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Summary. The relations between swarm intelligence and organic computing are
discussed in this chapter. The aim of organic computing is to design and study com-
puting systems that consist of many autonomous components and show forms of
collective behavior. Such organic computing systems (OC systems) should possess
self-x properties (e.g., self-healing, self-managing, self-optimizing), have a decentral-
ized control, and be adaptive to changing requirements of their user. Examples of
OC systems are described in this chapter and two case studies are presented that
show in detail that OC systems share important properties with social insect colonies
and how methods of swarm intelligence can be used to solve problems in organic
computing.

1 Introduction

Organic computing is a new field of computer science with the aim to design
and understand computing systems that consist of many components and pos-
sess so-called self-x properties where “x” stands, for example, for “healing”,
“managing”, “organizing”, “optimizing” (e.g., [19, 37, 44]). One idea of or-
ganic computing is to use principles of self-organization in order to obtain
systems with self-x properties. Computing systems that possess self-x prop-
erties and follow such design principles are called organic computing systems
(OC systems).

Social insects, like ants and bees, are a particularly interesting source of
inspiration for the design of OC systems. The main reason is that social insect
colonies show a complex behavior even though the members of the colony
are relatively simple individuals. Most of these behaviors can be called self-
organized because there exists neither a central control nor a global work
plan. A behavior of the colony which can be seen on a large scale (e.g., nest
building or the formation of aggregations of thousands of individuals) but
where the individuals act only according to simple rules that use input from
their senses only about their local environment is called emergent. Examples
of such emergent behavior are nest building of termites ([21]), the formation
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of bucket brigades during foraging of ants ([2]), the election of a new nest
site by a swarm of bees ([26]), and the trail-laying behavior of ants that leads
to short paths between their nest and food sources. The latter behavior has
inspired the Ant Colony Optimization metaheuristic (see Chap. 2) that is used
to solve combinatorial optimization problems ([15]). Another example is the
behavior of ants to cluster larvae or corpses of dead ants, which has inspired
the design of different clustering algorithms (e.g. [18, 23]).

Since self-organized systems can show emergent effects it is important to
understand under which circumstances these effects might occur. Therefore,
researchers have developed models that help explain the emergent behavior
of social insects. Examples are threshold response models that have been pro-
posed to explain the foraging behavior of ants ([4, 48, 50]); self-synchronization
effects in the activity schedule of ants have been explained by models [12], and
models have been used to describe the self-organized emergence of aggrega-
tions in social insects ([13, 14]). The emergent behavior of social insects and
the related biological models have been used by researchers in swarm intelli-
gence to build agent systems or swarm robots and to develop new optimization
methods.

In this chapter we discuss connections between swarm intelligence and or-
ganic computing. Since organic computing is a relatively new research field it
is too early to give an overview on the relations between organic computing
and swarm intelligence. Therefore, we shortly present some example applica-
tions of organic computing methods from different areas (see Sec. 2). Then
we present two case studies that show in some detail how methods of swarm
intelligence are connected to problems in organic computing (see Sections 3
and 4).

The first study deals with the control of emergence effects in OC systems.
In general, emergent behavior is considered to be an important aspect for
OC systems (e.g., [42]). So far researchers have considered mostly the positive
aspects of emergent behavior. They try to apply the principles of emergent
behavior of natural systems to increase the capabilities of OC systems. Ideally,
the autonomous components of an OC system should be able to create a com-
plex emergent behavior without the knowledge of a global plan and without
control information that they receive from a central controller. An example of
such an emergent behavior that results from self-organization could be the task
allocation between the components or the specialization of the components
to different tasks by using reconfigurable hardware. Since a certain emergent
behavior is typically seen as a desired property of an OC system there exist
efforts to develop quantitative measures for emergence ([36]) in order to com-
pare the strength of different OC systems. But, there exists also the potential
danger that an OC system might show emergent properties that are unwanted
and have not been foreseen when the system was designed. The question that
is considered in the first part of this chapter is how an OC system can be
controlled such that certain unwanted emergent behaviors can be prevented.
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As an example model for this study the emergent clustering behavior of ants
is used.

The second study in this chapter is related to the following observation.
Typical for OC systems is that their components can adapt to environmental
conditions. Hence, even if the components are all equal in principle they will
show a slightly different behavior due to individual adaptations. Therefore, it
is interesting to investigate what types of emergent effects might occur due to
such slight differences in individual behavior. In this context, it is interesting
that, as has been observed, ants with slightly different movement behavior can
be found most often in different parts of the nest (see [45]). It is discussed in
the second part of this chapter what patterns might occur in OC systems with
moving components and what are their possible consequences on the behavior
of OC systems.

The content of Section 3 and 4 is based on work that has been done within
the project “Organization and Control of Self-Organizing Systems in Techni-
cal Compounds” within the German Research Foundation (DFG) priority
programme on organic computing, and is based on publications [43] and [34].

2 Examples of Organic Computing Systems

In this section we shortly present some examples of the application of organic
computing methods to different areas.

One application of organic computing in the field of hardware is the organic
computing approach for very fast image processing that was proposed in [28,
16]. This approach is called Marching Pixels (MPs). The basic idea of MP is to
use an embedded massively parallel array of pixel processor elements (PEs)
to exploit emergent algorithms in order to solve difficult image-processing
tasks. Marching pixels are seen as virtual organic units which are born, move,
unite, are mutated, leave signatures on the ground, and die on the processor
field. The task of the marching pixels is to carry out autonomously image
preprocessing tasks, e.g., detection and tracking of moving objects. For the
underlying technology there exist plans for future smart sensor chips which
will integrate hundreds of millions of transistors. One idea for realizing the
MPs approach is to use principles from the pheromone communication of ants
to guide the pixels.

An Organic-Computing-inspired System-on-Chip (SoC) architecture which
applies self-organization and self-calibration concepts to build reliable SoCs
was proposed in [5]. This type of SoC architecture — called Autonomic SoC
(ASoC) — provides lower overheads and a broader fault coverage than classical
fault-tolerance techniques. The architecture essentially splits the SoC into two
logical layers: the functional layer which contains the usual Intellectual Prop-
erty components or Functional Elements (FEs), and the autonomous layer
which consists of Autonomic Elements (AEs) and an interconnect structure
among various AEs. FEs are either general-purpose CPUs, memories, on-chip
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busses, special-purpose processing units, or system and network interfaces as
in a conventional design. AEs contain any extensions necessary to improve
the reliability of the FE and convert the FE-AE pairs into autonomous units.
The feasibility of this approach has been shown for the processing pipeline of
a public-domain RISC CPU core.

Traffic systems are another application area of organic computing. It has
been proposed to use self-organized inter-vehicle communication to recognize
traffic jams [17]. One aim of this communication is to detect the front and the
back of a traffic jam. Since the set of cars that forms the front or the back
of the traffic jam changes, data about the traffic jam have to be transferred
between the cars. Hence, a so-called “Hovering Data Cloud” is formed that is
independent of the participating vehicles and stays with the beginning or the
end of the traffic jam. This data is used to extract information for other cars
to optimize the traffic flow.

Principles of organic computing are also applied to the design of controllers
for traffic lights. Traffic flows in urban road traffic networks are changing con-
stantly and on different time scales. Unfortunately, many such changes of
traffic flow cannot be foreseen since the change might be due to public events,
road works, or sudden incidents. Therefore, traffic light controllers need the
ability to adjust quickly to changes in traffic situations and to react reason-
ably in situations that have not been anticipated in their design process. The
Organic Traffic Control (OTC) project (see [41]) develops an adaptive traffic
light controller architecture with learning capabilities. The overall architec-
ture is self-optimizing because it is traffic-responsive and can adapt to larger
changes in traffic due to a “simulation-based learning” approach.

Collaborating Traffic Lights (CTLs) is a project that tries to exploit the
increasing amount of available sensor data about traffic to address the prob-
lem of global optimization of traffic flows (see [9]). The idea is to allow the
controller or agent of the traffic lights at a junction to decide autonomously on
the appropriate phase for the junction. The controller or agent would monitor
the level of congestion at the junction under its control based on available
sensor data and use this information to decide which action to take. Over
time, the agent learns the appropriate action to take given the current level
of congestion. In order to achieve optimal system-wide performance, the set
of controllers or agents at traffic light junctions in the system should commu-
nicate their current status to controllers or agents at neighbouring upstream
and downstream junctions.

Mobile robotics is also an area where organic computing methods are
clearly useful. For example, the aim of the ORCA project ([35]) is to develop
an architecture for mobile autonomous robots that is based on organic com-
puting principles. The aim is to make the robots more reliable and robust. Also
the design should eventually be easier compared to classical (fault-tolerant)
approaches. The concepts that are used in the project are inspired by the
functioning of the human autonomous nervous system and the human im-
mune system. A robot shall be able to continuously monitor its own “health
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status” and ensure that it is stable and performing its task with optimum
performance. In contrast to more classical approaches, error situations are
not explicitly described in advance. If a new and unknown deviation from the
healthy case is observed by a robot a counteraction is taken first. Based on
success or failure, the robot will learn how to handle similar situations and
to react faster and more appropriately (similarly to how the human immune
system learns to fight against reoccurring infections).

The presented example applications of organic computing show that mo-
bile components play a central role in many OC systems. This is one reason
why methods that are inspired by the self-organized behavior of social in-
sects have a great potential for future designs of OC systems. In each of the
two following sections one such example of social-insect-inspired methods is
discussed in detail.

3 Swarm-Controlled Emergence

The use of principles of self-organization from nature seems to have great
potential for the design of OC systems. But recently there have been some
concerns that self-organized computing systems might show an emergent be-
havior that is neither wanted nor intended or foreseen when they were de-
signed. The term negative emergence has been used by some authors for such
unwanted emergent behavior (see also [38] for a discussion of emergence). One
important research question is how negative emergent behavior of OC systems
can be prevented.

One possible approach to prevent negative emergence in OC systems that
has been proposed by several researchers is to equip the systems with a so-
called observer controller subsystem [40, 46] where a set of observers collects
information about the system and based on this information the controllers
send control information to the components to influence their behavior.

A potential disadvantage of this approach is that it relies fundamentally
on (classical) controllers that send control messages to the components and
thus directly restrict the autonomy of the single components of an OC sys-
tem. Since this is against some central principles of organic computing like
self-organization and self-autonomy it is interesting to search for alternative
approaches.

In this section we present a new approach to prevent negative emergence
in OC systems. This approach was proposed in [34] and is called swarm-
controlled emergence. The general idea of swarm-controlled emergence is to
add so-called anti-emergence components (anti-components) to an OC system
which can prevent the occurrence of certain negative emergence effects. Ide-
ally, the anti-components should not behave too differently from the normal
components of the OC system. Then they can still do normal work in the
OC system (eventually less efficient though because otherwise all components
could become anti-components).
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Characteristics of the swarm-controlled emergence approach that dif-
fer fundamentally from the observer controller approach are: i) the auton-
omy of the components (neither of the normal components nor of the anti-
components) is not restricted, and ii) it is not necessary to have a correspond-
ing communication structure for delivering control information.

In the following, we describe the principal ideas of the swarm-controlled
emergence approach and give proof of concept for a test system and start
investigations on special properties of the new approach. The chosen test case
is one of the famous examples of emergent behavior of social insects which
has several applications in computer science — the clustering behavior of ants
(see [23, 24, 25, 27, 29, 30, 31, 32]). Ant clustering has been applied to solve
combinatorial problems (e.g., clustering and sorting) and to study emergence
in robotics (e.g., [10]).

3.1 Ant Clustering

Ant clustering refers to the behavior of ants to cluster their brood within the
nest center (e.g., [18]) or to cluster dead corpses so that they form so-called ant
cemeteries (e.g., [8, 10]). Both phenomena can be seen as emergent behavior
and have been addressed by simple multi-agent models.

In the ant-clustering model that was proposed in [10] (see also Sect. 4.2
of Chap. 2), several items are distributed in a two-dimensional array of cells
(at most one item per cell). Each agent walks randomly within the cell array,
picks up an item that it finds with a certain probability, carries it around, and
drops it with a certain probability. Formally, the probability pp of an unladen
agent picking up an item is pp = (k1/(k1 + f))2, where f is the fraction of
cells in the neighborhood of the agent that are occupied with items and k1 is a
threshold value. Analogously, the probability that a laden agent drops an item
if it is on a cell that is not occupied by an item is given by pd = (f/(k2 +f))2,
with k2 being a threshold value. Several methods for calculating the value
f have been proposed. One method is to count how many items have been
encountered by the agent during the last few time steps and define f as the
fraction of time steps where the agent moved across cells that are occupied
by an item. Another way to calculate f is to calculate the fraction of cells in
the von Neumann neighborhood of the agent that are occupied with an item.

It was shown that the ant-clustering model fits the clustering behavior of
real ants during the organization of cemeteries very well. More complicated
patterns, as they occur, for example, in the clustering of brood of the ant
Lepthotorax ([18]), where different types of brood are clustered in concentric
rings, need more elaborated models. This is discussed in more detail in the
second half of this chapter.

To illustrate the ant-clustering model and the concept of swarm-controlled
emergence some experiments are described for a two-dimensional cell array.
The size of the cell array that was used for the experiments is 500 × 500. In
the initial state 2,500 cells (i.e., 1/100 of all cells) are occupied by an item.
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Fig. 1. Cell array with clustering agents: distribution of items after 100,000 (upper
left), 1,000,000 (upper right), and 50,000,000 (lower) simulation steps

In all experiments 50 clustering agents were used that move on the cell array.
The neighborhood of an agent is defined as the von Neumann neighborhood
with radius 10, i.e., all cells for which dx + dy ≤ 10 are said to be in the
neighborhood of an agent, where dx and dy are the absolute distances of the
considered cell to the cell of the agent in the two dimensions. The threshold
parameters for the clustering agents were chosen as k1 = 0.05 and k2 = 0.03.
The results of a typical test run are shown in Fig. 1. It can be seen that
many small clusters have been formed after 100,000 simulation steps. With a
growing number of simulation steps the number of clusters becomes smaller
and the size of the clusters increases.

3.2 Cluster Validity and Clustering Measures

In order to study the effect of the swarm-controlled emergence approach to
clustering it is necessary to measure the quality of a clustering. Since there
exist several possibilities to define what a good clustering is several mea-
sures for the degree of clustering have been proposed in the literature. The



260 D. Merkle, M. Middendorf and A. Scheidler

measures that are used in this section are spatial entropy, summary function,
and hierarchical social entropy. These measures are described in the following.

The spatial entropy ([6, 20]) is a measure for classifying spatial distribu-
tions of items according to their cluster validity on different spatial scales.
Therefore, the two-dimensional cell array is partitioned into so-called s-
patches, i.e., subarrays of size s × s. Let pI be the fraction of cells in an
s-patch I that are occupied by an item. Then the spatial entropy Es at scale
s is defined as Es = −

∑
I∈{s−patches} pI log pI .

Two functions are introduced in the following that are often used for data
analysis because they provide a good statistic on the sizes of gaps between
items of a set R in a cell array. The first function F̂ (r) is the probability that
a random empty cell has distance r from the nearest cell that is occupied
by an item of R. Function F̂ (r) is called the Empty Space Function and
characterizes the gaps between clusters. Similarly, let Ĝ(r) be the average
distance from a random point of R to the nearest other point of R. Function
Ĝ is the Nearest-Neighbor Distance Distribution function and characterizes
how close the items within the cluster are. The so-called summary function
Ĵ(r) (see [33]) is a measure for the quality of a clustering that is based on
the F̂ and Ĝ and is defined as Ĵ(r) = (1 − Ĝ(r))/(1 − F̂ (r)). The value of
Ĵ for a pattern of items can be compared to the corresponding value for a
random pattern to find whether the pattern of items can be interpreted as
a pattern that is more clustered (or more ordered) than a random pattern.
Mathematically this is done by considering a complete random point process
with intensity λ, for which F (r) = G(r) = 1 − exp(−λ · π · r2) and J(r) = 1
hold (F , G, and J are the random functions that correspond to F̂ , Ĝ, and Ĵ).
Therefore, a value of Ĵ(r) < 1 indicates a clustered pattern, whereas a value
of Ĵ(r) > 1 can be interpreted an an ordered pattern. For the computation of
Ĵ(r) the corresponding function in the R package spatstat ([1]) was used.

The hierarchical social entropy measure was proposed in [3]. This measure
is based on a hierarchy of clusters that is computed in a bottom-up manner
as follows. The bottom of the hierarchy is formed by assigning each item its
own cluster (i.e., each cluster at the bottom contains only one item). Then
iteratively the two nearest clusters are merged, until there is only one single
cluster left. The distance between two clusters can be computed in different
ways. In this section the so-called complete linkage method measure is used
where the dissimilarity between two clusters is the maximal distance between
two arbitrary items of both clusters (the values are between 0 and 1 where
1 means two items have maximal distance). The hierarchy of clusters can be
visualized as a dendrogram that shows the agglomeration process of forming
the hierarchy as a tree. The leaves of the tree are identified with the items to be
clustered. Two nodes of the tree are siblings if their corresponding clusters are
agglomerated during the hierarchical clustering. Note that each inner node of
the dendrogram corresponds to a taxonomic level h, i.e., the two corresponding
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Fig. 2. Hierarchical social entropy; exemplary clustering situation on a 100 × 100
field (upper), resulting dendrogram (middle), and the value of the hierarchical social
entropy H(R, h) at different taxonomic levels (lower)

clusters c1 and c2 have a dissimilarity of d(c1, c2) = h. For a given taxonomic
level h the items are classified by the hierarchical clustering into clusters
C(h) = {c1, . . . , cM(h)}. The hierarchical social entropy of a set of items R
is defined as S(R) =

∫ ∞
0

H(R, h)dh where H(R, h) = −
∑M(h)

i=1 pi log2(pi) is
the social entropy of R at level h (pi is the fraction of items in cluster ci). The
hierarchical social entropy enables a total ordering according to the diversity
of situations where items are distributed in a (two-dimensional) space. Note
that the hierarchical social entropy is scale-invariant and allows us to address
the extent of differences between clusters. In [3] the hierarchical social entropy
was used to calculate the diversity of a group of robots in space. In this section
it is used to distinguish between fine-grained and coarse-grained clustering
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situations. In Fig. 2 a clustering situation, the resulting dendrogram, and the
value of the social entropy at different taxonomic levels is depicted.

3.3 Anti-clustering

The emergent clustering effect in the clustering ant model that was described
in Sect. 3.1 is considered in the rest of this section as an unwanted negative
emergent effect. Clearly, the clustering effect has a biological relevance and it
can be used positively for various applications in computer science. But it is
also possible to consider it as unwanted to use it as an example application
for the swarm-controlled emergence approach. The idea of swarm-controlled
emergence is to add agents to the system that behave similarly to the standard
agents but can prevent (or reduce) the clustering effect. These agents are called
anti-clustering agents, or AC-agents. In the following, three types of AC-agents
are described.

i. Reverse AC-agents have a behavior which is opposite to the behavior of
the standard agents in order to prevent clustering in the following sense.
The values of two probabilities pp and pd that an agent picks up an item
or drops an item in a certain situation are exchanged.

ii. Random AC-agents pick up an item always when they enter a cell that is
occupied by an item. If such an agent carries an item it drops it with a
fixed probability (probability 0.1 is used in the experiments described in
this section). The idea is that the introduction of sufficient randomness in
the clustering process in the sense that items are placed on random cells
should hinder a strong clustering.

iii. Deterministic AC-agents use a deterministic strategy. An agent always
picks up the item if it enters a cell that is occupied by an item and always
drops the item if no item is in the neighborhood of the current cell.

Experimental results are described in the following, where the influence of
the different types of anti-clustering agents is described when they are added
to a system with clustering agents.

Experiments with Reverse AC-Agents

The influence of reverse AC-agents is shown in Fig. 3. In the figure the dis-
tribution of the items after 1,000,000 simulation steps is shown for different
numbers of reverse AC-agents together with 50 clustering agents. It can be seen
that it is not possible for the reverse AC-agents to hinder the standard agents
from performing a clustering. Even if 100 times more reverse AC-agents are
used the item distribution is similar for only standard agents after 1,000,000
simulation steps (see upper right part of Fig. 1). The differences between using
100 and 5000 reverse AC-agents are relatively small. For the latter the clusters
are more diffuse but the number of clusters is similar and nearly the same.
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Fig. 3. Distribution of items with different numbers of reverse AC-agents together
with 50 standard agents after 1,000,000 steps; 100 reverse AC-agents (left), 5000
reverse AC-agents (right)

This results show that it is not a trivial task to find efficient anti-clustering
agents.

The spatial entropy is E5 = 6.82 and E5 = 7.39 for 100 and 5000 reverse
AC-agents, together with 50 clustering agents. This is similar to the value of
E5 = 6.53 for the case with only clustering agents. The same holds for the
hierarchical social entropy, which is S = 11.67 and S = 12.60 for 100 and 5000
reverse AC-agents, together with 50 clustering agents. For the case with only
clustering agents a similar value of S = 11.88 is obtained for the hierarchical
social entropy.

Experiments with Random AC-Agents

The distribution of items for different numbers of random AC-agents together
with 50 clustering agents after 50,000,000 simulation steps are depicted in
Fig. 4. The figure shows that no strong clustering occurs for 100 random AC-
agents. Hence, a reasonable number of random AC-agents is able to hinder
the clustering and they might therefore be attractive candidates for use as
anti-clustering agents.

But it can also be seen that using a medium number of 50 random AC-
agents even enhances the degree of clustering compared to the cases with
fewer (0 or 10) or more 100 random AC-agents. It is an interesting observation
that the quality of the clustering can even improve with respect to using only
clustering agents when a certain number of random AC-agents is used. Even if
the clusters that occur are slightly more diffuse their number is clearly smaller
than for the case when no anti-clustering agents are used. In the former case
it can be observed that the fraction of clustering agents that carry items is
higher in later phases of the simulation runs. The reason is that the slightly
diffuse clusters make it more likely that the clustering agents pick up an item.
The result is that smaller clusters dissolve faster. It should be noted that this
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Fig. 4. Distribution of items with different numbers of random AC-agents together
with 50 clustering agents after 50,000,000 steps; 100 random AC-agents (upper left),
50 random AC-agents (upper right), 10 random AC-agents (bottom)

finding is very interesting for ant-clustering algorithms in general because it
shows the surprising fact that the addition of agents which have the effect of
making clusters more diffuse can lead to improved clustering methods.

For the hierarchical social entropy a similar observation can be made.
After 50,000,000 simulation steps the hierarchical social entropy is S = 13.64,
S = 8.07, S = 6.91, and S = 7.76 for 100, 50, 10, and no random AC-agents,
together with 50 clustering agents. Hence, there is no good clustering for 100
and 50 random AC-agents. But for a small number of 10 random AC-agents
it can be observed that the clustering quality is better than for the case with
only clustering agents.

Clearly, what a good clustering method is depends on how clustering qual-
ity is defined and it can not be expected that for each quality measure there
exist a suitable number of random AC-agents that can improve the cluster-
ing quality when compared to the case with only clustering agents. This is
illustrated for the Summary Function J(r). It can be seen in Fig. 5 that the
quality of the clustering always decreases with an increasing number of ran-
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Fig. 5. Summary Function J(r) for random AC-agents together with 50 clustering
agents at different time steps for the test runs for which the final item distribution
is shown in Fig. 4; 100 random AC-agents (upper left), 50 random AC-agents (upper
right), 10 random AC-agents (bottom)

dom AC-agents. The figure shows that no ordered item pattern occurs (the
value J(r) is always smaller than 1) and that, as expected, the more the ran-
dom AC-agents are used, the longer it takes until a certain degree of clustering
occurs. This can be seen when comparing the curves for the same number of
simulation steps in the three subfigures of Fig. 5. 100 random AC-agents pre-
vent a good clustering. The spatial entropy after 50,000,000 simulation steps
is E5 = 7.56, E5 = 6.73, E5 = 5.78, and E5 = 5.53 for 100, 50, 10, and no
random AC-agents, together with 50 clustering agents. This shows that the
clustering quality decreases with a growing number of random AC-agents.
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Fig. 6. Distribution of items with deterministic AC-agents together with 50 standard
agents after 50,000,000 steps; 50 deterministic AC-agents (upper left), 35 determin-
istic AC-agents (upper right), 10 deterministic AC-agents (bottom)

Experiments with Deterministic AC-Agents

The most interesting type of AC-agents are the deterministic AC-agents which
have a deterministic picking and dropping behavior. Figure 6 shows the item
distribution after 50,000,000 simulation steps for different numbers of anti-
clustering agents. It can be seen that 50 deterministic AC-agents clearly hinder
the clustering agents from performing a successful clustering. This has been
confirmed by tests where the initial item distribution was already clustered.
In this case the deterministic AC-agents destroyed the clustering successfully.
The deterministic AC-agents can be called efficient because they “win” against
the same number of clustering agents.

A more detailed analysis is shown in Fig. 7, in which the Summary Func-
tion J(r) is depicted. It can be seen in the upper-left subfigure that for 50
deterministic AC-agents ordered patterns occur over time (i.e., no clustering
occurs). Note that ordered patterns have been observed only for this type of
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Fig. 7. Summary Function J(r) after different number of time steps for different
numbers of deterministic AC-agents together with 50 standard agents for the test
runs where the final clustering situation is shown in Fig. 6; 50 deterministic AC-
agents (upper left), 35 deterministic AC-agents (upper right), 10 deterministic AC-
agents (bottom)

AC-agent. Using only 10 AC-agents cannot hinder the clustering agents from
performing their task successfully (see Figs. 6 and 7).

An interesting behavior can be observed for a medium number of 35 de-
terministic AC-agents. The upper-right subfigure of Figure 7 shows that after
500,000 steps ordered patterns occur, i.e., a clustering is prevented. But for
an increasing number of steps, the ordered pattern disappears and a cluster-
ing occurs. After 20 million steps the value of the Summary Function at a
radius of r = 2 is small (J(2) ≈ 0.5) but for large radiuses the value becomes
large (e.g., J(7) ≈ 7). This is very interesting, because over time a situation
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Fig. 8. Hierarchical social entropy S over time for different numbers k ∈
0, 10, 30, 40, 50 of deterministic AC-agents together with 50 standard agents

occurs where there is an ordering of items on a large scale but a clustering on
a small scale. Moreover, it shows that a system where clustering agents are
combined with anti-emergence agents can show a very complex behavior. The
occurrence of ordered patterns that prevent the emergence behavior might
exist only over certain time periods before the ordered patterns break down
and the emergent behavior can appear.

Similarly as for the random AC-agents, a medium number of deterministic
AC-agents even supports the clustering agents in their task. This can be seen
in Fig. 8 where the values of the hierarchical social entropy S are shown over
time for different numbers of deterministic AC-agents. 50 agents can prevent
a clustering (S > 14.0); when using no AC-agents a clustering with S ≈ 7 was
achieved. But a medium number of 30 deterministic AC-agents improves the
final clustering with S ≈ 6.

Summarizing Remarks

Altogether the experiments with different types of anti-clustering agents that
are added to a system with clustering agents have shown that: i) a not very
high number of random AC-agents or deterministic AC-agents is enough to
prevent the emergence of clustering, ii) only few AC-agents may help the
clustering agents to cluster the items faster, iii) a combination of AC-agents
and clustering agents may lead to situations which have an ordered pattern
on a large scale and a clustered pattern on a small scale.



Organic Computing and Swarm Intelligence 269

4 OC Systems with Moving Components

Emergent patterns that occur when groups of simple agents move is obviously
an interesting topic for biology (e.g., [13, 11, 47, 49]) and robotics (e.g., [10])
but it is also interesting for the design of OC systems that consist of moving
components or where parts of the system are embedded into moving objects.

In the following we discuss the emergent sorting behavior of simple ant-like
moving agents (see [45]). Sorting here means that agents with different behav-
ior can be found most often in different parts of the nest area (or movement
area). The starting point of this investigation is a study of Sendova-Franks
and Lent [45] where the authors simulate the movement behavior of real ants
in their nest. Using different models of moving behavior it was shown that
sorting occurs in all models. In each model the moving behavior of the ants
differs. The strongest sorting effect occurred when the ants’ behavior differs
by the strength of an attraction force towards the nest center (centripetal ant
model). For the other three models the ants’ behavior differs by the maximal
turning angle during movement. Ants with a small turning angle tend to keep
to the wall once they have collided with it. Thus it was concluded in [45] that
the colony center or the wall can play the role of a pivot (or beacon) which
appears to be necessary for the sorting.

First, the occurrence of high concentrations of agents in the center of the
nest area is considered here as it was observed before in the simulations of
[45]. Secondly, some changes to the movement models are described in order
to obtain a behavior that is more realistic for organic computing applications.
It is discussed which behavioral differences can lead to an emergent sorting
behavior for these movement models. Thirdly, a movement model with attrac-
tion force is investigated for the case where there is more than one center of
attraction. This scenario is interesting, for example, when there exist several
service stations for the components of the OC system.

4.1 Cellular Automata Model

The experiments with the moving agents’ models that are described in this
part have been done with a probabilistic cellular automaton model. The cel-
lular automaton was designed so that it is suitable for approximation of the
behavior of the continuous model that was used in [45]. The latter model
tries to reflect the situation and the dimensions in a real ant colony (see [43]
for more details). The cellular automaton has an array R of cells where the
length of a cell corresponds to a length of 0.4 mm. For most experiments
R = {1, . . . , 75} × {1, . . . , 50} was used. The neighborhood of a cell (x0, y0)
are all cells (x0 + x, y0 + y) with x2 + y2 ≤ 13. The body of an agent in
the cellular automaton consists of 21 cells arranged in a circle. Formally, an
agent at position (x0, y0) occupies all cells (x0 + x, y0 + y) with x2 + y2 ≤ 5.
Each agent i has an internal parameter 0 ≤ μi ≤ 1 that influences its moving
behavior and an actual direction of moving 0 ≤ αi < 2π. For each agent the
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probabilities of moving to one of the directly neighbored cells (i.e., the Moore
neighborhood n ∈ NM = {(−1,−1), . . . , (1, 1)}) are calculated. In order for
an agent to be able to move, all cells of the new place must be free (and within
the array R).

In the cellular automaton model the agents move at each time step in
random order so that each agent moves at most one cell per time step. Since
an agent can move only to discrete positions it might not be possible for an
agent to move exactly in direction α. Therefore, an agent has a probabilistic
movement behavior where α is its expected direction. Similarly, the expected
velocity is 0.3 mm/s = 0.75 cells/time step on average when considering a free
run of an agent with no obstacles.

4.2 Movement Models

In this section we describe several movement models for agents. The first two
models were proposed in [45] to model the movement behavior of real ants.

Avoiding Ant Model. In this model the agents do a correlated random walk. If
unobstructed, i.e., an agent does not collide with a nestmate or the nest wall,
the movement is as follows. The turning angle Θi is chosen randomly according
to a uniform distribution between −Θi and Θi. The maximal turning angle
Θi is different for all agents and depends on their individual parameter μi:
Θi = (1 − μi)Θ0 + μiΘ

1. In [45] the standard values were Θ0 = 60 and
Θ1 = 15. If the nest wall or a nestmate is in the sensing range, the agent
will not move but only change its moving angle. In this case it avoids the
obstacle explicitly by turning in one direction until it can move again. To
define the turning direction assume that agent i collides with agent j. The
sign of the scalar product between the vector that is perpendicular to the
vector of the moving direction of agent i and the vector from the center of
agent i to the center of agent j determines the direction of turning: Θi ←
sign((− sin αi, cos αi) · (xj − xi, yj − yi)) · r where r is chosen randomly from
a uniform distribution in the interval (0, Θi). A collision with the nest wall is
handled analogously.

Centripetal Ant Model. It is very likely that agents have the ability to detect
gradients in gas (CO2) or pheromone concentrations [39]. Since the concentra-
tion of the gas is maximal in the center region of the nest where the brood is
located [7], this could give the agent a chance to estimate the direction to the
center. In the Centripetal Ant Model this is used to establish an attraction
force towards the center of the nest. This attraction is different for different
agents and depends on their internal parameter μi. For the calculation of the
moving behavior a modified model from the clinotaxis model from [22] is used:
Θi ← puχi + pbτi · (1 − cos(φi))/2 where φi is the angle between the actual
moving direction αi and the vector towards the center of the nest. The values
of pu and pb are randomly chosen from {−1, 1} and they determine the direc-
tion of turning. The turning behavior depends on φi and the larger this angle
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Fig. 9. Effect of different values of the internal parameter μi on the turning behavior
in the Centripetal Ant Model; Z is the center of the nest; (left) for large μi there is
only a slight difference between moving from or to the center; (right) for small μi

the turning angle becomes significantly smaller the larger the angle between actual
moving direction and the vector to the center

the more the agent will turn. The parameters χi and τi depend on the internal
parameter μi of the agent: χi ← (1−μi)χ0 +μiχ

1 and τi ← (1−μi)τ0 +μiτ
1

with χ0 = 0◦, χ1 = 15◦, τ0 = 30◦, and τ1 = 0◦. Agents with larger μi will
not be that much affected by their φi as agents with small μi (see Fig. 9).
Therefore, for the agents with small μi the attraction to the colony center is
larger than for agents with large μi.

It was shown in [43] that when the agents move according to the Cen-
tripetal Ant Model there occurs a cluster of non-moving agents in the center
of the nest. Obviously, such a situation should not occur in OC systems.
Therefore, the following variation of the movement models has been intro-
duced. This model is also simple but the agents try to avoid a situation where
they get stuck.

Model with Repulsive Behavior (Repulsive Model). The Centripetal Ant Model
is slightly changed by modifying the agents’ behavior in the case of a collision
with a nestmate or the nest wall. In this case the agent turns according to
the Avoiding Ant Model. Otherwise the moving behavior remains as in the
Centripetal Ant Model. Hence, in the Repulsive Model the turning behavior
of the agent is different for different situations.

For OC systems with moving components the question emerges whether
small differences in speed or activity of the components can lead to a sorting
effect. Differences in speed or activity can obviously occur when different types
of components are used in such systems. But they might also occur when the
components have power supplies of different quality or some components are
loaded and carry items whereas other components are unloaded. An interest-
ing question is whether differences in speed or activity between the agents
can lead to a sorting effect even for very simple types of ant-like movement
behavior. To investigate this two new movement models have been introduced
that are described in the following.

Model with Speed Differences (Speed Model). In this model the agents have
different velocities. The velocities are equidistantly distributed between ν0,
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0 < ν0 < 1, and 1, i.e., νi = ν0 + (i − 1)(1 − ν0)/(n − 1) for i ∈ {1, . . . , n}.
Note that agent i moves νi times as fast as agent n. The position of the agents
is now updated according to the formulas xi ← xi + νi · δ · cos αi and yi ←
yi + νi · δ · sin αi. The different velocities are realized in the stochastic cellular
automaton such that agent i has expected velocity νi ·0.3 mm/s (recall that 0.3
mm/s is approximately the speed of a real ant). The movement and turning
behavior are the same for all agents and do not depend on their internal
parameter μi. All agents move and turn like an agent in the Centripetal Model
with μi = 0.

Model with Activity Differences (Activity Model). The Activity Model is simi-
lar to the Speed Model. The difference is that the agents have not only different
velocities but also different turning behaviors. Similarly to the velocities, the
turning angle is scaled by νi. Formally, if agent i can move, its turning angle
is determined according to αi ← αi + νi · Θi, with Θi calculated as in the
Centripetal Ant Model. If the agent is obstructed, the turning behavior is
defined as in the Avoiding Ant Model.

4.3 Experiments with Simple Environments

If not stated otherwise all experiments that are described in the following have
been done over 100,000 time steps with 40 agents. The colony center is the
point Z = (35, 25). The distance of agent i from the colony center is computed
as ri(t) = d((xi · 0.4 − 0.2, yi · 0.4 − 0.2), (15, 10)) where (xi, yi) is the center
of agent i in time step t. The distance ri of agent i from the colony center
is measured every 100 time steps. For a given time step t the mean distance
rø
i (t) of agent i from the center is the average over all measured distances

up to t. Let rø
i = rø

i (100000) be the average distance measured over all time
steps.

As in [45], Pearson’s correlation coefficient k is used to measure the cor-
relation of parameter μi and the mean distance of an agent from the nest
center. A high value (≈ 1) for k(t) indicates a strong correlation. As a second
measure the slope of the linear relationship between the mean agent distance
from the nest center and the internal parameter μi is measured. Given the
mean distances rø

i (t) for all agents i = 1, . . . n, the linear regression determines
values α(t) and β(t) such that the sum

∑
i=1...n(rø

i (t) − (α(t) + β(t)μi))2 is
minimized. The slope β(t) can be seen as a measure for the degree of sorted-
ness of the agents.

To depict the spatial distribution of the agents a similar strategy is used
as proposed in [45]. The nest is divided into 15 × 10 = 150 squares and
the agents are divided into five groups depending on their internal parameter
μi : [0.0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), [0.8, 1.0). For each of these intervals
the number of agents in every square was counted and divided by the total
number of agents in the group. To investigate how active the agents are in
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different areas of the nest it was counted for every cell how often an agent
enters that cell (measured over all time steps).
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Fig. 10. Changes of correlation coefficient k(t) (left) and slope β(t) (right) for
Repulsive Model, Speed Model, and Activity Model
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Fig. 11. Repulsive Model: number of time steps where an agent enters a cell (left)
and average distance to nest center rø

i (right)

The results for different movement models with respect to the correlation
coefficient k(t) and changes of the slope β(t) of the regression function are
compared in Fig. 10. The figure shows that in the Repulsive Model and in the
Speed Model the agents show a clear sorting behavior. In the Activity Model
there is no clear indication for an agent sorting.

The motivation to introduce the Repulsive Model was to prevent the agents
from getting stuck in the center of the nest. The left part of Fig. 11 shows
that the agents in the center have a high movement activity and do not get
stuck. The strength of the sorting behavior is shown in the right part of Fig.
11. Ants with μ ≈ 0 have an average distance of approximately 4 from the
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Fig. 13. Two nest centers; average number of agents for different classes μi ∈
[0.0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), [0.8, 1.0) in the smaller of the two areas at
time step 0 (upper left), 2000 (upper right), and 50,000 (bottom); results are aver-
aged over 100 test runs

center whereas agents with μ ≈ 1 have an average distance of approximately
10. The strength of the sorting behavior for the Speed Model is shown in Fig.
12. For large relative differences in movement speed (ν0 = 0.1) the sorting
behavior is stronger than for smaller differences (ν0 = 0.3).
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4.4 Experiments with Complex Environments

For applications in organic computing it is interesting to consider complex
environments with more than one focal point for the movement behavior. An
example where this occurs is moving components which have several service
stations they can visit. Therefore, a much larger environment of 600 cells
× 400 cells with two centers (located at (150, 200) and (450, 200)) is used
for the experiments. Simulations were done with the Speed Model and 200
agents. The area is divided vertically at position d× 600, d ∈ [0, 1], such that
in the left (right) part of area the turning behavior of the agents is influenced
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by the left (right) center. The effect is that the agents tend to turn toward
the corresponding center. Note that for d = 0.25 the line dividing both areas
passes exactly the left nest center. The agents are divided into five classes
according to their μ-values. For all classes the number of agents in the left
and right part of the area are counted for d ∈ {0.25, 0.30, . . . , 0.50}.

The number of agents at different time steps is shown in Fig. 13 (results
are averaged over 100 runs). A clear differentiation of the five agent classes
is occurring over time. At the beginning the agents are equally distributed
among the five classes for different values of d. Over time the faster agents
(large μi values) occur more often than the slow agents in the larger part of
the area.

The movement activity of agents with μi ∈ [0, 0.2) and agents with μi ∈
[0.8, 1) in different parts of the nest area for d = 0.4 is compared in Fig. 14.
It can be seen that the slow agents occur next to both centers whereas the
fast agents occur mainly in the part of the area with the center that has the
larger influence region. These results show that moving agents with slightly
different moving behavior can have very different spatial distributions in areas
with several service stations.

A dynamic scenario is also considered where the service stations for
the agents are not available starting from the same time. In the corre-
sponding experiment it is assumed that the center in the larger part of
the area becomes active several time steps later than the center in the
smaller region. The results are given in Fig. 15 for the case where the
center in the larger part of the area becomes active at time step t ∈
{0, 1000, . . . , 15000}. Shown is the fraction of agents in each of the classes
μi ∈ [0.0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), [0.8, 1.0) that are in the smaller
area after 50,000 simulation steps. It can be seen, that the slow agents with
μi ∈ [0.0, 0.2) are much more concentrated within the small part of the area
if the center in the other part of the area becomes active late (more than 90%
of these agents appear in the smaller part of the area if the service station
appeared after t >6000 simulation steps). The reason for this is that most of
the slower agents are still fast enough to concentrate around the center in the
small region during the first 6000 time steps. After that time they will leave
the small area only with a very small probability. On the other hand it can
be seen, that a large fraction of the faster agents (μi > 0.4) can always be
found in the larger area regardless of when the second center was added. This
mechanism can possibly be used to implement a controlled separation process
of agents with different properties in OC systems.

4.5 Summarizing Remarks

Emergent spatial sorting patterns for groups of randomly moving ant-like
agents can be observed for simple movement models when there exist slight
differences in the individual behavior of the agents. For different movement
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models the emergent spatial sorting effects have been described based on the
results of simulation studies.

Scenarios with more complex environments where the movement of the
agents can be influenced by several “center points” have also been considered.
Such scenarios are relevant for applications in organic computing where the
center points can be seen as service points for moving components of the
system. It is interesting that the relative size of the influence area of the
service points leads to an emergent effect that the spatial distribution of agents
might differ strongly for agents with only slightly different moving behavior.
A dynamic scenario where different times span between the activation times
of two service stations for the agents was studied. Simulations have shown
that the length of the time span has a significant influence on the distribution
pattern of the agents and the type of influence is different for different moving
behaviors.

5 Final Remarks

The connections between swarm intelligence and the new field of organic com-
puting have been discussed in this chapter. Organic computing systems (OC
systems) consist of many autonomous components that interact and show
forms of collective behavior. OC systems are designed to possess different
self-x properties (e.g., self-healing, self-managing, self-optimizing). Typically,
OC systems will have a decentralized control and are able to adapt to their
environment or the requirements of the user. Thus, OC systems share some
important properties with social insect colonies. Clearly, there exist also many
differences between technical systems like OC systems and biological systems
like social insect colonies. Nevertheless, it was argued in this chapter that the
similarities make methods of swarm intelligence that are often inspired by
principles of collective behavior of social insects attractive for organic com-
puting.

We have described some examples of OC systems and presented two case
studies that show in detail how methods of swarm intelligence are connected
to problems in organic computing. The topic of the first case study is a new
approach to control emergent behavior in OC systems. This method is called
swarm-controlled emergence and it was applied to control emergent clustering
effects that can occur when a group of ant-like agents take up items, carry
them around, and drop them. The starting point of the second study is an
observation that biologists made with ants. Ants with slightly different move-
ment behavior can be found on average in different parts of the nest. It is
discussed what consequences this emergent effect might have on OC systems
with moving components. Both case studies have shown that organic com-
puting is strongly linked to swarm intelligence. There is a large potential for
applications of swarm intelligence methods in organic computing and design
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problems for OC systems will provide new challenges for the development of
new swarm intelligence methods.
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LNI P-93, 112–119, 2006.

41. F. Rochner, H. Prothmann, J. Branke, C. Müller-Schloer, H. Schmeck: An
organic architecture for traffic light controllers. Proc. GI Jahrestagung 2006,
Lecture Notes in Informatics 93:120–127, 2006.

42. F. Rochner, C. Müller-Schloer: Emergence in technical systems. it — Special
Issue on Organic Computing, 47:188–200, 2005.

43. A. Scheidler, D. Merkle, M. Middendorf: Emergent sorting patterns and indi-
vidual differences of randomly moving ant like agents. In: S. Artmann and P.
Dittrich, editors, Proc. 7th German Workshop on Artificial Life (GWAL-7),
IOS Press, 11 pp., 2006.

44. H. Schmeck: Organic computing – A new vision for distributed embedded sys-
tems. Proc. of the Eighth IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC 2005), IEEE CS Press, 201–203,
2005.

45. A.B. Sendova-Franks, J.V. Lent: Random walk models of worker sorting in ant
colonies. Journal of Theoretical Biology, 217:255–274, 2002.

46. T. Schöler, C. Müller-Schloer: An observer/controller architecture for adaptive
reconfigurable stacks. In: M. Beigl and P. Lukowicz, editors, Proc. of the 18th
International Conference on Architecture of Computing Systems (ARCS 05),



Organic Computing and Swarm Intelligence 281

volume 3432 of Lecture Notes of Computer Science, Springer, Berlin, Germany,
139–153, 2006.

47. R.V. Sole, E. Bonabeau, J. Delgado, P. Fernandez, J. Marin: Pattern formation
and optimization in army ant raids. Artificial Life, 6(3):219–226, 2000.

48. G. Theraulaz, E. Bonabeau, J.L. Deneubourg: Response threshold reinforce-
ment and division of labour in insect colonies. Proc. Roy. Soc. London B,
265:327–335, 1998.

49. G. Theraulaz, E. Bonabeau, S.C. Nicolis, R.V. Sole, V. Fourcassie, S. Blanco, R.
Fournier, J.L. Joly, P. Fernandez, A. Grimal, P. Dalle, J.L. Deneubourg: Spatial
patterns in ant colonies. Proc. Natl. Acad. Sci., 99(15):9645–9649, 2002.

50. G. Theraulaz, E. Bonabeau, R.V. Sole, B. Schatz, J.L. Deneubourg: Task Parti-
tioning in a ponerine ant. Journal of Theoretical Biology, 215(4):481–489, 2002.


