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Abstract. Loop identification is an essential step of control flow analysis in 
decompilation. The Classical algorithm for identifying loops is Tarjan’s interval-
finding algorithm, which is restricted to reducible graphs. Havlak presents one 
extension of Tarjan’s algorithm to deal with irreducible graphs, which constructs a 
loop-nesting forest for an arbitrary flow graph. There’s evidence showing that the 
running time of this algorithm is quadratic in the worst-case, and not almost linear 
as claimed. Ramalingam presents an improved algorithm with low time 
complexity on arbitrary graphs, but it performs not quite well on “real” control 
flow graphs (CFG). We present a novel algorithm for identifying loops in 
arbitrary CFGs. Based on a more detailed exploration on properties of loops and 
depth-first search (DFS), this algorithm traverses a CFG only once based on DFS 
and collects all information needed on the fly. It runs in approximately linear time 
and does not use any complicated data structures such as Interval/Derived 
Sequence of Graphs (DSG) or UNION-FIND sets. To perform complexity 
analysis of the algorithm, we introduce a new concept called unstructuredness 
coefficient to describe the unstructuredness of CFGs, and we find that the 
unstructuredness coefficients of these executables are usually small (<1.5). Such 
“low-unstructuredness” property distinguishes these CFGs from general single-
root connected directed graphs, and it offers an explanation why those algorithms 
existed perform not quite well on real-world cases. The new algorithm has been 
applied to 11526 CFGs in 6 typical binary executables on both Linux and 
Window platforms. Experimental result has validated our theoretical analysis and 
it shows that our algorithm runs 2-5 times faster than the Havlak-Tarjan 
algorithm, and 2-8 times faster than the Ramalingam-Havlak-Tarjan algorithm. 

Keywords: Control flow analysis, Decompilation, Loop identifying, 
Unstructuredness coefficient. 

1   Introduction 

Decompilation is a key technique for static analysis in the field of reverse 
engineering. Decompilation was initially introduced for porting programs across 
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platforms. It then had been widely used in areas such as software maintenance, re-
engineering and comprehension of legacy systems. Since the 1990s, demand on 
decompilation from software security analysis community has been growing rapidly 
due to outbreaks of security vulnerabilities and malicious codes[1]. 

When decompiling a program, it is important to analyze its control flow to 
correctly recover the underlying structures, such as loops, 2-way branches and n-way 
branches, from its corresponding binary executable. This paper mainly focuses on 
how to identify loops.  

Loops are control structures used for repeating instructions. In control flow graphs 
(CFG) [2], loops are often nested within other loops. Such phenomenon induces a 
structure called “loop-nesting forest” [3][4]. Furthermore, although structured 
programming is well adopted by modern programmers, irreducible loops (loops with 
multientry) [5][6] still widely exist in executable codes due to optimizations performed 
by compilers. Identifying loops, in particular nested and irreducible ones, is a major 
challenge for the task of decompilation. 

In 1970 F.E. Allen and J. Cocke pioneered the work on identifying loops by 
introducing the concept of reducibility[5][6] for control flow graphs. Since then both 
compiler and decompiler research communities have been investigating this problem. 
Influential pieces of work include those done by R.E. Tarjan [8], P. Havlak [7] and G. 
Ramalingam[3]. However, loop identification schemes  proposed in these work are 
often based on multi-pass traversals and complicated data structures, such as 
Interval/Derived sequence of graphs (DSG)[5][6] and UNION-FIND sets[9]; these data 
structures often require complex operations, and such operations slow down the loop 
identification schemes [10]. 

This paper presents an innovative algorithm for identifying loops in binary 
executables. We explore some useful properties of loops and depth-first search (DFS) 
which make DFS collecting more information than simple forward/cross/backward 
edge information. Based on these properties, we give an algorithm which uses a one-
pass DFS traversal to solve all loop problems. This algorithm does not use any 
complicated data structures, so it is simple and easy to implement. 

We have applied our algorithm and other classic algorithms to 11526 CFGs in 6 
typical binary executables on Windows XP and Linux. The experiments show that our 
algorithm runs 2-5 times faster than the Havlak-Tarjan algorithm [7], and 2-8 times 
faster than the Ramalingam-Havlak-Tarjan algorithm [3]. 

Furthermore, as an interesting byproduct of complexity analysis of this algorithm, 
we introduce a new concept called unstructuredness coefficient. This coefficient 
could describe the unstructuredness of CFG.  

The statistics of experiments shows that while most real-world binary executables 
have irreducible CFGs, unstructuredness coefficients of CFGs are usually smaller 
than 1.5 and hardly correlated to the size of CFG. 

Such “low-unstructuredness” property distinguishes these CFGs from general 
single-root connected directed graphs, and it offers an explanation of why those 
algorithms with low time complexity for arbitrary graphs perform not quite well on 
“real” CFGs, esp. the Ramalingam-Havlak-Tarjan algorithm. 

Besides decompilation, our algorithm could be used in many applications, such as 
computing the iterated dominance frontier for the SSA form and Sparse Evaluation 
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Graphs, constructing the dominator tree[4], and sequentializing program dependence 
graphs for code generation[12]. 

The rest of the paper is organized as follows. Section 2 presents related work. Section 3 
provides terminology and notations of identifying loops. Section 4 presents the algorithm 
for identifying loops. Section 5 introduces the concept of unstructuredness coefficient, and 
presents the complexity analysis of our scheme. Section 6 reports our experimental result 
and finding, in particular, the statistics of unstructured coefficient in real-world binary 
executables. Section 7 concludes this paper. 

2   Related Work 

Identifying loops is a well-built problem in control-flow analysis area. Loops in CFG 
have more attributes than simple cycles, such as nesting, multi-entry and 
irreducibility. Hence identifying loops in CFG is generally more challenging than 
detecting cycles. Research on identifying loops has a long history, starting from 1970 
when F.E. Allen and J. Cocke introduced the concept of reducibility[5][6] for control 
flow graphs. Since then many researchers in both compiler and decompiler fields have 
studied this problem extensively. 

Reducibility is an important property of CFG on its structuredness. In 1972 
M.S.Hecht and J.D.Ullman showed that all and only the irreducible CFGs have a 
multi-entry-loop subgraph [11], as shown in Fig.1. 

 
Fig. 1. The irreducible core 

In CFG, loops are often nested within other loops according to their headers’ 
positions. Such phenomenon induces a structure called “loop-nesting forest” [3][4]. 
Fig.2(A) shows a CFG with nested loops, and Fig.2(B) shows the corresponding loop-
nesting forest. 

There are various definitions of loop and loop-nesting forest. While there is a  
well-accepted one by Tarjan [8] of loops in a reducible graph, there is no consensus on 
how the loop nesting forest should be defined for CFGs with nested loops. B. 
Steensgaard [12], V.C. Sreedhar et al [13], Havlak [7] and Ramalingam [4] each provided 
a different definition. 

Consider the CFG shown in Fig.3(A): The Sreedhar–Gao–Lee algorithm [13] and the 
Ramalingam algorithm [4] both identify a single loop {a,b,c,d}; the Steensgaard 
algorithm [12] identifies two loops {a,b,c,d} and {b,c}; the Havlak algorithm [7] 
identifies three loops {a,b,c,d}, {b,c,d} and {c,d}, as shown in Fig.3 (B). 

In the context of decompilation, only the definition given by Havlak meets the 
requirements for rebuilding high level structures using single-entry loops and minimum 
goto (for re-entry edges) statements. Hence in this paper we adopt his definition. 
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Under Havlak’s definition, the classical algorithm for identifying loops is Tarjan’s 
interval-finding algorithm [8] proposed in 1974, which is restricted to reducible 
graphs. In 1997 Havlak presented an extension [7] to Tarjan’s algorithm, which can 
handle arbitrary flow graphs. 

The Havlak-Tarjan algorithm traverses a CFG twice: first a top-down traversal 
based on depth-first search, which collects information of forward edges, cross edges 
and back edges; then a bottom-up traverse based on the UNION-FIND operation, 
which propagates loop header information backward from loop tails. 
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Fig. 3. A classic irreducible CFG and its loop-nesting forest based on the definition by Havlak 

In 1999 Ramalingam showed that the running time of the Havlak algorithm is 
quadratic when the target CFG’s multientry unstructuredness is very high; he then 
modified the algorithm to make it run in almost linear time [3]. However, the 
Ramalingam-Havlak-Tarjan algorithm needs extra procedures to solve least common 
ancestors and to mark irreducible loops, and these procedures need UNION-FIND 
operations. 
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On the other hand, the Steensgaard algorithm runs in quadratic time, and the 
Sreedhar-Gao-Lee algorithm runs in almost linear time, but the latter requires the 
dominator tree being built in advance. 

In 2001, K.D. Cooper showed that, based on empirical evidence complex 
operations required by UNION-FIND slow down programs in practice; furthermore, 
simple algorithms with discouraging asymptotic complexities might be faster in 
handling real-world cases than those running in almost linear time, but containing 
complex operations [10]. 

3   Preliminaries 

This section briefly describes some basic concepts in control flow analysis and 
definitions about loops, and introduces some important properties of loop and DFS.  

3.1   Concepts in Control Flow Analysis 

We present brief descriptions of concepts in control flow analysis as following. The 
detailed version can be found in [2] and [9]. 

The instructions of a program are organized into basic blocks, where program flow 
enters a basic block at its first instruction and leaves the basic block at its last 
instruction. 

A control flow graph (CFG) is a single-root, connected and directed graph for 
describing control flow information of a program� it is often represented by a triple 
(N,E,h), where N is the set of basic blocks of the underlying program, E is the set 
of directed edges between these basic blocks, and h is the entry of the program. 

For a basic block b, Succ(b) is the set of successors of b, and Pred(b) is the 
set of predecessors of b. 

A path from a node u to a node u' in a graph G=(N,E,h) is a sequence 
<v0,v1,v2,...,vk> of nodes such that u=v0, u'=vk, and <vi-1,vi>∈ E for 
i=1,2,...,k. 

A depth-first search (DFS) of a CFG G=(N,E,h) visits all the nodes, marking 
them after they have been visited. The next node visited is an unmarked successor of 
the most recently visited node with such a successor. The time complexity of DFS is 
O(N+E). 

If a DFS traversal begins with h, and all other nodes are reachable, the edges 
followed define a depth-first spanning tree (DFST) of G.  
DFSP(N), the depth-first search path of node N, is the path from h to N in the 

DFST of G. Given a node N and a node M, and N is in DFSP(M), then DFSP(N,M) is 
the part of DFSP(M) from N to M. 

Besides creating a depth-first spanning tree, depth-first search also timestamps 
each node. Each node v has two timestamps: the first timestamp d[v] records when 
v is first discovered, and the second timestamp f[v] records when the search 
finishes examining v's adjacency list. Parenthesis theorem is an important property 
of DFS, and here is a short description: for two node u and v, the two sets 
[d[u],f[u]] and [d[v],f[v]] are either disjoint or nested. 
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In this paper, we use three edge types in terms of the DFST GT produced by a DFS 
on G: 

• Back edges are those edges <u,v> connecting a vertex u to an ancestor v in GT. 
Self-loops are considered to be back edges. An edge <u,v> is a back edge if and 
only if d[v]≤d[u]<f[u]≤f[v]. 

• Forward edges are those edges <u,v> connecting a vertex u to a descendant v in 
GT. A edge <u,v> is a forward edge if and only if d[u]<d[v]<f[v]<f[u]. 

• Cross edges are all other edges. 
A node u is in DFSP(v) if and only if d[u]≤d[v]<f[v]≤f[u]. 

Given a CFG G=(N,E,h), a strongly connected region (SCR) is a nonempty set 
of nodes S⊆ N, for which, given any q,r∈S, there exists a path from q to r and 
from r to q. A SCR is a maximal SCR if none of its proper supersets is a SCR. 

3.2   Definitions About Loops 

We present brief descriptions of definitions about loops. The detailed version can be 
found in [7]. 

Loops include outermost loops and inner loops. 
An outermost loop is a maximal SCR with at least one internal edge. 
In any particular depth-first search, the first node of a loop L to be traversed is 

defined to be the header of the loop, i.e. for the header h, d[h] is the minimum in all 
the nodes in L. The set of other nodes is defined to be the loop body. 

An inner loop nested inside a loop L with header h is an outermost loop with 
respect to the subgraph with node set (L−{h}). 

Loop-nesting forest is a data structure that represents the containment relation 
between loops in a control flow graph.[4] 

Given a loop L with header h and an edge <q,r>, q∉L, r∈L-{h}, then r is 
called a re-entry of this loop, and <q,r> is called a re-entry edge. 

For a node n in a loop body, its innermost loop is the smallest loop containing n., 
and the header of this loop is called n’s innermost loop header. The loop header list 
of n consists of its innermost loop header h1, h1’s innermost loop header h2, h2’s 
innermost loop header h3, and so on. The loop header list of d in Fig.3 is [c,b,a]. 

3.3   Properties of Loop and DFS 

We discover that there are some interesting properties of DFS and loops defined in 
section 3.2, which are helpful in identifying loops. 

Ancestor Property: For any node n, all of its loop headers must be in DFSP(n). 

Nesting Property: Two different loop headers x,y of node n must be nested, i.e. 
either x is a loop header of y, or y is a loop header of x. 

Direct Transitive Property: Given that node m is a child of node n in the DFST, a 
loop header x of m is also a loop header of n if and only if x ≠ m. 
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Indirect Transitive Property: Given that node m is a successor of node n and 
m∉ DFSP(n), a loop header x of m is also a loop header of n if and only if 
x∈DFSP(n). 

All these properties can be proved, and here are some lemmas used during the 
proof: 

Lemma 1: Given an edge <n,m>, if d[n]<d[m], then f[n]>f[m]. 

Lemma 2: Given an edge <n,m>, if it is not a back edge, then f[n]>f[m]. 

Lemma 3: Given a re-entry <n,m> of loop L, if the header of L is x, then 
f[n]>f[x]>f[m]. 

4   Algorithm for Identifying Loops 

Statement of the problem: Given a CFG G=(N,E,h0), for each node n∈N: 

(1) Decide whether or not n is a loop header; 
(2) Decide whether or not n is in a loop body; If yes, which node is its innermost 

loop header? 
(3) Decide whether or not n is a re-entry; If yes, which edges are the re-entry 

edges? 

Based on these properties given in section 3.3, we propose a new algorithm which 
contains two parts: traversing a CFG based on depth-first search, and tagging loop 
headers on demand. 

In contrast with the multi-pass algorithms proposed by Tarjan, Havlak and 
Ramalingam, our algorithm collects and propagates loop header information during 
depth-first search based on these properties, so it doesn’t need the second bottom-up 
traversal based on UNION-FIND operations to do the same thing. 
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Traversing: The algorithm visits all the nodes in N, starting from h0 recursively in 
depth-first search order. When a node b0 is visited, it is marked as traversed and let p 
be the current path from h0 to b0 in the depth-first spanning tree (i.e. DFSP(b0)). 
Each successor b of b0 is checked in turn as followed: 

(A) If b is a new node, i.e. b is not traversed yet, as shown in Fig.4(A): traverse it 
recursively; if it is found in a loop body after being traversed, tag b’s 
innermost loop header as a loop header of b0 if the header node is in p; 

(B) If b is traversed already, and it is in p, as shown in Fig.4(B): mark b as a loop 
header, and tag b as a loop header of b0; 

(C) If b is traversed already, and it is not in p, or any loop body, as shown in 
Fig.4(C): just skip it; 

(D) If b is traversed already, and it is not in p, but it is in a loop body whose 
innermost loop header h is in p, as shown in Fig.4(D): tag h as a loop header 
of b0; 

(E) If b is traversed already, and it is not in p, but it is in a loop body whose 
innermost loop header is not in p, as shown in Fig.4(E): mark b as a re-entry 
node, and mark <b0,b> as a re-entry edge. Find the innermost loop header h1 
of b in p if it exists, then tag h1 as a loop header of b0. 

The pseudo code of traversing is shown as following: 
 
procedure identify_loops(CFG G=(N,E,h0)): 
   foreach(Block b in N): // init 
      initialize(b); // zeroize flags & properties 
   trav_loops_DFS(h0,1); 
 
function trav_loops_DFS(Block b0, int DFSP_pos): 
//return: innermost loop header of b0 
   Mark b0 as traversed; 
   b0.DFSP_pos := DFSP_pos;//Mark b0’s position in DFSP 
   foreach(Block b in Succ(b0)): 
      if(b is not traversed): 
         // case(A), new 
         Block nh := trav_loops_DFS(b, DFSP_pos+1); 
         tag_lhead(b0, nh); 
      else: 
         if(b.DFSP_pos > 0): // b in DFSP(b0) 
            // case(B) 
            Mark b as a loop header; 
            tag_lhead(b0, b); 
         else if(b.iloop_header == nil): 
            // case(C), do nothing 
         else: 
            Block h := b.iloop_header; 
            if(h.DFSP_pos > 0): // h in DFSP(b0) 
               // case(D) 
               tag_lhead(b0, h); 
            else: // h not in DFSP(b0) 
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               // case(E), reentry 
               Mark b and (b0,b) as re-entry; 
               Mark the loop of h as irreducible; 
               while(h.iloop_header!=nil): 
                  h := h.iloop_header; 
                  if(h.DFSP_pos > 0): // h in DFSP(b0) 
                     tag_lhead(b0, h); 
                     break; 
                  Mark the loop of h as irreducible; 
   b0.DFSP_pos := 0; // clear b0’s DFSP position 
   return b0.iloop_header; 
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Fig. 5. Tagging loop headers 

Tagging: When tagging h as a loop header of b0, weave h and its loop header list (if 
exists) into the current loop header list of b0 according to their positions in p, as 
shown in Fig.5. The pseudo code of tagging loop headers is shown as following. 

 
procedure tag_lhead(Block b, Block h): 
   if(b == h or h == nil) return; 
   Block cur1 := b, cur2 := h; 
   while(cur1.iloop_header!=nil): 
      Block ih := cur1.iloop_header; 
      if(ih == cur2) return; 
      if(ih.DFSP_pos < cur2.DFSP_pos): 
         cur1.iloop_header := cur2; 
         cur1 := cur2; 
         cur2 := ih;          
      else: 
         cur1 := ih; 
   cur1.iloop_header := cur2; 
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Based on properties given in section 3.3, it can be proved that the loop header of 
every node will be correctly tagged after this one-pass DFS traversing.  

5   Complexity Analysis and Unstructuredness Coefficient 

We now discuss the complexity of the algorithm given in section 4. 
Given a CFG G=(N,E,h0), trav_loops_DFS is called recursively for each 

node n∈N exactly one time, so it is called N times totally. 
In one invocation of trav_loops_DFS, the foreach loop is executed for each 

out-edge of the current node. It follows that in all invocations of trav_loops_DFS 
for all nodes in G, the foreach loop is executed exactly one time for each edge in E, 
so it is executed E times totally. 

In the i-th execution of the foreach loop (i∈[1,E]), only one of case (A), (B), 
(C), (D) and (E) can be chosen. Let xi be the execution times of the while loop in 
trav_loops_DFS, and let yi be the execution times of the while loop in 
tag_lhead. The complexity of case (A) is O(1+yi), except for the recursive call to 
trav_loops_DFS which is counted in the above already; the complexity of case (B) 
and (D) is O(1+yi); the complexity of case (C) is O(1); the complexity of case (E) is 
O(1+xi+yi). Notice that in case (A), (B), (C) and (D), xi=0, and in case (C) yi=0 too. 

In summary, the total complexity of the algorithm is O(N+E+∑xi+∑yi), 
i∈[1,E]. Let k=1+(∑xi+∑yi)/E, it follows that the total complexity can be 
expressed as O(N+k*E). 

In the following, we discuss the meaning of xi, yi and k behind these 
mathematical expressions. 

As shown in Fig.6(A), the while loop in trav_loops_DFS is executed 
because the edge <b0,b> skips multi level loop headers and jumps directly into the 
(xi+1)th inner loop. This situation is called multientry unstructuredness[14]. 

As shown in Fig.6(B), the while loop in tag_lhead is executed mainly 
because the back edges of loops overlap with each other, and yi is the rough 
measurement of overlapping levels. This situation is called overlapping 
unstructuredness[14]. 

Multientry unstructuredness is irreducible, whereas overlapping unstructuredness is 
reducible. Multientry unstructuredness is caused by forward edges while overlapping 
unstructuredness is caused by backward edges. They both contribute to the total 
unstructuredness of a CFG. 
k=1+(∑ xi+∑ yi)/E, it describes the ratio of the total unstructuredness, 

including both multientry unstructuredness and overlapping unstructuredness, to the 
size of a CFG. Hence we call k the unstructuredness coefficient. 

Please notice that the unstructuredness coefficient k is usually small: In today’s 
binary executables, unstructuredness is introduced mostly by optimization compilers, 
not by programmers instead. The main reason is that structured programming has 
been well adopted already. In addition, unstructured code is hard to maintain 
correctness, even introduced by compilers. Therefore, although unstructuredness can 
be found in almost every binary code, the majority of binary code is well structured. 
Experiments in the next section validate such analysis. 
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Fig. 6. Unstructuredness of loops 

6   Experimental Results 

We analyze binary executables on different operating systems using BESTAR (Binary 
Executable Structurizer and Analyzer), our in-house decompiler which has 
implemented the algorithms described above, including our algorithm, the Havlak-
Tarjan algorithm and the Ramalingam-Havlak-Tarjan algorithm. 

The selected instances include: 1). System binary executables of Windows XP, 
including kernel32.dll, user32.dll and explorer.exe; 2) Well-known 
applications on Linux, including samba 3.0.23d, sendmail 8.13.8 and 
vsftpd 2.0.5, which are compiled by “gcc –O2”. 

Table.1 shows the statistics about loops in these instances identified by algorithms. 
There are totally 11526 CFGs in these instances. In these CFGs, there are 174 
irreducible CFGs and 7841 loops. The experimental results of all these algorithms are 
the same, which validate the correctness of our algorithm and its implementation. 

A phenomenon we have discovered from these results is that all these instances 
contain irreducible CFGs. 

Another important phenomenon is that k is small in all these instances. Table.2 and 
Fig.7 show statistics of k with respect to the number of nodes of CFGs in these 
instances. The statistics show that in these real-world instances the unstructuredness 
coefficient is usually smaller than 1.5 and its average value is hardly correlated to the 
size of CFG. We call this phenomenon “low-unstructuredness” property of CFGs, 
and this property distinguishes real-world CFGs from general single-root connected 
directed graphs. 
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Table 1. Statistics of loops 

kernel32 user32 explorer
samba

3.0.23d

sendmail

8.13.8

vsftpd

2.0.5

CFGs 1488 1711 1380 5946 642 359

irreducible CFGs 5 8 2 81 71 7

loop headers 1134 636 354 4112 1440 165

Avg(k) 1.01 1.01 1.01 1.01 1.05 1.01

Max(k) 1.35 1.29 1.31 1.40 1.41 1.31

Min(k) 1.00 1.00 1.00 1.00 1.00 1.00  
 

Table 2. Statistics of k to N 

N Max(k) Avg(k) Min(k)

0-49 1.33 1.01 1

50-99 1.34 1.03 1

100-149 1.41 1.05 1

150-199 1.28 1.06 1

200-249 1.3 1.06 1

250-299 1.25 1.05 1

300-349 1.13 1.05 1

350-399 1.09 1.03 1  

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0-49 50-99 100-149 150-199 200-249 250-299 300-349 350-399

Max

Avg

Min

 

Fig. 7. Statistics of k to N 

For performance comparison, we ran all these algorithms on an unloaded 2.6GHz 
AMD Opteron Server, with each implementation properly optimized. Table.3 and 
Fig.8 show the time spent during processing these instances. The results show that our 
algorithm is 2-5 times faster than the Havlak-Tarjan algorithm, and 2-8 times faster 
than the Ramalingam-Havlak-Tarjan algorithm. 

Table 3. Time of algorithms(in μsec, lower is better) 

kernel32 user32 explorer
samba

3.0.23d

sendmail

8.13.8

vsftpd

2.0.5

Our 0.22 6.6 0.14 0.36 1.1 0.2

Havlak 0.44 28 0.28 1.6 5.3 1.1

Ramalingam 0.51 54 0.32 2.3 9.6 1.4
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Fig. 8. Time comparison of algorithms (lower is better) 

Here is another interesting result: although the Ramalingam-Havlak-Tarjan 
algorithm is an “improved” version of the Havlak-Tarjan algorithm, its performance 
is even worse than the latter. Based on the “low-unstructuredness” property of CFGs, 
this phenomenon can be easily explained: in order to reach almost linear time 
complexity when the target CFG’s multientry unstructuredness is very high, 
Ramalingam adds extra procedures to solve least common ancestors and to mark 
irreducible loops, and  both need UNION-FIND operations; however, for real-world 
CFGs, the unstructuredness is low, so the extra procedures contribute little to the 
performance and slow down the whole process instead. 

7   Conclusion 

This paper presents an innovative method for identifying loops in binary executables. 
First, we explore some useful properties of loops and DFS which make DFS 
collecting more information than simple forward/cross/backward edge information. 
Then, we propose the algorithm building on a one-pass DFS traversal and these 
properties. It does not use any complicated data structures such as Interval/DSG or 
UNION-FIND sets, so it is simpler and easier to implement than classical multi-pass 
traversal algorithms. 

The complexity of our method is O(N+k*E), where k is the unstructuredness 
coefficient, a new concept proposed in this paper to describe the unstructuredness of 
CFGs. 

The unstructuredness coefficient k is usually small, because structured 
programming has been well adopted, and unstructured code is hard to maintain its 
correctness, even introduced by compilers. Hence although unstructuredness can be 
found in almost every binary code, the majority of binary code is well structured. In 
fact, we found that in real-world binaries the average value of k is usually smaller 
than 1.5 and hardly correlated to the size of CFGs. Such “low-unstructuredness” 
property distinguishes these CFGs from general single-root connected directed 
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graphs, and it offers an explanation of why those algorithms with low time 
complexity on arbitrary graphs perform not quite well on “real” CFGs. 

Using BESTAR (Binary Executable Structurizer and Analyzer), our in-house 
decompiler, we have applied the algorithm and classical algorithms to 11526 CFGs in 
6 typical binary executables on Windows XP and Linux. Due to the simplicity of our 
algorithm and the “low-unstructuredness” property of real-world binaries, our 
algorithm is 2-5 times faster than the Havlak-Tarjan algorithm[7], and 2-8 times faster 
than the Ramalingam-Havlak-Tarjan algorithm[3]. 

Due to its remarkable performance, our algorithm could also be used in other 
applications, besides general decompilation, such as computing the SSA form or 
sequentializing program dependence graphs during just-in-time compilation. 
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