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Preface

The winter semester 2002/2003 was the last semester before my retirement
from the university. It also happened that I was the chairman of the Collo-
quium and the speaker foreseen for February 7 had to cancel his visit.

At about the same time I found some numerical support for a very ge-
neral conjecture relating divisibilities of certain special values of L-functions
to congruences between modular forms. I have been thinking about this kind
of relationship for many years, but I never had any idea how one could find
experimental evidence. But in the early 2003 C. Faber and G. van der Geer
had written a program that produced lists of eigenvalues of Hecke operators
on some special Siegel modular forms. After a few days of suspense we could
compare their list with my list of eigenvalues of elliptic modular forms and
verify the congruence in our examples.

I was very exited about this and spontaneously invited myself to give the
Colloquium lecture, which is documented in the text below. (Bonn Spring
2007)

1 Elliptic and Siegel Modular Forms

I have to recall some well known facts from the classical theory of modular
forms. We have the upper half plane

H = {z | x+ iy with y > 0} .

On this upper half plane we have an action of Sl2(R), which is given by

Sl2(R) × H −→ H
((

a b
c d

)
, z

)
�→ az + b

cz + d
.
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The stabilizer of i ∈ H is the maximal compact subgroup SO(2) and we can
identify H = Sl2(R)/SO(2). Let k be a positive (even) integer. A holomorphic
modular form of weight k with respect to Sl2(Z) is a holomorphic function
f : H → C, which satisfies

f

(
az + b

cz + d

)
= (cz + d)kf(z)

for all matrices (
a b
c d

)
∈ Sl2(Z) ,

and which satisfies a growth condition. To formulate this growth condition
we restrict f to a “neighborhood of infinity” H(c) = {z|�(z) > c}. On this

neighborhood the group Γ∞ =
(

1 n
0 1

)
with n ∈ Z acts and the map z �→ e2πiz

identifies Γ∞\H(c) to a punctured disk. Since f satisfies f(z) = f(z + 1) we
can view its restriction to Γ∞\H(c) as a function in the variable q. The growth
condition requires that f has a (Fourier or Laurent) expansion

f(q) = a0 + a1q + a2q
2 . . . ,

i.e. it extends to a holomorphic function on the disk. If a0 = 0, then f is called
a cusp form.

Remark: The quotient Sl2(Z)\H has the structure of a Riemann surface,
which can be compactified to a compact Riemann surface Sl2(Z)\H by adding
one point at ∞. We write the maximal compact subgroup

SO(2) = U(1) = K =
{
e(φ) | e(φ) =

(
cos(φ) sin(φ)
− sin(φ) cos(φ)

)}
.

Since H = Sl2(R)/SO(2), the representation ρk : SO(2) → C×, which is given
by e(φ) �→ e(φ)k defines a Sl2(R)-invariant holomorphic line bundle Lk on H,
this gives us a line bundle, also called Lk, on Sl2(Z)\H. This line bundle can
be extended in a specific way to a line bundle on the compactification. Then
the space of modular forms of weight k can be canonically identified with the
space of sections H0(Sl2(Z)\H,Lk).

We have the two modular forms of weight 4 and 6

E4(z) =
1
2

∑

(c,d)=1

1
(cz + d)4

,

E6(z) =
1
2

∑

(c,d)=1

1
(cz + d)6

,

and then we have the q-expansions

E4(q) = 1 + 240q + 2160q2 + 6720q3 + 17520q4 + 30240q5 . . .

E6(q) = 1 − 504q − 16632q2 − 122976q3 − 532728q4 − 1575504q5 + . . . .



A Congruence Between a Siegel and an Elliptic Modular Form 249

The space of cusp forms has dimension 1 for the values k = 12, 16, 18, 20, 22, 26.
The modular form

Δ(z) =
E4(q)3 − E6(q)2

123
= q − 24q2 + 252q3 − 1472q4 + 4830q5 + . . .

is the generator of the space of cusp forms of weight 12.
The space of cusp forms of weight 22 is generated by

f(q) =
E6(q)E4(q)4 − E6(q)3 ·E4(q)

123
= q − 288q2 − 128844q3 − 2014208q4

+ 21640950q5 + 37107072q6 − 768078808q7 + 1184071680q8

+ 6140423133q9 − 6232593600q10 − 94724929188q11 ± . . . .

Now I have to say a few words on Siegel modular forms. We start from
a lattice

L = Z4 = Ze1 ⊕ Ze2 ⊕ Zf2 ⊕ Zf1

on which we have an alternating pairing which on the basis vectors is given
by

〈e1, f1〉 = 〈e2, f2〉 = −〈f1, e1〉 = −〈f2, e2〉 = 1 ,

and all other values of the pairing are zero. The group of automorphisms of
this symplectic form is a semi-simple group scheme Sp2/ Spec(Z). This is the
symplectic group of genus 2.

Its group of real points

Sp2(R) = {g ∈ GL4(R) | 〈gx, gy〉 = 〈x, y〉}

contains U(2) as a maximal compact subgroup and we can form the quotient
space

H2 = Sp2(R)/U(2) .

This is the space of symmetric 2 × 2 matrices

Z = X + iY

with complex entries whose imaginary part Y is positive definite. Hence we
have a complex structure on this space. This complex structure can also
be seen in the following way: let P (C) in Sp2(C) be the stabilizer of the
isotropic plane {e1 − if1, e2 − if2} ⊂ C4, then we have an open embed-
ding

H2 = Sp2(R)/U(2)↪−→Sp2(C)/P (C) ,

the group SU(2) is the group of real points of P (C) intersected with its
complex conjugate P̄ (C). The object on the right is the Grassmann vari-
ety of isotropic complex planes in (C4, 〈 , 〉). It is projective and of di-
mension 3. The group Γ = Sp2(Z) acts upon H2 and the quotient Γ\H2

is a quasiprojective algebraic variety over C. We have a homomorphism
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P (C) → GL2(C). For any pair of integers i ≥ 0, j the holomorphic repre-
sentation

ρ : GL2(C) −→ Symi(C2) ⊗ detj

defines a holomorphic vector bundle Eij on the flag variety Sp2(C)/P (C)
which is Sp2(C)-equivariant. Hence its restriction – also called Eij – to H2

is a Sp2(R) equivariant holomorphic bundle on H2 and hence descends to
a holomorphic bundle on Γ\H2. We can consider the space of holomorphic
sections

H0(Γ\H2, Eij) ,

and define the subspace of modular forms Mij (which satisfy some growth
condition) and the subspace Sij of cusp forms; these are rapidly decreasing at
infinity. These spaces are called the spaces of modular forms (cusp forms) of
weight i, j. (See remark above.)

There are formulas by R. Tsushima for the dimensions of these spaces Sij
(Riemann–Roch–Hirzebruch or the trace formula), and for small values i, j
the dimensions are zero. We say that i, j is a regular pair if i > 0, j > 3. We
have 29 cases of regular pairs i, j where Sij is of dimension one.

2 The Hecke Algebra and a Congruence

Whenever we have such a space of modular forms we have an action of the
algebra of Hecke operators on it. This is an algebra generated by operators Tp
(for Sl2(Z)) and T (ν)

p , ν = 1, 2 (for Sp2(Z)), which are attached to a prime p
and which induce endomorphisms T (ν)

p : Sij → Sij , and which commute with
each other. If we pick a prime, then we can consider the matrix

⎛

⎜
⎜
⎝

p 0
p

1
0 1

⎞

⎟
⎟
⎠

which is in GSp2(Q), and if f(Z) ∈ H0(Γ\H2, Eij), then f

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

p 0
p

1
0 1

⎞

⎟
⎟
⎠Z

⎞

⎟
⎟
⎠

is not invariant under Γ ; it is only a section in

H0(Γ0(p)\H2, Eij) ,

where Γ0(p) ⊂ Γ is a subgroup of finite index. We can form a trace by summing
over Γ0(p)\Γ and up to a normalizing factor this will be our operator

T (1)
p : Sij −→ Sij .
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If now dimSij = 1, then the operator T (1)
p : Sij → Sij induces the multi-

plication by a number λ(p) on Sij and if j ≥ 3, then we get a sequence of
integers

{λ(p)}p∈Primes

which, of course, depends on i, j.
We also have the Hecke operators for classical modular forms, and our

cusp form f of weight 22 is also an eigenform for the operators Tp. In
this case the situation is simple. Because f is normalized, i.e. a1 = 1, we
have

Tpf = apf

where ap is the p-th Fourier coefficient. We have dimS4,10 = 1 and formulate
the conjecture
Conjecture: For S4,10 we have a congruence

λ(p) ≡ p8 + ap + p13 mod41 for all primes p .

Prop. The conjecture holds for 2 ≤ p ≤ 11.

One might say that this is really not so much evidence for the conjec-
ture. But here are certain numbers, namely, 4, 10, 22, 8, 13 and 41, which
seem to be somewhat arbitrary. I did not play with these numbers un-
til I found a congruence. I picked all these numbers in advance and only
then I checked the congruence, which I expected to be true for this specific
choice.

The congruence is a generalization of a classical congruence. If we write
the Δ-function

Δ(z) = q − 24q2 + 252q3 − 1472q4 + 4830q5 ± . . . =
∞∑

n=1

τ(n)qn ,

then we have the famous Ramanujan congruence

τ(p) ≡ p11 + 1 mod 691 for all primes p .

But there is a difference: Usually people interpret this last congruence as
a congruence between the q-expansions of two modular forms, namely the
Δ-function and the Eisenstein series E12(z). Since the Fourier coefficients
are the same as the eigenvalues of the Hecke operators we also get the
congruence between the eigenvalues. For the congruence between the Siegel
modular form and the elliptic modular form we only have a congruence be-
tween Hecke eigenvalues. I do not see a congruence between Fourier coeffi-
cients.

I want to say something about the numbers, how I get them and I want
to say a few words about the meaning of this congruence.
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3 The Special Values of the L-function

We start from our modular cusp form of weight 22

f(q) = q − 288q2 − 128844q3 − 2014208q4 + 21640950q5 + . . . =
∞∑

n=1

anq
n ,

we have its associated L-function L(f, s) =
∑∞

n=1
an

ns , and because f is an
eigenform for the Hecke algebra this L-function has an Euler product expan-
sion

L(f, s) =
∞∑

n=1

an
ns

=
∏

p

1
1 − app−s + p21−2s

.

Actually it is better to consider the Mellin transform
∫ ∞

0

f(iy)ys
dy

y
=

Γ (s)
(2π)s

· L(f, s) = Λ(f, s) .

From this integral representation we easily get the functional equation

Λ(f, 22 − s) = −Λ(f, s) .

Now we consider the “special” values Λ(f, 21), Λ(f, 20), . . . , Λ(f, 11). It follows
from the theory of modular symbols (Manin–Vishik) that there exist two real
numbers Ω−, Ω+ �= 0 (the periods) such that

Λ(f, 21)
Ω−

,
Λ(f, 20)
Ω+

,
Λ(f, 19)
Ω−

, . . . ∈ Q

These periods are only defined up to elements in Q×, but a closer look allows
us to pin them down up to a factor in Z× = {±1}. In this case we can simply
try to normalize them such that

{
Λ(f, 21)
Ω−

,
Λ(f, 19)
Ω−

, . . . ,
Λ(f, 11)
Ω−

}

and {
Λ(f, 20)
Ω+

, . . . ,
Λ(f, 14)
Ω+

,
Λ(f, 12)
Ω+

}

are sets of co-prime integers. Of course, it is not so difficult to produce these
lists of integers. (From this list we conclude that the normalization of Ω− was
not the right one. This is related to the fact that

131 · 593 | ζ(−21) ,

and this produces a congruence between f and an Eisenstein series

ap ≡ p21 + 1 mod 131 · 593 .
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This forces us to replace Ω− by 131 ·593 ·Ω−.) With this modification the list
for the odd case is

{25·33·56·7·13·17·19/(131·593), 25·3·52·13·17 , 2·3·53·7·13, 2·52·13·17, 537, 0}

and for the even case

{25 · 33 · 5 · 19, 23 · 7 · 132, 3 · 5 · 7 · 13, 2 · 3 · 41, 2 · 3 · 7} .

We have exactly one “large” prime dividing a value. This is

41 | Λ(f, 14)
Ω+

,

and this divisibility is the source for the congruence above.

4 Cohomology with Coefficients

To explain this connection I have to recall some other facts from the theory
of Siegel modular varieties. The space

Γ\H2

can be interpreted as the parameter space of principally polarized abelian
surface over C. Roughly, we can attach to a point in H2 a triple

〈L, 〈 , 〉 , I〉 = AI

where I is a complex structure on L⊗R, which is an isometry for the pairing
and s.t. the associated hermitian form is positive definite. (I personally prefer
to view H2 as the space of such complex structures on L⊗ R.) This AI is an
abelian surface and AI

∼= AI′ if there is a γ ∈ Γ such that γI = I ′, and this γ
provides an isomorphism γ∗ : AI

∼= AI′ . Here we encounter a minor difficulty,
because γ is not unique, and γ∗ depends on the choice of γ. Therefore we
can not attach an abelian variety to a point Ĩ ∈ Γ\H2. But if we pass to
a suitably small normal congruence subgroup Γ ′ ⊂ Γ then it is clear that
we have a family π : A → Γ ′\H2 of principally polarized abelian varieties
over Γ ′\H2. Then the family of cohomology groups H1(AĨ ,Z) defines a local
system of free Z-modules of rank 4 over Γ ′\H2. This local system descends to
a sheaf on Γ\H2.

This sheaf is also obtained from the standard representation

ρ10 : Γ −→ Gl(L) = Gl(M1,0) .

We define a representation ρ01 : Γ → Gl(M0,1) where the module M0,1 is
defined by

Λ2M1,0 = M0,1 ⊕ Z .
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We can form the modules Symm(M1,0) ⊗ Symn(M0,1) and these modules
have a unique submodule (or quotient)

ρm,n : Γ → Gl(Mm,n) ,

which is defined be the requirement that it has the largest dominant weight
amoung all highest weights of submodules.

(The representations ρ10 (resp. ρ01) have highest weight γβ (resp. γα),
which are the two fundamental dominant weights. Then Mm,n is the unique
irreducible submodule with highest weight λ = mγβ + nγα. At this point
is an ambiguity: Instead of taking the submodule we could take the unique
irreducible quotient having this fundamental weight (actually this ambiguity
already occurs when we form the symmetric products). Then the submodule
will map injectively into the quotient and the image is a submodule of finite
index. This index will be only divisible by “small” primes ≤ m,n, they do not
play a role in our considerations, in other words it does not matter whether
we take the submodule or the quotient.)

These representations yield sheaves M̃m,n of Z-modules. For an open set
U ⊂ Γ\H2 and its inverse image Ũ ⊂ H2 we have

M̃m,n(U) = {f : Ũ → Mm,n|f locally constant and
f(γu) = ρn,m(γ)f(u) for all γ ∈ Γ} .

For m even, these modules give us sheaves M̃m,n on the space Γ\H2 which
are almost local systems. We can consider the cohomology groups

Hi
c(Γ\H2,M̃m,n), Hi(Γ\H2,M̃m,n)

where H•
c denotes the cohomology with compact support. These cohomology

groups sit in an exact sequence

→ Hi−1(∂(Γ\H2),M̃m,n) → Hi
c(Γ\H2,M̃m,n) → Hi(Γ\H2,M̃m,n)

→ Hi(∂(Γ\H2),M̃m,n) → ,

where ∂(Γ\H2) is the boundary of the Borel–Serre compactification.
We denote byHi

! (Γ\H2,M̃m,n) the image of the cohomology with compact
supports in the cohomology. The coefficient system M̃m,n is called regular if
n,m > 0. In this case all cohomology groups Hi

! (Γ\H2,M̃m,n⊗Q) vanish for
i �= 3. We have a Hodge filtration on H3

! (Γ\H2,M̃m,n ⊗ C), and the lowest
step of this filtration is given by (Faltings)

Sm,n+3 ↪−→ H3
! (Γ\H2,M̃m,n ⊗ C) .

To get the connection to the conjecture we choose m = 4, n = 7.
Now I formulate a second conjecture. We invert some small primes (say

≤22), and we denote the resulting ring by R = Z[12 , . . . ,
1
19 ].
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Then we get an exact sequence (assumption)

0 → H3(Γ\H2,M̃4,7 ⊗R) → H3(Γ\H2,M̃4,7 ⊗R)

→ H3
(
∂(Γ\H2),M̃4,7 ⊗R

)
→ 0 ,

I know that this is true if I replace R by Q.
Now we can show that we have an action of the Hecke operators on these

modules and we have

H3(∂(Γ\H2),M̃4,7 ⊗R) = R

where T (1)
(p) acts on R with the eigenvalue

p8 + ap + p13 .

(For this assertion I refer to my lecture notes volume or [Modsym].)
Now we formulate another assumption

H3
! (Γ\H2,M̃4,7 ⊗R) ∼= R4 .

Then we know that T (1)
p acts as a scalar by multiplication by λ(p) on this

cohomology group. We have λ(2) �= 28 +a2+213 and hence we can decompose

H3(Γ\H2,M̃4,7 ⊗ Q) = H3
! (Γ\H2,M̃4,7 ⊗ Q) ⊕H3

Eis(Γ\H2,M̃4,7 ⊗ Q) .

Now the main assertion of the second conjecture is:

If we intersect this decomposition with the integral cohomology, then

H3(Γ\H2,M̃4,7 ⊗R) ⊃ H3
! (Γ\H2,M̃4,7 ⊗R) ⊕H3

Eis(Γ\H2,M̃4,7 ⊗R) .

and the index of the direct sum in H3(Γ\H2,M̃4,7 ⊗ R) is divisible by 41.
(The denominator of the Eisenstein class is divisible by 41.)

The point with this second conjecture is that it implies the first conjecture
and it can be verified on a computer. To do this we have to find a way to
compute the cohomology groups. This can be done by using a suitable acyclic
covering of Γ\H2, and then the cohomology is computed from the Čech com-
plex of this covering. We could also try to use a cell decomposition. This
method will allow us to check the two assumptions. I think the problem will
be that the number of cells will not be so big, but we have nontrivial coef-
ficient systems, its dimension in a general point is 1820. It will be still more
difficult to implement the action of the Hecke operator, because one has to
pass to a finer cell decomposition, which also computes the cohomology and
where the Hecke operators can be implemented as a homomorphism between
the two complexes.

Of course, we could also compute mod 41, then we find λ(2) ≡ 28+a2+213

mod 41, and our conjecture would say that T (1)
2 mod 41 is not diagonalizable.
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Why didn’t I do this earlier? In my lecture notes volume (Chap III, 3.1)
I discuss the above conjecture in greater generality and I raise the question
whether computer experiments should be made. There I say that these com-
putations would “. . . einen beträchtlichen Aufwand erfordern, aber die Frage
entscheiden, ob es sich lohnt, das Problem zu behandeln”.

Recently I got some kind of unexpected help from C. Faber und G. van der
Geer. They produced some tables of eigenvalues λ(p) for certain local systems
Mm,n with some small values n,m.

They make use of the fact that Γ\H2 is actually the set of the complex
points of a quasiprojective scheme A2/ Spec(Z), and that our local systems
M̃m,n have an algebraic-geometric meaning. They are “motivic” sheaves, and
it is not quite clear what that means. But in any case we can pick a prime � and
then M̃m,n⊗Z� will be an �-adic sheaf on A2. Then we have the Grothendieck
fixed point formula

tr (Φp | H•
c (A2 ×Z F̄p,M̃m,n ⊗ Z�)) =

∑

x∈A2(Fp)

tr (Φp | M̃m,n,x) ,

where Φp is the Frobenius at p. The right hand side can be computed because
we have the modular interpretation.

The left hand side consists of several pieces (Eisenstein cohomology, endo-
scopic contributions, if m = 0 there may be some Saito–Kurokawa lifts), and
the trace of Φp on these pieces can be computed explicitly (for small n,m)
and can be expressed in terms of modular forms for Sl2(Z) and in terms of
algebraic Hecke characters. This can be brought to the right hand side, and
the resulting expression can be computed explicitly for small values n,m.

Then we are left with the “genuine” part in H3
c (A2 ×Z F̄p,M̃m,n ⊗ Z�),

and this part will be of rank 4 · dimSm,n+3. If now dimSm,n+3 = 1, then this
“genuine” part will be of rank 4 and we have

tr (Φp | H3
genuine(A2 ×Z F̄p,M̃m,n ⊗ Z�)) = λ(p) .

But now the λ(p) can be computed from the right hand side, if we take the
effort to compute the sum over A2(Fp) and the non “genuine” traces.

After I saw the preprint by C. Faber and G. van der Geer I realized that I
might be able to check the first conjecture in a special case. I had to go through
the values L(f,k)

Ωε(k)
for the modular cusp form f of weight ≤ 22. (For higher

weights except 26 the dimension of these space are ≥ 2. The eigenvalues of the
Hecke operators are algebraic integers and also the normalized L-values will
be algebraic integers, and the computations will be much more complicated.)
I had to find a “large” prime dividing one of the values, and I found for our
form of weight 22

41 | L(f, 14)
Ω+

.

I computed the numbers 4, 7 and 7 + 3 = 10 from these data and wrote an
e-mail to G. van der Geer inquiring the dimension of S4,10. Several answers
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were possible. The dimension could be zero. This would be devastating. The
dimension could be >1, this would mean a horrible additional computational
effort. But the answer was

Re: Kohomologie lokaler Systemen
Lieber Guenter,
die Dimension ist dann 1. Die ersten Eigenwerte sind wie folgt:

−24 · 3 · 5 · 7
23 · 34 · 5 · 17

−22 · 3 · 52 · 17 · 1439

24 · 52 · 72 · 17 · 31 · 59

23 · 3 · 11 · 17 · 5650223

d.h. fuer die Primzahlen 2, 3, 5, 7, 11.
Mit bestem Gruss, Gerard

I read this message in my office in the Beringstrasse and I had the values of
the ap at home on my laptop. After two oral examinations of computer science
students I went home and checked the numbers. I was extremely pleased when
I found that the congruences hold.

(Actually van der Geer was also pleased because he considered it as con-
firmation of his computations with Faber. (I have multiplied the values in his
table by −1, probably this has to be done because the trace occurs in odd
degree))

5 Why the Denominator?

We stick to the case M4,7, and f is still our modular cusp form of weight 22.
If we had a splitting under the Hecke-algebra

H3(Γ\H2,M̃4,7 ⊗R) = H3
! (Γ\H2,M̃4,7 ⊗R) ⊕H3(∂(Γ\H2),M̃4,7 ⊗R) ,

then we could construct a mixed Tate motive X (f) which sits in an exact
sequence

0 → R(−8) → X (f) → R(−13) → 0

and hence defines an element in the extension group

[X (f)] ∈ Ext1MM(R(−13), R(−8)) = Ext1MM(R(−5), R(0)) .

(For more details see [Mixmot].) This Ext1 group is some kind of undefined
object, but we can attach to our object X (f) elements in two other extension
groups, namely:
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(i) an extension class in the category of mixed Hodge structures

[X (f)]BdRh ∈ Ext1BdRh(R(−13), R(−8)) = Ext1BdRh(R(−5), R(0)) = R

(See MixMot 1.5.2). It is some kind of general belief that those elements in
the extension group of mixed Hodge structures, which come from mixed
motives X over Z, are in fact elements of the form

[XBdRh] = a(X )ζ′(−4) with a(X ) ∈ Q .

This last conjecture can be verified in our particular case we have the
formula

[XBdRh(f)] = c ·
Λ(f,13)
Ω−

Λ(f,14)
Ω+

ζ′(−4)

where c is a rational number containing only small primes.
(ii) For any prime � we can attach an �-adic extension class

[X (f)]� ∈ Ext1Gal(R�(−13), R�(−8)) = H1(Gal(Q̄/Q, )R�(5))

and this cohomology group contains certain specific elements c�(5), these
are the Soulé elements. These elements should also be generators of the
image of

Ext1MM(R�(−13), R�(−8)) → H1(Gal(Q̄/Q), R�(5))

if we tensor by Q. We write the Galois cohomology group multiplicatively
and now it is general belief that we must have

[X (f)]� = c�(5)
c·

Λ(f,13)
Ω−

Λ(f,14)
Ω+ .

From now on we choose � = 41 (of course we could replace � by 41 in the
following considerations but this causes some confusion), then the value of the
�-adic ζ-function ζ�(5) �≡ 0 mod � and this implies that c�(5) is a primitive
element in the Galois cohomology group. But the rational exponent has � in
its denominator, this contradicts the existence of our mixed motive and this
motive has been constructed under the assumption that � does not divide the
denominator of the Eisenstein class.

6 Arithmetic Implications

We get a diagram (still � = 41) of �-adic Galois modules

0 → H3
! (A2 ×Z Q̄,M̃4,7 ⊗R�) → H3(A2 ×Z Q̄,M̃4,7 ⊗R�) → R�(−13) → 0

∪ r ↗
H3

! (A2 ×Z Q̄,M̃4,7 ⊗R�) ⊕R�(−13)
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where the image of the homomorphism r is contained in �R�(−13). This gives
us an injective homomorphism

ψ : Z/(�)(−13) ↪−→ H3
! (A2 ×Z Q̄,M̃4,7 ⊗ Z/(�)) .

The module H3
! (A2×Z Q̄,M̃4,7⊗Z/(�)) is of dimension 4 over F� and the cup

product provides a non -degenerated pairing of this module with itself into
Z/(�)(−21). The orthogonal complement Y of the image ψ(Z/(�)(−13)) is of
dimension 3 over F� and we get two exact sequences

0 → Z/(�)(−13) → Y → X → 0

and

0 → X → H3
! (A2 ×Z Q̄,M̃4,7 ⊗ Z/(�))/ψ(Z/(�)(−13)) → Z/(�)(−8) → 0 .

The module X is actually the reduction of the �-adic representation attached
to f mod �. It also has a non degenerate pairing with itself with values in
Z/(�)(−21) and the two sequences are dual to each other. The sequences give
us two extension classes, the first one a class

[Y ] ∈ Ext1Gal(X,Z/(�)(−13)) =H1(Gal(Q̄/Q),Hom(X,Z/(�)(−13))) ∼−→
H1(Gal(Q̄/Q), X ⊗ Z/(�)(8))

and under the isomorphism [Y ] is mapped to the extension class of the second
sequence.

Now we can hope that this extension class is actually an element in the
Selmer group of the Scholl-Deligne motive M(f) attached to f , and that it is
in fact an element of order �. If this turns out to be the case, then we have
produced an element in the Selmer group whose existence is predicted by the
general philosophy of the Bloch–Kato–Birch–Swinnerton Dyer conjecture.
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Appendix

In the meanwhile C. Faber, G. van der Geer and I did some further compu-
tations. We have still another one dimensional space of modular cusp forms,
this is spanned by the modular form

g(q) = Δ(q)E6(q)E4(q)2 =

q − 48q2 − 195804q3 − 33552128q4 − 741989850q5 + 9398592q6 + . . .

of weight 26. We have the following divisibilities by “large” primes

43|L(g, 23)
Ω−

, 97|L(g, 21)
Ω−

, 29|L(g, 19)
Ω−

.

The corresponding spaces of modular forms S18,5, S14,7, S10,9 have dimen-
sion 1.

Now let � be one of the primes 41, 43, 97, 29. Let

f(q) = q + a2q
2 + a3q

3 . . .

be the corresponding modular form of weight 22 or 26. Let Si,j be the cor-
responding one dimensional space of Siegel modular forms and let M̃i,j−3 =
M̃m,n be the corresponding local system. The Hecke algebra acts on the co-
homology

H3
! (A2 ×Z Q̄,M̃m,n ⊗R�)

and we should find an isotypical submodule of rank 4 on which the Hecke
operators act by the scalar by which they acts on Si,j . The local Hecke algebra
at a prime p is generated by two Hecke operators Tp,α, Tp,β which correspond
to the double classes

Sp2(Zp)

⎛

⎜
⎜
⎝

p 0
p

1
0 1

⎞

⎟
⎟
⎠Sp2(Zp) and Sp2(Zp)

⎛

⎜
⎜
⎝

p2 0
p
p

0 1

⎞

⎟
⎟
⎠Sp2(Zp) .

(See [Ha-Eis] 3.1.2.1) So we get sequences of eigenvalues

{λα(p), λβ(p)}p∈Primes

Now we state the conjecture that in all four cases we have congruences

λα(p) ≡ pn+1 + ap + pn+m+2 mod �

and
λβ(p) ≡ ap(1 + pm+1) + (p2 − 1)pnα+nβ mod �

for all primes p.



A Congruence Between a Siegel and an Elliptic Modular Form 261

For our four primes � above and the corresponding modular forms the
conjecture for λα(p) has been checked for all p ≤ 37.

The general rule is: If k is even and f an eigenform of weight k. Let
K = Q(f) be its field of definition. Let us assume that a large prime l divides
L(f, ν)/Ωε(ν). Then we solve the equations

k = 2n+m+ 4, ν = n+m+ 3 .

Then we can construct an Eisenstein class in H3
! (Γ\H2,M̃m,n ⊗ K) whose

denominator is divisible by l.

Added on April 3, 2003 (the day when the first Abel-Prize was given to
J.-P. Serre):
I also checked congruences for the modular cusp forms of weight 24. In this
case we have two eigenforms

f(q) =
∞∑

n

anq
n = q − (540 − 12

√
144169)q2 + (169740 + 576

√
144169)q3 . . .

where we take the positive root-, and we have the conjugate eigenform

f ′(q) =
∞∑

n

a′nq
n .

We put ω = 1+
√

144169
2 . In this case we find periods Ω±, Ω′± such that

L(f, k)
Ωε(k)

∈ Z[ω],
L(f ′, k)
Ω′
ε(k)

∈ Z[ω] .

We normalize the periods such that these numbers for a fixed choice of the
sign ε(k) are coprime and such that L(f,k)

Ωε(k)
and L(f ′,k)

Ω′
ε(k)

are conjugate.

The primes 73 and 179 split in Q(
√

144169) and for 73 the decomposition
is

l = (73, 53 + 36
√

144169), l′ = (73, 53 − 36
√

144169)

(73) = ll′ .

We find L(f,19)
Ω− ∈ l. The corresponding space S12,7 has dimension 1, if λ(p) is

the sequence of eigenvalues the congruence

λ(p) ≡ p5 + ap + p18 mod l

has been checked for all primes p ≤ 19. Of course we get a second congruence
if we conjugate it.

For 179 we have a splitting

(179) = ll′ ,
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with l = (179, 54+61
√

144169), l′ = (179, 54−61
√

144169).We find L(f,17)
Ω− ∈ l,

again the corresponding space S8,9 has dimension 1. If λ(p) is the sequence of
eigenvalues the congruences

λ(p) ≡ p7 + ap + p16 mod l

and of course its conjugates have been checked for the same set of primes p.
(There is a slight risk that I mixed up the two primes l, l′.)

Added on March 25, 2005:
When lecturing on this subject, I had sometimes difficulties to get the numbers
right. Therefore I formulate the rules:

We start from an elliptic modular form f for Sl2(Z) which is of (even)
weight k, it should be an eigenform for the Hecke-algebra. Then its eigenvalues
generate a field Q(f).

Then we look at the values
{
Λ(f, k − 1)

Ω+
,
Λ(f, k − 3)

Ω+
, . . . ,

Λ(f, k − ν)
Ω+

, . . . ,
Λ(f, k − μ(k))

Ω+

}

and
{
Λ(f, k − 2)

Ω+
,
Λ(f, k − 4)

Ω+
, . . . ,

Λ(f, k − ν)
Ω+

, . . . ,
Λ(f, k − μ′(k))

Ω+

}
,

where in the first row the ν are odd and in the second row they are even. The
last value is the one which is nearest to the central point k

2 from above.
Then we look for large primes

�|Λ(f, k − ν)
Ωε(ν)

.

Now we choose the highest weight λ = mγβ + nγα. The numbers m,n must
satisfy

2n+m+ 3 = n+ 1 + n+m+ 2 = k − 1 and n+m+ 3 = k − ν

hence we get
n = ν − 1 and m = k − 2ν − 2




