
naturally as an effect of packets traveling different routes. A trivial attempt to break
the channel is for the warden to reset the hop limit value in all packets in transit to
an arbitrary value. That however can be potentially damaging as it prevents the hop
limit field from its intended purpose, to avoid packets traveling indefinitely and

5 Under IPSec, the modification of a packet header might result in failure of the integrity check,
causing the packet to be discarded. It is important to note that if an attacker intercepts and
modifies a legitimate packet without having access to the IPSec security context, that packet
will be analogously dropped. If the adversary does know the security context and protects
the covert message under the IPSec integrity check, the overt communication may not be
legitimate third-party traffic and may be discarded anyway.
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hence saturating the network in the case of a routing cycle. If a warden chooses to reset
the field to a small value, it lowers the risk of encountering a cycle, but increases the
probability that legitimate packets will expire on their way to the destination without
reaching it.

On the other hand, a network-aware active warden applies her knowledge to ma-
nipulate the hop limit field in a safer manner. For incoming packets, Wendy can
infer the minimum hop limit value which is sufficient to prevent the packets from
expiring before their intended destination. If the initial hop limit value is enough
to reach the destination, the warden resets it to the inferred value. If it is not large
enough, the warden takes similar actions to the ones stated in the Short TTL Attack.
In both cases, Wendy defeats the channel 100% of the times, when occurring on in-
bound traffic. For outgoing packets, the warden is not always able to make similar
premises about the minimum hop limit value. However, when the covert communica-
tion involves two ASs (e.g., Alice resides in AS A and Bob in AS B), each of them
protected by a warden as in Figure 2, it is plausible to disable the covert commu-
nication. Symmetrically, the traffic seen by one of the wardens as outgoing will, in
fact, be incoming from the standpoint of the other warden. To completely, eliminate
the channel when happening in outbound traffic, Wendy might reset the hop limit
value as done by IPv4 traffic normalizers [11] for the TTL value, but at the risk of
incurring the same drawbacks.

Eliminating the Short TTL Attack. The Short TTL Attack utilizes packets with a
small hop limit value to mask another attack from being detected by a network intru-
sion detection system. The active warden is not concerned with detecting the covert
attack, but with removing the cover traffic so that an existing network intrusion detec-
tion system is able to detect the attack.

Handley and Paxson [11] proposes to prevent the exploit through the use of a traf-
fic normalizer that either drops packets with a short TTL or restores the TTL value to
a number that would guarantee packet delivery. The first solution is not actually im-
plemented by the normalizer because of the lack of a topology gathering mechanism.
Nevertheless, Shankar and Paxson [14] did carry out the suggested approach with a
successful outcome. As discussed in the previous case, resetting the TTL value in IPv4
or the hop limit value in IPv6 without any knowledge of the network topology compro-
mises the interconnected system. Our implementation of Wendy overcomes those dif-
ficulties with her network topology knowledge, defeating the Short TTL evasion 100%
of the times.

To illustrate the concept, Figure 3 shows an example of how the warden helps defeat
a Short TTL attack. An adversary targeting host X might conceal the attack by masking
the traffic with a hop limit value expiring at router C. If the only defense is a NIDS
located before C, the malicious traffic might circumvent it. However, if active warden
Wendy works in combination with a NIDS, she is able to detect that the packets will
not reach the final destination X and drop them before they pass by the NIDS. In the
presented scenario, Wendy should discard all packets addressed to D if their hop limit
value is smaller than 2.
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Router A NIDS

Autonomous System

Warden Router B

Router C

Router D

Host X

Host Y

Fig. 3. Active Warden and NIDS Positioning

3.4 Prototype Implementation

We implemented our prototype of a network-aware active warden as a kernel module
in a Linux router, running Fedora Core 4, kernel version 2.6.14. The prototype uses
the netfilter hooks library to intercept and examine network traffic. The same machine
also runs a firewall in permissive mode. Because the firewall operates in that mode
without enforcing any complex rules, the impact of the active warden on the network
performance tends to be more visible. Our Wendy acts as a border warden, as shown in
Figure 4.

Autonomous System

Traffic

(Intranet)

Warden

Border RouterNIDS

Firewall

Inbound / Outbound

Fig. 4. Location of the Active Warden with respect to the guarded AS. Wendy renders useless the
possible covert channels and evasions contained in the traffic that already bypassed the firewall
before it is checked by the NIDS.

In addition, the prototype runs within a controlled network environment, which al-
lows Wendy to have a preconfigured knowledge about the network topology. To ensure
constant access times, the topology knowledge is stored in a hashtable that maps node
addresses to hop distances.
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The controlled network environment consists of a router connected to two subnets.
One simulates the protected AS (Intranet) through a number of IPv6 addresses, varying
from 10 to 1000. The second one mimics the outside world (Internet).

3.5 Results

We evaluated the effectiveness of the implemented warden computing the average
roundtrip times for different packet sizes, different lengths of Routing Header, and dif-
ferent Intranet sizes, performing 10 measurements each time.

Figure 5 exhibits average roundtrip times for packets of 64-byte length and of 4096-
byte length traveling between end points, with and without the warden siting on the
border router. The obtained values for 64-byte packet were 0.3029ms ± 0.0004ms
(without warden) and 0.3136ms± 0.0002ms (with the warden). The difference found
between the averages represents a 3.3% increase of the roundtrip time. Similarly, for
4096-byte packets the average times were 1.8939ms±0.0006ms (without the warden)
and 1.9037ms± 0.0003ms (with the warden). There was only a 0.5% increase in the
average times of the larger packets.

Fig. 5. Average Roundtrip Times of Packets of Sizes 64 and 4096 Bytes

Figure 6 shows average roundtrip times of packets carrying no Routing Header or
Routing Header with 1 and 16 addresses. When the packets did not have a Rout-
ing Header the average roundtrip times were 0.250ms ± 0.001ms (without the war-
den) and 0.257ms ± 0.002ms (with the warden), exhibiting a total increase of 2.8%.
Analogously, with a 1-hop Routing Header the average roundtrip times varied from
0.268ms± 0.002ms (without the warden) to 0.277ms± 0.002ms (with the warden),
where the increment is 3.3%. For a 16-hope Routing Header, the achieved values were
0.382ms± 0.002ms (without the warden) and 0.389ms± 0.003ms (with the warden),
being the case with minimum increase: 1.8%.
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Fig. 6. Average Roundtrip Times of Packets with No Routing Header and Routing Headers con-
taining 1 and 16 addresses

Figure 7 displays the differences in average roundtrip times when the packets traverse
networks composed of 10 and 1000 hosts. As observed graphically, there was no differ-
ence at all in the average times obtained for the two network sizes. Precisely, the average
times recorded were 0.303ms±0.001ms (without the warden) and 0.313ms±0.001ms
(with the warden).

Fig. 7. Average Roundtrip Times of Packets Traversing Networks of 10 and 1000 Hosts

3.6 Discussion

Analyzing the test results presented in Subsection 3.5, we observe the following:
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1. The relative delay introduced by our active warden decreases as the packet size
grows. This is presumably caused by the fact that the border router works harder
when distributing larger packets, while the warden’s load of scanning the Routing
Header stays the same. Hence, the absolute overhead remains constant, causing the
relative overhead to shrink.

2. Both the presence and the size of the Routing Header affects the warden’s perfor-
mance. This is trivially explained by the Routing Header normalizations performed
by the warden, which require scanning each of the contained addresses.

3. The size of simulated network topology does not influence the warden’s perfor-
mance. This is not a surprising outcome because the data structures used by the
warden to store topology information exhibit constant lookup times.

We initially envisioned to produce a network-aware active warden that completely
defeated the selected covert channels, without increasing packet roundtrip times in more
than 5%. As detailed in Subsection 3.3, we found that it is virtually impossible to elim-
inate some of them under our attacker model. However, the percentages of elimination
estimated for each case are significant, especially considering that several of them are
close to 100% and that, even when the attacker can circumvent our warden, the band-
width of the secret communication drops dramatically. On the other hand, regarding
the overhead caused by the warden in the packet roundtrip time, the results indicate
that we reached our goal. All tests showed increases in the average roundtrip times of
approximately 3%, being 3.3% the highest.

When comparing our implementation of network-aware active wardens to IPv4 tech-
nologies that deal with network ambiguities [11,14], the prototyped warden presents
both differences and similarities. Wendy behaves as a traffic normalizer because she also
performs active protocol semantics reinforcement. Moreover, she resembles an active
mapper when using network topology information to disambiguate traffic. However,
our active warden differs in the way she obtains the knowledge about the topology. In
addition, the prototype implementation does not compromise significantly the perfor-
mance of packets traveling end-to-end. That occurs, presumably, for two reasons: a) the
use of more precise methods of handling network ambiguities (when comparing to the
ones in traditional normalizer), and b) the fact that the warden does not perform packet
reassembling.

Finally, considering future directions of research as well as possible improvements
in the warden evaluation, we identify the following factors:

• While a controlled network environment was useful for gathering initial results,
this environment obviously did not provide large volume of traffic. It is necessary
to repeat the tests over a real-world network and compare the results.

• Our warden defeated only two of the 22 covert channels described in [10]. It is
critical to extend the warden implementation in such way that can block the rest of
the channels.

• Our covert channel countermeasures may be compromised by attacker who knows
the system by, for example, taking control of the warden or by launching a denial-
of-service attack. It is critical to examine the robustness of the warden in future
implementations.
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4 Conclusions

In this study we designed and implemented a version of network-aware active wardens
[10] to defeat the Routing Header covert channel, the Hop Limit covert channel, and
the Short TTL attack. The warden not only normalized the protocol semantics, but also
utilized network topology information to effectively defeat the covert channels and ex-
ploits. It proved to render useless instances of covert communication occurring within
a controlled network environment, while causing a penalty in the packet roundtrips of
only approximately 3%.

Based on our initial results, we believe that network-aware active wardens are a
promising technology that represents a step forward in the elimination of new security
threats in IPv6 such as recently discovered covert channels. We also hope that our work
generate discussion regarding other adequate countermeasures and feasible fixes to the
protocol.
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A Covert Channels of Communication and Exploits

The description as well as the associated adversary model summarized in Subsections
A.1 and A.2 correspond to the one presented in [10]. The hop limit exploit character-
ized in Subsection A.3 reassembles the Short TTL Attack for IPv4 reported by several
authors [11,12,13,14].

A.1 Routing Header Covert Channels

The Routing Extension Header contains a list of intermediate routers a packet in transit
should visit on the way to its destination. As the packet moves through the network,
routers mark their addresses as “visited” and send the packet on to the next address in
the list. The IPv6 Parameters document [44] enumerates three different types of routing,
but only one of them, Type 0, is fully described in the specification [41]. Figure 8 shows
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Next
Header
(1 byte)

Extension
Header

Length

Fig. 8. Format of the Routing Header

Table 2. Identified Covert Storage Channels in the Routing Header

ID Field Covert Channel Bandwidth

α Routing Type: 0 - Reserved Hide data in unused bits 4 bytes/packet
β Routing Type: 0 Set one or more false addresses6 Up to 2048 bytes/packet

the format of the routing header when routing type is 0. Table 2 summarizes plausible
covert channels exploiting such format.

α There exists a reserved field in the routing header structure when the routing type
is 0. Alice can hide 4 bytes of covert data per packet using this channel.

β When the routing type is 0, Alice can fabricate “addresses” out of arbitrary data
meaningful to Bob7. She appends the covert data and sets the segments left
field accordingly. In most cases, she would like to prevent any node from attempt-
ing to process the fake addresses. Setting the segments left value to 0 will make
the addresses to appear visited. Contrarily, a non zero value will indicate that such
addresses need to be visited. Figures 9 and 10 display two different types of em-
bedding in the routing header when the routing is 0:
• one where Alice chooses to create a completely new header to send Bob 48

bytes of covert information, and
• another one where she uses an already existing header to embed a covert mes-

sage of 32 bytes.
Based on the maximum extension header payload length, Alice can potentially in-
sert up 2048 bytes. Therefore, she will be extending the entire IPv6 packet by the
same amount of bytes.

A.2 Hop Limit Covert Channel

The hop limit of the IPv6 header shown in Figure 11 indicates the number of hops
a packet can still traverse before being destroyed. It is analogous to the TTL field in

6 This covert channel, when authentication is used, requires recalculating or circumventing the
ICV.

7 In this situation, Bob does not need to be at the final destination of the packet. He only needs
to observe the packet somewhere along the communication path.
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Fig. 9. β Covert Channel in the Routing Extension Header, when Alice creates fake addresses
in a packet that did not originally a routing extension header
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Fig. 10. β Covert Channel in the Routing Extension Header, when Alice inserts fake addresses
in a packet already containing a routing extension header. (a) Original routing extension header,
(b) Routing header after Alice inserts the covert data.

IPv4, however the TTL refers to the number of seconds remaining not the number
of hops.

The hop limit channel8 involves a crafted manipulation of its value. Alice send an
initial hop limit value, h, and modifies the hop limit value of subsequent packets. Bob
interprets the covert message by checking the variations in the hop limit values of pack-
ets traversing his location. One scheme has Alice signaling a 0 by decreasing the hop
count from the prior packet, and a 1 by increasing the hop count relative to the prior
packet. A drawback of this channel is that packets do not necessarily travel the same
route, so the number of intermediate hops may vary, introducing noise. To overcome
this, Alice can choose a δ that is greater than the expected noise, and use hop counts
less than h − δ signal a 0, and hop counts greater than h + δ to signal a 1. Bob then
compares the received hop count to h to deduce the bit. The bandwidth of this channel
is limited. Alice needs to modify n packets to send n− 1 bits of information.

A.3 Short TTL Exploit

In the IPv4 context, an attacker can manipulate the packet’s TTL field to mask another at-
tack from a network intrusion detection system (NIDS) [11,12,13,14]. An appropriately

8 This channel is called channel ε in [10].
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Fig. 11. IPv6 Header Format

set TTL value causes a packet to expire before it reaches its destination but after it has
passed by any NIDS along the way. In consequence, the NIDS will see a different traffic
pattern than the destination host will and might be unable to detect an ongoing attack. A
similar mechanism can be applied to IPv6 traffic by exploiting the hop limit field in
the IPv6 header (recall Figure 11).

B Rationale of the Percentages of Covert Channel Elimination

B.1 Routing Header Covert Channel

Case: Blind Adversary. Because aggregatable global unicast addresses must use the
prefix 001, there is one in eight chance (1/8) that a blind adversary will select a fake
address that follows such pattern. Let PInterception be the probability of the active
warden interception the adversary’s covert communication,

PInterception = 1− 1
8

(1)

In addition, every fake address the blind attacker wishes to inject to convey cover
messages have to begin with the same pattern. Therefore, the odds of blocking a bogus
address are higher with the next one inserted. That is,

PInterception = 1− 1
8n

(2)

where n is the number of injected addresses.

Case: Warden-Aware Adversary. A warden-aware adversary that attempt to circum-
vent the actions taken by an active warden has a unique alternative to manipulate the
order of legitimate router addresses in the Routing Header.
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Let CBandwidth be the channel bandwidth measured in bits per packet, n be the
number of addresses present in a Routing Header. The bandwidth of a Routing Header
covert channel based on the order of the contained addresses is given by the equation,

CBandwidth = 128 ∗ n (3)

considering that each address has a length of 16 octets (128 bits).
However, if the attacker is forced to use only real router addresses, such bandwidth

also depends on the number of routers, r, within the protected AS. That is,

CBandwidth = log2(rn) = n ∗ log2(r) (4)

The ratio between 3 and 4,

128
log2(r)

(5)

represents bandwidth loss the adversary will suffer when her actions are limited by the
active warden.
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Dima Pröfrock, Mathias Schlauweg, and Erika Müller

Institute of Communications Engineering,
University of Rostock,

Rostock 18119, Germany,
{dima.proefrock, mathias.schlauweg, erika.mueller}@uni-rostock.de

Abstract. Our paper proposes an enhanced video watermarking ap-
proach. The fundamental idea is to use geometric warping for watermarks
with high predictable robustness to lossy compression. We explain the
basic watermarking approach which uses a block based statistic (Normed
Centre of Gravity - NCG) to describe the geometric structure of blocks.
The NCG also is used to choose robust blocks. To embed the watermark
information the chosen blocks are changed by geometric warping. To ex-
tract the watermark, the original video is not necessary. The NCG is
used to detect the watermarked blocks and compute the embedded wa-
termark bit. In some cases, the independent geometric warping of blocks
which contain the same object results in visible artifacts. We propose to
link blocks in space and time to block groups. In contrast to the basic
approach, the blocks of one block group can be warped in dependence
on each other. Thus, the visible artifacts are prevented.

1 Introduction

Current information technologies are based more and more on digital multimedia
data. The use of digital data instead of analogue data offers many advantages. A
lot of digital data can be produced in a very short time and it becomes more and
more trivial to edit and finish the data. As opposed to analogue data, digital data
can be endlessly copied without any loss of quality. However, the technologies
to manipulate and copy data are often used in an illegal manner.Hence, there
is a growing importance of applications such as data authentication, copyright
and data hiding. Digital watermarking offers contributions in these fields. It de-
scribes techniques to embed additional information, the watermark, into digital
data [1].Transparency, robustness and capacity are some important and appli-
cation dependent properties of watermarking. Especially in the case of video
watermarking, watermarks with high robustness to lossy compression are re-
quired. Generally, videos are compressed with lower data rates as single images.
Hence, image watermarking techniques can not be automatically used for video
watermarking.

There are watermarking approaches that solve the problem by embedding the
watermark into the compressed domain during or after the encoding process
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(e.g., [2], [3]). This method has the advantage that the watermarking process
is not influenced by the compression. However, the watermarks are generally
not robust to a transcoding of the video. This paper presents a watermark ap-
proach in the uncompressed domain. The uncompressed video is watermarked
and can be compressed with different compression algorithms and data rates.
The watermark is robust to the compression.

Generally, the watermark is embedded into the irrelevant information of video
data to be invisible. This results in problems because compression algorithms
try to remove irrelevant information. In [4], we propose a basic watermarking
approach which embeds the watermark in the relevant information of videos
but in an imperceptible manner. This approach is based on geometric warping
of blocks. Because common compression algorithms are PSNR (Peak Signal to
Noise Ratio)-optimized, they try to maintain the geometric structure. With this
approach a high robustness to the new H.264/AVC compression standard can be
achieved. At present, the new H.264/AVC standard, developed for a broad range
of applications, provides the highest coding performance [5], [6]. Because this,
especially a H.264/AVC compression is suitable to verify the robustness of this
new watermarking approach. However, in some cases the basic watermarking
process described in [4] results in visible artifacts. We propose a method to
prevent these artifacts and improve the video quality.

In this paper, we present an improvement of a basic watermarking approach.
Firstly, the fundamental idea of watermarking by geometric warping is described.
Afterwards, the principle of the basic approach is explained. Therefore, a statistic
to describe the object borders in blocks is introduced. We propose a method to
choose robust blocks for watermarking and to detect watermarked blocks even
after lossy compression. The enhanced embedding process is explained. The next
section describes the way to reduce the artifacts of the basic approach. The
several subsections contain information about the reasons for the artifacts, the
approach to prevent them, an algorithm to realize the approach as well as results
and analyzes of the basic approach enhancement.

2 Watermarking by Geometric Warping

Commonly, the watermark is embedded in the perceptual invisible part of the
video. The compression algorithms try to remove the perceptual invisible part
of the video. Generally, both systems use the PSNR to measure the perceptual
quality degradation. Because this, both systems use the same definition for rel-
evant video data. This implies a contradiction. We can not embed a watermark
in video parts which are removed during the compression process. We can solve
this problem as shown in Figure 1.

The optimal way to embed the watermark with robustness to lossy com-
pression is to embed the watermark in the relevant part of video data. Be-
cause common compression algorithms are PSNR-optimized, the relevance is
defined by the PSNR. We propose in [4] to change the geometric structure
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     a)                   b)                  c) 
relevant

By compression 
removed infor-
mation

irrelevant

Watermark 

Fig. 1. Watermark embedding by using gaps of the compression algorithm a), defined
embedding strength b) or by using the relevant video information c)

a) b) c)

Fig. 2. Original image a), by geometric warping changed image b) and difference image
c). The geometric warping process moved the tree by some pixel to the left side.

of the video to embed the watermark. Because the PSNR-optimization, com-
pression algorithms try to maintain the geometric structure. At the same time,
the geometric embedding process can be imperceptible. For example see Fig-
ure 2. The PSNR between both images is 27.7 dB. However, the difference is
imperceptible.

3 The Basic Approach

3.1 The Normed Centre of Gravity (NCG)

To realize the geometric warping process, we introduce in [4] a new statistic, the
Normed Centre of Gravity (NCG). The NCG is similar to the gravity centre of
one block. However, it is independent from the block borders and every gray-
value of the pixel has the same influence to the NCG. The NCG is computed in
the following way.

First, the mean values of the rows and columns of the block are computed.
The results are two vectors mx and my. The vector mx is used to compute the
x-coordinate of the NCG, the vector my is used to compute the y-coordinate.
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Fig. 3. Computing scheme for the NCG x,y-coordinates

Therefore, the two vectors of mean values are arranged in two circles. Now, the
two-dimensional vector vk (k = x or y) is computed.

vk =

⎛

⎜⎜⎜⎝

n∑

i=1

mk(i) · cos
(

π

n
+
(

(i− 1) ·
(

2 · π
n

)))

n∑

i=1

mk(i) · sin
(

π

n
+
(

(i− 1) ·
(

2 · π
n

)))

⎞

⎟⎟⎟⎠ (1)

For each vector, the vector angles Θx , Θy and the vector lengths Lx , Ly are
computed. The vector angles are used to compute the x,y-coordinates of the
NCG.

x =
n ·Θx

2 · π y =
n ·Θy

2 · π (2)

3.2 Choosing and Detecting Robust Blocks

To embed a watermark bit, robust blocks are chosen. Robust blocks are blocks
with a high L =

√
L2

x + L2
y. The spatial position of object borders inside these

blocks is very robust to lossy compression. To choose robust blocks a threshold
is used (see [4]). For example, blocks with L > 430 are robust to H.264/AVC
compression with very low data rates. However, L is slightly influenced by com-
pression. Hence, it is a problem to find the correct blocks for watermark ex-
traction after compression. To solve this problem we create a gap as shown in
figure 4 b). In this example, blocks with 330 < Loriginal <= 430 are changed
so that Lnew = 330 and blocks with 430 < Loriginal < 530 are changed so that
Lnew = 530. This gap is sufficient for a correct detection of blocks even after
compression with low data rates.
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Fig. 4. Creating a gap in Video ”Bus” for correct detection of robust and non-robust
blocks around the threshold 430 with a) original distribution of L and b) distribution
after creating a gap

3.3 Enhanced Embedding Process

In [4], we use a QIM approach [7] and quantize the NCG x,y-coordinates of
robust blocks. Therefore we can distinguish 3 cases. There are blocks with robust
x-coordinates (high Lx), robust y-coordinates (high Ly) and blocks with robust
x,y-coorinates (high Lx and Ly). We use a hard decision to embed the watermark
bit. In dependence on these cases we quantize the x-, y- or y,x-coordinates. To
extract the bit we have to know which coordinate was used for embedding.
However, after lossy compression Lx and Ly are slightly changed. Hence, the
decision for the quantized coordinate can fail at the extraction process.

To solve this problem we don’t use the NCG x,y-coordinate directly to embed
the bit. The x,y-coordinates are mapped to an adaptive quantization lattice that
is defined by Lx, Ly and the variable quant. quant is inversely proportional to
the quantization step size and defines the embedding strength. Mapping the
x,y-coordinates to the adaptive quantization lattice is described by equation 6
and yields the value s. The different robustness of the NCG x- and y-coordinate
is considered in equation 4. The influence of lossy compression to Lx and Ly

is reduced by using equation 3. Equation 5 enables a linear mapping of the
x,y-coordinates which is independent of block borders.

ff (a, b) =
(e

1.8·a
1200 )

1 + (1 −
∣∣ a−b
1200

∣∣) · (e 1.8·a
1200 − e1.8)

(3)

fx(Lx, Ly), fy(Lx, Ly) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Lx ≤ Ly →
fx = ff(Lx, Ly) · Lx

Lx+Ly

fy = 1− fx

Lx > Ly →
fy = ff(Ly, Lx) · Ly

Lx+Ly

fx = 1− fy

(4)
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tria(a, q) =

⎧
⎨

⎩
modulo(a, 16

q ) ≤ 8
q → tria =

modulo(a, 16q )·q
16

modulo(a, 16
q ) > 8

q → tria =
16−modulo(a, 16q )·q

16

(5)

s(x, y) = fx(Lx, Ly) · tria(x, quant) + fy(Lx, Ly) · tria(y, quant) (6)

The used quantization lattice is self-adapting on each block (see Figure 5
II). The quantization lattice consists of periodically arranged minima (s = 0)
and maxima (s = 1). To embed a watermark bit we don’t quantize the NCG
x,y-coordinates but we move the x,y-coordinates on the quantization lattice to
the next minimum (to embed a watermark bit ’0’) or maximum (to embed a
watermark bit ’1’). For example see Figure 5. In column II the quantization
lattice of blocks of column I with the original NCG x,y-coordinates (marked
with a cross) can be seen. The blocks of column I are changed by geometric
warping to embed a watermark bit ’0’ (column III). The result can be seen in

II III IV

a)

b)

c)

d)

I

Fig. 5. Enhanced embedding process with a) robust y-coordinate, b) robust x-
coordinate, c) robust y-, slightly robust x-coordinate and d) robust x,y-coordinate.
Column I shows the original blocks, column II shows the quantization lattice with
NCG x,y-coordinates, column III shows watermarked blocks and column IV shows the
new quantization lattice of watermarked blocks with new NCG x,y-coordinates.
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Figure 5 column IV. The NCG x,y-coordinates are at the minima (black areas
represent the minima, white areas the maxima ) on the quantization lattice. To
extract the embedded bit, the original block is not required. Only the NCG x,y-
coordinates have to be mapped to the quantization lattice of the changed block.
The use of equation 6 delivers a value between 0 and 1. The watermark bit ’0’
is extracted if 0 ≤ s < 0.5, the watermark bit ’1’ is extracted if 0.5 ≤ s ≤ 1.

3.4 Achievable Robustness

Because the PSNR-optimization, we assume that the position of object borders
is very robust to lossy compression. The position of object borders is described
by the NCG and mapped to an adaptive quantization lattice yielding the value
s. The strength of the object border is described by the L. Higher L yields a
stronger object border. Figure 6 shows the robustness of the embedded water-
mark information bits to H.264/AVC compression. Different L and a block size
of 16x16 pixels are used. The embedding process changes the position of the
object borders by maximal 0.5 pixels.
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Fig. 6. Bit error rate (BER) of geometric warping based watermarking with logarithmic
and linear BER axes. QP represents the H.264/AVC quantization parameter. A higher
QP yields a lower compression data rate.
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Fig. 7. Reduced quality of the reference video ”Bus” caused by lossy H.264/AVC
compression
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The relationship between the H.264/AVC quantization parameter QP and
the resulting PSNR of the compressed video is shown in figure 7.

As shown in figure 6, the robustness of geometric warping based watermark-
ing to lossy compression is very high even on a strong lossy compression qual-
ity distortion. At the same time, the capacity is relatively high (see figures 8
and 16).

3.5 Results of the Basic Approach

The approach is tested by embedding watermarks in standard videos ”Bus”,
”Horse”, ”Horse2”, ”Waterfall” and ”Foreman”. The video resolution is 352x288
pixels. The embedding strength is quant = 16 with a block size of 16x16. This
is equivalent to a quantization of NCG x,y-coordinates with a quantization step
size of one. The watermark is embedded with different robustness to H.264/AVC
compression. A higher QP yields lower data rates and reduces the watermark
capacity if we use the same embedding strength to embed the watermark. The
capacity depends on the required robustness of the watermark and the video
content. The watermark is embedded with robustness to H.264/AVC compres-
sion with QPmax between 26 and 40. Figure 8 shows the results. As expected,
the capacity of videos without distinct objects, such as ”Waterfall”, is lower than
in videos with distinct objects, such as ”Bus”.
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Fig. 8. Capacity in Bits per Frame. The embedding strength is quant = 16. The wa-
termarks are embedded with robustness to different H.264/AVC compression. QPmax

defines the highest QP at which the watermark can be extracted.

The watermark results in visible artifacts as shown in Figure 9 b) and c).
However, the watermark is imperceptible if viewers don’t compare pixels but see
the video as a whole. The frame in Figure 9 a) contains 22 watermarked blocks.
For example, the wooden bole in the bottom right corner contains six of them.
But, without comparing the original pixels with the changed pixels nobody is
able to notice these blocks.
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a)

b) c)

Fig. 9. Watermarked frame of ”Horse” a), original block b) and watermarked block c)

4 Block-Linking for Improved Quality

4.1 Artifacts of the Basic Approach

The embedded watermark is imperceptible and robust to lossy compression with
low data rates. However, in some cases visible artifacts can be found after the
watermarking process. There are two kinds of artifacts. If one edge passes several
robust blocks which are changed by geometric warping to embed the watermark,
visible steps on the edge are produced. Hence, steps on long edges in single frames
are the first type of artifacts (see Figure 10). The second type of artifacts can
appear, if several blocks in succeeding frames with the same block position are
changed by geometric warping. Even if there are no visible differences between
the original and the watermarked single frames, there are visible flicker-effects if
the video is played.

a) c)b)

Fig. 10. Part of ”Bus” a) original, b) watermarked with visible artifacts and c) differ-
ence image
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4.2 Prevent Artifacts by Block Linking

The artifacts are the result of the independent warping of the blocks. To solve
this problem, we propose to link blocks which contain the same object to block
groups. Now, the warping process of one block in one block group can consider
the warping process of the other blocks of the same group. In this way, the
artifacts can be prevented.

Linking Process. To prevent artifacts and flicker-effects, we have to consider
the video as a 3D-space. Two dimensions in space (coordinates x, y) and one
dimension in time (frame number, coordinate t). The linking process uses neigh-
boring robust blocks. It is probably that neighboring blocks contain the same
object. Hence, robust blocks which are neighbors in spatial as well as in tempo-
ral position are linked to block groups. Figure 11 shows some block groups of
the first 10 frames of the video ”Bus”. It can happen that one block group con-
tains more than one object. However, this is not a disadvantage for preventing
artifacts.

t
x

y

Fig. 11. Some block groups of the first 10 frames of ”Bus”

Principle of Preventing Artifacts. To prevent the artifacts, we do not embed
a watermark bit in every block of one block group. We define a minimum spatial
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and temporal distance d between blocks which will be watermarked. The blocks
of one block group which are not chosen for watermarking are used to create a
smooth transition between the watermarked blocks. For example see Figure 12.
Figure 12 shows one black and one white object which are divided into 7 blocks.
Embedding a watermark by geometric warping in each block inducts visible
artifacts (Figure 12 b). The artifacts are reduced by choosing only the block 1, 4
and 7 for watermarking (Figure 8 c) and using the blocks 2, 3, 5 and 6 to create
a smooth transition between the watermarked blocks (Figure 12 d).

a)

b)

c)

d)

1 2 3 4 5 6 7

Fig. 12. Reducing artifacts by using a smooth transition between watermarked blocks.
Therefore is exhibited a) blocks without watermark, b) watermark in every block, c)
watermark in block 1, 4, 7 and d) watermark in block 1, 4, 7 by using block 2, 3, 5, 6
for smooth transitions.

Algorithm for Choosing Blocks. Only some blocks of one block group have
to be chosen for watermarking to realize the principle outlined in 3.3. To enable
the watermark detection, this process has to be unambiguous. To prevent the
artifacts, the chosen blocks should maintain a minimum distance d to each other.
Investigation has shown that small-sized block groups can use a small minimum
distance to prevent artifacts. However, bigger-sized block groups have to use a
higher minimum distance to prevent artifacts. Hence, we adapt d in each block
group for each dimension whereas dx, dy and dt represent the minimum distance
for each dimension and xsize, ysize and tsize represent the block group size for
each dimension. Investigations have shown that distance d > 0.5 is suitable to
prevent the artifacts.

di = �log(d · (isize − 1) + 1) + 0.5� (i = x, y or t) (7)

To achieve a maximal watermark capacity, as much as possible blocks of the
block group have to be chosen for watermarking. Hence, the following algorithm
has to find a maximum number of blocks in a block group which have a minimum
distance to each other. We realize it in the following way:
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1. The block group is chosen. Block groups have arbitrary forms which depend
on video content. For example see Figure 13 a.

2. For each dimension x, y and t of the block group a minimum distance dx,
dy and dt is computed (equation 7).

3. For each block, the numbers of blocks inside an ellipsoid are counted (Fig-
ure 13 a,b). The semi-axes of the ellipsoids are defined by dx, dy and dt.
The center of the current ellipsoid is defined by the current block. For better
illustration Figure 13 shows the principle only for a 2D block group.

4. The blocks with the least neighbors are chosen for watermarking (Figure 13 c).
Are more than one chosen blocks inside an ellipsoid, only one of them (the
first) is used for watermarking (Figure 13 d,e). This process is unambiguous.

5. The chosen blocks and all blocks within the ellipsoids around the chosen
blocks will not be considered in the next steps.

6. The steps 3-4 are repeated until all blocks are chosen for watermarking or
have a distance lower than the minimum to a chosen block (Figure 13 d-f).

a) b) c)

5 4 4

2

232

53

2 3 3

1 1

xd
yd

d) e) f)
sizex

sizey

Fig. 13. Example for choosing blocks for watermarking with a minimum distance in
one block group with a) block group and ellipsoid, b) counted neighbors, c) first chosen
blocks, d) counted remaining blocks, e) chosen blocks of the second iteration and f) all
chosen blocks

Smooth Transition between Watermarked Blocks. The chosen blocks are
used for watermarking. The watermarking bits ’0’/’1’ are embedded by moving
the NCG x,y-coordinates on the quantization lattice to minima/maxima. This
is done by geometric warping. The warping strength differs from block to block.
Only the chosen blocks have to be warped. However, to reduce the visible effect
of the geometric warping process, the other blocks of the block group also will
be warped (Figure 14). The warping strength of these blocks depends on the
warping strength of the watermarked blocks. It is computed by using a sim-
ple Gaussian filter. Thus, a smooth transition between watermarked blocks is
achieved.
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Fig. 14. A simplified example of warping strength in one block group. The watermarked
blocks are labeled with a cross.

4.3 Results of the Linking Process

Linking blocks to block groups, choosing blocks with a minimum distance, wa-
termarking them and using the other blocks for a smooth transition prevents the
described artifacts. It can be clearly seen by comparing Figure 10 with Figure 15.
The visible artifacts in single frames as well as the flicker-effects in succeeding
frames are prevented.

a) c)b)

Fig. 15. Part of ”Bus” a) original, b) watermarked without visible artifacts and c)
difference image

There is one disadvantage of this method. Without block linking, all robust
blocks are used for watermarking. With block linking, only some blocks of a block
group are used for watermarking. This results in a lower watermark capacity.
Hence, with the block linking method and a minimum distance d > 0 we can
not embed the same number of bits as without block linking. The capacity
depends not only on the minimum distance d and the number of robust blocks.
It also depends on the size and form of the block groups which depends on
the video content. It can be seen clearly in Figure 8 and Figure 16. To test
our approach, we embed watermarks in standard test videos ”Bus”, ”Horse”,
”Horse2”, ”Waterfall” and ”Foreman”. The test conditions are the same as in
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Fig. 16. Capacity in Bits per frame with block linking and a minimum distance of 0.5

section 3.5. Figure 8 shows the capacity by using all robust blocks. Figure 16
shows the capacity by using block linking and a minimum distance of 0.5.

Though ”Bus” contains more robust blocks than ”Horse2”, the capacity with
block linking is lower because ”Bus” contains bigger block groups than ”Horse2”.
As we said above (see 4.2), it is possible that one block group contain more than
one object. However, several small block groups can contain more watermark
bits (without visible artifacts) as one big block group. Hence, the watermark
capacity can be increased in future works by changing the block linking method.

5 Conclusions

This paper presents an enhanced watermarking approach. The fundamental idea
of using geometric warping for watermarks is explained. The basic watermarking
approach is introduced. It uses a block based statistic (NCG) to describe the ge-
ometric structure of blocks. The NCG is also used to choose only robust blocks
for watermarking. To detect robust blocks even after lossy compression we pro-
pose to change some blocks in a preprocessing step. The watermark information
bits are embedded by moving the NCG x,y-coordinates on a block dependent
quantization lattice. This is done by geometric warping of the block. The wa-
termark is robust to lossy compression. The watermark capacity is analyzed.
In some cases, the independent geometric warping of blocks which contain the
same object results in visible artifacts. Especially on long edges, visible steps
can appear. Additionally, flicker-effects in succeeding frames can be observed.
In this paper we propose to link blocks in space and time to block groups. As
opposed to the basic approach, the blocks of one block group can be warped
in dependence on each other. Thus, the visible artifacts are prevented by our
enhancement. However, the block linking approach reduces the watermark ca-
pacity. The capacity is analyzed and compared with the capacity of the basic
approach.
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Abstract. In audio watermarking, the robustness to desynchronization
attacks such as TSM (Time-Scale Modification) operations, is still an
open issue. In this paper, both mathematical proof and experimental
testing show that the histogram shape (represented as the relative
relation in the number of samples among three different histogram
bins) and the audio mean are two robust features to the TSM attacks.
Accordingly, a multi-bit robust audio watermarking algorithm based on
the two statistical features is proposed by modifying the histogram.
The audio histogram with equal-sized bins is extracted from a selected
amplitude range referred to the audio mean, and then the relative
relations in the number of samples among groups of three neighboring
bins are designed to carry the watermark by reassigning the number of
samples in the bins. The watermarked audio signal is perceptibly similar
to the original one. Simulation results demonstrated that the hidden
message is very robust to the TSM, cropping, and a variety of other
distortions in Stirmark Benchmark for Audio.

1 Introduction

Audio watermarking [1][2] plays an important role in ownership protection.
According to IFPI (International Federation of the Phonographic Industry) [3],
STEP2000 [4] and SDMI (Secure Digital Music Initiative) [5], audio
watermarking should be robust to temporal scaling of ±10% and be able to
resist most common signal processing manipulations and attacks, such as random
cropping, MP3 compression, resampling and etc.

Among the various problems to be solved in audio watermarking, the
robustness against desynchronization distortions such as TSM and random
cropping, is the most challenging one for previous watermarking schemes yet.
Desynchronization attacks that cause displacement between encoder and decoder
are difficult for a watermark to survive. In [6], the synchronization code was
introduced aiming at conquering cropping attacks. However, the synchronization
code is very vulnerable to TSM. For example, a small amount of scaling (i.e.,

J. Camenisch et al. (Eds.): IH 2006, LNCS 4437, pp. 93–108, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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±1%) will be able to cause the watermark extraction failed. TSM is a common
audio processing manipulation in a variety of software tools, such as CoolEditPro
V2.1. Under TSM operations, even with the scaling amount of ±10%, the
auditory quality of audio is still rather perfect since HAS (Human Auditory
System) is not sensitive to TSM. This makes TSM to be a serious attack
operation in audio watermarking. Generally, there are mainly two modes of TSM
operations, pitch-invariant scaling and resample scaling. The pitch-invariant
mode preserves audio pitch, while the resample mode keeps pitch and tempo
neither by modifying playback speed.

Few algorithms can effectively resist the TSM. In the existing literature,
several algorithms have been proposed aiming at solving this problem by using
exhaustive search [7], synchronization pattern [6][8], invariant watermark [9][10],
implicit synchronization [11], informed detection [12]. In [7], the authors
applied the detection engine to search the watermark for resynchronization
by performing multiple correlation tests. One possible problem for multiple
correlation tests is the false alarm. In [9], the authors proposed a time-scale
invariant watermarking embedding strategy by changing the length of the
intervals between two successive peaks of the smoothed waveform. The
watermark detection highly depends on the selection of the threshold. In [10],
the authors presented an audio watermarking method by using music content
analysis. The watermark is embedded into the edges of audio signals by using
FFT (Fast Fourier Transform) technique. The watermark is robust to ±9%
pitch-invariant TSM but vulnerable to resample stretching mode, which will
change the edges in the signal. The watermarking methods based on the peak
points may suffer from the attack of removing the peaks. In [12], side information
is exploited to improve the searching of the watermark aiming at solving playback
speed modifications. One weakness of this scheme is that the detection procedure
is not blind. On the basis of [8], Tachibana [13] further improved the watermark
performance against random time stretching from ±4% up to ±8% by using
multiple pseudo-random arrays. This method is time consuming.

The above mentioned approaches share the problems that the watermark
performance is difficult to satisfy the requirements of IFPI or STEP2000
(stretching of±10%), and, the watermarking schemes usually focus on one type of
desynchronization attacks, such as pitch-invariant TSM mode [10], resample TSM
mode or playback speed modifications [12], and cropping [6]. In this paper, we
propose a multi-bit audio watermarking algorithm based on the audio statistical
features described by the histogram specification, concentrating on combating the
desynchronization problem caused by time-scale modifications. Histogram-based
watermarking strategy was first introduced for image watermarking in [14].
By using the robustness of image color histogram to rotations and geometric
transformations, the authors in [15] proposed a general method for watermarking
color histogram of image. The 1-bit watermarking scheme is very robust to image
geometric distortions. The basic idea in our algorithm is that the TSM operations
with the resample and pitch-variant stretching modes may be represented as an
approximately temporal linear scaling operation in practice, verified by extensive
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testing. Theoretically, it has been proven that the number of samples in the
audio histogram bin is linear to temporal linear scaling, and the audio mean
is invariant to such attack. In experimental testing, it is observed that the
number of samples in the bins is almost linear to the TSM attacks, and the
audio mean is rather robust to this kind of scaling attacks. As a conclusion, the
audio mean and the relative relations in the number of samples among different
bins are taken as two robust features to the TSM. As a robust feature to TSM,
the audio mean is exploited to compute the histogram with equal-sized bins
from a selected amplitude range so that the watermark is robust to amplitude
scaling. The use of three successive bins as a group is designed to embed one
bit of information by reassigning the number of samples in the three bins.
In the extraction, the synchronization code is introduced for searching of the
watermark. The original audio is not required. The experimental results show
that the proposed watermarking strategy is very robust to the TSM attacks.
In our testing, even though the TSM of ±30% with pitch-invariant or resample
modes, the extracted watermark is still at a very low error rate. Additionally, we
analyze the performance of the proposed watermarking algorithm and report the
experimental results regarding the quality evaluation of the watermarked audio,
the watermark robustness against common signal processing operations regarding
Stirmark Benchmark for Audio [16].

In the next section, we describe the effects of the TSM on the number of
samples in the bins based on both the theoretical analysis and experimental
method. This is followed by a description of a general framework for our
proposed watermarking embedding and detecting strategy. We then analyze the
watermark performance and test the watermark robustness on desynchronization
distortions, as well as some common signal processing and some common attacks
in Stirmark Benchmark for Audio. Finally, we draw the conclusions.

2 Invariant Features to TSM

Via both theoretical analysis and extensive experiments, it has been found that
the number of samples in the histogram bins is linear to temporal linear scaling,
and approximately linear to TSM operations with pitch-invariant and resample
modes. It implies that the relative relation in the number of samples among
different bins is approximately invariant to the TSM operations. It is also noted
that the audio mean is very robust to the TSM operations.

A histogram is often used to describe the data distribution. The most common
form of the audio histogram is obtained by splitting the range of the sample value
into equal-sized bins. Then for each bin, the number of samples from the audio
that fall into each bin is counted. The style of histogram may be described by

H = {h(i)|i = 1, · · · , L}, (1)

where H is a vector denoting the volume-level histogram of audio signal F =
{f(i)|i = 1, ..., N}, and h(i), h(i) ≥ 0 denotes the number of samples in the ith
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bin and satisfy
∑L

i=1 h(i) = N . Suppose that the resolution of a signed audio
signal is R bits, the number of bins L can be calculated as

L =

{
2R/M if Mod(2R/M) = 0
�2R/M�+ 1 other,

(2)

where M is the size of bins, h(i) includes all samples the range of sample value
from −2R−1 + (i− 1) ·M to −2R−1 + i ·M − 1, and �·� is the floor function.

2.1 Theoretical Proof

In order to better describe the relationship between the audio histogram and the
temporal linear scaling, we rewrite the audio histogram described in Equation (1)
with the continuous form, denoted by

F (t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1(t) if t ∈ T1

f2(t) if t ∈ T2

...
...

fL(t) if t ∈ TL,

(3)

where F (t) is the corresponding continuous version of the discrete signal F .
Ti | i = 1, . . . , L is a set of time pieces corresponding to fi(t). In time piece Ti,
fi(t) will fall into the bin h(i).

Consider temporal linear scaling of the signal F (t) through a factor α. If F (t)
is denoted by Equation (3), the corresponding scaled version is formulated as

F ′(t) = F (t/α) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1(t/α) if t ∈ α · T1

f2(t/α) if t ∈ α · T2

...
...

fL(t/α) if t ∈ α · TL,

(4)

Equation (4) indicates that the scaling on F (t) is equivalent to the scaling on
its sub-functions {fi(t)}.

Furthermore, consider the mean of F (t) before and after scaling. If the scaled
mean are denoted by Ā′, the relationship between the original mean Ā and Ā′ is

Ā′ =
1
T ′

∫ T ′

t=0

|F ′(t)|dt =
1

αT

∫ αT

t=0

|F ′(t)|dt

=
1

αT

∫ αT

t=0

|F (t/α)|dt =
1
T

∫ αT

t=0

|F (t/α)|d(t/α)

=
1
T

∫ T

t1=0

|F (t1)|dt1 = Ā

(5)
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Equation (5) indicates the modified mean value is invariant to linear scaling.
In the discrete case, Equations (1), (3) and (4) imply that after temporal linear

scaling with a factor α, the number of samples in each bin, h(i), theoretically
goes to α · h(i). Note that if α is not an integer, the interpolation processing
will occur among neighboring bins, possibly resulting in a few samples added
or lost for different bins. As a result, the number of samples among different
bins is approximately linear to temporal linear scaling. From Equation (5), it is
noted that for a continuous signal, its mean is an invariant feature to temporal
linear scaling. In the discrete case, it implies that the mean of digital signal is
approximately invariant to temporal linear scaling.

In the following experimental testing, it is noted that the TSM may be
represented as an approximately temporal linear scaling operation. As a result,
the audio mean is rather robust to the TSM, and the relative relations in the
number of samples among different bins is almost invariant to the TSM.

2.2 Experimental Testing

Pitch-invariant and resample are two different kinds of stretching modes, which
will modify the length of an audio signal in time domain. The pitch-invariant
TSM mode preserves the audio pitch. Differently, the resample TSM mode
scales the audio by playing audio with a higher or lower speed. This processing
preserves the pitch and the tempo neither. For example, audio phase change
in DA/AD processing via soundcards may be represented as a resample scaling
mode [17]. Based on the knowledge above, the resample stretching mode may
be taken as a temporal linear scaling processing, mathematically no effect
on the relative relations in the number of samples among different bins. The
pitch-invariant stretching mode may be considered as an approximately temporal
linear scaling operation. Hence, it is expected that the relative relationships in
the number of samples among different bins is approximately invariant or robust
to the TSM, which is demonstrated by conducting the following extensive testing.

We choose a clip from our test data set, drum music denoted as drum.wav
(16-bit signed mono audio file sampled at 44.1 kHz with the length of 25s), to
test the effects of the TSM.

The histograms are extracted from drum.wav and all correspondingly scaled
versions with the equal-sized bins. The bin width (M) is 500. The number of
bins (L) is calculated as 132 by using Equation (2). Fig. 1 shows that under
±30% scaling with the resample and pitch-invariant modes, the histogram shape
remains almost unchanged. It implies that the relative relations in the number
of samples among different bins is rather stable under the TSM. Fig. 2 and
Fig. 3 show the effects of the TSM with the two stretching modes on those bins
satisfying h(k) >> L under the scaling amount of 70% and 130%, respectively.
Fig. 4 shows the average amplitude values of original audio and its scaled versions
under TSM of 70%∼130% with pitch-invariant and resample modes. As to other
kinds of audio, such as pop music, piano music and speech, the simulation results
are similar.
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In Fig. 2 and Fig. 3, the left sub-plots are the estimated scaling factors by
using the bins of the original and scaled files, formulated as

αk =
h′(k)
h(k)

≈ α for h(k)� L (6)

where αk denote the estimated scaling factor in the kth bin, h′(k) is the scaled
version of h(k), where h(k) � L, i.e., the number of samples in each bin is
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Fig. 1. The audio histograms under the TSM attacks, five sub-plots: (a) original, (b)
under 70% scaling with resample mode, (c) under scaling of 130% with resample mode,
(d) after scaling of 70% with pitch-invariant mode, and (e) after scaling of 130% with
pitch-invariant mode
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considerably larger than the number of bins. And, the right sub-plots in Fig. 2
and Fig. 3, demonstrate the effects of the TSM with different scaling amount
on the relative relations in the number of samples among three neighboring bins
calculated and denoted by βk,

βk =
2 · h(k)

h(k + 1) + h(k − 1)
for h(k)� L (7)

The scaled audio files are obtained by using the CoolEditPro V2.1. Based on
extensive testing with different audio signals, we have the following observations:

i. Pitch-invariant and resample TSM operations may be considered
approximately linear scaling operations for those bins satisfying h(k) � L. Even
though the TSM of 70% and 130%, the linear relation is approximately logical.
It means that the relative relation in the number of samples among these bins
is almost invariant to such scaling attacks. It is noted that βk is from 0.9 to 1.1.
As to other bins, 0∼40 and 90∼132 not listed in Fig. 2 and Fig. 3, αk is away
from α since these bins hold less samples. As a result, βk is far away from 1.
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Fig. 2. The plots for the TSM attacks of 70% and 130% with the pitch-invariant mode
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Fig. 3. The plots for the TSM attacks of 70% and 130% with the resample mode
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Fig. 4. The mean curves of the example audio and the scaled ones under the TSM
of 70% ∼ 130% with resample (left) and pitch-invariant (right) stretching modes,
respectively. It is noted that from the scaling amount of 70% to 130% with the step
size of 3%, the audio means under the resample mode keep stable but somewhat less
than original one, but have different results for the pitch-invariant TSM of different
scaling amount. The error ratios of mean are between ±5%.

ii. The mean of the audio is robust enough to the TSM, also fulfilling the
analysis in Equation (5). Under 70%∼130% TSM, the error ratio of mean is
between ±5% according to the extensive testing.

As a conclusion, if we embed the watermark into those bins satisfying the
condition h(k) � L by applying two invariant representations (the audio mean
and the relative relation among different bins), it is expected that the watermark
will be very robust to TSM attacks.

3 Proposed Watermarking Algorithm

In this section, a multi-bit watermark aiming at solving the TSM manipulations
is proposed. The watermark insertion and recovery are described by the
histogram specification. The robustness of the audio mean and the relative
relation in the number of samples among different bins to the TSM attacks
presented in the previous section are used in the design. The mean invariance
property is used to select the amplitude range to embed bits so that the
watermark can resist amplitude scaling attack and avoid exhaustive search. In
the extraction, a synchronization code is exploited to eliminate the effect of TSM
on the audio mean.

3.1 Embedding Strategy

The basic idea of the proposed embedding strategy is to extract the histogram
from a selected amplitude range. Divide the bins into many groups, each group
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Fig. 5. Watermark embedding framework

including three consecutive bins. For each group, one bit is embedded by
reassigning the number of samples in the three bins. The watermarked audio
is obtained by modifying the original audio according to the watermarking rule.
The embedding model is shown in Fig. 5.

The detail embedding process is described as follows. Suppose that there is
a binary sequence W = {wi | i = 1, · · · , Lw} to be hidden into a digital audio
F = {f(i) | i = 1, · · · , N}. The modified mean value of the audio, denoted by
Ā, is calculated as

Ā =
1
N

N∑

i=1

|f(i)| (8)

Select the amplitude range B = [−λĀ, λĀ] from F to extract the histogram
H = {h(i) | i = 1, · · · , L}, where L ≥ 3Lw, to embed all watermark bits.
λ is a selected positive number for satisfying h(i) � L. λ ∈ [2.0, 2.5] is a
suggested range so that the histogram bins extracted can hold enough samples.
This observation is achieved based on the extensive testing on different kinds of
audio signals.

Suppose that three consecutive bins, denoted by BIN 1, BIN 2 and BIN 3,
their samples in the number are a, b and c, respectively. We apply the following
watermarking rules to embed one bit of information, described as

{
2b/(a + c) ≥ T if w(i) = 1
(a + c)/2b ≥ T if w(i) = 0,

(9)

where T is a selected threshold used to control the watermark robustness
performance and the embedding distortion. Referred to Section 2.2, T should
be not less than 1.1 in order to effectively resist the TSM.

If the embedded bit w(i) is ′1′ and 2b/(a + c) ≥ T , no operation is needed.
Otherwise, the number of samples in three neighboring bins, a, b and c, will be
adjusted until satisfying 2b′/(a′ + c′) ≥ T , referred to Equation (9). In case of
embedding the bit ′0′, the procedure is similar. The rules applied to modify a, b
and c as a′, b′ and c′ are referred to Equations (10), (11), (12) and (13).

If the embedded bit w(i) is ′1′ and 2b/(a + c) < T , some selected samples
from BIN 1 and BIN 3 in the number denoted by I1 and I3, will be modified
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to BIN 2, achieving 2b′/(a′ + c′) ≥ T . The modification rule is described as
Equation (10). {

f ′
1(i) = f1(i) + M, 1 ≤ i ≤ I1

f ′
3(i) = f3(i)−M, 1 ≤ i ≤ I3,

(10)

where f1(i) and f3(i) denote the ith modified sample in BIN 1 and BIN 3,
f ′
1(i) and f ′

3(i) are the modified version of f1(i) and f3(i). M is the bin width.
Obviously, the modified samples move to BIN 2. I1 and I3 are computed by
using the following equation,

I1 = I · a/(a + c), I3 = I · c/(a + c), I ≥ [T (a + c)− 2b]/(2 + T ) (11)

If the embedded bit w(i) is ′0′ and (a + c)/2b < T , I1 and I3, some selected
samples from BIN 2 will be modified to BIN 1 and BIN 3, respectively, achieving
(a′ + c′)/2b′ ≥ T . The rule is described as Equation (12).

{
f ′
2(i) = f2(i)−M, 1 ≤ i ≤ I1

f ′
2(j) = f2(j) + M, 1 ≤ j ≤ I3

(12)

where f2(i) denotes the ith modified sample in BIN 2, f ′
2(i) and f ′

2(j) are the
corresponding modified version of f2(i) and f2(j). I1 and I3 are computed by

I1 = I · a/(a + c), I3 = I · c/(a + c), I ≥ [2Tb− (a + c)]/(1 + 2T ) (13)

About the proofs of Equations (11) and (13), please refer to Appendix.
This process is repeated to embed all watermark bits. In our proposed

embedding strategy, the watermark is embedded by directly modifying the
values of some selected samples from the original audio. Hence the embedding
process includes the reconstruction of watermarked audio, which is denoted by
F ′ = {f ′(i) | i = 1, · · · , N ′}.

3.2 Watermark Extraction

Consider the effects of the TSM on the audio mean may cause the watermark
detection failed, a predefined searching space denoted by [Ā′′(1 − �1), Ā′′(1 +
�2)] is designed for resynchronization. Here, Ā′′ denotes the mean of the
watermarked audio F ′′ = {f ′′(i) | i = 1, · · · , N ′′}, which has undergone some
desynchronization attacks, such as TSM operations with different stretching
modes. Based on our previous experimental analysis in Section 2.2, �1 and
�2, the down and up searching error ratios of mean, are suggested not less
than 5%. We use a PN (Pseudo-random Noise) sequence as a synchronization
code, {Syn(i)}, followed by the hidden multi-bit watermark, {Wmk(i)}, shown
in Fig. 6. Only the watermark also provides the synchronization capability.
The merit of part of payload as synchronization code can keep the watermark
unknown for the detector.

Our goal is to get an estimate of hidden bits, W ′′ = {w′′
i | i = 1, · · · , Lw} by

selecting an amplitude range from F ′′ at a low error rate. W ′′ is composed of
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Fig. 6. Data structure of hidden bit stream [6]

{Syn(i)} and {Wmk(i)}. The histogram of F ′′ is extracted with L bins as in
the process of watermark embedding. Compute the number of samples in three
consecutive bins and denoted by a′′, b′′ and c′′. By comparing them, we can
extract one bit of hidden information,

w′′
i =

{
1 if 2b′′/(a′′ + c′′) ≥ 1
0 other

(14)

The process is repeated until all hidden bits are extracted. Once the
synchronization code {Syn(i)} is matched with the extracted synchronization
bits {Syn1(i)} or the searching process is finished, according to the best
matching, we extract the hidden watermark following the synchronization bits,
denoted by {Wmk1(i)}. In the extraction, the parameters, Lw, λ and {Syn(i)},
are beforehand known, so the detection process is blind.

4 Performance Analysis

In this section, we evaluate the performance of the proposed algorithm in
terms of embedding capacity (payload), robustness on amplitude scaling, and
computational cost of searching the watermark in the extraction. Suppose that
the mean of an audio is Ā and the parameter λ is applied to compute the
embedded region. The embedding capacity P of the proposed algorithm can be
expressed as

P = 2λ · Ā/(M ·G) (15)

where M denotes the size of the bins, and G is the number of the bins designed
to embed one bit, not less than 2 and equal to 3 in our proposed watermarking
scheme in order to reduce the watermark distortion.

In the case of amplitude scaling attack, though the selected range, B, is
amplified, the number of the samples in each bin is unchanged since the
histogram is extracted referred to audio mean. It is due to the fact that the
sample values and their median are amplified correspondingly under amplitude
scaling. Hence, the algorithm is immune to such attack.

In the extraction, an ideal searching step is related to λ, and designed as
S = 1/λ so that the selected amplitude range B is added or reduced with a
unit of sample-level at a time, such as from ±10000 to ±9999 or to ±10001. The
maximum searching times is estimated as

O = Ā · (�1 +�2)/S = λ · Ā · (�1 +�2) (16)

Equation (16) shows that that the computational cost of searching for the
watermark is related to the mean of audio, and the error ratios of mean caused
by the TSM.
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5 Experimental Results

The proposed algorithm is applied to a set of audio signals including pop, light,
rock, piano, drum and electronic organ. The parameter λ = 2.5 is selected to
extract the histogram with 181 bins. A clip (20s, mono, 16 bits/sample, 44.1
kHz and WAVE format) cut from the light music titled ′danube′ is used as
the example audio watermarked with 60 bits of information composed of a
20-bit synchronization sequence and the 40-bit watermark, with the embedding
threshold T = 1.5. In the embedding, the probability of the watermarked samples
their values added or reduced is approximately equivalent, hence the watermark
hardly has the affection on the audio mean, which are 4001.3 and 4001.3 before
and after embedding, respectively. In the extraction, we assign �1 = �2 = 6%
for the watermark detection with the searching step size of S = 1. The relative
relation in the number of samples among three neighboring bins is calculated by
Equation (7) and plot in Fig. 7.
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Fig. 7. The relative relation in the number of samples before and after watermarking

Table 1. Robustness Performance to Common Audio Processing Operations

Attack Type BER Attack Type BER
Normalize 0 Gaussian(35 dB) 0

MP3 (128 kbps) 0 MP3 (112 kbps) 1/60

Re-quantization
16 → 32 → 16 (bit)

0 Resample
44.1 → 16 → 44.1 (kHz)

0

Low pass (8 kHz) 0 Low pass (7 kHz) 7/60

Volume (10 ∼ 50%) 0 Volume (110 ∼ 150%) 0

The SNR is 43.97 dB, with the ODG (Objective Difference Grade) of -1.31
implemented by EAQUAL 0.1.3 alpha [18] considered the HAS. The higher SNR
is that only a small part of samples is modified for watermarking. The satisfied
ODG value is due to the fact that those watermarked samples are modified with
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Table 2. Robustness Performance to part of cropping and jittering attacks

Attack Type BER Attack Type BER
Cropping (10*20000) 0 Cropping (3s) 0

Jittering (1/500) 0 Jittering (1/1500) 0

Jittering (1/1000) 0 Jittering (1/2000) 0

Table 3. Robustness Performance to two different TSM modes

Pitch-Invariant TSM BER Resample TSM BER
TSM -30% 3/60 TSM -30% 0

TSM -25% 0 TSM -25% 0

TSM -20% 0 TSM -20% 0

TSM -15% 0 TSM -15% 0

TSM -10% 0 TSM -10% 0

TSM -5% 0 TSM -5% 0

TSM +5% 0 TSM +5% 0

TSM +10% 0 TSM +10% 0

TSM +15% 0 TSM +15% 0

TSM +20% 0 TSM +20% 0

TSM +25% 0 TSM +25% 0

TSM +30% 0 TSM +30% 0

a lower amplitude. A suggesting strategy to reduce the watermark distortion is
to exclude the 91st bin (holding the zero-value samples) for watermarking.

We test the robustness of the proposed algorithm according to IFPI [3]
with BER (Bit Error Rate). The audio editing and attacking tools adopted
in our experiments are CoolEditPro V2.1, and Stirmark Benchmark for Audio
V0.2. The test results under common audio signal processing, random cropping,
time-scale modification and Stirmark for Audio are listed in Tables 1-4. From
Table 1 we can see that our algorithm is robust enough to some common audio
signal processing manipulations, such as, MP3 compression of 112 kbps, low pass
of 8 kHz, etc.

Table 2 shows the strong robustness to random cropping. In our experiments,
even 20000 samples cropped at each of ten randomly or randomly cropping
one portion of the audio with the length of 3s, it does not make any affection
to the extracted watermark. As for jittering attacks, an evenly performed
random cropping, the algorithm also shows strong robustness. The reason is
that the cropping attack in time domain, to some extent, may be viewed as
an approximately temporal linear stretching operation because the cropped
samples, usually, obey the approximate distribution in sample values as the
original audio signal.

Random stretching includes the resample mode and pitch-invariant modes.
The test results of a light music under TSM from -30% to +30% with two
different stretching modes are tabulated in Table 3. The proposed algorithm
shows strong robustness to this kind of attacks up to ±30% for pitch-invariant
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Table 4. Robustness performance to some common attacks in StirMark for Audio

Attack Type BER Attack Type BER
AddBrumm 100 4/60 AddNoise 100 0

AddBrumm 1100 Failed AddNoise 300 Failed

Compressor 0 ExtraStereo 30 0

Amplify 0 ExtraStereo 50 0

Exchange 0 ExtraStereo 70 0

ZeroCross 3/60 Normalize 0

Stat2 0 CutSample 0

Nothing 0 Smooth2 0

Original 0 Smooth 0

FFT RealReverse 0 FlipSample 0

TSM and the resample TSM, far beyond the ±10% requested by the IFPI and
STEP2000, and it is higher than 9% in [10] and 8% in [13]. Referred to the
analysis in Section 2, this is mainly due to the relative invariance of the number
of samples in different bins and the robustness of the audio mean to such attacks.

Stirmark Benchmark for Audio is a common robustness evaluation tool for
audio watermarking techniques. All listed operations are performed by using
default parameters implemented in the system. From Table 4, it is found that
the watermark shows stronger resistance to those common attacks. In the cases
of failure (′Failed′ means the BER is over 20%), the audio mean is changed
severely or the audio quality is distorted largely.

Overall, our algorithm is robust to common desynchronization operations
including the pitch-invariant and the resample scaling, random cropping and
jittering attacks.

6 Conclusions

In this paper, we propose a multi-bit audio watermarking method based on the
statistical features in time domain by the histogram shape insensitivity to TSM.
The histogram shape is interpreted as the relative relation of different bins in
population.

Via theoretical analysis and extensive experiments, we show the superiority of
the proposed statistical features, the relative relations in the number of samples
among different bins and the audio mean. The two features are very robust to
the TSM. Accordingly, by applying the two investigated features combined with
synchronization match technique, an audio watermarking scheme robust to the
TSM is designed. Since only a small portion of audio samples are somewhat
modified in the embedding, the watermark is inapparent and inaudible.

The extensive experimental works have shown that the proposed
watermarking strategy has conquered those challenging desynchronization
attacks, such as time scaling and random cropping. The watermark also achieves
good robustness against some common signal processing operations, such as MP3
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compression, additional noises, amplitude scaling attack, etc. This work is very
useful due to its strong robustness to desynchronization attacks.

In further work, we will discuss the underlying robustness principle of the
proposed watermarking scheme to cropping. The security of the watermark
and how to combine the frequency transformation techniques to improve the
watermark robustness are also two further considerations.
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Appendix

When the embedding bit is ′1′ and 2b/(a + c) < T , we reassign the number
of samples in three neighboring bins by modifying the values of those selected
samples from BIN 1 and BIN 3 in the number denoted by I1 and I3 to satisfy
2b′/(a′ + c′) ≥ T . So a′ = a− I1, c′ = c− I3, b′ = b + I1 + I3. Where a′, b′, c′ is
the corresponding modified version of a, b, c. Without the loss of generality, let
I = I1 + I3 and a/c = I1/I3 making that the modified samples in the number is
proportionable to the number of samples in the bins. Referred to Equation (9),
we have the following deduction,

2b′/(a′ + c′) ≥ T ⇐⇒ 2(b + I1 + I3)/(a + c− I1 − I3) ≥ T

⇐⇒ (I1 + I3) ≥ [T (a + c)− 2b]/(2 + T )
⇐⇒ I ≥ [T (a + c)− 2b]/(2 + T )

The proof of Equation (11) is finished.
Similarly, when the embedding bit is ′0′ and (a + c)/2b < T , the values of

those selected samples from BIN 2 are modified to make I1 and I3 samples to fall
into BIN 1 and BIN 3, respectively, to satisfy (a′ + c′)/2b′ ≥ T . Let a/c = I1/I3,
I = I1+I3. Similarly, from the expressions a′ = a+I1, c′ = c+I3, b′ = b−I1−I3,
we have

(a′ + c′)/2b′ ≥ T ⇐⇒ (a + c + I1 + I3) ≥ 2T (b− I1 − I3)
⇐⇒ (I1 + I3) ≥ [2Tb− (a + c)]/(1 + 2T )
⇐⇒ I ≥ [2Tb− (a + c)]/(1 + 2T )

The proof of Equation (13) is finished.
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Abstract. We introduce content-aware steganography as a new para-
digm. As opposed to classic steganographic algorithms that only embed
information in the syntactic representation of a datagram, content-aware
steganography embeds secrets in the semantic interpretation which a hu-
man assigns to a datagram. In this paper, we outline two constructions
for content-aware stegosystems, which employ, as a new kind of secu-
rity primitive, problems that are easy for humans to solve, but difficult
to automate. Such problems have been successfully used in the past to
construct Human Interactive Proofs (HIPs), protocols capable of auto-
matically distinguishing whether a communication partner is a human
or a machine.

1 Content-Aware Steganography

In his 1984 landmark paper [23], Gustavus Simmons illustrated what is now
widely known as the prisoners’ problem: Two accomplices in a crime, Alice and
Bob, are arrested in separate cells. They want to coordinate an escape plan, but
their only means of communication is by way of messages conveyed for them by
Wendy the warden. Should Alice and Bob try to exchange messages that are
not completely open to Wendy, or ones that seem suspicious to her, they will be
put into a high security prison no one has ever escaped from. Simmons’ solution
to the prisoners’ problem is phrased in an interesting way: Alice and Bob “will
have to deceive the warden by finding a way of communicating secretly in the
exchanges, i.e. of establishing a ‘subliminal channel’ between them in full view
of the warden, even though the messages themselves contain no secret (to the
warden) information” [23]. In other words, Alice is trying to convey a particular
piece of information which is represented as a single datagram. This datagram
is available to both Wendy and Bob—but it contains different information to
Wendy than to Bob.

Informally speaking, a subliminal channel is one that transmits datagrams
that have at least two possible interpretations. Each datagram is intentionally
given an obvious interpretation (the cover) that is innocuous to Wendy, and a
non-obvious interpretation (the secret) that is suspicious to Wendy, and thus
cannot be transmitted in plain sight. The security of the stegosystem usually re-
lies on some assumption of an advantage that Bob has over Wendy, when it comes
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to the interpretation of the message: Bob can interpret the message with regard
to its secret meaning, while Wendy can only interpret the message as the cover.

In the past, many stegosystems have been constructed, most of them using
images, digital audio, or video as cover. Consider for example a simplistic LSB
scheme for image-based steganography in which the cleartext message is written
into the LSBs of an image without any further cryptographic concealment. The
datagram has an obvious interpretation, which is visual perception by a human
user of the pattern that appears on screen when it is opened in their favourite
image viewer. It also has a non-obvious interpretation, which is to extract the
LSBs and view their concatenation, say, in a hex-editor. Under the assumption
that Alice constantly sends Bob bitmap images that Wendy is not willing to
wade through with a hex-editor, this simplistic system might be attributed some
kind of security. However, Wendy will probably try to automatically analyze all
datagrams exchanged between Alice and Bob to gain knowledge of a subliminal
channel. This notion of automaticity in steganalysis has probably received too
little attention in the past, which is why we shall, in this paper, take the challeng-
ing point of view that a stego object should not be considered perfectly secure
as long as its semantics are prone to automatic interpretation by a machine.

Due to recent progress in the field of steganalysis (see for example [17]), LSB
substitution techniques must be considered completely insecure today. To un-
derstand why LSB steganography was compromised, it is important to bear in
mind that a bitmap image is not just a sequence of bytes, but rather a repre-
sentation for some specific semantic content. It could, for example, be a vector
drawing consisting of uniformly colored geometric shapes. If a set of pixels can
be identified as representing, say, an oval shape colored in a certain tone of blue,
and half of these pixels deviate in their color by the LSB, this might give us
some evidence of steganography taking place. A 24-bit bitmap might also be a
photograph taken by a digital camera with a CCD that leaves noise with spe-
cial characteristics in the images [20]. If these characteristics cannot be found
in the LSBs of the image, then again we have gained evidence to suspect that
steganography is taking place.

We believe the way in which LSB substitution has been compromised is
stereotypical for how the steganography vs. steganalysis battle is usually fought,
namely by steganalysis exploiting the false assumption made by steganography
that a meaningful digital object can be specified solely in terms of syntactic
properties. Stegosystems are usually broken by exploiting semantic inconsisten-
cies introduced into the cover when hiding a secret. This is a limitation which is
inherent with every steganographic system that takes a cover and applies mod-
ifications in order to obtain a stego object: an attacker that possesses a more
accurate semantic cover model than the embedder can break the system easily.
Thus, a security vulnerability is necessarily opened in any steganographic system
whose participants are computers that employ state-of-the art cover models, as
soon as the state of the art improves.

In this paper, we propose an alternative view of steganography, which takes
semantic aspects into account and hides information in the semantics (rather
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than the syntactic representation) of a datagram sent over a channel. We call
such systems content-aware steganography. At the heart of the paradigm lies the
assumption that Wendy the warden is a computer (and not a human), while Alice
and Bob are both humans. Given the massive increase in communication over
the last years, this is an assumption which seems to be justified, as large-scale
manual steganalysis is not possible.

A content-aware stegosystem chooses stego objects in such a way that both
the human sender and receiver can easily assign a secret semantic interpreta-
tion to the transmitted datagrams, whereas for a computer (such as Wendy)
it is inherently difficult to perform the same task. In extending the analogy of
Alice and Bob, we may think of the prisoners as being “lazy” when sending or
receiving subliminal messages: as humans they can trivially assign and infer a
secret semantic interpretation to a stego object. (Thus, one can view content-
aware stegosystems as implementing a special supraliminal channel [16]). On the
other hand, the warden Wendy is “narrow-minded” in the sense that her inher-
ent limitations as a data processing device do not allow her to infer the secret
interpretations of stego datagrams. We have to stress at this point, that it is
not the intention of the present contribution to compete with current notions of
steganographic security, but rather to complement them by suggesting content-
awareness as a new security property that should hold for a secure system in
addition to the well-established ones.

Content-aware stegosystems are constructed in such a way that a successful
steganalytic attack would require solving an Artificial Intelligence problem that
can currently not be tackled with state-of-the-art algorithms. We will show that
Human Interactive Proofs (HIPs), which were recently developed to distinguish
humans from computers in security applications, readily lend themselves to the
construction of such content-aware stegosystems.

The rest of the paper is organized in the following way. Section 2 gives a thor-
ough explanation of the new steganographic paradigm we propose, motivating
it from a principal and conceptual point of view and Section 3 gives a generic
construction of a content-aware stegosystem which draws its security from a Hu-
man Interactive Proof. These two sections are embedded in this paper in such
a way that the more technically minded reader may choose to skip them, but
will still be able to follow the rest of this paper. Sections 4 and 5 introduce two
practical content-aware stegosystems, one that hides steganographic content in
audiovisual content and one that uses natural language texts as covers. Finally,
Section 6 will review related work in light of the new paradigm.

2 On Data and Information

Traditionally, stego objects have been treated as meaningless objects, which
is an assumption most probably stemming from cryptography: in the context
of cryptography, access to a cryptogram leaves an eavesdropper without any
knowledge. By virtue of its definition, a cryptogram does not carry any meaning
beyond that which must be inferred by means of the decryption routine. A stego
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object however, which has to resemble an innocuous cover in every respect,
does carry such meaning. A stego object can only be identified as innocuous
or suspicious after it has been interpreted and assigned meaning, which extends
the cryptologic picture into a semantic dimension as we move on from pure
cryptography to steganography.

Turning back to our intuitive picture of steganography, the essence of the new
paradigm is that we are dealing with data in the context of cryptography, as op-
posed to steganography, which deals with information. The distinction between
data and information is based on the degree of understanding an observer has
about a given observation. In particular, we shall call an observation a piece of
data if we see it in a purely symbolic way, void of inherent meaning but capable
of being processed to make sense.

Once we commit to this conception of data and information, it becomes ap-
parent that the role of understanding as a means to elevate a given observation
from data to information and knowledge is quite crucial. Ackoff [1] notes that
understanding is by virtue of its nature a cognitive process. It can only be au-
tomated to the degree to which computers succeed in simulating this process.
Thus, any claim attributing a human level of information-processing capability
to a fully computerized system must be presupposing a hypothesis whose confir-
mation has resisted decades of research in Artificial Intelligence: that biological
cognition is a computational process. Thus we feel driven to the point of view,
that computers may not be regarded as directly operating on information as
such in any way. Of course, the success of computerized systems in supporting
human-controlled information processing systems is undisputed. Yet, this does
not contradict the view that computers are essentially limited in their domain of
operation to simple data since information processing may still happen implicitly
in a computerized system within the brains of its human users.

These ideas about data and information have a strong impact on data and
information processing in the context of cryptography and steganography: In
the new paradigm we have in mind, a joint coding and encryption scheme lies at
the core of every stegosystem. The purpose of this scheme is to provide security
for the transmitted data; in addition, it performs appropriate coding for the
communication channel which is used to transmit subliminal information. In the
sequel, we will refer to this core solely as the cryptosystem. In an outer layer,
a steganographic operation extends the cryptosystem by semantic aspects: its
purpose is to let Alice transmit meaningful pieces of information. The stego layer
thus controls the semantic interpretation of a datagram and provides resistance
against automated steganalysis.

Figure 1 depicts this idea of content-aware steganography. The inner area of
the figure represents the cryptosystem: The message input to the encryption rou-
tine is treated as a piece of data. The encryption routine translates this message
into a cryptogram which is another piece of data; the routines for decryption and
cryptanalytic attack basically invert this mapping. The encryption routine does
not need to take into account any semantics, since it can always reinterpret its
input as a random choice of one element from a finite message space, regardless
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Fig. 1. Content-aware steganography

of whether this input is actually a representation for an image, a sound, or a
text. The decryption routine and the cryptanalytic attack typically do not need
to take into account any semantics either.

The outer area of the figure depicts the steganographic layer: The message
that Alice actually wants to convey, is a piece of information. The act of rep-
resentation degrades this information to data, so it can be run through the
cryptosystem. The acts of interpretation or steganalysis, on the other hand re-
assign meaning to the data which is supposed to equal the original message,
and therefore yield information again: the whole stegosystem essentially oper-
ates within the information domain. Clearly, the act of representation must take
into account semantics, since Alice has exactly one piece of semantic content
in mind when she represents it, and the acts of interpretation and steganalysis
have to deal with semantics, since they have to reconstruct exactly that semantic
content. The crucial requirement is that Wendy is unable (even after perform-
ing cryptanalytic attacks on the transmitted data) to correctly infer the secret
semantics of the datagrams transmitted over the channel.

3 HIP: A New Security Primitive for a New Kind
of Steganography

In this section, we propose a general construction for a content-aware stegosys-
tem out of any Human Interactive Proof (HIP). Once we admit that Wendy is a
computer and Bob is a human sitting in front of a computer, all we have to do
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is to make the solution to the problem of determining the secret interpretation
of the stego object depend on the solution of a problem that only humans can
solve correctly.

Human Interactive Proofs (HIPs) [19,31,25], better known under the more
specific model of CAPTCHAs (Completely Automated Public Turing tests to
tell Computers and Humans Apart) [26], have only recently gained attention in
the computer security community because of their usefulness in the fight against
worms and spam and the prevention of web-service abuse, denial-of-service, and
dictionary attacks. Essentially, an HIP allows a computer program to determine
whether it interacts with another computer or a human. HIPs are based on
complex Artificial Intelligence problems which computers cannot solve with the
same speed and accuracy as humans.

Currently the best-known HIPs are OCR CAPTCHAs that display heavily
distorted text to a user and ask them to type the text into an input field.
Typically, humans have no problem in performing this task while an automated
solution requires solving the complex problem of optical character recognition,
which is still unsolved for heavily distorted text. The underlying assumption of
the OCR CAPTCHA is that once a communication partner solves this challenge
correctly, one can safely assume that it is a human.

for k := 1, . . . , n do
The tester constructs a test/solution pair (tk, sk)

such that tk ∈ T and sk ∈ S
The tester sends the test tk to the testee
The testee makes a choice hk for a solution of tk

The testee sends hk to the tester

// The tester checks if testee could be a computer
if hk �= sk then

Do not draw any conclusions and stop
end

Conclude that the testee is human

Fig. 2. n-round Human Interactive Proof

In general, a Human Interactive Proof involves a set of tests T = {t1, t2, ...},
a set of solutions S = {s1, s2, ..., s|S|}, for |S| ∈ N\ {0, 1}, and an algorithm that
produces a random test/solution pair (t, s) where t ∈ T and s ∈ S; everyone who
answers s to t is considered to be a human. In theory, for an HIP to be secure,
T must be countably infinite at least (otherwise there exists an algorithm that
already contains the solutions to all problems hardcoded in the program file). In
practice it is desirable that |T | is as large as possible. We will assume that for
each test t ∈ T there is a set Ct ⊆ S of candidate-solutions for t, which includes
the correct solution s to t and a number of invalid solutions (thus, |Ct| ≥ 2 for
all tests t). Let ICt : Ct �→ {0, 1, ..., |Ct| − 1} be a one-to-one mapping from
the elements of a given set of candidate solutions to the smallest |Ct| natural
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for k := 1, . . . , n do
Alice constructs a test/solution pair (tk, sk)

such that tk ∈ T and sk ∈ S
Alice constructs a claim

ck ← I−1
Ctk

((ICtk
(sk) + mk) mod |Ctk |)

Alice sends the test/claim pair ek = (tk, ck) to Bob
Bob makes a choice hk for a solution of tk

Bob computes m′
k ← (ICtk

(ck) − ICtk
(hk)) mod |Ctk |

Fig. 3. Content-aware stegosystem

numbers. For the sake of simplicity, we assume that all tests t ∈ T have the same
number b of candidate solutions, i.e. |Ct| = b for all Ct.

Figure 2 shows how a Human Interactive Proof is performed. The tester enters
a loop and constructs n test instances tk together with respective solutions sk.
The tester shows the instances tk to the testee. The testee provides solutions hk

for all instances; finally the testee is verified to be a human if they responded
with the expected solutions in all n rounds (i.e., hk = sk for k = 1, . . . , n).

A secure Human Interactive Proof can be used as central primitive to con-
struct content-aware stegosystems. In particular, we make the assumption that
sending a test instance of an HIP over a channel is not per se suspicious. This
assumption, which must be verified for each instantiation of the general construc-
tion presented in this section, is a direct extension of the general assumption of
classic steganography that sending, for instance, images or pieces of literary text
does not itself raise the awareness of Wendy. In practice we could, for example,
assume that Wendy generally tolerates English language text being exchanged
between Alice and Bob. We can then set up a stegosystem on the basis of a
text-domain HIP, such as the word-sense disambiguation HIP [6]. Alternatively
we could assume that Wendy tolerates images being exchanged. We would then
use an image HIP such as the famous OCR CAPTCHA [26] or image recognition
CAPTCHAs [14]. Sections 4 and 5 will discuss these two concrete constructions.

The general construction of a content-aware stegosystem from an HIP is shown
in Figure 3. Once Alice wants to send a piece of information m to Bob, she fixes a
datagram representation of m as an integer sequence of length n with elements
between 0 and b − 1, i.e., m = m1m2...mn, where mi ∈ {0, 1, ..., b − 1}. One
can think of m as the radix-b expansion of a natural number smaller than bn.
Note that the construction can be straightforwardly generalized to the case of
differing numbers of candidate-solutions |Ct| by thinking of m as a mixed-radix
expansion.

To send the message, Alice constructs n test instances tk of the HIP together
with corresponding solutions sk. In addition, she constructs a claim which cor-
responds to a (possibly incorrect) solution to tk, called ck, computed as

ck ← I−1
Ctk

((ICtk
(sk) + mk) mod |Ctk

|).
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Thus, Alice uses the map ICtk
to obtain the numerical representation of sk and

adds mk to it; subsequently, she uses the inverse mapping to map the result
back to a candidate solution. Finally, Alice sends both tk and ck to Bob. One
can think of that as Alice claiming ck to be the solution to tk. If Bob is able to
compute the correct solution to tk (i.e., solve the HIP), he can reconstruct the se-
cret message m precisely and thus can gain an understanding of the information
m Alice sent.

Claim 1. (Decodability by humans) Suppose that Bob is human and is thus able
to solve all instances of the HIP correctly. After termination of the steganographic
transmission, the message m′ = m′

1m
′
2...m

′
n received by Bob will be equal to the

original message m submitted by Alice.

Proof sketch: Consider the stego transmission of the k-th symbol. Since Bob is
human, he is able to choose hk in such a way that hk = sk (otherwise he would fail
to pass the HIP and thus not be considered human). Bob reconstructs the k-th
message element by setting m′

k = (ICtk
(ck)− ICtk

(hk)) mod |Ctk
|. Substituting

ck and letting sk = hk results in m′
k = (ICtk

(I−1
Ctk

((ICtk
(sk)+mk) mod |Ctk

|))−
ICtk

(sk)) mod |Ctk
|, yielding to m′

k = mk mod |Ctk
|. Since mk < |Ctk

|, we have
m′

k = mk, which means that Bob has correctly decoded the message. �

We now argue that the steganalysis problem for Wendy is hard. As mentioned
above, at this point we rely on the general assumption that Wendy will find
the transmission of HIP instances, i.e. the tuples (tk, ck) suspicious neither by
themselves nor in the transmitted sequence; thus we assume the existence of an
appropriate encoding function such that transmission of the coded tuples will be
considered innocuous. This assumption must, of course, be verified in practice
on a case-by-case basis. (In the subsequent sections we will outline two such
encodings for a linguistic and an audiovisual HIP).

Wendy may apply cryptanalytic methods on the datagrams sent between Alice
and Bob. These techniques may result in a “suspicion” w, i.e., a datagram that
she believes was exchanged covertly. However, due to our limited understanding
of the underlying AI problem, Wendy, being a computer, will not be able to
recover the sent datagram m. The next claim asserts that if m = w, Wendy
could pass the HIP, which contradicts the security of the HIP.

Claim 2. (Content-awareness) Suppose that, after termination of the stegano-
graphic transmission, Wendy’s suspicion w′ = w′

1w
′
2...w

′
n will be equal to the

original message m submitted by Alice. Then Wendy would pass the HIP on the
instances submitted over the channel.

Proof sketch: We assume that Wendy has managed to guess wk in such a way
that wk = mk. Wendy can use that message to obtain a solution s′k to the HIP
instances tk by letting s′k = I−1

Ctk
((ICtk

(ck) − wk) mod |Ctk
|). To see that this is

really a solution to the HIP, we can substitute ck and mk = wk to obtain s′k =
I−1
Ctk

((ICtk
(I−1

Ctk
((ICtk

(sk)+mk) mod |Ctk
|))−mk) mod |Ctk

|). This finally yields
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s′k = I−1
Ctk

(ICtk
(sk) mod |Ctk

|) and thus s′k = sk. This means that Wendy can
solve the HIP on those instances used to transmit the subliminal message. �

4 An Audiovisual Content Recognition Stegosystem

In order to show how the generic construction can be applied to a particular
domain, we will develop in this section a stegosystem based on an audiovisual
content-recognition HIP, similar to the image recognition CAPTCHA in [14].
We will first describe this HIP, and subsequently show how to turn this HIP into
a content aware stegosystem according to the general construction of Section 3.

The original setup of the recognition HIP is as follows: Alice has available
a database of images and/or sound files labelled by a human according to its
semantic content. Alice could, for instance, use her digital album, containing
photos, images and videos from her holidays, all of which were carefully hand-
labelled by her in order to more easily find them on her computer; a label
could, for instance, be “Charlie and me visiting Alcatraz”. We assume that this
database is private to Alice. Alice could, for instance, add new content to her
album at a faster rate than she “uses them up” by publishing the content or
using it for a HIP.

The HIP operates in the following manner. The test instance of the HIP
consists of a number of items from her media database, including labels, which
can either be incorrect or correct. Alice generates a test/solution-pair (t, s) by
picking 8 media files from the database, and relabelling them to obtain a sequence

t = 〈(x1, l1), (x2, l2), ..., (x8, l8)〉,

where each xi is a multimedia file and li is a label. One of the media files is cor-
rectly labeled with a label from Alice’s private database, whereas all other labels
are randomly picked (e.g., taken from different media items in the database). Al-
ice presents the test instance t to Wendy, who has to choose the index of the
correctly labeled file. If she passes the test, she is considered human (the test
can be repeated in order to increase the level of confidence).

This HIP can be converted into a content-aware stegosystem by using the
general methodology outlined in Section 3. First we need a way to encode the test
instances of the HIP in such a way that they are not, by themselves, suspicious.
For this purpose, Alice could generate an e-mail with a body that reads like
“Hello Bob! Here are the images of my last vacation, you wanted to see.”, and a
number of attachments containing image files named after their labels. She can
easily write this message body herself, so this need not be automated.

The receiver Bob solves the HIP and thus is able to find the index of the
attachment which is correctly labelled. The only remaining issue for Bob is to
recover the secret message bit from the message index. This can be done quite
easily. For instance Bob could order the media files alphabetically according to
their label and let the index of the correctly labelled file represent three bits
from the message. Since Alice is free in her choice about the labels she can easily
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choose them in a way that lets Bob recover the message she wants to transmit.
However, Wendy cannot tell which of the images bears the correct label, since
that would require her to understand the label, and recognize the content of the
media-file.

This process can, of course, be iterated by sending more images (and arranging
them in blocks of 8), which makes it possible to transmit messages that are
longer than three bits. Additional unnecessary images could be used to conceal
the length of the secret message.

5 A Linguistic Text Understanding Stegosystem

Recognition of audiovisual content is not the only AI-problem that lends itself
to HIPs and consequently to content-aware steganography. In this section we
will outline a content-aware stegosystem [5] that is based on a word-sense dis-
ambiguation HIP [6]. It can only be broken by an arbitrator who can understand
the meaning of natural language text, which is an Artificial Intelligence problem
that cannot be solved satisfactorily yet. Again, we start by outlining how Alice
can use this problem to carry out an HIP to test whether Wendy is human, and
then go on to extend the HIP to a stegosystem that enables her to pass on secret
information to Bob if Wendy is a computer.

The HIP uses natural language sentences as test instances. Alice constructs a
test-instance by writing down a sentence like

The radio station didn’t want to send the song.

She designates one word within this sentence, which she looks up in a synonymy-
dictionary like WordNet. This dictionary contains sets of words which can be
used interchangeably in some context; note that these synonymy sets are not
disjoint, as one word can have several different meanings depending on the con-
text. For example, looking up the word send will give Alice information of the
following form:

syn(send, c1) = {air, broadcast, send}
syn(send, c2) = {send, ship, transport}
syn(send, c3) = {mail, post, send}

Depending on the linguistic context cs the word send is used in, it can be con-
sidered synonymous to a different set of words. Sometimes, send can be replaced
by broadcast and sometimes by post. Since Alice is human and can fully under-
stand the sentence, she can identify the context the word send is used in (in this
example context c1).

She now presents the sentence to Wendy, who has access to the synonymy set
database, and asks her to choose the correct sense of the selected word from the
database. If Wendy is a computer she will not know that a song can be aired
or broadcast, but not shipped or transported by a radio station. Therefore all
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Wendy can do here is to make a guess: If she could reliably choose the right set of
replacements, she would have solved the problem of word-sense disambiguation,
which has been of considerable interest to computational linguists ever since the
first attempts at automatic machine translation were made in the 1950s. To this
day, the performance of machines in word-sense disambiguation is nowhere near
the performance of humans.

This HIP can be turned into a content-aware stegosystem in the following
way. To transmit a secret message, Alice uses a natural language sentence as
cover and selects one word (which is contained in at least two synonymy sets)
in the sentence as before. The position of the word to be replaced is determined
according to a key shared between Alice and Bob. The selected word is then
replaced by a different word from an incorrect synonymy set; the replacement
is selected according to the secret message. Alice could simply sort the elements
of a synset in alphabetical order and assign the resulting indices as codewords.
For example, by replacing the word send by words from the synonymy set c2 we
can encode one bit of information:

The radio station didn’t want to

⎧
⎨

⎩

− send
0 ship
1 transport

⎫
⎬

⎭ the song.

Since Bob is a human, he can easily spot the incorrect word in the sentence.
By looking up the index of the word in the shared synonymy set database, the
secret message can be recovered. However, Wendy will be unable to distinguish
a correct sentence from a sentence carrying secret information, as this would
require her to solve the problem of word-sense disambiguation.

Again, it should be easy to embed a sequence of such HIP test-instances into
an innocuous cover. This will simply be a sequence of sentences, i.e. natural
language text, that can hardly be considered suspicious in itself.

6 Related Work

So far we have introduced from a conceptual side the paradigm of content-aware
steganography, and have presented two examples of what an actual stegosystem
based on this paradigm could look like. In this section we will discuss some
stegosystems developed in the past, and analyze them from the point of view of
content-aware steganography. In particular, we shall be interested in linguistic
stegosystems.

The most widely cited contribution to linguistic steganography is perhaps
that of Peter Wayner, who studied the use of n-gram language models [27] and
probabilistic context-free grammars [28] as statistic language models by which an
arbitrator identifies messages as containing natural-language. The assumption is
that such data will generally be accepted by the warden, and therefore the same
language model can be used to generate innocent looking stego objects.

Although Wayner’s work is an important theoretical contribution to the field,
his techniques cannot be directly applied to mimic natural language, since neither
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n-gram models nor probabilistic context-free languages can be specified that
handle languages remotely comparable in complexity to natural languages such
as English. Practical techniques will therefore generally have to trade off some
encoding efficiency, for example by using an embedding scheme where only single
words in an innocuous piece of text are replaced by synonyms. This is what
the systems by Chapman et al. [10,11,9,13,12], Winstein [29,30], and Bolshakov
et al. [7,8] do. These systems basically suffer from the problem of word-sense
ambiguity. Therefore they will make some substitutions that a human would
never make, and will never make some other substitutions that a human would
make. Other systems for linguistic steganography proposed in the past include
those by Atallah et al. [2,3,24,4], by Chiang et al. [15], Nakagawa et al. [21], and
Niimi et al. [22].

Another interesting variant was put forward by Grothoff et al. [18]. They
proposed a stegosystem that mimics the output of statistic machine transla-
tion systems under the assumption that the arbitrator accepts such text. If we
admit such an assumption, then, in our opinion, such a system should not be
considered linguistic steganography any more, since all the languages that play
a role in the steganographic protocol are then artificial. On the other hand,
one might want to question this assumption. In this case it is important to
note that the steganographic encoder used is essentially a statistical machine
translation system itself: It operates on text that is publicly available in some
language. The encoder translates the text into another language, embedding a
secret along the way. The assumption that such output from a statistical ma-
chine translator is acceptable to Wendy can be motivated only by assuming that
Wendy is cooperative, in that she wants to permit such a translator to be used
somewhere in the channel between Alice and Bob. However, Wendy may also
want to prohibit such traffic, and require Alice to send the source-text, and Bob
to run the translator. Similarly, Wendy might whitelist a number of transla-
tions resulting from widely used standard-software and prohibit other transla-
tions from being exchanged. In our opinion the assumption that Wendy accepts
poorly translated text should therefore be dropped, and the system should be
considered as a linguistic stegosystem instead. However, in this case the sys-
tem becomes conceptually very similar to Wayner’s original scheme, except that
hidden Markov models are used as language models, rather than probabilistic
context-free grammars.

If we turn back to Wayner’s original framework, we can highlight a number of
vulnerabilities that should become obvious, once a content-aware point of view
is taken. The natural language text which is assumed by Wendy as innocuous is
generated and interpreted by humans. However the stegosystem generates and
interprets messages by means of, say, an n-gram model, although n-gram models
are not necessary and not sufficient as generators for the natural language actu-
ally spoken by humans. They generate sentences a human would never produce,
and will never generate some sentences that a human would produce. Both of
these clues, if observed by the arbitrator a statistically significant number of
times, can, in principle, be used to break the scheme, since every piece of text
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produced by the system comes from a well-known meta-model. The language
model itself can be drawn from the meta-model by means of language learning
techniques. N -grams can be learned by counting the occurrences of n-tuples of
words (as done in code-breaking of substitution ciphers), Markov models can
be learned by counting state-transitions in a finite-state automaton, and prob-
abilistic context-free languages can be learned by counting rule applications in
context-free derivations. It can be seen that these possible exploits display a
universal pattern: as soon as a steganographic generator uses a computational
language model to generate stego-objects, the model can be learned from data,
and therefore the system can eventually be broken.

This supports the point of view that served as the conceptual point of de-
parture in this paper: There are only two possible ways in which a linguistic
stegosystem can be perfectly secure: (1) The system is content-unaware and
therefore requires that Alice and Bob have a perfect semantic model that gen-
erates all and only the messages also generated by humans. However, this is
hardly achievable. (2) The system is content-aware, and thereby turns the ta-
bles, so that it is now Wendy who must have access to a perfect semantic model
during steganalysis. This can be done, as outlined before, by having humans take
part in embedding and extracting the secret.

7 Conclusion

In this paper we have introduced the concept of content-aware steganography as
a new paradigm of steganography, stemming from a shift in perspectives towards
the objects of steganography. We pointed out that, in the predominant paradigm
of steganography, the nature of these objects is that of data. We departed from
the observation that systems relying on this paradigm are eventually broken on
grounds of attacks that exploit the fact that the digital objects we encounter
in everyday life are more than data—that they are meaningful and can be in-
terpreted to give us information. This led us to abandon the point of view that
steganographic objects can be characterized in terms of the data that represent
them, and to take the new point of view that steganographic objects should be
considered pieces of information as such.

To overcome the limitations of current steganographic systems, we introduced
content-aware steganography, which hides secret messages in the semantic in-
terpretation of a datagram. Finally, we introduced new content-aware stegano-
graphic algorithms that rely on Human Interactive Proofs as a security primitive:
the steganalysis problem of the introduced schemes is directly related to a prob-
lem considered hard in Artificial Intelligence.
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Abstract. We develop the algebraic theory of timed capacity for chan-
nels with binary inputs and outputs in the presence of noise, by obtain-
ing a formula for capacity in terms of the unique solution of a nonlinear
algebraic equation. We give provably correct numerical algorithms for
solving this equation, specifically tailored toward calculating capacity.
We use our results to establish that information theory has an inher-
ent discontinuity in it: the function which assigns the unique capacity
achieving distribution to the noise matrix of a binary channel has no
continuous extension to the set of all noise matrices. Our results provide
new formulae in the case of untimed binary channels as well. Our re-
sults are important in the study of real-world systems, such as the NRL
Network Pump® system and traffic analysis in anonymity systems.

1 Introduction

A timing channel is a covert channel1 [6] where the output symbols are distinct
time values — information is passed only via the concept of time. In [14] simple
timing channels (STCs) were analyzed. An STC is a noiseless covert timing
channel. The fact that capacity (C) of STCs can be calculated from both a
mutual information—expected time (asymptotic) and an algebraic approach was
of course first done by Shannon and further analyzed in [14]. Up until this paper,
with one exception, the capacity of noisy timing channels could only be studied
via the mutual information—expected time approach. The exception to this
was the analysis of the timed Z-channel in [12]. In [12] it was shown that the
capacity of a timed Z-channel, which is the simplest version of a timing channel
with noise, could be given as the base two logarithm of the root of a polynomial.
Thus mimicking Shannon’s results for STCs. This ability to view the capacity
in an algebraic sense is extremely appealing.

Once an algebraic formulation of capacity is obtained, one has at their dis-
posal a tool that can be used to study and learn about all channels, as opposed

� Research supported by the Naval Research Laboratory.
1 Unless noted otherwise all channels in this paper are both discrete and memoryless

(DMC) (which also implies stationary distributions).
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to just a particular channel. For instance, in [14], the algebraic approach makes
many capacity relations obvious that would normally be obfuscated by viewing
the capacity as simply the maximum of the ratio of the mutual information (in
bits per symbol) to the expected time (units of symbols per unit time). An-
other advantage to the algebraic formulation is that it allows one to develop
algorithms for calculating timed capacity and to prove they are correct before
implemented. Currently, practitioners who determine the threat posed by covert
timing channels within high assurance devices do not usually perform capacity
calculations because of the mathematical complications involved. So while our
knowledge of timed capacity continues to advance, it is simply theory that prac-
titioners do not benefit from. But since the algebraic approach yields provably
correct algorithms for calculating timed capacity, we can develop software that
will perform these calculations for them, greatly improving the current methods
used to analyze covert channels in high assurance devices.

This paper shows how to algebraically derive the capacity of a noisy timing
channel with two input symbols and two output symbols. We call these (2, 2)
timing channels, with the idea that they are in general noisy being implicitly
understood. This is an important result in the hopeful path to attempting to
show that Shannon’s capacity results in general have an algebraic solution. Aside
from the interesting mathematical flavor of our results, we motivate the study of
(2,2) timing channels with two open problems from the high assurance computing
literature. The first example is from the NRL Network Pump® system, and the
second example is from the area of anonymous communications.

2 The NRL Pump

In [5] the Network Pump was discussed as a solution to a secure, reliable, prag-
matic, and robust method of sending messages up from several “Lows” to several
“Highs”. When a Low sends to a High, message acknowledgments, or ACKs, are
required for reliability. Unfortunately ACKs can be used to send information
from High to Low, which is against our wishes (Low can talk to High, but High
should not be able to talk to Low if we desire security). Even if the ACKs are
stripped down, the timing of the ACKs forms the basis of a covert timing chan-
nel from a High to a Low. The Network Pump moderates the timing of the
ACKs to moderate (but not eliminate entirely) the covert channel threat, while
at the same time not degrading system performance in an intolerable manner.
In this paper we will only concern ourselves with one Low and one High, the
non-network version of the Pump [4]. This serves us well, because both the net-
work and non-network versions of the Pump use the same basic algorithm. We
will use the term Pump from now on.

The Pump works as follows: Low sends a message to the Pump, the Pump
stores that message in the Pump buffer, the Pump sends an ACK to Low, when
Low receives the ACK it sends its next message to the Pump (handshake proto-
col). High removes a message from the Pump buffer and sends an ACK (different
from the ACK to Low) to the Pump. High also uses a handshake protocol to send
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its next message. The effectiveness of the Pump is how it sends the ACK to Low.
The Pump uses a moving average μm of the past m High ACK times. From this
moving average it calculates a random variable with mean μm (a modified—so
that it does not have an infinite tail—exponential random variable with mean
μm). The Pump sends the ACK to Low based on a draw from this random vari-
able (of course there are some processing time and time-out modifications also).

Pump
(buffer)
PumpLowLow HighHigh

messages messages

ACKsACKs

Fig. 1. The NRL Pump

In brief, the Pump minimizes the covert channel threat that is opened up by
using ACKs (to not use ACKs is not considered a wise choice in most applica-
tions). That is, instead of a Pump, if one used a store and forward buffer between
Low and High with only a handshake protocol, High, by slowing down could al-
low the buffer to fill, and then the High ACK times would become transparent
to Low with virtually no noise. We refer to this as the Full Buffer Channel. The
Pump prevents this by forcing the Low ACK rate to be slaved to the High ACK
rate. Furthermore, since a moving average in conjunction with a random variable
is used to determine the Low ACK rate, the ability for High to covertly signal
Low is severely compromised. However, the threat is not totally eliminated. We
refer to the threat that is left as the residual channel.

For example if High ACKs quickly for 100 · m ACKS and then slowly for
100 ·m ACKs, this change in rate can signal a bit to Low. Bounds on the residual
channel capacity are given in [5], and the authors of [5] stated that the Pump
meets those bounds. However, no one has been able to give closed form results
for the residual channel capacity (see also [13]). This paper gives results in an
important case. It is not clear that the residual channel capacity will ever be
solved in its generality, nor is it clear that it is necessary to do so. However, this
paper does shed some light on the problem and should be used with the capacity
bounds as given in [5]. Notice that, to avoid the issue of the residual channel
capacity others have modified the Pump to make it change Low ACK rates in
“quantum” jumps [18]. While this does make the capacity trivial to calculate,
it is not clear that it is a better solution since the quantum Pump approach
may degrade system performance too much. So rather than modify the Pump
algorithm, we improve the residual channel capacity analysis.

2.1 Simplified Residual Channel Analysis

We simplify the behavior of High to two modes; a “slow” ACK rate, and a “fast”
ACK rate. This serves well to motivate the study of (2,2) timing channels. Our



Noisy Timing Channels with Binary Inputs and Outputs 127

concern is the ability for High to change the tempo at which it ACK messages
from the Pump, and have this change reflected in the Low ACK time. There are
two situations to consider. The first is when High goes from slow to fast, and
the second is when High goes from fast to slow.

Consider that High is ACKing at a slow rate rs and then goes to a fast rate
rf . It takes many ACKs for this to be reflected in the Low ACK because of the
moving average construction of the Pump algorithm (in addition the noise of
the random variable further confuses the situation). However, if High has been
ACKing at the slow rate, and if the moving average is m, and on the next ACK
High speeds up, μm decreases from rs to m−1

m rs + 1
mrf . Of course, the larger

m is, the less this effect, and these values are the mean for the exponential
variable. However, let us assume for the sake of argument and for a worse case
bounding argument, that the draw from the exponential random variable does
not introduce noise and that the values rs and m−1

m rs + 1
mrf can be perfectly

reflected in the Low ACK rate. Then we would have an STC with the two
output symbols being m−1

m rs + 1
mrf and rs. However, the draw from the random

variable does introduce noise. The range of output values is quantized by the
clock precision on the Low side. There are in fact many output symbols. Also,
the distribution of the output symbols changes because of the moving average
construction. Therefore, we see that the actual channel is a noisy timing channel
with two input symbols (we assume that High is restricted to two behaviors —
fast and slow) ιf and ιs, with many output symbols. In this paper we restrict
our analysis to the simplified case of two output symbols of and os, representing
a fast output and a slow output, respectively. Keeping in mind that output
symbols are formed from a moving average we see that if the input is ιf (ιs)
then the output will most likely be of (os). Thus we have a (2,2) timing channel,
and there need be no assumption of symmetry in the probabilities, due to the
simplifications made and the behavior of the exponential random variable. Thus
the (2,2) timing channel serves us well as a model of Pump behavior via a covert
channel analysis of the residual channel. Algebraic, closed form knowledge of
(2,2) timing channel capacity lets one have a better understanding of the trade-
offs between different system parameters involved in the Pump.

ιf
a ��

b

��������������������� of

ιs

c
��������������������� d �� os

Fig. 2. Channel transition diagram

3 Anonymity

In this section we consider an example of a (2,2) timing channel that arises in
anonymity and Mix theory.
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Enclave1

Enclave2

Eve

��

Fig. 3. Restricted Passive Adversary Model

Alice,
Cluelessi

�� MIX-firewall

Eve

Receivers MIX-firewall�� ��

Fig. 4. MIX-firewalls with Restricted Passive Adversary

We will start by considering two types of simple Mixes: a threshold Mix and a
timed Mix, and how a covert channel may exist in an anonymity system between
a user Alice in a transmitting enclave and an eavesdropper Eve. In past papers
covert channel analysis was only done for these two Mixes. In this paper we
extend that analysis to more complex and realistic Mixes.

Consider a threshold Mix [19] of threshold θ ≥ 2. The Mix is the exit node
of an enclave. Senders in the enclave send their messages to the Mix. The Mix
has a buffer of size θ messages and as soon as the buffer is filled, the Mix fires.
We assume that the eavesdropper Eve is monitoring the traffic leaving the Mix.
The Mix is actually a Mix-firewall in that Eve does not have direct knowledge of
what is happening behind the firewall, thus Eve is a restricted passive adversary
(RPA) and that is why we refer to the Mix as a Mix-firewall. The Mix-firewall
protects an enclave from prying eyes. In fact, we assume that we have two Mix-
firewalls protecting the internal doings of two private enclaves, this is illustrated
in Figure 3. The Mix on the receiving end is responsible for making sure messages
get to their intended recipients and is not germane to our analysis. Eve can only
count the number of messages passing from Enclave1 to Enclave2. We assume
that in Enclave1 there are benign users, referred to as Cluelessi and a malicious
user Alice who is attempting to covertly communicate with Eve by influencing
the message count that Eve has as a result of Eve’s traffic analysis. This is
illustrated in Figure 4, and was the same model used in [16].

The other type Mix that has been previously analyzed from a covert channel
standpoint is a timed Mix. The above description for a threshold Mix holds for a
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timed Mix with the exception that the Mix fires its messages off at specific time
increments t, rather than when there are a certain number of messages in the
Mix. It is an interesting but trivial fact that the covert channels in a threshold
Mix are timing channels, and that the covert channels arising in a timed Mix
are storage channels.

Real Mixes are more complicated than these simplistic threshold or timing
Mixes. A building block for a Cottrel [19] Mix that arises in the Mixmaster
remailer [11] system is a threshold and timed Mix [19, Sec. 3.4]. A threshold and
timed Mix [19] has a threshold n and a period t such that the Mix fires every t
time units provided there are at least n messages in the Mix buffer. With this
design in mind, consider a malicious user Alice in Enclave1 who is attempting
to covertly communicate with the eavesdropper Eve via traffic analysis. For
simplicity, we assume that only Eve has knowledge of when the Mix fires, ignoring
the fact that Eve may know how many messages are leaving the Mix, provided
there is no padding. Therefore the output alphabet for Eve is the time that the
Mix fires. If Alice can send at most m messages to the Mix in time interval
t, but m < n, Alice cannot guarantee that the Mix will fire. If m is close to
n and there are sufficiently many Clueless also sending messages, then there
is a high probability that the Mix fires at time t, and a non-zero probability
that the Mix fires at 2t or greater. Of course the value of m and the number
of Clueless, along with a probabilistic understanding of the Clueless behavior
determine the actually probability of Eve receiving the symbol t versus 2t or
greater. For simplicity of our model however we assume that the values that Eve
receives are either t or 2t. Now consider that Alice wishes to send the symbol 2t
to Eve. Alice can do this by delaying or sending a small number of messages to
the Mix buffer. Again though, the behavior of the Clueless can influence when
the Mix fires. If the Clueless send n messages to the Mix by time t, then the
Mix will fire at time t regardless of Alice’s wishes. Therefore we see that we can
model a simplification of the timing channel that exists in the threshold and
timed Mix as a (2, 2) timing channel also.

4 The (2, 2) Timing Channel

Now we will mathematically analyze the (2, 2) timing channel. The input symbols
are the fast and slow inputs, {ιf , ιs}, and the output symbols are the fast and
slow outputs, {of , os}. This means that if of is received, the transmission took
t1 units of time; if os is received, it took t2 units of time. However, the channel
matrix does not incorporate time, time is missing from it. The channel matrix
simply represents the conditional probability relationships between the input and
output symbols. That is a = P (of |ιf ), b = P (os|ιf ), c = P (of |ιs), d = P (os|ιs).
The input probabilities are represented by the random variable X , P (X = i), i =
1, 2, which we simplify to xi is such that P (ιf ) = x1 and P (ιs) = x2. Similarly
we have the random variable Y such that P (of ) = y1 and P (os) = y2. We
see from the channel transition diagram in Fig. 2 that the channel matrix and
probabilistic relations are given by
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M =
(

a b
c d

) x1
a ��

b
��������������� y1

x2

c ��������������� d �� y2

We summarize the probabilities as follows

ȳ = x̄ ·
(

a b
c d

)

Letting x = x1 and using the fact that x1 + x2 = 1 = y1 + y2 we have that
y1 = (a − c)x + c and y2 = 1 − y1. To calculate the capacity2 we want to
maximize [23,12]

It = ln 2
(

H(Y )−H(Y |X)
E(T )

)

over all possible distributions (x1, x2). It is important to keep in mind that It

represents the mutual information in nats per unit time which is the ratio of the
mutual information in bits per symbol (H(Y )−H(Y |X)) to the expected time
( E(T ) ) for a symbol to be output, with the ratio normalized by ln 2. Since
in our situation we can view It as a function of one variable, the maximization
problem reduces to maximizing the function It : [0, 1]→ R given by

It(x) =
he

(
f(x)

)
− xhe(a)− (1 − x)he(c)

t1f(x) + (1− f(x))t2

where he : [0, 1] → R is he(x) = −x ln x − (1 − x) ln (1− x) and f : [0, 1] →
[0, 1] ⊆ R is f(x) = (a − c)x + c. Notice that a + b = c + d = 1 so that our
channel matrix is actually

M =
(

a 1− a
c 1− c

)

and P (yi) = P (ti). Since [3] entropy he(x) is strictly concave: that is for x, x′ ∈
[0, 1] and p ∈ [0, 1], we have

he(px + (1− p)x′) ≥ phe(x) + (1− p)he(x′)

with equality if and only if p = 0, p = 1 or x = x′.

Lemma 1. The function It achieves a maximum value, and that maximum
value is assumed at a point in the interior of [0, 1].

2 Capacity is usually expressed in bits per unit time. For ease of computation, we will
often mutual information in terms of nats rather than bits. When we finally give
the closed form expression for capacity we will consider it in bits per unit time.
Of course, when we are maximizing mutual information w.r.t. unit time the only
difference between nats and bits is a normalization constant of 1/ ln 2. Also note
that (ln 2)−1he(x) := h(x). In addition log is the base two logarithm.



Noisy Timing Channels with Binary Inputs and Outputs 131

Proof. Since [0, 1] is a compact set the continuous function It always achieves a
maximum on [0, 1]. If a = c, then It ≡ 0 (the choice of an input symbol does not
influence the probability of the output symbol), and so It assumes its maximum
at a point in (0, 1) . Suppose now that a �= c. By strict concavity of he,

It(x) >
he

(
f(x)

)
− he

(
xa + (1− x)c

)

t1f(x) + (1− f(x))t2

when x ∈ (0, 1). Then It(1/2) > 0. However, It(0) = 0 = It(1), so the maximum
value of It must be assumed at some point of (0, 1). �

Observation: In the proof of the last result, we implicitly established the fol-
lowing: It ≡ 0 iff a = c, and so a channel has positive capacity iff a �= c. However,
because det(M) = a − c, this means that a (2, 2) timing channel has positive
capacity iff its noise matrix is invertible.

Lemma 2. The equation İt = 0 has at least one solution in the interior of [0, 1].

Proof. The maximum of It is assumed at a point in the interior of [0, 1] and It

is differentiable. �

Theorem 1. If the noise matrix of a (2, 2) timing channel is invertible, then
there is a unique x ∈ (0, 1) where It assumes its maximum. This value of x is
the unique solution on [0, 1] of the equation

g(x) := e−K/ḟ (f(x))t2 − (1 − f(x))t1 = 0 (1)

where ε = t2 − t1 and K = (cε− t2)he(a) + (t2 − aε)he(c).

Proof. Let
m(x) = he(f(x)) − x · he(a)− (1− x) · he(c).

Notice that t1f(x) + t2(1 − f(x)) = t2 − εf(x). For the sake of readability, we
write İt(x) as İt, f(x) as f , etc. Then since İt = 0,

(t2 − εf)ṁ−m(−εḟ) = 0

and
ṁ = (ln(1− f)− ln(f))ḟ − he(a) + he(c)

Then (t2 − εf)ṁ is equal to

t2ḟ ln(1−f)−t2ḟ ln(f)−t2he(a)+t2he(c)−εfḟ ln(1−f)+εfḟ ln(f)+εfhe(a)−εfhe(c)

and

mεḟ = −εḟf ln(f)− εḟ(1− f) ln(1− f)− εḟxhe(a)− εḟhe(c) + xεḟhe(c)
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When we add these expressions, the first term of mεḟ cancels with the sixth
term of (t2 − εf)ṁ, and the second term of mεḟ added to the first and fifth
terms of (t2 − εf)ṁ reduces to t1ḟ ln(1− f). Thus, our sum reduces to

(
−t2ḟ ln(f)− t2he(a) + t2he(c) + εfhe(a)− εfhe(c)

)
+

(
t1ḟ ln(1− f)− εḟxhe(a)− εḟhe(c) + xεḟhe(c)

)

which simplifies to

ḟ ln
(

(1 − f)t1

f t2

)
+ (cε− t2)he(a) + (t2 − aε)he(c)

Thus, solving İt = 0 is equivalent to finding a zero of g(x) as defined in Eq. (1).
We know such a zero exists by Lemma 2. Now suppose g had two zeroes. Then its
derivative would have to be zero at some point in between since g(x) is smooth.
But

ġ = ḟ
(
e−K/ḟ t2(f(x))t2−1 + t1(1− f(x))t1−1

)

is never zero since it is the product of ḟ = a− c �= 0 and a positive number. �

Notice that the uniqueness in the result above does not follow from the usual
convexity/concavity arguments because It is not known to be convex/concave.

Theorem 2. Let x ∈ (0, 1) be the unique solution of Eq. 1 for a (2, 2) timing
channel with an invertible noise matrix. Then its capacity, measured in bits per
unit time, is (

h(a)(c− 1) + h(c)(1− a)
a− c

− log(f(x))
)
· 1
t1

(2)

or, equivalently

1
ln(2)

(
he(a)(c− 1) + he(c)(1− a)

a− c
− ln(f(x))

)
· 1
t1

(3)

Proof. Going backward from Eq. 1, we see that x satisfies

− K

t1ḟ
+

t2
t1

ln(f(x)) = ln(1− f(x)).

Substituting this into It, abbreviating f(x) as f , we have

It(x) =
−f ln(f)− (1 − f) ln(1− f)− xhe(a)− (1− x)he(c)

t1f + (1 − f)t2

=
−f ln(f)− (1 − f)

(
− K

t1ḟ
+ t2

t1
ln(f)

)
− xhe(a)− (1− x)he(c)

t2 − εf

=
−t1ḟ f ln(f)− (1− f)

(
−K + t2ḟ ln(f)

)
− t1ḟxhe(a)− t1ḟ · (1− x)he(c)

t1ḟ · (t2 − εf)
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Now using ε + t1 = t2, (f − c) = ḟx, we get

It(x) =
−t1ḟf ln(f)−(1−f)

(
−K+(ε+t1)ḟ ln(f)

)
−t1(f−c)he(a)−t1(ḟ −(f−c))he(c)

t1ḟ · (t2 − εf)

=
(1 − f)K + ḟ ln(f)(−t1f − (1 − f)(ε + t1)) − t1(f − c)he(a) − t1(a − f)he(c)

t1ḟ · (t2 − εf)

=
(1 − f)K + ḟ ln(f)(εf − t2) − t1(f − c)he(a) − t1(a − f)he(c)

t1ḟ · (t2 − εf)

Now we focus on the expression (1 − f)K − t1(f − c)he(a)− t1(a− f)he(c). It
equals

he(a)((1 − f)(cε− t2)− t1(f − c)) + he(c)((1 − f)(t2 − aε)− t1(a− f))

which is
he(a)(c− 1)(t2 − εf) + he(c)(1 − a)(t2 − εf)

Putting everything together, we get

It(x) =
(t2 − εf)

(
he(a)(c− 1) + he(c)(1 − a)− ḟ ln(f)

)

t1ḟ · (t2 − εf)

=
he(a)(c− 1) + he(c)(1 − a)

(a− c)t1
− ln(f)

t1

Finally, because capacity is measured in bits, we convert our logarithms to base 2
by multiplying by 1/ ln(2). �

5 Trinomials

Shannon showed in his classic paper [20] that the capacity for a noiseless timing
channel can be expressed as the log of the largest real zero of an associated char-
acteristic polynomial with trivial coefficients. The only known work extending
this to noisy timing channels has been given in [12]. This paper extends Shan-
non’s polynomial approach to the general (2, 2) timing channel. We shall discuss
the timed Z-channel below in detail, but first we will show how to interpret our
results in Eq. 1 as a trinomial, and then show how to re-express the capacity
from Eq. 2.

Eq. 1 is almost in the correct form but we need to apply some tricks to it. Let
α = e−K/ḟ , then we can rewrite Eq. 1 as

αf t2 − (1− f)t1 = 0
αf t2 = (1 − f)t1

α1/t1f t2/t1 = 1− f

α1/t1f t2/t1 + f = 1
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Now letting ζ = α1/t1 and γ = f−1/t1 we have

ζγ−t2 + γ−t1 = 1 (4)

Recall we solve for the unique x ∈ (0, 1) such that ((a− c)x + c)−1/t1 solves
Eq. 4. Equivalently, x = γ−t1−c

a−c . The derivative of R(γ) := ζγ−t2 + γ−t1 − 1
with respect to γ is negative, so if R(γ) has a positive root, then it has a unique
positive root. We know R(γ) has a positive root because of the relationship of
x and γ, therefore its positive root is unique. Note that Shannon [20, p. 380]
discusses the largest real root, when it could have been more precisely referred
to as the positive root (which then must be the largest real root)3.

Now let us manipulate Eq. 2 a bit. By using the elementary properties of
logarithms and the fact that f = (a− c)x+ c we see that Eq. 2 can be rewritten
as

C = log

{[(
aa(1− a)1−a

)1−c (
cc(1− c)1−c

)a−1
]1/t1(a−c)

· γ
}

(5)

or, equivalently

C = log
[(

aa(1− a)1−a
)1−c (

cc(1− c)1−c
)a−1

]1/t1(a−c)

+ log γ (6)

6 Algorithms for Calculating the Capacity

Given that the capacity calculation depends entirely on our ability to compute
the solution of Eq. 1, we now consider methods for calculating it which are
provably correct.

Eq. 1, g(x) = 0, is a nonlinear equation that in most cases has no closed form
solution, meaning that its solution is not expressible by a formula consisting
of elementary functions i.e. we must resort to the use of numerical methods to
solve it. There is no single numerical method that we are aware of that can solve
all equations with solutions. The ability of a program or software package to
solve an equation depends on the numerical method it uses and whether the
method suits the particular equation. To efficiently calculate capacity in a non

3 Shannon considers for n > 1 the equation X−t1 +X−t2 + . . . X−tn = 1. Let f(X) =(∑n
i=1 X−ti

)
− 1, since limX→0+ f(X) = ∞ and limX→∞ f(X) = −1 we see that

f(x) has a positive zero. Since df(X)
dX

= −
∑n

i=1 tiX
−(ti+1) < 0 we see that there

is only one positive zero. Therefore, when Shannon referred to the “largest real
solution,” a more precise statement would have been “the unique positive zero.” In
fact, since f(1) > 0, this unique positive zero is in fact greater than one (which
is to be expected from our Thm. 2). Notice too that Shannon’s desire to also use
difference equations required the times ti > 0 to be positive integers, whereas our
results only require the times ti > 0 to be positive reals.
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ad hoc manner we require a numerical method that converges for all (2, 2) timing
channels. Because we have taken an algebraic approach to the problem of timed
capacity, we are in the position to obtain exactly that.

One way to calculate the unique solution of equation (1), g(x) = 0 is to iterate
the function

φ(x) = x− h(x)
M

where the constant M = t2e
−K/ḟ + t1 and h(x) = e−K/ḟxt2 − (1 − x)t1 . It

is shown in [8] that this algorithm converges to the unique zero starting from
any x ∈ [0, 1]. Another method we have developed is a bracketing method i.e.
we start with an interval that contains the solution and each iteration reduces
the length of the interval by at least fifty percent. What is notable about this
method is that it is not the bisection method. In fact, it outdoes the bisection
method at every iteration. Again, the importance of these methods is that they
are provably correct in all cases. Without them, we could not be sure of which
method to use, or which initial guess to begin with.

7 Special Cases

We will now show how our results apply to some well-known special cases.

7.1 The Noiseless Channel

Let us see what happens to Eq. 4 and Eq. 6 when the channel is noiseless, that
is the channel matrix M collapses to the identity matrix.

ιf
1 �� of = t1

ιs
1 �� os = t2

Since ζ = α1/t1 =
(
e−K/ḟ

)1/t1
, K = −t2he(1) + t1he(0) = 0, and ḟ(x) = 1

we see that Eq. 4 reduces to

γ−t2 + γ−t1 = 1

and the capacity is
C = log γ

The above two equations of course are exactly what Shannon gave [20, p. 380].
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7.2 The Timed Z-Channel

We start by showing that our results extend the results in [12], for the timed
Z-channel. For the timed Z-channel we have c = 0 < a, so K = −t2he(a),
f(x) = ax, so Eq. 1 becomes

eln(aabb/a)t2 (ax)t2 − (1 − ax)t1 = 0

and we have

(aabb/a)t2(ax)t2 − (1− ax)t1 = 0
(aabb/a)t2(ax)t2 = (1 − ax)t1

(aabb/a)t2/t1(ax)t2/t1 = 1− ax

(aabb/a)t2/t1(ax)t2/t1 + ax = 1

now letting ax = γ−t1 , the above can be expressed

(aabb/a)t2/t1γ−t2 + γ−t1 = 1

which is the same as [12, Eq. 1].
Now let us apply our capacity result as given above to the timed Z-Channel.

By Thm. 2 we see that capacity is log(abb/a)1/t1(ax)−1/t1 which agrees with [12,
Thm. 1]. Also note that [12, Thm. 1] emphasizes the uniqueness of positive γ
which is equivalent to the uniqueness of x ∈ (0, 1). Unfortunately the authors of
[12] did not include the uniqueness proof, whereas we have proved it above in
Thm. 1, provided that a �= c (which holds for the timed Z-channel).

7.3 Timed Binary Symmetric Channel

In the case of a timed binary symmetric channel, where the probability of a bit
flip is p, we have a = 1− p = d and b = p = c, so Eq. 1 takes the form

ut2 − (k − u)t1 = 0

where u = f(x)ehe(p) and k = ehe(p). The capacity of this channel easily follows
from Eq. 2

C =
1
t1

[− log ((1 − 2p)x + p)− h(p)] (7)

7.4 The Untimed Case

We refer to the (2,2) timing channel where t1 = t2 as the untimed (2,2) channel.

Untimed and a = c: Since a = c we cannot use our results. However, in
this situation, the capacity is zero, since the receiver gains no information when
it receives a symbol. A channel such as this is called a useless or zero-capacity
channel [1].
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Untimed and a �= c: Since ε = 0, K = t2(he(c)− he(a)), so Eq. 1 is now

et2(he(a)−he(c))/(a−c)(f(x))t2 − (1− f(x))t1 = 0

Taking logs of both sides and simplifying yields

ln
(

1− f(x)
f(x)

)
=

he(a)− he(c)
a− c

which is the equation we have to solve to calculate the capacity in the untimed
case. As one would expect, the dependence on time is eliminated when ε = 0
regardless of the value of t2 = t1. Now we let β = he(a)−he(c)

a−c , and exponentiating
both sides gives us

f(x) =
1

1 + eβ

which results in

x(a, c) =
1

a− c

(
1

1 + eβ
− c

)
(8)

Up to a trivial manipulation this is the same simple closed form expression for
x for the untimed binary input binary output channel as reported by Silverman
[21, Eq. 6]. Note, as in [21] it is trivial to show that x(a, c) = 1 − x(c, a) =
x(1 − a, 1 − c). Notice that x is a function defined on the unit square with its
diagonal removed. Using Eq. 8, Eq. 2 and the fact that eβ = 2(h(a)−h(c)

a−c ), reveals
that the capacity in units of bits per symbol (since t1 = t2) is (see [21, Eq. 5])

C(a, c) =
h(a)(c− 1) + h(c)(1 − a)

a− c
+ log

(
1 + 2(h(a)−h(c)

a−c )
)

(9)

To compare our capacity expression Eq. 9 with Ash’s [1, Eq. 3.3.5], we first
find the inverse of our channel matrix

M−1 =
1

ad− bc

(
d −b
−c a

)
=

1
a− c

(
1− c a− 1
−c a

)

We let qij be the entry from the ith row and jth column of M−1. Now, working
backwards from Eq. 9 and letting Δ = a− c we have

C = log
{(

2
1
Δ [h(a)(c−1)+h(c)(1−a)]

)(
1 + 2

1
Δ [h(a)−h(c)]

)}

= log
{(

2
1
Δ [h(a)(c−1)+h(c)(1−a)]

)
+
(
2

1
Δ [h(a)(c−1)+h(c)(1−a)]

)(
2

1
Δ [h(a)−h(c)]

)}

= log
{(

2
1
Δ [h(a)(c−1)+h(c)(1−a)]

)
+
(
2

1
Δ [ch(a)−ah(c)]

)(
2

1
Δ [−h(a)+h(a)+h(c)−h(c)]

)}

= log
{(

2
1
Δ [h(a)(c−1)+h(c)(1−a)]

)
+
(
2

1
Δ [ch(a)−ah(c)]

)}

= log
2∑

j=1

2−[∑ 2
i=1 qjih(Y |X=i)]
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which is a classic closed form result for capacity as given by Ash [1, Eq. 3.3.5]
for a 2x2 channel matrix. Also note that one can easily show (as in [21]) that
C(1− a, 1− c) = C(a, c) = C(c, a).

Fig. 5. Plot of Eq. 9: Capacity for the untimed (2,2) channel

Untimed Capacity: Using our results gives Fig. 5 which illustrates zero ca-
pacity along the diagonal and the symmetric nature of capacity. The fact that
the capacity appears to be continuous is not accidental and will be discussed
later in the paper. What is fascinating is that x, in both the timed and untimed
cases, is not continuously extendible to the entire unit square. We will prove this
later.

Binary Symmetric Channel: An untimed (2,2) channel is called a binary
symmetric channel iff a = 1− p (equivalently c = p), so the channel matrix is

M =
(

1− p p
p 1− p

)

The probability of a “bit flip” is thus c. (Since time is no longer a factor we use
1 and 2 to index the symbols rather that f and s as in the general (2, 2) timing
channel.) Applying Eq. 5 we obtain the well-known [1, Eq. 3.3.1] result that the

ι1
1−p ��

p

��������������������� o1

ι2

p
��������������������� 1−p �� o2

Fig. 6. Binary Symmetric Channel
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capacity, in bits per symbol, for a binary symmetric channel is 1−h(c) with the
solution to Eq. 1 being x = 1

2 . Of course using x = 1
2 along with t1 = t2 = 1 and

Eq. 7, we also obtain this capacity result.

Untimed Z-Channel: Note that for the untimed Z-Channel we trivially obtain
from Eq. 9 the result [24,22] that capacity is log

(
1 + (1− p)p

p
(1−p)

)
where p is

the probability of the noisy symbol being sent incorrectly.

8 The Discontinuous Nature of Capacity Achieving
Distributions

In this section, we will use our algebraic characterization of capacity to prove an
intriguing result for (2, 2) timing channels. Recall Eq. 1

e−K/ḟ (f(x))t2 − (1− f(x))t1 = 0

where K = (cε− t2)he(a) + (t2 − aε)he(c) and ε = t2 − t1, and the formula for
capacity Eq. 3:

C(a, c) =
1

ln(2)
·
(

he(a)(c− 1) + he(c)(1 − a)
(a− c)

− ln(f(x))
)
· 1
t1

By solving for x as a function of a and c we have,

x(a, c) =
1

a− c
·
(
eλ(a,c) − c

)
, (10)

where

λ(a, c) :=
he(a)(c− 1) + he(c)(1 − a)

a− c
−C(a, c) t1 ln 2

We see that the input distribution which achieves capacity varies continuously
as a function of a and c on the set {(a, c) ∈ [0, 1] × [0, 1] : a �= c}. Note that
C(a, c) is a continuous function on the entire unit square (motivation for this
can be seen in [16, sec. A.1] and [17, Thm. 8], whereas a proof is shown in [9]).
We find the following theorem remarkable:

Theorem 3. The function x has no continuous extension to the entire unit
square.

Our goal in this section is to prove this new result. We will do so by showing
that neither

lim
(a,c)→(0+,0+)

x(a, c) nor lim
(a,c)→(1−,1−)

x(a, c)

exists. Notice that the notation (a, c) → (0+, 0+) means that we are free to ap-
proach the origin along any path provided we are within the unit square; the
notation (a, c) → (1−, 1−) says the same of (1, 1). The reason we excluded the
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exterior of the unit square from consideration presently is that a and c are prob-
abilities in the noise matrix of a (2, 2) channel. We show that lim

(a,c)→(0+,0+)
x(a, c)

does not exist by showing that lim
a→0+

x(a, 0) �= lim
c→0+

x(0, c) and we show that

lim
(a,c)→(1−,1−)

x(a, c) does not exists by showing that lim
c→1−

x(1, c) �= lim
a→1−

x(a, 1) .

We calculate these limits by taking the unusual approach of viewing x(a, c) as a
function of C(a, c). This we call an implicit analysis.

8.1 a → 0+, c = 0

This is Golomb’s limit [2]. From Eq. 10 we have,

x(a, 0) = (1 − a)(1−a)/a · e−C(a,0)t1 ln 2·

Now, because C is a continuous function of (a, c) ∈ [0, 1] × [0, 1], as a → 0+,
C(a, 0)→ C(0, 0) = 0. Thus, x(a, 0) is the product of two functions which have
limits as a → 0+, which means that x has a limit as a → 0+. This limit is

lim
a→0+

x(a, 0)= lim
a→0+

(1−a)(1−a)/a· lim
a→0+

e−C(a,0)t1 ln 2 = lim
a→0+

(1− a)1/a

1− a
·1=

1
e
·1=

1
e

8.2 a = 0, c → 0+

From Eq. 10,

x(0, c) = 1− (1− c)1/c

1− c
· e−C(0,c)t1 ln 2

As c → 0+, we obtain a limit of 1− (1/e).

8.3 a = 1, c → 1−

This case bears a fundamental difference to the previous two. We not only use
the expression for x(a, c) but also the equation it satisfies. First, we know that
f(x) = (1− c)x + c and from Eq. 1, we have that

f(x) =
(
(1 − f(x))t1eK/(1−c)

)1/t2

Since K = t1he(c), this tells us that

(1− c)x + c =
(
(1− x)t1c(t1c)/(c−1)

)1/t2

Substituting this into the expression for capacity and solving for x yields a new
expression for x(1, c),

x(1, c) = 1− cc/(1−c) · e−C(1,c)t2 ln 2·

If we now change variables from c to d = 1− c, we get

lim
c→1−

x(1, c) = lim
d→0+

x(1, 1− d) = 1− lim
d→0+

(1 − d)1/d

(1 − d)
· 1 = 1− 1

e
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8.4 a → 1−, c = 1

This proof follows the argument of the last. We know that f(x) = (a − 1)x + 1
satisfies

f(x) =
(
eK/(a−1)(1− f(x))t1

)1/t2

where K = −t1he(a), so substituting this into the expression for capacity yields
a new expression for x(a, 1),

x(a, 1) = aa/(1−a) · e−C(a,1)t2 ln 2

whose limit as a → 1− is 1/e.

8.5 The Extendability of x(a, c)

The first limit we considered was originally proved by Golomb in the untimed
case and later extended to the timed case by Moskowitz et al. Note that Silver-
man [21] has noted the discontinuous behavior of x for the untimed (2, 2) chan-
nel but his justification seems incomplete. The calculations we have just given
in these four proofs unify both of these results. However, we have gone a step
further here, having shown that neither Golomb’s untimed limit nor Moskowitz’s
timed limit exists in the two dimensional sense: along one path to (0, 0) we ob-
tain 1/e, while along a different path to (0, 0) we obtain 1 − 1/e, with similar
behavior for (1, 1). This proves that the function x is not extendible to a con-
tinuous function on the set of noise matrices: the largest set on which it can
be continuous is [0, 1] × [0, 1] \ {(0, 0), (1, 1)}. This is quite a perplexing result
mathematically but it also teaches us something we did not previously know
about timing channels.

Suppose that we have a timing channel with noise matrix M and capacity
achieving distribution x. If we vary M ever so slightly in the sense of Euclidean
distance, thereby obtaining a new channel with matrix Mε, it would seem rea-
sonable that the original distribution x would be a good approximation to the
capacity achieving distribution xε for the new channel Mε. It is exactly the
fact that x is not continuously extendible to the unit square which proves that
this is not true! For instance, two positive capacity channels 1 and 2 can have
noise matrices as close as one likes, and their capacity achieving distributions
x1 and x2 can be at nearly a maximum distance i.e. x1 ≈ (1/e, 1 − 1/e) versus
x2 ≈ (1 − 1/e, 1/e). Notice that this is the farthest apart two positive capacity
achieving distributions for the untimed (2,2) channel can be by the result of
Majani and Rumsey[7]. We hope to find an alternate version of their proof using
our results in future work. Our results are certainly consistent with theirs for the
untimed (2,2) channel. Even though the times in a general (2,2) timing channel
may assume any value, the limits 1/e and 1− 1/e are recurring. It is as though
they are fundamental constants in information theory whose exact significance
is yet to be uncovered. The Majani and Rumsey results do not hold in general
for (2,2) timed channels as discussed for special cases in [12] and [15, Sec. 5].
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Fig. 7. Plot of Eq. 8: x(a, c) for the untimed (2,2) channel

One question that remains concerns the continuous extendability to the inte-
rior of the diagonal. We have not proven that x can be extended to a continuous
function on {(a, c) : a = c ∈ (0, 1)}, but we do conjecture that this is the case,
at which points we expect its value to be x(a, c) = 1/2. If this result were true,
the diagonal would provide yet another path to (0, 0) (and also to (1, 1)), with
yet another distinct limit, in this case 1/2.

Fig. 7 is a plot of x(a, c) for the untimed (2,2) channel. It should be viewed in
conjunction with Fig. 5 for a better appreciation. One can see the discontinuity
that we have discussed at (a, c) = (0, 0) or (1, 1). Furthermore, we see that when
the capacity is one, in other words, when (a, c) = (1, 0) or (0, 1), that x(a, c) =
1/2. We also see that the Majani and Rumsey limits illustrated along with the
hypothesied behavior of x = 1/2 along the diagonal {(a, c) : a = c ∈ (0, 1)}.

Aside from teaching us these new things about timing channels, the ‘implicit’
arguments we have given in this section, precisely because they do not require
that we have explicit expressions for either x or C(a, c), hold great promise
for future work in analyzing the asymptotic behavior of channels in higher
dimensions.

9 Conclusions and Future Work

We have given algebraic results concerning the capacity for (2,2) timing channels.
Our results are directly applicable to the study of the residual channel in the
Network Pump and to traffic analysis in anonymity systems. Our results show
a direct relationship between the noise characteristics and the channel capacity.
This can allow one to inject spurious noise into a high-assurance system in
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a judicious manner to lessen covert channel capacity, while at the same time
not affecting system performance too much. This stands in contrast to padding
message traffic to the maximum extent to remove a covert channel, or to making
the moving average size too large in the Pump so as to be not responsive to
system load.

Our paper is a first step in a plan we have to use the algebraic characteristics
of the channel noise to lead us to sensible engineering solutions for problems
which arise in the analysis of high assurance devices. For instance, our results
will enable the development of a tool that will assist the practitioner in analyz-
ing covert channels. Of particular note is the surprising result concerning the
discontinuous nature of the capacity achieving distribution. This result tells us
that channel coding based upon the noise matrix may behave in a ‘chaotic’ man-
ner. This fact takes us very much by surprise. We plan to study the algebraic
properties of channel matrices to determine whether there is an physical phe-
nomena behind the appearance of 1/e in the asymptotic behavior of the capacity
achieving distribution. We have started a study of algebraic information theory
for untimed (2, 2) channels in [10].

Please note that we plan to remove the restriction of binary inputs and binary
outputs in future work. We have some preliminary results in this light.
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Abstract. Multimedia security schemes often combine cryptographic
schemes with information hiding techniques such as steganography or
watermarking. Example applications are dispute resolving, proof of own-
ership, (asymmetric/anonymous) fingerprinting and zero-knowledge wa-
termark detection. The need for formal security definitions of watermark-
ing schemes is manifold, whereby the core need is to provide suitable ab-
stractions to construct, analyse and prove the security of applications on
top of watermarking schemes. Although there exist formal models and
definitions for information-theoretic and computational security of cryp-
tographic and steganographic schemes, they cannot simply be adapted to
watermarking schemes due to the fundamental differences among these
approaches. Moreover, the existing formal definitions for watermark se-
curity still suffer from conceptual deficiencies.

In this paper we make the first essential steps towards an appropri-
ate formal definition of watermark robustness, the core security property
of watermarking schemes: We point out and discuss the shortcomings of
the existing proposals and present a formal framework and corresponding
definitions that cover those subtle aspects not considered in the existing
literature. Our definitions provide suitable abstractions that are com-
patible to cryptographic definitions allowing security proofs of composed
schemes.

1 Motivation

Multimedia applications deploy various cryptographic and watermarking tech-
niques to maintain security. Typical application scenarios are dispute resolving,
proof of authorship and asymmetric and anonymous fingerprinting.

In this context, the security analysis and security proofs for the resulting
composed schemes require a suitable formal framework and reasonable secu-
rity definitions. Modern cryptography already uses established formal mod-
els and definitions for information-theoretic and computational security. In-
spired by cryptographic methodology similar approaches have been proposed for
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steganography [1,2,3,4]. In contrast, less investigation has been done with this
regard for watermarking schemes, and the existing approaches do not cover the
subtle aspects essential for reasonable formal security definitions, analysis and
abstraction of watermarking schemes.

The need for formal definitions of watermarking schemes, and their most
notable properties, such as robustness, false-positive and false-negative proba-
bilities, is manifold: first, one requires formal definitions as suitable abstractions
to build, analyse and prove the security of applications on top of watermarking
schemes. Second, one requires suitable formal definitions to prove the robustness
of watermarking schemes. Furthermore, such definitions provide valuable guid-
ance and basis in the development of provably robust watermarking schemes.

One should note that steganography, although likewise watermarking a means
for information hiding, differs from watermarking with respect to various as-
pects. The most important difference concerns their requirements: In steganog-
raphy there is a strong hiding requirement, stating that an adversary cannot
even detect the presence of some stego-message in stego-data. In watermarking,
however, one usually does want to prevent watermarks to be detectable by an
adversary.1 Instead, the challenging core property, distinguishing watermarking
schemes from other cryptographic or data-hiding primitives, is the robustness
property, which guarantees that a watermark cannot be removed without signif-
icantly distorting the stego-data and making it useless.2 Due to the fundamental
difference between steganography and digital watermarking, one cannot simply
adapt recent definitions of steganographic security [3,4].

In this paper, we point out and discuss the shortcomings of the existing pro-
posals for watermark security definitions as well as the subtle aspects/parameters
that these proposals do not cover. In fact, our review shows that even the mean-
ing of watermark security is still not well understood, mainly because many
authors do not focus on the main, distinguishing security property of water-
marking schemes, which cannot be achieved by applying complementary cryp-
tographic measures: robustness. We propose formal (and intuitive) definitions
for watermarking schemes, including robustness, that (i) incorporate these as-
pects/parameters and (ii) can be used as a suitable abstraction for security proofs
of composed schemes in the context of various applications.

2 Related Work

In recent years, there has been a remarkable body of literature on definitions for
robustness and security of watermarking schemes. Most of the existing proposals

1 One may require watermarking schemes to provide an optional secrecy property, re-
quiring that adversary cannot obtain any information about the concrete watermark
embedded in the stego-data. This requirement is very different and much easier to
achieve (e.g., by using standard encryption schemes) than the strong hiding property
which is at heart of steganographic systems.

2 Note, that we do not consider fragile watermarking schemes, because fragility can
be achieved quite easily, using cryptographic primitives.



A Computational Model for Watermark Robustness 147

distinguish between the security and robustness of a watermark. In this context
robustness concerns the amount of information on watermark that is revealed to
an adversary, whereas the security often concerns the information revealed on
secret embedding key. The corresponding definitions are based on information-
theoretical or cryptographic methodologies.

Mittelholzer [2] proposed the first formal model, which defines information-
theoretic robustness in terms of mutual information3: a robust watermarking
scheme is defined to maximise the mutual information I(WM; W ′′|K det) be-
tween the watermark WM and the distorted stego-data W ′′, when given the
detection key K det. The maximum is defined over all allowed channels (adver-
saries), transforming watermarked data W ′ into distorted data W ′′.

Kalker [5] introduced reasonable but informal definitions of watermark robust-
ness and watermark security:4 watermark robustness is defined as the property
that the capacity of the watermarking channel degrades as a smooth function
of the degradation of the stego-data. Security is defined as the inability of an
adversary to remove5, detect (or estimate), write or modify any bit of the wa-
termark. The notion of ”security” is very broad and, therefore, too strong for
most applications of watermarking schemes.

Barni et al. [6] proposed a general security framework for watermarking sys-
tems, where they measure security by quantifying the information on the secret
watermarking key that is leaked through stego-data the adversary can observe.
The authors define security in terms of a two party game between a correct
party and the adversary. The rules of the game determine the a-priori infor-
mation given to the adversary and which he may use to win the game, i.e.,
break the respective security property of the watermarking scheme. In principle,
this is a common approach in cryptography when defining security properties
of cryptographic schemes. However, in [6] the authors distinguish between fair
and unfair adversaries: according to the games’ rules fair adversaries only use
the a-priori information, whereas unfair adversaries try to gain secret informa-
tion and take advantage of this knowledge. The distinction between fair and
unfair adversaries is uncommon and restricts the adversary’s strategies covered
by the definitions and, thereby, weakens the definition significantly. For instance,
the definition does not cover adversaries who exploit weaknesses of the water-
marking scheme to get information about the watermarking key, although such
adversaries are defined as fair in the framework of [6]. The authors argue that
the leaked information will make it easier for an unfair adversary to attack the
system’s robustness (degrade the watermark channel) and, therefore, use it as a
measure for the security of watermarking schemes. This intuition is likely to hold
in most cases, but it is important to note that the converse does not hold, i.e.,
there are watermarking schemes with poor robustness, but which do not leak

3 The mutual information I(X; Y ) between X and Y is defined as the reduction of
entropy that Y provides about X.

4 Kalker models a watermarking scheme as a multiplexed communication system that
multiplexes the original data channel and the watermark channel.

5 Therefore, security, according to Kalker’s definition, implies robustness.



148 A. Adelsbach, S. Katzenbeisser, and A.-R. Sadeghi

any information on the secret watermarking key.6 Hence, we conclude that the
information leaked on the secret watermarking key is not a suitable measure for
the robustness/security of the watermarking scheme. Furthermore, one cannot
formally define and distinguish between fair and unfair adversaries.

Cayre et al. [7] focus on the security of watermarking schemes and do not
consider security against application-level attacks, such as invertibility and copy-
attacks. Although it is a good approach to narrow the definition to cover the
essential, distinguishing properties of watermarking schemes only, the defini-
tion and measure of security chosen by the authors is too general: they mea-
sure the level of security of watermarking scheme in the number of observations
(watermarked data) an adversary needs in order to estimate the secret water-
marking key. Information leakage is measured using methods from information
theory, such as Shannon’s mutual information. More concretely, defining the
adversary goal is a direct translation of Shannon’s definition of security of en-
cryption schemes. According to Cayre et al. [7] ”the watermarking technique is
perfectly secure if and only if no information about the secret key leaks from
the observations”. Intuitively, this informal definition seems to be reasonable,
but not straightforward to define formally, such that it can be satisfied at all:
assume the adversary has observed a triple (W ,WM,W ′), where the stego-
data W ′ results from embedding watermark WM into the cover-data W , using
the secret embedding key K emb. Given these observations, the adversary has a
reliable test to recognise the correct secret embedding key: the adversary can
run through the whole key space and test for every candidate key, whether
W ′ ?= Embed(W ,WM,K emb). This test allows the adversary to rule out most
watermarking keys and, obviously, this observation leaks information on K emb.
The definition in [7] is mainly motivated by the intuition that ”if a watermark-
ing scheme does not provide perfect secrecy, then one would like to measure the
information leakage about the key.” However, defining watermarking security
in terms of secrecy and information leakage about the key is not known to be
necessary or sufficient for any meaningful security property of the watermarking
scheme:7 obviously it is not sufficient for robustness, because it does not rule
out unkeyed non-robust watermarking schemes, e.g., a watermarking scheme that
embeds the watermark by substituting all LSBs of an image.8 Furthermore, this
definition applies to applications where the same secret embedding key is used to
embed several watermarks into different data: watermarking schemes insecure

6 As an example consider a watermarking scheme, which uses the secret watermarking
key as a one-time-pad to encrypt the watermark and embed it in the LSB of pixels
identified by the remainder of the watermarking key. Obviously, this scheme does
not leak any information about the watermarking key and the watermark, but can
be easily removed by setting the LSB of any pixel to 0.

7 It holds if there is an arguable equivalence between security and secrecy of the key,
which holds for encryption schemes as considered by Shannon.

8 Even the identity map would fulfil the perfect security definition, as it does not
depend on a secret key (private communication with Nicholas Hopper, David Molnar
and David Wagner).
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according to this definition may nevertheless be secure in other applications,
which use a fresh embedding key for every watermark.

Comesaña et al [8,9] closely follow the inadequate notion of security (informa-
tion leakage) introduced in [6,7] as mentioned above. Their main achievement,
compared to [7] is the definition of a new measure to quantify the leaked infor-
mation and its application to spread spectrum watermarking.

Katzenbeisser [10] also follows this notion of security, suffering from the same
problem, but proposes a computational definition of leaked information, which is
inspired by computational security definitions for symmetric encryption schemes:
the underlying model is a game between the adversary and the honest party
(embedding oracle) where the adversary’s goal of obtaining information about
the key (winning the game) is modeled by his ability to distinguish whether given
stego-data was more likely watermarked with one out of two keys, where the
cover-data is chosen by the adversary and the actual embedding key is randomly
chosen by the embedding oracle.

2.1 Summary and Discussion

We observe that in particular the definition of watermark security remains rather
unclear. The main reason is that most researchers tried to define ”watermark
security” such that it captures any property that may be required by any conceiv-
able application. As applications of watermarking schemes are manifold, posing
different requirements on watermarking schemes, it is hard to come up with
general definitions and even harder to come up with schemes that fulfil them.

Furthermore, it is more reasonable not to define one low-granular term, ”wa-
termark security”, to comprise different high-granular requirements of different
applications. High-granular requirements may be secrecy, integrity or authentic-
ity of the watermark, dependency of the watermark on the cover-data (to pre-
vent copy attacks), as well as robustness and collusion tolerance to name only
the most important ones. Barely any application (if any at all) requires a single
watermarking scheme to provide all these high-granular properties9, beside the
fact that it is a difficult, and unnecessary, task to design such watermarking
scheme.

Moreover, high-granular properties required by certain applications can be at-
tained using cryptographic building blocks on top of the watermarking scheme
(layered approach): The secrecy10 and authenticity/integrity of the watermark
can be achieved by applying encryption respectively message authentication
codes or digital signatures to the watermark before embedding it. Binding the
watermark to the cover-data can be achieved by augmenting the watermark
through appending a (robust/perceptual) hash of the cover data to the water-
mark and authenticating this augmented watermark.
9 This can be compared to cryptographic hash functions. Some applications require

hash functions to be collision-free, while some only require a hash-function to be
one-way.

10 This secrecy property should not be confused with the ”steganographic hiding” prop-
erty, which requires that not even the presence of the watermark can be detected.
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We argue that a formal definition of a pure digital watermarking scheme
should focus on its distinguishing features, which cannot be achieved by exist-
ing, well founded cryptographic primitives. As we argue in later sections these
features are the capability of embedding additional information in data, the ro-
bustness property as well as detection/extraction errors. Nevertheless, for certain
applications it makes sense to require that the watermarking scheme provides
further security properties, which, as mentioned above, may be achieved by cryp-
tographic means on the top of the watermarking scheme.

3 Basic Notations and Definitions

Computation Model We write algorithms O← Alg(I) to denote running Alg on
inputs I and assigning the output to variable O. Optional inputs/outputs are
set in squared brackets, i.e., in Alg(I1, [I2]) the input of I2 is optional. When we
use the term efficient in the context of algorithms or computation we mean a
Turing Machine with polynomial-time complexity.

Probabilities and Negligible Functions. We denote a probability function with
Prob[A :: B] where A denotes the quantity for which the probability is computed
and B the (joint) random variable that induces the underlying probability space.

For example Prob[pred(v2) =  :: v1
R← Zn; v2 ← Alg(v1)] means the proba-

bility that predicate pred holds on v2, where the underlying probability space is
induced by the random variable consisting of the random variables v1, uniformly
chosen from Zn, and v2 which is the random value output by the algorithm Alg
on input v1. Furthermore, let v be some arbitrary random variable or ensemble
of random variables. Then, [v ] denotes the support , which is the set of all possible
values v , i.e. those with non-zero probability.

A negligible function ε(x) is a function where the inverse of any polynomial
is asymptotically an upper bound, i.e., ∀d > 0 ∃x0 ∀x > x0 : ε(x) < 1/xd. We
denote this by ε(x) <∞ 1/poly(x).

4 Formal Definition of Watermarking Schemes

4.1 Similarity

A suitable similarity function/predicate is a key aspect in the definition of water-
marking schemes and the robustness property. Often, simple distortion metrics,
such as the mean squared error (MSE) are used to define similarity. A suitable
similarity measure has to consider the semantics and envisaged usage of data:
for data such as software, a computational semantics is most suitable, whereas
for data consumed by human beings a measure based on models of the human
visual/audio system is most suitable (see e.g., Cox et al. [11]). However, the
latter may be defined computational as well [12].

In the following we assume a suitable, polynomial-time computable similarity
function/predicate, also referred to as similarity test sim(W �, Ŵ ), which given
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two data items W � and Ŵ outputs  iff W � can be considered sufficiently sim-
ilar to (according to the usual, agreed semantics) and has been derived from Ŵ .
Note that sim() does not need to be symmetric. We have chosen to encapsulate
this crucial aspect in a single, general predicate, because it abstracts from the
peculiarities of the data types and helps to come up with very clear definitions,
based on which one can design and prove applications. In Section 6 we consider
the necessary steps when using our definitions to build concrete watermarking
schemes with provable robustness.

4.2 Systematics of Watermarking and Robustness Definitions

One has several degrees of freedom when formally defining watermarking schemes
and the robustness property. We identified the following orthogonal parameters,
which have to be considered carefully, because variation of these parameters leads
to significantly different definitions. These parameters concern the type of wa-
termarking scheme (detecting vs. extracting), error probabilities (false-positive
and false-negative), all-quantified quantities 11, and adversary model. The latter
distinguishes between computational and unconditional (information theoreti-
cal) adversaries, the a-priori knowledge of the adversary, active vs. passive ad-
versaries and access to embedding or detection/extraction oracles. We consider
these orthogonal parameters in the sequel. Based on the degrees of freedom
caused by the variation of these parameters one can establish an application
independent systematic of definitions for watermarking schemes, similar to the
systematic for DL-based cryptographic assumptions introduced in [13]. We con-
sider this as important future work, fertilising both the study of watermarking
schemes in a more structured way and the exact specification of requirements of
watermark-based applications. For application design one can choose the appro-
priate definition and watermarking scheme which best suits this application. The
following definitions offer formal abstractions of watermarking schemes, which
can be used to design and analyse a variety of protocols and applications. Fur-
thermore, compared to previous definitions, our definitions comprise an explicit
computational adversary model, including passive and active adversaries, as well
as error probabilities of watermarking schemes. We first define the watermarking
schemes and introduce error probabilities and robustness later.

Definition 1 (Detecting Watermarking Scheme). Let W be the set of
cover- and stego-data, let WM ⊆ {0, 1}+ be the set of all possible watermarks,
let K be the set of keys and let par wmsec denote the security parameter of the
watermarking scheme. A (detecting) watermarking scheme consists of three
polynomial-time algorithms:

11 When defining properties (of watermarking schemes) it makes a fundamental differ-
ence, which items (cover-data, watermark, keys, stego-data) are all-quantified and
which of them are assumed to be (randomly) chosen.

As a rule of thumb the more items are all-quantified, the stronger the resulting
definition is.
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– Key Generation Algorithm: On input of the security parameters par wmsec, the
probabilistic key generation algorithm GenKeyWM(parwmsec) generates the match-
ing keys (K emb,K det) required for watermark embedding and detection.

– Embedding Algorithm: On input of the cover-data W , the watermark WM
to be embedded and the embedding key K emb, the probabilistic embedding algo-
rithm Embed(W ,WM,K emb) outputs the watermarked data (stego-data) W ′,
which is required to be perceptibly similar to the cover data W . We refer to
this requirement as the intactness property or imperceptibility property and
define it formally as: ∀W ∈ W , ∀WM ∈ WM, ∀(K emb,K det) ∈ [GenKeyWM()]:

W ′ ← Embed(W ,WM,K emb) =⇒ sim(W ′,W ) =  (1)

– Detecting Algorithm: On input of (possibly modified) stego-data W ′′, the
watermark WM, the original cover-data W (optional input), sometimes also
referred to as reference-data in this context, and the detection key K det,
the probabilistic12 detection algorithm Detect(W ′′,WM, [W ],K det) outputs
a Boolean value ind ∈ { ,⊥}. Here,  indicates the presence and ⊥ the
absence of the watermark. The detecting watermarking scheme should ful-
fil a property, which is commonly referred to as the effectiveness of the
watermarking scheme and which we define as follows: ∀W ∈ W , ∀WM ∈
WM, ∀(K emb,K det) ∈ [GenKeyWM()] :

W ′ ← Embed(W ,WM,K emb) =⇒ Detect(W ′,WM, [W ],K det) =  (2)

The definition of extracting watermarking schemes is similar and has been
omitted due to space limitations.

Remark 1. We refer to a watermarking scheme as being symmetric iff K det =
K emb. In this case, we usually denote this key as K wm and refer to it as the
watermarking key. Blind watermarking schemes do not require the cover-data
W as an input to Detect() or Extract() respectively. A blind watermarking
scheme with K det �= K emb is called asymmetric.

Remark 2. Sometimes we require an algorithm that represents the sampling/
choice of a watermark WM ∈ WM by the application. We denote this sampling
by WM ← GenWM(par wmsec) and stress that GenWM() does not generate the water-
mark signal, but rather the encoded watermark message. Therefore, GenWM() is
not part of the watermarking scheme, but rather a part of the application.

4.3 Error Probabilities of Watermarking Schemes

So far we did not allow the watermark detector/extractor to err, which is both
a strong requirement and unrealistic in practice: As most practical watermarking
schemes rely on statistical tests, their outputs inherently involve uncertainties and
may be incorrect with a certain probability. Furthermore, for most applications a
12 Although the majority of detection algorithms is not probabilistic we model detection

as an probabilistic algorithm to make our definition as general as possible.
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negligible error probability may be tolerated. For detecting watermarking schemes
we distinguish two types of errors: false-positive errors and false-negative errors.
Informally speaking, a false-positive error means that the detection algorithm in-
dicates a watermark to be present, although it has actually not been embedded,
whereas a false-negative error means that the detection algorithm indicates a wa-
termark not to be present, although it actually has been embedded.

When using watermarking schemes as building blocks in protocols or other
applications, these errors occur with certain probabilities, which result from the
probability distribution of the watermark detector/extractor’s inputs in that
specific application environment. As these error probabilities are crucial to the
performance of the overall applications or protocols, we will discuss them in more
details and formalise them in the sequel. The formalisation will be exemplarily
done for detecting watermarking schemes and we note that the definitions for
extracting watermarking schemes are analogous.

Definition 2 (False-Positives). We call an input tuple (W ′′,WM,W ,K wm) to
the detection algorithm a positive iff Detect(W ′′,WM,W ,K wm) =  . A false-
positive is a tuple (W ′′,WM,W ,K wm) with:

Detect(W ′′,WM,W ,K wm) =  
∧ �W ′ : (W ′ ∈ [Embed(W ,WM,K wm)] ∧W ′′ ∈ {Ŵ |sim(Ŵ ,W ′)})

We define the positives set of a watermarking scheme as the set of all input
tuples (W ′′,WM,W ,K wm) yielding a positive detection result (positive tuple)
PS := {(W ′′,WM,W ,K wm) | Detect(W ′′,WM,W ,K wm) =  } and we define
FPS as the set of all false-positives. Furthermore, we define the positives rate
as the fraction of positive tuples to all such tuples pr :=|PS|/|W×WM×W×K|
and, similarly, fpr := |FPS|/|W×WM×W×K|. Note that these rates are com-
pletely determined by the watermarking scheme and does not depend on the
application context, in which the watermarking scheme is being used. In con-
trast, the positives probability and false-positive probability are not completely
determined by the watermarking scheme, but additionally depend on the proba-
bility distribution of works, watermarks and watermarking keys (see [11]), which
itself depends on the context given by the application in which the watermarking
scheme is being used. In particular, the application’s security requirements (or
conversely the adversary’s goals) and the underlying trust model play a cen-
tral role in defining an adequate positives probability. Depending on the above
aspects, one can distinguish several different types of positives probabilities.
Here, we focus on adversarial positives probabilities: in most security applica-
tions, at least parts of the input tuple to Detect() can be computed freely by
the adversary (without adhering to a pre-defined distribution), such that it trig-
gers the detector and, in addition, fulfils a certain application dependent pred-
icate side condition.13 We refer to these positive probabilities as adversarial
13 In case of dispute resolving applications, the side-condition predicate may state that

the false-positive watermark, computed by the adversary, is also detectable in the
original work of the rightful author, thus leading to a deadlock.
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false-positives probabilities and distinguish several adversarial false-positives prob-
abilities, which vary depending on the a-priori information available to the ad-
versary and the side-conditions the positives have to fulfil. Both strongly depend
on the concrete application scenario, denoted as application, in which the wa-
termarking scheme is used.

Definition 3 (General Adversarial False-Positive Probability). Let A
denote the adversary algorithm. We define the general adversarial positives prob-
ability ppadv (A) as follows:

Prob[(Detect(W ′,WMA,WA,K wm
A ) =  ) ∧

side condition((W ,WM,K wm,W ′), (WA,WMA,K wm
A ,W ′A)) ::

(W ,WM,K wm,W ′)← application;
(WMA,WA,K wm

A ,W ′A)← A([W ], [WM], [K wm], [W ′], parwmsec); ]

Note that, in contrast to the non-adversarial positives probabilities, the adversar-
ial positives probabilities depend on the concrete adversary strategy (formalised
by the algorithm A), which the adversary employs to compute the positive tu-
ple. Furthermore, one has several degrees of freedom regarding the a-priori in-
formation given to the adversary. We modelled this by defining the inputs to
A as optional parameters. The adversarial false-positive probability has often
been neglected in the design of security critical applications, such as dispute-
resolving schemes and further copyright protection protocols, mostly because
its impact on the security of the overall protocol has been underestimated.14

It is obvious that in any application where the presence of watermarks serves
as evidence, such as dispute resolving, authorship proofs or fingerprinting the
false-positive probability becomes critical: the higher the false-positive probabil-
ity is, the lower is the ”conclusiveness” or ”reliability” of a detected/extracted
watermark as a piece of evidence. Finally, we want to note that it is difficult
to actually determine these adversarial error probabilities or bound them from
above for concrete watermarking schemes. Therefore, assumptions about upper
bounds of these probabilities are very strong assumptions.

Definition 4 (Negatives Rate). We define a negative as a tuple (W ′′,WM,
W ,K wm), yielding a negative detection result, i.e., Detect(W ′′,WM,W ,K wm)=
⊥. Furthermore, we define the negatives set of a watermarking scheme as the set
of negative tuples NS := {(W ′′,WM,W ,K wm) | Detect(W ′′,WM,W ,K wm) =⊥}
and we define the negatives rate as the fraction of negative tuples to all such
tuples: nr := |NS|/|W ×WM×W ×K| = 1− pr .

More interesting is the definition of false-negatives, for which we require an
appropriate notion of when an input tuple should actually be a positive tuple,

14 In [11] (p. 30), Cox et al. state: ”In the case of proof of ownership, the detector
is used so rarely, that a probability of 10−6 should suffice to make false positives
unheard of.” Here, ”probability” refers to random non-adversarial probability, which
makes it quite easy for an adversary to compute false-positives, fulfilling certain side-
conditions and, thereby, breaking the security of (see [14] for example.).
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which itself depends on the properties required from the watermarking scheme:
robust watermarking schemes require that the inputs of a run of the embedding
algorithm (W ,WM,K wm) plus the stego-data, resulting from this run, or any
similar data, derived from the stego data, is a positive. Following this view, a
false-negative is always a breach of robustness.

Definition 5 (False-Negatives and False-Negative Rate). For a robust
watermarking scheme a false-negative tuple is a tuple (W ′′,WM,W ,K wm) with
Detect(W ′′,WM,W ,K wm) =⊥, although W ′′ has been derived from watermarked
data W ′ ← Embed(W ,WM,K wm) and sim(W ′′,W ′) =  holds, i.e., detection
should be successful by the robustness property of the watermarking scheme.

Let FNS denote the set of all false-negatives. We define the false-negative rate
as the fraction of false-negatives and the set of tuples that should trigger a per-
fectly robust detector according to our robustness definition: fnr := |FNS|/|W ×
WM×W ×K|.

Analogous to the discussion above, one can define adversarial false-negative prob-
abilities , denoting the probability that an adversary can compute a false-negative
tuple. Due to lack of space and its relation to the robustness definition we omit
this definition here. In the following Section we formalise ”robust watermarking
schemes”, which can be seen as an extension of the effectiveness property to
those data, which has been derived from the stego-data and is still sufficiently
similar to it.

5 Computational Robustness Definitions

5.1 Robustness Against Passive Adversaries

Informally, the robustness property against passive adversaries states that a wa-
termark should remain detectable, even if the stego-data has been (maliciously)
modified. Clearly, detectability (or extractability) cannot be guaranteed for any
modification15. Therefore, the correct informal characterisation of a robust wa-
termarking scheme is that it can detect/extract the watermark even in a (ma-
liciously) modified stego-data as long as the stego-data is perceptibly similar to
the cover-data.

The robustness property is of great importance, especially in the context of
copyright protection applications, because the detectability of embedded water-
marks is crucial for the overall system security. Unfortunately, robustness is not
well understood so far. Most researchers give informal characterisations of ro-
bustness or define it as resistance against an inherently incomplete list of known
attacks [15,16,17]. Cox et al. [11] distinguish between robustness and security
of watermarking schemes: they characterise ”robustness” as the ”the ability to
detect the watermark after common signal processing operations”, whereas they

15 Consider for example a modification, which completely garbles the stego-data or
transforms it to the constant bit-string 1n.
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refer to ”security” as the ”ability to resist hostile attacks”. As we address water-
marks exclusively in the context of security critical applications, this distinction
would be artificial and we define robustness to cover also the ability to resist
hostile removal-attacks.

Definition 6 (Symmetric Computational Robustness). We define a sym-
metric watermarking scheme to be computationally robust, iff

∀WM ∈ WM, ∀ probabilistic polynomial-time adversary A
Prob[Detect(W ′′,WM,W ,K wm) =⊥ ∧ sim(W ′′,W ′) =  ::

W ←W ;
K wm ← GenKeyWM(par wmsec);
W ′ ← Embed(W ,WM,K wm);
W ′′ ← A(W ′, [WM], parwmsec); ]

<∞ 1/poly(par wmsec)

Informally, this means that symmetric watermarking scheme is called robust, iff
it is computationally infeasible for an adversary, given watermarked data W ′

and the watermark WM, to produce perceptibly similar data W ′′, in which the
same watermark WM cannot be detected anymore.

When designing an application, one has to choose the correct robustness defi-
nition. Especially the input available to the adversary A depends on the context
of the target application: In applications such as dispute resolving, it is reason-
able to assume that the adversary does not know the watermark. However, in
applications such as copy protection, there exists only a small set of possible
watermarks (e.g., “copy permitted”, “do not copy”) and therefore, it is more
realistic to assume that A gets WM as an additional input. In general, the
more inputs the robustness definition allows the adversary to use, the stronger
it is (and the more difficult it is for a watermarking scheme to fulfil it). As a
consequence, the following robustness definition for asymmetric watermarking
schemes is even harder to achieve than that for symmetric schemes, because the
adversary is granted access to the watermark and detection key as well16.

Definition 7 (Asymmetric Computational Robustness). An asymmetric
watermarking scheme is called robust, iff

∀WM ∈ WM, ∀ probabilistic polynomial-time attacker A
Prob[Detect(W ′′,WM,W ,K det) =⊥ ∧ sim(W ′′,W ′) =  ::

W ←W ;
(K emb,K det) ← GenKeyWM(par wmsec);
W ′ ← Embed(W ,WM,K emb);
W ′′ ← A(W ′,WM,K det, par wmsec); ]

<∞ 1/poly(par wmsec)

The robustness definition for asymmetric schemes is very similar to that of sym-
metric schemes. The main difference is that the adversary additionally receives
16 Amongst others, this provides the adversary with a detection oracle.
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the public detection inputs (detection key and watermark). Alternatively, one
may define robustness of asymmetric watermarking schemes by providing the
adversary only with W ′ and the public detection key. However, from the appli-
cation’s perspective, it does not make sense to make the detection key publicly
available, without at the same time making the watermark publicly available.
Therefore, we have chosen to provide the adversary with the watermark as well.
Amongst others, this definition is suitable for copy control applications.

5.2 Robustness Against Active Adversaries

Early definitions of robustness and watermark security did not consider active
adversaries, interacting with and, thereby, having indirect access to the embed-
der and detector, including the corresponding keys. As a matter of fact, these
robustness definitions may be too weak for many applications of watermarking
schemes.17 Therefore, it is crucial to also consider robustness against active ad-
versaries and have suitable definitions on-hand. Hence we desire to model adver-
saries that have access to the functionality of some public algorithm, initialised
with some secret system parameter (e.g., the secret embedding or detection key),
but without having direct access to this secret parameter. The common tech-
nique to model them is to provide adversaries access to oracle machines. The
secret system parameter, used to initialise the oracle, is usually generated by the
correct party according to the rules of the two party game underlying the re-
spective computational security definition. Oracle machines can be restricted to
answer a limited number of t, polynomially bounded in the security parameter,
queries only. Such oracles are referred to as t-oracles. Actually, this ”free” access
to oracles is more than one would expect in most application settings, because
there, the honest party, indirectly granting access to the embedder or detector,
would usually not blindly apply it to any input data without some predefined
verifications. 18 However, by modelling active attacks by granting free access to
oracles, the definition becomes application independent and one is on the safe
side, because this guarantees that one can design applications without imple-
menting further checks to limit access to the oracle (e.g., copy-protection in CE
devices).

In analogy to the core algorithms of a watermarking scheme, i.e., the embed-
ding and detection/extraction algorithm, we define two types of oracles, embed-
ding oracles and detection/extraction oracles. Furthermore, one can distinguish
17 Consider a dispute resolving scheme as an example (see [18] for an overview): here the

author has to prove the presence of the watermark in the disputed work to a judge.
As the disputed work usually has been generated by the adversary, the adversary
has indirect, restricted access to the watermark detector, which, obviously, has to
be modelled in the robustness definition.

18 Consider watermark-based copy control as an example: the licensing authority might
perform certain tests to make sure to embed a ”copy freely” watermark only in
reasonable looking data, such as to not compromise the security of the watermarking
scheme, whereas the detector, embedded in a low-cost DVD recorder provides access
to an unlimited detection oracle.
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several kinds of embedding oracles according to the secret information contained
in the oracles and the form of queries answered by this oracle. The most usual
embedding oracles are discussed below:

1. Embedding oracles with secret embedding key: These embedding or-
acles are initialised with a secret watermark embedding key K emb, as pro-
vided by the application/correct party in the security definition and answers
t queries of the form (WA,WMA). We denote such oracles, initialised with
K emb, as Ot

Embed,K emb . Given a query (WA,WMA) oracle Ot
Embed,K emb replies

with answer W ′A ← Embed(WA,WMA,K emb).
2. Embedding oracles with secret embedding key and secret water-

mark: Another type of embedding oracle, considered here, is initialised with
a secret embedding key and a secret watermark and answers queries of the
form (WA): given a query (WA) the embedding oracle Ot

Embed,K emb,WM replies
with answer W ′A ← Embed(WA,WM,K emb).

Similarly, one can define several types of detection/extraction oracles, de-
pending on the secret oracle initialisation information and the form of queries
answered by the detection oracle: the first type of detection oracle Ot

Detect,K det

is initialised with a secret detection key K det and answers queries of the form
(W ′A,WMA), whereas the second type Ot

Detect,K det,WM is initialised with a fixed
detection key K det and a fixed secret watermark WM and answers queries of the
form (W ′A). In asymmetric watermarking schemes, as defined above, the ad-
versary is supposed to know the public detection key, which provides him with
”unlimited access to an detection oracle”. Therefore, to model active attacks
against asymmetric watermarking schemes, one only has to consider embed-
ding oracles. We denote an adversary, having oracle access to a set of oracles
O1, . . . ,On as AO1,...,On . Finally, we define a symmetric watermarking scheme to
be computationally robust against active adversaries with access to an embedding
and detection oracle, iff

∀WM ∈ WM, ∀ prob. polynomial-time attacker A
Prob[Detect(W ′′,WM,W ,K wm) =⊥ ∧ sim(W ′′,W ′) =  ::

W ←W ;
K wm ← GenKeyWM(par wmsec);
W ′ ← Embed(W ,WM,K wm);
W ′′ ← AOt

Embed,Kemb,WM ,Ot
Detect,Kdet,WM (W ′, par wmsec); ]

<∞ 1/poly(par wmsec)

6 Conclusion and Cautionary Note

Formal definitions for security properties of watermarking schemes are cru-
cial when proving the security of multimedia applications that combine cryp-
tographic methods with watermarking. Existing literature on formal security
definitions for watermarking is not extensive and still has conceptual short-
comings. In this paper, we discussed these shortcomings as well as the subtle
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aspects/parameters that existing proposals do not cover. We proposed a formal
framework and definitions for watermarking schemes that incorporate these as-
pects/parameters and can be used as a suitable abstraction for security proofs
of multimedia security schemes.

Finally, we stress that currently no watermarking scheme is known to fulfil
the computational robustness definitions as defined above. Thus, the robustness
assumption is a stronger assumption compared to standard number-theoretical
assumptions in cryptography: Number-theoretical assumptions have shown their
reasonability, since no efficient algorithms solving them have been found for a
long period of time. In contrast, any watermarking scheme proposed so far and
claimed to be robust fails to fulfil the computational robustness definition. This
leaves us with a gap between our abstract model of robust watermarking schemes
and the watermarking schemes available today. Nevertheless our formal defini-
tions provide an appropriate abstraction (similar to the marking assumption in
fingerprinting [19]) which can be used to design secure applications, such as
dispute-resolving protocols.19

On the other hand, based on our work, provably robust watermarking schemes
may be developed as follows: First, we have to define sim() for the respective
data type, which, based on the current understanding of the HVS, is a hard task
for multimedia data. However, for data such as software, having a well-defined
formal semantics, it seems to be feasible to come up with a suitable definition.
Second, we have to choose a suitable computationally hard problem on the re-
spective data type. For software, such problems are well-known for a long time
[20] and also considered in the design of software obfuscation. Third, we have to
define the watermarking scheme, such that embedding preserves similarity and
such that an attacker, being able to break the scheme’s robustness, can be used
to efficiently and accurately solve a hard problem (proof by reduction).
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Abstract. In this paper we introduce a new tool that hides whether
or not an “encryption” algorithm actually performs encryption or not.
We call this a computational questionable encryption scheme and show
how it can be used to devise mobile agents that conceal whether they
encrypt or delete data prior to data transmission. Such agents may be
useful in the honest-but-curious setting in which the author of the agent
wishes to keep confidential whether or not the agent collects and trans-
mits data while in transit. Informally, a questionable encryption scheme
adds a “fake” key generation algorithm to a PKCS. The key generation
algorithms of a computational questionable encryption scheme produce
a “public key” y and a poly-sized witness x. Depending on which of the
two key generation algorithms the user decides to use, y is real or fake.
When the cipher is supplied with a real y then it produces decipherable
ciphertexts and x proves this. When the cipher is supplied with a fake
y then it produces computationally indecipherable ciphertexts (with re-
spect to everyone) and x proves this. We call the former a witness of
encryption and the latter a witness of non-encryption. We formally de-
fine the notion of a computational questionable encryption scheme and
present a construction for it based on the ElGamal cryptosystem. We
prove the security based on the Decision Diffie-Hellman problem and
a reasonable new intractability assumption in the random oracle model.
Finally, we show how a computational questionable encryption scheme is
related yet different from all-or-nothing disclosure of secrets and related
notions.

1 Introduction

The theory of information hiding is broad in scope and encompasses everything
from steganography, to subliminal channels in cryptosystems, to covert channels
in operating systems. In this paper we expand the scope of information hiding
even further by considering how to hide the true nature of a particular class of
functions that execute in the honest-but-curious model. In this model, functions
are executed by an agent (e.g., mobile agent) in an environment that can be
trusted not to interfere with the operation of the function (i.e., trusted not to
introduce faults) but that is curious and may seek to log and analyze the agent
as it executes.

J. Camenisch et al. (Eds.): IH 2006, LNCS 4437, pp. 161–171, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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In particular we present a new scheme that hides whether or not a function
(that appears to be an asymmetric encryption function) actually encrypts plain-
text or effectively deletes the plaintext. This is called a questionable encryption
scheme and it can be used to make mobile agents more robust in the aforemen-
tioned threat model.

To motivate the introduction of this scheme, consider the following scenario.
A mobile agent is found that passes a value that appears to be a public key to an
asymmetric encryption function (e.g., in an OS API call). It also passes plaintext
that is taken from the host system to the encryption function. The agent trans-
mits the resulting ciphertext outside the host system. Without understanding
the subtleties of public key cryptography it may be easy to jump to the con-
clusion that encryption is taking place and hence that sensitive information is
being sent outside of the host computer system.

This assumption is inherently flawed since in some cases the requisite algebraic
structure of the public key may be incorrect, or perhaps (e.g., in ElGamal [9]) the
public key was sampled randomly without knowing the pre-image. An improperly
generated public key can effectively erase plaintext data rather than encrypt it.
This is one of the properties that a questionable encryption scheme provides.

Questionable encryptions enable a two pronged application. The user deploys
numerous mobile agents, each with a unique “public key.” Some of the agents
contain a real public key and the rest contain a fake public key. Only the agents
with the real public keys will transmit data that is gathered from the host system.
The rest will effectively delete the plaintext prior to transmission although they
will appear to asymmetrically encrypt data (deletion occurs since decryption is
provably intractable in a computational questionable encryption scheme). The
user later reveals witnesses of non-encryption at his or her discretion.

This application ensures that no particular agent (that has not had it’s witness
revealed) can be known for certain to actually transmit data outside the host.
We argue that this provides a useful level of robustness in the honest-but-curious
threat model for agents that collect and transmit data.

The contributions of this paper are the following:

1. We provide the first formal and complete definition of a computational ques-
tionable encryption scheme.

2. A construction is given based on ElGamal and we prove that it is secure
based on the Decision Diffie-Hellman problem and a reasonable intractability
assumption.

3. We show how questionable encryptions differ from all-or-nothing disclosure,
(1, 2)-oblivious transfer, and deniable encryptions (we relate questionable
encryptions to these primitives in Appendix A).

4. We describe an application of computational questionable encryptions that
helps hide the true functionality of mobile agents that collect host data.

We implemented our computational questionable encryption scheme and de-
scribe how we did so in Section 6. We show that the portion of the implemen-
tation that needs to reside in the agent is trivial to implement using Windows
Cryptographic API calls (built-in DLL calls).
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2 Background

The notion of a questionable encryption scheme was informally presented in
subsection 6.2.2 of [20]. However, no formal definitions were given and no proofs
were provided. The work presents a heuristic computational questionable encryp-
tion scheme (based on equation 1) and a perfect questionable encryption scheme
based on Goldwasser-Micali. However, the distinction was not made between
perfect questionable encryptions and computational questionable encryptions.

The original computational questionable encryption heuristic is based on the
problem of computing a triple (x, y, s) satisfying,

gx mod p = y = H(s) and y ∈ G (1)

Here G is the group generated by g and H : {0, 1}∗ → G is a random function.
It is stated that s is a large randomly chosen seed and the actual set from which
s is drawn is not specified. In this paper we present the formal definition of a
computational questionable encryption scheme, present a construction with no
ambiguities in the “seed,” and prove that it is secure.

The first formal definition of a questionable encryption scheme was presented
in [21]. This formally defined the notion of a perfect questionable encryption
scheme. A perfect questionable encryption scheme is one in which indecipher-
ability holds unconditionally while indistinguishability of real public keys vs.
fake public keys relies on a computational intractability assumption. The con-
struction utilizes the Paillier public key cryptosystem.

3 Definition

We now present the formal definition of a computational questionable encryption
scheme. For review, the following definition is taken from [10].

Definition 1. v is negligible if for every constant c ≥ 0 there exists an integer
kc such that v(k) < 1

kc for all k ≥ kc.

Thus, ν is negligible in k if it vanishes faster than any inverse polynomial in k.
Let k be a security parameter. Define G0(·) to be a probabilistic poly-time

algorithm that on input 1k outputs a pair of values (x, y). Similarly, define G1(·)
to be a probabilistic poly-time algorithm that on input 1k outputs a pair of values
(x, y). The generator G1 outputs a private key x and corresponding public key
y for the encryption algorithm E and corresponding decryption algorithm D.
Let S1,k denote the set of possible outputs of G1(1k). Similarly, let S0,k denote
the set of possible outputs of G0(1k). Let M be the message space for E. Let
c = E(m, y) denote the encryption of m ∈ M under y and let m = D(c, x)
denote the corresponding decryption operation.

We require that (G1, E, D) be a correct (and hence secure) public key cryp-
tosystem. The security requirements for (G1, E, D) can be any well-accepted
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notion of security, e.g. semantic security against plaintext attacks [13], security
against adaptive chosen ciphertext attacks, and so on. In the definition below,
we require that semantic security against plaintext attacks holds (so this is our
definition of secure). We show in Section 5 that our construction easily extends
to provide chosen ciphertext security.

Definition 2. Let (F, G0, G1, E, D) be a public 5-tuple, let (G1, E, D) be a se-
cure asymmetric cryptosystem, let G0 be an efficient key generation algorithm,
and let F be an efficiently computable predicate. If the following properties hold,

(1) [indecipherability] if (x, y) ∈R S0,k is public then E(·, y) is semantically se-
cure against plaintext attacks,

and,
(2) [indistinguishability] the ensemble consisting of fake public keys y that are
generated according to G0(1k) is unconditionally indistinguishable from the en-
semble consisting of real public keys y generated according to G1(1k),

and,
(3) [binding] it is intractable to find a 3-tuple (x, x′, y) such that (x′, y) ∈ S0,k

and (x, y) ∈ S1,k,
and,

(4) [verifiability] for all (x, y) ∈ S0,k

⋃
S1,k, F (x, y) = b⇒ (x, y) ∈ Sb,k,

then (F, G0, G1, E, D) is a computational questionable encryption scheme.

Property (1) needs a bit of explanation. In our ElGamal instantiation, when
(x, y) ∈ S1,k, x is the ElGamal private key and witness of encryption. Property
(1) indicates that for (x, y) ∈ S0,k (i.e., y is fake), encryption is secure even if x
is public. This is intentional since we want encryptions to be indecipherable by
everyone in this case. We call it a computational questionable encryption scheme
since indecipherability holds under an intractability assumption.

Properties 3 and 4 imply that it is intractable for a probabilistic polynomial
time algorithm to find a y, a witness of encryption x for y, and a witness of
non-encryption x′ for y. In other words, these properties imply that it is hard to
find (x, x′, y) such that F (x, y) = 1 and F (x′, y) = 0. Therefore, the user that
generates a single public key must “commit” to either a real or fake y.

Since F and y are public, a user who generates (x, y) need only disclose x
to reveal his or her commitment. In other words, x proves that the plaintext is
effectively erased or that messages are securely encrypted, whichever is the case.

The indistinguishability requirement can be weakened. However, we have no
need to weaken it in this paper. A satisfactory definition can be devised in which
the ensemble for fake public keys is only polynomially indistinguishable from the
ensemble corresponding to real public keys.

4 A Construction Based on ElGamal

We will now present a construction that is based on ElGamal. Let p be a large
prime and let q be a large prime that divides p − 1 evenly. When p is the safe



Hiding Information Hiding 165

prime p = 2q + 1 then the group parameter is p = p. When p is of the form
p = aq + 1 with a > 2 then the group parameter is p = (p, q).

Let k = |p| be a security parameter. Let g be an element of ZZ∗
p that has order

q. Therefore, g generates the subgroup Gq of ZZ∗
p having prime order q.

The parameters (p, g) are public and are agreed upon by all. Everyone that
participates in the use of the questionable encryption scheme must agree that
(p, g) provides a suitable setting for the DDH problem. This includes skeptical
verifiers that employ the verification function F . For instance, p and q can be
generated using the DSA parameter generation method in FIPS PUB 186-2.
Alternatively, well-accepted pre-defined values for (p, g) can be used, etc.

Let T : {0, 1}∗ → {0, 1}|p| be a random function. The function T can be
constructed using a random oracle. We define the random function H that uses
T as follows.

H(s):
1. set i = 1
2. format i as a binary string is
3. compute w = T (s || is)
4. if (w /∈ ZZ∗

p) then set i = i + 1 and goto step 2
5. compute t = w

p−1
q mod p

6. if (t = 1) then set i = i + 1 and goto step 2
7. output t and halt

G0(1k):
1. choose x ∈R ZZ∗

q

2. format p and g as |p|-bit binary strings ps and gs, respectively
3. compute h = H(ps || gs) and set y = hx mod p
4. output (x, y) and halt

G1(1k):
1. choose x ∈R ZZ∗

q

2. compute y = gx mod p
3. output (x, y) and halt

In ElGamal, as we define it, the message space is Gq. When p is a safe prime
there is an easy way to encode messages into the set of quadratic residues and
later decode them. We need only shrink the actual message space to do this.

To encrypt based on ElGamal we select t ∈R ZZ∗
q and compute (a, b) =

(gt, ytm) for message m ∈ Gq. The public key is y = gx mod p and the pri-
vate key is x. To decrypt we compute m = ba−x mod p.

In the function F , we let −1 indicate failure. This value is not part of a
predicate per se, since the expected output of F is 0 or 1. However, the use of
−1 reflects what should be in a proper implementation.

F (x, y):
1. if (x /∈ ZZ∗

q or y /∈ Gq) then output −1 and halt
2. if y = gx mod p then output 1 and halt
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3. format p and g as |p|-bit binary strings ps and gs, respectively
4. compute h = H(ps || gs)
5. if y = hx mod p then output 0 and halt
6. output −1 and halt

Note that with negligible probability H will end up returning a value h that
equals g. When this happens Property 3 of Definition 2 breaks down. To see
this note that by choosing x ∈R ZZ∗

q and taking x′ = x it will be the case that
y = gx = hx′

. In this rare circumstance a predicate F would be correct in out-
putting 0 or 1. Note that this failure occurs with a probability that is negligible.
Furthermore, this failure is perfectly detectable. It is publicly verifiable whether
or not g = H(ps || gs). Consequently it is trivial to rule out the occurrence of
failure.

From the construction of F it is easy to see that F (x, y) = b ⇒ (x, y) ∈ Sb,k.
It follows that Property 4 of Definition 2 holds.

It is straightforward to adapt this approach to other discrete-logarithm based
cryptosystems. For example, Cramer-Shoup can be used as a basis for compu-
tational questionable encryptions [7].

For certain applications questionable encryptions can be used in lieu of oblivi-
ous transfer. This has some benefits over certain oblivious transfer methods. We
leave such applications open to investigation.

5 Security

First we review the Decision Diffie-Hellman problem (DDH). Let IG0 be an
instance generator that on input k (in unary) generates (p, g). This pair of values
is as defined in Section 4.

Definition 3. A DDH algorithm A0 for (p, g) is a probabilistic polynomial time
(in k) algorithm satisfying, for some fixed α > 0 and sufficiently large k:

|Pr[A0(p, g, ga, gb, gab) = “true”] −
Pr[A0(p, g, ga, gb, gc) = “true”]| > 1

kα

The probability is over the random choice of (p, g) according to the distribution
induced by IG0(k), the random choice of a, b, c in ZZ∗

q, and the bits used by A0.

The Decision Diffie-Hellman assumption is that no such A0 exists.
It has been shown that an encryption scheme that is secure in the sense of

message indistinguishability is semantically secure [13]. The other direction was
proven in [16] and was also addressed by Goldreich [11,12].

Tsiounis and Yung showed that DDH is equivalent with the security in the
sense of message indistinguishability of ElGamal. In the non-uniform model this
is equivalent to semantic security. These results are summarized in the following
theorems from [18].
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Theorem 1. If the ElGamal encryption scheme is not secure in the sense of
indistinguishability, then there exists a probabilistic polynomial time Turing ma-
chine that solves DDH with overwhelming probability.

Theorem 2. If there exists an oracle O which solves the DDH problem with
probability non-negligibly better than random guessing then the ElGamal encryp-
tion scheme is not secure in the sense of indistinguishability.

Since T is a random function it follows from the construction of H that h =
gα = H(ps || gs) for some α ∈R ZZ∗

q . So, G0 outputs (x′, y) where y = hx′
= gαx′

mod p and x′ ∈R ZZ∗
q . Taking x = αx′ mod q it follows that (x, y) is a uniformly

random ElGamal key pair (i.e., in accordance with the output of G1). Message
indistinguishability under y when αx′ is private immediately follows.

However, note that x′ is public. Since α is uniform in ZZ∗
q and is private it

follows that x = αx′ is private. We have therefore shown the following.

Theorem 3. Let (p, g, H(·), x′) be public where x′ ∈R ZZ∗
q and define y =

H(ps || gs)x′
mod p. If the DDH assumption holds then ElGamal encryption

using the public key (y, g, p) is semantically secure against plaintext attacks.

Theorem 3 implies that under the DDH assumption it is intractable for everyone
to decrypt ciphertexts computed using the “fake” y. Theorem 3 proves that
Property 1 of Definition 2 holds.

By definition, the fake public key y equals H(ps || gs)x mod p. By construction
H(ps || gs) generates Gq. Since x ∈R ZZ∗

q it follows that the fake y is uniform in
Gq. Property 2 of Definition 2 therefore immediately follows.

Assumption 1. Given (p, g, H(·)) it is computationally intractable to find a
pair (x, x′) satisfying gx = H(ps || gs)x′

mod p.

Property 3 of the definition of a computational questionable encryption scheme
follows from Assumption 1. We have shown the following theorem.

Theorem 4. If the DDH assumption holds and Assumption 1 holds then the
5-tuple (F, G0, G1, E, D) is a computational questionable encryption scheme.

Finally, we remark that it is straightforward to adapt this approach to build
a computational questionable encryption scheme based on Cramer-Shoup [7].
We briefly sketch how to do so here. Cramer-Shoup utilizes two generators g1

and g2. Computational indecipherability is achieved via the use of the verifiably
fake generators h1 = H(ps || g1,s || g2,s || 01), h2 = H(ps || g1,s || g2,s || 10),
and h3 = H(ps || g1,s || g2,s || 11). Here the values ps, g1,s, and g2,s are p, g1,
and g2, respectively, formatted as bit strings of length |p|-bits. The witness of
non-encryption is a 3-tuple (x1, x2, x3) ∈R ZZ∗

q ×ZZ∗
q ×ZZ∗

q . The fake public key
is (g1, g2, c, d, h) = (g1, g2, h

x1
1 , hx2

2 , hx3
3 ). So, chosen ciphertext security can be

achieved if needed.
An interesting aspect of questionable encryptions is the following. Cramer-

Shoup is message-aware. So the receiver will not accept a message that the sender
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does not know. However, it is not trapdoor-aware. This could pose problems in
practice since a questionable encryption scheme lets message recipients repudiate
the receipt of plaintexts.

6 Implementation

We implemented the computational questionable encryption scheme. It is slightly
modified since it uses Diffie-Hellman [8] instead of ElGamal. The encryption and
decryption code uses the Microsoft DSS/DH Cryptographic Service Provider
that is present on the Windows 2000 and Windows XP operating systems. The
key generation code and the code for the function F utilizes OpenSSL. The
implementation uses a safe prime p that is 1024-bits in length.

The Minimalist GNU for Windows (MinGW) development environment was
employed to compile the experimental program. The encryption code that in
theory would reside in a malware program is small and trivial to implement.
This code makes the following Windows API calls to generate key material:
CryptGenKey and CryptGenRandom. It also utilizes the following calls:

CryptAcquireContext, CryptExportKey, CryptImportKey, CryptEncrypt,
CryptDestroyKey, and CryptSetKeyParam.

This shows that computational questionable encryptions are easy to utilize in
MS Windows programs.

7 Application

An application of the questionable encryption scheme is as follows. An attacker
decides to carry out a malware attack. He either generates a real public key or
fake public key. The resulting public key y is placed in a malware program that
is then deployed. The polynomial-sized witness x is kept secret.

The malware program collects private host data in a clandestine fashion and
then questionably encrypts it. The resulting ciphertexts are then steganograph-
ically encoded into multimedia files (perhaps using public key steganography)
and are then anonymously broadcast (e.g., using a mix network to conceal the
location of the malware) for reconnaissance by the attacker.1

The attacker reads the covert broadcast like everyone else. If the public key is
real then the attacker deciphers the broadcast (using a trial-and-error approach
if a secure covert channel is in use). If the public key is real then only the attacker
can decipher the broadcast because only the attacker knows the needed private
decryption key. If the public key is fake then the attacker makes no attempt to
decipher the broadcast since it is intractable to do so.

Suppose that the malware is fully reverse-engineered and analyzed. Suppose
that core dumps are taken at every stage of its execution. Suppose that all
1 Except for the questionable encryption stage, this attack is based on the notion of

Deniable Password Snatching [19].
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packets that it sends out are recorded. All of this information combined still
does not prove that any information has been stolen whatsoever since the public
key could be fake (the witness of encryption is needed).

This scenario has the logical consequence that it is intractable to prove or
disprove the occurrence of data theft via malware that uses questionable en-
cryptions. This is important since the specific charge of theft may be separate
and distinct from unlawful computer access and/or use. However, the attack
thus far described gives no rational explanation of why anyone would carry out
such an attack using a fake public key.

The following more elaborate attack addresses this issue. A questionable en-
cryption scheme is made available as an open-source package. Numerous attack-
ers independently design and release malware that transmit plaintext through
a questionable encryption filter. Some malware programs contain a real public
key, others contain a fake public key.

On occasion a malware author anonymously publishes the witness of non-
encryption x for his or her malware program. Consider one such occasion. Sup-
pose that the fake public key y has been extracted from the malware and has
been made public (for example, by a universally trusted antivirus firm). Using
the predicate F , it is then publicly verifiable that F (x, y) = 0. This establishes
precedent that spoofing is commonplace among malware that questionably en-
crypts data and then transmits the resulting “ciphertext.” So, a malware writer
that is accused of stealing data using a questionable encryption scheme can re-
main silent and leave open the possibility that the public key in the malware
program is fake. The fallback is the historical use of fake public keys in malware.

A prosecutor that has insufficient evidence to prove that a malware program
was used to steal data may resort to arguing that if the public key is flawed (i.e.,
fake) then it was stupidity rather than cupidity on the part of the accused that
prevented the theft from succeeding. In other words, the accused may be charged
with attempted theft. However, the widely adopted open-source questionable
encryption package, public literature on the subject, and cases in which malware
was retroactively proven to not steal data directly counters this argument; the
accused may have only intended to spoof.

It is therefore perfectly logical for an attacker to use a questionable encryption
scheme while having no intentions of stealing data. We also remark that large-
scale coordinated malware attacks are a modern reality, in the form of so-called
“botnets.”

8 Conclusion

We presented a tool called a computational questionable encryption scheme that
hides whether or not an asymmetric encryption function encrypts data or not.
An instantiation was given based on ElGamal. The security was proven based on
the Decision Diffie-Hellman problem and a reasonable intractability assumption.
A spoofing application was shown that enables the user to cast doubt on whether
or not an agent encrypts or effectively erases plaintext prior to transmission of
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the ciphertext. It was shown that computational questionable encryptions are
related yet distinct from various forms of oblivious transfer.
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A Related Privacy Primitives

The use of witnesses in our scheme is different but related to the use of witnesses
in deniable encryptions [6]. In our approach, Bob has a witness that the value is
an encryption or non-encryption under an asymmetric encryption function. In
a deniable encryption, Bob can show a witness for each possible interpretation
of the cleartext. Another difference is in the operational setting. In a deniable
encryption, Alice and Bob both know a secret key that enables Bob to identify
the correct cleartext among the possible cleartext and deniability is a stronger
requirement that enables the receiver to claim any message to an observer. There-
fore, it requires specialized implementations as well as less efficient ones and it
is basically a symmetric key encryption due to the shared key. In our scheme
Alice only knows the public key of Bob as well as her own secret cleartexts.

(1,2)-oblivious transfer is covered in [4,17,3,14,15]. In (1,2)-oblivious transfer,
Bob has no control over which of the messages he receives, but knows that he
will receive one. A questionable encryption (q.e.) scheme implements a form of
oblivious transfer wherein the message recipient has total control over whether
or not the message is received. These variants are called all-or-nothing disclosure
of secrets [1,2]. This is the same as in a computational questionable encryption,
so a q.e. scheme can be viewed as a variation on all-or-nothing disclosure.

However, a major difference between the two notions is as follows. A compu-
tational q.e. scheme is a cipher that can be used repeatedly and independently
to many snippets of data, not data defined in the scope of a single protocol as
is the case with all-or-nothing disclosure. In a computational q.e. scheme the
sender only needs to obtain the public key of the receiver once, and from then
on messages (i.e., “ciphertexts”) are sent in a one-way fashion from the sender to
the receiver in an all-or-nothing disclosure. A computational q.e. scheme allows
Bob to prove whether or not everything was received or nothing was received by
revealing the associated witness.
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Abstract. We present an algorithm for embedding robust reversible
watermarks into CAD models that are represented by a collection of
NURBS (Non Uniform Rational B-Spline) surface patches.

Changes to the geometry of the surface representation are introduced
by moving one control point per surface patch. This approach provides
robustness against converting the model into the mesh representation.
The information needed to restore the original control point location is
added to the knot vectors of the patch, thus enabling recovery of the
original model from the watermarked NURBS representation.

We exploit the properties of the NURBS representation for preserv-
ing the continuity between adjacent patches. Continuity is the major
criterion of designers for assessing the quality of surface models.

1 Introduction

The algorithm presented in this paper was designed to support a scenario that
we refer to as engineering scenario. It deals with valuable 3D data that are
created by highly skilled specialists in CAD-based production chains. Automo-
biles, ships, aircrafts and trains are examples for such models. Usually, a single
digital master model is produced, which is the basis for tool creation and the
reference for control measurements during production. In contrast to models
designed for applications such as games or web sites with 3D support, high
quality CAD surface models are represented as sets of parametric curves and
surface patches, which are mathematically described by Non-Uniform Rational
B-Splines (NURBS).

In general, the meaning of design information contained in a high quality
CAD model is twofold: the functionality, i.e. the technical know-how and inno-
vation represented by the model, and the aesthetic aspect of its shape. In the
latter scenario, even slight modifications of the model may not be acceptable
when the free form surface represented by the model must be reprocessed or is
actually manufactured, e.g. by a milling machine. To cope with this restriction,
the modification of the model introduced by the watermark must be reversible
so that the master model can be restored.

J. Camenisch et al. (Eds.): IH 2006, LNCS 4437, pp. 172–187, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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We present a watermarking scheme that preserves the important properties
of the shape, in particular the continuity at the boundaries of surface patches.
The watermark can be detected and reversed without reference to the original
in the NURBS representation of the model. It can be verified in versions of the
model that have been transformed into a polygonal mesh. The polygonization
of NURBS surfaces is usually denoted as tesselation. Here, verification means
that we can decide if a given watermark was embedded: this approach is often
referred to as zero-bit or one-bit watermark in the literature; we prefer the term
one-bit watermark in this paper. The security of our reversible watermarking
scheme relies on knowledge about the locations of specific points that define the
geometry of the NURBS surface, the control points, as well as the location of
specific points in the parameter space of the surface, the knots.

The paper is organized as follows. In Sect. 2 we give a very short review of
NURBS-based CAD models and the concept of trimmed surfaces. In Sect. 3
we state the problem and briefly describe the requirements of the engineering
scenario. Section 4 reviews previous work on digital watermarking for models in
parametric representation and puts our approach in context. Section 5 presents
an overview of our watermarking scheme. Section 6 gives a detailed description
of the embedding algorithm as well as the retrieval and reversal algorithm that
operates on the NURBS representation. Section 7 details how we cope with
preserving continuity between adjacent surface patches. In Sect. 8 we give a
short description of verifying a watermark in tesselated versions of the model.
Finally, we draw conclusions and look beyond the current status to questions
not answered so far.

The algorithm presented in Sect. 6 operates on a single surface patch to em-
bed or retrieve one information bit. In order to handle a complete watermark
message, a framework for accessing and processing all patches of the model is
required. A complete discussion of the framework is out of the scope of this pa-
per, thus, in Sect. 7 we elaborate on the framework component that preserves
continuity conditions. Some aspects of retrieving a complete watermark message
are discussed in Sect. 8.

2 NURBS-Based CAD Models

In contrast to polygonal meshes, NURBS-based models are exact mathematical
descriptions of the surface of objects. In general, a NURBS-based surface model
is composed of NURBS curves and surface patches. Here we give a very short
review of the definitions in the notation used by Piegl and Tiller [1].

A NURBS curve C(u) is a piecewise polynomial curve defined by control
points {Pi} that form a control polygon, the weights {wi}, and the pth degree
B-Spline basis functions {Ni,p(u)} defined on the nonperiodic and nonuniform
knot vector U = (u0, ..., um). The knot vector represents the parameter values
of the endpoints of the segments of the curve, the knots, and is a nondecreasing
sequence of real numbers. A NURBS curve C(u) is given by
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C(u) =
∑n

i=0 Ni,p(u)wiPi∑n
i=0 Ni,p(u)wi

(1)

where m = n + p + 1. Each control point Pi is assigned a specific weight wi.
A NURBS tensor product NURBS surface S(u, v) is defined by the bidi-

rectional control point net {Pi,j}, the corresponding weights {wi,j} and the
nonrational B-spline basis functions {Ni,p(u)} and {Nj,q(v)} defined on the non-
periodic and nonuniform knot vectors U = (u0, ..., ur) and V = (v0, ..., vs):

S(u, v) =

∑n
i=0

∑m
j=0 Ni,p(u)Nj,q(v)wi,jPi,j∑n

i=0

∑m
j=0 Ni,p(u)Nj,q(v)

(2)

where r = n + p + 1 and s = m + q + 1. Each control point Pi,j is assigned a
specific weight wi,j .

Trimmed NURBS Surfaces. Trimmed surface patches are used for more elab-
orate models, e.g. for representing holes in patches or to blend surface patches
that form a larger surface area. A trimmed surface patch consists of a tensor
product NURBS surface and a set of ordered and oriented trimming NURBS
curves that are defined in the parameter space of the surface patch. The curves
exclude parts of the surface that are not considered for the shape of the object.
In the following, both untrimmed and trimmed patches are simply referred to
as “patches” if the discussion is valid for both. Otherwise, the “trimmed” and
“untrimmed” property of patches is explicitly stated.

3 Requirements Analysis

Here we briefly summarize the workflow and properties of the scenario we had
in mind when designing our reversible watermarking scheme.

Model Creation. The final digital model is the result of a complex and time-
consuming construction and design process. The model may represent an auto-
mobile or an airplane, but also consumer goods such as a household article. The
final construction model (the master) is the basis for all production steps that
follow, such as tool design and construction.

Quality Preservation. The watermark must preserve the design quality of the
model. In particular, continuity conditions between adjacent patches of the
model must not be changed.

Delivery and Tracing. The model, or parts of it, are delivered to divisions,
suppliers or contractors as NURBS-based 3D data sets. Before delivery of the
model, a watermark that identifies the point of delivery (an active fingerprint)
is embedded into the model. If a copy of the model is traced outside of the
permitted workflow, the watermark can be detected and the point of leakage
can be identified.
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Model Representations. The copy may be accessible in different representations.
We cover the original NURBS representation and tesselated versions. The water-
mark should be detectable and reversible in the NURBS representation. Robust-
ness of the watermark against translation and rotation of the model is required
to be able to integrate the marked NURBS model into a more complex model1.
For example, a part of a car can be modeled by one designer and then be merged
with parts created by other designers. Watermark verification capabilities in 3D
polygon meshes are required, as the tesselation of NURBS models is one of the
most common processing operations.

4 Previous Work

Digital watermarks for 3D polygonal models have attracted more and more at-
tention since the seminal work of Ohbuchi, Masuda and Aono [2]. They present
fundamental algorithms for embedding information into 3D polygonal models
that either manipulate the geometry or the connectivity of the model. Currently
there are only few publications available that deal with digital watermarking
and related techniques for models in parametric representation.

Ohbuchi, Masuda and Aono [3] present a watermarking algorithm that exactly
preserves the geometric shape of the watermarked NURBS curve or surface,
respectively. The basic idea behind their embedding scheme is that a NURBS
curve or surface can be reparametrized without altering its geometric shape. The
watermark itself is encoded as modification of coefficients of a rational linear
function, which is used to reparametrize the curve or surface.

Fornaro and Sanna [4] introduce a marking scheme for Constructive Solid
Geometry (CSG) models that is intended for model authentication purposes.
The additional information consists of a hash value of parts of the model, which
is encrypted with the private key of the provider of the model and is stored either
as comment or as additional item in the CSG file. Even though the method
is denoted as watermarking by its authors, it must be classified as a labeling
method. The additional information can be easily separated from the original
data, and the integration process depends on the file format that is used for
storing the CSG data.

Ko et al. [5] describe a technique for estimating the similarity of two NURBS
objects, based on 3 different test criteria. The first test relies on the Euclidian
distance of the surfaces, whereas the second test compares the principal curva-
tures of the surfaces. The third test searches for generic umbilical points of both
surfaces and compares the umbilics. The proposed features, such as principal
directions and umbilics, provide a robust fingerprint of the NURBS data. The
method of Ko et al. does not manipulate the original data and can be classified
as a fingerprint algorithm for NURBS objects.

1 In some cases, also robustness against uniform scaling may be required. However,
CAD models are usually created according to strict specifications regarding dimen-
sioning.
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Nagahashi, Mitsuhashi and Mooroka [6] present a method for embedding dig-
ital watermarks into a Bézier polynomial patch by subdiving it into two patches.
Their approach can be interpreted as a reparametrization of the patch and does
preserve the shape of the patch; it shows properties similar to the method
propsed by Ohbuchi, Masuda and Aono [3] for NURBS data. Moreover, it is
easy to recover the original patch from the two subpatches. To overcome this
particular weakness, the authors propose to change the boundary curves of the
patch, so that the original patch can not be restored from the watermarked ver-
sion. As pointed out by the authors, this can cause topological changes to the
model, which may be not acceptable.

Some authors propose applying well-known watermarking methods from the
image domain to projections of parameteric models and propagating the changes
back into the original model to create a watermarked version of the original
model. Lee, Cho and Lee [7] derive a so-called virtual model from the original
NURBS model by setting all control points weights to a constant value. The
virtual model is sampled at specific points in parameter space, and the coordi-
nates in 3D space are interpreted as intensity values of 3 so-called virtual images
(the x, y and z coordinate, respectively) at the sampled grid points in the (u, v)
parameter space. These images are watermarked using common methods for 2D
intensity data and the changes are propagated back into the model. Mitrea, Za-
haria and Prêteux [8] sample 3 virtual images directly from the control point
coordinates. The virtual images undergo a Discrete Cosine Transform (DCT);
a spread spectrum based watermark is embedded in the DCT domain and the
changes are propagated back into the model.

Our approach differs from the watermarking algorithms for NURBS data pub-
lished so far in important aspects. We change the shape of the model to enable
watermark verification in tesselated versions of the model. The modifications
introduced by our algorithm are reversible in the NURBS representation, such
that the original shape can be perfectly restored if required in the application
scenario. As the embedding stage of the algorithm works directly on the NURBS
representation, we have immediate and mathematically exact control over the
impact on the quality of the model and we can maintain the original continuity
between patch boundaries.

5 Algorithm Overview

We study surface models that are composed of trimmed and untrimmed NURBS
surface patches. Without loss of generality, many of the properties of the algo-
rithm can be demonstrated with NURBS curves. We will use the term embedding
primitive to refer either to a curve or a surface patch henceforth. The basic prin-
ciple of our method is to change the geometry of an embedding primitive by
moving one control point, and to encode the information to move the control
point back to its original position within the same primitive. This is achieved
without further changing the shape of the patch by inserting additional knots
into the knot vectors.
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The changes introduced by modifying a single control point will be also de-
noted as robust feature, whereas the changes to the knot vectors of the patch
will be denoted as semi-fragile feature. In the context of this paper, a feature is
defined as the combination of one robust feature and the corresponding semi-
fragile feature. One feature encodes exactly one of two states, i.e. one bit of
information, in a reversible way. From a different perspective, this approach can
be seen as embedding the same watermark message twice into the model. First,
a robust one-bit watermark is encoded by changing the geometry of a number of
patches, next, a semi-fragile N-bit watermark is encoded by modifying the knot
vectors of the same patches.

5.1 Embedding

The surface patches that build up the model are processed in a well-defined
order. As there is no natural order of patches, an ordering scheme must be
imposed on the model. We do not cover this issue here, but make the assumption
that an appropriate scheme exists, which defines the sequence for accessing the
patches2. After the ordering phase, each patch can be unambiguously identified
and accessed by an index value.

In the second phase of the embedding procedure the algorithm checks each
patch if it is suitable for watermark embedding3. Then it modifies the valid
patches by moving control points and inserting new knots into the knot vectors.

The control point modifications lead to modifications of the geometry (the
robust watermark), whereas the knot insertion step (the semi-fragile watermark)
is used to invisibly4 encode the information required to invert the control point
modifications. Invalid patches are marked using a specific version of the knot
insertion step, such that they can efficiently be identified during watermark
retrieval. To restrict access to the embedded information, the selection of control
points and parameter values for knot insertion can be based on pseudo-random
numbers derived from a secret key (c.f. section 6.1).

5.2 Retrieval and Recovery of the Original

The retrieval procedure depends on the representation of the model to be an-
alyzed. For the sake of simplicity this model will be denoted as copy, whereas
the original model will be denoted as original henceforth. If the copy is available
in NURBS representation, the blind detector for the semi-fragile watermark as
detailed in section 6.2 can be applied. The information assembled by the blind
detector can optionally be used to recover the original from the copy.

In the case of tesselated models we utilize a type of detector that was proposed
by Bendens [10] and will be denoted as model-verifier henceforth. From known

2 A straightforward implementation could sort the patches by the length of their
bounding box diagonal.

3 The identification of valid surface patches is discussed in detail in section 7.
4 Knot insertion does not modify the geometry of curves and surfaces[9,1].
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feature locations (the original control points in our case), rays are cast towards
the expected modified surface and the intersection point is determined. The
number of correct intersections is analyzed (see section 8 for details).

6 Core Algorithm

This section details the algorithm for embedding and detecting one feature5 in
a single NURBS surface patch and how the modifications can be reversed from
the information contained in the copy. We introduce the algorithm step by step
as “literate code” with some additional discussion where neccessary.

Without loss of generality, the principles of the surface modification methods
that are presented in this section can be exemplified by curves. Thus, for sake
of clarity, the basic properties of the algorithm will be demonstrated using a
NURBS curve6. The figures presented in this section were exactly calculated
based on a cubic NURBS curve defined by 7 control points and the knot vector
U = {u0, . . . , u10} = {0, 0, 0, 0, 0.5, 1, 1.5, 2, 2, 2, 2}. Here, all weights {wi} of the
curve are set to 1. The curve endpoints interpolate the first and the last control
point, respectively.

The Control Point Shift (CPS) method moves control points such that the
embedding primitive is pulled towards or pushed away from the control point.
The maximum amplitude of the shift occurs along the line defined by the original
control point and the nearest point on the embedding primitive. The direction
of the movement of the embedding primitive with respect to the control point
encodes one bit.

6.1 Embedding

1. Check if the embedding primitive is suitable for feature embedding. Op-
tionally preprocess it to ensure that continuity is preserved with respect to
neighboring primitives in the model. The test and the preprocessing proce-
dures are detailed in section 7. If the embedding primitive is classified as not
suitable, mark it as invalid as detailed in step 6 below and finish processing
of the primitive. Otherwise, a set of control points suitable for modification
has been identified.

2. Select a control point Pk from the set of of suitable control points that have
been identified in step 1.

3. Find the point C on the curve, which is closest to the selected control point
Pk. The line from C to Pk defines the direction of the control point shift. If
the reference point C can not be determined, mark the primitive as invalid
(see step 6) and finish processing.

4. Shift control point Pk along the line defined by C and Pk to its new location
P̂k. The control point shift is such that distance d between C on the original
and Ĉ on the modified embedding primitive is achieved. The shift may be

5 A feature is comprised of a robust feature and the corresponding semi-fragile feature.
6 By “embedding primitive” we refer either to a curve or a surface patch.
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either directed from the original reference point towards the original control
point for a pull operation as in the example of figure 1, or away from the
original control point for a push operation. Thus we have two possible states
represented by the shift direction, which can be used to encode one bit of
information. We will the denote the shift vector from the original control
point to its new location as shift vector S = P̂k −Pk henceforth.

In case of a successful shifting operation, the robust feature embedding
is completed and the algorithm proceeds with embedding the semi-fragile
feature. If the shifting operation fails, mark the embedding primitive as in-
valid (see step 6) and finish processing. Successful embedding of the robust
CPS feature is illustrated in Fig. 1. The original curve (solid line) has been
modified (dotted line) such that the reference point C(ū = 0.527) on the
curve has been shifted by the distance d = 0.05 units7 towards the control
point Pk. This has been achieved by shifting Pk by dp = 0.084 to P̂k.

C

Pk

d

dP

Pk

Fig. 1. CPS: Embedding a robust feature

5. The semi-fragile feature encodes the control point shift in the knots of the
embedding primitive. The step discussed here is reiterated for each of the
three components of the control point shift vector S = (Sx, Sy, Sz). For sake
of clarity, we use only Sx in the discussion8.

Choose a knot span [ui, ui+1) with the knot span length L = ui+1 − ui

where to insert a new knot at u that encodes Sx. For surfaces there are two
knot vectors, thus the knot span may be selected from either of the two knot
vectors of a patch.

Place a new knot into the chosen knot span such that subdiving the knot
span by inserting a new knot encodes Sx. With

7 By units we denote the internal measurement units of the model, e.g. millimeters or
inches.

8 A step, which is not detailed here, is that we set up a local coordinate system for the
patch to be independent of rigid transforms and scaling. Such a coordinate system
can be based, for example, on 3 corner points of the surface patch.
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L2 = |Sx| and
L

X
= L1 + L2

we get

L2 =
L

X(1 + |Sx|)
(3)

The scaling factor X is selected from a predefined range that is a param-
eter of the algorithm. X >= 2 must hold, as a scaling factor X < 2 may
result in L2 > 0.5 ·L and L2 is required to fit into one half of the knot span,
as discussed in the next paragraph.

As we encode |Sx|, an additonal criterium is introduced to encode the
sign of Sx. The sign is mapped to knot insertion into the lower or upper
half of the knot span9. Moreover, we have an additonal degree of freedom
by inserting the knot either with respect to the lower or upper boundary of
the selected half of the knot span.

Thus, depending on the sign of Sx and the chosen reference (upper or
lower boundary), a new knot is inserted at one of the following parameter
values:

u = ui + 0.5 ·L− L2 (4a)
u = ui + L2 (4b)
u = ui + 0.5 ·L + L2 (4c)
u = ui+1 − L2 (4d)

Figure 2 illustrates encoding of a semi-fragile feature for the modified
curve from Fig. 1. To achieve d = 0.05 the original control point P2 was
shifted by S = (0.0344, 0.0770, 0).
– Knot span [0.5, 1) was used to encode Sx = 0.0344. Scale factor X = 3

and the upper half of the knot span were selected for knot insertion. A
knot is inserted at u = 0.9111.

– Knot span [1, 1.5) was used to encode Sy = 0.0770. Scale factor X = 2.5
and the lower half of the knot span were selected for knot insertion. A
knot is inserted at u = 1.0642.

– Knot span [1.5, 2) was used to encode Sz = 0. With scale factor X = 2
the knot is inserted exactly at the middle of the knot span u = 1.75.
After embedding the 3 knots as descrived above, the semi-fragile feature

has been successfully encoded and the embedding procedure is finished.
6. This step is only executed if one of the previous steps fails. With (3) and

X = 2 and Sx = 0, we see that L2 = 0.5 ·L is possible for a shift vector
with zero value components. Thus, an invalid embedding primitive is tagged
by inserting an unique semi-fragile feature, which is represented by 3 knots
inserted exactly at u = ui + 0.5 ·L into each of the 3 knots spans selected
in step 5. This corresponds to a shift vector with all 3 components equal to
zero (i.e. no control point shift at all).

9 “Lower” and “upper” are used in the sense of lower and higher values of the param-
eter u.
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u5 = 1

u4 = 0.5

u6 = 1.5

u8 = 1.5

u9 = 1.75

u6 = 1

u4 = 0.5

u5 = 0.9111

u7 = 1.0642

u7,8,9,10 = 2

u10,11,12,13 = 2

Fig. 2. Insertion of 3 knots with different scale factors X

Security Considerations. The steps for embedding one feature involve sev-
eral selection processes that can be used to restrict access to the embedded
information. The selection of the control point for encoding the robust feature
as well as the knot spans for encoding the semi-fragile feature can be based on
pseudo-randomly generated indices into the control polygon and the knot vec-
tor, respectively. For NURBS surfaces there is an additional degree of freedom
in both cases, as we have a control net and two knot vectors (c.f. Sect. 2). The
scaling factor used in the knot insertion step may be chosen pseudo-randomly
from a predefined set of values.

In addition, there a several steps where we use mapping processes that can be
scrambled based on a pseudo-random number: the actual state (i.e. bit value)
that is represented by a specific direction of the control point shift; the choice
of a specific half of the selected knot span for actually inserting an additional
knot; and the reference value for measuring new knot span lengths, namely the
upper or lower bound of the knot span. The number of possible combinations
can be rather high for a typical NURBS surface patch. For a typical patch that
has been preprocessed as detailed in Sect. 7, we get 64 valid control points and
441 valid knot spans for embedding. Thus the probability of selecting the correct
3 knots in correct order by randomly selecting 3 knot spans, and at the same
time randomly selecting the correct control point, is extremely low.

6.2 Retrieval and Recovery of Original

The retrieval of the semi-fragile feature and the restoration of the original control
point is essentially the inverse of the embedding procedure. First, the semi fragile
feature is retrieved, thus decoding the watermark information. Next, the robust
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feature embedding can be reversed by restoring the orginal location of the control
point, exploiting the information retrieved from the semi-fragile feature.

Retrieval of the semi-fragile feature and reversal of the embedding procedure
requires the following sequence of steps. The control point and knot span selec-
tion process is the same as for the embedding procedure and is not reiterated
here.

1. The step discussed here is reiterated for each of the three components of the
control point shift vector S = (Sx, Sy, Sz). It is important that the knots are
retrieved in reverse order of embedding, i.e. in the order Sz, Sy, Sx. For the
sake of clarity we detail this step only for Sz.
(a) Select parameter range [ui, ui+2) representing the original knot span

length L = ui+2−ui. The knot that encodes Sz has been inserted in this
interval at ui+1.

(b) If ui+1 is located exactly at u = ui + 0.5 ·L, set Sz = 0 and finish
processing of this component of S.

Then, with the appropriate expression from equation (4) we are able
to calculate L2 and from equation (3) we immediately get

Sz =
L

X L2
− 1 (5)

Based on the mapping of the sign of Sz to a particular half of the
interval [ui, ui+2), decode the actual sign of Sz from the location of ui+1

within the interval.
Remove the knot at ui+1 before processing Sy. This is important, as

during embedding this knot was not present when selecting the knot span
used to encode Sy. Preserving the knot at ui+1 would prevent finding
the correct knot span for decoding Sy.

2. At this stage the control point shift vector S, and consequently the water-
mark message bit encoded by the semi-fragile feature (push or pull), is known
and the retrieval of the semi-fragile feature is completed. If S = (0, 0, 0), the
embedding primitive is considered as invalid.

The following step will only be necessary if the robust feature is to be
reversed.

3. Remove the knot encoding Sx. This was not neccessary for decoding the
control point shift vector. Next, restore the original control point location
from Pk = P̂k − S.

After running through the complete processing chain detailed above, the origi-
nal geometry of the embedding primitive has been restored. If knot vector refine-
ments (see Sec. 7) were neccessary to make the primitive suitable for embedding,
these knots can be removed here. It must be emphasized that knot vector re-
finement in preprocessing steps did not change the geometry of the primitive;
perfect restoration of the original geometry is independent from reversing knot
refinement.
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6.3 Robustness Considerations

Transformations of NURBS curves and surfaces are achieved by transforming
the control points only [1], i.e. the knot vectors do not change. Correct decoding
of the shift vector S is possible after translations, rotations and uniform scaling
if we use a normalized local coordinate system for each patch. Thus the feature
can be reversed in translated, rotated and uniformly scaled copies if the original
NURBS representation is preserved.

It must be noted that watermark retrieval and reversal as described in the
previous section depend on the integrity of the knot vectors and are not robust
against knot insertion and knot refinement steps. Inserting additional knots or
removing knots will prevent the algorithm from finding the correct combination
of control point and knot triple for successful decoding and reversal. As we work
with surface patches as embedding primitives, the algorithm is not robust against
operations such as merging of patches. Nevertheless, watermark verification as
described in section 8 is still possible after an additional tesselation step.

7 Preserving Continuity Between Patches

The concepts and theory of geometric and parametric continuity will not be
reviewed here. Farin [11] discusses geometric continuity for surfaces, whereas
Foley et al. [12] focus on geometric and parametric continuity for curves.

Untrimmed Patches. The impact of changes to a control point can be exactly
specified by analyzing the knot vectors of the surface patch and the location of
the control point within the control net of the patch. Modifying the control point
Pi,j with indices i, j into the control net affects the surface only in the rectangular
domain [ui, ui+p+1) × [vj , vj+q+1) of the parameter plane [13,1], with the knot
vectors u and v, the surface degree p in u, and the degree q in v.

Thus, for each control point in the control net of the surface patch, it must be
verified that the impact region does not touch the first and does not intersect10

the last non-zero knot span of the patch. Otherwise, modifying the control point
will impact the boundary curves and the control point will be classified as not
suitable for embedding.

Trimmed Patches. For trimmed surface patches the impact region must not
intersect or touch one of the trimming loops (intersection-test) and must be
located inside the outer trimming loop (inside-test). Each trimming loop defined
for the patch is approximated by a polygon. Subsequently, the rectangular impact
region of each control point is subjected to the intersection- and inside-test with
each of the polygonized trimming curves. The algorithm proposed by Piegl and
Tiller [14] was used for polygonizing the trimming curves. It guarantees a defined
maximum deviation of the polygon legs from the real trimming curve.
10 The distinction between “touching” and “intersecting” is necessary, because the

impact region is given by half-open intervals in u and v.
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Figure 3 shows the (u, v) parameter plane of a trimmed surface patch with
an inner and an outer trimming loop and the knot lines. In this case, the impact
region of a suitable control point must be located within the black region of the
parameter plane. All other knot spans will have an impact either on the outer
or the inner trimming loop.

u

v

Fig. 3. Impact regions in the (u, v) parameter plane

Preprocessing of Invalid Patches. If one of the aforementioned tests fails,
the surface patch can be preprocessed such that it contains a set of control points
suitable for embedding. As the impact region of a control point is determined
by the knot vectors of the surface, knot insertion [9,1] is an appropriate tool for
refining the knot vector and thus restricting the range of the impact region. To
insert one new knot into a knot vector of a curve of degree p, we must calculate p
new control points and the total number of control points increases by one. It is
important to note that knot insertion is equivalent to a change of the vector space
basis, thus neither the geometry nor the parametrization of the curve is changed.
Knot insertion for surface patches is performed by applying the technique for
curves to the rows and columns of the control net of the patch.

To process an invalid patch, each non-zero knot span of both knot vectors is
recursively subdivided into two knot spans of the same length. The recursion
level is a parameter of the algorithm. A single recursion step will transform the
n×m control net of the patch into a 2(n− 1)× 2(m− 1) control net. After knot
refinement, the validity check is reiterated.

8 Retrieval from Tesselated Models

The watermark verifier for tesselated versions of a copy depends on side infor-
mation, namely, the coordinates of the original control points together with the
particular bit of the watermark message encoded by each control point. By cast-
ing rays from the original control points directed along the control point shift, we
determine the intersection points with the surface of the copy. If an intersection
point within a given distance from the original control point can be found, we
take the corresponding feature as detected.
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If the number of detected features is interpreted as random variable, we can
assign the detection result a probability that the copy has been randomly gen-
erated. The false positive probability for detecting V or more features from a
total of N features is given by the cumulative binomial distribution B(V, N, p)
with probability p = 0.5 for a random detection.

If the tesselated copy has undergone an affine transformation, preprocessing
is necessary to align copy and original. This procedure is usually referred to as
registration in computer vision or as localization in computer aided inspection
and is a reseach topic in its own right. A simple yet efficient approach in the case
of translations and rotations is based on expressing the original and the copy in
the Euclidian coordinate system given by their principal components [15].

Various algorithms have been proposed for tesselating NURBS-based surface
models. In particular for trimmed surfaces, tesselation is still a very active re-
search topic and different methods generating meshes with different properties
are available [16]. The impact of tesselation on the embedded watermark is dif-
ferent, depending on the tesselation algorithm. Some algorithms guarantee for a
maximum Euclidian distance between the original and the generated mesh. We
used an adaptive algorithm that specifies the maximum deviation in percent of
the bounding box diagonal.

Fig. 4. Model with rendered patch boundaries and feature point locations indicated
by spheres. Part of the car model courtesy of Jiro Katayama [17].

Figure 4 shows a part from a car model with rendered boundaries of the
surface patches. The locations on the surface with maximum shift towards a
control point (i.e. the reference points C from Sec. 6.1) are indicated by spheres.
The control point shift was chosen as 0.03% of the measurement unit of the
original model. For tesselation with 0.01% of the bounding box as tolerance, all
15 features could be verified, whereas verification failed in case of tesselation
with 0.03% tolerance for the 2 features located in the long and small patches
at the bottom of model. On one hand 15 features are not enough to be useful
with the described detector, on the other hand the surface of the car model is
composed of many parts. In a complete model we are able to embed a number
of features that is large enough for the model verifier to yield a false positive
probabilty small enough to be useful as decision criterium.
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9 Conclusions

We presented a watermarking approach for high quality NURBS-based CAD
models. In contrast to other robust schemes proposed up to now we work directy
on the NURBS representation of the data. With our approach we have immediate
control over the numerical quality of the model, such that the watermark can
comply with a specific surface tolerance. The watermark embedding process can
be reversed and we preserve continuity between patch boundaries, which is one
of the most important properties of high quality industrial surface models. The
watermarked NURBS model can be integrated into other models or scenes, as
the boundaries of the model are not changed and the watermark can be retrieved
and reversed in translated, rotated and scaled versions of the copy.

Our approach can be interpreted as embedding a robust one-bit watermark
by changes of the geometry, and a semi-fragile N-bit watermark by modifying
the knot vectors. The robust watermark can be verified in an informed detection
process, while the semi-fragile watermark can be used both for blind detection
and to recover the information for reversing the modifications introduced by the
robust watermark.

So far we have tested the one-bit scheme only for robustness against tes-
selation of the copy. Additional modifications, such as mesh decimation, will
be subject of future research. Currently the semi-fragile scheme is only robust
against rigid transforms and uniform scaling. We will extend the robustness to
general affine transforms by working with a local barycentric coordinate systems
for each patch. Due to the control point and knot selection process, which re-
lies on absolute ordering, the scheme is not robust against knot insertion and
removal. Here, a selection process based on arc length parametrization will be
investigated. Another topic to be considered in the near future is an in-depth
analysis of the security of the algorithm.

Benchmarking the algorithm is one of our most important ongoing research
tasks, thus detailed evaluation results will be presented in a follow-up study. In
parallel to our benchmarking activities we are building up a database consisting
of a diverse set of of high quality NURBS-based CAD models.

The most demanding application is the verificaton of the watermark in a
two-dimensional version of the copy, i.e. from a rendered image. Currently we
are working towards an image-verifier that compares a rendered copy against
rendered versions of the model with known embedded watermark message and
decides on the best match.
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Abstract. This paper presents a high-capacity data hiding method for
3D polygonal meshes. By slightly modifying the distance from a vertex to
its traversed neighbors based on quantization, a watermark (i.e., a string
of binary numbers) can be embedded into a polygonal mesh during a
mesh traversal process. The impact of embedding can be tuned by ap-
propriately choosing the quantization step. The embedded data is robust
against those content-preserving manipulations, such as rotation, uni-
formly scaling and translation, as well as mantissa truncation of vertex
coordinate to a certain degree, but sensitive to malicious manipulations.
Therefore, it can be used for authentication and content annotation of
polygonal meshes. Compared with the previous work, the capacity of the
proposed method is relatively high, tending to 1 bit/vertex. Besides to
define the embedding primitive over a neighborhood so as to achieve re-
sistance to substitution attacks, the security is also improved by making
it hard to estimate the quantization step from the modified distances.
A secret key is used to order the process of mesh traversal so that it is
even harder to construct a counterfeit mesh with the same watermark.
The numerical results show the efficacy of the proposed method.

1 Introduction

With the development of digital modeling and visualization techniques for 3D
objects, 3D models have been widely created and used for geometry represen-
tation, such as the cultural heritage recording like Digital Michelangelo Project
[1], CAD models, and structural data of biological macromolecules [2]. As more
and more 3D models appear, polygonal meshes in particular, how to hide infor-
mation within them [3] has received much attention for a variety of purposes,
ranging from copyright enforcement (e.g. [9,10]) to authentication (e.g. [4,6]). In
this paper, we only discuss fragile watermarking of polygonal meshes, which is
contrast to robust watermarking for the fragility of the embedded watermark.
Compared with digital images, video and audio streams, there exists no grid for
meshes, i.e., each vertex in a mesh is connected with variable neighboring ver-
tices at different distances. This flexibility of mesh data makes it an attractive
cover object for data hiding.
� This work was supported by a Faculty Research Grant of Hong Kong Baptist

University with the Project Code: FRG/06-07/II-07.

J. Camenisch et al. (Eds.): IH 2006, LNCS 4437, pp. 188–200, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



A High-Capacity Data Hiding Method for Polygonal Meshes 189

In the literature, quite a few watermarking methods (e.g.[4]-[18]) have been
proposed to embed data into meshes. Depending on the applications, the re-
quirements are different. For instance, one purpose of robust watermarking is
to protect the copyright of digital works so that the embedded watermark is
designed robust against outer processing while the original work can be used in
the retrieval process [10]. In contrast, in fragile watermarking for authentication
and integrity verification, the embedded data should be blindly retrieved and
sensitive to illegal modifications [4], and high information rate is preferred. Nev-
ertheless, there are some common requirements, such as security and fidelity. In
[19], T. Kalker defined the security of robust watermarking as the inability of
unauthorized users to remove, detect or change the watermark. A data hiding
scheme is considered secure if there is little information leakage from the pub-
lic domain. It should be assumed that the algorithms are publicly known and
the attacker has sufficient computational capability so that some valuable in-
formation may be leaked from the observation of watermarked objects. Fidelity
means that the embedded data is invisible (except the case that it is intentionally
visible), i.e., the embedding process should not introduce noticeable distortion
to the cover object. And it is often required that the introduced error can be
numerically analyzed and bounded.

Only a few fragile watermarking algorithms (e.g.[4]-[8]) have been proposed
for authentication of polygonal meshes. The first fragile watermarking of 3D
objects is addressed by Yeo and Yeung in [4] for authentication and integrity
protection by using a set of lookup tables (LUTs). If two values generated from
the positions of a vertex and its traversed neighboring vertices are identical to
each other, the vertex is considered as valid. Otherwise, its position will be per-
turbed until the two values match. Since the data embedded in [4] is sensitive to
Rotation, uniformly Scaling and T ranslation transformations (denoted as RST
hereinafter), its applications may be limited. By adapting the work in [4], Lin et
al. proposed a fragile watermarking method in [5] to detect malicious attacks.
They improve the mapping from vertex positions to location indices so that the
embedded watermark is resistant to incidental data processing, such as vertex
reordering, but RST transformations are still not allowed. Moreover, Benedens
and Busch proposed the algorithm called Vertex Flood Algorithm (VFA) in [6]
for mesh authentication. Basically, their algorithm modifies the vertices so that
their distances to the centroid of a designated triangle encode the watermark
bits. In this way, a certain amount of vertex coordinate truncation caused by
format conversions, as well as RST transformations, can be allowed. As for a tri-
angle mesh, the security of VFA relies on the selection of the start triangle since
the vertex position can be modified without changing the distance from it to the
centroid of the start triangle. Later, Cayre and Macq presented a steganographic
scheme [7] for triangle meshes by treating a triangle as a two-state geometrical
object. By choosing an appropriate Macro Embedding Procedure (MEP) or-
der, a watermark can be imperceptibly embedded with robustness against RST
transformations. The upper bound of capacity has been given in [7], but the
optimal mesh traversal to reach it has not been addressed yet. Alternatively, in
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our previous work [8], a fragile watermark robust against RST transformations
is embedded into polygonal meshes by quantizing the distances from the surface
polygons to the mesh centroid. By choosing an appropriate quantization step, the
embedded watermark can be made imperceptible and sensitive to illegal modifi-
cations. Although high information rate is required in fragile watermarking, the
upper bound of capacity has not been reached in [8].

This paper presents a new data hiding method for polygonal meshes, in which
the embedded data is designed to be robust against those content-preserving
manipulations, such as RST manipulations and truncation of vertex coordinates
to a certain degree, but sensitive to malicious manipulations. A new quantization
method is employed to embed a watermark (i.e., a string of binary numbers) by
slightly modifying the distance from a vertex to the centroid of its traversed
neighbors. The impact of the embedding process, i.e., the difference between
the original and watermarked meshes, can be tuned by choosing an appropriate
quantization step. The capacity of the proposed method tends to 1 bit/vertex,
which is higher than the former methods, such as 0.877 bit/vertex in [7]. It can
be used for content annotation and authentication of polygonal meshes, or even
secret message communication.

The rest of this paper is organized as follows. In the following section, the
procedure of the data hiding method, including watermark embedding and re-
trieval, will be described in detail. The experimental results will be given and
discussed in Section 3 by implementing the proposed method to authentication
of polygonal meshes. Section 4 summarizes the paper and points out the future
works.

2 A New Method to Hide Data Within Polygonal Meshes

Polygonal meshes are considered as the common representation of 3D shapes and
it’s easy to convert other types of 3D models into them. Despite the appearance
attributes associated with 3D models, such as color, transparency and texture,
there are two parts of information contained in the mesh data, i.e. the mesh
geometry and topology. The mesh geometry can be represented by the set of
vertex positions V = {v1, · · ·, vm}, which defines the shape of the mesh in R3

given m vertices in a mesh. The mesh topology, i.e., the connectivity between
vertices, specifies the n vertices {v1

k, · · ·, vn
k } in the k-th polygon, as described

by IndexedFaceSet in VRML [20] format. The proposed method is performed on
polygonal meshes, consisting of embedding and retrieval processes, detailed as
follows.

2.1 Data Embedding

Given a string of binary numbers W = (wi)N
i=1 with the length N , the task of

embedding is hide the value of each bit wi into the mesh geometry. Since we aim
to embed a watermark robust against RST transformations, the ratio between
the distances in the cover mesh serves as a good candidate. In our method, the
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distance from a vertex to the centroid of its traversed neighbors is chosen as
the embedding primitive so that the upper bound of capacity can be reached.
If we choose the distance from a vertex to the centroid of all its neighbors as
the embedding primitive and modify the distance to embed a binary number by
adjusting its position, the positions of its neighboring vertices cannot be changed
any more to preserve the embedded value. As a result, the capacity will drop
since most of the vertex positions cannot be modified to embed binary numbers.
Therefore, only the traversed vertices of each vertex are chosen to generate the
embedding primitive so that high information rate is achieved.

The detailed process to embed a watermark W = (wi)N
i=1 is as follows: Ini-

tially, we use a secret key K as the seed of pseudo-random generator to permute
the face indices F and vertex indices I, respectively. The process of mesh traver-
sal is ordered by the permuted vertex indices I ′ and face indices F ′ as follows.
Among those vertices in the polygon lastly indexed by F ′, the one first indexed
by I ′ is traversed at first without adjusting its position since all of its neighboring
vertices have not been traversed. Among the neighbors of the traversed vertices,
the one first indexed by I ′ will always be subsequently traversed. Suppose there
is m vertices in a polygonal mesh, there are m−1 embedding primitives because
only the first traversed vertex has no traversed neighbor. For a newly traversed
vertex vi, Ni neighboring vertices have been traversed and denoted as (vj

i )
Ni

j=1.
Then the centroid of the traversed neighbors can be calculated by

vic =
1
Ni

Ni∑

j=1

vj
i . (1)

The distance di from vic to vi is chosen as the embedding primitive

di =
√

(vicx − vix)2 + (vicy − viy)2 + (vicz − viz)2, (2)

where {vicx, vicy, vicz} and {vix, viy , viz} are the coordinates of vic and vi in R3,
respectively. To embed a binary number wi by slightly changing di with the
quantization step Δ, its corresponding integer quotient Qi and the remainder
Ri should be calculated by

{
Qi = �di/Δ�
Ri = di%Δ

, (3)

and di is modified by

d′i =

⎧
⎨

⎩

di if Qi%2 = wi

di + 2× (Δ−Ri) if Qi%2 �= wi & Ri ≥ Δ
2

di − 2×Ri if Qi%2 �= wi & Ri < Δ
2

(4)

so that �d′i/Δ�%2 = wi. The error introduce by Eq.(4), i.e., the difference be-
tween the modified distance d′j and di, will not exceed the quantization step Δ
so that the impact of embedding on the mesh content can be tuned with the
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quantization step Δ. To allow slight change of d′j , such as mantissa truncation
due to the limited precision, a margin around the quantization grid is required.
So Eq.(4) is slightly deformed by adding a parameter ε ∈ (0, Δ

2 ) through

d′i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Qi + 1)×Δ− ε if Qi%2 = wi & Δ− ε < Ri

di if Qi%2 = wi & ε ≤ Ri ≤ Δ− ε
Qi ×Δ + ε if Qi%2 = wi & Ri < ε
(Qi + 1)×Δ + ε if Qi%2 �= wi & Δ− ε < Ri

di + 2× (Δ−Ri) if Qi%2 �= wi & Δ
2 ≤ Ri ≤ Δ− ε

di − 2×Ri if Qi%2 �= wi & ε ≤ Ri < Δ
2

Qi ×Δ− ε if Qi%2 �= wi & Ri < ε

(5)

so that d′i%Δ ∈ (ε, Δ − ε). As a result, the change of d′i within (−ε, ε) can be
allowed without changing the embedded value wi. An appropriate value should
be assigned to ε without disclosing the quantization step Δ. If we choose the value
of ε in proportional to Δ, Δ

6 for instance, the allowed range can be adjusted by
appropriately choosing the quantization step Δ. Consequently, the resulting d′i
is used to adjust the position of vi by

v′i = vic + (vi − vic)×
d′i
di

, (6)

where v′i is the adjusted vertex position. At each iteration, to embed one bit
value, the position of the newly traversed vertex is adjusted to modulate the
distance from it to the centroid of its traversed neighbors. So the number of the
embedded bits is equal to the number of the adjusted vertices. Given m vertices
in the cover mesh, there will be m− 1 bit values embedded after the position of
the last traversed vertex is adjusted so that the watermarked mesh is generated.
After that, the position of mesh centroid is calculated by

vc =
1
m

m∑

i=1

v′i, (7)

and the distance from the last traversed vertex vl to the mesh centroid is calcu-
lated by

D =
√

(vlx − vcx)2 + (vly − vcy)2 + (vlz − vcz)2. (8)

The ratio R between D and Δ is obtained by

R = D/Δ, (9)

which will be used in the retrieval process to calculate the quantization step Δ.

2.2 Message Retrieval

To retrieve the embedded data from the watermarked mesh, the quantization
step Δ used in watermark embedding is required. To obtain Δ, the distance



A High-Capacity Data Hiding Method for Polygonal Meshes 193

D from the last traversed vertex to the mesh centroid is required, besides the
parameter R. Since the mesh traversal is ordered by the permuted vertex indices
I ′ and face indices F ′, the secret key K is required to generate them. Therefore,
the secret key K and the parameter R are used as the inputs of the retrieval
process, besides the watermarked mesh.

The detailed process of watermark retrieval is as follows: At first, the vertex
indices I and face indices F in the watermarked mesh are permuted by using
K as the seed of pseudo-random generator to generate I ′ and F ′, respectively.
By performing the mesh traversal, the distance from a vertex to the centroid
of its traversed neighbors can be calculated by using Eq.(1) and Eq.(2). If the
watermarked mesh is intact, the obtained distances are those that have been
modified in the embedding process, i.e., {d′1, d′2, . . . , d′m−1}, given m vertices in
the watermarked mesh. With the distance D from the last traversed vertex vl

to the mesh centroid calculated by Eq.(7) and the provided parameter R, the
quantization step Δ is obtained by

Δ = D/R. (10)

With the obtained Δ, the bit value w′
i is extracted by

w′
i = �d′i/Δ�%2. (11)

The whole message string W ′ = (w′
i)

m−1
i=1 will be retrieved after the last bit is

extracted from the last traversed vertex.

2.3 The Properties of the Embedded Data

Since the ratio between any two distances in a polygonal mesh is invariant to
RST transformations, while the quantization step used in the retrieval process is
proportional to the distance from the last traversed vertex to the mesh centroid,
the ratio between the distance from a vertex to the centroid of its traversed
neighbors and the quantization step remains the same after RST transforma-
tions, as well as the embedded watermark. After topological modifications that
change the neighboring information between vertices, the mesh traversal in the
retrieval process will be different from that in the embedding process so that the
embedded watermark cannot be correctly retrieved. Therefore, the embedded
data is sensitive to the modifications made to the connectivity between vertices.

As for the mantissa truncation of vertex coordinate, which is stored as a single-
precision floating-point number, if the truncation error is distributed within
(−T, T ), then the errors introduced to the coordinates of the mesh centroid in
Eq.(7) and the centroid of a vertex’s neighboring vertices in Eq.(1) are also dis-
tributed within (−T, T ). The error introduced to d′i in Eq.(2) and D in Eq.(8)
will be both distributed within (−2

√
3T, 2

√
3T ). Based on Eq.(10), we know

the error introduced to Δ is within (− 2
√

3T
R , 2

√
3T

R ) so that Eq.(11) can be
rewritten as

w′
i = �d

′
i + δd

Δ + δ1
�%2, (12)
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where δd and δ1 are the change of d′i and Δ caused by the truncation, respectively.
It can be seen the integer quotient �d′

i+δd
Δ+δ1

� will be different from �d′
i

Δ � if d′i%Δ+
δd − �d′i/Δ� × δ1 /∈ (0, Δ). If Eq.(5) is used in the embedding process, d′i%Δ
will be distributed within (ε, Δ − ε). As a result, the retrieved bit value w′

i

in Eq.(12) will be identical to wi, i.e. �d′i/Δ�%2, if |δd − �d′i/Δ� × δ1| < ε.
Since δd ∈ (−2

√
3T, 2

√
3T ) and δ1 ∈ (− 2

√
3T

R , 2
√

3T
R ), the truncation of vertex

coordinates is allowed if

T <
ε

2
√

3(1 + �d′
M /Δ�
R )

, (13)

where d′M is the greatest one among all the modified distance {d′1, d′2, . . . , d′m−1}.
On the other side, truncation of vertex coordinates can be allowed by ap-
propriately choosing the quantization step Δ if �d′M/Δ� < ( ε

2
√

3T
− 1)R, or

Δ >
d′

M

( ε

2
√

3T
−1)R since ε > 2

√
3T as indicated by Eq.(13). If the parameter ε

in Eq.(5) is assigned proportional to the quantization step Δ (we take Δ
6 for

instance), the value of Δ should be chosen so that Δ >
d′

M

( Δ
12

√
3T

−1)R
, i.e.,

Δ > 6
√

3T +

√

108T 2 +
12
√

3Td′M
R

, (14)

where the value of d′M and R are obtained from the watermarked mesh. Other-
wise, the embedded value will probably be altered.

For the geometrical modifications that take place on part of the vertices, we
take for instance the case that one vertex is modified. The distance d′i from the
modified vertex to its traversed neighbors will be changed by the modification
as denoted by d′i + δdi with δdi as the change. Suppose the quantization step Δ

obtained from Eq.(10) is unchanged, the integer quotient �d′
i+δdi

Δ � will be possi-
bly changed if |δdi| > ε given d′i%Δ ∈ (ε, Δ− ε). For the untraversed neighbors
of the modified vertex, i.e., those vertices regarding the modified vertex as their
traversed neighbor, the distances from them to their traversed neighbors will also
be changed by the modification so that the chance to detect the modification is
increased. In summary, if one vertex is modified outside the allowed range, the
data embedded by adjusting the positions of itself and its untraversed neighbors
will probably be altered.

3 Experimental Results

We performed the proposed method on several mesh models as listed in Table 1,
where the capacity of each mesh model is also given. Suppose the precision inter-
val of vertex coordinates is (−T, T ), an appropriate quantization step Δ should
be chosen as in Eq.(14) if Δ

6 has been assigned to the parameter ε in Eq.(5).
The runtime of the embedding and retrieval processes for the “teapot” model
were only 0.750 and 0.875 seconds in a 2.66G Pentium 4 PC with 512MB RAM,
while those for the “horse” model were 40.844 and 44.438 seconds, respectively.
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Table 1. The mesh models used in the experiments

Model Meshes Vertices Polygons Capacity(bits)

fish 1 742 1408 741
teapot 5 1631 3080 1626
dog 48 7616 13176 7568
wolf 90 8176 13992 8086
horse 31 10316 18359 10285

3.1 Distortion of the Cover Mesh

In the experiments, the impact of the embedding process can be tuned by the
quantization step Δ used. From Eq.(6), it can be seen that the adjustment of each
vertex position is within the sphere with its original position as the centroid while
Δ as the radius, since the change of the distance from a vertex to its traversed
neighbors is bounded by (−Δ, Δ). Upon the fact that the mesh topology has
not been changed, the distance from the adjusted vertex to its former position is
used to represent the distortion of the mesh content. In the experiments, if 0.01
was assigned to Δ, the greatest error (i.e., the greatest distance among all the
adjusted vertices) never exceeded 0.01, while the greatest error was below 0.001
if 0.001 had been assigned to Δ, as shown in Fig. 1. The pictures rendered from
the mesh models “teapot” and “horse” before and after the embedding process
are shown in Fig. 2.
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Fig. 1. The greatest error increases with the quantization step

3.2 Capacity

The proposed method is applicable to 3D polygonal meshes with arbitrary con-
nectivity. Given m vertices in the cover mesh, the capacity of our method will
be m − 1 bits, tending to 1 bit/vertex when m is sufficiently large. If a mesh
model consists of l separate meshes as in Table 1, the capacity will be m− l bits
since the first indexed vertex within each mesh is traversed without adjusting
its position.
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(a) The original mesh model
“teapot”

(b) The “teapot” model with 1626
bits embedded

(c) The original mesh model
“horse”

(d) The “horse” model with
10285 bits embedded

Fig. 2. 1626 and 10285 bits in total are hidden within the mesh model “teapot” and
“horse”, respectively, by choosing 1/10, 000 of the greatest distance Dm from a vertex
to the mesh centroid as the quantization step Δ and Δ

6 as the parameter ε

3.3 Security

The security of the proposed method relies on the secrecy of the key K, as
well as the parameter R, which is used to calculate the quantization step Δ in
the retrieval process. Given there are m vertices and p polygons in a polygonal
mesh, the permutation of the vertex indices is m!. Without the secret key K, the
mesh traversal must be performed pm! times to guarantee the embedded data
can be correctly retrieved, given the accurate quantization step Δ. To make it
hard to estimate the quantization step Δ from the set of modified distances, the
parameter ε used in Eq.(5) should be assigned with a relatively small value, Δ

6
for instance. Moreover, we define the embedding primitive over the neighborhood
of a vertex so that resistance to substitution attacks is achieved, which makes it
even harder to construct a counterfeit mesh with the same watermark.

3.4 Authentication of Polygonal Meshes

We try to apply the proposed method to authentication of polygonal meshes. To
detect the illegal modifications made to the watermarked mesh and estimate its
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Table 2. By assigning 1/100, 000 of the greatest distance from a vertex to the mesh
centroid to the quantization step Δ and Δ

6 to the parameter ε, the NC values are
calculated from the extracted bit values and the original ones after the watermarked
mesh have been processed by the following manipulations, respectively

Moving two Modifying Reducing Truncating TruncatingRSTMeshes vertices one vertex one five sixtransformations oppositely position face LSBs LSBs

fish 1.0000 0.9932 0.9959 0.9757 1.0000 0.9838

teapot 1.0000 0.9963 0.9987 0.7915 1.0000 0.9907

dog 1.0000 0.9980 0.9984 0.5776 0.9988 0.9912

wolf 1.0000 0.9993 0.9997 0.6070 0.9991 0.9881

horse 1.0000 0.9997 0.9999 0.5402 0.9994 0.9860

strength, the retrieved watermark W ′ = (w′
i)

N
i=1 is compared with the original

one W = (wi)N
i=1 by defining a numerical value NC over them

NC =
1
N

N∑

i=1

I(w′
i, wi), (15)

with

I(w′
i, wi) =

{
1 if w′

i = wi

0 otherwise . (16)

The value of NC is expected to be less than 1 if the mesh content has been
illegally modified.

The watermarked mesh model went through RST transformations, chang-
ing the positions of two vertices oppositely (respectively by adding the vectors
{2Δ, 2Δ, 2Δ} and {−2Δ,−2Δ,−2Δ}), modifying one vertex position by adding
the vector {3Δ, 3Δ, 3Δ}, reducing one face from the mesh, and truncating the
least significant bits (LSB) of each vertex coordinate, respectively. By retrieving
the embedded bit values from the processed mesh models and comparing them
with the original ones by using Eq.(15), the resulting values of NC listed in
Table 2 indicated that the embedded data was robust against RST transforma-
tions and truncation of vertex coordinates to a certain degree, but sensitive to
other modifications. It should be noted the allowed range of coordinate trunca-
tion could also be adjusted with the quantization step Δ. If 1/10, 000 of Dm,
which is defined as the greatest distance from a vertex to the mesh centroid,
was assigned to Δ, truncating of 8 least significant bits (LSB) of vertex coordi-
nate was allowed for the “teapot” model. While 1/100, 000 of Dm was assigned
instead, only 5 LSBs of vertex coordinate could be truncated without changing
the embedded data.

From the obtained NC values, it can be seen the illegal modifications made to
the watermarked mesh can be classified into severe and slight ones. Topological
and severe geometrical modifications may lead the retrieved watermark to be dra-
matically different from the original one, while those geometrical modifications
that have little impact on the quantization step Δ are possible to be localized
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by comparing the extracted values with the original ones. For a vertex where the
two values do not match, its position or those of its previously traversed neigh-
bors might have been changed. Normally, the number of the previously traversed
neighbors of a vertex is very limited so that this type of modification can be lo-
calized. In our experiments, the watermarked mesh model “teapot” in Fig. 2(b)
was tampered by modifying one vertex on its handle and the tampered mesh
model is shown in Fig. 3(a). The illegal modification is detected by comparing
the extracted watermark with the original one so as to find the region where the
two values do not match, as shown in Fig. 3(b).

(a) The tampered mesh model “teapot”

(b) The mesh model with the tampered re-
gion detected

Fig. 3. The mesh model in Fig. 2(b) is tampered by modifying one vertex and the
tampered region has been localized

4 Concluding Remarks and Future Works

A high-capacity data hiding method has been proposed for polygonal meshes by
choosing the distance from a vertex to the centroid of its traversed neighbors
as the embedding primitive. A new quantization method has been employed to
embed a watermark by slightly modifying the embedding primitives. It is hard to
estimate the quantization step from the modified primitives, while slight change
of them can be allowed to a certain degree by reserving a margin around the
quantization grid. The embedded data is robust against those content-preserving
manipulations, such as RST transformations and truncation of vertex coordi-
nates to a certain degree, but sensitive to malicious manipulations. The im-
pact of embedding on the mesh content can be tuned by choosing an appro-
priate quantization step. In the future, we will further investigate on: (1) the
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information of the embedded data leaked from the watermarked mesh, if any;
and (2) the attacks to the proposed method for authentication and secret mes-
sage communication.
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Abstract. In 2005, Germany introduced a new Amateur Radio Or-
dinance prohibiting encrypted radio traffic at home. Crypto-bans can
be circumvented using steganography. However, present steganographic
methods are not eligible because the embedded message will not survive
the usual distortions in a radio transmission. Robust as current water-
marking methods are, they leave clearly detectable traces and have a
smaller capacity.

This paper presents measures that improve the robustness of stegano-
graphic communication with respect to non-intentional, random chan-
nel errors and validates their effectiveness by simulation. For the sce-
nario of a radio communication, we determine practicable parameters
for least detectability under six different short wave conditions. The re-
sulting method embeds messages with a length of up to 118 bytes in a
narrow-band Slow Scan Television connection in Martin-M1 mode.

1 Requirements for Robust Steganography

Steganography is the art and science of invisible communication. Its aim is the
transmission of information embedded invisibly into carrier data. Secure wa-
termarking methods embed short messages protected against modifying attack-
ers (robustness, watermarking security) while the existence of steganographi-
cally embedded information cannot be proven by a third party (indiscernibility,
steganographic security).

The existence of steganographic methods is one of the main arguments against
a crypto-ban, since steganography facilitates the confidential exchange of infor-
mation like cryptography, but goes unnoticed and consequently cannot be effec-
tively persecuted. Nevertheless, Germany expanded the regulation that interna-
tional amateur communications should be “in plain language” [1] to domestic
ones in its Amateur Radio Ordinance in 1998. The new German Amateur Radio
Ordinance from 2005 [2] explicitly prohibits encrypted amateur communications

� DL1DSX

J. Camenisch et al. (Eds.): IH 2006, LNCS 4437, pp. 201–215, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

mailto:dl1dsx@inf.tu-dresden.de


202 A. Westfeld

in the operational framework: (§ 16) Amateur radio communication must not be
encrypted to obscure the meaning thereof.1

In general, steganographic communication uses an error-free channel and mes-
sages are received unmodified. Digitised images reach the recipient virtually
without errors when sent, e. g., as an e-mail attachment. The data link layer
ensures a safe, i. e. mostly error-free, transmission. If every bit of the carrier
medium is received straight from the source, then the recipient can extract a
possibly embedded message without any problem. However, some modes (e. g.,
analogue voice radio, television) do without the data link layer, because the
emerging errors have little influence on the quality and can be tolerated.

Without error correction, distortions are acceptable only in irrelevant places
where they have the least influence on the carrier. However, typical stegano-
graphic methods prefer these locations for hiding payload. The hidden message
would be most interfered with in error-prone channels. Therefore, robust embed-
ding functions have to add redundancy and change only locations that are care-
fully selected regarding the proportion between unobtrusiveness and probability
of error. This increases the risk of detection and permits a small payload only.

This paper presents measures that improve steganography in terms of ro-
bustness with respect to non-intentional, random channel errors as they occur
in radio communications. Some watermarking methods are also robust against
distortions in the time and frequency domains. Tachibana et al. introduced an al-
gorithm that embeds a watermark by changing the power difference between the
consecutive DFT frames [3]. It embeds 64 bits in a 30-second music sample. Com-
pared to the proposed steganographic method this is a quarter of the payload
in a host signal (carrier) occupying 50 times the bandwith. It is robust against
radio transmission. However, it was not designed to be steganographically secure
and the presence of a watermark is likely to be detected by calculating the statis-
tics of the power difference without knowing the pseudo random pattern. Van
der Veen et al. published an audio watermarking technology that survives air
transmission on an acoustical path and many other robustness tests while being
perceptionally transparent [4]. The algorithm of Kirovski and Malvar [5] embeds
about 1 bit per second (half as much as the one in [3]) and is even more robust
(against the Stirmark Benchmark [6]). In brief, there are watermarking methods
that survive radio transmission, offer small capacities and achieve perceptual
transparency, however, they are not steganographically secure.

Marvel et al. [7] developed a robust steganographic method for images based
on spread spectrum modulation [8]. This technique enables the transmission of
information below the noise or carrier signal level (signal to noise ratio below
0dB). Likewise it is difficult to jam, as long as transmitter and receiver are
synchronised. Therefore, successful attacks de-synchronise the modulated signal
[9]. Messages embedded using the algorithm of Marvel et al. will not survive the
time and frequency dispersion of the channel considered here.

1 “Amateurfunkverkehr darf nicht zur Verschleierung des Inhalts verschlüsselt werden;
. . . ”.
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Since it is almost impossible for an attacker to control the distortions in the
time and frequency domains that a radio communication is exposed to we can
allow for the additional requirement of steganography (undetectability) without
restricting the typical capacity of watermarking.

The following Section 2 describes the model and simulation of high frequency
(HF) propagation. Section 3 extends a known steganographic spread spectrum
method stepwise by modules that decrease the error rate of the steganographic
signal for radio communications. Sensible parameters are determined by simula-
tion, which allow an error-free transmission. Some security concepts are discussed
in Section 4, where the paper is also summarised.

2 HF Channel Simulation

Simulating the variable behaviour of the ionosphere not only allows faster bench
testing in the lab during the development stage, but also the comparison under
reproducible, standardised conditions. In this research a software implementa-
tion was employed, based on source codes of Johan Forrer, KC7WW2. We im-
plemented it as an R package [10] named chansim that accommodates a wide
range of simulated conditions, including those given in the Recommendation
520-1 of the CCIR3 (good, moderate, poor, flutter-fading, see Table 1) [11]. The
simulation model is an implementation of the Watterson Gaussian-scatter HF
ionospheric channel model [12], which is the de facto standard for this kind of
work [13].

Table 1. Preset parameters for channel simulation

HF channel condition Delay time Doppler spread
Noise . . . . . . . . . . . . . . . 0 ms 0 Hz
Flat 1 . . . . . . . . . . . . . . 0 ms 0.2 Hz
Flat 2 . . . . . . . . . . . . . . 0 ms 1 Hz
CCIR good . . . . . . . . . 0.5 ms 0.1 Hz
CCIR moderate . . . . 1 ms 0.5 Hz
CCIR poor . . . . . . . . . 2 ms 1 Hz
CCIR flutter fading 0.5 ms 10 Hz
Extreme . . . . . . . . . . . . 2 ms 5 Hz

From a physical point of view, the HF channel is characterised as a multi-path
time-varying environment that produces time and frequency dispersion [14]. The
reason for the multitude of paths lies in the reflections of radio signals from
2 These alphanumeric strings behind names are call signs of radio amateurs.
3 Comité consultatif international pour la radio, which became the ITU-R (Radiocom-

munication Sector of the International Telecommunication Union) in 1992.
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different layers in the ionosphere. In addition, multiple reflections can occur
between the earth’s surface and the ionosphere, giving rise to multi-hop propa-
gation. Thus, the received signal can contain several echoes, separated in time by
a matter of milliseconds (delay time). Doppler spread (frequency spread) occurs
if the particular path lengths change due to a movement of the ionosphere with
its specular nature.

For mid-latitude HF circuits, the amount of multi-path (delay time τi) can
range up to 6 ms and the fading rate (Doppler spread) can be as high as 5 Hz
[15]. However, more typical values are 2 ms and 1 Hz, respectively, which are the
basic parameters of the standardised CCIR “poor” HF channel.

One of the key contributions to HF channel modelling was a paper by Watter-
son et al. [12] in 1970. In this paper, a stationary model for the HF channel was
proposed and experimentally validated with on-air measurements. Although HF
channels are generally non-stationary, this model has been shown to be valid for
sufficiently short times (≈ 10minutes) and for band-limited channels (≈ 10kHz).
The Watterson Model views the HF channel as a transversal filter where the taps
are complex and vary with time (see Figure 1). It produces phase and amplitude
distortions in the signal.

The time-varying taps (hi) are generated by filtering complex white Gaussian
noise through filters whose frequency-domain power spectra have a Gaussian
shape. The desired Doppler spread is controlled by the standard deviation of
these power spectra.

Input
Signal

τ

2

2

n

n

Σ

τ

1

1

hhh

τ

Output Signal

Fig. 1. Watterson HF channel model [12]

3 Design of the System

3.1 Slow Scan Television

Slow Scan Television (SSTV) has a relatively long transmission phase compared
with voice radio. This increases the chance of a reasonable steganographic ca-
pacity despite the small bandwith of 3 kHz. SSTV is widespread among radio
amateurs.
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even
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(for Martin − M1)

Fig. 2. VIS code to signal SSTV mode and start of an image[16]

An SSTV signal starts with a VIS4 code that announces an image transmission
and its mode. Its time–frequency diagram is shown in Figure 2. There exist about
30 different SSTV modes. Martin-M1 was developed by Martin H. Emmerson,
G3OQD, and is one of the most commonly used.

The Martin-M1 mode encodes colour images with a resolution of 320 × 256
pixels. The image is sent row by row from top to bottom. For each row there is a
synchronisation impulse followed by the intensity information for the green, blue,
and red colour channel. These intensities are encoded as tones with frequencies in
the range of 1400 . . .2400Hz (see Figure 3). A 1200Hz tone serves as sync pulse.
Altogether the SSTV signal lasts 1 minute and 55 seconds, possibly extended by
the call sign of the sender in CW5 (Morse code).

2400 Hz

1900 Hz

1400 Hz

1200 Hz

147 ms 147 ms 147 ms5ms
sync green blue red

Fig. 3. One of 256 rows in Martin-M1 mode

We selected QSSTV [17] by Johan Maes, ON4QZ, as the most suitable open
source SSTV software to base the implementation of our steganographic system
on. Since most of the SSTV programs are closed source or obsolete implementa-
tions, there are no real alternatives.

4 This name is inherited from weather fax: VIS=visible, IR=infrared.
5 continuous wave.
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Fig. 4. Modified QSSTV with loopback HF channel simulator

We extended QSSTV with the already mentioned channel simulator by Johan
Forrer, KC7WW. Figure 4 shows the graphical user interface with extra loopback
option and settings for SNR (signal to noise ratio) and HF conditions. A simu-
lated transmission lasts only a few seconds and is much faster than the 2 minutes
for a real transmission. The Receive window in the figure is reconstructing the
image from a simulated signal transmission (CCIR poor, SNR 26dB).

The SSTV signal generated by QSSTV has a sampling rate of 8000 sam-
ples per second, offering sufficient resolution for the transmitted signal range
200 . . .3000Hz.

3.2 Steganographic SSTV System

This section describes the overall steganographic SSTV system (see Figure 5).
Its components have three main goals: embedding, phase correction, and error
correction.

First the message is made fault-tolerant by an error correcting code (ECC).
The redundancy is added to compensate for the loss due to fading and at-
mospherics that cannot be prevented otherwise. However, an opponent cannot
search for this redundancy because it is masked by the key derived spreading
sequence, which acts like a stream cipher. The interleaver, which permutes the
encoded message, prevents burst errors. The differential encoder enables a cor-
rect demodulation also for signals received with the wrong sign due to phase
distortion. The resulting symbols are spread and their energy is distributed over
a longer period of time. Pulse shaping with an RRC filter (root raised cosine)
limits the bandwith of the spread signal, which is added with relatively low level
to the SSTV signal (−27 . . .−11dB) and therefore difficult to detect. The sum of
both signals is transmitted to the receiver. In our experimental environment the
conditions of the HF channel are simulated in a reproducible way. For real use,
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Fig. 5. Path of the steganographic signal in the steganographic SSTV system

the signal with its 8000 samples per second would be converted into an analogue
audio signal by the sound card of the computer and then broadcast with an
single side band (SSB) HF transmitter. The short-wave receiver of the remote
station is connected to another sound card of a computer, which digitises the
analogue signal and processes it further. The digitised signal can also be tapped
from the output of the channel simulator of the experimental environment. It is
an ordinary SSTV signal and therefore the image content can be demodulated
as usual. The synchronisation information of the SSTV signal guarantees that
the receiver also recognises the start of the steganographic signal. Before the
steganographic signal is demodulated at the receiver side, a matched RRC filter
must be applied to reduce the interference between the elements of the spreading
sequence (chips). The de-spreader retrieves the energy of the particular binary
symbols from the steganographic signal. It needs the same key that was used
by the sender. The differential decoding corrects the signal in times when the
signal was inverted due to phase distortions, and the de-interleaver coupled with
the turbo decoder tries to correct the remaining errors in the signal. This allows
the level of the received symbols act as a measure of reliability (soft decision
decoding, see Section 3.7).

3.3 Pure Direct Sequence Spread Spectrum (DSSS)

DSSS converts the message to embed m into an embedding sequence s = mn by
multiplication with a spreading sequence n (see Figure 6). We use a long spread-
ing sequence n, which is pseudo-randomly derived from the key. The elements
of the spreading sequence are called chips and have a duration Tc. The symbol
duration Ts is a multiple of Tc. The embedding sequence s is scaled by a gain
factor g (modulation degree) before it is added to the carrier signal c, resulting
in the steganogram cs = c + gs. The receiver extracts the message from the
distorted signal c′s by integrating c′sn piecewise over the symbol duration Ts.6

6 Figure 6 is simplified for clarity and the extraction is based on the distorted embed-
ding sequence.
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Fig. 6. DSSS modulation (left) and demodulation after distortion (right)
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Fig. 7. Direct sequence spread spectrum (DSSS)

In the following first experiment, we tried different spreading factors with
several steganographic SNR’s and measured the resulting bit error rates (BER).
This experiment was repeated for the eight HF conditions defined by the param-
eters of Table 1. Figure 7 shows the BER as a physical map. It plots the (log-
arithmically falling) spreading factor on one axis and the steganographic noise
ratio (in decibel) on the other axis. The largest capacity is rightmost and the
lowest detectability is upmost in the diagrams. Error-dominated regions (BER
≈ 50%) are white, high error rates are brown, low error rates are green, and
error-free areas are plotted in blue.

As expected, pure DSSS survives only the additive white Gaussian noise
(AWGN) channel [7] (HF condition “noise”), which is a rather unlikely con-
dition for a short wave transmission. The channel’s SNR was set to 26dB (S4).
All other simulated conditions produce BERs around the mean 0.5 with varying
standard deviations. This is due to the phase shift caused by a fading multi-path
channel.
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3.4 Differential Encoding of the Secret Message

The transmitted signal is complexly distorted, i. e., its phase is moving and its
amplitude is Rayleigh distributed [18]. Since the radio amateur technology only
receives the real part of the signal and therefore is not able to estimate the
phase difference, the channel cannot be equalised. We use binary phase shift
keying (BPSK), because other modulations like quadrature phase shift keying
(QPSK) and quadrature amplitude modulation (n-QAM) assume a complex sig-
nal. The phase can adopt arbitrary values from 0 to 360◦. This results in a bit
error rate around 0.5. However, the relative change of the phase per symbol is
small. The key to a successful transmission over a channel with (slowly) changing
phase displacement is differential demodulation [19]. Figure 8 shows the demod-
ulated sequence of 4000 impulses, which have been transmitted under “CCIR
poor” conditions (correct reception has positive sign, erroneous reception nega-
tive sign). The grey curve represents the analogue signal intensity, the black one
its sign.

Fig. 8. Burst errors due to phase distortion (left) and improvement by differential
demodulation (right)

One can convert the constantly wrong passages into a correct signal by dif-
ferential encoding. This encoding ensures that the signal is not independently
interpreted at a certain point in time, but based on its predecessor. Hence, the
decoded signal is correct apart from the samples at destructive interference. A
sequence of Boolean values a (true encoded as −1 and false as 1) is converted
into a differential encoded sequence b and decoded again by the following rules:

bk =
k∏

i=1

ai =
{

k = 1: a1

k > 1: ak · bk−1
ak =

{
k = 1: b1

k > 1: bk · bk−1

Differential encoding results in a significantly lower error rate for all conditions
with Doppler spread (see Figure 9). Only in the pure AWGN channel it increases
the BER, because single errors have double effect after decoding. Error-free areas
are not affected by differential encoding.
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Fig. 9. Direct sequence spread spectrum (DSSS) with differential encoding

3.5 Error-Correcting Code for the Secret Message

To correct the loss due to fading, an error-correcting code (ECC) is used, which
is based on an implementation of turbo codes for an OFDM sound modem
(orthogonal frequency division multiplexing) [20]. This implementation permits
code rates7 in the range 1

3 . . . 1. In the following experiments we worked with the
smallest possible code rate of 1

3 . Unfortunately, no configuration was found that
results in an error-free transmission for the conditions “flutter” and “extreme.”
One could try to reduce the code rate, however, most SSTV systems cannot even
decode the image under such extreme conditions.

We estimated useful parameters for the least detectability from Figure 10. Ta-
ble 2 shows parameters with best steganographic SNR for simulations that fault-
lessly transmitted three consecutive messages at the first go. These parameters
are dependent on the channel conditions. Sensible parameters will be derived in
measurements over the air that are currently prepared. The transmission with
parameters off the table under a specific condition works the more reliably the
less indented the northern shoreline of the error-free lake in the respective land-
scape appears. The steganographic SNR in the table is determined based on the
undistorted signal, to which the attacker has no access.

We can see that the lowest error rate is not always expected for the largest
spreading factor. The reason for this is the increased probability for a change
of sign due to phase distortion in longer symbols. On the other hand, the gain
from de-spreading is diminishing with shorter sequences (smaller spreading fac-
tors) and thus the interference between the embedded and the carrier signal is
increasing.

7 Ratio of the number of information bits to the number of bits in the code word.
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Fig. 10. Direct sequence spread spectrum (DSSS) with differential encoding and turbo
code

3.6 Sender-Side Pulse Shaping and Matched Receive Filter

The spreading sequence consists of a sequence of square pulses with vertical
transitions that occupy infinite bandwith. The Nyquist Criterion tells us that
we cannot transmit square pulse shapes over a bandlimited channel [21]. An
SSTV signal is limited to the frequency range 200Hz . . . 3000Hz. To reduce the
loss, the signal is formed and restricted to the required spectrum by a pulse
shaping root raised cosine (RRC) filter [22]. The impulse response g(t) of the
filter is defined as follows:

g(t) =
4α

π
√

Tc

cos
(

(1+α)πt
Tc

)
+ Tc

4αt sin
(

(1−α)πt
Tc

)

1−
(

4αt
Tc

)2

lim
t→0

g(t) =
4α + π(1 − α)

π
√

Tc

The RRC has a parameter α = 2fuTc−1 called roll-off factor. This can shift the
upper cutoff frequency fu for the chip duration Tc in certain limits. Since the
amplitude of the RRC is decreasing on both sides it can be truncated below a
certain threshold ε and limited to a finite duration.

The spectrum for an RRC filter (roll-off factor α = 1
2 , chip duration Tc = 2

sample points, 8000Hz sampling rate) is shown in Figure 11 (left). The filter
forms the signal before transmission and its upper cutoff frequency fu = 3000Hz
adopts the signal bandwith to the channel.
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Table 2. Parameters for SSTV steganography with least detectability

HF channel condition Spreading factor Steganographic SNR Capacity
Noise . . . . . . . . . . . . . . . 800 −27 dB 46 bytes
Flat 1 . . . . . . . . . . . . . . 800 −21 dB 46 bytes
Flat 2 . . . . . . . . . . . . . . 320 −16 dB 118 bytes
CCIR good . . . . . . . . . 640 −15 dB 58 bytes
CCIR moderate . . . . 450 −13 dB 83 bytes
CCIR poor . . . . . . . . . 320 −11 dB 118 bytes
CCIR flutter fading — — 0
Extreme . . . . . . . . . . . . — — 0
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Fig. 11. Spectrum of a truncated RRC filter with α = 1
2 und Tc = 2 (left) and impulse

response of a matched pair of RRC filters (right)

To fulfil the first Nyquist condition (zero inter-symbol interference), Tc has
to be the first root of the filter’s impulse response. At the same time, the signal
to noise ratio has to be maximised, which requires identical (matched) send and
receive filters for real signals. The combination of two root raised cosine filters
forms a raised cosine filter, which complies with this first Nyquist condition.
Figure 11 (right) shows that for nonzero integers k the impulse response of the
combination fulfils (g ∗ g)(kTc) = 0. Consequently the signal does not interfere
with neighbour chips at their sample points.

3.7 Soft Decision Decoding

Figure 12 shows the gain of pulse shaping (middle) compared with the modu-
lation of square pulse shapes (left). We noticed a small increase from 18 to 22
error-free transmissions under CCIR poor conditions in our experiments. If not
only the sign is considered in the decoding (=hard decision), but also the level
of the received signal as a measure for its reliability (=soft decision), the number
of error-free transmissions slightly increases again from 22 to 27.
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Fig. 12. Direct sequence spread spectrum (DSSS) with differential encoding and turbo
code under CCIR-poor HF conditions with hard decision decoding (left), plus pulse
shaping and matched filter (middle), and soft decision decoding (right)

4 Security Considerations and Conclusion

The simulations have shown that narrow-band radio links, as they are used by ra-
dio amateurs on short wave, can be used for the transmission of spread spectrum
modulated embedded messages despite dynamic phase and frequency distortions
on the channel. The physical limits of this scenario have been determined ex-
perimentally. Some ten thousand simulated radio communications have been
compared to each other with different values for the parameters steganographic
SNR and capacity under reproducible, standardised propagation conditions and
in different system increments.

An attacker is facing the task to prove the existence of a steganographic
message, i. e., to distinguish between messages with and without steganographic
content. This distinction has to be made on the basis of the steganographic
noise, which is either present or not. This noise ought to be separated from
other available sources of noise: the noise that is already in the carrier-pattern,
the noise of the transmitter, the ambient atmospheric noise, and the channel
noise, i. e., the distortions, which the signal is exposed to on its way to the
receiver.

An attacker can improve his or her situation by choosing a favourable geo-
graphical position, a more sensitive receiver, or an antenna with increased gain
and a better directional receiving pattern. To decide the question of security
we have to see if the advantage of the recipient, who knows the secret key used
to spread the symbol energy over a longer period of time, is sufficient to pro-
tect from attackers under possibly better physical circumstances, who have to
do without this knowledge. As the measurements have shown (cf. Section 3.5),
there is an optimum for the spreading factor. This means that we cannot auto-
matically decrease the capacity in favour of the steganographic SNR (by means
of a larger spreading factor). The key advantage of using SSTV is its saving
effect by providing synchronisation pulses. There is no need to add redundancy
to the steganographic signal in order to synchronise sender and receiver. The
existing synchronisation pulses are sufficient for this purpose. The time before
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the first row synchronisation pulse and after the end of the embedded message
should be used for a smooth fade of the steganographic noise level since abrupt
changes can be detected more easily.

One could try to derive a steganalytic method from the Twin Peaks attack
on digital watermarks [23]. This attack relies on the duplication of peaks in the
histogram when a spreading sequence {−d, +d}n is added. The success of this at-
tack very much depends on the particular image, because the effect only appears
in histograms with distinct peaks. In the SSTV scenario, an attacker cannot ac-
cess the undistorted steganogram. We cannot preclude peaks in the histogram
of SSTV signals, though they are polished on their way to the receiver. As the
SSTV signal interferes with the steganographic signal, the attack becomes more
difficult and therefore pure spreading sequences with exactly two peaks at −d
and d have been analysed. After a simulated transmission, the distribution was—
apart from the AWGN channel—always unimodal. A transmission with line of
sight is similar to an AWGN channel but is still subject to fading (Rice fading)
[18]. To what extent a line of sight attack is successful has to be researched in
practice.

The security of the proposed system is hard to compare since robust steganog-
raphy for radio links is a new territory and the absence of attacks impedes bench-
marking the security within the simulation environment. The validation of the
simulated results in practice is subject to future research.
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Abstract. Tamper-resistant software (TRS) consists of two functional
components: tamper detection and tamper response. Although both are
equally critical to the effectiveness of a TRS system, past research has
focused primarily on the former, while giving little thought to the lat-
ter. Not surprisingly, many successful breaks of commercial TRS systems
found their first breaches at the relatively näıve tamper-response mod-
ules. In this paper, we describe a novel tamper-response system that
evades hacker detection by introducing delayed, probabilistic failures in
a program. This is accomplished by corrupting the program’s internal
state at well-chosen locations. Our tamper-response system smoothly
blends in with the program and leaves no noticeable traces behind, mak-
ing it very difficult for a hacker to detect its existence. The paper also
presents empirical results to demonstrate the efficacy of our system.

1 Introduction

Software tampering continues to be a major threat to software vendors and con-
sumers: Billions of dollars are lost every year to piracy1; tampered software,
appearing legitimate to untrained consumers, also threatens their financial secu-
rity and privacy. As the main countermeasure, the software industry has invested
heavily in Tamper-Resistant Software (TRS) with varying degree of success. This
paper focuses on a neglected aspect of tamper resistance, namely how the TRS
should respond to tampering.

Software tampering is often conducted on a malicious host that is under a
hacker’s complete control: the hacker is free to monitor the hardware, as well
as modify and observe the system software (i.e., OS). On current PC platform,
without dedicated hardware support such as provided by NGSCB [6,17], TRS
must rely on software obfuscation to evade detection and defeat hacking at-
tempts [8,9,10,11,19]. Stealth, or the art of hiding code in the host program, is

1 According to studies [1] by Business Software Alliance (BSA) and International
Data Corporation (IDC), the retail value of pirated software globally is 29 billions,
33 billions, and 34 billions, in 2003, 2004, and 2005, respectively.

J. Camenisch et al. (Eds.): IH 2006, LNCS 4437, pp. 216–231, 2007.
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the first and the primary defense that most TRS systems deploy against hack-
ers. Ideally, the code pertaining to tamper resistance should be seamlessly in-
tertwined with the host program’s code, so that a hacker cannot discover its
location(s) by either inspecting the program’s code or monitoring its runtime
behavior [7].

A TRS system consists of two functional components: tamper detection and
tamper response; each can be made of multiple distinct modules. Both compo-
nents are equally important to the effectiveness of a TRS system. In practice,
however, most R&D work has gone into hiding the tamper-detection code, which
verifies the host program’s integrity [5,7,13]; surprisingly little has been done to
improve the stealth of the tamper-response component. Since hackers tend to
look for the weakest link to crack the defense perimeter of a TRS system, in-
adequate tamper-response mechanisms have often become the Achilles’ heel of
commercial TRS systems [4].

While some TRS systems can be effective if properly applied, software authors
have often used only simple or default TRS features. For example, certain dongle-
and CD-based copy protections perform just one or a few boolean checks, which
may be easily patched out [14]. Thus, it is highly useful to automate the process
of separating checks from responses.

In this paper, we describe a novel tamper-response system that evades hacker
detection by introducing delayed, probabilistic failures in a program. The main
technique is to corrupt certain parts of the host program’s internal state at well-
chosen locations so that the program either fails or exhibits degraded perfor-
mance. One can also plug other failure-inducing techniques into our framework;
some of them can be found in Section 6. Our tamper-response system smoothly
blends in with the program and leaves no noticeable traces behind, making it
very difficult for a hacker to detect its existence.

The rest of this paper is organized as follows. We describe some prior art
and related work in Section 2. In Section 3, we introduce principles for effective
tamper-resistant software. We describe our tamper-response system in Section 4.
Implementation details and system evaluation are presented in Section 5. We
discuss interesting extensions in Section 6, and conclude in Section 7.

2 Related Work

As informal advice, the idea of separating tamper detection from response has
long been familiar to programmers of software-protection schemes [4]. The con-
cept of “graceful degradation”, or slow decay of a program’s functionality af-
ter tamper detection, is a closely related technique, which has been widely re-
ported to be used commercially [16]. Software authors typically have not re-
vealed how specific implementations achieve these effects; in general, manual and
application-specific techniques have been used. Our work provides systematic,
automated methods of separating detection from response in general programs.

Commercial copy protection, licensing, and DRM systems have employed
many unpublished techniques, which have been described by hackers on a large
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number of Internet sites and discussion boards. Such methods have often relied
on “security by obscurity,” which may be a valid tactic when only limited pro-
tection strength is desired or expected, as in the case of certain copy protections.

This work belongs to the general category of tamper-resistance, software ob-
fuscation, and software watermarking. Representative examples in this category
include runtime code encryption and decryption based on a visibility sched-
ule [2]; taxonomies of generic obfuscating transformations and opaque predi-
cates [9,10,11]; complication of pointer-aliasing and control-flow analysis [8,19];
and integrity verification of both static program code [5,13] and dynamic execu-
tion traces [7].

Theoretical treatment of obfuscation [3] has revealed that a general obfusca-
tor cannot exist for arbitrary software under a specific model. This shows only
the existence of certain contrived programs that cannot be obfuscated against a
polynomial-time adversary, and thus does not necessarily block practical solu-
tions. Furthermore, some forms of secret hiding, which include Unix-style pass-
word hashing, have been proven secure even in this framework [15,20]. An earlier,
somewhat different model [12] showed that obfuscation is possible in the sense
of randomizing memory accesses of certain programs, albeit at a performance
cost impractical for typical applications.

3 Tamper-Resistant Software Model and Principles

Before describing our system, we first define a simple model of tamper-resistant
software and lay out a set of principles to which an effective TRS system must
adhere. In the following discussion, we consider a threat model with these partici-
pants: software vendors, legitimate users, and software pirates. Software vendors
produce software, have the source code, and sell software in the form of exe-
cutable code. Legitimate users and software pirates buy software (in the form
of executable code) from the vendors. Software pirates try to tamper with the
software to bypass its copyright-protection system.

In its simplest incarnation, a tamper-resistant software module resides in and
protects another software module. The module being protected (or the host
module) can be an application program, a library (either statically linked or
dynamically loaded), an operating system or a device driver. In practice, multiple
TRS modules are spread amongst several modules to create a complex web of
defenses; in this paper, however, we concentrate on the simplified case of a single
host module. This is to simplify the discussion without loss of generality.

The TRS module can be functionally decomposed into two components: tam-
per detection and tamper response. As the names imply, the former is responsible
for detecting whether the host module, including the TRS module itself, has been
(or is being) tampered with; the latter generates an appropriate response to ei-
ther thwart such tampering or render the tampered host module unusable. More
specifically,

Detection. We assume one or more detection-code instances exist in the host
module. They communicate with the response code via covert flags: upon
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detecting tampering, the detection code sets one or more flags to inform the
response module as opposed to calling the latter directly. A covert flag need
not (and should not) be a normal boolean variable. It can take the form of
a complex data structure, such as advocated by Collberg et al. [9,10,11].

Researchers have been putting a fair amount of effort into building de-
tection systems. A static checksum based on either the static program code
[5,13] or dynamic execution traces [7] of the code is computed and stored in
a secret place. The detection system computes the new checksum when pro-
grams are running in malicious hosts, and check whether the new checksum
is identical to the old one.

Response. When tampering is detected, an unusual event must happen to ei-
ther stop the program from functioning (in the case of standalone applica-
tions) or informing the appropriate authority (in the case of network-centric
applications). In this work, we restrict our attention to standalone appli-
cations in which a program failure is often a desirable event post tamper-
detection.

We expect the TRS module to have multiple response code instances in
place. Ideally they should be mutually independent so that uncovering of
one does not easily lead to uncovering of others. In theory, the responses
should be so crafted that the hacker cannot easily locate the code and dis-
able it, nor backtrack to the detection code from it. However, in practice the
detection mechanism can often be located by inspecting the code statically
or back-tracing from the response that the tamper-resistant code generates.

We note that our work is about separating tamper response from detection,
but not about choosing the detection sites in the first place. We assume that
some list of detection locations is provided to our algorithm. For example, a pro-
grammer may choose such locations manually; alternately, a tool may generate
a list of sites semi-randomly, possibly influenced by performance and security
requirements, as well as by static and dynamic analysis. Related to the checking
mechanisms themselves, such methods are beyond the scope of this paper.

3.1 Principles of Effective Tamper-Response Mechanisms

Let us first look at a näıve response system (an example also used by Collberg
and Thomborson [10]) and see what kind of attacks adversaries can apply:

if tampered_with() then i=1/0

Upon detecting tampering, the above response code causes a divide-by-zero er-
ror and then the program stops. Since the program fails right at the place where
detection happens, an adversary, with the ability to locate the failure point2,
can trivially trace back to the detection code and remove it. Alternatively, since
divide-by-zero is an unusual operation, an adversary can statically scan the pro-
gram to locate the detection code fragments and then remove it.
2 A debugger is sufficient.
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The näıve response reveals many information of the TRS module to an ad-
versary. An ideal response system, in contrast, should not reveal information of
the TRS module. Based on this guideline, we next propose a set of principles3

for effective tamper-response mechanisms.

Spatial separation. Tamper response and the corresponding failure should be
widely separated in space: While response is performed in one part of the
program, its effect (failure) becomes only apparent in other parts. This way,
even an adversary can identify the failure point, he cannot trace back to the
response point.

One question is that what is a good metric for spatial separation. One
metric is the number of function calls invoked between tamper response and
program failure. By increasing the number of function calls, we hope that
little trace has been left for an adversary to perform any analysis. In addition,
the function where the response code resides is better not in the current call
stack when the failure happens, because debuggers can give adversaries the
information of the current call stack.

Temporal separation. If a response system can cause enough amount of delay
before failure, it can effectively thwart the process of tampering. Imagine
an attack whereby an adversary tries a number of tampering options. The
adversary tries one option and starts to observe the program’s behavior to
see if the tampering works. Suppose our response system will not fail the
program until after a large amount of time, say one day. Then only after one
day, the poor adversary will discover that his trick is not working and he
needs to spend another night to try another option. This is psychologically
frustrating for the adversary and will certainly slow down the tampering
process. The strategy of delayed failure is analogous to injecting extra delay
between two consecutive password tries in a password protection system.

The metric for temporal separation is obviously the time or the number
of instructions executed between response and failure.

Stealth. The code in a tamper-response system should blend in with the pro-
gram being protected so that an automatic scanning tool will not identify the
tamper-response code easily. A response system involving division-by-zero is
definitely not a good idea.

Stealth is a highly context-sensitive quality. Response code that is stealthy
in one program may not be so in another. Any metric for stealth has to
be with respect to the context, or the program. One possible metric is the
statistical similarity4 between the program being protected and the response
code.

3 The principle of spatial/temporal separation has also been briefly discussed by Coll-
berg and Thomborson [10].

4 E.g., the percentage of each kind of machine instructions.
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Predictability. A program that has been tampered with should eventually fail,
with high probability. We also want to control when and where the failure
(damage) can happen. A failure that happens during sensitive operations is
probably undesirable.

In addition, any available obfuscation should be used to protect the tamper-
detection and response code. Ideally, neither observation nor tampering should
easily reveal patterns useful for determining where detection and response occur.
In practice, both generic and application-specific obfuscation methods should be
devised to maximize an attacker’s workload.

4 System Description

We now describe a response mechanism we have built following the principles in
Section 3.1. Our starting insight is that by corrupting a program’s internal state,
a response system can cause the program to fail. If we carefully choose which part
of state to corrupt and when to corrupt, we may achieve the aforementioned spa-
tial and temporal separation. This deliberate injection of “programming bugs”
also satisfies our stealth principle because these bugs look just like normal pro-
gramming bugs and are thus hard to pick out by static scanning.5 Bugs due to
programming errors are hard to locate. Some of these bugs cause delayed failure.
As an example, an early system called HUW [18] appeared to run successfully,
but crashed after about one hour. This was due to an elusive bug in its string
handling module, which corrupted the system’s global buffer. The data struc-
tures inside the corrupted buffer, however, were not used until about an hour
later. Therefore, the system ran OK until the corrupted data structures were
accessed.

As we can see from this example, corrupting programs’ internal state might
produce the effect of delayed failure. For clarity, we assume there are three
kinds of sites: detection sites (where tamper detection happens), response sites
(where corrupting the internal state happens), and failure sites (where failure
happens). Response sites are also called corruption sites in our system. In the
rest of this paper, for simplicity, we will identify detection sites with corruption
sites. In practice, detection sites and corruption sites should be separated (and
communicate via covert flags), and the techniques and implementation that we
will introduce applies as well.

There are many ways to corrupt a program’s internal state. Our system
chooses the straightforward way: corrupt the program’ own variables. By de-
liberately corrupting the program’ variables, we hope to achieve the following
results:

– Predictable failure of the program, due to the corruption of the program’s
internal state.

5 If there is regularity in the type of bugs we introduce, an attacker may be able to
employ static analysis to increase his/her likelihood of locating them.
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– Stealthy response code, since the response code is just an ordinary variable
assignment.

– Spatial and temporal separation, if we carefully choose when and where to
corrupt the variables.

Not all variables are good candidates. Suppose the value of an integer variable
ranges between 3 and 10. Then what would be the behavior of the program when
the variable is changed to 100? Would the program fail? Where and when would
it fail? We have to answer these questions to achieve some predictability in
our response system. We suspect that for an arbitrary program variable, the
result of any analysis is highly imprecise. However, one observation can be made
about pointer variables, which are ubiquitous in C-style programs. If a pointer is
corrupted by setting it to a NULL pointer or a value out of the program’s address
space, dereference of this pointer definitely crashes the program. Moreover, if the
next dereference happens only after some time, we achieve the effect of delayed
failure.

Corruption of local pointers (declared in a function body) is unlikely to achieve
much delay. The corruption of local pointers has to happen locally, because their
storage is in the run-time stack, Their values are also used locally, which means
the corruption and usage would be very close if we had chosen to corrupt a local
pointer.

int * p

Module A Module B

Module C

Fig. 1. Global pointers

For global pointers, the scenario is different and one example is depicted in
Figure 1. Suppose there is a global pointer p which is used by modules B and C,
but not touched by module A. If we choose to corrupt this pointer in module A,
then the program will keep running until module A has finished and the program
switches to module B or C. Based on this example, intuition is there that delayed
failure can be achieved by corrupting a global pointer.

But what if the program has not many global pointers? Our solution is to
perform transformations on the program to create new global pointers. One way
to achieve this is to add a level of indirection to the existing global variables.
The idea is illustrated by the example in Figure 2.

On the left of Figure 2 is the original program; the code after transformation
is on the right. For the global variable a, we create a new pointer variable p a,
whose value is initialized to the address of a. Then we replace all uses, or some
uses, of variable a by the dereference of the newly created pointer variable p a.

Below are the benefits of the extra level of indirection to global variables:
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int a;
void f() {
a = 3;

}
void main() {
f();
printf(‘‘a = %i\n’’, a);

}

int a;
int *p_a = &a;
void f() {

*p_a = 3;
}
void main() {

f();
printf(‘‘a = %i\n’’, *p_a);

}

Fig. 2. Example: Creating a layer of indirection to global pointers

– Any global variables can be used to create new pointers, alleviating the
possible shortage of global pointers.

– The failure behavior of the new program is easily predictable. After p a is
corrupted, any subsequent use of the variable, p a, would be a failure site.

– We can also control where the program fails. For example, if we do not want
the program to fail inside the main function, we just do not replace a with
p a in main.

Note that the extra level of indirection to global variables does slow down
the program because of the cost of extra dereferences. On the other hand, this
performance hit is controllable since we can control how many uses of global
variables are replaced by their pointer counterparts.

4.1 Choosing Corruption Sites

As we have explained, global pointer variables are the targets to corrupt in our
system. The remaining question is where to corrupt those pointers? Since we
could corrupt a global pointer anywhere in the program, the search space is the
whole program.

To make our search algorithm scalable for large programs, we use functions
as the basic search units instead of, say, statements. Based on this, we state the
searching problem more rigorously. Corruption of global pointer variables can
happen inside any function body; thus a function body is a possible corruption
site. A failure site is a function where the program fails when the program reaches
the function after pointer corruption. In our setting, failure sites correspond to
those places where corrupted pointers are dereferenced. To find good corruption
sites, we want to search for functions to embed pointer corruptions, to achieve
wide spatial and temporal separation between corruption and failure.

First, we should make sure the function where corruption happens is not in
the current call stack when the program fails. Otherwise, attacker could use a
debugger to back-trace from the failure site to the corruption site. To avoid such
attacks, we use a static-analysis tool called call graphs. Below is an example
program and its call graph.
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int a;
int *p_a = &a;
void g1();
void g2();
void h ();
void f() {
g1(); g2();
*p_a = 3;

}
void main() {
f(); h();

}

g2

main

f h

g1

In the example, the main function calls the f function; thus there is a directed
edge from main to f in its call graph. Similarly, since f calls g1 and g2, the call
graph has the directed edges from f to g1, and from f to g2.

In the example program, suppose our system decides to corrupt the pointer
variable p a. Then the function f is a failure site since it dereferences p a. Obvi-
ously, the corruption should not happen inside f because otherwise the program
would fail in the function where the corruption happened. Furthermore, the main
function should not be the corruption site since otherwise the main function
would be in the current call stack when the program fails in the function f. In
general, our system excludes all functions where the corrupted pointer variable
is dereferenced; furthermore, it excludes all functions who in the call graph are
ancestors of those functions where failure can happen. This heuristic guarantees
that when the program fails the corruption site is not in the call stack.

Additionally, we want to achieve wide spatial and temporal separation be-
tween corruption and failure. We first present some experimental numbers, which
show the spectrum of spatial and temporal separation. We conducted the exper-
iment on a C program called Winboard. We picked 800 functions in Winboard,
planted the corruption of a selected pointer variable into each function, and
recorded the temporal and spatial separation between corruption and failure.
Figure 3 shows the temporal separation, and Figure 4 shows the spatial separa-
tion. In both figures, the horizontal axis is the function ID where the corruption
happens. In Figure 3, the vertical axis is the elapsing time between corruption
and failure in microseconds. In the Figure 4, the vertical axis is the number of
function calls happened between corruption and failure.

As we can see from the figures, the spread is over several orders of magnitude.
The functions in the upper portion are the ones we want to search for. However,
a static heuristic may be hard to succeed because essentially an estimate of time
between two function calls is needed; we are not aware of any static-analysis
techniques that can give us this information.

Our solution is to measure the average distance between two function calls
in a dynamic function-call and time trace. This information estimates how far a
function is from the nearest failure sites (functions that dereferences the pointer)
in terms of both the number of function calls and time. Only functions that are
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Fig. 3. Temporal separation between corruption and failure. The horizontal axis repre-
sents function IDs, and the vertical axis represents the elapsing time between corruption
and failure in microseconds.

far from failure sites will be selected as corruption sites. We experimented this
heuristic on the Winboard program and the results showed that those functions
in the upper portion of Figure 3 and 4 are most likely to be selected. The
shortcoming of this approach is that it depends on dynamic traces, which may
be correlated to user inputs and other random events.

To make it more precise, we outline our algorithm for selecting good corruption
sites in Figure 5. For a simple presentation, the algorithm processes a single C
file, called example.c (Our implementation can process multiple files at once).

The algorithm takes three inputs. The first is the source file. The second is a
function-distance matrix T , which tells distances between functions. The value
T [f1, f2] is the distance between functions f1 and f2. In our system, the matrix
is computed from a typical dynamic trace of the program. The last input is a
threshold parameter δ to dictate the minimal distance between corruption sites
and failure sites.

For each global variable gi, the algorithm first identifies those functions that
use the value of gi (line 4). A function f in this set is a failure site for gi, because
if we had created an indirect pointer to gi, say pgi , and replaced the use of gi in
f by ∗(pgi), then the program would fail inside f after pgi had been corrupted.
The algorithm then proceeds to rule out all functions that are ancestors of the
failure sites in the call graph (line 6), so that when program fails, the function
where corruption happens will not be in the call stack. Finally, the algorithm
rules out those functions that are too close to failure sites (line 8 and 9).
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Fig. 4. Spatial separation between corruption and failure. The horizontal axis repre-
sents function IDs, and the vertical axis represents the number of function calls between
corruption and failure.

5 Implementation and Evaluation

We have built a prototype system, which takes C programs as inputs and auto-
matically inserts tamper-response code. The system identifies good global vari-
ables as target variables to corrupt when tampering is detected; it also selects
good corruption sites according to the heuristics we explained in section 4.

The flow of our implemented system is depicted in Figure 6. In the figure and
also in the following paragraphs, we use the Winboard program as the example
application to explain our system. Winboard is a chess program written in C. It
has totally 27,000 lines of C code, and contains 297 global variables, which are
potential target variables to corrupt.

Winboard consists of a bunch of C files: winboard.c, backend.c, etc. In our
system, these files are first fed into a varusage module. For each source file,
the varusage module produces a .use file, which identifies places that global
variables are used. Separate .use files are linked by the uselink module to
produce the global .use file. Source C files are also fed into the callgraph
module, which produces .cg files, or call graph files. Separate .cg files are linked
together by the cglink to produce a global call graph.

We also run profiling tools on the program to produce a dynamic trace. The
trace records the order of entering and exiting functions and also the correspond-
ing timestamps. This trace is the input to the trmatrix module. The module
measures the average distance between two functions in terms of both elapsing
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Input:
a) example.c, with global variables g1, g2, . . . , gn;
b) Function-distance matrix T;
c) δ: Threshold for the distance between corruption and failure sites.

Output: The set of good corruption sites Ci, for each gi.

1: Compute the call graph G of example.c
2: for each global variable gi, 1 ≤ i ≤ n do
3: Ci ← the set of all functions in example.c
4: Identify the set of functions where the value of gi is used, say {fi1, . . . , fim}
5: for each fij , 1 ≤ j ≤ m do
6: Remove from Ci all the ancestors of fij in the call graph G.
7: for each f remaining in Ci do
8: if T [f, fij ] < δ then
9: remove f from Ci

10: end if
11: end for
12: end for
13: Output Ci for the global variable gi

14: end for

Fig. 5. Algorithm for selecting good corruption sites

time and the number of function calls, records the information into a matrix,
and writes the matrix into a .tr file.

At this point, we have winboard.use (recording where global variables are
used), winboard.cg (the global call graph), and winboard.tr (the trace matrix).
These files are inputs to the delayedfailuremodule. The module first computes
the set of good corruption sites for each global variable, following the algorithm
in Figure 5, and then randomly selects some global variables and good corruption
sites. Finally, the corrupt module performs source-to-source transformation to
first create a layer of indirection to selected global variables, and then plant the
corruption of the newly-created pointers into selected corruption sites (on the
condition that tampering is detected).

5.1 System Evaluation/Threat Analysis

Overall, our system protects software by making them exhibit the effect of de-
layed failure after tampering is detected. To remove our tamper-response code,
the attacker has to trace back from the crash site to analyze what is corrupted
and where the corruption happens. Since we corrupt pointer variables, the at-
tacker essentially has to debug programs with elusive pointer-related bugs, which
many programmers know can be extremely hard; the situation is actually worse
for the attacker, because he has no source code. Next, we evaluate our system
in more detail in terms of the principles we laid out in section 3.1.

Spatial separation. Our system can guarantee wide spatial separation be-
tween the corruption site and the failure site. We achieved the separation
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...winboard.c backend.c

varusage varusage callgraph callgraph

.use .use .cg .cg a typical
trace

uselink cglink trmatrix

winboard.use winboard.cg winboard.tr

delayedfailure

selected vars & functions

winboard.c,
backend.c, ...

corrupt

winboard.exe

Fig. 6. System Implementation

on the order of 104 functions calls in our experiment. With the help of call
graphs, it can further guarantee that the corruption site will not be in the
call stack when failure happens.

Temporal separation. Using the dynamic-trace approach, we achieved sec-
onds of delay in our experiment, which is much better than immediate fail-
ure. Further delay can be achieved with the following techniques. First, our
experiments were conducted by setting the pointer variable to NULL. Our
system can be easily configured so that pointer corruption means adding
random offsets to the pointer. In this case, the cumulative effect of several
consecutive corruptions will most likely crash the program, and the delay will
be boosted by this technique. Second, since we wanted automatic testing in
our experiment, we avoided those functions which need human interaction
to invoke, e.g., the functions that will be invoked only if certain buttons
are clicked. User-behavior models can inform us of those functions that are
called occasionally. For example, if we know that a certain function is called
only once in an hour, then we can plant the corruption into that function to
achieve long delay.



Delayed and Controlled Failures in Tamper-Resistant Software 229

Stealth. Since our response system only manipulates pointers, it should be
fairly stealthy in programs that have lots of pointer manipulations. For pro-
grams in which pointers are scarce, one possible attack for an adversary is to
track the pointers of a program dynamically, identify the instructions that
make pointers nonsensical, and then remove those instructions.

To counter this attack, our system should be combined with various
types of obfuscation and integrity checks. For example, dynamic computation
of global-variable pointers, including techniques such as temporary pointer
corruption and runtime relocation of global data, should complicate attacks
that track pointer usage via breakpoints or traces. We also embed multiple
pointer corruptions, so that even one has been removed, others can still work.
Finally, we are experimenting with the idea of corrupting data structures
through pointers. In these kinds of corruption, pointer values always stay
meaningful; only certain invariants of the data structure are destroyed.

Predictability. Our response system is predictable and controllable. Pointer
dereferences after its corruption will surely fail the program. Any dereference
becomes a failure site and we can control where failure happens.

6 Extensions

Safe languages. In safe, strongly typed languages such as C# and Java, pointers
and global variables may be either unavailable or limited to atypical usage.
While our pointer-corruption method does not have an immediate analogue in
safe code, various other techniques can achieve similar results. In general, the
main idea of separating tamper response from detection applies just as well to
safe languages as to C/C++.

Below are some examples of delayed corruption possible via a safe language:

– Array out-of-bounds errors: Set up an array index to fall beyond the array’s
limits.

– Infinite loops: Change a variable in a loop-condition test to result in an
infinite (or at least very time-consuming) loop.

Such techniques require implicit data-based links between the code at cor-
ruption and failure sites. While global variables in C/C++ serve to create such
connections, proper object-oriented design stipulates object isolation and tightly
controlled dataflow. Nonetheless, some object fields (e.g., public static members
in C#) serve essentially as global variables. Some applications also use dedicated
namespaces and classes that encapsulate global data, which can also substitute
for true global variables.

To increase the number of opportunities for delayed responses, we can perform
various semantically-equivalent code transformations that break object isolation,
similar to how we create global pointer variables. As an example, we can convert a
constant loop endpoint or API-function argument to a public static variable that
can be modified to effect a tamper response. If a good response location contains
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no suitable code, we can inject new code that references such variables (e.g., a
new loop or system-API call). Randomly generated and tightly integrated, such
code should have no operational effects if tampering is not detected.

Graceful degradation. Some of the above techniques do not cause failures as
predictably as pointer corruption. However, graceful degradation can be more
stealthy and difficult to analyze than definite failures. Any particular response
might not terminate the program, but if one or more checks continue to fail,
the cumulative effect should eventually make the program unusable. Both the
checks and responses can also be made probabilistic in terms of spatial/temporal
separation and response action.

A program run could degrade its functioning via slowdown, high resource
usage, and arbitrary incorrect operation (e.g., file corruption or graphics dis-
tortion). Such techniques may be generic and automated; for example, we can
transform program loops to include conditions that take increasingly longer time
to satisfy (e.g., via gradually incremented counters). While application-specific
techniques require manual design and implementation, these could be quite ef-
fective (e.g., a game where the player’s movements and aim become increasingly
erratic [16]).

7 Conclusions

A tamper-resistant system consists of tamper detection and tamper response. In-
adequate tamper response can become the weakest link of the whole system. In
this paper, we have proposed a tamper-response mechanism that evades hacker
removal by introducing delayed and controlled failures, accomplished by corrupt-
ing the program’s internal state at well-chosen locations.
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Abstract. Self-modifying code is notoriously hard to understand and
therefore very well suited to hide program internals. In this paper we in-
troduce a program representation for this type of code: the state-enhanced
control flow graph. It is shown how this program representation can be
constructed, how it can be linearized into a binary program, and how it
can be used to generate, analyze and transform self-modifying code.

1 Introduction

Self-modifying code has a long history of hiding the internals of a program. It
was used to hide copy protection instructions in 1980s MS DOS based games.
The floppy disk drive access instruction ’int 0x13’ would not appear in the ex-
ecutable program’s image but it would be written into the executable’s memory
image after the program started executing1. A number of publications in the aca-
demic literature indicate a renewed interest in the application of self-modifying
code to prevent undesired reverse engineering [1,10,14].

While hiding the internals of a program can be used to protect the intellectual
property contained within or protected by software, it can be applied for less
righteous causes as well. Viruses, for example, try to hide their malicious intent
through the use of self-modifying code [12].

Self-modifying code is very well suited for these applications as it is generally
assumed to be one of the main problems in reverse engineering [3]. Because self-
modifying code is so hard to understand, maintain and debug, it is rarely used
nowadays. As a result, many analyses and tools make the assumption that code
is not self-modifying, i.e., constant. Note that we distinguish self-modifying code
from run-time generated code as used in, e.g., a Java Virtual Machine.

This is unfortunate as, in theory, there is nothing unusual about self-modifying
code. After all, in the omnipresent model of the stored-program computer, which
was anticipated as early as 1937 by Konrad Zuse, instructions and data are held
in a single storage structure [22]. Because of this, code can be treated as data
and can thus be read and written by the code itself.
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If we want tools and analyses to work conservatively and accurately on self-
modifying code, it is important to have a representation which allows one to
easily reason about and transform that type of code. For traditional code, which
neither reads nor writes itself, the control flow graph is such a representation.
Its main benefit is that it represents a superset of all executions. As such, it al-
lows analyses to reason about every possible run-time behavior of the program.
Furthermore, it is well understood how a control flow graph can be constructed,
how it can be transformed and how it can be linearized into an executable pro-
gram. Until now, there was no analogous representation for self-modifying code.
Existing approaches are often ad-hoc and usually resort to overly conservative
assumptions: a region of self-modifying code is considered to be a black box
about which little is known and to which no further changes can be made.

In this paper, we will discuss why the basic concept of the control flow graph
is inadequate to deal with self-modifying code and introduce a number of ex-
tensions which can overcome this limitation. These extensions are: (i) a datas-
tructure keeps track of the possible states of the program, (ii) an edge can be
conditional on the state of the target memory locations, and (iii) an instruction
uses the memory locations in which it resides.

We refer to a control flow graph augmented with these extensions as a state-
enhanced control flow graph. These extensions ensure that we no longer have
to artificially assume that code is constant. In fact, existing data analyses can
now readily be applied on code, as desired in the model of the stored-program
computer. Furthermore, we will discuss how the state-enhanced control flow
graph allows for the transformation of self-modifying code and how it can be
linearized into an executable program.

The remainder of this paper is structured as follows: Section 2 introduces
the running example. Next, the extensions to the traditional control flow graph
are introduced in Section 3. Section 4 provides algorithms to construct a state-
enhanced control flow graph from a binary program and vice versa. Example
analyses on and transformations of this program representation are the topic of
Section 5. An experimental evaluation is given in Section 6. Related work is the
topic of Section 7 and conclusions are drawn in Section 8.

2 The Running Example

For our example, we introduce a simple and limited instruction set which is
loosely based on the 80x86. For the sake of brevity, the addresses and immediates
are assumed to be 1 byte. It is summarized below:

Assembly Binary Semantics
movb value to 0xc6 value to set byte at address to to value value
inc reg 0x40 reg increment register reg
dec reg 0x48 reg decrement register reg
push reg 0xff reg push register reg on the stack
jmp to 0x0c to jump to absolute address to
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As a running example, we have chosen to hide one of the simplest operations.
The linear disassembly of the obfuscated version is as follows:

Address Assembly Binary
0x0 movb 0xc 0x8 c6 0c 08
0x3 inc %ebx 40 01
0x5 movb 0xc 0x5 c6 0c 05
0x8 inc %edx 40 03
0xa push %ecx ff 02
0xc dec %ebx 48 01

If we would perform traditional CFG (Control Flow Graph) construction on
this binary, we would obtain a single basic block as shown in Figure 1(a). If we
step through the program however, we can observe that instruction A changes
instruction D into instruction G, resulting in a new CFG as shown in part (b).
Next instruction B is executed, followed by instruction C which changes itself
into jump instruction H (c). Then, instruction G transfers control back to B after
which H and F are executed. The only possible trace therefore is A,B,C,G,B,H,F.
While not apparent at first sight, we can now see that these instructions could
be replaced by a single instruction: inc %ebx.

(a) (b) (c)

Fig. 1. Traditional CFG construction before execution (a), after the first write instruc-
tion A (b), and after the second write instruction C (c)

3 The State-Enhanced Control Flow Graph (SE-CFG)

CFGs have since long been used to discover the hierarchical flow of control and
for data-flow analysis to determine global information about the manipulation
of data [16]. They have proved to be a very useful representation enabling the
analysis and transformation of code. Given the vast amount of research that has
gone into the development of analyses on and transformations of this program
representation, we are eager to reuse the knowledge resulting from this research.
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3.1 A Control Flow Graph for Self-Modifying Code

One of the reasons a CFG is so useful is that it represents a superset of all the
possible executions that may occur at run time. As a result, many analyses rely
on this representation to reason about every possible behavior of the program.
Unfortunately, traditional CFG construction algorithms fail in the presence of
self-modifying code. If they are applied on our running example at different
moments in time, we obtain the three CFGs shown in Figure 1. However, none
of these CFGs allows for both a conservative and accurate analysis of the code.

We can illustrate this by applying unreachable code elimination on these
CFGs. This simple analysis removes every basic block that cannot be reached
from the entry block. If it is applied on Figure 1(a), then no code will be consid-
ered to be unreachable. This is not accurate as, e.g., instruction E is unreachable.
If we apply it on Figure 1(b), instructions E and F are considered to be unreach-
able, while Figure 1(c) would yield G and E. However, both F and G are reachable.
Therefore in this case, the result is not conservative.

We can however still maintain the formal definition of a CFG: a CFG is
a directed graph G(V, E) which consists of a set of vertices V , basic blocks,
and a set of edges E, which indicate possible flow of control between basic
blocks. A basic block is defined to be a sequence of instructions for which every
instruction in a certain position dominates all those in later positions, and no
other instruction executes between two instructions in the sequence.

The concept of an edge remains unchanged as well: a directed edge is drawn
from basic block a to basic block b if we conservatively assume that control can
flow from a to b. The CFG for our running example is given in Figure 2.

Fig. 2. The CFG of our running example (before optimization)

In essence, this CFG is a superposition of the different CFGs observed at
different times. In the middle of Figure 2, we can easily detect the CFG of Fig-
ure 1(a). The CFG of Figure 1(b) can also be found: just mask away instruction
D and H. Finally, the CFG of Figure 1(c) can be found by masking instruction
C and D. We will postpone the discussion of the construction of this CFG given
the binary representation of the program to Section 4. For now, note that, while
this CFG does represent the one possible execution (A,B,C,G,B,H,F), it also
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represents additional executions that will never occur in practice. This will be
optimized in Section 5.

3.2 Extension 1: Codebytes

The CFG in Figure 2 satisfies the basic property of a CFG: it represents a
superset of all possible executions. As such it can readily be used to reason
about a superset of all possible program executions. Unfortunately, this CFG
does not yet have the same usability we have come to expect of a CFG.

One of the shortcomings is that it cannot easily be linearized into an exe-
cutable program. There is no way to go from this CFG to the binary represen-
tation of Section 2, simply because it does not contain sufficient information.

For example, there are two fall-through paths out of block B. Note that we
follow the convention that a dotted arrow represents a fall-through path, meaning
that the two connected blocks need to be placed consecutively. Clearly, in a linear
representation, only one of these successors can be placed after the increment
instruction. Which one should we then choose?

To overcome this and other related problems, we will augment the CFG with
a datastructure, called codebytes. This datastructure will allow us to reason
about the different states of the program. Furthermore, it will indicate which
instructions overlap and what the initial state of the program is.

In practice, there is one codebyte for every byte in the code segment. This
codebyte represents the different states the byte can be in. By convention, the
first of these states represents the initial state of that byte, i.e. the one that will
end up in the binary representation of the program. For every instruction, there
is a sequence of states representing its machine code. For our running example,
this is illustrated in Figure 3. We can see that instruction A and C occupy three
codebytes, while the others occupy two codebytes. A codebyte consists of one or
more states. For example, codebyte 0x0 has one state: c6 and codebyte 0x8 has
two states: 40 and 0c. We can also see that instruction H and C overlap as they
have common codebytes. As the first state of codebyte 0x5 is that of instruction
C, and the other states are identical, instruction C will be in the binary image of
the program, while instruction H will not.

Codebytes are not only useful for the representation of the static code section,
but also for the representation of code that could be generated in dynamically
allocated memory. A region of memory can be dynamically allocated and filled
with bytes representing a piece of code which will be executed afterwards. The
difference between a codebyte representing a byte in the static code section and
a codebyte representing a byte that will be dynamically produced at run time
is that it has no initial state because the byte will not end up in the binary
representation of the program.

3.3 Extension 2: Codebyte Conditional Edges

We have repeatedly stressed the importance of having a superset of all possible
executions. Actually, we are looking for the exact set of all possible executions,
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Fig. 3. The SE-CFG of our running example (before optimization)

not a superset. In practice, it is hard, if not impossible to find a finite repre-
sentation of all possible executions and no others. The CFG is a compromise in
the sense that it is capable of representing all possible executions, at the cost
of representing executions that cannot occur in practice. Therefore, analyses on
the CFG are conservative, but may be less accurate than optimal because they
are safe for executions that can never occur.

A partial solution to this problem consists of transforming the analyses into
path-sensitive variants. These analyses are an attempt to not take into ac-
count certain unexecutable paths. Clearly, for every block with multiple outgoing
paths, only one will be taken at a given point in the execution. For constant code,
the chosen path may depend upon a status flag (conditional jump), a value on
the stack (return), the value of a register (indirect call or jump), . . . . However,
once the target of the control transfer is known, it is also known which instruc-
tion will be executed next. For self-modifying code the target address alone does
not determine the next instruction to be executed. The values of the target lo-
cations determine the instruction that will be executed as well. To take this into
account, we introduce additional conditions on arrows. These conditions can be
found on the arrows itself in Figure 3. As instruction B is not a control transfer
instruction, control will flow to the instruction at the next address: 0x5. For
constant code, this would determine which instruction is executed next: there is
at most one instruction at a given address. For self-modifying code, this is not
necessarily the case. Depending on the state of the program, instruction B can
be followed by instruction C (*(0x5)==c6) or instruction H (*(0x5)==0c).
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3.4 Extension 3: Consumption of Codebyte Values

The third, and final extension is designed to model the fact that when an in-
struction is executed, the bytes representing that instruction are read by the
CPU. Therefore, in our model, an instruction uses the codebytes it occupies.
This will enable us to treat code as data in data-flow analyses. For example, if
we want to apply liveness analysis on a codebyte, we have the traditional uses
and definitions of that value: it is read or written by another instruction. For
example, codebyte 0x8 is defined by instruction A. On top of that, a codebyte is
used when it is part of an instruction, e.g., codebyte 0x8 is used by instruction D
and G. Note that this information can be deduced from the codebyte structure.

Wrap-up. The SE-CFG still contains a CFG and therefore, existing analyses
which operate on a CFG can be readily applied to an SE-CFG. Furthermore,
code can be treated exactly the same way as data: the initial values of the
codebytes are written when the program is loaded, they can be read or written
just as any other memory location and are also read when they are executed.

Note that in our model traditional code is just a special case of self-modifying
code. The extensions can be omitted for traditional code as: (i) the code can
easily be linearized since instructions do not overlap, (ii) the target locations of
control transfers can only be in one state, and (iii) the result of data analyses
on code are trivial as the code is constant.

Where possible, we will make the same simplifications. For example, we will
only add constraints to arrows where necessary and limit them to the smallest
number of states to discriminate between different successors.

4 Construction and Linearization of the SE-CFG

In this section, we discuss how an SE-CFG can be constructed from assembly
code. Next, it is shown how the SE-CFG representation can be linearized.

4.1 SE-CFG Construction

Static SE-CFG construction is only possible when we can deduce sufficient in-
formation about the code. If we cannot detect the targets of indirect control
transfers, we need to assume that they can go to every byte of the program. If
we cannot detect information about the write instructions, we need to assume
that any instruction can be at any position in the program. This would result
in overly conservative assumptions, hindering analyses and transformations.

When looking at applications of information hiding, it is likely that attempts
will have been made to hide this information. It is nevertheless useful to devise
such an algorithm, because there are applications of self-modifying code outside
the domain of information hiding which do not actively try to hide such infor-
mation. Furthermore, reverse engineers often omit the requirement of proved
conservativeness and revert to approximate, practically sound information. Fi-
nally, it could be used to extend dynamically obtained information over code not
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covered in observed executions. For programs which have not deliberately been
obfuscated, linear disassembly works well. As a result, the disassembly phase can
be separated from the flowgraph construction phase. However, when the code
is intermixed with data in an unpredictable way, and especially when attempts
have been made to thwart linear disassembly [13], it may produce wrong results.
Kruegel et al.[11] introduce a new method to overcome most of the problems
introduced by code obfuscation but the method is not useful when a program
contains self-modifying code. To partially solve this problem, disassembly can be
combined with the control flow information. Such an approach is recursive traver-
sal. The extended recursive traversal algorithm which deals with self-modifying
code is:

00: proc main()
01: for ( addr = code.startAddr ; addr ≤ code.endAddr ; addr++)
02: codebyte[addr ].add(byte at address addr);
03: while (change)
04: MarkAllAddressesAsUnvisited();
05: Recursive(code.entryPoint);
06: proc Recursive(addr)
07: if (IsMarkedAsVisited(addr)) return;
08: MarkAsVisited(addr);
09: for each (Ins) — Ins can start at codebyte[addr]
10: DisassembleIns(Ins);
11: for each (v,w) — Ins can write v at codebyte w
12: codebyte[w ].add(v);
13: for each (target) — control can flow to target after Ins
14: Recursive(target);

Disassembly starts at the only instruction that will certainly be executed as
represented in the binary: the entry point (line 5). When multiple instructions
can start at a codebyte, all possible instructions are disassembled (line 9, code-
byte 0x8 in Figure 4(a)). When an instruction modifies the code, state(s) are
added to the target codebyte(s) (line 11-12). This is illustrated in Figure 4(a):
state 0c is added to codebyte 0x8. Next, all possible successors are recursively
disassembled (line 13-14). In our example, the main loop (line 3) will be executed
three times, as the second instruction at codebyte 0x5 will be missed in the first
run. It will however be added in the second run. In the third run, there will be
no further changes. The overall result is shown in Figure 4(b).

Once we have detected the instructions, the SE-CFG construction is straight-
forward: every instruction I is put into a separate basic block basicblockI . If
control can flow from instruction I to codebyte c, then for every instruction J
that can start at c, we draw an edge basicblockI → basicblockJ . Finally, basic
blocks are merged into larger basic blocks where possible. The thus obtained
SE-CFG for our running example is given in Figure 3. Note that it still contains
instructions that cannot be executed and edges that cannot be followed. It is
discussed in Section 5 how these can be pruned.
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(a)

(b)

Fig. 4. Recursive Traversal Disassembly of Self-Modifying Code

4.2 SE-CFG Linearization

Traditional CFG linearization consists of concatenating all basic blocks that need
to be placed consecutively in chains. The resulting chains can then be ordered
arbitrarily, resulting in a list of instructions which can be assembled to obtain
the desired program.

When dealing with self-modifying code, we cannot simply concatenate all
basic blocks that need to be placed consecutively and write them out. One of
the reasons is that this is impossible when dealing with multiple fall-through
edges. Instead, we will create chains of codebytes. Two codebytes need to be
concatenated if one of the following conditions holds: (i) c and d are successive
codebytes belonging to an instruction, (ii) codebyte c is the last codebyte of
instruction I and codebyte d is the first codebyte of instruction J and I and J are
successive instructions in a basic block, and (iii) codebyte c is the last codebyte
byte of the last instruction in basic block A and d is the first codebyte of the
first instruction in basic block B and A and B need to be placed consecutively
because of a fall-through path.

The resulting chains of codebytes can be concatenated in any order into a
single chain. At this point, the final layout of the program has been determined,
and all relocated values can be computed. Next, the initial states of the codebytes
can be written out.

For example, in Figure 3, codebyte 0x0, 0x1 and 0x2 need to be concate-
nated because of condition (i), codebyte 0x9 and 0xa because of condition (ii)
and codebyte 0x4 and 0x5 because of condition (iii). When all conditions have
been evaluated, we obtain a single chain. If we write out the first state of every
codebyte in the resulting chain, we obtain the binary code listed in Section 2.
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5 Analyses on and Transformations of the SE-CFG

In this section, we will demonstrate the usability of the SE-CFG representation
by showing how it can be used for common analyses and transformations. We
will illustrate how issues concerning self-modifying code can be mapped onto
similar issues encountered with constant code in a number of situations.

Note that once the SE-CFG is constructed, the eventual layout of the code
is irrelevant and will be determined by the serialization phase. Therefore, the
addresses of codebytes are irrelevant in this phase. However, for the ease of
reference, we will retain them in this paper. In practice, addresses are replaced
by relocations.

5.1 Constant Propagation

The CFG of Figure 2 satisfies all requirements of a CFG: it is a superset of all
possible executions. As this CFG is part of the SE-CFG in Figure 3, analyses
which operate on a CFG can be reused without modifications. This includes
constant propagation, liveness analysis, . . .

Because of the extensions, it is furthermore possible to apply existing data
analyses on the code as well. This can be useful when reasoning about self-
modifying code. A common question that arises when dealing with self-modifying
code is: “What are the possible states of the program at this program point?”.
This question can be answered through traditional data analyses on the code-
bytes, e.g., constant propagation.

If we would perform constant propagation on codebyte 0x8 on the SE-CFG
of Figure 3, we can see that codebyte 0x8 it is set to 40 when the program is
loaded. Subsequently, it is set to 0c by instruction A. Continuing the analysis,
we learn that at program point C it can only contain the value 0c. Therefore,
the edge from instruction C to instruction D is unrealizable, since the condition
*(0x8)==40 can never hold. The edge can therefore be removed.

5.2 Unreachable Code Elimination

Traditionally, unreachable code elimination operates by marking every basic
block that is reachable from the entry node of the program. For self-modifying
code, the approach is similar. For our running example, this would result in
the elimination of basic blocks D and E. Note that the edge between C and D is
assumed to have been removed by constant propagation.

Similarly, we can remove unreachable codebytes. A codebyte can be removed if
it is not part of any reachable basic block and if it is not read by any instruction.
This allows us to remove codebyte 0xa and 0xb. While we have removed the
inc %edx-instruction, its codebytes could not be removed, as they are connected
through another instruction. Note that we now have a conservative and accurate
unreachable code elimination.
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5.3 Liveness Analysis

Another commonly asked question with self-modifying code is as follows: “Can
I overwrite a piece of code?”. Again, this is completely identical to the question
whether you can overwrite a piece of data. You can overwrite a piece of the
program if you can guarantee that the value will not be read later on by the
program before it is overwritten. In our model, for self-modifying code, a value
is read when (i) it is read by an instruction (standard), (ii) the flow of control
can be determined by this value (extension 2), and (iii) the CPU will interpret
it as (part of) an instruction (extension 3).

We could, for example, perform liveness analysis on codebyte 0x8. This shows
us that the value 40, which is written when the program is loaded, is a dead
value: it is never read before it is written by instruction A. As a result, it can be
removed and we could write the second state 0c immediately when the program
is loaded. In our representation, this means making it the first state of codebyte
0x8.

Subsequently, an analysis could point out that instruction A has now become
an idempotent instruction: it writes a value that was already there. As a result,
this instruction can be removed. We have now obtained the SE-CFG of Figure 5.

Fig. 5. The SE-CFG after partial optimization, before unrolling

5.4 Loop Unrolling

Subsequently, we could peel of one iteration of the loop to see if this would lead
to additional optimizations. This results in the SE-CFG in Figure 6. Note that
we had to double write operation C, as we should now write to both the original
and the copy of the codebyte in order to be semantically equivalent.

5.5 Finishing Up

Similar to Section 5.1, we can now find out that the paths B’→ H’ and B→ C are
unrealizable. As a result, we no longer have a loop. Instruction C, C2, G and
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Fig. 6. The SE-CFG after unrolling

H’ are unreachable. Applying the same optimization as in Section 5.3, we can
remove the first state of codebyte 0x5 and instruction C’. The value written by
C2’ is never used and thus C2’ can be removed. Through jump forwarding, we
can remove instruction H. Finally, given that the decrement instruction performs
exactly the opposite of the increment instruction, we now see that the code can
be replaced by a single instruction: inc %ebx.

6 Evaluation

To evaluate the introduced concepts, we implemented a form of factorization
through the use of self-modifying code. The goal however is not to shrink the bi-
nary, but to hide program internals. Therefore, we will also perform factorization
if the cost is higher than the gain.

In the first phase, we split the code up in what we call code snippets. These
code snippets are constructed as follows: if a basic block is not followed by a
fall-through edge, the basic block itself makes up a code snippet. If basic block
a was followed by a fall-through edge e to basic block b, a new basic block c is
created with a single instruction: a jump to b. The target of e is then set to c.
The combination of a and c is then called a code snippet.

A code snippet is thus a small piece of code that can be placed independently
of the other code. It consists of at most two consecutive basic blocks. If there is a
second basic block, this second basic block consists of a single jump instruction.
The advantage of code snippets is that they can be transformed and placed
independently. The downside is that their construction introduces a large number
of jump instructions. This overhead is partially eliminated by performing jump
forwarding and basic block merging at the end of the transformation.
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Next, we perform what we call code snippet coalescing. Wherever possible
with at most one modifier we let two code snippets overlap. Both code snippets
are then replaced by at most one modifier and a jump instruction to the coalesced
code snippet. On the 80x86, this means that code snippets are merged if they
differ in at most 4 consecutive bytes.

As an example, consider the two code snippets in Figure 7(a). While these
two code fragments seem to have little in common, their binary representation
differs in only one byte. Therefore, they are eligible for code snippet coalescing.
The result is shown in Figure 7(b). The codebytes of the modifier and jump
instructions are not shown to save space. In this example, subsequent branch
forwarding will eliminate one of the jumps. (Note that this example uses the
actual 80x86 instruction set.)

(a) Snippets to coalesce (b) Coalesced snippets

Fig. 7. Example of coalescing code snippets

Intuitively, this makes the binary harder to understand for a number of rea-
sons. Firstly, as overlapping code snippets are used within multiple contexts,
the number of interpretations of that code snippet increases. It also becomes
more difficult to distinguish functions as their boundaries have been blurred.
And most importantly, the common difficulties encountered for self-modifying
code have been introduced: the code is not constant and therefore, the static
binary does not contain all the instructions that will be executed. Furthermore,
multiple instructions will be executed at the same address, so there is no longer
a one to one mapping between addresses and instructions.

To further obfuscate the program, we have added an additional transforma-
tion, called code snippet splitting. Whenever possible, two different versions are
created for code snippets that were not yet protected by the previous transfor-
mation. This is often possible because of the redundancy of machine code and
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especially the 80x86 instruction set. Using an opaque predicate of the type P ? [5]
one of both versions is chosen at run time. Next, we merge both versions using
code snippet coalescing.

The measurements have been performed a Linux system on a 2.8GHz Pentium
IV on 10 C programs of the SPECint 2000 benchmark suite. The benchmarks
have been compiled with gcc 3.3.2 and statically linked against uclibc 0.27. The
library code has been obfuscated as well. We strongly recommend obfuscating
library code as well as it otherwise serves as reference points about which the
attacker knows everything and he can then continue to fill in the missing pieces
in between two library calls, which allows him to focus on much smaller pieces of
code. Furthermore, in the case of data obfuscation, escaping values would need
to be turned back into the correct format before every library call, which would
severely limit the scope of these obfuscating transformations.

As can be seen in the first row of Table 1, the small granularity of the code
snippets and the relatively large overhead of the modifiers (7 byte for a one-
byte modifier and 10 byte for a four-byte modifier) can cause a considerable
increase in the code size of the program. The impact on the execution speed
can be even higher. When all basic blocks are eligible for transformation, the
slowdown is unacceptable for most real life applications. Therefore, we excluded
hot code (based upon profile information collected from the train input sets)
from consideration. The resulting slowdown on the reference input sets is given
in the second row of Table 1. The third row indicates the percentage of the total
number of original code snippets that is protected by code snippet coalescing.
The fourth row the percentage that is protected by code snippet splitting.

Table 1. Increase in code size and execution speed; percentage of coalesced code
snippets and split-coalesced code snippets

Benchmarks bzip2 crafty gap gzip mcf parser perlbmk twolf vortex vpr

code bloat (%) 114.51 100.95 111.8 123.17 121.38 151.63 106.63 100.19 142.01 102.2

slowdown (%) 27.47 128.82 71.47 15.71 0.5 116.37 300 36.38 274.42 21.16

coalescing (%) 22.98 18.14 26.18 22.66 21.79 22.02 27.67 19.6 22.07 21.55

splitting (%) 23.06 26.04 21.24 24.06 22.35 29.2 19.2 23.41 31.62 21.34

We have attached a dynamic instrumentation framework [15] to the resulting
programs. When no modifications were made to the program other than to keep
the program under control and to keep the internal datastructures consistent
with the code, we experienced a slowdown of a factor 150 to 200. The bulk of
this slowdown is due to the monitoring of the write instructions. These results
show that the cost of self-modifying code is fairly high and that it is best avoided
in code which will be frequently executed. On the other hand, the slowdown
experienced by an attacker, who, e.g., wants to modify the program on the fly,
can be much higher.

The concepts described in this paper have been integrated into a link-time bi-
nary rewriter: Diablo. It can be downloaded from http://www.elis.ugent.be/diablo.
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7 Related Work

Some of the work on self-modifying code is situated in the domain of viruses,
and therefore, not well documented. Because pattern matching is a common
technique to detect viruses, some viruses contain an encrypted static image of
the virus and code to decrypt it at run time [12]. As different keys are used in
different generations, they can have many different static forms. This is a specific
type of self-modifying code, which we call self-decryption.

Viruses which do not change during the execution of the virus, but which
change in every new generation [20,19] are often referred to as self-modifying as
well. We do not consider them to be self-modifying, however. Instead, we refer
to this technique as mutation. An appraoch that could be used to detect viruses
which change in every generation is proposed by Chistodorescu and Jha[2].

Protecting a program from being inspected trough the use of self-modifying
code is also possible. When the architecture requires explicit cache flushing, a
debugger could be fooled if it flushes the cache too early: it will execute the new
instruction while the real execution will execute the old instruction untill a cache
flush is forced. Vice versa, when cache flushing is done automatically as blocks
of code are executed in an instrumentator, anti-debugging could be modifying
the next instruction. The instrumentator will execute the old instruction while
the real execution will execute the new instruction.

A technique similar to self-decryption can be used for program compaction. In
this approach, described by Debray and Evans [6], infrequently executed portions
of the code are compressed in the static image of the program and decompressed
at run time when needed. This technique could be called self-extraction.

One of the earliest publications in academic literature on tamper-resistant
software in general and self-modifying code in particular is due to Aucsmith [1].
The core of the discussed approach consists of integrity verification kernels, which
are self-modifying, self-decrypting and installation unique and which verify each
other and critical operations of the program.

Kanzaki et al. [10] scramble instructions in the static image of the program
and restore them at run time. This restoration process is done through modifier
instructions that are put along every possible execution path leading to the
scrambled instructions. Once the restored instructions are executed, they are
scrambled again. As only one instruction can be executed at a given memory
location, there is still a one to one mapping between instructions and addresses.

Madou et al. [14] introduce a coarse-grained form of self-modifying code. Func-
tions which are not frequently in the same working set are assigned to the same
position in the binary. At this position, a template function is placed which
contains the common pieces of both functions. Descriptions of the changes that
need to be made to the template to obtain the original functions are stored in
the binary image as well. At run time, a code editing engine uses these descrip-
tions to create the desired function. As a result the one to one mapping between
instructions and addresses is lost.

Dux et al. [8] discuss a time-based visualization of self-modifying code, the
concept of which can be compared to that of Figure 1. While this visualization
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can clearly facilitate the understanding of self-modifying code, it does not repre-
sent a superset of all possible executions at any time. To the best of our knowl-
edge, existing approaches use specific algorithms and do not use a generally
usable representation as the one discussed in this paper.

Other research involves the use of self-modifying code for optimization [18]
and the treatment of self-modifying code in dynamic binary translators like
Crusoe [7] and Daisy [9].

There is a considerable body of work on code obfuscation in particular and
code protection in general that focuses on techniques other than self-modifying
code. We refer to other papers for an overview [4,17,21].

8 Conclusion

In this paper we have introduced a novel program representation for self-
modifying code. We have shown how it enables the generation, accurate and
conservative analysis, and transformation of self-modifying code. The evalua-
tion illustrates that self-modifying code can significantly increase the effort an
attacker needs to make, but that it should be avoided in frequently executed
code.
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Abstract. In this paper, a novel steganalysis scheme is presented to ef-
fectively detect the advanced JPEG steganography. For this purpose, we
first choose to work on JPEG 2-D arrays formed from the magnitudes
of quantized block DCT coefficients. Difference JPEG 2-D arrays along
horizontal, vertical, and diagonal directions are then used to enhance
changes caused by JPEG steganography. Markov process is applied to
modeling these difference JPEG 2-D arrays so as to utilize the second or-
der statistics for steganalysis. In addition to the utilization of difference
JPEG 2-D arrays, a thresholding technique is developed to greatly reduce
the dimensionality of transition probability matrices, i.e., the dimension-
ality of feature vectors, thus making the computational complexity of the
proposed scheme manageable. The experimental works are presented to
demonstrate that the proposed scheme has outperformed the existing
steganalyzers in attacking OutGuess, F5, and MB1.

1 Introduction

Internet has become an important communication channel since the 90’s of the
last century, through which emails, speeches, images, and videos are easily trans-
mitted and shared. With image steganography, covert communication through
the Internet can also be conducted.

Steganography is the art and science of invisible communication, which is
to conceal the very existence of hidden messages. Images have many attributes
making themselves suitable for steganography. For instance, images can convey
large payloads. Some steganographic method can accomplish a steganographic
proportion exceeding 13% of the image file size [1]. Due to the non-stationarity
of images, image steganography is hard to attack. Especially, the frequent inter-
change of digital images nowadays makes image steganography very promising.

Recently, research in the field of JPEG (Joint Photographic Experts Group)
steganography has become active as JPEG images are used popularly. Many
steganographic techniques operating on JPEG images have been published and
become publicly available. Most of the techniques in this category modify the
LSB (least significant bit) of the JPEG coefficients, which are the outcomes of
block-wise two-dimensional (2-D) discrete Cosine transform (DCT) followed by
quantization using JPEG quantization table.

J. Camenisch et al. (Eds.): IH 2006, LNCS 4437, pp. 249–264, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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In this paper we look at three modern and most advanced steganographic
methods, i.e., OutGuess [2], F5 [1], and model-based steganography (MB) [3].

OutGuess constructs a universal steganographic framework, which embeds
hidden data using the redundancy of cover images. For JPEG images, OutGuess
preserves statistics of the JPEG coefficient histogram. Two measures are taken
to reduce the change on cover images introduced by data embedding. Before em-
bedding, OutGuess identifies the redundant JPEG coefficients which have least
effect on the cover image and will be modified if necessary during data embed-
ding. It also adjusts the untouched coefficients during the embedding procedure
to preserve the original histogram of the JPEG coefficients after embedding.

F5 was developed from Jsteg, F3, and F4. F5 takes two main actions to in-
crease the security against steganalysis attacks: straddling and matrix coding.
Straddling scatters the message as uniformly as possible over the cover image to
equalize the change density. With matrix embedding, F5 improves the embed-
ding efficiency (the number of bits embedded per change of JPEG coefficients).
Generally speaking, the smaller the embedding message size is, the larger the
embedding efficiency of F5 is.

In general, the hidden data may be uncorrelated to the cover image, which is
utilized by many steganalysis algorithms to attack the data hiding algorithms.
MB embedding tries to make the embedded data correlated to the cover image.
This is realized by splitting the cover image into two parts, modeling the pa-
rameter of the distribution of the second part given the first part, encoding the
second part using the model and to-be-embedded message, and then combining
the two parts to form the stego image. In embedding method MB1 ([3]), which
operates on JPEG images, a modified generalized Cauchy distribution (MGCD)
is used to model the JPEG mode histogram. The embedding procedure keeps
the lower precision version of the JPEG mode histogram unchanged.

To attack steganography, some steganalysis schemes have been proposed.
There are two categories, i.e., specific and universal steganalysis [4]. Specific
steganalysis focuses on detecting some particular steganographic tool and has
good performance on this steganographic tool if well designed. Universal ste-
ganalysis yet tries to steganalyze any steganographic tool, known or unknown
in advance.

Farid proposed a universal steganalyzer based on image’s high order statistics
in [5]. Quadrature mirror filters are used to decompose the image into wavelet
subbands and then the high order statistics are calculated for each high frequency
subband. The second set of statistics is calculated for the errors in an optimal
linear predictor of the coefficient magnitude. Both sets of statistical moments
are used as features for steganalysis. It can achieve generally better detection
rate than random guess for universal steganographic methods.

In [6], Shi et al presented a universal steganalysis system. The statistical mo-
ments of characteristic functions of the given image, its prediction-error image,
and their discrete wavelet transform (DWT) subbands are selected as features.
All of the low-low wavelet subbands are also used in their system. This stegan-
alyzer can provide a better performance than [5] in general.
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In [7], Fridrich proposed a set of distinguishing features aiming at detect-
ing data embedded in JPEG images. The statistics of the original image are
estimated by decompressing the JPEG image followed by cropping four rows
and four columns on the boundary, and then recompressing the cropped image
to JPEG format using the original but estimated quality factor (Q-factor). The
author claimed that the obtained image has statistical properties very much sim-
ilar to that of the cover image. Features for steganalysis are generated from the
statistics of the given JPEG image and its estimated version. Designed specifi-
cally for detecting JPEG steganography, this scheme performs better than [5, 6]
in attacking JPEG steganography [1, 2, and 3].

Recently, a specific steganalysis scheme detecting spread spectrum data hiding
is proposed, in which the inter-pixel dependencies are used and a Markov chain
model is adopted [8]. The empirical transition matrix of the given image with
256×256=65, 536 elements for a grayscale image with a bit depth of 8 is formed.
Obviously, these elements cannot be straightforwardly used as features. This
paper selects several largest probabilities on the main diagonal together with
their neighbors, and some randomly selected probabilities on the main diagonal
as features. As a result, some information loss is inevitable due to the random
fashion of feature selection. Furthermore, this method uses Markov chain only
along horizontal direction, which cannot reflect the 2-D nature of images.

In this paper, a novel steganalysis scheme is presented to effectively detect
the advanced JPEG steganography. First, we choose to work on JPEG 2-D
arrays to formulate features for steganalysis. Difference JPEG 2-D arrays along
horizontal, vertical, and diagonal directions are then used to generally enhance
changes caused by JPEG steganography. Markov process is applied to modeling
these difference JPEG 2-D arrays so as to utilize the second order statistics for
steganalysis. In addition, a thresholding technique is developed to greatly reduce
the dimensionality of the transition probability matrices, i.e., the dimensionality
of feature vectors, thus making the computational complexity manageable. The
experimental works are presented to demonstrate that the proposed scheme has
outperformed the state-of-the-arts in attacking OutGuess, F5, and MB1.

The rest of this paper is organized as follows. The feature construction proce-
dure is described in Section 2. In Section 3, support vector machine, the classifier
used in our investigation, is introduced. Experimental results are given in Sec-
tion 4. Next, some discussion is made in Section 5. In Section 6, we discuss our
future research. Finally, conclusion is drawn in Section 7.

2 Feature Construction

In this paper, steganalysis is considered as a task of two-class pattern recognition.
That is, a given test image needs to be classified as either a stego image (with
hidden data) or a non-stego image (without hidden data). Therefore, feature
construction is a key step in the steganalysis.

As mentioned in Section 1, modern steganorgraphic methods such as Out-
Guess and MB have made great efforts to keep the changes on the histogram of
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JPEG coefficients caused by data hiding as less as possible. Under these circum-
stances, we propose to use the second order statistics as features for steganalysis
to detect these JPEG steganographic methods.

In this section, we first define the JPEG 2-D array, followed by introducing the
difference JPEG 2-D array. We then propose to model the difference JPEG 2-D
array using Markov random process. According to the theory of random process,
the transition probability matrix can be used to characterize the Markov process.
Our proposed features are derived from the transition probability matrix. In
order to achieve an appropriate balance between steganalysis capability and
computational complexity, we use the so-called one-step transition probability
matrix in this work. In order to further reduce computational cost by reducing
the dimensionality of feature vectors, we resort to a thresholding technique.

2.1 JPEG 2-D Array

Generating features from the exact quantized BDCT domain to attack the
steganographic algorithms operating on JPEG images is natural and reasonable.
For this purpose, it is necessary to first study the property of JPEG coefficients.

Sv

Su

Fig. 1. A sketch of JPEG 2-D array

For a given image, consider the 2-D array consisting of all the JPEG coeffi-
cients which have been quantized with a JPEG quantization table and have not
been zig-zag scanned, run-length coded, and Huffman coded. That is, this 2-D
array has the same size as the given image with each 8×8 block filled up with the
corresponding quantized block DCT (BDCT) coefficients. Furthermore, we take
absolute value for each coefficient, resulting in a 2-D array as shown in Figure 1.
We call this resultant 2-D array as JPEG 2-D array in this paper. The features
proposed in this scheme are formed from the JPEG 2-D array.

The reason for taking absolute values is given below. Note that these JPEG
coefficients can be either positive, or negative, or zero. It is known that JPEG
coefficients have been decorrelated effectively. However, a JPEG coefficient is
still correlated to its within block neighbors. This correlation among neighbors
within a local block is called intra-block correlation [9]. It is also well-known



A Markov Process Based Approach 253

that the power of the 8×8 block of BDCT coefficients is highly concentrated in
the DC (direct current) and low-frequency AC (alternative current) coefficients.
The JPEG quantization, after which the majority of high-frequency BDCT AC
coefficients may become zero, further enhances this disparity in power distribu-
tion among quantized BDCT coefficients. The general power distribution trend
of JPEG coefficients in each block is non-increasing along the zig-zag scanning
order of all of the JPEG coefficients in the block if we ignore some up-and-down
of small magnitudes. This is consistent with the fact that the zig-zag scanning
makes the use of run-length coding efficient [10]. Combining these observations,
we can state that there exists correlation among the absolute values of JPEG co-
efficients along horizontal, vertical, and diagonal directions. This observation can
be further justified by observing Figure 3 shown below. That is, the difference
of the absolute values of two immediately (horizontally in Figure 3) neighbor-
ing JPEG coefficients are highly concentrated around 0, having a Laplacian-like
distribution. The same is true along the vertical and diagonal directions.

In addition, the steganographic methods operating on the JPEG images do not
touch the JPEG DC coefficients nor change the sign of the JPEG AC coefficients
during data embedding [2, 3] (note that a coefficient with a non-zero magnitude
changing to zero is not a sign change). Further discussion in this regard is made
in Section 5.1, which shows that taking absolute value results in higher detection
rates in general and lower computational complexity.

2.2 Difference JPEG 2-D Array

According to [6], the disturbance caused by the data embedding manifests itself
more obviously in the prediction-error image than in the original test image.
Hence, it is expected that the disturbance caused by the steganographic methods
in JPEG images can be enlarged by observing the difference between an element
and one of its neighbors in the JPEG 2-D array. For this purpose, we consider
the following four difference JPEG 2-D arrays (difference 2-D arrays in short).

Denote the JPEG 2-D array generated from a given test image by F (u, v)(u ∈
[0, Su−1], v ∈ [0, Sv−1]), where Su is the size of the JPEG 2-D array in horizontal
direction and Sv in vertical direction. Then as shown in Figure 2, the difference
arrays are generated by the following formulae:

Fh(u, v) = F (u, v)− F (u + 1, v), (1)
Fv(u, v) = F (u, v)− F (u, v + 1), (2)
Fd(u, v) = F (u, v)− F (u + 1, v + 1), (3)
Fm(u, v) = F (u + 1, v)− F (u, v + 1), (4)

where u ∈ [0, Su−2], v ∈ [0, Sv−2], and Fh(u, v), Fv(u, v), Fd(u, v), and Fm(u, v)
denote the difference arrays in the horizontal, vertical, main diagonal, and minor
diagonal directions, respectively.

In our experimental works reported in this paper, an image set consisting of
7,560 JPEG images with Q-factors ranging from 70 to 90 is used. The arithmetic
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JPEG 2-D Array
Horizontal

Difference Array

(a)

JPEG 2-D Array
Vertical

Difference Array

(b)

JPEG 2-D Array
Main Diagonal

Difference Array

(c)

JPEG 2-D Array
Minor Diagonal
Difference Array

(d)

Fig. 2. The generation of four difference JPEG 2-D arrays. Parts (a), (b), (c), and (d)
correspond to horizontal, vertical, main diagonal, and minor diagonal difference JPEG
2-D arrays, respectively
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Fig. 3. Histogram plots. Part (a) displays the statistical average of histograms of hori-
zontal difference arrays generated from the image set consisting of 7,560 JPEG images
with quality factors ranging from 70 to 90. Part (b) corresponds to the histogram of
horizontal difference array of a randomly selected image in the set.
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average of the histograms of the horizontal difference 2-D arrays generated from
this image set and the histogram of the horizontal difference 2-D array generated
from a randomly selected image in the set are shown in Figure 3 (a) and (b),
respectively. It is observed that the distribution of the elements of the difference
2-D arrays is Laplacian-like. Most of the difference values are close to zero. The
values of mean and standard deviation of percentage number of elements of
horizontal difference 2-D arrays for the image set falling into [-T, T] when T
= 1, 2, 3, 4, 5, 6, and 7 are shown in Table 1. It is observed that more than
90% elements in the horizontal difference 2-D arrays fall into the interval [-3,
3]. Both Figure 3 and Table 1 support the claim of Laplacian-like distribution
of the elements of the horizontal difference 2-D arrays. The same is true for the
difference 2-D arrays along other three directions.

Table 1. Mean and standard deviation of percentage numbers of elements of horizontal
difference JPEG 2-D arrays falling within [-T, T] for T = 1, 2, 3, 4, 5, 6, and 7

[-1,1] [-2,2] [-3,3] [-4,4](*) [-5,5] [-6,6] [-7,7]

Mean 84.72 88.58 90.66 91.99 92.92 93.60 94.12
Standard deviation 5.657 4.243 3.464 2.836 2.421 2.104 1.850

∗ 91.99% is the mean, meaning that on statistic average 91.99% of all elements

of horizontal difference JPEG 2-D arrays generated from the image set fall into

the range [-4, 4]. The standard deviation is 2.836%.

2.3 Transition Probability Matrix

As mentioned before, the modern steganographic methods such as OutGuess and
MB have made great efforts to keep the changes on the histogram of JPEG coef-
ficients as less as possible during data embedding. Therefore, we propose to use
higher order statistics for steganalyzing the JPEG steganography. In this work
the second order statistics are used in order not to increase the computational
complexity dramatically.

We propose to model the above-defined difference JPEG 2-D arrays by using
Markov random process. According to the theory of random process, the transi-
tion probability matrix can be used to characterize a Markov process. There are
so-called one-step transition probability matrix and n-step transition probability
matrix [11]. Roughly speaking, the former refers to the transition probabilities
between two immediately neighboring elements in the difference 2-D array while
the latter refers to the transition probabilities between two elements separated
by (n-1) elements. In order to have a suitable balance between high steganalysis
capability and manageable computational complexity, we only use the one-step
transition probability matrix in this work, as shown in Figure 4.

In order to further reduce computational complexity, we resort to a thresh-
olding technique. That is, we select a threshold value T, meaning that we only
consider those elements in the difference JPEG 2-D arrays whose value falls into
{−T, · · · ,−1, 0, 1, · · · , T }. If an element’s value is either larger than T or smaller
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Fig. 4. The formation of the transition probability matrices

than -T, it will be represented by T or -T correspondingly. This procedure re-
sults in a transition probability matrix of dimensionality (2T+1)×(2T+1). The
elements of these four matrices associated with the horizontal, vertical, main
diagonal and minor diagonal difference 2-D arrays are given by

p{Fh(u+1,v)=n|Fh(u,v)=m}=
∑

u,vδ(Fh(u,v)=m,Fh(u+1,v)=n)
∑

u,vδ(Fh(u,v)=m)
, (5)

p{Fv(u,v+1)=n|Fv(u,v)=m}=
∑

u,vδ(Fv(u,v)=m,Fv(u,v+1)=n)
∑

u,vδ(Fv(u,v)=m)
, (6)

p{Fd(u+1,v+1)=n|Fd(u,v)=m}=
∑

u,vδ(Fd(u,v)=m,Fd(u+1,v+1)=n)
∑

u,vδ(Fd(u,v)=m)
, (7)

p{Fm(u,v+1)=n|Fm(u+1,v)=m}=
∑

u,vδ(Fm(u+1,v)=m,Fm(u,v+1)=n)
∑

u,vδ(Fm(u+1,v)=m)
, (8)

where m, n ∈ {−T, · · · , 0, · · · , T }, the summation range for u is from 0 to Su− 2
and for v from 0 to Sv − 2, and

δ(A = m, B = n) =
{

1 if A = m & B = n
0 otherwise . (9)

In summary, we have (2T+1)×(2T+1) elements for each of these four transition
probability matrices. In total, we have (2T+1)×(2T+1)×4 elements. All of them are
serving as features for steganalysis. In other words, we have (2T+1)×(2T+1)×4-D
feature vectors for steganaysis. It is clear that we should choose a proper T value
for good steganalysis capability with manageable computational complexity.

For this reason, in our experimental works, we set the threshold, T , equal
to 4 according to our statistical study shown in Figure 3 and Table 1. Hence,
if an element has an absolute value larger than 4, this element is reassigned a
new absolute value 4 without sign change. The resultant transition probability
matrix is of 9×9 for each of the four difference 2-D arrays. That is, 9×9 = 81
elements in each of these four transition probability matrices, or equivalently,
we have 81×4=324 elements in total.

The feature construction procedure is summarized in Figure 5.
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Fig. 5. The block diagram of the feature formation procedure

3 Support Vector Machine

The support vector machine (SVM) is a popularly used classifier for pattern
recognition. In our experimental study, we find that it is easier to use than the
neural network (NN) while its performance is comparable to that of NN.

SVM is based on the idea of hyperplane classifier. It uses Lagrangian multi-
pliers to find the optimal separation hyperplane which distinguishes the positive
pattern from the negative pattern. If the feature vectors are one-dimensional
(1-D), the separation hyperplane reduces to a point on the number axis.

SVM can handle both linear separable and non-linear separable cases. Denote
the training data pairs by {yi, ωi}, i = 1, · · · , l, where yi ∈ RN is the feature
vector, N is the dimensionality of the feature vectors, and ωi = ±1 stands
for positive/negative pattern class. In the steganalysis context, an image with
hidden data (stego-image) is considered as a positive pattern while an image
without hidden data is considered as a negative pattern. The linear support
vector algorithm looks for a hyperplane H : wT y + b = 0 and two hyperplanes
H1 : wT y + b = −1 and H2 : wT y + b = 1 parallel to and with equal distances
to H on condition that there are no data points between H1 and H2 and the
distance between H1 and H2 is maximized, where w and b are parameters to
be optimized. Once the SVM has been trained, the novel exemplar z from the
testing data can be classified using w and b.

For non-linearly case, the learning machine maps the input feature vectors to
a higher dimensional space where a linear hyperplane is located by using kernel
function and there are three basic kernels: polynomial, radial basis function, and
sigmoid. In our investigation, the polynomial kernel with degree 2 is used [12].
For more detailed information about SVM, readers please refer to [13].

4 Experiments and Results

4.1 Image Set

As mentioned in Section 2, an image set consisting of 7,560 JPEG images is
used in our experimental work. Among these 7,560 images, 2,500 images were
taken by members of our research group in different places at different time
with different digital cameras; the other 5,060 images were downloaded from
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the Internet. Each image was cropped (central portion) to the dimension of
either 768×512 or 512×768 in the JPEG coefficient domain without involving
additional JPEG compression. Some sample images are given in Figure 6.

The images shown in Figure 6 are color images. In our experiments, the
chrominance components are set to be zero while the luminance coefficients are
untouched before data embedding.

Fig. 6. Some sample images used in this experimental work

4.2 Stego Images Generation

Our experiments focus on attacking the OutGuess, F5, and MB1 steganographic
methods. The codes for these algorithms are publicly available [14, 15, and 16].

As mentioned before, there are quite a few zero coefficients in the JPEG 2-D
array. Also, the number of zero coefficients per image varies from image to image.
Therefore, the absolute embedding rate of each image also varies if we fix the
message length. A reasonable way to define embedding rate is to consider a ratio
between message length to non-zero elements in the JPEG 2-D array. The ratio
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is often measured in the unit of bpc, i.e., bits per non-zero JPEG AC coefficients.
In our experiments, the considered embedding rates for OutGuess are 0.05, 0.1,
and 0.2 bpc, respectively. The numbers of stego image generated are 7,498, 7,452,
and 7,215, respectively. For F5 and MB1, we consider four embedding rates, 0.05,
0.1, 0.2, and 0.4 bpc. For each rate, we have 7,560 stego images. Note that we
set step size to be two when implementing MB1. We deliberately ensure that
the difference between a stego image and its corresponding cover image is only
caused by data embedding in order to avoid the effect on steganalysis caused by
JPEG double compression.

4.3 Experimental Results Obtained with SVM Polynomial Kernel

We randomly select 1/2 of the non-stego and stego image pairs to train the SVM
classifier and the remaining 1/2 pairs to test the trained classifier. We use Farid’s
[4], Shi et al.’s [5], Fridrich’s [6], and our proposed steganalyzers’s features to
detect OutGuess, F5, and MB1 the same way. The test results shown in Table
2 are the arithmetic average of 20 random experiments.

Table 2. Performance comparison using different methods (in the unit of %; TN stands
for true negative rate, TP stands for true positive rate, and AR stands for accuracy)

bpc Farid’s Shi et al’s Fridrich’s Our Proposed

TN TP AR TN TP AR TN TP AR TN TP AR

OutGuess 0.05 59.0 57.6 58.3 55.6 58.5 57.0 49.8 75.4 62.6 87.6 90.1 88.9
OutGuess 0.1 70.0 63.5 66.8 61.4 66.3 63.9 68.9 83.3 76.1 94.6 96.5 95.5
OutGuess 0.2 81.9 75.3 78.6 72.4 77.5 75.0 90.0 93.6 91.8 97.2 98.3 97.8

F5 0.05 55.6 45.9 50.8 57.9 45.0 51.5 46.1 61.0 53.6 58.6 57.0 57.8
F5 0.1 55.5 48.4 52.0 54.6 54.6 54.6 58.4 63.3 60.8 68.1 70.2 69.1
F5 0.2 55.7 55.3 55.5 59.5 63.3 61.4 77.4 77.2 77.3 85.8 88.3 87.0
F5 0.4 62.7 65.0 63.9 71.5 77.1 74.3 92.6 93.0 92.8 95.9 97.6 96.8

MB1 0.05 48.5 53.2 50.8 57.0 49.2 53.1 39.7 66.9 53.3 79.4 82.0 80.7
MB1 0.1 51.9 52.3 52.1 57.6 56.6 57.1 45.6 70.1 57.9 91.2 93.3 92.3
MB1 0.2 52.3 56.7 54.5 63.2 66.7 65.0 58.3 77.5 67.9 96.7 97.8 97.3
MB1 0.4 55.3 63.6 59.4 74.2 80.0 77.1 82.9 86.8 84.8 98.8 99.4 99.1

It is observed that our proposed steganalyzer outperforms the prior-arts by
a significant margin. The detection rate for F5 at the same embedding rate is
lower than that of MB1. This will be discussed in the next section.

4.4 Experimental Results with Features from One Direction at a
Time

We also implement experiment with reduced dimensionality of feature vectors in
order to examine the contributions made by features along different directions.
Hence, we use features from only one direction at a time. The results shown in
Table 3 are the arithmetic average of 20 random experiments.
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Table 3. Detection rates with reduced feature space (in the unit of %)

bpc Horizontal Vertical Main Diagonal Minor Diagonal

TN TP AR TN TP AR TN TP AR TN TP AR

OutGuess 0.05 77.7 82.6 80.1 78.9 83.1 81.0 75.9 79.0 77.5 73.8 77.4 75.6
OutGuess 0.1 89.1 95.0 92.0 90.5 95.4 93.0 88.8 93.1 90.9 86.6 92.3 89.4
OutGuess 0.2 95.4 98.3 96.8 95.8 98.2 97.0 95.3 97.9 96.6 93.8 97.5 95.6

F5 0.05 55.8 53.7 54.7 56.7 52.4 54.6 51.6 56.3 54.0 51.3 52.9 52.1
F5 0.1 61.6 62.3 62.0 61.7 62.3 62.0 57.4 62.8 60.1 54.2 56.9 55.5
F5 0.2 75.0 79.8 77.4 75.8 80.2 78.0 71.8 76.2 74.0 61.4 65.7 63.6
F5 0.4 91.5 95.6 93.5 91.3 95.7 93.5 89.1 92.5 90.8 77.4 82.7 80.1

MB1 0.05 69.9 72.4 71.1 70.6 72.8 71.7 67.6 69.6 68.6 66.1 67.4 66.7
MB1 0.1 82.5 87.9 85.2 83.7 87.7 85.7 81.2 84.4 82.8 78.1 82.5 80.3
MB1 0.2 92.5 96.4 94.4 94.1 96.8 95.5 92.8 95.6 94.2 90.1 93.9 92.0
MB1 0.4 97.6 98.9 98.2 98.2 99.4 98.8 97.9 99.1 98.5 96.5 98.7 97.6

It is observed that the contributions made from the horizontal and verti-
cal directions are more than that from the diagonal directions. Furthermore, the
contribution made from the main diagonal is larger than that from the minor di-
agonal direction. Comparing Table 2 and Table 3, we can observe that combining
four directions has enhanced the performance in attacking JPEG steganography.

5 Discussion

Some further discussions are made in this section.

5.1 Taking Absolute Value in Forming JPEG 2-D Arrays:
Advantages

In Section 2, we have indicated that the magnitudes (i.e., absolute values) of
the neighboring JPEG coefficients are correlated to each other and the known
JPEG steganographic algorithms do not change the signs of coefficients. These
motivated us to take absolute values of the JPEG coefficients in forming JPEG
2-D array. Now we continue this discussion.

We shall show that if we do not take absolute value, the performance of the
steganalysis will deteriorate and the computational complexity will increase.

Let’s consider the formulation of JPEG 2-D array without taking absolute
value. While forming difference 2-D array, the dynamic range will obviously
increase. Hence, a larger threshold T is needed. Assume that we set up a new
threshold 8, thus resulting in four transition probability matrices of 17×17 each.
The resultant feature dimensionality will be 17×17×4=1,156, which raises the
computational cost significantly. Table 4 provides a performance comparison
between using 324-D feature vectors (T=4) and using 1,156-D feature vectors
(T=8) for attacking the MB1 with an embedding rate 0.2 bpc. Our experiments
indicate that this trend of performance reduction also holds for other embedding
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Table 4. Performance comparison: with vs without taking absolute value (in the unit
of %)

bpc with without

TN TP AR TN TP AR

MB1 0.2 96.7 97.8 97.3 93.9 94.2 94.1

rates, and for OutGuess and F5 as well. This concludes that taking absolute value
gives better performance and lower computational complexity.

5.2 Detection Rates for F5

Taking a close look at Table 2, one can observe that the detection rates achieved
by our proposed steganalyzer for MB1 are higher than that for F5 at the same
embedding rates. It appears contradicting to what reported in [7, 17]. In what
follows we discuss this issue from two different points of view.

One is from a theoretical analysis. We can show that a steganographic method,
which either keeps a non-zero JPEG AC coefficient unchanged or reduces its
magnitude by one in order to embed one bit (F5 belongs to this category), will
have a relatively larger probability to keep the elements in the difference JPEG 2-
D array unchanged after data embedding than another steganographic method,
which either keeps a non-zero JPEG AC coefficient unchanged, or increases or
decreases its magnitude by one in order to embed one bit (MB1 belongs to this
category). A simple case is described as follows. When two neighboring non-zero
JPEG AC coefficients are positive and differ by an odd number, if these two
coefficients have to be changed, with MB1 embedding and embedding step size
of two, the corresponding element in the difference JPEG 2-D array will change,
while this element will not change with F5 embedding.

Another point of view is from an experimental investigation, which is based on
the 7,560 images used in our experimental works. The mean values of embedding
efficiency (defined in Section 1) of MB1 and F5 at four different data embedding
rates, i.e., 0.05, 0.1, 0.2, and 0.4 bpc are obtained and listed in Table 5. From
these statistics, one can see that at lower rates such as 0.05 bpc and 0.1 bpc, F5
changes fewer JPEG coefficients than MB1 does. That is, with matrix coding,
F5 gains higher embedding efficiency at shorter message length. The opposite
is true at the higher rates such as 0.2 bpc and 0.4 bpc. These statistics reveal
some inside information, which can partially explain the phenomenon. Further
investigation in this regard is needed, which is our future work.

6 Future Work

The future works are as follows:

(1) The proposed scheme uses features with dimensionality 324, or, 81 for
each of the four directions. Due to its simple mechanism, the feature generation
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Table 5. The mean values of embedding efficiency

bpc

0.05 0.1 0.2 0.4

F5 2.8695 2.4586 2.0606 1.7484
MB1 2.1141 2.1139 2.1142 2.1141

procedure takes quite short time. Generally speaking, the feature extraction
process takes less time than that by [7]. Nevertheless, larger feature vectors need
more training samples. How to reduce the feature size is one of our future tasks.

(2) By taking difference between the magnitudes of a coefficient and its im-
mediate neighbors, we mainly utilize the intra-block correlation. How to make
more use of the inter-block correlation should be taken into consideration.

(3) We use a thresholding technique, which reduces computational complexity
while keeps the steganalysis effective. Further research to find the relationship
between the quality factor of JPEG image and the threshold is needed.

7 Conclusion

We have presented an effective steganalysis scheme in this paper, which outper-
forms the state-of-the-arts in detecting the modern steganographic methods for
JPEG images: OutGuess, F5, and MB1. The success can be attributed to the
following measures taken in this new scheme.

(1) Taking absolute value in forming JPEG 2-D arrays not only helps raise
steganalysis capability but also helps reduce computational complexity.

(2) Difference JPEG 2-D arrays along horizontal, vertical, diagonal, and minor
diagonal directions have effectively catch changes caused by data embedding.

(3) Thresholding technique applied to handling transition probability matrices
has reduced dimensionality of feature vectors to a manageable extent.

(4) Through using Markov process to model difference JPEG 2-D arrays and
using all of elements of transition probability matrices as features, the second
order statistics have been used in this proposed steganalyzer.
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Abstract. Conventional steganalysis aims to separate cover objects
from stego objects, working on each object individually. In this paper
we investigate some methods for pooling steganalysis evidence, so as to
obtain more reliable detection of steganography in large sets of objects,
and the dual problem of hiding information securely when spreading
across a batch of covers. The results are rather surprising: in many sit-
uations, a steganographer should not spread the embedding across all
covers, and the secure capacity increases only as the square root of the
number of objects. We validate the theoretical results, which are rather
general, by testing a particular type of image steganography. The ex-
periments involve tens of millions of repeated steganalytic attacks and
show that pooled steganalysis can give very reliable detection of even
tiny proportionate payloads.

1 Introduction

The classic definition of steganography involves an actor (Steganographer) aiming
to communicate with a passive conspirator over an insecure channel, and an
eavesdropper (or Warden) monitoring the channel. The Steganographer hides
his communication inside some other medium by taking a seemingly-innocent
cover object and making changes, hopefully imperceptible to the Warden, which
convey the secret information to the recipient. The Warden’s aim is not to decode
the hidden information but merely to deduce its presence. This is steganalysis :
the creation of hypothesis tests which can distinguish cover objects from so-called
stego objects in which a payload has been embedded. Such language assumes
that each cover object is treated in isolation by both the embedder and the
eavesdropper, and in the literature the focus is almost exclusively on single cover
objects (usually individual digital images, but also sometimes audio files, movies,
or more unusual digital objects). In this paper we begin to ask about large groups
of cover objects, and how the methods for both embedding into, and steganalysis
of, individual pieces can be applied to the groups as a whole.

There are two good reasons for doing so. First, we contend that practical
applications of steganalysis inevitably will involve multiple objects: the Warden
will surely have intercepted more than one communication from the Steganog-
rapher, and the Steganographer will surely have access to more than one cover.
Second, even given state-of-the-art steganalysis and weak steganography, very
high reliability steganalysis (in which false positive rates are as low as, say,
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10−5) is simply not possible with the small amount of evidence obtained from
a single cover (except for deeply flawed steganography which leaves a particular
signature, or perhaps enormous objects such as entire digital movies).

In this paper we assume that an imperfect method of statistical steganalysis
already exists for individual cover objects, and investigate how the set of detec-
tion statistics computed over a group can be combined by the Warden into an
overall detector for steganography for the whole group. This gives information
on the opposite problem, where the Steganographer has to decide how best to
spread secret information amongst a batch of covers. The answers to this latter
question, at least for some of the pooled detectors suggested here, are rather
surprising. There seems to be little literature on this problem: Trivedi [1] has
used sequential hypothesis tests to repeat steganalysis, but only in the context
of locating a hidden message embedded sequentially within a single image.

In Sect. 2 we formulate more precisely the competing aims of batch stegan-
ography and pooled steganalysis. In this work, which only scratches the surface
of what appears to be a complex topic, we allow certain assumptions (which are
not implausible) about the steganalysis methods for individual objects which
we aim to combine; they are discussed in Sect. 2. In Sect. 3 we suggest three
possible pooling strategies for the Warden, analysing them for performance and
deriving the Steganographer’s best tactic to avoid detection. In Sect. 4 we move
away from the abstract nature of the first part of the paper, and focus on Least
Significant Bit Replacement in digital images, a well-studied problem; for this
embedding method, and a popular detection algorithm, we perform millions of
simulations to benchmark the strategies of Sect. 3, confirming the theoretical re-
sults. Briefly, we return to our assumptions about steganalysis response – there
is a sting in the tail here. Finally, Section 5 suggests avenues for further work.

2 Problem Formulation

The scenario we have in mind, which motivates this paper, is the following.
Suppose that a criminal wishes to hide information on his computer, deniably,
using steganography. He already has a large number of innocent cover pictures
on his hard disk. To be quite sure of hiding his secret information well, he
might split it into many small pieces and hide a little in each of a selection of
the pictures, believing that this is more secure than the alternative of filling a
smaller number of images to maximum capacity.

When the authorities impound his computer, they are faced with a dilemma:
how do they know which pictures to examine? Even possessing state-of-the-art
steganalysis, they still observe fairly large false positive rates, and so if they test
every picture on his computer they will inevitably turn up a lot of positive diag-
noses – even if he is not a steganographer at all. They must run their statistical
detector on every picture individually, and then find some way to combine the
detection statistics into an overall “pooled” steganalysis for the presence of data,
possibly spread across all the images.
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Fig. 1. Histograms of detector response; two detectors for LSB Replacement in digital
images, calculated on each of 3000 never-compressed grayscale bitmap images with
embedding at p = 0, 0.1, . . . , 1. Above, “Sample Pairs” detector. Below, “WS” detector.

2.1 The Shift Hypothesis and Other Assumptions

In this work we will assume that the Warden already possesses a quantitative
detector for whatever type of steganography the Steganographer is using, an
estimator for the length of hidden message in an individual stego object as a
proportion of the maximum. We will call this the component detector. We assume
that it suffers from random errors due to properties of the cover objects, or the
hidden messages. The Warden aims to detect steganography in a set of objects
by combining the component statistics – the values of the component detector
on each object in the set.

We write ψp for the density function of the component estimator, when pro-
portion p of the maximum is embedded in a cover object; we expect that it is
unbiased i.e.

∫
xψp(x) dx ≈ p if the detector is any good. In this analysis we go

further, assuming what we call the shift hypothesis. This is that

ψp(x) = ψ0(x− p),

i.e. the distribution of the detector response only depends on p in the form of
a shift, so that the (additive) estimation error is independent of the true value.
Our primary reason is to reduce the analyses of pooled steganalysis to tractable
problems. Since in this case all ψp are determined by p and ψ0 we write ψ for
ψ0, and Ψ for the corresponding cumulative distribution function.

Before we continue, we ask whether the shift hypothesis is plausible. In Fig. 1
we display histograms for two particular quantitative steganalysis methods for
the detection of LSB Replacement in digital images (the Sample Pairs (SPA)
detector of [2] and the detector now known as WS from [3]). These histograms
are the observed detector response for a set of 3000 images, with the experi-
ments repeated at 10 embedding rates. We see that the shift hypothesis holds
approximately for the SPA detector, for embedding rates of less than 0.8, but
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there is both a shape change and a negative bias for higher rates1. For the WS
detector, the shift hypothesis seems less apt, but for medium values of p there
is still evidence of a constant distributional shape. We view these histograms
as evidence that we should be able to develop detectors which are not far away
from satisfying the shift hypothesis.

Finally, although we try to keep the first part of this paper abstract, we may
need some assumptions about the functional form of ψ itself. We will certainly
want that ψ is symmetric about 0. In a detailed analysis of the response of
detectors for LSB Replacement in images [4], we found that the Student t-family
provides a good model, up to a scaling constant. The density function is

f(x; λ, ν) =
Γ (ν+1

2 )
λ
√

νπΓ (ν2 )

(
1 +

x2

λ2ν

)− ν+1
2

where λ > 0 is the scale factor and ν > 0 the degrees of freedom parameter. An
advantage of this family is that it can model a wide range of unimodal symmetric
distributions, including the cases of finite and infinite variance, and it seems to
have uses in all types of steganalysis. When ν = 1 it is the Cauchy distribution,
when ν ≤ 2 it has infinite variance, but as ν → ∞ it tends to the Gaussian.

When we need to make assumptions about the shape of ψ, therefore, we will
suppose that it is a t-density. We have found that quantitative LSB detectors
are often well-modelled by t-distributions with approximately 2 degrees of free-
dom (numbers both above and below 2 are observed, depending on the type of
detector and also the type of cover, indicating that finite variance is a possibility
but cannot be guaranteed) and a scale factor of the order of 0.01. These will be
useful figures for the generation of some synthetic data in Subsect. 3.3.

2.2 Batch Steganography and Pooled Steganalysis

We now pose precisely the problem of batch steganography. Given a number of
cover objects N , the Steganographer hides data in rN of them, using propor-
tionate capacity p of each, and leaves the other covers alone. We assume that a)
the number of cover objects is fixed, b) all cover objects have the same capacity,
c) the Steganographer has no control over the objects themselves, and chooses
which to embed in at random. We also assume that the Steganographer wants
to embed a fixed total amount of secret data, BNC, where C is the capacity of
each cover object and B < 1 is the proportionate bandwidth. He therefore must
ensure that rp = B. The conditions r ≤ 1 (he cannot embed in more objects
than are present) and p ≤ 1 (each object has a maximal capacity) give the dual
conditions p ≥ B and r ≥ B. (We assume that B < 1/N so that r as low as B
is a meaningful option.) Within this range, he can vary r or p and should do so
to try to minimize the chance of overall detection.

1 In fact we believe that the SPA detector can be corrected to remove the negative
bias at high embedding rates, but that is not our current topic of study.
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The Warden’s task is pooled steganalysis : given the N objects treated by the
Steganographer, the Warden’s aim is to detect whether any steganography at all
has been performed. That is, to perform the hypothesis test

H0 : r = 0
H1 : p, r > 0 (1)

with best reliability. We do not assume that the Warden wants to estimate the
values of r and p, or B, or tries to determine which of the objects do contain
steganography, although these are certainly secondary aims for future study.

We assume that the Warden applies a component steganalysis method satis-
fying the assumptions of the previous subsection. Then its density function, on
a randomly selected object output by the Steganographer, is

f(x) = (1 − r)ψ(x) + rψ(x − p).

This is a mixture model, of a simple kind. Finite mixtures are quite well-studied,
although there is much more literature on Gaussian mixtures than mixtures of
longer-tailed distributions we expect from steganalysis. For a good survey, see [5].

Finally, we emphasise that we are assuming that the number of cover objects
N is fixed from the start, and known to both the Steganographer and Warden.
In practice, it seems likely that the Steganographer will gain access to new covers
over time, and that in some cases (such as network monitoring) the Warden will
obtain more evidence over time. This suggests the study of sequential embed-
ding and tests. We reserve this topic for future work; the theory of sequential
hypothesis tests is rather different from that of standard tests of finite samples,
and we believe that the practice of sequential steganography and steganalysis
may be rather different from the fixed-size batch problems studied here.

2.3 Performance Metric

We choose the following as a measure of performance, for the Warden’s task of
pooled steganalysis. Fix a detection threshold so that the overall false negative
rate (the probability of type-II error for (1)) is 50%; then measure the false
positive rate (the probability of type-I error), which we will denote pf .

This is a rather unusual measure, but suitable for two reasons. Firstly, it allows
for tractable analysis (many other measures of performance do not). Second, we
have found it to be a good summary of the performance of detectors in general.
Although it might be preferable to plot a full Receiver Operating Characteristics
(ROC) curve, this results in too much information to display concisely. And in
almost all cases the ROC curve takes the form of a sudden jump from a very
low detection rate of almost 0% to a high detection rate well above 50%, as
the false positives increase past a certain point. Therefore the most important
information is to be found in the location of that jump, which is well-measured
by the false positive rate when the false negative rate is 50%.

While the false negative rate is a measure of a Steganographer’s chance to
evade detection, the false positive rate shows how certain the Warden is that
they have caught the right person: fundamental from the latter’s point of view.



270 A.D. Ker

3 Possible Strategies for Warden

We examine three strategies which the Warden might use to detect batch stegan-
ography, given a component detector satisfying the assumptions of Subsect. 2.1.
Of course there are other possible pooling strategies, but we have included a
range of methods: simple nonparametric tests for median, the average compo-
nent statistic, and a more sophisticated method based on a generalized maximum
likelihood ratio test.

At the end of the section we summarise by asking the following questions
of each detection strategy. Given a bandwidth B, how can the Steganographer
best avoid detection, by trading p against r? In the Steganographer’s best case,
how does the false positive rate for the Warden depend on N and B (assuming
a threshold set for 50% false negatives)? And what must be the relationship
between N and B, if the error rate is to be held constant?

3.1 Count Positive Observations (Sign Test)

The first method for pooled steganalysis is the simplest: the Warden should sim-
ply count the number of positive values produced by the component estimator,
which we will denote by the random variable #P . If there is steganography in
some of the objects, we expect that #P > 1

2N . This is simply the traditional
sign test for whether the median of a distribution, from which we have a sample,
is greater than zero. It has the advantage of being nonparametric: its distribution
under the null hypothesis does not depend on ψ, being #P ∼ Bi(N, 1

2 ).
Under the alternative hypothesis, #P ∼ Bi

(
(1 − r)N, 1

2

)
+ Bi

(
rN, Ψ(p)

)
2 of

which the median is (1 − r)N 1
2 + rNΨ(p) = 1

2N + rN(Ψ(p) − 1
2 ). Making the

Gaussian approximation to the binomial distribution (valid for even moderately
large values of N) the probability of false positive for the Warden when the false
negative rate is 50% and the Steganographer’s bandwidth is B, is therefore

pf = 1− Φ

(
2
√

NB
(Ψ(p)− 1

2
p

))
. (2)

where Φ is the normal distribution function. Let us consider the Steganographer’s
best strategy. He wants to maximize the false positive probability, and therefore
to minimize Ψ(p)− 1

2
p . Provided that ψ is a nonincreasing function on [0,∞), this

is achieved by maximizing p. Therefore the Steganographer will choose p = 1
and r = B, hiding maximal amounts of data in as few cover objects as possible.
The makes intuitive sense, because the sign test is no more sensitive to large
positive detection values than small positive values.

In Sect. 4 we will additionally test the more powerful nonparametric test
known as the Wilcoxon signed rank test. Here the component values are ranked
by absolute value, and the test statistic used is the sum of the ranks of the

2 This sum of distributions notation indicates the independent sum of random
variables.
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positive observations. For reasons of space we do not attempt to analyse the
behaviour of this statistic. One might expect superior performance to the sign
test, given parallel results in standard hypothesis testing, but we shall see that
the improvement is not very substantial in this application.

3.2 Average Detection Statistic

The main weakness of the sign test is that it ignores all information except the
sign of each observation. An alternative method without this drawback, and
seemingly a simple one, is to take the component statistics and compute their
mean: X̄ = 1

N

∑
Xi where Xi is the component detector response for object i

of the batch. It is immediate that median(X̄) ≈ E[X̄ ] = rp if the expectation
exists at all and, given the shift hypothesis, the distributional shape of X̄ does
not depend on r or p. Therefore, the Steganographer has no reason to select any
particular value of r and p, as long as they multiply to his bandwidth constraint
B.

The complexity here is in computing the distribution of X̄ under the null
hypothesis. If the distribution density ψ has thin enough tails, the variance
of the Xi is finite and the Central Limit Theorem applies. However, we have
already noted that in practice the variance of the detector response may be
infinite. Thankfully, there is a generalized from of the Central Limit Theorem,
which is presented in detail in [6], from which we extract the following result:

Lemma 1. Suppose that all Xi are independent and identically distributed, and
the tail index of Xi is ν > 1, i.e. P (|Xi| > x) ∼ cx−ν as x → ∞, for some
constant c. Then E[Xi] exists and

(i) if 1 < ν < 2 then X̄
d→ E[Xi] + kN

1
ν −1Z where Z has a standardized

Symmetric Stable distribution with index of stability ν, and k is a constant
(depending on the dispersion of the Xi, and ν).

(ii) if ν > 2 then X̄
d→ E[Xi] + kN− 1

2 Z where Z has a standard Normal
distribution, and k is a constant (depending on the variance of the Xi).

There is a more complex case when ν is exactly 2, but we will not concern
ourselves with it because it is unlikely that the tail index will be precisely 2.
Note that the t-distribution with ν degrees of freedom has tail index ν.

The median value of X̄ under the null hypothesis is approximately B.
Therefore

pf =
{

1− Φ(N
1
2 B/k), if ν > 2

1− Fν(N1− 1
ν B/k), if 1 < ν < 2.

(3)

where Fν is the distribution function for the Symmetric Stable distribution with
stability index ν and k is some constant. As long as ν > 1, evidence does accu-
mulate, but the rate at which this happens, as N increases, depends critically
on whether ν is greater, or less, than 2.
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3.3 Generalized Likelihood Ratio Test

A general and powerful tool for hypothesis testing is the likelihood ratio test.
In the case of two simple hypotheses this takes the form of the quotient of
the likelihood of observations given the null and alternative hypothesis (and,
according to the Neyman-Pearson Lemma, is the optimal test); when one or
both of the hypotheses is composite we use the generalized likelihood ratio test
instead. The statistic is computed as 	 = log

(
L(X1,...,Xn;θ̂1)

L(X1,...,Xn;θ̂0)

)
where L is the

likelihood function, θ̂0 denotes the maximum likelihood estimator (MLE) for
unknown parameter(s) θ when constrained by the null hypothesis, and θ̂1 the
MLEs when constrained by the alternative hypothesis. The test rejects the null
hypothesis for large values of 	.

We apply the test to the problem of pooled steganalysis as follows. Suppose
that the component response ψ is known. Then we can compute

	 = log
(

L(X1, . . . , XN ; r̂, p̂)
L(X1, . . . , XN ; r=0, p=0

)
(4)

where L is the likelihood function for the mixture pdf f(x) = (1 − r)ψ(x) +
rψ(x − p) and r̂ and p̂ are MLEs for r and p given the observations.

The test is powerful, but there are two pitfalls here. The first is that it is not
so easy to compute MLEs for r and p. In the case of mixture distributions when
ψ is nontrivial the maximization problem admits no closed form solutions, and
the likelihood function contains more than one local maximum. Therefore we
are forced to use numerical optimization techniques, and it is quite possible to
find the wrong local maximum and hence to mis-estimate r and p. This is true
whether one uses standard numerical methods to maximize L(X1, . . . , XN ; r, p),
or whether specialised techniques such as Expectation Maximization are applied.
See [7] for some discussion of this problem. Our solution is the computationally-
expensive one of using a coarse grid search to find good starting values for r
and p, and then using a standard iterative optimization procedure [8] to hone
the answer (while accepting that this leaves the possibility of convergence to the
wrong root, but with low probability).

The second pitfall is more subtle. It is commonly stated that the log-likelihood
ratio statistic 	 has a particular asymptotic null distribution: up to a scaling
factor, the χ2 distribution with dim(θ1) − dim(θ0) degrees of freedom. This is
Wilks’ Theorem [9], but we have omitted a vital hypothesis – we require some
regularity conditions of the likelihood function and that the null hypothesis be
contained within the interior of the alternative hypothesis. In the case of the
hypothesis test (1) this is not so: the null hypothesis is on the boundary of the
alternative.

Nonetheless, there is some recent work which generalizes Wilks’ Theorem and
shows that the conclusions often remain true, perhaps with modified scaling
constants or degrees of freedom parameter, even when some of the hypotheses
are violated (see e.g. [10]). Alternatively, there are scoring methods which modify
the likelihood ratio statistic into one with a known null distributions [11]. Rather
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Fig. 2. Histogram and logarithmic tail plot of observed log-likelihood ratio statistic.
2500 samples of N = 500 observations were generated from a t-distribution (ν = 2,
λ = 0.01) and fitted to a scaled χ2 distribution.

than be diverted into a discussion of this issue, we generated 2500 samples of
N = 500 synthetic data points from a t-distribution (using ν = 2 and λ = 0.01 so
as to be a good model for steganalysis statistics) and compared the distribution
of 	, from (4), with the χ2 family. We found that a scale factor of 0.45 and degrees
of freedom 3.45 were the best fit (this df parameter is higher than predicted by
Wilks’ Theorem), which is displayed in Fig. 2. There is a good match and it
appears that a modified form of Wilks’ Theorem is still approximately valid.

We now examine the likelihood ratio under the alternative hypothesis.

Lemma 2. Let ψ be any probability density, assumed known, such that
a) ψ is symmetric about 0,
b) ψ(x+p)−ψ(x)

pψ(x) is bounded for x ∈ R and p ∈ [0, 1],

c)
∫

ψ(x+p)2−ψ(x)2

p2ψ(x) dx is an increasing function of p, for p ∈ [0, 1],

along with the usual regularity conditions sufficient for MLEs of the mixture
parameters r and p to be consistent. Then, in the limit as N → ∞, and for
sufficiently small B, the Steganographer’s best strategy to evade detection by
the generalized likelihood ratio test is to take p =B ( r= 1), in which case the
expectation of the generalized log-likelihood ratio statistic is asymptotically

E[	] ∼ NB2

2

∫
ψ′(x)2

ψ(x)
+ ψ′′(x) dx + NO(B3) (5)

The proof may be found in the Appendix. Conditions a) and b) are quite easy
to check, but c) is more difficult to establish. However they all seem to hold for
common density functions ψ, including the t-distribution pdf with zero location
parameter and ν > 13.
3 To match exactly our performance metric we should be considering the median of

the statistic under the alternative hypothesis, rather than the mean as here. However
the former is much harder to examine, and commonly in generalized likelihood ratio
tests the mean and median differ only by a small constant.
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Fig. 3. Expected value of log-likelihood ratio statistic (y-axis) according to (7) without
the scaling factor N , plotted against r (x-axis). Some different values of B are displayed.

Finally, in the case of a t-distribution with ν degrees of freedom and scale
factor λ, we have

NB2

2

∫
ψ′(x)2

ψ(x)
+ ψ′′(x) dx =

NB2

2λ2

ν + 1
ν + 3

. (6)

This indicates that the parameter ν is not vitally important to the accuracy of
the likelihood ratio detector (as a function of ν, for ν around 2, (6) varies rather
slowly and ν = 2 is not a critical value).

Now the statement of Lemma 2 is not ideal in that it only informs the
Steganographer what to do in the limiting case of small B. On further examina-
tion, it seems that the best strategy is exactly the reverse – p = 1 and r = B –
for B above a certain point and then switches to the proven optimal method for
B below. Using the pdf of a t-distribution with 2 degrees of freedom and scale
factor 0.01 we plot numerically-computed values of (7) (which, in the Appendix,
is shown to be the asymptotic expectation of 	 even when B is not small), with-
out the scaling factor N , in Fig. 3. On the left we see how the magnitude of
B influences the choice of r: for small B there is a definite disadvantage to the
Steganographer in using small values of r, because detection becomes easier. On
the right we examine more closely the values of B around which the best strategy
switches from r = 1 to p = 1. We observe that there is no internal minimum on
any of the displayed curves, so that the best strategy is switches directly from
one extreme (spread the payload as thinly as possible for small B) to the other
(concentrate the payload in as few covers as possible for large B).

Finally, we can also apply a generalized likelihood ratio test when the distri-
bution ψ has unknown parameters, forming MLEs for the unknowns in the usual
way. This may be a useful application, because the distribution parameters of
the steganalysis error distribution may well depend on the source of covers, of
which the Warden might be unaware. But the theory of Lemma 2 does not apply
directly in this case and we will not consider it further in this paper.
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3.4 Summary of Warden’s Strategies

For the sign test, and the likelihood ratio test for large bandwidths, we see that
the Steganographer’s best strategy is to take p=1 and r=B, concentrating all the
payload in as few covers as possible. We find this result rather counterintuitive,
as there is a natural inclination to spread hidden data thinly.

The total amount of data hidden by the Steganographer is proportional to
BN . Consider equations (2), (3), and (5). To fix the risk of detection, we must
have B∝N− 1

2 (sign or likelihood ratio test, or average if ν > 2) or B ∝ N−1+ 1
ν

(average if ν < 2). Therefore the “capacity” (of the undetectable kind) for the
Steganographer appears to grow as N

1
2 or N

1
ν – not proportionately to N .

We can compare the false positive rates of the tests by looking at the tail
probabilities for the Normal, Symmetric Stable, and χ2 distributions. It can
be shown that, as long as ν > 2, the false positive rate is of the form pf ∼
a(NB2)b exp(−cNB2) for each of the three tests, where a, b and c are constants.
The parameter c is most important to the shape here with larger c meaning that
evidence is gained more quickly as N increases. For the sign test, c is no larger
than 2. For the average and likelihood ratio tests, it is generally much larger,
being inversely proportional to the square of the dispersion of ψ.

Although the results for the other tests are not changed when ν < 2, in this
case the discrimination of the average statistic increases only as a power law,
with pf ∼ aN1−νB−ν . Ensuring that steganalysis detectors have finite variance
appears to be important. However we emphasise that there is no sudden dis-
continuity at ν = 2. When ν is slightly above 2, the standard Central Limit
Theorem applies but convergence to the asymptotic distribution is extremely
slow. The key for the steganalyst is to keep the tails of the component steganal-
ysis estimator as light as possible.

4 Case Study: LSB Replacement in Images

We now move away from the abstract setting and select a particular type of cover
object, steganographic embedding, and component steganalysis. We choose LSB
Replacement in bitmap grayscale images, because this problem is extremely
well-studied and also because it is a poor enough form of steganography for
fairly good component steganalysis methods to be known. There are many to
choose from, and we have selected the one known as Sample Pairs Analysis
(SPA) [2]. It was not selected because it is the best – there are now newer methods
such as [12] which are more sensitive – but because it shares the advantages of
computational simplicity (highly desirable given the scale of our experiments)
with an approximate validation of the shift hypothesis (see Fig. 1).

We aim to benchmark the pooled steganalysis methods of Sect. 3. Because
we want to consider large samples (up to N = 4000) we need a particularly
large corpus of cover images, a random selection of which is presented to the
Steganographer for each trial. Also, to keep as closely as possible to the shift
hypothesis and the other assumptions of Sect. 2, we want all the images to be
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the same size and of similar “character” (each image should have macroscopic
characteristics which indicate similar sensitivity to steganography). We used a
set of 14000 images, selected for size and image quality out of 20000 on a stock
photo CD4. The images selected were all 640×416 pixels and had been stored as
colour JPEG images (at quality factor 58), later converted to grayscale. This is
probably representative of the type of images which a Steganographer can gain
access to in large quantity: big, never-compressed images are more scarce.

The distribution of the SPA estimator, when no data is hidden in these images,
is well modelled by a t-distribution with ν = 1.61 and λ = 0.00956 (and we
will use these values to compute approximate likelihoods for benchmarking the
pooling method of Subsect. 3.3). These values indicate that, even with maximal
embedding, for single images there will be a false positive rate of approximately
2× 10−4 when the false negative rate is 50%. For more reliable detection, or for
smaller bandwidths, the Warden has no option but to gather multiple images as
evidence and apply pooled steganalysis.

4.1 Empirical Performance

The majority of our experiments were performed with the following parameters:
B ∈ {0.01, 0.003, 0.001} and three out of N ∈ {10, 100, 1000, 4000}, depending
on B. This covers the interesting range of possibilities, as detection moves from
easy to very difficult.

For each N we took 10000 samples of N detection statistics when p = 0 and
then fitted the data according to the theoretical models5: Normal distributions
for the sign and signed rank statistics, Symmetric Stable distributions for the
average statistic, and scaled χ2 distributions for the likelihood ratio statistic.
The fits were good, and the fitted parameters were in the expected range.

For each B, up to 11 different pairs of r and p were chosen, subject to 1 ≥ r ≥
1/N, B and rp = B. Repeating 1000 times, N covers were picked at random (for
technical reasons it is necessary to sample with replacement) and random data
embedded at rate p in Nr of these. Values of the SPA estimator were computed
for all N objects, and combined using each of the pooling methods described in
Sect. 3. The false positive rate, at which detection rates are 50%, was computed
for each statistic at each value of r.

In total, therefore, the results shown here come from tens of millions of stegan-
ography and steganalysis computations. Figure 4 shows the results. We see that
for small N or B none of the methods gives reliable detection. Once detection
becomes possible, observe that the sign and signed rank tests very effectively
punish the Steganographer if he uses a high value of r, but otherwise they are
poor performers. The averaging method is generally superior for the values of

4 “20,000 photos”, published in 2002 by Focus Multimedia Ltd, Staffordshire, UK.
http://www.focusmm.co.uk.

5 Although we would prefer to avoid fitting a distribution which might not be exact,
we can only draw conclusions about false positive rates less than 1/S, where S is
the number of repeated simulations, by doing so.
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Fig. 4. The false positive detection rate (y-axis) when the false negative rate is 50%,
for varying r (x-axis) with p = B/r, of pooled steganalysis using the SPA detector on
grayscale images. Four pooling methods are evaluated, the null distributions being fit-
ted to the theoretically-predicted shapes based on 10000 simulations, and the medians
of the alternative distributions computed from 1000 simulations for each r. From top
to bottom, the bandwidths of the embedding are B = 0.01, B = 0.003, B = 0.001.
Increasing values of N , from left to right. The pooled detectors have no discrimina-
tion power for (B, N) = (0.003, 10) or (0.001, 100) and poor reliability for (0.01, 10),
(0.003, 100), (0.001, 1000), but then reliability increases rapidly with N .
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sizes N (x-axis), observed in 1000 experiments when data is embedded at p = 1, r = B

N and B tested here, but given sufficiently large values of N it looks possible
that the likelihood ratio test will become the better test (some other results, not
displayed, emphatically confirm this). Also, the average method cannot punish
the Steganographer for using a suboptimal embedding strategy.

We observe that concentrating the steganography is the best strategy against
the likelihood ratio test, but that for the smallest value of B tested a second
peak is forming near r = 1. If we had been able to test lower B we would expect
to see the results of Lemma 2, with r = 1 (spreading the payload thinly across
all covers) the least detectable embedding method. But we cannot test lower B
without substantially increasing N (else there is no detection power), and we
cannot do this because of the size of the corpus of images from which we sample.

Finally, focussing only on the averaging pooling method, we tested a larger
range of B and N in Fig. 5. Because performance of the average detector does
not depend on r, we can pick only a single value of r and plot the false positive
rate as N varies. This indicates that, once N passes a point where detection
takes place with reasonable reliability, false positive rates drop extremely fast
with a few extra observations.

4.2 Assumptions Revisited

We also tested pooled steganalysis performance with alternative types of cover
image, and noticed a possible problem. Of the assumptions of Sect. 2, the sim-
plest and apparently mildest is that the steganalysis detector response is sym-
metric about zero, hence unbiased. Indeed, for the 14000 cover images we tested
in Sect. 4, this is fairly accurate: the observed bias was 0.00018. However in
certain other types of cover, for example colour never-compressed images, it is
common to observe a systematic and significant bias of as much as 0.005 or
higher. Whether an artifact of the SPA method or the covers themselves is ir-
relevant; the effect is to destroy the reliability of the pooled detectors, flooding
them with false positives for any large value of N . This must be so, because a
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systematic bias of b is indistinguishable from a batch Steganographer’s behaviour
with p = b and r = 1.

If we train the detector first on covers of the right type (effectively removing
the bias) then the problem goes away. The difficulty is that the bias varies,
depending on the source of covers (and the problem is not limited to the SPA
component detector). We see two options for dealing with this difficult issue.
On one hand, we could set a maximum bias which we believe is “possible”
in natural images, and alter detection thresholds for all the pooled detectors
by, for example, subtracting this value before diagnosis. Of course, this reduces
their performance and makes it impossible to detect small bandwidths. The
alternative is to modify the likelihood ratio test to include a location parameter
in both null and alternative hypotheses (possibly constrained). This will detect
a Steganographer using small r, as distinct clusters are observed, but not r = 1.

In previous work we, and other authors, have not considered a small detector
bias (say as small as 0.001) to be significant. For pooled steganalysis, where small
bandwidths are in principle detectable given large enough N , removing the bias
becomes the best way to improve pooled performance.

5 Conclusions and Directions for Further Research

We have motivated and defined the problems of batch steganography and pooled
steganalysis, presenting a menu of techniques for the latter and examining the
implications for the former. The pooled steganalysis methods have been bench-
marked for a particular type of steganography, with results in line with the
theoretical predictions.

The conclusion, that in many cases the Steganographer should cluster the em-
bedding in a small number of cover objects, seems rather counterintuitive. We
emphasise that it cannot apply to every type of pooling algorithm. For example,
the number of observations greater than 1 is quite sensitive to embedding at
p = 1, although worthless for other batch parameters. There are many other
possible pooling algorithms, and some advanced techniques based on mixture
modelling, which should be the first priority for further study. In this work we
have deliberately avoided methods which are parametric for the Warden – for ex-
ample the pooling method of counting observations greater than some threshold
T – because this leads to a game theoretical setup which can be intractable.

We have only modelled the simplest type of batch steganography. In future
work we should consider allowing the Steganographer to vary the amount of
data embedded in each object (this results in a larger mixture), and to deal
with objects of varying capacity. We must also consider other pooling strategies;
we did test, briefly, a pooled detector which simply stitches together N images
and applies one steganalysis method to the entire montage, but omitted it from
this paper because the performance is similar but a little inferior to the average
method. More information on the individual steganalysis response, as it depends
on object size and other object parameters, will be needed here. Finally, we would
like to prove a general result on how steganographic capacity increases with N .
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Given the assumptions we made in this paper, including all covers being the
same size, there is an additional possibility we have not explored. If we may
assume that all, or most, of the steganography is performed using the same
secret key, this may imply that the same pixels in each cover would be used for
steganography (depending on the embedding method). If so, there could be an
amplification of the statistical traces, which we might exploit.

More speculatively, consider whether these results give information about
adaptivity and steganography in individual images. If it is optimal to cluster
data amongst a set of objects, it is not implausible to suggest also clustering
stego noise within each single object, although the analogy is not perfect.
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Appendix: Proof of Lemma 2

Let L be the likelihood function, and r̂ and p̂ the MLEs for r and p given the
observations. The log-likelihood ratio statistic is

	 = log
(

L(X1, . . . , Xn; r̂, p̂)
L(X1, . . . , Xn; 0, 0)

)
=
∑

log

((
(1 − r̂)ψ(Xi) + r̂ψ(Xi − p)

ψ(Xi)

))

=
∑

log

(
1 + r̂

(
ψ(Xi − p̂)− ψ(Xi)

ψ(Xi)

))

Let Yi be independent random variables with pdf ψ. We know that (1− r)N
of the Xi are distributed as Yi, and the others as Yi+p, and all are independent.
We may also assume, as N grows large, that r̂ ∼ r and p̂ ∼ p (by consistency of
the MLEs). Therefore we have

E[	] ∼ E
[ rN

terms∑
log
(
1 + r

(ψ(Yi)−ψ(Yi+p)
ψ(Yi+p)

))
+

(1−r)N
terms∑

log
(
1 + r

(ψ(Yi−p)−ψ(Yi)
ψ(Yi)

))]

= N

∫
r log

(
1 + r

(ψ(y)−ψ(y+p)
ψ(y+p)

))
ψ(y) dy

+ N

∫
(1 − r) log

(
1 + r

(ψ(y−p)−ψ(y)
ψ(y)

))
ψ(y) dy

= N

∫ (
log
(
1 + B

p

(ψ(x+p)
ψ(x) − 1

)))(
1 + B

p

(ψ(x+p)
ψ(x) − 1

))
ψ(x) dx. (7)

(In the last step substituting x = −y− p in the first integral, and x = −y in the
second, making use of condition a), that ψ(x) = ψ(−x), and writing r = B

p .)

Condition b) allows us to use the Taylor expansion log(1 + z) ∼ z − z2

2 + O(z3)
in the knowledge that, here, z is of order B: given sufficiently small B and
neglecting terms of order B3, we have

E[	] ∼ N

∫ (
B
p

(ψ(x+p)
ψ(x) − 1

))(
1− 1

2
B
p

(ψ(x+p)
ψ(x) − 1

))(
1+ B

p

(ψ(x+p)
ψ(x) − 1

))
ψ(x) dx.

Parts of this integral can be removed, using the fact that
∫

ψ(y) dy = 1, leaving

E[	] ∼ NB2

2

∫
ψ(x + p)2 − ψ(x)2

p2ψ(x)
dx.

The Steganographer wants to minimize E[	], to reduce his chance of detection.
By condition c) this integral is an increasing function of p, so the Steganographer
should minimize p, taking r = 1 and p = B. Given that B is small, we may now
use a Taylor expansion for ψ. We need the first three terms:

E[	] ∼ N

2

∫ (
ψ(x) + Bψ′(x) + B2

2 ψ′′(x) + O(B3)
)2 − ψ(x)2

ψ(x)
dx.

The constant terms (in B) cancel, the term in B is zero (ψ′ is an odd function),
and the term in B2 is ψ′(x)2

ψ(x) + ψ′′(x). This leads to the stated result.
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Abstract. In this paper, we study embedding efficiency, which is an
important attribute of steganographic schemes directly influencing their
security. It is defined as the expected number of embedded random mes-
sage bits per one embedding change. Constraining ourselves to embed-
ding realized using linear covering codes (so called matrix embedding), we
show that the quantity that determines embedding efficiency is not the
covering radius but the average distance to code. We demonstrate that
for linear codes of fixed block length and dimension, the highest embed-
ding efficiency (the smallest average distance to code) is not necessarily
achieved using codes with the smallest covering radius. Nevertheless, we
prove that with increasing code length and fixed rate (i.e., fixed relative
message length), the relative average distance to code and the relative
covering radius coincide. Finally, we describe several specific examples
of q-ary linear codes with q matched to the embedding operation and
experimentally demonstrate the improvement in steganographic security
when incorporating the coding methods to digital image steganography.

1 Introduction

Steganography is the art of undetectable communication. It was originally for-
malized by Simmons [1] as the prisoners’ problem. Alice and Bob are prisoners in
separate cells who want to develop an escape plan. Their communication is mon-
itored by a warden. Alice and Bob resort to steganography and hide the details
of the escape plot in cover objects, such as digital images, by slightly modifying
them. Their goal is to not raise the warden’s suspicion. In the simplest case,
the warden is passive in that he just observes the traffic without modifying the
messages in any way.

The main requirement of any steganographic technique is undetectability—the
warden should not be able to distinguish between cover and stego objects (cover
embedded with data) with success better than random guessing. A formal defini-
tion of steganographic security was given by Cachin [2]. The detectability of data
hidden in a stego object is influenced by many factors, such as the choice of the
cover object, the selection rule used to identify individual elements of the cover
that could be modified during embedding, the type of embedding operation that
modifies the cover elements, and the number of embedding changes (directly re-
lated to the secret message length). Assuming two embedding methods share the
same source of cover objects, the same selection rule and embedding operation,

J. Camenisch et al. (Eds.): IH 2006, LNCS 4437, pp. 282–296, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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the one that introduces fewer embedding changes will be less detectable as it
decreases the chance that any statistics used by the warden will be sufficiently
disturbed to mount a successful steganalysis attack. The expected number of
random message bits embedded per one embedding change is called embedding
efficiency. This concept has been introduced by Westfeld [3] and has since been
accepted as an important attribute of steganographic schemes [4, 5].

In 1998, Crandall [6] and Bierbrauer [7, page 195–197] showed that embedding
efficiency of steganographic schemes can be improved by applying covering codes
to the embedding process. This fact has been later independently rediscovered
by van Dijk et al. [8] and Galland et al. [9]. In particular, a linear code can be
used to construct an embedding scheme1 whose embedding capacity is the code
redundancy, while the covering radius corresponds to the maximal number of
embedding changes necessary for embedding any message.

In this paper, we first show that the expected number of embedding changes,
which is directly related to the concept of embedding efficiency as used in cur-
rent steganographic literature, corresponds to the average distance to code rather
than the covering radius. Moreover, we show that in the class of linear codes of
fixed length and dimension the highest embedding efficiency may not always be
attained for a code with the smallest covering radius. However, with increas-
ing code length and fixed rate (i.e., fixed relative message length), the relative
covering radius and the relative distance to code asymptotically coincide.

In Section 2, we review selected known facts about embedding schemes real-
ized using q-ary linear codes and state bounds on embedding efficiency. In Sec-
tion 3, we study the properties of the average distance to code. Examples of spe-
cific coding schemes that can substantially improve the embedding efficiency of
steganographic schemes are given in Section 4, where we experimentally demon-
strate the benefit of using the proposed coding techniques for steganography.
The paper is concluded in Section 5.

2 Covering Codes in Steganography

In this section, we briefly review some known results about steganographic
schemes and covering codes including bounds on achievable embedding efficiency.
We do so for a rather general definition of an embedding scheme in which mes-
sage symbols from some finite field (rather than bits) are embedded at each pixel.
The reason for this more general approach will become clear in Section 4 when
we discuss the importance of ternary codes for steganography. Throughout the
text, boldface symbols stand for vectors or matrices and the calligraphic font is
used for sets. Italicized text highlights definitions of new concepts.

We will assume that the cover image X is an element of Gn, where G is the set
of all possible pixel values. For example, in steganography using 8-bit grayscale
digital images, G is the set of all integers in the range [0, 255] and n is the number
of pixels. Data embedding consists of modifying the values of selected pixels so
1 In steganographic literature, such embedding schemes realized using linear codes are

called matrix embedding [6, 3,10].
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that the modified (stego) image Y conveys the desired secret message. The
impact of embedding is captured by a distortion metric D : Gn × Gn → [0,∞).

We further assume that there is a symbol-assignment function s : G → Fq
that assigns an element of a finite field2 Fq to each possible pixel value. The
most common symbol-assignment function used in steganography is the least
significant bit (LSB) of pixel values

s(i) = i mod 2. (1)

Examples of other symbol-assignment functions are given in Section 4.
Writing the pixels of image X as a one-dimensional vector, its vector of sym-

bols s(X) = x ∈ Fnq is obtained by applying s to each element. Everywhere in
this paper, we measure the impact of embedding in the symbol space Fnq using
the Hamming distance d : Fnq × Fnq → {0, 1, . . . , n} between the corresponding
symbol vectors, which is the number of embedding changes

D(X,Y) = d(s(X), s(Y)) for all X,Y ∈ Gn. (2)

Let M be the set of all messages that can be communicated. An embedding
scheme with a distortion bound R is a pair of embedding and extraction functions
Emb and Ext,

Emb : Fnq ×M→ Fnq and Ext : Fnq →M, (3)

d(x, Emb(x,m)) ≤ R for all m ∈ M and all x ∈ Fnq , (4)

such that for all messages m ∈ M and all x ∈ Fnq , Ext(Emb(x,m)) = m. In
other words, (3) means that we can embed any message from M in any x and
(4) states that we can do it by imposing at most R changes.

The value h = log2 |M| is called the embedding capacity of the scheme (in
bits) and α = h/n the relative embedding capacity (or relative payload). We
have an obvious upper bound

|M| ≤ qn or α ≤ log2 q. (5)

We further define e = h
R as the lower embedding efficiency and e = h

Ra
as the

embedding efficiency, where Ra is the expected number of changes over uniformly
distributed cover objects x ∈ Fnq and messages m ∈M. Note that since R is the
upper bound on the number of embedding changes, for any embedding scheme
e ≤ e.

We next review some known facts about embedding schemes and covering
codes and state a bound on embedding efficiency. More details and proofs can
be found in [9,12,13]. Throughout this article, we will use some standard concepts
and results from Coding Theory that can be found for example in [11]. Unless
stated otherwise, all codes considered in this article are linear codes, and we use
the notation “[n, k, d] code” for a k-dimensional linear code with block length
2 Here, q is a prime power. For background on finite fields, see for example Chapters

3 and 4 in [11].
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n and minimal distance d. If the minimal distance d is not important for our
considerations, we may omit it and only speak of an [n, k] code. We note that
the covering radius R of a q-ary code C is defined as

R = max
x∈Fn

q

d(x, C), (6)

where d(x, C) = minc∈C d(x, c) is the distance between x and the code C. An
R-covering of Fnq is any subset C of Fnq such that

⋃
x∈C B(x, R) = Fnq , where

B(x, R) is the ball with center x and radius R.
We now state and prove the matrix embedding theorem. It gives a recipe how

to use an [n, k] code to communicate n− k symbols using at most R changes in
n pixels. Examples of specific matrix embedding schemes for binary and ternary
codes are given in Section 4.

Theorem 1. (Matrix embedding) Let C be an [n, k] code with a parity check
matrix H and covering radius R. The embedding scheme below can communicate
n− k symbols in n pixels with pixel symbols x using at most R changes:

Emb(x,m)=x + eL = y,

Ext(y) =Hy,

where m ∈ Fn−kq is a sequence of n−k message symbols and eL is a coset leader
of the coset C(m−Hx) for the syndrome m−Hx.

Proof. Since C has covering radius R, we know that d(x,y) = w(eL) ≤ R, which
proves that the embedding scheme has (a tight) distortion bound R. To prove
that Ext(Emb(x,m)) = m, note that Ext(Emb(x,m)) = Hy = Hx + HeL =
Hx + m−Hx = m.

Because there are
∑R

i=0

(
n
i

)
(q−1)i ways in which one can make up to R changes

in n pixels, we have

h = log2 |M| ≤ log2

R∑

i=0

(
n

i

)
(q − 1)i = log2 Vq(n, R) ≤ nHq(R/n), (7)

where Vq(n, R) is the volume of a ball of radius R in Fnq and Hq(x) = −x log2 x−
(1− x) log2(1− x) + x log2(q − 1) is the q-ary entropy function3. Inequality (7)
also gives us an upper bound on the lower embedding efficiency e = h

R for a
given relative payload α = h

n :

H−1
q (α) ≤ R

n
=⇒ e =

h

R
= α · n

R
≤ α

H−1
q (α)

, (8)

3 We note that this definition of q-ary entropy function is slightly different from how
this concept is usually defined in the literature. The difference is the multiplicative
factor log2 q. This is because we define the relative payload α in bits per pixel, which
is more common in steganography, rather than in q-ary symbols per pixel.
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where H−1
q (α) ∈ [0, (q− 1)/q]. We note that this upper bound on e is asymptot-

ically achievable using linear codes because the relative redundancy (n−k)/n =
h/n of almost all random [n, k] codes asymptotically achieves Hq(R/n) for a
fixed R/n < (q − 1)/q and n → ∞ (see, e.g., Theorem 12.3.5 in [14] for the
binary case). Thus, there exist embedding schemes based on linear codes whose
lower embedding efficiency is asymptotically optimal.

3 Average Distance to Code

From the Matrix Embedding Theorem 1, for fixed block length n and embedding
capacity n−k, the highest lower embedding efficiency is achieved using an [n, k]
code with the smallest covering radius R. However, as argued in the Introduction,
steganographers are more interested in the embedding efficiency and thus the
average number of embedding changes. In this section, we first show that this
concept is related to the average distance to code and then we demonstrate that
a code with the smallest average distance to code does not have to have the
smallest covering radius.

For an embedding scheme from Theorem 1, the expected number of embedding
changes for messages uniformly distributed in Fn−kq is equal to the average weight
of all coset leaders of C. It is reasonable to assume that the messages are drawn
uniformly at random from Fn−kq since typically they will be encrypted before
embedding. We now show that the expected number of embedding changes is
equal to the average distance to the code defined as

Ra =
1
qn

∑

x∈Fn
q

d(x, C). (9)

Because any two words x,y from the same coset Ci have the same distance from
C: d(x, C) = d(y, C) = w(ei), the weight of a coset leader of Ci, we have

Ra=
1
qn

∑

x∈Fn
q

d(x, C)=
1
qn

qn−k∑

i=1

∑

x∈Ci

d(x, C) =
1
qn

qn−k∑

i=1

qkw(ei) =
1

qn−k

qn−k∑

i=1

w(ei),

which is the average number of embedding changes for messages uniformly chosen
from Fn−kq .

The remaining results in this section are formulated for binary codes. We first
study codes of small dimension k = 1, 2 because such codes allow calculating the
average distance to code analytically. Moreover, matrix embedding with codes
of small dimension was recently proposed as a means to improve steganographic
security when embedding large payloads close to the embedding capacity [13].

Theorem 2. For a binary [n, 1] code

Ra ≥
n

2

(
1− 2−n+1

(
n− 1⌈
n−1

2

⌉
))

. (10)
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Proof. Consider the matrix H = [I,1], where I is the (n−1)×(n−1) identity ma-
trix and 1 is the column of n−1 ones. It is easy to see that for i ≤ �(n− 1)/2� all(
n
i

)
possible sums of i columns of H produce all syndromes of weight i and n− i.

Thus, for n odd, Ra = 2−n+1
∑(n−1)/2

i=1 i
(
n
i

)
and no other code can have a smaller

Ra. For n even, we need to include
(

n−1
(n−1)/2�

)
sums of $(n− 1)/2% columns of

the identity matrix I. Thus, Ra = 2−n+1
∑�(n−1)/2�

i=1 i
(
n
i

)
+$(n− 1)/2%

(
n−1

(n−1)/2�
)

and, again, no code can have a smaller Ra. Both expressions simplify to the right
hand side of (10) after simple algebra. Note that the proof also shows that the
inequality (10) is tight.

To present the analogue of Theorem 2 for 2-dimensional codes, we first need
to introduce some notation. For an [n, 2] code C with basis {x,y}, let us define
ψ(C) to be the multiset (set with possibly repeated elements) {α, β, γ}, where

α = |{i : xi = yi = 1}|, β = |{i : xi = 1, yi = 0}|, γ = |{i : xi = 0, yi = 1}|.

Notice that the mapping ψ is well defined, that is, ψ(C) is independent of the
choice of a basis for C.

Theorem 3. Let n be fixed, n ≥ 4, and let C be a binary [n, 2] code. Then C
achieves the minimum average distance to code among all binary [n, 2] codes
if and only if no coordinate of C is identically zero, and ψ(C) is in one of the
following forms:

{α, α, α+1}, {α, α+1, α+3}, {α, α+1, α+2}, {α, α+3, α+3}, {α, α+1, α+1}.

It is quite interesting to note that the most symmetric [3α, 2] codes C defined
by ψ(C) = {α, α, α} are never optimal unless α = 1. This theorem is taken
from [15].

To show that a code minimizing the average distance to code among all [n, k]
codes with given n, k does not need to minimize the covering radius in this class,
we now present the following example.

Let M be the 4 × 15 binary matrix whose columns are all nonzero vectors
from F4

2. Let M′ be a matrix obtained from M by deleting a single column. Let
C be the [14, 4] code generated by M′. The average distance to C is 3548/210.
We have proved by an exhaustive classification of all [14, 4] binary codes up
to isomorphism that, for any [14, 4] code C′ not isomorphic to C, the average
distance to C′ is at least 3602/210, which is at least 1.5% more than that of C.
Since the maximum weight of C is 8, the distance of the all-one vector from C is
6. However, there are [14, 4] codes with covering radius 5 (see Table 7.1 on page
193 in [14]) and thus C does not minimize the covering radius among all [14, 4]
codes.

Even though the average distance to code and the covering radius are two dif-
ferent values that are not necessarily optimized by the same code, we prove that
in the binary case these two concepts asymptotically coincide with increasing
length of the code and fixed rate. Let us suppose that we are embedding relative
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payload α, 0 ≤ α ≤ 1, in an n-element cover object. Thus, the message consists
of αn bits and the code that realizes the embedding is a binary [n, (1 − α)n]
code4. The following theorem states that for almost all such codes the relative
covering radius ρ = R/n and the relative distance to code ρa = Ra/n converge
with n → ∞.

Theorem 4. For any 0 < α < 1 and any ε > 0, the fraction of all binary
[n, (1− α)n] codes for which |ρ− ρa| ≤ ε tends to 1 as n goes to infinity.

The proof of this theorem is in the appendix. We note that this result implies
that the bound (8) is also an asymptotic bound on the embedding efficiency e

e � α

H−1(α)
. (11)

4 Practical Embedding Schemes

In this section, we first explain the reasons for constructing steganographic
schemes using q-ary codes with q matched to the embedding operation and then
we give several examples of codes suitable for practical applications. Finally, we
demonstrate how the codes improve steganographic security of ±1 embedding
in the spatial domain.

Let us start with the simple LSB embedding paradigm frequently employed
in steganographic schemes for images, audio, and other digital media objects.
To be specific, we assume that the cover is a grayscale digital image and we also
assume that the sender can use all pixels for embedding, i.e., the embedding is
not constrained to any selection channel [5]. The message bits are embedded as
LSBs of pixels along a pseudo-random path determined by a secret stego key.
The recipient reads the message from LSBs of pixels obtained by scanning the
image in the same pseudo-random order as during embedding.

LSB flipping is a very unnatural operation that is quite detectable by modern
steganalytic tools (see [16] and references therein). The fundamental reason for
this is the special character of the LSB flipping operation that pairs up grayscale
values 2i and 2i + 1 for i = 0, . . . , 127. In other words, during embedding the
value 2i is either left unchanged or changed to 2i + 1. In particular, it is never
changed to 2i − 1. All reliable LSB detectors rely on this fact in some way or
another.

An obvious and quite simple countermeasure is to make the embedding oper-
ation symmetrical and allow changes in both directions for all pixel values (with
the obvious exception of the boundary values 0 and 255). For example, to modify
the LSB of the grayscale value i of a given pixel, the embedder may flip a coin
and with probability 1/2 increase the value of i by one and with probability 1/2
decrease its value by one. Note that this process introduces the same distortion

4 Statements involving the quantity αn hold whenever this value is an integer, and
are void otherwise.
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to the image as LSB embedding. This type of embedding is known as ±1 em-
bedding [17,18] or LSB matching [19,20]. In this paper, we will call this method
binary ±1 embedding.

The embedding efficiency of LSB embedding and binary ±1 embedding is the
same and equal to 2—assuming we are embedding a random bit-stream with
uniform distribution of 0’s and 1’s, we embed 1 bit by making a change with
probability 1/2. However, in the case of±1 embedding, we have three possibilities
for each pixel—either leave it unchanged or modify by ±1. Obviously, we can
use the following symbol-assignment function

t = s(i) = i mod 3 (12)

and embed a ternary symbol t ∈ {0, 1, 2} = F3 in each pixel. We call this method
ternary ±1 embedding.

Assuming the embedded stream of ternary symbols is random with uniform
distribution on Fn3 , the probability that the pixel value i will stay unchanged,
be modified by 1, or −1 is the same and equal to 1/3. Thus, we make a change
with probability 2/3 and embed log2 3 bits. The embedding efficiency is thus
log2 3/(2

3 ) .= 2.3774. This is already larger than the embedding efficiency of
binary ±1 embedding. We can do, obviously, much better because we can now
embed up to log2 3 bits per pixel (bpp) and thus the relative payload α shortens
by the same factor. This means that we can further increase the embedding
efficiency by applying matrix embedding with ternary codes.

4.1 Examples of Good Covering Codes

Probably the simplest case of matrix embedding is based on q-ary [ q
m−1
q−1 , q

m−1
q−1 −

m, 3] Hamming codes, which are perfect codes with minimum distance 3 and
covering radius R = 1. Since there are qn−m codewords whose distance to code
is 0 and qn−qn−m words x ∈ Fnq whose distance to code is 1, the average distance
to code is Ra = (qn − qn−m)/qn = 1− q−m. Using Theorem 1, we can embed m

q-ary symbols in qm−1
q−1 pixels using at most one change. In other words, we can

embed a relative payload α = m q−1
qm−1 log2 q bpp with lower embedding efficiency

e = m log2 q and embedding efficiency e = m log2 q/(1− q−m).
Note that for q = 2, m = 1, and the symbol-assignment function (1), we obtain

the classical LSB embedding. With increasing m, the payload α decreases while
the embedding efficiency increases. The binary Hamming code was used for the
first time in the JPEG steganographic algorithm F5 [3].

In Figure 1, we show the upper bound (8) on embedding efficiency for q =
2, 3, 4 as a function of relative payload α (in bpp). The embedding efficiency
of binary and ternary Hamming codes for different values of m is shown with
“+” and “×” signs, respectively. Note that the curves start at the point α =
log2 q, e = q

q−1 log2 q, which corresponds to embedding at the largest relative
payload of log2 q bpp. We also want to point out the benefit of using q-ary codes
for a fixed relative payload α. For example, for α = 1, the ternary ±1 embedding
can theoretically achieve embedding efficiency e � 4.4, which is significantly
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Fig. 1. Embedding efficiency of various q-ary codes with the upper bound (8) for
q = 2, 3, 4

higher than 2—the maximal efficiency of LSB embedding at this relative message
length.

The remaining non-trivial perfect codes, the binary [23, 12, 7] Golay code and
the ternary [11, 6, 5]3 Golay code, also provide very good performance (see Fig-
ure 1). The average distance to the binary Golay code is Ra = 1

223 (1 ·
(
23
1

)
+

2·
(
23
2

)
+ 3 ·

(
23
3

)
) · 212 .= 2.8525, which gives e = 11/Ra

.= 3.8562 at relative
payload α = 11/23 .= 0.4783. The average distance to the ternary Golay code is
Ra = 1

311

(
1 ·
(
11
1

)
· 2 + 2 ·

(
11
2

)
· 4
)
· 36 .= 1.9012, giving e = 5 log2 3/Ra

.= 4.1683
at relative payload α = 5 log2 3/11 .= 0.7204.

For large payloads close to log2 3 bpp, the following simple one-dimensional
ternary code can greatly improve embedding efficiency. Let C be the ternary [n, 1]
code (1-dimensional subspace of Fn3 ) spanned by the all-one vector. Suppose that
we use matrix embedding defined by the code C, and that the embedding of
ternary symbols into the grayscale image is realized using the ±1 embedding as
explained earlier in this section. If we denote the number of 0’s, 1’s and 2’s in
an arbitrary vector of Fn3 by a, b and c, respectively, then the average distance
to C can be computed as

Ra =
1
3n
∑

(n−max{a, b, c})
(

n

a

)(
n− a

b

)
, (13)
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where the sum extends over all triples (a, b, c) of non-negative integers such that
a + b + c = n. For the matrix embedding part, we can use the ternary matrix
H = [I,u] where I is the (n− 1)× (n− 1) identity matrix and u is the column
vector of 2’s. The number of bits embedded per n pixels is log2 3n−1, which gives
relative payload α = n−1

n log2 3. The points [α, Ra] are shown in Figure 1 as “�”
signs. For example, we can embed 1.188 bpp with embedding efficiency of almost
3 bits per change.

Binary matrix embedding schemes for large payloads were discussed in [13].
The authors proposed a class of random linear codes of small dimension and
codes derived from simplex codes.

Finally, as shown in [5] random linear codes in Fn2 with small codimension can
also be used to construct computationally tractable embedding schemes with im-
proved embedding efficiency (the triangle signs in Figure 1 correspond to codes
with codimension n − k = 19). In this case, due to the small code codimension
the coding can be done using efficient search techniques. Note that these ran-
dom linear codes outperform binary Hamming codes. Another advantage of this
approach is that we obtain a parametrized family of codes rather than a few
instances of individual coding schemes, which greatly simplifies implementation.

4.2 Experiments

Even though it is clear that increased embedding efficiency should improve
steganographic security, it would be useful to obtain a quantitative statement
for a specific embedding scheme applied to real images. We evaluate the stegano-
graphic security using the current state-of-the-art blind feature-based classi-
fier [21] on 2500 cover images obtained with 22 different digital cameras. The
images include a mixture of indoor and outdoor shots taken under varying light
conditions with and without flash, landscapes, and closeups. All images were
taken in the raw (uncompressed) format, converted to grayscale and cropped to
their central 1000× 1000 region. We chose a database of raw images intention-
ally because previously JPEG compressed images should not be used for spatial
domain steganography [22].

For our tests, we used three methods: (1) uncoded binary ±1 embedding,
(2) binary ±1 embedding with binary Hamming codes, and (3) ternary ±1 em-
bedding with ternary Hamming codes. Note that in order to embed a message
of relative length α bpp, we need to choose the parameter m of the Hamming
code so that (m + 1) q−1

qm+1−1 log2 q < α ≤ m q−1
qm−1 log2 q. Obviously, we are most

efficient when α is close to m q−1
qm−1 log2 q. Thus, we chose the payloads for our

tests in such a manner so that α is close to the upper bound for both binary and
ternary codes.

We ran the following experiment for each payload and each embedding tech-
nique. Half of the images from the database were chosen as cover images and the
other half were embedded using the corresponding method and payload. Then,
using the blind classifier [21] we calculated the Receiver Operating Characteris-
tic curve (ROC) as a measure of separability between the clusters of features of
cover and stego images. To obtain a numerical characteristic of the performance
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of the detector, we used two quantities that are frequently used in current ste-
ganalysis literature—false alarms (cover images incorrectly detected as stego)
at stego image detection accuracy 50% and 80%. Table 1 shows both numerical
characteristics for the three embedding methods and two relative payloads. The
parameters for payloads α1 and α2 were m = 2 and 3, respectively, for both
binary and ternary Hamming codes.

Table 1. False alarms at 50% and 80% stego image detection for three embedding
methods and two relative payloads

α1 = 0.666 α2 = 0.365 bpp

Embedding method FA50% FA80% FA50% FA80%

Uncoded binary 1.3% 15% 3.9% 21%

Binary Hamming 2.5% 19% 8.1% 29%

Ternary Hamming 3.9% 21% 12.7% 38%

The results in Table 1 demonstrate that methods that use matrix embedding
can be detected less reliably than the uncoded method. For example, for relative
payload α1 = 0.666 bpp applying a ternary Hamming code triples the false alarm
rate when compared to the uncoded binary ±1 embedding.

We close this section with some general considerations about the limitations
of the applicability of matrix embedding to steganography. It is not clear what
improvement in embedding efficiency can be expected from using q-ary codes
with q > 3 because in this case the act of embedding will have to start making
changes with amplitude more than 1. It is an open and little researched area
in steganography whether it is beneficial to decrease the number of embedding
changes by allowing embedding changes of higher amplitude. In other words,
it is not clear whether it is better to make more changes of low amplitude or
fewer changes with larger amplitude. The answer to this question likely depends
on other properties of the steganographic scheme, such as placement of embed-
ding changes, the type of embedding operation, and the cover object. Recent
studies [17] suggest that with increasing amplitude of embedding changes, the
detection of steganography becomes more reliable quite rapidly. Because the im-
provement in embedding efficiency becomes increasingly smaller with increasing
q (see Figure 1), it is not likely that incorporating q-ary codes for q > 3 would
improve steganographic security.

Also, not all steganographic algorithms can benefit from ternary encoding.
For example, in the F5 algorithm for JPEG images [3], the absolute value of
quantized DCT coefficients is always decreased when necessary to change the
LSB. If changes in both directions were allowed in F5, severe artifacts would be
introduced in the histogram. Thus, the embedding operation in F5 does not allow
applying ternary codes. Another example is Perturbed Quantization [23]. In this
case, the direction of embedding changes is determined by side-information pro-
vided by a high resolution version of the cover object to minimize the combined
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distortion due to quantization and embedding. The character of the embedding
operation here is also inherently binary.

5 Conclusions

Matrix embedding using linear codes (syndrome coding) is a general approach to
improving embedding efficiency of steganographic schemes. The covering radius
of the code corresponds to the maximal number of embedding changes needed
to embed any message. Steganographers, however, are more interested in the
average number of embedding changes rather than the worst case. In fact, the
concept of embedding efficiency—the average number of bits embedded per em-
bedding change—has been frequently used in steganography to compare and
evaluate performance of steganographic schemes.

In this paper, we showed that the embedding efficiency is determined by the
average distance to code rather than the covering radius. Thus, designers of
steganographic systems should minimize the average distance to code rather
than the covering radius. We demonstrated on an example that, within the class
of linear codes of fixed dimension and length, the code with the minimal average
distance to code does not have to have the smallest covering radius. However,
with increasing code length and fixed rate, we proved that the average distance
to code and the covering radius coincide.

In the second part of this paper, we demonstrated that embedding efficiency
can be dramatically improved using q-ary codes with q matched to the stegano-
graphic embedding operation. We also briefly studied specific coding methods
that can be used to realize embedding schemes in practice. In particular, we
compared the performance of binary and ternary Hamming codes. Addition-
ally, we proposed a simple one-dimensional ternary code suitable for improving
embedding efficiency when embedding large payloads.

An important open problem is how to find families of binary or ternary codes
with efficient coding procedures with embedding efficiency close to the theoreti-
cal bound. The recently proposed computationally efficient quantizers based on
sparse generator matrices [24] look especially relevant to this problem. Alterna-
tively, we plan to investigate random ternary linear codes and development of
computationally efficient algorithms similar to those reported in [5].
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A Proof of Theorem 4

Before we give a proof of the theorem, we formulate two auxiliary lemmas (H(x)
is the binary entropy function).

Lemma 1. For any 0 ≤ ρ < 1/2 there exists an integer sequence kn with

kn/n ≤ 1−H(ρ) + f(n),

where f(n) ∈ O(n−1 log n), such that the fraction of all binary [n, kn] codes that
are �ρn�-coverings tends to 1.

Proof. This lemma is proved in [14, page 325] (Theorem 12.3.5).

Lemma 2. For any H−1(α) < ρ < 1/2, the fraction of all binary [n, (1 − α)n]
codes with covering radius at most �ρn� tends to 1 as n → ∞.

Proof. Let us denote ρ� = H−1(α). Because 1−H(ρ) < 1−H(ρ�) and f(n) → 0
as n goes to infinity, there exists n0 such that for any n > n0,

1−H(ρ) + f(n) ≤ 1−H(ρ�) = 1− α.

Applying Lemma 1 to ρ, we obtain an integer sequence kn for which

kn/n ≤ 1−H(ρ) + f(n) ≤ 1−H(ρ�) = 1− α,
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for n > n0. Thus, kn ≤ (1 − α)n and the fraction of all [n, kn] codes whose
covering radius is at most �ρn� tends to one. However the same is true for at
least the same fraction of [n, (1 − α)n] codes as well. This is so because for any
two codes C1 ⊂ C2, C1 an [n, k1] code with covering radius R1 and C2 an [n, k2]
code with covering radius R2, we have R2 ≤ R1.

Proof of Theorem 4. Let ρ� = H−1(α) and let C be an [n, (1− α)n] code. From
(7) applied to C (note that h = αn), we have for its relative covering radius ρ,
ρ� = H−1(α) ≤ R/n = ρ. On the other hand, from Lemma 2 it follows that
ρ ≤ ρ� + ε for all n > n0, for a fraction of all [n, (1 − α)n] codes that goes to 1
as n → ∞.

The average distance to such codes is Ra = 1
2αn

∑ρn
l=0 lcl, where cl is the

number of coset leaders of weight l. Because ρa ≤ ρ, we need a lower bound on
ρa. Writing

Ra =
1

2αn

�(ρ�−ε)n�∑

l=0

lcl +
1

2αn

ρn∑

l=�(ρ�−ε)n�+1

lcl, (14)

we will find a lower bound on the second sum. To do so, we first derive an upper
bound on cl for l satisfying l < (ρ� − ε)n. We start with

cl ≤
(

n

l

)
≤ 2nH(l/n). (15)

The second inequality follows from Lemma 2.4.2 in [14] and holds for any l < n/2
for sufficiently large n (e.g., n > n1). Using the fact that H(x) is increasing on
[0, 1/2], from Taylor expansion of H(x) at ρ�,

2nH(l/n) ≤ 2nH(ρ�−ε) = 2n(α−εH′(ξ)), (16)

where ρ� − ε < ξ < ρ�. Finally, because H ′ is decreasing on the same interval,

cl ≤ 2αn2−nεH
′(ξ) < 2αn2−nεH

′(ρ�), (17)

for any l < (ρ� − ε)n.
We now obtain a lower bound for Ra. Writing l0 = �(ρ� − ε)n�, from (14)

Ra ≥
ρn∑

l=l0+1

lcl
2αn

≥ (ρ� − ε)n
ρn∑

l=l0+1

cl
2αn

= (ρ� − ε)n

(
1−

l0∑

l=0

cl
2αn

)

because
∑R

l=0 cl = 2αn. Using (17)

Ra ≥ (ρ� − ε)n
(
1− (ρ� − ε)n · 2−nεH′(ρ�)

)
= (ρ� − ε)n(1− δ(n)), (18)

where δ(n) → 0 exponentially fast with n → ∞. Combining this result with
ρa ≤ ρ ≤ ρ�+ ε, we obtain the following bounds for the average distance to code
in terms of the relative quantities (for n > max(n0, n1))

(ρ� − ε)(1− δ(n)) ≤ ρa ≤ ρ ≤ ρ� + ε, (19)

which proves the claim because ε > 0 was arbitrary and δ(n) → 0 for n → ∞.
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Abstract. We provide construction of steganographic schemes secure
against adaptive chosen stegotext attacks. Our constructions achieve em-
bedding rate equals to the Shannon entropy bound on steganographic
channel capacity. Further the covertext distribution can be given as ei-
ther an integrable probability function or as a random covertext sampler.
We also introduce steganographic codes that are of interests in construct-
ing other steganographic protocols such as steganographic secret sharing
or steganographic distributed computations.

Keywords: bandwidth, information hiding, steganography, adaptive
chosen stegotext attack.

1 Introduction

Definition. The Prisoner’s Problem introduced by G.J. Simmons [14] and gen-
eralized by R. Anderson [1] can be stated informally as follows: Two prisoners,
Alice and Bob, want to communicate to each other their secret escape plan under
the surveillance of a warden, Wendy. In order to pass Wendy’s censorship, Alice
and Bob have to keep their communications as innocent as possible so that they
will not be banned by Wendy.

Motivation. A fundamental question to steganography is what are the limits
of provably secure steganography? We answer this question constructively and
positively by constructing provably secure schemes with extremely low overhead.
We prove that our schemes are secure and essentially optimal. For covertext
distributions that support high bandwidth (e.g. thousands of bits per cover), our
schemes achieve this bandwidth (Section 5) and are several orders of magnitude
better than all previously known secure schemes.

Our schemes are very flexible in that they can work with either an integrable
probability function or a random covertext sampler. Their security can be chosen
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in the information theoretic setting or in the computational complexity theoretic
setting and are proved in the corresponding setting. In the information theoretic
setting, we show matching bounds for both cases of probability function and
covertext sampler. In the computational complexity theoretic setting, matching
bound is proved only for the most general case of random covertext sampler. Our
results show that a probability model of the covertext distribution is sufficient
for practical secure steganography, regardless of the security setting.

Discussion. We solve the steganographic problem in a novel way. At the heart of
our solution are uniquely decodable variable length coding schemes Γ , called P-
codes, with source alphabet Σ and destination alphabet C such that: if x ∈ Σ∞

is chosen uniformly randomly then Γ (x) ∈ C∞ distributes according to P , where
P is a given distribution over sequences of covertexts.

Note that such a coding scheme is quite related to homophonic coding schemes
[7], which are uniquely decodable variable length coding scheme Γ ′ with source
alphabet C and destination alphabet Σ such that: if c ∈ C∗ is chosen randomly
according to distribution P then Γ ′(c) ∈ Σ∗ is a sequence of independent and
uniformly random bits.

Of course, one can hope that such a homophonic coding scheme Γ ′ will give
rise to a uniquely decodable P-code Γ . However, this is not necessarily true
because Γ ′ can map one-to-many, as in the case of [7]. Therefore by exchang-
ing the encoding and decoding operations in Γ ′, we will obtain a non-uniquely
decodable P-coding scheme Γ ′′, which is not what we need.

To construct these P-codes, we generalize an idea of Ross Anderson [1] where
one can use a perfect compression scheme on the covertexts to obtain a perfectly
secure steganographic scheme. Nevertheless, in practice one can never obtain
a perfect encryption scheme, so we have to build our P-coding schemes based
on the idea of arithmetic coding. The result is a coding scheme that has near
optimal information rate, no decoding error and provable security.

Related work. Previously, the Prisoner’s Problem was considered in the secret
key setting by: Cachin [3], Mittelholzer [11], Moulin and Sullivan [12], Zollner
et.al. [16] in the unconditional security model; and Katzenbeisser and Petitco-
las [10], Hopper et.al. [8], Reyzin and Russell [13] in the conditional security
model. In this article, we consider the problem in the public key setting. In this
setting, Craver [4] and Anderson[1] proposed several general directions to solve
the problem. Katzenbeisser and Petitcolas [10] gave a formal model. Hopper and
Ahn [9] constructed proven secure schemes, and then modified it in [15] to re-
move the dependence on unbiased functions [3]. Michael Backes and Christian
Cachin [2] have been able to improve efficiency of Hopper and Ahn’s scheme
by some factor. Nevertheless all the approaches outlined above have very high
overhead and extremely low bit rate [3,8,9,13,2]. In some cases, the bit rate is
less than a hundredth of a bit per cover.

Organization. The paper is organized as follows: we describe the model in
Section 2, our new primitive P-codes in Section 3, show constructions of public
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key steganographic schemes and their security proofs in Section 4, and give a
rate calculation for our schemes in Section 5. We conclude in Section 6.

2 Definitions

2.1 Channel

Let C be a finite message space. A channel P is a probability distribution over
the space C∞ of infinite message sequences {(c1, c2, . . . ) | ci ∈ C, i ∈ N}. The
communication channel P may be stateful. This means that: for all n > 0,
cn might depend probabilistically on c1, . . . , cn−1. When individual messages
are used to embed hiddentexts, they are called covertexts. Therefore C is also
called the covertext space. Denote C∗ the space of all finite message sequences
{(c1, . . . , cl) | l ∈ N, ci ∈ C, 1 ≤ i ≤ l}. If h ∈ C∗ is a prefix of s ∈ C∞, that
is si = hi for all 1 ≤ i < �(h), then we write h ⊂ s. The expression s ∈P C∞

means that s is chosen randomly from C∞ according to distribution P . Denote
P(c) = Pr[c ⊂ s | s ∈P C∞] for all c ∈ C∗.

Sampler. A sampler S for the channel P is a sampling oracle such that upon a
query h ∈ C∗, S randomly outputs a message ci ∈ C according to the marginal
probability distribution Ph:

Ph(ci) = Pr[(h||ci) ⊂ s | h ⊂ s ∧ s∈PC∞],

where h||ci is the concatenation of h and ci. In general, we define Ph(c) =
Pr[(h||c) ⊂ s | h ⊂ s ∧ s∈PC∞] for all h ∈ C∗ and c ∈ C∗ ∪ C∞. The
expression s = S(h) means s is the result of querying S(h). Since S responses
randomly, each individual query may have a different result. Finally, x ∈R X
means x is chosen uniformly randomly from the set X . Finite message sequences
can always be included in P by appending copies of a special null symbol to get
infinite sequences.

Assumption. From now on, we assume that P is a channel over message space
C, and that a corresponding sampler S is given. The channel P represents the
probability distribution of an innocent communication channel; the sampler S
generates covertexts according to P . Our objective is to construct steganographic
systems whose stegotext distributions are indistinguishable from P . We also
assume that the query h given to sampler S is always the history of messages
communicated between Alice and Bob.

2.2 Steganographic Systems

A public key steganographic system is specified by a pair of key spaces Ke×Kd,
and three randomized algorithms, Setup, Embed, Extract, that works as follows:
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– Setup: takes a security parameter k as input, and returns system parameters
params and a pair of keys (e, d) ∈ Ke×Kd. Among other things, the system
parameters params include a short description of a finite hiddentext space
M.

– Embed: takes as input a public key e ∈ Ke, a hiddentext m ∈M, and returns
a stegotext s ∈ C. The algorithm may query the sampler S.

– Extract: takes as input a secret key d ∈ Kd, a stegotext s ∈ C, and returns
either the symbol ⊥ on failure, or a hiddentext m ∈ M.

As usual, we require that Extract(d, ·) reverses the action of Embed(e, ·).

2.3 Adaptive Chosen Stegotext Attacks

The task of warden Wendy is to distinguish two cases: whether the commu-
nications between the prisoners are innocent, or contain hiddentexts. In order
to detect hiddentexts, Wendy is allowed to mount chosen stegotext attacks,
which are plausible in practice when Wendy has oracle access to the extrac-
tion machine and would like to detect who uses this machine to communicate
steganographically.

Chosen stegotext attacks on steganographic systems are parallel to chosen
ciphertext attacks on encryption systems. The only difference is in the purposes
of the two attacks. In the first attack, the objective is to detect the existence of
hidden messages or hiddentexts. In the second attack, the objective is to discover
partial information about the content of the secret messages. Our definition of
chosen stegotext security reflects this difference:

– In an indistinguishability under (adaptive) chosen ciphertext attack (IND-
CCA), the challenger randomly chooses one of the two plaintexts submitted
by the adversary and encrypts it. An encryption scheme is secure against
this attack if an adversary cannot tell which plaintext was encrypted.

– In a hiding under (adaptive) chosen stegotext attack (HID-CSA), the chal-
lenger randomly flips a coin, and depending on the result decides to en-
crypt the submitted hiddentext or to randomly sample a cover message. A
steganographic scheme is secure against this attack if an adversary cannot
tell stegotexts from covertexts.

While the hiding objective of steganographic systems is substantially different
from the semantic security objective of encryption systems, we shall show later
that HID-CSA security implies IND-CCA.

Formally, we say that a steganographic system is secure against an adaptive
chosen stegotext attack if no polynomial time adversary W has non-negligible
advantages against the challenger in the following game:

– Setup: The challenger takes a security parameter k and runs Setup algorithm.
It gives the resulting system parameters params and public key e to the
adversary, and keeps the secret key d to itself.
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– Phase 1: The adversary issues j queries c1, . . . , cj where each query ci is a
covertext in C. The challenger responds to each query ci by running Extract
algorithm with input secret key d and message ci, then sending the corre-
sponding result of Extract(d, ci) back to the adversary. The queries may be
chosen adaptively by the adversary.

– Challenge: The adversary stops Phase 1 when it desires, and sends a hid-
dentext m ∈ M to the challenger. The challenger then picks a random bit
b ∈ {0, 1} and does the following:
• If b = 0, the challenger queries S for a covertext s, and sends s = S(h)

back to the adversary.
• If b = 1, the challenger runs the Embed algorithm on public key e and

plaintext m, and sends the resulting stegotext s = Embed(e, m) back to
the adversary.

– Phase 2: The adversary makes additional queries cj+1, . . . , cq where each
query ci �= c is a covertext in C. The challenger responds as in Phase 1.

– Guess: The adversary outputs a guess b′ ∈ {0, 1}. The adversary wins the
game if b′ = b.

Such an adversary W is called an HID-CSA attacker. We define the adversary
W ’s advantage in attacking the system as |Pr[b′ = b]− 1

2 | where the probability
is over the random coin tosses of both the challenger and the adversary.

We remind the reader that a standard IND-CCA attacker would play a dif-
ferent game, where at the challenge step:

– Challenge: The adversary sends a pair of plaintexts m0, m1 ∈M upon which
it wishes to be challenged to the challenger. The challenger then picks a
random bit b ∈ {0, 1}, runs the encryption algorithm on public key e and
plaintext mb, and sends the resulting ciphertext c = Encrypt(e, mb) back to
the adversary.

We note that a HID-CHA game is a restriction of the HID-CSA game where
the adversary makes q = 0 queries.

As in IND-CCA game against an encryption system, we also define an IND-
CCA game against a steganographic system. The definition is exactly the same,
except with necessary changes of names: the Encrypt and Decrypt algorithms
are replaced by the Embed and Extract algorithms; and the terms plaintext
and ciphertext are replaced by the terms hiddentext and stegotext, respectively.
Similarly, a steganographic system is called IND-CCA secure if every polynomial
time adversary W has negligible advantages in an IND-CCA game against the
steganographic system.

3 Construction of P-Codes

A uniquely decodable coding scheme Γ is a pair consisting of a probabilistic
encoding algorithm Γe and a deterministic decoding algorithm Γd such that
∀m ∈ dom(Γe) : Γd(Γe(m)) = m. In this article, we are interested in coding
schemes whose source alphabet is binary, Σ = {0, 1}.
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Definition 1. Let P be a channel with message space C. A P-code, or a P-
coding scheme, is a uniquely decodable coding scheme Γ whose encoding function
Γe : Σ∗ → C∗ satisfies:

ε(n) =
∑

c∈Γe(Σn)

∣∣Pr [Γe(x) = c | x ∈R Σn]− P(c)
∣∣

is a negligible function in n. In other words, the distribution of Γe(x) is sta-
tistically indistinguishable from P when x is chosen uniformly randomly. The
function

e(n) =
1
n

∑

c∈Γe(Σn)

P(c)HP(c)

is called the expansion rate of the encoding, where HP(c) = − logP(c).

In this definition, e(n) is 1
n the Shannon entropy of covertexts used in encoding of

binary strings of length n. Ideally, we would have used Pr [Γe(x) = c | x ∈R Σn]
instead of P(c). However, the two distributions are statistically indistinguishable
so this makes no real difference. For ideal encoding scheme, e(n) should be 1.
We will now construct encoding scheme that has e(n) approaches 1 as n grows.

Let P be a channel with sampler S. We assume here that Ph is polynomially
sampleable1 This is equivalent to saying that S is an efficient algorithm that
given a sequence of covertexts h = (c1, . . . , cn) and a uniform random string
r ∈R {0, 1}Rn, S outputs a covertext cn+1 = S(h, r) ∈ C accordingly to proba-
bility distribution Ph. Nevertheless, we assume less that the output of S to be
statistically close to Ph. In the case of computational security, we would relax
this condition to only require that the output distribution of S is computation-
ally indistinguishable from Ph.

We use algorithm S to construct a P-coding scheme Γ . For x = (x1, . . . , xn) ∈
Σn, denote x the non-negative integer number whose binary representation is
x. For 0 ≤ a ≤ 2n, denote a = (a1, . . . , an) the binary representation of integer
number a. In the following, let t be an integer parameter, h0 is the history
of all previous communicated messages between Alice and Bob. Further let us
assume that the distribution Ph has minimum entropy bounded from below by
a constant ξ > 0. Let G be a cryptographically secure pseudo-random generator.
Let G[k] be the next k bits extracted from G. See Figure 1 and Figure 2 for
illustrations of the encoding and decoding operations.

Γ1-Encode. Input: z ∈R {0, 1}Rn, x = (x1, . . . , xn) ∈ Σn.
Output: c = (c1, . . . , cl) ∈ C∗.

1. let a = 0, b = 2n+k, h = ε.
2. let z be the seed to initialize G.
3. let f ← G[k] and xf = x‖f .

1 Theoretically, allowing Ph to be non-polynomially sampleable would allow hard prob-
lems to be solvable.
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Fig. 1. Encode algorithm

4. while $a/2k% < �b/2k� do
(a) let vi ← S(h0‖h, G) for 0 ≤ i < t.
(b) Order the vi’s in some fixed increasing order:

v0 = · · · = vi1−1 < vi1 = · · · = vi2−1 < · · · < vim−1 = · · · = vt−1,

where 0 = i0 < i1 < · · · < im = t.
(c) let 0 ≤ j ≤ m− 1 be the unique j such that

ij ≤ �(xf − a)t/(b− a)� < ij+1.

(d) let a′ = a + (b− a)ij/t, b′ = a + (b− a)ij+1/t.
(e) let (a, b) = (a′, b′).
(f) let h = h‖vij .

5. Output c = h.

Everyone who is familiar with information theory will immediately realize that
the above encoding resembles to the arithmetic decoding of number xf . Indeed,
the sequence c is a proper prefix of decoded xf .

Each time the sender outputs a covertext vij , the receiver will obtain some
information about the message x, i.e. the receiver is able to narrow the range
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Fig. 2. Decode algorithm

[a, b] containing xf . The sender stops sending more covertexts until the receiver
can completely determine the original value x, i.e. when the range [a, b] is less
than 2k. Thus the decoding operation for the P-coding scheme Γ follows.

Γ1-Decode. Input: z ∈R {0, 1}Rn, c = (c1, . . . , cl) ∈ C∗.
Output: x = (x1, . . . , xn) ∈ Σn.

1. let a = 0, b = 2n+k, h = ε.
2. let z be the seed to initialize G.
3. let f ← G[k].
4. for step from 1 to l do

(a) let vi ← S(h0‖h, G) for 0 ≤ i ≤ t− 1.
(b) Order the vi’s in some fixed increasing order:

v0 = · · · = vi1−1 < vi1 = · · · = vi2−1 < · · · < vim−1 = · · · = vt−1,

where 0 = i0 < i1 < · · · < im = t.
(c) let 0 ≤ j ≤ m− 1 be the unique j such that vij = cstep.
(d) let a′ = a + (b− a)ij/t, b′ = a + (b− a)ij+1/t.
(e) let (a, b) = (a′, b′).
(f) let h = h|vij .
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5. if f ≥ (a mod 2k) then y = �a/2k� else y = �b/2k�.
6. Output x = y.

If x is chosen uniformly randomly from Σn then the correctness of our P-coding
scheme Γ is established through the following theorem.

Theorem 1. Γ1 described above is a P-code.

Proof. First, the values of i0, . . . , it, j, a
′, b′, h, a, b, f in the encoding are the same

as in the decoding. Further, due to our choice of j, x ∈ [a, b) is true not only
before the iterations, but also after each iteration. Therefore at the end of the
encoding, we obtain x = �a2−k� or x = �b2−k�. Note that the range [a, b) only
determines xf up to two possible consecutive values of x. Together with f , we
can uniquely determine x since only one value xf falls into the range. Therefore
Γ1 is uniquely decodable. Next, we will prove that it is also a P-code.

Indeed, let us assume temporarily that a, b were real numbers. Note that the
covertexts c∗0, . . . , c

∗
t−1 are generated independently of x, so i0, . . . , it are also

independent of x. By simple induction we can see that after each iteration, the
conditional probability distribution of xf given the history h = c1‖ . . . ‖cstep, is
uniformly random over integers in the range [a, b). However, in our algorithms
the numbers a, b are represented as integers using rounding. So the conditional
distribution of x at the end of each iteration except the last one is not uniformly
random, but anyway at most 4/(b − a) ≤ 22−k from uniformly random due to
rounding, and due to the fact that b − a ≥ 2k. Since 22−k is negligible, and
our encoding operations are polynomial time, they can not distinguish a truly
uniformly random xf from a statistically-negligible different one. So for our
analysis, we can safely assume that xf is indeed uniformly random in the range
[a, b) at the beginning of each iteration, including the last one.

Then at the beginning of each iteration step, conditioned on the previous
history h = c0‖ . . . ‖cstep−1, u = �(x−a)t/(b−a)� is a uniformly random variable
on the range [0, t−1], thus u is probabilistically independent of c∗0, . . . , c∗t−1. Since
c∗0, . . . , c

∗
t−1 are identically distributed, cu must also be distributed identically.

Further, by definition, ij ≤ k < ij+1, so cu = c∗ij
= cstep. Hence cstep distributes

identically as each of c∗0, . . . , c∗t−1 does. By definition of S, this distribution is
Ph0‖h, i.e. c distributes accordingly to Ph0 . Since x is not truly uniformly random
but rather statistically indistinguishable from uniformly random, we conclude
that the output c of the encoding operation is statistically indistinguishable
from Ph0 . Therefore, by definition, our coding scheme is indeed a P-code. ��

Our coding scheme has a small overhead rate of 1
n$

k
log2

1
ρ

% = O( k
n ). However,

this overhead goes to 0 when n > k1+ε as n → ∞ and ε > 0. Therefore our
encoding is essentially optimal (see Section 5).

Note that in the case that m = 0, the encoding/decoding operations still work
correctly, i.e. there are no errors. In such case, the range [a, b) does not change:
the encoding will output c∗0 without actually embedding any hidden information,
while the decoding operation will read c∗0 without actually extracting any hidden
information. This happens more often when the entropy of the cover distribution
is very near zero. However, from now on we will assume that our distribution Ph
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will have minimal entropy bounded from below by a fixed constant 1 > ρ > 0,
i.e. ∀h ∈ C∗, c ∈ C : Ph(c) < ρ. Then with overwhelming probability of at least
1− |C|ρt, we will have m > 0.

4 Construction of Public Key Steganographic Systems

Our purpose in this section is to construct steganographic systems based on the
P-coding scheme Γ . Using the notations from Sections 2 and 3, our construction
is the following. Here, h denotes the history of previously communicated mes-
sages, h0 refers to the value of h at the start of embed and extract operations.

4.1 Public Key Steganographic Systems

We use the idea of Diffie-Hellman key exchange to obtain an efficient public
key steganographic scheme. Denote HP(c) = − log2(P(c)) the entropy of c ∈ C∗

according to the covertext distribution P . We assume that there exists a constant
0 < ρ < 1 such that:

∀h ∈ C∗, ∀c ∈ C : Ph(c) < ρ.

In other words, Ph has its minimum entropy bounded from below by a positive
constant (− log2(ρ)). Furthermore, let D = (Setup,Sign,Verify) be a secure
digital signature scheme.

S1-Setup. Call D-Setup to generate a key pair (ksig , kver). The system param-
eter is a generator g of a cyclic group <g>, whose decisional Diffie-Hellman
problem is hard and whose order is a prime number p. Let (g, ga, kver) be the
public key of sender Alice, and (g, gb, k′

ver) be the public key of receiver Bob. Let
F (X, Y ) be a public cryptographically secure family of pseudo-random functions,
indexed by variable X ∈<g>. Let k be the security parameter, n = O(poly(k))
and U be a true random generator. The embedding and extracting operations
are as follows (also refer to Figure 3.)

S1-Embed. Input: m ∈ {0, 1}n, a ∈ Zp, gb ∈ Zp.
Output: c ∈ C∗.

1. Let h0 = ε.
2. for i from 1 to $ k

log2
1
ρ

% do h0 ← h0‖S(h0, U).

3. let r‖z = F ((gb)a, h0).
4. let m′ = m‖Sign(ksig , m).
5. let c′ = Γe(z, r ⊕m′).
6. Output c = h0‖c′.
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Fig. 3. Embed algorithm

S1-Extract. Input: c ∈ C∗, b ∈ Zp, ga ∈ Zp. Output: m ∈ {0, 1}n.

1. Let c = h0‖c′ such that |h0| = $ k
log2

1
ρ

%.
2. let r‖z = F ((ga)b, h0).
3. let m′ = Γd(z, c′)⊕ r.
4. if c′ �= Γe(z, r ⊕m′) then return ⊥.
5. Parse m′ = m‖Sign(ksig , m).
6. if Verify(kver , m

′) �= success then return ⊥.
7. Output m.

Theorem 2. The steganographic scheme S1 is CHA-secure.

Proof. By definition of the family F and the hardness of the Diffie-Hellman
problem over < g >, we obtain that gab, and therefore r, is computationally
indistinguishable from uniformly random. Thus, by definition of our P-code, c
is computationally indistinguishable from P .

Further, since HP(h0) ≥ k, with overwhelming probability h0 is different each
time we embed. Therefore even when the embedding oracle is queried repeatedly,
r still appears to the attacker as independently and uniformly random. Therefore
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Fig. 4. Extract algorithm

in the attacker’s view the ciphertexts obtained by him in the warm up step are
independent of of the challenged ciphertext, i.e. they are useless for the attack.
That means our scheme is CHA-secure.

Theorem 3. The steganographic scheme S1 is CSA-secure.

Proof. Since signature scheme D is unforgeable and that a pair of plaintext
m and history h0 uniquely determines the stegotext, an active adversary cannot
construct a different valid stegotext sequence with the same m and h0. Therefore
with overwhelming probability, all queries made to the extraction oracle will
return ⊥ at step 4 of the extraction algorithm. Therefore an active adversary,
having access to decryption oracle of another sender, obtains no more advantage
than a passive one does. Since S1 is already CHA-secure, we obtain that our
scheme is CSA-secure.

This shows that with overwhelming probability, a CSA-attack against S1 can
be reduced to a CHA-attack against S1 by returning ⊥ to all decryption queries
(the receiver has the public key of the sender to check for stegotext validity.)

Expansion Rate. The expansion rate of this scheme equals to the rate of the
underlying P-code plus the overhead in sending h0 and a signature. Nevertheless,
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the overhead of h0 and the signature, which is O($ k
log2( 1

ρ )
%), only depends on the

security parameter k. Thus it diminishes when we choose n large enough so that
k = o(n), say n = k log(k). Therefore the expansion rate of our steganographic
system is essentially that of the P-code.

4.2 Private Key Steganographic Systems

Let G be a cryptographically secure pseudo-random generator, and k be a shared
secret key. In the setup step, k is given as seed to G. The state of G is kept
between calls to G. This state is usually not much more than the space for a
counter, which is quite small.

S2-Embed. Input: m ∈ Σn.
Output: c ∈ C∗.

1. let r‖z = G(k).
2. let m′ = m‖Sign(ksig , m).
3. Output c = Γe(z, r ⊕m).

S2-Extract. Input: c ∈ C∗.
Output: m ∈ Σn.

1. let r‖z = G(k).
2. let m′ = Γe(z, r ⊕m).
3. Parse m′ = m‖Sign(ksig , m).
4. if Verify(kver , m

′) �= success then return ⊥.
5. Output m.

Theorem 4. The steganographic scheme S2 is CHA-secure.

Proof. The proof is straight-forward: z and r ⊕m is computationally indistin-
guishable from uniformly random, so by the property of Γe, the output covertext
sequence c = Γe(z, r⊕m) is computationally indistinguishable from P . Further,
each time the embedding operation is performed, the pseudo-random generator
G changes its internal state, so its output z, r are independent of each others in
the attacker’s view. Consequently, the values of z, r⊕m, and so do the values of
c = Γe(z, r⊕m), are probabilistically independent of each others to the attacker.
This means that the ciphertexts obtained by the attacker in the warm up step
do not help him in the guessing step in anyway. Therefore our scheme is secure
against chosen hiddentexts attack.

Proposition 1. The steganographic scheme S2 is CSA-secure.

Expansion Rate. It is clear that the expansion rate of this scheme is the same
as the expansion rate of the P-code. Additionally, both sides must maintain
the status of the generator G. However, this status is very small. Note that
our scheme S2 is a somewhat more efficient than S1 because it does not have
to send the preamble h0. In the next section, we will see that they are both
asymptotically optimal.
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5 Essentially Optimal Rates

In this section we consider applications of our schemes in two cases: distribu-
tion P is given explicitly by a cumulative distribution function F , and is given
implicitly by a black-box sampler S. In both cases, we show that the achieved
information rate is essentially optimal.

5.1 Cumulative Distribution Function

We show here that in case we have additionally a cumulative distribution func-
tion F of the given distribution, then the construction can be much more efficient.
First, let us define what a cumulative distribution function is, and then how to
use this additional information to construct P-coding schemes.

Let the message space C be ordered in some strict total order ′<′ so that
ξ0 < ξ1 < . . . is a sorted sequence of all covertexts. A cumulative distribution
function (CDF) for the channel P is a family of functions Fh : C → [0, 1] such
that Fh(ξ) =

∑
ξ′<ξ Ph(ξ′) for all h ∈ C∗ and ξ ∈ C. We modify our P-code

slightly so that it can use the additional information available effectively.

Γ2-Encode. Input: z ∈ {0, 1}k, x = (x1, . . . , xn) ∈ Σn.
Output: c = (c1, . . . , cl) ∈ C∗.

1. let a = 0, b = 2n+k, h = ε.
2. while $a/2k% < �b/2k� do

(a) define ij = tFh0‖h(ξj) for all j ≥ 0.
(b) let xz = x||z.
(c) let j be the unique integer such that

ij ≤ �(xz − a)t/(b − a)� < ij+1.

(d) let a′ = a + (b− a)ij/t, b′ = a + (b− a)ij+1/t.
(e) let (a, b) = (a′, b′).
(f) let h = h|ξij .

3. Output c = h.

The only difference here is that instead of using S to generate vi (0 ≤ i ≤ t−1)
and then deduce ij (0 ≤ j ≤ m − 1), we use ξ0, ξ1, · · · ∈ C directly and let
ij = tFh0‖h(ξj) for j = 0, 1, . . . . Note that the sorted sequence ξ0, ξ1, . . . of all
covertexts can either be given explicitly, or be given by a function ξ : N → C.
In the either case, the determination of j in step 2(b) can be done by binary
searching, thus allows large covertext space C to be used.

Γ2-Decode. Input: z ∈ {0, 1}k, c = (c1, . . . , cl) ∈ C∗.
Output: x = (x1, . . . , xn) ∈ Σn.

1. let a = 0, b = 2n+k, h = ε.
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2. for i from 1 to |c| do
(a) let ij = tFh0‖h(ξj).
(b) let ij be the unique integer such that ξij = ci.
(c) let a′ = a + (b− a)ij/t, b′ = a + (b− a)ij+1/t.
(d) let (a, b) = (a′, b′).
(e) let h = h|ξij .

3. if z ≥ (a mod 2k) then y = �a/2k� else y = �b/2k�.
4. Output x = y.

Theorem 5. The coding scheme described above is a P-code.

Proof. The proof is the same, word by word, as in proof of Theorem 1, with only
necessary changes of vi and ij as noted above.

Theorem 6. The expansion rate e(n) is bounded from above by 1 + 1
n log2(|C|).

Proof. At each iteration i, the range [a, b] is reduced in size by a factor of (b′ −
a′)/(b − a) = (ij+1 − ij)/t = Fh(ξj+1) − Fh(ξj) = Ph(ξij ) = Ph(ci). Further,
before the last iteration b− a ≥ 2k, so we get:

P(c1‖ . . . ‖cl−1) =
l−1∏

i=1

Pc1‖...‖ci−1(ci) ≥
2k

2n+k
= 2−n.

This means HP(c1‖ . . . ‖cl−1) ≤ n. Summing over all x ∈ Σn we get:
∑

c∈Γe(Σn)

P(c)HP (c) ≤ n + log2(|C|).

This shows that the expansion rate e(n) is bounded above by:

e(n) =
1
n

∑

c∈Γe(Σn)

P(c)HP (c) ≤ 1 +
log2(|C|)

n
.

Since log2(|C|) is a constant, we obtain that e(n)→ 1 when n →∞.

5.2 General Case

In this case, we know nothing about the distribution Ph, except a given black
box sampler S. We give a proof showing that our scheme is optimal.

Theorem 7. The P-code defined in Section 3 is essentially optimal.

Proof. First, note that any steganographic scheme defined over channel P is
indeed a P-coding scheme. Second, the expansion rate of our steganographic
schemes is essentially the expansion rate of the underlying P-code. Hence it is
enough to show that our P-code Γ1 is optimal.

Let Γ ′ be any P-coding scheme that works generically like Γ , i.e. Γ ′ works on
any black box S whose output has minimal entropy bounded from below (e.g. by
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ξ). Let t be the number of oracle calls to S by Γ ′, and let c∗ = (c∗0, . . . , c
∗
t−1) be

the corresponding results. Then Γ ′ can only return one of the covers c∗0, . . . , c
∗
t−1

as its next stegotext to be sent to the receiver.
Indeed, let us assume otherwise that this is not the case. Consider a sampler

S′ that output covertexts including a long random string signed with a secure
digital signature. Apply Γ ′ to S′. If Γ ′ outputs anything that is not in the list
of covers returned by S′, the output of Γ ′ will not contain a valid signature.
Such invalid covers is immediately detectable by a polynomial time signature
verification algorithm. Therefore the output of Γ ′ is distinguishable from the
output of S′. This contradicts with our assumption that Γ ′ is a P-code. Since
Γ ′ cannot tell whether the output of S contains some sort of a digital signature
or not, we conclude that Γ ′ must always output one of the c∗i ’s as its output.

We consider two cases. First if the entropy of Ph is at least (1 + ε) log2(t) for
some fixed constant ε > 0, then from the method of types (cf. [3,5,6]), we know
that the c∗i ’s are distinct with overwhelming probability. Therefore Γ1 achieves
rate of log2(t) bits per symbol. However, we know from previous paragraph that
Γ ′ has its rate bounded by log2(t). Hence in this case, Γ ′ does not do better
than Γ1.

In the second case, the entropy of Ph is at most log2(t). In this case, method
of types(cf. [3,5,6]) tell us that for any fixed constant δ > 0 and large enough t,
with overwhelming probability: the sample entropy calculated from the frequency
vector of the sample (c∗0, . . . , c∗t−1) is at least (1 − δ)H(Ph). In this case our
encoding Γ1 achieves at least (1 − δ)H(Ph) bits per symbol. Moreover the rate
of the encoding Γ ′ must be bounded from above by (1+ δ)H(Ph), otherwise the
output of Γ ′ will be distinguishable from Ph with overwhelming probability by
simply estimating the entropies of the two distributions [5,6].

We conclude that for all δ > 0, our encoding Γ1’s rate is within (1 − δ)
fraction of the best possible rate minus some negligible factor, i.e. Γ1 is essentially
optimal. �

Note that our proof works in computational security setting but the same ar-
gument would also work in information theoretic setting by replacing digital
signature with message authentication code.

6 Conclusions

We have shown in this article:

– Introduction and construction of P-codes, and their applications.
– Efficient general construction of public key steganographic schemes secure

against chosen hiddentext attacks using public key exchange assuming no
special conditions.

– Efficient general construction of private key steganographic schemes secure
against chosen hiddentext attacks assuming the existence of a pseudo-
random generator.
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Our constructions are essentially optimal in many cases, and they are general
constructions, producing no errors in extraction. Nevertheless, our solutions do
not come for free: they require polynomially sampleable cover distributions. The
question of efficient steganography on cover distributions without such a proba-
bility model is left open.
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Abstract. It is well known that all information hiding methods that
modify the least significant bits introduce distortions into the cover ob-
jects. Those distortions have been utilized by steganalysis algorithms to
detect that the objects had been modified. It has been proposed that
only coefficients whose modification does not introduce large distortions
should be used for embedding. In this paper we propose an efficient
algorithm for information hiding in the LSBs of JPEG coefficients. Our
algorithm uses modified matrix encoding to choose the coefficients whose
modifications introduce minimal embedding distortion. We derive the ex-
pected value of the embedding distortion as a function of the message
length and the probability distribution of the JPEG quantization errors
of cover images. Our experiments show close agreement between the the-
oretical prediction and the actual embedding distortion. Our algorithm
can be used for both steganography and fragile watermarking as well as
in other applications in which it is necessary to keep the distortion as
low as possible.

1 Introduction

The goal of digital steganography is to modify a digital object (cover) to encode
and conceal a sequence of bits (message) to facilitate covert communication.
The goal of steganalysis is to detect (and possibly prevent) such communication.
Often, the cover media correspond to graphics files. Graphics files are the typical
choice because of their ubiquitous presence in digital society, but any medium
that contains a substantial amount of perceptually insignificant data can be
used.

Most steganographic methods operate in two steps. First, a cover object is
analyzed and the perceptually insignificant bits are identified. It is assumed that
changing these bits will not make observable changes to the cover. Second, the
identified bits are replaced by the message bits to create an altered cover object.
In this paper, cover object is an image in either bitmap or compressed JPEG [13]
formats. The perceptually insignificant bits usually correspond to the LSBs in
the image representation: in bitmap images these bits correspond to a subset
of the LSBs of the image pixels or the LSBs of the color palette entries, in
JPEG images they correspond to a subset of LSBs of the JPEG coefficients. Our
work applies to both image representations, but our empirical studies have only

J. Camenisch et al. (Eds.): IH 2006, LNCS 4437, pp. 314–327, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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used the JPEG coefficients. Although, the LSBs of JPEG coefficients are usually
considered perceptually insignificant modifying some of these bits can produce
significant (but imperceptible) distortions of the original image. In this paper we
propose an algorithm that embeds a message into the LSBs of a JPEG image.
Our algorithm uses modified matrix-coding technique to minimize the distortion
of the stego image relative to the clean (non-stego) image.

The paper is organized as follows. In Sec. 2 we briefly review the relevant
prior work in the field. In Sec. 3 we provide technical background for our work
including the basic facts about JPEG compression and the matrix coding. In
Sec. 4 we describe our method and sketch the theoretical analysis of our method.
In Sec. 5 we present some experimental results. Finally, in Sec. 6 we present the
concluding remarks.

2 Literature Survey

Digital steganography is a relatively new research field [12]. Detailed survey of
early algorithms and software for steganography and steganalysis can be found
in [12,11,19].

The first quantitative technique for steganalysis was designed by Westfeld
and Pfitzmann [17]. They exploited the fact that many steganographic tech-
niques change the frequencies of pairs of values (pairs of colors, gray levels,
or JPEG coefficients) during a message embedding process. Their method was
shown to be effective in detecting messages hidden by several steganographic
techniques. This research prompted interest in both improving statistical detec-
tion techniques [5,8] as well as building new steganographic methods that would
be difficult to detect by statistical methods [15,18,16,9].

Various attempts have been made to make steganographic content difficult to
detect including reducing their capacity or payload and spreading the message
across the whole carrier. Anderson and Petitcolas [1] suggested using the parity
of bit groups to encode zeroes and ones; large groups of pixels could be used to
encode a single bit, the bits that need to be changed could be chosen in a way
that would make detection hard.

Provos [15] designed a steganographic method OutGuess that spreads a mes-
sage over a JPEG file; the unused coefficients are adjusted to make the coefficient
histogram of the modified file as similar as possible to the histogram of the orig-
inal image. Fridrich [6] recently developed method for successful breaking of this
algorithm. The method exploits the fact that blockiness is strongly correlated
with the embedding rate. Outguess increases the number of changed bits, which
increases blockiness between DCT blocks.

Fridrich et al. [5,7,8] reported several techniques for detecting steganographic
content in images. If a message is inserted into the LSBs of an image, some fea-
tures of the image change in a manner that depends on the message size. A pos-
sible shortcoming of these methods is that they depend on empirical observations
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about the feature values of clean—i.e., unmodified—images. However, the au-
thors have demonstrated very promising results on their data sets.

Westfeld [18] designed a steganographic algorithm F5 that uses matrix cod-
ing to minimize the modifications of the LSBs. His method first discovers the
number of available bits and then spreads the message bits over the whole file.
To reduce detectability F5 decrements the coefficient value to change bits un-
like previous algorithms (e.g. OutGuess [15]) that use bit complement to change
bits. Fridrich [5] developed a method that successfully breaks this algorithm.
The method exploits the fact that modification of the JPEG coefficients by F5
increases the number of zero-valued coefficients. Sallee [16] developed a hid-
ing method that preserves distributions of individual JPEG coefficients. On the
sender’s side the method estimates the distributions of the AC coefficients in
JPEG images from the distribution of the most significant bits (MSBs) of the
coefficients. The estimated distribution is used by an entropy decoder to encode
compressed and encrypted messages into the LSBs of the coefficients. On the re-
ceiver’s side the same distribution is estimated from the MSBs of the coefficients
and the message is extracted from the LSBs of the coefficients by an entropy
encoder. As Böhme and Westfeld [2] observed the fact that the distribution of
the JPEG coefficients closely matches the distribution of the MSBs can be used
to detect messages hidden by this method.

Fridrich et al. [9] have proposed an information hiding method that guar-
antees low distortion rates of stego objects. The method makes use of the
JPEG quantization errors by computing all rounding errors of the JPEG co-
efficients. Note that for some coefficients the rounding error is 0.5 ± ε. These
coefficients can be rounded either down or up without a noticeable difference
and they are considered changeable. The algorithm uses a random key to gen-
erate a binary matrix D that is known to both the sender and the receiver.
To embed a q-bit messages the sender solves a system of q linear equations in
GF(2).

There are two ways to guarantee that a solution exists. First, the embedding
rates can be very low. Second, the authors proposed to use double quantiza-
tion to guarantee that there is a sufficient number of changeable coefficients.
Recently, Kim et al. [20] have described a parity-coding based hiding algorithm
that minimizes distortion error by utilizing the rounding errors in JPEG quanti-
zation. Given a block of JPEG coefficients the algorithm modifies the coefficients
that introduce the smallest additional distortion relative to the rounding step
in JPEG quantization. The theoretical analysis accurately predicting embedding
distortion was presented. In this paper we describe an algorithm based on a mod-
ified matrix-coding technique that minimizes added distortion while keeping the
embedding rates at least as high as those obtained by F5 [18]. In addition to
minimizing distortion our algorithm does not change the distribution of JPEG
coefficients significantly. Therefore, we believe that for reasonable (i.e. not full-
capacity) rates no existing technique can be used to detect stego content hidden
by our method.
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3 Technical Background

3.1 Information Hiding System

The goal of information hiding is to convey a message secretly and imperceptibly
to people except a specific receiver. Generally, it modifies a cover object to embed
the message. We define the cover object as a vector C and the message as M .
M is embedded in C by modifying C into S, which is called a stego object.

M = (m1, m2, . . . , mk).
C = (c1, c2, . . . , cl).
S = (s1, s2, . . . , sl).

An information hiding algorithm is a pair of functions f and g such that

S = f(C, M), M = g(S). (1)

3.2 JPEG Image Format

We assume that the cover object is an image file in JPEG format. JPEG is
a widely used image format because its size is relatively small. JPEG image
formatting removes some image details to obtain considerable saving of storage
space without much loss of image quality. The savings are based on the fact that
humans are more sensitive to changes in lower spatial frequencies than in the
higher ones. At the encoder side each channel is divided into 8 × 8 blocks and
transformed using the two-dimensional Discrete Cosine Transform (DCT). Let
f(i, j), i, j = 0, . . . , N−1 be an N×N image block in any of the channels and let
F (u, v), u, v = 0, . . . , N−1 be its DCT transform. See [10] for the mathematical
specifics.

The coefficient F (0, 0) is the DC coefficient and all others are called AC co-
efficients. JPEG uses a quantization and rounding formula,

F ′(u, v) =
F (u, v)
Q(u, v)

, (2)

F ′′(u, v) = Round(F ′(u, v)). (3)

to obtain integer-valued coefficients F ′′(u, v), where Q(u, v) is a quantization
table [10]. The process results in a quantization rounding error:

δ(u, v) = F ′′(u, v)Q(u, v)− F (u, v). (4)

3.3 Information Hiding in JPEG Coefficients

Information hiding into JPEG image adds more distortion beside the JPEG
compression rounding errors (see Eq. (4)).
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Define C′ and C′′ to be two vectors of DCT coefficients before and after the
rounding, respectively (see Eq. (3)). The rounding error is given by ri = c′′i − c′i.

C′ = (c′1, c
′
2, . . . , c

′
l).

C′′ = Round(C′) = (c′′1 , c′′2 , . . . , c′′l ).
R = C′′ − C′ = (r1, r2, . . . , rl).

A message M is to be embedded into C′, and the message embedded set is S.
In prior work, the cover object C is typically C′′, but in this paper, C will be C′.
We modify C′′ to create an S such that the LSBs of S are equal to the message
bits. To accomplish this, we will add or subtract one from the coefficients in C′′.
Our embedding method depends on rounding error, ri. If the coefficient, c′′i , was
rounded up, we will subtract one from the coefficient; if it was rounded down, we
will add one. However, when c′′i = ±1, we will make si = ±2 to avoid creating
additional zero-valued coefficients.

We denote LSB(c′′i ) as xi. If xi = mi, then si = c′′i . If xi �= mi, then,

si =

⎧
⎪⎪⎨

⎪⎪⎩

−2, if ri ≤ 0 & c′′i = −1
Round(c′i) + 1, if ri ≤ 0 & c′′i �= −1
2, if ri > 0 & c′′i = 1
Round(c′i)− 1, if ri > 0 & c′′i = 1.

(5)

The distortion, di, is given by

di = |si − c′i|. (6)

In terms of rounding error, ri, the distortion is given by

di =
{

1 + |ri|, if c′′i ri > 0 & c′′i = ±1
1− |ri|, otherwise .

Finally, the additional distortion ei caused by changing any single bit c′′i is given
by

ei =
{

1, if c′′i ri > 0 & c′′i = ±1
1− 2|ri|, otherwise .

(7)

A goal in information hiding is to design embedding functions such that D =∑l
i=1 di is minimal. Since ris are already given, minimizing D is equivalent to

minimizing E =
∑l

i=1 ei.

3.4 Matrix Coding

Matrix coding was proposed by Crandall [4] to improve the embedding efficiency
by decreasing the number of required bit changes. Westfeld [18] proposed F5, a
steganographic algorithm which implemented the matrix coding. Matrix coding
uses as cover data the set of LSBs of quantized DCT coefficients after rounding.
The notation (1, n, k),where n = 2k − 1. denotes embedding k message bits into
an n bit sized block by changing only one bit of it The embedding process divides
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C, into blocks of length n and message data, M , into blocks of length k. To embed
ith message block, {mk(i−1)+1, . . . , mki} , a cover data block {cn(i−1)+1, . . . , cni}
is used. Let us define MB and CB as a message block and cover block.

The advantage of matrix coding is that we change only one bit to embed
several bits. A function b needs to be defined:

b(CB) =
n⊕

j=1

(cbj) · j. (8)

To calculate the position, α, of the bit that needs to be changed, we calculate

α = MB ⊕ b(CB). (9)

If α �= 0, the αth bit in the block of CB should be flipped, 1 to 0 or 0 to 1. The
modified block is then given by

SB =
{

CB, if α = 0.
cb1, . . . ,¬cbα, . . . , cbn if α �= 0.

(10)

On the decoder’s side, k message bits are obtained from an n bit sized cover
data by computing the following:

MB = b(SB). (11)

4 Modified Matrix Encoding

F5 [18] used (1, n, k) codes to embed k-bits into an n-bits LSB block. Because of
that, in each block a bit that needs to be changed is given by (9). We propose to
use (t, n, k), t ≥ 1 coding to increase the number of possible bit-change choices
in each block. We describe our approach for t = 2. We call our method modified
matrix encoding (MME).

4.1 Embedding Algorithm

For t = 2, we find pairs of numbers (β, γ) such that β ⊕ γ = α. Note that for
any α, there are n−1

2 such pairs which can be enumerated easily. If we use the
embedding technique described in Sec. 3.3 for each cover block, CB of length n,
we are given coefficients (c′1, ..., c

′
n), (c′′1 , ..., c′′n), the rounding errors (r1, ..., rn),

and the message block MB of length k. We compute α using (9) and the pairs
(β1, γ1), ..., (βn−1

2
, γn−1

2
) such that βi ⊕ γi = α, i = 1, ..., n−1

2 .
Given rα, the embedding error, e0 is given by (7), i.e. e0 = 1 − 2|rα|. For

each of the pairs (βi, γi), the embedding error is given by one of four cases:

ei =

⎧
⎪⎪⎨

⎪⎪⎩

2, if c′′βi
rβi > 0 & c′′γi

rγi > 0 & c′′βi
= ±1 & c′′γi

± 1
2− 2|rγi |, if c′′βi

rβi > 0 & c′′βi
= ±1 & c′′γi

�= ±1
2− 2|rβi |, if c′′γi

rγi > 0 & c′′γi
= ±1 & c′′βi

�= ±1
2− 2(|rβi |+ |rγi |), otherwise.

(12)
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In order to decide how to create SB, we find

μ = min
j
{ej}, 0 ≤ j ≤ n− 1

2
.

Given μ, we compute SB by

SB =

⎧
⎨

⎩

CB, if α = 0
cb1, . . . ,¬cbα, . . . , cbn, if μ = e0

cb1, . . . ,¬cbβi , . . . ,¬cbγi , . . . , cbn, if μ = ei, i = 1, . . . , n−1
2 .

(13)

4.2 Embedding Distortion of MME

We have assumed that each ri is i.i.d. random variable and that their probability
density fr(x) is known. Probability distribution for y = |r| is given by

Fy(x) =
∫ x

−x

fr(x)dx, x ∈ [0, 0.5].

Probability density for z = |r1|+ |r2| is given by

fz(x) = fy(x)
⊗

fy(x), z ∈ [0, 1],

where
⊗

stands for convolution. Probability distribution, Fz(x) is given by

Fz(x) =
∫ z

0

fz(x)dx, z ∈ [0, 1].

Probability distribution for ν = 1− 2y is given by

Fν(x) = 1− Fy(
1− x

2
), ν ∈ [0, 1].

Probability distribution for ω = 2− 2z is given by

Fω(x) = 1− Fz(2− x), ω ∈ [0, 2].

To estimate the probability distribution of the embedding distortion due to
embedding for (1, n, k) matrix codes, we use the order statistics [14]. As the first
approximation, we only consider the case when all embedding errors are ei ≤ 1.

Given the probability distribution Fν(x) and Fω(x), the distribution of μ is
given by

Fμ = 1− (1− Fν(x))× (1− Fω(x))
n−1

2 .

The expected value E[μ] is given by

E[μ] =
∫ ∞

0

xdFμ(x).
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More accurate analysis takes into account the fact that some of the additional
embedding error distribution will be different from those have presented here.
That analysis will be presented elsewhere.

Since changes occur in n
n+1 cases in any blocks, the expected embedding error

per bit is given by
E[‖E‖1] = E[μ]× n

n + 1
.

5 Results

We have implemented our modified matrix encoding algorithm in Java. In this
section we demonstrate the operation of our method on several images. Figure 1
shows the test images, which are color JPEG images. Rounding error histograms
are also shown in Fig. 1; we estimate the rounding-error distributions by nor-
malizing the histograms.
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Fig. 1. Left column: armadillo image. Right column: tiger image. Top row: test im-
ages. Bottom row: rounding error histograms of the nonzero AC jpeg coefficients. The
histogram is normalized to estimate a probability density of rounding errors.

The algorithm modifies a publicly available implementation of the JPEG im-
age compression algorithm. After computing the DCT, all non-zero AC coef-
ficients are marked for possible embedding and collected to form C′′; the cor-
responding rounding errors form R. The implementation follows the algorithm
described in Sec. 4.1. Our algorithm uses modified matrix encoding to choose the
coefficients whose modifications introduce the minimal embedding distortion.
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Fig. 2. Embedding error analysis for the armadillo image (left image in Fig. 1). Top
row: Embedding error for various block sizes, n. Bottom row: Embedding error per
changed coefficient for F5, MME, MME3, and MME4.
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Fig. 3. Embedding error analysis for the tiger image (right image in Fig. 1). Top
row: Embedding error for various block sizes, n. Bottom row: Embedding error per the
changed coefficient for F5, MME, MME3, and MME4.
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Fig. 4. Comparison of histograms of JPEG coefficient (1, 2) for the armadillo image
(left image in Fig. 1). The figure plots histograms for MME stego, F5 stego, and cover
images. Top row: (1, 3, 2) code. Bottom row: (1, 7, 3) code.
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Fig. 5. Comparison of histograms of JPEG coefficient (1, 2) for the armadillo image
(left image in Fig. 1). The figure plots histograms for MME stego, F5 stego, and cover
images. Top row: (1, 15, 4) code. Bottom row: (1, 31, 5) code.
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All tests was accomplished with 6 different block-size encode; (1, 2k−1, k),
k = 2, . . . , 7. Top rows of the Fig. 2 and Fig. 3 plot the comparison of the
predicted embedding error to the real experimental embedding error, and they
show close agreement between the theoretical prediction and the actual embed-
ding distortion. Bottom rows show the embedding errors per the changed bit in
F5, MME and the extended versions of MME, MME3 and MME4, that modify
up to 3 and 4 bits per block, respectively.

Figure 4 and Fig. 5, the histograms of coefficient (1, 2) JPEG coefficients are
shown with the various block sizes, from (1, 3, 2) code to (1, 31, 5) code. Notice
that our algorithm doesn’t change the number of zero while F5 algorithm does.
With block size becoming larger, the MME stego histogram becomes very close
to the cover image histogram.

6 Conclusions

In this paper we propose an efficient information hiding algorithm that embeds
message in the least significant bits of JPEG coefficients of images. Our algorithm
uses a modified matrix encoding technique that embeds information by modify-
ing the coefficients in such a way that the introduced distortion is minimized.
We derive the expected value of the introduced distortion as a function of the
message length and the probability distribution of the JPEG quantization errors
of cover images. We have implemented our method in Java and performed the
extensive experiments with it. The experiments have shown that our theoretical
predictions agree closely with the actual introduced distortions.
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Abstract. Digital fingerprinting is a technique to prevent customers from 
redistributing multimedia contents illegally. Main attack for fingerprinting is 
the collusion attack, where multiple users collude by creating an average or 
median of their individual fingerprinted copies, and escape identification. 
Previous research such as ACC (anti-collusion code) cannot support large 
number of users, and also vulnerable to LCCA (linear combination collusion 
attack). We present a practical SACC (scalable ACC) scheme to generate 
codebooks for supporting large number of users; and angular decoding scheme 
to be robust on LCCA. We implemented the SACC codebook using a Gaussian 
distributed random variable for various attack robustness, and the fingerprint 
embedding using human visual system based watermarking scheme. We 
experimented with standard test images for collusion detection performance, 
and it shows good collusion detection performance over average, median 
attacks. For LCCA collusion attack on SACC, our angular decoding scheme 
identifies the correct colluder set under various WNR (watermark to noise 
ratio).  

Keyword: fingerprinting, ACC, LCCA, BIBD, angular decoding. 

1   Introduction 

A digital watermark or watermark is an invisible mark inserted in digital media, and 
fingerprinting uses digital watermark to determine originators of unauthorized/pirated 
copies. Multiple users may collude and collectively escape identification by creating 
an average or median of their individually watermarked copies. An early work on 
designing collusion-resistant binary fingerprint codes for generic data was based on 
marking assumption, which states that undetectable marks cannot be arbitrarily 
changed without rendering the object useless [1]. However, multimedia data have 
very different characteristics from generic data, and we can embed different marks or 
fingerprints in overall images, which biased strict marking assumption. Trappe et al 
presented the design of collusion-resistant fingerprints using code modulation. They 
proposed a (k-1) collusion-resistant fingerprints scheme, which is based on (v, k, 1) 
balanced incomplete block design (BIBD) [2]. The resulting (k-1) resilient ACC code 
vectors are v-dimensional, and can represent n = (v2 -v) / (k2 -k) users with these v 
basis vectors. However, recent research shows that LCCA (linear combination 
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collusion attack) can successfully make collusion for ACC based fingerprinting 
schemes [6]. Also, ACC which derived form BIBD cannot provide flexible coding 
parameters for practical fingerprinting use.  

We present a scalable ACC fingerprinting design scheme, which extends ACC for 
large number of user support. We extend the ACC (anti-collusion code) scheme using 
a Gaussian distributed random variable for average and medium attack robustness. 
We also present an improved detection scheme using the angular decoding scheme to 
be robust on LCCA. We evaluate our scheme with standard test images, and show 
good collusion detection performance over average, median, and linear combination 
collusion attacks.  

2   Related Works 

An early work on designing collusion-resistant binary fingerprint codes was presented 
by Boneh and Shaw in 1995 [3], which primarily considered the problem of 
fingerprinting generic data that satisfy an underlying principle referred to as the 
marking assumption. The marking assumption states that undetectable marks cannot 
be arbitrarily changed without rendering the object useless; however, it is considered 
possible for the colluding set to change a detectable mark to any state (collusion 
framework). Under the collusion framework, Boneh and Shaw show that it is not 
possible to design totally c-secure codes, which are fingerprint codes that are capable 
of tracing at least one colluder out of a coalition of at most c colluders. Instead, they 
used hierarchical design and randomization techniques to construct c-secure codes 
that are able to capture one colluder out of a coalition of up to c colluders with high 
probability. Fingerprint codes (e.g. c-secure codes) for generic data was intended for 
objects that satisfy the marking assumption, multimedia data have very different 
characteristics from generic data, and a few fundamental aspects of the marking 
assumption may not always hold when fingerprinting multimedia data. For example, 
different marks or fingerprints can be embedded in overall images through spread 
spectrum techniques, thereby it makes impossible for attackers to manipulate 
individual marks at will.  

Min Wu presented the design of collusion-resistant fingerprints based on anti-
collusion code (ACC) [2]. It has the property that the bits shared between code 
vectors uniquely identify groups of colluding users. ACC codes have the property that 
the composition of any subset of K or fewer code vectors is unique. This property 
allows for the identification of up to K colluders. It has been shown that binary-valued 
ACC can be constructed using balanced incomplete block design (BIBD) [4]. The 
definition of (v, k, λ) BIBD code is a set of k-element subsets (blocks) of a v-element 
set χ , such that each pair of elements of χ  occur together in exactly λ blocks. The 
(v, k, λ) BIBD has a total of n = (v2 -v)/(k2 -k) blocks, and we can represent (v, k, λ) 
BIBD code using an v x n incidence matrix M, where M(i, j) is set to 1 when the i-th 
element belongs to the j-th block, and set to 0 otherwise. The corresponding (k − 1)-
resilient ACC code vectors are assigned as the bit complements (finally represented 
 



330 J.-M. Seol and S.-W. Kim 

using -1 and 1 for the 0 and 1, respectively) of the columns of the incidence matrix of 
a (v, k, 1) BIBD. The resulting (k-1) resilient ACC code vectors are v-dimensional, 
and can represent n = (v2 -v) / (k2 -k) users with these v basis vectors. This  
anti-collusion code can be used with code modulation to construct a family of 
fingerprints with the ability to identify colluders. The fingerprint signal wj for the jth 
user is constructed using a linear combination of a total of v orthogonal basis signals 
{ui}, multiplied by the coefficients {bij}, representing the fingerprint codes from {±1} 
as shown in Equation(1). 

1

v

j ij
i

c ⋅
=

=∑ iw u
                                                      

(1) 

To embed fingerprinted signal into still images, we use the Equation(2) where jy  

is jth user’s fingerprinted image, x  is a host image, and α is scaling factor. 
 

                                               j jα= +y x w                                                          (2) 
 

To determine who are colluders, Trappe et al used the v dimensional collusion 

detection vector ( T̂ ) as shown in Equation(3), which is correlation between jw  

and{ }i⋅u . The T̂ vector is converted to binary valued vector ( ˆ
bT ) using a predefined 

threshold value, which determines detection performance. If the ‘1’ position between 
ˆ

bT  and all j⋅c  (jth user’s signature) matches, we can decide that jth user is suspected 

to be a traitor. 

                               
1 2

1 2 2 2

{ , , }ˆ { , , , } j v
v

j i

t t t ⋅ ⋅ ⋅

⋅

⋅
= =

×

w u u u
T

w u

L
L                               (3) 

This collusion detection procedure (hard detection) is suggested in [2] with other 
two detection strategies (adaptive sorting approach, sequential algorithm), however, 
they did not consider any detection strategies for the linear combination collusion 
attack [2]. The linear collusion attack is generalized by the following Equation(4), 
where z denotes additive noise and ϕ  is the colluder set. If jth user does not 
participate in collusion ( j ϕ∉ ), the coefficient of jth user will be zero ( 0jβ = ).There 
are two constraints: (1) 

1
1

n

jj
β

=
=∑  (not to decrease quality of image) and (2) if jth 

and kth users participate in collusion, j kβ β≈  (to equalize the probability of 
captured) [5].  

                   
1 1 1

ˆ ˆ
n n n

j j j j j
j j j

β β β
= = =

= + = + + = + +∑ ∑ ∑y y z x w z x w z                   (4) 

 
The average attack shown in Equation (5) and linear combinational collusion 

attack (LCCA) shown in Equation (6) is a special case of linear collusion attack. 
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1

ˆ ,  j
j

where k
kϕ

ϕ
∈

= =∑w w                                             (5) 

            
1 2

2 1ˆ ( 1) ( 1) ,  1j k
j k

where
ϕ ϕ

ϕ ϕ
∈ ∈

= − ⋅ + + ⋅ − =∑ ∑w w w             (6) 

 

The anti-collusion code is reported to be resilient to average attack, but not to 
LCCA [6]. For example, if 1st, 4th and 8th users, whose fingerprint code are derived 
from (16, 4, 1)-BIBD collude, they will make pirated copy to 1 4 8ˆ ( ) / 3= + +w w w w  

by average attack. The correlation with basis { }i⋅u  makes T̂  vectors as {-1/3, -1/3 1/3 

1/3, 1 1 1/3 1, 1/3 1 1/3 1/3, 1/3 1 1/3 1}. and is converted to {0 0 0 0, 1 1 0 1, 0 1 0 0, 
0 1 0 1}. Finally, Comparing it with C , the location of ‘1’ uniquely identifies user 1, 4 
and 8 are colluders. However, attackers can make their fingerprint using LCCA 

( ˆ
1 4 8w = -w + w + w ), and the correlation with basis { }⋅iu  make T̂ vector as {1 1 3 3, 

1 1 -1 1, -1 1 -1 -1, -1 1 -1 1} and the binary values are {1 1 1 1, 1 1 0 1, 0 1 0 0, 0 1 0 
1}. In this case, the location of 1 gives no more clues to attackers (failure to collusion 
detection). 

3   Scalable and Robust Fingerprint Scheme 

In our scheme, we construct each user’s fingerprint as the composition of ACC and a 
Gaussian distributed random signal (lambda). Lambda means the random signal. The 
dimension of code vectors (M) can be increased to fit the size of fingerprinting users. 
For fingerprint generation, we select one mark from M marks. The selected mark will 
be one of ACC, and the other marks will be lambda. For example, when the 
fingerprint ID is f(2,3), it means that we embed ACC #3 code in second mark, and 
Lambda on the other marks. Finally, the code is repeated R times and permuted. Like 
Boneh’s scheme, the permutation sequence is unique to all users, but unknown to 
attackers. It also prevents interleaving collusion attack. 

We embed fingerprint block by block basis, and we should select M times R 
suitable blocks to hide fingerprint signals as shown in Equation(7). We exploited 
human visual sensitivity using noise visibility function [10]. Each selected blocks are 
added by anti-collusion code or lambda code. Lambda code is generated using 
Gaussian distributed random sequence. 

 

           1

2

(1 ) ,  ,   1,  ,

(1 ) ,   ~ (0, )

v

k j j ij
ik

k

x NVF w w c k M R
y

x NVF Nλ λ σ

⋅
=

⎧ + − = = ×⎪= ⎨
⎪ + −⎩

∑ iu L
              (7) 

 

To make scalable-ACC robust median attack, we should have lambda signal, 
which is similar to ACC signal and the variance of lambda is important factor; the 
Figure 1 shows the ACC and lambda signal. When the variance of lambda signal gets 
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small, colluders can easily classify ACC signal and lambda signal. The easy way to 
classify signal is taking the median value of pixels. As shown the Figure 1(b), the line 
graph shows effect of taking median values, dashed line means ACC signal, dotted 
lines are lambda signal whose variance is small, and solid line represent their median 
values. The solid line does not have any ACC signal. Though, if the variance of 
lambda gets larger than ACC signals, by taking maximum or minimum values, 
colluders also can escape identification. From the experimentation, we heuristically 
set the variance of lambda to be 16 (which is equal to v parameter of BIBD code 
design) when we use (16, 4, 1)-BIBD code. However, lambda signal can degrade the 
detection precision. To achieve detection performance and median attack robustness, 
all signals are repeated. 

 

(a)  
 

(b) 

Fig. 1. Comparison of jw  and λ  value for block size = 64: (a): ACC modulated signal jw , 

and two lambda signals with different variance 1λ  ( 2 1σ = ) 2λ  ( 2 16σ = ), (b) ACC 

modulated signal jw , two small variance lambda signals 1λ  ( 2 1σ = ) 2λ  ( 2 1σ = ), median 

( jw , 1λ , 2λ ) signals 

For fingerprint extraction, we used non-blind scheme. For each block, we compute 
Equation (8) and kf s are inversely permuted. 

 

1
k k

k

y x
f

NVF

−=
−

                                                    (8) 

 

To detect colluder, we used the code matrix T̂  in Equation (9), and the ,m̂ it  means 

mth mark’s averaged correlation of ith basis. The v-dimensional column vectors of T 
represent each mark. If the signals kf  are averaged, the variance of lambda will be 

decreased.   
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( 1)
, 2

1

1ˆ ,   1 ,  1
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=

⋅
= = =∑ i

i

u
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L L          (9) 

 
If there is no collusion, we can get either ACC or lambda, not both after extracting 

signals from each block ( kf ). When collusion occurs, the signals will be mixed form 

of ACC and lambda (linear combination of ACC and lambda). However collusion 
occurs, the result will be complicated. But, we can use the fact that the statistics of 
ACC and lambda are very different. the ,m̂ it  will be zero if it comes from λ  because 

the random signal and basis are uncorrelated.  To differentiate ACC modulated signal 

jw  and λ , we compute the score function as shown in Equation (10) for each mark. 

If the score is small for a mark, we do not consider the mark for colluder 
identification because the mark is mixed signal of λ . We focus on the high scored 
mark m̂  for colluder identification.  
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Equation (12) is composed of ,m̂ it ’s power and p-value. We compute ,m̂ it ’s power 

using 2

1

v

mii
t

=∑ , and compute the p-value ( 0)mP τ μ = , which is the probability of 

,m̂ it ’being derived from λ , using the Equation(11). 
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When the power is higher and ( 0)mP τ μ =  is closer to zero, the score function 

gets higher than others. This score function comes from the basic idea of entropy 
function. After we compute scores for each mark, we inspect the highest scored mark. 
The mark should have more evidence of colluder than low scored marks. When the 
mark is linear combination lambda, we assume that the mean of column vector has 
student T distribution with v-1 degree. 

Without collusion attack, population of lambda is known. However, collusion 
occurs, the population will be changed, and the number of colluders is not known. For 
instance, if we average two lambda signals whose variance is sigma, the result will be 
sigma/2. However the 2 is not known to detector. But we can compute an unbiased 
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estimator of the variance of lambda. For statistical perspective, when the variance is 
not known, hypothesis test on mean uses t-test with student’s T distribution. 

For the highest scored mark, we use our angular decoding scheme which use 
singular property of (v, k, 1)-BIBD. Colluders can use LCCA, where they combine 
their fingerprint in various ways and some users can escape identification.  
For example, three colluders have fingerprints 1w λλ , 2w λλ  and 3wλ λ , and  
they combine their fingerprints such as 1 1 2 3f̂ w w wλλ λλ λ λ= + −  or 

2 1 2 3f̂ w w wλλ λλ λ λ= − + + . In the case of 1f̂ , the extracted signals (three marks) are 
< 1 2w w λ+ − , 3wλ λ+ − , λ λ λ+ − >, and we can capture 1st and 2nd users from  
mark 1, however, we cannot capture 3rd user from  mark 2. Even worse, innocent 
users can be under suspicion. In the case of 2f̂ , we can only capture 3rd user in mark 
2, and no way for 1st and 2nd user. In this section, we present angular decoding scheme 
to capture LCCA colluders.  

The direct sequence spreading makes collusion into linear combination of each 
user’s fingerprint code. Mathematically, it says 1 1 2 2 n nβ β β⋅ ⋅ ⋅= + + + =T c c c CβL  

For example, if 1st and 3rd users are collude by averaging, the solution of β  will be 

{1/ 2,  0,  1/ 2,  0,  ,  0}L  But it is hard to estimate β  from T̂  which is modeled as 

ˆ = +T Cβ d , where 1, vR ×∈T d , { 1,1}v n×∈ −C  and 1nR ×∈β . d  is the processing 

error and noise, that can be observed at T̂ . To estimate β , we compute Equation(12): 

[7, 8]. 
 

 
1

2ˆmin
nR ×∈

−
β

T Cβ
                                                    

(12) 

 

Equation (12) is called least square problem and finding exact solution is NP-hard 
[7]. If the β ’s domain is finite, we can use sphere decoding to solve Equation (12) 

[8], LCCA (linear combination collusion attack) does not give change for finite 
domain, However we can use the singular property of (v,k,1)-BIBD, the angles 
between any of two user’s fingerprinting code ( ,    i j i j⋅ ⋅ ≠c c ) are computed as 

Theorem 1. 
 
Lemma 1. Let iC  as ith block from (v, k, 1)-BIBD, which represents ith user’s finger 

print code, and let jC  as jth block from (v, k, 1)-BIBD, which represents jth user’s  

fingerprint code. For any i and j, any two blocks ( iC  and jC ) will share at most one 

element. Mathematically, ( ) 0  1i jn or∩ =C C . 
 

Proof. It can be derived from definition of BIBD easily. Because each pair of element
 of χ  determines only one block, the element of intersection between arbitrary two bl

ocks cannot exceed two [2]. 
 
Theorem 1. The angle jka between arbitrary two users (jth user and kth user) ’ fingerpr

int codes are  
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Proof. The norm of jth user’s fingerprint code ( 2

1

v

iji
c

=∑ ) is v  by the definition of 

(v, k, 1)-BIBD. The norm of kth user’s fingerprint code ( 2

1

v

iki
c

=∑ ) is v  by the 

definition of (v, k, 1)-BIBD. We can compute
1

v

ij iki
c c

=
⋅∑  by comparing the sign of 

each element. If ith elements of j-th and k-th user have same sign, the multiplication of 
the two elements will be 1. Otherwise -1 (QDomain of C is { 1,1}− ). Therefore, 

1
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v

ij iki
c c of same sign elements of different sign elements D

=
⋅ = − − −∑ . The number 

of different-sign elements D is ( ) ( )j k j kn n∪ − ∩C C C C , and the number of same-

sign elements S is [ ( ) ( )]j k j kv D v n n− = − ∪ − ∩C C C C . Using Lemma 1, we can 

simplify the D and S as follows. 
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To identify colluder, we compute the angles between T̂ and each user’s fingerprint 
codes ( j⋅c ) using Equation(13). If jth user participates in collusion, the angle jta  

between jth user’s fingerprint code and T̂  is closer to 0 orπ .  
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Fig. 2. The angles between T̂ and j⋅c after average attack and LCCA 

 
Figure 2 shows the result of Equation (13) which computes the angles between 

T̂ and j⋅c , after 1st 4th and 8th users collude using average 

attack( 1 4 8ˆ ( ) / 3= + +w w w w ) and LCCA ( 1 4 8ˆ = − + +w w w w ).In this case, we can 

suspect 1st, 4th and 8th users after an average attack and 4th and 8th users after LCCA. 

4   Analysis and Experimental Results 

We experimented with the standard test images, and Figure. 3 shows test images 
and their enlarged fingerprints. To generate fingerprint signal we used (16, 4, 1)-
BIBD and the Hadamard matrix whose size is 4096 (64x64) for orthogonal basis. 

We used 2~ (0,4 )Nλ  for λ signal and we chose 2σ  as 16.0 experimentally to 

tradeoff between median attack robustness and false positive error rate. After 
fingerprint embedding, the average PSNR is over 42 dB with good subjective 
quality. 

We tested our scalable fingerprinting code for various collusion attacks (average, 
median, min, max, min-max, modified negative, randomized negatives and LCCA) 
for the test images. Average collusion is widely used collusion attack [13], because it 
is efficient to attack fingerprints, and also it makes better image quality after collusion 
(usually it increases 4-5 dB). Figure 4 shows a collusion example, when five colluders 
make pirated copies from their fingerprinted copies. It shows original image, five 
fingerprinted images, and colluded images after average, median, and LCCA. As 
shown in Figure 4, the average and median attacks make better image quality after 
collusion; however, LCCA spoils the quality of colluded image. There are many ways 

for collusion in LCCA, and we use 1 4 2f̂ w w wλλλλλλλ λλ λλλλλ λλλλλλλ= − − +  

5 7w wλλ λλλλλ λλλλ λλλ+ +  for our LCCA collusion.  
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Figure 5 shows the fingerprint detection result (T vectors) after average and 
median attack, respectively. The score results recommend that we should suspect 
highest scored mark #1. Next, we need to investigate 1st column of T matrix in detail. 
With detailed investigation, 1st and 2nd ACC codes are extracted from mark 1. After 
average and median attack, angular decoding scheme and hard decision scheme can 
correctly trace colluders. 

 

 

Fig. 3. Fingerprinted images, and their fingerprints (Enlarged) The number of Marks (M) =8, 
Repetition factor (R) =2, Block size = 64x64, (top) Baboon (PSNR: 38.86 dB), (second) Lena 
(PSNR: 42.84 dB), (third) Boat (PSNR: 41.25 dB), (bottom) F16 (PSNR: 42.46 dB) 
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(a) Original image 
(512x512) 

(b) 1w λλλλλλλ  

PSNR=45.44dB 

(c) 2w λλλλλλλ  

PSNR=45.45dB 

 
(d) 4wλλ λλλλλ  

PSNR=45.45dB 

(e) 5wλλ λλλλλ  

PSNR=45.40dB 

(f) 7wλλλλ λλλ  

PSNR=45.42 

 
(g) Average Attack 
PSNR=49.81dB 

(h) Median attack 
PSNR=48.26dB 

(i) LCCA 
PSNR=38.87dB 

Fig. 4. (a) original image, (b-f) five fingerprinted images, collusion after (g) average attack (h) 
median attack, and (i) LCCA. (Repetition factor = 2, number of marks = 8). 

Figure 6 shows the fingerprint detection result (T vectors) after linear combination 
collusion attack. After the attack, the mark #3 gets highest score, we can suspect the 
users in mark 3 and angular decoding scheme traces correct colluder ACC #4 in mark 
3, but hard decision capture the innocent colluders. The reason why innocent users are 
captured is the fingerprint copy of user whose signal is acc #4 in mark 4, is negatively 
summed and its signal is reversed. In summary, angular decoding scheme can detect 
LCCA, average, and median attack.  

To evaluate our angular decoding scheme without scalability, we generated 20 
user’s fingerprint signal, and performs average collusion, median collusion, and linear 
combination collusion for randomly chosen 3 users. We added white Gaussian 
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(a) 

 

(b) 

Fig. 5. Angular decoding scheme and hard detection result: (a) after average attack shown in 
Figure 4 (g), (b) after median attack shown in Figure 4 (h) 

 

Fig. 6. Angular decoding scheme and hard detection result after linear combination collusion 
attack shown in Figure 4 (i) 

random noise according to WNR (watermark to noise ratio), which is 

( )1020 log /jWNR = w d . In this experiment, we do not apply scalable 

fingerprinting scheme and we only use simple anti-collusion code to compare 
detection performance. 

Figure 7 shows that angular decoding scheme is superior to hard detection for all 
attacks. Although attackers collude using the LCCA, colluders can not escape 
identification with angular decoding strategy. The fraction of captured means the at 
least one colluder is captured. ( ,D D R≠ ∅ ⊂ , where D: detected colluders set and R: 
real colluders set). 
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Fig. 7. The performance compared with hard decoding and angular decoding using (16, 4, 1)-
BIBD and 256 dimension basis 
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Fig. 8. Randomly select k users as colluders from total 160 users and compare the result with 
200 iterations, after collusion, 3x3 median filter applied to remove noise and fingerprint 

Figure 8 shows the collusion performance of scalable anti-collusion code. The 
horizontal line represents the number of colluders. We randomly select colluders, and 
perform collusion, and detection. After detection, we compare detection result and 
previously selected colluders. When, the detected colluders are subset of real 
colluders, we considered it as success, which means that at least one colluder is 
captured, and there are no innocent users. Y-axis represents success ratio, and, the 
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solid line shows the angular decoding scheme and the dotted line represents hard 
decision. It shows that the performance of angular decoding scheme is better then 
hard decision scheme, under various collusion attack cases. After the LCCA, the 
angular decoding scheme shows better performance than hard decision scheme.  

5   Conclusions 

In this paper, we presented a scalable ACC fingerprinting scheme, which covers large 
number of fingerprint codes and angular decoding scheme robust to LCCA An ACC 
(anti-collusion code) is hard to support large number of users (To support large users, 
the length of basis must be long. The longer basis is hard to hide and handle) and does 
not consider linear combination collusion attack We constructed the scalable 
fingerprint by spreading BIBD codes over M×R (M: number of marks; R: repetition 
factor) image blocks. To improve the detection performance, we repeated embedding 
the same fingerprints over R image blocks. To increase the robustness over average 
and median attack, we designed a scalable ACC scheme using a Gaussian distributed 
random variable. We evaluated our fingerprints on standard test images, and showed 
good collusion detection performance over average and median collusion attacks and 
moderate performance over LCCA. An angular decoding scheme makes ACC not 
vulnerable to LCCA. Although the scalability scheme makes collusion more complex 
and decreases detection performance of angular decoding scheme; it can easily 
control the supported max users. And with block embedding, the fingerprint signals 
can be embedded in motion vectors in video codec.  
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Abstract. A video watermarking scheme is proposed in this paper us-
ing the concept of the secret sharing scheme. The owner’s mark is split
into twin shares, where the shares are inserted into the video frames in
the spatial domain in a simple manner. The detection algorithm uses a
linear function applied to the twin shares to reconstruct the secret. This
makes the watermarked video sequence robust against pirate attacks,
such as frame averaging and frame swapping. Due to the compatibility
of the exploited secret sharing scheme to geometrical distortions, the
watermarking system is also robust to this kind of processing schemes.
On account of insertion of various marks into different frames, which are
linearly related, the watermarked sequence is robust to collusion attack
that is a major concern in the field of video watermarking.

1 Introduction

Illegal copying and distribution of digital media has made the owner’s rights to
be more and more frequently violated. Traditional solutions for copyright pro-
tection, such as encryption, can no longer protect digital contents by themselves.
Sooner or later, encrypted media have to be revealed for the aim of consumer’s
usage that may be the malicious one. At the end of 20th century, digital wa-
termarking was introduced as a complementary solution to protection of digital
media ownership.

In copyright protection applications, a digital watermark is an invisible mark
that is inserted into a digital media such as audio, image, or video, which is used
to identify illegal distributions of copyright protected digital media and also law-
breaking customers. A digital watermark should have certain features to achieve
desired functionalities in this case. The embedded mark is to be robust enough
against various watermarking attacks, while keeping the perceived quality of the
host image unchanged (the imperceptibility requirement). Watermarking attacks
consist of deliberate attacks made maliciously to remove or change the mark se-
quence by lawbreakers and unintentional attacks caused as a result of different
kinds of coding and compression made to the digital media prior to transmission
and/or storage and also errors occurred during the transmission of the media
through networks.

J. Camenisch et al. (Eds.): IH 2006, LNCS 4437, pp. 343–354, 2007.
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Video contents can be mentioned as the most valuable digital media, which
are increasingly used illegally, resulting in a huge damage to filmmaking industry.
Video watermarking is utilized for different video applications such as copyright
protection, fingerprinting, broadcast monitoring, copy protection, and so on [1].
Distinct challenges have arisen in this field, as compared to image watermark-
ing. Because of the more possibilities to perform the collusion attack on video
streams, it is a main concern in designing video watermarking systems. Collusion
refers to using some watermarked data that is utilized for the aim of watermark
removal.

The main goal of this paper is to design a watermarking scheme for video
sequences which is robust to collusion attack. In Sect. 2, the main concept of
secret sharing is introduced. Sect. 3 describes the proposed insertion and detec-
tion watermarking schemes based on the mentioned secret sharing scheme. The
collusion attack, in the proposed scheme, is analyzed in Sect. 4 and simulation
results are presented in Sect. 5. Finally, the paper is concluded in Sect. 6.

2 Visual Secret Sharing

A secret sharing scheme shares a secret into a number of shares so that the
cooperation of a predetermined group of shareholders reveals the secret, while
the secret reconstruction is impossible to any unauthorized set of shareholders.
Naor et al. in [2] proposed a 2-dimentional secret sharing scheme which is known
as visual secret sharing (VSS). Since we are using this scheme in the proposed
watermarking scheme in this paper, VSS scheme is described in this section.

VSS scheme shares a binary-valued image, which is known as secret image,
into two double-sized images so that reconstruction of the secret image from
these twin images can be done only if both of them are available. So, a VSS
system is composed of the following components:

- Secret image: a digital image composed of M×N white and black pixels,
whose anonymity is the goal of the system;

- VSS sharing scheme: derives two share-images from a secret image in a
pseudo-random manner;

- Share-images: digital images composed of 2M×2N white and black pixels,
that are driven from the secret image in a pseudo-random manner. Two share-
images are produced in every run of the VSS sharing scheme, known as twin
share-images. Different runs of the VSS scheme generates different share-images,
and each of these share-images reveals no information about the secret image
unless its twin, i.e. the share-image generated in the same run of the VSS sharing
scheme, is available;

-VSS reconstruction scheme: retrieves the secret image from every correspond-
ing couple of share-images, i.e. twin share-images. VSS reconstruction scheme is
lossless if share-images have not been distorted in any way.

According to the VSS sharing scheme, each pixel in the secret image is split
into two 2×2 blocks of pixels, which are chosen form the blocks shown in Fig. 1.
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This leads to two double-sized share-images for every secret image. For the aim
of sharing a white pixel from the secret image, two corresponding share blocks
within the twin share-images are chosen the same. In other words, one of the six
blocks in Fig. 1 is selected for both of the share-images. On the other hand, if we
aim to share a black pixel from the secret image, different blocks from the same
type of blocks are chosen, e.g. two different horizontal share blocks. Therefore
there is 6 alternatives to share either a black or a white pixel and there are
6M×N solutions for the problem of sharing an M×N pixels binary-valued secret
image. Fig. 2 illustrates the twin share-images corresponding to the shown secret
image.

Fig. 1. Different blocks which are used to share a pixel in the secret image

Fig. 2. Different blocks which are used to share a pixel in the secret image

Different mechanisms can be devised for the aim of reconstructing an M×N
pixels secret image, S, from one of its twin share-images, SH1, and SH2. Fig. 3
shows the scheme of a simple system which we propose to be used as the VSS
reconstruction scheme in this paper.
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Fig. 3. Block diagram of the proposed VSS reconstruction scheme

First, twin share-images are added together to generate ST , which we call
it the stacked-image. This is because addition of twin share-images resembles
printing them on two transparent sheets and then stacking them together. By
allocating +1 and -1 values to white and black pixels respectively in the share-
images, pixels of ST will have one of the +2, -2, or 0 values. Recalling the VSS
sharing scheme mentioned above, if ST is divided into non-overlapping blocks of
2× 2 pixels, each block corresponding to a white pixel of the secret image have
two +2 and two -2 values, while every block corresponding to a black pixel have
four 0 values. So, by applying an absolute summation over every block of ST as
in (2), we can decide whether the block represents a white or a black pixel in
the secret image. This is done as below:

S(x, y) =
{

+1 if SA(x, y) = 8
−1 if SA(x, y) = 0 , (1)

where:

SA(x, y) =
∑1

m=0

∑1

n=0
|ST (2x−m, 2y − n)| x = 1..M, y = 1..N . (2)

The proposed reconstruction scheme acts as a lossless reverse function for the
mentioned VSS sharing scheme. As we will see in the next section, share-images
are inserted as digital watermarks into video frames. In a watermarking system,
it is expected that the inserted marks get distorted because of different losses
due to the noisy channel, watermark extraction scheme, and so on. As a result,
we modify the mentioned reconstruction scheme to be used in the proposed
watermarking scheme efficiently:

S(x, y) =
{

+1 if SA(x, y) > 4
−1 if SA(x, y) ≤ 4 . (3)

3 The Proposed Watermarking Scheme

In the proposed watermarking scheme watermark, W, is a sequence of M×N bits
(+1 and -1 values), where every frame of the video sequence is 2M by 2N pixels
in size. The video stream is first divided into several successive GOPs (Group Of
Pictures) with the length of L, where L is an even number, e.g. 12. Considering
the M×N bits watermark sequence as an M by N pixels image, for the i-th GOP ,
i.e. Fi,j , j=1...L, the VSS scheme is performed L/2 times to split the watermark
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image, W, into L sub-watermarks, i.e. Wi,j , j=1...L (two sub-watermarks are
produced in every run of the VSS scheme). These sub-watermarks are inserted
into the frames of the corresponding GOP as:

FW
i,j = Fi,j + JNDi,j .P erj({Wi,j |j = 1..L}), i = 1..Num , (4)

where FW
i,j is the j -th frame of the i-th GOP in the watermarked video sequence,

JNDi,j is the weighting coefficient corresponding to Fi,j , Num is the number
of GOPs in the video sequence, and Per(.) applies a permutation to the sub-
watermarks of the i-th GOP by changing their order of appearance. As a simple
permutation function, modular permutation can be used as:

Perj({Wi,j |j = 1..L}) = Wi,m, m = mod(p.j, L) + 1 . (5)

mod(x,y) is the modular residue of x with respect to y. Mathematically, if p is
an integer number which is prime relative to L, the original video frames and
the permuted video frames are related through a one-to-one relationship.

Choosing the JNDi,j coefficients equal to a constant number leads to a simple
and fast watermarking scheme, while a more robust watermarked video stream
would be achieved, if the coefficients are adopted to the video frames as cited in
the next section.

Fig. 4 shows the block diagram of the watermark extraction scheme. First, a
noise estimator block is performed on the received possibly watermarked video
sequence. Since the embedded sub-watermarks are noise-like, this leads to an
efficient estimation of them as in (6). To design a noise estimator, different ap-
proaches have been suggested in the literature [3,4,5]. Our simulations show that
using a simple FFT (Fast Fourier Transform) filter provides a fast and effective
estimation of the inserted sub-watermarks. Fig. 5 shows the basic structure of
the utilized FFT filter. The two-dimensional FFT transform of the video frame,
IM, is passed through a masking stage which drops its low-frequency components
and then an inverse two-dimensional FFT transform is performed.

Fig. 4. Block diagram of the watermark extraction scheme

Fig. 5. Block diagram of the FFT filtering
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W ∗
i,j ≈Wi,j =

1
JNDi,j

(FW
i,j − Fi,j), i = 1..Num, j = 1..L . (6)

After noise estimation, W ∗
i,j is an appropriate estimation of the inserted sub-

watermark Wi,j . To retrieve the original watermark, W, from the sequence of
estimated sub-watermarks, W ∗ sequence is passed from two more blocks. First,
an average is computed over the frames of the resulting video sequence as:

U =
2

Num.L

Num∑

i=1

L∑

j=1

W ∗
i,j . (7)

The resulting 2M×2N pixels image, U, is then passed from a reduction func-
tion which returns the M×N pixels extracted watermark as:

WD(x, y) =
{

+1 if R(x, y) > 4
−1 elsewhere

, (8)

where WD(x,y) is the (x,y)-th pixel of the extracted watermark and R(x,y) is
defined as:

R(x, y) =
1∑

i=0

1∑

j=0

|U(2x− i, 2y − j)|, 1 ≤ x ≤M, 1 ≤ y ≤ N . (9)

Finally, a normalized correlation is evaluated between WD and the watermark
sequence, W, as:

ρ =

M∑
x=1

N∑
y=1

WD(x, y).W (x, y)
√

M∑
x=1

N∑
y=1

WD(x, y).
M∑

x=1

N∑
y=1

W (x, y)

. (10)

This correlation is compared by a threshold value, TH, to decide if the water-
mark W exists in the video sequence received.

The main idea behind the definition of reduction function is the structure cited
for VSS reconstruction scheme in the previous section. In fact, passing average
of the frames, U, through the reduction function is equivalent to applying the
mentioned reconstruction function to the twin share-images and then returning
the average value.

4 Collusion Analyses

Collusion refers to a set of users who merge their knowledge to have access to the
unwatermarked contents. Collusion can be performed in two different manners.
In collusion type-I the same watermark is embedded into different data, which
can be estimated by a linear combination and removed from the watermarked
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contents. On the other hand, collusion type-II refers to the case where different
watermarks are embedded into different copies of the same data. In this case
colluders can obtain the unwatermarked data by a simple linear combination of
different copies, e.g. averaging. This is because averaging different watermarks
generally converges toward zero.

There are also two different approaches to implementation of collusion attack
in the case of video watermarking. Inter-videos collusion refers to a number
of users who have different videos containing the same watermark, or the same
videos with different embedded watermarks, where collusions type-I and II could
be applied respectively. Inter-videos collusion is the same as what have been
considered for still images, so the solutions can be borrowed from the literature.
For instance, inserting a Trusted Third Party in the watermarking system, which
produces and encrypts hash of the host data, is proposed to prevent collusion
type-I. Also, traditional countermeasures exist for collusion type-II which are
based on the projective geometry or the theory of combinational designs [1].

In the case of video watermarking, there is another kind of collusion which is
a video-specific origin. Intra-video collusion is the main threat to video water-
marking, because a watermarked video alone is enough to remove the watermark.
Inserting the same watermark in each frame, which is the baseline of many video
watermarking schemes, makes collusion type-I feasible exploiting frames of the
video sequence as watermarked images. On the other hand, by inserting dif-
ferent watermarks into different frames, collusion type-II can be implemented
in static scenes, since there are similar frames with different watermarks. Intra-
video collusion is considered in this research which is investigated in the proposed
watermarking scheme in the following sections.

4.1 Linear Collusion

For a set of watermarked frames FW
k =Fk+βkWk, k=1,..,(Num.L), and their

corresponding raw video frames, Fk , the linear collusion attack is made as:

X =
L∑

k=1

βkFW
k =

L∑

k=1

βkFk +
L∑

k=1

βkαkW ∗
k , (11)

where W ∗
k is the possibly distorted watermark sequence, and βk is a weighting

coefficient. X gives an optimal MSE (Mean Squared Error) estimate of the wa-
termark or the host signal in the case of collusions type-I or type-II, respectively
[6].

In the proposed watermarking scheme, different sub-watermarks are inserted
into different frames. As a result, collusion type-I is entirely infeasible. In fact,
collusion type-I needs some video frames containing the same watermark to
be estimated by some linear combination such as frame averaging. Even if the
original watermark, W, is estimated by attacker in some way, it can not be
used to produce the unwatermarked video sequence; this is because what is
inserted into video frames is not the original watermark, W, itself but sub-
watermarks, Wi,j , which has been obtained from it in a pseudo-random manner
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during different runs of the VSS scheme. So, we just have to investigate collusion
type-II on the proposed scheme.

The main idea in this research to defeat collusion is to insert different sub-
watermarks into video frames so that a linear combination of them results in
the main watermark sequence. As we mentioned in Sect. 3, the watermark is
extracted by performing a linear combination on the video frames, i.e. averaging
(see (7) and (8)).

Collusion type-II, e.g. averaging, is performed by modifying a number of
successive frames in still regions of the watermarked video sequence, FW

i ,
i=1,..,k, as:

FW
i = 1

k

k∑
j=1

FW
j = 1

k

k∑
j=1

Fj + 1
k

k∑
j=1

JNDjW
∗
j

≈ Fi + 1
k

k∑
j=1

JNDjW
∗
j

, (12)

where the second line of the above equation is valid in still regions of video
sequence. So, evaluating U from (6), (7), and (12) is as follows:

U = 2
Num.L

Num∑
i=1

L∑
j=1

W ∗
i,j = 2

Num.L

Num.L∑
p=1

W ∗
p

= 2
Num.L

k∑
p=1

W ∗
p + 2

Num.L

Num.L∑
p=k+1

W ∗
p

= 2
Num.L

k∑
p=1

1
JNDp

1
k
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Even if the JND coefficients are not constant, they are very similar in still
regions, because they depend on the host frames. So, U is evaluated as:

U = 2
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, (14)

which is the same as (7). So, linear collusion has no effect on the detection
process of the proposed scheme.

We simulated the collusion type-II on hawk3 video sequence which was water-
marked using the proposed scheme. As mentioned earlier, watermark detection
in the proposed scheme is performed by evaluating a normalized correlation and
comparing it by an appropriate detection threshold. Choosing this threshold is a
tradeoff between minimizing wrong rejection and wrong confirmation of the wa-
termark. This threshold should be chosen in respect to the average True to False
detection Ratio (TFR) which is opted to 0.15 in our simulations. A watermarking
attack to be effective should decrease the correlation coefficient below this detec-
tion threshold, making the watermark signal undetectable. So, we investigated
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the effect of collusion on the watermarked video by surveying the amount of
decrement enforced to the correlation coefficient. The mentioned video sequence
has also been watermarked by CDMA scheme proposed by Mobasseri [7], which
is a well-known similar video watermarking scheme, and the effect of collusion
type-II on two schemes has been compared. To make a fair judgment, both wa-
termarked sequences have the same watermark energy. Fig. 6 illustrates the effect
of collusion type-II on the watermarked sequences versus number of frames ex-
ploited in performing the collusion attack. Simulations show that CDMA scheme
is clearly vulnerable to collusion attack and the watermark is undetectable as
the number of colluded frames increases. In contrary, the proposed scheme which
is fundamentally similar to CDMA scheme shows a great amount of robustness
to this kind of attack. As the number of colluded frames grows, detection coef-
ficient in the proposed scheme varies around a fixed value near the correlation
coefficient of the collusion-free detection.

Fig. 6. Block diagram of the FFT (Detection coefficient vs. number of frames used
for making collusion type-II for proposed scheme and CDMA watermarking scheme.
Watermarks have the same energy in two schemes.

As it can be seen, simulation results are in conformity with mathematical
analysis presented earlier regarding robustness of the proposed watermarking
scheme against collusion attack. The alternating behavior of the proposed scheme
in Fig. 6 is due to the fact that for odd number of frames one of the frames missing
its twin frame acts as noise which reduces the system functionality; this effect
decreases as the number of colluded frames increases.
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4.2 Generalized Collusion

Even if the collusion is not linear, the watermark can be extracted efficiently.
As described in the previous section, collusion type-I is infeasible due to insert-
ing different watermarks into different frames. So, we just have to investigate
collusion type-II.

As mentioned previously, collusion type-II is performed over the still regions.
So, we propose to use only moving objects of video frames in evaluating U from
(7) because colluders cannot change the sub-watermarks in these regions. As
described in Sect. 3, corresponding shares of the watermark are inserted in the
frames belonging to the same GOP. It is supposed that there are common moving
areas in the frames belonging to a GOP, so a part of the main watermark can
be extracted by superimposing the moving parts of every twin sub-watermark.

According to visual models, human eye decreases its sensitivity in high en-
tropy regions, i.e. moving areas in the video sequences. So, by evaluating JND
coefficients in an adaptive manner as in [8], the system robustness to collusion
and other attacks will be elevated.

5 Other Attacks

We simulated the proposed watermarking scheme using Matlab7 software. A
constant value of 3 is chosen for JND coefficients, which preserves the quality
of watermarked sequences according to subjective experiments. Using adaptive
JND values leads to a more robust watermarking system at the expense of more
computational complexity. According to mathematical analysis and simulations
presented in the previous section, linear collusion makes an ignorable difference
to the extracted watermark. Also, other watermarking attacks have been con-
sidered in the proposed scheme.

We applied different geometric distortions to the watermarked sequence to
see how the detection response alters. In the case of video watermarking, the
attacker has to perform the same geometric distortion on all of the frames to
keep the continuity of the video sequence. By performing spatial synchronization
prior to detection, output of the detection algorithm following various amounts
of frame cropping, frame rotating, and changing the Aspect Ratio (AR) showed
a high resilience against such distortions. As discussed in Sect. 3, decision on
the watermark existence is made by evaluating a correlation coefficient. Tables
1 to 3 show the decrement of this correlation coefficient after performing frame
cropping, frame rotating, and changing the AR of the watermarked video se-
quence, respectively. This high resistance to geometric attacks is due to the VSS
compatibility with this kind of distortions which is further discussed in [9].

Also, the proposed scheme has brilliant robustness against some common pi-
rate attacks. Changing the video bit rate, which is usually performed by a linear
combination of frames, has little effect on the correlation coefficient. Because de-
tection scheme is independent from the order of frames, frame swapping makes
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Table 1. Decrement of ρ after frame cropping

Cropping Percentage 10 20 30 40 50

Decrement of ρ (%) 3 5 3 6 4

Table 2. Decrement of ρ after frame rotating

Rotation Angle (degrees) 5 10 15 20 25

Decrement of ρ (%) 7 6 8 12 15

Table 3. Changing the AR of 240*360 pixels watermarked frames

New Size (pixels) 240 ∗ 180 240 ∗ 90 480 ∗ 360

Decrement of ρ (%) 21 18 23

nothing to the extracted watermark. Also, frame dropping makes little changes
to the extracted watermark, which is evaluated by averaging a pool of share-
images.

Finally, temporal synchronization, which is crucial in the detection stage of
many video watermarking schemes, is not needed in the proposed scheme because
detection is independent from the order of frames.

As expected from its simple structure, the used VSS scheme is very fast. This
leads the proposed watermarking system to be implemented in real-time using
Matlab7 software.

6 Conclusions

In this paper, we have proposed a novel video watermarking scheme, based on the
concept of visual secret sharing. It is shown that the watermarked video sequence
is robust to linear collusion and, by performing a more complex detection scheme,
i.e. using moving areas, the watermark can be extracted in the presence of any
kind of collusion. This robustness is based on the fact that the embedded water-
mark can be extracted by a linear combination between different share-images,
i.e. sub-watermarks, which are inserted into different frames of the watermarked
sequence. This linear combination also makes the watermarking system robust
to pirate attacks, such as frame dropping, frame swapping, and changing the rate
of video frames. No temporal synchronization is needed for the aim of watermark
extraction due to this linear combination. Also the watermarked sequence is ro-
bust to geometrical distortions, which is due to compatibility of the VSS scheme
with this kind of distortions. The proposed watermarking system is fast and is
implemented in real-time.
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Abstract. We present the first (1,2)-SETUP algorithm for the RSA
digital signature scheme with appendix. A SETUP algorithm C′ is an
algorithmic modification of algorithm C that (1) contains an asymmet-
ric backdoor that can only be used by the designer, even if the backdoor
algorithm is fully public, and (2) ensures that the public outputs of C
and C′ are computationally indistinguishable under black-box queries.
The SETUP is presented in RSASSA-PSS and it transmits the RSA pri-
vate key within two w.l.o.g consecutive digital signatures. This problem
has been solved for DSA and other discrete-log based digital signature
algorithms, but not RSA. We therefore solve a long-standing problem in
kleptography.

1 Introduction

There has been a lot of research into designing backdoors into key generation
algorithms, encryption algorithms, key exchanges, and digital signature schemes.
Such backdoors are dual-edged in nature. When deployed by an honest key
recovery agent, they can be used to enable an organization to have timely access
to private keys. However, when deployed by dishonest recovery agents, they can
be used to surreptitiously access private information.

In this paper we continue the line of research that seeks to design asymmetric
backdoors in digital signing algorithms. More specifically, we present the first
high-bandwidth asymmetric backdoor for the RSASSA-PSS digital signature
scheme that is defined in PKCS #1 [21]. An asymmetric backdoor is a covert
backdoor that can only be utilized by the designer that deploys it, even when the
entire backdoor algorithm is made public. RSASSA-PSS is based on the RSA
signature algorithm [23], except that it is probabilistic and incorporates a nonce
in each digital signature that is output. RSASSA has a formal proof of security
and it appears in [4,5].

The backdoor that we present is non-trivial since the subliminal channel in
RSASSA is rather small. For example, when SHA-1 [11,12] is used and the salt
length is 20 bytes, the subliminal channel is also 20 bytes (the channel is the salt).
The RSA function is a deterministic permutation and it is therefore challenging
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to conduct subliminal communication using RSA after the RSA key pair has
already been generated.

Previous work on designing a backdoor into RSA key generation includes
Anderson’s construction [2]. Later the notion of an asymmetric backdoor (that
can only be used by the designer even when the device is fully reverse-engineered
and all “secrets” are learned) was introduced [26,27]. Related work includes [9]. It
is worth pointing out that efforts have primarily focused on designing backdoors
in RSA key generation as opposed to RSA signing.

The notion of (1,2)-leakage bandwidth in kleptographic attacks was put forth
in [27]. A (m, n)-leakage scheme is an asymmetric backdoor (SETUP mecha-
nism) that leaks m keys/secret messages over n keys/messages that are output
by the cryptographic device (m ≤ n). A (1,2)-leakage scheme was presented
in DSA [28] that leaks the signing private key over the course of two w.l.o.g
consecutive DSA signatures. Other work includes [29] that presents a method
for transmitting a 20-bit asymmetrically encrypted message covertly over a sin-
gle RSASSA-PSS signature. However, no RSA digital signature backdoors to
date achieve anywhere near the capacity of what we achieve, namely, the secure
(asymmetric) and subliminal transmission of the RSA private key over two RSA
signatures. Work that is related to this includes a study of subliminal-freeness
in the nonce-devoid version of RSA-PSS [6].

The significance of our high-bandwidth backdoor in RSA signing is as follows.
Our backdoor algorithm makes it possible to generate an RSA key pair nor-
mally (i.e., no backdoor involved), load it into a smartcard, and then leak the
RSA private key securely and subliminally through two RSA signatures. This
is not possible in any of the previous RSA backdoor designs (this includes key
generation backdoors and backdoors in RSA signing algorithms).

Our backdoor exploits in a constructive and forward-engineering fashion the
recent cryptanalysis of both MD5 and SHA-1 [24,25]. In short, we argue that the
collapse of these primitives is a boon for information hiding since the traditional
security parameter of k = 1024 for RSA has stayed the same yet the range of
hash functions that are deemed secure has increased significantly (i.e., the move
from SHA-1 to SHA-224 and higher). The backdoor we present exploits this shift
in the size of contemporary security constants. Just how this shift is exploited
is covered in Section 8.

2 Definition of a (1,2)-SETUP

The notion of a secretly embedded trapdoor with universal protection (SETUP)
was put forth in [26]. In short, a SETUP is an algorithmic modification made
to cryptosystem C to derive cryptosystem C′ that leaks secret key bits to the
cryptosystem designer. A SETUP has the properties that: (1) even if the entire
implementation of C′ becomes public, the backdoor can still only be used by the
designer, and (2) the public outputs of C and C′ are polynomially indistinguish-
able under black-box queries. The exclusive use of the backdoor by the designer
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applies to previously output values of the black-box and also values that are
output by the black-box in the future (forward security).

This paradigm has been used to construct robust backdoors in RSA key gen-
eration [26,29]. It has also been used to construct robust backdoors in discrete-
logarithm based digital signature schemes such as DSA and ElGamal [28]. A
SETUP in a signature scheme that has (1, 2)-leakage bandwidth leaks the sign-
ing private key over the course of 2 w.l.o.g. consecutive digital signatures that are
output by C′. The underlying idea is that the cryptographic black-box conducts
a covert Diffie-Hellman key exchange [10] with the designer using the public out-
puts of the device and the shared secret is subsequently used to securely transmit
private information. In this paper we present a SETUP for RSASSA-PSS that
has (1,2)-leakage bandwidth (so it is a (1,2)-SETUP).

We now present a working definition of a secure SETUP for RSASSA. The
definition is adapted from [29]. The model involves a designer, an eavesdropper,
and an inquirer. The designer builds a black-box RSASSA signing device A that
contains the SETUP and a black-box B that conducts normal (i.e., no backdoor)
RSASSA signing. Signatures are verified using the public RSA exponent e and
the signer’s public modulus n. A message is signed using (n, d) where d is the
private RSA exponent corresponding to n. The designer is given access to the
signatures that are generated and the goal of the designer is to obtain the RSA
private signing key of a user of A.

We define security using two-player games. Prior to the start of the games,
the eavesdropper and inquirer are given access to the SETUP algorithm and
the normal RSASSA signature algorithm. However, once the games start they
are not given access to the internals of A nor B—they are tamper-resistant
black-boxes. It is assumed that the eavesdropper and inquirer are probabilistic
poly-time algorithms.

Game 1. Select T ∈R {A, B} and let the inquirer have oracle access to T . The
inquirer wins if he correctly determines whether or not T = A with non-negligible
advantage and fails otherwise.

Property 1. (computational indistinguishability) The inquirer fails Game 1.

Game 2: The eavesdropper may query the signing oracle A using any set of
messages. The eavesdropper receives the resulting signatures computed using
((n, e), d). He wins if he can use A to compute eth roots mod n with non-negligible
probability and fails otherwise.

Property 2. (confidentiality) The eavesdropper fails Game 2.

Property 3. (completeness) Let S1, S2 be signatures on messages M1, M2, re-
spectively, generated using ((n, e), d) in device A. The designer computes p with
overwhelming probability given (n = pq, e), M1, S1, M2, S2 and possibly other
(private) auxiliary information.

Property 4. (uniformity) The SETUP is the same in every black-box device A
that is manufactured.
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Property 4 implies that there are no unique identifier strings in the SETUP
device. This permits distribution in a compiled program (which may be code-
signed) in which all instances of the program are identical without diminishing
security. Also, this makes it simpler to manufacture the SETUP in hardware and
software.

Definition 1. If a backdoor RSASSA signature algorithm satisfies properties 1,
2, 3, and 4 then it is a (1,2)-SETUP algorithm.

The use of a twisted pair of curves is central to our design. Related work includes
[20] that shows how to use a twist over binary curves to implement a space
efficient public key stegosystem. Twists over elliptic curves is a well-studied area
[16,17,18].

For typical elliptic curves used in cryptography, only about half of IFq corre-
sponds to the x-coordinates on the given curve. By using two curves where one is
the twist of the other, it is possible to implement a trapdoor one-way permuta-
tion from IFq onto itself. Twists have been used to implement trapdoor one-way
permutations that have the conjectured property that inverting the function is
exponentially hard [18].

3 Background on RSASSA-PSS

3.1 RSASSA Signing

We believe that this section covers enough of PKCS #1 to clearly present our
backdoor algorithm. The reader is referred to [21] for details not covered here.

The function Hash can be MD5, SHA-1, SHA-224, SHA-256, etc. hLen denotes
the length in octets of the hash function output. I2OSP is an Integer-to-Octet-
String primitive and OS2IP is an Octet-String-to-Integer primitive. MGF1 is a
mask generation function (MGF) that is based on Hash. Let A || B denote the
string that results from concatenating string A with string B.

MGF1(mgfSeed, maskLen):
Input: octet string mgfSeed from which mask is generated

maskLen ≥ 232 ∗ hLen, intended length in octets of mask
Output: an octet string mask of length maskLen
1. if (maskLen > 232 ∗ hLen) then output “mask too long” and halt
2. let T be the empty octet string
3. for counter = 0 to ($maskLen/hLen% − 1) do:
4. C = I2OSP(counter, 4)
5. T = T || Hash(mgfSeed || C)
6. output the leading maskLen octets of T as the octet string mask

sLen is the length in octets of the salt. For ease of exposition, the version of
EMSA-PSS-ENCODE below is tailored to the case that sLen �= 0. Appendix
A.2.3 of [21] states that the default value of sLen is the octet length of the hash
value. The function MGF can be instantiated using MGF1. Let A ⊕ B denote
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the string that results from applying the bitwise exclusive-or operation on bit
strings A and B.

EMSA-PSS-ENCODE(M, emBits):
Input: message M to be encoded. M is an octet string

emBits ≥ 8 ∗ hLen + 8 ∗ sLen + 9, maximum possible bit length of the
integer output by OS2IP(EM)

Output: octet string EM that is the encoding of M
1. if ((length of M) > (input limitation for Hash(·))) then

output “message too long” and halt
2. let mHash = Hash(M) and set emLen = $emBits/8%
3. if (emLen < hLen + sLen + 2) then output “encoding error” and halt
4. generate a random octet string salt of length sLen
5. let M ′ = (0x)00 00 00 00 00 00 00 00 || mHash || salt
6. let H = Hash(M ′)
7. generate octet PS that is (emLen− sLen− hLen− 2) octets of 0x00
8. let DB = PS || 0x01 || salt
9. let dbMask = MGF(H, emLen− hLen− 1)
10. let maskedDB = DB ⊕ dbMask
11. set the leftmost (8 ∗ emLen− emBits) bits of the leftmost octet

in maskedDB to 0
12. output EM = maskedDB || H || 0xbc

Note that the input limitation for SHA-1 is 261 − 1 octets.
Step 4 chooses salt uniformly at random. It is well-known that these bits

constitute a subliminal channel since they are recoverable by everyone in Step
12 of EMSA-PSS-VERIFY that is described below [14]. This channel is made
possible due to the fact that RSASSA is a probabilistic algorithm. This channel
is utilized in this paper.

Let modBits be the length in bits of the RSA modulus n. The RSASSA-
PSS-SIGN(K, M) function signs octet M using the RSA private key K. This
function operates as follows. First, EM = EMSA-PSS-ENCODE(M, modBits−
1) is computed and signing continues only if no error message is printed out.
The octet EM is then converted to an integer using m = OS2IP(EM). This
integer is signed using an efficient version of the Chinese Remainder Theorem
by computing s = RSASP1(K, m). Finally, the resulting RSA signature integer
s is converted to a length k octet using S = I2OSP(s, k).

3.2 RSASSA Signature Verification

The function RSAVP1((n, e), s) outputs an error if s is not between 0 and n−1.
When s is in this range it returns se mod n.

EMSA-PSS-VERIFY(M, EM, emBits):
Input: message M to be verified, possible encoding EM of

M , and maximum bit length emBits of OS2IP(EM)



360 A. Young and M. Yung

Output: message stating “consistent” or “inconsistent”
1. if ((length of M) > (input limitation for Hash(·))) then

output “inconsistent” and halt
2. let mHash = Hash(M)
3. if (emLen < hLen + sLen + 2) then output “inconsistent” and halt
4. if ((rightmost octet of EM) �= 0xbc) then output “inconsistent” and halt
5. let maskedDB be the leftmost (emLen− hLen− 1) octets of EM and

let H be the next hLen octets
6. if the leftmost (8 ∗ emLen− emBits) bits of the leftmost octet in

maskedDB are not all equal to 0 then output “inconsistent” and halt
7. let dbMask = MGF(H, emLen− hLen− 1)
8. let DB = maskedDB ⊕ dbMask
9. set the leftmost (8 ∗ emLen− emBits) bits of the leftmost octet in DB to 0
10. if the (emLen− hLen− sLen− 2) leftmost octets of DB are not 0x00 then

output “inconsistent” and halt
11. if ((octet at position emLen− hLen− sLen− 1 of DB) �= 0x01) then

output “inconsistent” and halt
12. let salt be the last sLen octets of DB
13. let M ′ = (0x)00 00 00 00 00 00 00 00 || mHash || salt
14. let H ′ = Hash(M ′)
15. if (H = H ′) then output “consistent” else output “inconsistent”

The function RSASSA-PSS-VERIFY is used to verify the signature S.

RSASSA-PSS-VERIFY((n, e), M, S):
Input: public key (n, e), signature S on message M
Output: message indicating valid/invalid signature
1. if ((length of S) �= k octets) then output “invalid signature” and halt
2. s = OS2IP(S)
3. set m = RSAVP1((n, e), s), halt with “invalid signature” on error
4. set EM = I2OSP(m, emLen), halt with “invalid signature” on error
5. result = EMSA-PSS-VERIFY(M, EM, modBits− 1)
6. if (result = “consistent”) then output “valid signature” else

output “invalid signature”

4 Background on Twists over GF(p)

We use uppercase to denote a point on an elliptic curve and lowercase to denote
scalar multipliers. When x is a scalar, xG denotes the operation of adding G
to itself x times. Kaliski [16,17,18] studied and applied twists using the general
class of elliptic curves over GF(p). Let Ea,b(IFp) denote the elliptic curve y2 =
x3 + ax + b over the finite field IFp. Also, let #Ea,b(IFp) denote the number of
points on the curve Ea,b(IFp). Let Ea,b be shorthand for Ea,b(IFp). The value k
is the length in bits of the prime number p.

We give important definitions, lemmas, and background on twists over GF(p)
in Appendix A. We will now give functions that permit us to do embeddings
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using bit strings that are fixed in length. The input point P to function Encode
originates on curve c ∈ {0, 1}. The algorithms XT , X−1

T,even, and X−1
T,odd are given

in Appendix A.

Encode(Ta,b,β(IFp), P, c):
1. let ts be the binary string representing t = XT [Ta,b,β(IFp)](P, c)
2. if |ts| > k + 1 then output 0k and halt
3. output Ps = 0k+1−|ts| || ts

For the primes we use in this paper, step 2 will never output 0k. Algorithm
Decode outputs (P, c) where the point P resides on curve c ∈ {0, 1}.

Decode(Ta,b,β(IFp), Ps):
1. let ysgn be the least significant bit of Ps

2. if (ysgn = 0) then output (P, c) = X−1
T,even[Ta,b,β(IFp)](Ps) and halt

3. output (P, c) = X−1
T,odd[Ta,b,β(IFp)](Ps)

Appendix A gives details on the following fact.

Fact 1: Let Ta,b,β(IFp) be a twisted pair. Encode is a polynomial time com-
putable, probabilistic polynomial time invertible mapping between the set of
points on the twisted pair Ta,b,β(IFp) and all (k +1)-bit strings corresponding to
the integers in the set {0, ..., 2p + 1} (padded with leading zeros as necessary).
The inverse function of Encode is Decode.

The following is Definition 6.4 from Kaliski [17].

Definition 2. A twisted instance of parameter k consists of Ta,b,β(IFp) which
is a twisted pair of parameter k, generating pairs (G1, G2) and (G′

1, G
′
2) for,

respectively, the curves Ea,b(IFp) and Eaβ2,bβ3(IFp) contained in the twisted pair,
a point P in the twisted pair, and c ∈ {0, 1} that denotes the curve that P was
chosen from.

5 RSASSA SETUP Algorithm

Let n = pq be the RSA public modulus of the signer. The idea is to conduct an
elliptic curve DH key exchange between the designer of the black-box signing
algorithm and the black-box itself and then use the shared secret to compromise
p. The designer plants his ECDH public keys (Y, Y ′) in the black-box, where
each key is for a curve in the twisted pair.

The backdoor works as follows (this explanation glosses over details). For
every even numbered signing operation, the device chooses a DH key exchange
value to serve as the RSASSA random salt. This is chosen to be on one of the
curves in the twisted pair in such a way that the key exchange value is (nearly)
a uniformly random bit string. In the odd numbered invocation that follows, the
RSASSA salt is chosen to be a random pad XORed with the upper order bits
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of the RSA prime p. The pad is the output of a random function with the DH
shared secret (resulting from the key exchange in the previous even numbered
invocation) being passed into it.

The designer recovers the random salts from the signatures (everyone can do
this). This reveals the DH key exchange value that the device chose. Using the
ECDH private keys (x, x′) corresponding to (Y, Y ′) the designer recovers the
DH shared secret. Only the designer can do this and hence it is an asymmetric
backdoor. By using the random function and applying the bitwise exclusive-or
operation, the designer recovers the upper order bits of p. The designer then uses
Coppersmith’s factoring algorithm to recover all of p. This explanation fails to
account for certain portions of the backdoor algorithm and is intended only to
convey the general idea.

We utilize a twist over GF(p) in this paper. We remark that the backdoor
can also be constructed using twisted binary curves. Binary curves are used for
information hiding in [20,29]. Curves over GF(p) have some advantages. The
bit length of p can be fine-tuned. For GF(2m) it is advised that m be prime to
avoid the GHS attack [13]. This inhibits the ability to use compressed points
of certain bit lengths. In our opinion, twists over GF(p) make our reduction
arguments simpler. While using twists over GF(p) in other work we realized
that this approach would improve the proofs in this paper.

5.1 Building Blocks for RSASSA SETUP

Let n be the RSA modulus used to verify signatures. For concreteness we describe
a backdoor where |n|/4 is the bit length of the output of the underlying hash
function (see Subsection 5.2). We choose the length of p to satisfy |p|+1 = |n|/4.
For example, we can take |n| = 1024 and use SHA-256 as the underlying hash
function. In this case we make the elliptic curve parameter p satisfy |p| = k = 255
(this p is not to be confused with the RSA prime p). This value permits an
encoded point to be k+1 = 256 bits in length. We consider other configurations
of the attack in Section 8.

For the key exchange we require that the prime p = 2k − δ where the value δ
is randomly chosen satisfying 2

√
2k < δ < 4

√
2k until a prime p of this form is

found. The key exchange relies on the ECDDH assumption. We greatly simplify
the exchange and corresponding proof by requiring that Ea,b and Ea′,b′ have
prime order. So, r = #Ea,b(IFp) is prime and r′ = #Ea′,b′(IFp) is prime. From
Section 4 it follows that r + r′ = 2p + 2. w.l.o.g. we assume that r < r′. The
bounds on δ ensure that 2r′ < 2k+1 (shown using the Hasse Interval). The
backdoor utilizes the predicate SelCurv(1k) that outputs 0 with probability
r/(2p + 2) and 1 with probability r′/(2p + 2).

Let G1 be a base point on Ea,b having order r and G′
1 be a base point on

Ea′,b′ having order r′. Since the group structure is (r, 1) for Ea,b and (r′, 1) for
Ea′,b′ we take G2 to be the point at infinity O for Ea,b and G′

2 to be the point
at infinity O′ for Ea′,b′ .
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It is required that G1 and Ea,b provide a secure setting for the elliptic curve
Decision Diffie-Hellman problem (ECDDH). The same holds for G′

1 and Ea′,b′ .
It is well-known that for certain elliptic curves, DDH is tractable [15].

The recovery agent chooses x randomly such that 0 < x < r and chooses x′

randomly such that 0 < x′ < r′. He computes (Y, Y ′) = (xG1, x
′G′

1).

GenDHExchangeValues():
1. compute u = SelCurv(1k)
2. if (u = 0) then
3. choose w ∈R [1, r − 1]
4. set (spub, spriv) = (Encode(Ta,b,β(IFp), wG1, u), Encode(Ta,b,β(IFp), wY, u)
5. else
6. choose w ∈R [1, r′ − 1]
7. set (spub, spriv) = (Encode(Ta,b,β(IFp), wG′

1, u), Encode(Ta,b,β(IFp), wY ′, u)
8. output (spub, spriv)

Observe that spub is an encoded point that is selected uniformly at random
from Ta,b,β(IFp). Fact 2: Due to the special form of p, GenDHExchangeValues
produces encoded points spub that are statisitically indistinguishable from ran-
dom (k + 1)-bit strings. Fact 2 is straightforward to show. It forms the basis for
Property 1.

RecSecret(spub, x, x′):
Input: (k + 1)-bit string spub and EC private keys x, x′

Output: (k + 1)-bit string spriv

1. compute (U, u) = Decode(Ta,b,β(IFp), spub)
2. if (u = 0) then compute P = xU else compute P = x′U
3. output spriv = Encode(Ta,b,β(IFp), P, u)

Coppersmith showed that if the |n|/4 most significant bits of p are known then
n = pq can be efficiently factored [8]. Following [9,29], we use this cryptanalytic
method to factor n. Let (p, w) = DCAlg(n, v) denote the execution of Don
Coppersmith’s algorithm. Here v is the upper half of the bits of p. The Boolean
w is set to 1 if p | n and it is set to 0 otherwise. w is therefore an error code that
is returned by DCAlg. Let S .= W denote that S is defined to be W .

Sπ
.= {s||c : P ∈ Ea,b, s = Encode(Ta,b,β(IFp), P, 0), c ∈ {0, 1}}

Sπ′
.= {s||c : P ∈ Ea′,b′ , s = Encode(Ta,b,β(IFp), P, 1), c ∈ {0, 1}}

Tπ
.= a random subset of {0, 1}k+1 having cardinality 2r

Tπ′
.= a random subset of {0, 1}k+1 having cardinality 2r′

Define π : Sπ → Tπ to be a random bijection. Define π′ : Sπ′ → Tπ′ to be
a random bijection. Note that for π and π′, the symbols in the domain differ
from the symbols in the range (so they are not permutations). Both π and π′

are idealizations and so we are working in a model similar to the random oracle
model [3]. Define π0 : Sπ

⋃
Sπ′ → Tπ

⋃
Tπ′ as follows. If the k + 1 uppermost

bits of the argument s to π0 is an encoded point on Ea,b then output π(s) else
output π′(s).
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5.2 The RSASSA Backdoor

Let n = pq be the public RSA modulus of the user where |p| = |q|. The private
signing key is supplied to the signing algorithm, so p is available to the EMSA-
PSS-ENCODE function. The Boolean α is stored in non-volatile memory and
is initially 0. The variable spriv is stored in non-volatile memory and is initially
0k+1. The Boolean α permits the signing algorithm to alternate between trans-
mitting a key exchange value and transmitting the encryption of the upper order
bits of p. Non-volatile memory is needed in black-boxes that are powered down
between signing operations.

EMSA-PSS-ENCODE-BACKDOOR(M, emBits):
Input: message M to be encoded. M is an octet string

emBits ≥ 8 ∗ hLen + 8 ∗ sLen + 9, maximum possible bit length of the
integer output by OS2IP(EM)

Output: octet string EM that is the encoding of M
1. if ((length of M) > (input limitation for Hash(·))) then

output “message too long” and halt
2. let mHash = Hash(M) and set emLen = $emBits/8%
3. if (emLen < hLen + sLen + 2) then output “encoding error” and halt
4. if (α = 0) then
5. compute (salt, spriv) = (spub, spriv) = GenDHExchangeValues()
6. else
7. let ptext be the |p|/2 uppermost bits of the RSA prime p
8. choose c ∈R {0, 1} and set pad = π0(spriv||c)
9. set salt = (pad ⊕ ptext), and zeroize spriv

10. set α = α ⊕ 1
11. let M ′ = (0x)00 00 00 00 00 00 00 00 || mHash || salt
12. let H = Hash(M ′)
13. generate octet PS that is (emLen− sLen− hLen− 2) octets of 0x00
14. let DB = PS || 0x01 || salt
15. let dbMask = MGF(H, emLen− hLen− 1)
16. let maskedDB = DB ⊕ dbMask
17. set the leftmost (8 ∗ emLen− emBits) bits of the leftmost octet

in maskedDB to 0
18. output EM = maskedDB || H || 0xbc

This algorithm generates and stores the DH shared secret spriv in every even
invocation and uses spriv in every odd invocation to transmit the upper half of
p. Let SIGS1 be shorthand for EMSA-PSS-ENCODE-BACKDOOR.

5.3 RSASSA SETUP Key Recovery

The key recovery agent obtains the RSA public key (n, e) corresponding to the
RSA private key d of the user. The following algorithm permits n to be factored.
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RSASSA-PSS-RECOVER((n, e), M1, S1, M2, S2, x, x′):
Input: public key (n, e), signed messages (M1, S1), (M2, S2)

computed using (n, d), EC private keys (x, x′)
Output: prime p | n or “failure”
1. if S1 is not a valid RSA signature on M1 then halt with “failure”
2. if S2 is not a valid RSA signature on M2 then halt with “failure”
3. let EMi be the encoding of Mi for i = 1, 2
4. let salti be the salt as recovered in line 12 of

EMSA-PSS-VERIFY(Mi, EMi, |n| − 1) for i = 1, 2
5. set spub = salt1
6. if spub is not an encoded point on Ta,b,β(IFp) then halt with “failure”
7. set spriv = RecSecret(spub, x, x′)
8. set pad1 = π0(spriv||0) and pad2 = π0(spriv||1)
9. set ptext1 = salt2 ⊕ pad1 and set ptext2 = salt2 ⊕ pad2

10. compute (p, w) = DCAlg(n, ptext1)
11. if (w = 1) then output p and halt
12. compute (p, w) = DCAlg(n, ptext2)
13. if (w = 1) then output p else output “failure”

6 The Twisted DDH Problem (TDDH)

The proof of security uses a decision problem that is equivalent to ECDDH. Let
IG1 be an instance generator that on input k (in unary) generates the tuple
(Ta,b,β(IFp), G1, G2, G

′
1, G

′
2).

Definition 3. A TDDH algorithm A1 for τ = (Ta,b,β(IFp), G1, G2, G
′
1, G

′
2) is a

probabilistic polynomial time (in k) algorithm satisfying, for some fixed α > 0
and sufficiently large k:

|Pr[A1(τ, (aG1, bG1, abG1), (a′G′
1, b

′G′
1, a

′b′G′
1)) = 1 ] −

Pr[A1(τ, (aG1, bG1, cG1), (a′G′
1, b

′G′
1, c

′G′
1)) = 1 ]| > 1

kα

The probability is over the random choice of τ according to the distribution in-
duced by IG1(k), the random choice1 of a, b, c ∈ {1, 2, ..., r − 1}, the random
choice of a′, b′, c′ ∈ {1, 2, ..., r′ − 1}, and the bits used by A1.

The TDDH assumption is that no such A1 exists. It is simple to construct an
algorithm that solves TDDH given an oracle that solves ECDDH. The other
direction is non-trivial to prove and we prove it in Appendix B.

Theorem 1. ECDDH is computationally equivalent to TDDH.

7 Security

In the following lemmas it is understood that when we say that two algorithms
are indistinguishable we mean that the probability ensembles corresponding to
1 These a and b are not to be confused with the Weierstrass coefficients.
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their outputs are (comp./stat.) indistinguishable. Let SIGS4 be shorthand for
EMSA-PSS-ENCODE. Define SIGS3 to be as follows: (1) in every even in-
vocation SIGS3 operates the same as SIGS4 except that SIGS3 computes
σ = SelCurv(1k) and if σ = 0 then the salt (which is salt1) is a random encoded
point on Ea,b and if σ = 1 then the salt is a random encoded point on Ea′,b′ , and
(2) SIGS3 operates the same as SIGS4 in every odd invocation. The following
lemma can be shown.

Lemma 1. SIGS3 is statistically indistinguishable from SIGS4.

Define SIGS2 to be the same as SIGS3 with the following exception. The vari-
able σ from the even invocation is stored in non-volatile memory. SIGS2 operates
as follows in every odd invocation. The bit c ∈R {0, 1} is chosen. If σ = 0 then
sr is an encoded point chosen randomly from Ea,b. If σ = 1 then sr is an en-
coded point chosen randomly from Ea′,b′ . For the odd invocations SIGS2 sets
salt2 = salt = π0(sr||c). Lemma 2 is proven in Appendix C.

Lemma 2. (random oracle model) SIGS2 is statistically indistinguishable from
SIGS3.

In the remaining proofs, M1 and M2 can be any two messages. Let γ be the tuple
(G1, Y, G′

1, Y
′, Ta,b,β(IFp)). We now review the DDH randomization method from

[7] adjusted for the case of elliptic curves. Let (Ea,b, G1, X, Y, Z) be an ECDDH
problem instance over τ = (Ea,b, G1). Algorithm fτ chooses scalars u1, u2, v
randomly satisfying 0 < u1, u2, v < r. fτ returns (X2, Y2, Z2) that is computed
as follows.

fτ (X, Y, Z) = (X2, Y2, Z2) = (vX +u1G1, Y +u2G1, vZ +u1Y +vu2X +u1u2G1)

This randomization method has the following property. If the input triple is a
DH triple then the output is a random DH triple. If the input triple is not a DH
triple then the output is a random 3-tuple. A random 3-tuple is not a DH triple
with a probability that is overwhelming (in k). Similarly, we define fτ ′ to be this
randomization algorithm for the other curve in the twist. So, the parameters are
specified by τ ′ = (Ea′,b′ , G′

1).

Lemma 3. (random oracle model) If TDDH is hard then SIGS1 is computa-
tionally indistinguishable from SIGS2.

Proof. We show that the contrapositive holds. Suppose that there exists a distin-
guisher D that distinguishes signatures computed using SIGS1 from signatures
computed using SIGS2 with non-negligible advantage. We will show how to use
D to solve TDDH.

TM1(X1, Y1, Z1, X
′
1, Y

′
1 , Z ′

1):
Input: (X1, Y1, Z1, X

′
1, Y

′
1 , Z ′

1) is a TDDH problem instance over Ta,b,β(IFp)
1. compute (X2, Y2, Z2) = fτ (X1, Y1, Z1) and (X ′

2, Y
′
2 , Z ′

2) = fτ ′(X ′
1, Y

′
1 , Z ′

1)
2. compute σ = SelCurv(1k) and choose c ∈R {0, 1}
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3. if σ = 0 then
4. set Y = X2 and set salt1 = spub = Encode(Ta,b,β(IFp), Y2, 0)
5. set spriv = Encode(Ta,b,β(IFp), Z2, 0) and set pad = π0(spriv||c)
6. else
7. set Y ′ = X ′

2 and set salt1 = spub = Encode(Ta,b,β(IFp), Y ′
2 , 1)

8. set spriv = Encode(Ta,b,β(IFp), Z ′
2, 1) and set pad = π0(spriv||c)

9. generate RSA primes (p, q) randomly (based on exponent e)
10. let ptext be the |p|/2 uppermost bits of the RSA prime p
11. set salt2 = pad ⊕ ptext
12. construct signature Si on Mi using salti in RSASSA-PSS for i = 1, 2
13. output D(p, q, e, M1, S1, M2, S2, γ)

TM2(X1, Y1, X
′
1, Y

′
1):

Input: (X1, Y1) is a ECDH problem instance over Ea,b using base G1

(X ′
1, Y

′
1) is a ECDH problem instance over Ea′,b′ using base G′

1

1. choose e1, e2 ∈R {1, 2, 3, ..., r− 1} and compute X2 = e1X1 and Y2 = e2Y1

2. choose e′1, e
′
2 ∈R {1, 2, 3, ..., r′ − 1} and compute X ′

2 = e′1X
′
1 and Y ′

2 = e′2Y
′
1

3. compute σ = SelCurv(1k) and choose c ∈R {0, 1}
4. if σ = 0 then
5. set Y = X2 and set salt1 = spub = Encode(Ta,b,β(IFp), Y2, 0)
6. choose Z2 ∈R Ea,b and set spriv = Encode(Ta,b,β(IFp), Z2, 0)
7. else
8. set Y ′ = X ′

2 and set salt1 = spub = Encode(Ta,b,β(IFp), Y ′
2 , 1)

9. choose Z ′
2 ∈R Ea′,b′ and set spriv = Encode(Ta,b,β(IFp), Z ′

2, 1)
10. generate RSA primes (p, q) randomly (based on exponent e)
11. let ptext be the |p|/2 uppermost bits of the RSA prime p
12. let pad = π0(spriv||c) and set salt2 = pad ⊕ ptext
13. construct signature Si on Mi using salti in RSASSA-PSS for i = 1, 2
14. step through the operation of D(p, q, e, M1, S1, M2, S2, γ) and

store the k + 1 uppermost bits of each argument to π0 in list L
15. when D terminates, select us uniformly at random from L but

if L is empty then halt with “failure”
16. if us is not an encoded point on Ta,b,β(IFp) then halt with “failure”
17. compute (U, u) = Decode(Ta,b,β(IFp), us)
18. if (u = 0) then output (e1e2)−1U else output (e′1e

′
2)

−1U

Let ψ be the event that D supplies the encoded ECDH shared secret corre-
sponding (X2, Y2) or (X ′

2, Y
′
2) to π0. If ψ occurs with negligible probability then

TM1 solves TDDH. Since D is a poly-time algorithm, L is poly-bounded. So, if
ψ occurs with non-negligible probability then TM2 solves ECDH for the problem
instance (X1, Y1) or (X ′

1, Y
′
1). This implies the solution to TDDH. (

Fact 1. Let D1
k, D2

k, and D3
k be probability ensembles with common security

parameter k. It is well-known that if D1
k and D2

k are computationally indistin-
guishable and D2

k and D3
k are computationally indistinguishable, then D1

k and
D3

k are computationally indistinguishable (see Lecture 7, [19]).
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By combining Lemmas 1, 2, 3, Theorem 1, and Fact 1 we have shown the
following theorem and corollary to the theorem.

Theorem 2. (random oracle model) If TDDH is hard then SIGS1 is computa-
tionally indistinguishable from SIGS4.

Corollary 1. (random oracle model) If ECDDH is hard then Property 1 holds.

Claim 2. (random oracle model) If RSASSA-PSS is secure and ECDH is hard
then confidentiality (Property 2) holds.

We prove this by showing that the contrapositive holds. Suppose that there
exists an algorithm A that outputs e

√
c mod n (where c ∈R ZZ∗

n) with non-
negligible probability on input ((n, e), c), the signed message pairs (M1, S1) and
(M2, S2), and γ. Here Si is a signature on Mi for i = 1, 2 computed using
EMSA-PSS-ENCODE-BACKDOOR. S1 and S2 are computed using the private
key corresponding to (n, e). A succeeds for backdoor signatures over both curves,
or signatures over Ea,b, or signatures over Ea′,b′ . w.l.o.g., suppose A succeeds
with non-negligible probability for backdoor signatures computed using Ea,b.

Suppose that we are given a pair of points (X1, Y1) over Ea,b and our goal is
to learn the corresponding ECDH secret using base G1. Suppose also that we
are given (n, e), the message/signature pairs (M1, S1), (M2, S2), and c and our
goal is to learn e

√
c mod n. Our reduction algorithms permit at least one of these

goals to be achieved.

TM1(M1, S1, M2, S2, c, n, e):
1. randomly generate ECDH key parameters (G1, Y, G′

1, Y
′)

2. recover salt1 from S1 and set spub = salt1
3. if spub is not an encoded point on Ea,b then halt with “failure”
4. compute u = A(M1, S1, M2, S2, c, n, e, γ)
5. if u /∈ ZZ∗

n then (output “failure”) else output u

TM2(X1, Y1):
1. choose e1, e2 ∈R {1, 2, 3, ..., r− 1} and compute X2 = e1X1 and Y2 = e2Y1

2. choose Y ′ to be a random point on Ea′,b′

3. generate RSA primes (p, q) randomly (based on exponent e)
4. compute n = pq
5. set Y = X2 and set salt1 = spub = Encode(Ta,b,β(IFp), Y2, 0)
6. choose Z2 to be a random point on Ea,b and choose w ∈R {0, 1}
7. set spriv = Encode(Ta,b,β(IFp), Z2, 0)
8. let ptext be the |p|/2 uppermost bits of the RSA prime p
9. let pad = π0(spriv||w) and set salt2 = pad ⊕ ptext
10. construct signature Si on Mi using salti in RSASSA-PSS for i = 1, 2
11. choose c ∈R ZZ∗

n

12. step through the operation of A(M1, S1, M2, S2, c, n, e, γ) and
store the k + 1 uppermost bits of each argument to π0 in list L

13. when A terminates, select us uniformly at random from L but
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if L is empty then halt with “failure”
14. if us is not an encoded point on Ta,b,β(IFp) then halt with “failure”
15. compute (U, u) = Decode(Ta,b,β(IFp), us)
16. if u = 1 then (output “failure”) else output (e1e2)−1U

For step 3 in TM1 it is reasonable to assume access to signed messages that do
not cause this failure. Let ψ be the event that A supplies the encoded DH shared
secret corresponding to Y and spub as the uppermost k + 1 bits of an argument
to π0. If ψ occurs with negligible probability then TM1 breaks RSASSA-PSS
(since TM1 outputs e

√
c with non-negligible probability). If ψ occurs with non-

negligible probability then TM2 solves ECDH. (
Properties 3 and 4 are straightforward to show. We have shown the following.

Theorem 3. (random oracle model) If EC Decision Diffie-Hellman is hard and
RSASSA-PSS is secure then algorithm EMSA-PSS-ENCODE-BACKDOOR and
algorithm RSASSA-PSS-RECOVER form a (1,2)-SETUP for RSASSA-PSS.

8 Other Configurations and Practical Use

Our backdoor is attractive due to the recent migration towards the larger SHA
algorithms. The limiting factor in achieving a (1,2)-leakage bandwidth SETUP
is Coppersmith’s algorithm that requires the upper half of p. With SHA-1 and
|n| = 1024, the subliminal channel is too small. The range of SHA-256 matches
the number of bits of p needed by Coppersmith’s algorithm for |n| = 1024.

Consider the configuration Hash = SHA-224 and |n| = 1024. In this case we
can adjust the backdoor attack and use k = 223. 232 is a small number, so it is
straightforward to adjust the algorithm to exhaustively test all possible values for
the missing 32 bits of the RSA prime p in the loop in RSASSA-PSS-RECOVER.

Another straightforward configuration is Hash = SHA-512 and |n| = 2048. In
this configuration k = 511 can be used. We have therefore shown the backdoor
algorithm to work with 3 configurations of RSASSA-PSS.

In practice we may instantiate π using a hash function (e.g., SHA-512) with
the output truncated to k +1 bits. Our application does not require a poly-time
inversion function π−1. This instantiation is clearly not a bijection. Heuristically,
π will appear to all efficient algorithms like a bijection since collisions will be
hard to find. This is similar to replacing a random oracle (function) with a
cryptographic hash function. The same applies to π′.

9 Conclusion

We presented the first (1,2)-SETUP for the RSA digital signature scheme with
appendix. In particular, our construction works when PKCS #1 signatures are
configured for 1024-bit moduli using the hash functions SHA-224 or SHA-256
and also for 2048-bit moduli when the hash function is SHA-512. We leave open
the issue of extending this backdoor algorithm to other configurations.
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A Twists over GF(p)

Every finite commutative group A satisfies a unique isomorphism of the form
A ∼= (ZZ/n1ZZ)× ...× (ZZ/nrZZ) where ni+1 divides ni for 1 ≤ i < r and nr > 1.
The integer r is called the rank of the group A, and the r-tuple (n1, ..., nr) is
called the group structure. Below we give Definition 4.1 from [17] and Lemma
6.5 and Definition 6.1 from [17].

Definition 4. Let A be a commutative group, and let (n1, ..., nr) represent the
structure of the group. A generating tuple for the group A is an ordered tuple
(G1, ..., Gr) ∈ Ar for which every element X ∈ A can be written uniquely as
X = a1G1 + ... + arGr where 0 ≤ ai < ni.

Lemma 4. Let β �= 0 be a quadratic nonresidue in the field IFp and let Ea,b(IFp)
be an elliptic curve. Then for every value x, letting y =

√
x3 + ax + b:

1. If y is a quadratic residue, then the points (x,±y) are on the curve Ea,b(IFp).
2. If y is a quadratic nonresidue, then the points (βx,±

√
β3y) are on the curve

Eaβ2,bβ3(IFp).
3. If y = 0, then the point (x, 0) is on the curve Ea,b(IFp) and the point (βx, 0)

is on the curve Eaβ2,bβ3(IFp).

A corollary to this lemma is that the number of points on the two curves is
2p + 2, two points for each value of x and two identity elements.

Definition 5. Let Ea,b(IFp) be an elliptic curve of parameter k and let β be a
quadratic nonresidue modulo p. A twisted pair Ta,b,β(IFp) of parameter k is the
union [sic]2 of the elliptic curves Ea,b(IFp) and Eaβ2,bβ3(IFp).
2 It is perhaps more accurate to say “collection” instead of “union” since Kaliski’s

small example in Table 6.1 has (0, 0) appearing twice in T5,0,3(IF7). He confirms this
by noting the possibility that the twisted pair may be a multiset.
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A twisted pair may be a multiset, since the curves Ea,b(IFp) and Eaβ2,bβ3(IFp)
may intersect. Kaliski uses the symbol ′ (prime) to differentiate points originating
from the two curves. In other words, he uses P to denote a point from Ea,b and
P ′ to denote a point from Ea′,b′ = Eaβ2,bβ3 . Kaliski uses twists in his provably
secure pseudorandom bit generator (PRBG). The presence or absence of the ′ in
the input to Kaliski’s generator is really a parameter by itself. To clarify things
we add a Boolean parameter to indicate which curve P was selected from instead
of appending ′ to P . We let c = 0 denote that P is a point chosen from Ea,b

and we let c = 1 denote that P is a point chosen from Ea′,b′ . Also, in general for
these curves there are two values of y for each value of x.

Define sgn : IFp → {0, 1} to be 0 if (p − 1)/2 ≥ y > 0 and 1 otherwise. The
function XT [Ta,b,β(IFp)](P, i) is defined as,

XT [Ta,b,β(IFp)](P, i) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2x + sgn(y) if P = (x, y), y �= 0, i = 0
2x/β + sgn(y) if P = (x, y), y �= 0, i = 1
2x if P = (x, 0), i = 0
2x/β + 1 if P = (x, 0), i = 1
2p if P = O, i = 0
2p + 1 if P = O, i = 1

Lemma 5. Let Ta,b,β(IFp) be a twisted pair. The function XT [Ta,b,β(IFp)](P, i) is
a polynomial time computable, probabilistic polynomial time invertible mapping
between the set of points on the twisted pair Ta,b,β(IFp) and the set {0, ..., 2p+1}.

The above Lemma is Lemma 6.6 from [17]. The proof of this lemma defines the
inverse function, broken down for the case that the input is even or odd. The
probabilistic polynomial time algorithm to compute square roots is used [22,1]
that can be assumed to return the principal square root (the one whose sign is
0). Define w = x3 + ax + b for x �= p.

X−1
T,even[Ta,b,β(IFp)](2x) =

⎧
⎪⎪⎨

⎪⎪⎩

((x,
√

w), 0) if w is a quadratic residue
((βx,

√
β3w), 1) if w is a quadratic nonresidue

((x, 0), 0) if w = 0
(O, 0) if x = p

X−1
T,odd[Ta,b,β(IFp)](2x+1) =

⎧
⎪⎪⎨

⎪⎪⎩

((x,−
√

w), 0) if w is a quadratic residue
((βx,−

√
β3w), 1) if w is a quadratic nonresidue

((x, 0), 1) if w = 0
(O, 1) if x = p

B The TDDH Problem

In this appendix we show that if ECDDH is hard then TDDH is hard. The
functions fτ and fτ ′ are defined in Section 7.
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Proof. Suppose there exists a probabilistic polynomial time distinguisher D that
solves TDDH. Let t = (X, Y, Z) be an ECDDH problem instance over (Ea,b, G1)
and let t′ = (X ′, Y ′, Z ′) be an ECDDH problem instance over (Ea′,b′ , G′

1). We
will show that algorithm M0 solves ECDDH over (Ea,b, G1) or algorithm M1

solves ECDDH over (Ea′,b′ , G′
1).

M0(Ea,b, G1, X, Y, Z):
1. set τ = (Ea,b, G1) and compute u = fτ (X, Y, Z)
2. generate a random 3-tuple u′ over (Ea′,b′ , G′

1) and output d = D(τ, u, u′)

M1(Ea′,b′ , G′
1, X

′, Y ′, Z ′):
1. set τ ′ = (Ea′,b′ , G′

1) and compute u′ = fτ ′(X ′, Y ′, Z ′)
2. generate a random DH triple u over (Ea,b, G1) and output d = D(τ, u, u′)

Let S0,DH be the set of all DH triples over (Ea,b, G1) and let S1,DH be the
set of all DH triples over (Ea′,b′ , G′

1). Let S0,T be the set of all 3-tuples over
(Ea,b, G1) and let S1,T be the set of all 3-tuples over (Ea′,b′ , G′

1). Without loss
of generality we may suppose that the TDDH distinguisher D outputs 1 with
non-negligible advantage δ1 in k when both 3-tuples are DH triples and 0 with
non-negligible advantage δ0 in k when both 3-tuples are random 3-tuples.

Consider the case that v0 ∈R S0,DH and v1 ∈R S1,T . There are 3 cases:

Case 1: Consider the case that D(τ, v0, v1) outputs 0 with advantage γ that is
negligible in k (so it outputs 1 with negligible advantage on this input). Con-
sider algorithm M0. Algorithm M0 generates u′ to be a random 3-tuple over
(Ea′,b′ , G′

1). Suppose that t is a DH triple. Then by fτ , u is a random DH triple.
So, in this case 0 is output with probability 1/2+ γ(k). Suppose that t is a non-
DH triple. Then by fτ , u is a random 3-tuple. So, 0 is output with probability
1/2 + δ0(k). Therefore, M0 solves ECDDH over (Ea,b, G1). There is a polyno-
mial time observable difference in behavior here. By amplifying and applying
Chernoff Bounds M0 can be used to construct a Perfect-ECDDH distinguisher.

Case 2: Consider the case that D(τ, v0, v1) outputs 0 with probability 1/2−δ2(k)
and 1 with probability 1/2+δ2(k) where δ2 is non-negligible. Consider algorithm
M0. Algorithm M0 generates u′ to be a random 3-tuple over (Ea′,b′ , G′

1). Suppose
that t is a DH triple. Then by fτ , u is a random DH triple. So, in this case 1 is
output with probability 1/2+ δ2(k). Suppose that t is a non-DH triple. Then by
fτ , u is a random 3-tuple. So, 0 is output with probability 1/2+δ0(k). Therefore,
M0 solves ECDDH over (Ea,b, G1).

Case 3: Consider the case that D(τ, v0, v1) outputs 0 with probability 1/2+δ3(k)
and 1 with probability 1/2−δ3(k) where δ3 is non-negligible. Consider algorithm
M1. Algorithm M1 generates u to be a random DH triple over (Ea,b, G1). Suppose
that t′ is a DH triple. Then by fτ ′, u′ is a random DH triple. So, in this case
1 is output with probability 1/2 + δ1(k). Suppose that t′ is a non-DH triple.
Then by fτ ′ , u′ is a random 3-tuple. So, 0 is output with probability 1/2+δ3(k).
Therefore, M1 solves ECDDH over (Ea′,b′ , G′

1).

Either M0 or M1 solves ECDDH. So, the contrapositive holds. (
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C Statistical Indistinguishability Proof

We now review the definition of statistical distance (Lecture 7, [19]). Let Dk :
{0, 1}k and Ek : {0, 1}k be distributions. Also, let X ∈Dk

{0, 1}k and Y ∈Ek

{0, 1}k.

Definition 6. The statistical distance between Dk and Ek is,

dist(Dk, Ek) =
1
2
·
∑

z∈{0,1}k

|Pr
X

[X = z]− Pr
Y

[Y = z]| (1)

Define Se to be all (k+1)-bit strings that are encoded points on Ta,b,β(IFp). Define
S to be Se ×{0, 1}k+1. Let X denote the probability ensemble corresponding to
the salts (salt1, salt2) output by SIGS2. Let Y denote the probability ensemble
corresponding to the salts (salt1, salt2) output by SIGS3. The distance between
X and Y is,

dist(X ,Y) =
1
2
·
∑

(z1,z2)∈S
|Pr

X
[X = (z1, z2)]− Pr

Y
[Y = (z1, z2)]| (2)

Lemma 6. The statistical distance between X and Y is negligible in k.

Proof. We break the statistical distance sum into 4 terms ti,j for i, j ∈ {0, 1}.
Here i = 0 ⇔ z1 is an encoded point on Ea,b. Also, j = 0⇔ (i = 0 and z2 ∈ Tπ)
or (i = 1 and z2 ∈ Tπ′). The statistical distance is 1

2 (t0,0 + t0,1 + t1,0 + t1,1).
Recall that p = 2k − δ. The terms are:

t0,0 = r(2r)| 1
2p+2

1
2r −

1
2p+2

1
2k+1 | = r2

2p+2 |
1
r −

1
2k | = r(2k−r)

(2p+2)2k

t0,1 = r(2k+1 − 2r)| 1
2p+2 ∗ 0− 1

2p+2
1

2k+1 | = r(2k−r)
(2p+2)2k

t1,0 = r′(2r′)| 1
2p+2

1
2r′ − 1

2p+2
1

2k+1 | = r′2

2p+2 |
1
r′ − 1

2k | = r′(2k−r′)
(2p+2)2k

t1,1 = r′(2k+1 − 2r′)| 1
2p+2 ∗ 0− 1

2p+2
1

2k+1 | = r′(2k−r′)
(2p+2)2k

Every term is negligible in k. So, the statistical distance is negligible in k. (
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Abstract. A mode of operation of the Elliptic Curve Digital Signature
Algorithm (ECDSA) is presented which provably excludes subliminal
communication through ECDSA signatures. For this, the notion of a sig-
nature scheme that is subliminal-free with proof is introduced which can
be seen as generalizing subliminal-free signatures and being intermediate
to the established concepts of invariant and unique signatures.

Motivated by the proposed use of ECDSA for signing passports, our
focus is not on proving the mere existence of a subliminal-free ECDSA
mode of operation, but on demonstrating its practical potential. The pro-
posed construction relies on the availability of a party acting as warden
and on a reasonably-sized non-interactive proof of subliminal-freeness.
For instance, in the passport scenario, the passport holder plays the role
of the warden, and we show that a suitable combination of the pseudo
random function of Naor and Reingold with bit commitments and non-
interactive zero-knowledge proofs can be used for accomplishing the re-
quired proof of subliminal-freeness with acceptable efficiency.

Keywords: subliminal communication, digital signature, ECDSA.

1 Introduction

It is a well-known phenomenon that cryptographic schemes can also be used
for purposes or in a way they have not been designed for (cf., for instance,
[DGB87, Des88a, Des88b, YY04]). One well-explored example of this is the use
of subliminal channels in signature schemes: Subliminal channels in signature
schemes were introduced by Simmons in [Sim84] as a solution to the prisoner’s
problem: two prisoners are allowed to exchange signed messages, but their com-
munication is monitored by a warden. The prisoners want to exchange a secret
message unnoticeable to the warden and hide the message in a signature of a
“harmless” cover message. In contrast, the warden is interested in implementing
a subliminal-free signature scheme that prevents any subliminal communication.
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Of course, this scenario does not address the use of steganographic techniques
for embedding information, and is mainly of interest if the signer has no or only
limited control over the messages to be signed.

However, already developing a general formalization of subliminal communi-
cation is quite an ambitious goal. In the context of interactive zero-knowledge
proofs for languages, a formalization of subliminal-freeness has been put for-
ward by Burmester et al. in [BDI+99]. For the specific case of subliminal com-
munication through digital signatures such a formalization has been proposed in
[BS05]. Specifically, [BS05] provides a definition of a (non-interactive) subliminal-
free signature scheme and proves the well-established RSA-PSS scheme to be
subliminal-free in this sense (if being used in deterministic mode along with a
precautious key generation).

However, for the common family of Digital Signature Algorithm (DSA)-like
signatures no subliminal-free variant is known[Sim94]. Simmons [Sim93] gives an
interactive signing procedure between the signer and the warden for generating
DSA signatures, but as pointed out by Desmedt in
[Des96], this scheme contains a subliminal channel, if the signer can reject
some protocol runs and start anew. While the warden in an interactive pro-
tocol could take some precautions against this, it makes a transformation into a
non-interactive signing procedure where the signer uses a pseudo random gener-
ator to simulate the warden’s input impossible—the signer can reject the signing
process privately and unnoticeably.

A cryptographic primitive that turns out to be closely related to subliminal-
free signature schemes is known as invariant signature schemes [GO93]. A spe-
cial type of invariant signature schemes are unique signature schemes, defined
by [Lys02] as those schemes for which only one valid signature is provided for
each message and verification key. Unique signature schemes are subliminal-free
in the sense of [BS05], but in most scenarios where subliminal channels matter,
signatures do not need to be unique w. r. t. the verification, as long as the war-
den is convinced that the signing algorithm has been used “in a unique manner”.
We will refer to signatures, where the warden can be convinced of such unique-
ness, as subliminal-free with proof and show that they lie between invariant and
unique signatures.

Within our new framework a subliminal-free usage of ECDSA is possible in
the following sense: If the proof delivered along with the signature is correct, the
warden can be sure that the signature does not contain suspicious information
(and delete the proof). Note that we do not care about subliminal information
embedded in the proof: We aim at preventing communication between signer and
verifier through signatures, not at preventing communication between signer and
warden. A scenario where the availability of a warden is quite natural is in the
context of digitally signed passports: e. g., Germany considers using ECDSA for
signing passports [Bun05]. Thus, one may ask whether it is possible to produce
ECDSA signatures where the owner of a passport (who is taking the role of the
warden here) can be sure that the signature contains no subliminal compromising
information.
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Motivated by application scenarios like this, we are not interested in solutions
that rely on an interactive verification protocol for checking subliminal-freeness
or that require a modification of ECDSA signatures: We want the obtained
signatures to be well-formed ECDSA signatures, but along with a (message,
signature)-pair we allow a proof to be delivered that can be verified off-line. In
the context of passports, this proof could then be checked by the card holder to be
sure that no subliminal message has been embedded into the ECDSA signature
on her passport. As shown below, already with a non-optimized implementation,
ECDSA affords proofs with a size of less than 8 MB. Thus, for a setting like this
implementing ECDSA subliminal-free with proof can be considered as practical.

2 Basic Definitions

Let us first recall the standard definition of a signature scheme:

Definition 1. A signature scheme S = (Gen, Sig, Ver) is a triple of algorithms,
where

– Gen is a probabilistic polynomial time (ppt) algorithm that takes the security
parameter l as input and returns a pair of public and private keys (pk, sk).

– Sig is a ppt algorithm that takes a message m and the private key sk as input
and produces a valid signature σ for m under sk.

– Ver is a deterministic polynomial time algorithm that takes a message m, a
signature σ and the public verification key pk as input and returns valid if σ
is a valid signature for m w. r. t. pk, and invalid otherwise.

For accepted relaxations of the above definition, as well as for an in-depth discus-
sion of standard security notions for signature schemes see [Gol04, Chapter 6].

In [GO93] Goldwasser and Ostrovsky defined invariant signature schemes and
proved their equivalence to non-interactive zero-knowledge proofs in the common
random string model. In an invariant signature scheme additionally a determin-
istic polynomial-time computable function Inv exists such that Inv(σ) is identical
for all legal signatures σ of a message m. Moreover, Inv(σ) is hard to distinguish
from a truly random string if only the public key pk and the message m are
known.

A similar concept is a unique signature scheme, where only one signature for
each message exists.

Definition 2. ([Lys02]) A unique signature scheme is a signature scheme where
no values pk, m, σ1, σ2 exist such that

σ1 �= σ2 and Ver(m, σ1, pk) = Ver(m, σ2, pk) = valid.

If the algorithm Sig is transformed to satisfy the pseudorandomness property,
this turns out to be a special case of invariant signature schemes.

As for unique signature schemes there is exactly one valid signature for any
given message-public key pair, it is impossible to hide a single bit of information
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in a valid signature and one can easily prove them to be subliminal-free in the
sense of [BS05]. Though, in invariant signature schemes and unique signature
schemes the uniqueness is absolute, while in the definition of subliminal-free in
[BS05] the uniqueness holds only with overwhelming probability for polynomial-
time algorithms. In the following we have respective analogs of invariant and
unique signatures in mind.

Signature schemes that are subliminal-free with proof. However, for most scenar-
ios it is not necessary to impose uniqueness in this sense, as long as it can be
proven that Sig was used in a unique way. If there is one distinguished entity who
is absolved from being a subliminal receiver—the warden— this entity can check
the proofs and stop or accuse a dishonest signer. The subsequent definition tries
to formalize this intuitive notion of a signature scheme that is subliminal-free
with proof.

Definition 3. A subliminal-free with proof signature scheme is a quintuple of
algorithms S = (Gen, SFGen, Sig, Ver, Chk), where

– Gen and Ver are probabilistic and deterministic polynomial time algorithms
for key generation and signature verification, respectively, as in Definition 1.

– SFGen is a ppt algorithm that takes pk and sk as input and generates the
information ci that the warden needs for checking the signature computation.

– Sig is a ppt algorithm that takes a message m and the private key sk as input
and produces a valid signature σ for m under pk and a proof t.

– Chk is a deterministic polynomial time algorithm that takes a message m, a
signature σ, a public key pk, the checking information ci and a proof t as
input, and returns true if Ver(m, σ, pk) = valid and (σ, t) is a valid output of
Sig(m, sk).

Moreover, for any ppt algorithm A taking the security parameter k as in-
put, the probability of giving as output values pk, sk, ci, m, σ1, σ2, t1, t2 such that
(pk, sk), ci are computationally indistinguishable from the output of Gen respec-
tively SFGen,

σ1 �= σ2 and Chk(m, σ1, pk, ci, t1) = Chk(m, σ2, pk, ci, t2) = true

is negligible in the security parameter l.

Remark 1. It has to be proven that the subliminal-free with proof signature
scheme maintains the security of the original scheme. I.e., the forger’s probability
is still negligible if the checking information ci is given as an additional input
and the signing oracle outputs a signature σ along with a proof t.

Remark 2. With this definition a subliminal-free signature with proof, (σ, t) is
an invariant signature with respect to the verification via the Chk algorithm.
The invariant function Inv((σ, t)) is to be chosen as a random extractor as given
in [MRV99] for the unique part σ of a signature (σ, t). The signature can be seen
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as a unique signature insofar, as the part σ that is unique with respect to Chk
is in itself a signature with respect to the verification algorithm Ver.

Thus, if a warden (e. g., the owner of a passport) accepts a signature σ only, if
it comes along with a valid proof t, then she can be sure that not a single bit of
subliminal information has been embedded into σ. In this sense, subliminal-free
with proof signature schemes implement subliminal-freeness as defined in [BS05].
Clearly, any unique signature scheme (like RSA-PSS in a deterministic mode as
considered in [BS05]) is subliminal-free with proof. However, a subliminal-free
with proof signature scheme may well allow for several different valid signatures
σ for a message m and a public key pk, as long as, except with negligible prob-
ability, only one of these signatures is accepted by the check algorithm Chk.
Specifically, for a subliminal-free with proof signature scheme we do not impose
that an invariant value can be extracted from all valid signatures for a pair
(m, pk) (as is the case for invariant signatures).

3 Making ECDSA Subliminal-Free with Proof

For the sake of convenience, let us quickly recapitulate the basic setup of the
ECDSA signature scheme (see, e. g., [ISO02] for details). Basically, ECDSA
builds on a publicly known finite field Fp, an elliptic curve E(Fp) over Fp where
qec|#E(Fp) with qec prime, and a point G ∈ E(Fp) of order qec. Choosing the
elliptic curve with qec

2 � #E(Fp) ensures that every point P ∈ E(Fp) of order qec

is a multiple of the generator G and a malicious signer willing to communicate
subliminally cannot deviate from the scheme by a faked key generation.

Private key: The signer holds a random d ∈ {1, . . . , qec−1} as her private key.
Public key: The multiple P := d ·G is made public.
Signature generation: The signature of a message m ∈ {0, 1}∗ is a pair (r, s)

such that
– r = π(k ·G) mod qec with a random k ∈R {1, . . . , qec − 1}, and
– s = k−1(dr + h(m)) mod qec.

Here, h(·) is a collision-free hash function and π(·) a conversion function
transforming the representation of the x-coordinate of a point on E(Fp) to
an integer.

Signature verification: A signature (r, s) for m ∈ {0, 1}∗ is accepted if and
only if r = π((s−1h(m) mod qec) ·G + (s−1r mod qec) · P ) mod qec holds.

3.1 A Deterministic ECDSA Mode of Operation

The first step towards an ECDSA that is subliminal-free with proof is a determin-
istic mode of operation for ECDSA. Basically, a deterministic ECDSA variant
can be obtained by replacing the random choice of k in the signing algorithm
with the output of a pseudo random function applied to a known input value.
However, determinism alone is not enough to exclude subliminal communication
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(see [BS05]). Additionally, the warden has to be able to verify the correct de-
terministic construction of a signature — a proof has to be given. We have to
ensure that

– the value k computed in this way remains secret and
– the correct computation and use of k is verifiable (offline and efficiently).

The first condition is needed to maintain security—disclosure of k would re-
veal the private key d. The second one allows to establish the desired proof for
subliminal-freeness—if it cannot be checked that the signer used the algorithm
honestly, a subliminal channel can be used (cf. [BS05]).

Moreover, the first condition rules out the possibility of using a verifiable
pseudo random function, that would allow to verify the correct generation of
the pseudo randomness, provided the generated randomness (here k) is public.
Therefore, we use for our construction an efficient pseudo random function by
Naor and Reingold building on a Decision Diffie Hellman (DDH) assumption
[NR04] and give a zero-knowledge proof that does not leak any information (at
the price of some idealized assumptions).

Naor and Reingold’s pseudo random function. The pseudo random func-
tion from [NR04] is parameterized by two prime numbers p1, q1 | p1 − 1, an ele-
ment g1 ∈ Z∗

p1
of order q1 and n+1 random elements a = a0, . . . , an ∈ Zq1 . Then

the one-way output of the pseudo random function for input x = x1 . . . xn ∈
{0, 1}n is

fp1,q1,g1,a(x) = g
a0
∏

xi=1 ai

1 .

This value is pseudo random in the cyclic group of order q1 generated by g1.
For our purposes x will be computed by applying a collision-resistant hash

function h(m) with n-bit output to the message m that is to be signed. Moreover,
as the output of fp1,q1,g1,a will have to serve as k-value in ECDSA we have to
pass from a pseudo random element in the group generated by g1 to an equally
distributed random value in Zqec as needed in the signature generation. For this,
we can apply a universal hash function to fp1,q1,g1,a’s output. The following
variant of the left over hash lemma [ILL89, IZ89, Sti02] guarantees then an
almost equal distribution in Zqec .

Lemma 1. With the above notation, let X be a subset of Zp1 of cardinality
|X |≥ q1. Moreover, let e > 0 and denote by H an almost universal family of hash
functions mapping Zp1 to Zqec , where log qec = log q1−2e. Then the distribution
(h, h(x)) is quasi-random within 2−e, where h ∈R H and x ∈R X are chosen
independently and uniformly at random.

Proof. The proof of this lemma is analogous to [IZ89] and hence omitted here.
��

As pseudo-random function we will use the following function from [IZ89]

ha,b : Zp1 −→ Zqec

y �−→ a · y + b mod p1 mod qec.
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Let us outline a deterministic variant of ECDSA by replacing the random
choice of k in the signing algorithm with the output of Naor-Reingold’s function.

Initialization phase: Given the usual ECDSA parameters E(Fp) and a point
G ∈ E(Fp) of order qec, the algorithm SFGen, on input sk and pk, outputs
the following values:
– Primes p1 and q1 with q1|(p1 − 1)—for the proof we will require that q1

is close to a power of 2 to allow for exact range proofs.
– (Truly) random values a = a0, . . . , an ∈ Zq1 needed for the pseudo

random function of Naor and Reingold.
– Elements a and b chosen uniformly at random from Zp1 (which determine

a universal hash function).
– A set of system parameters determining the proof constructed in the

next section, which we will denote by PROOF.
The string ci := (p1, q1, a, b, PROOF) is sent to the warden (that is, all pa-
rameters constructed above except a). For parties that only have to verify
signatures, the signatures will look like ECDSA signatures and no additional
parameters are needed.

Signature generation: The signature of a message m ∈ {0, 1}∗ is a pair (r, s)
computed as follows:
– The hashed message h(m) is given as input to the Naor-Reingold function

to compute

k = a · ga0
∏

xi=1 ai + b mod p1 mod qec(with x = h(m)).

– A proof for the correct computation of k is constructed and sent to the
warden. This proof is ideally a (non-interactive) zero-knowledge proof.

– r = π(k ·G) mod qec

– s = k−1(dr + h(m)) mod qec.
Here, h(·) is a collision-free hash function and π(·) a conversion function
transforming the representation of the x-coordinate of a point on E(Fp) to
an integer. As usual the signature is (r, s).

Proof verification: The warden can check with the signature (r, s) and the
proof, if indeed the value

k = a · ga0
∏

xi=1 ai + b mod p1 mod qec(with x = h(m))

was used.

Proposition 1. Provided ECDSA is secure, then the deterministic variant of
ECDSA is also secure.

Proof. Our scheme basically differs from “standard” ECDSA in three aspects:

(i) the way k is obtained,
(ii) the fact that a forger can make use of the value ci
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(iii) the fact that a forger can make use of the proof t which is provided together
with each signature.

Concerning (i), as we have only modified the way the value k is generated by
Sig, it suffices to check this new generation still yields a sufficiently unpredictable
k (see [Vau03] for a survey on security proofs of DSA and ECDSA). The pseudo
random function guarantees that k is indistinguishable from a random group
element and from the fact that the family H = {ha,b|a, b ∈ Zp1 , a �= 0} is almost
universal, (see, for instance, [CW79]) and the output of Naor and Reingold’s
random function is always indistinguishable from independent of the parameters
a and b. Thus, the output of the random function is indistinguishable from
random even under adversarial choice of m.

Let us now argue why knowledge of the proofs t or the checking information
ci gives no advantage to a forger: on one hand, t is a ZK proof of the correctnes
of k, so obviously is giving an adversary no advantage. Moreover, the amount
of “compromised” information contained in ci is negligible if the commitment
scheme used to construct PROOF is robust enough.

Therefore, an adversary trying to forge our ECDSA variant is in no better
situation than one facing the standard ECDSA scheme. ��

In summary, building on Naor and Reingold’s pseudo random function, we
can basically achieve a deterministic variant of ECDSA, and we are left with the
task of implementing the proof in a verifiable manner without compromising the
secrecy of k.

3.2 Building Blocks for the Proof

Commitment scheme. To implement the required non-interactive proof, we use a
commitment scheme as in [CM99, Ped92]: Given are two primes p, q with q|p−1.
To commit to elements of a subgroup of Zq this commitment scheme builds on
elements g, h ∈ Z∗

p that generate the same subgroup of size q such that logg h is
unknown. The commitment to u ∈ Zq is

BCg,h(u) = guhv

for a random v ∈ Zq. As shown in [Ped92], this commitment scheme is perfectly
hiding, and breaking the binding property is as hard as computing discrete log-
arithms to the base g or h.

We want to prove that in the signing process k has indeed been computed as

k = a · ga0
∏

xi=1 ai + b mod p1 mod qec(with x = h(m))

without revealing k. As h(m) must be considered as public, we will not reveal
the values a0, . . . , an, either, but only commitments to them. Given these com-
mitments, we construct a commitment BC(k) and prove that k is indeed the
output of the pseudo random function.
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Basic zero-knowledge proofs. We use non-interactive zero-knowledge proofs for
modular arithmetic as given in [CM99, FO97] and proofs of the range of com-
mitted values as specified in [Bou00]. We also adopt the notation for proofs of
knowledge from [CM99]. To obtain non-interactive proofs we can replace the
verifier’s choices with pseudo-randomness in the Common Random String or the
Random Oracle model [BSMP91]. As we commit to values from a cyclic group
and always choose a group of suitable size and change the group if necessary,
we do not have to carry out a modulo reduction. More specifically, the main
building blocks for our zero-knowledge proof of correct usage are:

– proving knowledge of a discrete logarithm denoted by PK{(x) : gx}
– proving knowledge of a committed value denoted by PK{(x, α) : gxhα}
– proving equality of committed values denoted by PK{(x, α, β) : gxhα∧gxhβ}
– addition of values committed to denoted by

PK{(x, y, z, α, β, γ) : gxhα ∧ gyhβ ∧ gzhγ ∧ z = x + y}
– multiplication of values committed to denoted by

PK{(x, y, z, α, β, γ) : gxhα ∧ gyhβ ∧ gzhγ ∧ z = x · y}
– exponentiation of values committed to denoted by

PK{(x, y, z, α, β, γ) : gxhα ∧ gyhβ ∧ gzhγ ∧ z = xy}
– proving the range [rmin, rmax] of a committed value denoted by

PK{(x, α) : gxhα ∧ rmin ≤ x ≤ rmax}

Proving equality of committed values. We will introduce a way to prove in zero-
knowledge equality of committed values for commitments in cyclic groups of
different prime order q1 and q2. Therefore these groups need to be embedded in
a cyclic group of order q0 with subgroups of order q1 and q2 generated by {g0, h0}.
Generators for the subgroups are then g1 = gq2

0 and g2 = gq1
0 , analogously, we

set h1 := h0
q2 and h2 := h0

q1 .
Then one readily checks that for two given commitments BCg1,h1(x) = gx

1hv1
1

and BCg2,h2(x) = gx
2hv2

2 the following procedure allows P to convince V that
both are commitments on the same value x < min(q1, q2).

1. P computes v0 := CRT−1(v1, v2), where CRT−1 denotes the inverse isomor-
phism of the Chinese remainder theorem.

2. P sends the commitment BCg0,h0(x) = gx
0hv0

0 to V .
3. P proves x < min(q1, q2) for the commitment BCg0,h0(x). As there is no

exact proof of a range for commitments in prime order groups a suitable
method has to be chosen in each case. We will explicitly state which methods
we use in our proof.

4. V checks BCg0,h0(x)q2 = BCg1,h1(x) and BCg2,h2(x) = BCg,h(x)q1 .

3.3 Construction of the Proof

For the commitments a further prime p0 with q1p1qec|(p0 − 1) is computed and
generators g0, h0 ∈ Z∗

p0
of order q1p1qec are selected. The generators g1 = gp1qec

0 ,
g2 = gq1qec

0 and hec = gq1p1
0 are selected. Moreover, commitments BC(a0), . . . ,

BC(an) to the secret random values a = a0, . . . , an ∈ Zq1 needed for the pseudo
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random function of Naor and Reingold are computed. For the proof we will need
the additional parameters

PROOF = (p0, g0, h0, g1, g2, hec, BC(a0), . . . , BC(an)).

The zero-knowledge proof that the randomness used for signing the message
m is

k =
(
aga0

∏
xi=1 ai + b mod p1

)
mod qec

with x = h(m), is constructed in the following extension to the signing algorithm:

1. Compute a commitment BCg1,h1(π) to the product π = a0

∏
xi=1 ai mod q1

and a non-interactive proof

PK{(a0, . . . , an, π, v0, . . . , vn+1) : ga0
1 hv0

1 ∧ · · · ∧ gan
1 hvn

1 ∧

gπ
1 h

vn+1
1 ∧ π = a0

∏

xi=1

ai mod q1}.

2. Construct a commitment BCg2,h2(π) and a non-interactive proof for the
values committed to in BCg1,h1(π) and BCg2,h2(π) being equal

PK{(π, v1, v2) : gπ
1 hv1

1 ∧ gπ
2 hv2

2 }.

Since the groups were chosen accordingly and q1 is close to a power of 2 this
is possible using the range proof via the bit expansion. Namely, we compute
commitments BCg0,h0(bi) for 0 ≤ i ≤ �log2(q1)% to the bits bi of π and prove
bi ∈ {0, 1} as well as

∑�log2(q1)�
i=0 bi2i = π.

3. Compute gπ mod p1 and commit to that value BCg2,h2(gπ) and prove along
the square-and-multiply algorithm

PK{(π, x, v1, v2) : gπ
2 hv1

2 ∧ gx
2hv2

2 ∧ x = gπ}.

We can reuse the bit representation of π from Step 2 to prove the exponen-
tiation along the square-and-multiply algorithm as done in [CM99].

4. Compute k = (a · gπ + b) mod p1 mod qec and a commitment BCg2,h2(k) to
k. Prove

PK{(π, k, v1, v2) : g
(gπ)
2 hv1

2 ∧gk
2hv2

2 ∧k = a · (gπ)+ b−α · qec∧0 ≤ k < 3qec}.

For this we use the range proof going back to [BCDvdG88]. This proof is
exact enough as executing the proof x < qec assures x < 3qec < p1 what
indeed is enough for the change of the group in the next step.

5. Compute a commitment BCgec,hec(k) and prove the equivalence with

PK{(k, v1, v2) : gh
2hv1

2 ∧ gk
ech

v2
ec}.

The range proof given in the last step is sufficient for this step. So, no
additional proof via the bit representation is needed here.
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6. Prove that k was indeed used for the signature (r, s). Another commitment
BCG,H(k) = kG + v1H in the elliptic curve E(Fp) is computed. There, G
is the generator used in the signing algorithm, and H is another generator
for the group generated by G such that logGH is unknown. For the zero-
knowledge proof

PK{(k, v1, v2) : kG + v1H ∧ gk
ech

v2
ec}

the standard protocol can be can be used since the two groups have the
same order. Proving the knowledge of the respective discrete logarithms of
the factors kG and v1H convinces the verifier that the discrete logarithm of
kG is indeed the value committed to in BCG,H(k). Given kG it is easy to
verify r = π(kG) mod p.

Proposition 2. The deterministic variant of ECDSA is subliminal-free with
proof.

Proof. This is now immediately clear as the non-interactive zero-knowledge proof
allows to check that the signature was indeed computed as the unique signature
from the deterministic signing function. ��

Size of the zero-knowledge proof. To show that giving such a proof to the warden
for each signature can be practical, we give a rough estimate of the space needed
for the zero-knowledge proof.

For the choice of parameters we aim at achieving high security as it is used
in electronic passports. For the bitlength of the parameters we assume qec to be
a 256 bit prime, q1 a 356 bit prime and p1 a 3, 072 bit prime to keep the high
security from ECDSA. For the commitments p0 will then at least be a 3, 685 bit
prime. Similarly the output length of the hash function for the input of the
pseudo random function should be 256 bits.

For simplicity we assume now a bit commitment to have 4 kbit and assume
also the group sizes to be of 4 kbit. Proofs of knowledge of a committed value
and equivalence of committed values take roughly 16 kbit. Proofs for addition
and multiplication can be built from the basic proofs and will both take 64 kbit.
We review now the steps of the algorithm:

1. One bit commitment and 256 multiplications sum up to 16, 400 kbit.
2. In this step we need to prove log2(qec)+1 bit commitments and log2(qec)+1

multiplication and additions. Together with proofs of equivalence and knowl-
edge of commitments this sums up to roughly 37, 000 kbit.

3. The square-and-multiply algorithm takes 2 ·3, 072 multiplications. The proof
size of this step will sum up to 6, 144 kbit.

4. This step takes one bit commitment and two operations for 144 kbit. How-
ever, the range proof needs to be repeated and will sum up to ≈1, 000 kbit.

5. The new commitment and the equivalence will take 32 kbit.
6. The last step takes no essential space as just elliptic curve elements have to

be given.

All together the size of the proof is less than 60, 500 kbit, i. e., less than 8 MB.
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4 Conclusion

We have presented a new notion for signature schemes: being subliminal-free
with proof. Besides relating this concept to subliminal-free, invariant and unique
signatures, we showed that ECDSA can be used in a mode that is subliminal-free
with proof and has reasonable proof sizes in a scenario with high security needs.
It remains an open question if an operation mode of ECDSA allowing for unique
signatures (without proof) can be found. Also, it seems interesting to explore
possibilities of efficient adaptations of our approach to other signature schemes.
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