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Abstract. Acceleration in symbolic verification consists in computing
the exact effect of some control-flow loops in order to speed up the iter-
ative fix-point computation of reachable states. Even if no termination
guarantee is provided in theory, successful results were obtained in prac-
tice by different tools implementing this framework. In this paper, the
acceleration framework is extended to data-flow analysis. Compared to
a classical widening/narrowing-based abstract interpretation, the loss of
precision is controlled here by the choice of the abstract domain and does
not depend on the way the abstract value is computed. Our approach
is geared towards precision, but we don’t loose efficiency on the way.
Indeed, we provide a cubic-time acceleration-based algorithm for solving
interval constraints with full multiplication.

1 Introduction

Model-checking safety properties on a given system usually reduces to the com-
putation of a precise enough invariant of the system. In traditional symbolic veri-
fication, the set of all reachable (concrete) configurations is computed iteratively
from the initial states by a standard fix-point computation. This reachability set
is the most precise invariant, but quite often (in particular for software systems) a
much coarser invariant is sufficient to prove correctness of the system. Data-flow
analysis, and in particular abstract interpretation [CC77], provides a powerful
framework to develop analysis for computing such approximate invariants.

A data-flow analysis of a program basically consists in the choice of a (poten-
tially infinite) complete lattice of data properties for program variables together
with transfer functions for program instructions. The merge over all path (MOP)
solution, which provides the most precise abstract invariant, is in general over-
approximated by the minimum fix-point (MFP) solution, which is computable
by Kleene fix-point iteration. However the computation may diverge and widen-
ing/narrowing operators are often used in order to enforce convergence at the
expense of precision [CC77, CC92]. While often providing very good results, the
solution computed with widenings and narrowings may not be the MFP solu-
tion. This may lead to abstract invariants that are too coarse to prove safety
properties on the system under check.

Techniques to help convergence of Kleene fix-point iterations have also been
investigated in symbolic verification of infinite-state systems. In these works, the
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objective is to compute the (potentially infinite) reachability set for automata
with variables ranging over unbounded data, such as counters, clocks, stacks or
queues. So-called acceleration techniques (or meta-transitions) have been devel-
opped [BW94, BGWW97, CJ98, FIS03, FL02] to speed up the iterative com-
putation of the reachability set. Basically, acceleration consists in computing
in one step the effect of iterating a given loop (of the control flow graph). Ac-
celerated symbolic model checkers such as Lash [Las], TReX [ABS01], and
Fast [BFLP03] successfully implement this approach.

Our contribution. In this paper, we extend acceleration techniques to data-flow
analysis and we apply these ideas to interval analysis. Acceleration techniques
for (concrete) reachability set computations may be equivalently formalized “se-
mantically” in terms of control-flow path languages [LS05] or “syntactically” in
terms of control-flow graph unfoldings [BFLS05]. We extend these concepts to
the MFP solution in a generic data-flow analysis framework, and we establish
several links between the resulting notions. It turns out that, for data-flow anal-
ysis, the resulting “syntactic” notion, based on graph flattenings, is more general
that the resulting “semantic” notion, based on restricted regular expressions. We
then propose a generic flattening-based semi-algorithm for computing the MFP
solution. This semi-algorithm may be viewed as a generic template for applying
acceleration-based techniques to constraint solving.

We then show how to instantiate the generic flattening-based semi-algorithm
in order to obtain an efficient constraint solver1 for integers, for a rather large
class of constraints using addition, (monotonic) multiplication, factorial, or any
other bounded-increasing function. The intuition behind our algorithm is the
following: we propagate constraints in a breadth-first manner as long as the
least solution is not obtained, and variables involved in a “useful” propagation
are stored in a graph-like structure. As soon as a cycle appears in this graph,
we compute the least solution of the set of constraints corresponding to this
cycle. It turns out that this acceleration-based algorithm always terminates in
cubic-time.

As the main result of the paper, we then show how to compute in cubic-
time the least solution for interval constraints with full addition and multiplica-
tion, and intersection with a constant. The proof uses a least-solution preserving
translation from interval constraints to the class of integer constraints introduced
previously.

Related work. In [Kar76], Karr presented a polynomial-time algorithm that
computes the set of all affine relations that hold in a given control location of
a (numerical) program. Recently, the complexity of this algorithm was revisited
in [MOS04] and a fine upper-bound was presented. For interval constraints with
affine transfer functions, the exact least solution may be computed in cubic-
time [SW04]. Strategy iteration was proposed in [CGG+05] to speed up Kleene
fix-point iteration with better precision than widenings and narrowings, and this

1 By solver, we mean an algorithm computing the least solution of constraint systems.
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approach has been developped in [TG07] for interval constraint solving with full
addition, multiplication and intersection. Strategy iteration may be viewed as
an instance of our generic flattening-based semi-algorithm. The class of interval
constraints that we consider in this paper contains the one in [SW04] (which
does not include interval multiplication) but it is more restrictive than the one
in [TG07]. We are able to maintain the same cubic-time complexity as in [SW04],
and it is still an open problem whether interval constraint solving can be per-
formed in polynomial-time for the larger class considered in [TG07].

Outline. The paper is organized as follows. Section 2 presents our acceleration-
based approach to data-flow analysis. We then focus on interval constraint-based
data-flow analysis. We present in section 3 a cubic-time algorithm for solving a
large class of constraints over the integers, and we show in section 4 how to
translate interval constraints (with multiplication) into the previous class of in-
teger constraints, hence providing a cubic-time algorithm for interval constraints.
Section 5 presents some ideas for future work. Please note that due to space con-
straints, most proofs are only sketched in this paper. A long version of the paper
with detailed proofs can be obtained from the authors.

2 Acceleration in Data Flow Analysis

This section is devoted to the notion of acceleration in the context of data-flow
analysis. Acceleration techniques for (concrete) reachability set computations
[BW94, BGWW97, CJ98, FIS03, FL02, LS05, BFLS05] may be equivalently for-
mulated in terms of control-flow path languages or control-flow graph unfoldings.
We shall observe that this equivalence does not hold anymore when these notions
are lifted to data-flow analysis. All results in this section can easily be derived
from the definitions, and they are thus presented without proofs.

2.1 Lattices, Words and Graphs

We respectively denote by � and � the usual sets of nonnegative integers and
integers. For any set S, we write �(S) for the set of subsets of S. The identity
function over S is written �S , and shortly � when the set S is clear from the
context.

Recall that a complete lattice is any partially ordered set (A, �) such that
every subset X ⊆ A has a least upper bound

⊔
X and a greatest lower bound�

X . The supremum
⊔

A and the infimum
�

A are respectively denoted by �
and ⊥. A function f ∈ A → A is monotonic if f(x) � f(y) for all x � y in A.
Recall that from Knaster-Tarski’s Fix-point Theorem, any monotonic function
f ∈ A → A has a least fix-point given by

�
{a ∈ A | f(a) � a}. For any

monotonic function f ∈ A → A, we denote by f∗ the monotonic function in
A → A defined by f∗(x) =

�
{a ∈ A | (x � f(a)) � a}, in other words f∗(x) is

the least fix-point of f greater than x.
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For any complete lattice (A, �) and any set S, we also denote by � the
partial order on S → A defined as the point-wise extension of �, i.e. f � g
iff f(x) � g(x) for all x ∈ S. The partially ordered set (S → A, �) is also a
complete lattice, with lub

⊔
and glb

�
satisfying (

⊔
F )(s) =

⊔
{f(s) | f ∈ F}

and (
�

F )(s) =
�

{f(s) | f ∈ F} for any subset F ⊆ S → A. Given any integer
n ≥ 0, we denote by An the set of n-tuples over A. We identify An with the set
{1, . . . , n} → A, and therefore An equipped with the point-wise extension of �
also forms a complete lattice.

Let Σ be an alphabet (a finite set of letters). We write Σ∗ for the set of all
(finite) words l0 · · · ln over Σ, and ε denotes the empty word. Given any two
words x and y, we denote by x · y (shortly written xy) their concatenation. A
subset of Σ∗ is called a language.

A (directed) graph is any pair G = (V, →) where V is a set of vertices and → is a
binary relation overV . Apair (v, v′) in→ is called an edge. A (finite)path inG is any
(non-empty) sequence v0, . . . , vk of vertices, also written v0 → v1 · · · vk−1 → vk,
such that vi−1 → vi for all 1 ≤ i ≤ k. The nonnegative integer k is called the length
of the path, and the vertices v0 and vk are respectively called the source and target
of the path. A cycle on a vertex v is any path of non-zero length with source and
target equal to v. A cycle with no repeated vertices other than the source and the
target is called elementary. We write ∗→ for the reflexive-transitive closure of →. A
strongly connected component (shortly SCC ) in G is any equivalence class for the
equivalence relation ∗↔ onV definedby: v ∗↔ v′ if v ∗→ v′ and v′ ∗→ v.We say that an
SCC is cyclic when it contains a unique elementary cycle up to cyclic permutation.

2.2 Programs and Data-Flow Solutions

For the rest of this section, we consider a complete lattice (A, �). In our setting,
a program will represent an instance (for some concrete program) of a data-flow
analysis framework over (A, �). To simplify the presentation, we will consider
programs given as unstructured collections of commands (this is not restrictive
as control-flow may be expressed through variables).

Formally, assume a finite set X of variables. A command on X is any tuple
〈X1, . . . , Xn; f ; X〉, also written X := f(X1, . . . , Xn), where n ∈ � is an arity,
X1, . . . , Xn ∈ X are pairwise disjoint input variables, f ∈ An → A is a monotonic
transfer function, and X ∈ X is an output variable. Intuitively, a command
X := f(X1, . . . , Xn) assigns variable X to f(X1, . . . , Xn) and lets all other
variables untouched. A valuation on X is any function ρ in X → A. The data-flow
semantics �c� of any command c = 〈X1, . . . , Xn; f ; X〉 on X is the monotonic
function in (X → A) → (X → A) defined by �c�(ρ)(X) = f(ρ(X1), . . . , ρ(Xn))
and �c�(ρ)(Y ) = ρ(Y ) for all Y �= X .

A program over (A, �) is any pair P = (X , C) where X is a finite set of
variables and C is a finite set of commands on X .

Example 2.1. Consider the C-style source code given on the left-hand side below,
that we want to analyse with the complete lattice (I, �) of intervals of �. The
corresponding program E is depicted graphically on the right-hand side below.
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1 x = 1;
2 while (x ≤ 100) {
3 if (x ≥ 50) x = x−3;
4 else x = x+2;
5 }

X1 X2

X3

X5

c0

c1

c2 c3 c4

c5

Formally, the set of variables of E is {X1, X2, X3, X5}, representing the value
of the variable x at program points 1, 2, 3 and 5. The set of commands of E is
{c0, c1, c2, c3, c4, c5}, with:

c0 : X1 := � c3 : X2 := (X3 � [50, +∞]) − {3}
c1 : X2 := ({0} . X1) + {1} c4 : X2 := (X3 � ] − ∞, 49]) + {2}
c2 : X3 := X2 � ] − ∞, 100] c5 : X5 := X2 � [101, +∞[

We will use language-theoretic terminology and notations for traces in a program.
A trace in P is any word c1 · · · ck over C. The empty word ε denotes the empty
trace and C∗ denotes the set of all traces in P. The data-flow semantics is
extended to traces in the obvious way: �ε� = � and �c · σ� = �σ� ◦ �c�. Observe
that �σ · σ′� = �σ′� ◦ �σ� for every σ, σ′ ∈ C∗. We also extend the data-flow
semantics to sets of traces by �L� =

⊔
σ∈L �σ� for every L ⊆ C∗. Observe that

�L� is a monotonic function in (X → A) → (X → A), and moreover �L1 ∪ L2� =
�L1� � �L2� for every L1, L2 ⊆ C∗.

Given a program P = (X , C) over (A, �), the minimum fix-point solution
(MFP-solution) of P, written ΛP, is the valuation defined as follows:

ΛP =
�

{ρ ∈ X → A | �c�(ρ) � ρ for all c ∈ C}

Example 2.2. The MFP-solution of the program E from Example 2.1 is the
valuation:

ΛE = {X1 �→ �, X2 �→ [1, 51], X3 �→ [1, 51], X5 �→ ⊥}

Recall that we denote by �C�
∗(ρ) the least fix-point of �C� greater than ρ.

Therefore it follows from the definitions that ΛP = �C�
∗(⊥). In our framework,

the merge over all paths solution (MOP-solution) may be defined as the valuation
�C∗�(⊥), and the following proposition recalls well-known links between the
MOP-solution, the MFP-solution and the ascending Kleene chain.

Proposition 2.3. For any program P = (X , C) over a complete lattice (A, �),
we have:

�C∗�(⊥) �
⊔

k∈�
�C�

k(⊥) � �C�
∗(⊥) = ΛP
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2.3 Accelerability and Flattening

We now extend notions from accelerated symbolic verification to this data-flow
analysis framework. Acceleration in symbolic verification was first introduced
semantically, in the form of meta-transitions [BW94, BGWW97], which basically
simulate the effect of taking a given control-flow loop arbitrarily many times.
This leads us to the following proposition and definition.

Proposition 2.4. Let P = (X , C) denote a program over (A, �). For any lan-
guages L1, . . . , Lk ⊆ C∗, we have (�Lk�

∗ ◦ · · · ◦ �L1�
∗)(⊥) � ΛP.

Definition 2.5. A program P = (X , C) over a complete lattice (A, �) is called
MFP-accelerable if ΛP = (�σk�∗◦· · ·◦�σ1�

∗)(⊥) for some words σ1, . . . , σk ∈ C∗.

The following proposition shows that any program P for which the ascending
Kleene chain stabilizes after finitely many steps is MFP-accelerable.

Proposition 2.6. Let P = (X , C) denote a program over (A, �). If we have
�C�

k(⊥) = ΛP for some k ∈ �, then P is MFP-accelerable.

Acceleration in symbolic verification was later expressed syntactically, in terms
of flat graph unfoldings. When lifted to data-flow analysis, this leads to a more
general concept than accelerability, and we will show that these two notions
coincide for “concrete” programs (as in symbolic verification). We say that a
program P is single-input if the arity of every command in P is at most 1.

Given a program P = (X , C) over (A, �), an unfolding of P is any pair (P′, κ)
where P′ = (X ′, C′) is a program and κ ∈ X ′ → X is a variable renaming, and
such that 〈κ(X ′1), . . . , κ(X ′n); f ; κ(X ′)〉 is a command in C for every command
〈X ′1, . . . , X ′n; f ; X ′〉 in C′. The renaming κ induces a Galois surjection (X ′ →
A, �) −−−→←−−−−→κ

←−κ
(X → A, �) where ←−κ and −→κ are defined as expected by ←−κ (ρ) = ρ◦κ

and −→κ (ρ′)(X) =
⊔

κ(X′)=X

ρ′(X ′).

We associate a bipartite graph to any program in a natural way: vertices are
either variables or commands, and edges denote input and output variables of
commands. Formally, given a program P = (X , C), the program graph of P is
the labeled graph GP where X ∪ C is the set of vertices and with edges (c, X)
and (Xi, c) for every command c = 〈X1, . . . , Xn; f ; X〉 in C and 1 ≤ i ≤ n. We
say that P is flat if there is no SCC in GP containing two distinct commands
with the same output variable. A flattening of P is any unfolding (P′, κ) of P

such that P′ is flat.

Example 2.7. A flattening of the program E from Example 2.1 is given below.
Intuitively, this flattening represents a possible unrolling of the while-loop where
the two branches of the inner conditional alternate.
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X1 X2

X ′2X3 X ′3

X2 X5

c0

c1

c2 c4

c5

c′2c3

Lemma 2.8. Let P = (X , C) denote a program over (A, �). For any unfolding
(P′, κ) of P, with P′ = (X ′, C′), we have −→κ ◦ �C′�∗ ◦ ←−κ � �C�

∗.

Proposition 2.9. Let P = (X , C) denote a program over (A, �). For any un-
folding (P′, κ) of P, we have −→κ (ΛP′) � ΛP.

Definition 2.10. A program P = (X , C) over a complete lattice (A, �) is called
MFP-flattable if ΛP = −→κ (ΛP′) for some flattening (P′, κ) of P.

Observe that any flat program is trivially MFP-flattable. The following proposi-
tion establishes links between accelerability and flattability. As a corollary to the
proposition, we obtain that MFP-accelerability and MFP-flattability are equiv-
alent for single-input programs.

Proposition 2.11. The following relationships hold for programs over (A, �):

i) MFP-accelerability implies MFP-flattability.
ii) MFP-flattability implies MFP-accelerability for single-input programs.

Proof (Sketch). To prove i), we use the fact that for every words σ1, . . . , σk ∈
C∗, there exists a finite-state automaton A without nested cycles recognizing
σ∗1 · · · σ∗k. The “product” of any program P with A yields a flattening that “sim-
ulates” the effect of σ∗1 · · ·σ∗k on P. To prove ii), we observe that for any flat
single-input program P, each non-trivial SCC of GP is cyclic. We pick a “cyclic”
trace (which is unique up to circular permutation) for each SCC, and we arrange
these traces to prove that P is accelerable. Backward preservation of accelera-
bility under unfolding concludes the proof. ��

Remark 2.12. For any labeled transition system S with a set S of states, the for-
ward collecting semantics of S may naturally be given as a single-input program
PS over (�(S), ⊆). With respect to this translation (from S to PS), the notion of
flattability developped for accelerated symbolic verification of labeled transition
systems coincide with the notions of MFP-accelerability and MFP-flattability
defined above.

Recall that our main goal is to compute (exact) MFP-solutions using accele-
ration-based techniques. According to the previous propositions, flattening-based
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computation of the MFP-solution seems to be the most promising approach, and
we will focus on this approach for the rest of the paper.

2.4 Generic Flattening-Based Constraint Solving

It is well known that the MFP-solution of a program may also be expressed
as the least solution of a constraint system, and we will use this formulation
for the rest of the paper. We will use some new terminology to reflect this
new formulation, however notations and definitions will remain the same. A
command 〈X1, . . . , Xn; f ; X〉 will now be called a constraint, and will also be
written X � f(X1, . . . , Xn). A program over (A, �) will now be called a con-
straint system over (A, �), and the MFP-solution will be called the least solution.
Among all acceleration-based notions defined previously, we will only consider
MFP-flattability for constraint systems, and hence we will shortly write flattable
instead of MFP-flattable.

Given a constraint system P = (X , C) over (A, �), any valuation ρ ∈ X → A
such that ρ � �C�(ρ) (resp. ρ � �C�(ρ)) is called a pre-solution (resp. a post-
solution). A post-solution is also shortly called a solution. Observe that the least
solution ΛP is the greatest lower bound of all solutions of C.

We now present a generic flattening-based semi-algorithm for constraint solv-
ing. Intuitively, this semi-algorithm performs a propagation of constraints start-
ing from the valuation ⊥, but at each step we extract a flat “subset” of constraints
(possibly by duplicating some variables) and we update the current valuation
with the least solution of this flat “subset” of constraints.

1 Solve(P = (X , C) : a constraint system)
2 ρ ← ⊥
3 while �C�(ρ) �� ρ
4 construct a flattening (P′, κ) of P, where P′ = (X ′, C′)
5 ρ′ ← ρ ◦ κ
6 ρ′′ ← �C′�∗(ρ′) { −→κ (ρ′′) � �C�

∗(ρ) from Lemma 2.8 }
7 ρ ← ρ � −→κ (ρ′′)
8 return ρ

The Solve semi-algorithm may be viewed as a generic template for applying
acceleration-based techniques to constraint solving. The two main challenges are
(1) the construction of a suitable flattening at line 4, and (2) the computation
of the least solution for flat constraint systems (line 6). However, assuming that
all involved operations are effective, this semi-algorithm is correct (i.e. if it ter-
minates then the returned valuation is the least solution of input constraint
system), and it is complete for flattable constraint systems (i.e. the input con-
straint system is flattable if and only if there exists choices of flattenings at line 4
such that the while-loop terminates). We will show in the sequel how to instan-
tiate the Solve semi-algorithm in order to obtain an efficient constraint solver
for integers and intervals.
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3 Integer Constraints

Following [SW04, TG07], we first investigate integer constraint solving in order
to derive in the next section an interval solver. This approach is motivated by
the encoding of an interval by two integers.

The complete lattice of integers Z = � ∪ {−∞, +∞} is equipped with the
natural order:

−∞ < · · · < −2 < −1 < 0 < 1 < 2 < · · · < +∞

Observe that the least upper bound x ∨ y and the greatest lower bound x ∧
y respectively correspond to the maximum and the minimum. Addition and
multiplication functions are extended from � to Z as in [TG07]:

x.0 = 0.x = 0 x + (−∞) = (−∞) + x = −∞ for all x
x.(+∞) = (+∞).x = +∞ x.(−∞) = (−∞).x = −∞ for all x > 0
x.(+∞) = (+∞).x = −∞ x.(−∞) = (−∞).x = +∞ for all x < 0
x+(+∞) = (+∞) + x = +∞ for all x>−∞

A constraint system P = (X , C) is said cyclic if the set of constraints C is
contained in a cyclic SCC. An example is given below.

X0

c1

X1

c2

Xi

Xi−1

ci

ci−1

X2. . .

. . .

Observe that a cyclic constraint system is flat. A cyclic flattening (P′, κ) where
P′ = (X ′, C′) can be naturally associated to any cycle X0 → c1 → X1 · · · → cn →
Xn = X0 of a constraint system P, by considering the set X ′ of variables obtained
from X by adding n new copies Z1, . . . , Zn of X1, . . . , Xn with the corresponding
renaming κ that extends the identity function over X by κ(Zi) = Xi, and by
considering the set of constraints C′ = {c′1, . . . , c

′
n} where c′i is obtained from ci

by renaming the output variable Xi by Zi and by renaming the input variable
Xi−1 by Zi−1 where Z0 = Zn.

In section 3.1, we introduce an instance of the generic Solve semi-algorithm
that solves constraint systems that satisfy a property called bounded-increasing.
This class of constraint systems is extended in section 3.2 with test constraints
allowing a natural translation of interval constraint systems to contraint systems
in this class.
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3.1 Bounded-Increasing Constraint Systems

A monotonic function f ∈ Zk → Z is said bounded-increasing if for any x1 < x2
such that f(⊥) < f(x1) and f(x2) < f(�) we have f(x1) < f(x2). Intuitively f
is increasing over the domain of x ∈ Zk such that f(x) �∈ {f(⊥), f(�)}.

Example 3.1. The guarded identity x �→ x∧b where b ∈ Z, the addition (x, y) �→
x+ y, the two multiplication functions mul+ and mul− defined below, the power
by two x �→ 2x∨0, the factorial x �→!(x∨ 1) are bounded-increasing. However the
minimum and the maximum functions are not bounded-increasing.

mul+(x, y) =

{
x.y if x, y ≥ 0
0 otherwise

mul−(x, y) =

{
−x.y if x, y < 0
0 otherwise

A bounded-increasing constraint is a constraint of the form X ≥ f(X1, . . . , Xk)
where f is a bounded-increasing function. Such a constraint is said upper-saturated
(resp. lower-saturated) by a valuation ρ if ρ(X) ≥ f(�) (resp. ρ(X) ≤ f(⊥)).
Given a constraint system P = (X , C) and a bounded-increasing constraint c ∈
C upper-saturated by a valuation ρ0, observe that �C�

∗(ρ0) = �C′�∗(ρ0) where
C′ = C\{c}. Intuitively, anupper-saturated constraint forρ0canbe safely removed
from a constraint system without modifying the least solution greater than ρ0. The
following lemma will be useful to obtain upper-saturated constraints.

Lemma 3.2. Let P be a cyclic bounded-increasing constraint system. If ρ0 is a
pre-solution of P that does not lower-saturate any constraint, then either ρ0 is a
solution or �C�

∗(ρ0) upper-saturates a constraint.

Proof. (Sketch). Let X0 → c1 → X1 → · · · → cn → Xn = X0 be the unique
(up to a cyclic permutation) cycle in the graph associated to P. Consider a pre-
solution ρ0 of P that is not a solution. Let us denote by (ρi)i≥0 the sequence of
valuations defined inductivelly by ρi+1 = ρi ∨ �C�(ρi). There are two cases:

– either there exists i ≥ 0 such that ρi upper-saturates a constraint cj . Since
ρi ≤ �C�

∗(ρ0), we deduce that �C�
∗(ρ0) upper-saturates cj .

– or c1, . . . , cn are not upper-saturated by any of the ρi. As these constraints
are bounded-increasing, the sequence (ρi)i≥0 is strictly increasing. Thus
(
∨

i≥0 ρi)(Xj) = +∞ for any 1 ≤ j ≤ n. Since
∨

i≥0 ρi ≤ �C�
∗(ρ0), we

deduce that �C�
∗(ρ0) upper-saturates c1, . . . , cn.

In both cases, �C�
∗(ρ0) upper-saturates at least one constraint. ��

1 CyclicSolve (P = (X , C) : a cyclic bounded−increasing constraint system,
2 ρ0 : a valuation)
3 let X0 → c1 → X1 · · · → cn → Xn = X0 be the ‘‘unique’’ elementary cycle
4 ρ ← ρ0
5 for i = 1 to n do
6 ρ ← ρ ∨ �ci�(ρ)
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7 for i = 1 to n do
8 ρ ← ρ ∨ �ci�(ρ)
9 if ρ ≥ �C�(ρ)

10 return ρ
11 for i = 1 to n do
12 ρ(Xi) ← +∞
13 for i = 1 to n do
14 ρ ← ρ ∧ �ci�(ρ)
15 for i = 1 to n do
16 ρ ← ρ ∧ �ci�(ρ)
17 return ρ

Proposition 3.3. The algorithm CyclicSolve returns �C�
∗(ρ0) for any cyclic

constraint system P and for any valuation ρ0.

Proof. (Sketch). The first two loops (lines 5–8) propagate the valuation ρ0 along
the cycle two times. If the resulting valuation is not a solution at this point, then
it is a pre-solution and no constraint is lower-saturated. From Lemma 3.2, we
get that �C�∗(ρ0) upper-saturates some constraint. Observe that the valuation ρ
after the third loop (lines 11–12) satisfies �C�

∗(ρ0) � ρ. The descending iteration
of the last two loops yields (at line 17) �C�

∗(ρ0). ��
We may now present our cubic time algorithm for solving bounded-increasing
constraint systems. The main loop of this algorithm first performs |C|+1 rounds
of Round Robin iterations and keeps track for each variable of the last constraint
that updated its value. This information is stored in a partial function λ from X
to C. The second part of the main loop checks whether there exists a cycle in the
subgraph induced by λ, and if so it selects such a cycle and calls the CylicSolve
algorithm on it.

1 SolveBI(P = (X , C) : a bounded−increasing constraint system,
2 ρ0 : an initial valuation)
3 ρ ← ρ0 ∨ �C�(ρ0)
4 while �C�(ρ) �� ρ
5 λ ← ∅ { λ is a partial function from X to C }
6 repeat |C| + 1 times
7 for each c ∈ C
8 if ρ �≥ �c�(ρ)
9 ρ ← ρ ∨ �c�(ρ)

10 λ(X) ← c, where X is the input variable of c
11 if there exists an elementary cycle X0 → λ(X1) → X1 · · · λ(Xn) →X0
12 construct the corresponding cyclic flattening (P′, κ)
13 ρ′ ← ρ ◦ κ
14 ρ′′ ← CyclicSolve(P′, ρ′)
15 ρ ← ρ ∨ −→κ (ρ′′)
16 return ρ
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Note that the algorithm SolveBI is an instance of the algorithm Solve where flat-
tenings are deduced from cycles induced by the partial function λ. The following
proposition 3.4 shows that this algorithm terminates.

Proposition 3.4. The algorithm SolveBI returns the least solution �C�
∗(ρ0) of

a bounded-increasing constraint system P greater than a valuation ρ0. Moreover,
the number of times the while loop is executed is bounded by one plus the number
of constraints that are upper-saturated for �C�

∗(ρ0) but not for ρ0.

Proof. (Sketch). Observe that initially ρ = ρ0 ∨ �C�(ρ0). Thus, if during the
execution of the algorithm ρ(X) is updates by a constraint c then necessary
c is not lower-saturated. That means if λ(X) is defined then c = λ(X) is not
lower-saturated.

Let ρ0 and ρ1 be the values of ρ respectively before and after the execution
of the first two nested loops (line 5-9) and let ρ2 be the value of ρ after the
execution of line 14.

Observe that if there does not exist an elementary cycle satisfying the con-
dition given in line 11, the graph associated to P restricted to the edges (X, c)
if c = λ(X) and the edges (Xi, c) if Xi is an input variable of c is acyclic. This
graph induces a natural partial order over the constraints c of the form c = λ(X).
An enumeration c1, . . . , cm of this constraints compatible with the partial order
provides the relation ρ1 ≤ �c1 . . . cm�(ρ0). Since the loop 6-9 is executed at least
m + 1 times, we deduce that ρ1 is a solution of C.

Lemma 3.2 shows that if ρ1 is not a solution of P then at least one constraint
is upper-saturated for ρ2 but not for ρ0. We deduce that the number of times
the while loop is executed is bounded by one plus the number of constraints that
are upper-saturated for �C�∗(ρ0) but not for ρ0. ��

3.2 Integer Constraint Systems

A test function is a function θ>b or θ≥b with b ∈ Z of the following form:

θ≥b(x, y) =

{
y if x ≥ b

−∞ otherwise
θ>b(x, y) =

{
y if x > b

−∞ otherwise

A test constraint is a constraint of the form X ≥ θ∼b(X1, X2) where θ∼b is a
test function. Such a constraint c is said active for a valuation ρ if ρ(X1) ∼ b.
Given a valuation ρ such that c is active, observe that �c�(ρ) and �c′�(ρ) are
equal where c′ is the bounded-increasing constraint X ≥ X2. This constraint c′

is called the active form of c and denoted by act(c).
In the sequel, an integer constraint either refers to a bounded-increasing con-

straint or a test-constraint.

1 SolveInteger (P = (X , C) : an integer constraint system)
2 ρ ← ⊥
3 Ct ← set of test constraints in C
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4 C′ ← set of bounded−increasing constraints in C
5 while �C�(ρ) �� ρ
6 ρ ← SolveBI((X , C′), ρ)
7 for each c ∈ Ct

8 if c is active for ρ
9 Ct ← Ct\{c}

10 C′ ← C′ ∪ {act(c)}
11 return ρ

Theorem 3.5. The algorithm SolveInteger computes the least solution of an in-
teger constraint system P = (X , C) by performing O((|X | + |C|)3) integer com-
parisons and image computation by some bounded-increasing functions.

Proof. Let us denote by nt be the number of test constraints in C. Observe that
if during the execution of the while loop, no test constraints becomes active (line
7-10) then ρ is a solution of P and the algorithm terminates. Thus this loop is
executed at most 1+nt times. Let us denote by m1, . . . , mk the integers such that
mi is equal to the number of times the while loop of SolveBI is executed. Since
after the execution there is mi −1 constraints that becomes upper-saturated, we
deduce that

∑k
i=1(mi −1) ≤ n and in particular

∑k
i=1 mi ≤ n+k ≤ 2.|C|. Thus

the algorithm SolveInteger computes the least solution of an integer constraint
system P = (X , C) by performing O((|X |+|C|)3) integer comparisons and image
computation by some bounded-increasing functions. ��

Remark 3.6. We deduce that any integer constraint system is MFP-flattable.

4 Interval Constraints

In this section, we provide a cubic time constraint solver for intervals. Our solver
is based on the usual [SW04, TG07] encoding of intervals by two integers in Z.
The main challenge is the translation of an interval constraint system with full
multiplication into an integer constraint system.

An interval I is subset of � of the form {x ∈ �; a ≤ x ≤ b} where a, b ∈ Z. We
denote by I the complete lattice of intervals partially ordered with the inclusion
relation �. The inverse −I of an interval I, the sum and the multiplication of
two intervals I1 and I2 are defined as follows:

−I = {−x; x ∈ I} I1 + I2 = {x1 + x2; (x1, x2) ∈ I1 × I2}
I1 . I2 =

⊔
{x1.x2; (x1, x2) ∈ I1 × I2}

We consider interval constraints of the following forms where I ∈ I:

X � −X1 X � I X � X1 + X2 X � X1 � I X � X1.X2

Observe that we allow arbitrary multiplication between intervals, but we restrict
intersection to intervals with a constant interval.
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We say that an interval constraint system P = (X , C) has the positive-
multiplication property if for any constraint c ∈ C of the form X � X1.X2,
the intervals ΛP(X1) and ΛP(X2) are included in �. Given an interval con-
straint system P = (X , C) we can effectively compute an interval constraint
system P′ = (X ′, C′) satisfying this property and such that X ⊆ X ′ and
ΛP(X) = ΛP′(X) for any X ∈ X . This constraint system P′ is obtained from P

by replacing the constraints X � X1.X2 by the following constraints:

X � X1,u.X2,u X1,u � X1 � �

X � X1,l.X2,l X2,u � X2 � �

X � −X1,u.X2,l X1,l � (−X1) ��
X � −X1,l.X2,u X2,l � (−X2) ��

Intuitively X1,u and X2,u corresponds to the positive parts of X1 and X2, while
X1,l and X2,l corresponds to the negative parts.

Let us provide our construction for translating an interval constraint system
P = (X , C) having the positive multiplication property into an integer constraint
system P′ = (X ′, C′). Since an interval I can be naturally encoded by two
integers I−, I+ ∈ Z defined as the least upper bound of respectively −I and I,
we naturally assume that X ′ contains two integer variable X− and X+ encoding
each interval variable X ∈ X . In order to extract from the least solution of P′ the
least solution of P, we are looking for an integer constraint system P′ satisfying
(ΛP(X))− = ΛP′(X−) and (ΛP(X))+ = ΛP′(X+) for any X ∈ X .

As expected, a constraint X � −X1 is converted into X+ ≥ X−1 and X− ≥
X+

1 , a constraint X � I into X+ ≥ I+ and X− ≥ I−, and a constraint X �
X1 + X2 into X− ≥ X−1 + X−2 and X− ≥ X−1 + X−2 . However, a constraint
X � X1�I cannot be simply translated into X− ≥ X−1 ∧I− and X+ ≥ X+

1 ∧I+.
In fact, these constraints may introduce imprecision when ΛP(X) ∩ I = ∅. We
use test functions to overcome this problem. Such a constraint is translated into
the following integer constraints:

X− ≥ θ≥−I+(X−1 , θ≥−I−(X+
1 , X−1 ∧ I−))

X+ ≥ θ≥−I−(X+
1 , θ≥−I+(X−1 , X+

1 ∧ I+))

For the same reason, the constraint X � X1.X2 cannot be simply converted
into X− ≥ mul−(X−1 , X−2 ) and X+ ≥ mul+(X+

1 , X+
2 ). Instead, we consider the

following constraints:

X− ≥ θ>−∞(X−1 , θ>−∞(X+
1 , θ>−∞(X−2 , θ>−∞(X+

2 , mul−(X−1 , X−2 )))))

X+ ≥ θ>−∞(X+
1 , θ>−∞(X−1 , θ>−∞(X+

2 , θ>−∞(X−2 , mul+(X+
1 , X+

2 )))))

Observe in fact that X− ≥ mul−(X−1 , X−2 ) and X+ ≥ mul+(X+
1 , X+

2 ) are precise
constraint when the intervals I1 = ΛP(X1) and I2 = ΛP(X2) are non empty.
Since, if this condition does not hold then I1.I2 = ∅, the previous encoding
consider this case by testing if the values of X−1 , X+

1 , X−2 , X+
2 are strictly

greater than −∞.
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Now, observe that the integer constraint system P′ satisfies the equalities
(ΛP(X))+ = ΛP′(X+) and (ΛP(X))− = ΛP′(X−) for any X ∈ X . Thus, we
have proved the following theorem.

Theorem 4.1. The least solution of an interval constraint system P = (X , C)
with full multiplication can by computed in time O((|X | + |C|)3) with integer
manipulations performed in O(1).

Remark 4.2. We deduce that any interval constraint system is MFP-flattable.

5 Conclusion and Future Work

In this paper we have extended the acceleration framework from symbolic verifi-
cation to the computation of MFP-solutions in data-flow analysis. Our approach
leads to an efficient cubic-time algorithm for solving interval constraints with
full addition and multiplication, and intersection with a constant.

As future work, it would be interesting to combine this result with strategy
iteration techniques considered in [TG07] in order to obtain a polynomial time
algorithm for the extension with full intersection. We also intend to investigate
the application of the acceleration framework to other abstract domains.
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