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Abstract. Variables in programs are usually confined to a fixed number
of bits and results that require more bits are truncated. Due to the use
of 32-bit and 64-bit variables, inadvertent overflows are rare. However,
a sound static analysis must reason about overflowing calculations and
conversions between unsigned and signed integers; the latter remaining
a common source of subtle programming errors. Rather than polluting
an analysis with the low-level details of modelling two’s complement
wrapping behaviour, this paper presents a computationally light-weight
solution based on polyhedral analysis which eliminates the need to check
for wrapping when evaluating most (particularly linear) assignments.

1 Introduction

Static analysis methods are increasingly used to prove the partial correctness
of software [5]. In contrast to formal methods that verify properties of a high-
level specification, a static analysis is complicated by low-level details of source
code. For instance, while a specification expresses properties over arbitrary in-
tegers, variables in a program are usually confined to finite integer types that
are deemed to be large enough to hold all values occurring at run-time. On one
hand, the use of 32-bit and 64-bit variables make accidental overflows rare and
adding checks to each transfer function of the analysis seems to be excessive
considering the infrequency of variable overflows. On the other hand, program-
mers often inadvertently introduce wrapping when converting between signed
and unsigned variables and deliberately exploit the wrapping effects of two’s
complement arithmetic. Thus, wrapping itself should not be considered harm-
ful, particularly when the objective of an analysis is the verification of a different
property, such as absence of out-of-bound memory accesses [8,9].

In fact, there is a danger in flagging all wrapping, since any intentional use
of wrapping generates a warning message which the developer immediately dis-
misses as a false positive. The code in Figure 1 illustrates why this is a problem.
The purpose of the shown C function is to print how many times each individual
character occurs in the given string *str. To this end, the elements of dist are
initialised to zero by the call to memset. In the loop that follows, the nth element
is incremented each time a character n is encountered in str. The for loop then
prints the distribution of printable ASCII characters.

The shown program is correct on platforms where char is unsigned such as
Linux on PowerPC. However, for Linux on x86 and MacOS X on PowerPC, char
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void showDistribution (char* str) {
int i;
int dist [256]; /* Table of character counts.*/

memset(dist , 0, sizeof(dist )); /* Clear table.*/

while (*str) {
dist [( unsigned int) *str ]++;
str++;

};

for(i=32; i <128; i++) /* Show dist for printable */
printf("’%c’�:�%i\n", i, dist[i]); /* characters .*/

}

Fig. 1. Example C function that counts the occurrences of each character

is signed. In the latter case, the value *str which is used to index into dist can
take on values in the range [−128, 127]. Although the programmer intended to
convert the value of *str to an unsigned value before the extension to a 4-byte
quantity takes place, the C standard [3] dictates that the value of *str is first
promoted to int before the conversion to an unsigned type is performed. Hence,
dist can be accessed at indices [232−128 . . .232−1]∪[0 . . .127], of which the first
range is out-of-bounds. A static analysis that considers all wrapping to be erro-
neous would flag this statement as possibly faulty. However, since the program-
mer expects that wrapping does occur (namely when converting from a char to
an unsigned quantity), the warning about wrapping at the unsigned int-level
will be dismissed as a false positive. Hence, the analysis above should flag the
out-of-bound array access but treat wrapping itself as intentional.

In this work, we propose a re-interpretation of polyhedra in which the wrap-
ping of integer calculations is reflected in the classic polyhedral domain [6]. In
particular, we avoid making cross-cutting changes to all transfer functions but
refine the approximation relation such that wrapping is mostly implicit, that is,
the need for extra polyhedral operations is largely finessed. For the few cases
in which wrapping has to be addressed in the transfer functions, we illustrate
how to wrap values within the polyhedral domain and propose an algorithm for
doing so. To summarise our contributions, this paper presents:

– an approximation relation that implicitly wraps polyhedral variables;
– an algorithm to perform wrapping in the polyhedral domain;
– a formal description of an analysis that faithfully models wrapping and an

accompanying correctness argument.

We commence with the definition of a small language and its concrete semantics.
Section 3 introduces polyhedral analysis. Sections 4 and 5 explain how wrapping
is supported. Section 6 presents a wrapping-aware polyhedral analysis which is
discussed in Section 7. We conclude with the related work in Section 8.
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2 A Language Featuring Finite Integer Arithmetic

The function shown in Figure 1 demonstrates that it is important to clarify where
wrapping can arise in a program. This is particularly true when arguing the
correctness of an analysis. To this end we introduce the language L(ELang) which
is a subset of an intermediate language which is used to analyse C programs.

2.1 The Syntax of L(ELang)

L(ELang) features linear expressions and casts between integers. In the following
grammar of L(ELang), (T)∗ denotes the repetition of the non-terminal T.

〈ELang〉 :: (Block)∗

〈Block〉 :: l : (〈Stmt〉 ;)∗ 〈Next〉
〈Next〉 :: jump l ;

| if 〈Type〉 v 〈Op〉 〈Expr〉 then jump l ; 〈Next〉
〈Op〉 :: < | ≤ | = | �= | ≥ | >
〈Expr〉 :: n | n * v + 〈Expr〉
〈Stmt〉 :: 〈Size〉 v = 〈Expr〉

| 〈Size〉 v = 〈Type〉 v
〈Type〉 :: (uint | int) 〈Size〉
〈Size〉 :: 1 | 2 | 4 | 8

An ELang program consists of a sequence of basic blocks with execution com-
mencing with the first block. Each basic block consists of a sequence of state-
ments and a list of control-flow instructions. In the sequel, we use lookupBlock (l)
and lookupNext(l) to access the statements and control-flow instructions, respec-
tively, of basic block l. The control-flow of a basic block consists of either a jump
statement or a conditional which itself is followed by more control flow instruc-
tions. The 〈Stmt〉 production is restricted to the two statements of interest,
namely the assignment of linear expressions to a variable and a type cast. We
require that each variable in the program is used with only one size which is
always specified in bytes. In particular, the assignment statement and the con-
ditional require that all occurring variables are of the same size. Note, though,
that variables may be used as an uint (unsigned integer) in one statement and
as an int (signed integer) in another.

2.2 The Semantics of L(ELang)

In order to specify the semantics of L(ELang), we introduce the following nota-
tion. Let B = {0, 1} denote the set of Booleans. A vector b = 〈bw−1, . . . b0〉 ∈ B

w

is interpreted as unsigned integer by valw,uint(b) =
∑w−1

i=0 bi2i and as signed
integer by valw,int(b) = (

∑w−2
i=0 bi2i) − bw−12w−1. Conversely, binw : Z → B

w

converts an integer to the lower w bits of its Boolean representation. Formally,
binw(v) = b iff there exists b′ ∈ B

q such that val (q+w),int(b′‖b) = v where ‖
denotes the concatenation of bit-vectors. For instance, bin3(15) = 〈1, 1, 1〉 since
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Basic Blocks.
[[ l : s1; . . . sn; ]]�Blockσ = [[ lookupNext(l) ]]�Next([[ sn ]]�Stmt(. . . ([[ s1 ]]�Stmtσ) . . .))

Control Flow.
[[ jump l ]]�Nextσ = [[ lookupBlock(l) ]]�Blockσ

[[ if t s v op exp then jump l ; nxt ]]�Nextσ =
{

[[ lookupBlock(l) ]]�Blockσ if val8s,t(σs(addr �(v))) op val8s,t([[ exp ]]�,s
Exprσ)

[[ nxt ]]�Nextσ otherwise

Expressions.
[[ n ]]�,s

Exprσ = bin8s(n)

[[ n ∗ v + exp ]]�,s
Exprσ = bin8s(n) ∗8s σs(addr �(v)) +8s [[ exp ]]�,s

Exprσ

Assignment.
[[ s v = exp ]]�Stmtσ = σ[addr �(v) s�→ [[ exp ]]�,s

Exprσ]

Type Casts.
[[ s1 v1 = t s2 v2 ]]�Stmtσ = σ[addr �(v1)

s1�→ bin8s1(val8s2,t(σs2(addr �(v2))))]

Fig. 2. Concrete Semantics of L(ELang)

val5,int(〈0, 1, 1, 1, 1〉) = 15. In order to distinguish calculations on Boolean vec-
tors from standard arithmetic, let +w, ∗w : B

w × B
w → B

w denote addition
and multiplication that truncate the result to the lower w bits, for instance
〈1, 1, 1, 1〉 +4 〈0, 0, 0, 1〉 = 〈0, 0, 0, 0〉. Note that the signedness of the arguments
of +w and ∗w do not affect the result of these operations.

L(ELang) programs operate in a virtual memory environment which we for-
malise as a sequence of bytes. Let B = B

8 denote the set of bytes and Σ = B232

all states of 4 GByte that a program on a 32-bit architecture can take on. Let
σ ∈ Σ denote a given memory state of a program and let σs : [0, 232 − 1] → Bs

denote a read access at the given 32-bit address where s ∈ {1, 2, 4, 8} is the
number of bytes to be read. A write operation is formalised as a substitution
σ[a s�→ v]. The resulting store σ′ = σ[a s�→ v] satisfies σ′s(a) = v and furthermore
σ′1(b) = σ1(b) for all addresses b /∈ {a, . . . a + s − 1}.

Figure 2 presents the concrete semantics (or natural semantics, hence the �)
of the L(ELang) language. These definitions use addr �(v) ∈ [0, 232 − 1] which
maps the program variable v to its address in memory. We assume that addr �

maps different variables to non-overlapping memory regions, an assumption that
makes L(ELang) independent of the endianness of an architecture.

The concrete semantics manipulates the store mainly by operations on bit-
vectors; only in the conditional and in the cast are bit vectors interpreted as
numbers. In these cases the signedness of the variables can actually influence the
result. In particular, the type t of the cast determines if the source bit-vector is
sign-extended (if t = int) or zero-extended (if t = uint) when s1 ≥ s2. We now
proceed by abstracting this semantics so as to specify a polyhedral analysis.
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3 Polyhedral Analysis of Finite Integers

Two’s complement arithmetic exploits the wrapping behaviour of integer vari-
ables that are confined to a fixed number of bits. For instance, subtracting 1
from an integer is equivalent to adding the largest representable integer value.
In fact, the binary representation of the signed integer −1 is identical to that of
the largest, unsigned integer of the same size. In the context of verification, this
dichotomy in interpretation cannot be dismissed since L(ELang) has insufficient
information about the signedness of assignments. This omission allows our model
to be applied to languages which freely mix signed and unsigned values, e.g. C.

Accessing the same bit sequence as either signed or unsigned integer corre-
sponds to a wrapping behaviour in that the negative range of the signed integer
wraps to the upper range of an unsigned integer, see Figure 3. This wrapping
behaviour of finite integers creates a mismatch against the infinite range of poly-
hedral variables. We present our solution to this mismatch in two parts: Section 4
presents a concretisation map between the polyhedral domain and the bit-level
representation of variables. This map wraps values of abstract variables implic-
itly to finite sequences of bits, thereby alleviating the need to check for wrapped
values each time a variable is read or written. In contrast, Section 5 details
an algorithm that makes the wrapping of program variables explicit in the ab-
stract domain which is important for casts and the conditional statement whose
semantics depend on the size and signedness of the operands.

3.1 The Domain of Closed, Convex Polyhedra

In order to make the paper self-contained, this section gives a concise introduc-
tion to the notation used in our polyhedral analysis. Let X = {x1, . . . xn} be a
finite set of variables, let x = 〈x1, . . . xn〉 and let I be the set of linear inequalities
that can be rewritten as c · x ≤ d where c ∈ Z

n and d ∈ Z. For brevity we write
e1 = e2 to denote the set of inequalities {e1 ≤ e2, e2 ≤ e1} where ei is any linear
expression. Furthermore, let e1 < e2 abbreviate e1 ≤ e2 − 1. Let ι ∈ I be an in-
equality that can be transformed into c·x ≤ d, then [[ι]] = {x ∈ R

n | c·x ≤ d} de-
notes the induced half-space. Given a finite set of inequalities E = {ι1, . . . ιn} ⊆ I
the notation [[E]] =

⋂
i=1,...n[[ιi]] denotes the induced convex polyhedron. Let

0 127
signed

-1-128

10000000

11111111
00000000

01111111

0 127

00000000

01111111

255128

10000000

11111111

unsigned

Fig. 3. The difference between a signed and an unsigned access can be interpreted as
a wrap of negative values to the upper range in an unsigned access
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Poly be the set of all convex polyhedra (polyhedra for short). Given two poly-
hedra P1, P2 ∈ Poly , let P1 � P2 iff P1 ⊆ P2 and let P1 � P2 = P1 ∩ P2. Note
that P1 � P2 = [[E1 ∪ E2]] where Pi = [[Ei]] and i = 1, 2. We write P1 � P2 to
denote the closure of the convex hull [6] of two polyhedra P1 and P2 which is
defined as the smallest polyhedron P such that P1 ∪ P2 � P . Let P ∈ Poly
be non-empty and Vi = {vi | 〈v0, . . . vn〉 ∈ P}. We write P (x) = [l, u] where
l = �min(Vi)� if the minimum exists, otherwise l = −∞ and u = �max(Vi)�
if the maximum exists, otherwise u = ∞. Define ∃xi : Poly → Poly such that
∃xi(P ) = {〈v1, . . . , vi−1, x, vi+1, . . . vn〉|〈v1, . . . vn〉 ∈ P ∧x ∈ R}. Let T denote an
additional set of temporary variables such that T ∩X = ∅. All operations above
lift from X to T∪X . The operation P�x := e ∈ Poly denotes an update of a vari-
able x ∈ X to the linear expression e and is defined as ∃t([[x = t]]�∃x([[t = e]]�P ))
where t ∈ T does not occur in e and t �= x. The rationale for assigning the result
to a temporary variable is that e might contain x. Assigning e to a fresh variable
t will retain the value of x before it is projected out. If x does not occur in e, the
update above is equivalent to ∃x(P ) � [[x = e]]. In order to argue about updates
of polyhedra, observe the following:

Lemma 1. Let P ∈ Poly and P ′ = P � xi := c · x + d with c ∈ Z
n and d ∈ Z.

Then P ′ = {〈v1, . . . vi−1, v
′
i, vi+1, . . . vn〉 | v = 〈v1, . . . vn〉 ∈ P ∧ v′i = c · v + d}.

4 Implicit Wrapping of Polyhedral Variables

This section formalises the relationship between polyhedral variables and bit-
sequences that constitute the programstate. For simplicity,weassumea one-to-one
correspondance between the variable names in the program and the polyhedral
variables that represent their values. The values of a program variable are merely
bit sequences that are prescribed by the possible values of the polyhedral vari-
able. To illustrate, suppose that x is of type char and P (x) = [−1, 2]. The
represented bit patterns are 11111111, 00000000, 00000001 and 00000010, no
matter whether x is signed or unsigned. These bit patterns are given by bin8s(v)
which turns a value v ∈ [−1, 2] into a bit sequence of s bytes. Going further,
the function bitss

a : Z → P(Σ) produces all concrete stores in which 8s bits at
address a = addr �(x) are set to the value corresponding to v ∈ P (x) as follows:

bitss
a(v) = {〈r8∗232 . . . r8(a+s)〉‖ bin8s(v) ‖ 〈r8a−1 . . . r0〉 | ri ∈ B}

Note that this definition only considers the lower 8s bits of the value v. For
instance, bits1

a(0) = bits1
a(256) since the lower eight bits of 0 and 256 are equal.

The mapping bitss
a can be lifted from the value v of a single variable to the

values 〈v1, . . . vn〉 ∈ Z
n of a vector of variables 〈x1, . . . xn〉, resulting in the stores⋂

i∈[1,n] bits
si
ai

(vi). Here ai ∈ [0, 232 − 1] denotes the address of the variable xi in
the concrete store and si ∈ N denotes its size in bytes. Observe that, if variables
were allowed to overlap, the above intersection might incorrectly collapse to the
empty set for certain vectors 〈v1, . . . vn〉 ∈ Z

n. Using this lifting, a polyhedron
is now related to a set of stores by γs

a : Poly → P(Σ) which is defined as
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γs
a(P ) =

⋃

v∈P∩Zn

⎛

⎝
⋂

i∈[1,n]

bitssi
ai

(vi)

⎞

⎠

where s = 〈s1, . . . sn〉, a = 〈a1, . . . an〉 and v = 〈v1, . . . vn〉.
The definition of γs

a provides a criterion for judging the correctness of an
abstract semantics. In addition, γs

a permits linear expressions to be evaluated in
the abstract semantics without the need to address overflows since γs

a maps the
result of calculations in the polyhedral domain to the correctly wrapped result
in the actual program. This property is formalised below:

Proposition 1. Let e ∈ L(Expr) and e ≡ c · x + d, that is, e is a reformulation
of c · x + d. If σ ∈ γs

a(P ) then σ[ai
si�→ [[ e ]]�,si

Expr] ∈ γs
a(P � xi := c · x + d).

Proof. Define πi(〈x1, . . . xi−1, xi, xi+1, . . . xn〉) = xi. Since σ ∈ γs
a(P ) there ex-

ists v ∈ P ∩Z
n such that σ =

⋂
i∈[1,n] bits

si
ai

(πi(v)). Let P ′ = P �xi := c·x+d for
some c ∈ Z

n and d ∈ Z. By Lemma 1, there exists v′ ∈ P ′ with πj(v′) = πj(v)
for all j �= i. Since {ai, . . . ai +si −1}∩{aj, . . . aj +sj −1} = ∅ for all j �= i, there
exists σ′ ∈ γs

a(P ′) such that σ′1(a) = σ1(a) for a ∈ [0, 232−1]\{ai, . . . ai+si−1}.
Furthermore, the lemma states that πi(v′) = c · v + d and, by the definition of
γs

a, it follows that σ′si (ai) = bin8si(c ·v +d). To show that σ′si(ai) = [[ e ]]�,si

Exprσ,
we find a ∈ Z

n, d ∈ Z such that e ≡ c · x + d and [[ e ]]�,si

Exprσ = bin8si(c · v + d)
by induction over e:

1. Let e = n. By definition of [[ · ]]�,sExpr, [[ n ]]�,si

Exprσ = bin8si(n) = bin8si(c ·v+d)
where d = n and c = 〈0, . . . 0〉. Hence e ≡ c · x + d.

2. Let e = n ∗ xj + e′. Suppose that [[ e′ ]]�,si

Exprσ = bin8si(c′ · v + d′) where
e′ ≡ c′ · x + d′. By the definition of [[ · ]]�,sExpr, [[ n ∗ xj + e ]]�,si

Exprσ =
bin8s(n)∗8si σsi(aj)+8si [[ e′ ]]�,si

Exprσ where σsi(aj) = bin8si(vj). By definition
of bin8s, bin8s(n) ∗8si bin8si(vj) = ((nmod 28si) ∗ (vj mod 28si))mod 28si =
(n∗vj)mod 28si , c.f. [7, page 42]. Similarly, (n∗vj)mod 28si +8si [[ e′ ]]�,si

Exprσ =
(n∗vj)mod 28si +8si bin8si(c′ ·v+d′) = (n∗vj +c′ ·v+d′)mod 28si . Thus, set
d = d′ and 〈c1, . . . cn〉 = 〈c′1, . . . c′i−1, c

′
i +n, c′i+1, . . . c

′
n〉 where c = 〈c1, . . . cn〉

and c′ = 〈c′1, . . . , c′n〉. Hence e ≡ c · x + d.

The force of the above result is that a linear expression 〈Expr〉 over finite integer
variables can be interpreted as an expression over polyhedral variables without
regard for overflows or evaluation order. A prerequisite for this convenience is
that all variables occurring in an expression have the same size s. In contrast,
assignments between different sized variables have to revert to a cast statement.
In this case, and in the case of conditionals, wrapping has to be made explicit
which is the topic of the next section.

5 Explicit Wrapping of Polyhedral Variables

A consequence of the wrapping behaviour of γs
a is that the effect of a guard

such as x<=y cannot be modelled as a transformation from a polyhedron P to
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00000000 11
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00000000 11
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11
11

00
00
00
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11111111
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x

y

0

256

0

256

2560

0

256

2560

P-1 P0 P1

x ≤ y

384,176

x ≤ y

Fig. 4. Explicitly wrapping the possible values of x to its admissible range

P � [[x ≤ y]]. This section explains this problem, discusses possible solutions and
proposes an efficient wrapping algorithm wrap.

5.1 Wrapping Variables with a Finite Range

In order to illustrate the requirements on the wrap function, consider Figure 4.
The thick line in the upper graph denotes P = [[x + 1024 = 8y, −64 ≤ x ≤ 448]]
which we suppose feeds into the guard x<=y where x and y both represent vari-
ables of type uint8. In order to illustrate a peculiarity of modelling the guard,
consider the point 〈x, y〉 = 〈384, 176〉 ∈ P and let σ ∈ γs

a({〈384, 176〉}). Due to
implicit wrapping in γs

a, the state σ stipulates that val8,uint(σ1(addr �(x))) = 128
and val8,uint(σ1(addr �(y))) = 176. Thus, although x<=y is true when interpret-
ing x and y as uint8 in σ, the polyhedron {〈384, 176〉}�[[x ≤ y]] is empty. Hence,
it is not correct to model the guard in the classic way as P � [[x ≤ y]].

In order to model relational tests correctly, the values of expressions occurring
on each side of a relational operator have to be wrapped to the type prescribed
in an L(ELang) conditional. In the example, the expression y is already in the
required range [0, 255] whereas the range of x impinges on the two neighbouring
quadrants as indicated in the upper graph of Figure 4. These quadrants are
obtained by partitioning the state P into P−1 = P � [[−256 ≤ x ≤ −1]], P0 =
P � [[0 ≤ x ≤ 255]] and P1 = P � [[256 ≤ x ≤ 511]]. The result of wrapping
x can now be calculated by translating P−1 by 256 units towards positive x-
coordinates and P1 by 256 units towards negative x-coordinates, yielding P ′ =
P0 � (P−1 � x := x + 256) � (P1 � x := x − 256). The contribution of each
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Fig. 5. The quest for an efficient wrapping of unbounded variables

partition is shown as a thick line in the lower left graph and the grey region
depicts P ′ � [[x ≤ y]]. Observe that a more precise state P ′′ can be obtained by
intersecting each translated state separately with [[x ≤ y]], that is, by calculating
(P0 � [[x ≤ y]])�((P−1 �x := x+256)� [[x ≤ y]])�((P1 �x := x−256)� [[x ≤ y]]).
This state, depicted as the grey area in the lower right graph, is smaller than P ′

since P−1 does not contribute at all. Indeed, this example shows that polyhedra
are not meet-distributive, that is, P �(P1�P2) �= (P �P1)�(P �P2). In this work,
we chose to calculate the equivalent of P ′ in our wrapping function wrap as it
simplifies the presentation; implementing the refined model is mere engineering.

5.2 Wrapping Variables with Infinite Ranges

In the given example, it was possible to obtain a wrapped representation of the
values of x and y by calculating the join of three constituent state spaces. In
general, however, wrapping x and y can require the join of an infinite number of
constituent state spaces as depicted in Figure 5. Here, the line in the upper graph
depicts P = [[x+1024 = 8y]], that is, P denotes the same linear relation as before,
except that x is unbounded. Translating P by i times the range of uint8 yields
Pi = (P � x := x + i28 � [[0 ≤ x ≤ 255]]) � (P � x := x − i28 � [[0 ≤ x ≤ 255]])
for i ≥ 0. A polyhedron that includes the sequence P ′

j =
⊔

0≤i≤j Pi can be
computed using widening [6], thereby yielding the grey area in the lower right
graph. In fact, this region is equivalent to ∃x(P ) � [[0 ≤ x ≤ 255]] as it contains
neither bounds on x nor relational information between x and other variables.
This suggests that, rather than wrapping unbounded variables, it is cheaper and
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Fig. 6. Precise wrapping of two bounded variables

as precise to set them to the whole range of their type. After wrapping x, it
becomes apparent that y is unbounded too, and hence needs wrapping.

5.3 Wrapping Several Variables

Even though the guard x<=y used in the example of Section 5.1 involves two
variables, it was only necessary to wrap x to obtain a wrapped representation of
both x and y. The example of Section 5.2 hints at the fact that both variables
might need wrapping to ensure that both sides of the guard are within range. In
particular, it is not possible to translate a guard x<=y to the inequality x−y ≤ 0
and to merely wrap x− y to [0, 255]. To illustrate this, consider the simpler case
x<=42 which is satisfied for bit sequences of x that fall within [0, 42]. In order
to evaluate x<=42, set x′ = x − 42 and wrap x′ such that 0 ≤ x′ ≤ 255. The
intersection with [[x′ ≤ 0]] constrains x′ to 0 which implies x = 42 instead of x ∈
[0, 42]. Thus, both arguments to a guard x<=y need to be wrapped independently.

The example in Figure 5 showed how wrapping the unbounded x leaves y
unconstrained which thus has to be wrapped as well. Figure 6 shows a poten-
tially more precise solution for bounded variables in which variables are wrapped
simultaneously. Here, the bounded state space shown in grey expands beyond
the state P0 that corresponds to the actual range of the variables. The result of
translating each neighbouring quadrant and intersecting it with x ≤ y is shown
in the graph on the right. Note that the join of these four translated spaces
retains no information on either x or y. While it is possible that relational in-
formation with other variables is retained, wrapping the variables independently
has the same precision if one of the variables is within bounds and, in particular,
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Algorithm 1. Explicitly wrapping an expression to the range of a type
procedure wrap(P, t s, x) where P �= ∅, t ∈ {uint, int} and s ∈ {1, 2, 4, 8}
1: bl ← 0
2: bh ← 2s

3: if t = int then /* Adjust ranges when wrapping to a signed type. */
4: bl ← bl − 2s−1

5: bh ← bh − 2s−1

6: end if
7: [l, u] ← P (x)
8: if l �= −∞ ∧ u �= ∞ then /* Calculate quadrant indices. */
9: 〈ql, qu〉 ← 〈(l − bl)/2s�, (u − bl)/2s�〉

10: end if
11: if l = −∞ ∨ u = ∞ ∨ (qu − ql) > k then /* Set to full range. */
12: return ∃x(P ) � [[bl ≤ x < bh]]
13: else /* Shift and join quadrants {ql, . . . qu}. */
14: return

⊔
q∈[ql,qu]((P � x := x − q2s) � [[bl ≤ x < bh]])

15: end if

if a variable is compared to a constant. In the 3000 LOC program qmail-smtp
that our analysis targets, 427 out of 522 conditionals test a variable against a
constant, which motivates our design choice of wrapping variables independently.

5.4 An Algorithm for Explicit Wrapping

Guided by the observations made in the three examples, Algorithm 1 gives a
procedure to wrap a polyhedral variable to the range of a given integer type.
Due to the observations in the last section, we only present an algorithm to
wrap one variable at a time. Thus, both sides of a guard have to be wrapped
individually.

The algorithm commences by calculating the bounds of the type t s. A uint8
type, for instance, will set bl = 0 and bh = 28 = 256 while an int8 type results
in the bounds bl = 0 − 28−1 = −128 and bh = 28 − 28−1 = 128. Line 7 calculates
the bounds of x in P . If one of these bounds is infinite, line 12 removes all
information on x and restrains x to [bl, bh − 1]. In case of finite bounds, line 9
calculates the smallest and largest quadrant into which the values of x impinge.
For instance, in the example of Figure 4, these numbers are ql = −1 (for the
quadrant [−256, −1]) and qh = 1 (for [256, 511]). Line 11 ensures that the linear
expression is simply set to its maximum bounds if more than k quadrants have
to be transposed and joined, where k is a limit that can be tuned to the required
precision. Line 14 transposes each quadrant and restricts it to the bounds of the
type. The correctness of wrap is asserted below:

Proposition 2. Given P �= ∅ and P ′ = wrap(P, t s, xi), the interval P ′(xi) lies
in the range of the type t s. Furthermore γs

a(P ) ⊆ γs
a(P ′).

Proof. Upon return from lines 12 and 14, xi is restricted to lie between the
bounds bl and bh − 1 of the type t s, hence P ′(xi) lies in the range of type t s.
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Suppose a = 〈a1, . . . an〉, s = 〈s1, . . . sn〉 where ai = addr �(xi) and si denotes
the size of xi in bytes. Let σ ∈ γs

a(P ). Then there exists 〈v1, . . . vn〉 ∈ P ∩ Z
n

such that σ ∈ γs
a({v}). We consider two behaviours of wrap:

– Suppose that wrap is exited at line 12. Observe that for any b ∈ B
8si there

exists v ∈ {bl, . . . , bh − 1} such that bin8si(v) = b. Hence, there exists v′ =
〈v1, . . . v

′
i, . . . vn〉 with v′i ∈ [bl, bh−1]∩Z and bin8si(v′i) = bin8si(vi). Observe

that v′ ∈ P ′ = ∃x(P ) � [[bl ≤ x < bh]] and v′ ∈ Z
n. Hence bitss

a(vj) =
bitss

a(v′j) for all j ∈ [1, n] and it follows that σ ∈ γs
a(P ′).

– Suppose now that wrap exits at line 14. Observe that vi ∈ [l, u] hence there
exists q ∈ [ql, qu] such that vi − q2s1 ∈ [bl, bh − 1]. Hence, there exists v′ =
〈v1, . . . v

′
i, . . . vn〉 ∈ P ′ such that v′i = vi − q2si . Since bin8si(q2si) = 0 it

follows that bin8si(v′i) = bin8si(vi − q2si) = bin8si(vi). Thus σ ∈ γs
a(P ′).

Note the translation of quadrants using P � x := x + q2s can be implemented
by a potentially cheaper affine transformation [2]. However, the shown solution
can be readily implemented using other polyhedral domains [15,17] that do not
directly support affine translations.

6 An Abstract Semantics for L(ELang)

This section defines the abstract semantics of L(ELang) in which a single poly-
hedron P is calculated for each label l where each label marks the beginning
of a basic block. Starting with the unrestricted polyhedron R

|X| for the first
basic block and with the empty polyhedron ∅ ⊆ R

|X| for all others, the semantic
function of the basic blocks are repeatedly evaluated until a (post-)fixpoint is
reached [4]. We omit a formal definition of this fixpoint for simplicity. Once a
fixpoint is reached, each state σ that may arise in the concrete program at l
satisfies σ ∈ γs

a(P ) where P is the polyhedron associated with the label l.
The first rule in Figure 7 specifies how the evaluation of statements feeds into

the evaluation of control-flow statements. Specifically, [[ lookupNext(l) ]]�NextPl

yields tuples such as 〈P ′
l′ , l

′〉 indicating that P ′
l′ must be joined with the existing

state Pl′ at l′. For instance, jump l merely returns the current state paired with
the target label. The conditional calculates two new polyhedra P then (which is
returned for the label l) and P else (which is used to evaluate other control-flow
instructions). The calculation of P else makes use of a function neg which negates
a relational operator, for example, neg(′<′) = ′≥′. The auxiliary function cond
wraps the two arguments of the relational operator op. Like wrap, this function
can only wrap single polyhedral variables which requires that exp is assigned to
a temporary variable y which is projected out once the guard is applied.

Observe that enforcing the guard by intersecting with [[x op y]] has the same
effect as wrapping the expression exp itself since y = exp holds in P ′. However,
if wrap returns from line 12 in Algorithm 1, the variable y is merely set to
the bounds of the type. In this case wrap discards the relational information
between y and exp and the intersection with [[x op y]] has no effect on P ′′, thereby
ignoring the condition. An alternative treatment for expressions exp that exceed
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k quadrants would be to discard any previous information on variables in exp
using projection and to modify wrap to intersect P with [[bl ≤ exp < bh]]. In
this case the information in the guard could be retained by intersecting with
[[x op exp]] at the cost of discarding any previous bounds on the variables of exp.

The following Proposition states the correctness of the conditional:

Proposition 3. If σ∈γs
a(P ) and val 8s,t(σs(addr �(xi))) op val 8s,t([[ exp ]]�,sExprσ)

then 〈P ′, l〉 ∈ [[ if t s xi op exp then jump l ; nxt ]]�NextP and σ ∈ γs
a(P ′).

Proof. Since σ ∈ γs
a(P ) there exists v ∈ P ∩ Z

n such that σ ∈ γs
a({v}). Let

P̂ = cond(P̄ , t s, xi, y, op) where P̄ = P � y := [[ exp ]]�Expr. Then 〈v1, . . . vn, v̂〉 ∈
P̄ ∩ Z

n+1 where 〈v1, . . . vn〉 = v, v̂ = c · v + d and exp ≡ c · x + d. By
Proposition 2, there exists v′ = 〈v1, . . . vi−1, v

′
i, vi+1, . . . vn, v̂′〉 ∈ P̂ ∩ Z

n+1

such that bin8s(vi) = bin8s(v′i) = σ8s(addr �(xi)). By following Proposition 1,
bin8s(v̂) = bin8s(v̂′) = [[ exp ]]�,sExprσ. Furthermore, v′i and v̂′ lie in the range of
t s and thus val8s,t(σ8s(addr �(xi))) = v′i and val8s,t([[ exp ]]�,sExprσ) = v̂′. Hence
v′ ∈ P̂ � [[x op y]] for op /∈ {�=}. With P ′ = ∃y(P̂ � [[x op y]]) it follows that
σ ∈ γs

a(P ′). The argument is similar for op ∈ {�=}.

The fall-through case can be shown correct by a similar argument.
Due to the modulo nature of γs

a the evaluation of linear expressions and as-
signments resembles that of classic polyhedral analysis in that linear expressions
in the program are simply re-interpreted as expressions over polyhedra variables.
This holds true even for casts between different sized variables as long as the
target variable is smaller. Assigning smaller variables to larger, on the contrary,
requires that wrapping is made explicit since a value that exceeds the range of
the smaller source variable would wrap in the actual program whereas it might
not exceed the range of the larger target variable.

We conclude this section with a correctness argument for the cast statement:

Proposition 4. Suppose σ ∈ γs
a(P ), σ′ = [[ s1 xi = t s2 xj ]]�Stmtσ and let

P ′ = [[ s1 xi = t s2 xj ]]�StmtP . Then σ′ ∈ γs
a(P ′).

Proof. Since σ ∈ γs
a(P ) there exists v = 〈v1, . . . vn〉 ∈ P such that σ ∈ γs

a({v}).
Let 〈v′1, . . . v′n〉 ∈ P � xi := xj where v′i = v′j and v′k = vk for all k �= i.
By Lemma 1, σ′sk(addr �(xk)) = σsk(addr �(xk)) for all k �= i. By definition of
[[ · ]]�Stmt, we need to show that σ′s1(addr �(xi))=bin8s1(val8s2,t(σs2(addr �(xj)))).

– Suppose s1 ≤ s2. Then bin8s1(x)=bin8s1(val8s2,t(bin8s2(x))). But bin8s1(v′i)
= σ′s1(addr �(xi)) and bin8s2(vj) = σs2 (addr �(xj)), thus σ′ ∈ γs

a(P ′) follows.
– Suppose now that s1 > s2. By Proposition 2, there exists 〈v1, . . . v̂i, . . . vn〉 ∈

P ′ such that bin8s2(v̂i) = bin8s2(vj) and v̂i lies in the range of t s2, that is,
val8s2,t(bin8s2(v̂i)) = v̂i. But since bin8s2(v̂i) = bin8s2(vj) = σ′s1 (addr �(xj))
it follows that σ′s1 (addr �(xi)) = bin8s1(v̂i) as required.
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Basic Blocks.
[[ l : s1; . . . sn; ]]�BlockP = [[ lookupNext(l) ]]�Next([[ sn ]]�Stmt(. . . [[ s1 ]]�StmtP . . .))

Control Flow.
[[ jump l ]]�NextP = {〈P, l〉}
[[ if t s v op exp then jump l ; nxt ]]�NextP = {〈P then , l〉} ∪ [[ nxt ]]�NextP

else

where P ′ = P � y := [[ exp ]]�Expr where y ∈ T fresh
P then = ∃y(cond(P ′, t s, v, y, op))
P else = ∃y(cond(P ′, t s, v, y,neg(op)))

cond(P ′, t s, x, y, op) =
{

(P ′′ � [[x < y]]) � (P ′′ � [[x > y]]) if op ∈ {�=}
(P ′′ � [[x op y]]) otherwise

where P ′′ = wrap(wrap(P ′, t s, x), t s, y)

Expressions.
[[ n ]]�Expr = n

[[ n ∗ v + exp ]]�Expr = n v + [[ exp ]]�Expr

Assignments.
[[ s v = exp ]]�StmtP = P � v := [[ exp ]]�Expr

Type Casts.
[[ s1 v1 = t s2 v2 ]]�StmtP =

{
P ′ if s1 ≤ s2

wrap(P ′, t s2, v1) otherwise
where P ′ = P � v1 := v2

Fig. 7. Abstract semantics of L(ELang)

7 Discussion

The existence of a concretisation map γs
a begs the question of whether an abstrac-

tion map can be defined. For classic polyhedral analysis [6], it is well-known that
no best abstraction exists for certain shapes such as a disc [4]. In the context of
our analysis, the set of concrete states Σ is finite. However, a given set of states
still has no best abstraction. Consider σ ∈ Σ with σ1(addr �(x)) = 11111111,
P1 = [[x = −1]] and P2 = [[x = 255]]. Although σ ∈ γs

a(P1) = γs
a(P2), P1 and

P2 are incomparable. As a consequence, the meet operation can only be applied
after wrap has expressed the polyhedra in the same quadrant and thereby made
them comparable. Termination is not compromised as wrap is monotonic.

Since different polyhedra can describe the same set of concrete states, care is
needed when applying join. Suppose that the loop in Figure 8 is entered with
P = [[x = −1]]: the largest value an unsigned variable can take. As the loop
invariant x ≥ 42 mentions x, Q = P �U is wrapped to R = wrap(Q,uint8, x) =
[[x = 255]]. A precision loss occurs when P and U = [[x = 254]] are joined to obtain
[[−1 ≤ x ≤ 254]] as x cannot fall below 42. One solution to this particular problem
is to unroll the loop once, which avoids the join of different representatives.

Observe that wrap is idempotent and, as such, is the identity if the variable is
in range. An important consequence is that our solution is as precise as classic
polyhedral analysis if all variables remain within the range of their types.
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x≥42x=-1 R=wrap(Q,uint8,x)

+

yes

no

P

Q

S

T

R

U=T x := x-1
U

Fig. 8. Precision loss incurred by joining flow paths

An interesting benefit of γs
a is that the possible values of a byte x can be

represented as either [[−128 ≤ x ≤ 127]] or [[0 ≤ x ≤ 255]]. For example, an
analysis of C string buffers [14] does not model individual array elements but
tracks a single nul position (a character with value zero) within the array. Even
though char is often signed, the range [0, 255] (rather than [−128, 127]) can be
returned to indicate an arbitrary value when reading a byte from the array. The
unsigned range can then be refined using the nul position to [1, 255] whenever
the access lies in front of the nul position (see [16] for an example). If a signed
range [−128, 127] had to be returned, it would include the nul character since
[−128, −1]∪[1, 127]=[−128, 127] is the best convex approximation. Without this
tactic, it can be difficult to prove termination of loops that iterate over strings.

8 Related Work and Conclusion

A sound analysis must reason about overflowing calculations and correctly model
conversions between unsigned and signed integers. Rather than contaminating an
analysis with the low-level details of two’s complement wrapping behaviour, we
presented a computationally light-weight solution based on a novel concretization
map for polyhedra which eliminates the need to check for wrapping in assign-
ments of linear expression and conversions to smaller integers. Conditionals and
other casts require an implementation using the presented algorithm wrap. We
proved the presented analysis correct and argued the precision is no worse than
that of classic polyhedral analysis that warns about every wrapping.

Although a number of works have addressed the modulo properties of congru-
ences [1,11,12,13], little work exists for polyhedral analyses. Blanchet et al. use
a two-tier approach [5]: For signed integers, any wrapping is erroneous. In this
case, each time a variable is set, its range is checked for overflows. Overflows of
unsigned integers are assumed to be intentional as wrapping may result from
bit-level operations. This approach requires a separation of signed and unsigned
variables which incurs false warnings for many programs, such as the C pro-
gram in our introduction. Indeed, an analysis of our example would lead to the
misleading warning about converting from a signed to an unsigned integer.

Further afield is work on tracing the propagation of rounding errors in floating
point calculations. In this context, Goubault et al. [10] treat wrapping of integers
as a rounding error that is as large as the range of the integer variable.
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