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Summary. These are the lecture notes of the lectures on Siegel modular forms at
the Nordfjordeid Summer School on Modular Forms and their Applications. We give
a survey of Siegel modular forms and explain the joint work with Carel Faber on
vector-valued Siegel modular forms of genus 2 and present evidence for a conjecture
of Harder on congruences between Siegel modular forms of genus 1 and 2.

1 Introduction

Siegel modular forms generalize the usual modular forms on SL(2,Z) in that
the group SL(2,Z) is replaced by the automorphism group Sp(2g,Z) of a uni-
modular symplectic form on Z2g and the upper half plane is replaced by the
Siegel upper half plane Hg. The integer g ≥ 1 is called the degree or genus.

Siegel pioneered the generalization of the theory of elliptic modular forms
to the modular forms in more variables now named after him. He was moti-
vated by his work on the Minkowski–Hasse principle for quadratic forms over
the rationals, cf., [96]. He investigated the geometry of the Siegel upper half
plane, determined a fundamental domain and its volume and proved a central
result equating an Eisenstein series with a weighted sum of theta functions.

No doubt, Siegel modular forms are of fundamental importance in number
theory and algebraic geometry, but unfortunately, their reputation does not
match their importance. And although vector-valued rather than scalar-valued
Siegel modular forms are the natural generalization of elliptic modular forms,
their reputation amounts to even less. A tradition of ill-chosen notations may
have contributed to this, but the lack of attractive examples that can be han-
dled decently seems to be the main responsible. Part of the beauty of elliptic
modular forms is derived from the ubiquity of easily accessible examples. The
accessible examples that we have of Siegel modular forms are scalar-valued
Siegel modular forms given by Fourier series and for g > 1 it is difficult to
extract the arithmetic information (e.g., eigenvalues of Hecke operators) from
the Fourier coefficients.
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The general theory of automorphic representations provides a generaliza-
tion of the theory of elliptic modular forms. But despite the obvious merits of
this approach some of the attractive explicit features of the g = 1 theory are
lost in the generalization.

The elementary theory of elliptic modular forms (g = 1) requires little
more than basic function theory, while a good grasp of the elementary the-
ory of Siegel modular forms requires a better understanding of the geom-
etry involved, in particular of the compactifications of the quotient space
Sp(2g,Z)\Hg. A singular compactification was provided by Satake and Baily-
Borel and a smooth compactification by Igusa in special cases and by Mumford
c.s. by an intricate machinery in the general case.

The fact that Sp(2g,Z)\Hg is the moduli space of principally polar-
ized abelian varieties plays an important role in the arithmetic theory of
modular forms. Even for g = 1 one needs the understanding of the ge-
ometry of moduli space as a scheme (stack) over the integers and its co-
homology as Deligne’s proof of the estimate |a(p)| ≤ 2p(k−1)/2 (the Ra-
manujan conjecture) for the Fourier coefficients of a Hecke eigenform of
weight k showed. For quite some time the lack of a well-developed the-
ory of moduli spaces of principally polarized abelian varieties over the in-
tegers formed a serious hurdle for the development of the arithmetic the-
ory. Fortunately, Faltings’ work on the moduli spaces of abelian varieties
has provided us with the first necessary ingredients of the arithmetic the-
ory, both the smooth compactification over Z as well as the Satake compact-
ification over Z. It also gives the analogue of the Eichler–Shimura theorem
which expresses Siegel modular forms in terms of the cohomology of local
systems on Sp(2g,Z)\Hg. The fact that the vector-valued Siegel modular
forms are the natural generalization of the classical elliptic modular forms
becomes apparent if one studies the cohomology of the universal abelian
variety.

Examples of modular forms for SL(2,Z) are easily constructed using Eisen-
stein series or theta series. These methods are much less effective when deal-
ing with the case g ≥ 2, especially if one is interested in vector-valued Siegel
modular forms. Some examples can be constructed using theta series, but it
is not always easy to calculate the Fourier coefficients and more difficult to
extract the eigenvalues of the Hecke operators.

We show that there is an alternative approach that uses the analogue of
the classical Eichler–Shimura theorem. Since cohomology of a variety over
a finite field can be calculated by determining the number of rational points
over extension fields one can count curves over finite fields to calculate traces
of Hecke operators on spaces of vector-valued cusp forms for g = 2. This is
joint work with Carel Faber. It has the pleasant additional feature that our
forms all live in level 1, i.e. on the full Siegel modular group.

We illustrate this by providing convincing evidence for a conjecture of
Harder on congruences between the eigenvalues of Siegel modular forms of
genus 2 and elliptic modular forms.
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In these lectures we concentrate on modular forms for the full Siegel modu-
lar group Sp(2g,Z) and leave modular forms on congruence subgroups aside.
We start with the elementary theory and try to give an overview of the vari-
ous interesting aspects of Siegel modular forms. An obvious omission are the
Galois representations associated to Siegel modular forms.

A good introduction to the Siegel modular group and Siegel modular forms
is Freitag’s book [30]. The reader may also consult the introductory book by
Klingen [61]. Two other references to the literature are the two books [94,95]
by Shimura. Vector-valued Siegel modular forms are also discussed in a paper
by Harris, [46].

Acknowledgements. I would like to thank Carel Faber, Alex Ghitza, Chris-
tian Grundh, Robin de Jong, Winfried Kohnen, Sam Grushevsky, Martin
Weissman and Don Zagier for reading the manuscript and/or providing help-
ful comments. Finally I would like to thank Kristian Ranestad for inviting me
to lecture in Nordfjordeid in 2004.

2 The Siegel Modular Group

The ingredients of the definition of ‘elliptic modular form’ are the group
SL(2,Z), the upper half plane H, the action of SL(2,Z) on H, the concept
of a holomorphic function and the factor of automorphy (cz + d)k. So if we
want to generalize the concept ‘modular form’ we need to generalize these
notions. But the upper half plane can be expressed in terms of the group as
SL(2,Z)/SO(2), where SO(2) = U(1), a maximal compact subgroup, is the
stabilizer of the point i =

√
−1. Therefore, the group is the central object and

we start by generalizing the group. The group SL(2,Z) is the automorphism
group of the lattice Z2 with the standard alternating form 〈 , 〉 with

〈(a, b), (c, d)〉 = ad− bc .

This admits an obvious generalization by taking for g ∈ Z≥1 the lattice Z2g

of rank 2g with basis e1, . . . , eg, f1, . . . , fg provided with the symplectic form
〈 , 〉 with

〈ei, ej〉 = 0, 〈fi, fj〉 = 0 and 〈ei, fj〉 = δij ,

where δij is Kronecker’s delta. The symplectic group Sp(2g,Z) is by definition
the automorphism group of this symplectic lattice

Sp(2g,Z) := Aut(Z2g , 〈 , 〉) .

By using the basis of the e’s and the f ’s we can write the elements of this
group as matrices (

A B
C D

)
,

where A, B, C and D are g × g integral matrices satisfying ABt = BAt,
CDt = DCt and ADt − BCt = 1g. Here we write 1g for the g × g identity
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matrix. For g = 1 we get back the group SL(2,Z). The group Sp(2g,Z) is
called the Siegel modular group (of degree g) and often denoted Γg.

Exercise 1. Show that the conditions on A,B,C and D are equivalent to
Ct ·A−At · C = 0, Dt · B −Bt ·D = 0 and Dt ·A−Bt · C = 1g.

The upper half plane H can be given as a coset space SL(2,R)/K
with K = U(1) a maximal compact subgroup, and this admits a general-
ization, but the desired generalization also admits a description as a half
plane and with this we start: the Siegel upper half plane Hg is defined
as

Hg = {τ ∈ Mat(g × g,C) : τ t = τ, Im(τ) > 0} ,

consisting of g × g complex symmetric matrices which have positive definite
imaginary part (obtained by taking the imaginary part of every matrix entry).
Clearly, we have H1 = H.

An element γ =
(
A B
C D

)
of the group Sp(2g,Z), sometimes denoted by

(A,B;C,D), acts on the Siegel upper half plane by

τ �→ γ(τ) = (Aτ +B)(Cτ +D)−1 . (1)

Of course, we must check that this is well-defined, in particular that Cτ +D
is invertible. For this we use the identity

(Cτ̄ +D)t(Aτ +B) − (Aτ̄ +B)t(Cτ +D) = τ − τ̄ = 2iy , (2)

where we write τ = x + iy with x and y symmetric real g × g matrices. We
claim that det(Cτ + D) �= 0. Indeed, if the equation (Cτ + D)ξ = 0 has
a solution ξ ∈ Cg then equation (2) implies ξ̄tyξ = 0 and by the assumed
positive definiteness of y that ξ = 0.

One can also check directly the identity

(Cτ +D)t(γ(τ) − γ(τ)t)(Cτ +D)

= (Cτ +D)t(Aτ +B) − (Aτ +B)t(Cτ +D) = τ − τ t = 0

that shows that γ(τ) is symmetric. Moreover, again by (2) and this last iden-
tity we find the relation between y′ = Im(γ(τ)) and y

(Cτ̄ +D)ty′(Cτ +D) =
1
2i

(Cτ̄ +D)t(γ(τ) − (γ(τ))t)(Cτ +D) = y

and this shows that y′ = Im(γ(τ)) is positive definite. Using these details
one easily checks that (1) defines indeed an action of Sp(2g,Z), and even of
Sp(2g,R) on Hg.
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The group Sp(2g,R)/{±1} acts effectively on Hg and it is the biholomor-
phic automorphism group of Hg. The action is transitive and the stabilizer of
i 1g is

U(g) :=
{(

A B
−B A

)
∈ Sp(2g,R) : A ·At +B ·Bt = 1g

}
,

the unitary group. We may thus view Hg as the coset space Sp(2g,R)/U(g)
of a simple Lie group by a maximal compact subgroup (which is unique up to
conjugation).

The disguise of H1 as the unit disc {z ∈ C : |z| < 1} also has an ana-
logue for Hg. The space Hg is analytically equivalent to a bounded symmetric
domain

Dg := {Z ∈ Mat(g × g,C) : Zt = Z, Zt · Z < 1g}

and the generalized Cayley transform

τ �→ z = (τ − i1g)(τ + i1g)−1, z �→ τ = i · (1g + z)(1g − z)−1

makes the correspondence explicit. The ‘symmetric’ in the name refers to the
existence of an involution on Hg (or Dg)

τ �→ −τ−1 (z �→ −z)

having exactly one isolated fixed point. Note that we can write Hg also as
Sg+ iS+

g with Sg (resp. S+
g ) the R-vector space (resp. cone) of real symmetric

(resp. real positive definite symmetric) matrices of size g × g.
The group Sp(2g,Z) is a discrete subgroup of Sp(2g,R) and acts properly

discontinuously on Hg, i.e., for every τ ∈ Hg there is an open neighborhood U
of τ such that {γ ∈ Sp(2g,Z) : γ(U) ∩ U �= ∅} is finite. In fact, this follows
immediately from the properness of the map Sp(2g,R) → Sp(2g,R)/U(g).

For g = 1 usually one proceeds after these introductory remarks on the
action to the construction of a fundamental domain for the action of SL(2,Z)
and all the texts display the following archetypical figure.

Siegel (see [97]) constructed also a fundamental domain for g ≥ 2, namely
the set of τ = x+ iy ∈ Hg satisfying the following three conditions:
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1. We have | det(Cτ +D)| ≥ 1 for all (A,B;C,D) ∈ Γg;
2. the matrix y is reduced in the sense of Minkowski;
3. the entries xij of x satisfy |xij | ≤ 1/2.

Here Minkowski reduced means that y satisfies the two properties 1) htyh ≥
ykk (k = 1, . . . , g) for all primitive vectors h in Zg and 2) yk,k+1 ≥ 0 for
0 ≤ k ≤ g− 1. Already for g = 2 the boundary of this fundamental domain is
complicated; Gottschling found that it posesses 28 boundary pieces, cf., [39],
and the whole thing does not help much to understand the nature of the
quotient space Sp(2g,Z)\Hg.

The group Sp(2g,Z) does not act freely on Hg, but the subgroup

Γg(n) := {γ ∈ Sp(2g,Z) : γ ≡ 12g (mod n)}

acts freely if n ≥ 3 as is easy to check, cf. [89]. The quotient space (orbit
space)

Yg(n) := Γg(n)\Hg

is then for n ≥ 3 a complex manifold of dimension g(g + 1)/2. Note that the
finite group Sp(2g,Z/nZ) acts on Yg(n) as a group of biholomorphic auto-
morphisms and we can thus view

Sp(2g,Z)\Hg

as an orbifold (quotient of a manifold by a finite group).
The Poincaré metric on the upper half plane also generalizes to the Siegel

upper half plane. The corresponding volume form is given by

(det y)−(g+1)
∏

i≤j
dxij dyij

which is ∂∂ log det Im(τ)g . The volume of the fundamental domain was calcu-
lated by Siegel, [98]. If we normalize the volume such that it gives the orbifold
Euler characteristic the result is (cf. Harder [44])

vol(Sp(2g,Z)\Hg) = ζ(−1)ζ(−3) · · · ζ(1 − 2g)

with ζ(s) the Riemann zeta function. In particular, for n ≥ 3 the Euler number
of the manifold Γg(n)\Hg equals [Γg(1) : Γg(n)]ζ(−1) · · · ζ(1 − 2g).

We first present two exercises for the solution of which we refer to [30].

Exercise 2. Show that the Siegel modular group Γg is generated by the elem-

ents
(

1g s
0 1g

)
with s = st symmetric and the element

(
0 1g

−1g 0

)
.

Exercise 3. Show that Sp(2g,Z) is contained in SL(2g,Z).
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We close with another model of the domain Hg that can be obtained as
follows. Extend scalars of our symplectic lattice (Z2g , 〈 , 〉) to C and let Yg be
the Lagrangian Grassmann variety parametrizing totally isotropic subspaces
of dimension g:

Yg := {L ⊂ C2g : dim(L) = g, 〈x, y〉 = 0 for all x, y ∈ L} .

Since the group Sp(2g,C) acts transitively on the set of totally isotropic sub-
spaces we may identify Yg with the compact manifold Sp(2g,C)/Q, where Q
is the parabolic subgroup that fixes the first summand Cg. Consider now in
Yg the open set Y +

g of Lagrangian subspaces L such that −i〈x, x̄〉 > 0 for
all non-zero x in L. Then Y +

g is stable under the action of Sp(2g,R) and the
stabilizer of a point is isomorphic to the unitary group U(g). A basis of such

an L is given by the columns of a unique 2g × g matrix
(
−1g
τ

)
with τ ∈ Hg

and this embeds Hg in Yg as the open subset Y +
g ; for g = 1 we get the upper

half plane in P1. The manifold Yg is called the compact dual of Hg.

Remark 1. Just as for g = 1 we could consider congruence subgroups of
Sp(2g,Z), like for example Γg(n), the kernel of the natural homomorphism
Sp(2g,Z) → Sp(2g,Z/nZ) for natural numbers n. We shall stick to the full
symplectic group Sp(2g,Z) here.

3 Modular Forms

To generalize the notion of modular form as we know it for g = 1 we still
have to generalize the ‘automorphy factor’ (cz + d)k. To do this we consider
a representation

ρ : GL(g,C) → GL(V )

with V a finite-dimensional C-vector space.
For reasons that become clear later, it is useful to provide V with a her-

mitian metric ( , ) such that (ρ(g)v1, v2) = (v1, ρ(gt)v2) and we shall put
‖v‖ = (v, v)1/2. Such a hermitian metric can always be found and is unique
up to a scalar for irreducible representations.

Definition 1. A holomorphic map f : Hg → V is called a Siegel modular
form of weight ρ if

f(γ(τ)) = ρ(Cτ +D)f(τ)

for all γ =
(
A B
C D

)
∈ Sp(2g,Z) and all τ ∈ Hg, plus for g = 1 the requirement

that f is holomorphic at ∞.

Before we proceed, a word about notations. The subject has been plagued with
unfortunate choices of notations, and the tradition of using capital letters
for the matrix blocks of elements of the symplectic group is one of them.
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I propose to use lower case letters, so I will write f(γ(τ)) = ρ(cτ + d)f(τ) for
all γ = (a, b; c, d) ∈ Γg for our condition.

The modular forms we consider here are vector-valued modular forms. As
it turns out, the holomorphicity condition is not necessary for g > 1, see the
Koecher principle hereafter.

Modular forms of weight ρ form a C-vector space Mρ = Mρ(Γg) and we
shall see later (in Section 13) that all the Mρ are finite-dimensional. If ρ is
a direct sum of two representations ρ = ρ1 ⊕ ρ2 then Mρ is isomorphic to the
direct sum Mρ1 ⊕Mρ2 and this allows us to restrict ourselves to studying Mρ

for the irreducible representations of GL(g,C).
As is well-known (see [34], but see also the later Section 12), the irreducible

finite-dimensional representations of GL(g,C) correspond bijectively to the g-
tuples (λ1, . . . , λg) of integers with λ1 ≥ λ2 ≥ · · · ≥ λg, the highest weight
of the representation ρ. That is, for each irreducible V there exists a unique
1-dimensional subspace 〈vρ〉 of V such that ρ(diag(a1, . . . , ag)) acts on vρ by
multiplication by

∏g
i=1 a

λi

i . For example, the g-tuple (1, 0, . . . , 0) corresponds
to the tautological representation ρ(x) = x for x ∈ GL(g,C), while the deter-
minant representation corresponds to λ1 = . . . = λg = 1. Tensoring a given
irreducible representation with the k-th power of the determinant changes the
λi to λi + k. We thus can arrange that λg = 0 or that λg ≥ 0 (i.e. that the
representation is ‘polynomial’). Let R be the set of isomorphism classes of
representations of GL(g,C). This set forms a ring with ⊕ as addition and ⊗
as multiplication. It is called the representation ring of GL(g,C).

For g = 1 one usually forms a graded ring of modular forms by taking
M∗(Γ1) = ⊕Mk(Γ1). We can try do something similar for g > 1 and try to
make the direct sum ⊕ρ∈RMρ(Γg) into a graded ring. But of course, this is
a huge ring, even for g = 1 much larger than M∗(Γ1) since it involves also the
reducible representations and it is not really what we want.

The classes of the irreducible representations of GL(g,C) form a subset of
all classes of representations. For g = 1 and g = 2 the fact is that the tensor
product of two irreducible representations is a direct sum of irreducible repre-
sentations with multiplicity 1. In fact, for g = 1 the tensor product of the irre-
ducible representations ρk1 and ρk2 of degree k1+1 and k2+1 is the irreducible
representation ρk1+k2 . For g = 2, a case that will play a prominent role in these
lecture notes, we let ρj,k denote the irreducible representation of GL(2,C) that
is Symj(W )⊗ det(W )k with W the standard 2-dimensional representation; it
corresponds to highest weight (λ1, λ2) = (j + k, k). Then there is the formula

ρj1,k1 ⊗ ρj2,k2
∼=

min(j1,j2)∑

r=0

ρj1+j2−2r,k1+k2+r .

So we can decompose Mρj1,k1
as a direct sum

∑min(j1,j2)
r=0 Mρj1+j2−2r,k1+k2+r

,
but this is not canonical as it depends upon a choice of isomorphism in the
above formula. Nevertheless, this decomposition is useful to construct modular
forms in new weights by multiplying modular forms.



Siegel Modular Forms and Their Applications 189

To make ⊕ρ∈IrrMρ(Γ2) into a ring requires a consistent choice for all
these identifications. We can avoid this by viewing the symmetric power
Symj(W ) as a space of polynomials of degree j in two variables and then
by remarking that multiplication of polynomials defines a canonical map
Symj1(W ) ⊗ Symj2(W ) → Symj1+j2(W ). Using this and the obvious map
det(W )k1 ⊗ det(W )k2 → det(W )k1+k2 the direct sum ⊕ρ∈IrrMρ(Γ2) be-
comes a ring; we just ‘forgot’ the terms in the above sum with r > 0. For
g ≥ 3 the tensor products come in general with multiplicities, given by
Littlewood–Richardson numbers. Nevertheless, one can define a ring struc-
ture on ⊕ρ∈IrrMρ(Γg) that extends the multiplication of modular forms for
g = 1 and the one given here for g = 2 as Weissman shows. We refer to his
interesting paper, [105].

For every g one obtains a subring of the representation ring by taking
the powers of the determinant det : GL(g,C) → C∗. This leads to a ring of
‘classical’ modular forms.

Definition 2. A classical Siegel modular form of weight k (and degree g) is
a holomorphic function f : Hg → C such that

f(γ(τ)) = det(cτ + d)kf(τ)

for all γ = (a, b; c, d) ∈ Sp(2g,Z) (with for g = 1 the usual holomorphicity
requirement at ∞).

Classical Siegel modular forms are also known as scalar-valued Siegel
modular forms.

Let Mk = Mk(Γg) be the vector space of classical Siegel modular forms
of weight k. Together these spaces form a graded ring M cl := ⊕Mk of M of
classical Siegel modular forms. Of course, for g = 1 the notion of classical
modular form reduces to the usual notion of modular form on SL(2,Z).

4 The Fourier Expansion of a Modular Form

The classical Fourier expansion of a modular form on SL(2,Z) has an analogue.
To define it we need the following definition.

Definition 3. A symmetric g × g-matrix n ∈ GL(g,Q) is called half-integral
if 2n is an integral matrix the diagonal entries of which are even.

Every half-integral g × g-matrix n defines a linear form with integral co-
efficients in the coordinates τij with 1 ≤ i ≤ j ≤ g of Hg, namely

Tr(nτ) =
g∑

i=1

niiτii + 2
∑

1≤i<j≤g
nijτij

and every linear integral combination of the coordinates is of this form.
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Let us write τ = x+ iy with x and y symmetric g× g matrices. A function
f : Hg → C that is periodic in the sense that f(τ + s) = f(τ) for all integral
symmetric g × g-matrices s admits a Fourier expansion

f(τ) =
∑

nhalf-integral

a(n)e2πiTr(nτ)

with a(n) ∈ C given by

a(n) =
∫

x mod 1

f(τ)e−2πiTr(nτ)dx

with dx the Euclidean volume of the space of x-coordinates and the integral
runs over −1/2 ≤ xij ≤ 1/2. This is a series which is uniformly convergent on
compact subsets. If f is a vector-valued modular form in Mρ we have a similar
Fourier series

f(τ) =
∑

nhalf-integral

a(n)e2πiTr(nτ)

with a(n) ∈ V . One could also use the suggestive notation

f(τ) =
∑

nhalf-integral

a(n) qn,

where we write qn for e2πiTr(nτ). Moreover, we have the property

a(utnu) = ρ(ut) a(n) for all u ∈ GL(g,Z) . (3)

Indeed, we have

a(utnu) =
∫

x mod 1

f(τ)e−2πiTr(utnuτ)dx

= ρ(ut)
∫

x mod 1

f(uτut)e−2πiTr(nuτut)dx

= ρ(ut)a(n) .

A direct corollary of formula (3) (proof left to the reader) restricts the weight
of non-zero forms.

Corollary 1. A classical Siegel modular form of weight k with kg ≡ 1( mod 2)
vanishes.

A basic result is the following theorem.

Theorem 1. Let f ∈Mρ(Γg). Then f is bounded on any subset of Hg of the
form {τ ∈ Hg : Im(τ) > c · 1g} with c > 0.

Proof. For g = 1 the boundedness comes from the requirement in the def-
inition that the Fourier expansion f =

∑
n a(n)qn has no negative terms.

So suppose that g ≥ 2 and let f =
∑

n a(n)e2πiTrnτ ∈ Mρ(Γg). Since f
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converges absolutely on Hg we see by substitution of τ = i · 1g that there
exists a constant c > 0 such that for all half-integral matrices we have
|a(n)| ≤ ce2πTrnτ . We first will show that a(n) vanishes for n that are not
positive semi-definite.

Suppose that n is not positive semi-definite. Then there exists a primitive
integral (column) vector ξ such that ξtnξ < 0. We can complete ξ to a uni-
modular matrix u. Using the relation a(utnu) = ρ(ut)a(n) and replacing n by
utnu we may assume that entry n11 of n is negative. Consider now for m ∈ Z

the matrix

v =

⎛

⎝
1 m
0 1

1g−2

⎞

⎠ ∈ GL(g,Z) ,

where the omitted entries are zero. We have

|a(n)| = |ρ(vt)−1| |a(vtnv)| ≤ ce2πTrvtnv .

But Tr(vtnv) = Tr(v) + n11m
2 + 2n12m and if m → ∞ then this expression

goes to −∞, so |a(n)| = 0.
We conclude that f =

∑
n≥0 a(n)e2πiTrnτ . We can now majorize by the

value at c i · 1g of f , viz.
∑

n≥0 |a(n)|e−2πTrnc, uniformly in τ on {τ ∈
Hg : Im(τ) > c · 1g}.
The proof of this theorem shows the validity of the so-called Koecher principle
announced above.

Theorem 2. (Koecher Principle) Let f =
∑
n a(n)qn ∈ Mρ(Γg) with qn =

e2πiTr(nτ) be a modular form of weight ρ. Then a(n) = 0 if the half-integral
matrix n is not positive semi-definite.

The Koecher principle was first observed in 1928 by Götzky for Hilbert modu-
lar forms and in general by Koecher in 1954, see [63] and Bruinier’s lectures.

Corollary 2. A classical Siegel modular form of negative weight vanishes.

Proof. Let f ∈ Mk(Γg) with k < 0. Then the function h = det(y)k/2|f(τ)|
is invariant under Γg since Im(γ(τ)) = (cτ + d)−t(Im(τ))(cτ + d)

−1
. It is not

difficult to see that a fundamental domain is contained in {τ ∈ Hg : Tr(x2) <
1/c, y > c · 1g} for some suitable c. This implies that for negative k the
expression det(y)k/2 is bounded on a fundamental domain, and by the Koecher
principle f is bounded on {τ ∈ Hg : det y ≥ c}. It follows that h is bounded
on Hg, say h ≤ c′ and with

a(n)e−2πTrny =
∫

x mod 1

f(τ)e−2πTrnxdx

we get
|a(n)|e−2πTrny ≤ sup

x mod 1
|f(x+ iy)| ≤ c′ det y−k/2 .

If we let y → 0 then for k < 0 we see |a(n)| = 0 for all n ≥ 0.
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This corollary admits a generalization for vector-valued Siegel modular forms,
cf., [32]:

Proposition 1. Let ρ be a non-trivial irreducible representation of GL(g,C)
with highest weight λ1 ≥ . . . ≥ λg. If Mρ �= {0} then we have λg ≥ 1.

One proves this by taking a totally real field K of degree g over Q and by
identifying the symplectic space OK ⊕ O∨

K (with O∨
K the dual of OK with

respect to the trace) with our standard symplectic space (Z2g , 〈 , 〉). This
induces an embedding SL(2, OK) → Sp(2g,Z) and a map SL(2, OK)\Hg

1 →
Sp(2g,Z)\Hg. Pulling back Siegel modular forms yields Hilbert modular forms
on SL(2, OK). Now use that a Hilbert modular form of weight (k1, . . . , kg)
vanishes if one of the ki ≤ 0, cf., [35]. By varying K one sees that if λg ≤ 0
then a non-constant f vanishes on a dense subset of Hg.

5 The Siegel Operator and Eisenstein Series

Since modular forms f ∈ Mρ(Γg) are bounded in the sets of the form {τ ∈
Hg : Im(τ) > c · 1g} we can take the limit.

Definition 4. We define an operator Φ on Mρ(Γg) by

Φf = lim
t→∞ f

(
τ ′ 0
0 it

)
with τ ′ ∈ Hg−1, t ∈ R.

In view of the convergence we can also apply this limit to all terms in the
Fourier series and get

(Φf)(τ ′) =
∑

n′≥0

a

(
n′ 0
0 0

)
e2πiTr(n′τ ′) .

The values of Φf generate a subspace V ′ ⊆ V that is invariant under the
action of the subgroup of matrices {(a, 0; 0, 1): a ∈ GL(g − 1,C)} and that
defines a representation ρ′ of GL(g − 1,C). The operator Φ defined on Siegel
modular forms of degree g is called the Siegel operator and defines a linear
map Mρ(Γg) →Mρ′(Γg−1). If ρ is the irreducible representation with highest
weight (λ1, . . . , λg) then Φ maps Mρ(Γg) to Mρ′(Γg−1) with ρ′ the irreducible
representation of GL(g − 1,C) with highest weight (λ1, . . . , λg−1).

Definition 5. A modular form f ∈ Mρ is called a cusp form if Φf = 0. The
subspace of Mρ of cusp forms is denoted by Sρ = Sρ(Γg).

Exercise 4. Show that a modular f =
∑
a(n)e2πiTr(nτ) ∈Mρ is a cusp form

if and only if a(n) = 0 for all semi-definite n that are not definite.
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We can apply the Siegel operator repeatedly (say r ≤ g times) to a Siegel
modular form on Γg and one thus obtains a Siegel modular form on Γg−r. If
ρ is irreducible with highest weight (λ1, . . . , λg) and ΦF = f �= 0 for some
F ∈ Mρ(Γg) then necessarily λg ≡ 0(mod2) because with γ also −γ lies
in Γg.

Let now f1 and f2 be modular forms of weight ρ, one of them a cusp form.
Then we define the Petersson product of f1 and f2 by

〈f1, f2〉 =
∫

F

(ρ(Im(τ))f1(τ), f2(τ))dτ ,

where dτ = det(y)−(g+1)
∏
i≤j dxijdyij is an invariant measure on Hg, F is

a fundamental domain for the action of Γg on Hg and the brackets ( , ) refer
to the Hermitian product defined in Section 3. One checks that it converges
exactly because at least one of the two forms is a cusp form. Furthermore, we
define

Nρ = S⊥
ρ ,

for the orthogonal complement of Sρ and then have an orthogonal decompo-
sition Mρ = Sρ ⊕Nρ.

Just as in the case g = 1 one can construct modular forms explicitly using
Eisenstein series. We first deal with the case of classical Siegel modular forms.
Let g ≥ 1 be the degree and let r be a natural number with 0 ≤ r ≤ g. Suppose
that f ∈ Sk(Γr) is a (classical Siegel modular) cusp form of even weight k.

For a matrix
(
τ1 z
z τ2

)
with τ1 ∈ Hr and τ2 ∈ Hg−r we write τ∗ = τ1 ∈ Hr.

(For r = 0 we let τ∗ be the unique point of H0.) If k is positive and even we
define the Klingen Eisenstein series, a formal series,

Eg,r,k(f) :=
∑

A=(a,b;c,d)∈Pr\Γg

f((aτ + b)(cτ + d)−1)∗) det(cτ + d)−k ,

where Pr is the subgroup

Pr :=

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

a′ 0 b′ ∗
∗ u ∗ ∗
c′ 0 d′ ∗
0 0 0 u−t

⎞

⎟
⎟
⎠ ∈ Γg :

(
a′ b′

c′ d′

)
∈ Γr, u ∈ GL(g − r,Z)

⎫
⎪⎪⎬

⎪⎪⎭
.

For an interpretation of this subgroup we refer to Section 11. In case r = 0, f
constant, say f = 1, we get the old Eisenstein series

Eg,0,k =
∑

(a,b;c,d)

det(cτ + d)−k ,

where the summation is over a full set of representatives for the cosets
GL(g,Z)\Γg.
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Theorem 3. Let g ≥ 1 and 0 ≤ r ≤ g and k > g + r + 1 be integers with k
even. Then for every cusp form f ∈ Sk(Γr) the series Eg,r,k(f) converges to
a classical Siegel modular form of weight k in Mk(Γg) and Φg−rEg,r,k(f) = f .

This theorem was proved by Hel Braun1 in 1938 for r = 0 and k > g + 1.
The Fourier coefficients of these Eisenstein series were determined by

Maass, see [70]. Often we shall restrict the summation over co-prime (c, d)
in order to avoid an unnecessary factor.

Corollary 3. The Siegel operator Φ : Mk(Γg) → Mk(Γg−1) is surjective for
even k > 2g.

Weissauer improved the above result and proved that Φr is surjective if
k > (g+ r+3)/2, see [107]. He also treated the case of vector-valued modular
forms and showed that the image Φ(Mρ(Γg)) contains the space of cusp forms
Sρ′(Γg−1) if k = λg ≥ g + 2, see loc. cit. p. 87.

If k is odd we have no good Eisenstein series; for example look at
the Siegel operator Mk(Γg) → Mk(Γg−1) for k ≡ g ≡ 1 (mod2). Then
Mk(Γg) = (0) while the target space Mk(Γg−1) is non-zero for sufficiently
large k (e.g. M35(Γ2) �= (0) as we shall see later).

Just as for g = 1 one can construct Poincaré series and use these to
generate the spaces of cusp forms if the weight is sufficiently high. These
Poincaré series behave well with respect to the Petersson product. We refer
to [61], Ch. 6, or [8] for the general setting.

6 Singular Forms

A particularity of g > 1 are the so-called singular modular forms.

Definition 6. A modular form f =
∑

n a(n)e2πiTrnτ ∈ Mk(Γg) is called sin-
gular if a(n) �= 0 implies that n is a singular matrix (det(n) = 0).

Modular forms of small weight are singular as the following theorem shows,
see [106].

Theorem 4. (Freitag, Saldaña, Weissauer) Let ρ be irreducible with highest
weight (λ1, . . . , λg). A non-zero modular form f ∈ Mρ(Γg) is singular if and
only if 2λg < g.

In particular, there are no cusp forms of weight 2λg < g. One defines the
co-rank of an irreducible representation as #{1 ≤ i ≤ g : λi = λg}. For
a modular form f =

∑
n a(n) exp(2πiTrnτ) ∈ Mρ(Γg), Weissauer introduced

the rank and co-rank of f by
1 Hel Braun was a student of Carl Ludwig Siegel (1896–1981), the mathematician

after whom our modular forms are named. She sketches an interesting portrait of
Siegel in [16]
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rank(f) = max{rank(n) : a(n) �= 0}

and
co-rank(f) = g − min{rank(n) : a(n) �= 0} .

In particular, modular forms of rank <g are singular while cusp forms have
co-rank 0 and Siegel–Eisenstein forms Eg,0,k have co-rank g; Φ applied k+ 1
times to forms of co-rank k should be zero. Weissauer proved (see [106]) for
irreducible ρ that co-rank(f) ≤ co-rank(ρ) and also that Mρ(Γg) = (0) if
λg ≤ g/2 − co-rank(ρ). More precisely, he proved

Theorem 5. Let ρ = (λ1, . . . , λg) be an irreducible representation of co-rank
< g − λg. If #{i : 1 ≤ i ≤ g, λi = λg + 1} < 2(g − λg − co-rank (ρ)) then
Mρ = (0).

Finally, Duke and Imamoǧlu prove in [24] that there are no cusp forms of
small weights; for example, S6(Γg) = (0) for all g.

7 Theta Series

Besides Eisenstein series one can construct Siegel modular forms using theta

series. We begin with the so-called theta-constants. Let ε =
(
ε′

ε′′

)
with ε′, ε′′ ∈

{0, 1}g and consider the rapidly converging series

θ[ε] =
∑

m∈Zg

exp 2πi

{(
m+

1
2
ε′
)t
τ

(
m+

1
2
ε′
)

+
1
2

(
m+

1
2
ε′
)t

(ε′′)

}

.

This vanishes identically if ε is odd, that is, if ε′(ε′′)t is odd. The other
2g−1(2g +1) cases (the ‘even’ ones) yield the so-called even theta characteris-
tics. These are modular forms on a level 2 congruence subgroup of Sp(2g,Z)
of weight 1/2, cf. [56]. These can be used to construct classical Siegel modular
forms on Sp(2g,Z). For example, for g = 1 one has

(
θ[

0
0]θ[

0
1]θ[

1
0]
)8

= 28Δ ∈ S12(Γ1) .

For g = 2 the product −2−14
∏
θ[ε]2 of the squares of the ten even theta

characteristics gives a cusp form χ10 of weight 10 on Sp(4,Z), cf. [52–54].
Similarly, an expression

(∏
θ[ε])

∑
±(θ[ε1]θ[ε2]θ[ε3]

)20

,

where the product is over the even theta characteristics and the sum is over so-
called azygous triples of theta characteristics (i.e., triples such that ε1+ε2+ε3
is odd) defines (up to a normalization −2−395−3i) a cusp form χ35 of weight 35
on Sp(4,Z). Similarly, for g = 3 the product of the 36 even theta characteristics
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defines a cusp form of weight 18 on Sp(6,Z). The reason why one needs such
a complicated expression is that the theta characteristics are modular forms
on a subgroup Γg(4, 8) of Sp(2g,Z) and the quotient group Sp(2g,Z)/Γg(4, 8)
permutes them and creates signs in addition so that we need a sort of sym-
metrization to get something invariant.

Another source of Siegel modular forms are theta series associated to even
unimodular lattices. Let B be a positive definite symmetric even unimodular
matrix of size r ≡ 0(mod 8). We denote by Hk(r, g) the space of harmonic
polynomials P : Cr×g → C satisfying for M ∈ GL(g,C) the identity P (zM) =
det(M)kP (z). Recall that harmonic means that

∑
i,j ∂

2/∂z2
ij P (z) = 0 if zij

are the coordinates on Cr×g. For a pair (B,P ) with P ∈ Hk(r, g) we set

θB,P (τ) =
∑

A∈Zr×g

P (
√
BA)eπiTr(AtBAτ) ,

where
√
B is a positive matrix with square B. Then θB,P is a classical Siegel

modular form in Mk+r/2(Γg), see [30]. Such theta series for P ∈ Hk−r/2,g and
B as above span a subspace of Mk(Γg) that is invariant under the Hecke-
operators that will be introduced later, cf. Section 16. There are analogues
of these that give vector-valued Siegel modular forms if we require that P is
a vector-valued polynomial satisfying the relation P (zM) = ρ(M)P (z). See
also Section 25 and [48, 49] for an example.

Finally, we would like to make a reference to Siegel’s Hauptsatz [96]
(or [30], p. 285) on representations of quadratic forms by quadratic forms
which can be viewed as an identity between an Eisenstein series and a weighted
sum of theta series, and to its far-reaching generalizations, cf. [68].

8 The Fourier–Jacobi Development
of a Siegel Modular Form

As we saw above, just as for g = 1 we have a Fourier expansion of a Siegel
modular form f =

∑
n≥0 a(n)e2πiTr(nτ). But for g > 1 there are other de-

velopments that provide more information, like the so-called Fourier–Jacobi
development, a concept due to Piatetski–Shapiro.

We consider classical Siegel modular forms of weight k on Γg. We write
τ ∈ Hg as

τ =
(
τ ′ z
zt τ ′′

)
with τ ′ ∈ H1 , z ∈ Cg−1and τ ′′ ∈ Hg−1 . (4)

From the definition of modular form it is clear that f is invariant under
τ ′ �→ τ ′ + b for b ∈ Z (given by an element of Sp(2g,Z)), hence we have
a Fourier series

f =
∞∑

m=0

φm(τ ′′, z)e2πimτ
′
.
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Here the function φm is a holomorphic function on Hg−1 × Cg−1 satisfying
certain transformation rules. More generally, if we split τ as in (4) but with
τ ′ ∈ Hr, z ∈ Cr(g−r) and τ ′′ ∈ Hg−r we find a development

∑

m

φm(τ ′′, z)e2πiTr(mτ ′) ,

where the sum is over positive semi-definite half-integral matrices r× r matri-
ces m and the functions φm are holomorphic on Hr × Cr(g−r). For r = g
we get back the Fourier expansion and for r = 1 we get what is called the
Fourier–Jacobi development.

For ease of explanation and to simplify matters we start with g = 2. Then
the function φm(τ ′, z) turns out to be a Jacobi form of weight k and index m,
i.e., φm ∈ Jk,m which amounts to saying that it satisfies

1. φm((aτ ′ + b)/(τ ′ + d), z/(cτ ′ + d)) = (cτ ′ + d)ke2πimcz
2/(cτ ′+d)φm(τ ′, z),

2. φm(τ ′, z + λτ ′ + μ) = e−2πim(λ2τ ′+2λz)φm(τ ′, z),
3. φm has a Fourier expansion of the form

φm =
∞∑

n=0

∑

r∈Z, r2≤4mn

c(n, r)e2π(nτ ′+rz) .

This gives a relation between Siegel modular forms for genus 2 and Jacobi
forms (see [26]) that we shall exploit later. In the general case, if we split τ as

τ =
(
τ ′ z
zt τ ′′

)
with τ ′ ∈ Hr, z ∈ Cr(g−r) and τ ′′ ∈ Hg−r

and a symmetric matrix n as
(
n′ ν
νt n′′

)
and if we use the fact that Tr(nτ) =

Tr(n′τ ′) + 2Tr(νz) + Tr(n′′τ ′′) then we can decompose the Fourier series of
f ∈Mρ(Γg) as ∑

n′′≥0

φn′′ (τ ′, z)e2πiTr(n′′τ ′′)

with V -valued holomorphic functions φn′′ (τ ′, z) that satisfy the rules

1. For λ, μ ∈ Zg we have

φn′′ (τ ′, z + τ ′λ+ μ) = ρ

((
1r −λ
0 1g−r

))
e−2πiTr(2λtz+λtτ ′λ)φn′′(τ ′, z) .

2. For γ′ = (a′, b; c′, d′) ∈ Γg−1 we have

φn′′ (γ′(τ ′), (c′τ ′ + d′)−tz) =

e2πiTr(n′′zt(c′τ ′+d′)−1c′z)ρ

((
c′τ ′ + d′ c′z

0 1g−r

))
φn′′(τ ′, z) .

3. φn′′ (τ ′, z) is regular at infinity.
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The last condition means that φn′′(τ ′, z) has a Fourier expansion φn′′(τ ′, z) =
∑
c(m, r) exp(2πiTr(mτ ′ +2rtz)) for which c(m, r) �= 0 implies that

(
m r
rt n′′

)

is positive semi-definite. A holomorphic V -valued function φ(τ ′, z) satisfying
1), 2) and 3) is called a Jacobi form of weight (ρ′, n′′). The sceptical reader
may frown upon this unattractive set of transformation formulas, but there
is a natural geometric explanation for this transformation behavior that we
shall see in Section 11.

9 The Ring of Classical Siegel Modular Forms
for Genus Two

So far we have not met any striking examples of Siegel modular forms. To
convince the reader that the subject is worthy of his attention we turn to the
first non-trivial case: classical Siegel modular forms of genus 2.

For g = 1 we know the structure of the graded ring M∗(Γ1) = ⊕kMk(Γ1).
It is a polynomial ring generated by the Eisenstein series e4 = E

(1)
4 and

e6 = E
(1)
6 and the ideal of cusp forms is generated by the famous cusp form

Δ = (e34 − e26)/1728 of weight 12.
In comparison to this our knowledge of the graded ring ⊕ρ∈IrrMρ of Siegel

modular forms for g = 2 is rather restricted and most of what we know con-
cerns classical Siegel modular forms. A first basic result was the determination
by Igusa [52] of the ring of classical Siegel modular forms for g = 2. We now
know also the structure of the ring of classical Siegel modular forms for g = 3,
a result of Tsuyumine, [102].

Recall that we have the Eisenstein Series E(g)
k ∈Mk(Γg) for k > g + 1. In

particular, for g = 2 we have E4 = E
(2)
4 ∈ M4(Γ2) and E6 = E

(2)
6 ∈ M6(Γ2).

Let us normalize them here so that

Ek =
∑

(c,d)

det(cτ + d)−k ,

where the sum is over non-associated pairs of co-prime symmetric integral
matrices (non-associated w.r.t. to the multiplication on the left by GL(g,Z)).
The Fourier expansion of these modular forms is known. If we write τ =(
τ1 z
z τ2

)
then

Ek =
∑

N

a(N)e2πiTr(Nτ) ,

with constant term 1 and for non-zero N =
(
n r/2
r/2 m

)
the coefficient a(N)

given as

a(N) =
∑

d|(n,r,m)

dk−1H

(
k − 1,

4mn− r2

d2

)
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with H(k − 1, D) Cohen’s function, i.e., H(k − 1, D) = L−D(2 − k), where
LD(s) = L(s,

(
D
)
) is the Dirichlet L-series associated to D if D is 1 or

a discriminant of a real quadratic field, cf., [26], p. 21. (This H(k − 1, D) is
essentially a class number.) Explicitly we have with qj = e2πiτj and ζ = e2πiz

the developments (cf., [26])

E4 = 1 + 240(q1 + q2)+2160
(
q21 + q22

)

(240 ζ−2+13440 ζ−1 + 30240 + 13440 ζ + 240 ζ2)q1q2 + . . .

and

E6 = 1 − 504(q1 + q2) − 16632
(
q21 + q22

)
+

+(−504 ζ−2 + 44352 ζ−1 + 166320 + 44352 ζ − 504 ζ2)q1q2 + . . . .

Under Siegel’s operator Φ : Mk(Γ2) →Mk(Γ1) the Eisenstein series Ek on Γ2

maps to the Eisenstein series ek on Γ1 for k ≥ 4. In particular, the modular
form E10 − E4E6 maps to e10 − e4e6, and this is zero since dimM10(Γ1) = 1
and the ek are normalized so that their Fourier expansions have constant
term 1. We thus find a cusp form. Similarly, E12 − E2

6 defines a cusp form of
weight 12 on Γ2. To see that these are not zero we restrict to the ‘diagonal’
locus as follows.

Consider the map δ : H1 × H1 → H2 given by (τ1, τ2) �→
(
τ1 0
0 τ2

)
.

There is a corresponding map SL(2,Z) × SL(2,Z) → Sp(4,Z) by sending(
a b
c d

)
,

(
a′ b′

c′ d′

)
to (A,B;C,D) (difficult to avoid capital letters here) with

A =
(
a 0
0 a′

)
, etc. that induces δ (on (SL(2,R)/U(1))2 → Sp(4,R)/U(2)). If

we use the coordinates
τ =

(
τ1 z
z τ2

)
∈ H2

then the image of the map δ is given by z = 0 and it is the fixed point locus of
the involution on H2 given by (τ1, z, τ2) �→ (τ1,−z, τ2) induced by the element
(A,B;C,D) with A = (1, 0; 0,−1) = D and B = C = 0.

An element F ∈Mk(Γ2) can be developed around this locus z = 0

F = f(τ1, τ2)zn +O(zn+1) for some n ∈ Z≥0 . (5)

It is now easy to check that

1. f(τ1, τ2) ∈Mk+n(Γ1) ⊗Mk+n(Γ1);
2. f(τ2, τ1) = (−1)kf(τ1, τ2);
3. f(τ1,−z, τ2) = (−1)kf(τ1, z, τ2).

the first by looking at the action of SL(2,Z) × SL(2,Z) and the second by
applying the involution (A,B;C,D) with A = D = (0, 1; 1, 0) and B = C = 0
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which interchanges τ1 and τ2 and the last by using the involution z �→ −z.
The idea of developing along the diagonal locus was first used by Witt, [108].

Developing E10 − E4E6 along z = 0 and writing qj = e2πiτj one finds
cq1q2z

2 + O(z3), with c �= 0, so we normalize to get a cusp form χ10 =
E

(1)
10 (τ1) ⊗ E

(1)
10 (τ2)z2 + O(z3). Similarly, the form E

(2)
12 − (E(2)

6 )2 gives after
normalization a non-zero cusp form χ12 = Δ(τ1) ⊗Δ(τ2)z2 +O(z3).

As we saw above in Section 7 we also know the existence of a cusp form
χ35 of odd weight 35.

We now describe the structure of the ring of classical Siegel modular forms
for g = 2. The theorem is due to Igusa and various proofs have been recorded
in the literature, cf. [5, 33, 43, 52–54]. Here is another variant.

Theorem 6. (Igusa) The graded ring M = ⊕kMk(Γ2) of classical Siegel
modular forms of genus 2 is generated by E4, E6, χ10, χ12 and χ35 and

M ∼= C[E4, E6, χ10, χ12, χ35]/(χ2
35 = R) ,

where R is an explicit (isobaric) polynomial in E4, E6, χ10 and χ12 (given
on [53], p. 849).

Proof. (Isobaric means that every monomial has the same weight (here 70) if
E4, E6, χ10 and χ12 are given weights 4, 6, 10 and 12.) We start by introducing
the vector spaces of modular forms:

M≥n
k (Γ1) = {f ∈Mk(Γ1) : f = O(qn) at ∞} = ΔnMk−12n(Γ1)

and
M≥n
k (Γ2) = {F ∈Mk(Γ2) : F = O(zn) near δ(H1 ×H1) }

We distinguish two cases depending on the parity of k.
k even. As we saw above (use properties (1), (2), (5)) any element

F ∈ M≥2n
k (Γ2) can be written as F (τ1, z, τ2) = f(τ1, τ2)z2n + O(z2n+2)

with f ∈ Mk+2n(Γ1) ⊗Mk+2n(Γ1) symmetric (i.e. f(τ1, τ2) = f(τ2, τ1)) and
f = O(qn1 , q

n
2 ). This last fact follows from the observation that each Fourier–

Jacobi coefficient φm(τ1, z) of F is also O(z2n), so is zero if 2n > 2m. We find
an exact sequence

0 →M≥2n+2
k (Γ2) → M≥2n

k (Γ2)
r−→Sym2

(
M≥n
k+2n(Γ1)

)
→ 0 ,

where the surjectivity of r is a consequence of the fact that

Sym2
(
M≥n
k+2n(Γ1)

)
= C[e4 ⊗ e4, e6 ⊗ e6, Δ⊗Δ]

and χ10 = Δ(τ1)Δ(τ2)z2 + O(z4) so that a modular form χn10P (E4, E6, χ12)
with P an isobaric polynomial maps to P (e4 ⊗ e4, e6 ⊗ e6, Δ⊗Δ). It follows
that
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dimMk(Γ2) =
∞∑

n=0

dim Sym2(M≥n
k+2n(Γ1)) =

∑

0≤n≤k/10
dim Sym2(Mk−10n(Γ1)) ,

i.e., we get

∑

k even

dimMk(Γ2)tk =
1

1 − t10

∑

k≥0

dim Sym2(Mk(Γ1))tk

=
1

1 − t10
Hilbert series of C[e4 ⊗ e4, e6 ⊗ e6, Δ⊗Δ]

=
1

(1 − t4)(1 − t6)(1 − t10)(1 − t12)
.

k odd. For F ∈ M≥2n+1
k (Γ2) we find f = O(qn+2

1 , qn+2
2 ). Since our

Fourier–Jacobi coefficients φm(τ1, z) have a zero of order 2n + 1 at z = 0
and another three at the 2-torsion points we see 2m ≥ (2n + 1) + 3 for
non-zero φm. Also we know that f is anti-symmetric now, so dimMk(Γ2) ≤∑

n≥0 dim∧2(M≥n+2
k+2n+1(Γ1)) and this shows that for odd k < 35 dimMk(Γ2) =

0. Since we have a non-trivial form of weight 35 we see that

∑

k odd

dimMk(Γ2)tk =
t35

(1 − t4)(1 − t6)(1 − t10)(1 − t12)
.

The square χ2
35 is a modular form of even weight, hence can be expressed as

an polynomial R in E4, E6, χ10 and χ12. This was done by Igusa in [53]. This
completes the proof.

10 Moduli of Principally Polarized Complex
Abelian Varieties

For g = 1 the quotient space Γ1\H1 has an interpretation as the moduli
space of elliptic curves over the complex numbers (complex tori of dimen-
sion 1). To a point τ ∈ H1 we associate the complex torus C/Z + Zτ .
Then to a point (aτ + b)/(cτ + d) in the Γ1-orbit of τ we associate the
torus C/Z + Z(aτ + b)/(cτ + d), and the homothety z �→ (cτ + d)z defines
an isomorphism of this torus with C/Z(cτ + d) + Z(aτ + b) = C/Z + Zτ
since (cτ + d, aτ + b) is a basis of Z + Zτ as well. Conversely, every 1-
dimensional complex torus can be represented as C/Z + Zτ . This can be
generalized to g > 1 as follows. A point τ ∈ Hg determines a complex torus
Cg/Zg + Zgτ , but we do not get all complex g-dimensional tori. The fol-
lowing lemma, usually ascribed to Lefschetz, tells us what conditions this
imposes.
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Lemma 1. The following conditions on a complex torus X = V/Λ are equiva-
lent:

1. X admits an embedding into a complex projective space;
2. X is the complex manifold associated to an algebraic variety;
3. There is a positive definite Hermitian form H on V such that Im(H) takes

integral values on Λ× Λ.

A complex torus satisfying these requirements is called a complex abelian
variety. For g = 1 we could take H(z, w) = zw̄/Im(τ) on Λ = Z + Zτ and
indeed, the map C/Λ → P2 given by z �→ (℘(z) : ℘′(z) : 1) for z /∈ Λ with ℘
the Weierstrass ℘-function defines the embedding. For g > 1 we can take
H(z, w) = zt(Im(τ))−1w. An H as in the lemma is called a polarization. It is
called a principal polarization if the map Im(H) : Λ × Λ → Z is unimodular.
We shall write E = Im(H) for the alternating form that is the imaginary part
of H . Given a complex torus X = V/Λ and a principal polarization on Λ
we can normalize things as follows. We choose an isomorphism V ∼= Cg and
choose a symplectic basis e1, . . . , e2g of the lattice Λ such that E takes the
standard form

J =
(

0g 1g
−1g 0g

)

with respect to this basis. These two bases yield us a period matrix Ω ∈
Mat(g × 2g,C) expressing the ei in terms of the chosen C-basis of V . A nat-
ural question is which period matrices occur. For this we note that E is the
imaginary part of a Hermitian form H(x, y) = E(ix, y) +

√
−1E(x, y) if and

only if E satisfies the condition E(iz, iw) = E(z, w) for all z, w ∈ V and this
translates into (Exercise!)

Ω J−1Ωt = 0

while the positive definiteness of H translates into the condition

2i(Ω̄J−1Ωt)−1is positive definite .

These conditions were found by Riemann in his brilliant 1857 paper [81].
If we now associate to Ω = (Ω1Ω2) with Ωi complex g × g matrices we

see that the two conditions just found say that if we put τ = Ω−1
2 Ω1 we

have τ = τ t, Im(τ) > 0 i.e., τ lies in Hg. A change of basis of Λ changes
(τ 1g) into (τa+ c, τb+ d) with (a, b; c, d) ∈ Sp(2g,Z), but the corresponding
torus is isomorphic to Cg/Zg(τb+ d)−1(τa+ c) + Zg. In this way we see that
the isomorphism classes of complex tori with a principal polarization are in
1–1 correspondence with the points of the orbit space Hg/Sp(2g,Z). If we
transpose we can identify this orbit space with the orbit space Sp(2g,Z)\Hg

for the usual action τ �→ (aτ + b)(cτ + d)−1.

Proposition 2. There is a canonical bijection between the set of isomorphism
classes of principally polarized abelian varieties of dimension g and the orbit
space Γg\Hg.
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If we try to construct the whole family of abelian varieties we encounter
a difficulty. The action of the semi-direct product Γg�Z2g on Hg×Cg given by
the usual action of Γg on Hg and the action of (λ, μ) ∈ Z2g on a fibre {τ}×C2g

by z �→ z + τλ + μ forces −12g ∈ Γg to act by −1 on a fibre, so instead of
finding the complex torus Cg/Zg + τZg we get its quotient by the action
z �→ −z. However, if we replace Γg by the congruence subgroup Γg(n) with
n ≥ 3 (see [89]) then we get an honest family Xg(n) = Γg(n) � Z2g\Hg × Cg

of abelian varieties over Γg(n)\Hg. If we insist on using Γg then we have
to work with orbifolds or stacks to have a universal family available; the
orbifold in question is the quotient of Xg(n) under the action of the finite
group Sp(2g,Z/nZ).

The cotangent bundle of the family of abelian varieties over Ag(n) =
Γg(n)\Hg along the zero section defines a vector bundle of rank g on
Ag(n). It can be constructed explicitly as a quotient Γg(n)\Hg × Cg un-
der the action of γ ∈ Γg(n) by (τ, z) �→ (γ(τ), (cτ + d)−tz). The bun-
dle is called the Hodge bundle and denoted by E = Eg. The finite group
Sp(2g,Z/nZ) acts on the bundle E on Ag(n). A section of det(E)⊗k that
is Sp(2g,Z/nZ)-invariant comes from a holomorphic function on Hg that is
a classical Siegel modular form of weight k. Classical modular forms thus
get a geometric interpretation. In particular, the determinant of the cotan-
gent bundle of Ag(n), i.e., the canonical bundle, is isomorphic to det(E)⊗g+1;
so to a modular form f of weight g + 1 we can associate a top differen-
tial form on Hg that is Γg-invariant via f �→ f(τ)

∏
i≤j dτij . In a sim-

ilar way one can construct for each ρ a vectorbundle over Ag(n) whose
Sp(2g,Z/nZ)-invariant sections are the Siegel modular forms of weight ρ by
taking the quotient Hg × V by Γg under (τ, z) �→ (γ(τ), ρ(cτ + d)z), see Sec-
tion 13.

The Hermitian form H on the lattice Λ ⊂ Cg can be viewed as the first
Chern class (in H2(X,Z) ∼= ∧2(H1(X,Z)∨) ∼= (∧2Λ)∨) of a line bundle L
on X = Cg/Λ with dimC H

0(X,L) = 1. A non-zero section determines an
effective divisor Θ on X . The line bundle L and the corresponding divisor Θ
are determined byH up to translation overX . If we require thatΘ be invariant
under z �→ −z then Θ is unique up to translation over a point of order 2 on
X and then 2Θ is unique.

If we pull a non-zero section s of L back to the universal cover Cg then we
obtain a holomorphic function with a certain transformation behavior under
translations by elements of Λ. An example of such a function is provided by
Riemann’s theta function

θ(τ, z) =
∑

n∈Zg

eπi(n
tτn+2ntz), (τ ∈ Hg, z ∈ Cg)

a series that converges very rapidly and defines a holomorphic function that
satisfies for all λ, μ ∈ Zg

θ(τ, z + τλ + μ) = e−πi(λ
tτλ+2λtz)θ(τ, z) .
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Conversely, a holomorphic function f on Cg that satisfies for all λ, μ ∈ Zg

f(z + τλ + μ) = e−πi(λ
tτλ+2λtz)f(z)

is up to a multiplicative constant precisely θ(τ, z) as one sees by developing
f in a Fourier series f =

∑
n c(n) exp (2πintz) and observing that addition of

a column τk of τ to z produces

f(z + τk) =
∑

n

c(n) exp (2πint(z + τk)) =
∑

n

c(n) exp (2πintτk) exp (2πintz)

from which one obtains c(n+ ek) = c(n) exp (2πintτk + πiτkk) and gets that
f is completely determined by c(0).

If S is a compact Riemann surface of genus g it determines a Jacobian
variety Jac(S) which is a principally polarized complex abelian variety of
dimension g. Sending S to Jac(S) provides us with a map Mg(C) → Γg\Hg

from the moduli space of compact Riemann surfaces of genus g to the moduli
of complex principally polarized abelian varieties of dimension g which is
injective by a theorem of Torelli. The geometric interpretation given for Siegel
modular forms thus pulls back to the moduli of compact Riemann surfaces.

11 Compactifications

It is well known that Γ1\H1 is not compact, but can be compactified by
adding the cusp, that is, the orbit of Γ1 acting on Q ⊂ H̄1. Or if we use the
equivalence of H1 with the unit disc D1 given by τ �→ (τ − i)/(τ + i) then we
add to D1 the rational points of the boundary of the unit disc and take the
orbit space of this enlarged space. We can do something similar for g > 1 by
considering the bounded symmetric domain

Dg = {z ∈ Mat(g × g,C) : zt = z, zt · z̄ < 1g}

which is analytically equivalent to Hg. We now enlarge this space by adding
not the whole boundary but only part of it as follows. Let

Dr =
{(

z′ 0
0 1g−r

)
: z′ ∈ Dr

}
⊂ D̄g

and define now D∗
g to be the union of all Γg-orbits of these Dr for 0 ≤ r ≤ g.

Note that Γg acts on Dg and on its closure D̄g. Then Γg acts in a natural way
on D∗

g and the orbit space decomposes naturally as a disjoint union

Γg\D∗
g = $gi=0Γi\Di .

Going back to the upper half plane model this means that we consider

Γg\H∗
g = $gi=0Γi\Hi
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Satake has shown how to make this space into a normal analytic space, the
Satake compactification. One first defines a topology on H∗

g and then a sheaf of
holomorphic functions. The quotient Γg\H∗

g then becomes a normal analytic
space. By using explicitly constructed modular forms one then shows that
classical modular forms of a suitably high weight separate points and tangent
vectors and thus define an embedding of Γg\H∗

g into projective space. By
Chow’s lemma it is then a projective variety. The following theorem is a special
case of a general theorem due to Baily and Borel, [8].

Theorem 7. Scalar Siegel modular forms of an appropriately high weight de-
fine an embedding of Γg\H∗

g into projective space and the image of Γg\Hg

(resp. Γg\H∗
g) is a quasi-projective (resp. a projective) variety.

The resulting Satake or Baily–Borel compactification is for g > 1 very
singular. As a first attempt at constructing a smooth compactification we
reconsider the case g = 1. In H1,c = {τ ∈ H1 : Im(τ) ≥ c} with c > 1 the
action of Γ1 reduces to the action of Z by translations τ �→ τ + b. So consider
the map H1,c → C∗, τ �→ q = exp 2πiτ . It is clear how to compactify H1,c/Z:
just add the origin q = 0 to the image in C∗ ⊂ C. In other words, glue Γ1\H1

with Z\H∗
1,c over Z\H1,c. To do something similar for g > 1 we consider the

subset (for a suitable real symmetric g × g-matrix c� 0 which is sufficiently
positive definite)

Hg,c =
{
τ =

(
τ1 z
zt τ2

)
∈ Hg : Im(τ2) − Im(zt)Im(τ1)−1Im(z) ≥ c

}

The action of Γg in Hg,c reduces to the action of the subgroup P
⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜
⎝

a 0 b ∗
∗ ±1 ∗ ∗
c 0 d ∗
0 0 0 ±1

⎞

⎟⎟
⎠ ∈ Γg,

(
a b
c d

)
∈ Γg−1

⎫
⎪⎪⎬

⎪⎪⎭
,

the normalizer of the ‘boundary component’ Hg−1. We now make a map

Hg,c → Hg−1 × Cg−1 × C∗, τ �→ (τ1, z, q2 = exp(2πiτ2)) .

The associated parabolic subgroup P acts on Hg−1 × Cg−1 × C∗ and this
action can be extended to an action on Hg−1 × Cg−1 × C, where

⎛

⎜⎜
⎝

1g−1 0 0 0
0 1 0 b
0 0 1g−1 0
0 0 0 1

⎞

⎟⎟
⎠

acts now by (τ1, z, q2) �→ (τ1, z, e2πibq2) while the matrix
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⎛

⎜
⎜
⎝

1g−1 0 0 l
m 1 l 0
0 0 1g−1 −m
0 0 0 1

⎞

⎟
⎟
⎠

acts by (τ1, z, q2) �→ (τ1, z + τ1m+ l, e2πi(mτ1m+2mz+lm)q2), and the diagonal
matrix with entries (1, . . . ,−1, 1, . . . , 1,−1) acts by (τ1, z, ζ) �→ (τ1,−z, ζ) and
finally (a, b; c, d) ∈ Γg−1 acts on Hg−1 × Cg−1 × C by

(τ1, z, q2) �→ (γ(τ1), (a− (γ(τ1)c) z, τ2 − zt(cτ1 + d)−1cz)

and this action can be extended similarly.
We now have an embedding Γg\Hg,c −→ P\Hg−1 × Cg−1 × C and by

taking the closure of the image we obtain a ‘partial compactification’. The
quotient of Hg−1 × Cg−1 × {0} by this action is the ‘dual universal abelian
variety X̂g−1 = Γg−1 � Z2g−2\Hg−1 × Cg−1 over Γg−1\Hg−1 (in the orbifold
sense). Note that a principally polarized abelian variety is isomorphic to its
dual, so we can enlarge our orbifold Γg\Hg by adding this orbifold quotient
Xg−1 = Γg−1 ×Z2g−2\Hg−1 ×C2g−2. The result is a partial compactification

A(1)
g = Ag $ X ′

g−1 ,

where the prime refers to the fact that we are dealing with orbifolds and
have to divide by (at least) an extra involution since a semi-abelian variety
generically has Z/2×Z/2 as its automorphism group, while a generic abelian
variety has only Z/2.

This space parametrizes principally polarized complex abelian varieties of
dimension g or degenerations of such (so-called semi-abelian varieties of torus
rank 1) that are extensions

1 → Gm → X̃ → X → 0

of a g−1-dimensional principally polarized complex abelian variety by a rank 1
torus Gm = C∗. Such extension classes are classified by the dual abelian varie-
ty X̂ ∼= X (associate to a line bundle onX the Gm-bundle obtained by deleting
the zero section) which explains why we find the universal abelian variety of
dimension g − 1 in the ‘boundary’ of Ag. (There is the subtlety whether one
allows isomorphisms to be −1 on Gm or not.) This partial compactification
is canonical. If we wish to construct a full smooth compactification one can
use Mumford’s theory of toroidal compactifications, but unfortunately there
is (for g ≥ 4) no unique such compactification. We refer e.g. to [77].

This partial compactification enables us to reinterpret the Fourier–Jacobi
series of a Siegel modular form. In particular, the formulas in Section 8 tell
us that the pull back of f to a fibre of Xg−1 → Ag−1 is an abelian function
and that f restricted to the zero-section of Xg−1 → Ag−1 is a Siegel modular
form of weight k − 1 on Γg−1.
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We can be more precise. We work with a group Γg(n) with n ≥ 3 or
interpret everything in the orbifold sense. The normal bundle of Xg−1 is the
line bundle O(−2Θ), as one can deduce from the action given above.

We can also extend the Hodge bundle E = Eg to a vector bundle on A(1)
g .

On the boundary divisor X ′
g−1 it is the extension of the pull back π∗Eg−1

from Ag−1 to Xg−1 by a line bundle.
So if we are given a classical Siegel modular form of weight k we can

interpret it as a section of det(E)⊗k and develop (the pull back of) f along
the boundary Xg−1 where the m-th term in the development is a section of

(det(E)|Xg−1 )
⊗k ⊗O(−2mΘ)

on Xg−1. This gives us a geometric interpretation of the Fourier–Jacobi de-
velopment.

Of course, it is useful to have not only a partial compactification, but
a smooth compactification. The theory of toroidal compactifications devel-
oped by Mumford and his co-workers Ash, Rapoport and Tai provides such
compactifications Ãg. They depend on the choice of a certain cone decompo-
sition of the cone of positive definite bilinear forms in g variables, cf. [7]. The
‘boundary’ Ãg−Ag is a divisor with normal crossings and one has a universal
semi-abelian variety over Ãg in the orbifold sense.

12 Intermezzo: Roots and Representations

Here we record a few concepts and notations that we shall need in the later
sections. The reader may want to skip this on a first reading.

Recall that we started out in Section 2 with a symplectic lattice (Z2g, 〈 , 〉)
with a basis e1, . . . , eg, f1, . . . , fg with 〈ei, fj〉 = δij and 〈e1, . . . , eg〉 and
〈f1, . . . , fg〉 isotropic subspaces. We let G := GSp(2g,Q) be the group of
rational symplectic similitudes (transformations that preserve the form up to
a scalar), viz.,

G := GSp(2g,Q) = {γ ∈ GL(Q2g) : γtJγ = η(γ)J}

and G+ = {γ ∈ G : η(γ) > 0}. Note that det(γ) = η(γ)g for γ ∈ G and that
G0 = Sp(2g,Z) is the kernel of the map that sends γ to η(γ) on G+(Z). For
γ ∈ G the element η(γ) is called the multiplier. Note that we view elements
of Z2g as column vectors and G acts from the left.

There are several important subgroups that play a role in the sequel. Given
our choice of basis there is a natural Borel subgroup B respecting the symplec-
tic flag 〈e1〉 ⊂ 〈e1, e2〉 ⊂ . . . ⊂ 〈e1, e2〉⊥ ⊂ 〈e1〉⊥. It consists of the matrices
(a, b; 0, d) with a upper triangular and d lower triangular.

Other natural subgroups are: the subgroup M of elements respecting the
decomposition Zg⊕Zg of our symplectic space. It is isomorphic to GL(g)×Gm
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and consists of the matrices γ = (a, 0; 0, d) with adt = η(γ)1g. Furthermore, we
have the Siegel (maximal) parabolic subgroup Q of elements that stabilize the
first summand Zg = 〈e1, . . . , eg〉; it consists of the matrices (a, b; 0, d). It con-
tains the subgroup U (unipotent radical) of matrices of the form (1g, b; 0, 1g)
with b symmetric that act as the identity of the first summand Zg.

Another important subgroup of G is the diagonal torus T isomorphic to
Gg+1
m of matrices γ = diag(a1, . . . , ag, d1, . . . , dg) with aidi = η(γ). Let X

be the character group of T; it is generated by the characters εi : γ �→ ai
for i = 1, . . . , g and ε0(γ) = η(γ). Let Y be the co-character group of
Tm, i.e., Y = Hom(Gm,T). This group is isomorphic to the group Zg+1

of g + 1-tuples with (α1, . . . , αg, c) corresponding to the co-character t �→
diag(tα1 , . . . , tαg , tc−α1 , . . . , tc−αg ). We fix a basis of Y by letting χi for
i = 1, . . . , g correspond to αj = δij and c = 0 and χ0 to αj = 0 and c = 1.
Then the characters and co-characters pair via 〈εi, χj〉 = δij .

The adjoint action of T on the Lie algebras ofM andG defines root systems
ΦM and ΦG in X . Concretely, we may take as simple roots αi = εi − εi+1 for
i = 1, . . . , g−1 and αg = 2εg−ε0 and coroots α∨

i = χi−χi+1 for i = 1, . . . , g−1
and α∨

g = χg.
The set Φ+

G of positive roots (those occuring in the Lie algebra of the
nilpotent radical of B) consists of the so-called compact roots Φ+

M = {εi −
εj : 1 ≤ i < j ≤ g} and the non-compact roots Φ+

nc = {εi+εj−ε0 : 1 ≤ i, j ≤ g}.
We let 2% = 2%G (resp. 2%M ) be the sum of the positive roots in Φ+

G (res. Φ+
M ).

When viewed as characters 2%M corresponds to γ �→
∏g
i=1 a

g+1−2i
i and 2%G

to γ �→ η(γ)−g(g+1)/2
∏g
i=1 a

2g+2−2i
i .

There is a symmetry group acting on our situation, the Weyl group
WG = N(T)/T, with N(T) the normalizer of T in G. This group WG is iso-
morphic to Sg � (Z/2Z)g, where the generator of the i-th factor Z/2Z acts on
a matrix of the form diag(a1, . . . , ag, d1, . . . , dg) by interchanging ai and di and
the symmetric group Sg acts by permuting the a’s and d’s. The Weyl group
of M (normalizer this time in M) is isomorphic to the symmetric group Sg.
We have positive Weyl chambers P+

G = {χ ∈ Y : 〈χ, α〉 ≥ 0 for all α ∈ Φ+
G }

and similarly for M : P+
M = {χ ∈ Y : 〈χ, α〉 ≥ 0 for all α ∈ Φ+

M } giving the
dominant weights.

Lemma 2. The irreducible complex representations of G (resp. M) corres-
pond to integral weights in the chamber P+

G (res. P+
M ) that come from char-

acters of T.

Sometimes we just work with G0 and M0 = M ∩G0. This means that we
forget about the action of the multiplier η.

We can give a set W0 of 2g canonical coset representatives of WM\WG,
the Kostant representatives, which are characterized by the conditions

W0 =
{
w ∈WG : Φ+

M ⊂ w
(
Φ+
G

)}
=
{
w ∈ WG : w(%) − % ∈ P+

M

}
.

With our normalizations we have % = (g, g − 1, . . . , 1, 0) and 2%M = (g +
1, . . . , g+1,−g(g+1)/2). If we restrict to G0 and M0 then dominant weights
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for M0 ∼= GL(g) are given by g-tuples (λ1, . . . , λg) with λi ≥ λi+1 for
i = 1, . . . , g − 1. A coset in WM\WG is given by a vector s (in {±1}g)
of g signs. The Kostant representative of s is the element σ s such that
(sσ(1)λσ(1), . . . , sσ(g)λσ(g)) is in P+

M , i.e., sσ(i)λσ(i) ≥ sσ(i+1)λσ(i+1) for i =
1, . . . , g − 1 for all (λ1 ≥ . . . ≥ λg).

13 Vector Bundles Defined by Representations

Let π : Xg → Ag be the universal family of abelian varieties over Ag. The
Hodge bundle E = π∗ΩXg/Ag

, a holomorphic bundle of rank g, and the de
Rham bundle R1π∗C on Ag, a locally constant sheaf of rank 2g, are examples
of vector bundles associated to representations of GL(g) and GSp(2g). Their
fibres at a point [X ] ∈ Ag are H0(X,Ω1

X) and H1(X,C). The first is a holo-
morphic vector bundle, the second a local system. Both are important for
understanding Siegel modular forms.

To define these bundles recall the description of Hg as an open part Y +
g

of the symplectic Grassmann variety Yg given in Section 2. We can identify
Yg with G(C)/Q(C) with Q the subgroup fixing the totally isotropic first
summand Cg of our complexified symplectic lattice (Zg , 〈 , 〉)⊗C. If ρ : Q0 →
End(V ) is a complex representation (with Q0 = Q ∩ G0) then we can define
a G0(C)-equivariant vector bundle Vρ on Yg by Vρ = G0(C) ×Q0(C) V as the
quotient of G0(C) × V under the equivalence relation (g, v) ∼ (g q, ρ(q)−1v)
for all g ∈ G0(C) and q ∈ Q0(C). Then Γg (or any finite index subgroup Γ ′)
acts on Vρ and the quotient is a vector bundle Vρ on Ag in the orbifold sense
(or a true one if Γ ′ acts freely on Hg).

Recall that M is the subgroup of GSp(2g,Q) respecting the decomposition
Qg ⊕ Qg of our symplectic space and M0 = M ∩ Sp(2g,Q). If we are given
a complex representation of M0(C) ∼= GL(g) (or of M ∼= GL(g)×Gm) we can
obtain a vector bundle by extending the representation to a representation
on Q0(C) by letting it be trivial on the unipotent radical U of Q. (Note that
Q = M · U .) If we do this with the tautological representation of M0 we get
the Hodge bundle E. But there is a subtle point here. If we work with M
instead of M0 then the Hodge bundle is given by the representation of M
that acts by η(γ)−1a on Cg for γ = (a, 0; 0, d).

In any case we thus get a holomorphic vector bundle W(λ) associated to
each dominant weight (λ1 ≥ . . . ≥ λg) of GL(g). Another way of getting
these vector bundles thus associated to the irreducible representations of M0

(or M) is by starting from the Hodge bundle and applying Schur operators
(idempotents) to the symmetric powers of E analogously to the way one gets
the corresponding representations from the standard one. Since the Hodge
bundle E extends over a toroidal compactification Ãg this makes it clear that
these vector bundles W(λ) can be extended over any toroidal compactification
as constructed by Mumford (or Faltings–Chai). The space of sections can be
identified with a space of modular forms Mρ and it thus follows from general
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theorems in algebraic geometry that these spaces of Siegel modular forms Mρ

are finite dimensional.
Another important vector bundle is the bundle associated to the first co-

homology of the universal abelian variety Xg with fibre H1(X,C); more pre-
cisely, it is given by V := R1π∗C with π : Xg → Ag the universal abelian
variety. It can be gotten from the construction just given by taking the dual
or contragredient of the standard or tautological representation of Sp(2g,C)
and restricting it toQ0(C). (Again, if one takes the multiplier into account – as
one should – then R1π∗C corresponds to η−1 times the standard representa-
tion.) In this case we find a flat bundle: all the bundles Vρ on Yg come with
a trivialization given by [(g, v)] �→ ρ(g)v. So the quotient bundle carries a nat-
ural integrable connection. The resulting V is a local system (locally constant
sheaf). We thus find for each dominant weight λ = (λ1 ≥ . . . ≥ λg, c) of G
a local system Vλ(c) on Ag. The multiplier representation defines a local sys-
tem of rank 1 denoted by C(1) and we can twist Vλ(c) by the nth power of
C(1) to change c, cf. Section 12.

14 Holomorphic Differential Forms

Let Γ ′ ⊂ Γg be a subgroup of finite index which acts freely on Hg, e.g., Γ ′ =
ker{Sp(2g,Z) → Sp(2g,Z/nZ} for n ≥ 3. Let Ωi be the sheaf of holomorphic
i-forms on Hg. A section of Ω1 can be written as

ω = Tr(f(τ)dτ) ,

where dτ = (dτij) and f is a symmetric matrix of holomorphic functions
on Hg. Then ω is invariant under the action of Γ ′ if and only if f(γ(τ)) =
(cτ + d)f(τ)(cτ + d)t for all γ = (a, b; c, d) ∈ Γ ′. Note that if r is the standard
representation of GL(g,C) on V = Cg then the action on symmetric bilinear
forms Sym2(V ) is given by b �→ r(g) b r(g)t. So the space of holomorphic
1-forms on Γ ′\Hg can be identified with Mρ(Γ ′), with ρ the second symmetric
power of the standard representation and the space of holomorphic i-forms
with Mρ′(Γ ′) with ρ′ equal to the ith exterior power of Sym2V . So we find
an isomorphism Ω1

Γ ′\Hg

∼= Sym2
E and this can be extended over a toroidal

compactification Ã to an isomorphism

Ω1
Ã(logD) ∼= Sym2(E)

with D the divisor at infinity. (But again, one should be aware of the action
of the multiplier: if one looks at the action of GSp(2g,R)+ one has d((aτ +
b)(cτ + d)−1) = η(γ)(cτ + d)−1 dτ (cτ + d)−1.)

The question arises which representations occur in ∧iSym2(V ).
The answer is given in terms of roots. A theorem of Kostant [66] tells

that the irreducible representations ρ of GL(g,C) that occur in the exterior
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algebra ∧∗Sym2(V ) with V the standard representation of GL(g,C) are those
ρ for which the dual ρ̂ is of the form wδ − δ with δ = (g, g − 1, . . . , 1) the
half-sum of the positive roots and w in the set W0 of Kostant representatives.
Now if ρ̂ = (λ1 ≥ λ2 . . . ≥ λg) occurs in this exterior algebra then wδ is of
the form (g − λg, g − 1 − λg−1, . . . , 1 − λ1). If α is the largest integer that
occurs among the entries of wδ then either α = −1 or 1 ≤ α ≤ g. In the latter
case wδ is of the form (α, ∗, . . . , ∗,−α− 1,−α− 2, . . . ,−g) and it follows that
λg−α = g + 1. This implies that the number of λj with λj = λg (the co-rank
of ρ̂, cf., Section 5) plus the number of those with λj = λg + 1 is at most
α. The vanishing theorem of Weissauer (Thm. 5) now implies that non-zero
differentials can only come from representations that are of the form

ρ = (g + 1, g + 1, . . . , g + 1)

which corresponds to top differentials (∧g(g+1)/2Ω1) and classical Siegel modu-
lar forms of weight g + 1, or of the form

ρ = (g + 1, g + 1, . . . , g + 1, g − α, . . . , g − α) ,

with 1 ≤ α ≤ g and these occur in ∧pΩ1 with p = g(g + 1)/2 − α(α + 1)/2.
For the following theorem of Weissauer we refer to [106].

Theorem 8. Let Ãg be a smooth compactification of Ag. If p is an integer
0 ≤ p < g(g + 1)/2 then the space of holomorphic p-forms on Ãg is zero
unless p is of the form g(g + 1)/2 − α(α + 1)/2 with 1 ≤ α ≤ g and then
H0(Ãg, Ω

p

Ãg
) ∼= Mρ(Γg) with ρ = (g+1, . . . , g+1, g−α, . . . , g−α) with g−α

occuring α times.

If f is a classical Siegel modular form of weight k = g+ 1 on the group Γg
then f(τ)

∏
i≤j dτij is a top differential on the smooth part of quotient space

Γg\Hg = Ag. It can be extended over the smooth part of the rank-1 com-
pactification A(1)

g if and only if f is a cusp form. It is not difficult to see
that this form can be extended as a holomorphic form to the whole smooth
compactification Ãg.

Proposition 3. The map that associates to a classical cusp form f ∈Sg+1(Γg)
of weight g+1 the top differential ω = f(τ)

∏
i≤j dτij gives an isomorphism be-

tween Sg+1(Γg) and the space of holomorphic top differentials H0(Ãg, Ω
g(g+1)

2 )
on any smooth compactification Ãg.

For this and an analysis of when the other forms extend over the singular-
ities in these cases we refer to [30, 106].

Finally we refer to two papers of Salvati–Manni where he proves the exis-
tence of differential forms of some weights, [83,84] and a paper of Igusa, [57],
where Igusa discusses the question whether certain Nullwerte of jacobians of
odd thetafunctions can be expressed as polynomials or rational functions in
theta Nullwerte.
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15 Cusp Forms and Geometry

The very first cusp forms that one encounters often have a beautiful geometric
interpretation. We give some examples.

For g = 1 the first cusp form is Δ =
∑
τ(n)qn ∈ S12(Γ1). It is up to

a normalization the discriminant g2(τ)3 − 27g2
3 of the equation y2 = 4x3 −

g2x − g3 for the Riemann surface C/Zτ + Z and does not vanish on H1.
Here g2 = (4π4/3)E4(τ) and g3 = (8π6/27)E6(τ) are the suitably normalized
Eisenstein series.

For g = 2 there is a similar cusp form χ10 of weight 10 with development

χ10

(
τ1 z
z τ2

)
= (exp(2πiτ1) exp(2πiτ2) + . . .)(πz)2 + . . .

which vanishes (with multiplicity 2) along the ‘diagonal’ z = 0. So its zero
divisor in A2 is the divisor of abelian surfaces that are products of elliptic
curves with multiplicity 2. There is the Torelli map M2 → A2 that associates
to a hyperelliptic complex curve of genus 2 given by y2 = f(x) its Jacobian.
Then the pull back of χ10 to M2 is related to the discriminant of f , cf. Igusa’s
paper [53] or [60], Prop. 2.2.

For g = 3 the ring of classical modular forms is generated by 34 elements,
cf. [102]. As we saw above, there is a cusp form of weight 18, namely the
product of the 36 even theta constants θ[ε] and its zero divisor is the closure
of the hyperelliptic locus. This expresses the fact that a genus 3 Riemann
surface with a vanishing theta characteristic is hyperelliptic.

For g = 4 there is the following beautiful example. There is up to isometry
only one isomorphism class of even unimodular positive definite quadratic
forms in 8 variables, namely E8. In 16 variables there are exactly two such
classes, E8 ⊕E8 and E16. To each of these quadratic forms in 16 variables we
can associate a Siegel modular form on Γ4 by means of a theta series: θE8⊕E8

and θE16 . The difference θE8⊕E8 − θE16 is a cusp form of weight 8. Its zero
divisor is the closure of the locus of Jacobians of Riemann surfaces of genus 4
in A4 as shown by Igusa, cf., [55]. Here we also refer to [80] for a proof. We
shall encounter this form again in Section 21.

Similarly, the theta series associated to the 24 different Niemeier lat-
tices (even, positive definite) of rank 24 produce in genus 12 a linear sub-
space of M12(Γ12) of dimension 12. It intersects the space of cusp forms in
a 1-dimensional subspace, as was proved in [14]. We thus find a cusp form of
weight 12. As we shall see later, it is an Ikeda lift of the cusp form Δ for g = 1
(proven in [15]).
Question 1. What is the geometric meaning of this cusp form?

The paper [78] contains explicit results on Siegel modular forms of weight
12 obtained from lattices in dimension 24. For example, it gives a non-zero
cusp form of weight 12 on Γ11, hence one has a top differential on Ã11, cf.,
Prop. 3, implying that this modular variety is not rational or unirational. It
is a well-known result of Mumford ([75]) that Ãg is of general type for g > 6.
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16 The Classical Hecke Algebra

In the arithmetic theory of elliptic modular forms Hecke operators play a piv-
otal role. They enable one to extract arithmetic information from the Fourier
coefficients of a modular form: if f =

∑
n a(n)qn is a common eigenform of

the Hecke operators which is normalized (a(1) = 1) then the eigenvalue λ(p)
of f under the Hecke operator T (p) equals the Fourier coefficient a(p).

The classical theory of Hecke operators as for example exposed in Shimura’s
book ( [92]) can be generalized to the setting of g > 1 as Shimura showed
in [93], though the larger size of the matrices involved is a discouraging as-
pect of it. It is worked out in the books [1,4,30], of which the last, by Freitag,
is certainly the most accessible. In this section we sketch this approach, in the
next section we give another approach. We refer to loc. cit. for details.

Recall the groupG := GSp(2g,Q) = {γ ∈ GL(Q2g) : γtJγ = η(γ)J, η(γ) ∈
Q∗} of symplectic similitudes of the symplectic vector space (Q2g, 〈 , 〉) and
G+ = {γ ∈ G : η(γ) > 0}.

We start by defining the abstract Hecke algebra H(Γ,G) for the pair (Γ,G)
with Γ = Γg and G = GSp(2g,Q). Its elements are finite formal sums (with
Q-coefficients) of double cosets ΓγΓ with γ ∈ G+. Each such double coset
ΓγΓ can be written as a finite disjoint union of right cosets Li = Γγi by
virtue of the following lemma.

Lemma 3. Let m be a natural number. The set Og(m) = {γ ∈ Mat(2g ×
2g,Z) : γtJγ = mJ} can be written as a finite disjoint union of right cosets.
Every right coset has a representative of the form (a, b; 0, d) with at d = m 1g
and such that a has zeros below the diagonal

So to each double coset ΓγΓ we can associate a finite formal sum of right
cosets. Let L be the Q-vector space of finite formal expressions

∑
i ciLi with

Li = Γγi a right coset and ci ∈ Q. The map H(Γ,G) → L is injective
and induces an isomorphism H(Γ,G) ∼= LΓ , where the action of Γ on L is
Γγ1 �→ Γγ1γ.

We now make this into an algebra by specifying the product of ΓγΓ =∑
i Γγi and ΓδΓ =

∑
j Γδj by

(ΓγΓ ) · (ΓδΓ ) =
∑

i,j

Γγiδj .

To deal with these double cosets the following proposition is very helpful.

Proposition 4. (Elementary divisors) Let γ ∈ GSp+(2g,Q) be an element
with integral entries. Then double coset ΓγΓ has a unique representative of
the form

α = diag(a1, . . . , ag, d1, . . . , dg)

with integers aj , dj satisfying aj > 0, ajdj = η(γ) for all j, and furthermore
ag|dg, aj |aj+1 for j = 1, . . . , g − 1.
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On G we have the anti-involution

γ =
(
a b
c d

)
�→ γ∨ =

(
dt −bt
−ct at

)
= η(γ) γ−1 .

(Note that η(γ∨) = η(γ).) Another involution is given by

γ �→ J γ J−1 =
(
d −c
−b a

)
= η(γ)γ−t .

Because of the proposition we have ΓγΓ = Γγ∨Γ since we may choose γ di-
agonal and then γ∨ = JγJ−1 and J ∈ Γ . This implies that for a sum of
right cosets ΓγΓ =

∑
Γγi we have ΓγΓ =

∑
γ∨i Γ . And it is easy to see that

γ �→ γ∨ defines an anti-involution of H(Γ,G) which acts trivially so that the
Hecke algebra is commutative.

We can decompose these diagonal matrices as a product of matrices so
that in each of the factors only powers of one prime occur as non-zero entries.
This leads to a decomposition

H(Γ,G) = ⊗pHp

as a product of local Hecke algebras

Hp = H(Γ,G ∩ GL(2g,Z[1/p])) ,

where we allow in the denominators only powers of p. Now Hp has a subring
H0
p generated by integral matrices. We haveHp = H0

p [1/T ] with T the element
defined by T = Γg(p 12g)Γg. By induction one proves the following theorem,
cf., [4, 30].

Theorem 9. The local Hecke algebra H0
p is generated by the element T (p)

given by Γg
(

1g 0g
0g p 1g

)
Γg and the elements Ti(p2) for i = 1, . . . , g given by

Γg

⎛

⎜
⎜
⎝

1g−i
p1i

p21g−i
p1i

⎞

⎟
⎟
⎠Γg

For completeness sake we also introduce the element T0(p2) given by the

double coset Γp
(

1g 0
0g p21g

)
Γg. Note that Tg(p2) equals the T = Γg(p 12g)Γg

given above.

Definition 7. Let T (m) be the element of H(Γ,G) defined by the set M =
Og(m) which is a finite disjoint union of double cosets.
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If m = p is prime then M = Og(m) is one double coset and T (m) coincides
with T (p), introduced above. For m = p2 the set Og(p2) is a union of g + 1
double cosets and the element T (p2) is a sum

∑g
i=0 Ti(p

2).
The Hecke algebra can be made to act on the space of Siegel modular

forms Mρ(Γg). We first define the ‘slash operator’.

Definition 8. Let ρ : GL(g,C) → End(V ) be a finite-dimensional irreducible
complex representation corresponding to (λ1 ≥ . . . ≥ λg). For a function
f : Hg → V and an element γ ∈ GSp+(2g,Q) we set

f |γ,ρ(τ) = ρ(cτ + d)−1f(γ(τ)) γ =
(
∗ ∗
c d

)
.

(For a good action on integral cohomology one might wish to add a factor
η(γ)

P

λi−g(g+1)/2.) Note that f |γ1,ρ|γ2,ρ = f |γ1γ2,ρ. So if g > 1 then f is
a modular form of weight ρ if and only if f is holomorphic and f |γ,ρ = f for
every γ ∈ Γg.

Let now M ⊂ GSp(2g,Q) be a subset satisfying the two properties

1. M = $hi=1Γg γi is a finite disjoint union of right cosets Γgγi;
2. M Γg ⊂M .

The first condition implies that if for a modular form f ∈Mρ we set

TMf :=
h∑

i=1

f |γi,ρ

then this is independent of the choice of the representatives γi, while the
second condition implies that (TMf)|γ = TMf for all γ ∈ Γg. Together these
conditions imply that TM is a linear operator on the space Mρ.

Double cosets ΓγΓ satisfy condition 2) if Γ = Γg and γ ∈ Sp(2g,Q) and
also condition 1) by what was said above.

An important observation is that 〈Tf, g〉 = 〈f, T∨g〉, where 〈 , 〉 gives the
Petersson product and thus the Hecke operators define Hermitian operators
on the space of cusp forms Sρ.

Just as in the classical case g = 1 we can associate correspondences (i.e.
divisors on Ag × Ag) to Hecke operators. The correspondence associated to
T (p) sends a principally polarized abelian variety X to the sum

∑
X ′ of

principally polarized X ′ which admit an isogeny X → X ′ with kernel an
isotropic (for the Weil pairing) subgroup H ⊂ X [p] of order pg. Similarly, the
correspondence associated to Ti(p2) sends X to the sum

∑
X ′ with the X ′

quotients X/H , where H ⊂ X [p2] is an isotropic subgroup of order p2g with
H ∩X [p] of order pg+i.

17 The Satake Isomorphism

We can identify the local Hecke algebra Hp with the Q-algebra of Q-valued
locally constant functions on GSp(2g,Qp) with compact support and which
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are invariant under the (so-called hyperspecial maximal compact) subgroup
K = GSp(2g,Zp) acting both from the left and right. The multiplication
in this algebra is convolution f1 · f2 =

∫
GSp(2g,Qp))

f1(g)f2(g−1h)dg, where
dg denotes the unique Haar measure normalized such that the volume of K
is 1. The correspondence is obtained by sending the double coset KγK to
the characteristic function of KγK. A compactly supported function in Hp

is constant on double cosets and its support is a finite linear combination of
characteristic functions of double cosets.

Note that Theorem 9 tells us that Hp is generated by the double cosets of
diagonal matrices. In order to describe this algebra conveniently we compare
it with the p-adic Hecke algebras of two subgroups, the diagonal torus and
the Levi subgroup of the standard parabolic subgroup.

To be precise, recall the diagonal torus T of GSp(2g,Q) isomorphic to
Gg+1
m and the Levi subgroup

M =
{(

a 0
0 d

)
∈ GSp(2g,Q)

}

of the standard parabolic Q = {(a, b; 0, d) ∈ GSp(2g,Z)} that stabilizes the
first summand Zg of Zg ⊕Zg. In particular for an element (a, 0; 0, d) ∈M we
have adt = η and the group M is isomorphic to GL(g) × Gm. Let Y ∼= Zg+1

be the co-character group of Tm, i.e., Y = Hom(Gm,T), cf. Section 12.
We can construct a local Hecke algebraHp(T) = Hp(T,TQ) for the group T

too as the Q-algebra of Q-valued, bi-T(Zp)-invariant, locally constant func-
tions with compact support on T(Qp). This local Hecke-algebra is easy to de-
scribe:Hp(T) ∼= Q[Y ], the group algebra over Q of Y where λ ∈ Y corresponds
to the characteristic function of the double coset Dλ = Kλ(p)K. Concretely,
Hp(T) is isomorphic to the ring Q[(u1/v1)±, . . . , (ug/vg)±, (v1 · · · vg)±] under
a map that sends (a1, . . . , ag, c) to the element

(u1/v1)a1 · · · (ug/vg)ag (v1 · · · vg)c .

Similarly, we have a p-adic Hecke algebra Hp(M) = Hp(M,MQ) for M .
Recall that the Weyl group WG = N(T)/T, with G = GSp(2g,Q) and

N(T) the normalizer of T in G, acts. This group WG is isomorphic to Sg �

(Z/2Z)g, where the generator of the i-th factor Z/2Z acts on a matrix of the
form diag(α1, . . . , αg, δ1, . . . , δg) by interchanging αi and δi and the symmetric
group Sg acts by permuting the α’s and δ’s. The Weyl group of M (normalizer
this time in M) is isomorphic to the symmetric group Sg. The algebra of
invariants Hp(T)WG is of the form Q[y±0 , y1, . . . , yg], cf. [30].

We now give Satake’s so-called spherical map of the Hecke algebraHp(Γ,G)
to the Hecke algebras Hp(M) and Hp(T), cf., [17, 29, 40, 85]. The images will
land in the WM -invariant (resp. the WG-invariant) part.

We first need the following characters. The Borel subgroup B of matrices
(a, b; 0, d) with a upper triangular and d lower triangular determines a set Φ+
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of positive roots in the set of all roots Φ (= characters that occur in the adjoint
representation of G on Lie(B)). We let 2ρ =

∑
Φ+ α.

Define e2ρn : M → Gm by γ = (a, 0; 0, d) �→ det(a)g+1η(γ)−g(g+1)/2,
where the multiplier η(γ) is defined by a · dt = η(γ)1g. (This corresponds
to the adjoint action of T on the Lie algebra of the unipotent radical of P .)
Secondly, we have the character e2ρM : T → Gm given by

diag(α1, . . . , αg, δ1, . . . , δg) �→
g∏

i=1

αg+1−2i
i =

g∏

i=1

δ2i−(g+1) .

and 2ρM is the sum of the positive roots in Φ+
M = {ai/aj : 1 ≤ i < j ≤ g}.

Together they give a character e2ρ : T → Gm given by e2ρ(t) = e2ρn(t)e2ρM (t)

for t ∈ T; explicitly,

diag(α1, . . . , αg, δ1, . . . , δg) �→ η−g(g+1)/2

g∏

i=1

α2g+2−2i
i .

Satake’s spherical map SG,M : Hp(Γ,G) → Hp(M) is defined by integrating

SG,M (φ)(m) = |eρn(m)|
∫

U(Qp)

φ(mu)du ,

where |p| = 1/p. Similarly, we have a map

SM,T : Hp(M) → Hp(T)

given by

ST (φ)(t) = |eρM (t)|
∫

M∩N
φ(tn)dn .

In [29] the authors define a ‘twisted’ version of these spherical maps where
they put |e2ρn(m)| and |e2ρM (t)| instead of the multipliers above. In this way
one avoids square roots of p. If one uses this twisted version one should also
twist the action of the Weyl group on the co-character group Y of T by eρ

too: in the usual action Sg permutes the ai and di and the i-th generator τi
of (Z/2Z)g interchanges ai and di. Under the twisted action τi sends (ui, vi)
to (pg+1−ivi, pi−g−1ui), while the permutation (i i+ 1) ∈ Sg sends (ui/vi) to
pui+1/vi+1. The formula is w · φ(t) = |eρ(w−1t)−ρ(t)|φ(w−1t) for w ∈ W and
t ∈ T, cf., [29].

The basic result is the following theorem.

Theorem 10. Satake’s spherical maps SG,M and SM,T define isomorphisms
of Q-algebras Hp(G) ∼−→Hp(T)WG and Hp(M) ∼−→Hp(T)WM .

For the untwisted version there is a similar result but one needs to tensor
with Q(

√
p). One can calculate these maps explicitly. A right cosetKλ(p) with
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λ ∈ Y is mapped under SGT to p〈λ,ρ〉λ. Concretely, if γ = diag(pα1 , . . . , pc−αg)
then SG,T (Kγ) equals

pcg(g+1)/4(v1 · · · vg)c
g∏

i=1

(ui/pivi)αi .

If we write a double coset Kλ(p)K as a finite sum of right cosets Kγ then
we may take γ = λ(p) as one of these coset representatives. Then the image
of the double coset Kλ(p)K is a sum p〈λ,ρ〉λ+

∑
μ nλ,μμ where the μ satisfy

μ < λ (i.e. λ − μ is positive on Φ+) and the nλ,μ are non-negative integers,
cf., [17, 40].

18 Relations in the Hecke Algebra

We derive some relations in the Hecke algebras. We first define elements φi in
the Hecke algebra Hp(M) by

pi(i+1)/2φi = M(Zp)

⎛

⎝
1g−i

p1g
1i

⎞

⎠M(Zp) i = 0, . . . , g

From [4], p. 142–145 one can derive the following result.

Proposition 5. We have SG,M (T (p)) =
∑g

i=0 φi and for i = 1, . . . , g

SG,M (Ti(p2)) =
g∑

j,k≥0,j+i≤k
mk−j(i)p−(k−j+1

2 )φjφk ,

where mh(i) = #{A ∈ Mat(h × h,Fp) : At = A, corank (A) = i}. Moreover,
for i = 0, . . . , g we have

SM,T (φi) = (v1 · · · vg)σi(u1/v1, . . . , ug/vg) ,

where σi denotes the elementary symmetric function of degree i.

Example 1. g = 1. We have T (p) �→ φ0+φ1, T0(p2) �→ φ2
0+((p−1)/p)φ0φ1+φ2

1

and T1(p2) �→ φ0φ1/p. We derive that T (p2) = T0(p2) + T1(p2) satisfies the
well-known relation T (p2) = T (p)2 − pT1(p2).

g = 2. We find T (p) �→ φ0 + φ1 + φ2 and T1(p2) �→ 1
pφ0φ1 + p2−1

p3 φ0φ2 +
1
pφ1φ2 and similarly T2(p2) �→ 1

p3φ0φ2.

We denote the element φ0 corresponding to (1g, 0; 0, p1g) by Frob. This elem-
ent of Hp(M) generates the fraction field of Hp(M) over the fraction field
of Hp(Γ,G) as we can see from the calculation above. Indeed, we have that
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ST (φ0) = v1 · · · vg and this element of Hp(T) is fixed by Sg, but not by any
other element of WG. In particular, it is a root of the polynomial

∏

w∈(Z/2Z)g

(X − w(φ0)) =
∏

I⊂{1,...,g}

(

X −
∏

i∈I
ui
∏

i/∈I
vi

)

.

For example, for g = 1 we find by elimination that φ0 is a root of

X2 − T (p)X + pT1(p2),

while for g = 2 we have that φ0 is a root of

X4 −T (p)X3 + (p T1(p2)+ (p3 + p)T2(p2))X2 − p3 T (p)T2(p2)X + p6 T2(p2)2 .

Using the relation

T (p)2 = T0(p2) + (p+ 1)T1(p2) + (p3 + p2 + p+ 1)T2(p2)

this can be rewritten as a polynomial F (X) given by

X4−T (p)X3 +(T (p)2−T (p2)−p2T2(p2))X2−p3 T (p)T2(p2)X+p6 T2(p2)2 .

Moreover, in the power series ring over the Hecke ring of Sp(4,Q) one has the
formal relation (cf., [93], [4], p. 152)

∞∑

i=0

T (pi) zi =
1 − p2 T2(p2) z2

z4F (1/z)
.

For a slightly different approach we refer to a paper [67] by Krieg and
a preprint by Ryan with an algorithm to calculate the images, cf., [82].

19 Satake Parameters

The usual argument that uses the Petersson product shows that the spaces
Sρ possess a basis of common eigenforms for the action of the Hecke algebra.

If F is a Siegel modular form in Mρ(Γg) for an irreducible representation
ρ = (λ1, . . . , λg) of GL(g,C) which is an eigenform of the Hecke algebraH then
we get for each Hecke operator T an eigenvalue λF (T ) ∈ C, a real algebraic
number. Now the determination of the local Hecke algebra Hp⊗C ∼= C[Y ]WG

says that
HomC(Hp,C) ∼= (C∗)g+1/WG .

In particular, for a fixed eigenform F the map Hp → C given by T �→ λF (T )
is determined by (the WG-orbit of) a (g + 1)-tuple (α0, α1, . . . , αg) of non-
zero complex numbers, the p-Satake parameters of F . So for i = 1, . . . , g the
parameter αi is the image of ui/vi and α0 that of v1 · · · vg and τi ∈ WG acts
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by τi(α0) = α0αi, τi(αi) = 1/αi and τi(αj) = αj if j �= 0, i. These Satake
parameters satisfy the relation

α2
0α1 · · ·αg = p

Pg
i=1 λi−(g+1)g/2 .

This follows from the fact that Tg(p2), which corresponds to the double
coset of p · 12g, is mapped to p−g(g+1)/2(v1 · · · vg)2

∏g
i=1(ui/vi) as we saw

above.
For example, if f =

∑
n a(n)qn ∈ Sk(Γ1) is a normalized eigenform and if

we write a(p) = β + β̄ with ββ̄ = pk−1 then (α0, α1) = (β, β̄/β) or (α0, α1) =
(β̄, β/β̄). Or if f ∈Mk(Γg) is the Siegel Eisenstein series of weight k then the
Satake parameters at p are: α0 = 1, αi = pk−i for i = 1, . . . , g.

The formulas from Proposition 5 give now formulas for the eigenvalues of
the Hecke operators T (p) and Ti(p2) in terms of these Satake parameters:

λ(p) = α0(1 + σ1 + . . .+ σg)

and similarly

λi(p2) =
g∑

j,k≥0,j+i≤k
mk−j(i)p−(k−j+1

2 )α2
0σiσj ,

where σj is the jth elementary symmetric function in the αi with i = 1, . . . , αg
and the mh(i) are defined as in Proposition 5.

20 L-functions

It is customary to associate to an eigenform f =
∑
a(n)qn ∈ Mk(Γ1) of

the Hecke algebra a Dirichlet series
∑
n≥1 a(n)n−s with s a complex pa-

rameter whose real part is > k/2 + 1. It is well-known that for a cusp
form this L-function admits a holomorphic continuation to the whole s-
plane and satisfies a functional equation. The multiplicativity properties
of the coefficients a(n) ensure that we can write it formally as an Euler
product ∑

n>0

a(n)n−s =
∏

p

(1 − a(p)p−s + pk−1−2s)−1 .

In defining L-series for Siegel modular forms one uses Euler products.
Suppose now that f ∈ Mρ(Γg) is an eigenform of the Hecke algebra with

eigenvalues λf (T ) for T ∈ H0
p . Then the assignment T �→ λf (T ) defines an

element of HomC(H0
p ,C). We called the corresponding (g+1)-tuple of α’s the

p-Satake parameters of f . The fact that Z[Y ]WG is also the representation
ring of the complex dual group Ĝ of G = GSP(2g,Q) (determined by the dual
‘root datum’) is responsible for a connection with L-functions. In our case
we can use the Satake parameters to define the following formal L-functions.
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Firstly, there is the spinor zeta function Zf (s) with as Euler factor at p the
expression Zf,p(p−s)−1 with Zf,p(t) given by

(1 − α0t)
g∏

r=1

∏

1≤i1<···<ir≤g
(1 − α0αi1 . . . αir t) = (1 − α0t)

∏

I

(1 − α0αI t) ,

where the product has 2g factors corresponding to the 2g subsets I ⊆
{1, . . . , g}. Secondly, there is the standard zeta function with as Euler fac-
tor Df,p(p−s)−1 at p the expression

Df,p(t) = (1 − t)
g∏

i=1

(1 − αit)(1 − α−1
i t) .

For example, for g = 1 the spinor zeta function is Zf (s) =
∑
a(n)n−s,

the usual L-series and the standard zeta function Df(s − k + 1) =
∏

(1 +
p−s+k−1)−1

∑
a(n2)n−s, that is related to the Rankin zeta function. For

g = 2 and eigenform f ∈ Mj,k(Γ2) with T (m)f = λf (m)f we have
Zf (s) = ζ(2s− j − 2k + 4)

∑
m∈Z>0

λf (m)m−s.
We set

Δ(f, s) = (2π)−gsπ−s/2Γ
(
s+ ε

2

) g∏

j=1

Γ (s+ k − j)D(f, s) ,

where ε = 0 for g even and ε = 1 for g odd. Then the function Δ(f, s) can be
extended meromorphically to the whole s-plane and satisfies a functional equa-
tion Δ(f, s) = Δ(f, 1−s), cf. papers by Böcherer [13], Andrianov–Kalinin [3],
Piatetski–Shapiro and Rallis [79]. If f ∈ Sk(Γg) is a cusp form and k ≥ g then
Δ(f, s) is holomorphic except for simple poles at s = 0 and s = 1. It is even
holomorphic if the eigenform does not lie in the space generated by theta series
coming from unimodular lattices of rank 2g. Also for k < g we have informa-
tion about the poles, cf., [73]. Andrianov proved that for g = 2 the function
Φf (s) = Γ (s)Γ (s−k+2)(2π)−2sZf(s) is meromorphic with only finitely many
poles and satisfies a functional equation Φf (2k − 2 − s) = (−1)kΦf (s).

One instance where spinor zeta functions associated to Siegel classi-
cal modular forms of weight 2 occur is as L-functions associated to the
1-dimensional cohomology of simple abelian surfaces.

We end by giving two additional references: the lectures notes by Courtieu
and Panchishkin [19] and a paper [104] by Yoshida on motives associated to
Siegel modular forms.

21 Liftings

It is well-known that for a normalized cusp form which is an eigenform f =∑
n≥1 a(n)qn of weight k on Γ1 we have the inequality |a(p)| ≤ 2p(k−1)/2 for
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every prime p, or equivalently, the roots of the Euler factor 1−a(p)X+pk−1X2

at p have absolute value p−(k−1)/2. This was shown by Eichler for cusp forms
of weight k = 2 on the congruence subgroups Γ0(N) ⊂ SL(2,Z) and by
Deligne for general k in two steps, by first reducing it to the Weil conjectures
in 1968 ([20]) and then by proving the Weil conjectures in 1974.

For g = 2 the analogous Euler factor at p for an eigenform F of the Hecke
algebra is the expression

Fp = 1 − λ(p)X + (λ(p)2 − λ(p2) − p2k−4)X2 − λ(p)p2k−3X3 + p4k−6X4 ,

with λ(p) the eigenvalue of the cusp form F ∈ Sk(Γ2); cf., the polynomial at
the end of Section 18. The tacit assumption of many mathematicians in the
1970’s was that the absolute values of the roots of Fp were equal to p−(2k−3)/2.
For example, for k = 3 a classical cusp form F of weight 3 on a congruence
subgroup Γ2(n) with n ≥ 3 determines a holomorphic 3-form F (τ)

∏
i≤j dτij

on the complex 3-dimensional manifold Γ2(n)\H2 that can be extended to
a compactification and we thus find an element of the cohomology group H3,
so we expect to find absolute value p−3/2. But then in 1978 Kurokawa and
independently H. Saito ( [69]) found examples of Siegel modular forms of
genus 2 contradicting this expectation. Their examples are the very first ex-
amples that one encounters, like the cusp form χ10 ∈ S10(Γ2). On the basis
of explicit calculations Kurokawa guessed that

L(χ10, s) = ζ(s− 9)ζ(s− 8)L(f18, s) ,

with f18 = Δe6 ∈ S18(Γ1) the normalized cusp form of weight 18 on SL(2,Z)
and L(χ10, s) =

∏
pF(p−s)−1 the spinor L-function. For example, he found

for p = 2
F2 = (1 − 28X)(1 − 29X)(1 + 528X + 217X2)

giving the absolute values p8, p9 and p17/2 for the inverse roots. The examples
he worked out suggested that in these cases L(Fk, s) = ζ(s − k + 1)ζ(s −
k + 2)L(f2k−2, s) with f2k−2 ∈ S2k−2(Γ1) a normalized cusp form and Fk
a corresponding Siegel modular form of weight k which is an eigenform of the
Hecke algebra. On the basis of this he conjectured the existence of a ‘lift’

S2k−2(Γ1) −→ Sk(Γ2), f �→ F

with L(F, s) = ζ(s− k+ 1)ζ(s− k+ 2)L(f, s). A little later, Maass identified
in Mk(Γ2) a subspace (‘Spezialschar’, nowadays called the Maass subspace,
cf., [71]) consisting of modular forms F with a Fourier development F =∑
N≥0 a(N)e2πiTrNτ satisfying the property that a(N) depends only on the

discriminant d(N) and the content e(N), i.e., if we write

N =
(
n r/2
r/2 m

)
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then N corresponds to the positive definite quadratic form [n, r,m] := nx2 +
rxy+my2 with discriminant d = 4mn−r2 and content e = g.c.d.(n, r,m). We
shall write a([n, r,m]) for a(N). The condition that F belongs to the Maass
space can be formulated alternatively as

a([n, r,m]) =
∑

d>0, d|(n,r,m)

dk−1a([1, r/d,mn/d2])

We shall write M∗
k (Γ2) or S∗

k(Γ2) for the Maass subspace of Mk(Γ2) or Sk(Γ2).
It was then conjectured (‘Saito–Kurokawa Conjecture’) that there is a 1-1
correspondence between eigenforms in S2k−2(Γ1) and eigenforms in the Maass
space S∗

k(Γ2) given by an identity between their L-functions. More precisely,
we now have the following theorem.

Theorem 11. The Maass subspace S∗
k(Γ2) is invariant under the action of

the Hecke algebra and there is a 1-1 correspondence between eigenspaces in
S2k−2(Γ1) and Hecke eigenspaces in S∗

k(Γ2) given by

f ↔ F ⇐⇒ L(F, s) = ζ(s− k + 1)ζ(s− k + 2)L(f, s)

with L(F, s) the spinor L-function of F .

The lion’s share of the theorem is due to Maass, but it was completed by
Andrianov and Zagier, see [2, 71, 109].

We can make an extended picture as follows. The map F �→ φk,1 that
sends a Siegel modular form to its first Fourier–Jacobi coefficient induces
an isomorphism M∗

k (Γ2) ∼= Jk,1, the space of Jacobi forms, and the map
h =

∑
c(n)qn �→

∑
n≡−r2 (mod 4) c(n)q(n+r2)/4ζr gives an isomorphism of the

Kohnen plus space M+
k−1/2 with Jk,1 fitting in a diagram

M∗
k (Γ2)

∼−→ Jk,1
∼←− M+

k−1/2

↓ ∼=
M2k−2(Γ1)

where the vertical map is the Kohnen isomorphism. Note that the vertical map
is quite different from the horizontal two maps. The vertical isomorphism is
not canonical at all, but depends on the choice of a discriminant D.

We now sketch a proof of Theorem 11. A classical Siegel modular form
F ∈ Mk(Γ2) has a Fourier–Jacobi series F (τ, z, τ ′) =

∑
φm(τ, z)e2πimτ

′
with

φm(τ, z) ∈ Jk,m, the space of Jacobi forms of weight k and index m. The
reader may check this by himself. We have on the Jacobi forms a sort of
Hecke operators Vm : Jk,m → Jk,ml with φ|k,mVl(τ, z) given explicitly by

lk−1
∑

Γ1\O(l)

(cτ + d)−ke2πiml(−cz
2/(cτ+d))φ((aτ + b)/(cτ + d), lz/(cτ + d)) .



224 G. van der Geer

On coefficients, if φ =
∑

n,r c(n, r)q
nζr then

φ|k,mVl =
∑

n,r

∑

a|(n,r,l)
ak−1c(nl/a2, r/a)qnζr .

One now checks using generators of Γ2 that for φ ∈ Jk,1 the expression

v(φ) :=
∑

m≥0

(φ|Vm)(τ, z)e2πimτ
′

is a Siegel modular form in Mk(Γ2).
We then have a map Mk(Γ2) → ⊕∞

m=0Jk,m by associating to a modular
form its Fourier–Jacobi coefficients; we also have a map in the other direction
Jk,1 →Mk(Γ2) given by φ→ v(φ) and the composition

Jk,1 →Mk(Γ2) → ⊕mJk,m
pr−→Jk,1

is the identity. So v : Jk,1 → Mk(Γ2) is injective and the image consists of
those modular forms F with the property that πm = φ1|Vm. This implies the
following relation for the Fourier coefficients for [n, r,m] �= [0, 0, 0]

a([n, r,m]) =
∑

d|(n,r,m)

dk−1c((4mn− r2)/d2) ,

where c(N) is given by

c(N) =

⎧
⎨

⎩

a([n, 0, 1]) N = 4n

a([n, 1, 1]) N = 4n− 1 .

In particular, we see that the image is the Maass subspace because

a([n, r,m]) =
∑

d|(n,r,m)

dk−1a([nm/d2, r/d, 1]) .

On the other hand, it is known that Jk,1 ∼= M+
k−1/2. Combination of the two

isomorphisms yields what we want.
Duke and Imamoǧlu conjectured in [23] a generalization of this and some

evidence was given by Breulmann and Kuss [15]. Then Ikeda generalized the
Saito–Kurokawa lift of modular forms from one variable to Siegel modular
forms of degree 2 in [58] in 1999 under the condition that g ≡ k (mod 2) to
a lifting from an eigenform f ∈ S2k(Γ1) to an eigenform F ∈ Sg+k(Γ2g) such
that the standard zeta function of F is given in terms of the usual L-function
of f by

ζ(s)
2g∏

j=1

L(f, s+ k + g − j) .
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The Satake parameters of F are β0, β1, . . . , β2g with

β0 = pgk−g(g+1)/2, βi = αpi−1/2, βg+i = α−1pi−1/2 for i = 1, . . . , g

with f =
∑
a(n)qn and

(1 − αpk−1/2X)(1 − α−1pk−1/2X) = 1 − a(p)X + p2k−1X2 ,

cf., [74]. (In particular, such lifts do not satisfy the Ramanujan inequal-
ity.) Kohnen ( [62]) has interpreted it as an explicit linear map S+

k+1/2 −→
Sk+g(Γ2g) given by

f =
∑

(−1)kn≡0,1( mod 4)

c(n)qnF �→
∑

N

a(N)e2πTriNτ ,

with a(N) given by an expression
∑

a|fN
ak−1φ(a,N)c(|DN |/a2) and φ(a,N)

an explicitly given integer-valued numbertheoretic function.
One defines also a Maass space with M∗

k (Γg) consisting of F such that
a(N) = a(N ′) if the discriminants of N and N ′ are the same and in addit-
ion φ(a,N) = φ(a,N ′) for all divisors a of fN = fN ′ . Under the additional
assumption that g ≡ 0, 1 (mod 4) Kohnen and Kojima prove in [64] that the
image of the lifting is the Maass space.

Example 2. Let k = 6 and g = 2. Then the Ikeda lift is a map from S12(Γ1) →
S8(Γ4) and the image of Δ is a cusp form that vanishes on the closure of
the Jacobian locus (i.e., the abelian 4-folds that are Jacobians of curves of
genus 4), [15]. Or take k = g = 6 and get a lift S12(Γ1) → S12(Γ12). This
lifted form occurs in the paper [14].

Miyawaki observed in [72] that the standard L-function of a non-zero cusp
form F of weight 12 on Γ3 is a product DΔ(F, s)L(φ20, s + 10)L(φ20, s+ 9),
with Δ ∈ S12(Γ1) and φ20 ∈ S20(Γ1) the normalized Hecke eigenforms of
weight 12 and 20. He conjectured a lifting and his idea was refined by Ikeda
to the following conjecture.

Conjecture 1. (Miyawaki–Ikeda) Let k and n be natural numbers with k−n
even. Furthermore, let f ∈ S2k(Γ1) be a normalized Hecke eigenform. Then
there exists for every eigenform g ∈ Sk+n+r(Γr) with n, r ≥ 1 a Siegel modular
eigenform Ff,g ∈ Sk+n+r(Γ2n+r) such that

DFf,g
(s) = Zg(s)

2n∏

j=1

Lf (s+ k + n− j) ,

with Lf = Zf the usual L-function.

In [59] Ikeda constructs a lifting from Siegel modular cusp forms of degree r
to Siegel cusp forms of degree r + 2n. This is a partial confirmation of this
conjecture.
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Finally, I would like to mention a conjectured lifting from vector-valued
Siegel modular forms of half-integral weight to vector-valued Siegel modular
forms of integral weight due to Ibukiyama. He predicts in the case of genus
g = 2 for even j ≥ 0 and k ≥ 3 an isomorphism

S+
j,k−1/2(Γ0(4), ψ) ∼−→S2k−6,j+3(Γ2)

which should generalize the Shimura–Kohnen lifting S+
k−1/2(Γ0(4)) ∼=

S2k−2(Γ1), see [51]. Here ψ(γ) =
(

−4
det(d)

)
.

22 The Moduli Space of Principally Polarized
Abelian Varieties

It is a fundamental fact, due to Mumford, that the moduli space of principally
polarized abelian varieties exists as an algebraic stack Ag over the integers.
The orbifold Γg\Hg is the complex fibre Ag(C) of this algebraic stack. This
fact has very deep consequences for the arithmetic theory of Siegel modular
forms, but an exposition of this exceeds the framework of these lectures. Also
the various compactifications, the Baily–Borel or Satake compactification and
the toroidal compactifications constructed by Igusa and Mumford et. al. exist
over Z as was shown by Faltings. We refer to an extensive, but very con-
densed survey of this theory in [29]. In particular, Faltings constructed the
Satake compactification over Z as the image of a toroidal compactification Ãg

by the sections of a sufficiently big power of det(E), the determinant of the
Hodge bundle. A corollary of Faltings’ results is that the ring of classical
Siegel modular forms with integral Fourier coefficients is finitely generated
over Z.

In the following sections we shall sketch how one can use some of these
facts to extract information on the Hecke eigenvalues of Siegel modular
forms.

The action of the Galois group of Q on the points of Ag(Q̄) that correspond
to abelian varieties with complex multiplication is described in Shimura’s
theory of canonical models. This theory can also explain the integrality of the
eigenvalues of Hecke operators. For this we refer to two papers by Deligne,
see [21, 22].

23 Elliptic Curves over Finite Fields

Suppose we did not have the elementary approach to g = 1 modular forms
using holomorphic functions on the upper half plane like the Eisenstein series
and Δ. How would we get the arithmetic information hidden in the Fourier
coefficients of Hecke eigenforms? Would we encounter Δ?
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We claim that one would by playing with elliptic curves over finite fields.
Let Fq with q = pm be a finite field of characteristic p and cardinality q.
An elliptic curve E defined over Fq can be given as an affine curve by an
equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 ,

with ai ∈ Fq and with non-zero discriminant (a polynomial in the coefficients).
We can then count the number #E(Fq) of Fq-rational points of E. A result of
Hasse tells us that #E(Fq) is of the form q+ 1−α− ᾱ for some algebraic in-
teger α with |α| =

√
q. We can do this for all elliptic curves E defined over Fq

up to Fq-isomorphism and we could ask (as Birch did in [10]) for the average
of #E(Fq), or better for

∑

E

q + 1 − #E(Fq)
#AutFq(E)

,

where AutFq(E) is the group of Fq-automorphisms of E, or more generally we
could ask for the average of the expression

h(k,E) := αk + αk−1ᾱ+ . . .+ αᾱk−1 + ᾱk ,

i.e. we sum
σk(q) = −

∑

E

h(k,E)
#AutFq(E)

where the sum is over all elliptic curves E defined over Fq up to Fq-isomorph-
ism. (As a rule of thumb, whenever one counts mathematical objects one
should count them with weight 1/#Aut with Aut the group of automorphisms
of the object.) If we do this for F3 we get the following table, where we also
give the j-invariant of the curve y2 = f

f #E(k) 1/#Autk(E) j
x3 + x2 + 1 6 1/2 −1
x3 + x2 − 1 3 1/2 1
x3 − x2 + 1 5 1/2 1
x3 − x2 − 1 2 1/2 −1

x3 + x 4 1/2 0
x3 − x 4 1/6 0

x3 − x+ 1 7 1/6 0
x3 − x− 1 1 1/6 0

and obtain the following frequencies for the number of F3-rational points:

n 1 2 3 4 5 6 7
freq 1/6 1/2 1/2 2/3 1/2 1/2 1/6
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Note that
∑

1/AutFq(E) = q and
∑
E : j(E)=j 1/AutFq(E) = 1 (see [36]

for a proof); so a ‘physical point’ of the moduli space contributes 1.
If we work this out not only for p = 3, but for several primes (p = 2, 3, 5, 7

and 11) we get the following values:

p 2 3 5 7 11

σ10 −23 253 4831 −16743 534613

Anyone who remembers the cusp form of weight 12

Δ =
∑

n>0

τ(n)qn = q − 24 q2 + 252 q3 − 3520 q4 + 4830 q5 + . . .

will not fail to notice that σ10(p) = τ(p) + 1 for the primes listed in this
example. And in fact, the relation σ10(p) = τ(p)+1 holds for all primes p. The
reason behind this is that the cohomology of the nth power of the universal
elliptic curve E → A1 is expressed in terms of cusp forms on SL(2,Z). To
describe this we recall the local system W on A1 associated to η−1 times the
standard representation of GSp(2,Q) in Section 12. The fibre of this local
system over a point [E] given by the elliptic curve E can be identified with
the cohomology group H1(E,Q). Or consider the universal elliptic curve (in
the orbifold sense) π : E → A1 obtained as the quotient SL(2,Z)×Z2\H1×C,
where the action of (a, b; c, d) ∈ SL(2,C) on (τ, z) ∈ H1 × C is ((aτ + b)/
(cτ + d), (cτ + d)−1z). Associating to an elliptic curve its homology H1(E,Q)
defines a local system that can be obtained as a quotient SL(2,Z)\H1 × Q2.
Then the dual of this local system is W := R1π∗Q. We now put

Wk := Symk(W) ,

a local system with a k + 1-dimensional fibre for k ≥ 0. We now have the
following cohomological interpretation of cusp forms on SL(2,Z), cf. [20].

Theorem 12. (Eichler–Shimura) For even k ∈ Z≥2 we have an isomorphism
of the compactly supported cohomology of Wk

H1
c (A1,W

k ⊗ C) ∼= Sk+2 ⊕ S̄k+2 ⊕ C

with Sk+2 the space of cusp forms of weight k + 2 on SL(2,Z) and S̄k+2 the
complex conjugate of this space.

Replacing W by WR we have the exact sequence

0 → E → W ⊗R O → E∨ → 0

with O the structure sheaf and an induced map E⊗k → Wk ⊗R O. Now the
de Rham resolution

0 → Wk ⊗R C → Wk ⊗R O
d−→Wk ⊗Ω1 → 0
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defines a connecting homomorphism

H0(A1, Ω
1(Wk)) → H1(A1,W

k ⊗ C) .

The right hand space has a natural complex conjugation and we thus find also
a complex conjugate map

H0(A1, Ω1(Wk)) → H1(A1,W
k ⊗ C) .

A cusp form f ∈ Sk+2 defines a section of H0(A1, Ω
1(Wk)) by putting f(τ) �→

f(τ)dτdzk. We thus have a cohomological interpretation of the space of cusp
forms.

As observed above the moduli space A1 is defined over the integers Z.
This means that we also have the moduli space A1 ⊗ Fp of elliptic curves in
characteristic p > 0. It is well-known that one can obtain a lot of information
about cohomology by counting points over finite fields. (Here we work with
�-adic étale cohomology for � �= p.) And, indeed, there exists an analogue of
the Eichler–Shimura isomorphism in characteristic p and the relation σ10(p) =
τ(p) + 1 is a manifestation of this. In fact a good notation for writing this
relation is

H1
c (A1,W

10) = S[12] + 1 ,

where the formula

H1
c (A1,W

2k) ∼= S[2k + 2] + 1 for k ≥ 1

may be interpreted complex-analytically as the Eichler–Shimura isomorphism
and in characteristic p as the relation

σ2k(p) = 1 + Trace of T (p) on S2k+2.

(A better interpretation is as a relation in a suitable K-group and with
S[2k + 2] as the motive associated to S2k+2. This motive can be constructed
in the kth power of E as done by Scholl [87] or using moduli space of n-pointed
elliptic curves as done by Consani and Faber, [18].)

This 1 in the formula H1
c (A1,W

2k) ∼= S[2k + 2] + 1 is really a nuisance.
To get rid of it in a conceptual way we consider the natural map

H1
c (A1,W

k) → H1(A1,W
k)

the image of which is called the interior cohomology and denoted byH1
! (A1,W

k).
We thus have an elegant and sophisticated form of the Eichler–Shimura iso-
morphism

H1
c (A1,W

k) = S[k + 2] + 1, H1
! (A1,W

k) = S[k + 2] .

The 1 is the 1 in 1+pk+1, the eigenvalue of the action of T (p) on the Eisenstein
series Ek+2 of weight k + 2 on SL(2,Z).

The moral of this is that we can obtain information on the traces of Hecke
operators on the space Sk+2 by calculating σk(p), i.e., by counting points on
elliptic curves over Fp. Even from a purely computational point of view this
is not a bad approach to calculating the traces of Hecke operators.
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24 Counting Points on Curves of Genus 2

With the example of g = 1 in mind it is natural to ask whether also for g = 2
we could obtain information on modular forms using curves of genus 2 over
finite fields. In joint work with Carel Faber ([27]) we showed that we can.

For g = 2 the quotient space Γ2\H2 is the analytic space of the moduli
space A2 of principally polarized abelian surfaces. A principally polarized
abelian surface is the Jacobian of a smooth projective irreducible algebraic
curve or it is a product of two elliptic curves. If the characteristic is not 2
a curve of genus 2 can be given as an affine curve with equation y2 = f(x)
with f a polynomial of degree 5 or 6 without multiple zeros.

The moduli space A2 exists over Z and provides us with a moduli space
A2⊗Fp for every characteristic p > 0. Also here we have a local system which
is the analogue of the local system W that we saw for g = 1:

V := GSp(4,Z)\H2 × Q4 ,

where the action of γ = (a, b; c, d) ∈ GSp(4,Z) is given by η−1 times the stan-
dard representation. Or in more functorial terms, we consider the universal
family π : X2 → A2 and then V is the direct image R1π∗(Q). The fibre of this
local system over the point [X ] corresponding to the polarized abelian surface
X is H1(X,Q). The local system V comes equipped with a symplectic pairing
V × V → Q(−1). Just as for g = 1 where we made the local systems Wk out
of the basic one W we can construct more local systems out of V but now
parametrized by two indices l and m with l ≥ m ≥ 0. Namely, the irreducible
representations of Sp(4,Q) are parametrized by such pairs (l,m) and we thus
have local systems Vl,m with l ≥ m ≥ 0 such that Vl,0 = Syml(V) and V1,1 is
the ‘primitive part’ of ∧2V. A local system Vl,m is called regular if l > m > 0.

Just as in the case g = 1 we are now interested in the cohomology of the
local systems Vl,m. We put

ec(A2,Vl,m) =
∑

i

(−1)i[Hi
c(A2,Vl,m)] .

Here we consider the alternating sum of the cohomology groups with compact
support in the Grothendieck group of mixed Hodge structures.

We also have an �-adic analogue of this that can be used in positive char-
acteristic. It is obtained from R1π∗(Q�) and lives over A2⊗Z[1/�]; we consider
the étale cohomology of this sheaf. We simply use the same name Vl,m and
assume that � is different from the characteristic p.

Using a theorem of Getzler [37] (on M2) tells us what the Euler charac-
teristic

∑
i(−1)i dimHi

c(A2,Vl,m) over C is. This Euler characteristic equals
the Euler characteristic of the �-adic variant over a finite field, cf., [9].

The first observation is that because of the action of the hyperelliptic
involution these cohomology groups are zero for l +m odd.
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Our strategy is now to make a list of all Fq-isomorphism classes of curves
of genus 2 over Fq and to determine for each of them #AutFq(C) and the
characteristic polynomial of Frobenius. So for each curve C we determine
algebraic integers α1, ᾱ1, α2, ᾱ2 of absolute value √

q such that

#C(Fqi ) = qi + 1 − αi1 − ᾱi1 − αi2 − ᾱi2

for all i ≥ 1. These α’s can be calculated using this identity for i = 1 and
i = 2. We also must calculate the contribution from the degenerate curves of
genus 2, i.e., the contribution from the principally polarized abelian surfaces
that are products of elliptic curves.

Having done that we are able to calculate the trace of Frobenius on the
alternating sum of Hi

c(A2 ⊗ Fq,Vl,m), where by Vl,m we mean the �-adic
variant, a smooth �-adic sheaf on A2 ⊗ Fq. In practice, it means that we sum
a certain symmetric expression in the α’s divided by #AutFq(C), analoguous
to the σk(q) for genus 1.

What does this tell us about Siegel modular forms of degree g = 2?
To get the connection with modular forms we have to replace the com-
pactly supported cohomology by the interior cohomology, i.e., by the image
of Hi

c(A2,Vl,m) → Hi(A2,Vl,m) which is denoted by Hi
! (A2,Vl,m). So let us

define
eEis(A2,Vl,m) = ec(A2,Vl,m) − e!(A2,Vl,m) .

If we do the same thing for g = 1 we find eEis(A1,W
k) = −1 for even k > 0.

Let L be the 1-dimensional Tate Hodge structure of weight 2 . It corres-
ponds to the second cohomology of P1. In terms of counting points one reads
q for L. Our first result is (cf., [27])

Theorem 13. Let (l,m) be regular. Then eEis(A2,Vl,m) is given by

−S[l+ 3] − sl+m+4Lm+1 + S[m+ 2] + sl−m+2 · 1 +

{
1 l even
0 l odd ,

where sn = dimSn(Γ1).

Faltings has shown (see [29]) that H3
! (A2,Vl,m) possesses a Hodge filtra-

tion
0 ⊂ F l+m+3 ⊂ F l+2 ⊂ Fm+1 ⊂ F 0 = H3

! (A2,Vl,m) .

Moreover, if (l,m) is regular then Hi
! (A2,Vl,m) = (0) for i �= 3. Furthermore,

Faltings shows that
F l+m+3 ∼= Sl−m,m+3(Γ2) .

Here Sj,k(Γ2) is the space of Siegel modular forms for the representation
Symj ⊗detk of GL(2,C). This is the sought-for connection with vector valued
Siegel modular forms and the analogue of H1

! (A1,W
k) = F 0 ⊃ F k+1 ∼=

Sk+2(Γ1) for g = 1. Faltings gives an interpretation of all the steps in the
Hodge filtration in terms of the cohomology of the bundles W(λ).
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However, although for g = 1 the Eichler–Shimura isomorphism tells us that
we know H1

! (A1,W
k) once we know Sk+2(Γ1), for g = 2 there might be pieces

of cohomology hiding in F l+2 ⊂ Fm+1 that are not detectable in F l+m+3 or
in F 0/Fm+1 and indeed there is such cohomology. The contribution to this
part of the cohomology is called the contribution from endoscopic lifting from
N = GL(2) × GL(2)/Gm.

We conjecture on the basis of our numerical calculations that this endo-
scopic contribution is as follows.

Conjecture 2. Let (l,m) be regular. Then the endoscopic contribution is
given by

eendo(A2,Vl,m) = −sl+m+4S[l −m+ 2] Lm+1 .

There is a very extensive literature on endoscopic lifting (cf. [68]), but a pre-
cise result on the image in our case seems to be absent. Experts on endoscopic
lifting should be able to prove this conjecture. Actually, since we know the
Euler characteristics of the interior cohomology and have Tsushima’s dimen-
sion formula it suffices to construct a subspace of dimension 2sl+m+4sl−m+2

in the endoscopic part via endoscopic lifting for regular (l,m).
In terms of Galois representations a Siegel modular form (with rational

Fourier coefficients) should correspond to a rank 4 part of the cohomology
or a 4-dimensional irreducible Galois representation. A modular form in the
endoscopic part corresponds to a rank 2 part and a 2-dimensional Galois
representation. Modular forms coming from the Saito–Kurokawa lift give 4-
dimensional representations that split off two 1-dimensional pieces.

In analogy with the case of g = 1 we now set

S[l−m,m+ 3] := H3
! (A2,Vl,m) −H3

endo(A2,Vl,m) .

This should be a motive analogous to the motive S[k] we encountered for
g = 1 and lives in a power of the universal abelian surface over A2. The trace
of Frobenius on étale �-adic H3

! (A2,Vl,m) − H3
endo(A2,Vl,m) should be the

trace of the Hecke operator T (p) on the space of modular forms Sl−m,m+3.

25 The Ring of Vector-Valued Siegel Modular Forms
for Genus 2

The quest for vector-valued Siegel modular forms starts with genus 2. We
can consider the direct sum M = ⊕ρMρ(Γ2) (see Section 3), where ρ runs
through the set of irreducible polynomial representations of GL(2,C). Each
such ρ is given by a pair (j, k) such that ρ = Symj(W ) ⊗ det(W )k, with W
the standard representation of GL(2,C). (Note that in the earlier notation we
have (λ1 − λ2, λ2) = (j, k).) So we may write M = ⊕j,k≥0Mj,k(Γ2) and we
know that Mj,k(Γ2) = (0) if j is odd. If F and F ′ are Siegel modular forms
of weights (j, k) and (j′, k′) then the product is a modular forms of weight of
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weight (j + j′, k+ k′). The multiplication is obtained from the canonical map
Symj1(W )⊗det(W )k1⊗Symj2(W )⊗det(W )k2 → Symj1+j2(W )⊗det(W )k1+k2

obtained from multiplying polynomials in two variables.
There is the Siegel operator that goes from Mj,k(Γ2) to Mj+k(Γ1). For

j > 0 the Siegel operator gives a map to Sj+k(Γ1) and for j > 0, k > 4
the map Φ : Mj,k(Γ2) → Sj+k(Γ1) is surjective. For these facts on the Siegel
operator we refer to Arakawa’s paper [6]. The Siegel operator is multiplicative:
Φ(F · F ′) = Φ(F )Φ(F ′).

There is a dimension formula for dimMj,k(Γ2), due to Tsushima, [101].
But apart from this not much is known about vector-valued Siegel modular
forms. The direct sum ⊕kMj,k(Γ2) for fixed j is a module over the ring M cl =
⊕M0,k(Γ2) of classical Siegel modular forms and we know generators of this
module for j = 2 and j = 4 and even j = 6 due to Satoh and Ibukiyama,
cf. [48, 49, 86].

One way to construct vector-valued Siegel modular forms from classical
Siegel modular forms is differentiation, the simplest example being given by
a pair f ∈Ma(Γ2), g ∈Mb(Γ2) for which one sets

[f, g] :=
1
b
f∇g − 1

a
g∇f

with ∇f defined by

2πi∇f = a (2iy)−1f +
(
∂/∂τ11 ∂/∂τ12
∂/∂τ12 ∂/∂τ22

)
f .

The point is that [f, g] is then a modular form in M2,a+b(Γ2). Using this
operation (an instance of Cohen–Rankin operators) Satoh showed in [86] that
⊕k≡0(2)M2,k is generated over the ring ⊕kMk(Γ2) of classical Siegel modular
forms by such [f, g] with f and g classical Siegel modular forms.

We give a little table with dimensions for dimSj,k(Γ2) for 4 ≤ k ≤ 20,
0 ≤ j ≤ 18 with j even:

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

j\k 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 0 0 0 0 0 0 1 0 1 0 1 0 2 0 2 0 3

2 0 0 0 0 0 0 0 0 0 0 1 0 2 0 2 0 3

4 0 0 0 0 0 0 1 0 1 0 2 1 3 1 4 2 6

6 0 0 0 0 1 0 1 1 2 1 3 2 5 3 7 4 9

8 0 0 0 0 1 1 2 1 3 2 5 4 7 5 9 7 13

10 0 0 0 0 0 1 2 1 3 2 5 5 8 6 11 9 15

12 0 0 1 1 2 2 4 4 6 5 9 8 13 11 17 15 22

14 0 0 0 1 2 2 4 4 6 6 10 10 15 13 19 18 26

16 0 0 1 1 3 3 6 5 9 8 13 13 19 17 25 23 33

18 0 1 1 2 4 5 7 8 11 11 17 17 23 23 31 30 40

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦
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The ring ⊕j,kMj,k(Γ2) is not finitely generated as was explained to me by
Christian Grundh. Here is his argument.

Lemma 4. The ring ⊕j,kMj,k(Γ2) is not finitely generated.

Proof. Suppose that gn for n = 1, . . . , r are the generators with weights
(jn, kn). If we have a modular form g of weight (j, k) with j > max(jn, n =
1, . . . , r) then g is a sum of products of gn, two of which at least have jn > 0,
hence by the properties of Φ we see that then Φ(g) is a sum of products of cusp
forms, hence lies in the ideal generated by Δ2 of the ring of elliptic modular
forms. But for j > 0, k > 4 the map Φ : Mj,k(Γ2) → Sj+k(Γ1) is surjective, so
we have forms g in Mj,k(Γ2) that land in the ideal generated by Δ, but not
in the ideal generated by Δ2. Thus the ring cannot be generated by gn for
n = 1, . . . , r.

Just as Δ is the first cusp form for g = 1 that one encounters the first
vector-valued cusp form that one encounters for g = 2 is the generator of
S6,8(Γ2). The adjective ‘first’ refers to the fact that the weight of the local
system Vj+k−3,k−3 is j + 2k − 6. Our calculations (modulo the endoscopic
conjecture given in Section 24) allow the determination of the eigenvalues
λ(p) and λ(p2) for p = 2, 3, 5, 7. We then can calculate the characteristic
polynomial of Frobenius and even the slopes of it on S6,8(Γ2).

p λ(p) λ(p2) slopes
2 0 −57344 13/2, 25/2
3 −27000 143765361 3, 7, 12, 16
5 2843100 −7734928874375 2, 7, 12, 17
7 −107822000 4057621173384801 0, 6, 13, 19

At our request Ibukiyama ([48]) has constructed a vector-valued Siegel
modular form 0 �= F ∈ S6,8, using a theta series for the lattice

Γ = {x ∈ Q16 : 2xi ∈ Z, xi − xj ∈ Z,
16∑

i=1

xi ∈ 2Z} .

One puts a = (2, i, i, i, i, 0, . . . , 0) ∈ C16 and one denotes by ( , ) the usual
scalar product. If F = (F0, . . . , F6) is the vector of functions on H2 defined
by

Fν =
∑

x,y∈Γ
(x, a)6−ν(y, a)νeπi((x,x)τ11+2(x,y)τ12+(y,y)τ22) (ν = 0, . . . , 6)

with τ = (τ11, τ12; τ12, τ22) ∈ H2, then Ibukiyama’s result is that F �= 0 and
F ∈ S6,8. The vanishing of λ(2) in the table above agrees with this.

Here are two more examples of 1-dimensional spaces, the space S18,5 and
the last one, S28,4. In these examples and the other ones we assume the validity
of our conjecture on the endoscopic contribution. The eigenvalues λ(p) grow
approximately like p(j+2k−3)/2, i.e. p25/2 and p33/2.
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p λ(p) on S18,5 λ(p) on S28,4

2 −2880 35040
3 −538920 30776760
5 118939500 522308049900
7 1043249200 18814963644400

11 −9077287359096 132158356344353064
13 −133873858788740 −1710588414695522180
17 667196591802660 −17044541241181641180
19 2075242468196920 888213094972004807320
23 −8558834216776560 −43342643806617018857520
29 64653981488634780 −172663192093972503614820
31 −5977672283905752896 1826186223285615270299584
37 56922208975445092780 −29747516862655204839491540

In principle our database allows for the calculation of the traces of the Hecke
operators T (p) with p ≤ 37 on the spaces Sj,k for all values j, k. In the cases
at hand these numbers tend to be ‘smooth’, i.e., they are highly composite
numbers as we illustrate with the two 1-dimensional spaces Sj,k for (j, k) =
(8, 8) and (12, 6) (where the trace equals the eigenvalue of T (p)).

p λ(p) on S8,8 λ(p) on S12,6

2 26 · 3 · 7 −24 · 3 · 5
3 −23 · 32 · 89 23 · 35 · 5 · 7
5 −22 · 3 · 52 · 132 · 607 22 · 3 · 52 · 7 · 79 · 89
7 24 · 7 · 109 · 36973 −24 · 52 · 7 · 119633

11 23 · 3 · 4759 · 114089 23 · 3 · 23 · 2267 · 2861
13 −22 · 13 · 17 · 109 · 3404113 22 · 5 · 7 · 13 · 50083049
17 22 · 32 · 17 · 41 · 1307 · 168331 −22 · 32 · 5 · 7 · 13 · 47 · 14320807
19 −23 · 5 · 74707 · 9443867 −23 · 5 · 73 · 19 · 2377 · 35603

Satoh had calculated a few eigenvalues of Hecke operators T (m) acting on
S14,2(Γ2), (for m = 2, 3, 4, 5, 9 and 25) cf. [86], and our values agree with his.

26 Harder’s Conjecture

In his study of the contribution of the boundary of the moduli space to the
cohomology of local systems on the symplectic group, more precisely of the
Eisenstein cohomology, Harder arrived at a conjectural congruence between
modular forms for g = 1 and Siegel modular forms for g = 2, cf., [44,45]. The
second reference is his colloquium talk in Bonn (February 2003) which can be
found in this volume and where this conjectural relationship was formulated
in precise terms. One can view his conjectured congruences as a generalization
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of the famous congruence for the Fourier coefficients of the g = 1 cusp form
Δ =

∑
τ(n)qn of weight 12

τ(p) ≡ p11 + 1 (mod 691) .

To formulate it we start with a g = 1 cusp form f ∈ Sr(Γ1) of weight r that
is a normalized eigenform of the Hecke operators. We write f =

∑
n≥1 a(n)qn

with a(n) = 1. To f we can associate the L-series L(f, s) defined by L(f, s) =∑
n≥1 a(n)/ns for complex s with real part > k/2 + 1. If we define Λ(f, s) by

Λ(f, s) =
Γ (s)
(2π)s

L(f, s) =
∫ ∞

0

f(iy)ys−1dy

then Λ(f, s) admits a holomorphic continuation to the whole s-plane and
satisfies a functional equation Λ(f, s) = ikΛ(f, k − s). It is customary to call
the values Λ(f, t) for t = k − 1, k − 2, . . . , 0 the critical values. In view of the
functional equation we may restrict to the values t = k − 1, . . . , k/2.

A basic result due to Manin and Vishik is the following.

Theorem 14. There exist two real numbers (‘periods’) ω+, ω− such that the
ratios

Λ(f, k − 1)/ω−, Λ(f, k − 2)/ω+, . . . , Λ(f, k/2)/ω(−1)k/2

are in the field of Fourier coeffients Qf = Q(a(n) : n ∈ Z≥1).

If the Fourier coefficients are rational integers we may normalize these
ratios so that we get integers in a minimal way. In practice one observes that
one usually finds many small primes dividing these coordinates. By small
we mean here less than k (or something close to this). Occasionally, there is
a larger prime dividing these critical values of Λ(f, s).

Instead of calculating the integrals one may use a slightly different ap-
proach by employing the so-called period polynomials, [65], which are defined
for f ∈ Sk(Γ1) by r = i r+ + r− with

r+(f) =
∑

0≤n≤k−2,n even

(−1)n/2
((

k − 2
n

))
rn(f)Xk−2−n

and
r−(f) =

∑

0<n<k−2,n odd

(−1)(n−1)/2

((
k − 2
n

))
rn(f)Xk−2−n

with rn(f) =
∫∞
0 f(it)tndt for n = 0, . . . , k − 2. Then the coefficients of these

period polynomials give up to ‘small’ primes the critical L-values. These can
be calculated purely algebraically and these are the ones that I used. By
slight abuse of notation I denote these ratios again by the same symbols
(Λ(f, k − 1) : Λ(f, k − 3) : . . .). See also [25] for more on the critical val-
ues.
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For example, if we do this for f = Δ ∈ S12 then we get

(Λ(f, 10) : Λ(f, 8) : Λ(f, 6)) = (48 : 25 : 20)

and see only ‘small’ primes. The first example where we see larger primes
is the normalized eigenform f = Δe4e6 ∈ S22. We find for the even critical
values

(Λ(f, 20) : . . . : Λ(f, 12)) = (25 ·33 ·5 ·19 : 23 ·7 ·132 : 3 ·5 ·7 ·13 : 2 ·3 ·41 : 2 ·3 ·7)

where obviously 41 is the exception. We shall write for short 41|Λ(f, 14). What
is the meaning of these exceptional primes dividing the critical values?

Harder made the following conjecture.

Conjecture 3. (Harder’s Conjecture) Let f ∈ Sr(Γ1) be a normalized eigen-
form with field of Fourier coefficients Qf . If a ‘large’ prime � of Qf divides
a critical value Λ(f, t) then there exists a Siegel modular form F ∈ Sj,k(Γ2)
of genus 2 and weight (j, k) with j = 2t− r − 2 and k = r − t+ 2 that is an
eigenform for the Hecke algebra with eigenvalue λ(p) for T (p) with field QF

of eigenvalues λ(p) and such that for a suitable prime �′ of the compositum L
of Qf and QF dividing � one has

λ(p) ≡ pk−2 + a(p) + pj+k−1 (mod �′)

for all primes p.

(Here the λ(p) are algebraic integers lying in a totally real field QF . Harder
formulated the conjecture for the case L = Q.)

For example, if f = Δe4e6 ∈ S22(Γ1) is the unique normalized cusp
form of weight 22 then 41|Λ(f, 14), so Harder predicts that the space S4,10

should contain a non-zero eigenform F with eigenvalues λ(p) satisfying
λ(p) ≡ p8 + a(p) + p13 (mod41) for all p. A mimimum consistency is that
at least dimS4,10(Γ2) �= 0; as it turns out this dimension is 1.

27 Evidence for Harder’s Conjecture

Since we can calculate the trace of the Hecke operators T (p) on the spaces
Sj,k(Γ2) for all primes p ≤ 37 (modulo the conjecture on the endoscopic
contribution) we can try to check the conjecture by Harder (and gain evidence
for the conjecture on the endoscopic contribution at the same time). As we just
saw, the first case where we have a ‘large’ prime dividing a critical L-value is
the eigenform f = Δe10 ∈ S22(Γ1) of weight 22. Here the prime 41 divides the
critical values L(f, 14)/Ω+. The conjecture predicts a congruence between the
Fourier coefficients of f =

∑∞
n=1 a(n)qn and the eigenvalues λ(p) of a form F

in the 1-dimensional space S4,10(Γ2). We give the tables with the eigenvalues
a(p) of f and λ(p) of F ∈ S4,10(Γ2) for the primes p ≤ 37.
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p a(p) λ(p)

2 −288 −1680
3 −128844 55080
5 21640950 −7338900
7 −768078808 609422800

11 −94724929188 25358200824
13 −80621789794 −263384451140
17 3052282930002 −2146704955740
19 −7920788351740 43021727413960
23 −73845437470344 −233610984201360
29 −4253031736469010 −545371828324260
31 1900541176310432 830680103136064
37 22191429912035222 11555498201265580

Proposition 6. The congruence λ(p) ≡ p8 + a(p) + p13(mod41) for the
eigenvalues λ(p) and a(p) on S4,10(Γ2) and S22(Γ1) holds for all primes
p ≤ 37.

In this way we can check Harder’s conjecture for many cases given in the ta-
bles below in the following sense. If both dimSr(Γ1) = 1 and dimSj,k(Γ2) = 1
and if � is a prime > r dividing the critical L-value then we checked the con-
gruence λ(p) − a(p) − pj+k−1 − pk−2 ≡ 0(mod �) for all primes p ≤ 37. In
case dimSr(Γ1) = 2 and dimSj,k(Γ2) = 1 I checked that in the quadratic
field Q(a(p)) the expression λ(p)− a(p)− pj+k−1 − pk−2 has a norm divisible
by � for all primes p ≤ 37. With a bit of additional effort one can check the
congruence in the real quadratic field. For example, take r = 24 and let

f =
∑

a(n)qn = q − (54 − 12
√

144169) q2 + . . .

be a normalized eigenform in S24(Γ1). In the quadratic field Q(
√

144169) the
prime 73 splits as π · π′ with π = (73, 53 + 36

√
144169). Let λ(p) be the

eigenvalue under T (p) of the generator of S12,7(Γ2). Then we can check the
congruence

λ(p) ≡ p5 + a(p) + p18 (mod π)

for all p ≤ 37.
In case dimSj,k(Γ2) = 2 I can calculate the characteristic polynomial g of

T (2). In general this is an irreducible polynomial g of degree 8 over Q. The
corresponding number field L possesses just one subfield L of degree 2 over Q

and g decomposes in two polynomials of degree 4 that are irreducible over K.
I then checked that the expression λ(p)− a(p)− pj+k−1 − pk−2 has a norm in
the composite field (Q(a(2)),K) which is divisible by our congruence prime �.
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For example, we treat the case of the local system V18,6 with (�,m) =
(18, 6). The characteristic polynomial g of Frobenius at the prime 2 is:

1 + t1X + t2X
2 + t3X

3 + t4X
4 + 227 t3X

5 + 254t2X
6 + 281t1X

7 + 2108X8 .

with the coefficients t1 = 12432, t2 = 193574912, t3 = 3043199287296 and
t4 = 31380514975776768. The corresponding degree 8 field extension K of Q

has one quadratic subfield Q(
√

7 · 3607). Our polynomial g splits into the
product of a quartic polynomial h

18014398509481984X4 + (834297397248− 9663676416
√

25249)X3 +
(142913536− 110592

√
25249)X2 + (6216− 72

√
25249)X + 1

and its conjugate over this quadratic subfield Q(
√

25249) and we get λ(2) =
−6216 ± 72

√
25249. The normalized eigenform in S28 has Fourier coefficient

a(2) = −4140± 108
√

18209) and one checks that the norm of

6216 + 72
√

25249 + 27 + 220 − (4140 + 108
√

18209)

in the field Q(
√

25249,
√

18209) is divisible by 4057 as predicted by Harder.
But there are cases where the characteristic polynomial g decomposes.

These are the cases (j, k) = (18, 7) where we have two factors of degree 4 and
(j, k) = (8, 13) where g is a product of four quadratic factors. In the cases
(j, k) = (18, 7) there is a congruence modulo 3779. In fact, g decomposes as
the product of

288230376151711744X4 − 4252017623040X3 + 45752320X2 − 7920X + 1

and

288230376151711744X4 + 17575006175232X3 + 857571328X2 + 32736X + 1

and one calculates

Norm(4320 + 96
√

51349 + 224 + 25 + 32736) = 282720345772032

and this is divisible by 3779. In the cases (j, k, r) = (32, 4, 38) there are two
congruence primes and one finds indeed a congruence for both of them.

The following table lists the congruence primes in question. All of these
are checked in the sense explained above.

Let me finish by expressing the hope that these explicit examples will
convince the reader that Siegel modular forms are not less fascinating than
elliptic modular forms and moreover that in this corner of nature there are
many exciting secrets that await discovery.



240 G. van der Geer

r dim(Sr) (j, k) dim(Sj,k) L-value primes
20 1 (6, 8) 1 22 · 3 · 112

22 1 (4, 10) 1 −2 · 3 · 17 · 41 41
22 1 (8, 8) 1 3 · 7 · 13 · 17
22 1 (12, 6) 1 −2 · 7 · 132

24 2 (12, 7) 1 24 · 5 · 72 · 11 · 73 73
24 2 (6, 10) 1 3 · 112 · 132 · 17
24 2 (8, 9) 1 3 · 72 · 11 · 19 · 179 179
26 1 (4, 12) 1 2 · 11 · 17 · 19
26 1 (6, 11) 1 3 · 5 · 11 · 19
26 1 (10, 9) 1 −2 · 7 · 11 · 29 29
26 1 (14, 7) 1 5 · 7 · 97 97
26 1 (16, 6) 1 −2 · 11 · 17 · 19
26 1 (8, 10) 2 −32 · 7 · 11 · 19
26 1 (12, 8) 2 3 · 52 · 11 · 17
28 2 (2, 14) 1 23 · 52 · 132 · 172 · 19 · 23
28 2 (16, 7) 1 25 · 34 · 5 · 7 · 13 · 367 367
28 1 (14, 8) 2 24 · 11 · 132 · 17 · 19 · 23 · 647 647
28 2 (12, 9) 2 23 · 7 · 11 · 13 · 23 · 4057 4057
28 2 (8, 11) 1 5 · 112 · 13 · 23 · 2027 2027
28 2 (18, 6) 1 24 · 32 · 52 · 11 · 132 · 172 · 19
28 1 (10, 10) 2 22 · 52 · 112 · 132 · 17 · 23 · 157 157
28 2 (6, 12) 2 5 · 112 · 132 · 19 · 23 · 823 823
28 2 (20, 5) 1 29 · 34 · 5 · 193 193
30 2 (14, 9) 2 28 · 3 · 5 · 13 · 1039 1039
30 2 (6, 13) 1 24 · 5 · 11 · 13 · 19 · 23
30 2 (10, 11) 1 34 · 11 · 13 · 23 · 97 97
30 2 (24, 4) 1 210 · 34 · 55 · 7 · 97 97
30 2 (20, 6) 2 26 · 33 · 7 · 11 · 13 · 17 · 19 · 23 · 593 593
30 2 (4, 14) 2 32 · 5 · 72 · 13 · 192 · 23 · 4289 4289
30 2 (18, 7) 2 24 · 32 · 5 · 11 · 3779 3779
32 2 (4, 15) 1 22 · 5 · 72 · 13 · 19 · 23 · 61 61
32 2 (2, 16) 2 33 · 52 · 72 · 192 · 23 · 211 211
32 2 (22, 6) 2 23 · 33 · 5 · 7 · 13 · 17 · 19 · 23 · 7687 7687
32 2 (24, 5) 2 29 · 35 · 5 · 3119 3119
32 2 (8, 13) 2 2 · 73 · 113 · 132 · 23
34 2 (10, 13) 2 23 · 32 · 5 · 7 · 132 · 232 · 292

34 2 (28, 4) 1 210 · 38 · 55 · 7 · 103 103
34 2 (26, 5) 2 211 · 33 · 53 · 15511 15511
34 2 (6, 15) 2 2 · 52 · 7 · 13 · 232 · 29 · 233 233
38 2 (32, 4) 2 28 · 38 · 54 · 72 · 67 · 83 67, 83



Siegel Modular Forms and Their Applications 241

References

1. A.N. Andrianov: Quadratic forms and Hecke operators. Grundlehren der
Mathematik 289, Springer Verlag, 1987.

2. A.N. Andrianov: Modular descent and the Saito–Kurokawa conjecture. Invent.
Math. 53 (1979), p. 267–280.

3. A.N. Andrianov, V.L. Kalinin: On the analytic properties of standard zeta
functions of Siegel modular forms. Math. USSR Sb. 35 (1979), p. 1–17.

4. A.N. Andrianov, V.G. Zhuravlev: Modular forms and Hecke operators. Trans-
lated from the 1990 Russian original by Neal Koblitz. Translations of Mathem-
atical Monographs, 145. AMS, Providence, RI, 1995.

5. H. Aoki: Estimating Siegel modular forms of genus 2 using Jacobi forms.
J. Math. Kyoto Univ. 40 (2000), p. 581–588.

6. T. Arakawa: Vector valued Siegel’s modular forms of degree 2 and the associ-
ated Andrianov L-functions, Manuscr. Math. 44 (1983) p. 155–185.

7. A. Ash, D. Mumford, M. Rapoport, Y. Tai: Smooth compactification of locally
symmetric varieties. Lie Groups: History, Frontiers and Applications, Vol. IV.
Math. Sci. Press, Brookline, Mass., 1975.

8. W. Baily, A. Borel: Compactification of arithmetic quotients of bounded sym-
metric domains. Ann. of Math, 84 (1966), p. 442–528.

9. J. Bergström, G. van der Geer: The Euler characteristic of local systems on
the moduli of curves and abelian varieties of genus 3. arXiv:0705.0293

10. B. Birch: How the number of points of an elliptic curve over a fixed prime field
varies. J. London Math. Soc. 43 (1968), p. 57–60.

11. D. Blasius, J.D. Rogawski: Zeta functions of Shimura varieties. In: Motives (2),
U. Jannsen, S. Kleiman, J.-P. Serre, Eds., Proc. Symp. Pure Math. 55 (1994),
p. 447–524.

12. S. Böcherer: Siegel modular forms and theta series. Proc. Symp. Pure Math.
49, Part 2, (1989), p. 3–17.

13. S. Böcherer: Über die Funktionalgleichung automorpher L-Funktionen zur
Siegelschen Modulgruppe. J. Reine Angew. Math. 362 (1985), p. 146–168.

14. R.E. Borcherds, E. Freitag, R. Weissauer: A Siegel cusp form of degree 12 and
weight 12. J. Reine Angew. Math. 494 (1998), p. 141–153.

15. S. Breulmann, M. Kuss: On a conjecture of Duke-Imamoǧlu. Proc. A.M.S. 128
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