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Abstract. Two of the most promising approaches to fighting the state explosion
problem are abstraction and compositional verification. In this work we join their
forces to obtain a novel fully automatic compositional technique that can deter-
mine the truth value of the full μ-calculus with respect to a given system.

Given a system M = M1||M2, we view each component Mi as an abstrac-
tion Mi↑ of the global system. The abstract component Mi↑ is defined using a
3-valued semantics so that whenever a μ-calculus formula ϕ has a definite value
(true or false) on Mi↑, the same value holds also for M . Thus, ϕ can be checked
on either M1 ↑ or M2 ↑ (or both), and if any of them returns a definite result,
then this result holds also for M . If both checks result in an indefinite value,
the composition of the components needs to be considered. However, instead of
constructing the composition of M1↑ and M2↑, our approach identifies and com-
poses only the parts of the components in which their composition is necessary in
order to conclude the truth value of ϕ. It ignores the parts which can be handled
separately. The resulting model is often significantly smaller than the full system.

We explain how our compositional approach can be combined with abstrac-
tion, in order to further reduce the size of the checked components. The result is
an incremental compositional abstraction-refinement framework, which resem-
bles automatic Assume-Guarantee reasoning.

1 Introduction

Model checking [11] is a useful approach for verifying properties of systems. The main
disadvantage of model checking is the state explosion problem, which refers to its high
space requirements. Two of the most promising approaches to fighting the state explo-
sion problem are abstraction and compositional verification. In this work we join their
forces to obtain a novel fully automatic compositional technique that can determine the
truth value of the full μ-calculus with respect to a given system.

In compositional model checking one tries to verify parts of the system separately
in order to avoid the construction of the entire system. To account for the dependencies
between the components, the Assume-Guarantee (AG) paradigm [22,25] suggests how
to verify one module based on an assumption about the behavior of its environment,
where the environment consists of the other system modules. The environment is then
verified, in order to guarantee that it actually satisfies the assumption. Many of the
works on compositional model checking are based on the AG paradigm and on learn-
ing [12,5,10] (see the related work section for more details). In contrast, our approach is
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based on techniques taken from the 3-valued game-based model checking for abstract
models [26,18,19].

We first present our method for concrete systems, composed of concrete (unab-
stracted) components. We then extend it to abstract systems, in which one or both of
the components have been abstracted (separately). For simplicity we refer to systems
that consist of two components M1||M2. However, our approach can be extended to
the composition of n components. In our setting M1 and M2 are Kripke structures that
synchronize on the joint labeling of the states. This composition is suitable for model-
ing synchronous systems with shared variables. In particular, it is suitable for hardware
designs that synchronize on their inputs and outputs, since our models can be viewed
as Moore machines [20]. The underlying ideas are applicable to other models as well,
such as Labeled Transition Systems (LTSs), where components synchronize on their
joint transitions and interleave their local transitions.

Given a system M = M1||M2, we view each component Mi as an abstraction Mi↑
of the global system M , in which the values of the local (unshared) variables and the
transitions of the other component are unknown. We consider the 3-valued semantics of
the μ-calculus, in which the value of a formula in a model is either tt (true), ff (false),
or ⊥ (unknown). Mi↑ is defined so that whenever a μ-calculus formula ϕ has a definite
value (tt or ff) on Mi↑, the same value holds also for M . Thus, ϕ can be checked on
either M1↑ or M2↑ (or both), and if any of them returns a definite result, then this result
holds also for M . Only if both checks result in ⊥, the value of ϕ in M is unknown.

For the 3-valued abstraction, when the model checking returns ⊥, the abstract model
should be refined in order to eliminate the ⊥ result. For our framework, a refinement
could be achieved by composing M1↑ and M2↑. This, however, is not desired and not
necessary. Instead, only the parts of the abstract models for which the model check-
ing result is ⊥ are identified and composed. The resulting refined model is often sig-
nificantly smaller than the full system and is guaranteed to return the correct model
checking result.

More specifically, our approach is based on the 3-valued game for model checking
of μ-calculus, suggested in [18,19]. The game is played on a game graph, whose nodes
are labeled by s � ψ, where s is a state in the checked model and ψ is a subformula
of the checked formula, s.t. the value of ψ in s is relevant for determining the model
checking result. The model checking algorithm “colors” each node in the game graph
by T , F , or ? iff the value of ψ in s is tt, ff or ⊥, respectively. Recall that we first apply
the model checking algorithm to each component separately. If the algorithm colors a
node s � ψ of M1↑ with T (F ), then it is guaranteed that every state in the composed
system M , whose first component is s, satisfies (falsifies) ψ. A similar property holds
for M2↑. Thus, when the model checking returns ⊥ then only the subgraphs of nodes
whose color is ? require further checking and are therefore composed. As such, the
game-based approach provides a natural way of identifying and focusing on the places
where the value of the checked formula remained inconclusive.

To further reduce the size of the checked components, we combine our composi-
tional approach with abstraction. Abstraction not only reduces the state-space of the
components, but also allows to handle infinite-state components by abstracting them
into finite-state components. Given a system composed of two (or more) components,
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we first abstract each component separately. However, in order to guarantee preserva-
tion of both tt and ff we require that the common alphabet (e.g. common inputs and
outputs for hardware designs) will not be abstracted. Only local (unshared) variables
can be abstracted. While this limits the amount of reduction that can be achieved by the
abstraction on a single component, it enables additional reduction due to the composi-
tional reasoning.

We propose an automatic construction of the initial abstraction for each component
separately. We then proceed as before: we run a 3-valued model checking on each of the
components. If both return ⊥, we identify and compose the parts where indefinite results
were obtained, and apply 3-valued model checking to the composed model. While in
the concrete case this step always terminates with a definite result, here we may obtain
an indefinite result due to abstraction. In such a case, we follow [26,18,19] in finding
the cause for the indefinite result on the composed model. However, the refinement
is applied on each of the components separately. Moreover, we adopt the incremental
approach of [26,18,19] and refine only the indefinite part of each component.

An abstraction of a component Mi (which comprises the environment of the other
component) can be viewed as providing an assumption on Mi. From this point of view,
when applying abstraction-refinement on one or both of the components, the result is
an automatic mechanism for assumption generation, which is either symmetric (refers
to both components) or asymmetric (abstracts only one component). In each iteration,
more information about the component is revealed, by need – based on the cause for
the indefinite result. This resembles iterative AG reasoning. The use of conservative
abstractions guarantees that the assumption describes the component correctly (by con-
struction). Thus unlike typical AG reasoning, this need not be verified.

In summary, our contribution is threefold:

– We introduce a new ingredient to compositional model checking, which enhances
its modularity. Namely, given a compositional system, our approach uses a model
checking game-graph as a means to identify and focus on the parts of the compo-
nents in which their composition is indeed necessary to conclude the truth value of
the checked property, due to dependencies between them. It uses the game-graph
to exchange information between the components in these points, by need, and ig-
nores the parts which can be handled separately. Thus, it avoids the construction of
the full composition. Furthermore, if a certain formula only depends on one com-
ponent, then it is resolved on this component alone while avoiding the composition
altogether. Our technique is orthogonal to the AG approach, and can also be ap-
plied when the composed system consists of a component and an assumption on its
environment.

– We develop a compositional, fully automatic, abstraction-refinement framework,
which has some resemblance to iterative AG-reasoning, but benefits from the mod-
ular model checking described above. The refinement is also applied to each com-
ponent separately. In addition, the abstraction-refinement is incremental in the sense
that results from previous iterations are re-used. From the AG point of view, our
compositional abstraction-refinement can be viewed as a new, automatic, mecha-
nism for assumption generation, which uses the power of abstraction-refinement.
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– Finally, unlike most automatic AG approaches, which are limited to universal safety
properties, our technique is applicable to the full μ-calculus.

Related Work. Recently, [12] followed by [5,10], considered automatic assumption
generation for AG reasoning. They use learning algorithms for finite automata in order
to automatically produce suitable assumptions for an AG rule. A similar approach is
taken in [7], where the AG rule used is symmetric. Assumption generation in a more
general setting is addressed in [16,2]. These works are all restricted to universal safety
properties. The learning algorithms used in these works also perform some kind of an
abstraction-refinement. However, these algorithms are not specifically tailored for ver-
ification. In particular, they do not always maintain a conservative abstraction of the
environment. As such, the assumption sometimes needs to be weakened and sometimes
needs to be strengthened. In our case an assumption (abstraction) should never be weak-
ened. Moreover, we increase the modularity of the model checking step by using the
game-based approach, which also enables an incremental analysis. Most importantly,
our approach is applicable to the full μ-calculus.

The game-based model checking enables us to identify the places where the value of
a subformula in a component’s state is the same for all environments. We exploit this
information to reduce the model checking instance of the entire system. Other authors
have also used similar information for reductions. In [1] the authors merge compo-
nent’s states that share the same value for a given CTL formula in all environments,
thus minimizing the component. In [3] the authors use reachability and controllability
information about the concrete components (gathered via game-theoretic techniques) in
order to construct abstract components for invariance properties. The composition of
the abstract components is then computed and model checked. We, on the other hand,
do not try to minimize each component. Instead, the game-graph enables us to prune
parts of each component’s model checking instance whose effect was already taken into
consideration. As a result, we reduce the state space exploration of the entire system.
This is applicable even if no states of the individual components can be merged.

[15] uses controllability information to speed up falsification of invariance proper-
ties. They identify unpreventable violations of the property based on each component
separately, which enables to prune the state space exploration of the compound system
before a violation is actually encountered. The authors state that their method can be ex-
tended to arbitrary LTL properties. However, they only use controllability information
w.r.t. the entire formula. Our approach enables to gather information about subformulas
as well, and thus can result in more substantial reductions. In addition, our approach is
aimed at both verification and falsification (with a 3-valued semantics) and is applicable
to a full branching time logic.

[24] also uses 3-valued model checking for modular verification. They consider
feature-oriented modules, where the composition is via interfaces and has a more se-
quential nature. As a result, they only refer to unknown propositions and not to un-
certainty in the transitions. A substantial part of their work is devoted to determining
what information needs to be included in a feature’s interface to support compositional
reasoning. In our case, we use the game graph for sharing such auxiliary information.

In [4] the authors suggest to use game structures to reason about composition of
components. [14,6] suggest abstraction-refinement frameworks for such models, w.r.t.
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alternating time temporal logics, which enable to describe properties of the interaction
between components. We are interested in properties of the compound system, thus the
focus in these works is different. In addition, they abstract each component separately
and then model check the entire system. The model checking step is not modular.

[9] develops a compositional counterexample-guided abstraction refinement for a
universal temporal logic (which extends ACTL). In their approach, the abstraction and
the refinement steps are performed on each component separately, but the model check-
ing step is done on the entire (abstract) system. In our approach, the model checking step
is also compositional, and the properties considered are not limited to a universal logic.

2 Preliminaries

μ-calculus. [23] Let AP be a finite set of atomic propositions and V a set of proposi-
tional variables. The set of literals over AP is Lit = AP ∪{¬p : p ∈ AP}. We identify
¬¬p with p. The logic μ-calculus in negation normal form over AP is defined by:

ϕ ::= l | Z | ϕ ∧ ϕ | ϕ ∨ ϕ | �ϕ | ♦ϕ | μZ.ϕ | νZ.ϕ

where l ∈ Lit and Z ∈ V . Intuitively, � stands for “all successors”, and ♦ stands for
“exists a successor”. μ denotes a least fixpoint, whereas ν denotes greatest fixpoint. We
will also write η for either μ or ν. Let Lμ denote the set of closed formulas generated
by the above grammar, where the fixpoint quantifiers μ and ν are variable binders. We
assume that formulas are well-named, i.e. no variable is bound more than once in any
formula. Thus, every variable Z identifies a unique subformula fp(Z) = ηZ.ψ of ϕ,
where the set Sub(ϕ) of subformulas of ϕ is defined in the usual way.

Concrete Semantics. Concrete systems are typically modelled as Kripke structures.
A Kripke structure [11] is a tuple M = (AP, S, s0, R, L), where AP is a finite set of
atomic propositions, S is a finite set of states, s0 ∈ S is an initial state, R ⊆ S × S is
a transition relation, and L : S → 2Lit is a labeling function, such that for every state s
and every p ∈ AP , exactly one of p and ¬p is in L(s).

The concrete semantics [[ϕ]]M of a closed formula ϕ ∈ Lμ over AP w.r.t. a Kripke

structure M = (AP, S, s0, R, L) is a mapping from S to {tt, ff}. [[ϕ]]M (s) = tt (= ff)
means that the formula ϕ is true (false) in the state s of the Kripke structure M . If
[[ϕ]]M (s0) = tt (= ff), we say that M satisfies (falsifies) ϕ, denoted M |= ϕ (M 
|= ϕ).

3-Valued Abstraction. In the context of abstraction, Kripke Modal Transition Sys-
tems [21,17] are often used as abstract models that preserve the μ-calculus.

Definition 1. A Kripke Modal Transition System (KMTS) is a tuple M = (AP, S, s0,
R+, R−, L), where AP , S and s0 are defined as before, R+, R− ⊆ S ×S are must and
may transition relations (resp.) such that R+ ⊆ R−, and L : S → 2Lit is a labeling
function such that for every state s and p ∈ AP , at most one of p and ¬p is in L(s).

The 3-valued semantics [[ϕ]]M3 of a closed formula ϕ ∈ Lμ w.r.t. a KMTS M is a
mapping from S to {tt, ff, ⊥} [8,21]. It preserves both satisfaction (tt) and refutation
(ff) from the abstract KMTS to the concrete model it represents. ⊥ is a new truth value
whose meaning is that the truth value over the concrete model is unknown and can be
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either tt or ff. The interesting cases in the definition of the 3-valued semantics are those
of the literals and the modalities.

[[l]]M3 (s) = tt if l ∈ L(s), ff if ¬l ∈ L(s), ⊥ otherwise.

[[�ψ]]M3 (s) =

⎧
⎨

⎩

tt, if ∀t ∈ S, if sR−t then [[ψ]]M3 (t) = tt
ff, if ∃t ∈ S s.t. sR+t and [[ψ]]M3 (t) = ff
⊥, otherwise

and dually for ♦ψ when exchanging tt and ff. The notations M |= ϕ and M 
|= ϕ are
used for KMTSs as well. In addition, if [[ϕ]]M3 (s0) =⊥, the value of ϕ in M is indefinite.

The following definition formalizes the relation between two KMTSs that guarantees
preservation of μ-calculus formulas w.r.t. the 3-valued semantics.

Definition 2 (Mixed Simulation). [13,17] Let M1 = (AP, S1, s
0
1, R

+
1 , R−

1 , L1) and
M2 = (AP, S2, s

0
2, R

+
2 , R−

2 , L2) be two KMTSs, both defined over AP . H ⊆ S1 × S2
is a mixed simulation from M1 to M2 if (s1, s2) ∈ H implies:

1. L2(s2) ⊆ L1(s1).
2. if s1R

−
1 s′1, then there is some s′2 ∈ S2 such that s2R

−
2 s′2 and (s′1, s′2) ∈ H .

3. if s2R
+
2 s′2, then there is some s′1 ∈ S1 such that s1R

+
1 s′1 and (s′1, s

′
2) ∈ H .

If there is a mixed simulation H s.t. (s0
1, s

0
2) ∈ H , then M2 abstracts M1, denoted

M1 � M2.

In particular, Def. 2 can be applied to a (concrete) Kripke structure MC and an (abstract)
KMTS MA, by viewing the Kripke structure as a KMTS where R+ = R− = R. For
a Kripke structure, the 3-valued semantics agrees with the concrete semantics. Thus,
preservation of Lμ formulas is guaranteed by the following theorem.

Theorem 1. [17] Let H ⊆ S1 × S2 be the mixed simulation relation from a KMTS
M1 to a KMTS M2. Then for every (s1, s2) ∈ H and every ϕ ∈ Lμ we have that

[[ϕ]]M2
3 (s2) 
=⊥⇒ [[ϕ]]M1

3 (s1) = [[ϕ]]M2
3 (s2).

Abstract Model Checking. A 3-valued game-based model checking for the μ-calculus
over KMTSs was suggested in [18,19]. They introduce 3-valued parity games and trans-
late the 3-valued model checking problem into the problem of determining the winner
in a 3-valued satisfaction game, which is a special case of a 3-valued parity game. We
omit the details of the 3-valued satisfaction game, but continue with the game graph,
which presents all the information “relevant” for the model checking.

Game Graph. Let M = (AP, S, s0, R+, R−, L) be a KMTS and ϕ ∈ L0
μ. The game

graph GM×ϕ, or in short G, is a graph (N, n0, E+, E−) where N ⊆ S × Sub(ϕ) is
a set of nodes and E+ ⊆ E− ⊆ N × N are sets of must and may edges defined as
follows. n0 = s0 � ϕ ∈N is the initial node. The (rest of the) nodes and the edges are
defined by the rules of Fig. 1, with the meaning that whenever n ∈ N is of the form of
the upper part of the rule, the result in the lower part of the rule is also a node n′ ∈N
and E−(n, n′). Moreover, E+(n, n′) holds as well in all cases except for an application
of the rules in the second column with a model’s transition (s, t) ∈ R−\R+. Intuitively,
the outgoing edges of s � ψ ∈ N define “subgoals” for checking ψ in s.
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s 
 ψ0 ∨ ψ1
s 
 ψi

: i ∈ {0, 1} s 
 ♦ψ
t
 ψ

: sR+t or sR−t
s 
 ηZ.ψ

s 
 Z

s 
 ψ0 ∧ ψ1
s 
 ψi

: i ∈ {0, 1} s 
 �ψ
t
 ψ

: sR+t or sR−t s 
 Z
s 
 ψ

: if fp(Z) = ηZ.ψ

Fig. 1. Rules for game graph construction

If E−(n, n′) (E+(n, n′)) then n′ is a may (must) son of n. A node n = s � ψ in
GM×ϕ is classified as a ∧, ∨, �, ♦ node, based on ψ. If ψ is of the form Z or ηZ.ψ′, n
is deterministic – it has exactly one son. If n has no outgoing edges, then it is a terminal
node. In a full game graph this means that either ψ is a literal, or ψ is of the form ♦ψ′

or �ψ′, and s has no outgoing transition in M .
Fig. 2(b) presents examples of game graphs for ϕ = �(¬i ∨ ♦o) and the models

from Fig. 2(a), where all transitions are considered may transitions.

Coloring Algorithm. The model checking algorithms of [18,19] can be viewed as
coloring algorithms that label (color) each node n = s � ψ in the game graph by T , F , ?
depending on the truth value of ψ in the state s in M (based on the 3-valued semantics).
The result of the coloring is a 3-valued coloring function χ : N → {T, F, ?}.

In both cases the coloring is performed by solving the 3-valued parity game for
satisfaction, where each color stands for a possible result in the game. The algorithm
of [18] is a generalization of Zielonka’s algorithm for solving (2-valued) parity games.
In [19], the 3-valued satisfaction game is reduced into two (2-valued) parity games,
improving the coloring’s complexity. The following formalizes the correctness of the
coloring. For a (possibly not closed) formula ψ, ψ∗ denotes the result of replacing every
free occurrence of Z ∈ V in ψ by fp(Z). Note that if ψ is closed, then ψ∗ = ψ.

Definition 3. Let GM×ϕ be a game graph for a KMTS M and ϕ ∈ Lμ. A (possibly
partial) coloring function χ : N → {T, F, ?} for GM×ϕ (or its subgraph) is correct if
for every s � ψ ∈ N , whenever χ(s � ψ) is defined, then:

1. [[ψ∗]]M3 (s) = tt iff χ(s
 ψ) = T .
2. [[ψ∗]]M3 (s) = ff iff χ(s 
 ψ) = F .
3. [[ψ∗]]M3 (s) =⊥ iff χ(s
 ψ) =?.

Theorem 2. [18,19] Let χF be the (total) coloring function returned by the coloring
algorithm of [18] or [19] for GM×ϕ. Then χF is correct.

Moreover, in both cases, the final coloring of the nodes reflects the 3-valued semantics
of the logic: A ∧-node or a �-node is colored T iff all its may sons are colored T (and
in particular if it has no may sons), it is colored F iff it has a must son which is colored
F , and otherwise it is colored ?. Dually for a ∨-node or a ♦-node when exchanging T
and F . The color of s � l for l ∈ Lit is T iff l ∈ L(s), F iff ¬l ∈ L(s), and ? otherwise.
The result of the coloring is demonstrated in Fig. 2(b).

Refinement. If the model checking result of an abstract model is indefinite (⊥), a re-
finement is needed. When using the coloring algorithms of [18,19], an indefinite result
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is accompanied with a failure state and a failure cause. The failure cause is either a
literal whose value in the failure state is ⊥, or an outgoing may transition of the fail-
ure state in the underlying model which is not a must transition. Refinement is then
performed by splitting the abstract states in a way that eliminates the failure cause
(see [18,19]).

3 Partial Coloring and Subgraphs

In the following sections we use the game-based model checking in order to identify and
focus on the places where the dependencies between components of the system affect
the model checking result. In this section we set the basis for this, by investigating
properties of the game graph and the coloring algorithms.

Due to their nature, as algorithms for solving a 3-valued parity game, the coloring
algorithms of [18,19] have the important property that they can be applied on a partially
colored graph, in which case they extend the given coloring to the rest of the graph
in a correct way. Moreover, the coloring can also be applied on a partially colored
subgraph, and under certain assumptions it will yield a correct coloring of the subgraph.
To formalize this, we need the following definitions.

Definition 4. Let G be a game graph and χF its final coloring function. For a non-
terminal node n in G we define its witnessing sons as follows, depending on its type:

∧, �: the witnessing sons are those colored F or ? by χF .
∨, ♦: the witnessing sons are those colored T or ? by χF .
deterministic: the witnessing son is the only son.

The sons are witnessing in the sense that they suffice to determine the color of the node,
thus removing the rest of the node’s sons from the graph does not damage the result of
the coloring. For example, if a ∧-node or a �-node has no witnessing sons, meaning
all its sons are colored T , then we know it should be colored T , and this is indeed how
the coloring algorithms will color the node when keeping only the witnessing sons.
Otherwise, the witnessing sons determine whether the node should be colored F or ?,
thus one can correctly color the node by considering only them.

Definition 5. A subgraph G′ of a game graph G is closed if every node in G′ is either
a terminal node, or all its witnessing sons (and corresp. edges) from G are also in G′.

Theorem 3. Consider a closed subgraph G′ of a game graph G with a partial coloring
function χ which is correct and defined over (at least) all the terminal nodes in G′. Then
applying the coloring algorithm of [18] or [19] on G′ with χ as an initial coloring
results in a correct coloring of G′.

In fact, for the coloring of the subgraph to be correct, not all the witnessing sons are
needed, as long as there is enough information to explain the correct coloring of each
uncolored node. However, we will see that in our case we will need all of them, as
we will deduce from the game graph of one component to the game graph of the full
system, where some of the nodes will be removed and for some an indefinite color (?)
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will change into T or F . This means that some of the witnessing sons will not remain
witnessing sons in the game graph of the full system. Thus, we will not be able to know
a-priori which of them is the “right” choice to include in a way that will also provide
the necessary information for a correct coloring in the game graph of the full system.

Another notion that we will need later is the following.

Definition 6 (?-Subgraph). Let G be a colored graph whose initial node is colored ?.
The ?-subgraph is the least subgraph G? of G that obeys the following:

– the initial node is in G? (and is the initial node of G?).
– For each node in G? which is colored ? in G all its witnessing sons (and corre-

sponding edges) in G are included in G?.

G? is accompanied with a partial coloring function χI which is defined over the
terminal nodes in G?, and colors them as the coloring function χF of G.

The ?-subgraph G? and its initial coloring meet the conditions of Thm. 3. Intuitively,
this means that G? contains all the information regarding the indefinite result. Fig. 2(b)
provides examples of ?-subgraphs.

4 Compositional Model Checking

In compositional model checking the goal is to verify a formula ϕ on a compound
system M1||M2. In our setting M1 and M2 are Kripke structures that synchronize on
the joint labelling of the states. Since a Kripke structure is a special case of a KMTS
where R = R+ = R−, we define the composition for the more general case of KMTSs.
In the following we denote by Lit1 and Lit2 the sets of literals over AP1 and AP2, resp.

Definition 7. Two KMTSs M1 = (AP1, S1, s
0
1, R

+
1 , R−

1 , L1) and M2 = (AP2, S2, s
0
2,

R+
2 , R−

2 , L2) are composable if their initial states agree on their joint labeling, i.e.
L1(s0

1) ∩ Lit2 = L2(s0
2) ∩ Lit1.

Definition 8. Let M1 = (AP1, S1, s
0
1, R

+
1 , R−

1 , L1) and M2 = (AP2, S2, s
0
2, R

+
2 , R−

2 ,
L2) be two composable KMTSs. We define their composition, denoted M1||M2, to be
the KMTS (AP, S, s0, R+, R−, L), where

– AP = AP1 ∪ AP2

– S = {(s1, s2) ∈ S1 × S2 | L1(s1) ∩ Lit2 = L2(s2) ∩ Lit1}
– s0 = (s0

1, s
0
2)

– R+ = {((s1, s2), (t1, t2)) ∈ S × S | (s1, t1) ∈ R+
1 and (s2, t2) ∈ R+

2 }
– R− = {((s1, s2), (t1, t2)) ∈ S × S | (s1, t1) ∈ R−

1 and (s2, t2) ∈ R−
2 }

– L((s1, s2)) = L(s1) ∪ L(s2)

In particular, if M1 and M2 are Kripke structures with transition relations R1 and
R2 resp., then M1||M2 is a Kripke structure with R = {((s1, s2), (t1, t2)) ∈ S ×
S | (s1, t1) ∈ R1 and (s2, t2) ∈ R2}.
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From now on we fix AP to be AP1 ∪ AP2. For i ∈ {1, 2} we use i to denote the
remaining index in {1, 2} \ {i}.

We use the mechanism produced for abstractions of full branching time logics for the
purpose of compositional verification. The basic idea is to view each Kripke structure
Mi as a partial model that abstracts M1||M2.

Definition 9. Let Mi = (APi, Si, s
0
i , Ri, Li) be a Kripke structure. We lift Mi into a

KMTS Mi↑= (AP, Si, s
0
i , R

+
i ↑, R−

i ↑, Li↑) over AP where R+
i ↑= ∅, R−

i ↑= Ri and
Li↑ (s) = Li(s).

That is, we view Mi as a KMTS Mi↑ over AP (rather than APi). This immediately
makes the value of each literal over AP \APi in each state of Mi↑ indefinite (as neither
p nor ¬p are in Li(s)) – indeed, it depends on Mi. In addition, each transition of Mi is
considered a may transition (since in the composition it might be removed if a matching
transition does not exist in Mi, but transitions can never be added).

Theorem 4. M1||M2 � Mi↑. The mixed simulation is {((s1, s2), si) | (s1, s2) ∈ S}.

Since each Mi↑ abstracts M1||M2, we are able to first consider each component sepa-
rately: Thm. 1 ensures that if ϕ has a definite value (tt or ff) in Mi↑ under the 3-valued
semantics, then the same value holds in M1||M2 as well. In particular, the values in
M1↑ and M2↑ cannot be contradictory, and it suffices that one of them is definite in
order to determine the value in M1||M2.

The more typical case is that the value of ϕ on both M1↑ and M2↑ is indefinite. This
reflects the fact that ϕ depends on both components and their synchronization. Typi-
cally, an indefinite result requires some refinement of the abstract model. In our case
refinement means considering the composition with the other component. Still, in this
case as well, having considered each component separately can guide us into focusing
on the places where we indeed need to consider the composition of the components.

The game-based approach to model checking provides a convenient way for present-
ing this information. If the KMTS Mi↑ is model checked using the algorithm of [18]
or [19], then the result is a colored game graph, in which T and F represent definite
results (i.e. truth values that hold no matter what the environment is), but the ? color
needs to be resolved by considering the composition. This is where the ?-subgraph (see
Def. 6) becomes handy, as it points out the places where this is really needed.

The ?-subgraph for each component is computed top-down, starting from the initial
node. As long as a node colored ? is encountered, the search continues in a BFS manner
by including the witnessing sons. Definite nodes which are included in the subgraph
become terminal nodes, and their coloring defines the initial coloring function.

The ?-subgraphs of the two colored graphs present all the indefinite information that
results from the dependencies between the components. Thus, to resolve the indefinite
result, we compose the ?-subgraphs.

Definition 10 (Product Graph). Let G?1 and G?2 be two ?-subgraphs as above with
initial nodes s0

1 � ϕ and s0
2 � ϕ resp. We define their product to be the least graph

G|| = (N||, n0
||, E

+
|| , E−

|| ) such that:
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– n0
|| = (s0

1, s
0
2) � ϕ is the initial node in N||.

– If (s1, s2) � ψ ∈ N|| and (s1 � ψ, s′1 � ψ′) ∈ E−
1 and (s2 � ψ, s′2 � ψ′) ∈ E−

2
and L1(s′1) ∩ Lit2 = L2(s′2) ∩ Lit1 (i.e. (s′1, s

′
2) is a state of M1||M2), then:

(s′1, s′2) � ψ′ ∈ N|| and ((s1, s2) � ψ, (s′1, s′2) � ψ′) is in E+
|| and E−

|| .

Note that all the edges in G|| are must edges, whereas in the ?-subgraphs we had
may edges (the transitions of each component were treated as may transitions in the
lifted version). This is because the product graph already refers to the complete system
M1||M2, where all transitions are concrete transitions (modeled as must transitions).

The product graph is constructed by a top-down traversal of the subgraphs, where,
starting from the initial nodes, nodes that share the same formulas and whose states
agree on the joint labeling are composed (recall that s0

1 and s0
2 agree on their joint la-

beling). Whenever two non-terminal nodes are composed, the outgoing edges are com-
puted as the product of their outgoing edges, limited to legal nodes (w.r.t. the restriction
to states that agree on their labeling). In particular, this means that if a node in one sub-
graph has no matching node in the other, then it will be omitted from the product graph.
In addition, when a terminal node of one subgraph is composed with a non-terminal
node of the other, the resulting node is a terminal node in G||.

We accompany G|| with an initial coloring function for its terminal nodes based on
the initial coloring functions of the two subgraphs. We use the following observation:

Proposition 1. Let n = (s1, s2) � ψ be a terminal node in G||. Then one of the follow-
ing holds. Either (a) at least one of s1 � ψ and s2 � ψ is a terminal node in its subgraph,
in which case at least one of them is colored by a definite color by the initial coloring
of its subgraph, and contradictory definite colors are impossible. We denote this color
by col(n); Or (b) both s1 � ψ and s2 � ψ are non-terminal nodes but no outgoing edges
were left in their composition.

Definition 11. We define the initial coloring function χI of G|| as follows. Let n be a
terminal node in N||. If it fulfills case (a) of Prop. 1, then χI(n) = col(n). If it fulfills
case (b), then χI(n) = T if n is a ∧-node or a �-node, and χI(n) = F if n is a ∨-node
or a ♦-node. χI is undefined for the rest of the nodes.

In particular, if a terminal node in G|| results from a terminal node which is colored by
? in one subgraph and a terminal node which is colored by some definite color in the
other, then the definite color takes over.

Note that the initial coloring function of the product graph colors all the terminal
nodes by definite colors. Along with the property that all the edges in the product graph
are must edges, this reflects the fact that the composition resolves all the indefinite in-
formation that existed in each component when it was considered separately. Therefore,
when applying (one of) the coloring algorithm to the product graph, all the nodes are
colored by definite colors (in fact, a 2-valued coloring can be applied).

Theorem 5. The resulting product graph G|| is a closed subgraph of the game graph
over M1||M2. In addition, the initial coloring function is correct w.r.t. M1||M2 and
defined over all the terminal nodes in the subgraph.
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By Thm. 3, this means that coloring G|| results in a correct result w.r.t. the model check-
ing of ϕ in M1||M2. Thus, to model check ϕ on M1||M2 it remains to color G||. Note
that the full graph for M1||M2 is not constructed. To sum up, the algorithm is as follows.

Step 1 Model check each Mi↑ separately (for i ∈ {1, 2}):

1. Construct the game graph Gi for ϕ and Mi↑.
2. Apply the 3-valued coloring on Gi. Let χi be the resulting coloring function.

If χ1(n0
1) or χ2(n0

2) is definite, return the corresp.model checking result for M1||M2.
Step 2 Consider the composition M1||M2:

1. Construct the ?-subgraphs for G1 and G2.
2. Construct the product graph G|| of the ?-subgraphs.
3. Apply the 3-valued coloring on G|| (with the initial coloring function).

Return the model checking result corresponding to χ||(n0
||).

Example 1. Consider the components depicted in Fig. 2(a). The atomic proposition o
(short for output) is local to M1, i (input) is local to M2, and r (receive) is the only
joint atomic proposition that M1 and M2 synchronize on. Suppose we wish to verify in
M1||M2 the property �(¬i∨♦o), which states that in all the successor states of the ini-
tial state, an input signal implies that there is a successor state where the output signal
holds. Fig. 2(b) depicts the colored game graph of each (lifted) component, and high-
lights the ?-subgraph of each of them. The product graph and its coloring is depicted in
Fig. 2(c), as an “intersection” of the two subgraphs. All the edges in the product graph
are must edges. All nodes, and in particular the initial node, are colored T , thus the
property is verified. One can see that most of the efforts were done on each component
separately, and the product graph only considers a small part of the compound system.

G1::

s0 � ¬i ∨ ♦o

s0 �♦o

s0 � o s2 � o

s1 � ¬i ∨ ♦o

s1 � ♦o

s0 ��(¬i ∨ ♦o)

s1 � o

s0 � ¬i s1 � ¬i

G2::

t1 � ¬i ∨ ♦o

t2 � ¬it1 � ¬i t2 �♦o

t0 ��(¬i ∨ ♦o)

t0 � ¬i ∨ ♦o

t0 � o t1 � o t2 � o

t2 � ¬i ∨ ♦o

t1 �♦ot0 � ¬i t0 �♦o

(b)

¬r, ¬o

r, or, ¬o

s0

s2s1

M1::

¬i, ¬r

¬i, ri, r

t0

t1 t2

M2::

(a)

(s0, t0) ��(¬i ∨ ♦o)

(s2, t1) � o

(s1, t1) � ♦o

(s1, t1)� ¬i ∨ ♦o

(c)

Fig. 2. (a) Components, (b) their game graphs and their ?-subgraphs (enclosed by a line), and (c)
the product graph. Dashed edges denote may edges which are not must edges. The colors reflect
the coloring function: white stands for T , dark gray stands for F and light gray stands for ?.
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5 Adding Abstraction

In Section 4 we considered concrete components. The indefinite results on each compo-
nent resulted only from their interaction, and were resolved by composing the indefinite
parts. We now combine this idea with existing abstraction-refinement techniques.

5.1 Motivation

Composing the ?-subgraphs of two components, as suggested in Section 4, corresponds
to refining all possible failure causes. We now show how to use abstraction in order to
make the refinement more local and gradual by eliminating one failure cause at a time.

Suppose that the coloring of the game-graph G1 for the lifted concrete component
M1↑ results in an indefinite result. We wish to eliminate the failure cause returned by
the coloring algorithm for M1↑. Suppose that s is the failure state. It abstracts all the
states of M1||M2 that consist of s and a matching state of M2. Eliminating the cause
for failure amounts to exposing from M2 the information that involves the failure, and
splitting s accordingly. For example, in Fig. 2, a possible failure cause in G1 is the
may transition of M1↑ from s1 to s2. In order to either remove it or turn it into a must
transition, we need to consider all the states of M2 which are composable with s1. These
are the states labeled r. We need to find out which of them have a transition to a state
labeled r (i.e., a state composable with s2), and which of them do not.

Clearly, the complete composition of the ?-subgraphs achieves this goal. However,
it exposes more information than relevant for the given failure cause. Thus we do not
want to resort to that (in this example it is indeed necessary, but in the general case not
all the causes for failure need to be eliminated). We now sketch the idea that allows
us to only consider the information from M2 that is needed for eliminating the failure
cause of M1↑. This will be described more formally in Section 5.2.

We abstract M2 into M̂2. We start with a most coarse abstraction of M2 w.r.t. AP1 ∩
AP2, where each state is abstracted by its labeling, restricted to AP1 ∩ AP2.

Definition 12. Let Mi = (APi, Si, s
0
i , Ri, Li) be a Kripke structure. The most coarse

abstraction for Mi w.r.t. AP ′ ⊆ APi is the KMTS M̂∗
i = (APi, 2AP ′

, Li(s0
i ) ∩ AP ′, ∅,

2AP ′ × 2AP ′
, L∗

i ), where for ŝ ∈ 2AP ′
, L∗

i (ŝ) = ŝ ∪ {¬p | p ∈ AP ′ \ ŝ}.

Theorem 6. Mi � M̂∗
i . The mixed simulation is {(si, Li(si) ∩ AP ′) | si ∈ Si}.

The construction of the most coarse abstraction requires almost no knowledge of the
component. More precise transitions can be computed as in [26]. Starting from the
most coarse abstraction of M2, we iteratively model check the composition of M1 and
the abstract model M̂2. The model checking is performed in a compositional fashion,
similarly to Section 4, without computing the full composition. If the result in some it-
eration is indefinite, we refine M̂2 depending on the failure cause over M1||M̂2. Recall
that our purpose was to eliminate a failure cause over M1↑. Since we start with a most
coarse abstraction of M2 w.r.t. the joint atomic propositions, M1||M̂2 is initially iso-
morphic to M1↑. As a result, in the first iteration the failure cause over M1||M̂2 reflects
the failure cause over M1↑, and the refinement of M̂2 indeed exposes the relevant infor-
mation from M2. Similarly, in the next iterations, the failure cause over M1||M̂2 reflects
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the failure cause over M1↑, after taking into consideration the elimination of previous
failure causes. In this sense, in each iteration we eliminate one failure cause over M1↑,
and M̂2 “accumulates” the information required to eliminate these failure causes.

This means that we keep one of the components, M1, concrete, and construct an ab-
stract environment for it, by applying an iterative abstraction-refinement on M2, where
refinement is aimed at eliminating the indefinite results that arise when considering M1
with the abstract environment. This approach is reminiscent of an asymmetric Assume-
Guarantee rule. The next step is to make the approach symmetric by abstracting both
components. This amounts to constructing abstract environments for both the compo-
nents. In this case, refinement also needs to be applied on both components.

5.2 Compositional Abstraction-Refinement

We now describe in detail the combination of the compositional approach with
abstraction-refinement. This provides a framework for using both the asymmetric and
the symmetric approaches sketched above. On the one hand, we enhance the composi-
tional model checking of Section 4 by using abstraction and a more gradual refinement.
On the other hand, we enhance the abstraction-refinement framework by making both
the abstract model checking and the refinement compositional. We no longer require
that the state spaces of the concrete components are finite, as long as the abstract state
spaces are.

Compositional Abstraction. Composition of abstract models (KMTSs) is defined in
Def. 8. In order to ensure that the composition of two abstract models M̂1 = (AP1, Ŝ1,
ŝ0
1, R

+
1 , R−

1 , L̂1) and M̂2 = (AP2, Ŝ2, ŝ
0
2, R

+
2 , R−

2 , L̂2), for M1 and M2 respectively,
results in an abstract model for M1||M2, we consider appropriate abstract models w.r.t.
AP1 ∩ AP2. We say that M̂i is an appropriate abstract model of Mi w.r.t. AP1 ∩ AP2
if M̂i and Mi are related by a mixed simulation relation which is appropriate w.r.t.
AP1 ∩ AP2, as defined below.

Definition 13. Let H ⊆ Si × Ŝi be a mixed simulation from Mi to M̂i, both defined
over APi. We say that H is appropriate w.r.t. AP ′ ⊆ APi if for every (si, ŝi) ∈ H ,
Li(si) ∩ Lit′ = L̂i(ŝi) ∩ Lit′, where Lit′ denotes the set of literals over AP ′.

In particular, the most coarse abstraction w.r.t. AP1 ∩ AP2 (see Def. 12) is appropriate
w.r.t. AP1 ∩ AP2. Appropriateness of M̂1 and M̂2 w.r.t. AP1 ∩ AP2 means that the ab-
straction of each component only identifies states that agree on their labelings w.r.t. the
joint atomic propositions. It ensures that if (ŝ1, ŝ2) is a state of the abstract composition
and ŝ1 abstracts s1 and ŝ2 abstracts s2, then since ŝ1 and ŝ2 agree on the joint labeling,
then so do s1 and s2. This ensures that (s1, s2) is a state of the concrete composition,
abstracted by (ŝ1, ŝ2). We now have the following.

Theorem 7. Let M̂i be an appropriate abstract model for Mi w.r.t. AP1 ∩ AP2. Then
M1||M2 � M̂1||M̂2.

Thus, if each of M1 and M2 is abstracted separately by an appropriate abstraction w.r.t.
AP1∩AP2, then the composition of the corresponding abstract components M̂1 and M̂2
results in an abstract model for M1||M2. However, we do not wish to construct M̂1||M̂2
and model check it. Instead, we suggest to model check M̂1||M̂2 compositionally.
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Compositional (abstract) Model Checking. The general scheme is similar to the con-
crete case: we first try to make the most out of each (abstract) component separately, and
if this does not result in a definite answer, we consider the product of the ?-subgraphs
which enable to exchange information via a compact representation. We start by view-
ing each abstract component M̂i as a partial model that abstracts their composition
M̂1||M̂2.

Definition 14. Let M̂i = (APi, Ŝi, ŝ
0
i , R

+
i , R−

i , L̂i) be a KMTS. We lift M̂i into a
KMTS M̂i ↑= (AP, Ŝi, ŝ

0
i , R

+
i ↑, R−

i ↑, L̂i ↑) over AP where R+
i ↑= ∅, R−

i ↑= R−
i

and L̂i↑ (ŝ) = L̂i(ŝ).

That is, when M̂i is lifted into M̂i↑, only the may transitions of M̂i are useful, because
must transitions are not really must w.r.t. M̂1||M̂2. Similarly to the concrete case:

Theorem 8. M̂1||M̂2 � M̂i↑.

Corollary 1. If M̂i is an appropriate abstract model for Mi w.r.t. AP1 ∩ AP2, then
M1||M2 � M̂i↑.

Therefore one can model check each of M̂i↑ separately, and the definite results follow
through to M1||M2. In fact, it is possible to show that M1||M2 � M̂i↑ holds even if we
omit the appropriateness requirement. Thus appropriateness is not needed for this step.
However, it is needed for the next steps, where we deduce from M̂1||M̂2 to M1||M2.

If both checks result in indefinite results, the (abstract) ?-subgraphs for both game
graphs are produced and their product is considered. Having composed the ?-subgraphs
of the two components resolves dependencies between them, but the result is still ab-
stract, as it refers to the abstract composition M̂1||M̂2. This results in two differences
compared to the concrete case.

First, the may edges do not necessarily become must edges. Instead, the distinction
between may and must edges is determined by the type of the underlying transitions in
the (unlifted) abstract models M̂i, which have been ignored so far. Second, it is now
possible that a terminal node n = (ŝ1, ŝ2) � ψ in G|| with ψ = l for a local literal
l ∈ Lit \ (Lit1 ∩ Lit2) results from terminal nodes ŝ1 � l and ŝ2 � l which are both
colored by ? in their subgraphs (one, since l is local to the other component, and is thus
treated as indefinite, and the other due to the abstraction). We add this possibility as
case (c) to Prop. 1 which characterizes the terminal nodes in the product graph G||. It is
taken into account when determining the initial coloring of G||.

Definition 15 (Abstract Product Graph). Let G?1 and G?2 be two abstract ?-
subgraphs as above. Their product graph G|| = (N||, n0

||, E
+
|| , E−

|| ) is defined as before,

except for the definition of E+
|| : an edge ((ŝ1, ŝ2)�ψ, (ŝ′1, ŝ

′
2)�ψ′) in E−

|| is also in E+
||

iff ŝiR
+
i ŝ′i for each i ∈ {1, 2}. The initial coloring function is defined as before, with

the addition that a terminal node that fulfills case (c) in the adapted version of Prop. 1
is colored ?.

Theorem 9. The resulting abstract product graph G|| is a closed subgraph of the game

graph over M̂1||M̂2. In addition, the initial coloring function is correct and defined over
all the terminal nodes in the subgraph.
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Along with Thm. 3, this implies that G|| can be colored correctly (w.r.t. the model

checking of ϕ on M̂1||M̂2) using the 3-valued algorithm. If the initial node is colored
by a definite color, then by Thm. 7 the result holds in M1||M2 as well and we are done.

Compositional Refinement. Since an abstraction is used, the result of the model
checking can be ⊥, in which case the coloring of [18,19] returns a failure cause that
needs to be eliminated. The failure cause is either a literal whose value in a certain state
is ⊥, or a may transition of the underlying model which is not a must transition.

In our setting, the refinement step is done compositionally: If the failure cause is a
literal l whose value in the failure state of M̂1||M̂2 is ⊥, then l has to be a local literal
of one of the components. This is because the abstraction is appropriate w.r.t. AP1 ∩
AP2, which implies that no indefinite values for the joint atomic propositions occur in
M̂1||M̂2. Thus, refinement need only be applied on the corresponding component.

Otherwise, the failure cause is a may transition (which is not a must transition) of
M̂1||M̂2 that needs to be refined in order to result in a must transition or no transition at
all. Let ((ŝ1, ŝ2), (ŝ′1, ŝ

′
2)) be this may transition. Then it results from may transitions

(ŝ1, ŝ
′
1) and (ŝ2, ŝ

′
2) of M̂1 and M̂2 resp., such that at least one of them is not a must

transition. In order to refine ((ŝ1, ŝ2), (ŝ′1, ŝ
′
2)), one needs to refine the individual may

transitions in each component separately. If both of them are not must transitions, then
refinement should be applied in each component. This is because a must transition in the
composition results from must transitions in both components. Otherwise, refinement
should only be applied in the component where it is not a must transition.

In each component where refinement is necessary, the refinement can be done
as in [26,18,19]. Moreover, in each component we adopt the incremental approach
of [26,18,19] and avoid unnecessary refinement. In this approach, only nodes with in-
definite colors are refined. In our setting, this corresponds to the ?-subgraph of each
component. The result is the following compositional abstraction-refinement loop.

Step 0 For i ∈ {1, 2}, abstract Mi into M̂i appropriately w.r.t. AP1 ∩AP2 (e.g. as in Def.12).
Step 1 Model check each M̂i↑ separately (for i ∈ {1, 2}):

1. Construct the game graph Gi for ϕ and M̂i↑.
2. Apply the 3-valued coloring on Gi. Let χi be the resulting coloring function.

If χ1(n0
1) or χ2(n0

2) is definite, return the corresp.model checking result for M1||M2.
Step 2 Consider the composition M̂1||M̂2:

1. Construct the ?-subgraphs for G1 and G2.
2. Construct the (abstract) product graph G|| of the ?-subgraphs.
3. Apply the 3-valued coloring on G|| (with the initial coloring function).

If χ||(n0
||) is definite, return the corresp.model checking result for M1||M2.

Step 3 Refine: Consider the failure cause returned by the coloring of G|| (where χ||(n0
||) =?).

If it is l ∈ Liti then refine M̂i; Else let it be the may transition ((ŝ1, ŝ2), (ŝ′
1, ŝ

′
2)). Then:

1. If (ŝ1, ŝ
′
1) is not a must transition in M̂1, refine M̂1.

2. If (ŝ2, ŝ
′
2) is not a must transition in M̂2, refine M̂2.

Refine the ?-subgraphs of G1 and G2 accordingly (as in the incremental approach);
Go to Step 1(2) with the refined subgraphs.
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Note that the must transitions of each abstract component are only used when G|| is
constructed. Thus, their computation can be deferred to step 2 and be limited to must
transitions that are needed during model checking. Hyper-transitions can also be used,
e.g. with the algorithm of [27].

Using the compositional abstraction-refinement starting from the most coarse ab-
straction w.r.t. AP1 ∩ AP2 of one or both of the components results in the asymmetric,
resp. symmetric, approach described in Section 5.1.

Theorem 10. For finite concrete components, iterating the compositional abstraction-
refinement process is guaranteed to terminate with a definite answer.
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