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Preface

The aim of static analysis is to develop principles, techniques and tools for
validating properties of programs, for designing semantics-based transformations
of programs and for obtaining high-performance implementations of high-level
programming languages. Over the years the series of static analysis symposia
has served as the primary venue for presentation and discussion of theoretical,
practical and innovative advances in the area.

This volume contains the papers accepted for presentation at the 14th Inter-
national Static Analysis Symposium (SAS 2007). The meeting was held August,
22–24, 2007, at the Technical University of Denmark (DTU) in Kongens Lyn-
gby, Denmark. In response to the call for papers, 85 submissions were received.
Each submission was reviewed by at least 3 experts and, based on these reports,
26 papers were selected after a week of intense electronic discussion using the
EasyChair conference system. In addition to these 26 papers, this volume also
contains contributions by the two invited speakers: Frank Tip (IBM T. J. Watson
Research Center, USA) and Alan Mycroft (Cambridge University, UK).

On the behalf of the Program Committee, the Program Chairs would like
to thank all the authors who submitted their work to the conference and also
all the external referees who have been indispensable for the selection process.
Special thanks go to Terkel Tolstrup and Jörg Bauer, who helped in handing the
submitted papers and in organizing the structure of this volume. We would also
like to thank the members of the Organizing Committee at DTU for their great
work. Finally we want to thank the PhD school ITMAN at DTU for financial
support.

SAS 2007 was held concurrently with LOPSTR 2007, the International Sym-
posium on Logic-Based Program Synthesis and Transformation.

June 2007 Hanne Riis Nielson
Gilberto Filé
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Étienne Payet and Fausto Spoto

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469



Refactoring Using Type Constraints�

Frank Tip

IBM T. J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA
ftip@us.ibm.com

Abstract. Type constraints express subtype-relationships between the
types of program expressions that are required for type-correctness, and
were originally proposed as a convenient framework for solving type
checking and type inference problems. In this paper, we show how type
constraints can be used as the basis for practical refactoring tools. In our
approach, a set of type constraints is derived from a type-correct pro-
gram P . The main insight behind our work is the fact that P constitutes
just one solution to this constraint system, and that alternative solutions
may exist that correspond to refactored versions of P . We show how a
number of refactorings for manipulating types and class hierarchies can
be expressed naturally using type constraints. Several refactorings in the
standard distribution of Eclipse are based on our results.

1 Introduction

Refactoring is the process of applying behavior-preserving transformations
(called “refactorings”) to a program’s source code with the objective of improving
that program’s design. Common reasons for refactoring include the elimination
of undesirable program characteristics such as duplicated code, making existing
program components reusable in new contexts, and breaking up monolithic sys-
tems into components. Pioneered in the early 1990s by Opdyke et al. [15,16] and
by Griswold et al. [9,10], the field of refactoring received a major boost with the
emergence of code-centric design methodologies such as extreme programming [2]
that advocate continuous improvement of code quality. Fowler [7] and Kerievsky
[12] authored popular books that classify many widely used refactorings, and
Mens and Tourwé [14] presented a survey of the field.

Refactoring is usually presented as an interactive process where the program-
mer takes the initiative by indicating a point in the program where a specific
transformation should be applied. Then, the programmer must verify if a number
of specified preconditions hold, and, assuming this is the case, apply a number
of prescribed editing steps. However, checking the preconditions may involve
nontrivial analysis, and the number of editing steps may be significant. There-
fore, automated tool support for refactoring is highly desirable, and has be-
come a standard feature of modern development environments such as Eclipse
(www.eclipse.org) and IntelliJ IDEA (www.jetbrains.com/idea).
� This work has been supported in part by the Defense Advanced Research Projects

Agency (DARPA) under contract No. NBCH30390004.

H. Riis Nielson and G. Filé (Eds.): SAS 2007, LNCS 4634, pp. 1–17, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 F. Tip

The main observation of this paper is that, for an important category of refac-
torings related to the manipulation of class hierarchies and types, the checking
of preconditions and computation of required source code modifications can be
expressed as a system of type constraints. Type constraints [17] are a formalism
for expressing subtype-relationships between the types of program elements that
must be satisfied in order for a program construct to be type-correct, and were
originally proposed as a means for expressing type checking and type inference
problems. In our work, a system of type constraints is derived from a program to
reason about the correctness of refactorings. Specifically, we derive a set of type
constraints from a program P and observe that, while the types and class hier-
archy of P constitute one solution to the constraint system, alternative solutions
may exist that correspond to refactored versions of P .

We show how several refactorings for manipulating class hierarchies and types
can be expressed in terms of type constraints. This includes refactorings that:
(i) introduce interfaces and supertypes, move members up and down in the class
hierarchy, and change the declared type of variables, (ii) introduce generics,
and (iii) replace deprecated classes with ones that are functionally equivalent.
Several refactorings1 in the Eclipse 3.2 distribution are based on the research
presented in this paper. Our previous papers [22,3,8,1,13], presented these refac-
torings in detail, along with experimental evaluations. This paper presents an
informal overview of the work and uses a running example to show how different
refactorings require slight variations on the basic type constraints model.

2 Type Constraints

Type constraints are a formalism for expressing subtype relationships between
the types of declarations and expressions, and were originally proposed as a
means for stating type-checking and type inference problems [17]. In the basic
model, a type constraint has of one of the following forms:

α = α′ type α must be the same as type α′

α<α′ type α must be a proper subtype of type α′

α≤α′ type α must be the same as, or a subtype of type α′

α≤α1 or · · · or α≤αk α≤αi must hold for at least one i, (1 ≤ i ≤ k)

Here, α, α′, ... are constraint variables that represent the types associated
with program constructs. In this paper, M denotes a method (with associated
signature and type information), F denotes a field, C denotes a class, I denotes
an interface, T denotes a class or an interface, and E denotes an expression.
Constraint variables are of one of the following forms:

T a type constant
[E] the type of an expression E
[M ] the declared return type of method M

[F ] the declared type of field F
Decl(M) the type in which method M is declared
Decl(F ) the type in which field F is declared

1 This includes the Extract Interface, Generalize Declared Type, and Infer

Generic Type Arguments refactorings presented in this paper, among others.



Refactoring Using Type Constraints 3

program construct implied type constraint(s)

assignment E1 = E2 [E2]≤[E1] (1)
method call E.m(E1, · · · , En)

to a virtual method M
where RootDefs(M) = { M1, · · · , Mk }

[E.m(E1, · · · , En)]=[M ]
[Ei]≤[Param(M, i)]

[E]≤Decl(M1) or · · · or [E]≤Decl(Mk)

(2)
(3)
(4)

access E.f to field F
[E.f ]=[F ]

[E]≤Decl(F )
(5)
(6)

return E in method M [E]≤[M ] (7)
M ′ overrides M ,

M ′ �= M
[Param(M ′, i)]=[Param(M, i)]

[M ′]≤[M ]
(8)
(9)

F ′ hides F Decl(F ′)<Decl(F ) (10)
constructor call new C(E1, · · · , En)

to constructor M
[new C(E1, · · · , En)]=C

[Ei]≤[Param(M, i)]
(11)
(12)

direct call
E.m(E1, · · · , En)

to method M

[E.m(E1, · · · , En)]=[M ]
[Ei]≤[Param(M, i)]

[E]≤Decl(M)

(13)
(14)
(15)

implicit declaration of this in method M [this]=Decl(M) (16)

Fig. 1. Type constraints for a set of core Java language features

Type constraints are generated from a program’s abstract syntax tree in a
syntax-directed manner, and encode relationships between the types of decla-
rations and expressions that must be satisfied in order to preserve type correct-
ness or program behavior. Figure 1 shows rules that generate constraints from
a representative set of program constructs.

For example, rule (1) states that, for an assignment E1 = E2, a constraint
[E2]≤[E1] is generated. Intuitively, this captures the requirement that the type of
the right-hand side E2 be a subtype of the type of the left-hand side E1 because
otherwise the assignment would not be type correct. In the rules discussed below,
Param(M, i) denotes the i-th formal parameter of method M . For a call E.m(· · ·)
to a virtual method M , we have that: the type of the call-expression is the
same as M ’s return type (rule (2)2), the type of each actual parameter must
be the same as, or a subtype of the corresponding formal parameter (rule (3)),
and a method with the same signature as M must be declared in [E] or one
of its supertypes (rule (4)). Rule (4) determines a set of methods M1, · · · ,Mk

overridden by M using Definition 1 below, and requires [E] to be a subtype of
one or more3 of Decl(M1), · · · ,Decl(Mk). In this definition, a virtual method M
in type C overrides a virtual method M ′ in type B if M and M ′ have identical
signatures and C is equal to B or C is a subtype of B.

Definition 1 (RootDefs). Let M be a method. Define:
RootDefs(M) = {M ′|M overrides M ′, and there exists no

M ′′ (M ′′ �= M ′) such that M ′ overrides M ′′ }

2 Rules (2), (5), (13), (11), and (16) define the type of certain kinds of expressions.
While not very interesting by themselves, these rules are essential for defining the
relationships between the types of expressions and declaration elements.

3 In cases where a referenced method does not occur in a supertype of [E], the
RootDefs-set defined in Definition 1 will be empty, and an or-constraint with zero
branches will be generated. Such constraints are never satisfied and do not occur in
our setting because we assume the original program to be type-correct.
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Changing a parameter’s type need not affect type-correctness, but may affect
virtual dispatch (and program) behavior. Hence, we require that types of corre-
sponding parameters of overriding methods be identical (rule (8)). As of Java 5.0,
return types in overriding methods may be covariant (rule (9)). Rule (16) de-
fines the type of a this expression to be the class that declares the associated
method. The constraint rules for several features (e.g., casts) have been omitted
due to space limitations and can be found in our earlier papers.

3 Refactorings for Generalization

Figure 2 shows a Java program that was designed to illustrate the issues posed by
several different refactorings. The program declares a class Stack representing a
stack, with methods push(), pop(), and isEmpty()with the expected behaviors,
methods moveFrom() and moveTo() for moving an element from one stack to
another, and a static method print() for printing a stack’s contents. Also shown
is a class Client that creates a stack, pushes the integer 1 onto it, then creates
another stack onto which it pushes the values 2.2 and 3.3. The elements of the
second stack are then moved to the first, the contents of one of the stacks is
printed, and the elements of the first stack are transferred into a Vector whose
contents are displayed in a tree. Executing the program creates a graphical
representation of a tree containing, from top to bottom, nodes 2.2, 3.3, and 1.

3.1 Extract Interface

One possible criticism about the code in Figure 2 is the fact that class Client
explicitly refers to class Stack. Such explicit dependences on concrete data struc-
tures are generally frowned upon because they make code less flexible. The Ex-

tract Interface refactoring aims to address this issue by introducing an in-
terface that declares a subset of the methods in a class, and updating references
in client code to refer to the interface instead of the class wherever possible.
Let us assume that the programmer has decided that it would be desirable to
create an interface IStack that declares all of Stack’s instance methods, and
to update references to Stack to refer to IStack instead, as shown in Figure 3
(code fragments changed by the application of Extract Interface are under-
lined). Observe that s1, s3, and s4 are the only variables for which the type has
been changed to IStack. Changing the type of s2 or s5 to IStack would result
in type errors. In particular, changing s5’s type to IStack results in an error
because field v2, which is not declared in IStack, is accessed from s5 on line 45.

Using type constraints, it is straightforward to compute the declarations that
can be updated to refer to IStack instead of Stack. Figure 4(a) shows some of
the type constraints generated for declarations and expressions of type Stack in
the program of Figure 2, according to the the rules of Figure 1. It is important
to note that the constraints were generated after adding interface IStack to the
class hierarchy. Now, from the constraints of Figure 4(a), it is easy to see that
Stack≤[s2]≤[s5]≤Stack and hence that the types of s2 and s5 have to remain
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[1] class Client {
[2] public static void main(String[] args){
[3] Stack s1 = new Stack();
[4] s1.push(new Integer(1));
[5] Stack s2 = new Stack();
[6] s2.push(new Float(2.2));
[7] s2.push(new Float(3.3));
[8] s1.moveFrom(s2);
[9] s2.moveTo(s1);
[10] Stack.print(s2);
[11] Vector v1 = new Vector(); /* A1 */
[12] while (!s1.isEmpty()){
[13] Number n = (Number)s1.pop();
[14] v1.add(n);
[15] }
[16] JFrame frame = new JFrame();
[17] frame.setTitle("Example");
[18] frame.setSize(300, 100);
[19] JTree tree = new JTree(v1);
[20] frame.add(tree, BorderLayout.CENTER);
[21] frame.setVisible(true);
[22] }
[23] }

[24] class Stack {
[25] private Vector v2;
[26] public Stack(){
[27] v2 = new Vector(); /* A2 */
[28] }
[29] public void push(Object o){
[30] v2.addElement(o);
[31] }
[32] public Object pop(){
[33] return v2.remove(v2.size()-1);
[34] }
[35] public void moveFrom(Stack s3){
[36] this.push(s3.pop());
[37] }
[38] public void moveTo(Stack s4){
[39] s4.push(this.pop());
[40] }
[41] public boolean isEmpty(){
[42] return v2.isEmpty();
[43] }
[44] public static void print(Stack s5){
[45] Enumeration e = s5.v2.elements();
[46] while (e.hasMoreElements())
[47] System.out.println(e.nextElement());
[48] }
[49] }

Fig. 2. An example program. The allocation sites for the two Vector objects created
by this program have been labeled A1 and A2 to ease the discussion of the Replace

Class refactoring in Section 5.

class Client {
public static void main(String[] args){

IStack s1 = new Stack();
s1.push(new Integer(1));
Stack s2 = new Stack();
s2.push(new Float(2.2));
s2.push(new Float(3.3));
s1.moveFrom(s2);
s2.moveTo(s1);
Stack.print(s2);
Vector v1 = new Vector();
while (!s1.isEmpty()){
Number n = (Number)s1.pop();
v1.add(n);

}
JFrame frame = new JFrame();
frame.setTitle("Example");
frame.setSize(300, 100);

Component tree = new JTree(v1);

frame.add(tree, BorderLayout.CENTER);
frame.setVisible(true);

}
}
interface IStack {

public void push(Object o);
public Object pop();
public void moveFrom(IStack s3);
public void moveTo(IStack s4);
public boolean isEmpty();

}

class Stack implements IStack {
private Vector v2;
public Stack(){

v2 = new Vector();
}
public void push(Object o){

v2.addElement(o);
}
public Object pop(){

return v2.remove(v2.size()-1);
}
public void moveFrom(IStack s3){

this.push(s3.pop());
}
public void moveTo(IStack s4){

s4.push(this.pop());
}
public boolean isEmpty(){

return v2.isEmpty();
}
public static void print(Stack s5){

Enumeration e = s5.v2.elements();
while (e.hasMoreElements())
System.out.println(e.nextElement());

}
}

Fig. 3. The example program of Figure 2 after applying Extract Interface to class
Stack (code fragments affected by this step are underlined), and applying Generalize

Declared Type to variable tree (the affected code fragment is shown boxed)
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line(s) constraint(s) rule(s)

3 Stack≤[ s1 ] (11),(1)
4, 8, 12, 13 [ s1 ]≤IStack (4)

5 Stack≤[ s2 ] (11),(1)
6, 7, 9 [ s2 ]≤IStack (4)
8,35 [ s2 ]≤[ s3 ] (3)
9,38 [ s1 ]≤[ s4 ] (3)
10,44 [ s2 ]≤[ s5 ] (14)
36 [ s3 ]≤IStack (4)
39 [ s4 ]≤IStack (4)
45 [ s5 ]≤Stack (6)

line(s) constraint(s) rule applied

19 JTree≤[ tree ] (11),(1)
20 [ tree ]≤Component (12)
11 Vector≤[ v1 ] (11),(1)
14 [ v1 ]≤Collection (4)
19 [ v1 ]≤Vector (12)
27 Vector≤[ v2 ] (11),(1)
30 [ v2 ]≤Vector (4)

33, 42 [ v2 ]≤Collection (4)

(a) (b)

Fig. 4. (a) Type constraints generated for the application of the Extract Interface

refactoring to the program of Figure 2 (only nontrivial constraints related to variables
s1–s5 are shown). (b) Type constraints used for the application of Generalize De-

clared Type (only nontrivial constraints related to variables tree, v1, and v2 are
shown). Line numbers refer to Figure 2, and rule numbers to rules of Figure 1.

Stack. However, the types of s1 and s4 are less constrained ([s1]≤[s4]≤IStack)
implying that type IStack may be used for these variables. In general, the types
of variables may not be changed independently. For example, changing s1’s type
to IStack but leaving s4’s type unchanged results in a type-incorrect program.
In a previous paper [22], we presented an algorithm for computing the maximal
set of variables whose type can be updated to refer to a newly extracted interface.

3.2 Generalize Declared Type

Another possible criticism of the program of Figure 2 is the fact that the types
of some variable declarations in the program of Figure 2 are overly specific. This
is considered undesirable because it reduces flexibility. The Generalize De-

clared Type refactoring in Eclipse lets a programmer select a declaration, and
determines whether its type can be generalized without introducing type errors
or behavioral changes. If so, the programmer may choose from the alternative
permissible types. Using this refactoring, the type of variable tree can be up-
dated to refer to Component instead of JTree without affecting type-correctness
or program behavior, as is indicated by a box in Figure 3. This, in turn, would
enable one to vary the implementation to use, say, a JList instead of a JTree in
Client.main(). In some situations, the type of a variable cannot be generalized.
For example, changing the type of v2 to Collection (or to any other supertype
of Vector) would result in a type error because the method addElement(), which
is not declared in any supertype of Vector, is invoked on v2 on line 30. Further-
more, the type of v1 cannot be generalized because, on line 19, v1 is passed as
an argument to the constructor JTree(Vector). JTree is part of the standard
Java libraries (for which we cannot change the source code), and the fact that its
constructor expects a Vector implies that a more general type cannot be used.

Figure 4(b) shows the constraints generated from the example program of
Figure 2 for variables tree, v1, and v2. Note that, for parameters of methods in
external classes such as the constructor of JTree, we must include constraints
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that constrain these parameters to have their originally declared type, because
the source code in class libraries cannot be changed. Therefore, we have that:
JTree≤[tree]≤Component, Vector≤[v1]≤Vector, and Vector≤[v2]≤Vector.
In other words, the types of v1 and v2 must be exactly Vector, but for tree we
may choose any supertype of JTree that is a subtype of Component.

3.3 Other Refactorings for Generalization

Several other refactorings related to generalization can be modeled similarly. For
example, the Pull Up Members refactoring is concerned with moving methods
and fields from a class to one of its superclasses. For this refactoring, we leave
the types of variables constant by including constraints that require variables to
have their originally declared type while allowing the locations of methods and
fields to vary by leaving constraint variables of the form Decl(.) unconstrained.

4 Refactorings That Introduce Generics

Generics were introduced in Java 5.0 to enable the creation of reusable class
libraries with compiler-enforced type-safe usage. For example, an application
that instantiates Vector<E> with, say, String, obtaining Vector<String>, can
only add and retrieve Strings. In the previous, non-generic version of this class,
the signatures of access methods such as Vector.get() refer to type Object,
which prevents the compiler from ensuring the type-safety of vector operations,
and therefore down-casts to String are needed to recover the type of retrieved
elements. When a programmer makes a mistake, such downcasts fail at runtime,
with ClassCastExceptions.

Donovan et al. [5] identified two refactoring problems related to the introduc-
tion of generics. The parameterization problem consists of adding type param-
eters to an existing class definition so that it can be used in different contexts
without the loss of type information. Once a class has been parameterized, the
instantiation problem is the task of determining the type arguments that should
be given to instances of the generic class in client code. The former problem
subsumes the latter because the introduction of type parameters often requires
the instantiation of generic classes.

The Introduce Type Parameter refactoring developed recently by Kieżun
et al. [13] provides a solution to the parameterization problem in which the
programmer selects a declaration for which the type is to be replaced with a
new formal type parameter. As we shall see shortly, this may involve nontrivial
changes to other declarations (e.g., by introducing wildcard types [24]). Fuhrer
et al. [8] proposed a solution to the instantiation problem that forms the basis
for the Infer Generic Type Arguments refactoring in Eclipse.

The right column of Figure 5 shows class Stack after applying Introduce

Type Parameter to the formal parameter of method Stack.push() (for the
purposes of this example, it is assumed that class Stack is analyzed in isolation).
Underlining is used to indicate changes w.r.t. the version of Stack in Figure 2.
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As can be seen in the figure, a new type parameter T1 was added to class Stack,
and T1 is used as the type for the parameter of Stack.push(), for the return
type of Stack.pop(), and for the type of field v2. A more interesting change
can be seen in the moveFrom(), moveTo(), and print() methods. Here, the pa-
rameters now have wildcard types Stack<? extends T1>, Stack<? super T1>,
and Stack<?>, respectively. As we shall see shortly, this allows for greater flexi-
bility when refactoring class Client because it enables the transfer of elements
between the two stacks without the loss of precision in their declared types.

The left column of Figure 5 shows the result of applying Infer Generic

Type Arguments to the example program after the parameterization of Stack.
Observe that the types of s1 and s2 are now Stack<Number> and Stack<Float>,
and that the downcast on line 13 that was present originally has been re-
moved. This result was enabled directly by the introduction of wildcard types
in Stack.moveFrom() and Stack.moveTo(). If the formal parameters of these
methods had been changed to Stack<T1> instead, Java’s typing rules would have
required Vector<Number> for the types of s1 and s2, making it impossible to
remove the downcast.

class Client {
public static void main(String[] args){

Stack<Number> s1 = new Stack<Number>();
s1.push(new Integer(1));
Stack<Float> s2 = new Stack<Float>();
s2.push(new Float(2.2));
s2.push(new Float(3.3));
s1.moveFrom(s2);
s2.moveTo(s1);
Stack.print(s2);
Vector<Number> v1 = new Vector<Number>();
while (!s1.isEmpty()){
Number n = s1.pop();
v1.add(n);

}
JFrame frame = new JFrame();
frame.setTitle("Example");
frame.setSize(300, 100);
JTree tree = new JTree(v1);
frame.add(tree, BorderLayout.CENTER);
frame.setVisible(true);

}
}

class Stack<T1> {
private Vector<T1> v2;
public Stack(){

v2 = new Vector<T1>();
}
public void push(T1 o){

v2.addElement(o);
}
public T1 pop(){

return v2.remove(v2.size()-1);
}
public void moveFrom(Stack<? extends T1> s3){

this.push(s3.pop());
}
public void moveTo(Stack<? super T1> s4){

s4.push(this.pop());
}
public boolean isEmpty(){

return v2.isEmpty();
}
public static void print(Stack<?> s5){

Enumeration<?> e = s5.v2.elements();
while (e.hasMoreElements())

System.out.println(e.nextElement());
}

}

Fig. 5. The example program after the application of Introduce Type Parameter

to the formal parameter of Stack.push(), followed by an application of Infer Generic

Type Arguments to the entire application

4.1 Infer Generic Type Arguments

The Infer Generic Type Arguments refactoring requires a minor extension
of the type constraint formalism of Section 2, which we illustrate by way of
our running example. Some technical details are not discussed due to space
limitations, and can be found in a previous paper [8].
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In order to reason about type parameters, we introduce a new kind of con-
straint variable. These constraint variables are of the form T (x), representing
the type that is bound to formal type parameter T in the type of x. For ex-
ample, if we have a parameterized class Vector<E> and a variable v of type
Vector<String>, then E(v) = String. We also need additional rules for gener-
ating type constraints to ensure that the appropriate values are inferred for the
new constraint variables. We now give a few examples to illustrate how these
rules are inferred from method signatures in parameterized classes. In giving
these examples, we assume that class Stack has already been parameterized as
in the right column of Figure 5 (either manually, or using the Introduce Type

Parameter refactoring presented in Section 4.2).

Example 1. Consider the method call s1.push(new Integer(1)) on line 4 in
Figure 2. This call refers to the method void Stack<T1>.push(T1 o). If s1 is
of a parameterized type, say, Stack<α>, then this call can only be type-correct
if Integer≤α and this constraint is generated from rule (17) in Figure 6(a).

Example 2. Similarly, the call s1.pop() on line 13 refers to method void
Stack<T1>.pop(). If s1 is of some parametric type, say Stack<α>, then
[s1.pop()] = α and this constraint can be generated from rule (18).

Example 3. Consider the call s1.moveFrom(s2) on line 8. If we assume that
s1 and s2 are of parameterized types Stack<α1> and Stack<α2>, for some α1,
α2, then the call is type correct if we have that α2≤α1 and this constraint is
generated from rule (19).

As can be seen from Figure 6(a), the rules for generating constraints have a
regular structure, in which occurrences of type parameters in method signatures
give rise to different forms of constraints. In the examples we have seen, type
parameters occur as types of formal parameters, as return types, and as actual
type parameters in the type of a formal parameter. Several other forms exist [8].

Figure 6(b) shows the constraints generated for the example. From these con-
straints, it follows that: Integer≤T1(s1), Float≤T1(s2), and T1(s2)≤T1(s1),
and hence that Float≤T1(s1). Since Number is a common supertype of Integer
and Float, a possible solution to this constraint system is:

T1(s1) ← Number, T1(s2) ← Float

However, several other solutions exist, such as the following uninteresting one:

T1(s1) ← Object, T1(s2) ← Object

Our current constraint solver relies on heuristics to guide it towards preferred so-
lutions. The most significant of these heuristics are preferring more specific types
over less specific ones, and avoiding marker interfaces such as Serializable.

Generating the refactored source code is now straightforward. The type of
variable s1 in the example program, for which we inferred T1(s1) = Number, is
rewritten to Stack<Number>. Similarly, the types of s2 and v1 are rewritten to
Stack<Float> and Vector<Number>, respectively. Furthermore, all downcasts
are removed for which the type of the expression being cast is a subtype of the
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program construct constraint(s)

method call E1.push(E2) to
void Stack<T1>.push(T1)

[E2]≤T1(E1) (17)

method call E.pop() to
void Stack<T1>.pop()

[E.pop()]=T1(E) (18)

method call E1.moveFrom(E2) to
void Stack<T1>.

moveFrom(Stack<? extends T1>)
T1(E2)≤T1(E1) (19)

method call E1.moveTo(E2) to
void Stack<T1>.

moveTo(Stack<? super T1>)
T1(E1)≤T1(E2) (20)

method call E1.add(E2) to
boolean Vector<E>.add(E)

[E2]≤E(E1) (21)

line(s) constraint(s) rule(s)

4 Integer≤T1(s1) (11),(17)
6,7 Float≤T1(s2) (11),(17)
8 T1(s2)≤T1(s1) (19)
9 T1(s2)≤T1(s1) (20)
13 [ s1.pop() ]=T(s1) (18)
13 Number≤E(v1) (21)

(a) (b)

Fig. 6. (a) Additional constraint generation rules needed for the Infer Generic

Type Arguments refactoring, automatically derived from method signatures (only
constraints for methods used in the example program are shown). (b) Type constraints
generated for the example program using the rules of (a). Only nontrivial constraints
relevant to the inference of type parameters in uses of Stack and Vector are shown.
Line numbers refer to Figure 2, and rule numbers refer to Figures 6(a) and 1.

target type. For example, for the downcast (Number)s1.pop() on line 13, we
inferred [s1.pop()] = Number enabling us to remove the cast.

4.2 Introduce Type Parameter

Consider a scenario where a programmer wants to apply Introduce Type Pa-

rameter to replace the type of the formal parameter o of Stack.push() with
a new type parameter. Our solution requires a new form of constraint variable
called context variable4. A context variable is of the form Iα′(α) and represents
the interpretation of a constraint variable α in a context given by a constraint
variable α′. As an example, consider the type Stack<T1>. In the context of an in-
stance Stack<Number>, the interpretation of T1 is Number. Now, if we have a vari-
able x of type Stack<Number>, then the interpretation of T1 in the context of the
type of x is Number and we will denote this fact by I[x](T 1) = Number. Here, I[x]
is an interpretation function that maps the formal type parameter5 T1 of Stack
to the type with which it is instantiated in type [x]. For a more interesting exam-
ple, consider the call s1.push(new Integer(1)) on line 4 of Figure 2. For this
call to be type-correct, the type Integer of actual parameter new Integer(1)
must be a subtype of the formal parameter o of Stack.push() in the context of
the type of s1. This can be expressed by a constraint Integer≤I[s1]([o]). Note
that we cannot simply require that Integer≤[o] because if Stack becomes a
parameterized class Stack<T1>, and the type of o becomes T1, then T1 is out of
scope on line 4 (in addition, Integer is not a subtype of T1).

4 Also required are wildcard variables to model cases where Java’s typing rules require
the introduction of wildcard types due to method overriding [13].

5 For parameterized types with multiple type parameters such as HashMap, the inter-
pretation function provides a binding for each of them [13].
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line(s) constraint(s)

30 [ o ] ≤ E(v2) (i)
33 E(v2) ≤ [ Stack.pop() ] (ii)
36 I[s3]([Stack.pop()]) ≤ [ o ] (iii)

39 [ Stack.pop() ] ≤ I[s4]([o]) (iv)

constraint variable inferred type

o T1
E(v2) T1
[ Stack.pop() ] T1
I[s3]([Stack.pop()]) ? extends T1

I[s4]([o]) ? super T1

(a) (b)

Fig. 7. (a) Type constraints generated for class Stack of Figure 2 when applying Intro-

duce Type Parameter. (b) Solution to the constraints computed by our algorithm.

Figure 7(a) shows some of the constraints generated for class Stack of
Figure 2. For these constraints, the algorithm by Kieżun et al. [13] computes
the solution shown in Figure 7(b). This solution can be understood as follows.
The type of o has become a new type parameter T1 because this declaration
was selected by the user. From constraints (i) and (ii) in Figure 7, it follows
that E(v2) and [ Stack.pop() ] must each be a supertype of T1, and from con-
straint (iii) it can be seen that I[s3]([Stack.pop()]) must be a subtype of T1. The
only possible choices for [ Stack.pop() ] are T1 and Object because wildcard
types are not permitted in this position, and T1 is selected because the choice of
Object would lead to a violation of constraint (iii).

Taking into account constraint (ii), it follows that E(v2) = T1. Now, for
Is3([Stack.pop()]), the algorithm may choose any subtype of T1, and it heuris-
tically6 chooses ? extends T1. Likewise, the type ? super T1 is selected for
I[s4]([o]).

At this point, determining how the rewrite the source code is straightfor-
ward. From Figure 7(b), it can be seen that type of o and the return type of
Stack.pop() become T1. Moreover, from E(v2) = T1, it follows that v2 be-
comes Vector<T1>. The type of s3 is rewritten to Stack<? extends T1> be-
cause the return type of Stack.pop() is T1 and the type ? extends T1 was
inferred for I[s3]([Stack.pop()]). By a similar argument, the type of s4 is rewrit-
ten to Stack<? super T1>. The right column of Figure 5 shows the result.

5 A Refactoring for Replacing Classes

As applications evolve, classes are occasionally deprecated in favor of others with
roughly the same functionality. In Java’s standard libraries, for example, class
Hashtable has been superseded by HashMap, and Iterator is now preferred over
Enumeration. In such cases it is often desirable to migrate client applications to
make use of the new idioms, but manually making the required changes can be
labor-intensive and error-prone. In what follows, we will use the term migration
to refer to the process of replacing the references to a source class with references
to a target class.
6 Other possible choices include T1, or a new type parameter that is a subtype of T1.

The paper by Kieżun et al. [13] presents more details on the use of heuristics.
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In the program of Figure 2, Vectors are used in two places (variable v1
declared on line 11 and field v2 declared on line 25). Class ArrayList was intro-
duced in the standard libraries to replace Vector, and is considered preferable
because its interface is minimal and matches the functionality of the List inter-
face. ArrayList also provides unsynchronized access to a list’s elements whereas
all of Vector’s methods are synchronized, which results in unnecessary over-
head when Vectors are used by only one thread. The example program illustrates
several factors that complicate the migration from Vector to ArrayList:

– Some methods in Vector are not supported by ArrayList. E.g, the ex-
ample program calls Vector.addElement() on line 30, a method not de-
clared in ArrayList. In this case, the call can be replaced with a call to
ArrayList.add(), but other cases require the introduction of more complex
expressions, or preclude migration altogether.

– Opportunities for migration may be limited when applications interact with
libraries. For example, variable v1 declared on line 11 serves as the actual
parameter in a call to a constructor JTree(Vector) on line 19. Changing the
type of v1 to any supertype of Vector would render this call type-incorrect.
Hence, the allocation site labeled A1 cannot be migrated to ArrayList.

– Migrating one class may require migrating another. Consider the call
on line 45 to Vector.elements(), which returns an Enumeration.
ArrayList does not declare this method, but its method iterator()
returns an Iterator, an interface with similar functionality7. In this
case, we can replace the call to elements() with a call to iterator(),
provided that we replace the calls to Enumeration.hasMoreElements()
and Enumeration.nextElement() on lines 46 and 47 with calls to
Iterator.hasNext() and Iterator.next().

– If a Vector is accessed concurrently, then preservation of synchronization
behavior is important. This is accomplished by introducing synchronization
wrappers. This issue does not arise in the program of Figure 2 because it is
single-threaded; the paper by Balaban et al. [1] presents an example.

We have developed a Replace Class refactoring that addresses these migra-
tion problems. This refactoring relies on a migration specification that specifies
for each method in the source class how it is to be rewritten. Figure 8 shows
the fragments of the specification for performing the migration from Vector to
ArrayList and from Enumeration to Iterator needed for the example pro-
gram (the complete specification can be found in [1]). Migration specifications
only have to be written once for each pair of (source,target) classes.

We adapt the type constraints formalism of Section 2 as follows to implement
Replace Class. For each source class S and target class T in a migration, the
type system is extended with types S� and S⊥, such that S≤S�, T≤S�, S⊥≤S,

7 The methods hasNext() and next() in Iterator correspond to hasMoreElements()
and nextElement() in Enumeration, respectively. Iterator declares an additional
method remove() for the removal of elements from the collection being iterated over.



Refactoring Using Type Constraints 13

(1) new Vector(), unsynchronized → new ArrayList()
(2) new Vector(), synchronized → Collections.synchronizedList(

new ArrayList())
(3) boolean Vector:receiver.add(Object:v) → boolean receiver.add(v)
(4) void Vector:receiver.addElement(Object:v) → boolean receiver.add(v)
(5) Object Vector:receiver.remove(int:i) → Object receiver.remove(i)
(6) int Vector:receiver.size() → int receiver.size()
(7) boolean Vector:receiver.isEmpty() → boolean receiver.isEmpty()
(8) Enumeration Vector:receiver.elements() → Iterator receiver.iterator()
(9) boolean Enumeration:receiver.hasMoreElements() → boolean receiver.hasNext()
(10) Object Enumeration:receiver.nextElement() → Object receiver.next()

Fig. 8. Specification used for migrating the example program

line(s) constraint(s)

11 [ A1 ]≤[ v1 ], [ A1 ]≤Vector�, Vector⊥≤[ A1 ] (i),(ii),(iii)
19 [ v1 ]≤Vector (iv)

27 [ A2 ]≤[ v2 ], [ A2 ]≤Vector�, Vector⊥≤[ A2 ] (v),(vi),(vii)
30 [ o ]≤Object (viii)

33,42 [ v2 ]≤Collection (ix)
45 [ s5.v2 ]=Vector → [ s5.v2.elements() ]=Enumeration (x)
45 [ s5.v2 ]=ArrayList → [ s5.v2.elements() ]=Iterator (xi)

Fig. 9. Some of the type constraints generated for the application of the Replace

Class refactoring to the program of Figure 2

S⊥≤T 8. Moreover, rule (11) of Figure 1 is adapted to generate constraints for
allocation sites that permit the migration from source types to target types. For
example, constraints (ii) and (iii) in Figure 9 are generated for the allocation
site labeled A1 on line 11 in Figure 2.

For a migration from a class S to a class T , a call to a method in S gives rise to
implication constraints of the form α = K → c. Here, α is a constraint variable,
K is a type, and c is an unconditional constraint that must be satisfied if the
condition holds. For example, consider the call s5.v2.elements() on line 45,
which can be rewritten to an expression s5.v2.iterator() (see Figure 8). The
implication constraints (x) and (xi) in Figure 9 state that the type of the call
expression s5.v2.elements() is Enumeration if the type of v2 remains Vector,
but becomes Iterator if the expression is rewritten to s5.v2.iterator().

Solving systems of implication constraints may require backtracking. How-
ever, it is often possible to perform simplifications that eliminate the need for
implications. As an example, consider the call v2.addElement(o) on line 30. If
the type of v2 remains Vector, we must constrain o to be a subtype of the formal
parameter of Vector.addElement(), which can be expressed by the constraint:
[ v2 ]=Vector → [ o ]≤[ Param(0,Vector:addElement(Object)) ]. Similarly, for
the case where the type of v2 becomes ArrayList, we have: [ v2 ]=ArrayList →
[ o ]≤[ Param(0,ArrayList:add(Object)) ]. These constraints can be combined
into a single unconditional constraint [o]≤Object (constraint (viii)) because both
Param-expressions evaluate to Object.

8 These types are only used during constraint solving. In other words, they are never
introduced in the refactored source code.
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class Client {
public static void main(String[] args){

Stack s1 = new Stack();
s1.push(new Integer(1));
Stack s2 = new Stack();
s2.push(new Float(2.2));
s2.push(new Float(3.3));
s1.moveFrom(s2);
s2.moveTo(s1);
Stack.print(s2);
Vector v1 = new Vector();
while (!s1.isEmpty()){
Number n = (Number)s1.pop();
v1.add(n);

}
JFrame frame = new JFrame();
frame.setTitle("Example");
frame.setSize(300, 100);
JTree tree = new JTree(v1);
frame.add(tree, BorderLayout.CENTER);
frame.setVisible(true);

}
}

class Stack {
private ArrayList v2;
public Stack(){

v2 = new ArrayList();
}
public void push(Object o){

v2.add(o);
}
public void moveFrom(Stack s3){

this.push(s3.pop());
}
public void moveTo(Stack s4){

s4.push(this.pop());
}
public Object pop(){

return v2.remove(v2.size() - 1);
}
public boolean isEmpty(){

return v2.isEmpty();
}
public static void print(Stack s5){

Iterator e = s5.v2.iterator();
while (e.hasNext())

System.out.println(e.next());
}

}

Fig. 10. The example program after the application of Replace Class refactoring

From constraints (i) and (iv) in Figure 9, it follows that [ A1 ]≤[ v1
]≤Vector, implying that the type A1 must remain Vector. However, the typ-
ing [ A2 ] ← ArrayList, [ v2 ] ← ArrayList satisfies the constraint system,
indicating that allocation site A2 can be migrated to ArrayList.

Producing the refactored source code requires keeping track of the choices
made for implication constraints and consulting the migration specification to
determine how expressions should be rewritten. The refactored source code for
the example program is shown in Figure 10.

A few additional complicating factors exist. In order to preserve synchroniza-
tion behavior, we rely on a simple escape analysis to determine whether Vectors
may escape their thread. Vectors that do not escape are migrated to ArrayLists
(if no constraints are violated). For escaping Vectors, we attempt a translation
that introduces a synchronization wrapper (rule (2) of Figure 8). Hence, there
are three alternatives for each Vector allocation site: it can remain a Vector,
become an unwrapped ArrayList, or a wrapped ArrayList. Preserving the be-
havior of downcasts requires additional constraints [1].

6 Related Work

Opdyke [15, page 27–28] identified some of the invariants that refactorings must
preserve. One of these, Compatible Signatures in Member Function Redefinition,
states that overriding methods must have corresponding argument types and
return types, corresponding to our constraints (8) and (9). Opdyke writes the
following about the Type-Safe Assignments invariant: “The type of each expres-
sion assigned to a variable must be an instance of the variable’s defined type, or
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an instance of one of its subtypes. This applies both to assignment statements
and function calls”. This corresponds to our constraints (1), (3), (12), and (14).

Fowler [7] presents a comprehensive classification of a large number of refac-
torings, which includes step-by-step directions on how to perform each of these
manually. Many of the thorny issues are not addressed. E.g., in the case of Ex-

tract Interface, Fowler only instructs one to “Adjust client type declarations
to use the interface”, ignoring the fact that not all declarations can be updated.

Tokuda and Batory [23] discuss refactorings for manipulating design patterns
including one called Substitute which “generalizes a relationship by replacing
a subclass reference to that of its superclass”. Tokuda and Batory point out that
“This refactoring must be highly constrained because it does not always work”.
Our model can be used to add the proper precondition checking.

Halloran and Scherlis [11] present an informal algorithm for detecting over-
specific variable declarations. This algorithm is similar in spirit to our General-

ize Declared Type refactoring by taking into account the members accessed
from a variable, as well as the variables to which it is assigned.

The Infer Type refactoring by Steimann et al. [20] lets a programmer select
a given variable and determines or creates a minimal interface that can be used
as the type for that variable. Steimann et al. only present their type inference
algorithm informally, but their constraints appear similar to those presented
in Section 2. In more recent work, Steimann and Mayer [19] observe that the
repeated use of Infer Type may produce suboptimal results (e.g., the creation
of many similar types). Their Type Access Analyzer performs a global analysis to
create a lattice that can be used as the basis for extracting supertypes, changing
the types of declarations, merging structurally identical supertypes, etc.

The KABA tool [21,18] generates refactoring proposals for Java applications
(e.g., indications that a class can be split, or that a member can be moved). In
this work, type constraints record relationships between variables and members
that must be preserved. From these type constraints, a binary relation between
classes and members is constructed that encodes precisely the members that
must be visible in each object. Concept analysis is used to generated a concept
lattice from this relation, from which refactoring proposals are generated.

Duggan’s approach for parameterizing classes [6] predates Java generics, and
his PolyJava language is incompatible with Java in several respects (e.g., the
treatment of raw types and arrays, no support for wildcards). Unlike our ap-
proach, Duggan’s takes a class as its input and relies on usage information to
generate constraints that relate the types of otherwise unrelated declarations. If
usage information is incomplete or unavailable, too many type parameters may
be inferred. To our knowledge, Duggan’s work was never fully implemented.

Donovan and Ernst [4] present solutions to both the parameterization and
the instantiation problems. For parameterization, a dataflow analysis is applied
to each class to infer as many type parameters as are needed to ensure type-
correctness. Then, type constraints are generated to infer how to instantiate
occurrences of parameterized classes. Donovan and Ernst report that “often the
class is over-generalized”, i.e., too many type parameters are inferred. Donovan
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and Ernst’s work predates Java generics (arrays of parameterized types are in-
ferred, which are not allowed in Java) and was never fully implemented.

Donovan et al. [5] present a solution to the instantiation problem based on
a context-sensitive pointer analysis. Their approach uses “guarded” constraints
that are conditional on the rawness of a particular declaration, and that require
a (limited) form of backtracking, similar to the implication constraints used
in Section 5. Our solution is more scalable than Donovan’s because it requires
neither context-sensitive analysis nor backtracking, and more general because it
is capable of inferring precise generic supertypes for subtypes of generic classes.
Moreover, as Donovan’s work predates Java 1.5, their refactoring tool does not
consider wildcard types and supports arrays of generic types (now disallowed).

Von Dincklage and Diwan [25] present a solution to both the parameteriza-
tion problem and the instantiation problem based on type constraints. Their
Ilwith tool initially creates one type parameter per declaration, and then uses
heuristics to merge type parameters. While the successful parameterization of
several classes from the Java standard collections is reported, some of the in-
ferred method signatures differ from those in the Java 1.5 libraries. It also ap-
pears that program behavior may be changed because constraints for overriding
relationships between methods are missing. As a practical matter, Ilwith does
not actually rewrite source code, but merely prints method signatures without
providing details on how method bodies should be transformed.

7 Conclusion

An important category of refactorings is concerned with manipulating types and
class hierarchies. For these refactorings, type constraints are an excellent basis
for checking preconditions and computing source code modifications. We have
discussed refactorings for generalization, for the introduction of generics, and for
performing migrations between similar classes, using slight variations on a com-
mon type constraint formalism. All of our refactorings have been implemented in
Eclipse, and several refactorings in the standard Eclipse distribution are based
on our research. A detailed evaluation of the performance and effectiveness of
our refactorings can be found in our earlier papers [8,1,13].

Acknowledgments

The contents of this paper are based on the author’s joint research with Ittai
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Abstract. Silicon chip design has passed a threshold whereby expo-
nentially increasing transistor density (Moore’s Law) no longer trans-
lates into increased processing power for single-processor architectures.
Moore’s Law now expresses itself as an exponentially increasing number
of processing cores per fixed-size chip.

We survey this process and its implications on programming language
design and static analysis. Particular aspects addressed include the re-
duced reliability of ever-smaller components, the problems of physical
distribution of programs and the growing problems of providing shared
memory.

1 Hardware Background

Twenty years ago (1985 to be more precise) it was all so easy—processors and
matching implementation languages were straightforward. The 5-stage pipeline
of MIPS or SPARC was well established, the 80386 meant that the x86 archi-
tecture was now also 32-bit, and memory (DRAM) took 1–2 cycles to access.
Moreover ANSI were in the process of standardising C which provided a near-
perfect match to these architectures.

– Each primitive operation in C roughly1 corresponded to one machine oper-
ator and took unit time.

– Virtual memory complicated the picture, but we largely took the view this
was an “operating systems” rather than “application programmer” problem.

– C provided a convenient treaty point telling the programmer what the lan-
guage did and did not guarantee; and a compiler could safely optimise based
on this information. Classical dataflow optimisations (e.g. register allocation
and global common sub-expression elimination) became common. A GCC
port became a ‘tick list requirement’ for a new processor.

1 The main wart was that a struct of arbitrary size could be copied with an innocent-
looking ‘=’ assignment.
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Moore’s Law (the self-fulfilling guide that the number of transistors per unit
area doubles every 18 months) continued to apply: a typical 1985 processor
had a feature size of 1.5μm, today’s use 65nm. The reduction in component
size caused consequent (so called ‘scaling’) changes: speed increased and voltage
was reduced. However, the power dissipated by a typical 2 cm2 chip continued
to increase—we saw this in the ever-increasing heat sinks on CPUs. Around
2005 it became clear that Moore’s law would not continue to apply sensibly to
x86 class processors. Going faster just dissipates too much power: the power
needed to distribute a synchronous clock increases with clock speed—a typical
uni-processor x86-style processor could spend 30% of its power merely doing
this. Equally there are speed-of-light issues: even light in vacuo takes 100 ps (≡
10GHz) for the round trip across a 15mm chip; real transistors driving real
capacitive wires take far longer. For example the ITRS2 works on the basis that
the delay down 1mm of copper on-chip wire (111ps in 2006) will rise to 977ps by
2013; this represents a cross-chip round-trip of nearly 30 ns—or 75 clock cycles
even at a pedestrian 2.5GHz—on a 15mm chip. Of course, off chip-access to
external memory will be far worse!

However, while Moore’s Law cannot continue forever3 it is still very much
active: the architectural design space merely changed to multi-core processors.
Instead of fighting technology to build a 5 GHz Pentium we build two or four
2.4GHz processors (‘cores’) on a single chip and deem them ‘better’. The indi-
vidual cores shrink, and their largely independent nature means that we need
to worry less about cross-the-whole-chip delays. However, making a four-core
2.4GHz processor be more useful than a single-core 3GHz processor requires sig-
nificant program modification (either by programmer or by program analysis and
optimisation); this point is a central issue to this paper and we return to it later.

Slightly surprisingly, over the past 20 years, the size of a typical chip has not
changed significantly (making a chip much bigger tends to cause an unacceptable
increase in manufacturing defects and costs) merely the density of components
on it. This is one source of non-uniformity of scaling—and such non-uniformity
may favour one architecture over another.

The current state of commercial research-art is Intel’s 2006 announcement of
their Tera-scale [11] Research Prototype Chips (2.75 cm2, operating at 3.1GHz).
Rattner (Intel’s CTO) is quoted4 as saying:

“. . . this chip’s design consists of 80 tiles laid out in an 8x10 block ar-
ray. Each tile includes a small core, or compute element, with a simple
instruction set for processing floating-point data, . . . . The tile also in-
cludes a router connecting the core to an on-chip network that links all
the cores to each other and gives them access to memory.

“The second major innovation is a 20 megabyte SRAM memory chip
that is stacked on and bonded to the processor die. Stacking the die

2 International Technology Roadmap for Semiconductors, www.itrs.net
3 It is hard to see how a computing device can be smaller than an atom.
4 http://www.intel.com/pressroom/archive/releases/20060926corp b.htm
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makes possible thousands of interconnects and provides more than a
terabyte-per-second of bandwidth between memory and the cores.”

MIT has been a major player in more academic consideration of processor
designs which can be used to tile a chip. The RAW processor [21] made on-chip
latencies visible to the assembly code processor to give predictable behaviour;
the recent SCALE processor [2] addresses similar aims: “The Scale project is
developing a new all-purpose programmable computing architecture for future
system designs. Scale provides efficient support for all kinds of parallelism in-
cluding data, thread, and instruction-level parallelism.”

The RAMP (Research Accelerator for Multiple Processors) consortium de-
scribe [24] an FPGA emulator for a range of new processors, and Asanovic et al.
[2] summarise the “Landscape of Parallel Computing Research” from both hard-
ware and software archetype (so-called ‘dwarfs’) perspectives.

1.1 Hidden Architectural Changes

The evolution, and particularly speed increase, from early single-chip CPUs
to modern processors has not happened merely as a result of technology scal-
ing. Much of the speed increase has been achieved (at significant cost in power
dissipation) by spending additional transistors on components such as branch-
prediction units, multiple-issue units and caches to compensate for non-uniform-
ities in scaling.

The original RISC (‘Reduced Instruction Set Computer’) design philosophy
of throwing away rarely-used instructions to allow faster execution of common
instructions became re-written to a revisionist form “make each transistor pay
its way in performance terms”. Certainly modern processors, particularly the
x86, are hardly ‘reduced’ however, they do largely conform to this revised view.
Thus, while originally it might have been seen as RISC (say) “to remove a
division instruction limiting the critical timing path to allow the clock-speed
to be increased”, later this came to be seen as “re-allocating transistors which
have little overall performance effect (e.g. division) to rôles which have greater
performance impact (e.g. pipeline, caches, branch prediction hardware, etc)”.

Another effect is that speed scaling has happened at very different rates.
Processor speeds have increased rather faster than off-chip DRAM speeds. Many
programmers are unaware that reading main memory on a typical PC takes
hundreds of processor cycles. Data caches hide this effect for software which
behaves ‘nicely’ which means not accessing memory as randomly as the acronym
RAM would suggest. (Interestingly, modern cache designs seem to be starting
to fail on the “make each transistor pay its way in performance terms” measure.
Caches often exceed 50% of a chip area, but recent measurements show that
typically on SPEC benchmarks that 80% of their content is dead data).

The result is that the performance of the modern processors depends far more
critically on the exact instruction mix being executed than was historically the
case; gone are the days when a load took 1–2 cycles.

Addressing such issues of timing is also a source of programming language
design and program analysis interest. However it may be that this problem



Programming Language Design and Analysis 21

might diminish if, once multi-core is fully accepted, the fashion moved towards a
greater number of simpler (and hence more predictable) processors rather than
fewer complex processors.

1.2 Other Hardware Effects

As mentioned above, technology scaling reduces the size of components and
increases switching speed even though voltage is also reduced. Propagating a
signal over a wire whose length is in terms of feature size scales roughly (but
not quite as well) as the switching speed of components. However, propagating a
signal over a wire whose length is in terms of chip size gets exponentially worse in
terms of gate delays. This can be counteracted by using larger driver transistors,
or more effectively by placing additional gates (buffering) along the path. But
doing computation within these buffers adds very little to the total delay. Two
slogans can summarise this situation:

– (the expanding universe): communication with neighbouring components
scales well, but every year more components appear between you and the
edge of the chip and communicating with these requires either exponentially
more delay, or exponentially bigger driver transistors. Thus local computa-
tion wins over communication.

– (use gzip at sender and gunzip at receiver); it is worth spending increasing
amounts of computation to reduce the number of bits being sent because this
allows greater delays between each transition in turn which allows smaller
transistors to drive the wire.

Once a long wire has gates on it, then we may as well do something useful
with them. This fortuitously overlaps the question of how we enable the many
processors on a multi-core chip to communicate with one another. The answer to
use is some form of on-chip network. This can be fast (if big driver transistors are
used) and compare favourably with communication achieved by random point-
to-point links.

Reducing the feature size of a chip generally requires its operating voltage to
be reduced. However, this reduces noise margins and also increases the ‘leakage
current’ (the classical CMOS assumption is that transistors on a chip only con-
sume one unit of energy when switching); below 65 nm or so leakage current can
exceed power consumption due to computation. This gives two effects:

– it is beneficial to turn off the power supply to areas of the chip which are
not currently active;

– the reduced noise margin increases the error rate on longer wires—sometimes
it is only half-jokingly suggested that TCP/IP might be a good protocol for
on-chip networks.

A further effect of feature size reduction is that as transistors become smaller,
their state (on/off) is expressed as a small number of electrons. This makes the
transistors more susceptible to damage by charged particles e.g. cosmic rays,
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natural radiation. Charged particles may permanently damage a device, but it
is far more common for it to produce a transient event, also known as Single
Event Transient (SET). For example the electrons liberated by a charged par-
ticle may enable a transistor whose input demands it be off (non-conducting)
to conduct for a short period of time (600ps is quoted). Some DRAM memory
chips (‘ECC’) are equipped with redundant memory cells and error-detecting
or error-correcting codes generated during write cycles and applied during read
cycles; similarly aerospace often uses multiple independent devices and majority
voting circuits. It is notable that a standard aircraft ‘autopilot’ function is im-
plemented using five 80386 processors; the larger feature size of the 80386 makes
it less susceptible to SET events, and the multiple processors give significant
redundancy.

1.3 Summary: Hardware Evolution Effects on Programming

The hardware changes discussed above can be summarised in the following
points:

– computation is increasingly cheap compared to communication;
– making effective use of the hardware requires more and more parallelism;
– the idea of global shared memory (and with it notions like semaphores and

locking) is becoming less sustainable; on-chip networks increasingly connect
components on chip;

– to keep chips cool enough we may have to move CPU-intensive processes
around, and (because of leakage current) to disable parts of the chip when
they are not being used;

– because of smaller feature sizes, transient hardware errors (leading to errors
in data) will become more common.

One additional effect is:

– the time taken for a computation has become much less predictable due
to the complexity of uni-processor designs, caches and the like. However,
this may reduce in the future were individual processors to become simpler
and the idea of a uniform memory space were to be less of a programming
language assumption.

The rest of the paper considers programming language consequences.

2 Programming Language Mismatch to Hardware

Most current mainstream programming languages are pretty much stuck in the
1985 model. It is true that C has been superseded by the Object-Oriented
paradigm (C++, Java, C#) and this is certainly useful for software engineering
as it facilitates larger systems being created by programming teams. However,
in many ways very little has changed from C.
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Perhaps the critical observation is that the current OO fashion coincided
with the period of steady evolution of the (single-processor) x86 architecture.
The current pressures for revolutionary change may (and I argue should) lead to
matching language change. Let us examine some particular problems with the
OO paradigm (many are inherited from C).

Consider a function (or method) foo which takes an element of class C
as a parameter. In C++, merely to declare foo (e.g. as part of an interface
specification before any code has been written) we have to choose between three
possible declarations:

extern void foo(C x);
extern void foo(C *x);
extern void foo(C &x);

The first one says call-by-value, the last two provide syntactic variants on call-
by-reference. While on a single-processor architecture we might discuss these in
terms of minor efficiency considerations (e.g. whether class C is small enough
that its copying involved in call-by-value makes up for additional memory ac-
cesses to its fields implied by call-by-reference), on a multi-core architecture the
difference is much more fundamental. If call-by-reference is used then the caller
of foo and the body of foo must by executed on processors both of which have
access to the memory pointed to by x. While call-by-value might therefore seem
attractive, when used without care it breaks typical OO assumptions (‘object
identity’). E.g. toggling one switch twice may well have a different effect from
toggling both a switch and its clone.

It might be suggested that Java avoids this issue; however it avoids it in the
way that in ‘1984’ Orwell’s totalitarian government encourages ‘Newspeak’ to
avoid thought-crime by making it inexpressible in the language. In Java all calls
are by reference; therefore caller and callee must execute on processors sharing
access to passed data. Call-by-value is at best clumsily expressed via remote
method invocation (RMI); moreover, any suggestion that RMI can be introduced
“where necessary” to distribute a Java system is doomed to fail due to the very
different syntax and semantics of local and remote method invocation.

Incidentally, the restrict qualifier found in C99 does not help significantly
here in that it keeps the assumption of global shared memory, but merely allows
the compiler to make various (non-)aliasing assumptions.

We will return to this topic below, but I would like to argue that it is inap-
propriate to have interface specification syntax which places restrictions (‘early
binding’) on physical distribution of methods; one suggestion is that of a C++
variant declaration

extern void foo(C @x);

with meaning “I’ve not yet decided whether to pass x by value or by reference,
so fault my program if I do an operation which would have differing semantics
under the two regimes.”
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This would allow late binding of physical distribution: all uses of ‘@’ can be
treated as copy (if caller and callee do not share a memory space at reasonable
cost) or by alias (if caller and callee execute on the same address space).

2.1 What Should This Community Learn?

We will return to topics below in more detail, but we list them here to motivate
the topics we choose below.

Processor developments expose the fact that C-like languages do not capture
important properties of system design and implementation for such architectures.
Important issues which we might want to expose to aid writing software for such
architectures include:

– late binding of physical distribution;
– more expressive, but concise interface specifications;
– systematic treatment of transient errors.

2.2 Why Not Stick with C++/Java/C#?

For many traditional applications this will suffice, e.g. editors, compilers, spread-
sheets and the like will continue to work well on a single core of a multi-core
processor. But current and future applications (e.g. weather forecasting, sophis-
ticated modelling5) will continue to demand effective exploitation of hardware—
and this means exploiting concurrency.

Remember also that one particular challenge will be to execute programs
written for packages—such as Matlab—effectively.

3 Programming Language Design or Program Analysis

A great deal of work in this community concerns program analysis. While I
have personally worked on program analysis, and continue to believe in it for
local analysis, I now have significant doubts as regards whole-program (inter-
module) analyses and their software engineering impact. The problem is that of
discontinuity: such a large-scale analysis may enable some optimisation which
gains a large speed-up, for example by enabling physical distribution. However,
a programmer may then make a seemingly minor change (perhaps one of a long
sequence of changes) to a program only to find that it now runs many times
slower. This real problem is that it is hard to formulate what the programmer
‘did wrong’ and to enable understanding of how to make a similar change without
suffering this penalty.

Type systems and properties expressed by type-like systems seem to provide
a better answer: properties of interest are then explicitly represented within a

5 One might wonder how our community might exploit large-scale concurrency. Do
our programs match any of the software dwarfs of Asanovic et al. [2]? Or will we
merely continue to use use one core of our multi-core chips as we do at the moment?
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programming language at interface points. For example, the interface to a pro-
cedure may express the property that its parameter will be consumed (logically
de-allocated); then callers of the procedure can check that no use is made of the
parameter after the call. This means that violating important assumptions will
result in errors which have human-comprehensible explanations.

Of course, there is no problem with local inference—a tasteful mechanism al-
ways avoids pointless specification—the advantage is that programmer-specified
invariants can be used to anchor local reasoning and to break down a global
analysis into many smaller independent analyses.

For various aspects of multi-core programming (e.g. running two blocks of
code concurrently), it is important to know whether two pointers may alias.
Much important work has been done on alias analysis (which is undecidable
in theory and for which achieving good approximations is problematic in prac-
tice). However, we still lack designs for programming languages in which alias-
ing information can be expressed within the language rather than as a mere
analysis.

This situation can be compared with the two ways of adding types to a
dynamically-typed language. Method 1 is to analyse the program determining
which variables have known type (and optimising their accesses) and which have
to adopt a fall-back ‘could be anything’ treatment. Method 2 is to add a manda-
tory type system for the language which allows all variable accesses to be opti-
mised and which rejects as few programs as possible. Lisp (with Soft Typing)
and ML might serve as good templates here.

An implementation language in which programmer knowledge of known alias-
ing (and non-aliasing) can be expressed in interface specifications succinctly, and
acceptably to an ordinary programmer, would be a particular success here.

4 Programming Languages: High-Level and
Implementation Level

Some might be surprised at my focus on C in the introduction, when there were
arguably many more ‘interesting’ language features being explored in 1985. I
focused on C because it corresponded directly to hardware features in 1985 (it
was a good implementation language), and indeed could (and did) usefully serve
as an intermediate language for compilers from higher-level languages.

The same motivation was also present in the design of Occam [10] which was
a well-matched implementation language for an early multi-core computer6—
the ‘transputer’.7 Occam was modelled on Hoare’s CSP so naturally supported
message passing (separate transputers had no shared memory), and represented
concurrency directly. Sadly, in many ways it was ahead of its time, and we would
6 The ‘cores’ here were actually separate chips containing 16-bit (later 32-bit) proces-

sors with their own memory and four fast I/O ports (e.g. with nearest neighbours
on a rectangular grid).

7 http://en.wikipedia.org/wiki/INMOS transputer seems the best reference nowa-
days.
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have perhaps been in a better position with respect to higher-level language
for multi-core had more work been done then on novel higher-level features to
compile to Occam!

My feeling here is that we need both sorts of language; we need a good im-
plementation language which is well-matched to hardware, and this exhibits the
‘sharp end’ of many challenges. However, high-level languages may also need
to change somewhat, and this is taken up in the next section with “pointers
considered harmful” and Section 5.7 explores the desire to have late binding of
store-versus-recompute decisions. Some form of structuring beyond “everything
is an object (or value) which can be used anywhere at any time” appears likely
to be useful.

5 Some Interesting Directions

This section discusses work or possible future projects (inevitably biased towards
my own interests) which could be useful in addressing the mismatch between
current languages and future hardware.

5.1 (Simple) Pointers Considered Harmful

We have already identified how the ubiquitous use of call-by-reference for objects
causes two forms of problems. Firstly in practice it becomes almost impossible
to determine whether two object references point to the same object or not, this
inhibits parallelisation since code as simple as

for (i=0; i<NCHANS; i++) process_channel(i);

is often not parallelisable because of the possibility of aliasing of some reference
in process_channel(0) with a reference in process_channel(1). Secondly,
pointers inhibit physical distribution in situations where memory access is not
uniform, e.g. if a caller and callee are on different physical processors then we
need to ensure that any call-by-reference parameter lives in memory accessible
to both—and this may not exist or may be much slower to access than fast local
memory. C99’s restrict qualifier can sometimes help with the former problem
but not with the latter.

Shape Analysis [16], Uniqueness types [13] and Ownership Types [3] pro-
vide some purchase on this problem. They identify a similar theme: unrestricted
pointers are too powerful. In many ways they are like the unrestricted use of
labels and gotos which Dijkstra railed against in “goto considered harmful”.
Given that a pointer to local data on one processor is not necessarily even valid
on another processor, we need some way to tame pointers. This can happen in
more than one way: either we wish to control the number of aliases to a given
object, or we wish to ascribe an address space to a pointer, so that dereferencing
a pointer is only valid on processors which have a capability to do so.
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In our work on PacLang [4] we showed how a quasi-linear8 type system allows
one to write code naturally in which an object could move between processors
with compile time checking of linearity assumptions. A purely linear type system
tends to require rather uncomfortable passing of values back and forth; a quasi-
linear system enhances this with limited-lifetime second-class pointers which
make local call-by-reference possible in a natural programming style. It turns
out that linear (or quasi-linear) knowledge of pointers helps [5] in refactoring
code from sequential to concurrent by telling a compiler that certain aliasing—
which would lead to a race condition—cannot happen. A particular noteworthy
point was the concept of an “Architecture Mapping Script (AMS)” which spec-
ified architecture details so that late binding of processes to processors could be
achieved.

Microsoft’s Singularity OS (Fähndrich et al. [6]) project further develops this
idea to a message-passing operating system—linear data buffers (allocated in
ExHeap) can be transferred from process to process by merely passing a pointer
since linearity ensures that the sender no longer has access to the data after
transfer.

Region-based type systems [19] distinguish pointer types with the region
(think ‘address space’) into which they may legitimately point. They provide
a good basis for providing syntax to describe situations in which a pointer to lo-
cal memory in one processor is being passed via a second processor (on which it
is not valid to dereference it) onto a third which can dereference it. However, as
Fähndrich et al. observe, the original lexical nesting structure of regions cannot
be retained as-is.

5.2 The Actor Model

In the Actor Model of computation, all inter-process communication is achieved
by message passing; actors only access disjoint memory. Given that architectural
developments mean that communication is becoming the dominant cost rather
than computation, actor-based languages are appealing for their explicit repre-
sentation of non-local communication. A notable commercial example is that of
Erlang [1].

5.3 Theoretical Models of Restricted Re-use

We can see all the above models as attempts to control how and when value might
validly be accessed—contrast this with traditional shared memory in which any
value may be accessed at any time so long as it has not been overwritten.

While models based on linear types have been mentioned several times above
(Wadler [20] is the seminal explanation of this), Separation Logic [14] has recently
8 A linear type system requires each object to have a single active pointer and when

that pointer is assigned or passed to a function then it may no longer be used to
reference the object; only the new copy may be so used. In C++ a dynamic version
of this concept is enshrined as the auto ptr class and invalidation of old pointers is
achieved by overriding the assignment operator.
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attracted rapidly growing interest. Separation logic at its simplest expresses
assertions that an address space is split into two or more disjoint areas—not
only can this model the sort of situations we have seen above, but it can also
model dynamic change of ownership and shared-memory systems very effectively.

Both linear types and separation logic provide mechanisms for describing val-
ues which are not freely accessible from the whole program. However, they de-
scribe overlapping rather than identical phenomena and a formal connection
between them would be highly desirable for inspiring work on concise program-
ming language representations of restricted re-use.

5.4 More on Interface Specifications

We have already seen that providing interface specification on pointers can pro-
vide compile-time to programs to enable them to be better mapped onto multi-
core hardware.

However, there are other ways in which interfaces are often inexpressive and
we give a hardware example.9 Consider the Verilog encoding of a two-stage shift
register: the input byte on ‘in’ appears on the output ‘out’ two clock ticks later:

module two_stage (in, out, clock);
input [7:0] in;
output [7:0] out;
input clock;

reg [7:0] state1;
reg [7:0] state2;
assign out = state2; // or out = state1
always @(posedge clock)

begin
state1 <= in;
state2 <= state1;

end
endmodule

In this example the module specification contains the classical programming
language knowledge that in, out, and clock are wires of given width and which
of them are outputs. However, suppose we change the commented line to

assign out = state1;

then the code behaves as a one-stage delay instead. In an ideal world, we would
like this timing information, or indeed information that one signal is only valid

9 It is admitted that HDLs (Hardware Description Languages) are moving towards
using FIFO “channels” to add flexibility in the time domain to ease this sort of
problem, particularly for crossing clock domain boundaries, but the example given
illustrates another way in which classical programming language “names and types”
interface formalism can be seen as lacking.
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after another goes high, to be part of the type information in the module spec-
ification so that if part of a circuit is retimed—say to equalise computation
delays—then type-checking errors can be raised for places in the code which
have not taken this retiming into account.

Does such information have a place in future programming languages?

5.5 Fractals in Programming and Architecture

Rent’s Rule (Stroobandt [17] gives a good overview) enshrines the empirical
observation that the number of pins T on a chip tends to follow a power law
T = T0g

p where g is the number of internal components (gates) and T0 and p
are constants. Donath noted that Rent’s Rule could also be be used to estimate
wire-length distribution in VLSI chips.

Power laws tend to suggest that there is an underlying self-similarity (also
known as the system being fractal). Of course, the very basis of top-down engi-
neering (software or otherwise) is that each component is hierarchically built of
a number of smaller components. This also is self-similar.

It is intriguing to consider whether these two observations could be exploited
to improve our understanding of how to map complex systems to hardware. With
the exception of references to global memory (heap-allocated data structures—
recall the “pointers considered harmful” slogan above) data flow follows design
decomposition which is very encouraging. Do global-memory-free programs have
a better mapping to hardware? Can such programs be expressive enough?

Of course, global memory breaks this assumption because it provides a way
to move data from any part of the system to another in a relatively uncontrolled
manner; in general memory access requires some form of serialisation which
slows down processing elements. One question is whether designs like Intel’s
‘Tera-scale’ (bonding the memory directly on top of the processor die essentially
exploits a scale-free short-path access in the third dimension, see Section 1) will
provide enough bandwidth to (and cache-coherency of!) global memory so that
shared-memory models are still valid or whether the concept of global memory
is still ultimately problematical.

5.6 Limits for Speed-Ups

In seminal work Wall [23] analyses instruction traces for various benchmarks
including an early version of the SPEC10 benchmark suite. He calculated lim-
its to speed-up based on instruction-level parallelism under various models of
behaviour of caches and branch prediction. Redux [12] constructed a more ab-
stract “Dynamic Data Flow Graph (DDFG)” from a computation which re-
flected merely the computations necessary to compute the result. The depth of
the DDFG therefore represents the computation given unbounded parallelism
(not necessarily limited to instruction-level parallelism).

An interesting research direction might be to explore more whether DDFGs
for various benchmarks might fit (or be made to fit by source-level adjustment)
10 www.spec.org
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a world in which parallel computation is cheap, but communication is expensive.
To what extent to DDFGs express fractal structure inherent in programs?

5.7 Store Versus Re-compute

Traditionally, the sequential nature of computers has generally made program-
mers aware that re-computation takes time and the way to solve this is to store
values for later re-use. However, as memory becomes more distributed then lo-
cal re-computation of some values (especially data structures in memory) may
become cheaper than accessing remote memory.

We have already seen a small version of this in optimising compilers: if a small
common sub-expression (e.g. x+1), which would normally held in a register, has
to be spilled to memory, then it is better to rematerialise it (i.e. recompute it,
thereby undoing the CSE optimisation) rather than accept the cost of a store
followed by a re-load.

Again it would be desirable to to have language features which allow programs
to be designed and developed more neutrally with respect to store versus recom-
pute (‘late binding on the store/recompute axis’) than is currently the case. This
would also facilitate porting to multiple architectures.

5.8 Opportunistic Concurrency and Related Techniques

While the status of global memory in multi-processor systems is unclear, there
is much scope for examining alternatives to today’s ubiquitous semaphore-based
locking and unlocking mechanisms which can be expensive due both to the cost
of memory synchronisation for atomic test-and-set or compare-and-swap instruc-
tions and also to the fact that programmers often find it easier to take a coarse-
grain lock instead of reasoning about the correctness of fine-grain locking.

One of these is Software Transactional Memory (STM) [7], in which lock and
unlock are replaced by an atomic block. Atomic blocks execute speculatively in
that either they execute to completion without interference from other processes
able to access given memory, or such interference is detected and the atomic
block (repeatedly) re-tried. This idea is already familiar from databases. Software
Transactional Memory represents an interesting mid-point between the notion
of lockable global memory and the notion of message-passing.

Worth grouping with STM is Rundberg and Stenstrom’s Data Dependence
Speculation System [15] in which ambiguities in compile-time alias analysis are
resolved at run time by speculatively executing threads concurrently but with
a dynamic test which effectively suppresses writes occurring out of order and
restarts the threads from a suitable point.

Lokhmotov et al. [9] describe Codeplay’s sieve construct which side-steps
many of the problems with alias analysis. A sieve block has writes with the block
delayed until the block exit. This allows a programmer to express the absence of
read-after-write dependencies (which often have to be assumed present due to
inaccuracy of alias analysis); the effect is to allow C-like code to be optimised
into a “DMA-in, process in parallel, then DMA-out” form.
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Finally, there has been significant work on pre-fetch- or turbo-threads in which
two versions of code are compiled. The second one is the normal code, and the
first one is a cut-down version which is intended to execute in advance of the
second one; it does reduced computation with no stores to global memory and
all loads from local memory replaced by pre-fetch instructions (start load into
cache but do not wait for result).

5.9 Programming Against Hazards and Transient Errors

This is a relatively new topic for our community. We probably are all aware
that highly safety-critical (usually for aerospace applications) electronics is of-
ten duplicated and a majority-voting circuit avoids any single processor crashing
(temporarily or even permanently) causing mission failure. Embedded systems
programmers have for years used ‘watchdog timers’ to ensure that systems suf-
fering temporary failure (e.g. an infinite loop caused by data being corrupted by
a cosmic ray), can be restarted relatively quickly. The idea is that the ‘watchdog’
has to be sent a message periodically confirming the sender is still alive; if this
does not happen then the watchdog (hardware) timer causes a system reset. Of
course, there have been research groups focusing on overall system reliability for
decades, but recently there has been several novel approaches which intersect
our community’s interests more directly.

Some work which springs to mind includes:

– Sarah Thompson’s thesis [18] showing not only that hazards (narrow pulses
on an otherwise clean signal or transition) can be modelled by abstract inter-
pretation, but also that majority voting circuits are theoretically incapable
of removing them without resorting to timing.

– Walker et al. describe lambda-zap [22] whose reduction both inserts faults
and also duplicates computations to be resolved by majority voting. There is
also a type system that guarantees well-typed programs can tolerate a single
error.

– Hillston’s PEPA [8] (Performance Evaluation Process Algebra) which can
model quantitative aspects of systems, originally reaction rates, but hope-
fully also failure rates.

Finally, there is idea that performance and reliability can be traded, for exam-
ple we might eventually require some form of redundant computation—perhaps
merely at the hardware level—to give enough reliability for (say) a spreadsheet,
but be tolerant of errors during some applications (e.g. rendering graphics for
display where the human eye either would not notice errors or would ignore
them).

6 Conclusion

We have seen that forces in hardware design are increasing the mismatch be-
tween traditional programming languages and future processor designs. I argue
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that languages have to evolve to take into account the new emphasis on concur-
rency and the reduced ability to view an object as a simple pointer—and more
expressive interface specifications are pivotal. Program analysis techniques can
provide inspiration for these future designs.

In Addition, there remains scope for language features designed to address
issues directly concerning hardware; for example, how is unreliability best ex-
pressed? Can we improve the expressivity of hardware and software interfaces
to document better their behaviour?

In the bigger picture, there is still much scope for higher-level language de-
signs which encourage programmers to think in a way which naturally encodes
effectively on coming architectures—and even for new architectural features cor-
responding to programming innovations. Can we return to the comfort of 1985
when implementation languages and computer architecture matched?
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Abstract. Introducing aspect orientation to a polymorphically typed
functional language strengthens the importance of type-scoped advices;
i.e., advices with their effects harnessed by type constraints. As types are
typically treated as compile time entities, it is highly desirable to be able
to perform static weaving to determine at compile time the chaining of
type-scoped advices to their associated join points. In this paper, we de-
scribe a compilation model, as well as its implementation, that supports
static type inference and static weaving of programs in an aspect-oriented
polymorphically typed lazy functional language, AspectFun. We present
a type-directed weaving scheme that coherently weaves type-scoped ad-
vices into the base program at compile time. We state the correctness
of the static weaving with respect to the operational semantics of As-
pectFun. We also demonstrate how control-flow based pointcuts (such
as cflowbelow) are compiled away, and highlight several type-directed
optimization strategies that can improve the efficiency of woven code.

1 Introduction

Aspect-oriented programming (AOP) aims at modularizing concerns such as
profiling and security that crosscut the components of a software system[8]. In
AOP, a program consists of many functional modules and some aspects that
encapsulate the crosscutting concerns. An aspect provides two specifications: A
pointcut , comprising a set of functions, designates when and where to crosscut
other modules; and an advice, which is a piece of code, that will be executed when
a pointcut is reached. The complete program behaviour is derived by some novel
ways of composing functional modules and aspects according to the specifications
given within the aspects. This is called weaving in AOP. Weaving results in
the behaviour of those functional modules impacted by aspects being modified
accordingly.

The effect of an aspect on a group of functions can be controlled by introducing
bounded scope to the aspect. Specifically, when the AOP paradigm is supported
by a strongly-type polymorphic functional language, such as Haskell or ML, it
is natural to limit the effect of an aspect on a function through declaration
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of the argument type. For instance, the code shown in Figure 1 defines three
aspects named n3, n4, and n5 respectively; it also defines a main/base program
consisting of declarations of f and h and a main expression returning a triplet.
These advices designate h as pointcut . They differ in the type constraints of their
first arguments. While n3 is triggered at all invocations of h, n4 limits the scope
of its impact through type scoping on its first argument; this is called a type-
scoped advice. This means that execution of n4 will be woven into only those
invocations of h with arguments of list type. Lastly, the type-scoped advice n5
will only be woven into those invocations of h with their arguments being strings.

Example 1.
// Aspects
n3@advice around {h} (arg) =

proceed arg ;
println "exiting from h" in

n4@advice around {h} (arg:[a]) =
println "entering with a list";
proceed arg in

n5@advice around {h} (arg:[Char]) =
print "entering with ";
println arg;
proceed arg in

// Base program
h x = x in
f x = h x in (f "c", f [1], h [2])

// Execution trace
entering with a list
entering with c
exiting from h

entering with a list
exiting from h
entering with a list
exiting from h

Fig. 1. An Example of Aspect-oriented program written in AspectFun

As with other AOP, we use proceed as a special keyword which may be called
inside the body of an around advice. It is bound to a function that represents
“the rest of the computation at the advised function”; specifically, it enables the
control to revert to the advised function (ie., h).

Using type-scoped aspects enable us to have customized, type-dependent trac-
ing message. Note that String (a list of Char) is treated differently from ordinary
lists. Assuming a textual order of advice triggering, the corresponding trace mes-
sages produced by executing the complete program is displayed to the right of
the example code.

In the setting of strongly-type polymorphic functional languages, types are
treated as compile-time entities. As their use in controlling advices can usually
be determined at compile-time, it is desirable to perform static weaving of advices
into base program at compile time to produce an integrated code without explicit
declaration of aspects. As pointed out by Sereni and de Moor [13], the integrated
woven code produced by static weaving can facilitate static analysis of aspect-
oriented programs.

Despite its benefits, static weaving is never a trivial task, especially in the
presence of type-scoped advices. Specifically, it is not always possible to deter-
mine locally at compile time if a particular advice should be woven. Consider
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Example 1, from a syntactic viewpoint, function h can be called in the body of
f. If we were to naively infer that the argument x to function h in the RHS of
f’s definition is of polymorphic type, we would be tempted to conclude that (1)
advice n3 should be triggered at the call, and (2) advices n4 and n5 should not
be called as its type-scope is less general than a→ a. As a result, only n3 would
be statically applied to the call to h.

Unfortunately, this approach would cause inconsistent behavior of h at run-
time, as only the third trace message “exiting from h” would be printed. This
would be incoherent because the invocations (h [1]) (indirectly called from (f
[1])) and (h [2]) would exhibit different behaviors even though they would
receive arguments of the same type.

Most of the work on aspect-oriented functional languages do not address this
issue of static and yet coherent weaving. In AspectML [4] (a.k.a PolyAML [3]),
dynamic type checking is employed to handle matching of type-scoped pointcuts;
on the other hand, Aspectual Caml [10] takes a lexical approach which sacrifices
coherence1 for static weaving.

Fig. 2. Compilation Model for AspectFun

In this paper, we present a compilation model for AspectFun that ensures
static and coherent weaving. AspectFun is an aspect-oriented polymorphically
typed functional language with lazy semantics. The overall compilation process
is illustrated in Figure 2. Briefly, the model comprises the following three major
steps: (1) Static type inference of an aspect-oriented program; (2) Type-directed
static weaving to convert advices to functions and produce a piece of woven code;
(3) Type-directed optimization of the woven code. In contrast with our earlier
work [15], this compilation model extends our research in three dimensions:

1. Language features: We have included a suite of features to our aspect-oriented
functional language, AspectFun. Presented in this paper are: second-order

1 Our notion of coherence admits semantic equivalence among different invocations of
a function with the same argument type. This is different from the coherence concept
defined in qualified types [6] which states that different translations of an expression
are semantically equivalent.
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advices , complex pointcuts such as cflowbelow, and an operational semantics
for AspectFun.

2. Algorithms: We have extended our type inference and static weaving strategy
to handle the language extension.2 We have formulated the correctness of
static weaving wrt. the operational semantics of AspectFun, and provided a
strategy for analysing and optimizing the use of cflowbelow pointcuts.

3. Systems: We have provided a complete implementation of our compilation
model turning aspect-oriented functional programs into executable Haskell
code.3

Under our compilation scheme, the program in Example 1 is first translated
through static weaving to an expression in lambda-calculus with constants for
execution. For presentation sake, the following result of static weaving is ex-
pressed using some meta-constructs:

n3 = \arg -> (proceed arg ; println "exiting from h") in
n4 = \arg -> (print "entering h with a list" ; proceed arg) in
n5 = \arg -> (print "entering h with " ; println arg; proceed arg) in
h x = x in
f dh x = dh x in (f <h,{n3,n4,n5}> "c", f <h,{n3,n4}> [1], <h,{n3,n4}> [2])

Note that all advice declarations are translated into functions and are woven
in. A meta-construct 〈 , {. . .}〉, called chain expression, is used to express the
chaining of advices and advised functions. For instance, 〈h , {n3, n4}〉 denotes the
chaining of advices n3 and n4 to advised function h. In the above example, the
two invocations of h, with integer-list arguments, in the original aspect program
have been translated to invocations of the chain expression 〈h , {n3, n4}〉. This
shows that our weaver respects the coherence property.

All the technically challenging stages in the compilation process are explained
in detail – in their respective sections – in the rest of this paper. For ease of
presentation, we gather all compilation processes pertaining to control-flow based
pointcuts in Section 4.

The outline of the paper is as follows: Section 2 highlights various Aspect-
oriented features through AspectFun and defines its semantics. In Section 3, we
describe our type inference system and the corresponding type-directed static
weaving process. Next, we formulate the correctness of static weaving with re-
spect to the semantics of AspectFun. In section 4, we provide a detailed descrip-
tion of how control-flow based pointcuts are handled in our compilation model.
We discuss related work in Section 5, before concluding in Section 6.

2 AspectFun: The Aspect Language

We introduce an aspect-oriented lazy functional language, AspectFun, for our in-
vestigation. Figure 3 presents the language syntax. We write ō as an abbreviation
2 Though not presented in this paper, we have devised a deterministic type-inference

algorithm to determine the well-typedness of aspect-oriented programs.
3 The prototype is available upon request.
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for a sequence of objects o1, ..., on (e.g. declarations, variables etc) and fv(o) as
the free variables in o. We assume that ō and o, when used together, denote un-
related objects. We write t1 ∼ t2 to specify unification. We write t � t′ iff there
exists a substitution S over type variables in t such that St = t′, and we write
t ≡ t′ iff t � t′ and t′ � t. To simplify our presentation, complex syntax, such
as if expressions and sequencings (;), are omitted even though they are used in
examples.

Programs π ::= d in π | e
Declarations d ::= x = e | f x = e | n@advice around {pc} (arg) = e
Arguments arg ::= x | x :: t
Pointcuts pc ::= ppc | pc + cf
Primitive PC’s ppc ::= f | n
Cflows cf ::= cflowbelow(f) | cflowbelow(f( :: t))
Expressions e ::= c | x | proceed | λx.e | e e | let x = e in e

Types t ::= Int | Bool | a | t → t | [t]
Advice Predicates p ::= (f : t)
Advised Types ρ ::= p.ρ | t
Type Schemes σ ::= ∀ā.ρ

Fig. 3. Syntax of the AspectFun Language

In AspectFun, top-level definitions include global variable and function def-
initions, as well as aspects. An aspect is an advice declaration which includes
a piece of advice and its target pointcuts. An advice is a function-like expres-
sion that executes when any of the functions designated at the pointcut are
about to execute. The act of triggering an advice during a function application
is called weaving. Pointcuts are denoted by {pc} (arg), where pc stands for ei-
ther a primitive pointcut, represented by ppc, or a composite pointcut. Pointcuts
specify certain join points in the program flow for advising. Here, we focus on
join points at function invocations. Thus a primitive pointcut, ppc, specifies a
function or advice name the invocations of which, either directly or indirectly
via functional arguments, will be advised.

Advice is a function-like expression that executes before, after , or around
a pointcut. An around advice is executed in place of the indicated pointcut,
allowing the advised pointcut to be replaced. A special keyword proceed may
be used inside the body of an around advice. It is bound to the function that
represents “the rest of the computation” at the advised pointcut. As both before
advice and after advice can be simulated by around advice that uses proceed,
we only need to consider around advice in this paper.

A sequence of pointcuts, {pc}, indicates the union of all the sets of join points
selected by the pci’s. The argument variable arg is bound to the actual argument
of the named function call and it may contain a type scope. Alpha renaming is
applied to local declarations beforehand so as to avoid name clash.
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A composite pointcut relates the triggering of advice to the program’s control
flow. Specifically, we can write pointcuts which identify a subset of function
invocations which occur in the dynamic context of other functions. For example,
the pointcut f + cflowbelow(g) selects those invocations of f which are made
when the function g is still executing (i.e. invoked but not returned yet).4 As an
example, in the following code, there are four invocations of fac, and advice n
will be triggered by all the fac invocations, except the first one (fac 3) due to
the pointcut specification “fac+cflowbelow(fac)”.
n@advice around {fac + cflowbelow(fac)} (arg) = println "fac";

proceed arg in
fac x = if x==0 then 1 else x * fac (x-1) in fac 3

Similarly, a type-scoped control-flow based pointcut such as (g+cflowbelow

(f( :t))) limits the call context to those invocations of f with arguments of
type t.

Composite pointcuts are handled separately in our compilation model through
series of code transformation, analyses and optimizations. This is discussed in
detail in Section 4.

In AspectFun, advice names can also be primitive pointcuts. As such, we al-
low advices to be developed to advice other advice. We refer to such advices
as second-order advices . In contrast, the two-layered design of AspectJ like lan-
guages only allow advices to advise other advices in a very restricted way, thus
a loss in expressivity [12].

The following code fragment shows a use of second-order advice to compute
the total amount of a customer order and apply discount rates according to
certain business rules.

Example 2. n3@advice around {n1,n2} (arg) = let finalRate = proceed arg
in if (finalRate < 0.5) then 0.5

else finalRate in
n1@advice around {getRate} (arg) = (getHolidayRate arg) * (proceed arg) in
n2@advice around {getRate} (arg) = (getAnnivRate arg) * (proceed arg) in
discount item = (getRate item) * (getPrice item) in
calcPrice cart = sum (map discount cart) in ...

In addition to the regular discount rules, ad-hoc sale discounts such as holiday-
sales, anniversary sales etc., can be introduced through aspect declarations, thus
achieving separation of concern. This is shown in the n1 and n2 declarations.
Furthermore, there may be a rule stipulating the maximum discount rate that is
applicable to any product item, regardless of the multiple discounts it qualifies.
Such a business rule can be realized using a second-order aspect, as in n3. It
calls proceed to compute the combined discount rate and ensures that the rate
do not exceed 50%.

AspectFun is polymorphic and statically typed. Central to our approach is the
construct of advised types, ρ in Figure 3, inspired by the predicated types [14] used
in Haskell’s type classes. These advised types augment common type schemes (as
4 The semantics of cflowbelow adheres to that provided in AspectJ. Conversion of

the popularly cflow pointcuts to cflowbelow pointcuts is available in [2].
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found in the Hindley-Milner type system) with advice predicates, (f : t), which
are used to capture the need of advice weaving based on type context. We shall
explain them in detail in Section 3.

We end our description of the syntax of AspectFun by referring interested
readers to the accompanied technical report [2] for detailed discussion of the
complete features of AspectFun, which include “catch-all” pointcut any and its
variants, a diversity of composite pointcuts, nested advices, as well as advices
over curried functions.

Semantics of AspectFun. As type information is required at the triggering of
advices for weaving, the semantics of AspectFun is best defined in a language that
allows dynamic manipulation of types: type abstractions and type applications.
Thus, we convert AspectFun into a System-F like intermediate language, FIL.

Program πI ::= (Adv, eI)
Advice Adv ::= (n : ς, pc, τ, eI)
Join points jp ::= f : τ | ε
Expressions eI ::= vI | x | proceed | eI eI | eI{τ} | LET x = eI IN eI

Values vI ::= c | λjpx : τx. eI | Λα. eI

Types τ ::= Int | Bool | α | τ → τ | [τ ]
Type schemes ς ::= ∀α. τ | τ

Fig. 4. Syntax of FIL

(

prog�)

∅ �D π : τ � eI ;A
π

prog
� (A, eI)

(Decl:MainExpr)

Δ � e : τ � eI

Δ �D e : τ � eI ; ∅

(Decl:Func)

Δ.x : τx � e : τf � eI
f α = fv(τx → τf ) \ fv(Δ)

Δ.f : ∀α. τx → τf �D π : τ � eI ;A
Δ �D f x=e in π : τ � LET f =Λα. λf :τx→τf x : τx. eI

f IN eI ;A

(Decl:Adv-An)

fv(tx) : fresh(fv(tx)) � tx

type
� τx

Δ.x : τx.proceed : τx → τn � e : τn � eI
n

α = fv(τx → τn) \ fv(Δ) Δ �D π : τ � eI ;A
Δ �D n@advice around {pc} (x :: tx) = e in π : τ � eI ;

A.(n : ∀α.τx → τn, pc, τx, Λα. λn:τx→τnx : τx. eI
n)

(Expr:Var)

τ = Δ(x)
Δ � x : τ � x

(Expr:Ty-App)

∀α. τ = Δ(x) τx = [τ ′/α]τ
Δ � x : τx � x{τ ′}

(Type:Base) σ � Int
type
� Int σ � Bool

type
� Bool σ.a : α � a

type
� α

(Type:Inferred)

σ � t
type
� τ

σ � [t]
type
� [τ ]

σ � t1
type
� τ1 σ � t2

type
� τ2

σ � t1 → t2
type
� τ1 → τ2

Fig. 5. Conversion Rules to FIL (interesting cases)
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Expressions:
(OS:Value) c ⇓ c λjpx : τx. eI ⇓ λjpx : τx. eI Λα. eI ⇓ Λα. eI

(OS:App)

eI
1 ⇓ λjpx : τx. eI

3 Trigger(λx : τx. eI
3, jp) = λx : τx. eI

4 [eI
2/x]eI

4 ⇓ vI

eI
1 eI

2 ⇓ vI

(OS:Ty-App)

eI
1 ⇓ Λα. eI

2 [τ/α]eI
2 ⇓ vI

eI
1{τ} ⇓ vI

(OS:Let)

[eI
1/x]eI

2 ⇓ vI

LET x = eI
1 IN eI

2 ⇓ vI

Auxiliary Functions:
Trigger : eI × jp → eI

Trigger(eI , ε) = eI

Trigger(λx : τx. eI , f : τf ) = Weave(λx : τx. eI , τf , Choose(f, τx))

Weave : eI × τ × Adv → eI

Weave(eI , τf , []) = eI

Weave(eI
f , τf , a : advs) = Let (n : ∀α. τn, pc, τ, Λα. eI) = a

In If ¬(τn � τf ) Then Weave(eI
f , τf , advs)

Else Let τ be types such that [τ/α]τn = τf

(eI
p, eI

a) = (Weave(eI
f , τf , advs), (Λα. eI){τ})

λn:τnx : τx. eI
n = [eI

p/proceed]eI
a

In Trigger(λx : τx. eI
n, n : τn)

Choose(f, τ ) = {(ni : ςi, pci, τi, e
I
i ) | (ni : ςi, pci, τi, e

I
i ) ∈ A, τi � τ,

∃pc ∈ pci s.t. JPMatch(f, pc)}
JPMatch(f, pc) = (f ≡ pc)

Fig. 6. Operational Semantics for FIL

FIL stores all the advices in a separated space leaving only function declara-
tions and the main expression in the program. Expressions in FIL, denoted by eI ,
are extensions of those in AspectFun to include annotated lambda (λjpx : τx.eI),
type abstraction (Λα.eI) and type application (eI{τ}) as listed in figure 4.

The conversion is led by rule π
prog
� (A, eI). A type environment, also called

conversion environment, Δ of the structure x : ς is employed. We write the judge-
ment Δ 
D π : τ � eI ;A to mean that an AspectFun program having type τ is
converted to a FIL program, yielding an advice store A ∈ Adv. The judgement
Δ 
 e : τ � eI asserts that an AspectFun expression e having a type τ under Δ
is converted to a FIL expression eI . The nontrivial conversion rules are listed in
Figure 5. The full set of rules is available in [2].

Specifically, the rules (Decl:Func) and (Decl:Adv-An) convert top-level
function and advice declarations to ones having annotated lambda λf :τx : τx.eI ;
the annotation λ(f :τ) highlights its jointpoint. The semantics of FIL uses these
annotations to find the set of advices to be triggered. The conversion also in-
troduces type abstraction Λα into the definition bodies. Rule (Expr:Ty-App)

instantiates type variables to concrete types.
Each advice in AspectFun is converted to a tuple in A. The tuple contains the

advice’s name (n) with the advice’s type (ς), the pointcuts the advice selects
(pc), the type-scope constraint on argument (τ), and the advice body (eI).



42 K. Chen et al.

Operational Semantics for FIL. We describe the operational semantics for
AspectFun in terms of that for FIL. Due to space limitation, we leave the seman-
tics for handling cflow-based pointcut to [2].

The reduction-based big-step operational semantics, written as ⇓A, is defined
in Figure 6. Together with it are definitions of the auxiliary functions used. Note
that the advice store A is implicitly carried by all the rules, and it is omitted to
avoid cluttering of symbols.

Triggering and weaving of advices are performed during function applications,
as shown in rule (OS:App). Triggering operation first chooses eligible advices
based on argument type, and weaves them into the function invocation – through
a series of substitutions of advice bodies – for execution. Note that only those
advices the types of which are instantiable to the applied function’s type are
selected for chaining via the Weave function.

3 Static Weaving

In our compilation model, aspects are woven statically (Step 5 in Figure 2).
Specifically, we present in this section a type inference system which guarantees
type safety and, at the same time, weaves the aspects through a type-directed
translation. Note that, for composite pointcuts such as f+cflowbelow(g), our
static weaving system simply ignores the control-flow part and only considers the
associated primitive pointcuts (ie., f). Treatment of control-flow based pointcuts
is presented in Section 4.

Type directed weaving. As introduced in Section 2, advised type denoted as
ρ is used to capture function names and their types that may be required for
advice resolution. We further illustrate this concept with our tracing example
given in Section 1.

For instance, function f possesses the advised type ∀a.(h : a → a).a → a, in
which (h : a→ a) is called an advice predicate. It signifies that the execution of
any application of f may require advices of h applied with a type which should be
no more general than a′ → a′ where a′ is a fresh instantiation of type variable
a. We say a type t is more general than type t′ iff t � t′ but t �≡ t′. Note
that advised types are used to indicate the existence of some indeterminate
advices . If a function contains only applications whose advices are completely
determined, then the function will not be associated with an advised type; it will
be associated with a normal (and possibly polymorphic) type. As an example,
the type of the advised function h in Example 1 is ∀a.a → a since it does not
contain any application of advised functions in its definition.

We begin with the following set of auxiliary functions that assists type
inference:

(Gen) gen(Γ,σ) = ∀ā.σ where ā = fv(σ)\fv(Γ ) (Card) |o1...ok | = k

The main set of type inference rules, as described in Figure 7, is an extension to
the Hindley-Milner system. We introduce a judgment Γ 
 e : σ � e′ to denote
that expression e has type σ under type environment Γ and it is translated to
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Expressions:

(Var)

x : ∀ā.p̄.t� e ∈ Γ

Γ � x : [t̄/ā]p̄.t� e
(Var-A)

x :∗ ∀ā.p̄.tx ∈ Γ t′ = [t̄/ā]tx

wv(x : t′) Γ � ni : t′ � ei

n̄ : ∀b̄.q̄.tn � x� n̄′ ∈ Γ {ni | ti � t′} |ȳ| = |p̄|
Γ � x : [t̄/ā]p̄.tx � λȳ.〈x ȳ , {ei}〉

(App)

Γ � e1 : t1 → t2 � e′
1 Γ � e2 : t1 � e′

2

Γ � e1 e2 : t2 � (e′
1 e′

2)
(Abs)

Γ.x : t1 � x � e : t2 � e′

Γ � λx.e : t1 → t2 � λx.e′

(Let)

Γ � e1 : ρ� e′
1 σ = gen(Γ, ρ) Γ.f : σ � f � e2 : t� e′

2

Γ � let f = e1 in e2 : t� let f = e′
1 in e′

2

(Pred)

x :∗ ∀ā.p̄.tx ∈ Γ [t̄/ā]tx � t

Γ.x : t� xt � e : ρ� e′
t x ∈ A

Γ � e : (x : t).ρ� λxt.e
′
t

(Rel)

Γ � e : (x : t).ρ� e′

Γ � x : t� e′′ x ∈ A x = e

Γ � e : ρ� e′ e′′

Declarations:

(Global)

Γ � e : ρ� e′ σ = gen(Γ, ρ) Γ.id :(∗) σ � id � π : t� π′

Γ � id = e in π : t� id = e′ in π′

(Adv)

Γ.proceed : t1 → t2 � λx.ea : p̄.t1 → t2 � e′
a fi : ∀ā.ti ∈ Γbase

try(S = t1 � tx) S(t1 → t2) � ti

Γ.n : σ � f̄ � n � π : t′ � π′ σ = gen(Γ,S(p̄.t1 → t2))
Γ � n@advice around {f̄} (x :: ∀b̄.tx) = eain π : t′ � n = e′

a in π′

Fig. 7. Typing rules

e′. We assume that the advice declarations are preprocessed and all the names
which appear in any of the pointcuts are recorded in an initial global store A.
Note that locally defined functions are not subject to being advised and not listed
in A. We also assume that the base program is well typed in Hindley-Milner and
the type information of all the functions are stored in Γbase.

The typing environment Γ contains not only the usual type bindings (of the
form x : σ � e) but also advice bindings of the form n : σ � x̄. This states
that an advice with name n of type σ is defined on a set of functions x̄. We
may drop the � x̄ part if found irrelevant. When the bound function name is
advised (i.e. x ∈ A), we use a different binding :∗ to distinguish from the non-
advised case so that it may appear in a predicate as in rule (Pred). We also
use the notation :(∗) to represent a binding which is either : or :∗. When there
are multiple bindings of the same variable in a typing environment, the newly
added one shadows previous ones.

Predicating and Releasing. Before illustrating the main typing rules, we
introduce a weavable constraint of the form wv(f : t) which indicates that advice
application of the f -call of type t can be decided. It is formally defined as:
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Definition 1. Given a function f and its type t2 → t′2, if ((∀n.n :(∗) ∀ā.p̄.t1 →
t′1 � f) ∈ Γ ∧ t1 ∼ t2)⇒ t1 � t2, then wv(f : t2 → t′2).

This condition basically means that under a given typing environment, a func-
tion’s type is no more general than any of its advices. For instance, under the
environment {n : ∀a.[a] → [a] � f, n1 : Int → Int � f}, wv(f : b → b) is
false because the type is not specific enough to determine whether n1 and n2
should apply whereas wv(f : Bool → Bool) is vacuously true and, in this case,
no advice applies. Note that since unification and matching are defined on types
instead of type schemes, quantified variables are freshly instantiated to avoid
name capturing.

There are two rules for variable lookups. Rule (Var) is standard. In the case
that variable x is advised, rule (Var-A) will create a fresh instance t′ of the
type scheme bound to x in the environment. Then we check weavable condition
of (x : t′). If the check succeeds (i.e., x’s input type is more general or equivalent
to any of the advice’s), x will be chained with the translated forms of all those
advices defined on it, having equivalent or more general types than x has (the
selection is done by {ni|ti � t′}). All these selected advices have corresponding
non-advised types guaranteed by the weavable condition. This ensures the bodies
of the selected advices are correctly woven. Finally, the translated expression is
normalized by bringing all the advice abstractions of x outside the chain 〈. . .〉.
This ensures type compatibility between the advised call and its advices.

If the weavable condition check fails, there must exist some advices for x with
more specific types, and rule (Var-A) fails to apply. Since x ∈ A still holds, rule
(Pred) can be applied, which adds an advice predicate to a type. (Note that
we only allow sensible choices of t constrained by tx � t.) Correspondingly, its
translation yields a lambda abstraction with an advice parameter. This advice
parameter enables concrete advice-chained functions to be passed in at a later
stage, called releasing, through application of rule (Rel). Specifically, rule (Rel)

is applied to release (i.e., remove) an advice predicate from a type. Its translation
generates a function application with an advised expression as argument.

Handling Advices. Declarations define top-level bindings including advices.
We use a judgement Γ 
 π : σ � π′ which reassembles the one for expressions.

Rule (Global) is very similar to rule (Let) with the tiny difference that rule
(Global) binds id which is not in A with :. It binds id with :∗ otherwise.

Rule (Adv) deals with advice declarations. We only consider type-scoped ad-
vices, and treat non-type-scoped ones as special cases having the most general
type scope ∀a.a. We first infer a (possibly advised) type of the advice as a func-
tion λx.ea under the type environment extended with proceed. The advice body
is therefore translated. Note that this translation does not necessarily complete
all the chaining because the weavable condition may not hold. Thus, as with
functions, the advice is parameterized, and an advised type is assigned to it and
only released when it is chained in rule (Var-A).

Next, we check whether the inferred input type is more general than the type-
scope: If so, the inferred type is specialized with the substitution S resulted from
the matching; otherwise, the type-scope is simply ignored. The function try acts
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as an exception handler. It attempts to match two types: If the matching suc-
ceeds, a resulting substitution is assigned to S; otherwise, an empty substitution
is returned. As a result, the inferred type t1 is not strictly required to subsume
the type scope tx. On the other hand, the advice’s type S(t1 → t2) is require
to be more general than or equivalent to all functions’ in the pointcut. Note
that the type information of all the functions is stored in Γbase. Finally, this ad-
vice is added to the environment. It does not appear in the translated program,
however, as it is translated into a function awaiting for participation in advice
chaining.

Correctness of Static Weaving. The correctness of static weaving is proven
by relating it to the operational semantics of AspectFun. Due to space limitation,
we refer readers to [2] for details.

Example. We illustrate the application of rules in Figure 7 by deriving the
type and the woven code for the program shown in Example 1. We use C as an
abbreviation for Char. During the derivation of the definition of f , we have:

Γ = { h :∗ ∀a.a → a� h, n3 : ∀a.a → a �� h� n3,
n4 : ∀a.[a] → [a] �� h� n4, n5 : ∀b.[C] → [C] �� h� n5}

h : t → t� dh ∈ Γ2
(Var)

Γ2 � h : t → t� dh

x : t� x ∈ Γ2
(Var)

Γ2 � x : t� x
(App)

Γ2 = Γ1, x : t� x � (h x) : t� (dh x)
(Abs)

Γ1 = Γ, h : t → t� dh � λx.(h x) : t → t� λx.(dh x)
(Pred)

Γ � λx.(h x) : (h : t → t).t → t� λdh.λx.(dh x)

Next, for the derivation of the first element of the main expression, we have:

Γ3 = { h :∗ ∀a.a → a� h, n3 : ∀a.a → a �� h� n3, n4 : ∀a.[a] → [a] �� h� n4,
n5 : ∀b.[C] → [C] �� h� n5, f : ∀a.(h : a → a).a → a� f}

f : ∀a.(h : a → a).a → a� f ∈ Γ3
(Var)

Γ3 � f : (h : [C] → [C]).[C] → [C]� f

h :∗ ∀a.a → a� h ∈ Γ3 ...
(Var-A)

Γ3 � h : [C] → [C]� 〈h , {n3, n4, n5}〉
(Rel)

Γ3 � f : [C] → [C]� (f 〈h , {n3, n4, n5}〉)
...

(App)

Γ3 � (f “c”) : [Char]� (f 〈h , {n3, n4, n5}〉 “c”)

We note that rules (Abs),(Let) and (App) are rather standard. Rule (Let)

only binds f with : which signalizes locally defined functions are not subject to
advising.

Final Translation and Chain Expansions. The last step of AspectFun com-
pilation is to expand meta-constructs produced after static weaving, such as
chain-expressions, to standard expressions in AspectFun, which are called ex-
panded expressions. It is in fact seperated into two steps: addProceed and chain
expansion. AddProceed turns the keyword proceed into a parameter of all ad-
vices. Expansion of meta-construct (chains) is defined (partly) below by an
expansion operator [[·]]. It is applied compositionally on expressions, with the
help of an auxiliary function ProceedApply to substitute proper function as the
proceed parameter. Moreover, ProceedApply also handles expansion of second-
order advices.
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eM : Expressions containing meta-constructs
addProceed : eM −→ eM

addProceed(let n df arg = e1 in e2) = if (n is an advice) then
let n df proceed arg = e1

in addProceed(e2)
else let n df arg = e1 in addProceed(e2)

addProceed(e) = e

[[·]] : eM −→ Expanded expression
[[e1 e2]] = [[e1]] [[e2]] ... trivial rules omitted
[[〈f e , {}〉]] = [[f e]]
[[〈f e , {ea, eadvs}〉]] = ProceedApply(ea, 〈f e , {eadvs}〉)

ProceedApply(n e, k) = [[n e k]] if rank(n) = 0
ProceedApply(〈n e , {ns}〉, k) = [[〈n e k , {ns}〉]] if rank(n) > 0

rank(x) =
{

1 + maxi rank(eai) if x ≡ 〈f e , {ea}〉
0 otherwise

4 Compiling Control-Flow Based Pointcuts

In this section, we present our compilation model for composite pointcuts –
control-flow based pointcuts. Despite the fact that control-flow information are
only available fully during run-time, we strive to discover as much information
as possible during compilation. Our strategy is as follows: In the early stage of
the compilation process (step 2 in Figure 2), we convert all control-flow based
pointcuts in the source to pointcuts involving only cflowbelow[2]. For example,

m@advice around {h+cflowbelow(d(_::Int))} (arg) = ...

will be translated, via introduction of second-order advice, into the following:

m’@advice around {d} (arg :: Int) = proceed arg in
m@advice around {h+cflowbelow(m’)} (arg) = ...

Next, the advice m will be further translated to

m@advice around {h} (arg) = ...

while the association of h+cflowbelow(m’) and m will be remembered for
future use.

After the static weaving and addProceed step, we reinstall the control-flow
based pointcuts in the woven code through guard insertion and monad transfor-
mation (steps 6 and 8 in Figure 2), following the semantics of control-flow based
pointcuts, and then subject the woven code to control-flow pointcut analysis
and code optimization. The description of these steps will be presented after
explaining the extension made to the FIL semantics.
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Semantics of control-flow based pointcuts. The semantics of control-flow
based pointcuts is defined by modifying the operational semantics for FIL intro-
duced in section 2.

Specifically, we modify the operational semantics function ⇓A, defined in Fig-
ure 6, to carry a stack S, written as ⇓SA, denoting that the progress is done under
a stack environment S. S is a stack of function names capturing the stack of
nested calls that have been invoked but not returned at the point of reduction.

By replacing ⇓ by ⇓S , most of the rules remain unchanged except rules
(OS:App) and (OS:Let), which are refined with the introduction of (|e, S|):

(OS:App’)

eI
1 ⇓S λf :τf x : τx. eI

3 Trigger′(λfx : τx. eI
3, f : τf ,S) = λgx : τx. eI

4

S ′ = cons(g,S) [(|eI
2,S|)/x]eI

4 ⇓S′
vI

eI
1 eI

2 ⇓S
A vI

(OS:Let’)

[(|eI
1,S|)/x]eI

2 ⇓S vI

LET x = eI
1 IN eI

2 ⇓S vI
(OS:Clos)

eI ⇓S vI

(|eI ,S|) ⇓S′
vI

(|e,S|) is a stack closure, meaning that e should be evaluated under stack S
ignoring current stack, since we adopt lazy semantics for AspectFun. Detailed
discussion of the modification can be found in [2].

State-based implementation. As stated above, the only control-flow based
pointcut to implement is the cflowbelow pointcut. We use an example to illus-
trate our implementation scheme. The following is part of a woven code after
static weaving.

Example 3. // meta-data: IFAdvice [k+cflowbelow(g)] (n,...)
n proceed arg = arg+123 in
k x = x + 1 in
g x = <k, {n}> x in
f x = if x == 0 then g x else <k, {n}> x in (f 0, f 1)

This first (comment) line in the code above indicates that advice n is associated
with the pointcut k+cflowbelow(g). Hence, n should be triggered at a call to
k only if the k-call is made in the context of a g’s invocation. We call g the
cflowbelow advised function.

In order to support the dynamic nature of the cflowbelow pointcut efficiently,
our implementation maintains a global state of function invocations, and inserts
state-update and state-lookup operations at proper places in the woven code.
Specifically, the insertion is done at two kinds of locations: At the definitions of
cflowbelow advised functions, g here, and at the uses of cflowbelow advices.

For a cflowbelow advised function definition, we encode the updating of
the global state – to record the entry into and the exit from the function – in
the function body. In the spirit of pure functional language, we implement this
encoding using a reader monad [7]. In pseudo-code format, the encoding of g in
Example 3 will be as follows:5

g x = enter "g"; <k, n> x; restore_state

5 Further mechanism is required when the cflowbelow advised function is a built-in
function. The detail is omitted here.
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Here, enter "g" adds an entry record into the global state, and restore state
erases it.

Next, for each use occurrence of cflowbelow advices, we wrap it with a state-
lookup to determine the presence of the respective pointcuts. The wrapped code
is a form of guarded expression denoted by <|guard,n|> for advice n. It implies
that n will be executed only if the guard evaluates to True. The Example 3 with
wrapped code appears as follows:

Example 3a
// meta-data: IFAdvice [k+cflowbelow(g)] (n,...)
n proceed arg = arg+123 in
k x = x + 1 in
g x = enter "g"; <k, { <| isIn "g", n|> } > x; restore_state in
f x = if x == 0 then g x else <k, { <| isIn "g", n |> } > x in (f 0, f 1)

The guard (isIn "g") determines if g has been invoked and not yet returned.
If so, advice n is executed. In this case, n is not triggered when evaluating f 1,
but it is when evaluating f 0.

Control-Flow Pointcut Analysis and Optimization. From Example 3a, we
note that the guard occurring in the definition of g is always true, and can thus
be eliminated. Similarly, the guard occurring in the definition of f is always false,
and the associated advice n can be removed from the code. Indeed, many of such
guards can be eliminated during compile time, thus speeding up the execution
of the woven code. We thus employ two interprocedural analyses to determine
the opportunity for optimizing guarded expressions. They are mayCflow and
mustCflow analyses (cf. [1]).

Since the subject language is polymorphically typed and higher-order, we
adopt annotated-type and effect systems for our analysis (cf. [11]). We define
a context ϕ to be a set of function names. Judgments for both mayCflow and
mustCflow analyses are of the form

Γ̂ 
 e : τ̂1
ϕ′

−→τ̂2 & ϕ

For mayCflow analysis (resp. mustCflow analysis), this means that under an

annotated-type environment Γ̂ , an expression e has an annotated type τ̂1
ϕ′

−→τ̂2

and a context ϕ capturing the name of those functions which may be (resp. must
be) invoked and not yet returned during the execution of e. The annotation ϕ′

above the arrow→ is the context in which the function resulted from evaluation
of e will be invoked.

This type-and-effect approach has been described in detail in [11]. As our
analyses follow this approach closely, we omit the detail here for space limita-
tion, and refer readers to [2] for explanation. Applying both mayCflow and
mustCflow analyses over the woven code given in Example 3a, we obtain the
following contexts for the body of each of the functions:

ϕmay
k = {f, g}, ϕmay

g = {f}, ϕmay
f = ∅

ϕmust
k = ∅, ϕmust

g = {f}, ϕmust
f = ∅
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The result of these analyses will be used to eliminate guarded expressions in the
woven code. The basic principles for optimization are:

Given a guarded expression egd of the form <| isIn f , e |>:
1. If the mayCflow analysis yields a context ϕmay for egd st. f �∈ ϕmay,

then the guard always fails, and egd will be eliminated.
2. If the mustCflow analysis yields a context ϕmust for egd st. f ∈ ϕmust,

then the guard always succeeds, and egd will be replaced by the
subexpression e.

Going back to Example 3a, we are thus able to eliminate all the guarded
expressions, yielding the following woven code:

// meta-data: IFAdvice [k+cflowbelow(g)] (n,...)
n proceed arg = arg+123 in
k x = x + 1 in
g x = enter "g"; <k, {n}> x; restore_state in
f x = if x == 0 then g x else <k, {}> x in (f 0, f 1)

The expression <k,{}> indicates that no advice is chained; thus k will be called
as usual.

5 Related Work

AspectML [4,3] and Aspectual Caml [10] are two other endeavors to support
polymorphic pointcuts and advices in a statically typed functional language.
While they have introduced some expressive aspect mechanisms into the under-
lying functional languages, they have not successfully reconciled coherent and
static weaving – two essential features of a compiler for an aspect-oriented func-
tional language.

AspectML [4,3] advocates first-class join points and employs the case-advice
mechanism to support type-scoped pointcuts based on runtime type analysis. It
enables programmers to reify calling contexts and change advice behavior based
on the context information found therein, thus achieving cflow based advising.
Such dynamic mechanisms gives AspectML additional expressiveness not found
in other works. However, many optimization opportunities are lost as advice
application information is not present during compilation.

Aspectual Caml [10] takes a lexical approach to static weaving. Its weaver
traverses type-annotated base program ASTs to insert advices at matched joint
points. The types of the applied advices must be more general than those of
the joint points, thus guaranteeing type safety. Unfortunately, the technique
fails to support coherent weaving of polymorphic functions which are invoked
indirectly. Moreover, there is no formal description of the type inference rules,
static weaving algorithm, or operational semantics.

The implementation and optimization of AspectFun took inspirations from
the AspectBench Compiler for AspectJ (ABC) [1]. Despite having a similar aim,
the differences between object-oriented and functional paradigms do not allow
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most existing techniques to be shared. The concerns of closures and inlining
can be more straightforwardly encoded with higher-order functions and function
calls in AspectFun; whereas the complex control flow of higher-order functional
languages makes the cflow analysis much more challenging. As a result, our typed
cflow analysis has little resemblance with the one in ABC which was based on
call graphs of an imperative language.

In [9], Masuhara et al. proposed a compilation and optimization model for
aspect-oriented programs. As their approach employs partial evaluation to op-
timize a dynamic weaver implemented in Scheme, the amount of optimization
is restricted by the ability of the partial evaluator. In contrast, our compilation
model is built upon a static weaving framework; residues are only inserted when
it is absolutely necessary (in case of some control-flow based pointcuts), which
keeps the dynamic impact of weaving to a minimum.

6 Conclusion and Future Work

Static typing, static and coherent weaving are our main concerns in constructing
a compilation model for functional languages with higher-order functions and
parametric polymorphism. As a sequel to our previous work, this paper has made
the following significant progress. Firstly, while the basic structure of our type
system remains the same, the typing and translation rules have been significantly
refined and extended beyond the two-layered model of functions and advices.
Consequently, advices and advice bodies can also be advised. Secondly, we proved
the soundness of our static weaving with respect to an operational semantics for
the underlying language, AspectFun. Thirdly, we seamlessly incorporated a wide
range of control-flow based pointcuts into our model and implemented some
novel optimization techniques which take advantage of the static nature of our
weaver. Lastly, we developed a compiler which follows our model to translate
AspectFun programs into executable Haskell code.

Moving ahead, we will investigate additional optimization techniques and con-
duct empirical experiments of performance gain. Besides, we plan to explore ways
of applying our static weaving system to other language paradigms. In particu-
lar, Java 1.5 has been extend with parametric polymorphism by the introduction
of generics. Yet, as mentioned in [5], the type-erasure semantics of Java prohibits
the use of dynamic type tests to handle type-scoped advices. We speculate our
static weaving scheme could be a key to the solution of the problem.
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Abstract. This paper proposes a new abstract domain for languages on
infinite alphabets, which acts as a functor taking an abstract domain for
a concrete alphabet and lift it to an abstract domain for words on this al-
phabet. The abstract representation is based on lattice automata, which
are finite automata labeled by elements of an atomic lattice. We define
a normal form, standard language operations and a widening operator
for these automata. We apply this abstract lattice for the verification
of symbolic communicating machines, and we discuss its usefulness for
interprocedural analysis.

1 Introduction

This paper proposes a new abstract domain for languages on infinite alphabets,
which acts as a functor taking an abstract domain for a concrete alphabet and
lift it to an abstract domain for words on this alphabet. This abstract domain
can be used not only for abstracting words, but also for abstracting the queue
or stack datatypes.

The initial motivation of this work was the analysis of communicating ma-
chines exchanging messages via FIFO queues, which typically models communi-
cation protocols. In [1], we presented a reachability analysis based on abstract
interpretation for protocols with a finite alphabet of messages. The set of the
queue contents was abstracted by regular languages equipped with a widen-
ing operator. We want to generalize this approach to protocols with an infinite
number of messages. The need for infinite alphabets comes typically from the
modeling of systems sending messages with integer parameters to FIFO channels.

This is the case for the very simplified version of a sliding window protocol
depicted on Fig. 1. The sender process tries to send data (identified by an
integer) to the receiver process. The receiver process sends an acknowledgement
messages identifying the data received. The sender has two variables : s is the
index of the next data to send, and a is the index of the last acknowledgement
message received. The protocol ensures that the sender waits for acknowledgment
if s = a+10. If the sender gets a message ack(p) with p > a+1, it means that at
least one message has been lost and the protocol terminates with an error. There

H. Riis Nielson and G. Filé (Eds.): SAS 2007, LNCS 4634, pp. 52–68, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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error

run

s:=0
a:=0

s<a+10
1!data(s)
s:=s+1

p=a+1
2?ack(p)
a:=a+1

p>a+1
2?ack(p)

data(1) data(0)

ack(0) ack(1)
wait ack

v:=0

1?data(p)
v:=p

p=v
2!ack(p)

(a) Sender (b) Queues (c) Receiver

Fig. 1. A simple sliding window protocol

are two queues: one from the sender to the receiver containing data messages,
the other containing acknowledgement message. Notice that we do not model
here possible loss of messages.

In order to provide an abstract domain for such FIFO queues, we introduce
lattice automata, which are finite automata in which letters belonging to a finite
alphabet are replaced by elements of an atomic lattice Λ. The idea is that a
language like

Y =
∑
n≥0

data(0) · . . . · data(n)

can be abstracted by an interval lattice automaton recognizing

X = data(0) + data(0) · data(1) + data(0) · data(1) ·
(
data([2,+∞])

)∗
which represents all words data(p0 ) . . . data(pn ) such that p0 = 0, p1 = 1, and
pk ∈ [2,+∞] for k ≥ 2. This idea is rather simple, but making it work properly
requires a detailed study.

Contributions. The first contribution of this paper is to define with lattice au-
tomata an effective and canonical representation of languages on infinite alpha-
bets, equipped with well-defined operations (union, intersection, concatenation,
. . . ). Although the normal form we propose induces in general some approxi-
mations, it is a robust notion in the sense that the normalization operator is
an upper closure operator which returns the best upper-approximation of a lan-
guage in the set of normalized languages. The resulting abstract domain allows
to lift any atomic abstract domain A for ℘(S) to an abstract domain Reg(A) for
℘(S∗), the set of finite words defined on the alphabet S.

The second contribution of the paper is to demonstrate the use of this rep-
resentation for the analysis of symbolic communicating machines (SCM). It ap-
pears indeed that this representation needs to be exploited in a clever way in
order to be able to prove even simple properties, like in the example that mes-
sages in the queue 1 are always indexed by numbers smaller than the variable s.
Our analysis shows that a ≤ s ≤ a + 10 (complete results are in section 5).
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A third contribution is to show that lattice automata are also adapted to the
abstraction of call-stacks in imperative programs, and allows to design poten-
tially very precise interprocedural analysis.

Outline. Sect. 3 recalls some definitions about lattice and finite automata, and
gives the definition of a widening operator for the regular languages lattice. The
core contribution of the paper is Sect. 4 where we define lattice automata and
their operations, which allows manipulating languages on infinite alphabet. In
Sect. 5 we exploit this representation for the abstract interpretation of Symbolic
Communicating Machines. Sect. 6 discuss the use of lattice automata for inter-
procedural analysis, as they allow abstracting call-stacks of imperative programs.
Proofs are omitted but can be found in the companion report [2].

2 Related Work

Many techniques have been devoted to the analysis of Communicating Finite-
State Machines (CFSM), where both the machines and the alphabet of messages
are finite. Reachability of CFSM is undecidable [3]. Most approaches for the ver-
ification of CFSM are based on exact but semi-decidable acceleration techniques
[4,5,6]. A few attack the problem with approximate techniques [7,8]. None of
these works deals with a potentially infinite alphabet of messages.

More generally, there are works aiming at extending classical finite automata
(resp. tree automata) representations for regular sets of words (resp. trees) for
verification purposes. Mauborgne has proposed efficient representations for a
class of sets of trees which strictly includes regular trees [9]. A recent work [10] in-
troduces a different concept of “lattice automata”, defined as finite (resp. Büchi)
automata mapping finite (resp. infinite) words to elements of a finite lattice.
Those automata do not represent finite words over an infinite alphabet, and do
not apply to the verification of FIFO channels systems or interprocedural anal-
ysis. Another work [11] considers regular expressions over an infinite alphabet,
which may be used instead of the lattice automata of this paper. A widening
operator for regular expression is given, but does not work in the case of FIFO
channels systems, because of the semantics of the send operation. Another ap-
proach is to focus on the decidability of some logic like the first order logic or the
monadic second order logic when the model is a word with data or a tree with
data (model of a XML document) [12]. New kind of automata were introduced,
like register automata [13], pebble automata [14] or data automata [15], with the
idea that a word with data satisfies the logical formula if it is recognized by the
corresponding automata. This approach cannot be applied as is to our problem,
as such a logical approach does not take into account any specific logical inter-
pretation for data (in other words, the data domain is unspecified) and there is
no notion of approximation.

They have been recently a lot of works devoted to shape analysis which can be
relevant to the analysis of queues or stacks. A FIFO queue or a stack can indeed
be represented by a list, which is most often the easiest data type to abstract in
shape analysis techniques. However, most shape analysis focus on the structure
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(“the shape”) of the memory and ignores data values hold by the memory cells
[16,17,18,19]. It is sometimes possible to handle finite data values, but mainly by
brute force enumeration, which is algorithmically expensive in such a context,
certainly more than the above-cited approaches based on finite automata. [20] is
a pioneering work for taking into account data values in memory cells. It uses a
global polyhedron to relate the numeric contents of each abstract memory cells
in an abstract shape graph. The resulting abstraction is incomparable to our
proposal, as it is based on very different principles. In particular, the information
used for abstraction in shape graphs is mostly attached to nodes instead of edges
as in automata. The involved algorithms are also probably more expensive than
in our solution. Conversely, it should be noted that our abstract domain could
be applied to shape analysis, although this deserves yet a full study.

3 Preliminaries

A finite automaton is a quintuple A = (Q,Σ,Q0, Qf , δ) where Q is a finite
set of states, Σ a finite alphabet, Q0 ⊆ Q (resp. Qf ⊆ Q) the set of initial
(resp. final) states, and δ ⊆ Q×Σ ×Q the transition relation. The set of words
recognized by A is a regular language denoted by L(A). Reg(Σ) is the set of
regular languages over the finite alphabet Σ. Let ≈ be an equivalence relation
on Q. The equivalence class of q ∈ Q w.r.t. ≈ is denoted by q̃. The quotient
automaton A/ ≈= 〈Q̃, Σ, Q̃0, Q̃f , δ̃〉 is defined by Q̃

�
= Q/ ≈, Q̃0

�
= {q̃|q ∈ Q0},

Q̃f
�
= {q̃|q ∈ Qf} and (q̃, a, q̃′) ∈ δ̃

�
= ∃q0 ∈ q̃, ∃q′0 ∈ q̃′ : (q0, a, q′0) ∈ δ. Given

an equivalence relation � on Q and k ≥ 0, the k-depth bisimulation equivalence
relation ≈k based on � is defined by ≈0

�
= � and

q ≈k+1 q′
�
=

{
∀(σ, q1) ∈ Σ ×Q : δ(q, σ, q1)⇒ ∃q′1 : δ(q′, σ, q′1) ∧ q1 ≈k q′1
∀(σ, q′1) ∈ Σ ×Q : δ(q′, σ, q′1)⇒ ∃q1 : δ(q, σ, q1) ∧ q1 ≈k q′1

A is deterministic if there is an unique initial state and if δ(q, σ, q′)∧δ(q, σ, q′′)⇒
q′ = q′′. Any finite automaton can be transformed into a minimal deterministic
automaton (MDA) recognizing the same language, using the subset construction
and quotienting the result w.r.t. the largest bisimulation relation separating final
states from non final states. This provides a normal form for regular languages.

Widening on finite automata. (Reg(Σ),⊆) is a lattice which can be equipped
with the following widening operator [21,1]. One first defines the extensive and
idempotent operator ρk, which associates to a MDA A its quotient by the k-
depth bisimulation relation based on the partition of the Q which separates
exactly initial, final and ordinary states. The widening ∇k is then defined as
X1∇kX2

�
= ρk(X1 ∪X2). This operator is a widening as its codomain is finite.

Lattices. An element x ∈ Λ of a lattice Λ is an atom if ⊥ � x∧∀y ∈ A : ⊥ � y �
x =⇒ y = x. The set of atoms of Λ is denoted by At(Λ). A lattice Λ is atomic
if any element x ∈ Λ is the least upper bound of atoms smaller than it: x =⊔
{a | a ∈ At(Λ) ∧ a � x}. A finite partition of a lattice is a finite set (λi)0≤i<n
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of elements such that ∀i �= j : λi � λj = ⊥ and ∀λ ∈ Λ : λ =
⊔n−1

i=0 (λ � λi). If
the lattice is atomic, there is an isomorphism between an element λ ∈ Λ and its
projection 〈λ�λ0, . . . , λ�λn−1〉 on the partition. A (finite) partitioning function
π : Σ → Λ is a function such that (π(σ)σ∈Σ) is a (finite) partition of Λ.

4 Lattice Automata

In this section we define with lattice automata an abstract representation for
languages on infinite alphabets. The principle of lattice automata is to use ele-
ments of an atomic lattice for labelling the transitions of a finite automaton, and
to use a partition of this lattice in order to define a projected finite automaton
which acts as a guide for defining extensions of the classical finite automata op-
erations. We motivate our choices and show that they lead to a robust notion of
approximation, in the sense that normalization is an upper-closure operation and
can be seen as a best upper-approximation in the lattice of normalized lattice
automata. Proofs are omitted but can be found in the companion report [2].

[0, 1]

[1, 2]
Fig. 2. an interval lattice
automaton

Lattice automata are finite automata, the transi-
tions of which are labelled by elements of an atomic
lattice (Λ,�) instead of elements of a finite and
unstructured alphabet. They recognize languages on
atomic elements of this lattice. For instance, the inter-
val automaton of Fig. 2 recognizes all sequences of ra-
tional numbers x0 . . . xn−1 where n is odd, x2i ∈ [0, 1]
and x2i+1 ∈ [1, 2].

Definition 1 (Lattice automaton). A lattice automaton A is defined by a
tuple 〈Λ,Q,Q0, Qf , δ〉 where (Λ,�) is an atomic lattice, Q a finite set of states,
Q0 ⊆ Q and Qf ⊆ Q the sets of initial and final states and δ ⊆ Q×(Λ\{⊥})×Q
a finite transition relation.

A word w = a0 . . . an ∈ At(Λ)∗ is accepted by A if there exists a sequence
q0, q1, . . . , qn+1 such that q0 ∈ Q0, qn+1 ∈ Qf , and ∀i ≤ n, ∃(qi, λi, qi+1) ∈
δ : ai � λi. The set of words recognized by A is denoted by LA. We denote by
Reg(Λ) the set of languages recognized by a lattice automaton. The inclusion
relation between languages induces a partial order on lattice automata: A � A′

iff LA ⊆ LA′ .

Discussion. Def. 1 raises some issues that we discuss before refining this defini-
tion. We need indeed to provide a normal form for lattice automata, in order
to use them as a well-defined abstract domain with a robust notion of approx-
imation. The first issue is related to the bounded branching property: in a de-
terministic finite automaton, there are at most |Σ| transitions outgoing from
a state, whereas the branching degree of lattice automata is not bounded, cf.
Fig. 3. The second issue is the notion of determinism. The natural definition of
determinism would require that A is deterministic iff it has a unique initial state
and if (q, λ1, q1) ∈ δ ∧ (q, λ2, q2) ∈ δ =⇒ λ1 � λ2 = ⊥. However the automaton
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[0, 0]

[2, 2]

[2k, 2k]

Fig. 3. A family of in-
terval automata Ak with
unbounded branching
degree

1 2
y=0

x=0 1 1,2

2
“y=0 \ x=0”

“x=0 \ y=0”
x=0, y=0

“x=0 \ y=0”

x=0,
y=0

(a) non-deterministic (b) deterministic
automaton automaton ?

Fig. 4. Attempt to determinize a lattice automaton on the
lattice of affine equalities

-1 0 1 2 3 4

-1

0

1

2

3

1 2

{0 ≤ x ≤ 3,
0 ≤ y ≤ 1 }

{0 ≤ x ≤ 1,
1 < y ≤ 2 }

1 2

{1 < x ≤ 3,
0 ≤ y ≤ 1 }

{0 ≤ x ≤ 1,
0 ≤ y ≤ 2 }

-1 0 1 2 3 4

-1

0

1

2

3

Fig. 5. Two deterministic convex polyhedra automata that are equivalent

of Fig. 4 based on the lattice of affine equalities1 shows that one cannot always
find a deterministic automaton recognizing the same language as a given non-
deterministic automaton, because an element of a lattice does not necessarily
have a complement. Now, determinism is more or less a requirement for defining
a normal form. Fig. 5 illustrates a third annoying issue : as there is no canonical
representation for unions of convex polyhedra [23], how do we decide which one
among the two minimal automata of the figure should be considered canonical ?

The solution we propose to fix these problems is to use a finite partition of
the lattice Λ, and to decide when two transitions should be merged using the
least upper bound operator. The fusion of transitions will induce in general an
over-approximation, controlled by the fineness of the partition. The gain is that
the projection of labels onto their equivalence class produces a finite automaton
on which we can reuse classical notions.

Definition 2 (Partitioned lattice automaton (PLA)). A partitioned lat-
tice automaton A is a lattice automaton A = 〈Λ, π,Q,Q0, Qf , δ〉 equipped with a
finite partitioning function π : Σ → Λ such that the transition relation satisfies:
∀(q, λ, q′) ∈ δ, ∃σ ∈ Σ : λ � π(σ).

A PLA is merged if: (q, λ1, q
′) ∈ δ ∧ (q, λ2, q

′) ∈ δ =⇒ π−1(λ1) ∩ π−1(λ2) = ∅

1 The lattice of affine equalities (or affine subspaces) [22] is the lattice formed by the
conjunctions of affine equalities on the space Rn.
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Fig. 6. Determinization and minimization of an interval automaton with the partition
{] −∞, 0], [0, +∞[}

Definition 3 (Shape automaton). Given a PLA A = 〈Λ, π,Q,Q0, Qf , δ〉, its
shape automaton shape(A) is a finite automaton (Σ,Q,Q0, Qf ,→) obtained by
projecting the transition relation δ onto the equivalence classes:

(q, λ, q′) ∈ δ =⇒ q
π−1(λ)→ q′

Two transitions of a PLA labelled by elements belonging to different equivalence
classes cannot be merged and are always kept separate, whereas they might be
merged in the opposite case. Deterministic merged PLA have the finite branching
degree property: its states can have at most |Σ| outgoing transitions. Notice that
non-merged PLA are as expressive as lattice automata.

Definition 4. A PLA A is deterministic if shape(A) is deterministic.

4.1 Normalization of PLAs

We use the shape automaton as a guideline for the determinization and mini-
mization of lattice automata.
Determinization. The determinization of a PLA, which is illustrated on Fig. 6,
mimics the determinization of its shape automaton using the subset construction
on states. The difference is that the transitions are merged in the course of the
algorithm when they are labelled by values belonging to the same equivalence
class. Consequently, the resulting automaton recognizes a larger language. The
precise determinization algorithm can be found in [2]. This algorithm gives the
best approximation in term of inclusion of languages.

Proposition 1 (Determinising PLA is a best upper-approximation).
Let A be a PLA and A′ the PLA obtained with the determinization algorithm
sketched above. Then A′ is the best upper-approximation of A as a merged and
deterministic PLA, ie., A � A′ and for any merged and deterministic PLA A′′

based on the same partition, A � A′′ =⇒ A′ � A′′.

Corollary 1 (The determinization operation is an upper-closure oper-
ation). The operation det : PLA → PLA is an upper-closure operation: it is
extensive (det(A) � A), monotonic and idempotent (det ◦ det = det).
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Minimization. We use for PLA a notion of minimization based on its shape
automaton, in the same spirit as for the notion of determinism. A PLA is min-
imal or normalized if it is merged and if its shape automaton is minimal and
deterministic. A normalized PLA will be also called a NLA (normalized lat-
tice automaton). The algorithm to minimize a PLA consists in to remove its
unconnected states, to determinize it according to the previous algorithm and
to quotient it according to the equivalence bisimulation relation as defined on
the states of its shape automaton (cf. Sect. 3). However, when quotienting the
states of a PLA, transitions labelled by elements belonging to the same equiva-
lence class are merged, which may generate some approximations, cf. Fig. 6.

Theorem 1 (Minimizing PLA is a best upper-approximation). For any
PLA A, there is a unique (up to isomorphism) NLA A′ based on the same
partition π such that A � A′ and for any NLA A′′ based on the partition π,
A � A′′ =⇒A′ � A′′.

Corollary 2 (The normalization operation is an upper-closure opera-
tion). The normalization function ·̂ : PLA→ NLA is an upper-closure operator:
it is extensive, monotonic (given a fixed partition), and idempotent.

Thm. 1 defines a normalization for languages recognized by PLA. For any lan-
guage L ∈ Reg(Λ) recognized by a PLA A, L̂ will denote the language recognized
by the unique NLA verifying the properties of Thm. 1. The set of NLA defined
on Λ with the partition π will be denoted by Reg(Λ, π), which denotes also the
corresponding set of recognized languages.

Influence of the partitioning functions. The precision of the approximations made
during the merging, determinization and minimization operations depends on the
fineness of the partitioning function. For example, all outgoing transitions from
a given state would be merged during the determinization algorithm employed
with the trivial partition of size 1.

Refining the partition π makes the class of normalized languages Reg(Λ, π)
more expressive. A partitioning function π2 : Σ2 → Λ refines π1 : Σ1 → Λ if
∀σ2 ∈ Σ2, ∃σ1 ∈ Σ1 : π2(σ2) � π1(σ1).

Proposition 2. Let π1 and π2 two partitioning functions for Λ, with π2 refining
π1. Then Reg(Λ, π1) ⊆ Reg(Λ, π2).

One can also refine PLAs before normalizing them. The automaton A2 = 〈Λ, π2,
Q,Q0, Qf , δ2〉 refines A1 = 〈Λ, π1, Q,Q0, Qf , δ1〉 if π2 refines π1 and if δ2 is
obtained with:

(q, λ1, q
′) ∈ δ1 σ2 ∈ Σ2 λ2 = λ1 � π(σ2)

(q, λ2, q
′) ∈ δ2

This refinement does not change the recognized language, but may increase the
precision of the merging, determinization and minimization algorithms:
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Proposition 3. Let A1 be a PLA and A2 a PLA refining A1. Then det(A1) �
det(A2) and Â1 � Â2.

Choosing an adequate partitioning function is thus important. For the analysis
of SCM, where data messages are usually composed of a message type and
some parameters, the type of the message defines a natural partition. When this
standard partition is not sufficient for the analysis, it can be refined to a more
adequate partition. In this sense, the abstraction refinement techniques based
on partitioning (see for instance [24,25]) are applicable to lattice automata.

4.2 Operations on PLAs and Their Recognized Languages

Set operations. Two NLAs can be compared for language by first testing for
inclusion their shape automata, and in case of inclusion, by comparing the labels
of matching transitions. The exact union of two NLAs can be computed by
considering their disjoint union; this produces a non-deterministic PLA with
two initial states. Normalizing it transforms the exact union operation in an
upper bound operator � defined as follows: A1 � A2

�
= Â1 ∪A2. As a corollary

of Theorem 1, this upper bound operator is actually a least upper bound operator
on the set of NLA ordered by language inclusion. The exact intersection of two
NLAs can be computed by considering their product. The result is a merged and
deterministic PLA, which is not necessarily minimal. Minimizing it may induce
an upper-approximation; thus, NLAs are not closed under intersection. These
operations allow us to equip the set of NLA with a join semilattice structure:

Proposition 4. The set of NLA defined on an atomic lattice Λ with a fixed
partition π, ordered by language inclusion, is a join semilattice: it has bottom and
top elements, and a least upper bound operator. If the standard lattice operations
on Λ are computable, so are the operations on the join semilattice of NLA.

Other language operations. Operation such as language concatenations or (the
generalisation of) left derivation of NLAs mimics their counterparts on finite
automata, with the difference that the normalization following them induces ap-
proximations in term of languages. Another useful operation for the analysis of
communicating machines is the first operation. Left derivation and first opera-
tions are defined on languages as: L/λ

�
= {ω | ∃a ∈ At : a · ω ∈ L ∧ a � λ} and

first(L) = {a ∈ At(Λ) | a · ω ∈ L}.

Widening on NLAs. The widening on NLA we define here combines the widening
on finite automata with the standard widening operator ∇Λ : Λ×Λ→ Λ that we
assume for the atomic lattice Λ. If a widening operator is not strictly required for
Λ (because it satisfies the ascending chain condition), then one takes ∇Λ = �Λ.

We first extend the ρk operator defined on finite automata in Sect 3. If A
is a NLA, k ≥ 0 an integer and ≈k the k-depth bisimulation relation defined
on shape(A), then ρk(A) is defined as the quotient PLA A/ ≈k. The widening
operator we suggest consists in applying the operator ρk when the two argument



Lattice Automata: A Representation for Languages on Infinite Alphabets 61

[−7,−5] ∇0
[−9,−2] [6, 9]

=
[−9,−2]

[6, 9]

[−9,−5]

[5, 10]

∇0

[−9,−3]

[5, 12]

=
[−9, 0[

[5, +∞]

Fig. 7. Widening on interval PLA, with a partition [−∞, 0[�[0, +∞] and k = 0

automata have a different shape automaton, and to apply the widening operator
of the lattice Λ on their matching transitions when the two argument automata
have the same shape automaton, as illustrated by Fig. 7.

Definition 5. Let A1 and A2 be two NLA defined on the same partition π with
A1 � A2. The widening operator ∇k is defined as:

A1∇kA2
�
=

{
ρ̂k(A2) if shape(A1) �= shape(ρk(A2))
A1 ↗ A2 otherwise (which implies shape(A1) = shape(A2))

where A1 ↗ A2 is the NLA A which has the same set of states as A1 and A2

and the set of transitions δ defined by the rule:

σ ∈ Σ (q, λ1, q
′) ∈ δ1 (q, λ2, q

′) ∈ δ2 λ1, λ2 � π(σ)
(q, (λ1∇Λλ2) � π(σ), q′) ∈ δ

If A1 �� A2, then A1∇kA2
�
= A1∇k(A1 � A2).

Theorem 2. ∇k is a proper widening operator:

1. for any NLA A1,A2 defined on the same partition such that A1 � A2,
A2 � A1∇kA2;

2. If there is an increasing chain of NLA A0 � A1 � . . . � An � . . ., the chain
A′

0 � A′
1 � . . . � A′

n � . . . defined as A′
0 = A0 and A′

i+1 = A′
i∇k(A′

i�Ai+1)
is not strictly increasing.

4.3 NLA as an Abstract Domain for Languages, Stacks and Queues

Normalized lattice automata allow us to define an abstract domain functor which
lifts abstract domains for some set to abstract domains for languages on this set.
More precisely, given an atomic abstract lattice A

γA−−→ ℘(S) for some set S with
the concretization function γA, and a partitioning function π for A, Reg(A, π) can
be viewed as an abstract domain for L(S) = ℘(S∗), the languages on elements
of S, with the concretization function

γ : Reg(A, π)→ ℘(S∗)
A !→ {s0 . . . sn ∈ S∗ | a0 . . . an ∈ LA ∧ ∀i : si ∈ γA(ai)}

and the widening operator of Def. 5. Reg(A, π) is a non-complete join semilattice
of infinite height.
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The “abstract domain functor” Reg(A, π) is in addition monotonic in the
following sense. Given two abstractions γi : Ai → C, i = 1, 2, for the same
concrete domain C, A2 refines A1 if there exists a (concretization) function
γ12 : A1 → A2 such that γ1 = γ2 ◦ γ12. This means that any concrete property
c ∈ C representable by A1 is representable by A2.

Theorem 3. Let γi : Ai → ℘(S), i = 1, 2, two abstractions for ℘(S) such that
A2 refines A1, with γ12 : A1 → A2 such that γ1 = γ2 ◦ γ12. Let π1 a partitioning
function for A1, and π2 a partitioning function for A2 refining γ12 ◦ π1. The
abstract domain Reg(A2, π2) refines Reg(A1, π1).

Hence an abstraction of ℘(S∗) based on lattice automata is parametrised first
by the underlying alphabet lattice A, then by a partition π of A, and last by the
parameter k of the widening operator ∇k.

Most language operations can be efficiently abstracted in Reg(A, π). This is
in particular the case of language operations corresponding to the operations
offered by the FIFO queue or stack abstract datatypes. Hence, Reg(A, π) is a
suitable abstract domain for FIFO queues or stacks on elements of S.

5 Application to the Abstract Interpretation of SCMs

We illustrate in this section the application of the abstract lattice defined in the
previous section to the analysis of Symbolic Communicating Machines (SCMs).

Symbolic Communicating Machines. Symbolic Communicating Machines
(SCM) are Communicating Finite-State Machine extended with a finite set of
variables V , the values of which can be sent into FIFO queues, cf. Fig. 1. This
model is similar to other models like Extended Communicating Finite-State
Machines [26] or Parametrized Communicating Finite-State Machines [27].

Syntax. A SCM with N queues is defined by a tuple 〈C, V, c0, Θ0, P,Δ〉 where C
is a nonempty finite set of locations; V = {v1, . . . , vn} is a nonempty, finite set of
state variables; c0 ∈ C is the initial control state; Θ0(v) is the initial condition;
P = {p1, . . . , pn} is a nonempty, finite set of formal parameters that are used to
push/pop values on/from FIFO queues; and Δ is a finite set of transitions.

A transition δ is either an input 〈c1, G, i?p, A, c2〉 or an output 〈c1, G, i!p, A, c2〉
where c1 and c2 are resp. the origin and destination locations; i ∈ [1..N ] is a
queue number; p is the vector of formal parameters, which holds the values
pushed or popped on/from the queue i; G(v,p) is a predicate on the variables
and the formal parameters (also called guard); and A is an assignment of the
form v′ := A(v,p) defining the values of the state variables after the transition.

Semantics. In the sequel, a variable v takes its value in a set denoted by Dv,
and the set of valuations of all variables in V is denoted by DV . A global state
of a SCM is a tuple 〈c,v, w1, . . . , wN 〉 ∈ C × DV × ((DP )∗)N where c is a
control state, v is the current value of the variables and wi is a finite word on
DP representing the content of queue i. The operational semantics of a SCM
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〈C, V,Σ, c0, Θ0, P,Δ〉 is given as an infinite transition system 〈Q,Q0,→〉 where
Q = C × DV × ((DP )∗)N is the set of states; Q0 = {〈c0,v, ε, . . . , ε〉 |v ∈ Θ0} is
the set of the initial states; and → is defined by the two rules:

(c1, G, i!p, A, c2) ∈ Δ w′
i = wi · p G(v,p) v′ = A(v,p)

〈c1,v, w1, . . . , wi, . . . , wN 〉 → 〈c2,v
′, w1, . . . , w

′
i, . . . , wN 〉

(c1, G, i?p, A, c2) ∈ Δ wi = p.w′
i G(v,p) v′ = A(v,p)

〈c1,v, w1, . . . , wi, . . . , wN 〉 → 〈c2,v
′, w1, . . . , w

′
i, . . . , wN 〉

The main issue for the reachability analysis of SCM is the abstraction of the
queue contents. [1] described and experimented the abstraction of the queue con-
tents of a CFSM using the regular languages lattice equipped with the widening
operator of Sect. 3. Lattice automata allow us to attack the analysis of SCM. For
the sake of simplicity, we assume a single queue in the sequel. The running exam-
ple which has two queues is analysed with a non-relational, attribute-independent
method, in which to each queue is associated a lattice automaton.

Analysing SCM with a single queue: a simple approach. If there is a
single queue, the concrete set of states associated to each control point c ∈ C
has the structure ℘(DV × (DP )∗): one associates to each control point the set of
possible configurations for the state variables and the FIFO queue. For the sake
of simplicity, we will assume in the sequel that all variables and parameters are of
rational type, and that sets of valuations are abstracted using convex polyhedra.
Let L(n) = Pol(Qn) denotes the atomic lattice of convex polyhedra. We have the
abstraction chain

℘(Qn × (Qp)∗) −−→←−− ℘(Qn)× ℘((Qp)∗)←− L(n) × Reg(L(p))
�
= A(n)

Tab. 1 gives the corresponding abstract semantics.
We experimented with this analysis on the sliding window protocol depicted

in Fig. 1, using a generic fixpoint calculator and the APRON library [28], with
no partitioning of the alphabet lattice. Tab. 2 depicts the obtained reachable set
on the product of the two automata. This straightforward abstraction is not very
accurate since there is no relation between the values of parameter variables in
the queue and the value of the state variables.

SCM with a single queue: linking message and state variables. The
idea to improve on the previous abstraction is to use an augmented semantics
in which both the state variables and the message are pushed on queues. This
allows not only to establish relations between messages in queues and the current
environment, but also to indirectly establish relations between the messages
contained in different queues. For instance, the abstract value(

s ∈ [8, 9], data({s− p = 3}) · data({s− p = 2}) · data({s− p = 1})
)

will represent the 2 concrete states (s = 8, data(5) · data(6) · data(7)) and (s =
9, data(6) · data(7) · data(8)).

Formally, the new abstraction is defined by
γ : L(n) × Reg(L(n+p))→ ℘(Qn × (Qp)∗)

(Y, F ) !→ {(v, (v,p0) . . . (v,pk)) | v ∈ Y ∧ (v,p0) . . . (v,pk)) ∈ LF}
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Table 1. Abstract semantics, with L(n) = Pol(Qn) and A(n) = L(n) × Reg(L(p))

Standard abstract semantics
guard G(v, p) �G�� : L(n) → L(n+p) extended to A(n) → A(n+p)

assignmentA(v, p) �A�� :L(n+p) → L(n) extended to A(n+p) → A(n)

output 1!p �1!p�� :A(n+p) → A(n+p)

(Y, F ) �→ (Y, F · (∃v : Y ))
input 1?p �1?p��:A(n+p) → A(n+p)

(Y, F ) �→ (Y � first(F ), F/(∃v : Y ))

transition t �t�� : A(n) → A(n)

X �→

⎧⎨
⎩

�A�� ◦ �G�� if t = (G,−−, A)
�A�� ◦ �1!p�� ◦ �G�� if t = (G, 1!p, A)
�A�� ◦ �1?p�� ◦ �G�� if t = (G, 1?p, A)

Table 2. Analysis with the
“simple” abstraction

C Abstract Value
rw [|v ≥ 0; s ≥ 0; a ≥ 0|]

(d, [|p ≥ 0|])∗

(a, [|p ≥ 0|])∗

ra [|v ≥ 0; s ≥ 0; a ≥ 0|]
(d, [|p ≥ 0|])∗

(a, [|p ≥ 0|])∗

ew [|v ≥ 0; s ≥ 0; a ≥ 2|]
(d, [|p ≥ 0|])∗

(a, [|p ≥ 0|])∗

ea [|v ≥ 0; s ≥ 0; a ≥ 2|]
(d, [|p ≥ 0|])∗

(a, [|p ≥ 0|])∗

Table 3. Analysis with the refined abstraction, using
a widening “up to” for polyhedra

C Abstract Value
rw [|0≤a≤s≤a+10|]

(d, [|0≤a≤s−1≤a+9;0≤p≤s−1|])∗

(a, [|0≤a≤s≤a+10; 0≤p≤s−1; 0≤v≤s−1|])∗

ra [|0≤a≤s≤a+10; 0≤v≤s−1|]
(d, [|0≤a≤s−1≤a+9;0≤p≤s−1|])∗

(a, [|0≤a≤s≤a+10; 0≤p≤s−1; 0≤v≤s−1|])∗

ew [|0≤a≤s−2≤a+8;0≤v≤s−1|]
(d, [|0≤a≤s−1≤a+9;0≤p≤s−1|])∗

(a, [|0≤a≤s≤a+10; 0≤p≤s−1; 0≤v≤s−1|])∗

ea [|0≤a≤s−2≤a+8;0≤v≤s−1|]
(d, [|0≤a≤s−1≤a+10; 0≤p≤s−1|])∗

(a, [|0≤a≤s≤a+10; 0≤p≤s−1; 0≤v≤s−1|])∗

The main difference of the induced abstract semantics w.r.t. the previous one is
that the operators �G� and �A� now modify the lattice automaton representing
the queue content, because one must modify the transition labels each time the
state variables are altered.

We obtained the results of Tab. 3 with this refined abstraction, using the
widening ∇k with k = 0. In particular, we proved that 0 ≤ a ≤ s ≤ a + 10,
0 ≤ p ≤ s−1 and 0 ≤ v ≤ s. The two control states ew2 and ea are however still
reachable, whereas they are not in the real system. An exact analysis should give
the invariant a ≤ v ≤ s ≤ a+10 with first queue p = s−1, p = s−2, . . . , p = v+1
and second queue p = v, p = v − 1, . . . , p = a + 1. Those relations are lost when
merging transitions of the automata representing the queues. This abstraction
is far better than the first one, but should still be improved.
2 Control states are represented by two letters xy, encoding the control states of the

sender (r = run,e= error) and of the receiver (w=wait,a=ack).
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6 Application to Interprocedural Analysis

We discuss here an interesting application of lattice automata to precise interpro-
cedural analysis, based on the abstraction of call-stacks of imperative programs.
This would allow simplifying the stack abstraction proposed in [8] and to extend
to infinite state programs the approach of [29] which uses pushdown automata
to model finite-state recursive programs and finite automata for representing
(co)reachable sets of configurations.

The concrete semantics of imperative programs without global variables makes
use of the domains depicted on the following table:

c ∈ C : control points
εi ∈ LEnv i = LVar i → Value : local environments for procedure/function Pi

〈c, ε〉 ∈ Act = C × LEnv : activation record (LEnv =
⋃

i LEnv i)
Γ ∈ Act+ : stacks = program states

Given an abstraction ℘(LEnv) −−→←−− L for environments, we can use the abstrac-
tion:

℘(Act+)
γ←− Reg(C × L, π)

with the partitioning function π(c) = {c} ×"L based on control points. Lattice
automata provide all the necessary operations to abstract the concrete semantics
of such imperative programs (ie., push and pop operations, modifications of the
top of the stack).

There are some advantages in having an explicit representation of call-stacks
in interprocedural analysis. As long as data variables are not abstracted, the
more classical functional approach is as precise, but as soon as they are, such
an explicit representation allows recovering some loss of information. Moreover,
the stack abstraction approach allows a natural description of techniques such as
polyvariant analysis, where separate analyses are performed on the same proce-
dure depending on the call context. Last, some applications require information
on the stack. This is the case for instance of analysis related to stack inspection
mechanisms for ensuring security properties in Java and .NET architecture [30].
Another example is the test selection technique proposed in [31], in the context
of conformance testing of reactive systems w.r.t. an interprocedural specification.

Interprocedural analysis by explicit representation of the call-stacks. The call-
string approach of [32], generalised by tokens in [33] corresponds to a very
strong abstraction of the call-stacks in which the value of variables is largely
ignored. It is more suitable to compilation-oriented dataflow analysis than to
program verification. A different line of work consists in modelling recursive
programs using pushdown automata and exploiting the property that the set of
(co)reachable stacks of pushdown automata is regular [34] and its computation
has a polynomial complexity [35,36,37]. The use of lattice automata can be seen
as an extension of this line of work to more expressive, non finite-state programs,
where undecidability is overcome by resorting to approximations. The lattice au-
tomata abstraction may be seen as both an improvement and a simplification of
[8], which derives and unifies two classical techniques for interprocedural analysis
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(namely the call-string and functional approaches identified by [32]) by abstract
interpretation of the operational semantics of imperative programs. In the con-
text of interprocedural shape analysis, [38] represents explicitly the call-stack
using the same abstract representation than for the memory configurations.

7 Conclusion

We defined in this paper an abstract domain for languages on infinite alphabets,
which are represented by lattice automata. Their principle is to use elements
of an atomic lattice for labelling the transitions of a finite automaton, and to
use a partition of this lattice in order to define a projected finite automaton
which acts as a guide for defining determinization, minimization and widening
operations. We motivate our choices and show that they lead to a robust notion of
approximation, in the sense that normalization is an upper-closure operation and
can be seen as a best upper-approximation in the join semilattice of normalized
lattice automata.

The resulting abstract domain allows to lift any atomic abstract domain A
for ℘(S) to an abstract domain Reg(A) for ℘(S∗). It is also parametric: it is
parametrised first by the underlying alphabet lattice, then by a partition of
the alphabet lattice, and last by the parameter of the widening operator. Its
precision may be improved by adjusting these parameters.

We illustrate the use of lattice automata for the verification of symbolic com-
municating machines, and we show the need for a non-standard semantics to
couple the abstraction of the state variables of the machines with the contents
of the FIFO queues. We also explore the applicability of lattice automata to
interprocedural analysis and compare this solution to related work. As a result,
this work allows to extend both analysis techniques dedicated to communicating
machines, and interprocedural analysis based on an explicit representation of
the call-stacks.

Future work includes first a deeper study of the application of lattice automata
to the analysis of SCM. The challenge we would like to take up is the verification
of the SSCOP communication protocol, which is a sliding window protocol from
which our running example is extracted. Previous verification attempts that we
are aware of are either based on enumerated state-space exploration techniques
[39], or on the partial use of theorem proving [40]. It would be interesting to
study the application of lattice automata to shape analysis, in the spirit of [19].
A last direction which could be explored is the generalisation of lattice automata
recognizing languages on infinite alphabets to tree automata recognizing trees
on infinite sets of symbols.
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Abstract. Two of the most promising approaches to fighting the state explosion
problem are abstraction and compositional verification. In this work we join their
forces to obtain a novel fully automatic compositional technique that can deter-
mine the truth value of the full μ-calculus with respect to a given system.

Given a system M = M1||M2, we view each component Mi as an abstrac-
tion Mi↑ of the global system. The abstract component Mi↑ is defined using a
3-valued semantics so that whenever a μ-calculus formula ϕ has a definite value
(true or false) on Mi↑, the same value holds also for M . Thus, ϕ can be checked
on either M1 ↑ or M2 ↑ (or both), and if any of them returns a definite result,
then this result holds also for M . If both checks result in an indefinite value,
the composition of the components needs to be considered. However, instead of
constructing the composition of M1↑ and M2↑, our approach identifies and com-
poses only the parts of the components in which their composition is necessary in
order to conclude the truth value of ϕ. It ignores the parts which can be handled
separately. The resulting model is often significantly smaller than the full system.

We explain how our compositional approach can be combined with abstrac-
tion, in order to further reduce the size of the checked components. The result is
an incremental compositional abstraction-refinement framework, which resem-
bles automatic Assume-Guarantee reasoning.

1 Introduction

Model checking [11] is a useful approach for verifying properties of systems. The main
disadvantage of model checking is the state explosion problem, which refers to its high
space requirements. Two of the most promising approaches to fighting the state explo-
sion problem are abstraction and compositional verification. In this work we join their
forces to obtain a novel fully automatic compositional technique that can determine the
truth value of the full μ-calculus with respect to a given system.

In compositional model checking one tries to verify parts of the system separately
in order to avoid the construction of the entire system. To account for the dependencies
between the components, the Assume-Guarantee (AG) paradigm [22,25] suggests how
to verify one module based on an assumption about the behavior of its environment,
where the environment consists of the other system modules. The environment is then
verified, in order to guarantee that it actually satisfies the assumption. Many of the
works on compositional model checking are based on the AG paradigm and on learn-
ing [12,5,10] (see the related work section for more details). In contrast, our approach is
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based on techniques taken from the 3-valued game-based model checking for abstract
models [26,18,19].

We first present our method for concrete systems, composed of concrete (unab-
stracted) components. We then extend it to abstract systems, in which one or both of
the components have been abstracted (separately). For simplicity we refer to systems
that consist of two components M1||M2. However, our approach can be extended to
the composition of n components. In our setting M1 and M2 are Kripke structures that
synchronize on the joint labeling of the states. This composition is suitable for model-
ing synchronous systems with shared variables. In particular, it is suitable for hardware
designs that synchronize on their inputs and outputs, since our models can be viewed
as Moore machines [20]. The underlying ideas are applicable to other models as well,
such as Labeled Transition Systems (LTSs), where components synchronize on their
joint transitions and interleave their local transitions.

Given a system M = M1||M2, we view each component Mi as an abstraction Mi↑
of the global system M , in which the values of the local (unshared) variables and the
transitions of the other component are unknown. We consider the 3-valued semantics of
the μ-calculus, in which the value of a formula in a model is either tt (true), ff (false),
or⊥ (unknown). Mi↑ is defined so that whenever a μ-calculus formula ϕ has a definite
value (tt or ff) on Mi↑, the same value holds also for M . Thus, ϕ can be checked on
either M1↑ or M2↑ (or both), and if any of them returns a definite result, then this result
holds also for M . Only if both checks result in ⊥, the value of ϕ in M is unknown.

For the 3-valued abstraction, when the model checking returns⊥, the abstract model
should be refined in order to eliminate the ⊥ result. For our framework, a refinement
could be achieved by composing M1↑ and M2↑. This, however, is not desired and not
necessary. Instead, only the parts of the abstract models for which the model check-
ing result is ⊥ are identified and composed. The resulting refined model is often sig-
nificantly smaller than the full system and is guaranteed to return the correct model
checking result.

More specifically, our approach is based on the 3-valued game for model checking
of μ-calculus, suggested in [18,19]. The game is played on a game graph, whose nodes
are labeled by s 
 ψ, where s is a state in the checked model and ψ is a subformula
of the checked formula, s.t. the value of ψ in s is relevant for determining the model
checking result. The model checking algorithm “colors” each node in the game graph
by T , F , or ? iff the value of ψ in s is tt, ff or ⊥, respectively. Recall that we first apply
the model checking algorithm to each component separately. If the algorithm colors a
node s 
 ψ of M1↑ with T (F ), then it is guaranteed that every state in the composed
system M , whose first component is s, satisfies (falsifies) ψ. A similar property holds
for M2↑. Thus, when the model checking returns ⊥ then only the subgraphs of nodes
whose color is ? require further checking and are therefore composed. As such, the
game-based approach provides a natural way of identifying and focusing on the places
where the value of the checked formula remained inconclusive.

To further reduce the size of the checked components, we combine our composi-
tional approach with abstraction. Abstraction not only reduces the state-space of the
components, but also allows to handle infinite-state components by abstracting them
into finite-state components. Given a system composed of two (or more) components,
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we first abstract each component separately. However, in order to guarantee preserva-
tion of both tt and ff we require that the common alphabet (e.g. common inputs and
outputs for hardware designs) will not be abstracted. Only local (unshared) variables
can be abstracted. While this limits the amount of reduction that can be achieved by the
abstraction on a single component, it enables additional reduction due to the composi-
tional reasoning.

We propose an automatic construction of the initial abstraction for each component
separately. We then proceed as before: we run a 3-valued model checking on each of the
components. If both return⊥, we identify and compose the parts where indefinite results
were obtained, and apply 3-valued model checking to the composed model. While in
the concrete case this step always terminates with a definite result, here we may obtain
an indefinite result due to abstraction. In such a case, we follow [26,18,19] in finding
the cause for the indefinite result on the composed model. However, the refinement
is applied on each of the components separately. Moreover, we adopt the incremental
approach of [26,18,19] and refine only the indefinite part of each component.

An abstraction of a component Mi (which comprises the environment of the other
component) can be viewed as providing an assumption on Mi. From this point of view,
when applying abstraction-refinement on one or both of the components, the result is
an automatic mechanism for assumption generation, which is either symmetric (refers
to both components) or asymmetric (abstracts only one component). In each iteration,
more information about the component is revealed, by need – based on the cause for
the indefinite result. This resembles iterative AG reasoning. The use of conservative
abstractions guarantees that the assumption describes the component correctly (by con-
struction). Thus unlike typical AG reasoning, this need not be verified.

In summary, our contribution is threefold:

– We introduce a new ingredient to compositional model checking, which enhances
its modularity. Namely, given a compositional system, our approach uses a model
checking game-graph as a means to identify and focus on the parts of the compo-
nents in which their composition is indeed necessary to conclude the truth value of
the checked property, due to dependencies between them. It uses the game-graph
to exchange information between the components in these points, by need, and ig-
nores the parts which can be handled separately. Thus, it avoids the construction of
the full composition. Furthermore, if a certain formula only depends on one com-
ponent, then it is resolved on this component alone while avoiding the composition
altogether. Our technique is orthogonal to the AG approach, and can also be ap-
plied when the composed system consists of a component and an assumption on its
environment.

– We develop a compositional, fully automatic, abstraction-refinement framework,
which has some resemblance to iterative AG-reasoning, but benefits from the mod-
ular model checking described above. The refinement is also applied to each com-
ponent separately. In addition, the abstraction-refinement is incremental in the sense
that results from previous iterations are re-used. From the AG point of view, our
compositional abstraction-refinement can be viewed as a new, automatic, mecha-
nism for assumption generation, which uses the power of abstraction-refinement.
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– Finally, unlike most automatic AG approaches, which are limited to universal safety
properties, our technique is applicable to the full μ-calculus.

Related Work. Recently, [12] followed by [5,10], considered automatic assumption
generation for AG reasoning. They use learning algorithms for finite automata in order
to automatically produce suitable assumptions for an AG rule. A similar approach is
taken in [7], where the AG rule used is symmetric. Assumption generation in a more
general setting is addressed in [16,2]. These works are all restricted to universal safety
properties. The learning algorithms used in these works also perform some kind of an
abstraction-refinement. However, these algorithms are not specifically tailored for ver-
ification. In particular, they do not always maintain a conservative abstraction of the
environment. As such, the assumption sometimes needs to be weakened and sometimes
needs to be strengthened. In our case an assumption (abstraction) should never be weak-
ened. Moreover, we increase the modularity of the model checking step by using the
game-based approach, which also enables an incremental analysis. Most importantly,
our approach is applicable to the full μ-calculus.

The game-based model checking enables us to identify the places where the value of
a subformula in a component’s state is the same for all environments. We exploit this
information to reduce the model checking instance of the entire system. Other authors
have also used similar information for reductions. In [1] the authors merge compo-
nent’s states that share the same value for a given CTL formula in all environments,
thus minimizing the component. In [3] the authors use reachability and controllability
information about the concrete components (gathered via game-theoretic techniques) in
order to construct abstract components for invariance properties. The composition of
the abstract components is then computed and model checked. We, on the other hand,
do not try to minimize each component. Instead, the game-graph enables us to prune
parts of each component’s model checking instance whose effect was already taken into
consideration. As a result, we reduce the state space exploration of the entire system.
This is applicable even if no states of the individual components can be merged.

[15] uses controllability information to speed up falsification of invariance proper-
ties. They identify unpreventable violations of the property based on each component
separately, which enables to prune the state space exploration of the compound system
before a violation is actually encountered. The authors state that their method can be ex-
tended to arbitrary LTL properties. However, they only use controllability information
w.r.t. the entire formula. Our approach enables to gather information about subformulas
as well, and thus can result in more substantial reductions. In addition, our approach is
aimed at both verification and falsification (with a 3-valued semantics) and is applicable
to a full branching time logic.

[24] also uses 3-valued model checking for modular verification. They consider
feature-oriented modules, where the composition is via interfaces and has a more se-
quential nature. As a result, they only refer to unknown propositions and not to un-
certainty in the transitions. A substantial part of their work is devoted to determining
what information needs to be included in a feature’s interface to support compositional
reasoning. In our case, we use the game graph for sharing such auxiliary information.

In [4] the authors suggest to use game structures to reason about composition of
components. [14,6] suggest abstraction-refinement frameworks for such models, w.r.t.
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alternating time temporal logics, which enable to describe properties of the interaction
between components. We are interested in properties of the compound system, thus the
focus in these works is different. In addition, they abstract each component separately
and then model check the entire system. The model checking step is not modular.

[9] develops a compositional counterexample-guided abstraction refinement for a
universal temporal logic (which extends ACTL). In their approach, the abstraction and
the refinement steps are performed on each component separately, but the model check-
ing step is done on the entire (abstract) system. In our approach, the model checking step
is also compositional, and the properties considered are not limited to a universal logic.

2 Preliminaries

μ-calculus. [23] Let AP be a finite set of atomic propositions and V a set of proposi-
tional variables. The set of literals over AP is Lit = AP ∪{¬p : p ∈ AP}. We identify
¬¬p with p. The logic μ-calculus in negation normal form over AP is defined by:

ϕ ::= l | Z | ϕ ∧ ϕ | ϕ ∨ ϕ | �ϕ | ♦ϕ | μZ.ϕ | νZ.ϕ

where l ∈ Lit and Z ∈ V . Intuitively,� stands for “all successors”, and ♦ stands for
“exists a successor”. μ denotes a least fixpoint, whereas ν denotes greatest fixpoint. We
will also write η for either μ or ν. Let Lμ denote the set of closed formulas generated
by the above grammar, where the fixpoint quantifiers μ and ν are variable binders. We
assume that formulas are well-named, i.e. no variable is bound more than once in any
formula. Thus, every variable Z identifies a unique subformula fp(Z) = ηZ.ψ of ϕ,
where the set Sub(ϕ) of subformulas of ϕ is defined in the usual way.

Concrete Semantics. Concrete systems are typically modelled as Kripke structures.
A Kripke structure [11] is a tuple M = (AP, S, s0, R, L), where AP is a finite set of
atomic propositions, S is a finite set of states, s0 ∈ S is an initial state, R ⊆ S × S is
a transition relation, and L : S → 2Lit is a labeling function, such that for every state s
and every p ∈ AP , exactly one of p and ¬p is in L(s).

The concrete semantics [[ϕ]]M of a closed formula ϕ ∈ Lμ over AP w.r.t. a Kripke

structure M = (AP, S, s0, R, L) is a mapping from S to {tt, ff}. [[ϕ]]M (s) = tt (= ff)
means that the formula ϕ is true (false) in the state s of the Kripke structure M . If
[[ϕ]]M (s0) = tt (= ff), we say that M satisfies (falsifies) ϕ, denoted M |= ϕ (M �|= ϕ).

3-Valued Abstraction. In the context of abstraction, Kripke Modal Transition Sys-
tems [21,17] are often used as abstract models that preserve the μ-calculus.

Definition 1. A Kripke Modal Transition System (KMTS) is a tuple M = (AP, S, s0,
R+, R−, L), where AP , S and s0 are defined as before, R+, R− ⊆ S×S are must and
may transition relations (resp.) such that R+ ⊆ R−, and L : S → 2Lit is a labeling
function such that for every state s and p ∈ AP , at most one of p and ¬p is in L(s).

The 3-valued semantics [[ϕ]]M3 of a closed formula ϕ ∈ Lμ w.r.t. a KMTS M is a
mapping from S to {tt, ff,⊥} [8,21]. It preserves both satisfaction (tt) and refutation
(ff) from the abstract KMTS to the concrete model it represents.⊥ is a new truth value
whose meaning is that the truth value over the concrete model is unknown and can be
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either tt or ff. The interesting cases in the definition of the 3-valued semantics are those
of the literals and the modalities.

[[l]]M3 (s) = tt if l ∈ L(s), ff if ¬l ∈ L(s), ⊥ otherwise.

[[�ψ]]M3 (s) =

⎧⎨
⎩

tt, if ∀t ∈ S, if sR−t then [[ψ]]M3 (t) = tt
ff, if ∃t ∈ S s.t. sR+t and [[ψ]]M3 (t) = ff
⊥, otherwise

and dually for ♦ψ when exchanging tt and ff. The notations M |= ϕ and M �|= ϕ are
used for KMTSs as well. In addition, if [[ϕ]]M3 (s0) =⊥, the value of ϕ in M is indefinite.

The following definition formalizes the relation between two KMTSs that guarantees
preservation of μ-calculus formulas w.r.t. the 3-valued semantics.

Definition 2 (Mixed Simulation). [13,17] Let M1 = (AP, S1, s
0
1, R

+
1 , R−

1 , L1) and
M2 = (AP, S2, s

0
2, R

+
2 , R−

2 , L2) be two KMTSs, both defined over AP . H ⊆ S1 × S2

is a mixed simulation from M1 to M2 if (s1, s2) ∈ H implies:

1. L2(s2) ⊆ L1(s1).
2. if s1R

−
1 s′1, then there is some s′2 ∈ S2 such that s2R

−
2 s′2 and (s′1, s′2) ∈ H .

3. if s2R
+
2 s′2, then there is some s′1 ∈ S1 such that s1R

+
1 s′1 and (s′1, s

′
2) ∈ H .

If there is a mixed simulation H s.t. (s0
1, s

0
2) ∈ H , then M2 abstracts M1, denoted

M1 %M2.

In particular, Def. 2 can be applied to a (concrete) Kripke structure MC and an (abstract)
KMTS MA, by viewing the Kripke structure as a KMTS where R+ = R− = R. For
a Kripke structure, the 3-valued semantics agrees with the concrete semantics. Thus,
preservation of Lμ formulas is guaranteed by the following theorem.

Theorem 1. [17] Let H ⊆ S1 × S2 be the mixed simulation relation from a KMTS
M1 to a KMTS M2. Then for every (s1, s2) ∈ H and every ϕ ∈ Lμ we have that

[[ϕ]]M2
3 (s2) �=⊥⇒ [[ϕ]]M1

3 (s1) = [[ϕ]]M2
3 (s2).

Abstract Model Checking. A 3-valued game-based model checking for the μ-calculus
over KMTSs was suggested in [18,19]. They introduce 3-valued parity games and trans-
late the 3-valued model checking problem into the problem of determining the winner
in a 3-valued satisfaction game, which is a special case of a 3-valued parity game. We
omit the details of the 3-valued satisfaction game, but continue with the game graph,
which presents all the information “relevant” for the model checking.

Game Graph. Let M = (AP, S, s0, R+, R−, L) be a KMTS and ϕ ∈ L0
μ. The game

graph GM×ϕ, or in short G, is a graph (N,n0, E+, E−) where N ⊆ S × Sub(ϕ) is
a set of nodes and E+ ⊆ E− ⊆ N × N are sets of must and may edges defined as
follows. n0 = s0 
 ϕ ∈N is the initial node. The (rest of the) nodes and the edges are
defined by the rules of Fig. 1, with the meaning that whenever n ∈ N is of the form of
the upper part of the rule, the result in the lower part of the rule is also a node n′ ∈N
and E−(n, n′). Moreover, E+(n, n′) holds as well in all cases except for an application
of the rules in the second column with a model’s transition (s, t) ∈ R−\R+. Intuitively,
the outgoing edges of s
ψ ∈ N define “subgoals” for checking ψ in s.
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s�ψ0 ∨ ψ1
s�ψi

: i ∈ {0, 1} s�♦ψ
t�ψ

: sR+t or sR−t
s� ηZ.ψ

s�Z

s�ψ0 ∧ ψ1
s�ψi

: i ∈ {0, 1} s��ψ
t�ψ

: sR+t or sR−t s�Z
s�ψ

: if fp(Z) = ηZ.ψ

Fig. 1. Rules for game graph construction

If E−(n, n′) (E+(n, n′)) then n′ is a may (must) son of n. A node n = s 
 ψ in
GM×ϕ is classified as a ∧, ∨,�, ♦ node, based on ψ. If ψ is of the form Z or ηZ.ψ′, n
is deterministic – it has exactly one son. If n has no outgoing edges, then it is a terminal
node. In a full game graph this means that either ψ is a literal, or ψ is of the form ♦ψ′

or �ψ′, and s has no outgoing transition in M .
Fig. 2(b) presents examples of game graphs for ϕ = �(¬i ∨ ♦o) and the models

from Fig. 2(a), where all transitions are considered may transitions.

Coloring Algorithm. The model checking algorithms of [18,19] can be viewed as
coloring algorithms that label (color) each node n = s
ψ in the game graph by T , F , ?
depending on the truth value of ψ in the state s in M (based on the 3-valued semantics).
The result of the coloring is a 3-valued coloring function χ : N → {T, F, ?}.

In both cases the coloring is performed by solving the 3-valued parity game for
satisfaction, where each color stands for a possible result in the game. The algorithm
of [18] is a generalization of Zielonka’s algorithm for solving (2-valued) parity games.
In [19], the 3-valued satisfaction game is reduced into two (2-valued) parity games,
improving the coloring’s complexity. The following formalizes the correctness of the
coloring. For a (possibly not closed) formula ψ, ψ∗ denotes the result of replacing every
free occurrence of Z ∈ V in ψ by fp(Z). Note that if ψ is closed, then ψ∗ = ψ.

Definition 3. Let GM×ϕ be a game graph for a KMTS M and ϕ ∈ Lμ. A (possibly
partial) coloring function χ : N → {T, F, ?} for GM×ϕ (or its subgraph) is correct if
for every s
ψ ∈ N , whenever χ(s
ψ) is defined, then:

1. [[ψ∗]]M3 (s) = tt iff χ(s�ψ) = T .
2. [[ψ∗]]M3 (s) = ff iff χ(s�ψ) = F .
3. [[ψ∗]]M3 (s) =⊥ iff χ(s�ψ) =?.

Theorem 2. [18,19] Let χF be the (total) coloring function returned by the coloring
algorithm of [18] or [19] for GM×ϕ. Then χF is correct.

Moreover, in both cases, the final coloring of the nodes reflects the 3-valued semantics
of the logic: A ∧-node or a �-node is colored T iff all its may sons are colored T (and
in particular if it has no may sons), it is colored F iff it has a must son which is colored
F , and otherwise it is colored ?. Dually for a ∨-node or a ♦-node when exchanging T
and F . The color of s
 l for l ∈ Lit is T iff l ∈ L(s), F iff ¬l ∈ L(s), and ? otherwise.
The result of the coloring is demonstrated in Fig. 2(b).

Refinement. If the model checking result of an abstract model is indefinite (⊥), a re-
finement is needed. When using the coloring algorithms of [18,19], an indefinite result
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is accompanied with a failure state and a failure cause. The failure cause is either a
literal whose value in the failure state is ⊥, or an outgoing may transition of the fail-
ure state in the underlying model which is not a must transition. Refinement is then
performed by splitting the abstract states in a way that eliminates the failure cause
(see [18,19]).

3 Partial Coloring and Subgraphs

In the following sections we use the game-based model checking in order to identify and
focus on the places where the dependencies between components of the system affect
the model checking result. In this section we set the basis for this, by investigating
properties of the game graph and the coloring algorithms.

Due to their nature, as algorithms for solving a 3-valued parity game, the coloring
algorithms of [18,19] have the important property that they can be applied on a partially
colored graph, in which case they extend the given coloring to the rest of the graph
in a correct way. Moreover, the coloring can also be applied on a partially colored
subgraph, and under certain assumptions it will yield a correct coloring of the subgraph.
To formalize this, we need the following definitions.

Definition 4. Let G be a game graph and χF its final coloring function. For a non-
terminal node n in G we define its witnessing sons as follows, depending on its type:

∧,�: the witnessing sons are those colored F or ? by χF .
∨, ♦: the witnessing sons are those colored T or ? by χF .
deterministic: the witnessing son is the only son.

The sons are witnessing in the sense that they suffice to determine the color of the node,
thus removing the rest of the node’s sons from the graph does not damage the result of
the coloring. For example, if a ∧-node or a �-node has no witnessing sons, meaning
all its sons are colored T , then we know it should be colored T , and this is indeed how
the coloring algorithms will color the node when keeping only the witnessing sons.
Otherwise, the witnessing sons determine whether the node should be colored F or ?,
thus one can correctly color the node by considering only them.

Definition 5. A subgraph G′ of a game graph G is closed if every node in G′ is either
a terminal node, or all its witnessing sons (and corresp. edges) from G are also in G′.

Theorem 3. Consider a closed subgraph G′ of a game graph G with a partial coloring
function χ which is correct and defined over (at least) all the terminal nodes in G′. Then
applying the coloring algorithm of [18] or [19] on G′ with χ as an initial coloring
results in a correct coloring of G′.

In fact, for the coloring of the subgraph to be correct, not all the witnessing sons are
needed, as long as there is enough information to explain the correct coloring of each
uncolored node. However, we will see that in our case we will need all of them, as
we will deduce from the game graph of one component to the game graph of the full
system, where some of the nodes will be removed and for some an indefinite color (?)
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will change into T or F . This means that some of the witnessing sons will not remain
witnessing sons in the game graph of the full system. Thus, we will not be able to know
a-priori which of them is the “right” choice to include in a way that will also provide
the necessary information for a correct coloring in the game graph of the full system.

Another notion that we will need later is the following.

Definition 6 (?-Subgraph). Let G be a colored graph whose initial node is colored ?.
The ?-subgraph is the least subgraph G? of G that obeys the following:

– the initial node is in G? (and is the initial node of G?).
– For each node in G? which is colored ? in G all its witnessing sons (and corre-

sponding edges) in G are included in G?.

G? is accompanied with a partial coloring function χI which is defined over the
terminal nodes in G?, and colors them as the coloring function χF of G.

The ?-subgraph G? and its initial coloring meet the conditions of Thm. 3. Intuitively,
this means that G? contains all the information regarding the indefinite result. Fig. 2(b)
provides examples of ?-subgraphs.

4 Compositional Model Checking

In compositional model checking the goal is to verify a formula ϕ on a compound
system M1||M2. In our setting M1 and M2 are Kripke structures that synchronize on
the joint labelling of the states. Since a Kripke structure is a special case of a KMTS
where R = R+ = R−, we define the composition for the more general case of KMTSs.
In the following we denote by Lit1 and Lit2 the sets of literals over AP1 and AP2, resp.

Definition 7. Two KMTSs M1 = (AP1, S1, s
0
1, R

+
1 , R−

1 , L1) and M2 = (AP2, S2, s
0
2,

R+
2 , R−

2 , L2) are composable if their initial states agree on their joint labeling, i.e.
L1(s0

1) ∩ Lit2 = L2(s0
2) ∩ Lit1.

Definition 8. Let M1 = (AP1, S1, s
0
1, R

+
1 , R−

1 , L1) and M2 = (AP2, S2, s
0
2, R

+
2 , R−

2 ,
L2) be two composable KMTSs. We define their composition, denoted M1||M2, to be
the KMTS (AP, S, s0, R+, R−, L), where

– AP = AP1 ∪ AP2

– S = {(s1, s2) ∈ S1 × S2 | L1(s1) ∩ Lit2 = L2(s2) ∩ Lit1}
– s0 = (s0

1, s
0
2)

– R+ = {((s1, s2), (t1, t2)) ∈ S × S | (s1, t1) ∈ R+
1 and (s2, t2) ∈ R+

2 }
– R− = {((s1, s2), (t1, t2)) ∈ S × S | (s1, t1) ∈ R−

1 and (s2, t2) ∈ R−
2 }

– L((s1, s2)) = L(s1) ∪ L(s2)

In particular, if M1 and M2 are Kripke structures with transition relations R1 and
R2 resp., then M1||M2 is a Kripke structure with R = {((s1, s2), (t1, t2)) ∈ S ×
S | (s1, t1) ∈ R1 and (s2, t2) ∈ R2}.
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From now on we fix AP to be AP1 ∪ AP2. For i ∈ {1, 2} we use i to denote the
remaining index in {1, 2} \ {i}.

We use the mechanism produced for abstractions of full branching time logics for the
purpose of compositional verification. The basic idea is to view each Kripke structure
Mi as a partial model that abstracts M1||M2.

Definition 9. Let Mi = (APi, Si, s
0
i , Ri, Li) be a Kripke structure. We lift Mi into a

KMTS Mi↑= (AP, Si, s
0
i , R

+
i ↑, R−

i ↑, Li↑) over AP where R+
i ↑= ∅, R−

i ↑= Ri and
Li↑ (s) = Li(s).

That is, we view Mi as a KMTS Mi↑ over AP (rather than APi). This immediately
makes the value of each literal over AP \APi in each state of Mi↑ indefinite (as neither
p nor ¬p are in Li(s)) – indeed, it depends on Mi. In addition, each transition of Mi is
considered a may transition (since in the composition it might be removed if a matching
transition does not exist in Mi, but transitions can never be added).

Theorem 4. M1||M2 %Mi↑. The mixed simulation is {((s1, s2), si) | (s1, s2) ∈ S}.

Since each Mi↑ abstracts M1||M2, we are able to first consider each component sepa-
rately: Thm. 1 ensures that if ϕ has a definite value (tt or ff) in Mi↑ under the 3-valued
semantics, then the same value holds in M1||M2 as well. In particular, the values in
M1↑ and M2↑ cannot be contradictory, and it suffices that one of them is definite in
order to determine the value in M1||M2.

The more typical case is that the value of ϕ on both M1↑ and M2↑ is indefinite. This
reflects the fact that ϕ depends on both components and their synchronization. Typi-
cally, an indefinite result requires some refinement of the abstract model. In our case
refinement means considering the composition with the other component. Still, in this
case as well, having considered each component separately can guide us into focusing
on the places where we indeed need to consider the composition of the components.

The game-based approach to model checking provides a convenient way for present-
ing this information. If the KMTS Mi↑ is model checked using the algorithm of [18]
or [19], then the result is a colored game graph, in which T and F represent definite
results (i.e. truth values that hold no matter what the environment is), but the ? color
needs to be resolved by considering the composition. This is where the ?-subgraph (see
Def. 6) becomes handy, as it points out the places where this is really needed.

The ?-subgraph for each component is computed top-down, starting from the initial
node. As long as a node colored ? is encountered, the search continues in a BFS manner
by including the witnessing sons. Definite nodes which are included in the subgraph
become terminal nodes, and their coloring defines the initial coloring function.

The ?-subgraphs of the two colored graphs present all the indefinite information that
results from the dependencies between the components. Thus, to resolve the indefinite
result, we compose the ?-subgraphs.

Definition 10 (Product Graph). Let G?1 and G?2 be two ?-subgraphs as above with
initial nodes s0

1 
 ϕ and s0
2 
 ϕ resp. We define their product to be the least graph

G|| = (N||, n0
||, E

+
|| , E−

|| ) such that:
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– n0
|| = (s0

1, s
0
2)
ϕ is the initial node in N||.

– If (s1, s2) 
 ψ ∈ N|| and (s1 
 ψ, s′1 
 ψ′) ∈ E−
1 and (s2 
 ψ, s′2 
 ψ′) ∈ E−

2

and L1(s′1) ∩ Lit2 = L2(s′2) ∩ Lit1 (i.e. (s′1, s
′
2) is a state of M1||M2), then:

(s′1, s′2)
ψ′ ∈ N|| and ((s1, s2)
ψ, (s′1, s′2)
ψ′) is in E+
|| and E−

|| .

Note that all the edges in G|| are must edges, whereas in the ?-subgraphs we had
may edges (the transitions of each component were treated as may transitions in the
lifted version). This is because the product graph already refers to the complete system
M1||M2, where all transitions are concrete transitions (modeled as must transitions).

The product graph is constructed by a top-down traversal of the subgraphs, where,
starting from the initial nodes, nodes that share the same formulas and whose states
agree on the joint labeling are composed (recall that s0

1 and s0
2 agree on their joint la-

beling). Whenever two non-terminal nodes are composed, the outgoing edges are com-
puted as the product of their outgoing edges, limited to legal nodes (w.r.t. the restriction
to states that agree on their labeling). In particular, this means that if a node in one sub-
graph has no matching node in the other, then it will be omitted from the product graph.
In addition, when a terminal node of one subgraph is composed with a non-terminal
node of the other, the resulting node is a terminal node in G||.

We accompany G|| with an initial coloring function for its terminal nodes based on
the initial coloring functions of the two subgraphs. We use the following observation:

Proposition 1. Let n = (s1, s2)
ψ be a terminal node in G||. Then one of the follow-
ing holds. Either (a) at least one of s1 
ψ and s2 
ψ is a terminal node in its subgraph,
in which case at least one of them is colored by a definite color by the initial coloring
of its subgraph, and contradictory definite colors are impossible. We denote this color
by col(n); Or (b) both s1 
ψ and s2 
ψ are non-terminal nodes but no outgoing edges
were left in their composition.

Definition 11. We define the initial coloring function χI of G|| as follows. Let n be a
terminal node in N||. If it fulfills case (a) of Prop. 1, then χI(n) = col(n). If it fulfills
case (b), then χI(n) = T if n is a ∧-node or a�-node, and χI(n) = F if n is a ∨-node
or a ♦-node. χI is undefined for the rest of the nodes.

In particular, if a terminal node in G|| results from a terminal node which is colored by
? in one subgraph and a terminal node which is colored by some definite color in the
other, then the definite color takes over.

Note that the initial coloring function of the product graph colors all the terminal
nodes by definite colors. Along with the property that all the edges in the product graph
are must edges, this reflects the fact that the composition resolves all the indefinite in-
formation that existed in each component when it was considered separately. Therefore,
when applying (one of) the coloring algorithm to the product graph, all the nodes are
colored by definite colors (in fact, a 2-valued coloring can be applied).

Theorem 5. The resulting product graph G|| is a closed subgraph of the game graph
over M1||M2. In addition, the initial coloring function is correct w.r.t. M1||M2 and
defined over all the terminal nodes in the subgraph.
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By Thm. 3, this means that coloring G|| results in a correct result w.r.t. the model check-
ing of ϕ in M1||M2. Thus, to model check ϕ on M1||M2 it remains to color G||. Note
that the full graph for M1||M2 is not constructed. To sum up, the algorithm is as follows.

Step 1 Model check each Mi↑ separately (for i ∈ {1, 2}):

1. Construct the game graph Gi for ϕ and Mi↑.
2. Apply the 3-valued coloring on Gi. Let χi be the resulting coloring function.

If χ1(n0
1) or χ2(n0

2) is definite, return the corresp.model checking result for M1||M2.
Step 2 Consider the composition M1||M2:

1. Construct the ?-subgraphs for G1 and G2.
2. Construct the product graph G|| of the ?-subgraphs.
3. Apply the 3-valued coloring on G|| (with the initial coloring function).

Return the model checking result corresponding to χ||(n0
||).

Example 1. Consider the components depicted in Fig. 2(a). The atomic proposition o
(short for output) is local to M1, i (input) is local to M2, and r (receive) is the only
joint atomic proposition that M1 and M2 synchronize on. Suppose we wish to verify in
M1||M2 the property�(¬i∨♦o), which states that in all the successor states of the ini-
tial state, an input signal implies that there is a successor state where the output signal
holds. Fig. 2(b) depicts the colored game graph of each (lifted) component, and high-
lights the ?-subgraph of each of them. The product graph and its coloring is depicted in
Fig. 2(c), as an “intersection” of the two subgraphs. All the edges in the product graph
are must edges. All nodes, and in particular the initial node, are colored T , thus the
property is verified. One can see that most of the efforts were done on each component
separately, and the product graph only considers a small part of the compound system.

G1::

s0 � ¬i ∨ ♦o

s0 �♦o

s0 � o s2 � o

s1 � ¬i ∨ ♦o

s1 � ♦o

s0 ��(¬i ∨ ♦o)

s1 � o

s0 � ¬i s1 � ¬i

G2::

t1 � ¬i ∨ ♦o

t2 � ¬it1 � ¬i t2 �♦o

t0 ��(¬i ∨ ♦o)

t0 � ¬i ∨ ♦o

t0 � o t1 � o t2 � o

t2 � ¬i ∨ ♦o

t1 �♦ot0 � ¬i t0 �♦o

(b)

¬r, ¬o

r, or, ¬o

s0

s2s1

M1::

¬i, ¬r

¬i, ri, r

t0

t1 t2

M2::

(a)

(s0, t0) ��(¬i ∨ ♦o)

(s2, t1) � o

(s1, t1) � ♦o

(s1, t1)� ¬i ∨ ♦o

(c)

Fig. 2. (a) Components, (b) their game graphs and their ?-subgraphs (enclosed by a line), and (c)
the product graph. Dashed edges denote may edges which are not must edges. The colors reflect
the coloring function: white stands for T , dark gray stands for F and light gray stands for ?.
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5 Adding Abstraction

In Section 4 we considered concrete components. The indefinite results on each compo-
nent resulted only from their interaction, and were resolved by composing the indefinite
parts. We now combine this idea with existing abstraction-refinement techniques.

5.1 Motivation

Composing the ?-subgraphs of two components, as suggested in Section 4, corresponds
to refining all possible failure causes. We now show how to use abstraction in order to
make the refinement more local and gradual by eliminating one failure cause at a time.

Suppose that the coloring of the game-graph G1 for the lifted concrete component
M1↑ results in an indefinite result. We wish to eliminate the failure cause returned by
the coloring algorithm for M1↑. Suppose that s is the failure state. It abstracts all the
states of M1||M2 that consist of s and a matching state of M2. Eliminating the cause
for failure amounts to exposing from M2 the information that involves the failure, and
splitting s accordingly. For example, in Fig. 2, a possible failure cause in G1 is the
may transition of M1↑ from s1 to s2. In order to either remove it or turn it into a must
transition, we need to consider all the states of M2 which are composable with s1. These
are the states labeled r. We need to find out which of them have a transition to a state
labeled r (i.e., a state composable with s2), and which of them do not.

Clearly, the complete composition of the ?-subgraphs achieves this goal. However,
it exposes more information than relevant for the given failure cause. Thus we do not
want to resort to that (in this example it is indeed necessary, but in the general case not
all the causes for failure need to be eliminated). We now sketch the idea that allows
us to only consider the information from M2 that is needed for eliminating the failure
cause of M1↑. This will be described more formally in Section 5.2.

We abstract M2 into M̂2. We start with a most coarse abstraction of M2 w.r.t. AP1 ∩
AP2, where each state is abstracted by its labeling, restricted to AP1 ∩AP2.

Definition 12. Let Mi = (APi, Si, s
0
i , Ri, Li) be a Kripke structure. The most coarse

abstraction for Mi w.r.t. AP ′ ⊆ APi is the KMTS M̂∗
i = (APi, 2AP ′

, Li(s0
i ) ∩AP ′, ∅,

2AP ′ × 2AP ′
, L∗

i ), where for ŝ ∈ 2AP ′
, L∗

i (ŝ) = ŝ ∪ {¬p | p ∈ AP ′ \ ŝ}.

Theorem 6. Mi % M̂∗
i . The mixed simulation is {(si, Li(si) ∩AP ′) | si ∈ Si}.

The construction of the most coarse abstraction requires almost no knowledge of the
component. More precise transitions can be computed as in [26]. Starting from the
most coarse abstraction of M2, we iteratively model check the composition of M1 and
the abstract model M̂2. The model checking is performed in a compositional fashion,
similarly to Section 4, without computing the full composition. If the result in some it-
eration is indefinite, we refine M̂2 depending on the failure cause over M1||M̂2. Recall
that our purpose was to eliminate a failure cause over M1↑. Since we start with a most
coarse abstraction of M2 w.r.t. the joint atomic propositions, M1||M̂2 is initially iso-
morphic to M1↑. As a result, in the first iteration the failure cause over M1||M̂2 reflects
the failure cause over M1↑, and the refinement of M̂2 indeed exposes the relevant infor-
mation from M2. Similarly, in the next iterations, the failure cause over M1||M̂2 reflects
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the failure cause over M1↑, after taking into consideration the elimination of previous
failure causes. In this sense, in each iteration we eliminate one failure cause over M1↑,
and M̂2 “accumulates” the information required to eliminate these failure causes.

This means that we keep one of the components, M1, concrete, and construct an ab-
stract environment for it, by applying an iterative abstraction-refinement on M2, where
refinement is aimed at eliminating the indefinite results that arise when considering M1

with the abstract environment. This approach is reminiscent of an asymmetric Assume-
Guarantee rule. The next step is to make the approach symmetric by abstracting both
components. This amounts to constructing abstract environments for both the compo-
nents. In this case, refinement also needs to be applied on both components.

5.2 Compositional Abstraction-Refinement

We now describe in detail the combination of the compositional approach with
abstraction-refinement. This provides a framework for using both the asymmetric and
the symmetric approaches sketched above. On the one hand, we enhance the composi-
tional model checking of Section 4 by using abstraction and a more gradual refinement.
On the other hand, we enhance the abstraction-refinement framework by making both
the abstract model checking and the refinement compositional. We no longer require
that the state spaces of the concrete components are finite, as long as the abstract state
spaces are.

Compositional Abstraction. Composition of abstract models (KMTSs) is defined in
Def. 8. In order to ensure that the composition of two abstract models M̂1 = (AP1, Ŝ1,
ŝ0
1, R

+
1 , R−

1 , L̂1) and M̂2 = (AP2, Ŝ2, ŝ
0
2, R

+
2 , R−

2 , L̂2), for M1 and M2 respectively,
results in an abstract model for M1||M2, we consider appropriate abstract models w.r.t.
AP1 ∩AP2. We say that M̂i is an appropriate abstract model of Mi w.r.t. AP1 ∩AP2

if M̂i and Mi are related by a mixed simulation relation which is appropriate w.r.t.
AP1 ∩AP2, as defined below.

Definition 13. Let H ⊆ Si × Ŝi be a mixed simulation from Mi to M̂i, both defined
over APi. We say that H is appropriate w.r.t. AP ′ ⊆ APi if for every (si, ŝi) ∈ H ,
Li(si) ∩ Lit′ = L̂i(ŝi) ∩ Lit′, where Lit′ denotes the set of literals over AP ′.

In particular, the most coarse abstraction w.r.t. AP1 ∩AP2 (see Def. 12) is appropriate
w.r.t. AP1 ∩AP2. Appropriateness of M̂1 and M̂2 w.r.t. AP1 ∩AP2 means that the ab-
straction of each component only identifies states that agree on their labelings w.r.t. the
joint atomic propositions. It ensures that if (ŝ1, ŝ2) is a state of the abstract composition
and ŝ1 abstracts s1 and ŝ2 abstracts s2, then since ŝ1 and ŝ2 agree on the joint labeling,
then so do s1 and s2. This ensures that (s1, s2) is a state of the concrete composition,
abstracted by (ŝ1, ŝ2). We now have the following.

Theorem 7. Let M̂i be an appropriate abstract model for Mi w.r.t. AP1 ∩ AP2. Then
M1||M2 % M̂1||M̂2.

Thus, if each of M1 and M2 is abstracted separately by an appropriate abstraction w.r.t.
AP1∩AP2, then the composition of the corresponding abstract components M̂1 and M̂2

results in an abstract model for M1||M2. However, we do not wish to construct M̂1||M̂2

and model check it. Instead, we suggest to model check M̂1||M̂2 compositionally.
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Compositional (abstract) Model Checking. The general scheme is similar to the con-
crete case: we first try to make the most out of each (abstract) component separately, and
if this does not result in a definite answer, we consider the product of the ?-subgraphs
which enable to exchange information via a compact representation. We start by view-
ing each abstract component M̂i as a partial model that abstracts their composition
M̂1||M̂2.

Definition 14. Let M̂i = (APi, Ŝi, ŝ
0
i , R

+
i , R−

i , L̂i) be a KMTS. We lift M̂i into a
KMTS M̂i ↑= (AP, Ŝi, ŝ

0
i , R

+
i ↑, R−

i ↑, L̂i ↑) over AP where R+
i ↑= ∅, R−

i ↑= R−
i

and L̂i↑ (ŝ) = L̂i(ŝ).

That is, when M̂i is lifted into M̂i↑, only the may transitions of M̂i are useful, because
must transitions are not really must w.r.t. M̂1||M̂2. Similarly to the concrete case:

Theorem 8. M̂1||M̂2 % M̂i↑.

Corollary 1. If M̂i is an appropriate abstract model for Mi w.r.t. AP1 ∩ AP2, then
M1||M2 % M̂i↑.

Therefore one can model check each of M̂i↑ separately, and the definite results follow
through to M1||M2. In fact, it is possible to show that M1||M2 % M̂i↑ holds even if we
omit the appropriateness requirement. Thus appropriateness is not needed for this step.
However, it is needed for the next steps, where we deduce from M̂1||M̂2 to M1||M2.

If both checks result in indefinite results, the (abstract) ?-subgraphs for both game
graphs are produced and their product is considered. Having composed the ?-subgraphs
of the two components resolves dependencies between them, but the result is still ab-
stract, as it refers to the abstract composition M̂1||M̂2. This results in two differences
compared to the concrete case.

First, the may edges do not necessarily become must edges. Instead, the distinction
between may and must edges is determined by the type of the underlying transitions in
the (unlifted) abstract models M̂i, which have been ignored so far. Second, it is now
possible that a terminal node n = (ŝ1, ŝ2) 
 ψ in G|| with ψ = l for a local literal
l ∈ Lit \ (Lit1 ∩ Lit2) results from terminal nodes ŝ1 
 l and ŝ2 
 l which are both
colored by ? in their subgraphs (one, since l is local to the other component, and is thus
treated as indefinite, and the other due to the abstraction). We add this possibility as
case (c) to Prop. 1 which characterizes the terminal nodes in the product graph G||. It is
taken into account when determining the initial coloring of G||.

Definition 15 (Abstract Product Graph). Let G?1 and G?2 be two abstract ?-
subgraphs as above. Their product graph G|| = (N||, n0

||, E
+
|| , E−

|| ) is defined as before,

except for the definition of E+
|| : an edge ((ŝ1, ŝ2)
ψ, (ŝ′1, ŝ

′
2)
ψ′) in E−

|| is also in E+
||

iff ŝiR
+
i ŝ′i for each i ∈ {1, 2}. The initial coloring function is defined as before, with

the addition that a terminal node that fulfills case (c) in the adapted version of Prop. 1
is colored ?.

Theorem 9. The resulting abstract product graph G|| is a closed subgraph of the game

graph over M̂1||M̂2. In addition, the initial coloring function is correct and defined over
all the terminal nodes in the subgraph.
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Along with Thm. 3, this implies that G|| can be colored correctly (w.r.t. the model

checking of ϕ on M̂1||M̂2) using the 3-valued algorithm. If the initial node is colored
by a definite color, then by Thm. 7 the result holds in M1||M2 as well and we are done.

Compositional Refinement. Since an abstraction is used, the result of the model
checking can be ⊥, in which case the coloring of [18,19] returns a failure cause that
needs to be eliminated. The failure cause is either a literal whose value in a certain state
is ⊥, or a may transition of the underlying model which is not a must transition.

In our setting, the refinement step is done compositionally: If the failure cause is a
literal l whose value in the failure state of M̂1||M̂2 is ⊥, then l has to be a local literal
of one of the components. This is because the abstraction is appropriate w.r.t. AP1 ∩
AP2, which implies that no indefinite values for the joint atomic propositions occur in
M̂1||M̂2. Thus, refinement need only be applied on the corresponding component.

Otherwise, the failure cause is a may transition (which is not a must transition) of
M̂1||M̂2 that needs to be refined in order to result in a must transition or no transition at
all. Let ((ŝ1, ŝ2), (ŝ′1, ŝ

′
2)) be this may transition. Then it results from may transitions

(ŝ1, ŝ
′
1) and (ŝ2, ŝ

′
2) of M̂1 and M̂2 resp., such that at least one of them is not a must

transition. In order to refine ((ŝ1, ŝ2), (ŝ′1, ŝ
′
2)), one needs to refine the individual may

transitions in each component separately. If both of them are not must transitions, then
refinement should be applied in each component. This is because a must transition in the
composition results from must transitions in both components. Otherwise, refinement
should only be applied in the component where it is not a must transition.

In each component where refinement is necessary, the refinement can be done
as in [26,18,19]. Moreover, in each component we adopt the incremental approach
of [26,18,19] and avoid unnecessary refinement. In this approach, only nodes with in-
definite colors are refined. In our setting, this corresponds to the ?-subgraph of each
component. The result is the following compositional abstraction-refinement loop.

Step 0 For i ∈ {1, 2}, abstract Mi into M̂i appropriately w.r.t. AP1∩AP2 (e.g. as in Def.12).
Step 1 Model check each M̂i↑ separately (for i ∈ {1, 2}):

1. Construct the game graph Gi for ϕ and M̂i↑.
2. Apply the 3-valued coloring on Gi. Let χi be the resulting coloring function.

If χ1(n0
1) or χ2(n0

2) is definite, return the corresp.model checking result for M1||M2.
Step 2 Consider the composition M̂1||M̂2:

1. Construct the ?-subgraphs for G1 and G2.
2. Construct the (abstract) product graph G|| of the ?-subgraphs.
3. Apply the 3-valued coloring on G|| (with the initial coloring function).

If χ||(n0
||) is definite, return the corresp.model checking result for M1||M2.

Step 3 Refine: Consider the failure cause returned by the coloring of G|| (where χ||(n0
||) =?).

If it is l ∈ Liti then refine M̂i; Else let it be the may transition ((ŝ1, ŝ2), (ŝ′
1, ŝ

′
2)). Then:

1. If (ŝ1, ŝ
′
1) is not a must transition in M̂1, refine M̂1.

2. If (ŝ2, ŝ
′
2) is not a must transition in M̂2, refine M̂2.

Refine the ?-subgraphs of G1 and G2 accordingly (as in the incremental approach);
Go to Step 1(2) with the refined subgraphs.
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Note that the must transitions of each abstract component are only used when G|| is
constructed. Thus, their computation can be deferred to step 2 and be limited to must
transitions that are needed during model checking. Hyper-transitions can also be used,
e.g. with the algorithm of [27].

Using the compositional abstraction-refinement starting from the most coarse ab-
straction w.r.t. AP1 ∩AP2 of one or both of the components results in the asymmetric,
resp. symmetric, approach described in Section 5.1.

Theorem 10. For finite concrete components, iterating the compositional abstraction-
refinement process is guaranteed to terminate with a definite answer.

References

1. Aziz, V.A., Shiple, T.R., Sangiovanni-vincentelli, A.L.: Formula-dependent equivalence
for compositional CTL model checking. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818,
Springer, Heidelberg (1994)

2. Alur, R., Cerny, P., Madhusudan, P., Nam, W.: Synthesis of interface specifications for Java
classes. In: POPL (2005)

3. Alur, R., de Alfaro, L., Henzinger, T.A., Mang, F.Y.C.: Automating modular verification. In:
Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, Springer, Heidelberg
(1999)

4. Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic. In: FOCS (1997)
5. Alur, R., Madhusudan, P., Nam, W.: Symbolic compositional verification by learning as-

sumptions. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, Springer,
Heidelberg (2005)

6. Ball, T., Kupferman, O.: An abstraction-refinement framework for multi-agent systems. In:
LICS (2006)

7. Barringer, H., Giannakopoulou, D., Pasareanu, C.: Proof rules for automated compositional
verification through learning. In: SAVCBS (2003)

8. Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued temporal logics.
In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, Springer, Heidelberg
(1999)

9. Chaki, S., Clarke, E., Grumberg, O., Ouaknine, J., Sharygina, N., Touili, T., Veith, H.:
State/event software verification for branching-time specifications. In: Romijn, J.M.T.,
Smith, G.P., van de Pol, J. (eds.) IFM 2005. LNCS, vol. 3771, Springer, Heidelberg (2005)

10. Chaki, S., Clarke, E.M., Sinha, N., Thati, P.: Automated assume-guarantee reasoning for sim-
ulation conformance. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
Springer, Heidelberg (2005)

11. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)
12. Cobleigh, J.M., Giannakopoulou, D., Pasareanu, C.S.: Learning assumptions for composi-

tional verification. In: Garavel, H., Hatcliff, J. (eds.) ETAPS 2003 and TACAS 2003. LNCS,
vol. 2619, Springer, Heidelberg (2003)

13. Dams, D., Gerth, R., Grumberg, O.: Abstract interpretation of reactive systems. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 19(2) (1997)

14. de Alfaro, L., Godefroid, P., Jagadeesan, R.: Three-valued abstractions of games: Uncer-
tainty, but with precision. In: LICS (2004)

15. de Alfaro, L., Henzinger, T.A., Mang, F.Y.C.: Detecting errors before reaching them. In:
Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, Springer, Heidelberg (2000)



86 S. Shoham and O. Grumberg

16. Giannakopoulou, D., Pasareanu, C.S., Barringer, H.: Assumption generation for software
component verification. In: ASE (2002)

17. Godefroid, P., Jagadeesan, R.: Automatic abstraction using generalized model checking. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, Springer, Heidelberg (2002)

18. Grumberg, O., Lange, M., Leucker, M., Shoham, S.: Don’t know in the μ-calculus. In:
Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, Springer, Heidelberg (2005)

19. Grumberg, O., Lange, M., Leucker, M., Shoham, S.: When not losing is better than winning:
Abstraction and refinement for the full μ-calculus. Information and Compuatation (2007)
doi: 10.1016/j.ic.2006.10.009

20. Grumberg, O., Long, D.: Model checking and modular verification. TOPLAS, 16(3) (1994)
21. Huth, M., Jagadeesan, R., Schmidt, D.: Modal transition systems: A foundation for three-

valued program analysis. In: Sands, D. (ed.) ESOP 2001 and ETAPS 2001. LNCS, vol. 2028,
Springer, Heidelberg (2001)

22. Jones, C.: Specification and design of (parallel) programs. In: IFIP (1983)
23. Kozen, D.: Results on the propositional μ-calculus. TCS, 27 (1983)
24. Li, H.C., Krishnamurthi, S., Fisler, K.: Modular verification of open features using three-

valued model checking. Autom. Softw. Eng., 12(3) (2005)
25. Pnueli, A.: In transition for global to modular temporal reasoning about programs. In: Logics

and Models of Concurrent Systems, vol. 13 (1984)
26. Shoham, S., Grumberg, O.: A game-based framework for CTL counterexamples and 3-

valued abstraction-refinement. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS,
vol. 2725, Springer, Heidelberg (2003) (to appear in TOCL)

27. Shoham, S., Grumberg, O.: 3-valued abstraction: More precision at less cost. In: LICS (2006)



Formalised Inductive Reasoning
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Abstract. We present a framework for inductive definitions in the logic
of bunched implications, BI, and formulate two sequent calculus proof
systems for inductive reasoning in this framework. The first proof sys-
tem adopts a traditional approach to inductive proof, extending the usual
sequent calculus for predicate BI with explicit induction rules for the in-
ductively defined predicates. The second system allows an alternative
mode of reasoning with inductive definitions by cyclic proof. In this sys-
tem, the induction rules are replaced by simple case-split rules, and the
proof structures are cyclic graphs formed by identifying some sequent
occurrences in a derivation tree. Because such proof structures are not
sound in general, we demand that cyclic proofs must additionally satisfy
a global trace condition that ensures soundness. We illustrate our induc-
tive definition framework and proof systems with simple examples which
indicate that, in our setting, cyclic proof may enjoy certain advantages
over the traditional induction approach.

1 Introduction

The mechanised verification of properties of computer programs — for example,
properties expressing safety, liveness, or correctness — is an important and very
challenging problem currently attracting considerable interest in the computer
science research community. A source of inconvenience, though, is the tendency
of real-life computer programs to be written in low-level languages employing
pointer arithmetic and similar operations that directly alter data stored in shared
mutable structures, such as the heap. Because the (potentially dangerous) effects
of these operations are hard to analyse, programs written using such languages
have so far proven very much less amenable to formal reasoning than those writ-
ten in, e.g., high-level functional programming languages, which are typically
more well-behaved from a mathematical standpoint. The logic of bunched impli-
cations (BI), formulated by O’Hearn and Pym [19], addresses this problem by
offering a convenient formalism for expressing properties of programs that access
and modify some shared resource [16]. In this paper, we extend BI with a frame-
work for inductive definitions, and formulate sequent calculus proof systems for
formal reasoning in this extension.
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Inductive definitions are an important and well-established tool for represent-
ing many structures commonly used in the specification of computer programs,
such as linked lists and binary trees. For any inductively defined structure, there
are naturally associated inductive proof principles allowing us to reason about
the structure by exploiting the recursion in its definition. Most often, these prin-
ciples are encoded as inference rules or axioms in the native reasoning framework;
but one can also reason with inductive definitions via a natural mode of cyclic
proof [8,9]. In contrast to the usual finite tree proofs, cyclic proofs are regu-
lar infinite trees — represented as a finite (cyclic) graph — satisfying a global
condition ensuring soundness. For inductively defined relations, this soundness
condition is manifested as a generalisation of the principle of infinite descent à
la Fermat [10].

By considering particular models of BI, one can obtain logics suitable for car-
rying out verification in specific programming languages. One very successful
such logic is the separation logic of O’Hearn, Reynolds and Yang, which is suit-
able for reasoning about C-like languages [21]. Separation logic has to date been
used in the verification of several non-trivial programs involving pointer arith-
metic, including (but not limited to) a copying garbage collector [6], a DAG
duplication program [7] and the Schorr-Waite graph marking algorithm [25]. It
has also fruitfully been employed in local shape analysis [13,14], program termi-
nation analysis [4], and automated program verification (see e.g. [3,2]).

However, as has been noted [5,22], static analysis in separation logic (and other
analysis based upon BI) has so far typically relied upon ad hoc extensions of the
core logic by the particular inductive definitions needed for the development. It
is thus of clear interest to develop a formal extension of BI in which one can
define and reason about general inductive structures (over some suitable class
of definitions). We provide one such extension, which could form a basis for
theorem proving support to check logical implications in BI involving arbitrary
inductive predicates (as needed, e.g., to accelerate fixed-point computations in
shape analysis [13], or to check properties of predicates generated by inductive
recursion synthesis [15] or used in automated verification [18]). Furthermore,
our notion of cyclic proof for reasoning with inductive predicates appears to
offer a new and potentially advantageous approach to certain static analysis
applications (which we discuss later). In this paper, however, we confine ourselves
to providing the foundations necessary to develop such applications.

In Section 2, we extend first-order predicate BI with a framework for (possibly
mutual) inductively defined relations, based on simple “productions” in the style
of Martin-Löf [17], in which the multiplicative connectives of BI may occur in
the premises of definitions. This framework, though relatively simple, appears
nonetheless powerful enough to express the inductive definitions that have arisen
in practice in existing applications of separation logic to program verification.
In Section 3 we extend the usual Gentzen-style proof system for BI to obtain a
proof system supporting induction in the extended logic BIID by adding left- and
right-introduction rules for atomic formulas involving the inductive predicates
of the theory. Following the approach taken in [8,9,10], the right introduction
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rules for an inductive predicate P are merely sequent versions of the productions
defining P , while the left-introduction rule for P embodies the natural principle
of rule induction over the definition of P . However, there is also a natural notion
of cyclic proof for the logic, for which we introduce a second proof system in
Section 4. In this system, the induction rules of the first system are replaced by
simple case-split rules. Pre-proofs in the system are “unfinished” derivation trees
in which every node to which no proof rule has been applied is identified with
a syntactically identical interior node; pre-proofs can thus straightforwardly be
understood as cyclic graphs. In general, pre-proofs are not sound, so to ensure
soundness we impose a global trace condition stipulating, essentially, that for each
infinite path in the pre-proof, some inductive definition is unfolded infinitely
often along the path. By appealing to the well-foundedness of our inductive
definitions, all such paths can be disregarded, whereby the remaining portion of
proof is finite and hence sound for standard reasons. Finally, in Section 5, we
identify the main directions for future work.

2 First-Order Predicate BI with Inductive Definitions

In this section we give the syntax and semantics of our logic, BIID, obtained
by extending first-order predicate BI à la Biering et al [5] with a framework for
(possibly mutual) inductive definitions.

A brief comment on some of our mathematical and notational conventions
is in order. We often use vector notation to abbreviate sequences, e.g. x for
(x1, . . . , xn); for any n ∈ N and i ≤ n we define the ith projection function πn

i

on n-tuples of sets by πn
i (X1, . . . , Xn) = Xi; for any n ∈ N we extend set union,

intersection and inclusion to n-tuples of sets by their corresponding pointwise
definitions; and we write Pow(X) for the powerset of a set X .

Our languages are the standard (countable) first-order languages — contain-
ing arbitrarily many constant, function, and predicate symbols — except that
we designate finitely many of the predicate symbols as inductive. A predicate
symbol that is not inductive is called ordinary. For the rest of this paper, we shall
consider a fixed language Σ containing exactly n inductive predicates P1, . . . , Pn,
and use Q1, Q2, . . . for ordinary predicates. We also assume the existence of a
denumerably infinite set V of variables, which is disjoint from Σ.

The elements of Σ are interpreted by a structure, as in first-order logic, with
the difference here that our structures include a notion of a set of possible re-
source states or “worlds”, given by a partial commutative monoid. The interpre-
tation of predicates is parameterised by the elements of this monoid: in other
words, the set of (tuples of) objects in the domain of which a given predicate is
true depends on the current resource state. (However, the interpretations of the
constant and function symbols are resource-independent).

Definition 2.1 (BI-structure). A BI-structure for Σ is a tuple:

M = (D, 〈R, ◦, e〉, cM , fM ,QM ,PM )
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where D is a set (called the domain of M), 〈R, ◦, e〉 is a partial commutative
monoid and:

– cM ∈ D for each constant Σ-symbol c ∈ {c};
– fM : Dk → D for each function Σ-symbol f ∈ {f} of arity k;
– QM ⊆ R×Dk for each ordinary predicate Σ-symbol Q ∈ {Q} of arity k;
– PM ⊆ R×Dk for each inductive predicate Σ-symbol P ∈ {P} of arity k;

If X is an n-tuple of sets satisfying πn
i (X) ⊆ R×Dki , where ki is the arity of Pi,

for all i ∈ {1, . . . , n}, then we write M [P !→ X] to mean the structure defined
as M except that PM [P�→X] = X.

Our structures interpret the inductive predicate symbols of Σ only for technical
convenience: we shall only be interested later in those structures in which the
interpretation of the inductive predicates coincides with the standard interpre-
tation, which is determined by a fixed set of inductive definitions.

The terms of Σ are defined as usual; we write t[u/x] to denote the term
obtained by substituting the term u for all occurrences of the variable x in
the term t. We write t(x1, . . . , xn) for a term t all of whose variables occur in
{x1, . . . , xn}, where x1, . . . , xn are distinct, and in such cases write t(t1, . . . , tn)
to denote the term obtained by substituting t1, . . . , tn for x1, . . . , xn respectively
in t. Also, if M is a structure with domain D, then tM (x1, . . . , xk) : Dk → D is
obtained by replacing every constant symbol c by cM and every function symbol
f by fM in t(x1, . . . , xn).

The formulas of BIID are just the standard formulas of predicate BI1, given
by the following grammar:

F ::= " | ⊥ | I | Q(t1, . . . , tk) (k = arity of Q) | t1 = t2 |
F ∧ F | F ∨ F | F → F | F ∗ F | F —∗ F | ∃xF | ∀xF

where Q ranges over all the predicate symbols of Σ (both inductive and ordi-
nary), x ranges over V and t1, . . . , tk range over terms of Σ. We use the standard
precedences on the logical connectives, with ∗ and —∗ having the same logical
precedence as ∧ and→ respectively, and use parentheses to disambiguate where
necessary. We write ¬F to abbreviate the formula F → ⊥.

As in first-order logic, we interpret variables as elements of the domain D of a
BI-structure using environments ρ : V → D; we extend environments to all terms
of Σ in the usual way and write ρ[x !→ d] for the environment defined exactly
as ρ except that ρ[x !→ d](x) = d. The formulas of BIID are then interpreted by
the following satisfaction (a.k.a. “forcing”) relation:

Definition 2.2 (Satisfaction relation for BI). Let M = (D, 〈R, ◦, e〉, . . .) be
a BI-structure for the language Σ, let r ∈ R and let ρ be an environment for M .
We define the satisfaction relation M, r |=ρ F on formulas by:

1 As in [5], our “predicate BI” is propositional BI extended with the usual additive
quantifiers ∀ and ∃, as opposed to propositional BI extended with both additive and
multiplicative versions of the quantifiers, as in e.g. [19].
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M, r |=ρ " ⇐⇒ true
M, r |=ρ ⊥ ⇐⇒ false
M, r |=ρ I ⇐⇒ r = e

M, r |=ρ Qt ⇐⇒ QM (r, ρ(t)) (Q ordinary or inductive)
M, r |=ρ t1 = t2 ⇐⇒ ρ(t1) = ρ(t2)
M, r |=ρ F1 ∧ F2 ⇐⇒ M, r |=ρ F1 and M, r |=ρ F2

M, r |=ρ F1 ∨ F2 ⇐⇒ M, r |=ρ F1 or M, r |=ρ F2

M, r |=ρ F1 → F2 ⇐⇒ M, r |=ρ F1 implies M, r |=ρ F2

M, r |=ρ F1 ∗ F2 ⇐⇒ r = r1 ◦ r2 and M, r1 |=ρ F1 and M, r2 |=ρ F2

for some r1, r2 ∈ R
M, r |=ρ F1 —∗ F2 ⇐⇒ for all r′ ∈ R, M, r′ |=ρ F1 and r′ ◦ r defined

implies M, r′ ◦ r |=ρ F2

M, r |=ρ ∀xF ⇐⇒ M, r |=ρ[x �→d] F for all d ∈ D
M, r |=ρ ∃xF ⇐⇒ M, r |=ρ[x �→d] F for some d ∈ D

(Informally, M, r |=ρ F means: “the formula F is true in M in the resource state
r and under the environment ρ”).

We now give our schema for (possibly mutual) inductive definitions, which ex-
tends the framework used in [8,9,10] and, like that framework, is based on
Martin-Löf’s “productions” [17]. Our schema allows the multiplicative connec-
tives of BI to occur in the premises of definitional clauses:

Definition 2.3 (Inductive definition set). An inductive definition set for Σ
is a set of productions, which are rules of the form:

C(x)
i ∈ {1, . . . , n}

Pit(x)

where C(x) is an inductive clause given by the following grammar:

C(x) ::= " | I | Qt(x) | Pjt(x) (j ∈ {1, . . . , n}) | t1(x) = t2(x) |
C(x) ∧ C(x) | C(x) ∗ C(x) | F̂ (x)→ C(x) | F̂ (x) —∗ C(x) | ∀xC(x)

where Q ranges over the ordinary predicate symbols of Σ and F̂ (x) ranges over
all formulas of BI in which no inductive predicate symbols occur and whose free
variables are contained in {x}.

The productions whose conclusions feature an inductive predicate P should be
read as disjunctive clauses of the definition of P , whose free variables are implic-
itly existentially quantified. For some readers the following, equivalent notation
for definitions may be more familiar:

Py =def (∃x1.y = t1(x1) ∧ C1(x1)) ∨ . . . ∨ (∃xk.y = tk(xk)) ∧ Ck(xk))

where {y} ∩ {x1, . . . ,xk} = ∅ and C1(x1), . . . , Ck(xk) are inductive clauses. It
is trivial to convert from either form to the other.

As usual, the standard interpretation of the inductive predicate symbols of Σ
is obtained by taking the least fixed point of a monotone operator constructed
from the definition set Φ:
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Definition 2.4 (Definition set operator). Let M = (D, 〈R, ◦, e〉, . . .) be a
BI-structure for Σ, let Φ be an inductive definition set for Σ and, for each
i ∈ {1, . . . , n}, let ki be the arity of the inductive predicate symbol Pi. We
partition Φ into disjoint subsets Φ1, . . . , Φn ⊆ Φ by defining each Φi to be the set
of productions in Φ in whose conclusion Pi occurs. We then index each definition
set Φi by j, with j ∈ {1, . . . , |Φi|}, and from each production Φi,j ∈ Φi, say:

C(x)

Pit(x)

we obtain a corresponding n-ary function ϕi,j : (Pow(R×Dk1)× . . .×Pow(R×
Dkn))→ Pow(R ×Dki) as follows:

ϕi,j(X) = {(r, tM (d)) | M [P !→ X], r |=ρ[x �→d] C(x)}

(Note that any variables occurring in the right hand side but not the left
hand side of the set expression in the definition of ϕi,j above are, implicitly,
existentially quantified over the entire right hand side of the expression.) Then
the definition set operator for Φ is the operator ϕΦ, with domain and codomain
Pow(R ×Dk1)× . . .× Pow(R×Dkn), defined by:

ϕΦ(X) = (
⋃
j

ϕ1,j(X), . . . ,
⋃
j

ϕn,j(X))

Proposition 2.5. The operator ϕΦ is monotone (with respect to ⊆).

Proof. (Sketch) Assuming that X ⊆ Y, where X and Y are n-tuples of sets
of the appropriate type, one can prove by structural induction on C(x) that
M [P !→ X], r |=ρ[x �→d] C(x) implies M [P !→ Y], r |=ρ[x �→d] C(x). It follows that
ϕi,j(X) ⊆ ϕi,j(Y) for any i and j, and thus ϕΦ(X) ⊆ ϕΦ(Y) as required. ��

Example 2.6. Let ΦN be the inductive definition set consisting of the following
productions for a unary inductive predicate N :

"
N0

Nx

Nsx

Then the definition set operator for ΦN is defined by:

ϕΦN (X) = {(r, 0M ) | r ∈ R} ∪ {(r, sMd) | (r, d) ∈ X}

In structures M in which all “numerals” (sM )k0M for k ≥ 0 are distinct, the
predicate N corresponds to the property of being a natural number.

Example 2.7. Let !→ be an ordinary, binary predicate symbol (written infix), and
let Φls be the inductive definition set consisting of the following productions for
a binary inductive predicate ls:

I

lsxx

x !→ x′ ∗ lsx′ y

lsx y
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Then the definition set operator for Φls is defined by:

ϕΦls(X) = {(e, (d, d)) | d ∈ D}
∪ {(r1 ◦ r2, (d, d′)) | (r1, (d, d′′)) ∈ !→M and (r2, (d′′, d′)) ∈ X}

where d′′ in the second set comprehension is, implicitly, existentially quantified.
In separation logic, where the resource states are heaps and x !→ y is true of a
heap h if h is a single-celled heap in which x is a pointer to y, the predicate ls is
used to represent (possibly cyclic) segments of singly-linked lists, so that lsx y
is true of a heap h if h represents a linked list whose first element is pointed to
by x and whose last element contains the pointer y.

It is a standard result for inductive definitions that the least n-tuple of sets
closed under the productions in Φ is the least prefixed point of the operator ϕΦ

(see e.g. [1]), and that this least prefixed point can be approached in iterative
approximant stages, as follows:

Definition 2.8 (Approximants). Let Φ be an inductive definition set for Σ,
and define a chain of ordinal-indexed sets (ϕα

Φ)α≥0 by transfinite induction:
ϕα

Φ =
⋃

β<α ϕΦ(ϕβ
Φ) (note that this implies ϕ0

Φ = (∅, . . . , ∅)). Then for each
i ∈ {1, . . . , n}, the set Pα

i = πn
i (ϕα

Φ) is called the αth approximant of Pi.

Definition 2.9 (Standard model). Let Φ be an inductive definition set for
Σ. Then a BI-structure M for Σ is said to be a standard model for (Σ,Φ) if
PM

i =
⋃

α Pα
i for all i ∈ {1, . . . , n}.

Definition 2.9 thus fixes within a BI-structure a standard interpretation of the
inductive predicate symbols of Σ that is uniquely determined by the other com-
ponents of the structure.

Proposition 2.10. For any inductive definition set Φ not employing universal
quantification, ϕω

Φ is a prefixed point of ϕΦ and thus in a standard model of
(Σ,Φ) we have PM

i = Pω
i for all i ∈ {1, . . . , n}. If Φ does feature universal

quantification, the closure ordinal is > ω in general.

Proof. (Sketch) One can show by structural induction on C(x) that, if C(x)
contains no occurrences of ∀, then M [P !→ ϕω

Φ], r |=ρ[x �→d] C(x) implies M [P !→
ϕk

Φ], r |=ρ[x �→d] C(x) for some k ∈ N. It follows that ϕi,j(ϕω
Φ) ⊆

⋃
k∈N

ϕi,j(ϕk
Φ)

for any i and j, and thus that ϕΦ(ϕω
Φ) ⊆ ϕω

Φ as required.
For the second part of the proposition, consider a BI-structure M with do-

main N and in which the Peano axioms hold, and the inductive definition set Φ
consisting of the productions for N in Example 2.6 together with a produc-
tion with premise ∀xNx and conclusion P0 (where P is a unary inductive
predicate symbol). Then one can easily verify that the least prefixed point of
ϕΦ is ϕω+1

Φ . ��
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3 A Proof System for Induction in BIID

In this section we give a Gentzen-style proof system suitable for formalising
traditional proof by induction in our logic BIID. We fix an inductive definition
set Φ for Σ, partitioned into Φ1, . . . , Φn as in Defn. 2.4. Our starting point will
be the standard sequent calculus for BI (cf. [20]). We write sequents of the form
Γ 
 F , where F is a formula and Γ is a bunch, given by the following definition:

Definition 3.1 (Bunch). A bunch is a tree whose leaves are labelled by for-
mulas of BIID and whose internal nodes are labelled by ‘;’ or ‘,’ (denoting re-
spectively additive and multiplicative combination).

As our sequents have at most one formula occurring on the right hand side, our
proof system is intuitionistic. This is not for ideological reasons but for technical
convenience; the formulation of a classical (multiple-conclusion) sequent calcu-
lus for BI would necessitate the use of a multiplicative disjunction (for details
see [20]).

We write Γ (Δ) to mean that Γ is a bunch of which Δ is a subtree (also
called a “sub-bunch”), and write Γ (Δ′) for the bunch obtained by replacing the
considered instance of Δ by Δ′ in Γ (Δ).

Definition 3.2 (Coherent equivalence for bunches). Define ≡ to be the
least relation on bunches satisfying:

1. commutative monoid equations for ‘;’ and ";
2. commutative monoid equations for ‘,’ and I;
3. congruence: if Δ ≡ Δ′ then Γ (Δ) ≡ Γ (Δ′).

The usual sequent calculus rules for our version of predicate BI, plus rules for
equality and an explicit substitution rule, are given in Figure 1. Our proof sys-
tem, called LBIID, is obtained from this system by adding rules for introducing
atomic formulas of the form Pit, where Pi is an inductive predicate symbol, on
the left and right of sequents.

First, for each i ∈ {1, . . . , n} and each production Φi,j ∈ Φi, we obtain a
right-introduction rule (PiRj) for the predicate Pi as follows:

C(x)

Pit(x)
=⇒

Γ 
 C(u)
(PiRj)

Γ 
 Pit(u)

Before giving the rules for introducing inductive predicates on the left of
sequents, we first give a formal definition of what it means for two inductive
predicates to have a mutual definition in Φ (repeated from [8]):

Definition 3.3 (Mutual dependency). Define the binary relation Prem on
the inductive predicate symbols {P1, . . . , Pn} of Σ as the least relation satisfying:
Prem(Pi, Pj) holds whenever Pj occurs in the premise of some production in Φi.
Also define Prem∗ to be the reflexive-transitive closure of Prem. Then we say
two predicate symbols P and Q are mutually dependent if both Prem∗(P,Q)
and Prem∗(Q,P ) hold.
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Structural rules:

(Id)
F � F

Γ (Δ) � F
(Weak)

Γ (Δ; Δ′) � F

Γ (Δ; Δ) � F
(Contr)

Γ (Δ) � F

Γ ′ � F
Γ ≡ Γ ′ (Equiv)

Γ � F

Δ � G Γ (G) � F
(Cut)

Γ (Δ) � F

Γ � F
(Subst)

Γ [θ] � F [θ]

Propositional rules:

(⊥L)
⊥ � F

Γ (F1) � F Γ (F2) � F
(∨L)

Γ (F1 ∨ F2) � F

Γ (F1; F2) � F
(∧L)

Γ (F1 ∧ F2) � F

(�R)
� �

Γ � Fi

i ∈ {1, 2} (∨R)
Γ � F1 ∨ F2

Γ � F1 Γ � F2
(∧R)

Γ � F1 ∧ F2

Δ � F1 Γ (F2) � F
(—∗L)

Γ (Δ, F1 —∗ F2) � F

Δ � F1 Γ (Δ;F2) � F
(→L)

Γ (Δ;F1 → F2) � F

Γ (F1, F2) � F
(∗L)

Γ (F1 ∗ F2) � F

Γ, F1 � F2
(—∗R)

Γ � F1 —∗ F2

Γ ; F1 � F2
(→R)

Γ � F1 → F2

Γ � F1 Δ � F2
(∗R)

Γ, Δ � F1 ∗ F2

Quantifier rules:

Γ (G[t/x]) � F
(∀L)

Γ (∀xG) � F

Γ � F
x /∈ FV (Γ ) (∀R)

Γ � ∀xF

Γ (G) � F
x ∈ FV (Γ ∪ {F}) (∃L)

Γ (∃xG) � F

Γ � F [t/x]
(∃R)

Γ � ∃xF

Equality rules:

(=R)
Γ � t = t

Γ (�)[u/x, t/y] � F [u/x, t/y]
(=L)

Γ (t = u)[t/x, u/y] � F [t/x, u/y]

Fig. 1. Sequent calculus proof rules for predicate BI with equality

Now to obtain an instance of the induction rule for any inductive predicate
Pj , we first associate with every inductive predicate Pi a tuple zi of ki distinct
variables (called induction variables), where ki is the arity of Pi. Furthermore,
we associate to every predicate Pi that is mutually dependent with Pj a formula
(called an induction hypothesis) Hi, possibly containing some of the induction
variables. Next, define the formula Gi for each i ∈ {1, . . . , n} by: Gi = Hi if Pi

and Pj are mutually dependent, and Gi = Pizi otherwise. For convenience, we
shall write Git for Gi[t/zi], where t is a tuple of ki terms. Then an instance of
the induction rule (Ind Pj) for Pj has the following schema:
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minor premises Γ (Δ;Hjt) 
 F
(Ind Pj)

Γ (Δ;Pjt) 
 F

where the premise Γ (Δ;Hjt) 
 F is called the major premise of the rule, and
for each predicate Pi that is mutually dependent with Pj , we obtain a minor
premise from every production in Φi as follows:

C(x)

Pit(x)
=⇒ Δ;CH(x) 
 Hit(x) (∀x ∈ x. x �∈ FV (Δ))

where CH(x) is the formula obtained by replacing every formula of the form
Pkt(x) (for Pk an inductive predicate) by Gkt(x) in the inductive clause C(x).

Example 3.4. The induction rule for the predicate N from Example 2.6 is:

Δ 
 H0 Δ;Hx 
 Hsx Γ (Δ;Ht) 
 F
(Ind N)

Γ (Δ;Nt) 
 F

where H is the induction hypothesis associated with N and x is suitably fresh.

Example 3.5. The induction rule for the predicate ls from Example 2.7 is:

Δ; I 
 Hxx Δ;x !→ x′ ∗Hx′y 
 Hxy Γ (Δ;Htu) 
 F
(Ind ls)

Γ (Δ; ls t u) 
 F

where H is the induction hypothesis associated with ls and x, x′, y are fresh.

Definition 3.6 (Validity). Let M be a standard model for (Σ,Φ). Then a
sequent Γ 
 F is said to be true in M if M, r |=ρ φΓ implies M, r |=ρ F for
all environments ρ and resource states r, where φΓ is the formula obtained by
replacing every occurrence of ‘;’ by ∧ and every occurrence of ‘,’ by ∗ in the
bunch Γ . Γ 
 F is said to be valid if it is true in all standard models.

By a derivation tree, we mean a finite tree of sequents in which each parent
sequent is obtained as the conclusion of an inference rule with its children as
premises. We distinguish between “leaves” and “buds” in the tree. By a leaf
we mean an axiom, i.e., the conclusion of a 0-premise inference rule. By a bud
we mean any sequent occurrence in the tree that is not the conclusion of a
proof rule. An LBIID proof is then, as usual, a finite derivation tree constructed
according to the proof rules that contains no buds. The following proposition is
a straightforward consequence of the local soundness of our proof rules.

Proposition 3.7 (Soundness of LBIID). If there is an LBIID proof of Γ 
 Δ
then Γ 
 Δ is valid.
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Example 3.8. We give an LBIID proof that the predicate N from Example 2.6
admits multiplicative weakening, i.e. that F,Nx 
 Nx:

(NR1)
F 
 N0

(—∗R)

 F —∗ N0

(Id)
F 
 F

(Id)
Ny 
 Ny

(—∗L)
F, F —∗ Ny 
 Ny

(NR2)
F, F —∗ Ny 
 Nsy

(—∗R)
F —∗ Ny 
 F —∗ Nsy

(Id)
F 
 F

(Id)
Nx 
 Nx

(—∗L)
F, F —∗ Nx 
 Nx

(Ind N)
F,Nx 
 Nx

Note that in the application of (Ind N) in this proof we associate the induction
variable z and the induction hypothesis F —∗ Nz with the inductive predicate
N . We remark that one can easily see that this example demonstrates the need
for generalisation of induction hypotheses in this setting (at least for cut-free
proofs): it is clear that no subformula of the root sequent is sufficiently strong as
an induction hypothesis to enable us to prove the major premise of the induction.

4 A Cyclic Proof System for BIID

We now define a second proof system CLBIωID for BIID which admits a notion
of cyclic proof. Pre-proofs are finite derivation trees together with a function
assigning to every bud in the tree a syntactically identical interior node (a com-
panion for the bud), and thus can be viewed as cyclic graphs. Since pre-proofs
are not sound in general, we impose a global trace condition on pre-proofs, corre-
sponding to an infinite descent principle for our inductive definitions, to ensure
soundness.

The proof rules of the system CLBIωID are the rules of LBIID described in
Section 3, except that for each inductive predicate Pj of Σ, the induction rule
(Ind Pj) of LBIID is replaced by the case-split rule:

case distinctions
(Case Pj)

Γ (Pju) 
 F

where we obtain a case distinction from each production in Φj as follows:

C(x)

Pjt(x)
=⇒ Γ (u = t(x);C(x)) 
 F (∀x ∈ x. x �∈ FV (Γ ∪ {F}))

Example 4.1. The case-split rule for N from Example 2.6 is:

Γ (t = 0;") 
 F Γ (t = sx;Nx) 
 F
(Case N)

Γ (Nt) 
 F
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Example 4.2. The case-split rule for ls from Example 2.7 (modulo applying the
equality rule to eliminate some generated equalities) is:

Γ (t = u; I) 
 F Γ (t !→ x ∗ lsxu) 
 F
(Case ls)

Γ (ls t u) 
 F

Definition 4.3 (Companion). Let B be a bud of a derivation tree D. A non-
bud sequent C in D is said to be a companion for B if C = B.

By assigning a companion to each bud node in a finite derivation tree, one obtains
a finite representation of an associated (regular) infinite tree:

Definition 4.4 (CLBIω
ID pre-proof). A CLBIω

ID pre-proof of a sequent Γ 
 Δ
is a pair P = (D,R), where D is a derivation tree constructed according to the
proof rules of CLBIωID given above and whose root is Γ 
 Δ, and R is a function
assigning a companion to every bud of D.

We considerD to have a directed edge from the conclusion of each rule instance
to each of its premises, whence the graph of P is the directed graph GP obtained
from D by identifying each bud node B in D with its companion R(B).

We observe that the local soundness of our proof rules is not sufficient to guar-
antee that pre-proofs are sound, due to the (possible) cyclicity evident in their
graph representations. In order to give a criterion for soundness, we formulate
the notion of a trace following a path in a pre-proof graph, similar to that used
in [8,9,10,24] but more complex due to our richer induction schema and use of
bunches in sequents:

Definition 4.5 (Trace). Let P be a CLBIωID pre-proof and let (Γi 
 Fi)i≥0 be
a path in GP . A trace following (Γi 
 Fi)i≥0 is a sequence (τi)i≥0 such that,
for all i, τi is a leaf of Γi (we write Fτi to mean the formula labelling τi in Γi.)
Furthermore, for each i, one of the following conditions must hold:

1. Γi 
 Fi is the conclusion of one of the following inferences, τi is the leaf of
Γi indicated by the underlined formula in the conclusion and τi+1 is one of
the leaves of Γi+1 indicated by the underlined formulas in the appropriate
premise:

Γ (F1; F2) � F
(∧L)

Γ (F1 ∧ F2) � F

Γ (F1, F2) � F
(∗L)

Γ (F1 ∗ F2) � F

. . . Γ (u = t(x); C(x)) � F . . .
(Case Pj)

Γ (Pju) � F

Δ � F1 Γ (F2) � F
(—∗L)

Γ (Δ,F1 —∗ F2) � F

Δ � F1 Γ (Δ;F2) � F
(→L)

Γ (Δ; F1 → F2) � F

Γ (G[t/x]) � F
(∀L)

Γ (∀xG) � F

In the case where τi and τi+1 are the leaves indicated by the underlined
formulas in the displayed instance of (Case Pj) above, i is said to be a
progress point of the trace. An infinitely progressing trace is a trace having
infinitely many progress points.
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2. τi+1 is the leaf in Γi+1 corresponding to τi in Γi, modulo any splitting of
Γi performed by the rule applied with conclusion Γi 
 Fi. (Thus Fτi+1 =
Fτi , modulo any substitution performed by the rule.) E.g. if Γi 
 Fi is the
conclusion of the inference:

Δ 
 F1 Γ (F2) 
 F
(—∗L)

Γ (Δ,F1 —∗ F2) 
 F

then, if Γi+1 
 Fi+1 is the left hand premise, then τi+1 and τi are the same
leaf in Δ and, if Γi+1 
 Fi+1 is the right hand premise, then τi+1 and τi are
the same leaf in Γ (−).

Informally, a trace follows (a part of) the construction of an inductively defined
predicate occurring in some part of the bunches occurring on a path in a pre-
proof. These predicate constructions never become larger as we follow the trace
along the path, and at progress points, they actually decrease. This property is
encapsulated in the following lemma and motivates the subsequent definition of
a cyclic proof :

Lemma 4.6. Let P be a CLBIω
ID pre-proof of Γ0 
 F0, and let M be a standard

model such that Γ0 
 F0 is false in M in the resource state r0 and environment
ρ0 (say). Then there we can construct an infinite path (Γi 
 Fi)i≥0 in GP and
infinite sequences (ri)i≥0 and (ρi)i≥0 such that:

1. for all i, Γi 
 Fi is false in Mi in the resource state ri and environment ρi;
2. if there is a trace (τi)i≥n following some tail (Γi 
 Fi)i≥n of (Γi 
 Fi)i≥0,

then there exists a second sequence of resource states, (r′i)i≥n, such that
M, r′i |=ρi Fτi for all i ≥ n and the sequence (αi)i≥n of ordinals defined by
αi = least α s.t. M [P !→ ϕα

Φ], r′i |=ρi Fτi , is non-increasing. Furthermore, if
j is a progress point of (τi)i≥n then αj+1 < αj.

Proof. (Sketch) To construct the required infinite sequences satisfying property
1 of the lemma just requires us to use the fact that the proof rules of CLBIωID
are locally sound (i.e., falsifiability of the conclusion of a rule instance implies
falsifiability of one of its premises).

For part 2 of the lemma, we suppose there is a trace (τi)i≥n following the
tail (Γi 
 Fi)i≥n of the constructed infinite path. Since Γn 
 Fn is false in
M under ρn and rn by property 1, it follows that there is a suitable substate
r′n of rn (“suitability” being given by a formal relation capturing the property
that the relationship between r′n and rn reflects the position of τn in Γn) such
that M, r′n |=ρn Fτn , and thus there is a least ordinal α such that M [P !→
ϕα

Φ], r′n |=ρn Fτn . Now, given any edge (Γk 
 Fk, Γk+1 
 Fk+1) in the tail and
a suitable substate r′k of rk satisfying M, r′k |=ρk

Fτk
, one can find a suitable

substate r′k+1 of rk+1 satisfying M, r′k |=ρk
Fτk

. Moreover, we have:

least α s.t.M [P !→ ϕα
Φ], r′k+1 |=ρ Fτk+1 ≤ least α s.t.M [P !→ ϕα

Φ], r′k |=ρ Fτk

Furthermore, if k is a progress point of the trace, then this inequality holds
strictly. This property, which can be proven by a lengthy case analysis on the
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rule with conclusion Γk 
 Fk enables us to construct the required sequences
(r′i)i≥n and (αi)i≥n.

Definition 4.7 (CLBIω
ID proof). A CLBIωID pre-proofP = (D,R) is a CLBIω

ID
proof if, for every infinite path in D, there is an infinitely progressing trace
following some tail of the path.

Proposition 4.8 (Soundness). If there is a CLBIω
ID proof of Γ 
 Δ then

Γ 
 Δ is valid.

Proof. If Γ 
 F has a CLBIωID proof P but is false in some standard model M
then we can use property 1 of Lemma 4.6 to construct an infinite path π in GP
together with a sequence of environments and resource states that falsify each
sequent along the path. Since P is a proof, there is an infinitely progressing
trace following some tail of π. Thus we can invoke property 2 of Lemma 4.6
to create a monotonically decreasing chain of ordinals which, since the trace
progresses infinitely often, must decrease infinitely often. This contradicts the
well-foundedness of the ordinals, so Γ 
 F must indeed be valid. ��
Example 4.9. The following is a CLBIωID proof of the sequent F,Nx 
 Nx (recall
we gave an LBIID proof in Example 3.8):

(NR1)
F � N0

(=L)
F, x = 0 � Nx

F, Nx � Nx (†)
(Subst)

F, Ny � Ny
(NR2)

F, Ny � Nsy
(=L)

F, (x = sy;Ny) � Nx
(Case N)

F, Nx � Nx (†)
We use (†) to indicate the pairing of a suitable companion with the only bud in
this pre-proof. To see that it is indeed a CLBIωID proof, observe that any infinite
path π in the pre-proof graph necessarily has a tail consisting of repetitions of the
path from the companion to the bud in this pre-proof, and there is a progressing
trace following this path, denoted by the underlined formulas (with a progress
point at the displayed application of (Case N)). Thus by concatenating copies of
this trace we can obtain an infinitely progressing trace on a tail of π as required.

We remark that, unlike the situation for LBIID (cf. Example 3.8), we do not
require generalisation in this proof, i.e., the invention of new formulas in the
proof is not necessary.

Example 4.10. The following is a CLBIωID pre-proof of lsxx′, lsx′ y 
 lsx y:

(Id)
ls x y � lsx y

(≡)
I,lsx y � lsx y

(=L)
(x′ = x; I), lsx′ y � lsx y

(Id)
x �→ z � x �→ z

(†) lsx x′, lsx′ y � lsx y
(Subst)

ls z x′, lsx′ y � ls z y
(∗R)

x �→ z, ls z x′, lsx′ y � x �→ z ∗ ls z y
(lsR2)

x �→ z, ls z x′, lsx′ y � lsx y
(∗L)

x �→ z ∗ ls z x′, ls x′ y � ls x y
(Case ls)

(†) ls x x′, lsx′ y � lsx y
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The pairing of a suitable companion with the only bud in this pre-proof is
again denoted by (†). A trace from the companion to the bud is denoted by
the underlined formulas, with a progress point at the displayed application of
(Case ls). As in the previous example, there is only one infinite path, and one
can easily observe that the required infinitely progressing trace is obtained by
concatenating copies of the displayed trace. So this pre-proof is indeed a proof.

We remark that the standard LBIID proof of lsxx′, lsx′ y 
 lsx y proceeds
by induction on lsxx′ using the induction variables z, z′ (say) and the induction
hypothesis ls z′ y —∗ ls z y, thus requiring a generalisation similar to that needed
in Example 3.8.

Proposition 4.11. It is decidable whether a CLBIω
ID pre-proof is a proof.

Proof. (Sketch) The property of every infinite path posessing an infinitely pro-
gressing trace along a tail is an ω-regular property, and hence reducible to the
emptiness of a Büchi automaton. A full proof (for a general notion of trace)
appears in [9]; a similar argument appears in [24]. ��

5 Conclusions and Future Work

In this paper, we extend BI with a fairly general class of inductive definitions,
and develop sequent calculus proof systems for formal reasoning in the resultant
extension BIID, as is needed in order to develop proper theorem proving support
for inductive reasoning in separation logic. We hope that the formal framework(s)
we present here will be of use to researchers in static analysis in providing a
sound foundation for logical reasoning in future program verification applications
employing inductively defined predicates (in a BI / separation logic context). In
a technical sense, our contribution is a reasonably straightforward extension of
the framework for inductive definitions and corresponding proof systems given in
our previous work for first-order logic with inductively defined relations [8,9,10].
Thus one might reasonably hope that the key proof-theoretic results from that
work, including appropriate completeness and cut-elimination theorems, will also
extend to the systems we consider here. Certainly we expect that our cyclic
proof system CLBIωID subsumes the induction system LBIID (although we have
not checked this in detail), with the question of their equivalence presenting
similar difficulties to those discussed in [8,9,10]; in the setting of first-order logic
with inductively defined relations, we have conjectured but not yet proven the
equivalence of the two proof styles.

It is worth remarking that our logic BIID and the corresponding proof systems
should be straightforwardly extensible to a more powerful definitional framework
than the one we give here, for example by allowing inductive predicates to occur
“negatively” in inductive definitions, subject to an appropriate stratification of
predicates to ensure monotonicity as in iterated inductive definitions (cf. [17]).

One particularly promising avenue for further development is the development
of static analysis applications based upon cyclic proof in separation logic. For ex-
ample, our current work with Calcagno and Bornat develops a calculus for giving
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cyclic proofs of program termination in a (very) simple programming language,
based upon a proof system of Hoare judgements which express termination from
a given program point and under a given precondition [11]. We hope that it will
also be possible to directly formulate cyclic proof systems for the verification of
other properties. For example, such systems might use appropriate cyclic proof
principles to establish invariants for the looping constructs in programs, or, given
such invariants, to prove appropriate postconditions. An important factor related
to such developments is the potential of cyclic proof for automated proof search.
We have seen simple examples in which cyclic proof avoids the generalisation
apparently necessary in the corresponding inductive proof (Examples 4.9 and
4.10); more generally, cyclic proof should offer a “least-commitment” approach
to proof search, whereby the induction schema, variables and hypotheses are not
chosen at the beginning of the proof, as in traditional inductive theorem proving,
but are eventually selected implicitly via the satisfaction of the soundness condi-
tion. It would be interesting to examine the implications of these phenomena for
proof search; we have previously given proof-theoretic machinery for analysing
and manipulating the structure of general cyclic proofs [8,9] which may be of
assistance in such investigations.
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Abstract. In this paper, we show that it is possible to abstract program
fragments using real variables using formulas in the theory of real closed
fields. This abstraction is compositional and modular. We first propose an
exact abstraction for programs without loops. Given an abstract domain
(in a wide class including intervals and octagons), we then show how to
obtain an optimal abstraction of program fragments with respect to that
domain. This abstraction allows computing optimal fixed points inside
that abstract domain, without the need for a widening operator.

1 Introduction

In program analysis, it is often necessary to derive relationships between program
variables automatically; thus, within the framework of abstract interpretation [5],
many numerical abstract domains have been developed. In addition to finding
relationships between the values of program variables at a certain point, one may
also want relationships between the input and the output variables of a program
fragment, for instance procedures, so as to obtain a compositional and modular
analysis. This paper presents algorithms for obtaining formulas expressing such
relationships, at various degrees of precisions, as well as algorithms for extracting
numerical results from these formulas. We consider programs operating on real
variables — variables whose values lie in the real field (R).

Relational abstract domains — those considering relations between several
variables, as opposed to information on each variable separately — are often
designed assuming integer (Z), rational (Q) or real (R) variables inside the pro-
gram to be studied. Why consider programs with real variables, which are not
implementable in practice, while real-life program variables are generally either
integer, or floating-point? This is because these relational domains suppose
strong algebraic structures (ordered rings and fields) that floating-point num-
bers do not have (addition is not even associative). Then, real variables can be
used as a sound model or abstraction of floating-point variables, enabling the
analysis of programs using floating-point variables.

While it is unsound to assume that floating-point computations behave iden-
tically to real number computations, one can model floating-point computations
using non-deterministic real number computations: each floating-point compu-
tation computes a result close to the ideal result, and the rounding error can
be bounded. For instance, assuming IEEE-754 floating-point, the behavior of
floating-point addition x ⊕ y is over-approximated by the real computation
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x⊕ y = x + y + ε with |ε| ≤ εr|x + y|+ εa chosen non-deterministically, where εr

and εa are nonnegative coefficients depending on the floating-point type used. [9]
Thus, relational abstract domains suitable for programs over real numbers are a
worthy tool for the study of programs with floating-point computations.

This paper proposes an interpretation of real-valued programs without loops
as formulas in the theory of real closed fields. [3][1, Chapter 2] This interpretation
captures perfectly the input-output relationships of such programs. Furthermore,
if one is given preconditions of the form fj(v1, . . . , vn) ≤ cj where vk are the
input values of the variables of the programs, the fj are polynomials and cj some
coefficient, then one can obtain, automatically and with arbitrary precision, c′j
such that fj(v′1, . . . , v′n) ≤ c′j where v′k are the output values of the variables of
the program, and these c′j are optimal bounds. Such pre-conditions and post-
conditions encompass a wide variety of abstract domains, including intervals,
octagons, octahedra etc. [8,4], meaning that whole programs without loops can be
algorithmically optimally approximated with respect to these abstract domains.

In the case of programs with loops, we cannot hope to have such a result,
which would entail solving the halting problem. However, we show how to ob-
tain a formula defining the exact least fixed point of the optimal abstraction of
the program semantics. Again, we can then obtain numerical values with arbi-
trary precision. No “widening operator” is used, and the loss of precision entirely
depends on the choice of constraints representable by the abstract domain.

In section 2, we shall recall the definition and classical results of the theory of
real closed fields, and then we shall propose algorithms for bounding, with arbi-
trary precision, real numbers defined by formulas in that theory. In section 3, we
shall define the language that we consider and give an“exact”abstract semantics
of this language using formulas in the theory of real closed fields. In section 4,
we shall see how to get the optimal abstractions we announced.

2 Mathematical Preliminaries

Throughout the paper, we shall express relationships between real numbers as
formulas within the theory of real closed fields (polynomial equalities and in-
equalities, logical connectors, quantifiers). This theory is powerful yet decidable.
We shall also obtain some real numbers as the unique solution (or model) of a
formula in that theory; we shall show that from such a characterization we can
compute approximations (lower and upper bounds) with arbitrary precision.

2.1 Real Closed Fields and Algebraic Numbers

Let us recall the definition of the syntax and semantics of the theory of real
closed fields. In the rest of the paper, by “formula” we shall mean a formula in
that theory.

We consider the following formulaic language: atomic formulas are of the form
P (x, y, z, . . . ) � C where C is a rational number, P is a polynomial with rational
coefficients, and � is a comparison operator (<, ≤, =, �=, ≥, >); compound
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formulas are formed using logical connectors ¬, ∧, ∨, as well as quantifiers ∃x
and ∀x where x is a variable. If a formula contains no quantifier, it is quantifier-
free. The set of formulas on the set of variables V is noted F(V ), while the set
of quantifier-free formulas is noted FQF(V ).

Notions of free and bound variables are defined as usual. Model candidates m
of a formula F are assignments for the free variables of F , an assignment being a
map from the set FV(F ) of free variables of F to the reals. We say that a model
candidate m is a model of F , and note m |= F , with the obvious definition. The
set of models of F is noted M(F ). We recall the following result: [1, Th. 2.77].

Theorem 1 (Tarski, 1951). There exists an algorithm E such that for any
formula F in the above language, the algorithm outputs a quantifier-free formula
E(F ) such that FV(E(F )) = FV(F ) and, for any model candidate m, m |= F if
and only if m |= E(F ).

In practice, one does not use Tarski’s algorithm, which has nonelementary com-
plexity, but one rather uses cylindrical algebraic decomposition, which has“only”
22n

complexity in the size of the formula. [3][1, Ch. 11].
In many cases, we shall have a set V of “pre” variables and a set V ′, a disjoint

copy of V , of “post” variables; a variable x in V corresponds to a copy x′ in
V ′; we call formulas over such variables pre-post formulas. These will encode
input-output relationships of program fragments. To an assignment a ∈ RV we
associate an assignment a′ ∈ RV ′

. Given a pre-post formula F and a set of
assignments A ⊆ RV , we define associated “predicate transformers”:

−→
F (A) = {b | ∃a ∈ A (a, b′) |= F} (1)
←−
F (A) = {b | ∃a ∈ A (b, a′) |= F} (2)

We shall compute using algebraic numbers. An algebraic number r will be
specified as a formula r̃ in the theory of real closed fields, with a single free
variable x, such that x !→ r is the model of r̃. We can restrict the formulas to
conjunctions of polynomial equalities and inequalities without loss of generality:
if F is a quantifier-free formula with a single assignment x !→ r as model, it can
algorithmically be put in disjunctive normal form C1∨· · ·∨Cn where C1, . . . , Cn

are conjunctions; then inconsistent conjunctions Ci can be removed algorithmi-
cally; any of the remaining conjunctions will have a single model x !→ r and
fits our needs. Algebraic numbers specified in this way can be algorithmically
approximated to arbitrary precision, within a framework of computable reals, as
shown in the following section.

2.2 Computable Reals

Our abstract domains will “compute”reals in an indirect way: instead of comput-
ing the value of a real number (which is impossible to do exactly in most cases),
the abstract domain will define it as the unique solution of a quantifier-free for-
mula with one variable; for instance,

√
2 would be defined as the unique x such
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that x2 = 2∧ x > 0. In this section, we show that given such a characterization,
one can algorithmically bound the real number with arbitrary precision; that is,
given ε ∈ Q, ε > 0, obtain m,M ∈ Q such that m ≤ x ≤ M and M −m ≤ ε.
More generally, we shall show that for any quantifier-free formula in the theory
of real closed fields with one free variable, we can obtain a finite description
of its domain of validity, such that all numbers used inside the description are
computable with arbitrary precision.1

We define computable reals through approximation functions: instead of a
real r, which cannot be represented directly in a machine, we shall consider a
computable function r̃ taking a positive rational number ε as a parameter and
outputting a couple (m,M) of rational numbers such that M − m ≤ ε and
m ≤ r ≤M , called an ε-approximation.2

We shall give our algorithms in a “literate programming” or “proof-carrying
code” fashion, mixing each algorithm with a proof of its correctness. For the sake
of simplicity, we preferred to give all algorithms“from scratch” instead of relying
on advanced techniques.3

Let a and b be computable reals given by approximation functions ã and b̃. It
is straightforward to compare these two numbers, provided that we know that
they are different.

Algorithm Compare: Compare two computable reals known to be different
If a �= b, then there is an algorithm that decides whether a < b or a > b given

approximation functions ã and b̃: start with ε = 1; compare the intervals ã(ε)
and b̃(ε); if they do not overlap, the case is settled, otherwise divide ε by 10 and
try again. The algorithm will terminate at the latest when ε < |b− a|/2.

This algorithm loops forever if a = b. Throughout the rest of this section, we
shall take precautions so that we never use Compare on operands that could
be equal.4 We then define elementary arithmetic operators over approximation
functions:
Algorithm Plus: Add two computable reals

a+b is also a computable real: for ε > 0, compute ε/2-approximations [ma,Ma]
of a, [mb,Mb] of b, and output [ma + mb,Ma + Mb] as a ε-approximation of
a + b.

1 This is a generalization of a result of Turing, that real algebraic numbers are com-
putable [14, §1.vi].

2 Turing’s original characterization of the class of computable reals [14] [15, Def. 4.1.12]
used machines that enumerated the decimals of the number. The class of computable
reals defined in this fashion is identical to ours, but there are drawbacks to this
representation: it may be necessary in order to compute the n-th digit of a result
to go arbitrarily far in the representation of the operands. We thus rather use a
representation very close to that of Weihrauch. [15, §1.3.2].

3 Alternatively, the same result may be reached using published algorithms [1, Alg. 10.4
to 10.17] for isolating roots of polynomials, pairs of polynomials or finding the sign
of a polynomial at the roots of another, together with a dichotomy solving method.

4 This is actually an essential restriction of any representation of computable reals.
[15, Th. 4.1.16].
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A similar algorithm works for a− b, defining Minus.
Algorithm Mult: Multiply two computable reals

– compute a 1/2-approximation [ma,Ma] of a; if 0 ∈ [ma,Ma], then write
a · b = (a + 1) · b− b and the problem is reduced to the case where a cannot
be zero;

– decide whether a < 0 or a > 0 by testing whether ma < 0: if a < 0, write
a · b = −((−a) · b) and the problem is reduced to the case where a > 0; we
also have computed a upper bound La ∈ Q of a;

– do similarly with b and the problem is reduced to the case where b > 0; we
also have computed a upper bound Lb ∈ Q of b;

– compute a ε/(2Lb)-approximation [ma,M
′
a] of a and a ε/(2La)-approxima-

tion [mb,M
′
b] of b; let MA = min(M ′

A, La) and Mb = min(M ′
b, Lb) and out-

put [mamb,MaMb]; this is a ε-approximation of a.b since MaMb −mamb =
Ma(Mb −mb) + mb(Ma −ma) ≤ ε.

Now for three algorithms that will be later used as subroutines:
Algorithm DecideSign: Decide the sign of P (x) if P (x) �= 0

It follows that if P ∈ Q[X ], and r is a real given by r̃ such that P (r) �= 0,
then we can decide whether P (r) < 0 or P (r) > 0 using Plus and Mult over
the polynomial structure, then Compare.
Algorithm FindRoot: Find the unique root of P in an interval [r1, r2] of
monotonicity

Let r1 < r2, given by r̃1 and r̃2, and P a polynomial such that P is strictly
increasing over [r1, r2], P (r1) < 0 and P (r2) > 0. Let ε > 0. Compute [m1,M1]
a ε-approximation of r1 and [m2,M2] an ε-approximation of r2. If P (M1) ≥ 0,
then [m1,M1] is an ε-approximation of r0. If P (m2) ≤ 0, then [m2,M2] is a
ε-approximation of r0. We thus suppose P (M1) < 0 and P (m2) > 0 and apply
a dichotomy algorithm between the two, until we reach the desired precision.
Algorithm FindRootInf: Find the unique root of P in an interval (−∞, r2]
of monotonicity5

If we know that P is strictly increasing on (−∞, r2], P (r2) > 0, noting r
the root of P such that r < r2, then, similarly, let ε > 0; compute [m2,M2] a
ε-approximation of r2; if P (m2) ≤ 0 then [m2,M2] is a ε-approximation of r. If
P (m2) > 0 then take k ∈ N, −k < m2, k increasing until P (−k) < 0; then apply
the dichotomy algorithm between −k and m2.

Let us recall a familiar result, which we shall use with K = Q and K ′ = R:

Lemma 1. Let K be a field and K ′ an extension of K. If ξ ∈ K ′ is a com-
mon root of nonzero polynomials P and Q from K[X ], then it is a root of their
greatest common divisor gcd(P,Q) in K[X ]. Thus, co-prime polynomials have
no common root.

Proof. K[X ] is a principal ring [7, Ch. 4, Th. 1.2], there exist polynomials A and
B in K[X ] such that gcd(P,Q) = A.P + B.Q. The result follows by applying
both members of the equation to ξ.
5 We note open intervals (a, b), closed intervals [a, b].
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Several of our algorithms operate on sign diagrams. A sign diagram for a nonzero
polynomial P ∈ Q[X ] is a sequence −, r̃1,+, r̃2,−, r̃3,+, . . . , r̃n,+, where the r̃i

are approximation functions for the roots of P . Such a diagram means that
the polynomial function P (x) is negative for large negative x, then passes a
root r1 that can be approximated to arbitrary precision by r̃1, then becomes
positive, etc.

Sign diagrams for polynomials of degrees 0 and 1 are straightforward to com-
pute, as are the first and final signs of the diagram for any polynomial, which
are obtained from the parity of the degree of the polynomial and the sign of
the leading coefficient. Given the diagram of P and a nonnegative exponent e,
it is straightforward to compute the diagram for P e; and given the diagram for
P and a coefficient a ∈ Q, it is also straightforward to compute the diagram
for aP .

Given two polynomials P and Q with no common roots, one obtains the sign
diagram for P.Q through a simple sorted list merging procedure using Compare.
This algorithm, however, does not apply in case P and Q have common roots.
We use the fact (Lem. 1) that the common roots of P and Q are the roots of
the greatest common divisor gcd(x, y) of these polynomials to work around this
difficulty. gcd(x, y) can be computed using Euclid’s algorithm.
Algorithm SignDiagram: Compute the sign diagram of a polynomial

We shall now show how to compute the sign diagram of a polynomial P by
induction on the degree n of P . We have already noted that it is trivial to
compute diagrams for polynomials of degrees 0 and 1. We now shall suppose
that we can compute the sign diagrams of polynomials of degree less than n,
and show that we can compute the sign diagram of a polynomial of degree n.
First, define a subroutine:
Algorithm SignDiagramProduct:

Take as input a list (P1, e1), . . . , (Pm, em) of couples each formed of a polyno-
mial of degree less than n and a positive exponent, output the sign diagram of
the product P e1

1 ×· · ·×P em
m . We proceed by induction on the sum of the degrees

of P1, . . . , Pm. If this sum is 0 or 1, then the case is trivial.

– Check whether there exist Pi and Pj (i �= j) not co-prime; if so, compute
Qi = Pi/ gcd(Pi, Pj) and Qj = Pj/ gcd(Pi, Pj), then replace (Pi, ei) and
(Pj , ej) by (Qi, ei), (Qj , ej), (gcd(Pi, Pj), ei + ej) in the list. The sum of
the degrees has decreased by the degree of gcd(Pi, Pj), but the product
P e1

1 × · · · × P em
m has stayed the same, and thus we can solve the problem

through a recursive call.
– Otherwise, the Pi are pairwise co-prime. Since they all have degree less than

n, we can obtain their sign diagrams. We then apply the exponent algorithm,
then the algorithm for the sign diagrams of a product of polynomials with
no common roots.

Consider now a polynomial P of degree n.
– If P and its derivative P ′ are not co-prime, then let Q = P/ gcd(P, P ′). Q

and gcd(P, P ′) will have degree at most n − 1, so we can invoke SignDia-

gramProduct and obtain the sign diagram of their product P .
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– If they are co-prime: P only has single roots. Compute the sign diagram of
P ′, which gives us intervals of monotonicity for P . Then, compute the sign
diagram of P as follows:
• The leftmost sign is deduced from the leading coefficient and parity of

the degree of P . Without loss of generality, we shall suppose it is positive.
• Compute the sign of P (r1) (using DecideSign) where r1 is the first root

in the sign diagram of P ′; this is possible because r1 is not a root of P . If
it is negative, search for a root of P to the left of r1 using FindRootInf.
• For each subsequent root rk of P ′, compute the sign of P (rk) (using

DecideSign), and if it is different from the sign of P (rk−1), search for
a root of P in [rk−1, rk] using FindRoot.

For a system S of polynomial equalities or inequalities over a real variable
x, we call validity diagram a sequence b0, r1(B1), b1, r2(B2), . . . , rm(Bm) where
r1, . . . , rm are given by approximation functions r̃1, . . . , r̃m, and the bi and Bi

are booleans; b0 says whether S is always or never satisfied over (−∞, r1), B1

whether S is satisfied at r1, b1 whether S is always or never satisfied over (r1, r2)
and so on.
Algorithm Domain: Domain of validity of a quantifier-free formula with one
free variable

Consider now a quantifier-free formula F with one free variable, made up of
of polynomial equalities and inequalities Pi � 0. Similarly as in SignDiagram-

Product, take greatest common divisors until obtaining a base Bk of pairwise
co-prime polynomials such that for all i, Pi can be written Pi = Be1

1 ×· · ·×Bem
m .

Compute the sign diagrams of all Bk. The validity diagram of F can be com-
puted from the Bk using, as previously, a variant of the merging of sorted lists
and the fact the Bk, pairwise, have no common roots.

By preprocessing formulas through quantifier elimination, we can algorithmi-
cally approximate to arbitrary precision any (algebraic) real defined by a formula
in the theory of real closed fields.

Corollary 1. If F is a formula of the theory of real closed fields with one free
variable, such that F defines a single real, then this real is algebraic and can be
algorithmically approximated to arbitrary precision.

3 Concrete and Exact Abstract Semantics

We consider a simple block-structured programming language without loops, and
a concrete semantics as the binary relation between input variables and output
variables. This concrete semantics can be exactly represented using formulas in
the theory of real closed fields.

3.1 Concrete Semantics

We consider the following language L:

– Real expressions are constructed over: real variables (taken in a set V of
variable names), arithmetic operators (+, −, /, ×), integer constants.
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– Boolean expressions are constructed from atomic formulas using ∨, ∧, ¬
– Atomic formulas are constructed from real expressions and relational oper-

ators (<, >, =, ≤, ≤, ≥)
– The only control construct is if-then-else, where the condition is a boolean

expression.
– The only instruction is the assignment x := e, where x is a real variable and

e a real expression.
– There is a nondeterministic choice instruction x := [m,M ], choosing x be-

tween m and M .

A program in L has a concrete semantics as a binary relation over RV :
(pre, post) ∈ �P � if it is possible to reach the state post at the end of the ex-
ecution of P starting from the state pre.

For the sake of simplicity, we shall consider the sub-language Ls where ex-
pressions in assignments are to be simple, with only a single operator, and arith-
metic expressions in boolean expressions are to be variables; programs in L can
be turned into equivalent programs in Ls using additional variables to store
intermediate results.

It is immediate that all results in the rest of the paper persist if one replace
the theory of real close fields with another arithmetic theory admitting quantifier
elimination (Presburger arithmetic, or the theory of rational or real inequalities).

3.2 Quantifier-Free Closed Real Field Formulas

We compile programs without loops, compositionally, into quantifier-free formu-
las from the theory of real closed fields such that for a program P , the formula
�P �F models the input-output relationship �P � exactly.

We consider disjoint copies V ′ and V∃ of the set V : V will be used for free
formula variables denoting the input values of program variables, V ′ for free
variables denoting the output values of program variables, and V∃ for variables
bound by existential quantifiers, which are to be removed from the formulas by
quantifier elimination. ��F is defined as follows:

Arithmetics Addition �a := b + c�F
�= a′ = b + c

Subtraction �a := b− c�F
�= a′ = b− c

Multiplication �a := b ∗ c�F
�= a′ = b× c

Division �a := b/c�F
�= b = a′ × c

Tests �if c then p1 else p2� �= (c ∧ �p1�F ) ∨ (¬c ∧ �p2�F )
Composition �P1;P2�F

�= E(∃v1 . . . ∃vn f1 ∧ f2) where f1 is �P1�F where all
variables in V ′ have been replaced by their copy in V∃, f2 is �P2�F where all
variables in V have been replaced by their copy in V∃, and v1, . . . , vn are the
free variables of f1 and f2 that are in V∃. This is the only place where we
need quantifier elimination.
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Nondeterministic choice �x := [m,M ]�F
�= m ≤ x′ ≤M

Proposition 1. Let P be a program in Ls. Let pre, post ∈ RV . Then (pre, post) ∈
�P � if and only if (pre, post′) |= �P �F .

Alternatively, we could allow formulas including quantifiers and defer quantifier
elimination until it is actually needed.

What happens with programs with loops? On programs operating over in-
tegers, one can obtain logical relations linking inputs and outputs: sequences
of values of program variables across iterations can be encoded into couples of
integers using Gödel’s β function [16, Chapter 7], and one can thus construct a
finite formula defining the strongest loop invariant. 6 Then, of course, there is
no way to decide the formulas obtained.

In the case of programs with reals, the situation is different. There exist some
programs such that there is no formula in the theory of real closed fields that
precisely links the inputs and the outputs. Consider, for instance:

s=0; x=1; k=1;
while (k < n) { x=x/k; s=s+x; k=k+1; }

As n→∞, the output s of this program increases and tends to exp(1).
Let us suppose that there exists a relationship P (n, s′) in the theory of real

closed fields between the initial value of n and the final value of s. The formula

(∀n∃s′ P (n, s′)⇒ s′ ≤ l) ∧ (∀b (∀n∃s′ P (n, s′)⇒ s′ ≤ b) =⇒ l ≤ b). (3)

defines a single real, the least upper bound of the possible outputs, which is
exp(1). By Cor. 1, this real is algebraic; but it is well-known that exp(1) is tran-
scendental, a contradiction. Thus, in general, strongest loop invariants cannot be
expressed within the theory of real closed fields. We shall thus aim at expressing
some kind of loop invariant, not necessarily the strongest.

4 Optimal Abstraction over Polynomial Constraint
Domains

We now consider the abstraction of program states (in RV ) using domains de-
fined by polynomial constraints. This family of domains includes many“classical”
numerical abstract domains. We shall show that, with respect to such domains,
optimal abstractions are computable (in the sense of: one can compute approx-
imations to arbitrary precision) for programs without loops. Furthermore, we
shall show that least fixed points in such domains are also computable; we thus
obtain a semantics for loops, optimal in a certain sense. Finally, we shall see how
to define a general computable abstract semantics for programs with loops.

6 A similar construction proves Cook’s theorem: Floyd-Hoare axiomatic semantics on
programs using integers is complete with respect to Peano’s arithmetic [16, Th. 7.5].



Optimal Abstraction on Real-Valued Programs 113

Throughout this section, we shall be concerned with the forward propagation
problem: given an abstract precondition s� and a program fragment P , char-
acterize an abstract postcondition e� such that

−−→�P � ◦ γf (s�) ⊆ γf (e�) (“if this
precondition holds, then this postcondition must also hold”), and in particular
an optimal e� in a certain sense. However, all results work if one seeks to com-
pute preconditions, using

←−−�P � (“if this postcondition holds, then the input of the
program must have fit this precondition”).

4.1 Polynomial Constraint Domains: Definition

A polynomial constraint domain D�
f is defined by a family (fλ)λ∈Λ of polyno-

mials,7with variables in V . An element of D�
f is either ⊥, either a vector in

(−∞; +∞]Λ of parameters. (We assume Λ �= ∅).8
The γf : D�

f → P
(
RV

)
maps each element of D�

f to the set of program states
that it represents, that is, its concretization: γf (⊥) = ∅, and γf ((xλ)λ∈Λ) is the
set of variable assignments a ∈ RV such that for all λ, fλ(a) ≤ xλ. We exclude
from D�

f vectors x such that γ(x) would be empty, that is, vectors specifying
inconsistent constraints; we do so in order to have ⊥ as the sole representation
of the empty set.

Several “classical” numerical domains can be interpreted as polynomial con-
straint domains:

Intervals: Polynomials are v and −v, for all v ∈ V .
Difference matrices: Polynomials are v1 − v2, for all v1, v2 ∈ V .
Octagons: Polynomials are±v, for all v ∈ V , and ±v1±v2, for all v1, v2 ∈ V . [8]
Octahedra: Polynomials are ±v1 ± v2 ± · · · ± vn, for all v1, v2, . . . , vn ∈ V . [4]
Template linear constraints: Restriction to linear polynomials. [13]

Such a domain can be fitted with a straightforward complete lattice structure
(�,�,�), making γf increasing with respect to � and ⊆:

– ⊥ is the unique least element;
– x � y, x, y ∈ (−∞,+∞]Λ, if for all λ ∈ Λ, xλ ≤ yλ;
– the least upper bound and greatest lower bounds of a family of vectors are

defined coordinate-wise.

We can also provide an optimal abstraction function9 αf such that (αf , γf)
form a Galois connection [5, §4.2.2]: αf (∅) = ⊥; αf (S) (where S �= ∅) is the
7 Polynomials are used to define constraints of the form fλ(v1, . . . , vn) ≤ dλ. More

generally, our framework applies to any predicate Pλ(v1, . . . , vn; dλ) of the theory
of real closed fields, such that the set of models M(dλ) for the v1, . . . , vn is left-
continuous with respect to the parameter dλ: M(inf Dλ) =

⋂
dλ∈Dλ

M(dλ). All the
results given in the following sections also apply to that extended framework.

8 We can also consider an additional family of predicates without parameters, ab-
stracted by their truth value.

9 Neither αf nor γf are computable functions: they operate on unbounded sets of
rational or real numbers. The purpose of this paper is to show how to compute
certain quantities defined mathematically using αf or γf .
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vector (xλ)λ∈Λ where xλ = sups∈S fλ(s). From its definition, it is obvious that
αf preserves least upper bounds. [5, Prop. 6]

αf distinguishes among several possible abstractions of some set X the ab-
straction αf (X) such that αf (X) is minimal. Not only does this avoid tak-
ing a non-optimal abstraction — if we chose y� when there exists x� such that
X ⊆ γf (x�) � γf (y�), then y� is a non-optimal choice as an abstraction — but
it also provides for a “canonical” representation. Indeed, the concretization func-
tion γf is injective in the case of the intervals, but needs not be so in general.
In the case of the difference matrices and the octagons, there may be an infinity
of abstract elements with the same concretization: if we have the constraints
v1 − v2 ≤ C1,2, v2 − v3 ≤ C2,3, and v1 − v3 ≤ C1,3, then we get the same con-
cretization as long as C1,3 ≤ C1,2 + C2,3. These domains, however, are fitted
with a reduction or closure operation10 such that they provide results that are
minimal with respect to �. In this example, the closure operation realizes that
the constraint v1 − v3 ≤ C1,2 + C2,3 can be derived from the first two and can
be used to refine the third one if C1,2 + C2,3 < C1,3. The closure operation can
also detect that some constraints are inconsistent and the result should be ⊥.

Let ψ : P
(
RV

)
→ P

(
RV

)
. A function ψ� : D�

f → D�
f is said to be an

abstraction of ψ if ∀d� ∈ D�
f , ψ ◦ γf (d�) ⊆ γf ◦ ψ�(d�). The optimal abstraction

of ψ is αf ◦ψ ◦γf . In program analysis in general, it is possible that this optimal
abstraction is not computable. However, in the next sub-section, we shall show
that this optimal abstraction is computable on programs without loops with the
kind of domains that we consider here.

4.2 Optimal Abstraction Without Fixed Points

In section 3.2, we have shown that the input-output relationship of concrete pro-
gram variables can be represented as a formula in the theory of real closed fields.
Such a formula links the output value of the program variables to their input
values. Here, we shall see that the optimal abstraction of a program fragment
with respect to a polynomial constraint abstract domain can also be represented
as a formula in that theory; that is, we shall give a formula linking the input
and output parameters for these constraints.

Consider now a set of program states abstracted by d� ∈ D�
f , and a pre-post

formula φ over RV × RV ′
. We are interested in finding the optimal abstraction

of
−→
φ (d�). We will show that, in the case where d� �= ⊥, the coefficients of the

vector defining this optimal abstraction d�′ are related to the coefficients of d�

through a formula of the theory of real closed fields, and that the cases where ⊥
appear are settled by deciding a formula of that theory.

An element of d� is either ⊥, or a vector, indexed by λ ∈ Λ, of dλ ∈ R∪{+∞}.
We use a representation using only real variables: (db, (dλ)λ∈Λ, (d̄λ)λ∈Λ), where:
10 The lower closure operation αf ◦γf is defined for every Galois connection [5, §4.2.2],

but it needs not be computable in general. In the case of difference matrices and
octagons with rational coefficients, it is effectively computable by a shortest path
algorithm, and certain operations require their operands to be closed. [8, §V.B].
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– d� = ⊥ is encoded by db = 1 and any other value elsewhere;
– d� = (d�

λ)λ∈Λ is encoded as follows: db = 0 and for all λ ∈ Λ, either d�
λ <∞

and dλ = d�
λ, d̄λ = 0, or d�

λ =∞ and d̄λ = 1.

If d� = ⊥, then this optimal abstraction is obviously ⊥. For the sake of ease
of notation, let Λ = {1, . . . ,m} and V = {v1, . . . , vn}. Let abstracts(d, x) be
the formula d̄ = 1 ∨ (d̄ = 0 ∧ x ≤ d). Let isNonEmpty(d�) be the formula
∃v1 . . . ∃vn abstracts(d1, f1(v1, . . . , vn)) ∧ · · · ∧ abstracts(dm, fm(v1, . . . , vn)); if
isNonEmpty(d�) is false then

−→
φ (d�) = ∅ and, again, ⊥ is an optimal abstraction.

abstracts(d, x) may be decided algorithmically by quantifier elimination if the
d1, . . . , dm are rational numbers or algebraic numbers specified as in Sec. 2.2.

Let

step(φ, d�) �= db = 0 ∧ ∃v1 . . . ∃vn abstracts(d1, f1(v1, . . . , vn))∧
· · · ∧ abstracts(dm, fm(v1, . . . , vn)) ∧ φ. (4)

The models of step(φ, d�) are exactly the assignments for v′1, . . . , v′n such that
(v′1, . . . , v

′
n) ∈ −→φ ◦ γf (d�). Now, we need to define the image of that set by αf

using formulas.
The projections of those assignments over the fλ constraints are defined by:

stepλ(φ, d�, x) �= ∃v′1 . . .∃v′n step(φ, d�) ∧ x = fλ(v′1, . . . , v
′
n) (5)

The following formula has models (d, d̄) |= isSup(d, x, P ) such that d̄ = 1 if
{x | P (x)} has no upper bound, and otherwise d̄ = 0 and d = sup{x | P (x)}:

isSup(d, x, P ) �= (d̄ = 1 ∧ ∀y∃x y ≤ x ∧ P (x))∨
(d̄ = 0 ∧ (∀x P (x) =⇒ x ≤ d) ∧ (∀y(∀x P (x) =⇒ x ≤ y) =⇒ d ≤ y) (6)

Thus, the formula for defining the optimal parameter for the constraint in-
dexed by λ is: supStepλ(φ, d�, d′) �= isSup(d′, x, stepλ(φ, d�, x)).

Finally, we define:

abstrStep(φ, d�, d′�) �= (d′b = 1 ∧ ¬∃v′1 . . . ∃v′n step(φ, d�))∨
(d′b = 0 ∧ supStep1(φ, d�, d′1) ∧ · · · ∧ supStepm(φ, d�, d′m)) (7)

We thus have lifted a formula φ between concrete states to an optimal formula
abstrStep(φ, d�, d′�) between abstract states, and the following holds:

Theorem 2. Let φ be an input-output formula over variables V . Then, the con-
structed formula abstrStep(φ, d�, d′�) has models (d�, d′�) |= abstrStep(φ, d�, d′�),
where d� = (db, (dλ)λ∈Λ, (d̄λ)λ∈Λ) and d′� = (d′b, (d

′
λ)λ∈Λ, (d̄′λ)λ∈Λ), exactly such

that d′� = αf ◦
−→
φ ◦ γf (d�).

We can in particular take φ to be the formula defining the input-output rela-
tionships of a program in L (that is, with real variables without loops), following
the constructs in §3.2. By using 2.2 we can state:
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Corollary 2. Let (D�
f , αf , γf ) be the polynomial constraint domain defined by

a finite family of polynomials (fλ)λ∈Λ. There is an algorithm that computes,
given P a program in L, and an element d� ∈ D�

f with rational coefficients,

rational bounds on the coefficients of the optimal approximation αf ◦
−−→�P �◦γf (d�),

with arbitrary precision. The same holds with
←−−�P � or if the coefficients of d� are

algebraic numbers defined by real closed field formulas.

While we can obtain rational bounds, it is possible that the optimal coefficients
are irrational: the optimal output interval of if(x <0 || x*x >= 2) { x=0; }
is [0,

√
2].

4.3 Optimal Abstract Fixpoints

We shall now show that we can also derive a relationship, expressed as a formula
in the theory of real closed fields, between the parameters of an abstract state s�

and the least fixed point of the abstract semantics of a program fragment greater
than s�. This gives a formula linking the parameters of the abstraction of the
precondition of a loop to the parameters of an output abstract postcondition.

Let φ be a pre-post formula (over V ∪ V ′) and let s� ∈ D�
f . We are interested

in the least fixed point (in D�
f ) of αf ◦

−→
φ ◦ γf . We shall show that it is possible

to characterize such a fixed point using a formula in the theory of real closed
fields. This means that for any polynomial constraint abstract domain, and any
formula (for instance, a formula expressing the semantics of a program), the least
fixed point in the abstract domain can be effectively computed.

In order to analyze program loops and similar constructs, we are interested
in the strongest invariant containing some set z0; an invariant of a monotonic
function f is a post-fixed point, that is, z such that f(z) � z. We recall the
following result, similar to Tarski’s fixed point theorem:

Lemma 2. Let (Z,�,�,�) be a complete lattice and z0 ∈ Z. Let ψ : Z → Z be
an order-preserving operator. Then ψ has a least post-fixed point above z0, noted
lpfpz0

ψ; and this least post fixed point is inf{z ∈ Z | z0 � z ∧ f(z) � z}. lpfp⊥ f
is the least fixed point of f .

It is possible to define � using a formula such that d� � d′� ⇐⇒ (d�, d′�) |=
incl(d�, d′�) where:

incl(d�, d′�) �= db = 1 ∨ (d′b = 0 ∧ lessEq(d1, d
′
1) ∧ · · · ∧ lessEq(dm, d′m)) (8)

less(d, d′) �= d̄′ = 1 ∨ (d̄′ = 0 ∧ d̄ = 0 ∧ d ≤ d′) (9)

Now define:

isFix(d�, ψ�, d�
0)
�= incl(d�

0, d
�) ∧ ψ�(d�, d�)

isLfp(d�, ψ�, d�
0)
�= isFix(d�, ψ�, d�

0) ∧ ∀d′′
� isFix(d′′�, ψ�, d�

0)⇒ incl(d�, d′′�)



Optimal Abstraction on Real-Valued Programs 117

From these definitions, the following holds:

Theorem 3. Let ψ� be a formula over the variables d� = (db, (dλ)λ∈Λ, (d̄λ)λ∈Λ)
and d′� = (d′b, (d

′
λ)λ∈Λ, (d̄′λ)λ∈Λ), such that (d�, d′�) |= ψ� defines an order-

preserving function
−→
ψ� : d� !→ d′�. Then, isLfp(d�, ψ�, d�

0) has models (d�, d�
0) |=

isLfp(d�, ψ�, d�
0) such that d� is the least fixed point of

−→
ψ� over d�

0.

By taking ψ� = abstrStep(φ, d�, d′�) and applying theorem 2:

Corollary 3. Let φ be an input-output formula over variables V . Then, the
constructed formula isLfp(d�, abstrStep(d�, ψ, d′�), o�) has models (d�, o�), where
d� = (db, (dλ)λ∈Λ, (d̄λ)λ∈Λ) and o� = (ob, (oλ)λ∈Λ, (ōλ)λ∈Λ), exactly such that
d� = lpfpo�(αf ◦

−→
φ ◦ γf ).

The application to program analysis is that fixpoints in the abstract domain may
be approximated optimally, without the use of any widening operator :

Corollary 4. Let (D�
f , αf , γf ) be the polynomial constraint domain defined by a

finite family of polynomials (fλ)λ∈Λ. There is an algorithm that computes, given
P a program in L, and an element s� ∈ D�

f with rational coefficients, bounds on

the coefficients of the optimal approximation lpfps�(αf ◦
−−→�P � ◦ γf), with arbitrary

precision. The same holds with
←−−�P � and/or if the coefficients of s� are algebraic

numbers defined by real closed field formulas.

In order to compute an abstraction of the postcondition of a program while
(condition) { block } given an abstraction s� of the precondition, one can compute
an abstraction of the reachable states at the head of the loop, and filter by
¬condition. The set of reachable states at the head of the loop is the least fixpoint
of X !→ �block�(X ∩ �condition�) greater than γ(s�), and an abstraction of this
set is sought as a post-fixpoint of �condition; block�� greater than s�. Generally,
this post-fixpoint is obtained using a widening operator [5, §4.3]: a sequence
of candidates s�

1, s
�
2, . . . is tried for being post-fixpoints, with a guarantee of

termination; however, there is no guarantee of optimality. The above corollary
gives an optimal characterization of the least fixed point d� of �condition; block��

above s�, through formulas linking the coefficients of d� to those of s�. Using the
algorithms in §2.2, we can obtain bounds on the coefficients of this least fixed
point, with arbitrary precision.

Note, however, that the optimal result that we obtain is the least fixed point
within the abstract domain. In general, it is not the most precise abstraction of
the concrete least fixed point. Computing the most precise abstraction of least
fixed point would entail being able to solve the halting problem, and since the
programs over the reals include the programs over the integers, this is impossible.

The difference between the two is as follows: instead of computing the abstrac-
tion αf (lpfpψ) of the least fixed point of an operator, we compute lpfpψ� the
least fixed point of the optimal abstraction of that operator, ψ� = αf ◦ψ ◦ γf . If
ψ is the semantics of a program fragment without loops, then ψ is additive (the
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image of a union of sets is the union of the images of these sets); so is αf (the im-
age of a union of sets is the least upper bound of the images of these sets). Then,
lpfpψ =

⋃
n ψn(∅) [5, §4.1] and αf (lpfpψ) = αf (

⊔
n ψn(∅)) =

⊔
n αf ◦ψn◦γf (⊥).

In comparison, lpfpψ� is
⊔

n(αf ◦ψ ◦ γf )n(⊥). Note that the two are identical if
γf ◦ αf ◦ ψ ◦ γf = ψ ◦ γf . γf ◦ αf is a upper closure operator that maps each set
W ⊆ RV to the least superset representable in the abstract domain. This means
that the whole loss of precision (difference between αf (lpfp ψ) and lpfp ψ�) is
caused by the loss of precision introduced by this closure.

4.4 Abstracting Programs with Loops

In section 4.2, we have shown how to effectively compute a family of optimal
relations, which we shall note �P �→�

f , between the coefficients of an abstract
value d� in a polynomial constraint domain and those of the optimal abstraction
of the postcondition, αf ◦

−−→�P � ◦ γf .
In section 4.3, we have shown how to effectively compute a family of opti-

mal relations between the coefficients of an abstract value d� in a polynomial
constraint domain and those of the least fixpoint of αf ◦

−−−−−−−−−−−−→�condition; block� ◦ γf

greater than d�.
We can thus define a modular, compositional, forward abstract semantics

�P �→�
f by induction on the structure of the program. Given P , this semantics

yields a family of formulas in the theory of real closed fields, linking the param-
eters of an abstract precondition d� in D�

f and the parameters of an abstract

postcondition d�′ in D�
f such that each of these parameters is uniquely defined.

By using the algorithms given in section 2.2, these relationships can be used to
compute the parameters in d�′ to arbitrary precision.

5 Related Works and Conclusion

We have defined an optimally precise abstract domain for programs without
loops, based on formulas within the theory of real closed fields. This abstract
domain can be used to derive optimal abstract transformers for a wide class
of other domains, including familiar ones such as the interval and octagons do-
mains. In addition, it can be also be used to provide optimal fixed points within
those domains. The symbolic results that are computed can be algorithmically
bounded with arbitrary precision, after applying quantifier elimination.

We have therefore demonstrated that, for a class of domains, widening op-
erators are not needed in order to compute invariants. Moreover, our method,
contrary to widenings, produces invariants that are optimal in a certain sense
(the least invariant verifiable by the abstract transfer function).

There have been several published approaches to finding nonlinear relation-
ships between program variables. One approach obtains polynomial equalities
through computations on ideals using Gröbner bases [11]. This work only deals
with equalities (not inequalities), uses a classical approach of computing out-
put constraints from a set of input constraints (instead of finding relationships
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between the two sets of constraints), and deals with loops using a widening op-
erator. In comparison, our approach abstracts whole program fragments, and is
modular — it is possible to “plug” the result of the analysis of a procedure at
the location of a procedure call.

Kapur, in some other work [6], proposes to use quantifier elimination to ob-
tain invariants: he considers program invariants with parameters, and derives
constraints over those parameters from the program.11 Our work improves on
his by noting that least invariants of the chosen shape can be obtained, not just
any invariant; that the abstraction can be done modularly and compositionally (a
program fragment can be analyzed, and the result of its analysis can be plugged
into the analysis of a larger program), or combined into a “conventional” ab-
stract interpretation framework (by using invariants of a shape compatible with
that framework), and that the resulting invariants can be “projected” to obtain
numerical quantities.

There have been other methods proposed for generating invariants from fixed
parametric “shapes”, using constraints over the parameters. Some approaches
apply numerical algorithms, such as linear programming [13] or other forms
of constraint solving. One difference with our work is that such methods will
solve the invariant problem for one set of numerical values for input constraints,
while we provide formulas that are valid for all sets of inputs (and then, that
can be instanciated as many times as necessary to obtain numerical invariants).
Some of the proposed techniques consider non-linear invariants; for instance,
some [12,10] find coefficients for algebraic equalities (P (v1, . . . , vn) = 0), using
techniques of Gröbner bases. Our technique finds optimal algebraic inequalities,
and, furthermore, obtains constraints linking their parameters to constraints on
program inputs.

Quantifier elimination in the theory of real closed fields is a very costly oper-
ation; thus, our algorithms, taken “as is”, are likely not to be tractable beyond
simple cases. However, from a theoretical point of view, it is interesting to note
that widening operators are not needed in order to guarantee the computability
of least fixed points in e.g. the real interval domain. We also hope that “approx-
imate” quantifier elimination techniques (providing Q such that ∃x P =⇒ Q,
instead of Q such that ∃x P ⇐⇒ Q) may make some of our algorithms more
tractable. Some experiments suggest that the algorithms can be made more ef-
ficient in the linear case, using geometric techniques, and we hope to provide
more results in that respect.

With respect to applications, we envision the automatic synthesis of transfer
functions for “conventional”abstract interpreters. One limitation of systems such
as Astrée [2] is that, for each program construct, and each abstract domain,
an abstract transfer function must be programmed by hand. If one feels like a
whole block of instructions should be analyzed as a whole, in order to get more
precision, then one has to derive the necessary transfer function and implement
it, with risks of introducing bugs. We think that techniques such as the one in

11 We thank Enea Zaffanella for pointing out this work to us.
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this paper, or improvements thereof, could be used to provide generic transfer
functions, possibly through dynamic code generation.
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Abstract. Variables in programs are usually confined to a fixed number
of bits and results that require more bits are truncated. Due to the use
of 32-bit and 64-bit variables, inadvertent overflows are rare. However,
a sound static analysis must reason about overflowing calculations and
conversions between unsigned and signed integers; the latter remaining
a common source of subtle programming errors. Rather than polluting
an analysis with the low-level details of modelling two’s complement
wrapping behaviour, this paper presents a computationally light-weight
solution based on polyhedral analysis which eliminates the need to check
for wrapping when evaluating most (particularly linear) assignments.

1 Introduction

Static analysis methods are increasingly used to prove the partial correctness
of software [5]. In contrast to formal methods that verify properties of a high-
level specification, a static analysis is complicated by low-level details of source
code. For instance, while a specification expresses properties over arbitrary in-
tegers, variables in a program are usually confined to finite integer types that
are deemed to be large enough to hold all values occurring at run-time. On one
hand, the use of 32-bit and 64-bit variables make accidental overflows rare and
adding checks to each transfer function of the analysis seems to be excessive
considering the infrequency of variable overflows. On the other hand, program-
mers often inadvertently introduce wrapping when converting between signed
and unsigned variables and deliberately exploit the wrapping effects of two’s
complement arithmetic. Thus, wrapping itself should not be considered harm-
ful, particularly when the objective of an analysis is the verification of a different
property, such as absence of out-of-bound memory accesses [8,9].

In fact, there is a danger in flagging all wrapping, since any intentional use
of wrapping generates a warning message which the developer immediately dis-
misses as a false positive. The code in Figure 1 illustrates why this is a problem.
The purpose of the shown C function is to print how many times each individual
character occurs in the given string *str. To this end, the elements of dist are
initialised to zero by the call to memset. In the loop that follows, the nth element
is incremented each time a character n is encountered in str. The for loop then
prints the distribution of printable ASCII characters.

The shown program is correct on platforms where char is unsigned such as
Linux on PowerPC. However, for Linux on x86 and MacOS X on PowerPC, char

H. Riis Nielson and G. Filé (Eds.): SAS 2007, LNCS 4634, pp. 121–136, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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void showDistribution (char* str) {
int i;
int dist [256]; /* Table of character counts.*/

memset(dist , 0, sizeof(dist )); /* Clear table.*/

while (*str) {
dist [( unsigned int) *str ]++;
str++;

};

for(i=32; i <128; i++) /* Show dist for printable */
printf("’%c’�:�%i\n", i, dist[i]); /* characters .*/

}

Fig. 1. Example C function that counts the occurrences of each character

is signed. In the latter case, the value *str which is used to index into dist can
take on values in the range [−128, 127]. Although the programmer intended to
convert the value of *str to an unsigned value before the extension to a 4-byte
quantity takes place, the C standard [3] dictates that the value of *str is first
promoted to int before the conversion to an unsigned type is performed. Hence,
dist can be accessed at indices [232−128 . . .232−1]∪[0 . . .127], of which the first
range is out-of-bounds. A static analysis that considers all wrapping to be erro-
neous would flag this statement as possibly faulty. However, since the program-
mer expects that wrapping does occur (namely when converting from a char to
an unsigned quantity), the warning about wrapping at the unsigned int-level
will be dismissed as a false positive. Hence, the analysis above should flag the
out-of-bound array access but treat wrapping itself as intentional.

In this work, we propose a re-interpretation of polyhedra in which the wrap-
ping of integer calculations is reflected in the classic polyhedral domain [6]. In
particular, we avoid making cross-cutting changes to all transfer functions but
refine the approximation relation such that wrapping is mostly implicit, that is,
the need for extra polyhedral operations is largely finessed. For the few cases
in which wrapping has to be addressed in the transfer functions, we illustrate
how to wrap values within the polyhedral domain and propose an algorithm for
doing so. To summarise our contributions, this paper presents:

– an approximation relation that implicitly wraps polyhedral variables;
– an algorithm to perform wrapping in the polyhedral domain;
– a formal description of an analysis that faithfully models wrapping and an

accompanying correctness argument.

We commence with the definition of a small language and its concrete semantics.
Section 3 introduces polyhedral analysis. Sections 4 and 5 explain how wrapping
is supported. Section 6 presents a wrapping-aware polyhedral analysis which is
discussed in Section 7. We conclude with the related work in Section 8.
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2 A Language Featuring Finite Integer Arithmetic

The function shown in Figure 1 demonstrates that it is important to clarify where
wrapping can arise in a program. This is particularly true when arguing the
correctness of an analysis. To this end we introduce the languageL(ELang) which
is a subset of an intermediate language which is used to analyse C programs.

2.1 The Syntax of L(ELang)

L(ELang) features linear expressions and casts between integers. In the following
grammar of L(ELang), (T)∗ denotes the repetition of the non-terminal T.

〈ELang〉 :: (Block)∗

〈Block〉 :: l : (〈Stmt〉 ;)∗ 〈Next〉
〈Next〉 :: jump l ;

| if 〈Type〉 v 〈Op〉 〈Expr〉 then jump l ; 〈Next〉
〈Op〉 :: < | ≤ | = | �= | ≥ | >
〈Expr〉 :: n | n * v + 〈Expr〉
〈Stmt〉 :: 〈Size〉 v = 〈Expr〉

| 〈Size〉 v = 〈Type〉 v
〈Type〉 :: (uint | int) 〈Size〉
〈Size〉 :: 1 | 2 | 4 | 8

An ELang program consists of a sequence of basic blocks with execution com-
mencing with the first block. Each basic block consists of a sequence of state-
ments and a list of control-flow instructions. In the sequel, we use lookupBlock (l)
and lookupNext(l) to access the statements and control-flow instructions, respec-
tively, of basic block l. The control-flow of a basic block consists of either a jump
statement or a conditional which itself is followed by more control flow instruc-
tions. The 〈Stmt〉 production is restricted to the two statements of interest,
namely the assignment of linear expressions to a variable and a type cast. We
require that each variable in the program is used with only one size which is
always specified in bytes. In particular, the assignment statement and the con-
ditional require that all occurring variables are of the same size. Note, though,
that variables may be used as an uint (unsigned integer) in one statement and
as an int (signed integer) in another.

2.2 The Semantics of L(ELang)

In order to specify the semantics of L(ELang), we introduce the following nota-
tion. Let B = {0, 1} denote the set of Booleans. A vector b = 〈bw−1, . . . b0〉 ∈ Bw

is interpreted as unsigned integer by valw,uint(b) =
∑w−1

i=0 bi2i and as signed
integer by valw,int(b) = (

∑w−2
i=0 bi2i) − bw−12w−1. Conversely, binw : Z → Bw

converts an integer to the lower w bits of its Boolean representation. Formally,
binw(v) = b iff there exists b′ ∈ Bq such that val (q+w),int(b′‖b) = v where ‖
denotes the concatenation of bit-vectors. For instance, bin3(15) = 〈1, 1, 1〉 since
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Basic Blocks.
[[ l : s1; . . . sn; ]]�Blockσ = [[ lookupNext(l) ]]�Next([[ sn ]]�Stmt(. . . ([[ s1 ]]�Stmtσ) . . .))

Control Flow.
[[ jump l ]]�Nextσ = [[ lookupBlock(l) ]]�Blockσ

[[ if t s v op exp then jump l ; nxt ]]�Nextσ ={
[[ lookupBlock(l) ]]�Blockσ if val8s,t(σs(addr �(v))) op val8s,t([[ exp ]]�,s

Exprσ)
[[ nxt ]]�Nextσ otherwise

Expressions.
[[ n ]]�,s

Exprσ = bin8s(n)

[[ n ∗ v + exp ]]�,s
Exprσ = bin8s(n) ∗8s σs(addr �(v)) +8s [[ exp ]]�,s

Exprσ

Assignment.
[[ s v = exp ]]�Stmtσ = σ[addr �(v) s�→ [[ exp ]]�,s

Exprσ]

Type Casts.
[[ s1 v1 = t s2 v2 ]]�Stmtσ = σ[addr �(v1)

s1�→ bin8s1(val8s2,t(σs2(addr �(v2))))]

Fig. 2. Concrete Semantics of L(ELang)

val5,int(〈0, 1, 1, 1, 1〉) = 15. In order to distinguish calculations on Boolean vec-
tors from standard arithmetic, let +w, ∗w : Bw × Bw → Bw denote addition
and multiplication that truncate the result to the lower w bits, for instance
〈1, 1, 1, 1〉+4 〈0, 0, 0, 1〉 = 〈0, 0, 0, 0〉. Note that the signedness of the arguments
of +w and ∗w do not affect the result of these operations.
L(ELang) programs operate in a virtual memory environment which we for-

malise as a sequence of bytes. Let B = B8 denote the set of bytes and Σ = B232

all states of 4 GByte that a program on a 32-bit architecture can take on. Let
σ ∈ Σ denote a given memory state of a program and let σs : [0, 232 − 1] → Bs

denote a read access at the given 32-bit address where s ∈ {1, 2, 4, 8} is the
number of bytes to be read. A write operation is formalised as a substitution
σ[a s!→ v]. The resulting store σ′ = σ[a s!→ v] satisfies σ′s(a) = v and furthermore
σ′1(b) = σ1(b) for all addresses b /∈ {a, . . . a + s− 1}.

Figure 2 presents the concrete semantics (or natural semantics, hence the �)
of the L(ELang) language. These definitions use addr �(v) ∈ [0, 232 − 1] which
maps the program variable v to its address in memory. We assume that addr �

maps different variables to non-overlapping memory regions, an assumption that
makes L(ELang) independent of the endianness of an architecture.

The concrete semantics manipulates the store mainly by operations on bit-
vectors; only in the conditional and in the cast are bit vectors interpreted as
numbers. In these cases the signedness of the variables can actually influence the
result. In particular, the type t of the cast determines if the source bit-vector is
sign-extended (if t = int) or zero-extended (if t = uint) when s1 ≥ s2. We now
proceed by abstracting this semantics so as to specify a polyhedral analysis.
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3 Polyhedral Analysis of Finite Integers

Two’s complement arithmetic exploits the wrapping behaviour of integer vari-
ables that are confined to a fixed number of bits. For instance, subtracting 1
from an integer is equivalent to adding the largest representable integer value.
In fact, the binary representation of the signed integer −1 is identical to that of
the largest, unsigned integer of the same size. In the context of verification, this
dichotomy in interpretation cannot be dismissed since L(ELang) has insufficient
information about the signedness of assignments. This omission allows our model
to be applied to languages which freely mix signed and unsigned values, e.g. C.

Accessing the same bit sequence as either signed or unsigned integer corre-
sponds to a wrapping behaviour in that the negative range of the signed integer
wraps to the upper range of an unsigned integer, see Figure 3. This wrapping
behaviour of finite integers creates a mismatch against the infinite range of poly-
hedral variables. We present our solution to this mismatch in two parts: Section 4
presents a concretisation map between the polyhedral domain and the bit-level
representation of variables. This map wraps values of abstract variables implic-
itly to finite sequences of bits, thereby alleviating the need to check for wrapped
values each time a variable is read or written. In contrast, Section 5 details
an algorithm that makes the wrapping of program variables explicit in the ab-
stract domain which is important for casts and the conditional statement whose
semantics depend on the size and signedness of the operands.

3.1 The Domain of Closed, Convex Polyhedra

In order to make the paper self-contained, this section gives a concise introduc-
tion to the notation used in our polyhedral analysis. Let X = {x1, . . . xn} be a
finite set of variables, let x = 〈x1, . . . xn〉 and let I be the set of linear inequalities
that can be rewritten as c ·x ≤ d where c ∈ Zn and d ∈ Z. For brevity we write
e1 = e2 to denote the set of inequalities {e1 ≤ e2, e2 ≤ e1} where ei is any linear
expression. Furthermore, let e1 < e2 abbreviate e1 ≤ e2 − 1. Let ι ∈ I be an in-
equality that can be transformed into c·x ≤ d, then [[ι]] = {x ∈ Rn | c·x ≤ d} de-
notes the induced half-space. Given a finite set of inequalities E = {ι1, . . . ιn} ⊆ I
the notation [[E]] =

⋂
i=1,...n[[ιi]] denotes the induced convex polyhedron. Let

0 127
signed

-1-128

10000000

11111111
00000000

01111111

0 127

00000000

01111111

255128

10000000

11111111

unsigned

Fig. 3. The difference between a signed and an unsigned access can be interpreted as
a wrap of negative values to the upper range in an unsigned access
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Poly be the set of all convex polyhedra (polyhedra for short). Given two poly-
hedra P1, P2 ∈ Poly , let P1 � P2 iff P1 ⊆ P2 and let P1 � P2 = P1 ∩ P2. Note
that P1 � P2 = [[E1 ∪ E2]] where Pi = [[Ei]] and i = 1, 2. We write P1 � P2 to
denote the closure of the convex hull [6] of two polyhedra P1 and P2 which is
defined as the smallest polyhedron P such that P1 ∪ P2 � P . Let P ∈ Poly
be non-empty and Vi = {vi | 〈v0, . . . vn〉 ∈ P}. We write P (x) = [l, u] where
l = ,min(Vi)- if the minimum exists, otherwise l = −∞ and u = .max(Vi)/
if the maximum exists, otherwise u = ∞. Define ∃xi : Poly → Poly such that
∃xi(P ) = {〈v1, . . . , vi−1, x, vi+1, . . . vn〉|〈v1, . . . vn〉 ∈ P ∧x ∈ R}. Let T denote an
additional set of temporary variables such that T ∩X = ∅. All operations above
lift from X to T∪X . The operation P�x := e ∈ Poly denotes an update of a vari-
able x ∈ X to the linear expression e and is defined as ∃t([[x = t]]�∃x([[t = e]]�P ))
where t ∈ T does not occur in e and t �= x. The rationale for assigning the result
to a temporary variable is that e might contain x. Assigning e to a fresh variable
t will retain the value of x before it is projected out. If x does not occur in e, the
update above is equivalent to ∃x(P ) � [[x = e]]. In order to argue about updates
of polyhedra, observe the following:

Lemma 1. Let P ∈ Poly and P ′ = P � xi := c · x + d with c ∈ Zn and d ∈ Z.
Then P ′ = {〈v1, . . . vi−1, v

′
i, vi+1, . . . vn〉 | v = 〈v1, . . . vn〉 ∈ P ∧ v′i = c · v + d}.

4 Implicit Wrapping of Polyhedral Variables

This section formalises the relationship between polyhedral variables and bit-
sequences that constitute the programstate. For simplicity,weassumea one-to-one
correspondance between the variable names in the program and the polyhedral
variables that represent their values. The values of a program variable are merely
bit sequences that are prescribed by the possible values of the polyhedral vari-
able. To illustrate, suppose that x is of type char and P (x) = [−1, 2]. The
represented bit patterns are 11111111, 00000000, 00000001 and 00000010, no
matter whether x is signed or unsigned. These bit patterns are given by bin8s(v)
which turns a value v ∈ [−1, 2] into a bit sequence of s bytes. Going further,
the function bitss

a : Z → P(Σ) produces all concrete stores in which 8s bits at
address a = addr �(x) are set to the value corresponding to v ∈ P (x) as follows:

bitss
a(v) = {〈r8∗232 . . . r8(a+s)〉‖ bin8s(v) ‖ 〈r8a−1 . . . r0〉 | ri ∈ B}

Note that this definition only considers the lower 8s bits of the value v. For
instance, bits1

a(0) = bits1
a(256) since the lower eight bits of 0 and 256 are equal.

The mapping bitss
a can be lifted from the value v of a single variable to the

values 〈v1, . . . vn〉 ∈ Zn of a vector of variables 〈x1, . . . xn〉, resulting in the stores⋂
i∈[1,n] bits

si
ai

(vi). Here ai ∈ [0, 232− 1] denotes the address of the variable xi in
the concrete store and si ∈ N denotes its size in bytes. Observe that, if variables
were allowed to overlap, the above intersection might incorrectly collapse to the
empty set for certain vectors 〈v1, . . . vn〉 ∈ Zn. Using this lifting, a polyhedron
is now related to a set of stores by γs

a : Poly → P(Σ) which is defined as
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γs
a(P ) =

⋃
v∈P∩Zn

⎛
⎝ ⋂

i∈[1,n]

bitssi
ai

(vi)

⎞
⎠

where s = 〈s1, . . . sn〉, a = 〈a1, . . . an〉 and v = 〈v1, . . . vn〉.
The definition of γs

a provides a criterion for judging the correctness of an
abstract semantics. In addition, γs

a permits linear expressions to be evaluated in
the abstract semantics without the need to address overflows since γs

a maps the
result of calculations in the polyhedral domain to the correctly wrapped result
in the actual program. This property is formalised below:

Proposition 1. Let e ∈ L(Expr) and e ≡ c ·x + d, that is, e is a reformulation
of c · x + d. If σ ∈ γs

a(P ) then σ[ai
si!→ [[ e ]]�,si

Expr] ∈ γs
a(P � xi := c · x + d).

Proof. Define πi(〈x1, . . . xi−1, xi, xi+1, . . . xn〉) = xi. Since σ ∈ γs
a(P ) there ex-

ists v ∈ P∩Zn such that σ =
⋂

i∈[1,n] bits
si
ai

(πi(v)). Let P ′ = P �xi := c·x+d for
some c ∈ Zn and d ∈ Z. By Lemma 1, there exists v′ ∈ P ′ with πj(v′) = πj(v)
for all j �= i. Since {ai, . . . ai +si−1}∩{aj, . . . aj +sj−1} = ∅ for all j �= i, there
exists σ′ ∈ γs

a(P ′) such that σ′1(a) = σ1(a) for a ∈ [0, 232−1]\{ai, . . . ai+si−1}.
Furthermore, the lemma states that πi(v′) = c · v + d and, by the definition of
γs

a, it follows that σ′si (ai) = bin8si(c ·v +d). To show that σ′si(ai) = [[ e ]]�,si

Exprσ,
we find a ∈ Zn, d ∈ Z such that e ≡ c · x + d and [[ e ]]�,si

Exprσ = bin8si(c · v + d)
by induction over e:

1. Let e = n. By definition of [[ · ]]�,sExpr, [[ n ]]�,si

Exprσ = bin8si(n) = bin8si(c ·v+d)
where d = n and c = 〈0, . . . 0〉. Hence e ≡ c · x + d.

2. Let e = n ∗ xj + e′. Suppose that [[ e′ ]]�,si

Exprσ = bin8si(c′ · v + d′) where
e′ ≡ c′ · x + d′. By the definition of [[ · ]]�,sExpr, [[ n ∗ xj + e ]]�,si

Exprσ =
bin8s(n)∗8si σsi(aj)+8si [[ e′ ]]�,si

Exprσ where σsi(aj) = bin8si(vj). By definition
of bin8s, bin8s(n) ∗8si bin8si(vj) = ((nmod 28si) ∗ (vj mod 28si))mod 28si =
(n∗vj)mod 28si , c.f. [7, page 42]. Similarly, (n∗vj)mod 28si +8si [[ e′ ]]�,si

Exprσ =
(n∗vj)mod 28si +8si bin8si(c′ ·v+d′) = (n∗vj +c′ ·v+d′)mod 28si . Thus, set
d = d′ and 〈c1, . . . cn〉 = 〈c′1, . . . c′i−1, c

′
i +n, c′i+1, . . . c

′
n〉 where c = 〈c1, . . . cn〉

and c′ = 〈c′1, . . . , c′n〉. Hence e ≡ c · x + d.

The force of the above result is that a linear expression 〈Expr〉 over finite integer
variables can be interpreted as an expression over polyhedral variables without
regard for overflows or evaluation order. A prerequisite for this convenience is
that all variables occurring in an expression have the same size s. In contrast,
assignments between different sized variables have to revert to a cast statement.
In this case, and in the case of conditionals, wrapping has to be made explicit
which is the topic of the next section.

5 Explicit Wrapping of Polyhedral Variables

A consequence of the wrapping behaviour of γs
a is that the effect of a guard

such as x<=y cannot be modelled as a transformation from a polyhedron P to
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x ≤ y

384,176

x ≤ y

Fig. 4. Explicitly wrapping the possible values of x to its admissible range

P � [[x ≤ y]]. This section explains this problem, discusses possible solutions and
proposes an efficient wrapping algorithm wrap.

5.1 Wrapping Variables with a Finite Range

In order to illustrate the requirements on the wrap function, consider Figure 4.
The thick line in the upper graph denotes P = [[x + 1024 = 8y,−64 ≤ x ≤ 448]]
which we suppose feeds into the guard x<=y where x and y both represent vari-
ables of type uint8. In order to illustrate a peculiarity of modelling the guard,
consider the point 〈x, y〉 = 〈384, 176〉 ∈ P and let σ ∈ γs

a({〈384, 176〉}). Due to
implicit wrapping in γs

a, the state σ stipulates that val8,uint(σ1(addr �(x))) = 128
and val8,uint(σ1(addr �(y))) = 176. Thus, although x<=y is true when interpret-
ing x and y as uint8 in σ, the polyhedron {〈384, 176〉}�[[x ≤ y]] is empty. Hence,
it is not correct to model the guard in the classic way as P � [[x ≤ y]].

In order to model relational tests correctly, the values of expressions occurring
on each side of a relational operator have to be wrapped to the type prescribed
in an L(ELang) conditional. In the example, the expression y is already in the
required range [0, 255] whereas the range of x impinges on the two neighbouring
quadrants as indicated in the upper graph of Figure 4. These quadrants are
obtained by partitioning the state P into P−1 = P � [[−256 ≤ x ≤ −1]], P0 =
P � [[0 ≤ x ≤ 255]] and P1 = P � [[256 ≤ x ≤ 511]]. The result of wrapping
x can now be calculated by translating P−1 by 256 units towards positive x-
coordinates and P1 by 256 units towards negative x-coordinates, yielding P ′ =
P0 � (P−1 � x := x + 256) � (P1 � x := x − 256). The contribution of each
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Fig. 5. The quest for an efficient wrapping of unbounded variables

partition is shown as a thick line in the lower left graph and the grey region
depicts P ′ � [[x ≤ y]]. Observe that a more precise state P ′′ can be obtained by
intersecting each translated state separately with [[x ≤ y]], that is, by calculating
(P0� [[x ≤ y]])�((P−1 �x := x+256)� [[x ≤ y]])�((P1 �x := x−256)� [[x ≤ y]]).
This state, depicted as the grey area in the lower right graph, is smaller than P ′

since P−1 does not contribute at all. Indeed, this example shows that polyhedra
are not meet-distributive, that is, P�(P1�P2) �= (P�P1)�(P �P2). In this work,
we chose to calculate the equivalent of P ′ in our wrapping function wrap as it
simplifies the presentation; implementing the refined model is mere engineering.

5.2 Wrapping Variables with Infinite Ranges

In the given example, it was possible to obtain a wrapped representation of the
values of x and y by calculating the join of three constituent state spaces. In
general, however, wrapping x and y can require the join of an infinite number of
constituent state spaces as depicted in Figure 5. Here, the line in the upper graph
depicts P = [[x+1024 = 8y]], that is, P denotes the same linear relation as before,
except that x is unbounded. Translating P by i times the range of uint8 yields
Pi = (P � x := x + i28 � [[0 ≤ x ≤ 255]]) � (P � x := x − i28 � [[0 ≤ x ≤ 255]])
for i ≥ 0. A polyhedron that includes the sequence P ′

j =
⊔

0≤i≤j Pi can be
computed using widening [6], thereby yielding the grey area in the lower right
graph. In fact, this region is equivalent to ∃x(P ) � [[0 ≤ x ≤ 255]] as it contains
neither bounds on x nor relational information between x and other variables.
This suggests that, rather than wrapping unbounded variables, it is cheaper and
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Fig. 6. Precise wrapping of two bounded variables

as precise to set them to the whole range of their type. After wrapping x, it
becomes apparent that y is unbounded too, and hence needs wrapping.

5.3 Wrapping Several Variables

Even though the guard x<=y used in the example of Section 5.1 involves two
variables, it was only necessary to wrap x to obtain a wrapped representation of
both x and y. The example of Section 5.2 hints at the fact that both variables
might need wrapping to ensure that both sides of the guard are within range. In
particular, it is not possible to translate a guard x<=y to the inequality x−y ≤ 0
and to merely wrap x− y to [0, 255]. To illustrate this, consider the simpler case
x<=42 which is satisfied for bit sequences of x that fall within [0, 42]. In order
to evaluate x<=42, set x′ = x − 42 and wrap x′ such that 0 ≤ x′ ≤ 255. The
intersection with [[x′ ≤ 0]] constrains x′ to 0 which implies x = 42 instead of x ∈
[0, 42]. Thus, both arguments to a guard x<=y need to be wrapped independently.

The example in Figure 5 showed how wrapping the unbounded x leaves y
unconstrained which thus has to be wrapped as well. Figure 6 shows a poten-
tially more precise solution for bounded variables in which variables are wrapped
simultaneously. Here, the bounded state space shown in grey expands beyond
the state P0 that corresponds to the actual range of the variables. The result of
translating each neighbouring quadrant and intersecting it with x ≤ y is shown
in the graph on the right. Note that the join of these four translated spaces
retains no information on either x or y. While it is possible that relational in-
formation with other variables is retained, wrapping the variables independently
has the same precision if one of the variables is within bounds and, in particular,
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Algorithm 1. Explicitly wrapping an expression to the range of a type
procedure wrap(P, t s, x) where P = ∅, t ∈ {uint, int} and s ∈ {1, 2, 4, 8}
1: bl ← 0
2: bh ← 2s

3: if t = int then /* Adjust ranges when wrapping to a signed type. */
4: bl ← bl − 2s−1

5: bh ← bh − 2s−1

6: end if
7: [l, u] ← P (x)
8: if l = −∞∧ u = ∞ then /* Calculate quadrant indices. */
9: 〈ql, qu〉 ← 〈 (l − bl)/2s!,  (u − bl)/2s!〉

10: end if
11: if l = −∞∨ u = ∞ ∨ (qu − ql) > k then /* Set to full range. */
12: return ∃x(P ) � [[bl ≤ x < bh]]
13: else /* Shift and join quadrants {ql, . . . qu}. */
14: return

⊔
q∈[ql,qu]((P � x := x − q2s) � [[bl ≤ x < bh]])

15: end if

if a variable is compared to a constant. In the 3000 LOC program qmail-smtp
that our analysis targets, 427 out of 522 conditionals test a variable against a
constant, which motivates our design choice of wrapping variables independently.

5.4 An Algorithm for Explicit Wrapping

Guided by the observations made in the three examples, Algorithm 1 gives a
procedure to wrap a polyhedral variable to the range of a given integer type.
Due to the observations in the last section, we only present an algorithm to
wrap one variable at a time. Thus, both sides of a guard have to be wrapped
individually.

The algorithm commences by calculating the bounds of the type t s. A uint8
type, for instance, will set bl = 0 and bh = 28 = 256 while an int8 type results
in the bounds bl = 0− 28−1 = −128 and bh = 28− 28−1 = 128. Line 7 calculates
the bounds of x in P . If one of these bounds is infinite, line 12 removes all
information on x and restrains x to [bl, bh − 1]. In case of finite bounds, line 9
calculates the smallest and largest quadrant into which the values of x impinge.
For instance, in the example of Figure 4, these numbers are ql = −1 (for the
quadrant [−256,−1]) and qh = 1 (for [256, 511]). Line 11 ensures that the linear
expression is simply set to its maximum bounds if more than k quadrants have
to be transposed and joined, where k is a limit that can be tuned to the required
precision. Line 14 transposes each quadrant and restricts it to the bounds of the
type. The correctness of wrap is asserted below:

Proposition 2. Given P �= ∅ and P ′ = wrap(P, t s, xi), the interval P ′(xi) lies
in the range of the type t s. Furthermore γs

a(P ) ⊆ γs
a(P ′).

Proof. Upon return from lines 12 and 14, xi is restricted to lie between the
bounds bl and bh − 1 of the type t s, hence P ′(xi) lies in the range of type t s.
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Suppose a = 〈a1, . . . an〉, s = 〈s1, . . . sn〉 where ai = addr �(xi) and si denotes
the size of xi in bytes. Let σ ∈ γs

a(P ). Then there exists 〈v1, . . . vn〉 ∈ P ∩ Zn

such that σ ∈ γs
a({v}). We consider two behaviours of wrap:

– Suppose that wrap is exited at line 12. Observe that for any b ∈ B8si there
exists v ∈ {bl, . . . , bh − 1} such that bin8si(v) = b. Hence, there exists v′ =
〈v1, . . . v

′
i, . . . vn〉 with v′i ∈ [bl, bh−1]∩Z and bin8si(v′i) = bin8si(vi). Observe

that v′ ∈ P ′ = ∃x(P ) � [[bl ≤ x < bh]] and v′ ∈ Zn. Hence bitss
a(vj) =

bitss
a(v′j) for all j ∈ [1, n] and it follows that σ ∈ γs

a(P ′).
– Suppose now that wrap exits at line 14. Observe that vi ∈ [l, u] hence there

exists q ∈ [ql, qu] such that vi − q2s1 ∈ [bl, bh − 1]. Hence, there exists v′ =
〈v1, . . . v

′
i, . . . vn〉 ∈ P ′ such that v′i = vi − q2si . Since bin8si(q2si) = 0 it

follows that bin8si(v′i) = bin8si(vi − q2si) = bin8si(vi). Thus σ ∈ γs
a(P ′).

Note the translation of quadrants using P � x := x + q2s can be implemented
by a potentially cheaper affine transformation [2]. However, the shown solution
can be readily implemented using other polyhedral domains [15,17] that do not
directly support affine translations.

6 An Abstract Semantics for L(ELang)

This section defines the abstract semantics of L(ELang) in which a single poly-
hedron P is calculated for each label l where each label marks the beginning
of a basic block. Starting with the unrestricted polyhedron R|X| for the first
basic block and with the empty polyhedron ∅ ⊆ R|X| for all others, the semantic
function of the basic blocks are repeatedly evaluated until a (post-)fixpoint is
reached [4]. We omit a formal definition of this fixpoint for simplicity. Once a
fixpoint is reached, each state σ that may arise in the concrete program at l
satisfies σ ∈ γs

a(P ) where P is the polyhedron associated with the label l.
The first rule in Figure 7 specifies how the evaluation of statements feeds into

the evaluation of control-flow statements. Specifically, [[ lookupNext(l) ]]�NextPl

yields tuples such as 〈P ′
l′ , l

′〉 indicating that P ′
l′ must be joined with the existing

state Pl′ at l′. For instance, jump l merely returns the current state paired with
the target label. The conditional calculates two new polyhedra P then (which is
returned for the label l) and P else (which is used to evaluate other control-flow
instructions). The calculation of P else makes use of a function neg which negates
a relational operator, for example, neg(′<′) = ′≥′. The auxiliary function cond
wraps the two arguments of the relational operator op. Like wrap, this function
can only wrap single polyhedral variables which requires that exp is assigned to
a temporary variable y which is projected out once the guard is applied.

Observe that enforcing the guard by intersecting with [[x op y]] has the same
effect as wrapping the expression exp itself since y = exp holds in P ′. However,
if wrap returns from line 12 in Algorithm 1, the variable y is merely set to
the bounds of the type. In this case wrap discards the relational information
between y and exp and the intersection with [[x op y]] has no effect on P ′′, thereby
ignoring the condition. An alternative treatment for expressions exp that exceed
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k quadrants would be to discard any previous information on variables in exp
using projection and to modify wrap to intersect P with [[bl ≤ exp < bh]]. In
this case the information in the guard could be retained by intersecting with
[[x op exp]] at the cost of discarding any previous bounds on the variables of exp.

The following Proposition states the correctness of the conditional:

Proposition 3. If σ∈γs
a(P ) and val 8s,t(σs(addr �(xi))) op val 8s,t([[ exp ]]�,sExprσ)

then 〈P ′, l〉 ∈ [[ if t s xi op exp then jump l ; nxt ]]�NextP and σ ∈ γs
a(P ′).

Proof. Since σ ∈ γs
a(P ) there exists v ∈ P ∩ Zn such that σ ∈ γs

a({v}). Let
P̂ = cond(P̄ , t s, xi, y, op) where P̄ = P � y := [[ exp ]]�Expr. Then 〈v1, . . . vn, v̂〉 ∈
P̄ ∩ Zn+1 where 〈v1, . . . vn〉 = v, v̂ = c · v + d and exp ≡ c · x + d. By
Proposition 2, there exists v′ = 〈v1, . . . vi−1, v

′
i, vi+1, . . . vn, v̂′〉 ∈ P̂ ∩ Zn+1

such that bin8s(vi) = bin8s(v′i) = σ8s(addr �(xi)). By following Proposition 1,
bin8s(v̂) = bin8s(v̂′) = [[ exp ]]�,sExprσ. Furthermore, v′i and v̂′ lie in the range of
t s and thus val8s,t(σ8s(addr �(xi))) = v′i and val8s,t([[ exp ]]�,sExprσ) = v̂′. Hence
v′ ∈ P̂ � [[x op y]] for op /∈ {�=}. With P ′ = ∃y(P̂ � [[x op y]]) it follows that
σ ∈ γs

a(P ′). The argument is similar for op ∈ {�=}.

The fall-through case can be shown correct by a similar argument.
Due to the modulo nature of γs

a the evaluation of linear expressions and as-
signments resembles that of classic polyhedral analysis in that linear expressions
in the program are simply re-interpreted as expressions over polyhedra variables.
This holds true even for casts between different sized variables as long as the
target variable is smaller. Assigning smaller variables to larger, on the contrary,
requires that wrapping is made explicit since a value that exceeds the range of
the smaller source variable would wrap in the actual program whereas it might
not exceed the range of the larger target variable.

We conclude this section with a correctness argument for the cast statement:

Proposition 4. Suppose σ ∈ γs
a(P ), σ′ = [[ s1 xi = t s2 xj ]]�Stmtσ and let

P ′ = [[ s1 xi = t s2 xj ]]�StmtP . Then σ′ ∈ γs
a(P ′).

Proof. Since σ ∈ γs
a(P ) there exists v = 〈v1, . . . vn〉 ∈ P such that σ ∈ γs

a({v}).
Let 〈v′1, . . . v′n〉 ∈ P � xi := xj where v′i = v′j and v′k = vk for all k �= i.
By Lemma 1, σ′sk(addr �(xk)) = σsk(addr �(xk)) for all k �= i. By definition of
[[ · ]]�Stmt, we need to show that σ′s1(addr �(xi))=bin8s1(val8s2,t(σs2(addr �(xj)))).

– Suppose s1 ≤ s2. Then bin8s1(x)=bin8s1(val8s2,t(bin8s2(x))). But bin8s1(v′i)
= σ′s1(addr �(xi)) and bin8s2(vj) = σs2 (addr �(xj)), thus σ′ ∈ γs

a(P ′) follows.
– Suppose now that s1 > s2. By Proposition 2, there exists 〈v1, . . . v̂i, . . . vn〉 ∈

P ′ such that bin8s2(v̂i) = bin8s2(vj) and v̂i lies in the range of t s2, that is,
val8s2,t(bin8s2(v̂i)) = v̂i. But since bin8s2(v̂i) = bin8s2(vj) = σ′s1 (addr �(xj))
it follows that σ′s1 (addr �(xi)) = bin8s1(v̂i) as required.
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Basic Blocks.
[[ l : s1; . . . sn; ]]�BlockP = [[ lookupNext(l) ]]�Next([[ sn ]]�Stmt(. . . [[ s1 ]]�StmtP . . .))

Control Flow.
[[ jump l ]]�NextP = {〈P, l〉}
[[ if t s v op exp then jump l ; nxt ]]�NextP = {〈P then , l〉} ∪ [[ nxt ]]�NextP

else

where P ′ = P � y := [[ exp ]]�Expr where y ∈ T fresh
P then = ∃y(cond(P ′, t s, v, y, op))
P else = ∃y(cond(P ′, t s, v, y,neg(op)))

cond(P ′, t s, x, y, op) =
{

(P ′′ � [[x < y]]) � (P ′′ � [[x > y]]) if op ∈ {=}
(P ′′ � [[x op y]]) otherwise

where P ′′ = wrap(wrap(P ′, t s, x), t s, y)

Expressions.
[[ n ]]�Expr = n

[[ n ∗ v + exp ]]�Expr = n v + [[ exp ]]�Expr

Assignments.
[[ s v = exp ]]�StmtP = P � v := [[ exp ]]�Expr

Type Casts.
[[ s1 v1 = t s2 v2 ]]�StmtP =

{
P ′ if s1 ≤ s2

wrap(P ′, t s2, v1) otherwise
where P ′ = P � v1 := v2

Fig. 7. Abstract semantics of L(ELang)

7 Discussion

The existence of a concretisation map γs
a begs the question of whether an abstrac-

tion map can be defined. For classic polyhedral analysis [6], it is well-known that
no best abstraction exists for certain shapes such as a disc [4]. In the context of
our analysis, the set of concrete states Σ is finite. However, a given set of states
still has no best abstraction. Consider σ ∈ Σ with σ1(addr �(x)) = 11111111,
P1 = [[x = −1]] and P2 = [[x = 255]]. Although σ ∈ γs

a(P1) = γs
a(P2), P1 and

P2 are incomparable. As a consequence, the meet operation can only be applied
after wrap has expressed the polyhedra in the same quadrant and thereby made
them comparable. Termination is not compromised as wrap is monotonic.

Since different polyhedra can describe the same set of concrete states, care is
needed when applying join. Suppose that the loop in Figure 8 is entered with
P = [[x = −1]]: the largest value an unsigned variable can take. As the loop
invariant x ≥ 42 mentions x, Q = P �U is wrapped to R = wrap(Q,uint8, x) =
[[x = 255]]. A precision loss occurs when P and U = [[x = 254]] are joined to obtain
[[−1 ≤ x ≤ 254]] as x cannot fall below 42. One solution to this particular problem
is to unroll the loop once, which avoids the join of different representatives.

Observe that wrap is idempotent and, as such, is the identity if the variable is
in range. An important consequence is that our solution is as precise as classic
polyhedral analysis if all variables remain within the range of their types.
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x≥42x=-1 R=wrap(Q,uint8,x)

+

yes

no

P

Q

S

T

R

U=T x := x-1
U

Fig. 8. Precision loss incurred by joining flow paths

An interesting benefit of γs
a is that the possible values of a byte x can be

represented as either [[−128 ≤ x ≤ 127]] or [[0 ≤ x ≤ 255]]. For example, an
analysis of C string buffers [14] does not model individual array elements but
tracks a single nul position (a character with value zero) within the array. Even
though char is often signed, the range [0, 255] (rather than [−128, 127]) can be
returned to indicate an arbitrary value when reading a byte from the array. The
unsigned range can then be refined using the nul position to [1, 255] whenever
the access lies in front of the nul position (see [16] for an example). If a signed
range [−128, 127] had to be returned, it would include the nul character since
[−128,−1]∪[1, 127]=[−128, 127] is the best convex approximation. Without this
tactic, it can be difficult to prove termination of loops that iterate over strings.

8 Related Work and Conclusion

A sound analysis must reason about overflowing calculations and correctly model
conversions between unsigned and signed integers. Rather than contaminating an
analysis with the low-level details of two’s complement wrapping behaviour, we
presented a computationally light-weight solution based on a novel concretization
map for polyhedra which eliminates the need to check for wrapping in assign-
ments of linear expression and conversions to smaller integers. Conditionals and
other casts require an implementation using the presented algorithm wrap. We
proved the presented analysis correct and argued the precision is no worse than
that of classic polyhedral analysis that warns about every wrapping.

Although a number of works have addressed the modulo properties of congru-
ences [1,11,12,13], little work exists for polyhedral analyses. Blanchet et al. use
a two-tier approach [5]: For signed integers, any wrapping is erroneous. In this
case, each time a variable is set, its range is checked for overflows. Overflows of
unsigned integers are assumed to be intentional as wrapping may result from
bit-level operations. This approach requires a separation of signed and unsigned
variables which incurs false warnings for many programs, such as the C pro-
gram in our introduction. Indeed, an analysis of our example would lead to the
misleading warning about converting from a signed to an unsigned integer.

Further afield is work on tracing the propagation of rounding errors in floating
point calculations. In this context, Goubault et al. [10] treat wrapping of integers
as a rounding error that is as large as the range of the integer variable.
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Abstract. We build a new, implicitly relational abstract domain which
gives accurate under-approximations of the set of real values that pro-
gram variables can take. This statement is demonstrated both on a the-
oretical basis and on non-trivial numerical examples. It is, we believe,
the first non-trivial under-approximating numerical domain in the static
analysis literature.

1 Introduction

Most abstract interpretation numerical domains construct over-approximations
of the range of program variables. This is the case for intervals [3], zones [13],
polyhedra [5] etc. Of course, such static analyses are essentially Galois connec-
tion based, formalism which precisely expresses the over-approximation process.
One needs dual Galois connections, or dual concretization based frameworks, as
developed in e.g. [16], to express under-approximations.

In this paper, we develop an abstract interpretation domain for directly under-
approximating the range of real values of program variables. It is based on a vari-
ant of the affine form domain developed by the authors for over-approximations
[9], and on ideas from generalized interval arithmetic [7,8].

Such under-approximations, when combined with over-approximations, give
an estimate of the quality of the result of a static analysis. But of course, our
work can also be applied to statically find run-time errors that are bound to
occur, from some given set of possible initial states. It can also be applied to the
analysis of temporal properties of reactive systems. The latter point was studied
in [6], and formalized through Galois and dual Galois connections in [15]. It is
also studied in abstract model-checking, see for instance [10,14]. We believe that
these analyses can also benefit from our approach.

Contents. In section 2.1, we recall the main definitions and properties of gener-
alized interval arithmetic, and its potential interpretations as under-approxima-
tions. We then extend these ideas to affine forms. In section 2.3, we use a
generalized mean-value theorem [8] to define an under-approximating semantics
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of arithmetic expressions. This semantics, though applied to forms that are very
close to the affine forms used for over-approximation in [9], is very different from
the semantics proposed in [9], and yields a direct under-approximation of the re-
sult of arithmetic expressions. We develop the order-theoretic apparatus needed
for an actual static analysis in section 2.4, and apply this analysis in section 3.

Main contributions. We describe a new numerical abstract domain that gives
accurate under-approximations of the values of program variables. The time and
space complexities of the primitive operations are small, as was the case with
the approach for over-approximations of [9], which bear interesting relationships
with the present work. Indeed, the interest of combining the two analyses is
exemplified. Using the prototype we implemented, we demonstrate very good
precision of the analysis on non trivial numerical programs. On linear recursive
filters of any order, pervasive in all control programs, we demonstrate how the
analysis results for the output variable can be made as close as we want to the
real range, see lemma 1. We also demonstrate in the case of linear recursive
filters, how the abstract invariant discovered by our method allows us to find
a sequence of inputs over time that lead to a value as close as we want to the
maximal or minimal output value, allowing us to produce witnesses of potentially
bad behaviors. An even more general result holds for arbitrary reactive programs,
see lemma 2, and is exemplified on a perturbed filter.

2 An Under-Approximating Domain Based on
Generalized Affine Arithmetic

2.1 Generalized Affine Forms

We first introduce the principles of generalized interval arithmetic, following
[7,8], and their interpretation using quantifiers. We refer the reader to these
recent papers, that revisit the ideas of modal intervals, for more references on
generalized intervals, modal intervals and Kaucher arithmetic [11,12].

Our contribution here is to then extend these ideas to generalize affine forms,
and interpret them either as over or under-approximating forms for real values
of variables.

Generalized interval arithmetic and notations. Generalized intervals are
intervals whose bounds are not ordered. The set of classical intervals is denoted
by IR = {[a, b], a ∈ R, b ∈ R, a ≤ b}. The set of generalized intervals is denoted
by IK = {[a, b], a ∈ R, b ∈ R}. Intervals (classical or generalized) will be noted
with bold letters.

Related to a set of real numbers {x ∈ R, a ≤ x ≤ b}, one can consider
two generalized intervals, [a, b], which is called proper, and [b, a], which is called
improper. We define the operations dual [a, b] = [b, a] and pro [a, b] = [min(a, b),
max(a, b)].

The generalized intervals are partially ordered by inclusion which extends
inclusion of classical intervals. Intervals (classical or generalized) will be noted
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with bold letters. Given two generalized intervals x = [x, x] and y = [y, y], the
inclusion is defined by

x � y ⇔ y ≤ x ∧ x ≤ y.

The inclusion is then related to the dual operation by x � y ⇔ dual x � dual y.
Kaucher addition extends addition on classical intervals:

x + y = [x + y, x + y]
x− y = [x− y, x− y] = x + (−y) where − y = [−y,−y].

We let P = {x = [x, x], x ≥ 0 ∧ x ≥ 0}, −P = {x = [x, x], x ≤ 0 ∧ x ≤ 0},
Z = {x = [x, x], x ≤ 0 ≤ x}, and dual Z = {x = [x, x], x ≥ 0 ≥ x}. Kaucher
multiplication x× y is described in table 1. Kaucher division is defined for all y
such that 0 /∈ pro y by x/y = x×[1/y, 1/y]. When restricted to proper intervals,
these operations coincide with the classical interval operations. Kaucher arith-
metic has better algebraic properties than classical interval arithmetic: Kaucher
addition turns IK into a group, as x + (−dual x) = 0. Kaucher multiplication
turns IK restricted to generalized intervals whose products of bounds are strictly
positive into a group, as x× (1/dual x) = 1.

Table 1. Kaucher multiplication ([11,12])

x × y y ∈ P y ∈ Z y ∈ −P y ∈ dualZ
x ∈ P [xy, xy] [xy, xy] [xy, xy] [xy, xy]

x ∈ Z [xy, xy]
[min(xy, xy),
max(xy, xy)] [xy, xy] 0

x ∈ −P [xy, xy] [xy, xy] [xy, xy] [xy, xy]

x ∈ dualZ [xy, xy] 0 [xy, xy]
[max(xy, xy),

min(xy, xy)]

Interpretation of interval computations using quantifiers (see [8]).
Classical interval computations can be interpreted as quantified propositions.
As an example, take f to be the function defined by f(x) = x2 − x. Extended
to interval arithmetic, its value on x = [2, 3] is f([2, 3]) = [2, 3]2 − [2, 3] = [1, 7],
which can be interpreted as the proposition

(∀x ∈ [2, 3]) (∃z ∈ [1, 7]) (f(x) = z).

Modal intervals extend classical intervals by coupling a quantifier to them. Ex-
tensions of modal intervals were proposed (see [7]) in the framework of gen-
eralized intervals, and called AE extensions because universal quantifiers (All)
always precede existential ones (Exist) in the interpretations. They give rise to
a generalized interval arithmetic which coincides with Kaucher arithmetic. Let
f : Rn → R a function in which each variable appears only once. Let x ∈ IKn,
which we can decompose in xA ∈ IRp and xE ∈ (dual IR)q with p + q = n. We
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consider the problem of computing a quantifier Qz and an interval z ∈ IK such
that

(∀xA ∈ xA) (Qzz ∈ pro z) (∃xE ∈ pro xE)(f(x) = z). (1)

In these expressions, if z is proper then Qz = ∃, else Qz = ∀. When all intervals
are proper, we retrieve the interpretation of classical interval computation, which
gives an over-approximation of the range of f(x):

(∀x ∈ x) (∃z ∈ z) (f(x) = z).

And when all intervals are improper, we get an under-approximation:

(∀z ∈ pro z) (∃x ∈ pro x) (f(x) = z).

Affine forms for over and under-approximation. An affine form ([17]) is
a polynomial of degree one in a set of symbols εi called noise symbols:

x̂ = αx
0 + αx

1ε1 + . . . + αx
nεn, with αx

i ∈ R. (2)

Each noise symbol εi is a formal variable representing an independent component
of the total uncertainty on the quantity x, its value unknown but bounded in
[−1, 1]; the corresponding coefficient αx

i , called partial deviation, is a known real
value. Coefficient αx

0 is the center of the affine form. The idea is that the same
noise symbol can be shared by several quantities, expressing correlations between
them.

In [9], we defined a domain for over-approximation of real values based on these
forms with real coefficients. The concretization Γ̂ (x̂) of x̂ is a proper interval
obtained by the evaluation of expression (2) with proper intervals εi = [−1, 1]
and classical interval arithmetic:

Γ̂ (x̂) = αx
0 + αx

1ε1 + . . . + αx
nεn.

We define here a domain for under-approximation based on generalized affine
forms, where the αx

i coefficients are no longer real numbers but proper intervals:

x̌ = αx
0 + αx

1ε1 + . . . + αx
nεn, with αx

i ∈ IR. (3)

We define the concretization Γ̌ (x̌) of x̌ obtained by the evaluation of expression
(3) with improper intervals ε∗

i = [1,−1] and Kaucher interval arithmetic:

Γ̌ (x̌) = αx
0 + αx

1ε∗
1 + . . . + αx

nε∗
n.

We will construct semantics of arithmetic operations on these forms such that if
Γ̌ (x̌) is an improper interval, then it gives an under-approximation of the range
of the real values taken by x. Otherwise, it cannot be interpreted as an under-
approximation. If αx

0 is an interval with zero width (i.e. a real number), then
Γ̌ (x̌) is always an improper interval (strictly improper or with zero width). Note
that the extension Γ̂ (x̌) of Γ̂ on x̌ will give an over-approximation of the values
of x, but most of the time less precise than Γ̂ (x̂) (see example 1 of section 2.3).
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2.2 Semantics of Affine Operations

The result of linear operations on (generalized) affine forms can be exactly inter-
preted as an affine form, without additional under or over-approximation. For
two variables x and y defined by affine forms (3), and a real number r, we get:

x + y = (αx
0 + αy

0) + (αx
1 + αy

1)ε1 + . . . + (αx
n + αy

n)εn

x + r = (αx
0 + r) + αx

1ε1 + . . . + αx
nεn

r.x = rαx
0 + rαx

1ε1 + . . . + rαx
nεn

Thus, if for example the ranges of x and y are known exactly, i.e. Γ̂ (x) =
pro Γ̌ (x) and Γ̂ (y) = pro Γ̌ (y), then we also have Γ̂ (x + y) = pro Γ̌ (x + y), i.e.
the range of the real result x + y is known exactly (under the assumption that
we compute in real numbers, see 3.1 for implementation details).

2.3 Semantics of Non Affine Arithmetic Operations

We use for the under-approximation of the result of non affine arithmetic opera-
tions, an extension of the mean-value theorem to generalized intervals (see [7,8]),
which we extend to our generalized affine forms. We then derive two possible
semantics for the under-approximation of the multiplication. Note that we could
also, in the same way, derive semantics for other arithmetic operations.

Mean-value theorem for generalized affine forms. Suppose we have an
affine model of variables x1, . . . , xk, described as affine combinations such as
(3) of noise symbols ε1, . . . , εn. For a differentiable function f : Rk → R, we
write fε : Rn → R the function induced by f on ε1 to εn. Suppose we have an
over-approximation Δi of the partial derivatives{

∂fε

∂εi
(ε), ε ∈ [−1, 1]n

}
⊆Δi. (4)

Then

f̃ε(ε1, . . . , εn) = fε(t1, . . . , tn) +
n∑

i=1

Δi(εi − ti), (5)

where (t1, . . . , tn) is any point in [−1, 1]n, is interpretable in particular in the
following sense :

– if f̃ε(ε∗
1, . . . , ε∗

n), computed with Kaucher arithmetic, is an improper inter-
val, then pro f̃ε(ε∗

1, . . . , ε∗
n) is an under-approximation of fε(ε1, . . . , εn).

– if f̃ε(ε1, . . . , εn) is a proper interval, then it is an over-approximation of
fε(ε1, . . . , εn).

Note that a tighter estimation of Δi can also be used (see [7]):{
∂fε

∂εi
(ε1, . . . , εi, ti+1, . . . , tn), (ε1, . . . , εi) ∈ [−1, 1]i

}
⊆Δi. (6)

Also, this theorem can be of course used when we take the εi in sub-ranges of
[−1, 1], it will in fact be used in examples to improve the accuracy of the results.
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Application to the multiplication. We derive two affine under-approximating
models for the multiplication. Model 1 is obtained using the Mean-Value Theorem
on the real function fε defined by the multiplication of the two real variables x
and y, which can be defined as real functions of the εi. Model 2 is obtained using
it on the approximate model gε, in which the approximation is due to previous
under-approximation of variables x and y. As both models have advantages and
drawbacks, we use a combination.

1. Model 1, using (5) on the real function, with estimation (4) for Δi. We
can easily prove by recurrence that, for all variables z whose real value is
a linear function of noise symbols ε1, . . . , εn, the coefficient αz

i of the affine
form obtained from our semantics is an over-approximation of ∂z

∂εi
. Then, for

f(x, y) = xy, we can over-approximate

∂fε

∂εi
(x, y) =

∂x

∂εi
y +

∂y

∂εi
x

by
Δi = αx

i y + αy
i x, (7)

for any over-approximation x and y of the values taken by x and y. However,
the real value fε(t1, . . . , tn) has to be computed inductively, forbidding in
practice a dynamic choice of the ti. But the advantage is that it is computable
exactly for any values chosen a priori of the ti. Under the assumption that we
compute in real numbers, the center αz

0 of the generalized affine forms used
with this model is a real coefficient and not an interval. The concretization
Γ̌ (ž) is thus always interpretable as an under-approximation.

2. Model 2, using (5) on the approximate function, with improved estimation
(4) for Δi. We consider affine forms x̌ and y̌ giving an under-approximation
when computed with improper ε∗i . The approximate function gε is given by

gε(ε) = x̌× y̌ = (αx
0 + αx

1ε1 . . . + αx
nεn)(αy

0 + αy
1ε1 . . . + αy

nεn).

This allows us to dynamically choose t1, . . . , tn, as the evaluation gε(t1, . . . , tn)
for any point (t1, . . . , tn) is straightforward. The affine form for the result of
the multiplication z = x× y is then

ž = (αx
0 + αx

1 t1 . . . + αx
ntn)(αy

0 + αy
1t1 . . . + αy

ntn) +
n∑

i=1

Δi(εi − ti). (8)

In the general case, the center gε(t1, . . . , tn) = (αx
0 +αx

1 t1 . . .+αx
ntn)(αy

0 +
αy

1t1 . . . + αy
ntn) of this form is a proper interval, which may lead to a ž

which is not interpretable as an under-approximation.
Let us now compute the Δi. The partial derivatives over εi of

this product for any given real values (ax
0 , a

x
1 , . . . , a

x
n, ay

0 , a
y
1 , . . . , a

y
n) ∈

(αx
0 ,αx

1 , . . . ,αx
n,αy

0 ,αy
1 , . . . ,αy

n), is:
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∂gε

∂εi
(ε1, . . . , εi, ti+1, . . . , tn) = (ax

i ay
0 + ay

i a
x
0) +

i∑
j=1

(ax
i ay

j + ay
i a

x
j )εj

+
n∑

j=i+1

(ax
i ay

j + ay
i a

x
j )tj .

We deduce bounds for the partial derivatives on the whole range of under-
approximations for x and y by

Δi = (αx
i αy

0+αy
i αx

0)+
i∑

j=1

(αx
i αy

j +αy
i αx

j )εj+
n∑

j=i+1

(αx
i αy

j +αy
i αx

j )tj . (9)

Here, the coefficient αz
i is not always an over-approximation of ∂z

∂εi
.

Practical considerations. In both models, in order to obtain an under-appro-
ximation of the multiplication, the result of

∑n
i=1 Δi(ε∗

i − ti) must be an im-
proper interval. Considering that the (ε∗

i − ti) are improper intervals containing
zero, and therefore are in dual Z, we then can deduce from table 1 what kind of
intervals for Δi lead to an improper interval for Δi(ε∗

i − ti). The interval Δi is
proper, so it can be in P , −P or Z. If Δi ∈ Z, then Δi(ε∗

i − ti) is zero. Thus
our interesting cases are Δi ∈ P or Δi ∈ −P , which is satisfied when the Δi

intervals do not contain zero.
It is thus important to have the most accurate estimation of Δi so that it

does not include zero. Otherwise, a solution is to bisect one or several of the
εi in such a way that on each bisection, our estimation for

{
∂fε

∂εi
(ε), ε ∈ pro ε

}
does not contain zero. With model 2, we also have to find a trade-off between
the width of gε(t1, . . . , tn) and the estimation of the corresponding Δi.

Example 1. Let us consider f(x) = x2 − x when x ∈ [2, 3]. The interval of
values taken by f(x) is [2, 6]. Here, an under-approximation of f(x) can not be
computed directly by Kaucher arithmetic, since variable x does not appear only
once in expression f(x). An affine form for x is x = 2.5 + 0.5ε1, and we deduce

fε(ε1) = (2.5 + 0.5ε1)2 − (2.5 + 0.5ε1).

We bound the derivative by

Δ1 = 2 ∗ 0.5 ∗ (2.5 + 0.5ε1)− 0.5 ⊆ [1.5, 2.5],

and, using the mean-value theorem with t1 = 0, we have

f̃ε(ε1) = 3.75 + [1.5, 2.5]ε1.

It can be interpreted as an under-approximation of the range of f(x):

Γ̌ (f̃ε(ε1)) = 3.75 + [1.5, 2.5][1,−1] = 3.75 + [1.5,−1.5] = [5.25, 4.25].

It can also be interpreted as an over-approximation:

Γ̂ (f̃ε(ε1)) = 3.75 + [1.5, 2.5][−1, 1] = 3.75 + [−2.5, 2.5] = [1.25, 6.25].
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However, the range thus obtained is not as good as the one obtained by affine
arithmetic as used in [9] for over-approximation, where x2 − x = [3.75, 4] + 2ε1,
which gives the range [1.75, 6].

Example 2. Consider x = 5
2 + 1

2ε1 and y = 9
2 + 1

2ε2. We compute an under-
approximation, with model 1 for the multiplication and (t1, t2) = (0, 0), and an
over-approximation, with a semantics given in ([9]), of z = y(x2 − 2y), respec-
tively noted as ž and ẑ:

ž = −12.375 + [8, 15]ε1 + [−8.125,−3.5]ε2,

ẑ = −12.0625 + 11.25ε1 − 5.8125ε2 + 0.5625ε3 + 1.5ε4.

We obtain as estimates of the range, [−23.875,−0.875]� z � [−31.1875, 7.0625].
One bisection of ε1 and ε2 yields [−28.453125, 2.765625]�z � [−31.1875, 5.8125].
Two bisections again improve the estimation : [−29.611328125, 3.689453125] �
z � [−30.890625, 5.359375].

Using model 2 for the multiplication without bisection gives an improved
result compared to model 1 without bisection:

ž = −12.375 + [9, 13.5]ε1 + [−8.375,−3.375]ε2,

which concretizes as [−24.75, 0] � z.

Link between under and over-approximation. We consider two variables x and
y, whose values are exactly described by affine forms with real coefficients (i.e.
the under-approximation and over-approximation are equal), and we compute
the multiplication z = x× y.

Using model 1 with (t1, . . . , tn) = (0, . . . , 0), we write

ž = αx
0α

y
0 +

n∑
i=1

(αx
i αy

0 + αy
i α

x
0)εi +

⎛
⎝ n∑

j=1

(αx
i αy

j + αy
i α

x
j )εj

⎞
⎠ εi. (10)

Computed with improper intervals for the εi, (10) gives an under-approximation
of z. We saw that, computed with proper intervals for the εi, it gives an over-
approximation, but better over-approximations can be obtained, as proposed in
[9], as variations of

ẑ = αx
0α

y
0 +

n∑
i=1

(αx
i αy

0 + αy
i α

x
0 )εi + (

n∑
i=1

|αx
i |.|

n∑
i=1

|αy
i |)εn+1. (11)

where a new noise symbol εn+1 is introduced to take into account the non affine
part of the multiplication. We thus see that the part which is representable
as an affine form of the existing symbols is shared between (10) and (11). In
(10), the remaining part is expressed using the existing noise symbols εi to εn,
over-approximating existing relations. Whereas in (11), a new noise symbols is
created. Thus all relations between the non-linear term and the other terms are
lost, resulting in an over-approximation even if the range of this non linear term
could be bounded precisely.
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2.4 Order-Theoretic Considerations

Let in what follows x̌ and y̌ be under-approximating affine forms. Formally, we
need to lift this domain of generalized affine forms so as to represent the empty
set. Arithmetic operations are the lift of arithmetic operations defined in 2.

Order. We define the order by x̌ � y̌ if and only if ∀i ≥ 0, αx
i � αy

i . If x̌ � y̌,
then we have on the concretization Γ̌ (x̌) � Γ̌ (y̌).

In the case Γ̌ (x̌) and Γ̌ (y̌) are improper intervals and thus can be inter-
preted as under-approximations of the ranges of x and y, this is equivalent to
pro Γ̌ (y̌) � pro Γ̌ (x̌). Inclusion x̌ � y̌ thus expresses that x̌ is a better under-
approximation that y̌, as it concretizes to an interval whose proper range is larger
than the one of y̌.

Example. Let x̌ = 1 + [2, 4]ε1 and y̌ = 1 + [1, 5]ε1, so that x̌ � y̌. Using Kaucher
arithmetic with improper ε∗

1 and ε∗
2, we compute Γ̌ (x̌) = 1 + [2,−2] = [3,−1]

and Γ̌ (y̌) = 1+[1,−1] = [2, 0]. We indeed have [3,−1] � [2, 0], i.e. [0, 2] � [−1, 3].

This ensures even more: let Č be any mapping from program variables to affine
forms (i.e. an abstract context), and let e be any arithmetic expression. We de-
note by Č[z ← x̌] the context in which we replace the mapping for variable
z so as to get Č(z) = x̌. We let [[e]]Č denote the semantics of the arithmetic
expression e in context Č as defined in section 2.3. Then x̌ � y̌ implies, for all
variables z,

Γ̌
(
[[e]]Č[z ← x̌]

)
� Γ̌

(
[[e]]Č[z ← y̌]

)
(12)

(analogous to the order relation for over-approximations defined in [9]), meaning
that all future evaluations e using x̌ will concretize to a bigger interval than using
y̌. Hence, x̌, as an under-approximation, is more precise than y̌.

Join. The order-theoretic union is ž = x̌ ∪ y̌, defined by

ž = x̌ ∪ y̌ = (αx
0 ∪αy

0) + (αx
1 ∪αy

1)ε1 + . . . + (αx
n ∪αy

n)εn.

One other solution is to take for ž either x̌ or y̌.

Meet. When, for all i ≥ 0, αx
i ∩αy

i �= ∅, we can define an under-approximation
of the intersection by the order-theoretic intersection

ž = x̌ ∩ y̌ = (αx
0 ∩αy

0) + (αx
1 ∩αy

1)ε1 + . . . + (αx
n ∩αy

n)εn.

Otherwise, we can take the bottom element or enrich the abstract domain by
propagating in further computations the over-approximated1 constraints intro-
duced on the values of the symbolic variables ε :

(αx
0 −αy

0) + (αx
1 −αy

1)ε1 + . . . + (αx
n −αy

n)εn = 0.

1 See the remark about the link with p̃re in section 2.4.
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In practice, a set of interval constraints is attached to all affine forms, and a form
of (interval) Gaussian elimination can be applied for normalizing the forms.

Example. Consider the following program, with independent inputs x ∈ [−1, 3]
and b ∈ [2, 4]:

x <- [-1,3]; b <- [2,5];
y = 2x + b;
if (y == x) s = 0;
else s = 1;

Interpreting the test (y == x) amounts to computing the intersection x∩y. We
have here the exact bounds for x and y (neither over-approximation nor under-
approximation). With a computation in classical intervals, we have y ∈ [0, 11],
and we would find s ∈ [0, 1]. With affine forms, we have x = 1 + 2ε1, b = 3 + ε2,
y = 5 + 4ε1 + ε2. For the intersection, we have to find values of ε1 and ε2 in
[−1, 1] satisfying constraint 5+4ε1 +ε2 = 1+2ε1. It simplifies to ε2 = −4−2ε1,
with no solution. We deduce that the intersection is void, and s = 1.

Widening. A natural widening x̌∇y̌ is obtained using a widening on intervals

x̌∇y̌ = (αx
0∇αy

0) + (αx
1∇αy

1)ε1 + . . . + (αx
n∇αy

n)εn.

We can define a narrowing similarly.

Link with under-approximating abstractions. Kaucher arithmetic pro-
vides a sound under-approximating abstract interpretation in the sense of [16],
as we show now. Define as usual on intervals:

α+ : ℘(R)→ IR γ+ : IR→ ℘(R)
S → [inf S, sup S] [a, b]→ {x | a ≤ x ≤ b}

and on improper intervals (using the notation ℘(R)op to denote the set of subsets
of real numbers ordered with reverse inclusion ⊆op=⊇):

α− : ℘(R)→ dual IR γ− : dual IR→ ℘(R)op

S → [sup S, inf S] [a, b]→ {x | a ≥ x ≥ b}

Of course, (α+, γ+) is the classical Galois connection for the interval abstraction.
Now, whenever i � α−(Sop), we can prove that γ−(i) ⊆ Sop, hence (α−, γ−)
is a dual Galois connection, hence under-approximating in the sense of [16].
Note that the logical interpretation of the four predicate transformers given
in [16] is linked in the case of generalized interval arithmetic, to the logical
interpretation of proper and improper intervals given in section 2.1: our forward
under-approximating semantics for a functional f is an abstraction of postf(S)
(for S a set of initial states). By the equality postf (S) = p̃ref−1(S), which in turn

is best under-approximated by p̃ref−1�(S) (f−1� is the best over-approximation



Under-Approximations of Computations in Real Numbers 147

of the inverse of f , see [16]), we explain why in section 2.4 we needed to over-
approximate the constraint to solve (by p̃re) to get an under-approximation of
the intersection with this constraint.

Note that the least fixed point in improper intervals, of a functional F defining
the abstract loop invariants, corresponds to the greatest fixed point of pro F ,
thus demonstrating that these under-approximating invariants are valid for all
iterations of loops.

For affine forms, both over-approximating and under-approximating, we un-
fortunately do not have a best abstraction; hence correctness of our abstract
semantics follows the generalized framework of [4]: for all variables x of the pro-
gram, the under-approximating form computed by our semantics is such that
Sx ⊆op γ− ◦ Γ̌ (x̌) in ℘(R)op, where Sx is the set of values that x can take. In
fact, letting [[e]]c stand for the concrete semantics of a term e,

Γ̌
(
[[e]]Č

)
� [[e]]cγ− ◦ Γ̌ (Č).

All further evaluations of a set of under-approximating affine forms will give an
under-approximation of the real set of results. In particular, the dependencies are
well encoded in the semantics. Note also that one can replace, for any variable x,
x̌ by any x̌′ with x̌ � x̌′ and the same property will hold with the newly defined
context thanks to (12).

2.5 Complexity

The number of terms of the generalized affine forms resulting from our under-
approximating semantics for a given program, is bounded by the number of
uncertain inputs of this program. By uncertain inputs we mean the number
of inputs which value is not known exactly but given in an interval of values. Of
course, this is a pessimistic upper bound : all variables will not depend on all
these uncertain inputs.

The addition, subtraction, join, meet, and widening, are linear in the num-
ber of terms of the affine forms; the multiplication is quadratic in this number
of terms. Of course, these complexity results suppose we do not bisect the εi

variables.

3 Applications and Experiments

3.1 Implementation

A C library implementing the different under-approximating semantics of this
paper has been implemented. Of course, it does not have access to exact real
arithmetic. However, computing the interval coefficients αx

i using outer rounding
(i.e. rounding towards +∞ for the upper bound of the interval and towards −∞
for the lower bound) ensures correctness of the result. Also, using a multiple
precision library such as MPFR to compute the bounds of these intervals can
improve the accuracy.
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3.2 Combination of Under and Over-Approximations

We consider, for some given A, the (non-linear) iteration of the Newton algorithm
xi+1 = 2xi − Ax2

i . If we take x0 not too far away from the inverse of A, this
iteration converges to the inverse of A. As an example, we take A ∈ [1.99, 2.00],
i.e. Ǎ = 1.995+ .005ε1, x0 = .4 and ask to iterate this scheme until |xi+1−xi| <
5e−6. We get the concretizations of lower and upper forms shown in the left
part of figure 1. After 6 iterations, we get stable concretizations, for both lower
and over-approximations of x6 :

[0.5012531328, 0.5012531328]� x6 � [0.499996841, 0.502512574],

[0, 0] � |x6 − x5| � [−3.17241289e−6, 3.17241289e−6].

And for the stopping criterion |xi+1−xi| < 5e−6, using simultaneously the over-
and under-approximation, we obtain that the Newton algorithm terminates after
exactly 4 iterations, with

[0.5002532337, 0.5022530319]� x4 � [0.499996841, 0.502512574].

Of course, this is a general fact: the combination of under and over approxi-
mations gives in general a very powerful method to determine the invariants of
a program.

We can also refine the results using subdivisions of the input A, that give way
to as many independent computation relying on different affine forms for A. For
example, if we subdivide this initial interval in 2 sub-intervals, we get

[0.50006320027, 0.50244772292]� x4 � [0.49999370736, 0.50251570685],

[0.50062578222, 0.50188205771]� x6 � [0.49999370676, 0.50251570746].

And when subdividing in 32 sub-intervals, we get after 6 iterations a relative
difference between the bounds given by the over- and under-approximations, of
less than 9e−6; the results obtained are also shown in the right part of figure 1.
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Fig. 1. Estimation of the maximum value of result xi in the Newton algorithm
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3.3 Filters, Perturbations and Worst Case Scenario

In the sequel, in order not to get into complicated details, we suppose that we
have a real arithmetic at hand (or arbitrary precision arithmetic).

Linear scheme. Consider the following filter of order 2:

Si = 0.7Ei − 1.3Ei−1 + 1.1Ei−2 + 1.4Si−1 − 0.7Si−2,

where Ei are independent inputs between 0 and 1, so that Ěi = Êi = 1
2 + 1

2εi+1,
and S0 = S1 = 0. We first consider the output Si of this filter for a fixed number
of unfoldings, e.g. i = 99. Using the over-approximating semantics of [9], our
prototype gives us

Ŝ99 = Š99 =0.83 + 7.81e−9ε1 − 2.1e−8ε2 − 1.58e−8ε3 + . . .− 0.16ε99 + 0.35ε100;

whose concretization gives an exact (under the assumption that the coefficients
of the affine form are computed with arbitrary precision) enclosure of S99:

[−1.0907188500, 2.7573854753]� S99 � [−1.0907188500, 2.7573854753].

Also, the affine form gives the sequence of inputs Ei that maximizes S99 : Ei = 1
if the corresponding coefficient multiplying εi+1 is positive, Ei = −1 otherwise.

Note that the exact enclosure actually converges to

S∞ = [−1.09071884989..., 2.75738551656...],

and therefore the signal (sequence of inputs of size 99) leading to the maximal
value of S99 is a very good estimate of the signal leading to the maximal value
of Si, for any i ≥ 99. This exact enclosure is given as the limit of the concreti-
sation of the over-approximating iterative scheme (fully unfolded), which stabi-
lizes in finite time for a fixed precision arithmetic, with correct outer rounding
(here in double precision). It is to be noted that the over-approximating do-
main of [9], slightly improved (will be published elsewhere), does find a finite
over-approximation of these bounds, but this is not the subject of this article.

This can be used to find bad-case scenarios of a program : for a specification of
the filter forbidding an output greater than 2.5, this sequence of inputs provides
a counter-example.

This generalizes to linear recursive filters of any order:

Lemma 1. Consider a linear recursive filter of order n:

sn =
N−1∑
k=0

aksn−k−1 +
N∑

k=0

bken−k

where sk is the output at iterate k, and ek is the input at iterate k. Then:
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(1) When unfolding k times, under and over approximating forms are equal, and
their concretization gives the exact range for sk, up to rounding errors due
to the implementation of the abstract domains

(2) The under-approximating form after k unfoldings provides the sequence of
inputs that lead to the maximum range of the kth output.

(3) When the filter is stable, we can make the under-approximation of the output
arbitrarily close to the real range s∞, by unfolding k times for large enough k.

Perturbation by a non linear term. We now perturb this linear scheme by
adding a non-linear term 0.005EiEi−1, obtaining

Si = 0.7Ei − 1.3Ei−1 + 1.1Ei−2 + 1.4Si−1 − 0.7Si−2 + 0.005EiEi−1.

Again, we analyze Si for a fixed number i = 99 of unfoldings. Using the
over-approximating semantics of [9], we get

Ŝ99 = 0.837 + 7.81e−9ε1 − 2.09e−8ε2 − 1.58e−8ε3 + . . .− 0.157ε99 + 0.351ε100

+1.77e−11ε101 − 2.66e−11ε102 + . . . + 0.00175ε197 + 0.00125ε198,

in which terms from ε101 to ε198 account for the over-approximation of non-linear
computations, and do not correspond to inputs. A sequence of inputs leading
to a bad-case scenario is thus not given directly by the sign of the ε1, . . . , ε100

as in the linear case. Hence one cannot use the same technique as before, to be
sure to reach the supremum of the range for S99. One can get a plausible worst-
case scenario by choosing the E0, . . . , E99 that maximize the sub affine form
containing only these εk, but one has no assurance that this might be even close
to the real supremum of S99. But we will show that the under-approximating
form allows us to choose at least part of the inputs.

Using the under-approximating semantics that we have developed in this pa-
per, and model 2 for the multiplication, we get:

Š99 = 0.837 + 7.81e−9ε1 − 2.09e−8ε2 + . . . + [−0.0577, 0.0635]ε93

+[0.0705, 0.138]ε94+[0.185, 0.223]ε95 + [0.25, 0.271]ε96 + [0.222, 0.234]ε97

+[0.081, 0.0876]ε98 + [−0.158,−0.155]ε99 + [0.35, 0.352]ε100.

This gives the following estimates for the real enclosure of S99:

[−0.47655194955570, 2.1515519079]� S99 � [−1.10177396494, 2.77677392330].

Using model 1 for the multiplication, we get the slightly less precise under-
approximation [−0.435, 2.11] � S99. But, when the interval coefficient αk corre-
sponding to εk does not contain zero, we know what is the good choice of input
Ek−1 (see Lemma 2). This cannot be proved for the form obtained with model
2 of the multiplication. However in the general case it remains a good heuristic.
And in the particular case here, the interval coefficients have the same signs for
the two forms. We thus know that E93 = 1 - note that Ei corresponds to εi+1!
- E94 = 1, E95 = 1, E96 = 1, E97 = 1, E98 = 0 and E99 = 1 is the best depth
7 choice of inputs that will maximize S99. In order to get an estimate of the
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supremum for S99, one can try any inputs for E0 to E92. Inputs E0, . . . , E92 = 0
give, for instance, S99 = 2.460374. As a heuristic, one can use the ε0, . . . , ε92 that
maximize the over-approximating term, giving S99 = 2.766383. A one hour sim-
ulation on a 2GHz PC for 109 random sequences of 100 entries gives as estimate
of the supremum 2.211418, trailing our estimate in both time and precision.

We can generalize again:

Lemma 2. Suppose we have x̌ = αx
0 +

∑n
i=1 αx

i εi (with model 1 of multiplica-
tion), giving an under-approximation for x = f(ε1, . . . , εn) on [−1, 1]n with f
continuous, and I+ = {i | 1 ≤ i ≤ n, αi ∈ P}, I− = {i | 1 ≤ i ≤ n, αi ∈ −P},
Iz = {i | 1 ≤ i ≤ n, αi ∈ Z}. Then the supremum of f on [−1, 1]n is reached
for some set of values ε1, . . . , εn ∈ [−1, 1] with εi = 1 for i ∈ I+, εi = −1 for
i ∈ I−. A similar result holds for the infimum of f .

And as with the linear scheme, the under and over-approximations converge
towards the following estimates, very close to the estimate of S99 :

[−0.4765519, 2.1515519]� S∞ � [−1.10177396500, 2.77677396500].

Hence the previously found signal gives a scenario which is very close to the
worst-case scenario. Indeed S99 = 2.766383 for which we found a scenario with
our heuristics cannot be more than half a percent away from the true maximum.

4 Conclusion and Related Work

We have shown how to give a practical, tractable abstract semantics for under-
approximating the values of program variables. Combined with an over-approxi-
mating analysis such as the one of [9], it gives a good indication of the quality
of the static analysis performed. And the combination can sometimes be used
to improve the analysis results, as shown in section 3.2. We can also, as side
products of this analysis, give good estimations of worst-case scenarios, that
lead to maximal or minimal values of some variable.

This under-approximating abstract semantics is for the time being applied
to real-valued variables, and does not address yet floating-point variables. In-
deed, floating-point numbers are discrete, hence no convex under-approximation
within real numbers other than a single point or empty set can be found. One
can think of adding information about the minimal size of the gaps between two
floating-point values in the resulting interval. We hope to be able to have sim-
ilar results on worst-case scenarios in that context, in particular for producing
executions which maximize the imprecision error. This is left for future work.

Another direction we pursued was to extend the method of this paper to
higher-order Taylor forms. We can indeed give a semantics based on a Taylor
expansion of arbitrary degree to any program. But we do not know yet how to
conclude, except in particular cases, on under-approximated bounds, contrarily
to the case of over-approximations (see for instance [1] for a similar observation
on over-approximations and Taylor forms).

Finally, the order-theoretic join and meet rely directly on intervals, it is hence
most probable that policy iteration techniques [2] can be used on this domain.
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Abstract. This paper presents a framework for designing, verifying, and
evaluating register allocation algorithms. The proposed framework has
three main components. The first component is MIRA, a language for
describing programs prior to register allocation. The second component
is FORD, a language that describes the results produced by the register
allocator. The third component is a type checker for the output of a reg-
ister allocator which helps to find bugs. To illustrate the effectiveness of
the framework, we present RALF, a tool that allows a register allocator
to be integrated into the gcc compiler for the StrongARM architecture.
RALF simplifies the development of register allocators by sheltering the
programmer from the internal complexity of gcc. MIRA and FORD’s fea-
tures are sufficient to implement most of the register allocators currently
in use and are independent of any particular register allocation algorithm
or compiler. To demonstrate the generality of our framework, we have
used RALF to evaluate eight different register allocators, including iter-
ated register coalescing, linear scan, a chordal based allocator, and two
integer linear programming approaches.

1 Introduction

1.1 Background

The register allocator is one of the most important parts of a compiler. Our
experiments show that an optimal algorithm can improve the execution time
of the compiled code by up to 250%. Although researchers have studied regis-
ter allocation for a long time, many interesting problems remain. For example,
in recent years PLDI (ACM SIGPLAN Conference on Programming Language
Design and Implementation) has published several papers on register allocation
[2004 (2 papers), 2005 (3 papers), 2006 (2 papers)]. While the essence of regis-
ter allocation is well understood, developing a high-quality register allocator is
nontrivial. In addition to understanding the register allocation algorithm, which
can be complex, the developer must also know the internals of the compiler
where the allocator will be implemented. For example, public domain compilers
such as GCC [2] or SMLNJ [1] and compiler frameworks such as SUIF [15] or
SOOT [31] allow a programmer to implement a new register allocator. How-
ever, the programmer has to understand and work with their data structures,
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which are complicated because register allocation affects both the machine spe-
cific and machine independent parts of the compilation process. One attempt
to address this problem was Tabatabai et al’s. [3] register allocation framework,
implemented in the CMU C compiler. Their framework presents modules (for
example, graph construction, coalescing, color assignment, spill code insertion,
and others) that different register allocators might need. However, if the allocator
needs mechanisms other than those provided by the framework, the programmer
must still deal with the internals of the CMU C compiler. A goal of our work is
to completely shield the developer of register allocators from the internal com-
plexities of a compiler.

Debugging register allocators is also a complicated task. Errors may surface
in non-trivial ways; sometimes many instructions after the incorrect code. More-
over, the low-level nature of the machine code and its large size makes visual
inspection of the register-allocator’s output tedious and error-prone. As a tes-
timony of these difficulties, most recent publications in this field report only
static data and not run-time measurements, let alone implementations in in-
dustrial compilers. Although static data (such as number of spills, and number
of registers used) is important, it does not reflect the behavior of the register
allocator in the presence of other optimizations and run time factors.

A few researchers have developed techniques for proving register allocators
correct. Naik and Palsberg [21] proved the correctness of the ILP-based regis-
ter allocator of Appel and George [6]. Ohori [26] designed a register allocation
algorithm as a series of proof transformations which is correct by construction.
Other researchers have shown how to validate the output of register allocators.
Necula [24] presented a translation validation infrastructure for the gcc compiler
that includes register allocation. Necula’s scheme treats the memory address
of a spilled register as a variable, which allows reasoning about its live ranges,
although relying on specific characteristics of the gcc compiler, such as address-
ing modes. Leroy [17] formally describes a technique to validate the output of
graph coloring based register allocation algorithms. Basically, if the interference
graph contains a pair of adjacent temporaries allocated to the same register,
the verifier emits an error, otherwise it assumes that the code generated is cor-
rect. Andersson [5] and Pereira et al. [27] adopted similar approaches. Huang
et al. [16] presented a more general approach which matches the live ranges of
values in the original program against the live ranges of machine locations in
the register-allocated program. A goal of our work is to use a type system to
validate the output of register allocators, and to prove the soundness of the type
system itself.

Annotations in the register-allocated code can help validation algorithms.
Morrisett et al. [20] used type annotations to help guarantee memory safety,
Necula and Lee [25] used more general annotations such as memory bounds,
and Agat [4] used type annotations to validate the output of a register allocator.
A goal of our work is to validate the output of register allocators without extra
annotations in the target code.
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1.2 Our Results

We present a framework for designing, verifying, and evaluating register alloca-
tors. Our framework shields the developer from the internal complexities of a
compiler, uses a type system to validate the output of register allocators, and
does not rely on code annotations.

MIRA and FORD. Our framework centers around MIRA (Mathematical In-
termediate representation for Register Allocation), a language for describing
programs prior to register allocation, and FORD (FOrmat for Register alloca-
tion Directives), a language that describes the results produced by the register
allocator. MIRA sources are abstract intermediate representations of programs
immediately before the register allocation phase. MIRA descriptions contain ar-
chitecture and program specific information. The former includes information
such as number and classes of machine registers, number of caller-save regis-
ters, and costs of loads and stores. The latter consists of information such as
the program’s control flow graph, use and definition sites of each variable, and
estimated usage frequency of each instruction. In the context of our framework,
the register allocator emits FORD directives that control spill code generation,
register and variable mapping at different program points, and any additional
code that needs to be inserted (For example, move instructions). MIRA and
FORD can accommodate many of the traditional register allocation algorithms
and are simple enough to be easily used by the developer of register allocators.

Type system. We use a type system to verify that the output of a register
allocator is correct. Our type system was inspired by Morrisett et al.’s type
system for assembly language [20] and can be used with intermediate represen-
tations other than MIRA and FORD. A type correct program is guaranteed to
have properties such as: (1) pseudos whose live ranges overlap are assigned to
different registers, (2) live ranges of the same pseudo always reach a join point
assigned to the same register, and (3) a live register is not overwritten before
it is used. We have found that typical errors in the implementation of a regis-
ter allocator violate these properties. The type checker points out the locations
of the register-allocated code where these properties fail. We have proved type
soundness for our type system using the Twelf Meta-theorem prover [32].

RALF. Our tool RALF (Register ALlocation Framework) allows a programmer
to plug a new register allocator into gcc, without requiring the programmer to
know any details of gcc’s implementation. RALF is an extra layer added on top
of gcc, acting as a glue between gcc and the plugged-in register allocator. The
new register allocator takes a MIRA program as input and gives a collection of
FORD directives as output. The main objective of RALF is to be simple: when
writing a register allocator compatible with our framework, the developer only
has to write a program that translates MIRA to FORD. RALF treats the register
allocator, which can be implemented in any language, as a black box whose only
purpose is to translate MIRA sources (provided by RALF) to FORD directives
(which are fed back to RALF). Given an input program and the plugged-in reg-
ister allocator, RALF generates a StrongARM binary executable using the new
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register allocator and the rest of gcc. RALF uses our type checker to verify the
output of the register allocator. In addition to our own experiments with RALF,
we have used RALF in an advanced compiler course at UCLA. As part of a class
assignment, each student implemented a different register allocation algorithm
to be used with the framework. More about these experiences can be found
at RALF’s homepage http://compilers.cs.ucla.edu/ralf. Our current im-
plementation of RALF compiles only C code to the StrongARM architecture;
however, the MIRA and FORD description languages are designed to be gen-
eral enough to fit other source languages and architectures. The RISC nature of
the StrongARM architecture helps to keep RALF simple. Our implementation,
which gets activated by different compiler switches, contains around 5000 lines
of C code divided among 125 functions. The proposed framework is not intended
for industrial implementations of register allocators, but for fast implementation
and testing of research prototypes. The techniques used in our type system can
be used also in a production compiler.

Comparison of eight register allocators. We have used RALF to implement
and compare eight different registers allocators. The allocators tested range from
classical algorithms, such as the usage-count based implementation [11], to novel
approaches, such as register allocation via coloring of chordal graphs [27]. In
addition of using static data, such as number of variables spilled, we compare the
different algorithms by running the produced code on a StrongARM processor.

The remainder of this paper is organized as follows: Section 2 describes a
simplified version of MIRA and FORD and characterizes the register alloca-
tion problem. Section 3 presents our type system, and Section 4 discusses our
experimental results.

2 A Simplified View of MIRA and FORD

Register allocation is the process of mapping a programM that can use an un-
bounded number of variables, or pseudo-registers, to a program F that must use
a fixed (and generally small) number of machine registers to store data. In the
remainder of this paper we use register in place of machine register, and pseudo
for pseudo-register. If the number of registers is not sufficient to accommodate
all the pseudos, some of them must be stored in memory; these are called spilled
pseudos. Following the nomenclature normally used in the gcc community, we
call the intermediate representation of programsM the Register Transfer Lan-
guage (RTL) and we use Location Transfer Language (LTL) to describe programs
F . As shown in Figure 1, MIRA and FORD have been designed to constitute
an interface between the register allocator and the RTL/LTL intermediate rep-
resentations. They facilitate the development of register allocation algorithms
by hiding from the algorithm’s designer the details of the RTL/LTL representa-
tion that are not relevant to the register allocation process. In order to precisely
characterize the register allocation problem, we will use a simplified version of
MIRA and a simplified version of FORD in this section. We will call them sMIRA
and sFORD respectively. For our purposes, a register allocator RA is a black box
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Fig. 1. Block diagram of our register allocation framework

which takes an sMIRA program Psm and a description of the target architecture,
and produces an sFORD program Psf . In this section, we will assume that the
architecture specific information is a list of K machine registers Regs, and a set of
caller save registers CallerSave ⊆ Regs. Thus, Psf = RA(Psm,Regs,CallerSave).
An actual register allocator would require more information, such as the class of
each machine register, the cost of different operations, etc. Such information is
present in the concrete specification of MIRA and FORD, which is given in the
full version of this paper, available at http://compiler.cs.ucla.edu/ralf.

2.1 Simplified MIRA

sMIRA programs are described by the grammar in Figure 2(a). We adopt an
abstract representation of programs. All the operands not relevant to register al-
location, such as constants, heap memory addresses, and others, are represented
with the symbol •. The only explicit operands are pseudos (p) and pre-colored
registers (r, p). The latter are pseudos that have been assigned a fixed machine
register due to architectural constraints. In this simplified presentation, we only
use pre-colored register to pass parameters to function calls, and to retrieve their
return value. Other operands, such as constants and memory references on the
heap are abstracted out.

An sMIRA program is a sequence of instruction blocks. Each instruction block
consists of an address label, represented by L, heading a sequence of instructions
(I) followed by a jump. sMIRA programs can use an unbounded number of
pseudo registers p. We do not distinguish the opcode of instructions, except
branches and function calls. Branches affect the control flow, and function calls
may cause caller save registers to be overwritten, once register allocation has
been performed. A function call such as (r0, p0) = call (r1, p1)..(rs, ps) uses pre-
colored pseudos (r1, p1)..(rs, ps) as parameters, and produces a return value in
the pre-colored pseudo (r0, p0). Notice that in sMIRA a call instruction does
not contain a label; that is because we support only intra-procedural register
allocation. An example of sMIRA program is given in Figure 2(b).

2.2 Simplified FORD

A register allocator produces sFORD programs, which are represented by the
grammar in Figure 3(a). Operands in sFORD are bindings of pseudos (p) to
machine locations. In our representation, a machine location can be either a



158 V.K. Nandivada, F.M.Q. Pereira, and J. Palsberg

(Programs) Psm ::= L1I1; . . . ; LkIk

(Code labels) L ::= L1 | L2 | . . .
(Instr. Sequence) I ::=
- (Jump) | jump L
- (Sequence) | i; I

(Pseudos) p ::= p1 | p2 | . . .
(Registers) r ::= r1 | . . . | rk

(Operands) o ::=
- (Constants) | •
- (Pseudos) | p
- (Pre-coloreds) | (r, p)

(Instructions) i ::=
- (Assignment) | p = o
- (Ass. pre-col.) | (r, p) = o
- (Cond. jump) | if p jump L
- (Function call) | (r0, p0) = call

(r1, p1)..(rs, ps)

L1 L2

p0 = • p0 = p0

p1 = • (r0, p6) = •
p2 = p0 (r0, p6) = call (r0, p6)
if p1 jump L3 p2 = (r0, p6)
jump L2 p3 = p0

p4 = •
L3 p7 = p4

p4 = p0 if p3 jump L2

p5 = p2 jump L3

jump exit

(a) (b)

Fig. 2. (a) Syntax of sMIRA programs (b) Example of sMIRA program

(Programs) Psf ::= L1 I1; . . . ; Lk Ik

(Code Labels) L ::= L1 | L2 | . . .
(Inst. seq.) I ::=
- (Jump) | jump l
- (Sequence) | i; I

(Pseudos) p ::= p1 | p2 | . . .
(Registers) r ::= r1 | r2 | . . .
(Mem. locs.) l ::= l1 | l2 | . . .
(Operands) o ::=
- (Constant) | •
- (Reg. bind) | (r, p)
- (Mem. bind) | (l, p)

(Instructions) i ::=
- (Assig.) | (r, p) = o
- (Store) | (l, p) = o
- (Cond. jump) | if (r, p) jump L
- (Func. call) | (r0, p0) = call

(r1, p1)..(rs, ps)

L1 L2

(r1, p0) = • (r1, p0) = (r1, p0)
(r0, p1) = • (r0, p6) = •
(r1, p2) = (r1, p0) (l1, p0) = (r1, p0)
(l0, p2) = (r1, p2) (r0, p6) = call (r0, p6)
if (r1, p1) jump L3 (r1, p0) = (l1, p0)
jump L2 (r2, p2) = (r0, p6)

(l0, p2) = (r2, p2)
L3 (r2, p3) = (r1, p0)
(r1, p4) = (r1, p0) (r0, p4) = •
(r0, p2) = (l0, p2) (r0, p7) = (r0, p4)
(r0, p5) = (r0, p2) if (r1, p3) jump L2

jump exit jump L3

(a) (b)

Fig. 3. (a) Syntax of sFORD programs (b) Example of sFORD program
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physical register (r), or a memory address (l). In addition to calls and branches,
we distinguish loads “= (l, p)”, and stores “(l, p) =”, because these instructions
are used to save and restore spilled values. Notice that we make an explicit dis-
tinction between code labels, represented by L, and data labels (stack locations),
represented by l. In the sFORD representation, caller-save registers can be over-
written by function calls; thus, the register allocator must guarantee that pseudos
that are alive across function calls are not mapped to caller-save registers.

Let Psm be the sMIRA program in Figure 2(b), and consider an architecture
where Regs = {r0, r1, r2} and CallerSave = {r0, r1}. Let RA be a hypothetical
register allocator, such that Psf = RA(Psm,Regs,CallerSave) is the program in
Figure 3(b). In our example, RA has allocated register r1 to pseudo p0 in the
first instruction of L1. The pseudo p2 has been spilled due to the high register
pressure in block L2; its memory location is given by the label l0. Furthermore,
pseudo p0 has been spilled to memory location l1 because it is stored in the caller
save register r0 and is alive across a function call.

3 Type Checking

Inaccuracies in the implementation of a register allocation algorithm may result
in different types of errors in the sFORD program. In Figure 4 we illustrate five
different errors that can be produced by a flawed register allocator. In Fig. 4(a),
p0 was defined in register r0 at instruction 1, but it is expected to be found in
register r1 when used in instruction 2. In Fig. 4(b) register r0 is overwritten in
instruction 2 while it contains the live pseudo p0. Fig. 4(c) describes a similar
situation, but in this case a memory location is overwritten while the value it
holds is still alive. In Fig. 4(d), we assume that r1 is a caller save register. In
this case, pseudo p1 may have its location overwritten during the execution of
the function call in instruction 2. Finally, in Fig. 4(e) the value of p0, stored in
register r0 may be overwritten, depending on the path taken during the execution
of the program. This last error is particularly elusive, because its consequences
might not surface during the testing of the target program.

In order to guarantee that the values used in the sMIRA program are preserved
in the sFORD representation, we use a type checker inspired by [20]. The basic
data used in our type system are machine locations, and the type of a machine
location is the pseudo-register that it stores. In our case, the register allocator

(r0, p0) = •
(r2, p2) = (r1, p0)

(r0, p0) = •
(r0, p1) = •
(r1, p2) = (r0, p0)

(l0, p0) = (r0, p0)
(l0, p1) = (r1, p1)
(r1, p2) = (l0, p0)

(r1, p1) = •
(r0, p0) = call
(r2, p2) = (r1, p1)

L1 (r0, p0) = •
if (r0, p0) jump L2
(r0, p1) = •
jump L2

L2 (r1, p2) = (r0, p0)

(a) (b) (c) (d) (e)

Fig. 4. (a-e) Examples of errors due to wrong register allocation
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annotates each definition or use of data with its type. A definition of a machine
location, e.g (ri, pj) = • corresponds to declaring ri with the type pj . Let (ri, pj)
be an annotated machine location. Intuitively, every time this machine location
is used, e.g (r, p) = (ri, pj), its annotated type corresponds to the type that can
be discovered by a type inference engine if the sFORD program is correct. For
instance, the program in Figure 4(a) is incorrect because p0, the type of r1 in
the second instruction cannot be inferred. Notice that these annotations can be
inferred from the sMIRA/sFORD programs; they are not present in the final
LTL code.

3.1 Operational Semantics of sFORD Programs

We define an abstract machine to evaluate sFORD programs. The state M of
this machine is defined in terms of a tuple with four elements: (C,D,R, I). If
M is a program state and we have M ′ such that M → M ′, then we say that
M can take a step. A program state M is stuck if M cannot take a step. A
program state M goes wrong if ∃M ′ : M →∗ M ′ and M ′ is stuck. I is defined
in Figure 3(a); the code heap C, data heap D, and register bank R are defined
below.

(Code Heap) C ::= {L1 = I1, . . . , Lk = Ik}
(Data Heap) D ::= {l1 = p1, . . . , lm = pm}
(Register Bank) R ::= {r1 = p1, . . . , rn = pn}
(Machine State) M ::= (C,D,R, I)

The evaluation rules for our abstract machine are given in Figure 5. Rules 1, 2
and 3 evaluate the operands of sFORD. The assignment statement (Rule 4) mod-
ifies the mapping in the register bank, and the store statement (Rule 5) modifies
the mapping in the data heap. The result of a conditional branch has no impor-
tance in our representation. Therefore, an instruction such as if (r, p) jump v is
evaluated non-deterministically by either Rule 6 or Rule 7. We conservatively
assume that a call instruction changes the contents of all the caller save registers.
It also defines a register with the return value (Rule 8). In order to simulate the
effects of a function call on the caller-save registers we define the erasing function
“2” below. We augment the set of pseudo-registers with ⊥. This pseudo will be
used as the type of non-initialized registers and we assume that it is not defined
in any instruction of the original sMIRA program.

2 : R×X !→ R′

(R 2X)(r) = ⊥ if r ∈ X, else R(r)

In Figure 5 the set X is replaced by the set of caller-save registers. We draw
the attention of the reader to the premises of rules 4 to 8, which ensure that a
location used by an instruction indeed contains the pseudo that is expected by
that instruction. For example, for the sFORD instruction (r1, p1) = (r0, p0), the
premise of Rule 4 ensures that r0 is holding the value p0 when this instruction
is executed.
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D, R � • (1)

D, R � (r, p), if R(r) = p ∧ p = ⊥ (2)

D, R � (l, p), if D(l) = p ∧ p = ⊥ (3)

D, R � o

(C,D, R, (r, p) = o; I) → (C, D, R[r �→ p], I)
(4)

D, R � o

(C, D, R, (l, p) = o; I) → (C, D[l �→ p], R, I)
(5)

D, R � (r, p)
(C, D, R, if (r, p) jump L; I) → (C, D, R, I ′)

Ccond (6)

Ccond = L ∈ domain(C) ∧ C(L) = I ′

D, R � (r, p)
(C,D, R, if (r, p) jump L; I) → (C,D, R, I)

(7)

∀(ri, pi), 1 ≤ i ≤ s, D, R � (ri, pi)
(C, D, R, (r0, p0) = call (r1, p1), . . . , (rs, ps); I)

→ (C, D, (R " callerSave)[r0 �→ p0], I)

(8)

(C, D, R, jump L) → (C, D, R, I) if Cjump (9)

Cjump = L ∈ domain(C) ∧ C(L) = I

Fig. 5. Operational Semantics of sFORD programs

3.2 Typing Rules

We define the following types for values:

value types t ::= p | Const

We define three typing environments:

(Code heap type) Ψ ::= {L1 : (Γ1 ×Δ1),
. . . , Lk : (Γk ×Δk)}

(Register bank type) Γ ::= {r1 : p1, . . . , rm : pm}
(Data heap type) Δ ::= {l1 : p1, . . . , ln : pn}

Operands that have no effect on the register allocation process are given the type
Const. The type of a machine location (register or memory address) is determined
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Operands

� • : Const (10)

Γ (r) = p p = ⊥
Γ � (r, p) : p

(11)

Δ(l) = p p = ⊥
Δ � (l, p) : p

(12)

Instructions

Δ; Γ � o : t p = ⊥
Ψ � (r, p) = o : (Γ × Δ) �→ (Γ [r : p] × Δ)

(13)

Δ; Γ � o : t p = ⊥
Ψ � (l, p) = o : (Γ × Δ) �→ (Γ × Δ[l : p])

(14)

Γ � (r, p) : p Ψ � L : (Γ ′ × Δ′) (Γ × Δ) ≤ (Γ ′ × Δ′)
Ψ � if (r, p) jump L : (Γ × Δ) �→ (Γ × Δ)

(15)

∀(ri, pi), 1 ≤ i ≤ s, Γ � (ri, pi) : pi p0 = ⊥
Ψ � (r0, p0) = call (r1, p1), . . . , (rs, ps) : (Γ × Δ) �→ ((Γ " callerSave)[r0 : p0] × Δ)

(16)

Instruction sequences

Ψ � L : (Γ ′ × Δ′) (Γ × Δ) ≤ (Γ ′ × Δ′)
Ψ � jump L : (Γ × Δ)

(17)

Ψ � i : (Γ × Δ) �→ (Γ ′ × Δ′) Ψ � I : (Γ ′ × Δ′)
Ψ � i; I : (Γ × Δ)

(18)

Bank of Registers

∀r ∈ domain(Γ ). � R(r) : Γ (r)
Ψ � R : Γ

(19)

Data Heap

∀l ∈ domain(Δ). � D(l) : Δ(l)
Ψ � D : Δ

(20)

Code Heap

∀L ∈ domain(Ψ).Ψ � C(L) : Ψ(L)
� C : Ψ

(21)

Machine states:

� C : Ψ � D : Δ � R : Γ Ψ � I : (Γ ′ × Δ′) (Γ × Δ) ≤ (Γ ′ × Δ′)
� (C, D, R, I)

(22)

Fig. 6. Type System of sFORD
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by the pseudo that is stored in that location. The environment Γ contains the
types of the machine registers, and the typing environment Δ contains the types
of locations in the data heap. We will refer to Γ and Δ as location environments.
The environment Ψ determines the type of each instruction block. The type of
an instruction sequence is given by the minimum configuration of the bank of
registers and data heap that the sequence must receive in order to be able to
execute properly. We consider instructions as functions that modify the location
environments, that is, an instruction i expects an environment (Γ × Δ) and
returns a possibly modified environment (Γ ′ × Δ′). We define an ordering on
location environments as follows:

Γ ≤ Γ ′ if ∀r, r : p ∈ Γ ′ then r : p ∈ Γ (23)

Δ ≤ Δ′ if ∀l, l : p ∈ Δ′ then l : p ∈ Δ (24)

(Γ ×Δ) ≤ (Γ ′ ×Δ′) if Γ ≤ Γ ′ ∧Δ ≤ Δ′ (25)

The type rules for sFORD programs are given in Fig. 6. According to rule 11,
the type of a register binding such as (r, p) is the temporary p, but, only if p is
the type of r in the Γ environment, otherwise it does not type-check. Similarly,
Rule 12 determines the type of memory bindings. Rules 13, 14 and 16 change
the location environment. The ordering comparison in the premises of Rules 15
and 17 is necessary to guarantee that all the registers alive at the beginning of
an instruction block have well defined types.

None of the programs in Fig. 4 type-check. In Fig. 4(a), r1 is not declared
with type p0, thus the premise of Rule 11 is not satisfied. In Fig. 4(b), the
type of r0, before the execution of instruction 3, is p1, not p0, as expected
by the type annotation. Again, Rule 11 is not satisfied. Fig. 4(c) presents a
similar case, but using a memory location instead of a register: the type of l0
in instruction 3 is not p0, as expected, but p1. The type of the used operand
would not satisfy the premise in Rule 12. In Fig. 4(d), r1 has type ⊥ before
the execution of instruction 3, which is different from the expected type p1.
Finally, in Fig. 4(e) Ψ(L2) = ([r0 : p0] × Δ), but the type of instruction 4 is
([r0 : p1]×Δ) !→ ([r0 : p1]×Δ). This would not satisfy the inequality in Rule 17.

3.3 Type Soundness

We state the lemmas and theorems that constitute our soundness proof. Our
soundness proof assumes that the sMIRA program defines each pseudo p before
p is used. If the sFORD program type-checks, then it preserves the values alive
in the original sMIRA code.

Theorem 1 (Preservation). If 
M , and M →M ′, then 
M ′.
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Lemma 1 (Canonical Values). If 
 C : Ψ , 
 D : Δ and 
 R : Γ then:

1. If Ψ 
 L : (Γ ×Δ), then L ∈ domain(C), C(L) = I and Ψ 
 I : (Γ ×Δ).
2. If Δ;Γ 
 o : p, then o = r, or o = l. If o = r, then r ∈ domain(R), else if

o = l, then l ∈ domain(D).
3. If Δ;Γ 
 o : Const, then o = •.

Theorem 2 (Progress). If 
 M , then M is a final state, or there exists M ′

such that M !→M ′.

Corollary 1 (Soundness). If 
M , then M cannot go wrong.

We have checked the proof using Twelf [32], and this proof can be found at
http://compilers.cs.ucla.edu/ralf/twelf/

3.4 Preservation of Callee-Save Registers

Our type system is intra-procedural, and it assumes that a function call preserves
callee-save registers. This must be verified for each procedure, after its type-
checking phase, when every instruction has a well know type. If we assume that
a machine register is either caller-save or callee-save, this verification step can be
done via a simple test. Let L0 be the label of the first instruction in the procedure,
and let Le be an exit point. Let Ψ(L0) = (Γ0 ×Δ0), and let Ψ(Le) = (Γe ×Δe).
Callee-save registers are preserved at exit point Le, if Γe 2 CallerSave ≤ Γ0 2
CallerSave.

Along with the preservation of callee-save registers, our type systems has a
set of consistency requirements, which can be carried out as a sequence of table
lookup verifications. These checks are explained in the full version of this paper,
available at http://compiler.cs.ucla.edu/ralf.

4 Experimental Results

Figure 1 presents a high-level block diagram of RALF. RALF interfaces the
transformation between the RTL and LTL intermediate representations used by
gcc. RALF’s front end consists mainly of gcc’s parser, gcc’s optimization phases,
and code to produce a MIRA program from a RTL program. The back end
consists mostly of a type checker, code for producing LTL instructions, and gcc’s
code generation engine. RALF interacts with the implementation of a register
allocator via ordinary ASCII files. Given a RTL program P , RALF translates
P into a MIRA ASCII programM, which is then fed to the plugged-in register
allocator. The register allocator outputs a set of FORD directives F , which are
then given back to RALF. RALF checks that (M,F) is a correct mapping via
the type system described in Section 3, applies the directives F on the original
RTL program, and generates gcc’s LTL code. RALF’s back end does not need
the original MIRA file in order to produce the LTL program. When producing
the RTL code, RALF inserts loads and stores for callee save registers at the
entrance and exit of each function (a smart register allocator might decide to
take on that responsibility itself and RALF has an option for that).
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We have tested RALF with eight different register allocators: (1: gcc -O2)
the allocator present in the gcc compiler, which has two main phases: (a) ag-
gressive register allocation for local variables within basic blocks, (b) conserva-
tive allocation for the whole function. (2: Naive) The naive register allocator,
which spills all the pseudos. (3: UBC) usage count based register allocator [11],
(4: IRC) iterated register coalescing [13], (5: Chordal) register allocation via
coloring of chordal graphs [27], (6: LS) linear scan [28], (7: RA) integer linear
program (ILP) [23], (8: SARA) stack location allocation combined with register
allocation (SARA) [23].

Five of the register allocators have been implemented in Java (2, 3, 4, 5 and 6).
Algorithms 7 and 8 have been implemented in AMPL [10]. The interface provided
by RALF is extremely simple, and most of the code used to parse and output
MIRA/FORD files could be reused among the different implementations. Table 7
compares the size of each implementation; (J) stands for Java, and (A) for AMPL.
We do not compare the execution speed of the allocators, because they have been
implemented in different languages.

RA #LOC
RA Interface

Naive 48 (J) 773 (J)
UBC 2766 (J) 773 (J)
IRC 3538 (J) 773 (J)
Chordal 4134 (J) 773 (J)
LS 385 (J) 1100 (J)
RA 495 (A) 298 (A)
SARA 731 (A) 400 (A)

Fig. 7. Comparison between different register allocators plugged on RALF

We have plugged each of the eight algorithms into RALF and then tested the
produced code on a StrongARM/XScale processor, with 64MB SDRAM, and no
cache. We have drawn our benchmark programs from a variety of sources. We
chose these benchmarks in part because the more traditional ones (for example,
SPEC) have a huge memory print, and cannot be run in our resource constrained
ARM hardware.

– Stanford Benchmark suite: a collection of seven programs that test recursive
calls and array indexing.

– NetBench [19]: url is a network related benchmark that implements HTTP
based switching; md5 is a typical cryptographic algorithm.

– Pointer-intensive benchmark [7]: This benchmark suite is a collection of
pointer-intensive benchmarks. Yacr2 is an implementation of a maze solver
and Ft is an implementation of a minimum spanning tree algorithm.
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LOC RTL gcc-O2 LS RA SARA Chordal IRC UCB Naive
Bench mem csr mem csr mem csr mem csr mem csr mem csr mem csr mem csr

Stanford 307 1082 20 81 171 107 22 63 24 69 34 134 70 100 44 133 854 0
yacr2 3979 10838 1078 289 3035 335 1003 123 1109 142 2121 357 1957 314 2200 361 8181 0
ft 2155 3218 299 130 538 151 225 87 230 106 371 162 561 100 360 169 2184 0
c4 897 40948 187 123 715 301 176 145 179 151 416 170 453 145 394 170 3531 0
mm 885 3388 386 92 2494 68 375 116 380 92 591 93 648 93 687 93 2590 0
url 652 1264 102 54 313 16 120 56 120 58 155 61 201 51 203 63 860 0
md5 790 3464 519 110 1869 433 500 120 500 120 570 228 697 174 580 229 2714 0

Fig. 8. Compile time statistics
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Fig. 9. Comparison of different register allocators using execution time of benchmarks
as the metric

– c4 and mm are taken from the comp.benchmarks USENET newsgroup at
http://www.cs.wisc.edu/~thomas/comp.benchmarks.FAQ.html. c4 is an
implementation of the connect-4 game, and mm is a matrix multiplication
benchmark.

The number of lines of C code (LOC) and the number of instructions in the
RTL for these benchmarks are presented in Figure 8. These benchmarks are
non-floating point programs. (We had to edit few of the programs to remove
some code that uses floating point operations; we did so only after ensuring that
the code with floating point operations is not critical to the behavior of the pro-
gram.) For each benchmark, Figure 8 presents two static compile time statistics:
the number of memory accesses (mem) due to spill/reload instructions, and the
number of callee save registers (csr) used by the register allocator (leads to more
memory accesses).

The chart in Figure 9 compares the execution times of the programs produced
by each of the register allocators. The execution times have been normalized
against the time obtained by programs compiled with gcc at the -O2 optimization
level. It can be noted that, although the gcc algorithm is heavily tuned
for the StrongARM architecture, Chordal, UBC, and IRC present comparative
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performances. Also Chordal and IRC’s performances are similar, which confirms
the results found by Pereira et al [27]. Figure 9 suggests an upper limit on the
gains that any register allocator can make. Even in the most extreme case, the
code generated by the naive allocator is worse by a factor of 2.5 (as compared to
the optimal solution found by the ILP based allocator). An important point is
that most of these benchmarks deal with structures and arrays that require com-
pulsory memory accesses, and it seems that these accesses overshadow the spill
cost and hence such a small (2.5 times) improvement. Another conclusion is that
the obtained execution time given by optimal solutions (SARA and RA), that run
in worst-case exponential time, is not much lower than that obtained by polyno-
mial time heuristics. It should be pointed that our experiments compare specific
implementations of the allocators, and are run on a specific target machine; how-
ever, it was our objective to be as faithful as possible to the original description
of each algorithm.

5 Conclusion

We have presented a framework that facilitates the development of register al-
location algorithms. Our framework consists of the two description languages
MIRA and FORD, plus a type system. Our framework is easy to use, and versa-
tile enough to support a wide variety of register allocation paradigms. In order to
validate this claim, we have developed RALF, an implementation of our frame-
work for the StrongARM architecture, and used it to compare eight different
register allocators.

Our framework has several limitations which may be overcome in future work:
FORD does not permit the register allocator to modify the control flow graph of
the target program; the grammar of MIRA supports only intra-procedural regis-
ter allocation; the validation algorithm does not handle bitwidth aware register
allocation [29]; and FORD does not support the concepts of re-materialization
or code-motion. The implementation of RALF itself has the limitations that
it targets only the ARM architecture, and RALF does not handle pseudos of
type float or double (we have opted for this restriction to keep the implemen-
tation simple). So far we have experimented with only the C front-end of gcc;
RALF can be seamlessly used with any language supported by gcc. Currently,
we are extending RALF to allow the register allocator to do bitwidth-sensitive-
analysis.

RALF, our benchmarks, our Twelf proof, and a collection of tools that we
have developed to aid in the design and test of register allocators are publicly
available at http://compilers.cs.ucla.edu/ralf.

Acknowledgments. We thank the anonymous reviewers for comments on a
draft of the paper. We were supported in part by a National Science Founda-
tion Award number 0401691. Fernando Pereira was sponsored by the Brazilian
Ministry of Education under grant number 218603-9.



168 V.K. Nandivada, F.M.Q. Pereira, and J. Palsberg

References

1. Standard ML of New Jersey (2000), http://www.smlnj.org/
2. GNU C compiler (2005), http://gcc.gnu.org
3. Adl-Tabatabai, A.-R., Gross, T., Lueh, G.-Y.: Code reuse in an optimizing com-

piler. In: OOPSLA, pp. 51–68. ACM Press, New York (1996)
4. Agat, J.: Types for register allocation. In: Clack, C., Hammond, K., Davie, T.

(eds.) IFL 1997. LNCS, vol. 1467, pp. 92–111. Springer, Heidelberg (1998)
5. Andersson, C.: Register allocation by optimal graph coloring. In: Hedin, G. (ed.)

CC 2003 and ETAPS 2003. LNCS, vol. 2622, pp. 34–45. Springer, Heidelberg (2003)
6. Appel, A.W, George, L.: Optimal spilling for CISC machines with few registers.

In: PLDI, pp. 243–253. ACM Press, New York (2001)
7. Austin, T.M., Breach, S.E., Sohi, G.S.: Efficient detection of all pointer and array

access errors. In: PLDI, pp. 290–301 (1994)
8. Chaitin, G.J.: Register allocation and spilling via graph coloring. SIGPLAN No-

tices 17(6), 98–105 (1982)
9. Elleithy, K.M., Abd-El-Fattah, E.G.: A genetic algorithm for register allocation.

In: Ninth Great Lakes Symposium on VLSI, pp. 226–227 (1999)
10. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL A modeling language for mathe-

matical programming. Scientific Press (1993), http://www.ampl.com
11. Freiburghouse, R.A.: Register allocation via usage counts. Commun. ACM 17(11),

638–642 (1974)
12. Fu, C., Wilken, K.: A faster optimal register allocator. In: MICRO, pp. 245–256.

IEEE Computer Society Press, Los Alamitos (2002)
13. George, L., Appel, A.W.: Iterated register coalescing. TOPLAS 18(3), 300–324

(1996)
14. Goodwin, D.W., Wilken, K.D.: Optimal and near-optimal global register alloca-

tions using 0-1 integer programming. SPE 26(8), 929–968 (1996)
15. Hall, M.W., Anderson, J.-A.M., Amarasinghe, S.P., Murphy, B.R., Liao, S.-W.,

Bugnion, E., Lam, M.S.: Maximizing multiprocessor performance with the SUIF
compiler. IEEE Computer 29(12), 84–89 (1996)

16. Huang, Y., Childers, B.R., Soffa, M.L.: Catching and identifying bugs in register
allocation. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, Springer, Heidelberg (2006)

17. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. In: POPL, pp. 42–54. ACM Press, New York (2006)

18. Lueh, G.-Y., Gross, T., Adl-Tabatabai, A.-R.: Global register allocation based on
graph fusion. In: Languages and Compilers for Parallel Computing, pp. 246–265
(1996)

19. Memik, G., Mangione-Smith, B., Hu, W.: Netbench: A benchmarking suite for
network processors. In: IEEE International Conference Computer-Aided Deisgn,
IEEE Computer Society Press, Los Alamitos (2001)

20. Morrisett, G., Walker, D., Crary, K., Glew, N.: From system F to typed assembly
language. TOPLAS 21(3), 527–568 (1999)

21. Naik, M., Palsberg, J.: Compiling with code size constraints. Transactions on Em-
bedded Computing Systems 3(1), 163–181 (2004)

22. Krishna Nandivada, V., Palsberg, J.: Efficient spill code for SDRAM. In: CASES,
pp. 24–31 (2003)

23. Krishna Nandivada, V., Palsberg, J.: Sara: Combining stack allocation and register
allocation. In: Bodik, R. (ed.) CC 2005. LNCS, vol. 3443, pp. 232–246. Springer,
Heidelberg (2005)

http://www.smlnj.org/
http://gcc.gnu.org
http://www.ampl.com


A Framework for End-to-End Verification 169

24. Necula, G.C.: Translation validation for an optimizing compiler. In: PLDI, pp.
83–95. ACM Press, New York (2000)

25. Necula, G.C., Lee, P.: The design and implementation of a certifying compiler. In:
PLDI, pp. 333–344 (1998)

26. Ohori, A.: Register allocation by proof transformation. Science of Computer Pro-
gramming 50(1-3), 161–187 (2004)

27. Pereira, F.M.Q., Palsberg, J.: Register allocation via coloring of chordal graphs.
In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, Springer, Heidelberg (2005)

28. Poletto, M., Sarkar, V.: Linear scan register allocation. TOPLAS 21(5), 895–913
(1999)

29. Tallam, S., Gupta, R.: Bitwidth aware global register allocation. In: POPL, pp.
85–96 (2003)

30. Traub, O., Holloway, G.H., Smith, M.D.: Quality and speed in linear-scan register
allocation. In: PLDI, pp. 142–151 (1998)

31. Vallee-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot -
a Java bytecode optimization framework. In: CASCON (1999)
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Abstract. Loop identification is an essential step of control flow analysis in 
decompilation. The Classical algorithm for identifying loops is Tarjan’s interval-
finding algorithm, which is restricted to reducible graphs. Havlak presents one 
extension of Tarjan’s algorithm to deal with irreducible graphs, which constructs a 
loop-nesting forest for an arbitrary flow graph. There’s evidence showing that the 
running time of this algorithm is quadratic in the worst-case, and not almost linear 
as claimed. Ramalingam presents an improved algorithm with low time 
complexity on arbitrary graphs, but it performs not quite well on “real” control 
flow graphs (CFG). We present a novel algorithm for identifying loops in 
arbitrary CFGs. Based on a more detailed exploration on properties of loops and 
depth-first search (DFS), this algorithm traverses a CFG only once based on DFS 
and collects all information needed on the fly. It runs in approximately linear time 
and does not use any complicated data structures such as Interval/Derived 
Sequence of Graphs (DSG) or UNION-FIND sets. To perform complexity 
analysis of the algorithm, we introduce a new concept called unstructuredness 
coefficient to describe the unstructuredness of CFGs, and we find that the 
unstructuredness coefficients of these executables are usually small (<1.5). Such 
“low-unstructuredness” property distinguishes these CFGs from general single-
root connected directed graphs, and it offers an explanation why those algorithms 
existed perform not quite well on real-world cases. The new algorithm has been 
applied to 11526 CFGs in 6 typical binary executables on both Linux and 
Window platforms. Experimental result has validated our theoretical analysis and 
it shows that our algorithm runs 2-5 times faster than the Havlak-Tarjan 
algorithm, and 2-8 times faster than the Ramalingam-Havlak-Tarjan algorithm. 

Keywords: Control flow analysis, Decompilation, Loop identifying, 
Unstructuredness coefficient. 

1   Introduction 

Decompilation is a key technique for static analysis in the field of reverse 
engineering. Decompilation was initially introduced for porting programs across 
                                                           
*  Supported by The National High Technology Research and Development Program of China 

(No. 2006AA01Z402). 
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platforms. It then had been widely used in areas such as software maintenance, re-
engineering and comprehension of legacy systems. Since the 1990s, demand on 
decompilation from software security analysis community has been growing rapidly 
due to outbreaks of security vulnerabilities and malicious codes[1]. 

When decompiling a program, it is important to analyze its control flow to 
correctly recover the underlying structures, such as loops, 2-way branches and n-way 
branches, from its corresponding binary executable. This paper mainly focuses on 
how to identify loops.  

Loops are control structures used for repeating instructions. In control flow graphs 
(CFG) [2], loops are often nested within other loops. Such phenomenon induces a 
structure called “loop-nesting forest” [3][4]. Furthermore, although structured 
programming is well adopted by modern programmers, irreducible loops (loops with 
multientry) [5][6] still widely exist in executable codes due to optimizations performed 
by compilers. Identifying loops, in particular nested and irreducible ones, is a major 
challenge for the task of decompilation. 

In 1970 F.E. Allen and J. Cocke pioneered the work on identifying loops by 
introducing the concept of reducibility[5][6] for control flow graphs. Since then both 
compiler and decompiler research communities have been investigating this problem. 
Influential pieces of work include those done by R.E. Tarjan [8], P. Havlak [7] and G. 
Ramalingam[3]. However, loop identification schemes  proposed in these work are 
often based on multi-pass traversals and complicated data structures, such as 
Interval/Derived sequence of graphs (DSG)[5][6] and UNION-FIND sets[9]; these data 
structures often require complex operations, and such operations slow down the loop 
identification schemes [10]. 

This paper presents an innovative algorithm for identifying loops in binary 
executables. We explore some useful properties of loops and depth-first search (DFS) 
which make DFS collecting more information than simple forward/cross/backward 
edge information. Based on these properties, we give an algorithm which uses a one-
pass DFS traversal to solve all loop problems. This algorithm does not use any 
complicated data structures, so it is simple and easy to implement. 

We have applied our algorithm and other classic algorithms to 11526 CFGs in 6 
typical binary executables on Windows XP and Linux. The experiments show that our 
algorithm runs 2-5 times faster than the Havlak-Tarjan algorithm [7], and 2-8 times 
faster than the Ramalingam-Havlak-Tarjan algorithm [3]. 

Furthermore, as an interesting byproduct of complexity analysis of this algorithm, 
we introduce a new concept called unstructuredness coefficient. This coefficient 
could describe the unstructuredness of CFG.  

The statistics of experiments shows that while most real-world binary executables 
have irreducible CFGs, unstructuredness coefficients of CFGs are usually smaller 
than 1.5 and hardly correlated to the size of CFG. 

Such “low-unstructuredness” property distinguishes these CFGs from general 
single-root connected directed graphs, and it offers an explanation of why those 
algorithms with low time complexity for arbitrary graphs perform not quite well on 
“real” CFGs, esp. the Ramalingam-Havlak-Tarjan algorithm. 

Besides decompilation, our algorithm could be used in many applications, such as 
computing the iterated dominance frontier for the SSA form and Sparse Evaluation 



172 T. Wei et al. 

Graphs, constructing the dominator tree[4], and sequentializing program dependence 
graphs for code generation[12]. 

The rest of the paper is organized as follows. Section 2 presents related work. Section 3 
provides terminology and notations of identifying loops. Section 4 presents the algorithm 
for identifying loops. Section 5 introduces the concept of unstructuredness coefficient, and 
presents the complexity analysis of our scheme. Section 6 reports our experimental result 
and finding, in particular, the statistics of unstructured coefficient in real-world binary 
executables. Section 7 concludes this paper. 

2   Related Work 

Identifying loops is a well-built problem in control-flow analysis area. Loops in CFG 
have more attributes than simple cycles, such as nesting, multi-entry and 
irreducibility. Hence identifying loops in CFG is generally more challenging than 
detecting cycles. Research on identifying loops has a long history, starting from 1970 
when F.E. Allen and J. Cocke introduced the concept of reducibility[5][6] for control 
flow graphs. Since then many researchers in both compiler and decompiler fields have 
studied this problem extensively. 

Reducibility is an important property of CFG on its structuredness. In 1972 
M.S.Hecht and J.D.Ullman showed that all and only the irreducible CFGs have a 
multi-entry-loop subgraph [11], as shown in Fig.1. 

 
Fig. 1. The irreducible core 

In CFG, loops are often nested within other loops according to their headers’ 
positions. Such phenomenon induces a structure called “loop-nesting forest” [3][4]. 
Fig.2(A) shows a CFG with nested loops, and Fig.2(B) shows the corresponding loop-
nesting forest. 

There are various definitions of loop and loop-nesting forest. While there is a  
well-accepted one by Tarjan [8] of loops in a reducible graph, there is no consensus on 
how the loop nesting forest should be defined for CFGs with nested loops. B. 
Steensgaard [12], V.C. Sreedhar et al [13], Havlak [7] and Ramalingam [4] each provided 
a different definition. 

Consider the CFG shown in Fig.3(A): The Sreedhar–Gao–Lee algorithm [13] and the 
Ramalingam algorithm [4] both identify a single loop {a,b,c,d}; the Steensgaard 
algorithm [12] identifies two loops {a,b,c,d} and {b,c}; the Havlak algorithm [7] 
identifies three loops {a,b,c,d}, {b,c,d} and {c,d}, as shown in Fig.3 (B). 

In the context of decompilation, only the definition given by Havlak meets the 
requirements for rebuilding high level structures using single-entry loops and minimum 
goto (for re-entry edges) statements. Hence in this paper we adopt his definition. 



 A New Algorithm for Identifying Loops in Decompilation 173 

Under Havlak’s definition, the classical algorithm for identifying loops is Tarjan’s 
interval-finding algorithm [8] proposed in 1974, which is restricted to reducible 
graphs. In 1997 Havlak presented an extension [7] to Tarjan’s algorithm, which can 
handle arbitrary flow graphs. 

The Havlak-Tarjan algorithm traverses a CFG twice: first a top-down traversal 
based on depth-first search, which collects information of forward edges, cross edges 
and back edges; then a bottom-up traverse based on the UNION-FIND operation, 
which propagates loop header information backward from loop tails. 
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In 1999 Ramalingam showed that the running time of the Havlak algorithm is 
quadratic when the target CFG’s multientry unstructuredness is very high; he then 
modified the algorithm to make it run in almost linear time [3]. However, the 
Ramalingam-Havlak-Tarjan algorithm needs extra procedures to solve least common 
ancestors and to mark irreducible loops, and these procedures need UNION-FIND 
operations. 



174 T. Wei et al. 

On the other hand, the Steensgaard algorithm runs in quadratic time, and the 
Sreedhar-Gao-Lee algorithm runs in almost linear time, but the latter requires the 
dominator tree being built in advance. 

In 2001, K.D. Cooper showed that, based on empirical evidence complex 
operations required by UNION-FIND slow down programs in practice; furthermore, 
simple algorithms with discouraging asymptotic complexities might be faster in 
handling real-world cases than those running in almost linear time, but containing 
complex operations [10]. 

3   Preliminaries 

This section briefly describes some basic concepts in control flow analysis and 
definitions about loops, and introduces some important properties of loop and DFS.  

3.1   Concepts in Control Flow Analysis 

We present brief descriptions of concepts in control flow analysis as following. The 
detailed version can be found in [2] and [9]. 

The instructions of a program are organized into basic blocks, where program flow 
enters a basic block at its first instruction and leaves the basic block at its last 
instruction. 

A control flow graph (CFG) is a single-root, connected and directed graph for 
describing control flow information of a program� it is often represented by a triple 
(N,E,h), where N is the set of basic blocks of the underlying program, E is the set 
of directed edges between these basic blocks, and h is the entry of the program. 

For a basic block b, Succ(b) is the set of successors of b, and Pred(b) is the 
set of predecessors of b. 

A path from a node u to a node u' in a graph G=(N,E,h) is a sequence 
<v0,v1,v2,...,vk> of nodes such that u=v0, u'=vk, and <vi-1,vi>∈ E for 
i=1,2,...,k. 

A depth-first search (DFS) of a CFG G=(N,E,h) visits all the nodes, marking 
them after they have been visited. The next node visited is an unmarked successor of 
the most recently visited node with such a successor. The time complexity of DFS is 
O(N+E). 

If a DFS traversal begins with h, and all other nodes are reachable, the edges 
followed define a depth-first spanning tree (DFST) of G.  
DFSP(N), the depth-first search path of node N, is the path from h to N in the 

DFST of G. Given a node N and a node M, and N is in DFSP(M), then DFSP(N,M) is 
the part of DFSP(M) from N to M. 

Besides creating a depth-first spanning tree, depth-first search also timestamps 
each node. Each node v has two timestamps: the first timestamp d[v] records when 
v is first discovered, and the second timestamp f[v] records when the search 
finishes examining v's adjacency list. Parenthesis theorem is an important property 
of DFS, and here is a short description: for two node u and v, the two sets 
[d[u],f[u]] and [d[v],f[v]] are either disjoint or nested. 
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In this paper, we use three edge types in terms of the DFST GT produced by a DFS 
on G: 

• Back edges are those edges <u,v> connecting a vertex u to an ancestor v in GT. 
Self-loops are considered to be back edges. An edge <u,v> is a back edge if and 
only if d[v]≤d[u]<f[u]≤f[v]. 

• Forward edges are those edges <u,v> connecting a vertex u to a descendant v in 
GT. A edge <u,v> is a forward edge if and only if d[u]<d[v]<f[v]<f[u]. 

• Cross edges are all other edges. 
A node u is in DFSP(v) if and only if d[u]≤d[v]<f[v]≤f[u]. 

Given a CFG G=(N,E,h), a strongly connected region (SCR) is a nonempty set 
of nodes S⊆ N, for which, given any q,r∈S, there exists a path from q to r and 
from r to q. A SCR is a maximal SCR if none of its proper supersets is a SCR. 

3.2   Definitions About Loops 

We present brief descriptions of definitions about loops. The detailed version can be 
found in [7]. 

Loops include outermost loops and inner loops. 
An outermost loop is a maximal SCR with at least one internal edge. 
In any particular depth-first search, the first node of a loop L to be traversed is 

defined to be the header of the loop, i.e. for the header h, d[h] is the minimum in all 
the nodes in L. The set of other nodes is defined to be the loop body. 

An inner loop nested inside a loop L with header h is an outermost loop with 
respect to the subgraph with node set (L−{h}). 

Loop-nesting forest is a data structure that represents the containment relation 
between loops in a control flow graph.[4] 

Given a loop L with header h and an edge <q,r>, q∉L, r∈L-{h}, then r is 
called a re-entry of this loop, and <q,r> is called a re-entry edge. 

For a node n in a loop body, its innermost loop is the smallest loop containing n., 
and the header of this loop is called n’s innermost loop header. The loop header list 
of n consists of its innermost loop header h1, h1’s innermost loop header h2, h2’s 
innermost loop header h3, and so on. The loop header list of d in Fig.3 is [c,b,a]. 

3.3   Properties of Loop and DFS 

We discover that there are some interesting properties of DFS and loops defined in 
section 3.2, which are helpful in identifying loops. 

Ancestor Property: For any node n, all of its loop headers must be in DFSP(n). 

Nesting Property: Two different loop headers x,y of node n must be nested, i.e. 
either x is a loop header of y, or y is a loop header of x. 

Direct Transitive Property: Given that node m is a child of node n in the DFST, a 
loop header x of m is also a loop header of n if and only if x ≠ m. 
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Indirect Transitive Property: Given that node m is a successor of node n and 
m∉ DFSP(n), a loop header x of m is also a loop header of n if and only if 
x∈DFSP(n). 

All these properties can be proved, and here are some lemmas used during the 
proof: 

Lemma 1: Given an edge <n,m>, if d[n]<d[m], then f[n]>f[m]. 

Lemma 2: Given an edge <n,m>, if it is not a back edge, then f[n]>f[m]. 

Lemma 3: Given a re-entry <n,m> of loop L, if the header of L is x, then 
f[n]>f[x]>f[m]. 

4   Algorithm for Identifying Loops 

Statement of the problem: Given a CFG G=(N,E,h0), for each node n∈N: 

(1) Decide whether or not n is a loop header; 
(2) Decide whether or not n is in a loop body; If yes, which node is its innermost 

loop header? 
(3) Decide whether or not n is a re-entry; If yes, which edges are the re-entry 

edges? 

Based on these properties given in section 3.3, we propose a new algorithm which 
contains two parts: traversing a CFG based on depth-first search, and tagging loop 
headers on demand. 

In contrast with the multi-pass algorithms proposed by Tarjan, Havlak and 
Ramalingam, our algorithm collects and propagates loop header information during 
depth-first search based on these properties, so it doesn’t need the second bottom-up 
traversal based on UNION-FIND operations to do the same thing. 
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Traversing: The algorithm visits all the nodes in N, starting from h0 recursively in 
depth-first search order. When a node b0 is visited, it is marked as traversed and let p 
be the current path from h0 to b0 in the depth-first spanning tree (i.e. DFSP(b0)). 
Each successor b of b0 is checked in turn as followed: 

(A) If b is a new node, i.e. b is not traversed yet, as shown in Fig.4(A): traverse it 
recursively; if it is found in a loop body after being traversed, tag b’s 
innermost loop header as a loop header of b0 if the header node is in p; 

(B) If b is traversed already, and it is in p, as shown in Fig.4(B): mark b as a loop 
header, and tag b as a loop header of b0; 

(C) If b is traversed already, and it is not in p, or any loop body, as shown in 
Fig.4(C): just skip it; 

(D) If b is traversed already, and it is not in p, but it is in a loop body whose 
innermost loop header h is in p, as shown in Fig.4(D): tag h as a loop header 
of b0; 

(E) If b is traversed already, and it is not in p, but it is in a loop body whose 
innermost loop header is not in p, as shown in Fig.4(E): mark b as a re-entry 
node, and mark <b0,b> as a re-entry edge. Find the innermost loop header h1 
of b in p if it exists, then tag h1 as a loop header of b0. 

The pseudo code of traversing is shown as following: 
 
procedure identify_loops(CFG G=(N,E,h0)): 
   foreach(Block b in N): // init 
      initialize(b); // zeroize flags & properties 
   trav_loops_DFS(h0,1); 
 
function trav_loops_DFS(Block b0, int DFSP_pos): 
//return: innermost loop header of b0 
   Mark b0 as traversed; 
   b0.DFSP_pos := DFSP_pos;//Mark b0’s position in DFSP 
   foreach(Block b in Succ(b0)): 
      if(b is not traversed): 
         // case(A), new 
         Block nh := trav_loops_DFS(b, DFSP_pos+1); 
         tag_lhead(b0, nh); 
      else: 
         if(b.DFSP_pos > 0): // b in DFSP(b0) 
            // case(B) 
            Mark b as a loop header; 
            tag_lhead(b0, b); 
         else if(b.iloop_header == nil): 
            // case(C), do nothing 
         else: 
            Block h := b.iloop_header; 
            if(h.DFSP_pos > 0): // h in DFSP(b0) 
               // case(D) 
               tag_lhead(b0, h); 
            else: // h not in DFSP(b0) 
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               // case(E), reentry 
               Mark b and (b0,b) as re-entry; 
               Mark the loop of h as irreducible; 
               while(h.iloop_header!=nil): 
                  h := h.iloop_header; 
                  if(h.DFSP_pos > 0): // h in DFSP(b0) 
                     tag_lhead(b0, h); 
                     break; 
                  Mark the loop of h as irreducible; 
   b0.DFSP_pos := 0; // clear b0’s DFSP position 
   return b0.iloop_header; 
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Fig. 5. Tagging loop headers 

Tagging: When tagging h as a loop header of b0, weave h and its loop header list (if 
exists) into the current loop header list of b0 according to their positions in p, as 
shown in Fig.5. The pseudo code of tagging loop headers is shown as following. 

 
procedure tag_lhead(Block b, Block h): 
   if(b == h or h == nil) return; 
   Block cur1 := b, cur2 := h; 
   while(cur1.iloop_header!=nil): 
      Block ih := cur1.iloop_header; 
      if(ih == cur2) return; 
      if(ih.DFSP_pos < cur2.DFSP_pos): 
         cur1.iloop_header := cur2; 
         cur1 := cur2; 
         cur2 := ih;          
      else: 
         cur1 := ih; 
   cur1.iloop_header := cur2; 
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Based on properties given in section 3.3, it can be proved that the loop header of 
every node will be correctly tagged after this one-pass DFS traversing.  

5   Complexity Analysis and Unstructuredness Coefficient 

We now discuss the complexity of the algorithm given in section 4. 
Given a CFG G=(N,E,h0), trav_loops_DFS is called recursively for each 

node n∈N exactly one time, so it is called N times totally. 
In one invocation of trav_loops_DFS, the foreach loop is executed for each 

out-edge of the current node. It follows that in all invocations of trav_loops_DFS 
for all nodes in G, the foreach loop is executed exactly one time for each edge in E, 
so it is executed E times totally. 

In the i-th execution of the foreach loop (i∈[1,E]), only one of case (A), (B), 
(C), (D) and (E) can be chosen. Let xi be the execution times of the while loop in 
trav_loops_DFS, and let yi be the execution times of the while loop in 
tag_lhead. The complexity of case (A) is O(1+yi), except for the recursive call to 
trav_loops_DFS which is counted in the above already; the complexity of case (B) 
and (D) is O(1+yi); the complexity of case (C) is O(1); the complexity of case (E) is 
O(1+xi+yi). Notice that in case (A), (B), (C) and (D), xi=0, and in case (C) yi=0 too. 

In summary, the total complexity of the algorithm is O(N+E+∑xi+∑yi), 
i∈[1,E]. Let k=1+(∑xi+∑yi)/E, it follows that the total complexity can be 
expressed as O(N+k*E). 

In the following, we discuss the meaning of xi, yi and k behind these 
mathematical expressions. 

As shown in Fig.6(A), the while loop in trav_loops_DFS is executed 
because the edge <b0,b> skips multi level loop headers and jumps directly into the 
(xi+1)th inner loop. This situation is called multientry unstructuredness[14]. 

As shown in Fig.6(B), the while loop in tag_lhead is executed mainly 
because the back edges of loops overlap with each other, and yi is the rough 
measurement of overlapping levels. This situation is called overlapping 
unstructuredness[14]. 

Multientry unstructuredness is irreducible, whereas overlapping unstructuredness is 
reducible. Multientry unstructuredness is caused by forward edges while overlapping 
unstructuredness is caused by backward edges. They both contribute to the total 
unstructuredness of a CFG. 
k=1+(∑ xi+∑ yi)/E, it describes the ratio of the total unstructuredness, 

including both multientry unstructuredness and overlapping unstructuredness, to the 
size of a CFG. Hence we call k the unstructuredness coefficient. 

Please notice that the unstructuredness coefficient k is usually small: In today’s 
binary executables, unstructuredness is introduced mostly by optimization compilers, 
not by programmers instead. The main reason is that structured programming has 
been well adopted already. In addition, unstructured code is hard to maintain 
correctness, even introduced by compilers. Therefore, although unstructuredness can 
be found in almost every binary code, the majority of binary code is well structured. 
Experiments in the next section validate such analysis. 
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Fig. 6. Unstructuredness of loops 

6   Experimental Results 

We analyze binary executables on different operating systems using BESTAR (Binary 
Executable Structurizer and Analyzer), our in-house decompiler which has 
implemented the algorithms described above, including our algorithm, the Havlak-
Tarjan algorithm and the Ramalingam-Havlak-Tarjan algorithm. 

The selected instances include: 1). System binary executables of Windows XP, 
including kernel32.dll, user32.dll and explorer.exe; 2) Well-known 
applications on Linux, including samba 3.0.23d, sendmail 8.13.8 and 
vsftpd 2.0.5, which are compiled by “gcc –O2”. 

Table.1 shows the statistics about loops in these instances identified by algorithms. 
There are totally 11526 CFGs in these instances. In these CFGs, there are 174 
irreducible CFGs and 7841 loops. The experimental results of all these algorithms are 
the same, which validate the correctness of our algorithm and its implementation. 

A phenomenon we have discovered from these results is that all these instances 
contain irreducible CFGs. 

Another important phenomenon is that k is small in all these instances. Table.2 and 
Fig.7 show statistics of k with respect to the number of nodes of CFGs in these 
instances. The statistics show that in these real-world instances the unstructuredness 
coefficient is usually smaller than 1.5 and its average value is hardly correlated to the 
size of CFG. We call this phenomenon “low-unstructuredness” property of CFGs, 
and this property distinguishes real-world CFGs from general single-root connected 
directed graphs. 
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Table 1. Statistics of loops 

kernel32 user32 explorer
samba

3.0.23d

sendmail

8.13.8

vsftpd

2.0.5

CFGs 1488 1711 1380 5946 642 359

irreducible CFGs 5 8 2 81 71 7

loop headers 1134 636 354 4112 1440 165

Avg(k) 1.01 1.01 1.01 1.01 1.05 1.01

Max(k) 1.35 1.29 1.31 1.40 1.41 1.31

Min(k) 1.00 1.00 1.00 1.00 1.00 1.00  
 

Table 2. Statistics of k to N 

N Max(k) Avg(k) Min(k)

0-49 1.33 1.01 1

50-99 1.34 1.03 1

100-149 1.41 1.05 1

150-199 1.28 1.06 1

200-249 1.3 1.06 1

250-299 1.25 1.05 1

300-349 1.13 1.05 1

350-399 1.09 1.03 1  
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Fig. 7. Statistics of k to N 

For performance comparison, we ran all these algorithms on an unloaded 2.6GHz 
AMD Opteron Server, with each implementation properly optimized. Table.3 and 
Fig.8 show the time spent during processing these instances. The results show that our 
algorithm is 2-5 times faster than the Havlak-Tarjan algorithm, and 2-8 times faster 
than the Ramalingam-Havlak-Tarjan algorithm. 

Table 3. Time of algorithms(in μsec, lower is better) 

kernel32 user32 explorer
samba

3.0.23d

sendmail

8.13.8

vsftpd

2.0.5

Our 0.22 6.6 0.14 0.36 1.1 0.2

Havlak 0.44 28 0.28 1.6 5.3 1.1

Ramalingam 0.51 54 0.32 2.3 9.6 1.4
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Fig. 8. Time comparison of algorithms (lower is better) 

Here is another interesting result: although the Ramalingam-Havlak-Tarjan 
algorithm is an “improved” version of the Havlak-Tarjan algorithm, its performance 
is even worse than the latter. Based on the “low-unstructuredness” property of CFGs, 
this phenomenon can be easily explained: in order to reach almost linear time 
complexity when the target CFG’s multientry unstructuredness is very high, 
Ramalingam adds extra procedures to solve least common ancestors and to mark 
irreducible loops, and  both need UNION-FIND operations; however, for real-world 
CFGs, the unstructuredness is low, so the extra procedures contribute little to the 
performance and slow down the whole process instead. 

7   Conclusion 

This paper presents an innovative method for identifying loops in binary executables. 
First, we explore some useful properties of loops and DFS which make DFS 
collecting more information than simple forward/cross/backward edge information. 
Then, we propose the algorithm building on a one-pass DFS traversal and these 
properties. It does not use any complicated data structures such as Interval/DSG or 
UNION-FIND sets, so it is simpler and easier to implement than classical multi-pass 
traversal algorithms. 

The complexity of our method is O(N+k*E), where k is the unstructuredness 
coefficient, a new concept proposed in this paper to describe the unstructuredness of 
CFGs. 

The unstructuredness coefficient k is usually small, because structured 
programming has been well adopted, and unstructured code is hard to maintain its 
correctness, even introduced by compilers. Hence although unstructuredness can be 
found in almost every binary code, the majority of binary code is well structured. In 
fact, we found that in real-world binaries the average value of k is usually smaller 
than 1.5 and hardly correlated to the size of CFGs. Such “low-unstructuredness” 
property distinguishes these CFGs from general single-root connected directed 
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graphs, and it offers an explanation of why those algorithms with low time 
complexity on arbitrary graphs perform not quite well on “real” CFGs. 

Using BESTAR (Binary Executable Structurizer and Analyzer), our in-house 
decompiler, we have applied the algorithm and classical algorithms to 11526 CFGs in 
6 typical binary executables on Windows XP and Linux. Due to the simplicity of our 
algorithm and the “low-unstructuredness” property of real-world binaries, our 
algorithm is 2-5 times faster than the Havlak-Tarjan algorithm[7], and 2-8 times faster 
than the Ramalingam-Havlak-Tarjan algorithm[3]. 

Due to its remarkable performance, our algorithm could also be used in other 
applications, besides general decompilation, such as computing the SSA form or 
sequentializing program dependence graphs during just-in-time compilation. 
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Abstract. Acceleration in symbolic verification consists in computing
the exact effect of some control-flow loops in order to speed up the iter-
ative fix-point computation of reachable states. Even if no termination
guarantee is provided in theory, successful results were obtained in prac-
tice by different tools implementing this framework. In this paper, the
acceleration framework is extended to data-flow analysis. Compared to
a classical widening/narrowing-based abstract interpretation, the loss of
precision is controlled here by the choice of the abstract domain and does
not depend on the way the abstract value is computed. Our approach
is geared towards precision, but we don’t loose efficiency on the way.
Indeed, we provide a cubic-time acceleration-based algorithm for solving
interval constraints with full multiplication.

1 Introduction

Model-checking safety properties on a given system usually reduces to the com-
putation of a precise enough invariant of the system. In traditional symbolic veri-
fication, the set of all reachable (concrete) configurations is computed iteratively
from the initial states by a standard fix-point computation. This reachability set
is the most precise invariant, but quite often (in particular for software systems) a
much coarser invariant is sufficient to prove correctness of the system. Data-flow
analysis, and in particular abstract interpretation [CC77], provides a powerful
framework to develop analysis for computing such approximate invariants.

A data-flow analysis of a program basically consists in the choice of a (poten-
tially infinite) complete lattice of data properties for program variables together
with transfer functions for program instructions. The merge over all path (MOP)
solution, which provides the most precise abstract invariant, is in general over-
approximated by the minimum fix-point (MFP) solution, which is computable
by Kleene fix-point iteration. However the computation may diverge and widen-
ing/narrowing operators are often used in order to enforce convergence at the
expense of precision [CC77, CC92]. While often providing very good results, the
solution computed with widenings and narrowings may not be the MFP solu-
tion. This may lead to abstract invariants that are too coarse to prove safety
properties on the system under check.

Techniques to help convergence of Kleene fix-point iterations have also been
investigated in symbolic verification of infinite-state systems. In these works, the

H. Riis Nielson and G. Filé (Eds.): SAS 2007, LNCS 4634, pp. 184–199, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Accelerated Data-Flow Analysis 185

objective is to compute the (potentially infinite) reachability set for automata
with variables ranging over unbounded data, such as counters, clocks, stacks or
queues. So-called acceleration techniques (or meta-transitions) have been devel-
opped [BW94, BGWW97, CJ98, FIS03, FL02] to speed up the iterative com-
putation of the reachability set. Basically, acceleration consists in computing
in one step the effect of iterating a given loop (of the control flow graph). Ac-
celerated symbolic model checkers such as Lash [Las], TReX [ABS01], and
Fast [BFLP03] successfully implement this approach.

Our contribution. In this paper, we extend acceleration techniques to data-flow
analysis and we apply these ideas to interval analysis. Acceleration techniques
for (concrete) reachability set computations may be equivalently formalized “se-
mantically” in terms of control-flow path languages [LS05] or “syntactically” in
terms of control-flow graph unfoldings [BFLS05]. We extend these concepts to
the MFP solution in a generic data-flow analysis framework, and we establish
several links between the resulting notions. It turns out that, for data-flow anal-
ysis, the resulting “syntactic” notion, based on graph flattenings, is more general
that the resulting “semantic” notion, based on restricted regular expressions. We
then propose a generic flattening-based semi-algorithm for computing the MFP
solution. This semi-algorithm may be viewed as a generic template for applying
acceleration-based techniques to constraint solving.

We then show how to instantiate the generic flattening-based semi-algorithm
in order to obtain an efficient constraint solver1 for integers, for a rather large
class of constraints using addition, (monotonic) multiplication, factorial, or any
other bounded-increasing function. The intuition behind our algorithm is the
following: we propagate constraints in a breadth-first manner as long as the
least solution is not obtained, and variables involved in a “useful” propagation
are stored in a graph-like structure. As soon as a cycle appears in this graph,
we compute the least solution of the set of constraints corresponding to this
cycle. It turns out that this acceleration-based algorithm always terminates in
cubic-time.

As the main result of the paper, we then show how to compute in cubic-
time the least solution for interval constraints with full addition and multiplica-
tion, and intersection with a constant. The proof uses a least-solution preserving
translation from interval constraints to the class of integer constraints introduced
previously.

Related work. In [Kar76], Karr presented a polynomial-time algorithm that
computes the set of all affine relations that hold in a given control location of
a (numerical) program. Recently, the complexity of this algorithm was revisited
in [MOS04] and a fine upper-bound was presented. For interval constraints with
affine transfer functions, the exact least solution may be computed in cubic-
time [SW04]. Strategy iteration was proposed in [CGG+05] to speed up Kleene
fix-point iteration with better precision than widenings and narrowings, and this

1 By solver, we mean an algorithm computing the least solution of constraint systems.
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approach has been developped in [TG07] for interval constraint solving with full
addition, multiplication and intersection. Strategy iteration may be viewed as
an instance of our generic flattening-based semi-algorithm. The class of interval
constraints that we consider in this paper contains the one in [SW04] (which
does not include interval multiplication) but it is more restrictive than the one
in [TG07]. We are able to maintain the same cubic-time complexity as in [SW04],
and it is still an open problem whether interval constraint solving can be per-
formed in polynomial-time for the larger class considered in [TG07].

Outline. The paper is organized as follows. Section 2 presents our acceleration-
based approach to data-flow analysis. We then focus on interval constraint-based
data-flow analysis. We present in section 3 a cubic-time algorithm for solving a
large class of constraints over the integers, and we show in section 4 how to
translate interval constraints (with multiplication) into the previous class of in-
teger constraints, hence providing a cubic-time algorithm for interval constraints.
Section 5 presents some ideas for future work. Please note that due to space con-
straints, most proofs are only sketched in this paper. A long version of the paper
with detailed proofs can be obtained from the authors.

2 Acceleration in Data Flow Analysis

This section is devoted to the notion of acceleration in the context of data-flow
analysis. Acceleration techniques for (concrete) reachability set computations
[BW94, BGWW97, CJ98, FIS03, FL02, LS05, BFLS05] may be equivalently for-
mulated in terms of control-flow path languages or control-flow graph unfoldings.
We shall observe that this equivalence does not hold anymore when these notions
are lifted to data-flow analysis. All results in this section can easily be derived
from the definitions, and they are thus presented without proofs.

2.1 Lattices, Words and Graphs

We respectively denote by � and � the usual sets of nonnegative integers and
integers. For any set S, we write �(S) for the set of subsets of S. The identity
function over S is written �S , and shortly � when the set S is clear from the
context.

Recall that a complete lattice is any partially ordered set (A,�) such that
every subset X ⊆ A has a least upper bound

⊔
X and a greatest lower bound�

X . The supremum
⊔

A and the infimum
�

A are respectively denoted by "
and ⊥. A function f ∈ A → A is monotonic if f(x) � f(y) for all x � y in A.
Recall that from Knaster-Tarski’s Fix-point Theorem, any monotonic function
f ∈ A → A has a least fix-point given by

�
{a ∈ A | f(a) � a}. For any

monotonic function f ∈ A → A, we denote by f∗ the monotonic function in
A→ A defined by f∗(x) =

�
{a ∈ A | (x � f(a)) � a}, in other words f∗(x) is

the least fix-point of f greater than x.
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For any complete lattice (A,�) and any set S, we also denote by � the
partial order on S → A defined as the point-wise extension of �, i.e. f � g
iff f(x) � g(x) for all x ∈ S. The partially ordered set (S → A,�) is also a
complete lattice, with lub

⊔
and glb

�
satisfying (

⊔
F )(s) =

⊔
{f(s) | f ∈ F}

and (
�

F )(s) =
�
{f(s) | f ∈ F} for any subset F ⊆ S → A. Given any integer

n ≥ 0, we denote by An the set of n-tuples over A. We identify An with the set
{1, . . . , n} → A, and therefore An equipped with the point-wise extension of �
also forms a complete lattice.

Let Σ be an alphabet (a finite set of letters). We write Σ∗ for the set of all
(finite) words l0 · · · ln over Σ, and ε denotes the empty word. Given any two
words x and y, we denote by x · y (shortly written xy) their concatenation. A
subset of Σ∗ is called a language.

A (directed) graph is any pair G = (V,→) where V is a set of vertices and→ is a
binary relation overV . Apair (v, v′) in→ is called an edge. A (finite)path inG is any
(non-empty) sequence v0, . . . , vk of vertices, also written v0 → v1 · · · vk−1 → vk,
such that vi−1 → vi for all 1 ≤ i ≤ k. The nonnegative integer k is called the length
of the path, and the vertices v0 and vk are respectively called the source and target
of the path. A cycle on a vertex v is any path of non-zero length with source and
target equal to v. A cycle with no repeated vertices other than the source and the
target is called elementary. We write ∗→ for the reflexive-transitive closure of→. A
strongly connected component (shortly SCC ) in G is any equivalence class for the
equivalence relation ∗↔ onV definedby: v ∗↔ v′ if v ∗→ v′ and v′ ∗→ v.We say that an
SCC is cyclic when it contains a unique elementary cycle up to cyclic permutation.

2.2 Programs and Data-Flow Solutions

For the rest of this section, we consider a complete lattice (A,�). In our setting,
a program will represent an instance (for some concrete program) of a data-flow
analysis framework over (A,�). To simplify the presentation, we will consider
programs given as unstructured collections of commands (this is not restrictive
as control-flow may be expressed through variables).

Formally, assume a finite set X of variables. A command on X is any tuple
〈X1, . . . , Xn; f ;X〉, also written X := f(X1, . . . , Xn), where n ∈ � is an arity,
X1, . . . , Xn ∈ X are pairwise disjoint input variables, f ∈ An → A is a monotonic
transfer function, and X ∈ X is an output variable. Intuitively, a command
X := f(X1, . . . , Xn) assigns variable X to f(X1, . . . , Xn) and lets all other
variables untouched. A valuation on X is any function ρ in X → A. The data-flow
semantics �c� of any command c = 〈X1, . . . , Xn; f ;X〉 on X is the monotonic
function in (X → A) → (X → A) defined by �c�(ρ)(X) = f(ρ(X1), . . . , ρ(Xn))
and �c�(ρ)(Y ) = ρ(Y ) for all Y �= X .

A program over (A,�) is any pair P = (X , C) where X is a finite set of
variables and C is a finite set of commands on X .

Example 2.1. Consider the C-style source code given on the left-hand side below,
that we want to analyse with the complete lattice (I,�) of intervals of �. The
corresponding program E is depicted graphically on the right-hand side below.
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1 x = 1;
2 while (x ≤ 100) {
3 if (x ≥ 50) x = x−3;
4 else x = x+2;
5 }

X1 X2

X3

X5

c0

c1

c2 c3 c4

c5

Formally, the set of variables of E is {X1, X2, X3, X5}, representing the value
of the variable x at program points 1, 2, 3 and 5. The set of commands of E is
{c0, c1, c2, c3, c4, c5}, with:

c0 : X1 := " c3 : X2 := (X3 � [50,+∞])− {3}
c1 : X2 := ({0} . X1) + {1} c4 : X2 := (X3 � ]−∞, 49]) + {2}
c2 : X3 := X2 � ]−∞, 100] c5 : X5 := X2 � [101,+∞[

We will use language-theoretic terminology and notations for traces in a program.
A trace in P is any word c1 · · · ck over C. The empty word ε denotes the empty
trace and C∗ denotes the set of all traces in P. The data-flow semantics is
extended to traces in the obvious way: �ε� = � and �c · σ� = �σ� ◦ �c�. Observe
that �σ · σ′� = �σ′� ◦ �σ� for every σ, σ′ ∈ C∗. We also extend the data-flow
semantics to sets of traces by �L� =

⊔
σ∈L �σ� for every L ⊆ C∗. Observe that

�L� is a monotonic function in (X → A)→ (X → A), and moreover �L1 ∪ L2� =
�L1� � �L2� for every L1, L2 ⊆ C∗.

Given a program P = (X , C) over (A,�), the minimum fix-point solution
(MFP-solution) of P, written ΛP, is the valuation defined as follows:

ΛP =
�
{ρ ∈ X → A | �c�(ρ) � ρ for all c ∈ C}

Example 2.2. The MFP-solution of the program E from Example 2.1 is the
valuation:

ΛE = {X1 !→ ", X2 !→ [1, 51], X3 !→ [1, 51], X5 !→ ⊥}

Recall that we denote by �C�∗(ρ) the least fix-point of �C� greater than ρ.
Therefore it follows from the definitions that ΛP = �C�∗(⊥). In our framework,
the merge over all paths solution (MOP-solution) may be defined as the valuation
�C∗�(⊥), and the following proposition recalls well-known links between the
MOP-solution, the MFP-solution and the ascending Kleene chain.

Proposition 2.3. For any program P = (X , C) over a complete lattice (A,�),
we have:

�C∗�(⊥) �
⊔
k∈�

�C�k(⊥) � �C�∗(⊥) = ΛP
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2.3 Accelerability and Flattening

We now extend notions from accelerated symbolic verification to this data-flow
analysis framework. Acceleration in symbolic verification was first introduced
semantically, in the form of meta-transitions [BW94, BGWW97], which basically
simulate the effect of taking a given control-flow loop arbitrarily many times.
This leads us to the following proposition and definition.

Proposition 2.4. Let P = (X , C) denote a program over (A,�). For any lan-
guages L1, . . . , Lk ⊆ C∗, we have (�Lk�∗ ◦ · · · ◦ �L1�∗)(⊥) � ΛP.

Definition 2.5. A program P = (X , C) over a complete lattice (A,�) is called
MFP-accelerable if ΛP = (�σk�∗◦· · ·◦�σ1�∗)(⊥) for some words σ1, . . . , σk ∈ C∗.

The following proposition shows that any program P for which the ascending
Kleene chain stabilizes after finitely many steps is MFP-accelerable.

Proposition 2.6. Let P = (X , C) denote a program over (A,�). If we have
�C�k(⊥) = ΛP for some k ∈ �, then P is MFP-accelerable.

Acceleration in symbolic verification was later expressed syntactically, in terms
of flat graph unfoldings. When lifted to data-flow analysis, this leads to a more
general concept than accelerability, and we will show that these two notions
coincide for “concrete” programs (as in symbolic verification). We say that a
program P is single-input if the arity of every command in P is at most 1.

Given a program P = (X , C) over (A,�), an unfolding of P is any pair (P′, κ)
where P′ = (X ′, C′) is a program and κ ∈ X ′ → X is a variable renaming, and
such that 〈κ(X ′

1), . . . , κ(X ′
n); f ;κ(X ′)〉 is a command in C for every command

〈X ′
1, . . . , X

′
n; f ;X ′〉 in C′. The renaming κ induces a Galois surjection (X ′ →

A,�) −−−→←−−−−→κ

←−κ
(X → A,�) where←−κ and −→κ are defined as expected by←−κ (ρ) = ρ◦κ

and −→κ (ρ′)(X) =
⊔

κ(X′)=X

ρ′(X ′).

We associate a bipartite graph to any program in a natural way: vertices are
either variables or commands, and edges denote input and output variables of
commands. Formally, given a program P = (X , C), the program graph of P is
the labeled graph GP where X ∪ C is the set of vertices and with edges (c,X)
and (Xi, c) for every command c = 〈X1, . . . , Xn; f ;X〉 in C and 1 ≤ i ≤ n. We
say that P is flat if there is no SCC in GP containing two distinct commands
with the same output variable. A flattening of P is any unfolding (P′, κ) of P

such that P′ is flat.

Example 2.7. A flattening of the program E from Example 2.1 is given below.
Intuitively, this flattening represents a possible unrolling of the while-loop where
the two branches of the inner conditional alternate.
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X1 X2

X ′
2X3 X ′

3

X2 X5

c0

c1

c2 c4

c5

c′2c3

Lemma 2.8. Let P = (X , C) denote a program over (A,�). For any unfolding
(P′, κ) of P, with P′ = (X ′, C′), we have −→κ ◦ �C′�∗ ◦←−κ � �C�∗.
Proposition 2.9. Let P = (X , C) denote a program over (A,�). For any un-
folding (P′, κ) of P, we have −→κ (ΛP′) � ΛP.

Definition 2.10. A program P = (X , C) over a complete lattice (A,�) is called
MFP-flattable if ΛP = −→κ (ΛP′) for some flattening (P′, κ) of P.

Observe that any flat program is trivially MFP-flattable. The following proposi-
tion establishes links between accelerability and flattability. As a corollary to the
proposition, we obtain that MFP-accelerability and MFP-flattability are equiv-
alent for single-input programs.

Proposition 2.11. The following relationships hold for programs over (A,�):

i) MFP-accelerability implies MFP-flattability.
ii) MFP-flattability implies MFP-accelerability for single-input programs.

Proof (Sketch). To prove i), we use the fact that for every words σ1, . . . , σk ∈
C∗, there exists a finite-state automaton A without nested cycles recognizing
σ∗

1 · · ·σ∗
k. The “product” of any program P with A yields a flattening that “sim-

ulates” the effect of σ∗
1 · · ·σ∗

k on P. To prove ii), we observe that for any flat
single-input program P, each non-trivial SCC of GP is cyclic. We pick a “cyclic”
trace (which is unique up to circular permutation) for each SCC, and we arrange
these traces to prove that P is accelerable. Backward preservation of accelera-
bility under unfolding concludes the proof. ��

Remark 2.12. For any labeled transition system S with a set S of states, the for-
ward collecting semantics of S may naturally be given as a single-input program
PS over (�(S),⊆). With respect to this translation (from S to PS), the notion of
flattability developped for accelerated symbolic verification of labeled transition
systems coincide with the notions of MFP-accelerability and MFP-flattability
defined above.

Recall that our main goal is to compute (exact) MFP-solutions using accele-
ration-based techniques. According to the previous propositions, flattening-based
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computation of the MFP-solution seems to be the most promising approach, and
we will focus on this approach for the rest of the paper.

2.4 Generic Flattening-Based Constraint Solving

It is well known that the MFP-solution of a program may also be expressed
as the least solution of a constraint system, and we will use this formulation
for the rest of the paper. We will use some new terminology to reflect this
new formulation, however notations and definitions will remain the same. A
command 〈X1, . . . , Xn; f ;X〉 will now be called a constraint, and will also be
written X � f(X1, . . . , Xn). A program over (A,�) will now be called a con-
straint system over (A,�), and the MFP-solution will be called the least solution.
Among all acceleration-based notions defined previously, we will only consider
MFP-flattability for constraint systems, and hence we will shortly write flattable
instead of MFP-flattable.

Given a constraint system P = (X , C) over (A,�), any valuation ρ ∈ X → A
such that ρ � �C�(ρ) (resp. ρ � �C�(ρ)) is called a pre-solution (resp. a post-
solution). A post-solution is also shortly called a solution. Observe that the least
solution ΛP is the greatest lower bound of all solutions of C.

We now present a generic flattening-based semi-algorithm for constraint solv-
ing. Intuitively, this semi-algorithm performs a propagation of constraints start-
ing from the valuation⊥, but at each step we extract a flat “subset” of constraints
(possibly by duplicating some variables) and we update the current valuation
with the least solution of this flat “subset” of constraints.

1 Solve(P = (X , C) : a constraint system)
2 ρ← ⊥
3 while �C�(ρ) �� ρ
4 construct a flattening (P′, κ) of P, where P′ = (X ′, C′)
5 ρ′ ← ρ ◦ κ
6 ρ′′ ← �C′�∗(ρ′) { −→κ (ρ′′) � �C�∗(ρ) from Lemma 2.8 }
7 ρ← ρ � −→κ (ρ′′)
8 return ρ

The Solve semi-algorithm may be viewed as a generic template for applying
acceleration-based techniques to constraint solving. The two main challenges are
(1) the construction of a suitable flattening at line 4, and (2) the computation
of the least solution for flat constraint systems (line 6). However, assuming that
all involved operations are effective, this semi-algorithm is correct (i.e. if it ter-
minates then the returned valuation is the least solution of input constraint
system), and it is complete for flattable constraint systems (i.e. the input con-
straint system is flattable if and only if there exists choices of flattenings at line 4
such that the while-loop terminates). We will show in the sequel how to instan-
tiate the Solve semi-algorithm in order to obtain an efficient constraint solver
for integers and intervals.
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3 Integer Constraints

Following [SW04, TG07], we first investigate integer constraint solving in order
to derive in the next section an interval solver. This approach is motivated by
the encoding of an interval by two integers.

The complete lattice of integers Z = � ∪ {−∞,+∞} is equipped with the
natural order:

−∞ < · · · < −2 < −1 < 0 < 1 < 2 < · · · < +∞

Observe that the least upper bound x ∨ y and the greatest lower bound x ∧
y respectively correspond to the maximum and the minimum. Addition and
multiplication functions are extended from � to Z as in [TG07]:

x.0 = 0.x = 0 x + (−∞) = (−∞) + x = −∞ for all x
x.(+∞) = (+∞).x = +∞ x.(−∞) = (−∞).x = −∞ for all x > 0
x.(+∞) = (+∞).x = −∞ x.(−∞) = (−∞).x = +∞ for all x < 0
x+(+∞) = (+∞) + x = +∞ for all x>−∞

A constraint system P = (X , C) is said cyclic if the set of constraints C is
contained in a cyclic SCC. An example is given below.

X0

c1

X1

c2

Xi

Xi−1

ci

ci−1

X2
. . .

. . .

Observe that a cyclic constraint system is flat. A cyclic flattening (P′, κ) where
P′ = (X ′, C′) can be naturally associated to any cycle X0 → c1 → X1 · · · → cn →
Xn = X0 of a constraint system P, by considering the set X ′ of variables obtained
from X by adding n new copies Z1, . . . , Zn of X1, . . . , Xn with the corresponding
renaming κ that extends the identity function over X by κ(Zi) = Xi, and by
considering the set of constraints C′ = {c′1, . . . , c′n} where c′i is obtained from ci

by renaming the output variable Xi by Zi and by renaming the input variable
Xi−1 by Zi−1 where Z0 = Zn.

In section 3.1, we introduce an instance of the generic Solve semi-algorithm
that solves constraint systems that satisfy a property called bounded-increasing.
This class of constraint systems is extended in section 3.2 with test constraints
allowing a natural translation of interval constraint systems to contraint systems
in this class.
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3.1 Bounded-Increasing Constraint Systems

A monotonic function f ∈ Zk → Z is said bounded-increasing if for any x1 < x2

such that f(⊥) < f(x1) and f(x2) < f(") we have f(x1) < f(x2). Intuitively f
is increasing over the domain of x ∈ Zk such that f(x) �∈ {f(⊥), f(")}.

Example 3.1. The guarded identity x !→ x∧b where b ∈ Z, the addition (x, y) !→
x+ y, the two multiplication functions mul+ and mul− defined below, the power
by two x !→ 2x∨0, the factorial x !→!(x∨ 1) are bounded-increasing. However the
minimum and the maximum functions are not bounded-increasing.

mul+(x, y) =

{
x.y if x, y ≥ 0
0 otherwise

mul−(x, y) =

{
−x.y if x, y < 0
0 otherwise

A bounded-increasing constraint is a constraint of the form X ≥ f(X1, . . . , Xk)
where f is a bounded-increasing function. Such a constraint is said upper-saturated
(resp. lower-saturated) by a valuation ρ if ρ(X) ≥ f(") (resp. ρ(X) ≤ f(⊥)).
Given a constraint system P = (X , C) and a bounded-increasing constraint c ∈
C upper-saturated by a valuation ρ0, observe that �C�∗(ρ0) = �C′�∗(ρ0) where
C′ = C\{c}. Intuitively, anupper-saturated constraint forρ0canbe safely removed
from a constraint system without modifying the least solution greater than ρ0. The
following lemma will be useful to obtain upper-saturated constraints.

Lemma 3.2. Let P be a cyclic bounded-increasing constraint system. If ρ0 is a
pre-solution of P that does not lower-saturate any constraint, then either ρ0 is a
solution or �C�∗(ρ0) upper-saturates a constraint.

Proof. (Sketch). Let X0 → c1 → X1 → · · · → cn → Xn = X0 be the unique
(up to a cyclic permutation) cycle in the graph associated to P. Consider a pre-
solution ρ0 of P that is not a solution. Let us denote by (ρi)i≥0 the sequence of
valuations defined inductivelly by ρi+1 = ρi ∨ �C�(ρi). There are two cases:

– either there exists i ≥ 0 such that ρi upper-saturates a constraint cj . Since
ρi ≤ �C�∗(ρ0), we deduce that �C�∗(ρ0) upper-saturates cj .

– or c1, . . . , cn are not upper-saturated by any of the ρi. As these constraints
are bounded-increasing, the sequence (ρi)i≥0 is strictly increasing. Thus
(
∨

i≥0 ρi)(Xj) = +∞ for any 1 ≤ j ≤ n. Since
∨

i≥0 ρi ≤ �C�∗(ρ0), we
deduce that �C�∗(ρ0) upper-saturates c1, . . . , cn.

In both cases, �C�∗(ρ0) upper-saturates at least one constraint. ��

1 CyclicSolve (P = (X , C) : a cyclic bounded−increasing constraint system,
2 ρ0 : a valuation)
3 let X0 → c1 → X1 · · · → cn → Xn = X0 be the ‘‘unique’’ elementary cycle
4 ρ← ρ0

5 for i = 1 to n do
6 ρ← ρ ∨ �ci�(ρ)
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7 for i = 1 to n do
8 ρ← ρ ∨ �ci�(ρ)
9 if ρ ≥ �C�(ρ)

10 return ρ
11 for i = 1 to n do
12 ρ(Xi)← +∞
13 for i = 1 to n do
14 ρ← ρ ∧ �ci�(ρ)
15 for i = 1 to n do
16 ρ← ρ ∧ �ci�(ρ)
17 return ρ

Proposition 3.3. The algorithm CyclicSolve returns �C�∗(ρ0) for any cyclic
constraint system P and for any valuation ρ0.

Proof. (Sketch). The first two loops (lines 5–8) propagate the valuation ρ0 along
the cycle two times. If the resulting valuation is not a solution at this point, then
it is a pre-solution and no constraint is lower-saturated. From Lemma 3.2, we
get that �C�∗(ρ0) upper-saturates some constraint. Observe that the valuation ρ
after the third loop (lines 11–12) satisfies �C�∗(ρ0) � ρ. The descending iteration
of the last two loops yields (at line 17) �C�∗(ρ0). ��
We may now present our cubic time algorithm for solving bounded-increasing
constraint systems. The main loop of this algorithm first performs |C|+1 rounds
of Round Robin iterations and keeps track for each variable of the last constraint
that updated its value. This information is stored in a partial function λ from X
to C. The second part of the main loop checks whether there exists a cycle in the
subgraph induced by λ, and if so it selects such a cycle and calls the CylicSolve
algorithm on it.

1 SolveBI(P = (X , C) : a bounded−increasing constraint system,
2 ρ0 : an initial valuation)
3 ρ← ρ0 ∨ �C�(ρ0)
4 while �C�(ρ) �� ρ
5 λ← ∅ { λ is a partial function from X to C }
6 repeat |C|+ 1 times
7 for each c ∈ C
8 if ρ �≥ �c�(ρ)
9 ρ← ρ ∨ �c�(ρ)

10 λ(X)← c, where X is the input variable of c
11 if there exists an elementary cycle X0 → λ(X1)→ X1 · · ·λ(Xn)→ X0

12 construct the corresponding cyclic flattening (P′, κ)
13 ρ′ ← ρ ◦ κ
14 ρ′′ ← CyclicSolve(P′, ρ′)
15 ρ← ρ ∨ −→κ (ρ′′)
16 return ρ
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Note that the algorithm SolveBI is an instance of the algorithm Solve where flat-
tenings are deduced from cycles induced by the partial function λ. The following
proposition 3.4 shows that this algorithm terminates.

Proposition 3.4. The algorithm SolveBI returns the least solution �C�∗(ρ0) of
a bounded-increasing constraint system P greater than a valuation ρ0. Moreover,
the number of times the while loop is executed is bounded by one plus the number
of constraints that are upper-saturated for �C�∗(ρ0) but not for ρ0.

Proof. (Sketch). Observe that initially ρ = ρ0 ∨ �C�(ρ0). Thus, if during the
execution of the algorithm ρ(X) is updates by a constraint c then necessary
c is not lower-saturated. That means if λ(X) is defined then c = λ(X) is not
lower-saturated.

Let ρ0 and ρ1 be the values of ρ respectively before and after the execution
of the first two nested loops (line 5-9) and let ρ2 be the value of ρ after the
execution of line 14.

Observe that if there does not exist an elementary cycle satisfying the con-
dition given in line 11, the graph associated to P restricted to the edges (X, c)
if c = λ(X) and the edges (Xi, c) if Xi is an input variable of c is acyclic. This
graph induces a natural partial order over the constraints c of the form c = λ(X).
An enumeration c1, . . . , cm of this constraints compatible with the partial order
provides the relation ρ1 ≤ �c1 . . . cm�(ρ0). Since the loop 6-9 is executed at least
m + 1 times, we deduce that ρ1 is a solution of C.

Lemma 3.2 shows that if ρ1 is not a solution of P then at least one constraint
is upper-saturated for ρ2 but not for ρ0. We deduce that the number of times
the while loop is executed is bounded by one plus the number of constraints that
are upper-saturated for �C�∗(ρ0) but not for ρ0. ��

3.2 Integer Constraint Systems

A test function is a function θ>b or θ≥b with b ∈ Z of the following form:

θ≥b(x, y) =

{
y if x ≥ b

−∞ otherwise
θ>b(x, y) =

{
y if x > b

−∞ otherwise

A test constraint is a constraint of the form X ≥ θ∼b(X1, X2) where θ∼b is a
test function. Such a constraint c is said active for a valuation ρ if ρ(X1) ∼ b.
Given a valuation ρ such that c is active, observe that �c�(ρ) and �c′�(ρ) are
equal where c′ is the bounded-increasing constraint X ≥ X2. This constraint c′

is called the active form of c and denoted by act(c).
In the sequel, an integer constraint either refers to a bounded-increasing con-

straint or a test-constraint.

1 SolveInteger (P = (X , C) : an integer constraint system)
2 ρ← ⊥
3 Ct ← set of test constraints in C
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4 C′ ← set of bounded−increasing constraints in C
5 while �C�(ρ) �� ρ
6 ρ← SolveBI((X , C′), ρ)
7 for each c ∈ Ct

8 if c is active for ρ
9 Ct ← Ct\{c}

10 C′ ← C′ ∪ {act(c)}
11 return ρ

Theorem 3.5. The algorithm SolveInteger computes the least solution of an in-
teger constraint system P = (X , C) by performing O((|X | + |C|)3) integer com-
parisons and image computation by some bounded-increasing functions.

Proof. Let us denote by nt be the number of test constraints in C. Observe that
if during the execution of the while loop, no test constraints becomes active (line
7-10) then ρ is a solution of P and the algorithm terminates. Thus this loop is
executed at most 1+nt times. Let us denote by m1, . . . ,mk the integers such that
mi is equal to the number of times the while loop of SolveBI is executed. Since
after the execution there is mi−1 constraints that becomes upper-saturated, we
deduce that

∑k
i=1(mi−1) ≤ n and in particular

∑k
i=1 mi ≤ n+k ≤ 2.|C|. Thus

the algorithm SolveInteger computes the least solution of an integer constraint
system P = (X , C) by performing O((|X |+|C|)3) integer comparisons and image
computation by some bounded-increasing functions. ��

Remark 3.6. We deduce that any integer constraint system is MFP-flattable.

4 Interval Constraints

In this section, we provide a cubic time constraint solver for intervals. Our solver
is based on the usual [SW04, TG07] encoding of intervals by two integers in Z.
The main challenge is the translation of an interval constraint system with full
multiplication into an integer constraint system.

An interval I is subset of � of the form {x ∈ �; a ≤ x ≤ b} where a, b ∈ Z. We
denote by I the complete lattice of intervals partially ordered with the inclusion
relation �. The inverse −I of an interval I, the sum and the multiplication of
two intervals I1 and I2 are defined as follows:

−I = {−x; x ∈ I} I1 + I2 = {x1 + x2; (x1, x2) ∈ I1 × I2}
I1 . I2 =

⊔
{x1.x2; (x1, x2) ∈ I1 × I2}

We consider interval constraints of the following forms where I ∈ I:

X � −X1 X � I X � X1 + X2 X � X1 � I X � X1.X2

Observe that we allow arbitrary multiplication between intervals, but we restrict
intersection to intervals with a constant interval.
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We say that an interval constraint system P = (X , C) has the positive-
multiplication property if for any constraint c ∈ C of the form X � X1.X2,
the intervals ΛP(X1) and ΛP(X2) are included in �. Given an interval con-
straint system P = (X , C) we can effectively compute an interval constraint
system P′ = (X ′, C′) satisfying this property and such that X ⊆ X ′ and
ΛP(X) = ΛP′(X) for any X ∈ X . This constraint system P′ is obtained from P

by replacing the constraints X � X1.X2 by the following constraints:

X � X1,u.X2,u X1,u � X1 � �
X � X1,l.X2,l X2,u � X2 � �
X � −X1,u.X2,l X1,l � (−X1) ��
X � −X1,l.X2,u X2,l � (−X2) ��

Intuitively X1,u and X2,u corresponds to the positive parts of X1 and X2, while
X1,l and X2,l corresponds to the negative parts.

Let us provide our construction for translating an interval constraint system
P = (X , C) having the positive multiplication property into an integer constraint
system P′ = (X ′, C′). Since an interval I can be naturally encoded by two
integers I−, I+ ∈ Z defined as the least upper bound of respectively −I and I,
we naturally assume that X ′ contains two integer variable X− and X+ encoding
each interval variable X ∈ X . In order to extract from the least solution of P′ the
least solution of P, we are looking for an integer constraint system P′ satisfying
(ΛP(X))− = ΛP′(X−) and (ΛP(X))+ = ΛP′(X+) for any X ∈ X .

As expected, a constraint X � −X1 is converted into X+ ≥ X−
1 and X− ≥

X+
1 , a constraint X � I into X+ ≥ I+ and X− ≥ I−, and a constraint X �

X1 + X2 into X− ≥ X−
1 + X−

2 and X− ≥ X−
1 + X−

2 . However, a constraint
X � X1�I cannot be simply translated into X− ≥ X−

1 ∧I− and X+ ≥ X+
1 ∧I+.

In fact, these constraints may introduce imprecision when ΛP(X) ∩ I = ∅. We
use test functions to overcome this problem. Such a constraint is translated into
the following integer constraints:

X− ≥ θ≥−I+(X−
1 , θ≥−I−(X+

1 , X−
1 ∧ I−))

X+ ≥ θ≥−I−(X+
1 , θ≥−I+(X−

1 , X+
1 ∧ I+))

For the same reason, the constraint X � X1.X2 cannot be simply converted
into X− ≥ mul−(X−

1 , X−
2 ) and X+ ≥ mul+(X+

1 , X+
2 ). Instead, we consider the

following constraints:

X− ≥ θ>−∞(X−
1 , θ>−∞(X+

1 , θ>−∞(X−
2 , θ>−∞(X+

2 ,mul−(X−
1 , X−

2 )))))

X+ ≥ θ>−∞(X+
1 , θ>−∞(X−

1 , θ>−∞(X+
2 , θ>−∞(X−

2 ,mul+(X+
1 , X+

2 )))))

Observe in fact that X− ≥ mul−(X−
1 , X−

2 ) and X+ ≥ mul+(X+
1 , X+

2 ) are precise
constraint when the intervals I1 = ΛP(X1) and I2 = ΛP(X2) are non empty.
Since, if this condition does not hold then I1.I2 = ∅, the previous encoding
consider this case by testing if the values of X−

1 , X+
1 , X−

2 , X+
2 are strictly

greater than −∞.
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Now, observe that the integer constraint system P′ satisfies the equalities
(ΛP(X))+ = ΛP′(X+) and (ΛP(X))− = ΛP′(X−) for any X ∈ X . Thus, we
have proved the following theorem.

Theorem 4.1. The least solution of an interval constraint system P = (X , C)
with full multiplication can by computed in time O((|X | + |C|)3) with integer
manipulations performed in O(1).

Remark 4.2. We deduce that any interval constraint system is MFP-flattable.

5 Conclusion and Future Work

In this paper we have extended the acceleration framework from symbolic verifi-
cation to the computation of MFP-solutions in data-flow analysis. Our approach
leads to an efficient cubic-time algorithm for solving interval constraints with
full addition and multiplication, and intersection with a constant.

As future work, it would be interesting to combine this result with strategy
iteration techniques considered in [TG07] in order to obtain a polynomial time
algorithm for the extension with full intersection. We also intend to investigate
the application of the acceleration framework to other abstract domains.
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Abstract. In this paper, we extend model-checking technology with
the notion of an error projection. Given a program abstraction, an er-
ror projection divides the program into two parts: the part outside the
error projection is guaranteed to be correct, while the part inside the
error projection can have bugs. Subsequent automated or manual ver-
ification effort need only be concentrated on the part inside the error
projection. We present novel algorithms for computing error projections
using weighted pushdown systems that are sound and complete for the
class of Boolean programs and discuss additional applications for these
algorithms.

1 Introduction

Software model checkers extract a model from a program using a finite abstrac-
tion of data states and then perform reachability analysis on the model. If a
property violation is detected, it reports the result back to the user, usually in
the form of a counterexample on a failed run, or goes on to refine its abstraction
and check again. This technique has been shown to be useful both for finding
program errors and for verifying certain properties of programs. It has been
implemented in a number of model checkers, including SLAM [2], BLAST [11],
and MAGIC [6]. Our goal is to extend the capabilities of model checkers to make
maximum possible use of a given abstraction during the reachability check for
helping subsequent analysis.

We accomplish this by computing error projections and annotated error pro-
jections. An error projection is the set of program nodes N such that for each
node n ∈ N , there exists an error path that starts from the entry point of the
program and passes through n. By definition, an error projection describes all
of the nodes that are members of paths that lead to a specified error in the
model, and no more. This allows an automated program-analysis tool or human
debugger to focus their efforts on only the nodes in the error projection: every
node not in the error projection is correct (with respect to the property being
verified). Model checkers such as SLAM can then focus their refinement effort
on the part of the program inside the projection.

Annotated error projections are an extension of error projections. An anno-
tated error projection adds to each node n in the error projection two annota-
tions: 1) A counterexample that passes through n; 2) a set of abstract stores

H. Riis Nielson and G. Filé (Eds.): SAS 2007, LNCS 4634, pp. 200–217, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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(memory-configuration descriptors) that describes the conditions necessary at n
for the program to fail. The goal is to give back to the user—either an auto-
mated tool or human debugger—more of the information discovered during the
model-checking process.

From a theoretical standpoint, an error projection solves a combination of for-
ward and backward analyses. The forward analysis computes the set of program
states Sfwd that are reachable from program entry; the backward analysis com-
putes the set of states Sbck that can reach an error at certain pre-specified nodes.
Under a sound abstraction of the program, each of these sets provides a strong
guarantee: only the states in Sfwd can ever arise in the program, and only the
states in Sbck can ever lead to error. Error projections ask the natural question
of combining these guarantees to compute the set of states Serr = Sfwd ∩ Sbck

containing all states that can both arise during program execution, and lead to
error. In this sense, an error projection is making maximum use of the given
abstraction—by computing the smallest envelope of states that may contribute
to program failure.

Computation of this intersection turns out to be non-trivial because the two
sets may be infinite. In §4 and §5, we show how to compute this set efficiently
and precisely for common abstractions used for model checking. We use weighted
pushdown systems (WPDSs) [5,21] as the abstract model of a program, which
can, among other abstractions, faithfully encode Boolean programs [22]. The
techniques that we use seem to be of general interest, and apart from the appli-
cation of finding error projections, we discuss additional applications in §7.

The contributions of this paper can be summarized as follows:

• We define the notions of error projection and annotated error projection.
These projections divide the program into a correct and an incorrect part
such that further analysis need only be carried out on the incorrect part.
• We give a novel combination of forward and backward analyses for multi-

procedural programs using weighted automata and use it for computing (an-
notated) error projections (§4 and §5). We also show that our algorithms can
be used for solving various problems in model checking (§7).
• Our experiments show that we can efficiently compute error projections (§6).

The remainder of the paper is organized as follows: §2 motivates the diffi-
culty in computing (annotated) error projections and illustrates their utility. §3
presents the definitions of weighted pushdown systems and weighted automata.
§4 and §5 give the algorithms for computing error projections and annotated er-
ror projections, respectively. §6 presents our initial experiments. §7 covers other
applications of our algorithms. §8 discusses related work.

2 Examples

Consider the program shown in Fig. 1. Here x is a global unsigned integer vari-
able, and assume that procedure foo does not change the value of x. Also assume
that the program abstraction is a Boolean abstraction in which integers (only x
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start

x = 5 x = 8 x = 9

call foo

ret. foo

call foo

ret. foo

call foo

ret. foo

if(x == 10)

error

x = x + 2 x = x + 3 x = x + 1

fooenter

fooexit

…

n1

c1

r1

n4

n

n2

c2

r2

n5

n3

c3

r3

n6

n7

f1

f2

(1) 〈p, start〉 ↪→ 〈p, n1〉 id
(2) 〈p, n1〉 ↪→ 〈p, c1〉 {( , 5)}
(3) 〈p, c1〉 ↪→ 〈p, f1 r1〉 id
(4) 〈p, r1〉 ↪→ 〈p, n4〉 id
(5) 〈p, n4〉 ↪→ 〈p, n7〉 {(i, i + 2)}
(6) 〈p, start〉 ↪→ 〈p, n2〉 id
(7) 〈p, n2〉 ↪→ 〈p, c2〉 {( , 8)}
(8) 〈p, c2〉 ↪→ 〈p, f1 r2〉 id
(9) 〈p, r2〉 ↪→ 〈p, n5〉 id
(10) 〈p, n5〉 ↪→ 〈p, n7〉 {(i, i + 3)}
(11) 〈p, start〉 ↪→ 〈p, n3〉 id
(12) 〈p, n3〉 ↪→ 〈p, c3〉 {( , 9)}
(13) 〈p, c3〉 ↪→ 〈p, f1 r3〉 id
(14) 〈p, r3〉 ↪→ 〈p, n6〉 id
(15) 〈p, n6〉 ↪→ 〈p, n7〉 {(i, i + 1)}
(16) 〈p, n7〉 ↪→ 〈p, error〉 {(10, 10)}
(17) 〈p, f1〉 ↪→ 〈p, n〉 id
(18) 〈p, n〉 ↪→ 〈p, f2〉 id
(19) 〈p, f2〉 ↪→ 〈p, ε〉 id

(a) (b)

Fig. 1. (a) An example program and (b) its corresponding WPDS. Weights, shown in
the last column, are explained in §3.

in this case) are modeled using 8 bits, i.e., the value of x can be between 0 and
255 with saturated arithmetic. This type of an abstraction is used by Moped

[22], and happens to be a precise abstraction for this example.
The program has an error if node error is reached. The error projection is

shaded in the figure. The paths on the left that set the value of x to 5 or 8 are
correct paths. An error projection need not be restricted to a single trace (which
would be the case if foo had multiple paths). An annotated error projection will
additionally tell us that the value of x at node n inside foo has to be 9 on an
error path passing through this node. Note that the value of x can be 5 or 8 on
other paths that pass through n, but they do not lead to the error node.

It is non-trivial to conclude the above value of x for node n. An interprocedu-
ral forward analysis starting from start will show that the value of x is in the set
{5, 8, 9} at node n. A backward interprocedural analysis starting from error con-
cludes that the value of x at n has to be in the set {7, 8, 9}. Intersecting the sets
obtained from forward and backward analysis only gives an over-approximation
of the annotated error projection values. In this case, the intersection is {8, 9},
but x can never be 8 on a path leading to error. The over-approximation occurs
because, in the forward analysis, the value of x is 8 only when the call to foo
occurs at call site c2, but in the backward analysis the path starting at n with
x = 8 and leading to error must have had the call to foo from call site c1.

Such a complication also occurs while computing (non-annotated) error pro-
jections: to see this, assume that the edge leading to node n is predicated by the
condition if(x!=9). Then, node n can be reached from start, and there is a
path starting at n that leads to error, but both of these cannot occur together.
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numUnits : int;
level : int;
void getUnit() {

[1]      canEnter: bool := F;
[2]      if (numUnits = 0) {
[3]        if (level > 10) {
[4]          NewUnit();
[5]          numUnits := 1;
[6]          canEnter := T;

}
} else 

[7]          canEnter := T;

[8]      if (canEnter)
[9]        if (numUnits = 0)
[10]        assert(F);

else
[11]        gotUnit();

}

void getUnit() {
[1]      ...
[2]      if (?) {
[3]        if (?) {
[4]          ... 
[5]          ...
[6]          ...

}
} else 

[7]          ...

[8]      if (?)
[9]        if (?)
[10]        ...

else
[11]        ...

}

nU0: bool;

void getUnit() {
[1]      ...
[2]      if (nU0) {
[3]        if (?) {
[4]          ... 
[5]          nU0 := F;
[6]          ...

}
} else 

[7]          ...

[8]      if (?)
[9]        if (nU0)
[10]        ...

else
[11]        ...

}

nU0: bool;

void getUnit() {
[1]      cE: bool := F;
[2]      if (nU0) {
[3]        if (?) {
[4]          ... 
[5]          nU0 := F;
[6]          cE := T;

}
} else 

[7]          cE := T;

[8]      if (cE)
[9]        if (nU0)
[10]        ...

else
[11]        ...

}

P B1 B2 B3

Fig. 2. An example program P and its abstractions as Boolean programs. The “· · · ”
represents a “skip” or a no-op. The part outside the error projection is shaded in each
case.

Formally, a node is in the error projection if and only if the associated value set
computed for the annotated projection is non-empty. In this sense, computing
an error projection is a special case of computing the annotated version. We
still discuss error projections separately because (i) computing them is easier, as
we see later (computing annotations requires one extra trick), and (ii) they can
very easily be cannibalized by existing model checkers such as SLAM in their
abstraction-refinement phase: when an abstraction needs to be refined, only the
portion inside the error projection needs to be rechecked. We illustrate this point
in more detail in the next example.

Fig. 2 shows an example program and several abstractions that SLAM might
produce. This example is given in [3] to illustrate the SLAM refinement process.
SLAM uses predicate abstraction to create Boolean programs that abstract the
original program. Boolean programs are characterized as imperative programs
with procedure calls and only Boolean variables (and no heap). The Boolean
programs produced as a result of predicate abstraction have one Boolean vari-
able per predicate that tracks the value of that predicate in the program. SLAM
creates successive approximations of the original program by adding more pred-
icates. We show the utility of error projections for abstraction refinement.

First, we describe the SLAM refinement process. In Fig. 2, the property of
interest is the assertion on line 10. We want to verify that line 10 is never reached
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(because the assertion always fails). The first abstraction B1 is created without
any predicates. It only reflects the control structure of P . Reachability analysis
on B1 (assuming getUnit is program entry) shows that the assertion is reach-
able. This results in a counterexample, whose subsequent analysis reveals that
the predicate {numUnits = 0} is important. Program B2 tracks that predicate
using variable nU0. Reachability analysis on B2 reveals that the assertion is still
reachable. Now predicate {canEnter = T} is added, to produce B3, which tracks
the predicate’s value using variable cE. Reachability analysis on B3 reveals that
the assertion is not reachable, hence it is not reachable in P .

The advantage of using error projections is that the whole program need
not be abstracted when a new predicate is added. Analysis on B1 and B2 fails
to prove that the whole program is correct, but error projections may reveal
that at least some part of the program is correct. The parts outside the error
projections (and hence correct) are shaded in the figure. Error projection on B1

shows that line 11 cannot contribute to the bug, and need not be considered
further. Therefore, when constructing B2, we need not abstract that statement
with the new predicate. Error projection on B2 further reveals that lines 3 to 6
and line 7 do not contribute to the bug (the empty else branch to the conditional
at line 3 still can). Thus, when B3 is constructed, this part need not be abstracted
with the new predicate. B3, with the shaded region of B2 excluded, reduces to a
very simple program, resulting in reduced effort for its construction and analysis.

Annotated error projections can further reduce the analysis cost. Suppose
there was some code between lines 1 and 2, possibly relevant to proving the
program to be correct, that does not modify numUnits. After constructing B2,
the annotated error projection would tell us that in this region of code, nU0 can
be assumed to be true, because otherwise the assertion cannot be reached. This
might save half of the theorem prover calls needed to abstract that region of
code when using multiple predicates.

While this example did not require an interprocedural analysis, placing any
piece of code inside a procedure would necessitate its use. Because Boolean
programs are a common abstract model used by model checkers, we devise tech-
niques to compute error projections precisely and efficiently on them. For this,
we use weighted pushdown systems.

3 Preliminary Definitions

Definition 1. A pushdown system (PDS) is a triple P = (P, Γ,Δ) where P
is a finite set of states, Γ a finite stack alphabet, and Δ ⊆ P × Γ × P × Γ ∗ a
finite set of rules. A configuration c is a pair 〈p, u〉 where p ∈ P and u ∈ Γ ∗.
The pushdown rules define a transition relation ⇒ on configurations as follows:
If r = 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ Δ, then 〈p, γu〉 ⇒ 〈p′, γ′u〉 for all u ∈ Γ ∗. The reflexive
transitive closure of⇒ is denoted by⇒∗. For a set of configurations C, we define
pre∗(C) = {c′ | ∃c ∈ C : c′ ⇒∗ c} and post∗(C) = {c′ | ∃c ∈ C : c⇒∗ c′}.

Without loss of generality, we restrict PDS rules to have at most two stack
symbols on the right-hand side.
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A PDS is capable of encoding control flow in a program with procedures.
The stack of the PDS simulates the run-time stack of the program, which stores
return addresses of unfinished procedure calls, with the current program location
on the top of the stack. A procedure call is modeled by a PDS rule with two
stack symbols on the right-hand side: it pushes the return address on the stack
before giving control to the called procedure. Procedure return is modeled by a
PDS rule with no stack symbols on the right-hand side: it pops off the top of
the stack and returns control to the address on the top of the stack. With such
a PDS, the transition relation ⇒∗ captures paths in the program with matched
calls and returns [21,22].

Because the number of configurations of a PDS is unbounded, it is useful to
use finite automata to describe certain infinite sets of configurations.

Definition 2. If P = (P, Γ,Δ) is a pushdown system then a P-automaton
is a finite automaton (Q,Γ,→, P, F ) where Q ⊇ P is a finite set of states,
→⊆ Q × Γ × Q is the transition relation, P is the set of initial states, and
F is the set of final states. We say that a configuration 〈p, u〉 is accepted by a
P-automaton if the automaton can accept u when it is started in the state p
(written as p

u−→∗ q, where q ∈ F ). A set of configurations is regular if some
P-automaton accepts it.

If C is a regular set of configurations then both post∗(C) and pre∗(C) are also
regular sets of configurations [10,4,22]. The algorithms for computing post∗ and
pre∗ take a P-automaton A as input, and if C is the set of configurations ac-
cepted by A, they produce automata Apost∗ and Apre∗ that accept the set of
configurations post∗(C) and pre∗(C), respectively. In the rest of this paper, all
configuration sets are regular.

A weighted pushdown system (WPDS) is a PDS augmented with a weight do-
main that is a bounded idempotent semiring [5,21]. The weight domain describes
an abstraction with certain algebraic properties.

Definition 3. A bounded idempotent semiring is a quintuple (D,⊕,⊗, 0, 1),
where D is a set whose elements are called weights, 0 and 1 are elements of D,
and ⊕ (the combine operator) and ⊗ (the extend operator) are binary operators
on D such that

1. (D,⊕) is a commutative monoid with 0 as its neutral element, and where ⊕
is idempotent. (D,⊗) is a monoid with the neutral element 1.

2. ⊗ distributes of ⊕, i.e. for all a, b, c ∈ D we have a⊗(b⊕c) = (a⊗b)⊕(a⊗c)
and (a⊕ b)⊗ c = (a⊗ c)⊕ (b ⊗ c).

3. 0 is an annihilator with respect to ⊗, i.e. for all a ∈ D, a⊗ 0 = 0 = 0⊗ a.
4. In the partial order � defined by ∀a, b ∈ D, a � b ⇐⇒ a⊕ b = b, there are

no infinite ascending chains.

In abstract-interpretation terminology, weights can be thought of as abstract
transformers, ⊗ as transformer composition, and ⊕ as join. A WPDS is a PDS
augmented with an abstraction (weights) and can be thought of as an abstract
model of a program.



206 A. Lal et al.

Definition 4. A weighted pushdown system is a triple W = (P ,S, f) where
P = (P, Γ,Δ) is a pushdown system, S = (D,⊕,⊗, 0, 1) is a bounded idempotent
semiring and f : Δ→ D is a map that assigns a weight to each pushdown rule.

Let σ ∈ Δ∗ be a sequence of rules. Using f , we can associate a value to σ, i.e.
if σ = [r1, . . . , rk], then pval(σ) = f(r1) ⊗ . . . ⊗ f(rk). Moreover, for any two
configurations c and c′, if σ is a rule sequence that transitions c to c′ then we say
c⇒σ c′. Reachability problems on PDSs are generalized to WPDSs as follows:

Definition 5. Let W = (P ,S, f) be a WPDS, where P = (P, Γ,Δ), and let
S, T ⊆ P × Γ ∗ be regular sets of configurations. Then the join-over-all-paths
value JOP(S, T ) is defined as

⊕
{pval(σ) | s⇒σ t, s ∈ S, t ∈ T }.

A PDS is a WPDS with the Boolean weight domain ({1, 0},⊕,⊗, 0, 1) and f(r) =
1 for all rules r ∈ Δ. (JOP(S, T ) = 1 iff a configuration in S can reach a
configuration in T .) In §5 we use the weight domain of all binary relations on a
finite set:

Definition 6. Let V be a finite set. A relational weight domain on V is
defined as the semiring (D,⊕,⊗, 0, 1) where D = P(V × V ) is the set of all
binary relations on V , ⊕ is union, ⊗ is relational composition, 0 is the empty
set, and 1 is the identity relation.

Such domains are useful for describing finite abstractions, e.g., predicate abstrac-
tion, abstraction of Boolean programs, and finite-state safety properties (a short
discussion can be found in [16]). In predicate abstraction, v ∈ V would be a fixed
valuation of the predicates, which in turn represents all memory configurations
in which that valuation holds. Weights are transformations on these states that
represent the abstract effect of executing a program statement. They can usually
be represented succinctly using BDDs. (This is the essence of Schwoon’s Moped

system [22]).
For the program shown in Fig. 1 and an 8-bit integer abstraction (explained in

§2), the WPDS uses a relational weight domain over the set V = {0, 1, · · · , 255}.
The weight {( , 5)} is shorthand for the set {(i, 5) | i ∈ V }; {(i, i + 1)} stands
for {(i, i+1) | i ∈ V } (with saturated arithmetic); and id stands for the identity
relation on V .

Solving for the JOP value in WPDSs. There are two algorithms for finding
the JOP value, called poststar and prestar, based on forward and backward
reachability, respectively [21]. These algorithms operate on weighted automata
defined as follows.

Definition 7. Given a WPDS W = (P ,S, f), a W-automaton A is a P-
automaton, where each transition in the automaton is labeled with a weight. The
weight of a path in the automaton is obtained by taking an extend of the weights
on the transitions in the path in either a forward or backward direction. The
automaton is said to accept a configuration c = 〈p, u〉 with weight w, written as
A(c), if w is the combine of weights of all accepting paths for u starting from state
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p in the automaton. We call the automaton a backward W-automaton if the
weight of the path is read backwards and a forward W-automaton otherwise.

For simplicity, we call a W-automaton a weighted automaton. The poststar
algorithm takes a backward weighted automaton A as input and produces an-
other backward weighted automaton poststar(A), such that poststar(A)(c) =⊕
{A(c′) ⊗ pval(σ) | c′ ⇒σ c}. Similarly, the prestar algorithm takes a for-

ward weighted automaton A and produces prestar(A) such that prestar(A)(c) =⊕
{pval(σ)⊗A(c′) | c⇒σ c′}.
We briefly describe how the prestar algorithm works. The interested reader is

referred to [21] for more details, and an efficient implementation of the algorithm.
The algorithm takes a weighted automatonA as input, and adds weighted transi-
tions to it until no more can be added. The addition of transitions is based on the
following rule: for a WPDS rule r = 〈p, γ〉 ↪→ 〈q, γ1γ2 · · · γn〉 with weight f(r) and
transitions (q, γ1, q1), (q1, γ2, q2), · · · , (qn−1, γn, qn) with weights w1, w2, · · · , wn,
add the transition (p, γ, qn) to A with weight w = f(r) ⊗ w1 ⊗ · · · ⊗ wn. If this
transition already exists with weight w′, change the weight to w ⊕ w′. This al-
gorithm is based on the intuition that if the automaton accepts configurations
c and c′ with weights w and w′, respectively, and rule r allows the transition
c′ ⇒ c, then the automaton is changed to accept c′ with weight w′⊕ (f(r)⊗w).
Termination follows from the fact that the number of states of the automaton
does not increase (hence, the number of transitions is bounded), and that the
weight domain satisfies the ascending-chain condition.

An important algorithm for reading out weights from weighted automata
is called path summary defined as follows: path summary(A) = ⊕{A(c) | c ∈
P × Γ ∗}. We briefly outline this algorithm for a forward weighted automa-
ton. It is based on a standard fixpoint-finding algorithm. It associates a weight
l(q) to each state q of A: Initialize the weight of each non-initial state in A
to 0 and each initial state to 1; add each initial state to a worklist. Next,

n id
r1 {(_,5)}

r2 {(_,8)}

r3 {(_,9)}

n id r1 {(8,10)}

r2 {(7,10)}

r3 {(9,10)}

Fig. 3. Parts of the poststar and
prestar automaton, respectively

repeatedly remove a state, say q, from the
worklist and propagate its weight forwards:
i.e., if there is a transition (q, γ, q′) with weight
w, then update the weight of state q′ as
l(q′) := l(q′) ⊕ (l(q) ⊗ w); if the weight on
q′ changes, then add it to the worklist. This
is repeated until the worklist is empty. Then
path summary(A) is the combine of l(q) for
each final state q.

Using path summary, we can calculate A(C) =
⊕
{A(c) | c ∈ C} as fol-

lows: Let AC be an (unweighted) automaton that accepts C. Intersect A and
AC to obtain a weighted automaton A′.1 Then it is easy to see that A(C) =
path summary(A′). Using this, we can solve for JOP. Let AS and AT be (un-
weighted) automata that accept the sets S and T , respectively. Then JOP(S, T )
1 Intersection of a weighted automaton with an unweighted one is carried out the

same way as for two unweighted automata, except that the weights of the weighted
automaton are copied over to the resultant automaton.
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= poststar(AS)(T ) = prestar(AT )(S). For the program shown in Fig. 1, parts
of the automata produced by poststar({start}) and prestar(error Γ ∗) are
shown in Fig. 3 (only the part important for node n is shown).2 Using these,
we get JOP({start}, n Γ ∗) = {( , 5), ( , 8), ( , 9)} and JOP(n Γ ∗, error Γ ∗) =
{(7, 10), (8, 10), (9, 10)}. Here, (γ Γ ∗) stands for the set {γ c | c ∈ Γ ∗}.

4 Computing an Error Projection

Let us now define an error projection using WPDSs as our model of programs.
Usually, a WPDS created from a program has a single PDS state. Even when
this is not the case, the states can be pushed inside the weights to get a single-
state WPDS. We use this to simplify the discussion: PDS configurations are just
represented as stacks (Γ ∗).

Also, we concern ourselves with assertion checking. We assume that we are
given a target set of control configurations T such that the program model
exhibits an error only if it can reach a configuration in that set. One way of
accomplishing this is to convert every assertion of the form “assert(E)” into
a condition “if(!E) then goto error” (assuming !E is expressible under the
current abstraction), and instantiate T to be the set of configurations (error Γ ∗).
We also assume that the weight abstraction has been constructed such that a
path σ in the PDS is infeasible if and only if its weight pval(σ) is 0. Therefore,
under this model, the program has an error only when it can reach a configuration
in T with a path of non-0 weight.

Definition 8. Given S, the set of starting configurations of the program, and a
target set of configurations T , a program node γ ∈ Γ is in the error projection
EP(S, T ) if and only if there exists a path σ = σ1σ2 such that pval(σ) �= 0 and
s⇒σ1 c⇒σ2 t for some s ∈ S, c ∈ γΓ ∗, t ∈ T .

We calculate the error projection by computing a constrained form of the join-
over-all-paths value, which we call a weighted chopping query.

Definition 9. Given regular sets of configurations S (source), T (target), and
C (chop); a weighted chopping query is to compute the following weight:

WC(S,C, T ) =
⊕
{v(σ1σ2) | s⇒σ1 c⇒σ2 t, s ∈ S, c ∈ C, t ∈ T }

It is easy to see that γ ∈ EP(S, T ) if and only if WC(S, γ Γ ∗, T ) �= 0.
We now show how to solve these queries. First, note that WC(S,C, T ) �=
JOP(S,C) ⊗ JOP(C, T ). For example, in Fig. 1, if foo was not called from c3,
and S = {start}, T = (error Γ ∗), C = (n Γ ∗) then JOP(S,C) = {( , 5), ( , 8)}
and JOP(C, T ) = {(7, 10), (8, 10)}, and their extend is non-empty, whereas
WC(S,C, T ) = ∅. This is exactly the problem mentioned in §2.
2 Intuitively, for the poststar automaton, the weight on a transition labeled with γ is

the net transformer to go from the entry of the procedure containing γ to γ. For the
prestar automaton, it is the transformer to go from γ to the exit of the procedure.
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A first attempt at solving weighted chopping is to use the identity
WC(S,C, T ) =

⊕
{JOP(S, c) ⊗ JOP(c, T ) | c ∈ C}. However, this only works

when C is a finite set of configurations, which is not the case if we want to com-
pute an error projection. We can solve this problem using the automata-theoretic
constructions described in the previous section. Let AS be an unweighted au-
tomaton that represents the set S, and similarly for AC and AT . The following
two algorithms, given in different columns, are valid ways of solving a weighted
chopping query.

1. A1 = poststar(AS)
2. A2 = (A1 ∩ AC)
3. A3 = poststar(A2)
4. A4 = A3 ∩AT

5. WC(S,C, T ) = path summary(A4)

1. A1 = prestar(AT )
2. A2 = (A1 ∩AC)
3. A3 = prestar(A2)
4. A4 = A3 ∩ AS

5. WC(S,C, T ) = path summary(A4)

The running time is only proportional to the size of AC , not the size of the
language accepted by it. A proof of correctness can be found in [15].

An error projection is computed by solving a separate weighted chopping
query for each node γ in the program. This means that the source set S and the
target set T remain fixed, but the chop set C keeps changing. Unfortunately, the
two algorithms given above have a major shortcoming: only their first steps can
be carried over from one chopping query to the next; the rest of the steps have
to be recomputed for each node γ. As shown in §6, this approach is very slow,
and the algorithm discussed next is about 3 orders of magnitude faster.

To derive a better algorithm for weighted chopping that is more suited for
computing error projections, let us first look at the unweighted case (i.e., the
weighted case where the weight domain just contains the weights 0 and 1). Then
WC(S,C, T ) = 1 if and only if (post∗(S) ∩ pre∗(T )) ∩ C �= ∅. This procedure
just requires a single intersection operation for different chop sets. Computation
of both post∗(S) and pre∗(T ) have to be done just once. We generalize this
approach to the weighted case.

First, we need to define what we mean by intersecting weighted automata.
Let A1 and A2 be two weighted automata. Define their intersection A1 � A2

to be a function from configurations to weights, which we later compute in the
form of a weighted automaton, such that (A1 �A2)(c) = A1(c)⊗A2(c).3 Define
(A1 �A2)(C) =

⊕
{(A1 �A2)(c) | c ∈ C}, as before. Based on this definition, if

Apost∗ = poststar(AS) and Apre∗ = prestar(AT ), then WC(S,C, T ) = (Apost∗ �

Apre∗)(C).
Let us give some intuition into why intersecting weighted automata is hard.

For A1 and A2 as above, the intersection is defined to read off the weight from
A1 first and then extend it with the weight from A2. A naive approach would be
to construct a weighted automaton A12 as the concatenation of A1 and A2 (with
epsilon transitions from the final states of A1 to the initial states of A2) and let

3 Note that the operator � is not commutative is general, but we still call it intersection
because the construction of A1 �A2 resembles the one for intersection of unweighted
automata.
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(A1 �A2)(c) = A12(c c). However, computing (A1 �A2)(C) for a regular set C
requires computing join-over-all-paths in A12 over the set of paths that accept
the language {(c c) | c ∈ C} because the same path (i.e., c) must be followed in
both A1 and A2. This language is neither regular nor context-free, and we do not
know of any method that computes join-over-all-paths over a non-context-free
set of paths.

The trick here is to recognize that weighted automata have a direction in
which weights are read off. We need to intersect Apost∗ with Apre∗ , where Apost∗

is a backward automaton and Apre∗ is a forward automaton. If we concatenate
these together but reverse the second one (reverse all transitions and switch
initial and final states), then we get a purely backward weighted automaton and
we only need to solve for join-over-all-paths over the language {(c cR) | c ∈ C}
where cR is c written in the reverse order. This language can be defined using
a linear context-free grammar with production rules of the form “X → γY γ”,
where X and Y are non-terminals. The following section uses this intuition to
derive an algorithm for intersecting two weighted automata.

Intersecting Weighted Automata. Let Ab = (Qb, Γ,→b, P, Fb) be a back-
ward weighted automaton and Af = (Qf , Γ,→f , P, Ff ) be a forward weighted
automaton. We proceed with the standard automata-intersection algorithm:
Construct a new automaton Abf = (Qb ×Qf , Γ,→, P, Fb × Ff ), where we iden-
tify the state (p, p), p ∈ P with p, i.e., the P -states of Abf are states of the
form (p, p), p ∈ P . The transitions of this automaton are computed by match-
ing on stack symbols. If tb = (q1, γ, q2) is a transition in Ab with weight wb

and tf = (q3, γ, q4) is a transition in Af with weight wf , then add transition
tbf = ((q1, q3), γ, (q2, q4)) to Abf with weight λz.(wb⊗ z⊗wf). We call this type
of weight a functional weight and use the capital letter W (possibly subscripted)
to distinguish them from normal weights. Functional weights are special func-
tions on weights: given a weight w and a functional weight W = λz.(w1⊗z⊗w2),
W (w) = (w1 ⊗ w ⊗ w2). The automaton Abf is called a functional automaton.

We define extend on functional weights as reversed function composition.
That is, if W1 = λz.(w1⊗ z ⊗w2) and W2 = λz.(w3⊗ z ⊗w4), then W1 ⊗W2 =
W2 ◦W1 = λz.((w3 ⊗w1)⊗ z ⊗ (w2 ⊗w4)), and is thus also a functional weight.
However, the combine operator, defined as W1 ⊕ W2 = λz.(W1(z) ⊕ W2(z)),
does not preserve the form of functional weights. Hence, functional weights do
not form a semiring. We now show that this is not a handicap, and we can still
compute Ab �Af as required.

Because Abf is a product automaton, every path in it of the form (q1, q2)
c−→∗

(q3, q4) is in one-to-one correspondence with paths q1
c−→∗ q3 inAb and q2

c−→∗ q4

inAf . Using this fact, we get that the weight of a path inAbf will be a function of
the form λz.(wb⊗z⊗wf ), where wb and wf are the weights of the corresponding
paths in Ab and Af , respectively. In this sense, Abf is constructed based on the
intuition given in the previous section: the functional weights resemble grammar
productions “X → γY γ” for the language {(c cR)} with weights replacing the
two occurrences of γ, and their composition resembles the derivation of a string
in the language. (Note that in “X → γY γ”, the first γ is a letter in c, whereas
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the second γ is a letter in cR. In general, the letters will be given different weights
in Ab and Af .)

Formally, for a configuration c and a weighted automaton A, define the pred-
icate accpath(A, c, w) to be true if there is an accepting path in A for c that
has weight w, and false otherwise (note that we only need the extend opera-
tion to compute the weight of a path). Similarly, accpath(A, C, w) is true iff
accpath(A, c, w) is true for some c ∈ C. Then we have:

(Ab �Af )(c) = Ab(c)⊗Af (c)
=
⊕
{wb ⊗ wf | accpath(Ab, c, wb), accpath(Af , c, wf )}

=
⊕
{wb ⊗ wf | accpath(Abf , c, λz.(wb ⊗ z ⊗ wf ))}

=
⊕
{λz.(wb ⊗ z ⊗ wf )(1) | accpath(Abf , c, λz.(wb ⊗ z ⊗ wf ))}

=
⊕
{W (1) | accpath(Abf , c,W )}

Similarly, we have (Ab � Af )(C) =
⊕
{W (1) | accpath(Abf , C,W )} =⊕

{W (1) | accpath(Abf ∩ AC , Γ ∗,W )}, where AC is an unweighted automa-
ton that accepts the set C, and this can be obtained using a procedure similar
to path summary. The advantage of the way we have defined Abf is that we can
intersect it with AC (via ordinary intersection) and then run path summary over
it, as we show next.

Functional weights distribute over (ordinary) weights, i.e., W (w1 ⊕ w2) =
W (w1)⊕W (w2). Thus, path summary(Abf ) can be obtained merely by solving an
intraprocedural join-over-all-paths over distributive transformers starting with
the weight 1, which is completely standard: Initialize l(q) = 1 for initial states,

n [id . z . id]
r1 [{(_,5)} . z . {(8,10)}]

r2 [{(_,8)} . z . {(7,10)}]

r3 [{(_,9)} . z . {(9,10)}]

Fig. 4. Functional automaton
obtained after intersecting the
automata of Fig. 3

and set l(q) = 0 for other states. Then, until
a fixpoint is reached, for a transition (q, γ, q′)
with weight W , update the weight on state q′ by
l(q′) := l(q′)⊕W (l(q)). Then path summary(Abf )
is the combine of the weights on the final states.
Termination is guaranteed because we still have
weights associated with states, and functional
weights are monotonic. Because of the properties
satisfied by Abf , we use Abf as a representation
for (Ab �Af ).

This allows us to solve WC(S,C, T ) = (Apost∗ � Apre∗)(C). That is, after
a preparation step to create (Apost∗ � Apre∗), one can solve WC(S,C, T ) for
different chop sets C just using intersection with AC followed by path summary,
as shown above. Fig. 4 shows an example. For short, the weight λz.(w1⊗z⊗w2) is
denoted by [w1.z.w2]. Note how the weights get appropriately paired for different
call sites.

It should be noted that this technique applies only to the intersection of a
forward weighted automaton with a backward one, because in this case we are
able to get around the problem of computing join-over-all-paths over a non-
context-free set of paths. We are not aware of any algorithms for intersecting
two forward or two backward automata; those problems remain open.
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5 Computing an Annotated Error Projection
An annotated error projection adds more information to an error projection by
associating each node in the error projection with (i) at least one counterexample
that goes through that node and (ii) the set of abstract stores (or memory
descriptors) that may arise on a path doomed to fail in the future. Due to space
constraints, we do not discuss the first part here. It can be found in [15].

For defining and computing the abstract stores for nodes in an error projec-
tion, we restrict ourselves to relational abstractions over a finite set. We can
only compute the precise set of abstract stores under this assumption. In other
cases, we can only approximate the desired set of abstract stores (the approxi-
mation algorithms are given in [15]). Note that the value of WC(S,C, T ) does
not say anything about the required set of abstract stores at C: for Fig. 1,
WC(S, n Γ ∗, T ) = {( , 10)} but the required abstract store at n is {9}.

Let V be a finite set of abstract stores and (D,⊕,⊗, 0, 1) the relational weight
domain on V , as defined in Defn. 6. For weights w,w1, w2 ∈ D, define Rng(w) to
be the range of w, Dom(w) to be the domain of w and Com(w1, w2) = Rng(w1) ∩
Dom(w2). For a node γ ∈ EP(S, T ), we compute the following subset of V : Vγ =
{v ∈ Com(pval(σ1), pval(σ2)) | s ⇒σ1 c ⇒σ2 t, s ∈ S, c ∈ γΓ ∗, t ∈ T }. If v ∈ Vγ ,
then there must be a path in the program model that leads to an error such that
the abstract store v arises at node γ.

An Explicit Algorithm. First, we show how to check for membership in the set
Vγ . Conceptually, we place a bottleneck at node γ, using a special weight, to see
if there is a feasible path that can pass through the bottleneck at γ with abstract
store v, and then continue on to the error configuration. Let wv = {(v, v)}. Note
that v ∈ Com(w1, w2) iff w1 ⊗ wv ⊗ w2 �= 0. Let Apost∗ = poststar(AS),Apre∗ =
prestar(AT ) andA� be their intersection. Then v ∈ Vγ iff there is a configuration
c ∈ γΓ ∗ such that JOP(S, c)⊗wv ⊗ JOP(c, T ) �= 0 or, equivalently, Apost∗(c)⊗
wv ⊗Apre∗(c) �= 0. To check this, we use the functional automaton A� again. It
is not hard to check that the following holds for any weight w:

Apost∗(c)⊗ w ⊗Apre∗(c) =
⊕
{W (w) | accpath(A�, c,W )}

Then v ∈ Vγ iff
⊕
{W (wv) | accpath(A�, γΓ ∗,W )} �= 0. This is, again, com-

putable using path summary: Intersect A� with an unweighted automaton ac-
cepting γΓ ∗, then run path summary but initialize the weight on initial states
with wv instead of 1.

This gives us an algorithm for computing Vγ , but its running time would
be proportional to |V |, which might be very large. In the case of predicate
abstraction, |V | is exponential in the number of predicates, but the weights
(transformers) can be efficiently encoded using BDDs. For example, the identity
transformer on V can be encoded with a BDD of size log |V |. To avoid losing
the advantages of using BDDs, we now present a symbolic algorithm.

A Symbolic Algorithm. Let Y = {yv | v ∈ V } be a set of variables.
We switch our weight domain from being V × V to V × Y × V . We write
weights in the new domain with superscript e. Intuitively, the triple (v1, y, v2)
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denotes the transformation of v1 to v2 provided the variable y is “true”. Com-
bine is still defined to be union and extend is defined as follows: we

1 ⊗ we
2 =

{(v1, y, v2) | (v1, y, v3) ∈ we
1, (v3, y, v2) ∈ we

2}. Also, 1e = {(v, y, v) | v ∈ V, y ∈
Y } and 0e = ∅. Define a symbolic identity ide

s as {(v, yv, v) | v ∈ V }. Let
Var(we) = {v | (v1, yv, v2) ∈ we for some v1, v2 ∈ V }, i.e., the set of values
whose corresponding variable appears in we. Given a weight in V × V , define
ext(w) = {(v1, y, v2) | (v1, v2) ∈ w, y ∈ Y }, i.e., all variables are added to the
middle dimension. We will use the middle dimension to remember the “history”
when composition is performed: for weights w1, w2 ∈ V × V , it is easy to prove
that Com(w1, w2) = Var(ext(w1) ⊗ ide

s ⊗ ext(w2)). Therefore, Vγ = Var(we
γ)

where, we
γ =

⊕
{ext(pval(σ1)) ⊗ ide

s ⊗ ext(pval(σ2)) | s ⇒σ1 c⇒σ2 t, s ∈ S, c ∈
γΓ ∗, t ∈ T }. This weight is computed by replacing all weights w in the func-
tional automaton with ext(w) and running path summary over paths accepting
γΓ ∗, and initializing initial states with weight ide

s. The advantages of this algo-
rithm are: the weight ext(w) can be represented using the same-sized BDD as
the one for w (the middle dimension is “don’t-care”); and the weight ide

s can be
represented using a BDD of size O(log |V |).

For our example, the weight we
n read off from the functional automaton shown

in Fig. 4 is {( , y9, 10)}, which gives us Vn = {9}, as desired.

6 Experiments

We added the error-projection algorithm to Moped [22], a program-analysis tool
that encodes Boolean programs as WPDSs and answers reachability queries on
them for checking assertions. The Boolean programs may be obtained after per-
forming predicate abstraction or from integer programs with a limited number of
bits to represent bounded integers. Although it uses a finite abstraction, the use
of weights to encode abstract transformers as BDDs is crucial for its scalability.
Because we can compute an error projection using just extend and combine, we
take full advantage of the BDD encoding.

We measured the time needed to solve WC(S, nΓ ∗, T ) for all program nodes n
using the algorithms from §4: one that uses functional automata and one based
on running two prestar queries (called the double-pre∗ method below). Although
we report the size of the error projection, we could not validate how useful it
was because only the model (and not the source code) was available to us.

The results are shown in Tab. 1. The table can be read as follows: the first five
columns give the program names, the number of nodes (or basic blocks) in the
program, error-projection size relative to program size, and times to compute
post∗(S) and pre∗(T ), respectively. The next two columns give the running time
for solving WC(S, nΓ ∗, T ) for all nodes n using functionals and using double-
pre∗, after the initial computation of post∗(S) and pre∗(T ) was completed. Be-
cause the double-pre∗ method is so slow, we did not run these examples to
completion; instead, we report the time for solving the weighted chop query for
only 1% of the blocks and multiply the resulting number by 100. The last two
columns compare the running time for using functionals (column six) against the
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Table 1. Moped results: The WPDSs are models of Boolean programs provided by S.
Schwoon. S is the entry point of the program, and T is the error configuration set. An
error projection of size 0% means that the program is correct.

WC(S, nΓ ∗, T ) Functional vs.
Prog Nodes Error Proj. post∗(S) pre∗(T ) Functional Double pre∗ Reach Double pre∗

iscsiprt16 4884 0% 79 1.8 3.5 5800 0.04 1657
pnpmem2 4813 0% 7 4.1 8.8 16000 0.79 1818
iscsiprt10 4824 46% 0.28 0.36 1.6 1200 2.5 750
pnpmem1 4804 65% 7.2 4.5 9.2 17000 0.79 1848
iscsi1 6358 84% 53 110 140 750000 0.88 5357
bugs5 36972 99% 13 2 170 85000 11.3 500

time taken to compute post∗(S) + pre∗(T ); and the time taken by the double-
pre∗ method. All running times are in seconds. The experiments were run on a
3GHz P4 machine with 2GB RAM.

Discussion. As can be seen from the table, using functionals is about three or-
ders of magnitude faster than using the double-pre∗ method. Also, as shown in
column eight, computation of the error projection compares fairly well with run-
ning a single forward or backward analysis (at least for the smaller programs). To
some extent, this implies that error-projection computation can be incorporated
into model checkers without adding significant overhead.

The sizes of the error projections indicate that they might be useful in model
checkers. Simple slicing, which only deals with the control structure of the pro-
gram (and no weights) produced more than 99% of the program in each case,
even when the program was correct.

The result for the last program bugs5, however, does not seem as encouraging
due to the large size of the error projection. We do not have the source code for
this program, but investigating the model reveals that there is a loop that calls
into most of the code, and the error can occur inside the loop. If the loop resets
its state when looping back, the error projection would include everything inside
the loop or called from it. This is because for every node, there is a path from
the loop head that goes through the node, then loops back to the head, with the
same data state, and then goes to error.

This seems to be a limitation of error projections and perhaps calls for similar
techniques that only focus on acyclic paths (paths that do not repeat a program
state). However, for use inside a refinement process, error projections still give
the minimal set of nodes that is sound with respect to the property being verified
(focusing on acyclic paths need not be sound, i.e., the actual path that leads to
error might actually be cyclic in an abstract model).

7 Additional Applications

The techniques presented in §4 and §5 give rise to several other applications of
our ideas in model checking. Let BW(wbot, γ) be the weight obtained from the
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functional automaton intersected with (γ Γ ∗) and bottleneck weight wbot (as
used in §5). This weight can be computed for all nodes γ in roughly the same
time as the error projection (which computes BW(1, γ)).

Multi-threaded programs. KISS [20] is a system that can detect errors in
concurrent programs that arise in at most two context switches. The two-context-
switch bound enables verification using a sequential model checker. To convert
a concurrent program into one suitable for a sequential model checker, KISS
adds nondeterministic function calls to the main method of process 2 after each
statement of process 1. Likewise it adds nondeterministic function returns after
each statement of process 2. It also ensures that a function call from process
1 to process 2 is only performed once. This technique essentially results in a
sequential program that mimics the behavior of a concurrent program for two
context switches.

Using our techniques, we can extend KISS to determine all of the nodes in
process 1 where a context switch can occur that leads to an error later in process
1. One way to do this is to use nondeterministic calls and returns as KISS does
and then compute the error projection. However, due to the automata-theoretic
techniques we employ, we can omit the extra additions. The following algorithm
shows how to do this:

1. Create A� = Apost∗ �Apre∗ for process 1.
2. Let A2 be the result of a poststar query from main for process 2. Let w =

path summary(A2); w represents the state transformation caused by the
execution steps spent in process 2.

3. For each program node γ of process 1, let wγ = BW(w, γ) be the weight
obtained from functional automaton A� of process 1. If wγ �= 0 then an
error can occur in the program when the first context switch occurs at node
γ in process 1.

Error reporting. The model checker SLAM [2] used a technique presented
in [1] to identify error causes from counterexample traces. The main idea was
to remove “correct” transitions from the error trace and the remaining transi-
tions indicate the cause of the error. These correct transitions were obtained
by a backward analysis from non-error configurations. However, no restrictions
were imposed that these transitions also be reachable from the entry point of
the program. Using annotated error projections, we can limit the correct transi-
tions to ones that are both forward reachable from program entry and backward
reachable from the non-error configurations.

8 Related Work

The combination of forward and backward analysis has a long history in abstract
interpretation, going back to Cousot’s thesis [8]. It has been also been used in
model checking [17] and in interprocedural analysis [13]. In the present paper,
we show how forward and backward approaches can be combined precisely in
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the context of interprocedural analysis performed with WPDSs; our experiments
show that this approach is significantly faster than a more straightforward one.

With model checkers becoming more popular, there has been considerable
work on explaining the results obtained from a model checker in an attempt to
localize the fault in the program [7,1]. These approaches are complimentary to
ours. They build on information obtained from reachability analysis performed
by the model checker and use certain heuristics to isolate the root cause of the
bug. Error projections seek to maximize information that can be obtained from
the reachability search so that other tools can take advantage of this gain in
precision. This paper focused on using error projections inside an abstraction
refinement loop. The third application in §7 briefly shows how they can be used
for fault localization. It would be interesting to explore further use of error
projections for fault localization.

Such error-reporting techniques have also been used outside model checking.
Kremenek et al. [14] use statistical analysis to rank counterexamples found by
the xgcc[9] compiler. Their goal is to present to the user an ordered list of
counterexamples sorted by their confidence rank.

The goal of both program slicing [23] and our work on error projection is
to compute a set of nodes that exhibit some property. In our work, the prop-
erty of interest is membership in an error path, whereas in the case of program
slicing, the property of interest is membership in a path along data and con-
trol dependences. Slicing and chopping have certain advantages—for instance,
chopping filters out statements that do not transmit effects from source s to
target t. These techniques have been generalized by Hong et al. [12], who show
how to perform more precise versions of slicing and chopping using predicate-
abstraction and model checking. However, their methods are intraprocedural,
whereas our work addresses interprocedural analysis.

Mohri et al. investigated the intersection of weighted automata in their work
on natural-language recognition [18,19]. For their weight domains, the extend
operation must be commutative. We do not require this restriction.
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Abstract. Thread-modular verification is a promising approach for the
verification of concurrent programs. Its high efficiency is achieved by
abstracting the interaction between threads. The resulting polynomial
complexity (in the number of threads) has its price: many interest-
ing concurrent programs cannot be handled due to the imprecision of
the abstraction. We propose a new abstraction algorithm for thread-
modular verification that offers both high degree precision and polyno-
mial complexity. Our algorithm is based on a new abstraction domain
that combines Cartesian abstraction with exception sets, which allow
one to handle particular thread interactions precisely. Our experimental
results demonstrate the practical applicability of the algorithm.

1 Introduction

Many software systems are built from concurrent components. The development
of such systems is a difficult and error prone task, since the programmer needs to
write code that correctly handles all possible interactions between multiple con-
current threads. Verification of multi-threaded software is a hard problem [11].
The number of states of multi-threaded programs grows exponentially with the
number of threads, which is called the state-explosion problem. There exist a
variety of techniques and tools for the verification of multi-threaded programs,
see e.g. [1, 2, 7, 6, 8, 14, 15, 16], which aim at reducing the number of states that
needs to be inspected to verify a property.

One promising approach to circumvent the state explosion problem is of-
fered by verification algorithms that reason about concurrent software modu-
larly. Modularity allows one to avoid the explicit construction of the global state
space by considering each thread in isolation, see e.g. [7, 9, 13]. The resulting
polynomial complexity (in the number of threads) has its price: many interesting
concurrent programs cannot be handled due to the imprecision of the abstrac-
tion [7]. For example, the existing thread-modular algorithms cannot prove the
mutual exclusion property of the following simple concurrent fragment, which
commonly appears in concurrent programs:

P1 ::

⎡
⎣ �1 : acquire lck

�2 : critical
�3 : release lck

⎤
⎦ ‖ P2 ::

⎡
⎣m1 : acquire lck

m2 : critical
m3 : release lck

⎤
⎦

Here, acquire lck waits until the lock variable lck becomes false and subse-
quently sets it to true. The call release lck sets the variable lck back to false.

H. Riis Nielson and G. Filé (Eds.): SAS 2007, LNCS 4634, pp. 218–232, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. Non-modular (∗) vs. thread-modular (∗∗) verification with exception set. We
consider the example program given in Section 1 scaled w.r.t. the number of concurrent
threads. Our algorithm retains polynomial complexity while gaining additional precision.

We observe that the root of the imprecision lies in the fact that the thread-
modular reasoning abstracts away crucial dependencies between local states of
different threads, which are necessary to establish the property.

We propose a new abstraction algorithm for thread-modular verification that
offers improved precision still within polynomial complexity. Our algorithm ex-
ploits the insight that we can prevent the undesired precision loss by preserving
dependencies between certain sets of local states. These dependencies would oth-
erwise be lost due to thread-modular abstraction. Stated in terms of abstraction,
we exclude some a priori fixed set of program states from the abstraction process,
and always treat them concretely. We refer to such sets as exception sets.

We formalize the notion of exception sets and their application in thread-
modular verification in the framework of abstract interpretation [3], where we
define a pair of abstraction and concretization functions that implement the appli-
cation of exception sets. Now, we can combine any existing abstract interpretation
with our exception set-based algorithm in a modular way, following [4]. In this pa-
per, we study the combination of exception sets and Cartesian abstraction. Our in-
terest in this combination is naturally motivated by the fact that thread-modular
verification algorithms implement Cartesian abstraction [13]. We provide efficient
algorithms for abstract interpretation in the combined abstraction, which retain
the polynomial run time of the reachability computation with Cartesian abstrac-
tion while gaining precision from the exception sets. We identify an interesting
class of concurrent programs for which our algorithm is precise and efficient. This
class is obtained by parameterizing the fragment above with respect to the number
of concurrent threads and the number of critical sections in per thread.

We implemented our algorithm for precise thread-modular verification, and
applied it on a series of benchmarks. The scalability of our implementation is
promising: by using exception sets we were able to increase the number of con-
current threads that can be handled by our implementation by an order of mag-
nitude, see Figure 1 and Section 6.

The main contributions of the paper consist of:

– an abstraction method with exception sets, which allows one to treat some
part of the state space without abstraction;

– an implementation of the exception set-based abstraction with polynomial
complexity in the number of threads and in the description of the exception
set;
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– an identification of a class of programs that allow verification in fully poly-
nomial time;

– an experimental evaluation of a set of benchmarks that provides practical
evidence for scalability of a prototype implementation.

The rest of the paper is organized as follows. First, we illustrate our approach
for precise thread-modular verification with exception sets on a simple exam-
ple. Section 3 formalizes abstraction and concretization with exception sets. In
Section 4, we formally describe the verification algorithm. We present the
class of programs on which our algorithm is precise and efficient in Section 5.
Section 6 describes our experimental evaluation. We discuss the related work
and conclude in Section 7. Some proofs are omitted due to the lack of space, and
can be found in [12].

2 Example: Peterson’s Algorithm

We illustrate our algorithm for the precise thread-modular verification on Pe-
terson’s mutual exclusion algorithm shown in Fig. 2. We wish to verify that at
most one thread is in its critical section at location D.

global x = y = turn = 0

P1 ::

⎡
⎢⎢⎢⎢⎣

A : x := 1;
B : turn := 1;
C : while(y and turn);

critical
D : x := 0; goto A;

⎤
⎥⎥⎥⎥⎦ ‖ P2 ::

⎡
⎢⎢⎢⎢⎣

A : y := 1;
B : turn := 0;
C : while(x and not turn);

critical
D : y := 0; goto A;

⎤
⎥⎥⎥⎥⎦

Fig. 2. Peterson’s mutual exclusion algorithm

First let us compute an over-approximation of the reachable states by applying
a thread-modular verification algorithm, e.g. [7]. The result is represented by the
following union of Cartesian products:

{000} ×{A} ×{A}
∪ {001} ×{A} ×{A}
∪ {010} ×{A} ×{A,B,C,D}
∪ {011} ×{A} ×{A,B,C,D}
∪ {100} ×{B,C,D} ×{A}
∪ {101} ×{B,C,D} ×{A}
∪ {110} ×{B,C,D} ×{A,B,C,D}
∪ {111} ×{B,C,D} ×{A,B,C,D} ,
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where abc (e.g. 011) denotes the shared part x = a ∧ y = b ∧ turn = c (e.g.
x = 0 ∧ y = 1 ∧ turn = 1). This over-approximation is too coarse. It contains
some states where both the first and the second thread are at their locations D,
namely (111, D,D) and (110, D,D) (i.e. x = y = turn = 1∧ pc1 = pc2 = D and
x = y = 1 ∧ turn = 0 ∧ pc1 = pc2 = D).

Now we apply our algorithm instead. It iteratively computes an over-
approximation of the reachable states, without losing the dependencies be-
tween the successors of the states contained in a given exception set. Let
E = {(110, B,D), (110, C, C), (111, D,B)} be the exception set.

We start the iteration with the initial state set X0 = {(000, A,A)}. We com-
pute the over-approximation of the set of states that are reachable from it in
one step, as follows. First, we take the smallest Cartesian product that contains
(000, A,A). This is again

{000} × {A} × {A} .

Then we make a step which is specific to our algorithm. We extend this set by
adding the elements of the exception set, which yields

X1 = {(000, A,A), (110, B,D), (110, C, C), (111, D,B)} .

For this set, we compute the image under the one-step reachability under post,
which is induced by the program, and add the initial element, which is in X0.
The resulting set is {(000, A,A), (010, A,B), (011, A,B), (100, B,A), (110, C, C),
(110, D,C), (111, C,D)}. Before over-approximating this set, we perform an-
other step that is specific to our algorithm. We subtract the exception set from
the result, which yields the set {(000, A,A), (010, A,B), (011, A,B), (100, B,A),
(110, D,C), (111, C,D)}. Then, for each shared part, we take the smallest Carte-
sian product that contains the local parts. This gives again the same set

{000} ×{A} ×{A}
∪ {010} ×{A} ×{B}
∪ {011} ×{A} ×{B}
∪ {100} ×{B} ×{A}
∪ {110} ×{D} ×{C}
∪ {111} ×{C} ×{D} .

At last, we restore the states which get excluded before over-approximations,
obtaining

X2 = {(000, A,A), (010, A,B), (011, A,B), (100, B,A), (110, B,D),
(110, C, C), (110, D,C), (111, C,D), (111, D,B)} .

We continue the fixpoint computation by applying the standard steps inter-
leaved with the specific steps. The standard steps are taking one-step-successors
and adding the initial states. The specific steps are subtracting the exception set
away, applying the over-approximation and adding the exception set back.
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The fixpoint of the described procedure is

X4 = {000} ×{A} ×{A}
∪ {001} ×{A} ×{A}
∪ {010} ×{A} ×{B,C,D}
∪ {011} ×{A} ×{B}
∪ {100} ×{B} ×{A}
∪ {101} ×{B,C,D} ×{A}
∪ {110} ×{B,D} ×{B,C}
∪ {111} ×{B,C} ×{B,C,D}
∪ {(110, B,D), (110, C, C), (111, D,B)} .

It is an inductive invariant of the program. Note that this over-approximation
doesn’t contain a state of the form ( , D,D), so mutual exclusion is proven.

3 Abstraction with Exception

In this section, we formalize the notion of exception set in the framework of
abstract interpretation [3]. In this setting, an exception set corresponds to an
element E, called exception element, of the concrete domain D such that E is ex-
cluded from the abstraction. Additionally, we also exclude all concrete elements
that are smaller than E from the abstraction, which follows the intuition that
any subset of the exception set should also be excluded from the abstraction.

Let (D,⊆) be a complete Boolean lattice and (D#,�) be a complete lattice.
Let E be an exception element, and Ec be its complement. We define “excep-
tional abstraction” and “exceptional concretization” maps

αE : D → D , αE(X) = X ∩ Ec ,

and

γE : D → D , γE(X) = X ∪ E .

Proposition 1. The pair (αE , γE) is a Galois Connection. Formally:

∀X,Y ∈ D : αE(X) ⊆ Y ⇔ X ⊆ γE(Y ) .

Let (α, γ) be a Galois Connection with α : D → D# and γ : D# → D such that
γ maps the bottom of D# to the bottom of D. The composition (α ◦αE , γE ◦ γ)
of the Galois Connections is again a Galois Connection. Let init ∈ D be any
element, and F be a monotone function. We obtain an abstract interpretation
algorithm that combines the abstraction (α, γ) with exception sets by computing
the least fixpoint

lfp (λY. α ◦ αE(init ∪ F ◦ γE ◦ γ(Y ))).

The concretization of this least fixpoint computed by applying γE ◦ γ over-
approximates the least fixpoint of λx. init∪Fx. Choosing E as its postfixed point
(i.e. init ⊆ E and FE ⊆ E) makes this concretization equal to this postfixed
fixpoint. So it is even possible to get exactly the least fixpoint of λx. init ∪ Fx.
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4 Precise Thread-Modular Verification

In this section, we formally present our method for thread-modular verification
of multi-threaded programs, which uses exception sets for preserving dependen-
cies between local states of different threads. We first describe multi-threaded
programs. Then we provide necessary details on Cartesian abstraction, which
is a basis for thread-modular verification. Finally, we describe how Cartesian
abstraction can be efficiently combined with exception sets.

4.1 Multi-threaded Programs

A multi-threaded program is a tuple

(Glob,Loc, (→i)n
i=1, init),

where Glob and Loc are any sets, each →i is a subset of (Glob × Loc)2 (for
1 ≤ i ≤ n) and init ⊆ Glob× Locn.

The meaning of different components of the multi-threaded program is the
following:

– Loc contains valuations of local variables (including the program counter) of
any thread, we call it the local store of the thread (without loss of generality
we assume that all threads have equal local stores);

– Glob contains valuations of shared variables, we call it the global store;
– the elements of States = Glob×Locn are called program states, the elements

of Q = Glob×Loc are called thread states, the projection on the global store
and the ith local store is the map

π{0,i} : 2States → 2Q, S !→ {(g, li) | (g, l) ∈ S} ;

– the relation →i is a transition relation of the ith thread (1 ≤ i ≤ n);
– init is a set of initial states.

The program is equipped with the usual interleaving semantics. This means that
if a thread makes a step, then it may change its own local variables and the global
variables but may not change the local variables of another thread; a step of the
whole program is a step of some of the threads. The successor operation maps a
set of program states to the set of their successors:

post : 2States → 2States

S !→ {(g′, l′) ∈ States | ∃ (g, l) ∈ S, i ∈ {1, ..., n} : (g, li)→i (g′, l′i)
and ∀ j �= i : lj = l′j}.

We are interested in proving safety properties of multi-threaded programs. Each
safety property can be encoded as a reachability property and each reachability
property can be encoded as reachability between a pair of states. So we are
interested in whether there is a computation of any length k ≥ 0 that starts in
an initial state and ends in a single user-given error state f , formally:

∃ k ≥ 0 : f ∈ postk(init) .
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The state explosion problem in context of multi-threaded programs amounts
to the fact that the number of program states is exponentially large in the
number of threads n. We don’t address the problem of growing state space due
to the number of variables, which is also common to sequential programs.

4.2 Cartesian Abstract Interpretation

Thread-modular verification applies Cartesian abstraction to achieve polynomial
complexity [13]. We briefly describe the necessary definitions below.

We present a concrete and an abstract domain and a Galois Connection be-
tween them that allows us to do abstract fixpoint checking. The definitions below
extend the standard notion of the dependence-free abstraction [5]:

D = 2States is the set underlying the concrete lattice,
D# = (2Glob×Loc)n is the set underlying the abstract lattice,
αcart : D → D#,

αcart(S) =
(
π{0,i}S

)n

i=1

is the abstraction map, which projects a set of program states to the tuple of
sets of thread states, so that the ith component of a tuple contains all states of
the ith thread that occur in the set of program states.

γcart : D# → D,
γcart(T ) = {(g, l) | ∀ i ∈ {1, ..., n} : (g, li) ∈ Ti}
is the concretization map that combines a tuple of sets of thread states to a set
of program of states by putting only those thread states together that have equal
global part.

The ordering on the concrete domain D is inclusion, the least upper bound is
the union ∪, the greatest lower bound is the intersection ∩, the complement Xc

of a set X .
The ordering on the abstract domain D# is the product ordering, i.e. T �

T ′ if and only if Ti ⊆ T ′
i for all i ∈ {1, ..., n}. The least upper bound � is

componentwise union, the greatest lower bound � is componentwise intersection.
Thus the abstract lattice is complete. The bottom element is the tuple of empty
sets ⊥ = (∅)n

i=1.
The pair of maps (αcart, γcart) is a Galois Connection, i.e. all S ∈ D,T ∈ D#

satisfy
αcart(S) � T iff S ⊆ γcart(T ) .

4.3 Exception Set as Union of Maximal Cartesian Products

Our implementation of Cartesian abstraction combined with exception sets re-
quires a suitable data structure for the representation of elements of the con-
crete and abstract domains. We analyze the representation of sets of tuples by
sets of Cartesian products, which leads to a polynomial implementation, see
Corollary 11.

We proceed by introducing some auxiliary propositions. Let D be any com-
plete lattice with order ≤. Let us fix some “generating” subset of D so that
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each element of D can be written as a join of some elements of the generating
subset. Further let Y ⊆ D be any set that contains the generating set so that
the supremum of each chain in Y belongs to Y .

For a ∈ D, an element y ∈ D is called a-maximal, if it is in Y , is less than or
equal to a and there is no other greater element of Y that is less than or equal
to a, formally:

y ∈ Y and y ≤ a and ¬∃ y′ ∈ Y : y < y′ ≤ a .

A set M is called maximized, if

M ⊆ Y and (∀ y ∈ Y : y ≤
∨

M ⇒ ∃ y′ ∈M : y ≤ y′) .

Proposition 2. Let a ∈ D. Then any element of Y less than or equal to a is
less than or equal to some a-maximal element.

Proposition 3. Each element a of the lattice can be represented as a join of
a unique maximized antichain. This maximized antichain contains exactly the
a-maximal elements.

Proposition 4. Each maximized set contains the unique maximized antichain
with the same join. Formally:

∀ maximized A ⊆ Y ∃1M ⊆ A : M is a maximized antichain and
∨

M =
∨

A .

Now let us consider the Cartesian products. Recall that a function is a set of
pairs so that for each first component there is exactly one second component.
For an index set I, a Cartesian product of sets Ai (i ∈ I) is the set of maps∏

i∈I Ai := {f : I → ∪i∈IAi | ∀ i ∈ I : f(i) ∈ Ai}. For a subset of indices
J ⊆ I the projection of a subset A ⊆

∏
i∈I Ai on the components J is πJA =

{f : J → ∪j∈JAj | ∃ g ∈ A : f ⊆ g}. A projection on a single index i ∈ I
is πiA = {a ∈ Ai | ∃ g ∈ A : (i, a) ∈ g}. For a natural number n, the set
An :=

∏n
i=1 A is the nth power of A.

Lemma 5. Let Ai, Bi be sets indexed by i ∈ I. Then
∏
i∈I

Ai ⊆
∏
i∈I

Bi ⇔ ((∀ i ∈ I : Ai ⊆ Bi) or ∃ i ∈ I : Ai = ∅) .

For the power set D = 2(Locn) of all tuples of length n, ordered by inclusion, Y
the set of all Cartesian products in D, and the set of singletons as a generating
subset, the assumption is satisfied: singletons are Cartesian products and the
union of a chain of Cartesian products is a Cartesian product.

By Proposition 3 every set of tuples can be represented as a union over a set of
Cartesian products, so that no two Cartesian products from this set are compa-
rable and this set is maximized. This is a crucial property for our representation
of the exception set.
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For a set of tuples A ⊆ Locn, i ∈ Nn and r ∈ Loc let us call

Ai,r = πNn\{i}{a ∈ A | ai = r}

a restriction of A (with parameters i, r). An (n− 1)-tuple lies in this set exactly
if, whenever r would be inserted at the ith position, the tuple would lie in A.
Since projection is monotonic, restrictions are monotonic also, i.e.

∀ A ⊆ B ⊆ Locn, i ∈ Nn, r ∈ Loc : Ai,r ⊆ Bi,r .

Lemma 6. Let a set A ⊆ Locn be represented as a maximized antichain M of
Cartesian products. Then for each i ∈ Nn, r ∈ Loc, the restriction Ai,r has a
representation as a union of a maximized antichain M ′ of Cartesian products
with no greater cardinality than |M |. If Loc is finite and Cartesian products
are stored componentwise, the elements of the new maximized antichain can be
computed in polynomial time in n, |Loc| and |M |.

In the following, we reduce the problem of computing the abstract parameter-
ized post to a simpler problem about the “standard” Cartesian abstraction and
concretization maps:

αc : 2(Locn) → (2Loc)n, αc(S) = (πiS)n
i=1 ,

γc : (2Loc)n → 2(Locn), γc(T ) =
n∏

i=1

Ti .

We call the elements of (2Loc)n Cartesian abstract elements. The set of Cartesian
products in Locn can be injected into the set of Cartesian abstract elements: a
nonempty Cartesian product is bijectively mapped to the tuple of its compo-
nents, the empty Cartesian product can be mapped to any tuple of sets among
which at least one set is empty (for n > 0).

For the rest of this section we assume that the local store is finite. Each
element of (2Loc)n is represented as a list of n entries, each entry is itself a list
of some elements from Loc.

Proposition 7. The question whether a Cartesian product is a subset of a set
of tuples can be solved in polynomial time.

Formally: there is an algorithm that computes the map

2(Locn) × (2Loc)n → Bool, (E,A) !→ γcA
?
⊆ E

where E is represented as a set M of Cartesian abstract elements so that γcM
is a maximized antichain and E =

⋃
γcM , in polynomial time in |M |, n and

|Loc|.

Proposition 8. The smallest Cartesian product that contains another Carte-
sian product without an exception set can be computed in polynomial time.
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Formally: there is an algorithm that computes the map

2(Locn) × (2Loc)n → (2Loc)n, (E,A) !→ αc(Ec ∩ γcA)

where E is represented as a set M of Cartesian abstract elements so that γcM
is a maximized antichain and E =

⋃
γcM , in polynomial time in |M |, n and

|Loc|.

Proof. Let E ⊆ Locn, A ∈ (2Loc)n. If γcA is empty (which holds iff Ai = ∅ for
some i ∈ Nn), then the return value is the tuple of empty sets. Otherwise all Ai

are nonempty.
Claim: All r ∈ Loc, i ∈ Nn satisfy the equivalence:

r ∈ (αc(Ec ∩ γcA))i ⇔ r ∈ Ai and
∏

j∈Nn\{i}
Aj �⊆ Ei,r .

To prove the “⇒” direction, let r ∈ (αc(Ec ∩ γcA))i = πi(Ec ∩ γcA). So there
is an n-tuple a ∈ Ec ∩

∏n
i=1 Ai with ai = r, thus r ∈ Ai. Moreover a �∈ E

and aj ∈ Aj (j ∈ Nn). So the (n − 1)-tuple a \ {(i, r)} ∈
∏

j∈Nn\{i} Aj , but
a \ {(i, r)} �∈ Ei,r .

To prove “⇐”, let r ∈ Ai and let a be an (n− 1)-tuple with a ∈
∏

j∈Nn\{i} Aj

and a �∈ Ei,r. Then a ∪ {(i, r)} �∈ E, but a ∪ {(i, r)} ∈
∏n

j=1 Aj = γcA. Thus
a ∪ {(i, r)} ∈ Ec ∩ γcA, hence r ∈ πi(Ec ∩ γcA) = (Ec ∩ γcA)i.

The claim is proven. By Lemma 6, for each i ∈ Nn, r ∈ Loc, there is a
maximized antichain M ′

i,r of Cartesian products with union Ei,r and compo-
nentwise representation of Cartesian products as Cartesian abstract elements,
computed in polynomial time. Since M ′

i,r is maximized, A′ ⊆M ′
i,r if and only if

∃ C ∈M ′
i,r : A′ ⊆ C for any Cartesian product A′, especially for

∏
j∈Nn\{i} Aj .

So all r ∈ Loc, i ∈ Nn satisfy the equivalence:

r ∈ (αc(Ec ∩ γcA))i ⇔ r ∈ Ai and ∀ C ∈M ′
i,r :

∏
j∈Nn\{i}

Aj �⊆ C .

Since M ′
i,r is generated in polynomial time and inclusion of Cartesian products

is polynomial-time by Lemma 5, all the components of the abstract element
αc(Ec ∩ γcA) are computable in polynomial time. ��

Now we go over to the domains used in program analysis, namely to D =
2States = 2Glob×Locn

and D# = (2Glob×Loc)n.

Proposition 9. The smallest abstract element that is greater than or equal to
the concretization of another abstract element without an exception set can be
computed in polynomial time.

Formally: Assume that for E ∈ D, each {l | (g, l) ∈ E} (for g ∈ Glob) is
represented a set of Cartesian abstract elements whose concretizations form a
maximized antichain and have {l | (g, l) ∈ E} (for g ∈ Glob) as a union. Then
computing the map

D ×D# → D#, (E,A) !→ αcart(Ec ∩ γcartA)
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needs polynomial time in n, |Loc|, |Glob| and the maximum cardinality of an
antichain.

Proof. Let A ∈ D# and E ∈ D. For each g ∈ Glob and i ∈ Nn let A
[g]
i :=

{l | (g, l) ∈ Ai} and A[g] :=
∏

i∈Nn
A

[g]
i . For all g ∈ Glob, l ∈ Locn we have:

((g, l) ∈ γcartA) iff (∀ i ∈ Nn : (g, li) ∈ Ai) iff (∀ i ∈ Nn : li ∈ A
[g]
i ) iff ((g, l) ∈

{g} ×
∏n

i=1 A
[g]
i = {g} ×A[g]). Thus

γcartA =
⋃

g∈Glob

(
{g} ×A[g]

)
. (1)

For g ∈ Glob, let E(g) = {l | (g, l) ∈ E}. Any g ∈ Glob and B ⊆ Locn satisfy
the equality:

({g} ×B) \E = {g} ×
(
B \ E(g)

)
. (2)

The map

β : Glob×
(
2Loc

)n → D#, (g, (Bi)n
i=1) !→ ({g} ×Bi)n

i=1

makes abstract elements from Cartesian abstract elements and is computable in
polynomial time. Any B ⊆ Locn satisfies the equation:

αcart({g} ×B) = ({(g, li) | l ∈ B})n
i=1 = ({g} × πiB)n

i=1 = β (g, αcB) . (3)

Now

αcart (Ec ∩ γcartA)
(1)
= αcart

⎛
⎝Ec ∩

⋃
g∈Glob

(
{g} ×A[g]

)⎞⎠ = [distributivity]

αcart

⎛
⎝ ⋃

g∈Glob

((
{g} ×A[g]

)
\ E

)⎞⎠ = [abstraction map is a join-morphism]

⊔
g∈Glob

αcart

((
{g} ×A[g]

)
\ E

)
(2)
=

⊔
g∈Glob

αcart

(
{g} ×

(
A[g] \ E(g)

))
(3)
=

⊔
g∈Glob

β
(
g, αc

((
γc

(
A

[g]
i

)n

i=1

)
\ E(g)

))
.

From Prop. 8 we know that αc

((
γc

(
A

[g]
i

)n

i=1

)
\ E(g)

)
is computable in poly-

nomial time in n and |Loc| and the maximum cardinality of an antichain; the
map β is also polynomial and the abstract join is also polynomial. ��

Proposition 10. Computing the best abstract post with exceptions takes poly-
nomial time.
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Formally: Assume that for E ∈ D, each {l | (g, l) ∈ E} (for g ∈ Glob) is
represented as a set of Cartesian abstract elements whose concretizations form
a maximized antichain and have {l | (g, l) ∈ E} as the union. Then computing
the map

D ×D# → D#, (E,A) !→ postE,cartA

takes polynomial time in n, |Loc|, |Glob| and the maximum size of an antichain
from the representation of E.

Corollary 11. Computing the least abstract fixpoint with exceptional Cartesian
abstraction and representation of E so that each {l | (g, l) ∈ Loc} is a union of
Cartesian products needs polynomial time.

Formally: Assume that for E ∈ D, each {l | (g, l) ∈ E} (for g ∈ Glob) is
represented as a set of Cartesian abstract elements whose concretizations form
a maximized antichain and have {l | (g, l) ∈ E} as the union. Then computing
the map

D ×D → D#, (E, init) !→ lfp (λX.αcartαE(init ∪ postγEγcartX))

needs polynomial time in n, |Loc|, |Glob|, in the cardinality of the largest an-
tichain and in |init|.

Note that if initial states are represented the same way as the exception set then
the run time is polynomial in the cardinality of the largest antichain from the
representation of init instead of |init|.

The whole algorithm can be viewed as a reduction to a polynomial number of
queries of the form “is a Cartesian product a subset of a fixed set” as in Prop. 7.
Each such query can be trivially answered given the representation of the fixed
set as a union of all maximal (w.r.t. inclusion) Cartesian products inside this
set.

5 Efficiently Handled Class

In this section, we describe a class of programs that can be efficiently verified by
our thread-modular verification algorithm with exception sets.

Each program in the class is generated by instantiating the schema shown
in Figure 3 with a fixed number n of threads and a fixed number m of critical
sections per thread.

Let the sets of locations InCrit contain all local states at critical locations
and NotInCrit be its complement:

InCrit = {l ∈ Loc | ∃k : l(pc) ∈ {&k
2 , &

k
3}}

NotInCrit = Loc \ InCrit

Further for 1 ≤ i ≤ n let

C(i) = NotInCrit i−1 × InCrit ×NotInCritn−i ,
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P1 ::

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 : acquire lck
�12 : critical
�13 : release lck
...
�m
1 : acquire lck

�m
2 : critical

�m
3 : release lck

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

‖ · · · ‖ Pn ::

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 : acquire lck
�12 : critical
�13 : release lck
...
�m
1 : acquire lck

�m
2 : critical

�m
3 : release lck

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 3. Schema for programs consisting of n concurrent threads with m critical sections
per thread, which admit efficient and precise thread-modular verification

and
M = {C(i) | i ∈ Nn} .

One can show that M is a maximized antichain. Now we choose

E =
⋃

g∈Glob,g(lck) �=0,C∈M

{g} × C

as an exception set. Checking the abstract fixpoint computed by parameterized
thread-modular algorithm proves mutual exclusion. Moreover, all antichains in
the representation of E have linear cardinality in n, so our algorithm consumes
polynomial time and space. We conclude that no state explosion occurs during
the application of our thread-modular algorithm.

6 Experiments

In this section we describe our experimental evaluation. We implemented the
algorithm described in Section 4 in OCaml by using the ordered set data struc-
ture from the standard library to represent sets. We applied our implementation
on a set of benchmark programs that we obtained by instantiating the schema
shown in Figure 3. We experimented with the number of threads ranging from
10 to 100. For each thread size, we run our tool on programs with 1, 3, 5, 7, and
9 critical sections per thread. The resulting run times, which we obtained on 2.8
Ghz CPU, are shown in Figure 4.

We observe that our theoretical claims are supported by the experiments.
The run time grows polynomially in the number of threads and in the number
of critical sections. This allows us to verify instances of the program that are
far beyond the reach of the algorithm that performs reachability computation
without abstraction. Note that no existing thread-modular algorithm can handle
the benchmark programs, due to the lack of precision.
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sec.

10 20 30 40 50 60 70 80 90 100
1 0.1 1.2 5.6 19 45 88 163 249 452 650
3 0.2 2.8 13 40 90 184 370 570 920 1423
5 0.3 5 26 72 186 359 675 1192 1901 3022
7 0.6 8.7 36 131 335 642 1158 1907 3374 5170
9 0.9 13.9 60 210 498 1052 1889 3160 4836 7328

Fig. 4. Experimental evaluation for the number of identical concurrent threads rang-
ing between 10 and 100, and number of critical sections per thread from the
set {1, 3, 5, 7, 9}. The table contains the run times, in seconds, for different combi-
nations of number of critical sections/threads. The curve ∗ shows the run time for
the exhaustive state exploration without abstraction for a single critical section (per
thread), and puts the scale into perspective.

7 Related Work and Conclusion

Cartesian abstraction, which is also known as “independent attribute method”,
is a classical abstraction means in program analysis [10]. To the best of our
knowledge, our application of Cartesian abstraction for the analysis of multi-
threaded programs has not been known before.

The thread-modular verification algorithm of [7] serves as a starting point
of our research, with the goals of improving its precision while retaining the
polynomial complexity. The relationship between the thread-modular algorithm
[7] and Cartesian abstraction provided a basis for the integration of exception
sets into the abstraction framework.

In this paper, we presented a thread-modular verification algorithm that of-
fers the polynomial complexity of the existing thread-modular approaches and
increased precision. Such combination allows one to verify new classes of con-
current programs. Our experimental evaluation of the algorithm has shown its
promising applicability.

The proposed algorithm is parameterized by an exception set, which deter-
mines the set of states that are excluded from the abstraction. We are currently
developing an algorithm that computes an adequate exception set automatically.
One possible direction is shown in Section 5.
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Modular Safety Checking for Fine-Grained
Concurrency
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Abstract. Concurrent programs are difficult to verify because the proof
must consider the interactions between the threads. Fine-grained concur-
rency and heap allocated data structures exacerbate this problem, because
threads interfere more often and in richer ways. In this paper we provide
a thread-modular safety checker for a class of pointer-manipulating fine-
grained concurrent algorithms. Our checker uses ownership to avoid in-
terference whenever possible, and rely/guarantee (assume/guarantee) to
deal with interference when it genuinely exists.

1 Introduction

Traditional concurrent implementations use a single synchronisation mechanism,
such as a lock, to guard an entire data structure (such as a list or a hash table).
This coarse-grained synchronisation makes it relatively easy to reason about
correctness, but it limits concurrency, negating some of the advantages of mod-
ern multi-core or multi-processor architectures. A fine-grained implementation
permits more concurrency by allowing multiple threads to access the same data
structure simultaneously. Of course, this makes it far harder to reason about
correctness.

There has been a lot of reseach [9,11,1,24,29] on verifying coarse-grained con-
current programs, but hardly any on verifying fine-grained concurrency. Re-
cently, we have presented a new logic, RGSep [28], and demonstrated its use
in precisely and concisely describing the inter-thread interference of fine-grained
concurrent algorithms—thus making the proof of fine-grained concurrent pro-
grams easier. The logic merges aspects from both rely/guarantee reasoning [15]
and concurrent separation logic [18,5], giving rise to simple, modular proofs
about algorithms with intricate concurrency and dynamic memory management.

The difficulty with RGSep [28] is that it is simply a logic: users of it must
manually prove their programs correct with pen and paper. In this paper, we
automated a suitable subset of RGSep and implemented a new modular tool
that automatically verifies safety properties of a class of intricate concurrent
algorithms.

Like ESC/Java [10] and Spec# [2], our tool symbolically simulates the code
and produces verification conditions that, if proved valid, imply that the program
is correct with respect to the user-supplied pre-/post-condition pair. In doing

H. Riis Nielson and G. Filé (Eds.): SAS 2007, LNCS 4634, pp. 233–248, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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so, our tool splits the state (heap) into thread-local state and shared state.
We maintain this partition throughout symbolic execution using assertions that
describe the partition between the local and the shared state. The assertions are
restricted to a subset of separation logic chosen to support a form of symbolic
execution, a decidable proof theory for symbolic heaps, and the inference of
frames for handling procedure calls [3]. Our prover starts with the precondition,
symbolically executes the code deriving a postcondition, and checks that this
implies the user-supplied postcondition.

In order to handle fine-grained concurrency modularly, we require the pro-
grammer to describe the interference between threads using lightweight anno-
tations. These take the form of actions done by the program; they are much
more concise than invariants and much easier to come up with. So far, our tool
checks only safety properties: in particular, data integrity, memory leaks, and
race-conditions.1 It does not check liveness properties like termination.

Our technical contributions are:

– to enrich the set of separation logic operators handled automatically
(see §2.1);

– a procedure for calculating the interference imposed by the environment,
which, given an assertion, computes a weaker assertion that is stable under
interference and, hence, valid to use in a rely-guarantee proof (see §2.3);

– a symbolic execution for RGSep assertions (see §2.4);
– an automatic safety checker specialised to list-manipulating programs; and
– verification of a series of fine-grained concurrent algorithms.

In Section 3, we describe the tool by example. In particular, we demonstrate a
verification of a lock-coupling list algorithm, which highlights (1) dynamic lock
allocation; (2) memory deallocation, including locks; and (3) non-nested locking.
In Section 4, we evaluate the performance of our tool.

2 The Analysis

2.1 RGSep Assertions

Our tool splits the state (heap) into thread-local state and shared state, hence
our assertions specify a state consisting of two heaps with disjoint domains:
the local heap (visible to a single thread), and the shared heap (visible to all
threads). Normal formulae, P , specify the local heap, whereas boxed formulae,
P , specify the shared heap.2 Note that boxes cannot be nested.

Our tool accepts assertions written in the following grammar:

A,B ::= E1=E2 | E1 �=E2 | E !→ ρ | lseg(E1, E2) | junk
P,Q,R, S ::= A | P ∨Q | P ∗Q | P −�Q | P �E1,...,En

p, q ::= p ∨ q | P ∗ Q

1 We allow racy interference where the user specifies it, but not elsewhere.
2 More generally, we support multiple disjoint regions of shared state, and boxes are

annotated with the name r of the region: P
r
. For clarity of exposition, we present

the analysis with respect to a single resource, and omit the subscript.
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where E is a pure expression, an expression that does not depend on the heap.
All variables starting with an underscore (e.g., x) are implicitly existentially
quantified. In the assertion P ∗Q, if X contains the set of existential free variables
of P and Q, then their scope is ∃X. P ∗ Q.

The first line contains the usual atomic assertions of separation logic: pure
predicates (that do not depend on the heap), heap cells (E !→ ρ), list segments
(lseg(E1, E2)), and junk. E !→ ρ asserts that the heap consists of a single memory
cell with address E and contents ρ, where ρ is a mapping from field names to
values (pure expressions); lseg(E1, E2) says that the heap consists of an acyclic
linked list segment starting at E1 and ending at E2; junk asserts the heap may
contain inaccessible state.

The second line contains operators for building larger formulae. Disjunction,
P ∨ Q, asserts that the heap satisfies P or Q. Separating conjunction, P ∗ Q,
asserts that the heap can be divided into two (disjoint) parts, one satisfying
P and the other satisfying Q. For notational convenience, we let pure for-
mulae (e.g., E1 = E2) hold only on the empty heap, and use only one con-
nective (∗) to express both ordinary conjunction for pure formulas3, and the
separating conjunction between heap formulas. The other two operators are
new.

– Septraction (−�) is defined as h |= (P −� Q) ⇐⇒ ∃h1 h2. h2 = h ∗ h1 and
h1 |= P and h2 |= Q. This operation can be thought of as subtraction or
differentiation, as it achieves the effect of subtracting heap h1 satisfying P
from the bigger heap h2 satisfying Q.

– The “dangling” operator P �D asserts that P holds and that all locations
in the set D are not allocated. This can be defined in separation logic as
P �(E1,...,En) ⇐⇒ P ∧ ¬((E1 !→ ) ∗ true) ∧ · · · ∧ ¬((En !→ ) ∗ true), but
it is better treated as a built-in assertion form, because it is much easier to
analyse than ∧ and ¬.

(For formal definitions and further detail, please see the technical report on the
logic [28].)

Finally, the third line introduces P ∗ Q , the novel assertion of RGSep, which
does not exist in separation logic. It asserts that the shared state satisfies Q and
that the local state is separate and satisfies P .

Extending any separation logic theorem prover to handle the dangling oper-
ator, �D, and septraction, −�, is relatively simple. The ‘dangling’ operator can
be eliminated from all terms (see Fig. 1), except for terms containing recursive
predicates, such as lseg. Recursive predicates require the dangling set D to be
passed as a parameter,

lsegitl,ρ(E1, E2, D) def=(E1 = E2) ∨ ∃x.E1 !→(tl=x, ρ)�D ∗ lsegitl,ρ(x,E2, D)

3 Technically, we write for example E1=E2 as an abbreviation for the separation logic
formula (E1=SLE2) ∧ emp, so that (E1=E2) ∗ P is equivalent to (E1=SLE2) ∧ P .
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(F �→ ρ)�D ⇐⇒ F = D ∗ (F �→ ρ)
where [F ={E1, . . . , En} def= F =E1 ∗ · · · ∗ F =En]

lsegitl,ρ(E, F, D′)�D ⇐⇒ lsegitl,ρ(E, F, D ∪ D′)
(P ∗ Q)�D ⇐⇒ P �D ∗ Q�D
(P ∨ Q)�D ⇐⇒ P �D ∨ Q�D

(E1 �→ ρ1) −� (E2 �→ ρ2) ⇐⇒ E1 = E2 ∗ ρ1 = ρ2

(E1 �→ tl=E2, ρ) −� lsegitl,ρ′(E, E′, D) ⇐⇒
E1 =0 ∗ E1 =D ∗ ρ=ρ′ ∗ lsegitl,ρ′(E, E1, D)�E′ ∗ lsegitl,ρ′(E2, E

′, D)�E1

where [ρ=ρ′ def= ∀f ∈ (dom(ρ) ∩ dom(ρ′)).ρ(f) = ρ′(f)]
(E �→ ρ) −� (P ∗ Q) ⇐⇒ P �E ∗ (E �→ ρ −� Q)

∨ (E �→ ρ −� P ) ∗ Q�E
(E �→ ρ) −� (P ∨ Q) ⇐⇒ (E �→ ρ −� P ) ∨ (E �→ ρ −� Q)

(P ∗ Q) −� R ⇐⇒ P −� (Q −� R)
(P ∨ Q) −� R ⇐⇒ (P −� R) ∨ (Q −� R)

Fig. 1. Elimination rules for P �D and septraction (−�)

We subscript the list segments with the linking field, tl, and any common
fields, ρ, that all the nodes in the list segment have.4 We omit the subscript
when the linking field is tl and ρ is empty. Unlike the definition of lseg, our
new definition is imprecise: lsegi(E,E, {}) describes both the empty heap and
a cyclic list. The imprecise definition allows us to simplify the theorem prover,
as the side-conditions for appending list segments are not needed. A precise
list segment, lseg(E1, E2), is just a special case our imprecise list segment,
lsegi(E1, E2, {E2}). Another benefit of the dangling operator is that some proof
rules can be strengthened, removing some causes of incompleteness. For in-
stance, the following application of the proof rule for deallocating a memory cell
{P ∗ x !→ } dispose(x) {P} can be strengthened by rewriting the precondition
and obtain {P �x ∗ x!→ } dispose(x) {P �x}. Similarly, we can eliminate the sep-
traction operator from P−�Q, provided P does not contain any lseg or junk pred-
icates (see Fig. 1). Had we allowed further inductive predicates, such as tree(E1),
we would have needed an additional rule for computing (E !→ ρ)−� tree(E1).

Finally, assertions containing boxes are always written in a canonical form,∨
i(Pi ∗ Qi ). Given an implication between formulas in this form, we can es-

sentially check implications between normal separation logic formulae, by the
following lemma:

(P 
 P ′) ∧ (Q 
 Q′) =⇒ (P ∗ Q 
 P ′ ∗ Q′ )

Furthermore, we can deduce from P ∗Q all the heap-independent facts, such as
x �= y, which are consequences of P ∗Q, since shared and local states are always
disjoint.

4 This is important for the lazy list algorithm, as the invariant involves a list where
all the nodes are marked as deleted (have a marked field set to 1).
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2.2 Interference Actions and Stability

RGSep assertions distinguish between the local and the shared state. Local state
belongs to a single thread and cannot be accessed by other concurrent threads.
Shared state, however, can be accessed by any thread; hence, the logic models
interference from the other threads.

In the style of rely/guarantee, we specify interference as a binary relation
between (shared) states, but represent it compactly as a set of actions (updates)
to the shared state. In this paper, we do not attempt to infer such actions;
instead, we provide convenient syntax for the user to define them.

Consider the following two action declarations:

action Lock(x) [x|->lk=0 ] [x|->lk=TID]
action Unlock(x) [x|->lk=TID] [x|->lk=0 ]

Each action has a name, some parameters, a precondition and a postcondition.
For instance, Lock(x) takes a location x whose lk field is zero, and replaces it
with TID, which stands for the current thread identifier (which is unique for each
thread and always non-zero). Crucially, the precondition and the postcondition
delimit the overall footprint of the action on the shared state. They assert that
the action does not modify any shared state other than x.

We abstract the behaviour of the environment as a set of actions. We say that
an assertion S is stable (i.e., unaffected by interference), if and only if, for all
possible environment actions Act, if S holds initially and Act executes then S
still holds at the end. Assertions about the local state are stable by construction,
because interference does not affect the local state. An assertion S about the
shared state is stable under the action P � Q, if and only if, the following
implication holds

(P −� S) ∗Q =⇒ S.

The formula (P −� S) ∗Q represents the result of executing the environment
action P � Q on the initial state S: that is to remove P from S and put back
Q in its place. This form of environment execution is reminiscent of the idea of
execution of specification statements [17]. The crucial difference here is that we
do not require the implication S ⇒ (P ∗ true) to hold, which would amount to
checking that the environment can execute P � Q on all the states described
by S.

2.3 Inferring Stable Assertions

Most often, the postcondition of a critical section obtained by symbolic execution
is not stable under interference; therefore, we must find a stable postcondition
which is weaker than the original.

Assume for the time being that the rely contains a single action Act with
precondition P and postcondition Q; later, we will address the general case.
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Mathematically, inferring a stable assertion from an unstable assertion S is a
straightforward fixpoint computation

S0 = S Sn+1 = Sn ∨ (P −� Sn) ∗Q,

where Sn is the result of at most n executions of Act starting from S. This
computation, however, does not always terminate, because the assertions can
contain an unbounded number of existentially quantified variables, and hence
the domain is infinite.

We approximate the fixpoint by using abstract interpretation. Our concrete
domain is the set of syntactic Smallfoot assertions, and our abstract domain is a
finite subset of normalised Smallfoot assertions that contain a bounded number
of existential variables. Both domains are lattices ordered by implication, with
true as " and false as ⊥; ∨ is join.

We have a lossy abstraction function α : Assertion→ RestrictedAssertion that
converts a Smallfoot assertion to a restricted assertion, and a concretisation
function γ : RestrictedAssertion → Assertion which is just the straightforward
inclusion (i.e., the identity) function. In our implementation, the abstraction
function α is computed by applying a set of abstraction rules, an adaptation
of the rules of Distefano et al. [8]. Our abstraction function ensures that any
existential variable in the final assertion is reachable from at least two normal
(program) variables. Hence, as there is a finite number of program variables
and field names, the number of existential variable is also finite. To do this, we
convert assertions such as x !→ y ∗ y !→ z into a list segment. The details are at
the end of this section. Nevertheless, the technique is parametric to any suitable
abstraction function.

The fixpoint can be computed in the abstract domain as follows:

S0 = α(S) Sn+1 = Sn ∨ α((P −� Sn) ∗Q).

In the general case we have n actions act1, . . . , actn. Two natural algorithms
are to interleave the actions during the fixpoint computation, or to stabilise one
action at a time. We found that the latter strategy gives better execution times.

We now present an example of stabilisation. Consider stabilising an assertion
x !→ lk = 0 ∗ y !→ lk = TID with the Lock and Unlock actions from Section 2.2.
Before stabilising, we replace variable TID in the specification of the actions with
a fresh existentially quantified variable tid, and add assumptions tid �= 0 and
tid �= TID. The idea is that any thread might be executing in parallel with our

thread, and all we know is that the thread identifier cannot be 0 (by a design
choice) and it cannot be TID (because TID is the thread identifier of our thread).
Stabilisation will involve the first and third rules in Figure 1. In most cases,
an inconsistent assertion would be generated by adding one of the following
equalities: 0 = 1, 0 = tid, TID = tid. In the following fixpoint computation we
do not list those cases.
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S0 ⇐⇒ α(x !→ lk = 0 ∗ y !→ lk = TID) = x !→ lk = 0 ∗ y !→ lk = TID
action lock

S1 ⇐⇒ S0 ∨ α( tid �= 0 ∗ tid �= TID ∗ x !→ lk = tid ∗ y !→ lk = TID)
⇐⇒ S0 ∨ ( tid �= 0 ∗ tid �= TID ∗ x !→ lk = tid ∗ y !→ lk = TID)
⇐⇒ tid �= TID ∗ x !→ lk = tid ∗ y !→ lk = TID

action lock
S2 ⇐⇒ S1 ∨ α( tid′ �= 0 ∗ tid′ �= TID ∗ x !→ lk = tid′ ∗ y !→ lk = TID)
⇐⇒ S1 ∨ ( tid′ �= 0 ∗ tid′ �= TID ∗ x !→ lk = tid′ ∗ y !→ lk = TID)
⇐⇒ ( tid �= TID ∗ x !→ lk = tid ∗ y !→ lk = TID)⇐⇒ S1

action unlock
S3 ⇐⇒ S2 ∨ α(x !→ lk = 0 ∗ y !→ lk = TID)
⇐⇒ S2 ∨ (x !→ lk = 0 ∗ y !→ lk = TID)
⇐⇒ S2

In this case, we do not need to stabilise with respect to lock again, since unlock
produced no changes.

Adaptation of Distefano et al.’s abstraction. We assume that variable
names are ordered, so that existential variables are smaller than normal variables.
We present an algorithm that abstracts a formula P = (A1 ∗ . . . An) where each
Ai is an atomic formula.

1. Rewrite all equalities E = F , so that E is a single variable, which is ‘smaller’
than all the variables in F .

2. For each equality E = F in P , substitute any other occurences of E in P by
F ; if E is an existential variable, discard the equality.

3. For each Ai describing a memory structure (i.e., a cell or a list segment)
starting at an existential address, find all other terms that can point to that
address. If there are none, Ai is unreachable; replace it with junk. If there
is only one, then try to combine them into a list segment. If there are more
than one, so Ai is shared, leave them as they are.
To combine two terms into a list segment, we use the following implication:

Ltl,ρ1(E1, x)�D1 ∗ Ltl,ρ2( x, E2)�D2 =⇒ lsegtl,ρ1∩ρ2
(E1, E2)�D1∩D2

where Ltl,ρ(E,F )�D is lsegtl,ρ(E,F )�D or E !→ (tl = F, ρ) ∗ E �= D. This
is a generalisation of Distefano et al.’s rule, because our list segments record
common fields ρ of nodes, and the set D of disjoint memory locations. In
addition, because our list segments are imprecise, we do not need Distefano
et al’s side condition that E2 is nil or allocated separately.

4. Put the formulae in a canonical order, by renaming their existential variables.
This is achieved by, first, ordering atomic formulas by only looking at their
shape, while ignoring the ordering between existential variables, and then,
renaming the existential variables based on the order they appear in the
ordered formula.
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If we simply ran this analysis as described above, we would lose too much in-
formation and could not prove even the simplest programs. This is because the
analysis would abstract x!→(lk=TID, tl= y)∗lseg( y, z) into lseg(x, z), forgetting
that the node x was locked! Instead, before we start the fixed point calculation,
we replace existential variables in such !→ assertions containing occurrences of
TID with normal variables to stop the abstraction rules from firing. As the num-
ber of normal variables does not increase during the fixpoint computation, the
analysis still terminates. At the end of the fixed point calculation, we replace
them back with existential variables. Our experiments indicate that this simple
heuristic gives enough precision in practice. We have also found that turning
dead program variables into existential variables before starting the fixed point
calculation significantly reduces the number of cases and speeds up the analysis.

2.4 Symbolic Execution of Atomic Blocks

We discharge verification conditions by performing a form of symbolic execu-
tion [16,3] on symbolic states, and then check that the result implies the given
postcondition. Symbolic heaps are formulae of the form

A1 ∗ . . . ∗Am ∗
∨

i B1,i ∗ . . . ∗Bni,i

where each Ai and Bi,j is an atomic formula. The A part of a symbolic heap de-
scribes the local state of the thread, and the B part – inside the box – describes
the shared part. We use disjunction for boxed assertions to represent more com-
pactly the result of stabilisation, and avoid the duplication of the shared part
for each disjunct. Symbolic states are finite sets of symbolic heaps, representing
their disjunction. This kind of setup is typical of work on shape analysis using
separation logic [8].

We allow operations to contain non-pure (accessing the heap) expressions in
guards and assignments, by translating them into a series of reads to temporary
variables followed by an assignment or a conditional using pure expressions, e.g.
assume(x->tl==0) would be translated to temp = x->tl; assume(temp==0),
for a fresh variable temp. We omit the obvious details of this translation.

Except for atomic blocks, the symbolic execution is pretty standard: the shared
component is just passed around. For atomic blocks more work is needed. We de-
scribe in detail the execution of an atomic block atomic(B){C} as Act(x) starting
from symbolic precondition X ∗ S . Intuitively, the command is executed atomi-
cally when the condition B is satisfied. The annotation as Act(x) specifies that
command C performs shared action Act with the parameter instantiated with x.
Suppose that Act was declared as action Act(x) [P] [Q]. Our task is to find the
postcondition Ψ in the following Hoare triple:

{X ∗ S } atomic(B) C as Act(x); {Ψ}
Our algorithm consists of 4 parts, corresponding to the premises of the following
inference rule.
{X∗S} assume(B) {X∗P∗F} {X∗P} C {X ′} X ′ 
 Q∗Y stab(Q∗F ) = R

{X ∗ S } atomic(B) C as Act(x); {Y ∗ R}
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Step 1. Add shared state S to the local state, and call the symbolic execution
and theorem prover to infer the frame F such that [X ∗S]assume(B)[X ∗P ∗
F ]. This step has the dual function of checking that the action’s precondition
P is implied, and also inferring the leftover state F , which should not be
accessed during the execution of C. The symbolic execution of assume(B)
removes cases where B evaluates to false. Notice that the evaluation of B can
access the shared state. If this step fails, the action’s precondition cannot be
met, and we report an error.

Step 2. Execute the body of the atomic block symbolically starting with X ∗P .
Notice that F is not mentioned in the precondition: because of the semantics
of Hoare triples in separation logic, this ensures that command C does not
access the state described by F , as required by the specification of Act.

Step 3. Call the theorem prover to infer the frame Y such that X ′ 
 Q ∗Y . As
before, this has the effect of checking that the postcondition Q is true at the
end of the execution, and inferring the leftover state Y . This Y becomes the
local part of the postcondition. If the implication fails, the postcondition of
the annotated action cannot be met, and we report an error.

Step 4. Combine the shared leftover F computed in the first step with the
shared postcondition Q, and stabilise the result Q ∗ F with respect to the
execution of actions by the environment as described in Section 2.2.

Precision. Similar to resource invariants of concurrent separation logic, RGSep
requires that R in the rule above is precise[19], or in the presence of memory leaks
supported. We postulate that checking for precision is unnecessary, if we drop
the rule of conjunction from RGSep, which we happen not to use in the analysis.
We are investigating a formal proof of soundness for that form of RGSep.

Read-only atomics. We have a simplified rule for read-only atomic regions that
does not require an action specification:

{S} C {X ′} stab(X ′) = R C is read-only.
{S } atomic C {R}

3 Example: Lock Coupling List

We demonstrate, by example, that our tool can automatically verify the safety of
a fine-grained concurrent linked list. We associate one lock per list node rather
than have a single lock for the entire list. The list has operations add which
adds an element to the list, and remove which removes an element from the list.
Traversing the list uses lock coupling: the lock on one node is not released until
the next node is locked. Somewhat like a person climbing a rope “hand-over-
hand,” you always have at least one hand on the rope.

Figure 2 contains the annotated input to our tool. Next, we informally describe
the annotations required, and also the symbolic execution of our tool. In the tool
the assertions about shared states are enclosed in [ ... ] brackets, rather than
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action Lock(x) [x|->lk=0,tl=_w ] [x|->lk=TID,tl=_w]
action Unlock(x) [x|->lk=TID,tl=_w] [x|->lk=0,tl=_w]
action Add(x,y) [x|->lk=TID,tl=_w] [x|->lk=TID,tl=y * y|->tl=_w]
action Remove(x,y) [x|->lk=TID,tl=y * y|->lk=TID,tl=_z] [x|->lk=TID,tl=_z]

ensures: [a!=0 *lseg(a,0)]
init() { a = new(); a->tl = 0; a->lk = 0; }

lock(x) { atomic(x->lk == 0) { x->lk = TID; } as Lock(x); }
unlock(x) { atomic { x->lk = 0; } as Unlock(x); }

requires: [a!=0 * lseg(a,0)]
ensures: [a!=0 * lseg(a,0)]
add(e) { local prev,curr,temp;
prev = a;

lock(prev);
�

(a)
atomic { curr = prev->tl; }

�
(b)

if (curr!=0)
atomic { temp = curr->hd; }

while(curr!=0 && temp<e) {
lock(curr);
unlock(prev);

�
(c)

prev = curr;
atomic { curr = prev->tl; }
if (curr!=0)
atomic { temp = curr->hd; }

}
temp = new();
temp->lk= 0;
temp->hd = e;
temp->tl = curr;

����
���

(d)

atomic { prev->tl = temp; }
as Add(prev,temp);

�
(e)

unlock(prev);
}

requires: [a!=0 * lseg(a,0)]
ensures: [a!=0 * lseg(a,0)]
remove(e) { local prev,curr,temp;

prev = a;
lock(prev);
atomic { curr = prev->tl; }
if (curr!=0)
atomic { temp = curr->hd; }

while(curr!=0 && temp!=e) {
lock(curr);
unlock(prev);
prev = curr;
atomic { curr = prev->tl; }
if (curr!=0)

atomic { temp = curr->hd; }
}
if (curr!=0) {
lock(curr);
atomic { temp = prev->tl; }
atomic { prev->tl = temp; }

as Remove(prev,curr);
dispose(curr);

��
� (f)

}
unlock(prev);

}

Fig. 2. Lock-coupling list. Annotations are in italic font.

a box. For example, in the assertion x|->hd=9 * [y|->hd=10], the cell at x is
local whereas that at y is shared.

Note that we calculate loop invariants with a standard fixed-point computa-
tion, which uses the same abstraction function as for stabilisation.

We proceed by explaining the highlighted parts of the verification (a)-(f).

Executing an atomic block (a). First, we illustrate the execution of an atomic
block by considering the first lock in the add function, following the rule in the
previous section. (Step 1) We execute the guard and find the frame.
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prev==a * a!=0 * lseg(a,0)
assume(prev->lk == 0);

prev==a * a!=0 * prev|->lk:0,tl:_z * lseg(_z,0)

The execution unrolls the list segment, because a!=0 ensures that the list is not
empty. Then, we check that the annotated action’s precondition holds, namely
prev|->lk=0,tl= w. (Any variable starting with an underscore, such as w, is an
existential variable quantified across the pre- and post-condition of the action.)
The checking procedure computes the leftover formula – the frame – obtained by
removing cell prev. For this atomic block the frame is lseg( z,0). The frame is
not used by the atomic block, and hence remains true at the exit of the atomic
block.

Next (Step 2), we execute the body of the atomic block starting with the
separate conjunction of the local state and the precondition of the action, so
prev==a * a!=0 * prev|->lk:0,tl: z * w= z in total. At the end, we get
prev==a * a!=0 * prev|->lk:TID,tl: z * w== z.

(Step 3) We try to prove that this assertion implies the postcondition of the
action plus some local state. In this case, all the memory cells were consumed by
the postcondition; hence, when exiting the atomic block, no local state is left.

(Step 4) So far, we have derived the postcondition [prev|->lk=TID,tl= z *
lseg( z,0)], but we have not finished. We must stabilise the postcondition to
take into account the effect of other threads onto the resulting state. Following
the fixed point computation of Section 2.3, we compute a weaker assertion that
is stable under interference from all possible actions of other threads. In this
case, the initial assertion was already stable.

Executing a read-only atomic block (b). The next atomic block only reads the
shared state without updating it. Hence, we require no annotation, as this action
causes no interference. Symbolic execution proceeds normally, allowing the code
to access the shared state. Again, when we exit the region, we need to stabilise
the derived post-condition.

Stabilisation (c). Next we illustrate how stabilisation forgets information. Con-
sider unlocking the prev node within the loop. Just before unlocking prev, we
have the shared assertion:

lseg(a, prev) ∗ prev!→(lk=TID, tl=curr) ∗ curr!→(lk=TID, tl= z) ∗ lseg( z, 0).

This says that the shared state consists of a list-segment from a to prev, two
adjacent locked nodes prev and curr, and a list segment from z to nil. Just
after unlocking the node, before stabilisation, we get:

lseg(a, prev) ∗ prev!→(lk=0, tl=curr) ∗ curr!→(lk=TID, tl= z) ∗ lseg( z, 0).

Stabilisation first forgets that prev→lk = 0, because another thread could have
locked the node; moreover, it forgets that prev is allocated, because it could
have been deleted by another thread. The resulting stable assertion is:

lseg(a, curr) ∗ curr!→(lk=TID, tl= z) ∗ lseg( z, 0).
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Local updates (d). Next we illustrate that local updates do not need to consider
the shared state. Consider the code after the loop in add. As temp is local, the
creation of the new cell and the two field updates affect only the local state.
These commands cannot affect the shared state. Additionally, as temp is local
state, we know that no other thread can alter it. Therefore, we get the following
symbolic execution:

[a!=0 * lseg(a,prev) * prev|->lk=TID,tl=curr * lseg(curr,0)]
temp = new(); temp->lk = 0; temp->val = e; temp->tl = z;

[a!=0 * lseg(a,prev) * prev|->lk=TID,tl=curr * lseg(curr,0)]
* temp|->lk=0,val=e,tl=curr

Transfering state from local to shared (e). Next we illustrate the transfer of state
from local ownership to shared ownership. Consider the atomic block with the
Add annotation:

[a!=0 * lseg(a,prev) * prev|->lk=TID,tl=curr * lseg(curr,0)]
* temp|->lk=0,tl=curr

atomic { prev->tl = temp } as Add(prev,temp);
[a!=0 * lseg(a,prev) * prev|->lk=TID,tl=temp

* temp|->tl=curr * lseg(curr,0)]

We execute the body of the atomic block starting with the separate conjunction
of the local state and the precondition of the action, so prev|->lk=TID,tl=curr
* temp|->lk=0,tl=curr in total. At the end, we get prev|->lk=TID,tl=temp
* temp|->lk=0,tl=prev and we try to prove that this implies the postcondi-
tion of the action plus some local state. In this case, all the memory cells were
consumed by the postcondition; hence, when exiting the atomic block, no local
state is left. Hence the cell temp is transferred from local state to shared state.

Transfering state from shared to local (f). This illustrates the transfer of state
from shared ownership to local ownership, and hence that shared state can safely
be disposed. Consider the atomic block with a Remove annotation.

[lseg(a,prev) * prev|->lk=TID,tl=curr
* curr|->lk=TID,tl=temp * lseg(temp,0)]

atomic { prev->tl = temp; } as Remove(x,y);
[lseg(a,prev) * prev|->lk=TID,tl=temp * lseg(temp,0)]

* curr|->lk=TID,tl=temp

Removing the action’s precondition from the shared state leaves the frame
lseg(a,prev) * lseg(temp,0). Executing the body with the action’s precon-
dition gives prev|->lk=TID,tl=temp * curr|->lk=TID,tl=temp and we try
to prove that this implies the postcondition of the action plus some local state.
The action’s postcondition requires prev|->lk=TID,tl=temp; so the remaining
curr|->lk=TID,tl=temp is returned as local state. This action has taken shared
state, accessible by every thread, and made it local to a single thread. Impor-
tantly, this means that the thread is free to dispose this memory cell, as no other
thread will attempt to access it.
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Program LOC LOA Act #Iter #Prover calls Mem(Mb) Time (sec)

lock coupling 50 9 4 365 3879 0.47 3.9
lazy list 58 16 6 246 8254 0.70 13.5
optimistic list 59 13 5 122 4468 0.47 7.1
blocking stack 36 7 2 30 123 0.23 0.06
Peterson’s 17 24 10 136 246 0.47 1.35

Fig. 3. Experimental results

[lseg(a,x) * x|->lk=TID,tl=z * lseg(z,0)] * y|->lk=TID,tl=z
dispose(y);

[lseg(a,x) * x|->lk=TID,tl=z * lseg(z,0)]

Summary. Our example has illustrated fine-grained locking, in particular

– dynamically allocated locks
– non-nested lock/unlock pairs
– disposal of memory (including locks)

Other examples we handle include optimistic reads from shared memory and
lazy deletions.

4 Experimental Results

Our implementation is based on SmallfootRG, our extension of the separation
logic tool called Smallfoot [4]. The tests were executed on a Powerbook G4
1.33 GHz with 786MB memory running OSX 10.4.8. The results are reported in
Figure 3. For each example we report: the number of lines of code (LOC) and
of annotation (LOA); the number of user-provided actions (Actions); the total
number of iterations for all the fixpoint calculations for stabilisation (#Iter); the
number of calls to the underlying theorem prover during stabilisation (#Prover
calls); the maximum memory allocated during execution (Mem (Mb)), and the
total execution time (Time (sec)).

We have tested our tool on a number of fine-grained concurrency examples.
The first three (lock coupling, lazy list, optimistic list), taken from [27], all
implement the data structure of a set as a singly linked list with a lock per node.

– lock coupling The main part of the algorithm was described in Section 3.
When traversing the list, locks are acquired and released in a “hand over
hand” fashion.

– lazy list An algorithm by Heller et al [13], which traverses the list without
acquiring any locks; at the end it locks the relevant node and validates the
node is still in the list. Deletions happen in two steps: nodes are first marked
as deleted, then they are physically removed from the list.

– optimistic list Similar to lazy list, it traverses the list without acquiring
any locks; at the end it locks the relevant node and re-traverses the list to
validate that the node is still in the list.
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The next two examples are simpler: blocking stack simply acquires a lock
before modifying the shared stack; and peterson [22] is a well-known mutual
exclusion algorithm.

We have a final example of Simpson’s 4Slot [26], which implements a wait-
free atomic memory cell with a single reader and a single writer. This algorithm
has been verified in both our tool, and Smallfoot. In our new tool it takes under
4 minutes, while in the original Smallfoot it took just under 25 minutes. Also,
the specification of the invariant for Smallfoot is over twice as long as the action
specification for our tool.5

Program Lines of Annotation Time (sec)
4Slot (our tool) 42 221
4Slot (Smallfoot) 80 1448

Smallfoot requires the same invariant about shared state at every program point.
Our tool calculates all the pertinent shared states at each atomic block, so when
it enters an atomic block it does not need to consider as many possibilities as
Smallfoot.

Apart from the 4Slot algorithm, we believe our tool takes an acceptable
amount of time to verify the algorithms discussed in this section. Our exam-
ples have demonstrated the disposal of memory (lock-coupling list and blocking
stack), the optimistic reading of values and leaking memory (lazy and optimistic
list algorithms), and classic mutual exclusion problems (Peterson’s and Simp-
son’s algorithm).

5 Conclusion and Related Work

The main challenge for automatic verification of thread-based concurrent pro-
grams is finding effective techniques to reason about the interference between
threads. Fine-grained concurrency and deep heap updates exacerbate the prob-
lems. Several techniques have been proposed to support modular reasoning in
the presence of concurrency. These include partial-order reduction [6], thread-
modular model checking [11], assume-guarantee reasoning [15], and spatial sep-
aration with concurrent separation logic [18,5,21].

Flanagan, Freund, Qadeer and Seshia [9] have a tool, called Calvin, which
uses rely/guarantee to reason about concurrent programs. It is built on top of
ESC/Java [10]. Unlike our tool, they must check interference on every instruction
as they do not have the dynamic partitioning between thread local and shared
state.

The Zing [1] model checker has been used to verify some simple fine-grained
concurrency examples [24]. The difficulty here is that the environment considered
(i.e., the inputs to the program and the actions of the surrounding environment)
must be modelled concretely due to the fact that Zing is an explicit-state rather

5 The specification for both could be simplified if Smallfoot directly supported arrays
in the assertion language.
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than symbolic model checker. In practice this means that the proofs in [24] con-
sider only a limited subset of the potential set of inputs and environment actions.

Yahav and Sagiv [29] use shape analysis to verify a non-blocking queue al-
gorithm. They provide specific instrumentation predicates for the test program
in order to guide the automatic analyser. With our approach, the user specifies
the atomic actions instead. Their tool does not attempt to decrease the level of
interleaving. In principle, it should be possible to combine our technique with
their generic analyser with the aim to reduce the number of shapes that they
need to consider because of the interference between threads.

Our tool employs a new technique which takes aspects from both assume-
guarantee and concurrent separation logic. We are not aware of any other tools
doing that. We were also unable to find in the literature case studies of automatic6

verification tools on a suite of fine-grained concurrent programs. Our work builds
on mechanisms developed for program verification with separation logic [3], and
the subsequent abstract interpretation techniques for local shape analysis [8].

We have demonstrated that our approach is effective for proving safety and
data structure integrity of several list-manipulating algorithms with fine-grained
concurrency. In the future, we want to consider other data structures, such as trees
and arrays, and to push the barrier towards proving full correctness. We are also
interested in inferring automatically the specifications of the actions operating on
the shared state, perhaps borrowing from the ideas from thread modular shape
analysis [12] or abstraction refinement [14]. More generally, we speculate that the
combination of separation logic and rely/guarantee might help producing more
effective verification tools for many more classes of concurrent programs.
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Abstract. Prominent examples of dynamic communication systems include traf-
fic control systems and ad hoc networks. They are hard to verify due to inherent
unboundedness. Unbounded creation and destruction of objects and a dynami-
cally evolving communication topology are characteristic features.

Partner graph grammars are presented as an adequate specification formal-
ism for dynamic communication systems. They are based on the single pushout
approach to algebraic graph transformation and specifically tailored to dynamic
communication systems. We propose a new verification technique based on ab-
stract interpretation of partner graph grammars. It uses a novel two-layered ab-
straction, partner abstraction, that keeps precise information about objects and
their communication partners. We identify statically checkable cases for which
the abstract interpretation is even complete. In particular, applicability of trans-
formation rules is preserved precisely. The analysis has been implemented in the
hiralysis tool. It is evaluated on a complex case study, car platooning, for
which many interesting properties can be proven automatically.

1 Introduction

We propose a new static analysis for systems with an unbounded number of dynamically
created, stateful, linked objects with a constantly evolving communication topology:
dynamic communication systems. Prominent examples of such systems are wireless
communication-based traffic control systems and ad-hoc networks, which have to meet
safety-critical requirements that are hard to verify due to the dynamics and unbound-
edness of dynamic communication systems. A rather obvious key observation will
facilitate both the specification and verification of dynamic communication system
later on:

The Partner Principle. The behavior of an object in a dynamic communication system
is determined by its state and by the state of its communication partners.
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The partner principle drives both the choice of the specification formalism and the
design of the abstraction. Dynamic communication systems are intuitively modeled us-
ing graph grammars (or graph transformation systems), because a state of a dynamic
communication system can be modeled as a graph, hence the evolution of states as
graph grammar rules. Graph grammars come in many flavors, and we refer to [1] for
an overview. Our specification formalism, partner graph grammars, employs the single
pushout approach to graph transformation with a restricted form of (negative) applica-
tion conditions, called partner constraints, to model dynamic communication systems.
Partner constraints restrict the applicability of rules and reflect the partner principle.

A partner graph grammar G consists of a set of rules and an initial graph. The graph
semantics [[G]] of G is the set of all graphs generated by application of rules starting from
the initial graph. For dynamic communication systems, there are typically an infinite
number of graphs of unbounded size, making verification a hard task.

We aim at automatically computing a bounded over-approximation [[G]]α of [[G]]. Our
technique is based on abstract interpretation [2], where two things need to be defined.
First, an abstraction α(G) for a single graph G; second, abstract transformers, i.e., how
to apply rules to abstract graphs.

Abstraction of graphs is called partner abstraction. As the name suggests, it is again
motivated by the partner principle and summarizes objects that are conjectured to be-
have in the same way, namely, objects in the same state with similar communication
partners. As abstract transformers, we define best abstract transformers in the spirit
of [3]. Though not computable in general, we show it can be done for partner graph
grammars using the concept of materialization, a restricted form of concretizations.

Contributions. We present an intuitive specification formalism for dynamic communi-
cation systems and an implementation of our analysis that allows to verify topology
properties of them. Using graph grammars to specify and verify dynamic communica-
tion systems is, to the best of our knowledge, novel. Using our tool, we analyzed the
complex platoon case study (c.f., Section 1.1) that earlier approaches failed to verify.
Moreover, the tool proves to be well-suited for system design.

On the theoretical side, we present a static analysis of partner graph grammars, which
can handle negative application conditions. It is based on a novel abstraction called
partner abstraction. Our analysis is shown sound and even complete for some well-
defined cases that occur in practice. In particular, we obtain a result stating the exact
preservation of rule applicability by partner abstraction.

Outline. First, we present our running example: car platooning. After that, we introduce
partner graph grammars as an adequate specification formalism for dynamic commu-
nication systems. Section 3 describes the abstract interpretation of partner graph gram-
mars by partner abstraction. Section 4 reports on our implementation and experiments
with it, before we comment on related work and conclude.

1.1 Case Study: Car Platooning

Our case study is taken from the California PATH project [4], the relevant part of which
is concerned with cars driving on a highway. In order to make better use of the given
space, cars heading for the same direction are supposed to drive very close to each



Static Analysis of Dynamic Communication Systems by Partner Abstraction 251

other building platoons. Platoons can perform actions like merging or splitting. There
are many features that make verification difficult: destruction and dynamic creation of
cars, i.e., driving onto and off the highway, an evolving and unbounded communication
topology, or concurrency. All the verification methods developed in [4] are inappropri-
ate, because they consider static scenarios with a fixed number of cars only.

A platoon consists of a leader, the foremost car, along with a number of followers. A
leader without any followers is called a free agent and is considered a special platoon.
Within a platoon there are communication channels between the leader and each of its
followers. Inter-platoon communication is only between leaders. As a running example,
the platoon merge maneuver is studied. It allows two approaching platoons to merge.
The merge maneuver is initiated by opening a channel between two distinct platoon
leaders, i.e. leaders or free agents. Then, the rear leader passes its followers one by one
to the front leader. Finally, when there are no followers left to the rear leader, it becomes
itself a follower to the front leader.

A Partner Graph Grammar for Platoon Merge. The merge maneuver is straightforward
to model as partner graph grammar with nodes representing cars and edges representing
communication channels. Internal states of cars are modeled as node labels. The rules
Rmerge of a partner graph grammar modeling the merge maneuver are given in Figure 1.
We refer to this figure for an intuitive understanding. The formal notions are introduced
in Section 2. We employ five node labels in Rmerge. Three of the labels – ld, flw, and fa
– represent the states of a car being a leader, follower, or free agent, respectively. Two
labels – rl and fl – are used to model situations that occur during a merge maneuver.
They distinguish the leader of the rear and the front platoon during a merge. Note that
the physical position of platoons is not modeled but abstracted by nondeterminism.

The [INITMERGE] rule models the initiation of a merge maneuver. In fact, the rule
stated in Figure 1 is a shorthand denoting four rules, one for each possible combination
of leaders and free agents. Followers are handed over from the rear to the front leader in
rule [PASS]. Eventually, after passing all followers, the rule [LDR2FLW] can be applied
yielding a merged platoon. It makes use of a partner constraint requiring the rear leader
not to have any followers left. The partner constraint is the set attached to node u1 in
rule [LDR2FLW]. It restricts the application of this rule to cases, where the rear leader
has an outgoing edge to a front leader and no other incident edges. There are two simple
rules, [CREATE] and [DESTROY], that are not given in Figure 1 but belong to Rmerge.
The [CREATE] rule has an empty left graph and a single fa-labeled node as right graph.
It caters for unconstrained creation of free agent cars. The [DESTROY] rule is the inverse
rule, whose application removes a free agent.

Part (b) of Figure 1 shows a sample graph generated by Rmerge. Subgraphs A, B,
and F are free agent platoons. C and D are platoons of three and four cars, respectively,
whereas E depicts a snapshot during a merge maneuver. All these subgraphs are con-
nected components of the graph. As connected components become crucial later on,
we shall also call them clusters. Cluster D may evolve from clusters B and C by the
application of [INITMERGE] and a subsequent application of [LDR2FLW]. For the ap-
plication of [INITMERGE], x in this rule is set to fa and y to ld. This represents the case,
where the free agent approaches the platoon from behind.
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[INITMERGE] [PASS] [LDR2FLW]
(a) Graph transformation rules for the platoon merge maneuver.
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flw
flw

flw

flw

rl
fl

(b) A sample communication topology.

Fig. 1. The platoon merge maneuver. Part (a) shows three graph transformation rules: the initia-
tion of a merge, the hand-over of followers from rear to front leader, and the end of a merge. Part
(b) shows a graph generated from an empty graph by these rules. Node labels are shown inside
nodes.

We are interested in proving topology properties of the platoon merge maneuver.
Examples of such properties are: (i) cars have a unique leader, unless they are free
agents, or (ii) the asymmetry of the leadership relation. The latter means that there are
no two cars considering each other to be their leader.

2 Partner Graph Grammars

The purpose of this section is to introduce our formalism for the specification of dy-
namic communication systems. It is called partner graph grammars and is based on the
single-pushout approach to graph transformation. Partner graph grammars are restricted
to injective matches. They feature a restricted form of negative application conditions
called partner constraints intuitively described in Section 1.1. They are an important
feature for concise specifications, because they allow to express, when a rule must not
be applied.

2.1 Preliminaries

We recall briefly some standard concepts and notations for reasoning about graphs. Let
L be a finite set of node labels. A finite directed, node-labeled graph—or graph—G
over L is a triple (V,E, lab), where V is a finite set of nodes, E ⊆ V × V is a set of
edges, and lab : V → L is a labeling mapping. The set of nodes, edges, and the labeling
of a graph G are written VG, EG, and labG, respectively. The set of all finite graphs over
L is written G(L). The unique graph without nodes is called the empty graph and written
E. The disjoint graph union of G1 and G2 is written G1∪̇G2, where ∪̇ is also used for
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disjoint set union. Let G ∈ G(L) be a graph and v ∈ VG be a node. The set of incoming
partners of v is defined to be �Gv = {w ∈ VG | (w, v) ∈ VE}. Analogously, the set
v�G of outgoing partners and the set of partners paG(v) = �Gv ∪ v�G are defined.
Let G ∈ G(L) be a graph andR ⊆ VG × VG an equivalence relation, such that v1Rv2

implies labG(v1) = labG(v2). The quotient graph G/R is defined to be the graph H
with VH = VG/R, EH = {([v1], [v2]) | (v1, v2) ∈ EG}, and labH = λ[v].labG(v).
Two nodes v1, v2 ∈ VG are connected, iff there exist u1, . . . , un ∈ VG, where u1 = v1,
un = v2, and ui ∈ paG(ui+1) for 1 ≤ i < n. Graph G is connected, iff all its nodes are
pairwise connected. Let G,H ∈ G(L) be graphs. A mapping h : VG → VH is called
a morphism, iff labG(v) = labH ◦ h(v) for all v ∈ VG, and (h(v1), h(v2)) ∈ EH for
all (v1, v2) ∈ EG. Graph G is a subgraph of H , written G ≤ H , iff there exists an
injective morphism from G to H . G and H are isomorphic, written G ∼= H , if G ≤ H
and H ≤ G. A connected graph G ≤ H is a connected component of H , iff G′ = G
for all connected graphs G′ with G ≤ G′ ≤ H . The set of all connected components of
H is written cc(H). Often, we use the term cluster instead of connected component.

2.2 Definition

LetL be an arbitrary finite set of node labels in the remainder. A partner graph grammar
is a pair (R, I) of a set of graph transformation rules and an initial graph. Each trans-
formation rule is a four-tuple (L, h, p,R), where L and R are graphs and h maps nodes
in L to nodes in R injectively. The mapping p may associate a partner constraint with a
node in L. A rule matches another graph G, iff L is a subgraph of G due to an injective
morphism m—called match— and if partner constraints are satisfied. For a given node
v in L, the partner constraint p(v) restricts the possible sets of partners of m(v) in G.
It can be seen as a mixture of negative and positive application conditions. A partner
constraint requires certain partners to be there and, at the same time, all others to be
absent. Formally, this shows in the equality required in part 2 of Definition 1.

If a transformation rule (L, h, p,R) matches graph G due to match m, it can be
applied to G. The result of the application is the graph H , whose nodes are computed
as follows: For each node v ∈ VL that is not in the domain of h, the node m(v) is
removed from G. On the other hand, each node v ∈ VR that is not in the codomain of h
is disjointly added to the remaining nodes of G, while for each node v in the domain of
h, the node m(v) remains in G. The edges of H are obtained by removing edges from
G that are incident to disappearing nodes. Moreover, for all edges (v1, v2) in VL, such
that both m(v1) and m(v2) remain in VH , the edge (m(v1),m(v2)) is removed from
G, while all edges in R are added. In Definition 1, ⇀ denotes partial mappings

Definition 1 (Partner Graph Grammar)

1. A graph transformation rule r is a four-tuple (L, h, p,R), where L,R ∈ G(L),
p : VL ⇀ ℘({in, out} × L), and h : VL ⇀ VR is injective. A partner graph
grammar G is a pair (R, I), where R is a finite set of graph transformation rules and
I ∈ G(L) is the initial graph.

2. Let G ∈ G(L) be a graph and (L, h, p,R) a graph transformation rule. An injective
morphism m from L to G is called a match, iff it satisfies partner constraints, i.e.,
if for all v ∈ dom(p): p(v) = {in} × labG(�Gm(v)) ∪ {out} × labG(m(v)�G).
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3. If r = (L, h, p,R) matches G by match m, the result of the application is the graph
H obtained as follows:

– VH = (VG \m(VL \ dom(h))) ∪̇ (VR \ h(dom(h)))
– EH = (EG∩(VH×VH))\{(m(u),m(v)) | (u, v) ∈ EL}∪{(m′(u),m′(v)) |

(u, v) ∈ ER}, where m′ : VR → VH such that m′(v) = m(h−1(v)), if
v ∈ h(dom(h)) and m′(v) = v otherwise.

– labH(v) = labG(v), if v �∈ m(VL); labH(v) = labR(h(m−1(v))), if v ∈
m(VL); and labH(v) = labR(v), if v �∈ h(dom(h)).

In this case, we write G�r H .
4. Let G = (R, I) be a partner graph grammar. For two graphs G,H ∈ G(L), we write

G�R H , iff there exists an r ∈ R, such that G�r H . The graph semantics [[G]] of
G is the set {G ∈ G(L) | I �∗

R G} of graphs. A sequence G1 �r1 . . . �rn−1 Gn

is called a derivation of length n.

Example 1. The partner graph grammar Gmerge = (Rmerge,E), where E is the empty
graph and Rmerge was specified in Figure 1(a) (except for the simple rules [CREATE] and
[DESTROY]), serves as a running example. An element of the graph semantics [[Gmerge]]
is shown in Figure 1(b). There, rule [LDR2FLW] does not match cluster E, because the
partner constraint is not satisfied: The rl-labeled node has both adjacent flw and fl nodes,
whereas the partner constraint {(out, fl)} requires fl’s only. Cluster D may evolve from
B and C by an application of [INITMERGE] followed by an application of [LDR2FLW].

Remember the partner principle stated in the introduction. It observes that the behavior
of an object is determined by its own state and the state of its communication part-
ners. In terms of partner graph grammars the partner principle is reflected by partner
constraints. They allow to define the application conditions of rules in terms of objects
and their communication partners. In particular, they can express the absence of certain
communication partners.

We conclude this section by stating an important property of partner graph grammars
with empty initial graphs. For every graph G in the graph semantics of a partner graph
grammar with an empty initial graph, the disjoint graph union G∪̇G is also an element
of the graph semantics (up to isomorphism). This property is called graph multiplicity,
and it is often observed in dynamic communication systems. For instance in the platoon
case study, it is justified to assume an empty initial highway.

Lemma 1 (Graph Multiplicity). Let G = (R,E) be a partner graph grammar. For
any graph G holds: If G ∈ [[G]], then there exists an H ∈ [[G]] with H ∼= G∪̇G.

The proof of the lemma is by induction on the length n of a derivation of G from E. If
n = 1, then the applied rule must have an empty left graph, because the initial graph
is empty. It can thus be applied to G, too, yielding G∪̇G (up to isomorphism). Assume
n > 1 and a derivation of length n: E� . . .� G′ �r G. By the induction hypothesis,
G′∪̇G′ is in [[G]]. As both occurrences of G are not connected, r can be applied to both
occurrences independently yielding G∪̇G.
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3 Partner Abstraction

Our static analysis of dynamic communication systems modeled by partner graph gram-
mars is based on abstract interpretation [2]. Accordingly, we need to define the abstrac-
tion of a single graph first. After that, we will say how the application of transformation
rules is lifted to abstract graphs. We conclude this section by stating soundness and
completeness results.

3.1 Abstract Graphs

Abstract graphs are obtained by partner abstraction. As the name suggests, this ab-
straction reflects the partner principle, where we observe the behavior of an object in a
dynamic communication system to be determined by its state and the states of its com-
munication partners. It is thus justified to consider two objects partner equivalent, if
they are in the same state and if they have communication partners in the same states.

Definition 2 (Partner Equivalence). Let G ∈ G(L) be a graph. Nodes u, v ∈ VG

are partner equivalent, written u �G v, iff labG(u)= labG(v), labG(�Gu)=labG(�Gv),
and labG(u�G) = labG(v�G). We denote the equivalence class of u wrt. partner
equivalence by u �G.

Note that partner equivalence does not consider the number of adjacent nodes with a
given label. It only takes the existence of adjacent nodes and the direction of connecting
edges into account. This is a place, where partner abstraction loses some information.
It is obvious from Definition 2 that each equivalence class wrt. partner equivalence can
be uniquely identified by a label and a set of pairs of direction and label. Following [5],
we call such characterizing information a canonical name.

Definition 3 (Canonical Names). The set Names(L) = L × ℘({in, out} × L) is
called the set of canonical names over L. The canonical name of node u of graph G
is written canG(u) = (labG(u), {in} × labG(�Gu) ∪ {out} × labG(u�G)).

The abstraction of graphs is a hierarchical process. First, for each connected component,
i.e., for each cluster of a graph, nodes are replaced by their canonical names, which ef-
fectively computes the quotient graph wrt. partner equivalence cluster-wise. Moreover,
we distinguish between singleton equivalence classes and non-singleton equivalence
classes. The latter will be called summary nodes borrowing terminology from [5]. In
general, it is possible to count up to some k serving as a parameter of the abstraction as
shown in [6]. For the purpose of this work, however, k = 1 suffices.

The second abstraction step is motivated by the partner principle, too. The behavior
of an object does not depend on objects, with which it does not communicate. Therefore,
in the second abstraction step, we summarize clusters that are isomorphic after quotient
graph building. Here, we do not keep any information about the number of summarized
clusters. Note that this step summarizes clusters instead of nodes thus yielding a hierar-
chical abstraction. The notion of canonical naming proves useful for this step, because
isomorphic clusters become equal when replacing nodes by their canonical names.
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u2

EA,B,F

fa flw ld rl flflw flw

u1

C,D

u1 = (flw, {(in, ld)}) u2 = (rl, {(out, flw), (out, fl)})

Fig. 2. The partner abstraction of the graph of Figure 1(b). Summary nodes are drawn with a thick
rim. The clusters that were summarized to one abstract cluster are given below the respective
abstract clusters. Two sample node identities, i.e., canonical names, are stated in the bottom line.

Definition 4 (Abstract Clusters and Graphs). Let C ∈ G(L) be a connected
graph. The partner abstraction of C is the pair (H,mult), such that H is a graph with
VH = {canC(u) | u ∈ VC}, EH = {(canC(u), canC(v)) | (u, v) ∈ EC}, and
labH = λ(a, P ).a. The second component is a mapping mult : VH → {1, ω}, where
mult(u) = 1, if |u �C|= 1, and mult(u) = ω, otherwise. We write αc(C) = (H,mult).
The pair (H,mult) is called an abstract cluster, and a node u ∈ VH with mult(u) = ω is
called a summary node. A set of abstract clusters is called an abstract graph. The partner
abstraction of graph G ∈ G(L) is the abstract graph α(G) = {αc(C) | C ∈ cc(G)}.

Example 2. The abstraction of the graph representing a communication topology in
Figure 1(b) is presented in Figure 2. Additionally, we show the clusters that are ab-
stracted to the abstract clusters and examples of canonical names of two nodes in the
abstract graph.

Some remarks about canonical names are noteworthy:

– All nodes u in abstract cluster Ĉ = (C,mult) satisfy canC(u) = u.
– The number of abstract graphs is bounded in terms of the number l of node labels.

The maximal number of nodes in an abstract cluster is n = l · 22l+1, i.e. there are
at most c = 22n abstract clusters and 2c abstract graphs.

– Partner abstraction constitutes a morphism. The abstraction

α(G) = {(C1,mult1), . . . , (Cn,multn)}

induces a morphism from G to C1∪̇ . . . ∪̇Cn, that is a mapping from VG to VC1 ∪̇
. . . ∪̇ VCn . In the remainder, we shall call it the induced morphism ξ.

3.2 Abstract Transformers

Having defined partner abstraction, the next step is to define abstract transformers, i.e.,
the application of graph transformation rules to abstract graphs. To do so, we will follow
the best abstract transformer approach of [3]. Definition 5 first defines the notion of an
abstract match. It resembles the notion of a match as defined in Definition 1 except for
injectivity, which is lost due to summarization of nodes.

If a graph transformation rule r matches an abstract graph Ĝ, we apply it to all con-
cretizations of Ĝ, where a concretization of Ĝ is a graph G with α(G) = Ĝ. After
that, the resulting graphs will be abstracted again using α. In general, there may be
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Fig. 3. The abstract graph semantics of the platoon merge partner graph grammar Gmerge. It
consists of 12 abstract clusters.

infinitely many concretizations of Ĝ. Therefore, we identify a subset of all concretiza-
tions guaranteed to be finite for any abstract graph Ĝ. Any such concretization is called
a materialization as defined in Definition 6. In Lemma 2, we show that materializa-
tions define the same abstract transformers as concretizations. Hence, they are a way to
compute best abstract transformers.

Definition 5 (Abstract Graph Semantics). Let G = (R, I) be a partner graph gram-
mar, let r = (L, h, p,R) ∈ R be a graph transformation rule, and let Ĝ = {(C1,mult1),
. . . , (Cn,multn)} be an abstract graph.

1. A morphism m from L to G := C1∪̇ . . . ∪̇Cn is called an abstract match from r
to Ĝ, iff for all D ∈ cc(L) and for all u ∈ VD such that m(u) ∈ VCi holds: If
u ∈ dom(p), then p(u) = {in} × labCi(�Cim(u)) ∪ {out} × labCi(m(u)�Ci);
and |m−1(m(u)) ∩ VD |> 1 implies multi(m(u)) = ω.

2. Let Ĥ be an abstract graph. It is the result of an application of r to Ĝ, written
Ĝ�α

r Ĥ , iff there exists an abstract match from L to Ĝ and there exist graphs M
and M ′, such that α(M) = Ĝ, M �r M ′, and α(M ′) = Ĥ .

3. The abstract graph semantics [[G]]α of G is defined inductively as [[G]]α0 = α(I),
[[G]]αi+1 = [[G]]αi ∪

⋃
{Ĥ | ∃Ĝ ∈ [[G]]αi , r ∈ R.Ĝ�α

r Ĥ}, and [[G]]α =
⋃

i≥0[[G]]αi .

Besides potential non-injectivity of an abstract match, there is an additional requirement
regarding summary nodes. If more than one node of the same connected component of
the left graph of a rule match the same node in an abstract graph, this node must be a
summary node. The application of a matching rule is defined in terms of applying the
rule to concretizations. Although this definition is not constructive, we will show how
to overcome this by using materializations. The abstract graph semantics collects all
abstract clusters obtained by iterated rule applications.

Example 3. The abstract graph semantics [[Gmerge]]α of the platoon merge implementa-
tion is shown in Figure 3. Sample abstract rule applications are

(1): {C8}�α
[INITMERGE]

{C11} (2): {C9}�α
[PASS]

{C10}

In terms of platoons, a concretization justifying (1) contains two platoons of three cars
each that merge. They are abstracted to abstract {C8}. The result of the application of
[INITMERGE] is abstracted to {C11}.
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We shall now derive upper bounds for the number of concretizations needed to com-
pute abstract transformers. Concretizations within these bounds are called materializa-
tions. The numbers given in Definition 6 are not always needed, because there are many
special cases, where smaller numbers suffice. This is exploited in the implementation
of the analysis. In the definition, we use further notations: Given an abstract match m
and a node u of abstract cluster (C,mult), env(u) denotes the number of matched part-
ners of u, i.e., env(u) = | paC(u) ∩ codom(m) |. For an abstraction α(G) = Ĝ with
induced morphism ξ and some node u of Ĝ, we write mater(u) for the number of nodes
mapped to u by ξ, i.e., mater(u) = | ξ−1(u) |. We call nodes mapped to u by ξ, nodes
materialized from u. Finally, matched(u) denotes the number of nodes matching node
u of an abstract graph, i.e., for an abstract match m, matched(u) = |m−1(u) |. Note
that the size of all these entities is statically bounded in terms of the shape of left graphs
and the number of node labels.

Definition 6 (Materialization). Let Ĝ = {(C1,mult1), . . . , (Cn,multn)} be an
abstract graph and let r = (L, h, p,R) be a graph transformation rule such that r
matches Ĝ with abstract match m. A concretization G of Ĝ is called a materializa-
tion with respect to r and m, iff | cc(G) | ≤ | cc(L) | + n, and for each Ci and
all summary nodes u ∈ VCi: max{2,matched(u)} ≤ mater(u) and mater(u) ≤
matched(u) + 2env(u)+1.

Lemma 2 (Materialization). If Ĝ �α
r Ĥ with abstract match m, then there exists

a materialization M of Ĝ wrt. r and m and graph M ′ s.t. M �r M ′ and α(M ′) = Ĥ .

The proof of the lemma is based on the observation that nodes in a graph that are not
adjacent to a matched node cannot be affected by a rule application. Only matched
nodes may change their label and adjacent edges, i.e., only matched nodes or their
partners may change their canonical name. In any case, at least two or the number of
nodes matching a summary node must be materialized from it. If a summary node u
is adjacent to env(u) matched nodes, 2env(u) cases must be distinguished, because a
node materialized from u may or may not be connected to each of the matched part-
ners. Hence, it may or may not be affected by the update. The additional factor of 2
in the upper bound is needed because either one or more than one materialized nodes
may be affected in each of the 2env(u) ways. If a summary node u is matched and has
matched partners, the number of nodes matching u must be materialized, too, yielding
the additive in the upper bound.

The bound on the number of clusters in a materialization results from the observation
that at most |cc(L) | clusters can be affected by a transformation rule using L. Since
there are n abstract clusters, and each needs to be represented in any concretization, the
bound for the number of connected components in a materialization is |cc(L)| +n.

Due to the finiteness of all entities bounding the size of materializations also the
number of materializations is finite. Lemma 2 also shows that the abstract graph se-
mantics can be computed iteratively in finite time for any partner graph grammar: Since
[[·]]αi is monotone in i and since there are only finitely many abstract graphs and finitely
many materializations of them the computation of the abstract graph semantics will
terminate. Besides termination, we obtain the following soundness result.
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Theorem 1 (Soundness). Let G be a partner graph grammar. Then the abstract
graph semantics is a sound over-approximation of the graph semantics:

⋃
G∈[[G]] α(G)

⊆ [[G]]α.

The proof is obvious, because we defined abstract updates in terms of best abstract
transformers. Theorem 1 is typically used in its counterpositive form to prove properties
of partner graph grammars, i.e., of dynamic communication systems. If a graph does
not occur as a subgraph of an abstract cluster in the abstract graph semantics, it cannot
occur in the concrete graph semantics. In our running example, we can thus prove the
asymmetry and the uniqueness of the leadership relation.

In fact, Theorem 1 can be used to prove even stronger properties. Assume a transfor-
mation rule, where the right graph is a singleton node with an otherwise unused label. If
this label does not occur in the abstract graph semantics, it is guaranteed by soundness
that this rule never matches in the concrete graph semantics. The additional strength is
gained because there may be partner constraints used in the rule.

3.3 Completeness Issues

This section augments the abstract interpretation of partner graph grammars with some
unexpected completeness results: First, we identify cases, where partner abstraction
preserves precisely the applicability of rules. Second, we present statically checkable
criteria that are sufficient for an abstract graph semantics not to contain spurious clusters
or even to decide the word problem for a class of partner graph grammars.

It is clear that general completeness results cannot be expected: There is only a
bounded number of abstract graphs, whereas the structures in left graphs of transfor-
mation rules are unrestricted. However, if we exclude some pathological cases, we can
obtain completeness properties.

One pathological case is abstract clusters that include subgraphs like b← a→ b,
where the a-labeled node is a summary node. Even though we know that all nodes
represented by it have an outgoing edge to a b-labeled node, we do not know to which of
the two. If such patterns do not occur, we speak of unique partners. Furthermore, edges
between summary nodes are a source of information loss. For example, the following
cycle between summary nodes may result from abstracting a cycle of any even length
of alternating a and b-labeled nodes: a	 b.

Definition 7 (Special Graphs). Let (C,mult) be an abstract cluster. It has unique
partners, iff for all u ∈ VC and for all a ∈ L both |�Cu ∩ lab−1

C (a) | and |u �C

∩ lab−1
C (a)| are at most 1. It has a summary cycle, iff there exists an n > 1 and a sub-

graph of C made up of n distinct summary nodes and at least n distinct edges among
them.

The definition of summary cycles may seem awkward. It is justified, however, because
we are really interested in cycles, where the direction of the edges does not matter (see
the proof of Theorem 2 for details).

It is obvious that partner abstraction preserves the applicability of rules, i.e., if a rule
matches G, it also matches α(G). Without partner constraints, this holds for any homo-
morphic abstraction, whereas partner abstraction additionally guarantees the preserva-
tion of partner constraint satisfaction. The inverse direction, i.e. if a rule matches α(G)
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it also matches G, does not hold in general. Consider the example of a cycle between
two summary nodes above. This abstract cluster is matched by a rule with a left graph
being a cycle of length 8 of alternating a and b-labeled nodes. However, this rule does
not match the concretization being a cycle of length 6. Theorem 2 describes cases when
this direction holds. For simplicity, it is formulated in terms of abstract clusters.

Theorem 2 (Match). Let r = (L, h, p,R) be a transformation rule, where L is
connected, and let Ĉ = (C,mult) be an abstract cluster. If there is an injective ab-
stract match from L to {Ĉ}, and Ĉ has unique partners and no summary cycles, then r
matches all D with αc(D) = Ĉ.

The proof exploits two key observations. First, unique partners imply the following.
If (u, v) ∈ EC , and mult(u) = 1 or mult(v) = 1, then for all u′ ∈ ξ−1(u) and
all v′ ∈ ξ−1(v), also (u′, v′) ∈ ED . W.l.o.g, assume mult(v) = 1. The observation
holds, because we know that all u′ must have an outgoing edge to a labC(v)-labeled
node. As there is only one such partner in D, u′ must be connected to v′. This results
implies that abstract matches that do not contain edges between summary nodes can be
mimicked in any concretization. For edges between summary nodes, we use the second
key observation: As there are no summary cycles, we can organize matched summary
nodes in a forest. The concrete match of L to D is then constructed by traversing this
forest. If summary node u is the root of a tree, we choose an arbitrary u′ ∈ ξ−1(u)
for the concrete match. If u is not a root, it has only one edge to an ancestor in the
traversal. Due to the unique partner property, we can then always pick one u′ in D that
is connected to the pick we made for the ancestor.

We will now define the notion of complete clusters and will show in Theorem 3 that
complete clusters imply completeness of the abstract interpretation of partner graph
grammars. Since we need to apply the cluster multiplicity property stated in Lemma 1,
we concentrate on partner graph grammars with an empty initial graph. We shall call a
rule with an empty left graph a create rule, because the right graph may be created in an
unconstrained way. The most intricate notion we need in Definition 8 is the notion of an
inductive summary node. A summary node u of abstract cluster Ĉ0 = (C,mult) ∈ [[G]]α

is inductive, iff there exists Ĉn = (C,mult′) ∈ [[G]]α, where mult′(u) = 1. Moreover,
there need to be a set Ĉi = (Ci,multi) of abstract clusters, such that u ∈ VCi for all
0 < i < n, and Ĉi+1 results from a rule application that does not match u from Ĉi.
Finally, exactly once, one additional node must become partner equivalent to u by a
rule application on this path. Informally, an inductive summary node is part of a loop
incrementing its size by 1.

Example 4. The summary node of abstract cluster C8 of Figure 3 is inductive with
clusters C3 and C5. In terms of platoons, we obtain arbitrarily many followers by
constantly merging with a free agent.

Definition 8 (Complete Clusters). Let G = (R,E) be a partner graph grammar.
Abstract cluster Ĉ ∈ [[G]]α is complete, iff one of the following conditions holds:

1. There exists a create rule (E, h, p, R), such that αC(R) = Ĉ and Ĉ does not con-
tain any summary nodes.
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2. Ĉ contains exactly one summary node u, such that u is inductive with complete
clusters without summary nodes.

3. Ĉ results from a rule application to complete abstract clusters, such that no sum-
mary nodes are matched in the application or created by the application.

Proving the completeness of the clusters of an abstract graph semantics amounts to
imposing a strict order on the clusters, called a generating order. Minimal elements are
those that result from the application of a create rule. It should be admitted, however,
that we do not have an efficient algorithm to compute a generating order or to prove the
existence of one. In some cases, the order can be found by manual inspection:

Example 5. All clusters of [[Gmerge]]α are complete. Case 1 applies to C1. Clusters C2

and C3 come next in the order and are proven complete by case 3. The same goes for
C4, C5, and C6. As mentioned above, case 2 applies to cluster C8. All remaining
clusters result from applying [INITMERGE] to C8 using case 3.

Theorem 3 (Completeness). Let G = (R,E) be a partner graph grammar. If all Ĉ ∈
[[G]]α are complete, then

⋃
G∈[[G]] α(G) = [[G]]α. If, additionally, R is connected for all

(L, h, p,R) ∈ R, then G ∈ [[G]]⇔ α(G) ∈ [[G]]α (up to isomorphism).

The proof of the theorem is only sketched here (see [6] for all the details). It is by well-
founded induction on the generating order of the clusters and mimics abstract deriva-
tions in the concrete graph semantics. First, we need to show the uniqueness—up to
isomorphism and number of nodes materialized from summary nodes—of material-
izations. Then, Theorem 2 and Lemma 1 guarantee that the loop in the definition of
inductive summary nodes can be executed arbitrarily many times, always increment-
ing the actual size of the summary node by 1. All other summary nodes evolve from
inductive summary nodes without change of size as ensured by case 3 of Definition 8.
Eventually, Lemma 1 together with connected right graphs guarantees that each abstract
cluster individually can have an arbitrary number of concretizations independently of
other clusters.

For our running example, Theorem 3 implies that we precisely know all the graphs
generated by the platoon merge partner graph grammar, because all right graphs of
rules in Rmerge are connected. For this particular grammar, we can thus decide the word
problem using Theorem 3.

4 Experimental Evaluation

We have implemented the abstract interpretation of partner graph grammars in the
hiralysis tool. It takes as input a textual representation of a partner graph gram-
mar and produces as output a graphical representation of the abstract graph semantics.
In addition to the material presented here, hiralysis supports edge labels.

The hiralysis tool has been evaluated on the platoon case study. Some numerical
results are shown in Table 1. It shows the size of the input in terms of numbers of node
and edge labels, number of transformation rules, and number of partner constraints used
in the partner graph grammar. Finally, the size of the abstract graph semantics in terms
of numbers of abstract clusters is given.
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Table 1. Experiments conducted with the hiralysis implementation of our analysis

#rules #node labels #edge labels #pconstraints #abstract clusters

merge 8 5 1 1 12
split 4 6 1 4 13
combined 12 6 1 5 169
combined+ 12 6 1 9 22
queues 30 18 4 34 159
faulty 32 5 1 1 20

Among the examples, our running example, merge, is the simplest. Its abstract graph
semantics consisting of 12 clusters was explicitly given in Figure 3. Grammar split im-
plements a split maneuver, while the two versions of combined combine merging and
splitting. Note that combine simply takes the union of merge and split. The larger
number of abstract clusters results from interferences, where platoons try to merge and
split simultaneously. This is a source of mistakes not taken into account in the original
PATH project [4]. Grammar combined+ repairs these mistakes by introducing addi-
tional partner constraints that restrict the parallelism: another hint to the importance of
partner constraints. For the repaired protocol, we were again able to verify properties
like unique leaders.

Grammar queues extends the original PATH specification by introducing buffered
communication. It is an example where quite complicated graphs are handled by our
technique [6]. Grammar faulty augments the simple merge maneuver with non-deter-
ministically disappearing, unreliable communication links. Such a model is helpful in
discovering potential failure situations. More examples are reported on in [6].

In the experiments conducted so far, run time was not found to be a problem. All
abstract semantics’ of Table 1 were computed in fractions of seconds. Even thousands
of clusters could be handled within few seconds. However, we only encountered such
numbers for grammars, where we had introduced flaws unintentionally. Therefore, they
do not occur among the results given. Interestingly, the hiralysis output proved
extremely valuable for debugging of such grammars because of its graphical output.

Admittedly, the experiments so far are of modest size, because they are all imple-
mented by hand. We are currently exploring the automated generation of hiralysis
input from more fine-grained specifications of dynamic communication systems such as
those presented in [7]. The expected partner graph grammars may consist of thousands
of rules and will give more hints to the scalability of the technique.

5 Related Work

Partner abstraction was inspired by canonical abstraction of [5], which is particularly
well-suited to reason about dynamically allocated data structures. There, reachability is
crucial, which cannot be expressed by partner abstraction making it a bad choice for
analyzing list-like graphs. However, canonical abstraction is flat, that is, it summarizes
only nodes. Partner abstraction is two-layered: it summarizes nodes in a first step and
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clusters in a second step. Moreover, it works fully automatic without intricate instru-
mentation predicates. Finally, it is tailored to dynamic communication systems, where
graph transformation rules seem easier and more intuitive to write down than the pred-
icate update formulas of [5].

The area of verification of concurrent parameterized systems is very active. The two
most relevant and most recent approaches are [8] and [9]. While these techniques are
able to deal with infinite-state systems in general, they are typically concerned with
unbounded data domains rather than unbounded evolving communication topologies
rendering them orthogonal. Even if they are interested in communication topologies,
it seems that our approach is the only one able to handle completely arbitrary graphs.
Communication topologies are the focus of an abstract interpretation of the π-calculus
[10]. However, we believe that π is too fine-grained to model topology evolution hence
requiring encoding of features that can be modeled directly using graph grammars.

An approach to formal verification of graph grammars [11] proved very successful,
but is not based on abstract interpretation. Rather it is based on the unfolding semantics
of the given graph grammar [12] and approximates behavior by means of Petri nets. It
is mostly targeted to the analysis of heap-manipulating programs.

A completly different application of graph grammar verification (term graph rewrit-
ing, to be more precise) comes from the world of functional programming and
constitutes the formal safety proof of the strictness analysis employed in the Clean
compiler [13]. It is based on abstract interpretation but tailored to this particular safety
proof.

Another abstract interpretation based approach was developed independently in [14]
and used for software engineering purposes. The underlying abstraction relies on count-
ing incoming and outgoing labeled edges. However, our approach provides clear
advantages over [14]: we are not restricted to deterministic graphs; we have an im-
plementation; we have a hierarchical abstraction tailored to dynamic communication
systems; we have completeness results. Most importantly, we support (negative) appli-
cation conditions in terms of partner constraints. Without this feature graph grammars
are hardly usable for dynamic communication systems.

6 Conclusion

We have presented partner graph grammars as an adequate specification formalism for
dynamic communication systems, for which we have defined an abstract interpretation
based on a novel, hierarchical abstraction called partner abstraction. The analysis was
shown to be sound and, in some well-defined cases, complete. We have reported on
the hiralysis implementation of the analysis that has been evaluated on the com-
plex platoon case study – automatically revealing flaws and proving so far unproven
topology properties.

We are currently working on getting rid of some of the limitations. Due to the particu-
lar choice of partner abstraction, the applicability is mainly limited to dynamic commu-
nication systems. The properties we are able to establish are mere properties of graphs
rather than temporal properties of graph transition systems.
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We are also extending our work on unreliable communication links towards prob-
abilistic models, where links do not fail arbitrarily but as determined by a probability
distribution. Finally, we are implementing the automatic generation of hiralysis
input from more fine-grained models of dynamic communication systems such as those
of [7].
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Abstract. Pointer information is a prerequisite for most program anal-
yses, and inclusion-based, i.e. Andersen-style, pointer analysis is widely
used to compute such information. However, current inclusion-based
analyses can have prohibitive costs in time and space, especially for
programs with millions of lines of code. We present a suite of offline
optimizations that exploit pointer and location equivalence to shrink the
input to the subsequent pointer analysis without affecting precision, dra-
matically reducing both analysis time and memory consumption. Using
a suite of six open-source C programs ranging in size from 169K to 2.17M
LOC, we demonstrate that our techniques on average improve analysis
time by 1.3–2.7× and reduce memory consumption by 3.2–6.9× over the
best current techniques.

1 Introduction

Most program analyses require pointer information, from traditional compiler
optimizations to software verification, security analysis, and program under-
standing. Many of these analyses are interprocedural and require a highly
scalable whole-program pointer analysis to compute pointer information. The
precision of the computed information can have a profound impact on the use-
fulness of the subsequent program analysis. Inclusion-based, i.e. Andersen-style,
pointer analysis is widely-used because of its relative precision and potential for
scalability. Inclusion-based analysis scales to millions of lines of code, but mem-
ory consumption is prohibitively high [6]. Memory consumption can be greatly
reduced by using BDDs to represent points-to sets, but this significantly increases
analysis time [6]. Our goal is to break this trade-off by reducing both mem-
ory consumption and analysis time for inclusion-based pointer analysis, without
affecting the precision of the results.

Inclusion-based analysis is the most precise flow- and context-insensitive
pointer analysis. It extracts inclusion constraints from the program code to ap-
proximate points-to relations between variables, representing the constraints us-
ing a constraint graph, with nodes to represent each program variable and edges
to represent the constraints between variables. Indirect constraints—those that
involve pointer dereferences—can’t be directly represented in the graph, since
points-to information isn’t available until after the analysis has completed. The
analysis satisfies the constraints by computing the dynamic transitive closure of
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the graph; as new points-to information becomes available, new edges are added
to the graph to represent the indirect constraints. The transitive closure of the
final graph yields the points-to solution.

Inclusion-based analysis has a complexity of O(n3) time and O(n2) space,
where n is the number of variables; the key to scaling the analysis is to re-
duce the input size—i.e. make n smaller—while ensuring that precision is not
affected. This goal is accomplished by detecting equivalences among the pro-
gram variables and collapsing together equivalent variables. Existing algorithms
only recognize a single type of equivalence, which we call pointer equivalence:
program variables are pointer equivalent iff their points-to sets are identical.
There are several existing methods for exploiting pointer equivalence. The pri-
mary method is online cycle detection [5,6,7,10,11]. Rountev et al. [12] introduce
another method called Offline Variable Substitution (OVS). An offline analysis
is a static analysis performed prior to the actual pointer analysis; in this case,
OVS identifies and collapses a subset of the pointer equivalent variables before
feeding the constraints to the pointer analysis.

In this paper, we introduce a suite of new offline optimizations for inclusion-
based pointer analysis that go far beyond OVS in finding pointer equivalences.
We also introduce and exploit a second notion of equivalence called location
equivalence: program variables are location equivalent iff they always belong to
the same points-to sets, i.e. any points-to set containing one must also contain
the other. Our new optimizations are the first to exploit location equivalence
to reduce the size of the variables’ points-to sets without affecting precision.
Together, these offline optimizations dramatically reduce both the time and
memory consumption of subsequent inclusion-based pointer analysis. This paper
presents the following major results:

– Using three different inclusion-based pointer analysis algorithms [7,10,6], we
demonstrate that our optimizations on average reduce analysis time by 1.3–
2.7× and reduce memory consumption by 3.2–6.9×.

– We experiment with two different data structures to represent points-to
sets: (1) sparse bitmaps, as currently used in the GCC compiler, and (2)
a BDD-based representation. While past work has found that the bitmap
representation is 2× faster but uses 5.5× more memory than the BDD rep-
resentation [6], we find that, due to our offline optimizations, the bitmap
representation is on average 1.3× faster and uses 1.7× less memory than the
BDD representation.

This paper makes the following conceptual contributions:

– We present Hash-based Value Numbering (HVN), an offline optimization
which adapts a classic compiler optimization [3] to find and exploit pointer
equivalences.

– We present HRU (HVN with deReference and Union), an extension of HVN
that finds additional pointer equivalences by interpreting both union and
dereference operators in the constraints.
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– We present LE (Location Equivalence), an offline optimization that finds
and exploits location equivalences to reduce variables’ points-to set sizes
without affecting precision.

2 Related Work

Andersen introduces inclusion-based pointer analysis in his Ph.D. thesis [1],
where he formulates the problem in terms of type theory. Andersen’s algorithm
solves the inclusion constraints in a fairly naive manner by repeatedly iterating
through a constraint vector.

The first use of pointer equivalence to optimize inclusion-based analysis comes
from Faehndrich et al. [5], who represent constraints using a graph and then
derive points-to information by computing the dynamic transitive closure of
that graph. The key optimization is a method for partial online cycle detection.

Later algorithms expand on Faehndrich et al.’s work by making online cy-
cle detection more complete and efficient [6,7,10,11]. In particular, Heintze and
Tardieu [7] describe a field-based analysis, which is capable of analyzing over
1 million lines of C code in a matter of seconds. Field-based analysis does not
always meet the needs of the client analysis, particularly since field-based analy-
sis is unsound for C; a field-insensitive version of their algorithm is significantly
slower [6].

Rountev et al. [12] introduce Offline Variable Substitution (OVS), a linear-
time static analysis whose aim is to find and collapse pointer-equivalent variables.
Of all the related work, OVS is the most similar to our optimizations and serves
as the baseline for our experiments in this paper.

Both pointer and location equivalence have been used in other types of pointer
analyses, although they have not been explicitly identified as such; Steensgaard’s
analysis [14], Das’ One-Level Flow [4], and the Shapiro-Horwitz family of anal-
yses [13] all sacrifice precision to gain extra performance by inducing artificial
pointer and location equivalences. By contrast, we detect and exploit actual
equivalences between variables without losing precision.

Location equivalence has also been used by Liang and Harrold to optimize
dataflow analyses [8], but only post-pointer analysis. We give the first method
for soundly exploiting location equivalence to optimize the pointer analysis itself.

3 Pointer Equivalence

Let V be the set of all program variables; for v ∈ V : pts(v) ⊆ V is v’s points-to
set, and pe(v) ∈ N is the pointer equivalence label of v, where N is the set of
natural numbers. Variables x and y are pointer equivalent iff pts(x) = pts(y).
Our goal is to assign pointer equivalence labels such that pe(x) = pe(y) implies
that x and y are pointer equivalent. Pointer equivalent variables can safely be
collapsed together in the constraint graph to reduce both the number of nodes
and edges in the graph. The benefits are two-fold: (1) there are fewer points-to
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sets to maintain; and (2) there are fewer propagations of points-to information
along the edges of the constraint graph.

The analysis generates inclusion constraints using a linear pass through the
program code; control-flow information is discarded and only variable assign-
ments are considered. Function calls and returns are treated as gotos and are
broken down into sets of parameter assignments. Table 1 illustrates the types of
constraints and defines their meaning.

Table 1. Inclusion Constraint Types

Program Code Constraint Meaning
a = &b a ⊇ {b} b ∈ pts(a)
a = b a ⊇ b pts(a) ⊇ pts(b)
a = ∗b a ⊇ ∗b ∀v ∈ pts(b) : pts(a) ⊇ pts(v)
∗a = b ∗a ⊇ b ∀v ∈ pts(a) : pts(v) ⊇ pts(b)

Our optimizations use these constraints to create an offline constraint graph,1

with var nodes to represent each variable, ref nodes to represent each derefer-
enced variable, and adr nodes to represent each address-taken variable. A ref

node ∗a stands for the unknown points-to set of variable a, while adr node &a
stands for the address of variable a. Edges represent the inclusion relationships:
a ⊇ {b} yields edge &b → a; a ⊇ b yields b → a; a ⊇ ∗b yields ∗b → a; and
∗a ⊇ b yields b→ ∗a.

Before describing the optimizations, we first explain the concepts of direct and
indirect nodes [12]. Direct nodes have all of their points-to relations explicitly
represented in the constraint graph: for direct node x and the set of nodes
S = {y : y → x}, pts(x) =

⋃
y∈S

pts(y). Indirect nodes are those that may have

points-to relations that are not represented in the constraint graph. All ref

nodes are indirect because the unknown variables that they represent may have
their own points-to relations. var nodes are indirect if they (1) have had their
address taken, which means that they can be referenced indirectly via a ref

node; (2) are the formal parameter of an indirect function call; or (3) are assigned
the return value of an indirect function call. All other var nodes are direct.

All indirect nodes are conservatively treated as possible sources of points-
to information, and therefore each is given a distinct pointer equivalence label
at the beginning of the algorithm. adr nodes are definite sources of points-to
information, and they are also given distinct labels. For convenience, we will
use the term ’indirect node’ to refer to both adr nodes and true indirect nodes
because they will be treated equivalently by our optimizations.

Figure 1 shows a set of constraints and the corresponding offline constraint
graph. In Figure 1 all the ref and adr nodes are marked indirect, as well as
var nodes a and d, because they have their address taken. Because a and d can
1 The offline constraint graph is akin to the subset graph described by Rountev et al.

[12].
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b ⊇ {a} a ⊇ h h ⊇ ∗b
b ⊇ {d} c ⊇ b i ⊇ ∗e
c ⊇ {a} d ⊇ i k ⊇ ∗j
e ⊇ {a} e ⊇ f
e ⊇ {d} f ⊇ e

g ⊇ f

&a 6 b  

c  

e  &d 7*b 3 h  

*e 2 i  

1 k  

a 5

d 4

f  g  

*j

Fig. 1. Example offline constraint graph. Indirect nodes are grey and have already been
given their pointer equivalence labels. Direct nodes are black and have not been given
pointer equivalence labels.

now be accessed indirectly through pointer dereference, we can no longer assume
that they only acquire points-to information via nodes h and i, respectively.

3.1 Hash-Based Value Numbering (HVN)

The goal of HVN is to give each direct node a pointer equivalence label such
that two nodes share the same label only if they are pointer equivalent. HVN
can also identify non-pointers—variables that are guaranteed to never point to
anything. Non-pointers can arise in languages with weak types systems, such
as C: the constraint generator can’t rely on the variables’ type declarations to
determine whether a variable is a pointer or not, so it conservatively assumes that
everything is a pointer. HVN can eliminate many of these superfluous variables;
they are identified by assigning a pointer equivalence label of 0. The algorithm
proceeds as follows:

1. Find and collapse strongly-connected components (SCCs) in the offline con-
straint graph. If any node in the SCC is indirect, the entire SCC is indirect.
In Figure 1, e and f are collapsed into a single (direct) node.

2. Proceeding in topological order, for each direct node x let L be the set of
positive incoming pointer equivalence labels, i.e. L = {pe(y) : y → x ∧
pe(y) �= 0}. There are three cases:
(a) L is empty. Then x is a non-pointer and pe(x) = 0.

Explanation: in order for x to potentially be a pointer, there must exist
a path to x either from an adr node or some indirect node. If there is
no such path, then x must be a non-pointer.

(b) L is a singleton, with p ∈ L. Then pe(x) = p.
Explanation: if every points-to set coming in to x is identical, then x’s
points-to set, being the union of all the incoming points-to sets, must be
identical to the incoming sets.

(c) L contains multiple labels. The algorithm looks up L in a hashtable to
see if it has encountered the set before. If so, it assigns pe(x) the same
label; otherwise it creates a new label, stores it in the hashtable, and
assigns it to pe(x).
Explanation: x’s points-to set is the union of all the incoming points-to
sets; x must be equivalent to any node whose points-to set results from
unioning the same incoming points-to sets.
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Fig. 2. The assignment of pointer equivalence labels after HVN

Following these steps for Figure 1, the final assignment of pointer equivalence
labels for the direct nodes is shown in Figure 2. Once we have assigned pointer
equivalence labels, we merge nodes with identical labels and eliminate all edges
incident to nodes labeled 0.

Complexity. The complexity of HVN is linear in the size of the graph. Using
Tarjan’s algorithm for detecting SCCs [15], step 1 is linear. The algorithm then
visits each direct node exactly once and examines its incoming edges. This step
is also linear.

Comparison to OVS. HVN is similar to Rountev et al.’s [12] OVS optimization.
The main difference lies in our insight that labeling the condensed offline con-
straint graph is essentially equivalent to performing value-numbering on a block
of straight-line code, and therefore we can adapt the classic compiler optimiza-
tion of hash-based value numbering for this purpose. The advantage lies in step
2c: in this case OVS would give the direct node a new label without checking
to see if any other direct nodes have a similar set of incoming labels, potentially
missing a pointer equivalence. In the example, OVS would not discover that b
and e are equivalent and would give them different labels.

3.2 Extending HVN

HVN does not find all pointer equivalences that can be detected prior to pointer
analysis because it does not interpret the union and dereference operators. Recall
that the union operator is implicit in the offline constraint graph: for direct
node x with incoming edges from nodes y and z, pts(x) = pts(y) ∪ pts(z). By
interpreting these operators, we can increase the number of pointer equivalences
detected, at the cost of additional time and space.

HR algorithm. By interpreting the dereference operator, we can relate a var

node v to its corresponding ref node ∗v. There are two relations of interest:

1. ∀x, y ∈ V : pe(x) = pe(y)⇒ pe(∗x) = pe(∗y).
2. ∀x ∈ V : pe(x) = 0⇒ pe(∗x) = 0.

The first relation states that if variables x and y are pointer-equivalent, then
so are ∗x and ∗y. If x and y are pointer-equivalent, then by definition ∗x and
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Fig. 3. The assignment of pointer equivalence labels after HR and HU

∗y will be identical. Whereas HVN would give them unique pointer equivalence
labels, we can now assign them the same label. By doing so, we may find ad-
ditional pointer equivalences that had previously been hidden by the different
labels.

The second relation states that if variable x is a non-pointer, then ∗x is also
a non-pointer. It may seem odd to have a constraint that dereferences a non-
pointer, but this can happen when code that initializes pointer values is linked
but never called, for example with library code. Exposing this relationship can
help identify additional non-pointers and pointer equivalences.

Figure 3 provides an example. HVN assigns b and e identical labels; the first
relation above tells us we can assign ∗b and ∗e identical labels, which exposes
the fact that i and h are equivalent to each other, which HVN missed. Also,
variable j is not mentioned in the constraints, and therefore the var node j
isn’t shown in the graph, and it is assigned a pointer equivalence label of 0. The
second relation above tells us that because pe(j) = 0, pe(∗j) should also be 0;
therefore both ∗j and k are non-pointers and can be eliminated.

The simplest method for interpreting the dereference operator is to itera-
tively apply HVN to its own output until it converges to a fixed point. Each
iteration collapses equivalent variables and eliminates non-pointers, fulfilling the
two relations we describe. This method adds an additional factor of O(n) to the
complexity of the algorithm, since in the worst case it eliminates a single variable
in each iteration until there is only one variable left. The complexity of HR is
therefore O(n2), but in practice we observe that this method generally exhibits
linear behavior.

HU algorithm. By interpreting the union operator, we can more precisely track
the relations among points-to sets. Figure 3 gives an example in var node c. Two
different pointer equivalence labels reach c, one from &a and one from b. HVN
therefore gives c a new pointer equivalence label. However, pts(b) ⊇ pts(&a), so
when they are unioned together the result is simply pts(b). By keeping track of
this fact, we can assign c the same pointer equivalence label as b.

Let fn be a fresh number unique to n; the algorithm will use these fresh
values to represent unknown points-to information. The algorithm operates on
the condensed offline constraint graph as follows:

1. Initialize points-to sets for each node. ∀v ∈ V : pts(&v) = {v}; pts(∗v) =
{f∗v}; if v is direct then pts(v) = ∅, else pts(v) = {fv}.
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2. In topological order: for each node x, let S = {y : y → x} ∪ {x}. Then
pts(x) =

⋃
y∈S

pts(y).

3. Assign labels s.t. ∀x, y ∈ V : pts(x) = pts(y)⇔ pe(x) = pe(y).

Since this algorithm is effectively computing the transitive closure of the con-
straint graph, it has a complexity of O(n3). While this is the same complexity as
the pointer analysis itself, HU is significantly faster because, unlike the pointer
analysis, we do not add additional edges to the offline constraint graph, making
the offline graph much smaller than the graph used by the pointer analysis.

Putting It Together: HRU. The HRU algorithm combines the HR and HU
algorithms to interpret both the dereference and union operators. HRU modifies
HR to iteratively apply the HU algorithm to its own output until it converges
to a fixed point. Since the HU algorithm is O(n3) and HR adds a factor of
O(n), HRU has a complexity of O(n4). As with HR this worst-case complexity
is not observed in practice; however it is advisable to first apply HVN to the
original constraints, then apply HRU to the resulting set of constraints. HVN
significantly decreases the size of the offline constraint graph, which decreases
both the time and memory consumption of HRU.

4 Location Equivalence

Let V be the set of all program variables; for v ∈ V : pts(v) ⊆ V is v’s points-to
set, and le(v) ∈ N is the location equivalence label of v, where N is the set of
natural numbers. Variables x and y are location equivalent iff ∀z ∈ V : x ∈
pts(z)⇔ y ∈ pts(z). Our goal is to assign location equivalence labels such that
le(x) = le(y) implies that x and y are location equivalent. Location equivalent
variables can safely be collapsed together in all points-to sets, providing two
benefits: (1) the points-to sets consume less memory; and (2) since the points-to
sets are smaller, points-to information is propagated more efficiently across the
edges of the constraint graph.

Without any pointer information it is impossible to compute all location
equivalences. However, since points-to sets are never split during the pointer
analysis, any variables that are location equivalent at the beginning are guar-
anteed to be location equivalent at the end. We can therefore safely compute a
subset of the equivalences prior to the pointer analysis. We use the same offline
constraint graph as we use to find pointer equivalence, but we will be labeling
adr nodes instead of direct nodes. The algorithm assigns each adr node a label
based on its outgoing edges such that two adr nodes have the same label iff
they have the same set of outgoing edges. In other words, adr nodes &a and &b
are assigned the same label iff, in the constraints, ∀z ∈ V : z ⊇ {a} ⇔ z ⊇ {b}.
In Figure 1, the adr nodes &a and &d would be assigned the same location
equivalence label.

While location and pointer equivalences can be computed independently, it is
more precise to compute location equivalence after we have computed pointer
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equivalence. We modify the criterion to require that adr nodes &a and &b are
assigned the same label iff ∀y, z ∈ V, (y ⊇ {a} ∧ z ⊇ {b}) ⇒ pe(y) = pe(z).
In other words, we don’t require that the two adr nodes have the same set of
outgoing edges, but rather that the nodes incident to the adr nodes have the
same set of pointer equivalence labels.

Once the algorithm has assigned location equivalence labels, it merges all
adr nodes that have identical labels. These merged adr nodes are each given
a fresh name. Points-to set elements will come from this new set of fresh names
rather than from the original names of the merged adr nodes, thereby saving
space, since a single fresh name corresponds to multiple adr nodes. However, we
must make a simple change to the subsequent pointer analysis to accommodate
this new naming scheme. When adding new edges from indirect constraints, the
pointer analysis must translate from the fresh names in the points-to sets to
the original names corresponding to the var nodes in the constraint graph. To
facilitate this translation we create a one-to-many mapping between the fresh
names and the original adr nodes that were merged together. In Figure 1, since
adr nodes &a and &d are given the same location equivalence label, they will
be merged together and assigned a fresh name such as &l. Any points-to sets
that formerly would have contained a and d will instead contain l; when adding
additional edges from an indirect constraint that references l, the pointer analysis
will translate l back to a and d to correctly place the edges in the online constraint
graph.

Complexity. LE is linear in the size of the constraint graph. The algorithm
scans through the constraints, and for each constraint a ⊇ {b} it inserts pe(a)
into adr node &b’s set of pointer equivalence labels. This step is linear in the
number of constraints (i.e. graph edges). It then visits each adr node, and it
uses a hash table to map from that node’s set of pointer equivalence labels to a
single location equivalence label. This step is also linear.

5 Evaluation

5.1 Methodology

Using a suite of six open-source C programs, which range in size from 169K to
2.17M LOC, we compare the analysis times and memory consumption of OVS,
HVN, HRU, and HRU+LE (HRU coupled with LE). We then use three differ-
ent state-of-the-art inclusion-based pointer analyses—Pearce et al. [10] (PKH),
Heintze and Tardieu [7] (HT), and Hardekopf and Lin [6] (HL)—to compare
the optimizations’ effects on the pointer analyses’ analysis time and memory
consumption. These pointer analyses are all field-insensitive and implemented
in a common framework, re-using as much code as possible to provide a fair
comparison. The source code is available from the authors upon request.

The offline optimizations and the pointer analyses are written in C++ and
handle all aspects of the C language except for varargs. We use sparse bitmaps
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taken from GCC 4.1.1 to represent the constraint graph and points-to sets.
The constraint generator is separate from the constraint solvers; we generate
constraints from the benchmarks using the CIL C front-end [9], ignoring any
assignments involving types too small to hold a pointer. External library calls
are summarized using hand-crafted function stubs.

The benchmarks for our experiments are described in Table 2. We run the
experiments on an Intel Core Duo 1.83 GHz processor with 2 GB of memory,
using the Ubuntu 6.10 Linux distribution. Though the processor is dual-core, the
executables themselves are single-threaded. All executables are compiled with
GCC 4.1.1 and the ’–O3’ optimization flag. We repeat each experiment three
times and report the smallest time; all the experiments have very low variance
in performance. Times include everything from reading the constraint file from
disk to computing the final solution.

Table 2. Benchmarks: For each benchmark we show the number of lines of code (com-
puted as the number of non-blank, non-comment lines in the source files), a description
of the benchmark, and the number of constraints generated by the CIL front-end

Name Description LOC Constraints
Emacs-21.4a text editor 169K 83,213

Ghostscript-8.15 postscript viewer 242K 169,312
Gimp-2.2.8 image manipulation 554K 411,783
Insight-6.5 graphical debugger 603K 243,404

Wine-0.9.21 windows emulator 1,338K 713,065
Linux-2.4.26 linux kernel 2,172K 574,788

5.2 Cost of Optimizations

Tables 3 and 4 show the analysis time and memory consumption, respectively, of
the offline optimizations on the six benchmarks. OVS and HVN have roughly the
same times, with HVN using 1.17× more memory than OVS. On average, HRU
and HRU+LE are 3.1× slower and 3.4× slower than OVS, respectively. Both
HRU and HRU+LE have the same memory consumption as HVN. As stated
earlier, these algorithms are run on the output of HVN in order to improve
analysis time and conserve memory; their times are the sum of their running time
and the HVN running time, while their memory consumption is the maximum of
their memory usage and the HVN memory usage. In all cases, the HVN memory
usage is greater.

Figure 4 shows the effect of each optimization on the number of constraints for
each benchmark. On average OVS reduces the number of constraints by 63.4%,
HVN by 69.4%, HRU by 77.4%, and HRU+LE by 79.9%. HRU+LE, our most
aggressive optimization, takes 3.4× longer than OVS, while it only reduces the
number of constraints by an additional 16.5%. However, inclusion-based analysis
is O(n3) time and O(n2) space, so even a relatively small reduction in the input
size can have a significant effect, as we’ll see in the next section.
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Table 3. Offline analysis times (sec)

Emacs Ghostscript Gimp Insight Wine Linux
OVS 0.29 0.60 1.74 0.96 3.57 2.34
HVN 0.29 0.61 1.66 0.95 3.39 2.36
HRU 0.49 2.29 4.31 4.28 9.46 7.70

HRU+LE 0.53 2.54 4.75 4.64 10.41 8.47

Table 4. Offline analysis memory (MB)

Emacs Ghostscript Gimp Insight Wine Linux
OVS 13.1 28.1 61.1 39.1 110.4 96.2
HVN 14.8 32.5 71.5 44.7 134.8 114.8
HRU 14.8 32.5 71.5 44.7 134.8 114.8

HRU+LE 14.8 32.5 71.5 44.7 134.8 114.8

Emac
s

Gho
sts

cri
pt

Gim
p

In
sig

ht
W

ine
Linu

x

Ave
rag

e
0

10

20

30

40

50

%
 C

on
st

ra
in

ts

OVS

HVN

HRU

HRU+LE

Fig. 4. Percent of the original number of constraints that is generated by each opti-
mization

5.3 Benefit of Optimizations

Tables 5–10 give the analysis times and memory consumption for three pointer
analyses—PKH, HT, and HL—as run on the results of each offline optimization;
OOM indicates the analysis ran out of memory. The data is summarized in
Figure 5, which gives the average performance and memory improvement for
the three pointer analyses for each offline algorithm as compared to OVS. The
offline analysis times are added to the pointer analysis times to make the overall
analysis time comparison.
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Table 5. Online analysis times for the PKH algorithm (sec)

Emacs Ghostscript Gimp Insight Wine Linux
OVS 1.99 19.15 99.22 121.53 1,980.04 1,202.78
HVN 1.60 17.08 87.03 111.81 1,793.17 1,126.90
HRU 0.74 13.31 38.54 57.94 1,072.18 598.01

HRU+LE 0.74 9.50 21.03 33.72 731.49 410.23

Table 6. Online analysis memory for the PKH algorithm (MB)

Emacs Ghostscript Gimp Insight Wine Linux
OVS 23.1 102.7 418.1 251.4 1,779.7 1,016.5
HVN 17.7 83.9 269.5 194.8 1,448.5 840.8
HRU 12.8 68.0 171.6 165.4 1,193.7 590.4

HRU+LE 6.9 23.8 56.1 58.6 295.9 212.4

Table 7. Online analysis times for the HT algorithm (sec)

Emacs Ghostscript Gimp Insight Wine Linux
OVS 1.63 13.58 64.45 46.32 OOM 410.52
HVN 1.84 12.84 59.68 42.70 OOM 393.00
HRU 0.70 9.95 37.27 37.03 1,087.84 464.51

HRU+LE 0.54 8.82 18.71 23.35 656.65 332.36

Table 8. Online analysis memory for the HT algorithm (MB)

Emacs Ghostscript Gimp Insight Wine Linux
OVS 22.5 97.2 359.7 266.9 OOM 1,006.8
HVN 17.7 85.0 279.0 231.5 OOM 901.3
HRU 10.8 70.3 205.3 156.7 1,533.0 700.7

HRU+LE 6.4 34.9 86.0 69.4 820.9 372.2

Table 9. Online analysis times for the HL algorithm (sec)

Emacs Ghostscript Gimp Insight Wine Linux
OVS 1.07 9.15 17.55 20.45 534.81 103.37
HVN 0.68 8.14 13.69 17.23 525.31 91.76
HRU 0.32 7.25 10.04 12.70 457.49 75.21

HRU+LE 0.51 6.67 8.39 13.71 345.56 79.99

Analysis Time. For all three pointer analyses, HVN only moderately improves
analysis time over OVS, by 1.03–1.18×. HRU has a greater effect despite its
much higher offline analysis times; it improves analysis time by 1.28–1.88×.
HRU+LE has the greatest effect; it improves analysis time by 1.28–2.68×. An
important factor in the analysis time of these algorithms is the number of times
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Table 10. Online analysis memory for the HL algorithm (MB)

Emacs Ghostscript Gimp Insight Wine Linux
OVS 21.0 93.9 415.4 239.7 1,746.3 987.8
HVN 13.9 73.5 263.9 183.7 1,463.5 807.9
HRU 9.2 63.3 170.7 121.9 1,185.3 566.6

HRU+LE 4.5 22.2 33.4 27.6 333.1 162.6
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Fig. 5. (a) Average performance improvement over OVS; (b) Average memory im-
provement over OVS. For each graph, and for each offline optimization X ∈ {HVN,
HRU, HRU+LE}, we compute
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they propagate points-to information across constraint edges. PKH is the least
efficient of the algorithms in this respect, propagating much more information
than the other two; hence it benefits more from the offline optimizations. HL
propagates the least amount of information and therefore benefits the least.

Memory. For all three pointer analyses HVN only moderately improves memory
consumption over OVS, by 1.2–1.35×. All the algorithms benefit significantly
from HRU, using 1.65–1.90× less memory than for OVS. HRU’s greater reduction
in constraints makes for a smaller constraint graph and fewer points-to sets.
HRU+LE has an even greater effect: HT uses 3.2× less memory, PKH uses 5×
less memory, and HL uses almost 7× less memory. HRU+LE doesn’t further
reduce the constraint graph or the number of points-to sets, but on average it
cuts the average points-to set size in half.

Room for Improvement. Despite aggressive offline optimization in the form of
HRU plus the efforts of online cycle detection, there are still a significant number
of pointer equivalences that we do not detect in the final constraint graph. The
number of actual pointer equivalence classes is much smaller than the number
of detected equivalence classes, by almost 4× on average. In other words, we
could conceivably shrink the online constraint graph by almost 4× if we could
do a better job of finding pointer equivalences. This is an interesting area for
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future work. On the other hand, we do detect a significant fraction of the actual
location equivalences—we detect 90% of the actual location equivalences in the
five largest benchmarks, though for the smallest (Emacs) we only detect 41%.
Thus there is not much room to improve on the LE optimization.

Bitmaps vs. BDDs. The data structure used to represent points-to sets for
the pointer analysis can have a great effect on the analysis time and mem-
ory consumption of the analysis. Hardekopf and Lin [6] compare the use of
sparse bitmaps versus BDDs to represent points-to sets and find that on av-
erage the BDD implementation is 2× slower but uses 5.5× less memory than
the bitmap implementation. To make a similar comparison testing the effects
of our optimizations, we implement two versions of each pointer analysis: one
using sparse bitmaps to represent points-to sets, the other using BDDs for the
same purpose. Unlike BDD-based pointer analyses [2,16] which store the en-
tire points-to solution in a single BDD, we give each variable its own BDD to
store its individual points-to set. For example, if v → {w, x} and y → {x, z},
the BDD-based analyses would have a single BDD that represents the set of
tuples {(v, w), (v, x), (y, x), (y, z)}. Instead, we give v a BDD that represents
the set {w, x} and we give y a BDD that represents the set {w, z}. The two
BDD representations take equivalent memory, but our representation is a simple
modification that requires minimal changes to the existing code.
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Fig. 6. (a) Average performance improvement over BDDs; (b) Average memory im-
provement over BDDs. Let BDD be the BDD implementation and BIT be the bitmap
implementation; for each graph we compute
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The results of our comparison are shown in Figure 6. We find that for HVN
and HRU, the bitmap implementations on average are 1.4–1.5× faster than the
BDD implementations but use 3.5–4.4× more memory. However, for HRU+LE
the bitmap implementations are on average 1.3× faster and use 1.7× less mem-
ory than the BDD implementations, because the LE optimization significantly
shrinks the points-to sets of the variables.
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6 Conclusion

In this paper we have shown that it is possible to reduce both the memory con-
sumption and analysis time of inclusion-based pointer analysis without affecting
precision. We have empirically shown that for three well-known inclusion-based
analyses with highly tuned implementations, our offline optimizations improve
average analysis time by 1.3–2.7× and reduce average memory consumption by
3.2–6.9×. For the fastest known inclusion-based analysis [6], the optimizations
improve analysis time by 1.3× and reduce memory consumption by 6.9×. We
have also found the somewhat surprising result that with our optimizations a
sparse bitmap representation of points-to sets is both faster and requires less
memory than a BDD representation.

In addition, we have provided a roadmap for further investigations into the
optimization of inclusion-based analysis. Our optimization that exploits location
equivalence comes close to the limit of what can be accomplished, but our other
optimizations identify only a small fraction of the pointer equivalences. Thus,
the exploration of new methods for finding and exploiting pointer equivalences
should be a fruitful area for future work.

Acknowledgments. We thank Brandon Streiff and Luke Robison for their help in
conducting experiments and Dan Berlin for his help with the GCC compiler inter-
nals. Kathryn McKinley, Ben Wiedermann, and Adam Brown provided valuable
comments on earlier drafts. This work was supported by NSF grant ACI-0313263
and a grant from the Intel Research Council.

References

1. Andersen, L.O.: Program Analysis and Specialization for the C Programming an-
guage. PhD thesis, DIKU, University of Copenhagen (May 1994)

2. Berndl, M., Lhotak, O., Qian, F., Hendren, L., Umanee, N.: Points-to analysis
using BDDs. In: Programming Language Design and Implementation (PLDI), pp.
103–114 (2003)

3. Briggs, P., Cooper, K.D., Taylor Simpson, L.: Value numbering. Software Practice
and Experience 27(6), 701–724 (1997)

4. Das, M.: Unification-based pointer analysis with directional assignments. In: Pro-
gramming Language Design and Implementation (PLDI), pp. 35–46 (2000)

5. Faehndrich, M., Foster, J.S., Su, Z., Aiken, A.: Partial online cycle elimination in
inclusion constraint graphs. In: Programming Language Design and Implementa-
tion (PLDI), pp. 85–96 (1998)

6. Hardekopf, B., Lin, C.: The Ant and the Grasshopper: Fast and accurate pointer
analysis for millions of lines of code. In: Programming Language Design and Im-
plementation (PLDI) (2007)

7. Heintze, N., Tardieu, O.: Ultra-fast aliasing analysis using CLA: A million lines
of C code in a second. In: Programming Language Design and Implementation
(PLDI), pp. 24–34 (2001)

8. Liang, D., Harrold, M.J.: Equivalence analysis and its application in improving the
efficiency of program slicing. ACM Trans. Softw. Eng. Methodol. 11(3), 347–383
(2002)



280 B. Hardekopf and C. Lin

9. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate language
and tools for analysis and transformation of C programs. In: Computational Com-
plexity, pp. 213–228 (2002)

10. Pearce, D., Kelly, P., Hankin, C.: Efficient field-sensitive pointer analysis for C. In:
ACM workshop on Program Analysis for Software Tools and Engineering (PASTE),
pp. 37–42. ACM Press, New York (2004)

11. Pearce, D.J., Kelly, P.H.J., Hankin, C.: Online cycle detection and difference prop-
agation for pointer analysis. In: 3rd International IEEE Workshop on Source Code
Analysis and Manipulation (SCAM), pp. 3–12. IEEE Computer Society Press, Los
Alamitos (2003)

12. Rountev, A., Chandra, S.: Off-line variable substitution for scaling points-to anal-
ysis. In: Programming Language Design and Implementation (PLDI), pp. 47–56
(2000)

13. Shapiro, M., Horwitz, S.: Fast and accurate flow-insensitive points-to analysis. In:
ACM Symposium on Principles of Programming Languages (POPL), pp. 1–14.
ACM Press, New York (1997)

14. Steensgaard, B.: Points-to analysis in almost linear time. In: ACM Symposium on
Principles of Programming Languages (POPL), pp. 32–41. ACM Press, New York
(1996)

15. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2),
146–160 (June 1972)

16. Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis. In:
Programming Language Design and Implementation (PLDI), pp. 131–144 (2004)



Hierarchical Pointer Analysis for Distributed Programs

Amir Kamil and Katherine Yelick

Computer Science Division, University of California, Berkeley
{kamil,yelick}@cs.berkeley.edu

Abstract. We present a new pointer analysis for use in shared memory programs
running on hierarchical parallel machines. The analysis is motivated by the parti-
tioned global address space languages, in which programmers have control over
data layout and threads and can directly read and write to memory associated with
other threads. Titanium, UPC, Co-Array Fortran, X10, Chapel, and Fortress are
all examples of such languages. The novelty of our analysis comes from the hier-
archical machine model used, which captures the increasingly hierarchical nature
of modern parallel machines. For example, the analysis can distinguish between
pointers that can reference values within a thread, within a shared memory mul-
tiprocessor, or within a network of processors. The analysis is presented with
a formal type system and operational semantics, articulating the various ways in
which pointers can be used within a hierarchical machine model. The hierarchical
analysis has several applications, including race detection, sequential consistency
enforcement, and software caching. We present results of an implementation of
the analysis, applying it to data race detection, and show that the hierarchical
analysis is very effective at reducing the number of false races detected.

1 Introduction

The introduction of multi-core processors marks a dramatic shift in software develop-
ment: parallel software will be required for laptops, desktops, gaming consoles, and
graphics processors. These chips are building blocks in larger shared and distributed
memory parallel systems, resulting in machines that are increasingly hierarchical and
use a combination of cache-coherent shared memory, partitioned memory with (remote)
direct memory access (DMA or RDMA), and message passing. The partitioned global
address space (PGAS) model is a natural fit for programming these machines, and lan-
guages that use it include Unified Parallel C (UPC) [7,26], Co-Array Fortran (CAF)
[25], Titanium [28,12] (based on Java [10]), Chapel [8], X10 [24], and Fortress [1]. In
all of these languages, pointers to shared state is permitted, and a fundamental question
is whether a given pointer can be proven to access data in only a limited part of the
machine hierarchy. Some applications of this are: 1) a pointer that accesses data that is
private to a single thread cannot be involved in a data race; 2) a pointer that accesses
data within a chip multiprocessor may require memory fences to ensure ordering, but
those fences only need to make data visible within the chip level; 3) pointer limits may
inform a software caching system that coherence protocols may be restricted to a subset
of processors; 4) a pointer with a limited domain may use fewer bits in its representa-
tion, since only a fraction of the total address space is accessible.

H. Riis Nielson and G. Filé (Eds.): SAS 2007, LNCS 4634, pp. 281–297, 2007.
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In this paper we introduce a pointer analysis that is designed for a hierarchical setting.
Our analysis allows for an arbitrarily deep hierarchy, such as the abstract machine model
in Fortress, although in this paper we apply it to the three-level model of Titanium. In
Titanium, a pointer may refer to data only within a single thread, or to data associated
with any threads within a SMP node, or to any thread in the machine.

We develop a model language, Ti, for presenting our analysis and give both a type
system and operational semantics for the language. Ti has the essential features of any
global address space language: the ability to create references to data, share data with
other machines in the system through references, and dereference them for either read
or write access. Ti also has a hierarchical machine model, which is general enough to
cover all of the existing PGAS languages. We implement our analysis in the context of
the full Titanium language and then apply the analysis, in conjunction with an existing
concurrency analysis [15], towards race detection, and show that it greatly reduces the
number of false races detected on five application benchmarks. In previous work we
demonstrated some of the other applications of pointer analysis in Titanium [14], but
without the generality of the hierarchical analysis presented here.

2 Background

In this section, we describe some machines and languages that use a hierarchical mem-
ory model and discuss the aspects of Titanium that are relevant to the pointer analysis.

2.1 Hierarchical Memory

Parallel machines are often built with hierarchical memory systems, with local caches or
explicitly managed local stores associated with each process. For example, partitioned
global address space (PGAS) languages may run on shared memory, distributed mem-
ory machines or hybrids, with the language runtime providing the illusion of shared
memory through the use of wide pointers (that store both a processor node number and
an address), distributed arrays, and implicit communication to access such data. Hierar-
chies also exist within processors in the form of caches and local stores. For example,
the Cell game processor has a local store associated with each of the SPE processors,
which can be accessed by other SPEs through memory move (DMA) operations. Addi-
tional levels of partitioning are also possible, such as partitioning memory in a compu-
tational grid into clusters, each of which is partitioned into nodes, as in Figure 1.

Most PGAS languages use a two level abstraction of memory, where data is either
local to a thread or shared by all, although Titanium uses three levels and Fortress has
an arbitrary number. In many PGAS languages, pointers are restricted in what they can
reference. In Figure 1, pointers A, B, and C are examples of pointers that can only
refer to thread-local, node-local, and cluster-local locations, respectively, while D can
point anywhere in the grid. The width of a pointer specifies what locations it can ref-
erence, with a higher width allowing further locations, as shown by the edge labels
in Figure 1. Wider pointers consume more space and are more expensive to manipu-
late and access. For example, thread-local and node-local pointers could be represented
simply by an address, while a cluster-local pointer contains an address and a node num-
ber. Wider pointers also have added costs to dereference, even if they happen to refer
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Fig. 1. A possible machine hierarchy with four levels. The width of arrows and their labels indi-
cate the hierarchy distance between the endpoints.

to nearby data; the pointer must be checked to see whether it is local, and coherence
traffic or fences may be required to ensure the data is consistent with that viewed by
other threads. The trend in hardware is towards more levels of hierarchy, and towards
high costs between levels. Thus, software that can take advantage of the hierarchy is
increasingly important.

2.2 Titanium

The Titanium programming language [28] is a high performance dialect of Java de-
signed for distributed machines. It is a single program, multiple data (SPMD) language,
so all threads execute the same code image. In addition, Titanium has a global address
space abstraction, so that any thread can directly access memory on another thread. At
runtime, two threads may share the same physical address space, in which case such
an access is done directly, or they may be in distinct address spaces, in which case the
global access must be translated into communication through the GASNet communica-
tion layer [6].

In addition to dereferencing, communication between threads can be done through
the one-to-all broadcast and the all-to-all exchange operations. Program variables, in-
cluding static variables, are not shared between threads, so they cannot be used for
communication.

Since threads can share a physical address space, they are arranged in the following
three-level hierarchy:

– Level 1: an individual thread
– Level 2: threads within the same physical address space
– Level 3: all threads

In the Titanium type system, variables are implicitly global, meaning that they can point
to a location on any thread (level 3). A variable can be restricted to only point within a
physical address space (level 2) by qualifying it with the local keyword. Downcasts
between global and local are allowed and only succeed if the actual location referenced
is within the same physical address space as the executing thread. Our analysis takes
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advantage of existing such casts in a program in determining what variables must refer-
ence data in the same address space.

The Titanium type system does not separate levels 1 and 2 of the hierarchy. The
distinction between 1 and 2 is important for many applications, such as race detection
[21], data sharing analysis [17], and sequential consistency enforcement [14], since
references to level 1 values on different threads cannot be to the same location. Other
applications such as data locality inference [16] can benefit from the distinction between
levels 2 and 3. Though we could perform a two-level analysis twice to obtain a three-
level analysis, we show in §4.5 that the three-level analysis we have implemented is
much more efficient.

3 Analysis Background

We define a machine1 hierarchy and a simple language as the basis of our analysis. This
allows the analysis to be applied to languages besides Titanium, and it avoids language
constructs that are not crucial to the analysis. While the language we use is SPMD, the
analysis can easily be extended to other models of parallelism, though we do not do so
here.

3.1 Machine Structure

Consider a set of machines arranged in an arbitrary hierarchy, such as that of Figure 1.
A machine corresponds to a single execution stream within a parallel program. Each
machine has a corresponding machine number. The depth of the hierarchy is the number
of levels it contains. The distance between machines is equal to the level of the hierarchy
containing their least common ancestor. A pointer on a machine m has a corresponding
width, and it can only refer to locations on machines whose distance from m is no more
than the pointer’s width

3.2 Language

Our analysis is formalized using a simple language, called Ti, that illustrates the key
features of the analysis. Ti is a generalization of the language used by Liblit and Aiken
in their work on locality inference [16]. Like Titanium, Ti uses a SPMD model of par-
allelism, so that all machines execute the same program text. The height of the machine
hierarchy is known statically, and we will refer to it as h from here on. References thus
can have any width in the range [1, h].

The syntax of Ti is summarized in Figure 2. Types can be integers or reference types.
The latter are parameterized by a width n, in the range [1, h]. Expressions in Ti consist
of the following

– integer literals (n)
– variables (x). We assume a fixed set of variables of predefined type. We also assume

that variables are machine-private.

1 Throughout this paper, we will use machine interchangeably with thread.
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n ::= integer literals

x ::= variables

τ ::= int | refn τ (types)

e ::= n | x | newl τ | ∗ e | convert(e, n)

| transmit e1 from e2 | e1; e2

| x := e | e1 ← e2

(expressions)

Fig. 2. The syntax of the Ti lan-
guage

expand(refmτ, n) ≡ refmax(m,n) τ

expand(τ, n) ≡ τ otherwise

robust(refmτ, n) ≡ false if m < n

robust(τ, n) ≡ true otherwise

Fig. 3. Type manipulating func-
tions

Γ � n : int Γ � newl τ : ref1 τ

Γ (x) = τ

Γ � x : τ

Γ � e : refn τ

Γ � ∗ e : expand(τ, n)
Γ � e : refn τ

Γ � convert(e, m) : refm τ

Γ � e1 : τ Γ � e2 : int

Γ � transmit e1 from e2 : expand(τ, h)
Γ � e1 : τ1 Γ � e2 : τ2

Γ � e1; e2 : τ2

Γ � e : τ Γ (x) = τ

Γ � x := e : τ

Γ � e1 : refn τ Γ � e2 : τ robust(τ, n)
Γ � e1 ← e2 : τ

Γ � e : refn τ n < m

Γ � e : refm τ

Fig. 4. Type checking rules

– reference allocations (newl τ ). The expression newl τ allocates a memory cell of
type τ and returns a reference to the cell. In order to facilitate the pointer analysis
in §4, each allocation site is given a unique label l.

– dereferencing (∗e)
– type conversions (convert(e, n)), which widen or narrow the width of an expres-

sion, converting its type from refm τ to refn τ .
– communication (transmit e1 from e2). In transmit e1 from e2, machine e2

evaluates the expression e1 and sends the result to the other machines.
– sequencing (e1; e2)
– assignment to variables (x := e)
– assignment through references (e1 ← e2). In e1 ← e2, e2 is written into the location

referred to by e1.

For simplicity, Ti does not have conditional statements. Since the analysis is flow-
insensitive, conditionals are not essential to it.

The type checking rules for Ti are summarized in Figure 4. The rules for integer
literals, variables, sequencing, and variable assignments are straightforward.

The allocation expression newl τ produces a reference type ref1 τ of width 1, since
the allocated memory is guaranteed to be on the machine that is performing the allo-
cation. Pointer dereferencing is more problematic, however. Consider the situation in
Figure 5, where x on machine 0 refers to a location on machine 0 that refers to a loca-
tion on machine 1. This implies that x has type ref1 ref2 τ . The result of ∗x should



286 A. Kamil and K. Yelick

Fig. 5. Dereferences may require width ex-
pansion. The arrow labels correspond to
pointer widths.

Fig. 6. The assignment y ← z is forbidden,
since the location referred to by y can only
hold pointers of width 1 but requires a pointer
of width 2 to refer to z

be a reference to the location on machine 1, so it must have type ref2 τ . In general, a
dereference of a value of type refa refb τ produces a value of type refmax(a,b) τ .

The convert expression allows the top-level width of an expression to be up or
downcast. Upcasts are rarely used due to the subtyping rule below. A programmer can
use downcasts to inform the compiler that the reference is to data residing on a machine
closer than the original width, and usually does so only after a dynamic check that this
is the case. The resulting type is the same as the input expression, but with the provided
top-level width.

In the transmit expression, if the value to be communicated is an integer, then the
resulting type is still an integer. If the value is a reference, however, the result must be
promoted to the maximum width h, since the relationship between source and destina-
tion is not statically known.

The typing rule for the assignment through reference expression is also nontrivial.
Consider the case where y has type ref2 ref1 τ , as in Figure 6. Should it be possible
to assign to y with a value of type ref1 τ? Such a value must be on machine 0, but
the location referred to by x is on machine 1. Since that location holds a value of type
ref1 τ , it must refer to a location on machine 1. Thus, the assignment should be for-
bidden. In general, an assignment to a reference of type refa refb τ should only be
allowed if a ≤ b.

There is also a subtyping rule that allows for implicit widening of a reference. Sub-
sumption is only allowed for the top-level width of a reference.

As in the approach of Liblit and Aiken, [16], we define an expand function and a
robust predicate to facilitate type checking. The expand function widens a type when
necessary, and the robust predicate determines when it is legal to assign to a reference.
These functions are shown in Figure 3.

3.3 Concrete Operational Semantics

In this section we present the sequential operational semantics of Ti . We ignore concur-
rency in defining the semantics, since it is not essential to our flow-insensitive
analysis.
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We use the following semantic domains and naming conventions for their elements:

M (the set of machines)

H = {1, ..., h} (the set of possible widths)

A (the set of local addresses)

Id (the set of identifiers)

N (the set of integer literals)

V ar = M × Id (the set of variables)

L (the set of allocation site labels)

T (the set of all types)

G = L × M × A (the set of global addresses)

V = N ∪ G (the set of values)

Store = (G ∪ V ar) → V
(the contents of memory)

Exp (the set of all expressions)

m ∈ M (a machine)

v ∈ V (a value)

σ ∈ Store
(a memory state)

a ∈ A (a local address)

l ∈ L (a label)

g = (l, m, a) ∈ G (a global address)

e ∈ Exp (an expression)

Judgments in our operational semantics have the form 〈e,m, σ〉 ⇓ 〈v, σ′〉, which
means that expression e executed on machine m in a global state σ evaluates to the
value v and results in the new state σ′. We use the notation σ[g := v] to denote the
function λx. if x = g then v else σ(x).

The rules for integer and variable expressions are trivial.

〈n,m, σ〉 ⇓ 〈n, σ〉 〈x,m, σ〉 ⇓ 〈σ(x), σ〉

For allocations, we introduce a special null value to represent uninitialized pointers.
The result of an allocation is an address on the local machine that is guaranteed to not
already be in use.

〈newl τ,m, σ〉 ⇓ 〈(l,m, a), σ[(l,m, a) := null]〉 (a is fresh on m)

The rule for dereferencing is simple, except that it is illegal to dereference a null
pointer.

〈e,m, σ〉 ⇓ 〈g, σ′〉 g �= null

〈∗e,m, σ〉 ⇓ 〈σ′(g), σ′〉

The rule for variable assignment is also simple.

〈e,m, σ〉 ⇓ 〈v, σ′〉
〈x := e,m, σ〉 ⇓ 〈v, σ′[x := v]〉

The rule for assignment through a reference is the combination of a dereference and a
normal assignment.

〈e1,m, σ〉 ⇓ 〈g, σ1〉 〈e2,m, σ1〉 ⇓ 〈v, σ2〉 g �= null

〈e1 ← e2,m, σ〉 ⇓ 〈v, σ2[g := v]〉
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The rule for sequencing is as expected.

〈e1,m, σ〉 ⇓ 〈v1, σ1〉 〈e2,m, σ1〉 ⇓ 〈v2, σ2〉
〈e1; e2,m, σ〉 ⇓ 〈v2, σ2〉

The type conversion expression makes use of the hier function, which returns the hier-
archical distance between two machines. The conversion is only allowed if that distance
is no more than the target type.

〈e,m, σ〉 ⇓ 〈g = (l,m′, a), σ′〉 hier(m,m′) ≤ n

〈convert(e, n),m, σ〉 ⇓ 〈g, σ′〉
In the transmit operation, the expression is evaluated on the given machine.

〈e2,m, σ〉 ⇓ 〈n, σ2〉 n ∈M 〈e1, n, σ2〉 ⇓ 〈v, σ1〉
〈transmit e1 from e2,m, σ〉 ⇓ 〈v, σ1〉

4 Abstract Interpretation

We now present a pointer analysis for the Ti language. So that we can ignore any issues
of concurrency and also for efficiency, our analysis is flow-insensitive. We only define
the analysis on the single machine m – since Ti is SPMD, the results are the same for
all machines.

4.1 Concrete Domain

Since our analysis is flow-insensitive, we need not determine the concrete state at each
point in a program. Instead, we define the concrete state over the whole program. Since
we are doing pointer analysis, we are only interested in reference values, and since a
location can contain different values over the lifetime of the program, we must compute
the set of all possible values for each memory location and variable on machine m.
The concrete state thus maps each memory location and variable to a set of memory
locations, and it is a member of the domain CS = (G + Id)→ P(G).

4.2 Abstract Domain

For our abstract semantics, we define an abstract location to correspond to the ab-
straction of a concrete memory location. Abstract locations are defined relative to a
particular machine m. An abstract location relative to machine m is a member of the
domain Am = L×H – it is identified by both an allocation site and a hierarchy width.
An element a1 of Am is subsumed by another element a2 if a1 and a2 have the same
allocation site, and a2 has a higher width than a1. The elements of Am are thus ordered
by the following relation:

(l, n1) � (l, n2)⇐⇒ n1 ≤ n2

The ordering thus has height h.
We define R ⊂ P(Am) to be the maximal subset of P(Am) that contains no redun-

dant elements. An element S is redundant if:

∃x, y ∈ S. x � y ∧ x �= y
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In other words, S is redundant if it contains two related elements of Am, such that one
subsumes the other.

An element S ∈ R can be represented by an n-digit vector u, where n = |L| and the
digits are in the range [0, h]. The vector is defined as follows:

u(i) =

{
j if (li, j) ∈ S,

0 otherwise.

The vector has a digit for each allocation site, and the value of the digit is the width of
the abstract location in S corresponding to the site, or 0 if there is none.

We use the following Hoare ordering on elements of R:

S1 � S2 ⇐⇒ ∀x ∈ S1. ∃y ∈ S2. x � y

The element S1 is subsumed by S2 if every element in S1 is subsumed by some element
in S2. In the vector representation, the following is an equivalent ordering:

S1 � S2 ⇐⇒ ∀i ∈ {1, ..., |L|}. u1(i) ≤ u2(i)

In this representation, S1 is subsumed by S2 if each digit in S1 is no more than the
corresponding digit in S2. The ordering relation induces a lattice with minimal element
corresponding to u⊥(i) = 0, and a maximal element corresponding to u�(i) = h. The
maximal chain between⊥ and " is derived by increasing a single vector digit at a time
by 1, so the chain, and therefore the lattice, has height h · |L|+ 1.

We now define a Galois connection between P(G) and R as follows:

γm(S) =
{
(l,m′, a)

∣∣ (l, n) ∈ S ∧ hier(m,m′) ≤ n
}

αm(C) = �
{
S
∣∣ C � γm(S)

}

The concretization of an abstract location (l, n) with respect to machine m is the set
of all concrete locations with the same allocation site and located on machines that
are at most n away from m. The abstraction with respect to m of a concrete location
(l,m′, a) is an abstract location with the same allocation site and width equal to the
distance between m and m′.

Finally, we abstract the concrete domain CS to the following abstract domain, which
maps abstract locations and variables to points-to sets of abstract locations:

AS = (Am + Id)→ R

An element σA of AS is subsumed by σ′
A if the points-to set of each abstract location

and variable in σA is subsumed by the corresponding set in σ′
A. The elements of AS

are therefore ordered as follows:

σA � σ′
A ⇐⇒ ∀x ∈ (Am + Id). σA(x) � σ′

A(x)

The resulting lattice has height in O(h · |L| ·(|Am|+ |Id|)) = O(h · |L| ·(h · |L|+ |Id|)).
Since the number of allocation sites and identifiers is limited by the size of the input
program P , the height is in O(h2 · |P |2).
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4.3 Abstract Semantics

For each expression in Ti, we provide inference rules for how the expression updates
the abstract state σA. The judgments are of the form 〈e, σA〉 ⇓ 〈S, σ′

A〉, which means
that expression e in abstract state σA can refer to the abstract locations S and results in
the modified abstract state σ′

A. As in §3.3, we use the notation σ[g := v] to denote the
function λx. if x = g then v else σ(x). Most of the rules are derived directly from
the operational semantics of the language.

The rules for integer and variable expressions are straightforward. Neither updates
the abstract state, and the latter returns the abstract locations in the points-to set of the
variable.

〈n, σA〉 ⇓ 〈∅, σA〉 〈x, σA〉 ⇓ 〈σA(x), σA〉

An allocation returns the abstract location corresponding to the allocation site, with
width 1.

〈newl τ, σA〉 ⇓ 〈{(l, 1)}, σA〉

The rule for dereferencing is similar to the operational semantics rule, except that all
source abstract locations are simultaneously dereferenced.

〈e, σA〉 ⇓ 〈S, σ′
A〉

〈∗e, σA〉 ⇓ 〈
⋃

b∈S σ′
A(b), σ′

A〉

The rule for sequencing is also analogous to its operational semantics rule.

〈e1, σA〉 ⇓ 〈S1, σ
′
A〉 〈e2, σ

′
A〉 ⇓ 〈S2, σ

′′
A〉

〈e1; e2, σA〉 ⇓ 〈S2, σ
′′
A〉

The rule for variable assignment merely copies the source abstract locations into the
points-to set of the target variable.

〈e, σA〉 ⇓ 〈S, σ′
A〉

〈x := e, σA〉 ⇓ 〈S, σ′
A[x := σ′

A(x) � S]〉

The type conversion expression can only succeed if the result is within the specified
hierarchical distance, so it narrows all abstract locations that are outside that distance.

〈e, σA〉 ⇓ 〈S, σ′
A〉

〈convert(e, n), σA〉 ⇓ 〈{(l,min(k, n)) | (l, k) ∈ S}, σ′
A〉

The SPMD model of parallelism in Ti implies that the source expression of the trans-
mit operation evaluates to abstract locations with the same labels on both the source
and destination machines. The distance between the source and destination machines,
however, is not statically known, so the resulting abstract locations must be assumed to
have the maximum width.

〈e2, σA〉 ⇓ 〈S2, σ′
A〉 〈e1, σ′

A〉 ⇓ 〈S1, σ′′
A〉

〈transmit e1 from e2, σA〉 ⇓ 〈{(l, h) | (l,m) ∈ S1}, σ′′
A〉
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Fig. 7. The assignment x ← y on machine 0 results in the abstract location (l2, 2) being added
to the points-to set of (l1, 1), as shown by the first dashed arrow. The assignment on machine 1
results in the abstract location (l2, 2) being added to the points-to set of (l1, 2), as shown by the
second dashed arrow. The assignment must also be accounted for on the rest of the machines.
(Abstract locations in the figure are with respect to machine 0).

The rule for assignment through references is the most interesting. Suppose an abstract
location a2 = (l2, 2) is assigned into an abstract location a1 = (l1, 1), as in Figure 7. Of
course, we have to add a2 to the points-to set of a1. In addition, since Ti is SPMD, we
have to account for the effect of the same assignment on a different machine. Consider
the assignment on machine m′, where hier(m,m′) = 2. The location a1 relative to m
corresponds to a location a′

1 = (l1, 2) relative to m′. The location a2 can correspond to
a concrete location on m′, so its abstraction can be a′

2 = (l2, 1) relative to m′. But it can
also correspond to a concrete location on m′′ where hier(m,m′′) = hier(m′,m′′) =
2, so its abstraction can also be a′′

2 = (l2, 2). But since a′
2 � a′′

2 , it is sufficient to
assume that a2 corresponds to a′′

2 on m′. From the point of view of m′ then, the abstract
location (l2, 2) should be added to the points-to set of the location (l1, 2).

In general, whenever an assignment occurs from (l2, n2) to (l1, n1), we have to up-
date not only the points-to set of (l1, n1) but the sets of all locations corresponding to
label l1 and of any width. As we show below, the proper update is to add the location
(l2,max(n′

1, n1, n2)) to the points-to set of each location (l1, n′
1). The rule is then

〈e1, σA〉 ⇓ 〈S1, σ′
A〉 〈e2, σ′

A〉 ⇓ 〈S2, σ′′
A〉

〈e1 ← e2, σA〉 ⇓ 〈S2, update(σ′′
A, S1, S2)〉

,

with update defined as

update(σ, S1, S2) =
λ(l1, n′

1) : L×H .

σ((l1, n′
1)) �

{
(l2,max(n′

1, n1, n2))
∣∣ (l1, n1) ∈ S1 ∧ (l2, n2) ∈ S2

}
.

4.4 Soundness

An abstract intepretation is sound if the abstraction and concretization functions are
monotonic and form a Gallois connection, and the abstract inference rules for each
operation is correct. The former condition was shown in §4.2.
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Most of the abstract inference rules are derived directly from the operational se-
mantics, so their correctness is obvious. The rule for assignment through a reference,
however, is nontrivial, so we prove its correctness here.

Let am
i represent the abstract location ai with respect to machine m. Let nm repre-

sent a width n with respect to m.
Consider an assignment e1 ← e2. Let m be the reference machine for the analy-

sis. Without loss of generality, assume that e1 evaluates to the lone abstract location
am
1 = (l1, nm

1 ), and that e2 evaluates to am
2 = (l2, nm

2 ). Consider the execution of this
assignment on the following machines:

– On machines m′ such that hier(m,m′) ≤ nm
1 . This implies that the (nm

1 − 1)th
ancestor of each m′ in the machine hierarchy is the same as that of m. As a result,
abstract locations of width at least n1 are the same with respect to both m and m′.
In particular, am′

1 = am
1 , so the assignment on any machine can target any concrete

location in am
1 .

Now suppose nm
2 < nm

1 . Then the am′

2 are not equivalent for all machines
m′. However, note that am′

2 contains the concrete locations (l2,m′, a) for any a.
Considering the assignment on all machines m′, the concrete locations in am

1 can
receive any of the source concrete locations (l2,m′, a) for all m′ and a. This set of
source locations corresponds exactly to the abstract location am

2′ = (l2, nm
1 ).

Suppose instead that nm
2 ≥ nm

1 . Then the machines m′ all agree on the set
am′

2 = am
2 . Thus, regardless of which machine the assignment is executed on, the

source locations correspond exactly to am
2 .

In either case, any of the concrete locations corresponding to am
1 can now point

to any of the concrete locations corresponding to am
2′ = (l2,max(nm

1 , nm
2 )). To

capture this in the abstract inference, it is sufficient to add am
2′ to the points-to set

of am
1 . For consistency, am

2′ should also be added to the points-to set of any abstract
location am

1′ � am
1 , since any of the concrete locations corresponding to am

1′ can
point to any of the concrete locations corresponding to am

2′ .
Thus, it is sufficient to add the abstract location am

2′ = (l2,max(nm
1 , nm

2 )) to
the points-to set of any am

1′ = (l1, nm
1′ ) such that nm

1′ ≤ nm
1 .

– On a machine m′, where hier(m,m′) > nm
1 . The set of concrete locations cor-

responding to am′

1 all reside on machines a distance of nm
1′ = hier(m,m′) away

from machine m. Thus, am′

1 � am
1′ , where am

1′ = (l1, nm
1′ ).

Now suppose nm
2 < nm

1′ . Then all the concrete locations corresponding to am′

2

reside at a distance of nm
1′ from machine m, so that am′

2 � am
2′ , where am

2′ =
(l2, nm

1′ ). Thus, the source locations can be soundly approximated by am
2′ .

Suppose instead that nm
2 ≥ nm

1′ . Then m and m′ agree on am′

2 = am
2 , so the

source locations correspond to am
2 .

In either case, some of the concrete locations corresponding to am
1′ can now

point to some of the concrete locations corresponding to am
2′ = (l2,max(nm

1′ , nm
2 )).

Soundness can be maintained, though precision lost, if the analysis assumes that
any concrete location corresponding to am

1′ can point to any concrete location cor-
responding to am

2′ . Thus, am
2′ should be added to the points-to set of am

1′ .
Now consider an abstract location am

1′′ = (l1, nm
1′′), where nm

1′′ < nm
1′ . All

concrete locations represented by am
1′′ reside less than a distance of nm

1′ away from
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m. Since all concrete locations corresponding to am′

1 reside at a distance of nm
1′

from m, the abstract locations am
1′′ and am′

1 do not intersect. Thus, none of the
concrete locations in am

1′′ are targeted by the assignment, so its points-to set does
not need to be updated.

Thus, it is sufficient to add the abstract location am
2′ = (l2,max(nm

1′ , nm
2 )) to

the points-to set of each am
1′ = (l1, nm

1′ ) such that nm
1′ > nm

1 .

Summarizing over all possibilities, we obtain the rule that the abstract location am
2′ =

(l2,max(nm
1′ , nm

1 , nm
2 )) is to be added to the points-to set of any am

1′ = (l1, nm
1′ ). This

corresponds exactly to the update rule provided in §4.3.

4.5 Algorithm

The set of inference rules, instantiated over all the expressions in a program and applied
in some arbitrary order2, composes a function F : AS → AS. Only the two assignment
rules affect the input state σA, and in both rules, the output consists of a least upper
bound operation involving the input state. As a result, F is a monotonically increasing
function, and the least fixed point of F , F0 = �nFn(λx. ∅), is the analysis result.

The function F has a rule for each program expression, so it takes time in O(|P |)
to apply it3, where P is the input program. Since the lattice over AS has height in
O(h2 · |P |2), it takes time in O(h2 · |P |3) to compute the fixed point of F .

In our implementation, we have found that the running time of the analysis varies
little between one, two, and three levels of hierarchy. For the benchmarks in §5, a three-
level analysis takes no more than 10% longer than a single-level analysis and less than
5% longer than a two-level analysis. Thus, the three-level analysis is far more efficient
than running a two-level analysis twice.

5 Evaluation

The pointer information computed in §4 can be applied to multiple analyses and opti-
mizations for parallel programs. We evaluate the pointer analysis by using it for race
detection. In [13], we apply it as well to enforcement of sequential consistency and
describe how it can be used to infer data locality and privacy.

We use the following set of benchmarks:

– amr [27] (7581 lines) Chombo adaptive mesh refinement suite [3] in Titanium.
– gas [5] (8841 lines): Hyperbolic solver for a gas dynamics problem in computa-

tional fluid dynamics.
– ft [9] (1192 lines): NAS Fourier transform benchmark [4] in Titanium.
– cg [9] (1595 lines): NAS conjugate gradient benchmark [4] in Titanium.
– mg [9] (1952 lines): NAS multigrid benchmark [4] in Titanium.

2 Since the analysis is flow-insensitive, the order of application is not important.
3 We ignore the cost of the join operations here. In practice, points-to sets tend to be small, so

the cost of joining them can be neglected.
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Fig. 8. Number of data races reported for different levels of analysis

The line counts for the above benchmarks underestimate the amount of code actually
analyzed, since all reachable code in the 37,000 line Titanium and Java 1.0 libraries is
also processed.

A race condition occurs when two memory accesses can occur simultaneously on
different threads, they can be to the same memory location, and at least one is a write.
An existing concurrency analysis for Titanium [15] can conservatively determine which
accesses are simultaneous. The pointer analysis can detect if two accesses may be to the
same location by checking if they can operate on abstract locations whose concretiza-
tions with respect to different machines overlap. In a single-level analysis, all abstract
locations with the same label overlap, while in a multi-level analysis, they do not over-
lap if they are both machine-local (i.e. have width 1). Thus, a multi-level analysis results
in higher race detection precision than a single-level analysis.

Static information is generally not enough to determine with certainty that two mem-
ory accesses compose a race, so nearly all reported races are false positives. (The cor-
rectness of the concurrency and pointer analyses ensure that no false negatives occur.)
We therefore consider a race detector that reports the fewest races to be the most effec-
tive

Figure 8 compares the effectiveness of three levels of race detection:

– concur: Our concurrency analysis4 [15] is used to eliminate non-concurrent mem-
ory accesses. Sharing inference [17] is used to eliminate accesses to thread-private
data.

4 The most precise analysis in [15] is used, which was labeled as feasible in that paper.
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– concur+AA1: A single-level pointer analysis is added to eliminate false aliases.
– concur+AA3: A three-level pointer analysis is added to eliminate false aliases.

The results show that the pointer analysis can eliminate most of the races reported
by our detector. The addition of pointer analysis removes most of the races discovered
by only using the concurrency analysis, with a three-level analysis providing significant
benefits over a one-level analysis. However, the results are still not precise enough for
production use. The pointer analysis does not currently distinguish between array in-
dices, and since Titanium programs tend to make extensive use of arrays in their data
structures, this results in a significant number of false aliases. However, the addition
of an array index analysis [20,19,18,22] should remove most of these false aliases, and
consequently most of the false positives reported by the race detector.

6 Related Work

The language and type system we presented here are generalizations of those described
by Liblit and Aiken [16]. They defined a two-level hierarchy and used it to produce
a constraint-based analysis that infers locality information about pointers. Later with
Yelick, they extended the language and type system to consider sharing of data, and
they defined another constraint-based analysis to infer sharing properties of pointers
[17].

Pointer analysis was first described by Andersen [2], and later extended by oth-
ers to parallel programs. Rugina and Rinard developed a thread-aware alias analysis
for the Cilk multithreaded programming language [23] that is both flow-sensitive and
context-sensitive. Others such as Zhu and Hendren [29] and Hicks [11] have developed
flow-insensitive versions for multithreaded languages. However, none of these analyses
consider hierarchical, distributed machines.

The pointer analysis we presented here is a generalization and formalization of the
analysis sketched in a previous paper [14]. That analysis is similar to a two-level version
of our hierarchical analysis, but the abstraction is quite different. Only the abstraction
of the transmit operation was described in that paper, though an almost complete
implementation was done.

7 Conclusion

In this paper, we introduced a program analysis technique for pointers, which has ap-
plications in detecting program errors and enabling optimizations. The novelty of the
analysis derives from its view of the machine as an arbitrary hierarchy of processors,
with the analysis proving that the range of a pointer is limited to a given hierarchy.

Our analysis was presented on a small language, Ti, which decouples the analy-
sis from specifics of the language. The type system allows for references of different
widths, corresponding to local and global pointers in PGAS languages. We demon-
strated the analysis with an implementation in the Titanium language, a global address
space language with three levels of hierarchy. Our results show that the multi-level
analysis is significantly more accurate than one based on only a single level.
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There are several potential clients of our analysis, and in this paper we presented one
such client, a static race detection algorithm, which combined the pointer analysis with
our existing concurrency analysis to detect races in Titanium programs. Even on rela-
tively complicated benchmarks codes, our results show that the more accurate pointer
analysis has a significant impact on the quality of the race analysis. Our results indicate
the value of exposing the hierarchy within the language and compiler to balance the
desire of programmers for both simplicity and high performance.

References

1. Allen, E., Chase, D., Luchangco, V., Maessen, J.-W., Ryu, S., G. L. S. Jr., Tobin-Hochstadt,
S.: The Fortress Language Specification, Version 0.866. Sun Microsystem Inc. (February
2006)

2. Andersen, L.O.: Program Analysis and Specialization for the C Programming Language.
PhD thesis, DIKU, University of Copenhagen (May 1994)

3. Applied Numerical Algorithms Group (ANAG). Chombo, http://seesar.lbl.gov/
ANAG/software.html

4. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, D., Fatoohi,
R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., Simon, H.D., Venkatakrishnan, V.,
Weeratunga, S.K.: The NAS Parallel Benchmarks. The International Journal of Supercom-
puter Applications 5(3), 63–73 (1991)

5. Berger, M., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. Journal
of Computational Physics 82(1), 64–84 (1989) (Lawrence Livermore Laboratory Report No.
UCRL-97196)

6. Bonachea, D.: GASNet specification, v1.1. Technical Report UCB/CSD-02-1207, University
of California, Berkeley (November 2002)

7. Carlson, W., Draper, J., Culler, D., Yelick, K., Brooks, E., Warren, K.: Introduction to UPC
and language specification. Technical Report CCS-TR-99-157, IDA Center for Computing
Sciences (1999)

8. Cray Inc. Chapel Specification 0.4 (February 2005)
9. Datta, K., Bonachea, D., Yelick, K.: Titanium performance and potential: an NPB experi-
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Abstract. Floating-point arithmetic is an important source of errors in
programs because of the loss of precision arising during a computation.
Unfortunately, this arithmetic is not intuitive (e.g. many elementary op-
erations are not associative, inversible, etc.) making the debugging phase
very difficult and empiric.

This article introduces a new kind of program transformation in order
to automatically improve the accuracy of floating-point computations.
We use P. Cousot and R. Cousot’s framework for semantics program
transformation and we propose an offline transformation. This technique
was implemented, and the first experimental results are presented.

1 Introduction

In this article, we introduce a new kind of program transformation in order to im-
prove the precision of the evaluation of expressions in floating-point arithmetic.
We consider that an expression implements a formula obeying the usual laws of
mathematics. This means that, in particular, the evaluation of the formula in
infinite precision yields an exact result and that algebraic rules like associativity,
commutativity or distributivity do not modify the meaning of a formula. How-
ever, floating-point arithmetic differs strongly from real number arithmetic: the
values have a finite number of digits and the algebraic laws mentioned earlier
no longer hold. Consequently, the evaluation by a computer of mathematically
equivalent formulas (for example x× (1 + x) and x + x2) possibly leads to very
different results.

Our work is motivated by the fact that, in programs, errors due to floating-
point arithmetic are very difficult to understand and to rectify. Recently, valida-
tion techniques based on abstract interpretation have been developed to assert
the numerical accuracy of these calculations [13,8] but, while these tools enable
one to detect the imprecisions and, possibly, to understand their origin, they do
not help the programmer to correct the programs. Unfortunately, floating-point
arithmetic is not intuitive, making the debugging phase very difficult and em-
piric: there exists no methodology to improve the accuracy of a computation
and we have at most a set of tricks like “sort numbers increasingly before adding
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them” or “use Horner’s method to evaluate a polynomial.” Performing these
transformations by hand is tedious because the computer arithmetic is subtle.
Therefore, their automatization is of great practical interest. Even if static anal-
ysis techniques have already given rise to industrially usable tools to assert the
numerical precision of critical codes [8,9], there is an important gap between
validation and automatic correction. To our knowledge, this article is the first
attempt in that new direction.

We introduce a new kind of program transformation, in order to automatically
improve the “quality” of an arithmetic expression with respect to some evalu-
ation criterion: the precision of floating-point computations. We use P. Cousot
and R. Cousot’s framework for semantics program transformation [6] by abstract
interpretation [5] and we propose an offline transformation. The methodology of
[6] enables us to define a semantics transformation that would be far more dif-
ficult to obtain at the syntactic level, since there is no strong syntactic relation
between the source and transformed expressions.

For the sake of simplicity, we restrict ourselves to arithmetic expressions,
neglecting, in this first work, the statements of a full programming language.
However, our techniques are not specific to expressions and can be extended to
complete programming languages.

The main steps of our method are the following. First, we introduce a non-
deterministic small-step operational semantics for the evaluation of real expres-
sions. Basically, algebraic laws like associativity, commutativity or distributivity
make it possible to evaluate the same expression in many different ways (all con-
fluent to the same final result.) Next, the same semantics is applied to floating-
point arithmetic. In this case, different evaluations of an expression yield different
results because the algebraic laws of the reals do not work any longer. Then we
compute the quality of each execution path of the floating-point arithmetic based
semantics by means of a non-standard domain (e.g. the global error arithmetic
developed for validation of floating-point computation [13,12]). However, because
there are too many paths in the previous semantics, we define a new abstract se-
mantics in which sets of traces are merged into abstract traces. Basically, we merge
traces in which sub-expressions have been evaluated approximatively in the same
way, using abstract expressions of limited height. The semantics transformation
then consists of computing (approximatively) the execution path which optimizes
the quality of the evaluation. The correctness of the transformation stems from the
fact that, at the observational level (i.e. in the reals), all the execution paths that
we consider lead to the same final result. Other classical abstractions of sets of
numbers by intervals is used, in order to deal with sets of values and to find the
best expression for a range of inputs. A prototype has been implemented and we
also present some experimental results.

The rest of this article is organized as follows: Section 2 gives an overview of
our transformation and of the semantics we use. Section 3 and Section 4 intro-
duce the concrete and abstract semantics. The transformation is presented in
Section 5 and experimental results are given in Section 6. Sections 7 and 8 are
dedicated to perspectives and concluding remarks.
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2 Overview

As mentioned in the introduction, we aim at transforming mathematic expres-
sions in order to improve the precision of their evaluation in floating-point arith-
metic. For example, let us consider the simple formula which computes the area
of a rectangular parallelepiped of dimension a× b× c:

A = 2×
(
(a× b) + (b× c) + (c× a)

)
(1)

Let us consider a thin parallelepiped of dimensions a = 1 b = c = 1
9 . With

these values, the examination of Equation (1) reveals that ab7 ac and ab7 bc.
It is well-known that in floating-point arithmetic, adding numbers of different
magnitude may lead to important precision loss: if x8 y then, possibly, x+Fy =
y (this is called an absorption). In our example, absorptions arise in the direct
evaluation of A. The transformation introduced in this article enables one to
automatically rewrite the original expression (where d = 2):

d*(((a*b)+(b*c))+(c*a))

into the new expression:

(((c*a)*d)+(d*(b*c)))+(d*(a*b))

In this new formula, the smallest terms are summed first. Furthermore, the
product is distributed and this avoids a multiplication of roundoff errors of the
additions by a large value. This transformation relies on several semantics which
are summarized below.

– →F is the concrete semantics based on the floating-point arithmetic. This
semantics corresponds to the evaluation of an expression e by a computer.
→F is defined in Section 3.1.

– →R is the concrete semantics based on real number arithmetic. In R, alge-
braic rules hold, like associativity, distributivity, etc.→R is defined in Section
3.2.

– →E is the non-standard semantics based on the arithmetic of floating-point
numbers with global errors. This semantics calculates the exact global error
between a real computation and a floating-point computation [12].→E is
defined in Section 3.3.

– −→ is the non-standard semantics used to define our abstract interpretation.
−→ is defined in Section 4.1.

– A−→k is the abstract semantics. k is a parameter which defines the precision
of the semantics. A−→k is defined in Section 4.2.

3 Concrete Semantics of Expressions

In this section, we introduce some concrete semantics of expressions, for floating-
point arithmetic, for real arithmetic and for floating-point numbers with global
errors (the semantics →F, →R and →E mentioned in Section 2). →F is the se-
mantics used by a computer which complies with the IEEE754 Standard [1],→R
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v = v1 +F v2

v1 + v2 →F v

e1 →F e′
1

e1 + e2 →F e′
1 + e2

e2 →F e′
2

v1 + e2 →F v1 + e′
2

v = v1 ×F v2

v1 × v2 →F v

e1 →F e′
1

e1 × e2 →F e′
1 × e2

e2 →F e′
2

v1 × e2 →F v1 × e′
2

Fig. 1. The reduction rules for floating point arithmetic

is used in the correctness proofs where it plays the role of observer [6], and →E

is used to define non-standard and abstract semantics of programs.
For the sake of simplicity, we only consider elementary arithmetic expressions

generated by the grammar:

e ::= v | x | e1 + e2 | e1 × e2. (2)

In Equation (2), v denotes a value and x ∈ Id is a constant whose value is
given by a global environment. These global variables are implemented in our
prototype, and they introduce no theoretical difficulty. We omit them in all the
formal semantics.

3.1 Floating-Point Arithmetic Based Semantics

The semantics →F just defines how an expression is evaluated by a computer,
following the IEEE754 Standard for floating-point arithmetic.

Let ↑◦ : R→ F be the function which returns the roundoff of a real number
following the rounding mode ◦ ∈ {◦−∞, ◦+∞, ◦0, ◦∼} [1]. ↑◦ is fully specified by
the IEE754 Standard which also requires, for any elementary operation ♦, that:

x1 ♦F,◦ x2 = ↑◦ (x1 ♦R x2) (3)

Equation (3) states that the result of an operation between floating-point num-
bers is the roundoff of the exact result of this operation. In this article, we
also use the function ↓◦: R → R which returns the roundoff error. We have
↓◦ (r) = r− ↑◦ (r).

The floating-point arithmetic based semantics of expressions is defined by the
rules of Figure 1. This semantics is obvious but we will need it to prove the
correctness of the transformation in Section 4.3.

3.2 Real Arithmetic Based Semantics

The exact evaluation of the expressions in Equation (2) is given by the real
arithmetic. So, we define the reduction rules →R by assuming that any value v
belongs to R and by using the reduction rules of Figure 2 in which ⊕ and ⊗
stand for +R and ×R (the addition and product between real numbers).

The rules of equations (4) to (7) are straightforward. The rule of Equation (8)
relies on the syntactic relation ≡ defined as being the smallest equivalence re-
lation containing relations (i) to (vii) of Figure 2. The equivalence ≡ identifies
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v = v1 ⊕ v2

v1 + v2 → v
(4)

v = v1 ⊗ v2

v1 × v2 → v
(5)

e1 → e′
1

e1 + e2 → e′
1 + e2

(6)

e1 → e′
1

e1 × e2 → e′
1 × e2

(7)

e ≡ e1 e1 → e′
1 e′

1 ≡ e′

e → e′ (8)(i) (e1 + e2) + e3 ≡ e1 + (e2 + e3)
(ii) e1 + e2 ≡ e2 + e1

(iii) e ≡ e + 0
(iv) (e1 × e2) × e3 ≡ e1 × (e2 × e3)
(v) e1 × e2 ≡ e2 × e1

(vi) e ≡ e × 1
(vii) e1× (e2+e3) ≡ e1×e2 +e1×e3

Fig. 2. The reduction rules for arithmetic expressions

arithmetic expressions which are equal in the reals, using associativity, distribu-
tivity and the neutral elements of R. Equation (8) makes our transition system
non-deterministic: there exist many reduction paths to evaluate the same expres-
sion. However, in R, this transition system is (weakly) confluent and all the eval-
uations yield the same final result. This is summed up by the following property
in which→∗

R
denotes the transitive closure of→R.

Property 1. Let e be an arithmetic expression. If e →R e1 and e →R e2 then
there exists e′ such that e1 →∗

R
e′ and e2 →∗

R
e′.

3.3 Global Error Semantics

To define the global error semantics→E, we first introduce the domain E = F×R.
Intuitively, in a value (x, μ) ∈ E, μ measures the distance between the floating-
point result of a computation x and the exact result. The elements of E are
ordered by (x1, μ1) ≺ (x2, μ2) ⇐⇒ μ1 ≤ μ2.

Formally, a value v is denoted by a pair (x, μ) where x ∈ F denotes the
floating-point number used by the computer and μ ∈ R denotes the exact error
attached to x. For example, in simple precision, the real number 1

3 is represented
by the value x = (↑◦ (1

3 ), ↓◦ (1
3 )) = (0.333333, (1

3 − 0.333333)). The semantics
interprets a constant c by (↑◦ (c), ↓◦ (c)) and, for v1 = (x1, μ1) and v2 = (x2, μ2),
the operations are defined by:

v1 +E v2 = (↑◦ (x1 +R x2), [μ1 + μ2+ ↓◦ (x1 +R x2)]) , (9)



Semantics-Based Transformation of Arithmetic Expressions 303

v1 ×E v2 = (↑◦ (x1 ×R x2), [μ1x2 +R μ2x1 +R μ1μ2+R ↓◦ (x1 ×R x2)]) . (10)

The global semantics→E is defined by the reduction rules of equations (4) to
(8) of Figure 2 and by the domain E for the values. The operators ⊕ and ⊗ are
the addition +E and the product ×E.

Similarly to the semantics →R of Section 3.2, →E is non-deterministic since
it also uses the rule of Equation (8) based on the syntactic relation ≡. However,
in E, the operations are neither associative nor distributive and the reduction
paths no longer are confluent.

Remark 2. In general, for an arithmetic expression e, there exist reduction
steps e →E e1 and e →E e2 such that there exists no expression e′ such that
e1 →∗

E
e′ and e2 →∗

E
e′.

Nonetheless, the arithmetic E provides a way to compare the different execution
paths of→E using the error measure μ attached to each value. We may consider
a path e →∗

E
v1 is better than another path e →∗

E
v2 if v1 ≺ v2. The code

transformation introduced in the following sections consists of building a new
arithmetic expression from the minimal trace corresponding to the evaluation of
an expression e. But because there are possibly an exponential number of traces
corresponding to the evaluation of e, we first merge some of them into abstract
traces. The transformation is then based on the minimal abstract trace.

4 Abstract Semantics

The abstract semantics A−→k, introduced in Section 4.2, relies on the non-standard
semantics −→ of Section 4.1. In Section 4.3, we prove the correctness of the ab-
straction.

4.1 Non-standard Semantics

Basically, the non-standard semantics records, during a computation, how each
intermediary result (sub-expression reduced to a value) was obtained. A label
& ∈ L is attached to each value occurring in the expressions and we use two
environments: The function ρ : L →Expr maps any label & to the expression
e whose evaluation has lead to v�. The environment σ : Expr → E maps
expressions to the result of their evaluation in the domain E. We let Envρ and
Envσ denote the sets of such environments. This information is useful in the
abstract semantics of Section 4.2.

Initially, a unique label is attached to each value occurring in an expression
and a fresh label is associated to the result of each operation. For example,
assuming that initially ρ(&1) = 1�1, ρ(&2) = 2�2 and ρ(&3) = 3�3 , the expression
(1�1 + (2�2 + 3�3)) is evaluated as follows in the non-standard semantics:

〈ρ, σ, (1�1 + (2�2 + 3�3))〉 → 〈ρ′, σ′, 1�1 + 5�4〉 → 〈ρ′′, σ′′, 6�5〉



304 M. Martel

v = v1 +E v2 � ∈ Dom(ρ)
〈ρ, σ, v�0

0 + v�1
1 〉 −→ 〈ρ[� �→ ρ(�1) + ρ(�2)], σ[ρ(�1) + ρ(�2) �→ v], v�〉

(11)

v = v1 ×E v2 � ∈ Dom(ρ)
〈ρ, σ, v�0

0 × v�1
1 〉 −→ 〈ρ[� �→ ρ(v�1

1 ) × ρ(v�2
2 )], σ[ρ(�1) × ρ(�2) �→ v], v�〉

(12)

〈ρ, σ, e0〉 −→ 〈ρ′, σ′, e2〉
〈ρ, σ, e0 + e1〉 −→ 〈ρ′, σ′, e2 + e1〉

(13)

〈ρ, σ, e0〉 −→ 〈ρ′, σ′, e2〉
〈ρ, σ, e0 × e1〉 −→ 〈ρ′, σ′, e2 × e1〉

(14)

e ≡ e1 〈ρ, σ, e1〉 −→ 〈ρ′, σ′, e2〉 e2 ≡ e3

〈ρ, σ, e0〉 −→ 〈ρ′, σ′, e3〉
(15)

Fig. 3. The non-standard semantics

where ρ′ = ρ[&4 !→ 2�2 +3�3 ], σ′ = σ[2�2 +3�3 !→ 5], ρ′′ = ρ′[&5 !→ 1�1 +(2�2 +3�3)]
and s′′ = σ′[1�1 + (2�2 + 3�3) !→ 6]. In this example, for the sake of simplicity,
values are integers instead of values of E.

The non-standard semantics is given in Figure 3. We assume that, initially,
ρ(&) = v� for any value v� occurring in the expression. Equations (11) and (12)
respectively perform an addition and a product in E. A new label & is assigned
to the result v of the operation and the environment ρ is extended in order to
relate & to the expression which has been evaluated. Similarly, σ is extended in
order to record the result of the evaluation of the expression. The other rules
only differ from the rules of the concrete semantics in that they propagate the
environments ρ and σ.

4.2 Abstract Semantics

In order to decrease the size of the non-standard semantics, the abstract seman-
tics merges traces in which sub-expressions have been evaluated approximatively
in the same way. More precisely, instead of the environments ρ and σ, we use ab-
stract environments ρ� mapping labels to abstract expressions of limited height
and abstract environments σ� mapping expressions of limited height to unions of
values. Next, we merge the paths in which sub-expressions have been evaluated
almost in the same way, i.e. by the same abstract expressions.

From a formal point of view, the set Expr�
k of abstract expressions of height

at most k is recursively defined by:

η0 ::= v�� | "η

ηk ::= ηk−1 | ηk−1 + ηk−1 | ηk−1 × ηk−1.
(16)

The values occurring in the abstract expressions belong to the abstract domain
E�. Let ℘(X) denote the powerset of X . Abstract and concrete floating-point
numbers with errors are related by the Galois connection

〈℘(E),⊆〉 −−−→←−−−α

γ
〈E�,��

E
〉.
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v� =
⋃

η1 ∈ ρ�(�1)

η2 ∈ ρ�(�2)

σ�(η1) +�
E

σ�(η2) E =
⋃

η1 ∈ ρ�(�1)

η2 ∈ ρ�(�2)

�η1 + η2�k σ�′ = σ� ⊙
η1 ∈ ρ�(�1), η2 ∈ ρ�(�2)

η = �η1 + η2�k

ν = σ�(η1) + σ�(η2)

[η �→ σ�(η) ∪ ν]

〈ρ�, σ�, v�0
0 + v�1

1 〉 �=�1+�2−−−−−→ k
〈ρ�[� �→ ρ�(�) ∪ E], σ�′, v�〉

(17)

v� =
⋃

η1 ∈ ρ�(�1)

η2 ∈ ρ�(�2)

σ�(η1) ×�
E

σ�(η2) E =
⋃

η1 ∈ ρ�(�1)

η2 ∈ ρ�(�2)

�η1 × η2�k σ�′ = σ� ⊙
η1 ∈ ρ�(�1), η2 ∈ ρ�(�2)

η = �η1 × η2�k

ν = σ�(η1) × σ�(η2)

[η �→ σ�(η) ∪ ν]

〈ρ�, σ�, v�0
0 × v�1

1 〉 �=�1×�2−−−−−→ k
〈ρ�[� �→ ρ�(�) ∪ E], σ�′, v�〉

(18)

〈ρ�, σ�, e0〉 A−→k 〈ρ�′, σ�′, e2〉
〈ρ�, σ�, e0 + e1〉 A−→k 〈ρ�′, σ�′, e2 + e1〉

(19)

〈ρ�, σ�, e0〉 A−→k 〈ρ�′, σ�′, e2〉
〈ρ�, σ�, e0 × e1〉 A−→k 〈ρ�′, σ�′, e2 × e1〉

(20)

e ≡k e1 〈ρ�, σ�, e1〉 A−→k 〈ρ�′, σ�′, e2〉 e2 ≡k e3

〈ρ�, σ�, e0〉 A−→k 〈ρ�′, σ�′, e3〉
(21)

Fig. 4. The abstract semantics

This connection abstracts sets of values of E by intervals in a componentwise
way. The partial order ��

E
is the componentwise inclusion order on intervals.

An expression e of arbitrary height can be abstracted by η ∈Expr�
k by means

of the operator �e�k recursively defined as follows:

�v��k = v� k ≥ 0
�"η�k = "η k ≥ 0

�e1 + e2�0 = "η

�e1 × e2�0 = "η

�e1 + e2�k = �e1�k−1 + �e2�k−1 k ≥ 1
�e1 × e2�k = �e1�k−1 × �e2�k−1 k ≥ 1

Intuitively, �e�k replaces in e all the nodes of height k which are not values by
"η. The function �.�k is indifferently applied to expressions e ∈Expr or abstract
expressions η ∈Expr�

k′ for any integer k′.
The abstract semantics, given in Figure 4, uses reduction rules of the form

〈ρ�, σ�, e〉 A−→k 〈ρ�′, σ�′, e′〉. The symbol k is a parameter of the semantics and A
is an action indicating which operation is actually performed by the transition.
Actions are used to build a new arithmetic expression from a trace and are
detailed in Section 5. The environment ρ� : L → ℘(Expr�

k) maps labels to
sets of abstract expressions. The environment σ� : Expr�

k → E� maps abstract
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expressions to abstract values. The symbols Env�
ρ and Env�

σ denote the sets of
such environments. Intuitively, η ∈ Expr�

k abstracts a set S of expressions and
σ� relates η to an abstract value containing all the possible values resulting from
the evaluation of e ∈ S.

The expression σ�[η !→ v�] denotes the environment σ� extended by σ�(η) = v�

and
σ�

⊙
η∈S, v�=f(η)

[η !→ v�]

is a shortcut for σ�[η1 !→ f(η1)][η2 !→ f(η2)] . . . [ηn !→ f(ηn)], for all ηi, 1 ≤ i ≤ n,
such that ηi ∈ S.

In Figure 4, Equation (17) and Equation (18) are used for the addition and
for the product of two values, respectively. Let us assume that v�0

0 + v�1
1 is the

current expression. The values v1 and v2 result from the evaluation of some
expressions η1 ∈ ρ�(&1) and η2 ∈ ρ�(&2) (assuming that, initially, ρ�(&) = v�� for
any value v�� occurring in the expression.) So, v� = σ�(η1)+σ�(η2). In Equation
(17), the result v� of the addition is obtained by joining the sums of all the
possible operands in σ�(η1) and in σ�(η2), for all possible abstract expressions
η1 ∈ ρ�(&1) and η2 ∈ ρ�(&2). Next, a fresh label & is attached to v� and ρ� is
modified by assigning to & the set E of abstract expressions which have possibly
been used to compute v�. Finally, σ� is updated: it is extended by assignments
[η !→ σ�(η)∪ν] where η is one of the possible expressions used to compute v and
ν is the corresponding abstract value.

Equation (18) is similar to Equation (17) and equations (19) and (20) present
no difficulty. Equation (21) is similar to equations (8) and (15): it introduces
non-determinism in the semantics by means of a syntactic equivalence relation
but now we use a new relation ≡k instead of the previous relation ≡.

Definition 3. Let ∼k⊆Expr×Expr be the equivalence relation defined by:

e ∼k e′ ⇐⇒ �e�k = �e′�k.

Then ≡k⊆Expr×Expr is the quotient relation ≡ / ∼k.

Let us remark that ≡k is coarser than ≡ (which means that ≡⊆≡k) and that,
while the ≡-class Cl≡(e) of an expression e contains all the expressions generated
by the rules (i) to (vii) of Figure 2, the ≡k-class Cl≡k

(e) contains only one
element of each ∼k class among the ≡-equivalent elements.

At each step, our concrete and abstract semantics generate one new path per
element of the equivalence class of the current expression. As ≡k is coarser than
≡, the number of paths of the semantics based on ≡k is smaller than the number
of paths of the semantics based on ≡.

Property 4. Let e be an expression of size n.

(i) In the worst case, the ≡-class of e contains O(exp(n)) elements.
(ii) In the worst case, the ≡k-class of e contains O(nk) elements.
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This property states that the number of expressions ≡k-equivalent to a given
expression e is a polynomial of degree k, in the size of e. A worst case consists
of taking a sequence of sums x1 + x2 + . . . + xn which, by associativity, can be
evaluated in n! ways using ≡ and in nk ways using ≡k, where k is a user-defined
parameter of the semantics.

4.3 Correctness of the Abstract Semantics

In this section, we show that the abstract semantics of Section 4.2 is a correct
abstraction of the non-standard semantics of Section 4.1. First, we relate the
environments used in the non-standard semantics and in the abstract semantics
by the Galois connections

〈℘(Envρ),⊆〉 −−−→←−−−
αρ

k

γρ
k 〈Env�

ρ,k,�ρ〉 (22)

and
〈℘(Envσ),⊆〉 −−−→←−−−

ασ
k

γσ
k 〈Env�

σ,k,�σ〉. (23)

The partial order as well as abstraction and concretization functions for the first
kind of environments are defined by

ρ�
1 �ρ ρ�

2 ⇐⇒ ∀& ∈ Dom(ρ�
1), ρ�

1(&) ⊆ ρ�
2(&), (24)

αρ
k(R) = ρ� : ∀& ∈ L, ρ�(&) = ∪ρ∈R�ρ(&)�k, (25)

γρ
k(ρ�) = {ρ ∈ Envρ : ∀& ∈ L, �ρ(&)�k ∈ ρ�(&)}. (26)

The environment ρ�
1 is smaller than ρ�

2 if, for any label &, the set ρ�
1(&) is a subset

of ρ�
2(&). The abstraction αρ

k(R) of a set R = {ρ1, ρ2, . . . , ρn} of environments
is the abstract environment ρ� which maps any label & to the set of abstract
expressions �e�k such that ρi(&) = e for some 1 ≤ i ≤ n. Conversely, γρ

k is the
set of environments ρ which map & to an expression e such that �e�k = ρ�(&).
Similarly, we have for the second kind of environments

σ�
1 �σ σ�

2 ⇐⇒ ∀η ∈ Dom(σ�
1), σ�

1(η) ��
E

σ�
2(η), (27)

ασ
k (S) = σ� : ∀η ∈ Expr�

k, σ�(η) = α({σ(η), σ ∈ S}), (28)

γσ
k (σ�) = {σ ∈ Envσ : ∀e ∈ Expr, σ(e) ∈ γ(σ�(�e�k))}. (29)

The environment σ�
1 is smaller than σ�

2 if σ�
1 maps any abstract expression η to

an abstract value smaller than σ�
2. The abstraction ασ

k and concretization γσ
k are

based on the Galois connection introduced in Section 4.2 to relate concrete and
abstract values.
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Let 〈ρ, σ, e〉 −→n 〈ρ′, σ′, v〉 and 〈ρ�, σ�, e〉 A−→
n

k 〈ρ�′, σ�′, v�〉 denote sequences
of reduction steps of length n in the non-standard and abstract semantics, yield-
ing final values v and v�, respectively. The following property holds.

Property 5. If 〈ρ, σ, e〉 −→n 〈ρ′, σ′, v〉 and if αρ
k(ρ) �ρ ρ� and ασ

k (σ) �σ

σ� then 〈ρ�, σ�, e〉 A−→
n

k 〈ρ�′, σ�′, v�〉 such that v ∈ γ(v�), αρ
k(ρ′) �ρ ρ�′ and

ασ
k (σ′) �σ σ�′.

Property 5 states that for any path of length n, in the non-standard semantics
which leads to a value v, there exists a path of the abstract semantics of length
n which leads to a value v� such that v ∈ γ(v�).

Proof

The proof is by induction on the length n of the reduction sequence. If n = 1
then e = v�1

1 + v�2
2 or e = v�1

1 × v�2
2 . Let us assume that e = v�1

1 + v�2
2 (the case

e = v�1
1 ×v�2

2 is similar). Let v = v1 +v2. In the non-standard semantics we have:

〈ρ, σ, e〉 −→ 〈ρ[& !→ ρ(&1) + ρ(&2)], σ[ρ(&1) + ρ(&2) !→ v], v�〉

In the abstract semantics we have 〈ρ�, σ�, e〉 A−→
n

k 〈ρ�′, σ�′, v�〉 with:

v� =
⋃

η1 ∈ ρ�(�1)

η2 ∈ ρ�(�2)

σ�(η1) + σ�(η2)

As ρ(&1) = v�1
1 , ρ(&2) = v�2

2 , since by hypothesis, αρ
k(ρ) �ρ ρ� and ασ

k (σ) �σ σ�,
and also because in a Galois connection, γ ◦ α is extensive (R ⊆ γρ

k(αρ
k(R))

and S ⊆ γσ
k (ασ

k (S))), we thus have v1 ∈ γ(σ�(ρ�(&1))) and v2 ∈ γ(σ�(ρ�(&2))).
Consequently, v ∈ γ(v�).

The proof for n = 1 is completed without difficulty by showing that αρ
k(ρ′) �ρ

ρ�′ and ασ
k (σ′) �σ σ�′ with ρ′ = ρ[& !→ ρ(&1)+ρ(&2)] and σ′ = σ[ρ(&1)+ρ(&2) !→ v].

Now, we assume that the property holds for any m ≤ n and we consider a
sequence of length n + 1. We distinguish two cases:

– Rules of Equation (13) and Equation (14): if 〈ρ,σ,e0〉−→〈ρ′,σ′,e2〉
〈ρ,σ,e0+e1〉−→〈ρ′,σ′,e2+e1〉 then

〈ρ�,σ�,e0〉 A−→k〈ρ�′,σ�′,e2〉
〈ρ�,σ�,e0+e1〉 A−→k〈ρ�′,σ�′,e2+e1〉

. By our induction hypothesis, αρ
k(ρ′) �ρ ρ�′ and

ασ
k (σ′) �σ σ�′. Now, 〈ρ′, σ′, e′〉 −→n 〈ρ′′, σ′′, v〉 and we may apply again our

induction hypothesis.
– Rule of Equation (15): let us assume that e≡e1 〈ρ,σ,e1〉−→〈ρ′,σ′,e2〉 e2≡e3

〈ρ,σ,e0〉−→〈ρ′,σ′,e3〉 .
Then, since, by definition of ≡k, ≡⊆≡k, e ≡ e1 ⇒ e ≡k e1 and e2 ≡ e3 ⇒
e2 ≡k e3. So, in the abstract semantics we have:

e ≡k e1 〈ρ�, σ�, e1〉 A−→k 〈ρ�′, σ�′, e2〉 e2 ≡k e3

〈ρ�, σ�, e0〉 A−→k 〈ρ�′, σ�′, e3〉

Then we can complete the proof, by induction, in the same way as in the
previous case. �
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5 Semantics Transformation

The concrete semantics of an arithmetic expression is the floating-point seman-
tics→F defined in Section 3.1. Indeed, this is the only semantics which indicates
how an expression is actually evaluated by a computer. Given an expression e
and its (unique) execution trace t = e →∗

F
v, the semantics transformation has

to generate a new trace t′ = e′ →∗
F

v′ such that t and t′ are equal at some
observational level. This is performed in Section 5.1 by using the information
provided by the abstract semantics A−→k. In Section 5.2, we prove that e→∗

R
v′′

and e′ →∗
R

v′′ for the same value v′′, where →R is the semantics introduced in
Section 3.2.

5.1 Semantics Transformation

Because the abstract semantics A−→k of an expression e, as defined in Section 4.2,
is non-deterministic, the abstract interpretation of e consists of a set of traces.
The semantics transformation τk is based on the trace e

A−→
∗
k v� which optimizes

the quality of the evaluation: recall, from Section 3.3, that, in the global error
based semantics, any value is a pair (x, μ) ∈ E where x is a computer repre-
sentable value and μ a measure of the quality of x. Recall also that (x1, μ1) ≺
(x2, μ2) ⇐⇒ μ1 ≤ μ2. Let μ�

1 = [μ1, μ1] and μ�
2 = [μ2, μ2]. The corresponding

order in E� is:

(x�
1, μ

�
1) ≺� (x�

2, μ
�
2) ⇐⇒ max(|μ1|, |μ1|) ≤ max(|μ2|, |μ2|) (30)

In ≺�, v�
1 is more precise than v�

2 if, in absolute value, the maximal error on v�
1

is less than the maximal error on v�
2.

The transformation τk is based on the minimal abstract trace e
A−→

∗
k v�, i.e.

the trace which yields the minimal value v�, in the sense of ≺�. Remark that,
since A−→k uses abstract values of E�, the transformation τk minimizes the worst
error μ which may occurs during an evaluation. Therefore, τk minimizes the
precision lost which may arise during an evaluation in the worst case, that is for
the most pessimistic combination of data.

Because the semantics A−→k allows more steps than the semantics→F (in→F

an expression may not be transformed by ≡k), we cannot directly transform
a trace of A−→k into a trace of →F: we first have to rebuild the totally parsed
expression which has actually been evaluated by A−→k. This is achieved by using
the actions A appearing in the transitions of the abstract semantics and which
collect the operations actually performed along a trace.

Actions are expressions of the form & = &1 + &2 or & = &1× &2, where &, &1 and
&2 are labels belonging to L. An action & = &1 + &2 indicates that the value of
label & is the addition of the expressions of labels &1 and &2.

The expression generation function P is defined in Figure 5. P takes a trace,
an environment ι : L →Expr and computes a new environment ι′. For a trace
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P
(
〈ρ�, σ�, e〉 �=�1+�2−−−−−→ k

〈ρ�′, σ�′, e′〉, ι
)

= ι[� �→ ι(�1) + ι(�2)] (31)

P
(
〈ρ�, σ�, e〉 �=�1×�2−−−−−→ k

〈ρ�′, σ�′, e′〉, ι
)

= ι[� �→ �1 × �2] (32)

P
(
〈ρ�, σ�, v��〉, ι

)
= ι(�) (33)

P
(
s1

A−→k s2
A−→k . . . sn, ι

)
= P

(
s2

A−→k . . . sn,P(s1
A−→k s2)

)
(34)

Fig. 5. Generation of the new expression

t� = 〈ρ�, s�, e〉 A−→
∗
k 〈ρ�′, σ�′, v�〉, initially assuming that ι(&) = v for any value v�

occurring in the source expression e, P(t�, ι) = ι′(&), where ι′(&) is the expression
actually evaluated by t�.

Let e be an arithmetic expression and let T �
k (e) denote the set of evalua-

tion traces in the abstract semantics A−→k of e, i.e. T �
k (e) = {〈ρ�, σ�, e〉 A−→

∗
k

〈ρ�′, σ�′, v�〉}. The minimal trace of T �
k (e) is

min≺�T �
k (e) = 〈ρ�, σ�, e〉 A−→

∗
k 〈ρ�′, σ�′, v�〉,

where v� ≺� v�′ whenever 〈ρ�, σ�, e〉 A−→
∗
k 〈ρ�′, σ�′, v�′〉 ∈ T �

k (e).
The transformation is defined as follows:

Definition 6. Let e be an arithmetic expression. The semantics transformation
τk of e→F v is defined by

τk

(
e→F v, T �

k (e)
)

= P
(
min≺�T �

k (e)
)
→F v′. (35)

By Definition 6, the transformed trace is the evaluation trace in the floating-point
arithmetic based semantics of the expression P(e) generated from the minimal

trace e
A−→

∗
k v� = min≺�T �

k (e).

5.2 Correctness of the Transformation

In order to prove the correctness of the transformation, we show that, at an ob-
servational level [6], the semantics of the original expression e and the semantics
of the transformed expression et are equal. Our observation consists of showing
that e and et compute the same thing in the exact arithmetic of real numbers.

Let αO be an observational abstraction αO : E → R which transforms a
floating-point number with errors into a real number, i.e. αO(x, μ) = x + μ. We
first introduce a lemma concerning the non-standard semantics.

Lemma 7. Let e be an arithmetic expression and let 〈ρ, σ, e〉 −→∗ 〈ρ′, σ′, v1〉
and 〈ρ, σ, e〉 −→∗ 〈ρ′′, σ′′, v2〉 be two paths of the non-standard semantics. Then
αO(v1) = αO(v2).
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Lemma 7 stems from the fact that, in E, the errors are exactly computed. So,
from the perspective of αO, the traces of →E are identical to the traces of →R.

Lemma 8. Let et = P
(
t�, ι

)
for some trace 〈ρ�, s�, e〉 A−→

∗
k 〈ρ�′, σ�′, v�〉 ∈ T �

k (e).
Then e ≡ et.
As a consequence, in the non-standard semantics e and et lead to observationally
equivalent values. By Lemma 7, if 〈ρ, σ, e〉 −→∗ 〈ρ′, σ′, v〉 then, by the rule of
Equation (15), 〈ρ, σ, et〉 −→∗ 〈ρ′′, σ′′, v〉. Using Lemma 7 and Lemma 8, we have:

Property 9. Let e be an arithmetic expression, let t = e →∗
F

v be the concrete

evaluation trace of e, and let t� = 〈ρ�, s�, e〉 A−→
∗
k 〈ρ�′, σ�′, v�〉 ∈ T �

k (e).We have:

e→∗
R

vR ⇐⇒ P(t�, ι)→∗
R

vR (36)

In particular, this property holds for the minimal trace used in Equation (35),
in the definition of τk.

6 Experimental Results

A prototype based on the abstract semantics of Section 4.2 and on the transfor-
mation of Section 5 has been implemented and, in this section, we present some
experimental results.

As explained in Section 2, adding numbers of different magnitudes may lead
to important precision loss by absorption. For example, in the IEEE754 simple-
precision format, 1.0 + 5e−8 = 1.0 while 1.0 + (2× 5e−8) �= 1.0. We consider the
expression:

e = a× ((b + c) + d)
and the global abstract environment θ� such that:

a = [56789, 98765] b = [0, 1] c = [0, 5e−8] d = [0, 5e−8] (37)

Our prototype computes for this example (with k = 2):

(a*((b+c)+d)) -> ((a*b)+(a*(c+d)))

The sums are parsed in order to first add the smallest terms: this limits the
absorption. Furthermore, the product is distributed and this avoids the multi-
plication of roundoff errors of the additions by a large value and, consequently,
this also reduces the final error.

Using the domain E�, which computes an over-approximation of the error
attached to the result of a floating-point computation, our prototype also outputs
a bound on the maximal error arising during the evaluation of an expression (for
any concrete set of inputs in the intervals given in Equation (37)). The errors
for the source and transformed expressions are:
– Error bound on (a*((b+c)+d)): [-1.5679E-2,1.5680E-2]
– Error bound on ((a*b)+(a*(c+d))): [-7.8125E-3,7.8126E-3]

The error on the transformed expression is approximatively half the error on the
original expression.
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Our second example concerns the sum s =
∑4

i=0 xi, with xi = [2i, 2i+1]. The
results, for different values of k are given in the table below, where a, b, c, d and
e stand for x0, x1, x2, x3 and x4, respectively:

Case Expression Error bound
Source expression (((e+d)+c)+b)+a [-7.6293E-6,7.6294E-6]

k = 1 (b+a)+(c+(e+d)) [-5.9604E-6,5.9605E-6]
k = 2 (c+(b+a))+(e+d) [-4.5299E-6,4.5300E-6]
k = 3 (d+(c+(a+b)))+e [-3.5762E-6,3.5763E-6]

As the parameter k increases, the terms are more and more sorted, increasing
the precision of the result. With k = 3, the error is guaranteed to be less than
half the error on the original expression.

Another class of examples concerns the evaluation of polynomials. Again, any-
body familiar with computer arithmetic knows that, in general, factorization im-
proves the quality of the evaluation of a polynomial. In the abstract environment
θ� in which an initial error has been attached to x: for x = ([0, 2], [0, 0.0005]),
we obtain the following results:

Case Expression Error bound
Source expression x+(x*x) [-1.800074334E-3,1.001074437E-3]

k = 2 (1.0+x)*x [-9.000069921E-4,1.010078437E-4]
Source expression (x*(x*x))+(x*x) [-1.802887642E-3,3.191200091E-3]

k = 3 (x+1.0)*(x*x) [-1.818142851E-4,1.390014781E-3]
k = 4 ((1.0+x)*x)*x [-9.091078216E-5,1.100112212E-3]

Our last example concerns the expression (a + b)2. If b 8 a, then we obtain
a better precision by developing the remarkable identity. Using a = [5, 10] and
b = [0, 0.001], our prototype outputs the following results.

Case Expression Error bound
Source expression (a+b)*(a+b) [-1.335239380E-5,1.335239381E-5]

k = 2 ((b*(a+b))+(a*b))+(a*a) [-7.631734013E-6,7.631734014E-6]
k = 3 (((b*a)+(b*b))+(b*a))+(a*a) [-7.631722894E-6,7.631722895E-6]

With k = 3 the transformation consists of finding the remarkable identity.
However, with k = 2, another formula which significantly improve the precision
has already been found.

7 Perspectives

We believe that the new kind of program transformation introduced in this
article can be improved and extended in many ways.

First of all, we aim at extending our methodology to full programming lan-
guages, with variables, loops and conditionals, instead of simple arithmetic ex-
pressions. We believe it is possible to rewrite computations defined among many
lines of code. General code transformation techniques [10] could be used. For
example, loop unfolding techniques can be used to improve the numerical preci-
sion of iterative computations. In addition, some statements may also introduce
precision loss, like assignments when processor registers have more digits than
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memory locations [11]. This last remark also makes us believe that our program
transformation could be used on assembler codes, possibly at compile-time. We
are confident in the feasibility of such transformations for large scale programs,
static analyses for numerical precision having already been defined for general
programming languages and being implemented in analyzers used in industrial
contexts [8].

Another research direction concerns the abstract semantics. In this article, we
have presented a simple abstract semantics which could be improved in many
ways. For arithmetic expressions, more subtle abstractions could be defined,
which more globally minimize the error on an evaluation path. The semantics
of error series [13] could be useful in this context, but we believe that other
approaches could also be successfully developed.

The relation ≡, introduced in Section 2, identifies expressions which are equal
in the reals. These laws enable us to rewrite expressions. However, the relation
≡ is not unique and could be extended by many other laws. For example, some
laws can be used to improve the precision of floating-point computations, like
Sterbenz’s theorem for subtraction [14]. Other laws can be found in [3,4,2].

Finally, other applications could be studied. For example, finite precision
arithmetic is widely used in embedded systems. In order to implement a chain of
operations, the programmer often works as follows: the size of the inputs (their
number of digits) is know, and the result r of each elementary operation is stored
in a new number large enough to represent exactly r. Obviously, the designer of
an embedded system aims at limiting the sizes of the numbers and this strongly
depends on how the formula is implemented. Yet other applications, like code
obfuscation for arithmetic expressions without loss of precision, could also be
developed, the framework of semantics program transformation having already
been used in this context [7].

8 Conclusion

In this article, we have introduced a semantics-based program transformation for
arithmetic expressions, in order to improve the quality of their implementation.
This work is a first step towards the automatic improvement of large scale codes
containing numerical computations. This research direction could find many ap-
plications, in the context of embedded softwares as well as for numerical codes.
In addition, this program transformation can be used either as a source to source
transformation or at compile-time, during the low-level code generation phase.

We believe that our method can be improved and extended in many directions
and some issues have been discussed in Section 7. Meanwhile, the experimental
results of Section 6 show that the transformation of simple arithmetic expres-
sions, using a simple analysis, already yield interesting results.

We also believe that the framework of semantics program transformation [6]
was very helpful to define our method, which would have been more difficult to
design and prove at the syntactic level.
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More generally, our approach relies on the assumption that, concerning
numerical precision, a program can be viewed either as a model or as an im-
plementation. More precisely, a formula occurring in a source code may be con-
sidered as the specification of what should be computed in the reals as well as
a sequence of machine operations. We used the first point of view to generate
a new sequence of operations. We believe that this approach may lead to many
further developments in the domain of program transformation for numerical
precision, independently of the techniques used in this article which represent
our first attempt to automatically improve the accuracy of numerical programs.
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Abstract. We propose an efficient implementation of the Octagon Ab-
stract Domain (OAD) on Graphics Processing Unit (GPU) by exploiting
stream processing to speed-up OAD computations. OAD is a relational
numerical abstract domain which approximates invariants as conjunc-
tions of constraints of the form ±x±y <= c, where x and y are program
variables and c is a constant which can be an integer, rational or real.
Since OAD computations are based on matrices, and basic matrix oper-
ators, they can be mapped easily on Graphics Hardware using texture
and pixel shader in the form of a kernel that implements matrix opera-
tors. The main advantage of our implementation is that we can achieve
sensible speed up by using a single GPU, for each OAD operation. This
can be the basis for an efficient abstract program analyzer based on a
mixed CPU-GPU architecture.

Keywords: Octagon Abstract Domain, General Processing on GPU,
Parallel Computing, Abstract Interpretation, Static Program Analysis.

1 Introduction

The study of stream processing (computing and programming) is recently gain-
ing interest as an alternative and efficient methodology for allowing parallel
processing in many fields of computer science. The paradigm is essentially based
on defining a set of compute-intensive operations (called kernels) which are ap-
plied to each element in the stream. The growing success of this technology is
related with the impressive grow in computational power of dedicated stream
processing units (e.g., for graphic processing and more in general for digital sig-
nal processing) and in their relatively cheap costs. Recently researchers have
become interested in developing algorithms for GPUs. These algorithms were at
the beginning designed only for Computer Graphics purposes, but the high com-
putational power offered pushed researchers to explore the possibilities of using
GPU in more general tasks, leading to the so called General Purpose Computing
on GPU (GP-GPU). GPUs were applied with success in various fields: Database
[10], numerical methods [2,14,9], and scientific computing [11,8]; see [21,23] for
excellent surveys on GP-GPU.
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In this paper we propose a new programming methodology to handle massive
computations in numerical (relational) abstract domains. We consider stream
processors and programming as an efficient and fast methodology for imple-
menting the basic operators of abstract domains involving large matrices and
massive data sets. Among the wide spectrum of numerical abstract domains,
octagons [18] plays a key role due to their relational structure and affordable
computational costs. Octagons provide a way to represent a system of simplified
inequalities on the sum and difference of variable pairs, i.e. they represent con-
straints of the form ±x ± y <= c, where x and y are program variables and c
is a constant which can be an integer, rational or a real number automatically
inferred. Their typical implementation is based on Difference Bound Matrices
(DBM), a data structure used to represent constraints on differences of pairs of
variables. Efficiency is a key aspect in this implementation: The space is con-
strained for n-variables in O(n2) and time is constrained in up to O(n3). This
makes the relational analysis based on octagons applicable to large scale pro-
grams, e.g., those considered in the Astrée static analyzer [5] which employs
programs having more than 10.000 global variables, most of them floating-point,
in long-time iterations (about 3.6×106 iterations of a single loop). We prove that
an important speed-up factor can be obtained by handling DBM in a stream-like
computation model. In particular we exploit the structure of Graphics Process-
ing Unit or (GPU), also called Visual Processing Unit, for an efficient and fast
implementation of the abstract domain of octagons, in particular for a fast imple-
mentation of the basic operations on DBM. GPUs provide a dedicated hardware
architecture for graphics rendering by exploiting a highly parallel structure mak-
ing graphic computations far more effective than typical CPUs for a wide range
of complex algorithms. This architecture is particularly suitable for operations
on matrices, and therefore for handling operations on DBM. A typical GPU im-
plements a number of graphics primitive operations in a way that implements
stream processing: First, the data is gathered into a stream from memory. The
data is then operated upon by one or more kernels, where each kernel comprises
several operations. Finally, the live data is scattered back to memory. The static
analyzer designed in our implementation is based on a CPU which manages the
control flow and the GPU which performs the basic operators on the domain.
Octagons are represented as 2D textures and the basic operations on octagons
are implemented as kernel operations on their fragments. These operations can
be performed in parallel on the texture due to their independence and thanks to
the high degree of parallelism of the SIMD architecture like GPUs. The pipeline
of the analyzer is therefore as follows: each time the analyser reaches a program
point, the corresponding instruction is decomposed into basic abstract operations
on octagons. The GPU is then activated to perform the basic computations, leav-
ing the result in the video memory. As a result of our implementation, we obtain
a sensible speed-up of several orders for simple operators on octagons (i.e., in-
tersection, union, assignment, test guard, widening), and a speed-up around 24
times for the basic operation of octagon closure, which is performed each time
octagons have to be merged. The bottleneck in our system is given by the test
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guard operator. This is due to the SIMD architecture of GPU which requires the
spreading of the computation along the whole texture.

2 The Octagon Abstract Domain

The octagon abstract domain introduced by Miné in [18] is a (weakly) relational
abstract domain which provides an upper approximation of program invariants as
conjunctions of constraints of the form ±x±y <= c, where x and y are program
variables and c is a constant which can be an integer, rational or a real. This
abstract domain fits between the less precise linear-time non-relational abstract
domain of intervals and the exponential-time relational approximation of convex
polyhedra. Given a set of program variables V = {V1, . . . , Vn}, we consider a set
of enhanced variables: V ′ = {V ′

1 , . . . , V
′
2n} where for any Vi ∈ V we have both

a positive form V ′
2i−1, denoted V +

i , and a negative form V ′
2i, denoted V −

i , in
V ′. A Difference Bound Matrix, or DBM for short, m is a n× n square matrix
with elements in a field ZZ or IR [18]. The element at line i and column j,
denoted mij equals a constant c if there is a constraint of the form Vj − Vi ≤ c,
and +∞ otherwise. Thus a conjunction of octagonal constraints in V can be
represented as a DBM with 2n dimension. In particular, a Galois connection has
been established between DBM and sets of tuples of values:

γ(m) = { 〈v1, . . . , v2n〉 |∀i, j ≤ 2n. vj − vi ≤ mij }∩{ 〈v1, . . . , v2n〉 | v2i−1 = −v2i }

is the octagon represented by the 2n dimension DBM m. This 2n space is iso-
morphic to a n-dimensional space which represent a convex structure having an
octagon-like shape.

The set of (coherent) DBM, denoted cDBM, enriched with a bottom (empty)
element ⊥cDBM representing the empty set ∅ and a top element "cDBM repre-
senting the whole space, i.e., such that ∀i, j. "cDBM

ij = +∞, and ordered w.r.t.
set inclusion, i.e., m � n iff ∀i, j : mij ≤ nij , forms a complete lattice, where a
DBM is coherent if ∀i, j. mi,j = mı̄̄j where ı̄ = if i mod 2 = 0 then i−1 else i+1.
Intuitively a cDBM does not change by switching positive with negative forms of
the same variable. The switch operation ı̄ is typically implemented by a bit-wise
xor operation. The other classic lattice operators are defined as follows:

∀m,n ∈ cDBM. (m �cDBM n)ij = max(mij ,nij)
∀m,n ∈ cDBM. (m �cDBM n)ij = min(mij ,nij)

The main result in the construction and representation of the octagon abstract
domain is the existence of the best abstraction of octagons as an element in
cDBM. This is achieved by computing normal forms for DBM representing
octagons. A modified version of the Floyd-Warshall closure algorithm which
performs strong closure is considered for this task. The intuition is that, while
the Floyd-Warshall closure algorithm can be seen as a constraint propagation
which completes a set of constraints until the following closure holds:{

V ′
i − V ′

k ≤ a
V ′

k − V ′
j ≤ b

=⇒ V ′
i − V ′

j ≤ a + b
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Fig. 1. A comparison of
floating point performances
between Intel CPU, ATI
GPU and nVidia GPU in the
last five years. As the graph
shows GPU are increasing
their performance every year
faster than CPUs.

The modified Floyd-Warshall strong closure algorithm adds a second form of
constraints until the following closure holds [18]:

{
V ′̄

ı − V ′
i ≤ a

V ′
j − V ′

j̄ ≤ b
=⇒ V ′

j − V ′
i ≤ (a + b)/2

The constraints introduced by the (strong) closure algorithm are called implicit
in order to distinguish them from the explicit constraints considered to build the
octagon. The strong closure operation on DBM is denoted (·)•. All the standard
lattice-theoretic operations and C-like transfer functions have been defined on
cDBM in order to derive an abstract semantics which has been proved correct
by abstract interpretation [18].

3 An Overview on GPUs

In the last few years graphics hardware, known as GPU, dramatically increased
its computationally power and flexibility for answering the need to increase the
realism in videogames and other graphics applications. GPUs are quite a cheap
product and they offer high performances, for example in the case of nVidia
GeForce7950-GX2 (a double GPU equipped with 512Mb of RAM) the cost
is around 310 euro (March 2007) offering a peak of 384 GFlops with a 51.2
Gb/sec bandwidth through the video memory, see figure Figure 2 for a complete
sight on how a GPU is inserted in the traditional computer architecture. These
performances are more than tripled compared with its predecessor the nVidia
GeForce6800 Ultra, 58 GFlops with a 38.5 Gb/sec bandwidth. Indeed GPUs
have an average yearly rate of growth around 2.0, which actually is higher than
Moore’s Law growth rate for CPU, 1.4 per year. See Figure 1 for the trend of
GFlops in GPU in the last years.

3.1 The Programmable Graphics Pipeline

GPUs are optimized to render a stream of geometric primitives (point, lines and
triangles), called vertex buffer , onto an array of pixels called frame buffer . The
GPUs became in the last years fully programmable for transforming and lighting
vertices and pixels. The main purpose of GPU is to processes vertices and pixels.
This processing follows the classic graphics pipeline, allowing in certain stages
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Fig. 2. The GPU in a
traditional PC system:
the GPU has a very large
bandwidth with its memory
(a peak of 51.2Gb/s in the
nVida GeForce7900GTX).
This value is nearly 8 times
compared to the one for the
CPU and its memory.

Fig. 3. The GPU Pipeline: vertices which define a primitive (triangle, point, line) are
transformed using a function (implemented as a Vertex Program) in the Vertex Stage by
Vertex Program Unit. Vertices are elaborated in parallel by many Vertex Program Units
(Vertex Program Unit 0, ..., Vertex Program Unit n). Then primitives are discretized
in fragments by the Rasterizer which passes these fragments to the Fragment Stage.
At each fragment is applied a function (Fragment Program) in parallel using many
Fragment Program Units (Fragment Program Unit 0, ..., Fragment Program Unit n).
The result of the Fragment Stage is saved in a texture in the video memory.

programmability via micro programs. We can see a GPU pipeline in Figure 3.
The first step in the pipeline is the vertices processing. Each vertex of a vertex
buffer is processed by a Vertex Program Unit (VPU) which is a programmable
unit that executes a vertex program (VP). A VP is a set of instructions that
specifies how a vertex will be processed by the VPU. The output of a VPU is
not only a modified position for a vertex but it can also add new properties to
the vertex like a color, an address for fetching the memory during the next phase
etc... A modern GPU presents more than one VPU (around 6) and it automati-
cally distributes vertices to elaborate them fast between VPUs. Note that when
a GPU is processing a single vertex buffer the VP is the same for all VPUs. After
the VPU, a unit called rasterizer, generates fragments of the primitives, in other
words it discretizes them in pixels and it interpolates values between vertices
using linear interpolation. In the last step of the pipeline the fragments created
by the rasterizer are processed by another programmable unit called Fragment
Program Unit (FPU), which executes a fragment program (FP). As VP, the FP
is a set of instructions which specifies how a fragment will be processed by the
FPU. The output, which can be a single value or a vector of values, can be
stored in the frame buffer for visualization or in a texture for future processing.
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As for VPUs, FPUs are numerous in a modern GPU (around 32), and fragments
are automatically distributed to FPUs. Note that as for the VP, the same FP is
executed by all FPUs until all fragments generated by rasterizer are completed.
In this current generation of GPUs the main instructions allowed in the VPs and
FPs are: float point operations (addition, subtraction, division, multiplication,
square root, logarithm, etc...), random access to the video memory, assignment
command, static and dynamic branching (a costly operation), and loop (with
limited loop size for avoiding infinite loops). VPs and FPs are usually written
in a high-level programming language similar to C. These languages are called
shading languages because they are designed for generating images. The most
common shading languages are: C for Graphics (Cg) [16], the OpenGL Shad-
ing Language (GLSL) [13] and High Level Shading Language (HLSL) [1]. These
languages provide an abstraction for a very close level to the hardware, indeed
they manage directly vertices, textures, fragments, etc... which are very specific
graphics primitives. Other languages present an higher abstraction avoiding di-
rect manipulation of graphics primitives and supporting GP-GPU such as SH
[17], BrookGPU [3], and etc... The main disadvantage of these higher abstrac-
tions is that they are implemented on top of Graphics API such as OpenGL and
Direct3D, so the overhead is quite high.

3.2 Kernel Programming

Data parallelism is the key for high performance in GPUs. In this section, we
shortly introduce the GPU programming model called Kernel Model. The most
powerful components in the GPU architecture are FPUs, because they are more
numerous than VPUs, usually in a ratio 6:1, allowing more parallel power. A GP-
GPU program usually uses FPUs as main processing unit. The first algorithm
is segmented into independent parallel parts, called kernels, each of these is
implemented in a FPU. Inputs and outputs of each kernel are arrays of data,
called texture, and they are stored in the video memory. A texture can be indexed
in 1D (1D texture), in 2D (2D texture), and in 3D (3D texture). Note that 1D
texture can have a size of only 4096 values, while 2D texture and 3D texture can
allow a size up to respectively 40962 and 5123 values. These are the following
steps for kernel to run a kernel:

1. Vertices are passed to the GPU, in order to feed the vertex stage. A typical
GP-GPU invocation is a quadrilateral, parallel to the screen of the display,
which covers a region of pixels that match precisely with the desired size
of the output texture. In our case this provides the extreme boundaries (a
quadrilateral) of a temporary address space for allocating DBMs.

2. The rasterizer generates a fragment for every pixel in the quadrilateral. In
our case the rasterizer fills the adress space with all the addresses, called
fragments.

3. Each fragment is processed by the FPU. At this stage all the FPUs are pro-
cessing the same fragment program. The fragment program can arbitrarily
read from textures in the video memory, but can only write to memory cor-
responding to the location of the fragment in the frame buffer determined
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float4 FP_Max(VertexOutput IN, Sampler2D texWork):
COLOR{float4
ret= tex2D(texWork, IN.t0);
ret=max(ret, tex2D(texWork,

IN.t0+float2(iSize,0.0f)));
ret=max(ret,tex2D(texWork,

IN.t0+float2(0.0f,iSize)));
return max(ret, tex2D(texWork,

IN.t0+float2(iSize,iSize)));
}

Fig. 4. The fragment program for calculating the maximum in a texture by reduction:
IN is the input value of the FP calculated by interpolation from the rasterizer (IN.t0
is the vector that stores the coordinates of the current fragment), texWork is a 2D
texture (declared as Sampler2D) in which are stored the values to reduce. The iSize
is a constant value set in the FP, and represents the inverse of the size of the texture.
tex2D is required to access to a texture in the video memory. Below the control flow of
the calculation of maximum value using reduction paradigm. First the CPU sets the
counter i = 0, then it enters in a loop. In the loop CPU transfers the control to GPU
which calculates the maximum of every square of four pixels. After the GPU finishes
it releases the control to CPU which increments i and it tests i > log2(n) where n is
the width of the texture. If the guard is true the reduction is completed otherwise the
CPU returns in S1.

by the rasterizer. The domain of the computation is specified for each input
texture by specifying texture coordinates at each of the input vertices of the
quadrilateral. In our case, the fragment program computes locally to a single
pixel the operations in the octagon domain.

4. The output of the fragment program is a value, that is stored in a texture.

An algorithm needs to reiterate this process as many times as required by the
computation. This is called multi-pass .

3.3 Reduction

A constraint of current GPU’s generation is that a FPU cannot randomly write
the result of its job in the video memory, but only on an address which is chosen
by the GPU’s rasterizer. This is a problem if we want to compute properties from
a texture such as maximum, or minimum value. The solution is a process called
Reduction: the kernel program gets as input the value of four neighbor pixels
and computes the needed function using these four values. At the end it saves
the output in a texture which is reduced by one half. This process is iterated
until the texture is only one single pixel; see Figure 4 for a visual example of the
mechanism of reduction.
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3.4 Addresses Issues in GPUs

In the current GPUs, integer arithmetic is not supported, only floating point
is allowed. This feature will be present only in the upcoming GPU generation,
R600 and GeForce Series 8 recently available. In particular when we want to
access to a texture we need to use float addresses. The operator ·− is used in the
octagon domain to access to v−j = −vj the negative variable. This operator is
defined as i− def= i xor 1. As we said before the XOR operation cannot be directly
performed in the fragment. A solution to this problem is to encode in a single 1D
texture, called XORTexture, all the XOR values for an address and save them
in float values. Therefore, every time that we need to calculate a xor value of
an address, we fetch the XORTexture with the address.

3.5 Float Precision Issues

GPUs can use two different types of floating point arithmetics: single precision,
close to the 32-bit IEEE-754 standard, and half precision a 16-bit (10bits man-
tissa, 5bits exponent and 1bit sign). The main advantage of the half precision
format is that a GPU performs nearly two times the speed of single precision,
however they are not precise enough for numerical application, such as those
employed in the octagon domain. We observed some numerical instabilities in
the closure operation, therefore we decided to use the single precision format.
This format has enough precision so there is no need to implement double pre-
cision in emulation using two single precision values (value and residual) [7].
GPUs present some issues with floating point arithmetic, because they do not
implement the full IEEE-754 standard [12]. While GPUs can perform precise
arithmetic operations (add, subtraction, multiplication, division, and tests) they
cannot handle NaN value, and partially ±Inf. Also isnan and isinf functions are
very dependent by the drivers of the vendors which usually strongly suggest to
avoid them in fragment programs. This can be a problem in order to represent
"cDBM = +∞ value in the octagon domain, however we simply solved this prob-
lem by assigning to "cDBM the value 3.4e38, the maximum value representable
in the GeForce series 6 and 7 architecture [22].

4 Mapping Octagon Abstract Domain on GPU

The Octagon Abstract Domain can be naturally mapped to GPUs because the
data structure used to represent octagons, the DBM matrix, can be mapped one
to one with a 2D texture of GPU. So there is no need to develop a particular
data structure as in [15]. Another advantage is that the operators of the OAD
are very simple matrix operators that can be performed by using simple kernel
programming. In our implementation we did not use any API for GP-GPU. To
avoid overheads, we directly wrote the code by using OpenGL and Cg language
for writing fragment programs.
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4.1 Closure

In the octagon domain closure represents the normal form for the DBM, which
calculates all the constraints (implicit and explicit) between the variables. This
operation is defined in [18] by the following algorithm, which is a modified version
of the Floyd-Warshall shortest-path algorithm:

⎧⎨
⎩

m0
def= m

mk+1
def= S(C2k(mk)) ∀k: 0 ≤ k ≤ n

(m)• def= mn

(1)

where m is an empty octagon, C is defined as

[Ck(n)]ij
def=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 for i = j
min

(
nij , (nik + nkj),

(nik̄ + nk̄j),
(nik + nkk̄ + nk̄j),
(nik̄ + nk̄k + nkj)

) elsewhere (2)

and S as
[S(n)]ij

def= min(nij , (nīinj̄j)/2) (3)

Fig. 5. The Closure control flow: at each cycle the CPU set parameters for the fragment
program PS Closure C in S1 (k, and the working texture T0), then the GPU executes
PS Closure C saving the result in a texture, T1. The CPU gets back the control and at
stage S2 sets the parameter for fragment program PS Closure S (the working texture
T1), which is then executed by the GPU. Again the CPU gets back the control and
increases the variable i. If i > n (where n is the number of variables in the program)
the closure is reached, otherwise the CPU reiterates S1.

This operation can be implemented on a GPU in the following way. First the
texture, T0, representing the octagon that we want to close is applied C using
FP CLOSURE C in Figure 6, and it is saved in the video memory in another
texture, T1. Secondly at T1 is applied S using FP CLOSURE S in Figure 6 and
the result is saved in T0, see Figure 5 for a visualization of the control flow. This
process is iterated n times, where n is the number of variables in the program.
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float4 FP_Closure_C(vertexOutput IN, Sampler2D texWork_T1): COLOR{
float2 c0= IN.t0.xy;
if(c0.x==c0.y)

return 0.0f;
else{

float4 val0,val1,tmpVal,tmpVal2,tmpVal3,tmpVal4;
tmpVal=tex2D(texWork1,float2(k,c0.y));
tmpVal2=tex2D(texWork1,float2(c0.x,kXOR));
tmpVal3=tex2D(texWork1,float2(kXOR,c0.y));
tmpVal4=tex2D(texWork1,float2(c0.x,k));
val0= tex2D(texWork1,c0);
val1= tmpVal4+tmpVal;
val0=(val0>val1)?val1:val0;
val1= tmpVal2+tmpVal3;
val0=(val0>val1)?val1:val0;
val1= tmpVal4+tex2D(texWork1,float2(k,kXOR))+tmpVal3;
val0=(val0>val1)?val1:val0;
val1= tmpVal2+tex2D(texWork1,float2(kXOR,k))+tmpVal;
return (val0.x>val1.x)?val1.x:val0.x;

}};

float4 FP_Closure_S(vertexOutput IN, Sampler2D texWork_T1):
COLOR{

float2 c0=IN.t0.xy;
float4 val0,val1;
val0=(tex2D(texWork_T1,float2(c0.x,XORAddress(c0.x)))+
tex2D(texWork_T1,float2(XORAddress(c0.y),c0.y)))/2.0f;
val1=tex2D(texWork_T1,c0);
float4 ret=(val1<val0)?val1:val0;
return ret>1e30?3.4e38f:ret;

};

Fig. 6. FP Closure C is the FP that implements the C function: values k and kXOR
are constant values set by CPU, kXOR is the xorred value of k. k represents the value
k in Equation 2. FP CLOSURE S implements S (Equation 3).

(a) (b)

Fig. 7. GPU and CPU control flow: a) the control flow for the relaxation part of the
Bellman-Ford Algorithm. b) the control flow of a simple operation, the CPU leaves the
control to the GPU to execute the fragment program for the simple operation.

4.2 Emptiness Test

The emptiness test checks if an octagon (m)• = ∅. This happens if only if the
graph of (m)• has a cycle with a strictly negative weight [18]. A well known
algorithm for detecting negative weight cycle is the Bellman-Ford algorithm.

The mapping is realized as follow. Firstly we initialize texDist the distance
array, a 1D Texture, using a constant shader which returns infinity (3.4e38).
The size of this texture is 2n, where n is the number of variables. Secondly we
compute the first part of the algorithm, we iterate (2n)2 the FP Relax, Figure 8,
that relaxes edges, see Figure 7.a for control flow. Finally we call FP Relax Red,
Figure 8, to find out if there is negative cycle. This function marks with value
1.0 a negative cycles, otherwise it return 0.0. The result of the test is collected
applying a reduction using a Maximum kernel Figure 4.

4.3 Simple Operators

There are some operators used in the octagon domain that require only one pass
to obtain the result. This means that the fragment program for that operator is
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float4 FP_Relax(vertexOutput IN, float u,

Sampler1D texDist, Sampler2D texWork1): COLOR{

float4 distU=tex1D(texDist,u);

float4 distV=tex1D(texDist,IN.t0.y);

float4 weight=tex2D(texWork1,float2(u,IN.t0.y));

if(weight>=3.4e38)

return distV;

else{

float4 sum=distU+weight;

return distV>sum?sum:distV;

}};

float4 FP_Relax_Red(vertexOutput IN,

Sampler1D texDist, Sampler2D texWork1): COLOR{

float4 distU=tex1D(texDist,IN.t0.x);

float4 distV=tex1D(texDist,IN.t0.y);

float4 weight=tex2D(texWork1,IN.t0.xy);

if(weight>=3.4e38)

return 0.0;

else

return (distU>=(distV+weight))?1.0:0.0;

};

Fig. 8. FP Relax is a FP that implements the relaxation for a row in the adjacency
matrix. FP Relax Red is a FP that checks if there is a negative cycle (returns 1.0), the
complete check is realized applying a max reduction operation.

called only once, in Figure 7.b the control flow between CPU and GPU is shown
for simple operators. These operators are: union, intersection, test guard, and
assignment.

Union and Intersection. Union and Intersection between octagons are both
used to implement complex guards and to merge the control flow in if else and
loop commands. These operators are implemented using the upper �cDBM and
lower �cDBM bound operators [18]:

[m �cDBM n]ij
def= min(mij ,nij) (4)

[(m)• �cDBM (n)•]ij
def= max((m)•ij , (n)•ij) (5)

The implementation on GPU is quite effortless, it is only required to write in
the fragment program Equation 4 and Equation 5, as it is shown in Figure 7.
Note that when we calculate the union operator we need to apply the closure to
m and n.

Test Guard Operator. The test guard operator model how to analyze guards
in programs. The main guard tests, that can be modeled in the octagon domain,
are: vk + vl ≤ c, vk − vl ≤ c, −vk − vl ≤ c, vk + vl = c, vk ≤ c, and vk ≥ c. All
these various tests can be similarly modeled by using the first test, as proved
in [18]. So we will illustrate the implementation for vk + vl ≤, c the others are
similar. The octagon operator for this is defined as:

[m(vk+vl≤c)]ij
def=
{

min(mij , c) if (j, i) ∈ {(2k, 2l + 1); (2l, 2k + 1)}
mij elsewhere (6)

In this case, as for Union and Intersection operators, we need only to write a
simple fragment program that implements Equation 6. However in order to save
very costly if-else commands, for checking if (j, i) ∈ {(2k, 2l + 1); (2l, 2k + 1)},
we can solve this calculating the dot product between the difference vector of
{(2k, 2l + 1), (2l, 2k + 1)} and (j, i). This operation could be heavy, but dot
product is an hardware built-in function and it performs faster than executing
if-else commands on a GPU [22], see Figure 7 for the fragment program on GPU
for this operator.
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Assignment Operators. The assignment operators model how to analyze as-
signments in programs. The main assignments, that can be modeled in the oc-
tagon domain, are: vk ← vk + c, vk ← vl + c and vk ← e where e is a generic
expression. As for the test guards operators we will show the implementation on
the GPU for the first assignment, the others are similar. Firstly we define the
assignment operator for vk ← vk + c:

[m(vk←vk+c)]ij
def= mij + (αij + βij)c (7)

with

αij
def=

⎧⎨
⎩

1 if j = 2k
−1 if j = (2k + 1)
0 elsewhere

βij
def=

⎧⎨
⎩
−1 if i = 2k
1 if i = (2k + 1)
0 elsewhere

(8)

Again as in the case of the Union or Intersection operators we need only to write
Equation 7 in the fragment program, as it is shown in Figure 9.

float4 FP_ASSIGN1(vertexOutput IN, Sampler2D texWork1, float c,
float k2, float k2add1): COLOR{

float4 val=tex2D(texWork_T1,IN.t0);
float alpha,beta;
if(IN.t0.y==k2)

alpha= 1.0f;
else

alpha= (IN.t0.y==k2add1)?-1.0f:0.0f;
if(IN.t0.x==k2)

beta=-1.0f;
else

beta= (IN.t0.x==k2add1)?1.0f:0.0f;
return val+(beta+alfa)*c;};

float4 FP_TEST_GUARD1(vertexOutput IN, Sampler2D texWork1,
float c, float2 coord1, float coord2): COLOR{

float4 val=tex2D(texWork_T1,IN.t0);
float2 diff;
float ret;
diff=IN.t0.yx-coord1;
if(dot(diff,diff)==0.0f)

return min(val,c):val;
diff=IN.t0.yx-coord2;
return (dot(diff,diff)==0.0f)?min(val,c):val;};

Fig. 9. The fragment program for the assignment vk ← vk+c and test guard vk+vl ≤ c

4.4 Widening

Widening is an operator that is used to speed-up the convergence in ab-
stract interpretation [4] returning an upper approximation of the least fixpoint∨

i∈N
F i(m) greater than m of an operator (predicate transformer) F :

[m∇n]ij
def=
{

mij if nij ≤mij

+∞ elsewhere (9)

As it can be seen from Equation 9, the widening operator can be easily realized
as a simple operator, indeed the fragment is very simple, see Figure 11. When
we analyze a loop such as:

[li while g do lj ...lk done lk+1]

where li is a pointer to a program location we need to solve mj = (mi �cDBM

mk)g, this is done iteratively. Starting from mi, the octagon for location li, mk

can be deduced from any mj using propagation. We compute the sequence mj :{
mj,0 = (mi)(g)

mj,n+1 = mj,n∇((mi)•(g))
(10)
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Fig. 10. The widening control flow: when we need to analyze a loop we proceed iter-
atively to the calculation of the fix point for that loop, this process needs to analyze
commands in the loop, Loop Commands box in the flow, then we calculate the widening
between mj,n and ((mi)•

(g)). After that we check if mj,n and mj,n+1 represent the same
octagon. This achieved calculating the maximum of the difference of them using the
reduction paradigm performed in the Reduction with Maximum box. If the maximum
is lower than e a small positive value they are the same octagon.

and finally mk+1 is set equal to ((mi)•¬g)�cDBM((mk)•¬g). The calculation of the
whole widening process on GPU for analyzing loops is performed in the following
way: we enter in the loop and we analyze each command in the loop. After that
we calculate the widening on GPU using Figure 11 between mj,n and ((mi)•(g)).
Finally we check if we have reached a fix point, this is realized by comparing
mj,n+1, widening result, with mj,n. If it is the same octagon we reached the
fix point, otherwise we need to reiterate the process. This comparison on GPU
is achieved calculating the difference, D0 between the result of the widening
and the previous result. At this point we calculate the maximum value of D0

using reduction paradigm, if the maximum is lower then a certain threshold e
(a small value greater than zero) the two octagons are the same otherwise they
are different, all these operations can be seen summarized in Figure 10.

float4 FP_Widening(vertexOutput IN, Sampler2D texWork1): COLOR{
float4 r1=tex2D(texWork1, IN.t0);
float4 r2=tex2D(texWork2, IN.t0);
return r2<r1?r1:3.4e38;

};

float4 FP_Top(vertexOutput IN): COLOR{
return (IN.t0.x==IN.t0.y)?3.4e38f:0.0f;};

float4 FP_Bottom(vertexOutput IN): COLOR{
return 0.0f;};

Fig. 11. The widening operator and the basic octagons �cDBM and ⊥cDBM

4.5 Packing Data in RGBA Colors

Current GPUs can handle 4096×4096 2D texture size, so the maximum number
of variables is 4096. However we can allow 8192 variables using pixel packing. A
pixel is generally composed by four components: red, blue, green and alpha. So
we can easily use these channels to allow bigger matrices, this means we treat
red, green, blue, and alfa as four neighbor values in the octagon, see Figure
4.5. One advantage of RGBA packing is that we do not have to modify our
fragment programs, since GPU performs vector float point arithmetic operators,
assignments, and the ternary operator (test?cond1:cond2). Also we do not use
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Fig. 12. The RGBA Pack-
ing: four neighbor values are
packed in a single pixel us-
ing red, green, blue and alfa
channels

the values of a octagon in the dynamic branching (if-else), therefore we do not
have to extend the branching for each components. Another common technique
is to flatten 3D textures, this means to access to a (i, j, k) memory location using
a (i, j) address. However representing octagon bigger than 8192×8192 using 3D
texture implies to use more than 64MB of video memory for each, so we can
keep on the GPU system only few octagons.

4.6 Static Analyzer

We designed a (naive) static analyzer as presented in [6,18], in which the control
flow is performed by the CPU but simple operators (union, intersection, assign-
ments, guard checks), closure, widening, and fix point check are performed on
GPU. When the interpreter starts to analyze a program, first it sets m = "cDBM

the octagon associated with the first program point, by using the simple frag-
ment program in Figure 11. Then it interprets programs naively by applying
octagon operators for the various commands and combinations of them:

– [ li vi ← e lj ]: we used the assignment operators;
– [ li if g then lj ... else lk... end if lp ]: for the branch lj we apply the guard

operator g to the octagon mi) (representing point li), while for the branch lj
we apply the guard operator ¬g to the octagon mi). When the flow control
merges at point lp we use the union operator:

mp = ((mj)•) �cDBM ((mk)•) (11)

– [ li while g do lj ...lk done lk+1 ]: we used the widening operator as presented
in Section 4.4 for approximating the fixpoint.

5 Results

We implemented our abstract interpreter in C++, by using OpenGL [20], a
successful API for computer graphics that allows GPU programming, and Cg
language for GPU programming. For results we used a machine equipped with
an Intel Pentium 4 D 3.2 Ghz processor, 2GB of main memory, and a GeForce
7950-GTX with 512MB of video memory. We compared the results of our in-
terpreter with a single threaded CPU interpreter. In our experiments, with ran-
domly generated octagons, we timed single operators such as reduction, closure,
intersection, union, assignment, test guard, widening, and emptiness test. The
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Fig. 13. Timing comparison between CPU and GPU for the octagon domain operators.
We displayed timing in logarithmic scale of the time expressed in milliseconds: a)
reduction operator (for checking fix point). b) closure operator. c) union (similar for
intersection and widening). d) assignment. e) test guard. f) emptiness test.

results for these operators by using a single GPU, compared with a CPU, are
presented in Figure 13. For each operators we reached the following speed-ups,
that can be derived from Figure 13:

1. Reduction Operator: while the computational complexity for the CPU
implementation is O(n2), the one for GPU is O(n2

p log n2), where n is the
number of variables in an octagon and p is the number of FPUs. However
its computational constant is lower than the one for CPU, so the speed-up
is reasonable, achieving 9.98 times in average.

2. Closure Operator: the computational complexity is the same for both
implementations, GPU and CPU, O(n3). We achieved a 24.13 times speed-
up in average.
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3. Emptiness Test: the computational complexity is the same for both im-
plementations, GPU and CPU, O(n3). We achieved a 4.0 times speed-up in
average. Note that the speed-up is lower than the one for the Closure Op-
erator because we need to perform a test (FP Relax Red) and a reduction
operation.

4. Union Operator: the computational complexity is the same for both im-
plementations, GPU and CPU, O(n2). We achieved a 160.5 times speed-up
in average.

5. Assignment Operator: while the computational complexity of this op-
erator for the CPU implementation is O(n) (we need to modify only two
columns), the one for GPU is O(n2). This is caused by SIMD nature of
GPUs that needs to work on all values of a texture and not only a portion
of it. For this operator we reached a lower speed-up than other operators,
6.47 times in average.

6. Test Guard Operator: this represents the worst operator in our imple-
mentation test. Since for the CPU implementation we need to modify only
a constant number of values in the octagon, its computational complexity is
O(1). However on GPUs we cannot modify only few values in a texture, but
all values, so the complexity is O(n). In this case the CPU performs bet-
ter than GPU with a 175.43 times speed-up in average. However it is faster
to perform this operator on GPU than a computation on CPU followed by
a transfer to GPU. This is because we need to transfer a big amount of
data through the bus, which is typically a bottleneck in the architecture (see
Figure 2).

7. Widening Operator: as in the case of Union Operator, the computational
complexity for both implementations is O(n2). We achieved a 114.7705 times
speed-up in average.

Number of variables Reduction Closure Union Assignment Test guard Widening Emptiness Test

CPU
128 0.072928 40.42 0.095516 0.0069554 0.0001233 0.10912 43.73
256 0.29318 348.79 0.36542 0.030791 0.0002158 0.43517 342.10
512 1.1579 2949.90 1.5013 0.081164 0.0002226 1.7894 2716.42
1024 4.618 2.4863e4 6.8319 0.22949 0.001927 7.3287 1.9501e4
2048 15.491 1.9902e5 24.402 0.31771 0.0001477 28.997 1.5683e5
4096 46.444 2.172e6 73.212 0.47234 0.0001477 103.17 1.2546e6

GPU
128 0.77948 6.4472 0.08497 0.010033 0.073362 0.099478 95.947
256 0.88522 58.346 0.097702 0.010693 0.076067 0.093238 632.03
512 0.89636 206.1 0.104 0.02383 0.0782 0.10923 1019.10
1024 0.93726 1804 0.1093 0.022384 0.080448 0.1288 4880.9
2048 1.0562 1.4470e4 0.11889 0.0289 0.086864 0.13345 1.9912e4
4096 1.2043 2.3951e4 0.18231 0.044535 0.10735 0.15447 1.4934e5

From the Table above the results of our implementation on CPU and GPU, the
timing is expressed in second for 20 runs for each operator. As can we see, we
obtain a sensible speed-up for simple operators (intersection, union, assignment,
test guard, widening, emptiness test) and a speed-up around 24 times for clo-
sure operator. The bottleneck in our system is given by the test guard operator
(Figure 13.e), indeed an optimized CPU implementation of this operator takes
only O(1).
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6 Conclusion and Future Work

We presented a new implementation of Abstract Octagon Domain on GPU, im-
proving efficiency in time. Another advantage of our implementation is that it
is fully compatible with old GPUs (3-4 years models) and not only new models.
Computational complexity of the algorithm is kept the same, with exception of
the operation for checking if the fix point has been reached during the analysis
of loops. While the complexity of this operation on CPU is O(n2) where n is the
number of variables, it is O(n2

p log n2), where p is the number of FPUs, due to the
overhead in the reduction phase. The main limits of our current implementation
are: the test guard operator which is linear in the number of variables and the
size of a DBM, which is 8192× 8192, meaning that we can model octagons with
4096 variables using the RGBA packing technique. In future work we would like
to extend the size of octagons using hierarchical techniques as presented in [15].
In these techniques, a larger texture is sliced in subtextures which are addressed
using a page texture. A page texture presents as values pointers to access to the
desired subtexture. We are also interested in upgrading our implementation with
upcoming Graphics Hardware. One of the main advantages of the new genera-
tion is the ability to randomly write the results of a fragment program in the
video memory. Therefore there will be no more need to perform reduction to
check when to stop in the widening operator or for the emptiness test, improv-
ing the complexity and performance for these operators, which represents our
main bottleneck. Another advantage would be the suppression of XORAddress
function, since new GPUs present integer arithmetic, saving memory and GPU
performance. The new generation presents a better floating point implementa-
tion (very close to IEEE754 standard, with still some issues for handling specials)
that could improve our implementation. This improved precision does not solve
the unsound problems, that can be solved using interval linear forms [19]. In
future work we would like to map efficiently interval linear forms on GPU.
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Abstract. In this paper, we present an abstract fixpoint checking algorithm with
automatic refinement by backward completion in Moore closed abstract domains.
We study the properties of our algorithm and prove it to be more precise than the
counterexample guided abstract refinement algorithm (CEGAR). Contrary to sev-
eral works in the literature, our algorithm does not require the abstract domains
to be partitions of the state space. We also show that our automatic refinement
technique is compatible with so-called acceleration techniques. Furthermore, the
use of Boolean closed domains does not improve the precision of our algorithm.
The algorithm is illustrated by proving properties of programs with nested loops.

1 Introduction

Techniques for the automatic verification of program’s invariants is an active research
subject since the early days of computer science. Invariant verification for a program
P can be reduced to a fixpoint checking problem: given a monotone function post over
sets of program states, a set of initial states I , and a set S of states, S is an invariant of
P if and only if the reachable states

⋃
i�0 post i(I) from I that is the least fixpoint of

λX. I ∪ post(X) is a subset of S. We call this fixpoint the forward semantics of P .
For fundamental reasons (undecidability of the invariant checking problem for

Turing complete models of computation), or for practical reasons (limitations of the
computing power of computers), the forward semantics is usually not evaluated in the
domain of the function λX. I ∪ post(X), the so-called concrete domain, but in a sim-
pler domain of values, a so-called abstract domain. Abstract interpretation has been
proposed in [1] as a general theory to abstract fixpoint checking problems. The design
of effective abstract interpretation algorithms relies on the definition of useful abstract
domains and semantics. The design of good abstractions for a programming language
is a difficult and time consuming tasks. Recently, research [2,3,4] efforts have been de-
voted to find automatic techniques that are able to discover and refine abstract domains
for a given program. This work proposes new results in this line.
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In this paper, we propose a new abstract algorithm for fixpoint checking with built-
in abstract domain refinements. The automatic refinement of abstract domains is used
to improve the precision of the algorithm when it is inconclusive. Our algorithm has
several properties that distinguishes it from the existing algorithms proposed in the
literature. First, it computes not only overapproximations of least fixpoints but also
overapproximations of greatest fixpoints. The two analyses improve each other: the cur-
rent fixpoint is bound to use values which are more precise than the previous fixpoint.
Second, it is not bound to consider refinements related to spurious abstract counterex-
amples. The refinement principle that we propose is guided by the abstract fixpoint
computations. Our refinement method is more robust and systematic. Third, our refine-
ment principle is compatible with acceleration techniques: acceleration techniques can
be used to discover new interesting abstract values which can be used by subsequent
abstract computations. This is an important characteristic as this allows us to compute
new abstract values that are useful to capture the behavior of loops. This hinders the
application of the CEGAR approach. Fourth, in the abstract interpretation framework
the subset of concrete values given by the abstract domain is a Moore family. Intuitively
it means that the set is closed for the meet operation of the concrete lattice. This prop-
erty is weaker than the property enforced by the use of partitions of the state space as
in so-called predicate abstractions. In the paper we show that requiring the use of par-
titions instead of Moore families does not add power to our algorithm. If it terminates
using partitions then it terminates using Moore families. Fifth we show that whenever
an invariant can be proved using the CEGAR approach then our algorithm is able to
prove the invariant as well. And last we show that the abstract algorithm is guaranteed
to terminate under various conditions like for instance the descending chain condition
on the concrete domain or if the refinement adds a value for which the concrete greatest
fixpoint is computable.

Related works. In the following pages we relate our approach with the CEGAR ap-
proach (see [5]) where the refinement is done by a backward traversal of the abstract
counterexample. Recently new refinement techniques based on the proof of unsatisfi-
ability of the counterexample emerged (see [6] and the references given there). Seen
differently, the refinement picks non deterministically the new values to add to the ab-
stract domain among a set of values defined declaratively. In our case the value is unique
and defined operationally. For this reason we think that an empirical comparison would
make more sense.

The abstract fixpoint checking algorithm we propose is an extension of the classical
combination of forward and backward static analysis in abstract interpretation ([7] as
generalized by [8]) to include abstract domain completion that is the extension of the ab-
stract domain to avoid loss of precision in abstract fixpoints. This abstract domain com-
pletion is a backward completion in the classical sense of abstract interpretation [9] but,
for efficiency, restricted to states reachable within the invariant to be checked. In [10]
the authors define a restricted abstract domain completion. However since we reuse all
the information computed so far our completion is much more finer than theirs. In [11]
the authors consider a set of proof rules to establish invariant properties of the system
and they propose abstractions to show the premises of some rule hold. Moreover they
give a method to exclude spurious counterexamples based on acceleration techniques.
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Structure of the paper. The paper is organized as follows. Sect. 2 introduces some
preliminary results that are useful for the rest of the paper. In Sect. 3, we present our
algorithm and prove its main properties related to correctness and termination, we also
show that our approach can be easily combined with acceleration techniques. Sect. 4
compares our algorithm to the CEGAR approach and predicate abstraction. Sect. 5
concludes the paper and proposes some future works.

2 Preliminaries

Notations and notions of lattice theory. We use Church’s lambda notation (so that
F is λX.F (X)) and use the composition operator ◦ on functions given by (f ◦ g) =
λX. f(g(X)). Let X be any set and let f ∈ X !→ X be a function on this set. The re-
flexive transitive closure f∗ of a function f such that its domain and co-domain coincide
is given by

⋃
i≥0 f i where f0 is the identity and f i+1 = f i ◦ f . The reflexive transitive

closure R∗ of a relation R is defined in the same way. A function f on a complete lattice
is said to be additive (resp. coadditive) if f distributes the join (resp. the meet) opera-
tor. Given two functions f, g on a poset (L,⊆), we define the pointwise comparison ⊆̇
between functions as follows: λx. f(x) ⊆̇ λx. g(x) iff ∀y ∈ L : f(y) ⊆ g(y). Given
a set S, ℘(S) denote the set of all subsets of S. Sometimes we write s instead of the
singleton {s}.

We denote by lfp(f) and gfp(f), respectively, the least and greatest fixpoint, when
they exist, of a function f on a poset. The well-known Knaster-Tarski’s theorem states
that any monotone function f ∈ L !→ L on a complete lattice 〈L,,∧,∨,",⊥〉 admits
a least fixpoint and the following characterization holds: lfp(f) =

∧
{x ∈ L | f(x) 

x}. Dually, f also admits a greatest fixpoint and the following characterization holds:
gfp(f) =

∨
{x ∈ L | x  f(x)}.

Transition systems and predicate transformers. A transition system is a 3-tuple T =
(C, I, T ) where C is the set of states, I ⊆ C is the subset of initial states, and T ⊆
C × C is the transition relation. Often, we write s → s′ if (s, s′) ∈ T , s →∗ s′ if
(s, s′) ∈ T ∗ and s→k s′ if (s, s′) ∈ T k for k ∈ IN.

To manipulate sets of states, we use predicate transformers. The forward image op-
erator is a function that given a relation T ′ ⊆ C×C and a set of states C′ ⊆ C, returns
the set post [T ′](C′) = {c′ ∈ C | ∃c ∈ C′ : (c, c′) ∈ T ′}. When the forward image
is used with the transition relation T , it is called the post operator and it returns, given
a set of states C′ all its one step successors in the transition system, we simply write it
post(C′). The backward image operator is a function given a relation T ′ ⊆ C ×C and
set of states C′ ⊆ C, returns the set p̃re[T ′](C′) = ¬pre[T ′](¬C′) = ¬post [T ′−1](¬C′)
= {c ∈ C | ∀c′ : (c, c′) ∈ T ′ ⇒ c′ ∈ C′}. When the backward image operator is used
with the transition relation T , it is called the unavoidable operator and it returns, given
a set of states C′ all the states which have all their successors in the set C′, we simply
write it p̃re(C′).

Given a set I of states the set of reachable states is given by the following least
fixpoint lfp⊆λX. I ∪ post [T ](X). As shown in [12], this fixpoint coincides with
post [T ∗](I) also written post∗(I) when the transition relation is clear from the con-
text. So a state s is said to be reachable if s ∈ post∗(I). Dually, given a set S of states,
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the set of states that are stuck in S (or also that cannot escape from S) is given by the
following greatest fixpoint gfp⊆λX. S∩ p̃re[T ](X). As shown in [12], this fixpoint co-
incides with p̃re[T ∗](S) also written p̃re∗(S) when the transition relation is clear from
the context.

Given two sets I, Z of states we call lfp⊆λX. (I∪post(X))∩Z the set of reachable
states within Z . Finally given a set S of states, the set of states that cannot escape from
S in less than 1 steps is given by S ∩ p̃re(S).

Abstract interpretation. We use abstract interpretation to abstract the semantics of
transition systems. We assume standard abstract interpretation where, concrete and
abstract domains, L given by ℘(C) and A, are Boolean complete lattice 〈L,⊆,
∩,∪, C, ∅,¬〉 and complete lattice 〈A,�,�,�,",⊥〉, respectively. The two lattices
are related by abstraction and concretization maps α and γ forming a Galois connec-
tion ∀c ∈ L : ∀a ∈ A : α(c) � a ⇔ c ⊆ γ(a) [7]. We write this fact as fol-
lows: 〈L,⊆〉 −−→←−−α

γ
〈A,�〉, or simply −−→←−−α

γ
when the concrete and abstract domains

are clear from the context. We recall here a well-known (see [13] for instance) Ga-
lois connection that will be used later on: given a transition system (C, I, T ) we have

〈C,⊆〉 −−−−−−−−−−−→←−−−−−−−−−−−
λX.post [T ](X)

λX.p̃re[T ](X)
〈C,⊆〉. In this paper, we use a family of finite abstract do-

mains that are subset of A.

Definition 1 (Family of abstract domains). Let {Ai}i∈I be a family of finite sets such

that: (i) A =
⋃

i∈I Ai, (ii) 〈Ai,�〉 is a complete lattice, and (iii) ∃αi : 〈L,⊆〉 −−−→←−−−αi

γ

〈Ai,�〉.

Given an abstract domain Ai, we write γ(Ai) for the subset of concrete sets X ∈ L that
can be represented by abstract values in Ai.

The set γ(Ai) ⊆ L of concrete values that the abstract domain represents must be
closed by intersection if there is a Galois connection between Ai and L. Our abstract
domains are thus Moore closed. This notion, and the stronger notion of Boolean closure
are defined as follows.

Definition 2 (Moore and Boolean closure). A finite subset X ⊆ L is said to be:

– Moore closed iff ∀x1, x2 ∈ X : x1 ∧ x2 ∈ X and X contains the topmost element
of L. We define the function λX.M(X) which returns the Moore closure of its
argument, i.e. the smallest set M ⊆ L such that X ⊆M and M is Moore closed1.

– Boolean closed iff ∀x1, x2 ∈ X: (i) x1 ∧ x2 ∈ X , (ii) x1 ∨ x2 ∈ X , and (iii)
C \ x ∈ X . We define the function λX.B(X) which returns the Boolean closure of
its argument, i.e. the smallest set B such that X ⊆ B and B is Boolean closed.

Let P = {p1, p2, . . . , pn} be a set of predicates and let �pi� ⊆ C be the subset of states
that satisfy the predicate pi. The set of predicates P implicitly defines a Boolean closed
abstract domain, noted AP , such that γ(AP ) ⊆ L is the smallest set which is Boolean
closed and contains the sets {�p� | p ∈ P}, i.e. γ(AP ) = B({�p� | p ∈ P}). The
elements ofAP are equivalent to propositional formulas built from the predicates in P .

1 A Moore closed set is also called a Moore family.
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Elements ofAP can also be viewed as union of equivalence classes of states: two states
c1, c2 ∈ C are equivalent whenever they satisfy exactly the same subset of predicates
in P .

The following Lemma contains well-known results of abstract interpretation that we
recall here so that the paper is self contained. We refer the interested reader to [14] and
the references given there for more details.

Lemma 1. Let I, S, Z ∈ L be sets of states. Given an abstract domain Ai, we defineR,
resp. S, to be the abstract forward, resp. backward, semantics on Ai as lfp�λX.αi((I∪
post(γ(X))) ∩ Z), resp. gfp�λX.αi(S ∩ p̃re(γ(X))).

lfp⊆λX. (I ∪ post(X)) ∩ Z ⊆ γ(R)

gfp⊆λX. S ∩ p̃re(X) ⊆ γ(S)

}
We call this inclusion the overapprox-
imation of the abstract semantics.

The Fixpoint Checking Problem.
Instance: a transition system (C, I, T ) and a set of states S ⊆ C.
Question: Does the inclusion lfp⊆λX. I ∪ post(X) ⊆ S holds ?

3 Abstract Fixpoint Checking Algorithm

Alg. 1 has been inspired and is a generalization of what we have done previously in
[15,16,17]. We review here its main characteristics.

It computes overapproximations of least and greatest fixpoints. Line 3 computes an
abstract least fixpoint. As we will see in Prop. 1, when executed on a positive instance of
the fixpoint checking problem, every set γ(Ri) overapproximates the reachable states
of the transition system. Line 7 computes an abstract greatest fixpoint. As we will see in
Lem. 2, and Lem. 3, γ(Si) underapproximates the set of states that cannot escape from
S in less than i + 1 steps. As we can see from line 3 and line 7, the two fixpoints share
all the information that has been computed so far. In fact the abstract least fixpoint of
line 3 overapproximates the reachable states within Zi which gathers all the information
computed so far. Similarly, the abstract greatest fixpoint of line 7 starts with the least
fixpoint computed previously. Parts of the state space that have already been proved
unreachable within S or stuck in S are not explored during the next iterations.

The refinement that we propose is applied on the entire abstract fixpoint and is not
bound to individual counterexamples. The value Zi contains states that cannot escape
from γ(Si) in one step, all concrete states that are stuck within S have this property.
So, this set is interesting as it adds information about concrete states in the abstract
domain, this information will be used by subsequent abstract fixpoint computation. We
will see later in the paper that line 9 can be modified in a way to incorporate informa-
tion computed by acceleration techniques. The results that we first prove with line 9 are
still valid when accelerations are used. The possibility of combining our algorithm with
acceleration techniques is very interesting as accelerations may allow to discover inter-
esting abstract values related to loops in programs. Loops usually hinder the application
of the CEGAR approach.

In line 10 we see that the new value Zi+1 computed at line 9 is added to the set
of values the current abstract domain Ai can represent (this set is γ(Ai)). The new
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Algorithm 1. The abstract fixpoint checking algorithm
Data: An instance of the fixpoint checking problem such that I ⊆ S and an

abstract domain A0 such that S ∈ γ(A0)
Z0 = S1

for i = 0, 1, 2, 3, . . . do2

ComputeRi given by lfp�λX.αi

(
(I ∪ post(γ(X))) ∩ Zi

)
3

if αi(I ∪ post(γ(Ri))) � αi(Zi) then4

return OK5

else6

Compute Si given by gfp�λX.αi

(
γ(Ri) ∩ p̃re(γ(X))

)
7

if αi(I) � Si then8

Let Zi+1 = γ(Si) ∩ p̃re(γ(Si))9

Let Ai+1 be s.t. γ(Ai+1) =M
(
{Zi+1} ∪ γ(Ai)

)
10

else11

return KO12

end13

end14

end15

abstract domain is given by Ai+1. It is worth pointing that we actually add more than
the single value Zi+1 to the abstract domain since working in the framework of abstract
interpretation requires that γ(Ai+1) is a Moore family. We will see later that Moore
closure is sufficiently powerful in the following precise sense: considering the Boolean
closure instead does not improve the precision of our algorithm. This interesting result
is established in Th. 2. This contrasts with several approaches in the literature that use
predicate abstraction which induce more complex Boolean closed domains. The most
precise abstract post operation is usually more difficult to compute on Boolean closed
domains.

Our algorithm also enjoys nice termination properties. Prop. 6 shows that our algo-
rithm terminates whenever the concrete domain enjoys the descending chain condition.
This result allows us to conclude that our algorithm will always terminate for the im-
portant class of Well-structured transition systems [18,19], see [16,17] for the details.
Th. 1 of Sect. 4 also shows that whenever CEGAR terminates, then our algorithm termi-
nates. We also establish in Prop. 5 that whenever our algorithm is submitted a negative
instance, it always terminates.

Finally it is worth pointing out that all the operations in the algorithm, with the
exception of the refinement operation of line 9, are abstract operations, and the only
concrete operation is used outside of any of the fixpoint computations.

Before giving a formal characterization of Alg. 1, let us give more insights by run-
ning the algorithm on a toy example.

Example 1. The toy example is a finite state system given at Fig. 1. The set of states
given by the initial abstract domain are given by the boxes. We submit to our algorithm
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B1

B2

�

"

�1 �3

B3

�4�2

�0

R0 = B3 line 3

α0(I ∪ post(γ(B3))) �� Z0 (so not “OK”) line 4

S0 = B3 line 7

α0(I) � S0 (cannot say “KO”) line 8

Z1 = γ(B3) ∩ p̃re(γ(B3)) line 9

= {&0, &1, &2}
The new domain is A1 = A0 ∪ {B4, B5} line 10

with γ(B4) = Z1 and γ(B5) = Z1 ∩ γ(B2)
= {&0, &1}

R1 = B4 line 3

α1(I ∪ post(γ(B4))) � Z1 line 4

Alg. 1 terminates saying “OK”

Fig. 1. A finite state system and the result of evaluating Alg. 1 on it

the following positive instance of the fixpoint checking problem where A0 =
{B1, B2, B3,"}, I = {&0}, and S = γ(B3). So note that Z0 = γ(B3) = S. In the
right side of Fig. 1 the algorithm is executed step by step. Since the fixpoints converge
in very few steps we invite the interested reader to verify them by hand.

3.1 Correctness of the Algorithm

In what follows we assume that Alg. 1 reaches enough iteration to compute the sets
appearing in the statements. For instance, if γ(Ri) appears in the statement then the
algorithm has not yet concluded at iteration i − 1 or if Zi+1 appears in the statement
then the algorithm has not yet concluded at iteration i.

We start with a technical lemma that states that our algorithm computes sets of states
that are decreasing.

Lemma 2. In Alg. 1 we have

Zi+1 ⊆ γ(Si) ⊆ γ(Ri) ⊆ Zi ⊆ · · · ⊆ Z1 ⊆ γ(S0) ⊆ γ(R0) ⊆ Z0 ⊆ S.

The next proposition characterizes the sets of states that are computed by the algorithm
in the presence of positive instances.

Proposition 1. In Alg. 1, if post∗(I) ⊆ S then post∗(I) ⊆ γ(Ri) for any i ∈ IN.

Proof. Our proof is by induction on i.

Base case. Lem. 1 tells us that γ(R0) overapproximates the following least fix-
point lfp⊆λX. (I ∪ post(X)) ∩ S. Provided the system respects the invariant S (i.e.
post∗(I) ⊆ S), this fixpoint is equal to lfp⊆λX. (I∪post(X)). So, post∗(I) ⊆ γ(R0).

Inductive case. For the inductive case we prove the contrapositive. Suppose that there
exists s ∈ post∗(I) and s �∈ γ(Ri). We recall Lem. 2 which shows that γ(Ri−1) ⊇
γ(Si−1) ⊇ Zi ⊇ γ(Ri). We now consider several cases.
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1. s /∈ γ(Ri−1). Then by induction hypothesis, post∗(I) �⊆ S and we are done.
2. s ∈ γ(Ri−1) and s �∈ γ(Si−1). We conclude from Lem. 1 that γ(Si−1) overap-

proximates the states stuck in γ(Ri−1). Since s /∈ γ(Si−1) there exists a state s′

such that s→∗ s′ and s′ /∈ γ(Ri−1). First, note that as s ∈ post∗(I), we conclude
that s′ ∈ post∗(I). But as s′ /∈ γ(Ri−1), we know that post∗(I) �⊆ γ(Ri−1) and
by induction hypothesis we conclude that post∗(I) � S.

3. s ∈ γ(Ri−1), s ∈ γ(Si−1) and s /∈ Zi. We conclude from the definition of Zi

which is given by γ(Si−1) ∩ p̃re(γ(Si−1)) that there exists s′ /∈ γ(Si−1) such
that s → s′. Either s′ /∈ γ(Ri−1) or s′ ∈ γ(Ri−1) and by the previous case,
we know that s′ →∗ s′′ and s′′ /∈ γ(Ri−1). In the two cases, we conclude that
post∗(I) �⊆ γ(Ri−1) and by induction hypothesis that post∗(I) � S.

4. s ∈ γ(Ri−1), s ∈ γ(Si−1), s ∈ Zi, and s /∈ γ(Ri). By overapproximation of the
abstract semantics, we know that s is not reachable from I within Zi. Otherwise
stated, all paths starting form I and ending in s leaves Zi. As s is reachable from I ,
we know that there exists some s′ /∈ Zi which is reachable form I . We can apply
the same reasoning as above and conclude that post∗(I) � S. ��

We are now in position to prove that, when the algorithm terminates and returns OK, it
has been submitted a positive instance of the fixpoint checking problem, and when the
algorithm terminates and returns KO, it has been submitted a negative instance of the
fixpoint checking problem.

Proposition 2 (Correctness – positive instances). If Alg. 1 says “OK” then we have
post∗(I) ⊆ S.

Proof.

Algorithm says “OK”

⇔ αi(I ∪ post(γ(Ri))) � αi(Zi) line 4

⇔ αi(I) � αi(Zi) � αi ◦ post ◦ γ(Ri) � αi(Zi) αi additivity

⇔ I � γ ◦ αi(Zi) � post(γ(Ri)) � γ ◦ αi(Zi) −−−→←−−−αi

γ

⇔ I ⊆ Zi � post(γ(Ri)) ⊆ Zi Zi ∈ γ(Ai) line 10

Then,

αi((I ∪ post(γ(Ri))) ∩ Zi) � Ri def. ofRi, prop. of lfp

⇔ (I ∪ post(γ(Ri))) ∩ Zi ⊆ γ(Ri) −−−→←−−−αi

γ

⇒ I ∪ post(γ(Ri)) ⊆ γ(Ri) I ⊆ Zi � post(γ(Ri)) ⊆ Zi

⇒ lfp⊆λX. I ∪ post(X) ⊆ γ(Ri) prop. of lfp
⇒ post∗(I) ⊆ S γ(Ri) ⊆ S by Lem. 2 ��

Proposition 3 (Correctness – negative instances). If Alg. 1 says “KO” then we have
post∗(I) � S.
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Proof. If at iteration i the algorithm says “KO” then we find that αi(I) �� Si (line 8)
which is equivalent to I � γ(Si) by −−−→←−−−αi

γ
. We conclude from Lem. 2 that γ(Ri+1) ⊆

γ(Si), hence that I � γ(Ri+1) and finally that post∗(I) � S using the contrapositive
of Prop. 1. ��

Remark 1. The proofs of the above results remain correct if in line 9 of Alg. 1 instead
of λX. p̃re[T ](X) we take λX. p̃re[R](X) where R ⊆ T ∗. In fact for correction to
hold Zi+1 must be such that p̃re[T ∗](γ(Si)) ⊆ Zi+1 ⊆ γ(Si). Later we will see
how we can benefit from acceleration techniques which build a relation R such that
T ⊆ R ⊆ T ∗. This alternative refinement using R including T yields to stronger
termination properties of the algorithm.

3.2 Termination of the Algorithm

To reason about the termination of the algorithm, we need the following technical
proposition and its corollary.

Proposition 4. In Alg. 1 the following holds:

1. if Zi+1 = Zi then post(Zi) ⊆ Zi;
2. if I � Zi then the algorithm terminates at iteration i and returns “KO”;
3. if I ∪ post(Zi) ⊆ Zi then the algorithm terminates at iteration i and return “OK”.

Corollary 1. In Alg. 1, if Zi = Zi+1 then the algorithm terminates.

Alg. 1 terminates when submitted a negative instance as proved below in Lem. 3 and
Prop. 5.

Lemma 3. In Alg. 1, γ(Ri) underapproximates the set p̃re[
⋃i

j=0 T j](S) of states
which cannot escape from S in less than i + 1 steps.

Proof. The result is shown by induction on the number i of steps. For the base case,
Lem. 2 shows that γ(R0) ⊆ S = p̃re[T 0](S). For the inductive case,

p̃re[
i+1⋃
j=0

T j](S) = p̃re[
i⋃

j=0

T j ∪
i+1⋃
j=1

T j](S) def. ∪

= p̃re[
i⋃

j=0

T j](S) ∩ p̃re[T ](p̃re[
i⋃

j=0

T j](S)) def. p̃re

⊇ γ(Ri) ∩ p̃re[T ](γ(Ri)) ind. hyp.

⊇ γ(Si) ∩ p̃re[T ](γ(Si)) by Lem. 2

= Zi+1 by line 9

⊇ γ(Ri+1) by Lem. 2 ��

Proposition 5. If post∗(I) � S then Alg. 1 terminates.
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Proof. Hypothesis shows that there exists states s, s′ and a value k ∈ IN such that s ∈ I ,
s′ /∈ S and s→k s′. Lem. 3 shows that γ(Rk−1) ⊆

⋂k
j=0 p̃re[T j](S). So we conclude

from above that I �
⋂k

j=0 p̃re[T j](S), hence that I � γ(Rk−1) by transitivity and
finally that I � Zk by Lem. 2. The last step uses Prop. 4.2 to show that the algorithm
terminates. ��

The following proposition states that our algorithm terminates under the descending
chain condition in the concrete domain.

Proposition 6. If there exists a poset Y ⊆ L such that the descending chain condition
holds on 〈Y,⊆〉 and Zi ∈ Y for all i ∈ IN then Alg. 1 terminates.

Proof. We prove the contrapositive. Assume the algorithm does not terminate. We thus
obtain that Z0 ⊃ Z1 ⊃ · · · ⊃ Zn ⊃ · · · by Cor. 1 and Lem. 2 which contradicts the
existence of a poset satisfying the above hypothesis. ��

Below Prop. 7 establishes a stronger termination result of our algorithm which states
that if the algorithm computes a value Zi from which the evaluation of the greatest
fixpoint gfp⊆λX.Zi ∩ p̃re(X) terminates after a finite number of iterations then our
algorithm terminates. We use classical fixpoint evaluation techniques to compute the
set gfp⊆λX.Zi ∩ p̃re(X). First we start with the set Zi and then we remove the states
that escape from Zi in 1 step. The set obtained is formally given by Zi ∩ p̃re(Zi). Then
we iterate this process until no state is removed.

Proposition 7. If in Alg. 1 there is a value for i such that gfp⊆λX.Zi ∩ p̃re(X) stabi-
lizes after a finite number of steps, then Alg. 1 terminates.

3.3 Termination of the Algorithm Enhanced by Acceleration Techniques

In this section we will study an enhancement of Alg. 1 which relies on acceleration tech-
niques (we refer the interested reader to [20] and the references given there). Roughly
speaking, acceleration techniques allow us to compute underapproximations of the tran-
sitive closure of some binary relation as, for instance the transition relation.

Assume we are given some binary relation R such that T ⊆ R ⊆ T ∗. The en-
hancement we propose replaces line 9 (viz. Zi+1 = γ(Si) ∩ p̃re[T ](γ(Si))) by the
following: Zi+1 = γ(Si) ∩ p̃re[R](γ(Si)). The definition of R suggests that the value
added using R should be at least as precise as the one given using T . A very favorable
situation is when R equals T ∗ but Prop. 7 is not applicable at any iteration. We conclude

from Z1 = gfp⊆λX. γ(S0) ∩ p̃re(X) that post(Z1) ⊆ Z1 by −−−−→←−−−−
post

p̃re
, hence that the

enhanced algorithm terminates at iteration where i = 1 by Prop. 4 while the normal
algorithm might not since Prop. 7 is never applicable. Below we illustrate this situation
using a toy example.

Example 2. Fig. 2 shows a two counters automaton and its associated semantics. The
domain of the counters is the set of integers. In the automaton x, y refer to the current
value of the counters while x′, y′ refer to the next value (namely the value after firing
the transition). Transition t1 is given by a simultaneous assignment. Discs depicts some
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reachable states, which are given by {(x, y) | y  x � 0  x}. We will submit to
Alg. 1 a positive instance of the fixpoint checking problem such that I and S are given
by {(0, 0)} and {(x, y) | y �= x + 1} respectively. Our initial abstract domain A0 is
such that γ(A0) =M(S).

It is routine to check R0, computed at line 3, is such that γ(R0) = S, hence that
the test of line 4 fails. It follows that we have to compute S0 given at line 7. Let Xδ, δ
be the sequence of iterates for λX.α0(γ(R0)∩ p̃re[T ](γ(X))) which converges to S0.
First let us compute

S ∩ p̃re[t2](S)
= S ∩ ¬ ◦ pre[t2] ◦ ¬(S) def. of p̃re
= S ∩ ¬ ◦ pre[t2]({(x, y) | y = x + 1}) def. of ¬, S

= S ∩ ¬({(x, y) | y = x + 2}) see Fig. 2

= S ∩ {(x, y) | y �= x + 2}
= {(x, y) | y �= x + 1} ∩ {(x, y) | y �= x + 2} def. of S

We now turn to the evaluation of the gfp.

X0 = "
X1 = α0(γ(R0) ∩ p̃re[T ](γ(X0)))

= α0(S) γ(R0) = S," ⊆ p̃re[T ](")
= S S ∈ γ(A0)

X2 = α0(S ∩ p̃re[T ](γ(X1)))

= α0

(
S ∩ p̃re[t1](γ(X1)) ∩ p̃re[t2](γ(X1))

)
def. p̃re

= α0

(
S ∩ p̃re[t2](γ(X1))

)
S ∩ p̃re[t1](S) = S

By above we find that α0(S ∩ p̃re[t2](S)) = S, hence that γ(S0) = S. Since the test
of line 8 succeeds the next step (line 9) is to compute Z1. We use acceleration techniques
to compute Z1 for otherwise the algorithm does not converge. Without resorting to
acceleration techniques each Zi escapes from S in i+1 steps by firing transition t2. This
clearly indicates that the CEGAR approach considers counterexamples of increasing
length and thus fails on this toy example. By considering the limit instead of the Zi’s we
obtain a value that is stuck in S. That value stuck in S can be obtained using acceleration
techniques as shown below.

x = 0, y = 0

t1 : y = 0 → 〈x′, y′〉 = 〈x + 1, x + 1〉;

t2 : y′ = y − 1;
q0

Fig. 2. A two counters automata and its associated semantics
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Our candidate relation to show termination is given by t1 ∪ t∗2 which is computable
using acceleration technique. It is routine to check that T ⊆ t1 ∪ t∗2 ⊆ T ∗. Let us
compute Z1 which is given by S ∩ p̃re[t1 ∪ t∗2](S).

S ∩ p̃re[t1 ∪ t∗2](S) = def. p̃re
S ∩ p̃re[t1](S) ∩ p̃re[t∗2](S) = S ∩ p̃re[t1](S) = S

p̃re[t∗2](S) =

gfp⊆λX. S ∩ p̃re[t2](X)

The latter fixpoint evaluates to {(x, y) | y  x} and so the new abstract domain A1 is
such that γ(A1) =M(γ(A0) ∪ Z1). At iteration 1, we find at line 3 that γ(R1) = Z1,
hence that the test of line 4 succeeds since there is no outgoing transition of Z1 (see
Fig. 2), and finally that Alg. 1 terminates with the right answer.

It is worth pointing that the forward abstract semantics is conclusive. However al-
gorithms using acceleration techniques to compute the forward concrete semantics do
not terminate. Basically acceleration techniques identify regular expressions over the
transition alphabet and then compute underapproximation of the transitive closure of
the transition relation. For the automaton of Fig. 2 acceleration techniques fail because
there is no finite regular expression that describes all the possible executions of the
counter automaton. �

The rest of this section is devoted to establish some termination properties of the en-
hanced algorithm. In fact, as we said in Rem. 1 our correctness proofs remains valid for
the enhancement. Thus below we focus on termination properties.

By definition of R it is routine to check that

λX. p̃re[T ∗](X) ⊆̇ λX. p̃re[R](X) ⊆̇ λX. p̃re[T ](X) . (1)

Proposition 8. Let R2 such that T ⊆ R2 ⊆ T ∗ and gfp⊆λX. S ∩ p̃re[R2](X)
stabilizes after a finite number of step, then Alg. 1 when using any R1 such that
R2 ⊆ R1 ⊆ T ∗ at line 9 terminates as well.

Remark 2. In Alg. 1, the fixpoint Ri and Si have their iterated function given by
λX.αi(I ∪ post(γ(X)) ∩ Zi) and λX.αi(γ(Ri) ∩ p̃re(γ(X))), respectively. For var-
ious reasons we may be constrained to use a less precise approximations f, g that is to
say λX.αi(I ∪ post(γ(X)) ∩ Zi) ⊆̇ λX. f(X) and λX.αi(γ(Ri) ∩ p̃re(γ(X))) ⊆̇
λX. g(X). In this context provided the additional mild requirements λX. f(X) ⊆̇
λX.Zi and λX. g(X) ⊆̇ λX. γ(Ri) hold we find that all the results of Sect. 3.1,
Sect. 3.2 and Sect. 3.3 remain valid.

4 Relationships with Other Approaches

4.1 Counterexample Guided Abstraction Refinement

We first recall here the main ingredients of the CEGAR approach [21, §4.2]. Given a
transition system T = (C, T, I), called the concrete transition system, and a partition of
C into a finite number of equivalence classes C = {C1, . . . Ck}, the abstract transition
system is a transition system T α = (Cα, T α, Iα) where:
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– Cα = C, i.e. abstract states are the equivalence classes;
– T α = {(Ci, Cj) | ∃c ∈ Ci, c

′ ∈ Cj : (c, c′) ∈ T }, i.e. there is a transition from
an equivalence class Ci to an equivalence class Cj whenever there is a state of Ci

which has a successor in Cj by the transition relation;
– Iα = {Ci ∈ C | Ci ∩ I �= ∅}, i.e. a class is initial whenever it contains an initial

state.

A path in the abstract transition system is a finite sequence of abstract states related by
T α that starts in an initial state. An abstract state Ci is reachable if there exists a path in
T α that ends in Ci. The set of states within the equivalence classes that are reachable
in the abstract transition system, is an overapproximation of the reachable states in the
concrete transition system.

An abstract counterexample to S ⊆ C is a path Ci1 , Ci2 , . . . , Cin in the abstract
transition system such that Cin �⊆ S. An abstract counterexample is spurious if it does
not match a concrete path in T . We define this formally as follows. To an abstract
counterexample Ci1 , . . . , Cin , we associate a sequence t1, t2, . . . , tn−1 of subsets of T
(the transition relation of T ) such that tj = T ∩ (Cij × Cij+1 ) (the projection of T on
successive classes).

An abstract counterexample is an error trace, only if I � p̃re[t1 ◦ . . . ◦ tn−1](S)
(by monotonicity we have I � p̃re[T ∗](S)), otherwise it is called spurious and, so
I ⊆ p̃re[t1 ◦ . . . ◦ tn−1](S). Eliminating a spurious counterexample is done by splitting
a class Cj where 1  j  n. The class Cj contains bad states (written bad) that can
reach ¬S but which are not reachable from Cj−1; or which are not initial if j = 0.
Accordingly the class Cj split in Cj∩bad and Cj∩¬bad. From the above definition, we
can deduce that bad = pre[tj ◦ . . . ◦ tn−1](¬S), hence that ¬bad = ¬ ◦ pre[tj ◦ . . . ◦
tn−1] ◦ ¬(S), and, finally that ¬bad = p̃re[tj ◦ . . . ◦ tn−1](S). Hence the splitting of
Cj is given by Cj∩ p̃re[tj ◦ . . . ◦ tn−1](S) and Cj∩¬ ◦ p̃re[tj ◦ . . . ◦ tn−1](S). When
the spurious counterexample has been removed, by splitting an equivalence class, a new
abstract transition system, based on the refined partition, is considered and the method
is iterated.

CEGAR approach concludes when it either finds an error trace (identifying a nega-
tive instance of the fixpoint checking problem) or when it does not find any new abstract
counterexample (identifying a positive instance of the fixpoint problem).

We now relate the abstract model used by CEGAR with the abstract interpretation
of the system. The initial abstract domain A0, that our algorithm uses, is such that for
all equivalence classes Ci in the initial partition used by the CEGAR algorithm, there
exists an abstract value a ∈ A0 such that γ(a) = Ci.

Lemma 4. Assume that CEGAR terminates on a positive instance of the fixpoint check-
ing problem. So CEGAR produced a finite set {wi}i∈I of counterexamples such that the
following holds:

∃A ∈ γ(A0) : I ⊆ gfp⊆λX.A ∩ p̃re(X)︸ ︷︷ ︸
V

⊆ S � V = A ∩
⋂
i∈I

p̃re[wi](S) .

We need one more auxiliary result before presenting Th. 1.
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Proposition 9. In Alg. 1, ∀k ∈ IN if post∗(γ(Rk)) ⊆ S then post(γ(Rk)) ⊆ Zk.

Theorem 1. Assume a positive instance of the fixpoint checking problem, if CEGAR
terminates so does Alg. 1.

Proof. Let k be the size of the longest wi for i ∈ I . Lem. 3 shows that γ(Rk+1) is an
underapproximation of the states that cannot escape S in less than k steps. Formally,
we have γ(Rk+1) ⊆

⋂k
j=0 p̃re[T j](S). This implies that

γ(Rk+1) ⊆
⋂
i∈I

p̃re[wi](S) . (2)

Our next step will be to show that post [T ∗](γ(Rk+1)) ⊆ S which intuitively says that
γ(Rk+1) cannot escape S. First, note that if γ(Rk+1) can escape from S then it cannot
be with the counterexamples produced by CEGAR since γ(Rk+1) ⊆

⋂
i∈I p̃re[wi](S)

which is equivalent to
⋃

i∈I post [wi](γ(Rk+1)) ⊆ S by −−−−→←−−−−
post

p̃re
. Let A be defined as

in Lem. 4. Our proof falls into two parts:

1. γ(Rk+1)∩A cannot escape from S, i.e. post [T ∗](γ(Rk+1)∩A) ⊆ S, as shown as
follows. From (2), we know that γ(Rk+1) ⊆

⋂
i∈I p̃re[wi](S), and by definition

of V , we have that γ(Rk+1) ∩A ⊆ V . As V is inductive for post and V ⊆ S, we
conclude that post [T ∗](γ(Rk+1) ∩A) ⊆ S.

2. γ(Rk+1) ∩ ¬A cannot escape from S. For that, we show that γ(Rk+1) ∩ ¬A = ∅.
Prop. 1 and definition of A show that I ⊆ γ(Rk+1)∩A and so γ(Rk+1)∩A �= ∅.
We also know that in any state s ∈ γ(Rk+1) ∩ A for post [T ∗]({s}) ∩ ¬A �= ∅
to hold s has to be such that s /∈

⋂
i∈I p̃re[wi](S). However since γ(Rk+1) ⊆⋂

i∈I p̃re[wi](S) and since Rk+1 is given by lfp⊆λX.αk+1(I ∪ post(γ(X)) ∩
Zk+1) over Ak+1 (with γ(Ak+1) ⊇ γ(A0)) we find that γ(Rk+1) ∩ ¬A = ∅. It
follows that post [T ∗](γ(Rk+1)) ⊆ S.

We conclude from Prop. 9 that post(γ(Rk+1)) ⊆ Zk+1, hence that the test of
line 4 succeeds by αk+1 monotonicity and I ⊆ γ(Rk+1), and finally that Alg. 1
terminates. ��

If we consider the converse result, namely that CEGAR terminates if Alg. 1 terminates
we find that this does not hold for the enhanced algorithm as shown in Ex. 2.

4.2 Predicate Abstraction Versus Moore Closed Abstract Domains

Below we prove that Alg. 1 does not take any advantage maintaining a Boolean closed
abstract domain instead of a Moore closed one: Moore closure is as strong as Boolean
closure.

The following Lemma shows that every “interesting” value added by the Boolean
closure is added by the Moore closure as well. By extension we obtain that (see Th. 2)
if Alg. 1 extended with the Boolean closure terminates then Alg. 1 terminates. Our result
holds basically because both Ri and Si are such that γ(Ri) ⊆ Zi and γ(Si) ⊆ Zi by
Lem. 2.
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Lemma 5. Let A be a finite subset of L such that B(A) = A and let Z0, Z1, . . . , Zk

be elements of L such that Zk ⊆ · · · ⊆ Z1 ⊆ Z0. Given e ∈ B(A ∪ {Z0, Z1, . . . , Zk})
such that e ⊆ Zk we have e ∈ M(A ∪ {Z0, Z1, . . . , Zk}).

Theorem 2. Provided B(γ(A0)) = γ(A0), if Alg. 1 with the Moore closure (viz.M)
replaced by the Boolean closure (viz B) terminates then Alg. 1 terminates as well.

In the context of predicate abstraction, there is no polynomial algorithm to compute the
best approximation. In fact the result of applying α to value V is given by the strongest
Boolean combination of predicates approximating V . Moreover the computation of the
best approximation is required at each iterate of each fixpoint computation. So in the
worst case the time to compute a fixpoint is given by the height of the abstract lattice
times an exponential in the number of predicates. It is generally admitted that this cost is
not affordable and this is why approximations in time linear in the number of predicates
are preferred instead. For our algorithm the situation is pretty much better: as shown
in Lem. 5 we can compute the best approximation in time linear in the number of
predicates. However we need the initial set of predicates to be Boolean closed.

5 Conclusion and Future Works

We have presented a new abstract fixpoint refinement algorithm for the fixpoint check-
ing problem. Our systematic refinement uses the information computed so far which
is given by two fixpoints computed in the abstract domain. As a future work, we can
consider two variants of this algorithm. First, the dual algorithm for the inverted tran-
sition system T−1 can be used to discover necessary correct termination conditions. A
second dual algorithm where we use the inverted inclusion order⊇ on states leading to
underapproximation of fixpoints. In this settings the lfp allows to conclude on negative
instances and the gfp on positive instances. Also the refinement step uses the post pred-
icate transformer instead of p̃re . Finally we will consider more complicated properties
like properties defined by nested fixpoint expressions.
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Abstract. In static analysis, the semantics of the program is expressed as a set
of equations. The equations are solved iteratively over some abstract domain. If
the abstract domain is distributive and satisfies the ascending-chain condition, an
iterative technique yields the most precise solution for the equations. However,
if the above properties are not satisfied, the solution obtained is typically impre-
cise. Moreover, due to the properties of widening operators, the precision loss is
sensitive to the order in which the state-space is explored.

In this paper, we introduce guided static analysis, a framework for controlling
the exploration of the state-space of a program. The framework guides the state-
space exploration by applying standard static-analysis techniques to a sequence
of modified versions of the analyzed program. As such, the framework does not
require any modifications to existing analysis techniques, and thus can be easily
integrated into existing static-analysis tools.

We present two instantiations of the framework, which improve the precision
of widening in (i) loops with multiple phases and (ii) loops in which the transfor-
mation performed on each iteration is chosen non-deterministically.

1 Introduction

The goal of static analysis is, given a program and a set of initial states, to compute the
set of states that arise during the execution of the program. Due to general undecidability
of this problem, the sets of program states are typically over-approximated by families
of sets that both are decidable and can be effectively manipulated by a computer. Such
families are referred to as abstractions or abstract domains. In static analysis, the se-
mantics of the program is cast as a set of equations, which are solved iteratively over
a chosen abstract domain. If the abstract domain possesses certain algebraic properties,
namely, if the abstract transformers for the domain are monotonic and distribute over
join, and if the domain does not contain infinite strictly-increasing chains, then simple
iterative techniques yield the least fix-point for the set of equations.

However, many useful existing abstract domains, especially those for modeling nu-
meric properties, do not possess the above algebraic properties. As a result, standard
iterative techniques (augmented with widening, to ensure analysis convergence) tend to
lose precision. The precision is lost both due to overly-conservative invariant guesses
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made by widening, and due to joining together the sets of reachable states along mul-
tiple paths. In previous work [11], we showed that the loss of precision can sometimes
be avoided by forcing the analysis to explore the state space of the program in a certain
order. In particular, we showed that the precision of widening in loops with multiple
phases can be improved if the analysis has a chance to precisely characterize the behav-
ior of each phase before having to account for the behavior of subsequent phases.

In this paper, we introduce guided static analysis, a general framework for guiding
state-space exploration. The framework controls state-space exploration by applying
standard static-analysis techniques to a sequence of program restrictions, which are
modified versions of the analyzed program. The result of each analysis run is used to
derive the next program restriction in the sequence, and also serves as an approxima-
tion of a set of initial states for the next analysis run. Note that existing static-analysis
techniques are utilized “as is”, making it easy to integrate the framework into existing
tools. The framework is instantiated by specifying a procedure for deriving program
restrictions.

We present two instantiations of the framework. The first instantiation improves the
precision of widening in loops that have multiple phases. This instantiation generalizes
the lookahead-widening technique [11]. It operates by generating program restrictions
that incorporate individual loop phases. Also, it lifts the limitations of lookahead widen-
ing, such as the restrictions imposed on the iteration strategy and on the length of the
descending-iteration sequence.

The second instantiation addresses the precision of widening in loops where the be-
havior of each iteration is chosen non-deterministically. Such loops naturally occur in
the realm of synchronous systems [13,10] and can occur in imperative programs if some
condition within a loop is abstracted away. This instantiation derives a sequence of pro-
gram restrictions, each of which enables a single iteration behavior and disables all of
the others. At the end, to make the analysis sound, a program restriction with all behav-
iors enabled is analyzed. This strategy allows the analysis to characterize each behavior
in isolation, thereby obtaining more precise results.

In non-distributive domains, the join operation loses precision. To keep the analysis
precise, many techniques propagate sets of abstract values instead of individual values.
Various heuristics are used to keep the cardinalities of propagated sets manageable. The
main question that these heuristics address is which abstract elements should be joined
and which must be kept separate. Guided static analysis is comprised of a sequence
of phases, where each phase derives and analyzes a program restriction. The phase
boundaries are natural points for separating abstract values: that is, within each phase
the analysis may propagate a single abstract value; however, the results of different
phases need not be joined together, but may be kept as a set, thus yielding a more
precise overall result. In §5, we show how to extend the framework to take advantage
of such disjunctive partitioning.

We implemented a prototype of guided static analysis with both of the instantiations,
and applied them to a set of small programs that have appeared in recent literature on
widening. The first instantiation and its disjunctive extension were used to analyze the
benchmarks from [11]. The results were compared against those produced by lookahead
widening. As expected, the results obtained by the instantiation were similar to the ones
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in [11]. However, the results obtained with the disjunctive extension were much more
precise. The second instantiation was used to analyze the examples from [10]. The
obtained results were similar to the ones in [10]. However, we believe that our approach
is conceptually simpler because it does not rely on acceleration techniques.

Contributions. In this paper, we make the following contributions:

– we introduce a general framework for guiding state-space exploration; the frame-
work utilizes existing static-analysis techniques, which makes it easy to integrate
into existing tools.

– we present two instantiations of the framework, which improve the precision of
widening in (i) loops that have multiple phases; (ii) loops in which the transforma-
tions performed on each iteration are selected non-deterministically.

– we describe a disjunctive extension of the framework.
– we present an experimental evaluation of our techniques.

Paper organization. §2 defines the basic concepts used in the rest of the paper; §3
introduces the framework; §4 describes the two instantiations of the framework; §5
presents the disjunctive extension of the framework; §6 gives the experimental results;
§7 reviews related work.

2 Preliminaries

We assume that a program is specified by a control flow graph (CFG) G = (V,E),
where V is a set of program locations, and E � V × V is a set of edges that rep-
resent the flow of control. A program state assigns a value to every variable in the
program. We will use Σ to denote the set of all possible program states. The function
ΠG : E → (Σ → Σ) assigns to each edge in the CFG the concrete semantics of the
corresponding program statement. The semantics of individual statements is trivially
extended to operate on sets of states, i.e., ΠG(e)(S) = {ΠG(e)(s) | s ∈ S}, where
e ∈ E and S ⊆ Σ.

Let Θ0 : V → ℘(Σ) denote a mapping from program locations to sets of states. The
sets of program states that are reachable at each program location from the states in Θ0

are given by the least map Θ� : V → ℘(Σ) that satisfies the following set of equations:

Θ�(v) ⊇ Θ0(v), and Θ�(v) =
⋃

〈u,v〉∈E

ΠG(〈u, v〉)(Θ�(u)), for all v ∈ V

The problem of computing sets of reachable states is, in general, undecidable.

Static Analysis. Static analysis sidesteps undecidability by using abstraction: sets
of program states are approximated by elements of some abstract domain D =
〈D,α, γ,�,",⊥,�〉, where α : ℘(Σ) → D constructs an approximation for a set
of states, γ : D → ℘(Σ) gives meaning to domain elements, � is a partial order on D,
" and ⊥ are, respectively, the least and the greatest elements of D, and � is the least
upper bound operator. The function Π�

G : E → (D → D) gives the abstract semantics
of individual program statements.
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To refer to abstract states at multiple program locations, we define abstract-state
maps Θ� : V → D. The operations α, γ, �, and � for Θ� are point-wise extensions of
the corresponding operations for D.

A static analysis computes an approximation for the set of states that are reachable
from an approximation of the set of initial states according to the abstract semantics of
the program. In the rest of the paper, we view static analysis as a black box, denoted by
Ω, with the following interface: Θ�

� = Ω(Π�
G, Θ�

0), where Θ�
0 = α(Θ0) is the initial

abstract-state map, and Θ�
� is an abstract-state map that satisfies the following property:

∀v ∈ V :

⎡
⎣Θ�

0(v) �
⊔

〈u,v〉∈E

Π�
G(〈u, v〉)(Θ�

�(u))

⎤
⎦ � Θ�

�(v).

3 Guided Static Analysis

A guided static analysis framework provides control over the exploration of the state
space. Instead of constructing a new analysis by means of designing a new abstract do-
main or imposing restrictions on existing analyses (e.g., by fixing an iteration strategy),
the framework relies on existing static analyses “as is”. Instead, state-space exploration
is guided by modifying the analyzed program to restrict some of its behaviors; multiple
analysis runs are performed to explore all of the program’s behaviors.

The framework is parametrized with a procedure for deriving such program restric-
tions. The analysis proceeds as follows: the initial abstract-state map, Θ�

0, is used to
derive the first program restriction; standard static analysis is applied to that program
restriction to compute Θ�

1, which approximates a set of program states reachable from
Θ�

0. Then, Θ�
1 is used to derive the second program restriction, which is in turn an-

alyzed by a standard analysis to compute Θ�
2. This process is repeated until the i-th

derived restriction is equivalent to the original program; the final answer is Θ�
i .

We use the program in Fig. 1(a) to illustrate guided static analysis framework. The
loop in the program has two explicit phases: during the first fifty iterations both variable
x and variable y are incremented; during the next fifty iterations variable x is incre-
mented and variable y is decremented. The loop exits when the value of the variable y
falls below 0. This program is a challenge for standard widening/narrowing-based nu-
meric analyses because the application of the widening operator over-approximates the
behavior of the first phase and initiates the analysis of the second phase with overly-
conservative initial assumptions. As a result, polyhedra-based standard numeric analy-
sis concludes that at the program point n1 the relationship between the values of x and
y is 0 ≤ y ≤ x, and at the program point nx, y = −1 and x ≥ 50. This is imprecise
compared to the true sets of states at those program points (Figs. 1(c) and 1(d)).

Guided static analysis, when applied to the program in Fig. 1(a) consecutively de-
rives three program restrictions shown in Fig. 2: (a) consists to the first phase of the
program; (b) incorporates both phases, but excludes the edge that leads out of the loop;
(c) includes the entire program. Each restriction is formed by substituting abstract trans-
formers associated with certain edges in the control flow graph with more restrictive
transformers (in this case, with ⊥̄, which is equivalent to removing the edge from the
graph). We defer the description of the procedure for deriving these restrictions to §4.1.
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x = 0;

y = 0;

while(true)
{

if(x <= 50) y++;
else y--;

if(y < 0) break;

x++;
}
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n1

n2 n3

n4

n5

n6nx

x←0
y←0

x≤50 x≥51

y←y+1 y←y−1

y≥0

x←x+1

y≤−1

(b)

x

y

51

51 102

(c)

xy

−1

102

(d)

Fig. 1. Running example: (a) a loop with non-regular behavior; (b) control-flow graph for the
program in (a); (c) the set of program states at n1: the points with integer coordinates that lie on
the dark upside-down “v” form the precise set of concrete states; the gray triangle gives the best
approximation of that set in the polyhedral domain; (d) the single program state that reaches nx
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Fig. 2. Program restrictions for the program in Fig. 1: the unreachable portions of each CFG are
shown in gray; (a) the first restriction corresponds to the first loop phase; (b) the second restriction
consists of both loop phases, but not the loop-exit edge; (c) the third restriction incorporates the
entire program

Fig. 3(a) illustrates the operation of guided static analysis. Θ�
0 approximates the set

of initial states of the program. The standard numeric analysis, when applied to the first
restriction (Fig. 2(a)), yields the abstract-state map Θ�

1, i.e., Θ�
1 = Ω(Π�

1, Θ
�
0). Note,

that the invariant for the first loop phase (0 ≤ x = y ≤ 51) is captured precisely.
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Fig. 3. Guided static analysis results for the program in Fig. 1(a); (a) the sequence of abstract
states that are computed by analyzing the program restrictions shown in Fig. 2; Θ�

3 is the overall
result of the analysis; (b) the abstract states that are obtained by analyzing the acyclic version of
the program, which are used to construct the program restrictions in Fig. 2 (see §4.1)

Similarly, Θ�
2 is computed as Ω(Π�

2, Θ
�
1), and Θ�

3 is computed as Ω(Π�
3, Θ

�
2). Since

the third restriction is equivalent to the program itself, the analysis stops, yielding Θ�
3

as the overall result. Note that Θ�
3 is more precise than the solution computed by the

standard analysis: it precisely captures the loop invariant at program point n1 and the
upper bound for the value of x at node nx. In fact, Θ�

3 corresponds to the least fix-point
for the program in Fig. 1(a) in the polyhedral domain.

3.1 Formal Description

We start by extending the partial order of the abstract domain to abstract transformers
and to entire programs. The order is extended in a straightforward fashion.
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Definition 1. Let f, g : D → D be two abstract transformers, let G = (V,E) be
a control-flow graph, and let Π�

1, Π
�
2 : E → (D → D) be two programs specified

over G. Then we say that (i) f�̄g iff ∀d ∈ D : f(d) � g(d); and (ii) Π�
1�̇Π�

2 iff
∀e ∈ E : Π�

1(e)�̄Π�
2(e).

A program restriction is a version of a program Π� in which some abstract transformers
under-approximate (�̄) those of Π . The aim is to make a standard analysis (applied
to the restriction) explore only a subset of reachable states of the original program.
Note, however, that, if widening is used by the analyzer, there are no guarantees that the
explored state space would be smaller (because widening is, in general, not monotonic).

Definition 2 (Program Restriction). Let G = (V,E) be a control-flow graph, and
Π� : E → (D → D) be a program specified over G. We say that Π�

r : E → (D → D)
is a restriction of Π� if Π�

r�̇Π�

To formalize guided static analysis, we need a notion of a program transformer: that
is, a procedure Λ that, given a program and an abstract state, derives a corresponding
program restriction. We allow a program transformer to maintain internal states, the set
of which will be denoted I. We assume that the set I is defined as part of Λ.

Definition 3 (Program transformer). Let Π� be a program, let Θ� : V → D be
an arbitrary abstract-state map, and let I ∈ I be an internal state of the program
transformer. A program transformer, Λ, computes a restriction of Π� with respect to
Θ�, and modifies its internal state, i.e.:

Λ(Π�, I, Θ�) = (Π�
r , Ir), where Π�

r�̇Π� and Ir ∈ I.

To ensure the soundness and the convergence of the analysis, we require that the pro-
gram transformer possess the following property: the sequence of program restrictions
generated by a non-decreasing chain of abstract states must converge to the original
program in finitely many steps.

Definition 4 (Chain Property). Let (Θ�
i ) be a non-decreasing chain, s.t., Θ�

0 � Θ�
1

� ... � Θ�
k � .... Let (Π�

i ) be a sequence of program restrictions derived from (Θ�
i ) as

follows:
(Π�

i+1, Ii+1) = Λ(Π�, Ii, Θ
�
i )

where I0 is the initial internal state for Λ. We say that Λ satisfies the chain property if
there exists a natural number n such that Π�

i = Π�, for all i ≥ n.

The above property is not burdensome: any mechanism for generating program restric-
tions can be forced to satisfy the property by introducing a threshold and returning the
original program after the threshold has been exceeded.

Definition 5 (Guided Static Analysis). Let Π� be a program, and let Θ�
0 be an

initial abstract-state map. Also, let I0 be an initial internal state for the program trans-
former Λ. Guided static analysis performs the following sequence of iterations:

Θ�
i+1 = Ω(Π�

i+1, Θ
�
i), where (Π�

i+1, Ii+1) = Λ(Π�, Ii, Θ
�
i ),

until Π�
i+1 = Π�. The analysis result is Θ�

� = Θ�
i+1 = Ω(Π�

i+1, Θ
�
i) = Ω(Π�, Θ�

i).
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Let us show that if the program transformer satisfies the chain property, the above anal-
ysis is sound and converges in a finite number of steps. Both arguments are trivial:

Soundness. Let Π�
a be an arbitrary program and let Θ�

a be an arbitrary abstract-state
map. Due to the soundness of Ω, the following holds: Θ�

a � Ω(Π�
a, Θ

�
a). Now, let (Π�

i )
be a sequence of programs and let (Θ�

i ) be a sequence of abstract-state maps computed
according to the procedure in Defn. 5. Since each Θ�

i is computed as Ω(Π�
i , Θ

�
i−1),

clearly, the following relationship holds: Θ�
0 � Θ�

1 � ... � Θ�
k � ....

Since Λ satisfies the chain property, there exists a number n such that Π�
i = Π� for

all i ≥ n. The result of the analysis is computed as

Θ�
� = Θ�

n = Ω(Π�
n, Θ�

n−1) = Ω(Π�, Θ�
n−1)

and, since Θ�
0 � Θ�

n−1 (i.e., the n-th iteration of the analysis computes a set of program

states reachable from an over-approximation of the set of initial states, Θ�
0), it follows

that guided static analysis is sound.

Convergence. Convergence follows trivially from the above discussion: since Π�
n =

Π� for some finite number n, guided static analysis converges after n iterations.

4 Framework Instantiations

The framework of guided static analysis is instantiated by supplying a suitable program
transformer, Λ. This section presents two instantiations that are aimed at recovering
precision lost due to the use of widening.

4.1 Widening in Loops with Multiple Phases

As was illustrated in §3, multiphase loops pose a challenge for standard analysis tech-
niques. The problem is that standard techniques are not able to invoke narrowing after
the completion of each phase to refine the analysis results for that phase. Instead, nar-
rowing is invoked at the very end of the analysis when the accumulated precision loss
is too great for precision to be recovered.

In previous work, we proposed a technique called lookahead widening that addressed
this problem [11]. Lookahead widening propagated a pair of abstract values through the
program: the first value was used to “lock” the analysis within the current loop phase;
the second value computed the solution for the current phase and refined it with a nar-
rowing sequence. When the second value converged, it was moved into the first value,
thereby allowing the next loop phase to be considered. To make lookahead widening
work in practice, certain restrictions were placed on the iteration strategy used by the
analysis; also, the length of the descending-iteration sequence was limited to one. Fur-
thermore, very short loop phases caused precision loss if the first value allowed the
analysis to exit the current loop phase before the second value was able to converge.

In this section, we present an instantiation of the guided static analysis framework
that generalizes lookahead widening and lifts the above restrictions and limitations. To
instantiate the framework, we need to construct a program transformer, Λphase, that
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derives program restrictions that isolate individual loop phases (as shown in Fig. 2).
Intuitively, given an abstract-state map, we would like to include into the generated
restriction the edges that are immediately exercised by that abstract state, and exclude
the edges that require several loop iterations to become active.

To define the program transformer, we again rely on the application of a standard
static analysis to a modified version of the program. Let Π̂� denote the version of Π�

from which all backedges have been removed. Note that the program Π̂� is acyclic and
thus can be analyzed efficiently and precisely. The program transformer Λphase(Π�, Θ�)
is defined as follows (no internal states are maintained, so we omit them for brevity):

Π�
r(〈u, v〉) =

{
Π�(〈u, v〉) if Π�(〈u, v〉)(Ω(Π̂�, Θ�)(u)) �= ⊥
⊥̄ otherwise

In practice, we first analyze the acyclic version of the program: Θ̂� = Ω(Π̂�, Θ�).
Then, for each edge 〈u, v〉 ∈ E, we check whether that edge should be included in the
program restriction: if the edge is active (that is, if Π�(〈u, v〉)(Θ̂�(u)) yields a non-
bottom value), then the edge is included in the restriction; otherwise, it is omitted.

Fig. 3(b) illustrates this process for the program in Fig. 1(a). Π̂� is constructed by
removing the edge 〈n6, n1〉 from the program. The first column in Fig. 3(b) shows the
result of analyzing Π̂� with Θ�

0 used as the initial abstract-state map. The transformers
associated with the edges 〈n1, n3〉, 〈n3, n4〉, and 〈n4, nx〉 yield ⊥ when applied to the
analysis results. Hence, these edges are excluded from the program restriction Π�

1 (see
Fig. 2(a)). Similarly, the abstract-state map shown in the second column of Fig. 3(b)
excludes the edge 〈n4, nx〉 from the restriction Π�

2. Finally, all of the edges are active
with respect to the abstract-state map shown in the third column. Thus, the program
restriction Π�

3 is equivalent to the original program.
Note that the program transformer Λphase, as defined above, does not satisfy the

chain property from Defn. 4: arbitrary non-decreasing chains of abstract-state maps may
not necessarily lead to the derivation of program restrictions that are equivalent to the
original program. However, note that the process is bound to converge to some program
restriction after a finite number of steps. To see this, note that each consecutive program
restriction contains all of the edges included in the previously generated restrictions, and
the overall number of edges in the program’s CFG is finite. Thus, to satisfy the chain
property, we make Λphase return Π� after convergence is detected.

4.2 Widening in Loops with Non-deterministically Chosen Behavior

Another challenge for standard analysis techniques is posed by loops in which the be-
havior of each iteration is chosen non-deterministically. Such loops often arise when
modeling and analyzing synchronous systems [13,10], but they may also arise in the
analysis of imperative programs when a condition of an if statement in the body of
the loop is abstracted away (e.g., if variables used in the condition are not modeled by
the analysis). These loops are problematic due to the following two reasons:

– the analysis may be forced to explore multiple iteration behaviors at the same time
(e.g., simultaneously explore multiple arms of a non-deterministic conditional),
making it hard for widening to predict the overall behavior of the loop accurately;
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– narrowing is not effective in such loops: narrowing operates by filtering an over-
approximation of loop behavior through the conditional statements in the body of
the loop; in these loops, however, the relevant conditional statements are buried
within the arms of a non-deterministic conditional, and the join operation at the
point where the arms merge cancels the effect of such filtering.

Fig. 4(a) shows an example of such loop: the program models a speedometer with the
assumption that the maximum speed is c meters per second (c > 0 is an arbitrary integer
constant) [10]. Variables m and sec model signals raised by a time sensor and a distance
sensor, respectively. Signal sec is raised every time a second elapses: in this case, the
time variable t is incremented and the speed variable s is reset. Signal m is raised every
time a distance of one meter is traveled: in this case, both the distance variable d and
the speed variable s are incremented. Fig. 4(b) shows the CFG for the program: the
environment (i.e., the signals issued by the sensors) is modeled non-deterministically
(node n1). The invariant that we desire to obtain at node n1 is d ≤ c × t + s, i.e.,
the distance traveled is bound from above by the number of elapsed seconds times the
maximum speed plus the distance traveled during the current second.

Standard polyhedral analysis, when applied to this example, simultaneously explores
both arms of the non-deterministic conditional and yields the following sequence of
abstract states at node n1 during the first k iterations (we assume that k < c):

{ 0 ≤ s ≤ d ≤ (k − 1)× t + s, t + d ≤ k }

The application of widening extrapolates the above sequence to { 0 ≤ s ≤ d } (i.e., by
letting k go to ∞). Narrowing refines the result to { 0 ≤ s ≤ c, s ≤ d }. Thus, un-
less the widening delay is greater than c, the result obtained with standard analysis is
imprecise.

volatile bool m, sec;

d = t = s = 0;

while(true)

{
if(sec) {

t++; s = 0;

}

else if(m) {
if(s < c) {

d++; s++;
}

}
}

(a)

ne

n1

n2 n4

n3 n5

n6

d←0
t←0
s←0

t←t+1
s←0 s<c

s≥c

d←d+1
s←s+1

(b)

0 ≤ d = s ≤ c

t = 0
(c)

s ≤ d ≤ c × t + s

0 ≤ d ≤ c

(d)

s ≤ d ≤ c × t + s

0 ≤ s ≤ c

(e)

Fig. 4. A model of a speedometer with the assumption that maximum speed is c meters per sec-
ond [10] (c is a positive constant): (a) a program; (b) control-flow graph for the program in (a);
(c) abstract state at n1 after Π�

1 (edge 〈n1, n2〉 disabled) is analyzed; (d) abstract state at n1 after
Π�

2 (edge 〈n1, n4〉 disabled) is analyzed; (e) abstract state at n1 after Π�
3 = Π� is analyzed.
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To improve the analysis precision, we would like to analyze each of the loop’s be-
haviors in isolation. That is, we would like to derive a sequence of program restrictions,
each of which captures exactly one of the loop behaviors and suppresses the others.
This can be achieved by making each program restriction enable a single outgoing edge
outgoing from a node where the control is chosen non-deterministically and disable the
others. After all single-behavior restrictions are processed, we can ensure that the anal-
ysis is sound by analyzing a program restriction where all of the outgoing edges are
enabled.

For the program in Fig. 4(a), we construct three program restrictions: Π�
1 enables

edge 〈n1, n4〉 and disables 〈n1, n2〉, Π�
2 enables edge 〈n1, n2〉 and disables 〈n1, n4〉,

Π�
3 enables both edges. Figs. 4(c), 4(d), and 4(e) show the abstract states Θ�

1(n1),
Θ�

2(n1), and Θ�
3(n1) computed by guided static analysis instantiated with the above

sequence of program restrictions. Note that the overall result of the analysis in Fig. 4(e)
implies the desired invariant.

We formalize the above strategy as follows. Let Vnd ⊆ V be a set of nodes at which
loop behavior is chosen. An internal state of the program transformer keeps track of
which outgoing edge is to be enabled next for each node in Vnd. One particular scheme
for achieving this is to make an internal state I map each node v ∈ Vnd to a non-
negative integer: if I(v) is less then the out-degree of v, then I(v)-th outgoing edge is
to be enabled; otherwise, all outgoing edges are to be enabled. The initial state I0 maps
all nodes in Vnd to zero.

If iteration behavior can be chosen at multiple points (e.g., the body of the loop
contains a chain of non-deterministic conditionals), the following problem arises: an at-
tempt to isolate all possible loop behaviors may generate exponentially many program
restrictions. In the prototype implementation, we resort to the following heuristic: si-
multaneously advance the internal states for all reachable nodes in Vnd. This strategy
ensures that the number of generated program restrictions is linear in |Vnd|; however,
some loop behaviors will not be isolated.

Let degout(v) denote the out-degree of node v; also, let edgeout(v, i) denote the
i-th edge outgoing from v, where 0 ≤ i < degout(v). The program transformer
Λnd(Π�, I, Θ�) is defined as follows:

Π�
r(〈u, v〉) =

⎧⎨
⎩
⊥̄ if

[
u ∈ Vnd, Θ�(u) �= ⊥, I(u) < degout(u)

and 〈u, v〉 �= edgeout(u, I(u))

]

Π�(〈u, v〉) otherwise

The internal state of Λnd is updated as follows: for all v ∈ Vnd such that Θ�(v) �= ⊥,
Ir(v) = I(v) + 1; for the remaining nodes, Ir(v) = I(v).

As with the first instantiation, the program transformer defined above does not satisfy
the chain property. However, the sequence of program restrictions generated according
to Defn. 4 is bound to stabilize in a finite number of steps. To see this, note that once
node v ∈ Vnd becomes reachable, at most degout(v) + 1 program restrictions can be
generated before exhausting all of the choices for node v. Thus, we can enforce the
chain property by making Λnd return Π� once the sequence of program restrictions
stabilizes.
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5 Disjunctive Extension

A single iteration of guided static analysis extends the current approximation for the
entire set of reachable program states (represented with a single abstract-domain ele-
ment) with the states that are reachable via the new program behaviors introduced on
that iteration. However, if the abstract domain is not distributive, using a single abstract-
domain element to represent the entire set of reachable program states may degrade the
precision of the analysis. A more precise solution can potentially be obtained if, instead
of joining together the contributions of individual iterations, the analysis represents the
contribution of each iteration with a separate abstract-domain element.

In this section, we extend guided static analysis to perform such disjunctive parti-
tioning. To isolate a contribution of a single analysis iteration, we add an extra step to
the analysis. That step takes the current approximation for the set of reachable program
states and constructs an approximation for the set of states that immediately exercise the
new program behaviors introduced on that iteration. The resulting approximation is used
as a starting point for the standard analysis run performed on that iteration. That is, an
iteration of the analysis now consists of three steps: the algorithm (i) derives the (next)
program restriction Π�

r; (ii) constructs an abstract-state map Θ�
r that forces a fix-point

computation to explore only the new behaviors introduced in Π�
r ; and (iii) performs a

fix-point computation to analyze Π�
r , using Θ�

r as the initial abstract-state map.
We start by defining the analysis history Hk, a sequence of abstract-state maps ob-

tained by the first k ≥ 0 iterations of guided static analysis. Hk maps an integer
i ∈ [0, k] to the result of the i-th iteration of the analysis. Hk approximates the set
of program states reached by the first k analysis iterations: γ(Hk) =

⋃k
i=0 γ(Hk(i)).

The introduction of the analysis history necessitates a change in the definition of a
program transformer Λ (Defn. 3): instead of a single abstract domain element, a pro-
gram transformer must accept an analysis history as input. We leave it in the hands of
the user to supply a suitable program transformer Λdj . In our implementation, we used
a simple, albeit conservative way to construct such a program transformer from Λ:

Λdj(Π�, I,Hk) = Λ(Π�, I,

k⊔
i=1

Hk(i)).

For the program in Fig. 1, Λdj derives the same program restrictions as the ones derived
by plain guided static analysis (see Fig. 2).

Let Π�
k be the program restriction derived on the k-th iteration of the analysis, where

k ≥ 1. The set of frontier edges for the k-th iteration consists of the edges whose associ-
ated transformers are changed in Π�

k from Π�
k−1 (for convenience, we define Π�

0 to map

all edges to ⊥̄): Fk =
{
e ∈ E | Π�

k(e) �= Π�
k−1(e)

}
. For the program in Fig. 1, the

sets of frontier edges on the second and third iterations are F2 = {〈n1, n3〉, 〈n3, n4〉}
and F3 = {〈n4, nx〉}. The local analysis frontier for the k-th iteration of the analysis is
an abstract-state map that approximates the set of states that are immediately reachable
via the edges in Fk:

LFk(v) =
⊔

〈u,v〉∈Fk

[
k−1⊔
i=0

Π�
k(〈u, v〉)(Hk−1(i)(u))

]
.
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Node GF1 = Θ�
0 Ω(Π�

1, GF1) GF2 Ω(Π�
2, GF2) GF3 Ω(Π�
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Fig. 5. Disjunctive extension of guided static analysis: the analysis trace for the program in
Fig. 1(a); for each analysis phase, the global frontier and the resulting abstract state are shown.
Note that the set of abstract values computed for program point nx describes the true set of
states reachable at nx (see Fig. 1(d)).

For the program in Fig. 1, the local analysis frontier on the second iteration contains
a single program state: LF2(n3) = {x = y = 51}, which is obtained by applying
the transformer associated with the edge 〈n1, n3〉 to the abstract state H1(1)(n1) =
{0 ≤ x = y ≤ 51}.

Some program states in the local analysis frontier may have already been explored
on previous iterations. The global analysis frontier refines the local frontier by taking
the analysis history into consideration. Ideally, we would like to compute

GFk(v) = α(γ(LFk(v))−
k−1⋃
i=0

γ(Hk−1(i)(v))),

where “−” denotes set difference. However, this is hard to compute in practice. In our
implementation, we take a simplistic approach and compute:
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GFk(v) =
{
⊥ if LFk(v) ∈ {Hk−1(i)(v) | 0 ≤ i ≤ k − 1}
LFk(v) otherwise

For the program in Fig. 1, GF2 = LF2.

Definition 6 (Disjunctive Extension). Let Π� be a program, and let Θ�
0 be an ab-

stract state that approximates the initial configuration of the program. Also, let I0 be
an initial internal state for the program transformer, Λdj . The disjunctive extension of
guided static analysis computes the set of reachable states by performing the following
iteration,

H0 =
[
0 !→ Θ�

0

]
and Hi+1 = Hi ∪

[
(i + 1) !→ Ω(Π�

i+1, GFi+1)
]
,

where (Π�
i+1, Ii+1) = Λdj(Π�, Ii, Hi),

until Π�
i+1 = Π�. The result of the analysis is given by Hi+1.

Fig. 5 illustrates the application of the disjunctive extension to the program in
Fig. 1(a). The analysis precisely captures the behavior of both loop phases. Also, the ab-
stract value computed for program point nx exactly identifies the set of program states
reachable at nx. Overall, the results are significantly more precise than the ones obtained
with plain guided static analysis (see Fig. 3).

6 Experimental Results

We implemented a prototype of guided static analysis. The prototype uses a polyhedra-
based numeric analysis built on top of a weighted pushdown system library,
wpds++ [15], as the base static analysis. It relies on the Parma Polyhedral Library [2]
to manipulate polyhedral abstractions. A widening delay of 4 was used in all of the ex-
periments. The performance of each analysis run is measured in steps: each step corre-
sponds to a single abstract-transformer application. Speedups (overheads) are reported
as the percent of extra steps performed by the baseline analysis (evaluated analysis),
respectively.

We applied the instantiation from §4.1 to the set of benchmarks that were used to
evaluate policy-iteration techniques [5] and lookahead widening [11]. Tab. 1 shows the
results we obtained. With the exception of “test6”, the results from GSA and lookahead
widening are comparable: the precision is the same, and the difference in running times
can be attributed to implementation choices. This is something we expected, because
GSA is a generalization of the lookahead-widening technique. However, GSA yields
much better results for “test6”: in “test6”, the loop behavior changes when the induction
variable is equal to certain values. The changes in behavior constitute short loop phases,
which cause problems for lookahead widening. Also, GSA stabilizes in a fewer number
of steps because simpler polyhedra arise in the course of the analysis.
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Table 1. Experimental results: loops with multiple phases (§4.1): GSA is compared against looka-
head widening (LA); Disjunctive GSA is compared against GSA. steps is the total number of steps
performed by each of the analyses; phases is the number of GSA phases; prec reports precision
improvement: “-” indicates no improvement, k/m indicates that sharper invariants are obtained
at k out of m “interesting” points (interesting points include loop heads and exit nodes)

LA GSA Disjunctive GSA
steps phases steps prec. speedup(%) phases steps prec. speedup(%)

test1 58 2 54 - 7.9 2 42 - 22.2
test2 56 2 56 - - 2 42 - 25.0
test3 58 1 44 - 24.1 1 42 - 4.5
test4 210 6 212 - -1.0 6 154 - 27.4
test5 372 3 368 - 1.1 3 406 1/3 -10.3
test6 402 3 224 3/3 44.3 3 118 2/3 47.3
test7 236 3 224 - 3.4 3 154 4/4 31.3
test8 106 4 146 - -37.7 3 114 - 21.9
test9 430 4 444 - -3.3 4 488 4/4 -9.9
test10 418 4 420 - -0.5 4 246 5/5 41.4

Tab. 1 also compares the disjunctive extension to plain GSA. Because the analysis
performed in each phase of the disjunctive extension does not have to reestablish the
invariants obtained on previous phases, the disjunctive extension requires fewer analy-
sis steps for most of the benchmarks. To compare the precision of the two analyses, we
joined the analysis history obtained by the disjunctive extension for each program loca-
tion into a single abstract value: for half of the benchmarks, the resulting abstract values
are still significantly more precise than the ones obtained by plain GSA. Most notably,
the two loop invariants in “test6” are further sharpened by the disjunctive extension,
and the number of analysis steps is further reduced.

The instantiation in §4.2 is applied to a set of examples from [3,10]: “astree” is the
(second) example that motivates the use of threshold widening in [3], “speedometer”
is the example used in §4.2; the two other benchmarks are the models of a leaking

Table 2. Experimental results: loops with non-deterministic behavior (§4.2): ND k(m) gives
the amount of non-determinism: k = |Vnd| and m is the out-degree for nodes in Vnd; runs is
the number of GSA runs, each run isolates iteration behaviors in different order; steps is the total
number of analysis steps (for GSA it is the average accross all runs); phases is the average number
of GSA phases; inv. indicates whether the desired invariant is obtained (for GSA, k/m indicates
that the invariant is obtained on k out of m runs)

Program Vars Nodes ND Lookahead GSA Overhead
steps inv. runs phases steps inv. (%)

astree 1 7 1(2) 104 no 2 3 107 yes 2.9
speedometer 3 8 1(2) 114 no 2 3 207 yes 81.6
gas burner 3 8 2(2) 164 no 4 3.5 182.5 3/4 11.3
gas burner II 4 5 1(3) 184 no 6 4 162 4/6 -12.0
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gas burner from [10]. The results are shown in Tab. 2: guided static analysis was able
to establish the desired invariants for all of the examples. We enumerated all possible
orders in which iteration behaviors can be enabled for these examples. Interestingly,
the precision of the analysis on the gas-burner benchmarks does depend on the order in
which the behaviors are enabled. In the future, we plan to address the issue of finding
optimal behavior orders.

7 Related Work

Controlled state-space exploration. Bourdoncle discusses the effect of an iteration
strategy on the overall efficiency of analysis [4]. Lazy abstraction [14] guides the state-
space exploration in a way that avoids performing joins: the CFG of a program is un-
folded as a tree and stabilization is checked by a special covering relation. The directed
automated random testing (DART) technique [9] restricts the analysis to the part of the
program that is exercised by a particular test input; the result of the analysis is used to
generate inputs that exercise program paths not yet explored. The analysis is carried out
dynamically by an instrumented version of the program. Grumberg et al. construct and
analyze a sequence of under-approximated models by gradually introducing process in-
terleavings in an effort to speed up the verification of concurrent processes [12]. We
believe that the GSA framework is more general than the above approaches. Further-
more, the GSA instantiations presented in this paper address the precision of widening,
which is not addressed by any of the above techniques.

Widening precision. Threshold widening [3] and widening up-to [13] rely on exter-
nal invariant guesses supplied by the user or obtained from the program code with
the use of some heuristics or by running a separate analysis. In contrast, our instan-
tiations are self-contained: that is, they do not rely on external invariant guesses. The
new control-path heuristic [13] detects the introduction of new behaviors and delays
widening until the introduced behavior is sufficiently explored. However, it lacks the
ability to refine the solution for already-explored behaviors before the new behavior is
introduced. Policy-iteration techniques [5,8] derive a series of program simplifications
by changing the semantics of the meet operator: each simplification is analyzed with a
dedicated analysis. We believe that our approach is easier to adopt because it relies on
existing and well-understood analysis techniques. Furthermore, policy-iteration tech-
niques are not yet able to operate on fully-relational abstract domains (e.g., polyhedra).
The instantiation in §4.1 is the generalization of lookahead widening [11]: it lifts some
of the restrictions imposed by lookahead widening. Gonnord et al. combine polyhedral
analysis with acceleration techniques [10]: complex loop nests are simplified by “ac-
celerating” some of the loops. The instantiation in §4.2 attempts to achieve the same
effect, but does not rely on explicit acceleration techniques.

Powerset extensions. Disjunctive completion [6] improves the precision of the analysis
by propagating sets of abstract-domain elements. However, to allow its use in numeric
program analysis, widening operators must be lifted to operate on sets of elements [1].
Sankaranarayanan et al. [18] circumvent this problem by propagating single abstract-
domain elements through an elaboration of a control-flow graph (constructed on the
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fly). ESP [7], TVLA [16], and the trace-partitioning framework [17] structure abstract
states as functions from a specially-constructed finite set (e.g., set of FSM states [7],
or set of valuations of nullary predicates [16]) into the set of abstract-domain elements:
at merge points, only the elements that correspond to the same member of the set are
joined. The disjunctive extension in §5 differs from these techniques in two aspects: (i)
the policy for separating abstract-domain elements is imposed implicitly by the program
transformer; (ii) the base-level static analysis, invoked on each iteration of GSA, always
propagates single abstract-domain elements.

References

1. Bagnara, R., Hill, P., Zaffanella, E.: Widening operators for powerset domains. In: Steffen,
B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.135–148, Springer, Heidelberg (2004)

2. Bagnara, R., Ricci, E., Zaffanella, E., Hill, P.M.: Possibly not closed convex polyhedra and
the parma polyhedra library. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS,
vol. 2477, pp.299–315, Springer, Heidelberg (2002)

3. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Min’e, A., Monniaux, D., Ri-
val, X.: Design and implementation of a special-purpose static program analyzer for safety-
critical real-time embedded software. In: The Essence of Computation: Complexity, Analy-
sis, Transformation, pp. 85–108 (2002)

4. Bourdoncle, F.: Efficient chaotic iteration strategies with widenings. In: Int. Conf. on Formal
Methods in Prog. and their Appl, pp. 128–141 (1993)

5. Costan, A., Gaubert, S., Goubault, E., Martel, M., Putot, S.: A policy iteration algorithm for
computing fixed points in static analysis of programs. In: Etessami, K., Rajamani, S.K. (eds.)
CAV 2005. LNCS, vol. 3576, Springer, Heidelberg (2005)

6. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: POPL, pp.
269–282 (1979)

7. Das, M., Lerner, S., Seigle, M.: Esp: Path-sensitive program verification in polynomial time.
In: PLDI, pp. 57–68 (2002)

8. Gaubert, S., Goubault, E., Taly, A., Zennou, S.: Static analysis by policy interation on rela-
tional domains. In: ESOP (2007)

9. Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing. In: PLDI, pp.
213–223 (2005)

10. Gonnord, L., Halbwachs, N.: Combining widening and acceleration in linear relation analy-
sis. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 144–160. Springer, Heidelberg (2006)

11. Gopan, D., Reps, T.: Lookahead widening. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 452–466. Springer, Heidelberg (2006)

12. Grumberg, O., Lerda, F., Strichman, O., Theobald, M.: Proof-guided underapproximation-
widening for multi-process systems. In: POPL (2005)

13. Halbwachs, N., Proy, Y.-E., Roumanoff, P.: Verification of real-time systems using linear
relation analysis. FMSD 11(2), 157–185 (1997)

14. Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL, pp. 58–70 (2002)
15. Kidd, N., Reps, T., Melski, D., Lal, A.: WPDS++: A C++ library for weighted pushdown

systems (2004), http://www.cs.wisc.edu/wpis/wpds++/
16. Lev-Ami, T., Sagiv, M., TVLA,: A system for implementing static analyses. In: Palsberg, J.

(ed.) SAS 2000. LNCS, vol. 1824, pp. 280–301. Springer, Heidelberg (2000)
17. Mauborgne, L., Rival, X.: Trace partitioning in abstract interpretation based static analyzers.

In: ESOP, pp. 5–20 (2005)
18. Sankaranarayanan, S., Ivancic, F., Shlyakhter, I., Gupta, A.: Static analysis in disjunctive

numerical domains. In: SAS., pp. 3–17 (2006)

http://www.cs.wisc.edu/wpis/wpds++/


Program Analysis Using Symbolic Ranges

Sriram Sankaranarayanan, Franjo Ivančić, and Aarti Gupta
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Abstract. Interval analysis seeks static lower and upper bounds on the
values of program variables. These bounds are useful, especially for in-
ferring invariants to prove buffer overflow checks. In practice, however,
intervals by themselves are often inadequate as invariants due to the lack
of relational information among program variables.

In this paper, we present a technique for deriving symbolic bounds
on variable values. We study a restricted class of polyhedra whose con-
straints are stratified with respect to some variable ordering provided by
the user, or chosen heuristically. We define a notion of normalization for
such constraints and demonstrate polynomial time domain operations on
the resulting domain of symbolic range constraints. The abstract domain
is intended to complement widely used domains such as intervals and oc-
tagons for use in buffer overflow analysis. Finally, we study the impact of
our analysis on commercial software using an overflow analyzer for the
C language.

1 Introduction

Numerical domain static analysis has been used to prove safety of programs for
properties such as the absence of buffer overflows, null pointer dereferences, di-
vision by zero, string usage and floating point errors [30,3,13]. Domains such as
intervals, octagons, and polyhedra are used to symbolically over-approximate the
set of possible values of integer and real-valued program variables along with their
relationships under the abstract interpretation framework [19,8,11,21,6,25,17,27].
These domains are classified by their precision, i.e, their ability to represent sets
of states, and tractability, the complexity of common operations such as union
(join), post condition, widening and so on. In general, enhanced precision leads
to more proofs and less false positives, while resulting in a costlier analysis.

Fortunately, applications require a domain that is “precise enough” rather
than “most precise”. As a result, research in static analysis has resulted in nu-
merous trade-offs between precision and tractability. The octagon abstract do-
main, for instance, uses polyhedra with two variables per constraint and unit
coefficients [21]. The restriction yields fast, polynomial time domain operations.
Simultaneously, the pairwise comparisons captured by octagons also express and
prove many common run time safety issues in practical software [3]. Nevertheless,
a drawback of the octagon domain is its inability to reason with properties that
may need constraints of a more complex form. Such instances arise frequently.
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In this paper, we study symbolic range constraints to discover symbolic expres-
sions as bounds on the values of program variables. Assuming a linear ordering
among the program variables, we restrict the bound for a variable x to involve
variables of order strictly higher than x. Thus, symbolic ranges can also be seen
as polyhedra with triangular constraint matrices. We present important syntac-
tic and semantic properties of these constraints including a sound but incomplete
proof system derived through syntactic rewriting, and a notion of normalization
under which the proof system is complete. Using some basic insights into the
geometry of symbolic range constraints, we study algorithms for the various
domain operations necessary to carry out program verification using symbolic
range constraints. We also study the practical impact of our domain on large
programs including performance comparisons with other domains.

Related work. Range analysis has many applications in program verification and
optimization. Much work has focused on the interval domain and its applications.
Cousot & Cousot present an abstract interpretation scheme for interval analysis
using widening and narrowing [8]. Recent work has focused on the elimination
of widenings/narrowings in the analysis using linear programming [23], rigorous
analysis of the data flow equations [28], and policy iteration [7,14].

Blume & Eigenmann study symbolic ranges for applications in compiler op-
timizations [4]. Their approach allows ranges that are non-linear with multi-
plication and max/min operators. However, the presence of non-linearity leads
to domain operations of exponential complexity. Whereas polynomial time op-
erations are derived heuristically, the impact of these heuristics on precision is
unclear. Even though some aspects of our approach parallel that of Blume et al.,
there are numerous fundamental differences: we focus on range constraints that
are always linear, convex and triangulated based on a single, explicit variable
ordering. These restrictions vastly simplify the design and implementation of
domain operations while providing some insights into the properties of symbolic
range constraints. Finally, we provide an experimental evaluation of the efficacy
of our domain for eliminating array bounds checks in practical examples.

Symbolic ranges may also be obtained using the LP-based approach of Rugina
& Rinard [23,32]. The bounds obtained relate the current value of a variable and
the values of parameters at the function entry. The advantage of this approach
is its freedom from heuristics such as widening/narrowing. However, the LP-
formulation is based on a weaker proof system for generating consequences of
linear inequalities by directly comparing coefficients, and potentially generates
weaker invariants.

Symbolic range constraints are also used in the path-based analysis tool
ARCHER due to Xie et al. [31]. However, the bounding expressions used in
their approach can involve at most one other variable.

We illustrate symbolic ranges for invariant computation using a motivating
example presented in Fig. 1(a). Assuming that the analysis starts at the function
foo, we analyze whether the assertion at the end of the function holds. Fig. 1(b)
shows the control flow graph for this example after program slicing. Fig. 1(c)
shows an interval analysis computation for this example. In this example, the
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(a) program (d) symbolic range analysis(c) interval analysis(b) sliced CFG

Fig. 1. A motivating example

interval analysis is not powerful enough to conclude that the assertion can never
be violated.

Consider the analysis using symbolic ranges, for the variable ordering i,j, x, y
(see Fig. 1(d)). Since symbolic ranges can represent the loop invariant y=x-i+j,
the analysis discovers that for x=y=0 this implies i=j at the point of the as-
sertion. Note also that this assertion cannot be proved using octagons, since the
loop invariant is not expressible in terms of octagonal relationships.

2 Preliminaries

We assume that all program variables are conservatively modeled as reals. Our
analysis model does not consider features such as complex data structures, proce-
dures and modules. These may be handled using well-known extensions [22]. Let
C be the first order language of assertions over free variables x, and |=⊆ C ×C
denote entailment. An assertion ϕ represents a set of models [[ϕ]].

Definition 1 (Control Flow Graph). A Control Flow Graph (CFG) Π :
〈x, L, E, c, u, &0〉 consists of variables x = 〈x1, . . . , xn〉, locations L and edges E
between locations. Each edge E is labeled by a condition c(e) ∈ C, and an update
u(e) : x := f(x). &0 ∈ L is the start location.

A state of the program is a tuple 〈&,a〉 where & ∈ L is a location and a represents
a valuation of the program variables x. Given a CFG Π , an assertion map
η : L !→ C is a function mapping each location & ∈ L to an assertion η(&) ∈ C.
An assertion map characterizes a set of states 〈&,a〉 such that a ∈ [[η(&)]]. Let
η1 |= η2 iff ∀& ∈ L, η1(&) |= η2(&). Given an assertion ϕ and an edge e : & →
m ∈ E, the (concrete) post-condition of ϕ wrt e, denoted post(ϕ, e) is given by
the first order assertion post(ϕ, e) : (∃ x0) ϕ[x0] ∧ c(e)[x0] ∧ x = u(e)[x0].

Definition 2 (Inductive Assertion Map). An assertion map η is inductive
iff (a) η(&0) ≡ true, and (b) for all edges e : &→ m, post(η(&), e) |= η(m).
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A safety property Γ is an assertion map labeling each location with a property
to be verified. In order to prove a safety property Γ , we find an inductive assertion
map η, such that η |= Γ . “Concrete interpretation” can be used to construct
the inductive invariant map. Consider an iterative sequence of assertion maps
η0, η1, . . . , ηN , · · · .

η0(&) =
{

true, & = &0,
false, otherwise. and ηi+1(&) = ηi(&) ∨

∨
e: m→�

post(ηi(m), e)

Note that ηi |= ηi+1. The iteration converges if (∃N > 0) ηN+1 |= ηN . If the
iteration converges in N > 0 (finitely many) steps, the result ηN is an inductive
assertion. However, the iteration may not converge for all programs. Further-
more, detecting convergence is undecidable, in general. As a result, concrete
interpretation, as shown above, is impractical for programs. Therefore, we over-
approximate the concrete interpretation in a suitable abstract domain [9,10].

Abstract domains. An abstract domain is a bounded lattice 〈A,�,�,�,",⊥〉.
It is useful to think of A as an assertion language and � as an entailment
relation. The meet � and the join � are approximations of the logical conjunction
and disjunction respectively. Formally, we require functions α : C !→ A and
γ : A !→ C known as the abstraction and concretization functions resp. that form
a Galois connection (see [9,10] for a complete description). An abstract post
condition operator postA(a, e) over-approximates the concrete post condition
such that for all a ∈ A, post(γ(a), e) |= γ(postA(a, e)). An abstract domain map
π : L !→ A maps each location & ∈ L to an abstract element π(&). The concrete
iteration sequence is generalized to yield an abstract iteration sequence:

π0(&) =
{
", if & = &0
⊥, otherwise and πi+1(&) = πi(&) �

⊔
e: m→�

postA(πi(m), e) .

Again, πi � πi+1, and the iteration converges if ∃N > 0 s.t. πN+1 � πN . If
convergence occurs then it follows that γ ◦ πN is an inductive assertion. If the
lattice A is of finite height or satisfies the ascending chain condition, convergence
is always guaranteed. On the other hand, many of the domains commonly used
in program verification do not exhibit these conditions. Convergence, therefore,
needs to be forced by the use of widening.

Formally, given a1, a2, their widening a1∇a2 satisfies a2 � (a1�a2). Addition-
ally, given an infinite sequence of objects a1, . . . , am, . . ., the widened sequence
given by b0 = ⊥, and bi+1 = bi∇(bi � ai), converges in finitely many steps.
In summary, the abstract iteration requires the following operations: (a) Join
� (meet �) over-approximates the logical or (and), (b) Abstract post condition
postA over-approximates post , (c) Inclusion test � to check for the termination
of the iteration, and (d) Widening operator ∇ to force convergence. In practice,
we also require other operations such as projection and narrowing.
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3 Symbolic Range Constraints

Let R represent the reals and R+, the set of extended reals ( R∪{±∞}). Let x

denote a vector of n > 0 real-valued variables. The ith component of the vector
x is written xi. We use A,B,C to denote matrices. Throughout this section,
we fix a variable ordering given by x1 ≺ x2 ≺ · · · ≺ xn, with the index i of a
variable xi being synonymous with its rank in this ordering.

A linear expression is of the form e : cT x+d where c is a vector of coefficients
over the reals, while d ∈ R+ is the constant coefficient. By convention, a linear
expression of the form cT x ± ∞ is identical to 0T x ± ∞. For instance, the
expression 2x1 +∞ is identical to 0x1 +∞. A linear inequality is of the form
e � 0, where � ∈ {≥,≤,=}. A linear constraint is a conjunction of finitely many
linear inequalities ϕ :

∧
i ei ≥ 0.

Given an inequality e ≥ 0, where e is not a constant, its lead variable xi is the
least index i s.t. ci �= 0. We may write such an inequality in the bounded form
xi �̂ ei, where xi is the lead variable and ei = 1

ci
e − xi. The sign �̂ denotes

the reversal of the direction of the inequality if ci < 0. As an example, consider
the inequality 2x2 + 3x5 + 1 ≤ 0. Its lead variable is x2 and bounded form is
x2 ≤ − 3

2x5 − 1
2 . We reuse the |= relation to denote entailment among linear

constraints in the first order theory of linear arithmetic.

Definition 3 (Symbolic Range Constraint). A symbolic range constraint
( src) is of the form ϕ :

∧n
i=1 li ≤ xi ≤ ui where for each i ∈ [1, n], the linear

expressions li, ui are made up of variables in the set {xi+1, . . . , xn}. In particular,
ln, un are constants. The linear assertions false and true are also assumed to be
srcs.

The absence of a bound for xj is modeled by setting the bound to ±∞. Given
an src ϕ :

∧n
j=1 lj ≤ xj ≤ uj , let ϕ[i] denote the assertion

∧n
j=i lj ≤ xj ≤ uj.

Example 1. ϕ : x2+4 ≤ x1 ≤ 2x3+x2+4 ∧ −x3 ≤ x2 ≤ x3+4 ∧ −∞ ≤ x3 ≤ 0 is
a src. The variable ordering is x1 ≺ x2 ≺ x3. The bound for x1 involves {x2, x3},
x2 involves {x3} and x3 has constant bounds.

Implied constraints & normalization. Given a symbolic range li ≤ xi ≤ ui, its
implied inequality is li ≤ ui. Note that the implied inequality li ≤ ui only involves
variables xi+1, . . . , xn.

Definition 4 (Normalization). A src is normalized iff for each variable
bound li ≤ xi ≤ ui, ϕ[i+1] |= li ≤ ui. By convention, the empty and univer-
sal src are normalized.

Example 2. The src ϕ from Example 1 is not normalized. The implied constraint
0 ≤ 2x3 derived from the range x2 + 4 ≤ x1 ≤ 2x3 + x2 + 4 is not implied by
ϕ[2]. The equivalent src ϕ′ is normalized:

ϕ′ : x2 + 4 ≤ x1 ≤ 2x3 + x2 + 4 ∧ −x3 ≤ x2 ≤ x3 + 4 ∧ 0 ≤ x3 ≤ 0
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Unfortunately, not every src has a normal equivalent. The src ψ : x2 − x3 ≤
x1 ≤ 1 ∧ 0 ≤ x2 ≤ 2 ∧ 0 ≤ x3 ≤ 2 forms a counter-example. The projection of
ψ on the {x2, x3} is a five sided polygon, whereas any src in 2D is a trapezium.

Weak optimization algorithms. Optimization is used repeatedly as a primitive for
other domain operations including abstraction, join and intersection. Consider
the optimization instance min . (e : cT x + d) s.t. ϕ. Let ϕ be a satisfiable src

with bound lj ≤ xj ≤ uj for index 0 ≤ j < n. We let e
ϕ,j−→ e′ denote the

replacement of xj in e by lj (lower bound in ϕ) if its coefficient in e is positive,
or uj otherwise.

Formally, e′ =

{
e− cjxj + cj lj, cj ≥ 0,
e− cjxj + cjuj, cj < 0.

The canonical sequence, given by e
ϕ,1−→ e1 · · ·

ϕ,n−→ en, replaces variables in the
ascending order of their indices. The canonical sequence, denoted in short by
e

ϕ
� en, is unique, and yields a unique result. The following lemma follows from

the triangularization of srcs:

Lemma 1. For the canonical sequence e
ϕ,1−→ · · · ϕ,n−→ en, each intermediate

expression ei involves only the variables in {xi+1, . . . , xn}. Specifically, en ∈ R+.

Example 3. Consider the src ϕ′ defined in Example 2 and the expression e :

−3x1 + 2x2 + 8x3. This yields the sequence −3x1 + 2x2 + 8x3
ϕ′,1−→ −x2 + 2x3 −

12
ϕ′,2−→ x3 − 16

ϕ′,3−→ −16.

It follows that en under-approximates the minima of the optimization problem,
and if ϕ is normalized, weak optimization computes the exact minima; the same
result as any other LP solver.

Theorem 1 (Weak Optimization Theorem). Given a constraint ϕ and the
sequence e

ϕ
� en, ϕ |= e ≥ en. Furthermore, if ϕ is normalized then en =

min e s.t. ϕ.

Weak optimization requires O(n) rewriting steps, each in turn involving arith-
metic over expressions of size O(n). Therefore, the complexity of weak optimiza-
tion for a src with n constraints is O(n2).

Example 4. From Theorem 1, −16 is the exact minimum in Example 3. Consider
the equivalent constraint ϕ from Example 1. The same objective minimizes to
−∞ (unbounded) if performed w.r.t. ϕ.

Optimization provides an inference mechanism: given d = min e s.t. ϕ, we infer
ϕ |= e ≥ d. By Theorem 1, an inference using weak optimization is always sound.
It is also complete, if the constraint ϕ is also normalized. Given src ϕ, we write
ϕ |=W e ≥ 0 to denote inference of e ≥ 0 from ϕ by weak optimization. Similarly,
ϕ |=W

∧
i ei ≥ 0 iff (∀ i) ϕ |=W ei ≥ 0.
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Fig. 2. Four possible src abstractions of a 2D hexagon (among many others)

Optimization for srcs can also be solved by efficient algorithms such as sim-

plex or interior point techniques. We will henceforth refer to such techniques as
strong optimization techniques. In practice, however, we prefer weak optimiza-
tion since (a) it out-performs LP solvers, (b) is less dependent on floating point
arithmetic, and (c) allows us to draw sound inferences wherever required. As
a curiosity, we also note that well-known examples such as Klee-Minty cubes
and Goldfarb cubes that exhibit worst case behavior for simplex algorithms
happen to be srcs [5]. It is unclear if such srcs will arise in practical verifica-
tion problems. For the rest of the paper, we will assume optimization is always
performed using weak optimization. Nevertheless, any call to weak optimization
can be substituted by a call to strong optimization. Experimental results shown
in Section 6 provide further justification for this choice.

We also use optimization to compare expressions wrt a given src ϕ. We write
e1 7ϕ e2 iff ϕ |=W e1 ≥ e2. Expressions are equivalent, written e1 ≡ϕ e2, if
ϕ |= e1 = e2, and incomparable, denoted e1♦ϕe2, if neither inequality holds.

Abstraction. The abstraction function converts arbitrary first-order formulae to
symbolic ranges. In practice, programs we analyze are first linearized. Therefore,
abstraction needs to be defined only on polyhedra. Abstraction is used as a
primitive operation that organizes arbitrary linear constraints into the form of
srcs.

Let ψ be a polyhedron represented as a conjunction of linear inequalities∧
i ei ≥ 0. We seek a src ϕ : α(ψ) such that ψ |= ϕ. Unfortunately, this

src abstraction α(ψ) may not be uniquely defined. Figure 2 shows possible src

abstractions of a hexagon in 2 dimensions that are all semantically incomparable.
Abstraction of a given polyhedron ψ is performed by sequentially inserting

the inequalities of ψ into a target src, starting initially with the src true. The
result is an src α(ψ).

Inequality Insertion. Let ϕ be a src and ej ≥ 0 be an inequality. As a primitive
we consider the problem of deriving an abstraction α(ϕ ∧ ej ≥ 0). We consider
the case wherein xj ≤ bj is the bounded form of ej . The case where the bounded
form is xj ≥ bj is handled symmetrically. Also, let lj ≤ xj ≤ uj be the existing
bounds for xj in ϕ.

Using expression comparison, we distinguish three cases, (a) bj 7ϕ[j+1] uj ,
(b) uj 7ϕ[j+1] bj and (c) uj♦ϕ[j+1]bj , as depicted in Figure 3. For case (a), the
bound xj ≤ uj entails xj ≤ bj , therefore we need not replace uj . The reverse
holds for case (b), and uj is replaced. However, for case (c), neither bound entails
the other. We call this a conflict.
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bj

uj

(a)

ϕ[j]

bj

uj

(b)

ϕ[j]

bj uj

(c)

ϕ[j]

d
c

Fig. 3. Three cases encountered during abstraction. (a) bj )ϕ uj , (b) uj )ϕ bj and
(c) uj♦bj showing a conflict.

A conflict forces us to choose between two bounds uj , bj where neither is
semantically stronger than the other. Conflicts are due to the lack of a unique
src abstraction. We handle conflicts using conflict resolution heuristics provided
by the user. We describe a few possible heuristics below.

Interval Heuristic. We consider the worst case interval bound on xj resulting
from either choice of bounds. Let c = max bj s.t. ϕ[j+1] and similarly,
d = max uj s.t. ϕ[j+1]. If c < d, we replace uj by bj , and retain uj otherwise.
Figure 3(c) shows a geometric interpretation.

Metric. Choose the bound that minimizes the volume of the resulting src, or
alternatively, the distance from a reference set.

LexOrder. Choose syntactically according to lexicographic order.
Fixed. Always choose to retain the original bound uj , or replace it with bj .

The result of abstraction is not guaranteed to be normalized. If there are
no conflicts in the abstraction process then semantic equivalence of the src

to the original polyhedron follows. In summary, the abstraction algorithm is
parameterized by the conflict resolution heuristic. Our implementation uses the
interval heuristic to resolve conflicts and the lexicographic order to break ties.
Let α denote the abstraction function that uses some conflict resolution strategy.

Lemma 2. For a constraint ψ, α(ψ) is a src and ψ |= α(ψ).

Each inequality insertion requires us to solve finitely many optimization prob-
lems. Weak optimization requires time O(n2). Therefore, the src abstraction a
polyhedron with m inequalities can be computed in time O(n2m).

4 Domain Operations

The implementation of various operations required for static analysis over srcs
is discussed in this section.

Forced normalization. A src ϕ may fail to be normalized in the course of our
analysis as a result of abstraction or other domain operations. Failure of nor-
malization can itself be detected in O(n3) time using weak optimization using
the lemma below:
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Lemma 3. A src ϕ is normalized iff for each bound li ≤ xi ≤ ui, 0 ≤ i < n,
ϕ[i+1] |=W li ≤ ui. Note that the |=W relation is sufficient to test normalization.

Bottom-up: In general, a src that is not normalized may not have a normal
equivalent. However, it is frequently the case that normalization may be achieved
by simply propagating missing information from lower order indices up to the
higher order indices. We consider each bound lj ≤ xj ≤ uj, for j = n− 1, . . . , 1,
and insert the implied inequality lj ≤ uj into ϕ[j+1] using the abstraction proce-
dure described in Section 3. This process does not always produce a normalized
constraint. However, the procedure itself is useful since it can sometimes re-
place missing bounds for variables by using a bound implied by the remaining
constraints.

Example 5. Recall the src ϕ : x2 + 4 ≤ x1 ≤ 2x3 + x2 + 4 ∧ −x3 ≤ x2 ≤
x3 +4 ∧ −∞ ≤ x3 ≤ 0 from Example 1. The implied inequality x2 +4(≤ x1) ≤
2x3 + x2 + 4 simplifies to x3 ≥ 0. When inserted, this yields the normalized src

ϕ′ from Example 2.

Even though bottom-up normalization is not always guaranteed to succeed, it
generally improves the result of the weak optimization algorithm. We therefore
employ it after other domain operations as a pre-normalization step.

Top-down: Add constant offsets αj , βj > 0 to bounds lj , uj such that the resulting
bounds lj − αj ≤ xj ≤ uj + βj are normalized. In practice, αj , βj may be
computed by recursively normalizing ϕ[j+1] and then using weak optimization.
As a corollary of Lemma 3, top-down technique always normalizes.

Lemma 4. Let ϕ be an src and ϕ1, ϕ2 be the results of applying bottom-up and
top-down techniques, respectively to ϕ. It follows that ϕ |= ϕ1 and ϕ |=W ϕ2.
However, ϕ |=W ϕ1 does not always hold.

Following other numerical domains, we note that normalization should never be
forced after a widening operation to ensure termination [21].

Intersection & join. Given two srcs ϕ1 ∧ϕ2 their intersection can be performed
by using the abstraction procedure, i.e., ϕ1 � ϕ2 = α(ϕ1 ∧ ϕ2). In general, the
best possible join ϕ1 � ϕ2 for srcs ϕ1, ϕ2 can be defined as the abstraction
of the polyhedral convex hull ϕ1, ϕ2. However, convex hull computations are
expensive, even for srcs. We describe a direct generalization of the interval join
used for value ranges. Let lj ≤ xj ≤ uj be a bound in ϕ1 (similar analysis
is used for bounds in ϕ2). Consider the following optimization problems: c1

j =
min. xj − lj s.t. ϕ2, d1

j = max. xj − uj s.t. ϕ2.
Note that ϕ2 |= lj + c1

j ≤ xj ≤ uj + d1
j , while ϕ1 |= lj + 0 ≤ xj ≤ uj + 0.

As a result, (ϕ1 � ϕ2) |= lj + min(c1
j , 0) ≤ xj ≤ uj + max(0, d1

j). We call such
a constraint the relaxation of xj in ϕ1. Let ϕ12 be the result of relaxing each
bound in ϕ1 wrt ϕ2. Similarly, let ϕ21 be obtained by relaxing each bound in ϕ2

wrt ϕ1. We define the range join as ϕ1 �r ϕ2 : ϕ12 � ϕ21.

Lemma 5. Given any src ϕ1, ϕ2, ϕi |=W ϕ1�rϕ2, i = 1, 2. Also, ϕ1�ϕ2 |= ϕi.
However, this containment may not be provable using |=W .



Program Analysis Using Symbolic Ranges 375

Relaxing each constraint requires O(n) optimization, each requiring O(n2) time.
Finally, abstraction itself requires O(n3) time. As a result join can be achieved
in time O(n3).

Example 6. Consider the srcs ϕ1, ϕ2 shown below:

ϕ1 :

⎧⎨
⎩

x2 ≤ x1 ≤ 2x2 + 4
x3 ≤ x2 ≤ 5
−4 ≤ x3 ≤ 4

⎫⎬
⎭ ϕ2 :

⎧⎨
⎩
−∞ ≤ x1 ≤ x2

0 ≤ x2 ≤ x3 + 1
0 ≤ x3 ≤ 2

⎫⎬
⎭

The relaxed constraints are given by

ϕ12 :

⎧⎨
⎩
−∞ ≤ x1 ≤ 2x2 + 4

x3 − 2 ≤ x2 ≤ 5
−4 ≤ x3 ≤ 4

⎫⎬
⎭ ϕ21 :

⎧⎨
⎩
−∞ ≤ x1 ≤ x2 + 9
−4 ≤ x2 ≤ x3 + 9
−4 ≤ x3 ≤ 4

⎫⎬
⎭

The join is computed by intersecting these constraints:

ϕ : −∞ ≤ x1 ≤ 2x2 + 4 ∧ x3 − 2 ≤ x2 ≤ 5 ∧ −4 ≤ x3 ≤ 4 .

Projection. Projection is an important primitive for implementing the transfer
function across assignments and modeling scope in interprocedural analysis. The
“best” projection is, in general, the abstraction of the projection carried out over
polyhedra. However, like convex hull, polyhedral projection is an exponential
time operation in the worst case.

Definition 5 (Polarity). A variable z occurring in the RHS of a bound xj � bj

has positive polarity if bj is a lower bound and z has a positive coefficient, or
bj is an upper bound and z has a negative coefficient. The variable has negative
polarity otherwise. Variable z with positive polarity in a constraint is written z+,
and negative polarity as z− (see Example 7 below).

Direct projection. Consider the projection of xj from src ϕ. Let lj ≤ xj ≤ uj

denote the bounds for the variable xj in ϕ. For an occurrence of xj in a bound
inequality of the form xi � bi : cT x+d (note i < j by triangulation), we replace
xj in this expression by one of lj , uj based on the polarity replacement rule:
occurrences of x+

j are replaced by the lower bound lj , and x−
j are by uj . Finally,

xj and its bounds are removed from the constraint. Direct projection can be
computed in time O(n2).

Lemma 6. Let ϕ′ be the result of a simple projection of xj from ϕ. It follows
that ϕ′ is an src and (∃xj) ϕ |= ϕ′.

Example 7. Direct projection of z from ϕ : z+ ≤ x ≤ z− + 1 ∧ z+ − 2 ≤ y ≤
z− +3 ∧ −∞ ≤ z ≤ 5, replaces z+ with −∞ and z− with 5 at each occurrence,
yielding ϕ′ : −∞ ≤ x ≤ 6 ∧ −∞ ≤ y ≤ 8.

Indirect projection. Direct projection can be improved by using a simple modi-
fication of Fourier-Motzkin elimination technique.
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A matching pair for the variable xj consists of two occurrences of variable xj

with opposite polarities in bounds xi �αjx
+
j +ei and xk �αjx

−
j +ek with i �= k.

The matching pairs for the src ϕ from Example 7 are:

ϕ :
{

z+ ≤ x ≤ z− + 1 ∧ z+ − 2 ≤ y ≤ z− + 3 ∧ −∞ ≤ z ≤ 5
}

There are two matching pairs for the variable z shown using arrows. The match-
ing pair z+ ≤ x and y ≤ z− + 3 can be used to rewrite the former constraint as
y − 3 ≤ x. Similarly the other matching pair can be used to rewrite the upper
bound of x to x ≤ y + 2. An indirect projection of the constraint in Example 7,
using matching pairs yields the result y − 3 ≤ x ≤ y + 3 ∧ −∞ ≤ y ≤ 8.

Matching pairs can be used to improve over direct projection, especially when
the existing bounds for the variables to be projected may lead to too coarse an
over-approximation. They are sound and preserve the triangular structure.
Substitution. The substitution xj !→ e involves the replacement of every occur-
rence of xj in the constraint by e. In general, the result of carrying out the
replacements is not a src. However, the abstraction algorithm can be used to
reconstruct a src as ϕ′ : α(ϕ[x !→ e]).

Transfer function. Consider a src ϕ and an assignment xj := e, where e ≡
cT x+d. The assignment is invertible if cj �= 0, on the other hand the assignment
is non-invertible or destructive if cj = 0. An invertible assignment can be handled
using a substitution ψ : ϕ[xj !→ 1

cj
(xj − (e − cjxj))]. A destructive update is

handled by first using the projection algorithm to compute ϕ′ : ∃xj ϕ and then
computing the intersection ψ : α(ϕ′ ∧ xj = e) using the abstraction algorithm.

Widening. An instance of widening consists of two srcs ϕ1, ϕ2 such that ϕ1 |=
ϕ2. Using standard widening [9], we simply drop each constraint in ϕ1 that is
not entailed by ϕ2. Let xj ≤ uj be an upper bound in ϕ1. We first compute
cj = max. (xj − uj) s.t. ϕ2. If cj > 0 then ϕ2 �|=W xj ≤ uj . Therefore, we need
to drop the constraint. This may be done by replacing the bound uj with ∞. A
better widening operator is obtained by first replacing each occurrence of x−

j (xj

occurring with negative polarity) by a matching pair before replacing uj . Lower
bounds such as xj ≥ lj are handled symmetrically.

Lemma 7. The src widening ∇R satisfies (a) ϕ1, ϕ2 |=W ϕ1∇Rϕ2; (b) any
ascending chain eventually converges (even if |=W is used to detect conver-
gence), i.e., for any sequence ψ1, . . . , ψn, . . . , the widened sequence ϕ1, . . . , sat-
isfies ϕN+1 |=W ϕN , for some N > 0.

Narrowing. The src narrowing is similar to the interval narrowing on Cousot et
al. [10]. Let ϕ2 |= ϕ1. The narrowing ϕ1 <r ϕ2 is given by replacing every ±∞
bound in ϕ1 by the corresponding bound in ϕ2.

Lemma 8. For any srcs ϕ1 and ϕ2, s.t. ϕ2 |= ϕ1, ϕ1<r ϕ2 |=W ϕ1. Further-
more, the narrowing iteration for src domain converges.



Program Analysis Using Symbolic Ranges 377

Equalities. While equalities can be captured in the src domain itself, it is bene-
ficial to compute the equality constraints separately. An equality constraint can
be stored as Ax + b = 0 where A is a n × n matrix. In practice, we store A in
its triangulated form assuming some ordering on the variables. Therefore, it is
possible to construct the product domain of src and linear equalities wherein
both domains share the same variable ordering. The equality part is propagated
using Karr’s analysis [19].

Using the same variable ordering allows us to share information between the
two domains. For instance, ±∞ bounds for the src component can be replaced
with bounds inferred from the equality constraints during the course of the
analysis. The equality invariants can also be used to delay widening. Following
the polyhedral widening operator of Bagnara et al., we do not apply widening if
the equality part has decreased in rank during the iteration [1].

Variable Ordering
We now consider the choice of the variable ordering. The variable ordering used
in the analysis has a considerable impact on its precision. The ideal choice of
a variable ordering requires us to assign the higher indices to variables which
are likely to be unbounded, or have constant bounds. Secondly, if a variable x
is defined in terms of y in the program flow, it is more natural to express the
bounds of x in terms of y than the other way around. We therefore consider two
factors in choosing a variable ordering: (a) ordering based on variable type or
its purpose in the code; and (b) ordering based on variable dependencies.

The determination of the “type” or “purpose” of a variable is made using syn-
tactic templates. For instance, variables used as loop counters, or array indices
are assigned lower indices than loop bounds or those that track array/pointer
lengths. Similarly, variables used as arguments to functions have higher indices
than local variables inside functions. These variables are identified in the front
end during CFG construction using a simple variable dependency analysis.

Variables of a similar type are ordered using data dependencies. A dataflow
analysis is used to track dependencies among a variable. If the dependency infor-
mation between two variables is always uni-directional we use this information
to determine a variable ordering. Finally, variables which cannot be otherwise
ordered in a principled way are ordered randomly.

5 Implementation

We have implemented an analysis tool to prove array accesses safe as part of the
ongoing F-Soft project [18]. Our analyzer is targeted towards proving numer-
ous runtime safety properties of C programs including array and pointer access
checks. The analyzer is context sensitive, by using call strings to track contexts.
While recursive functions cannot be handled directly, they may be abstracted by
unrolling to some fixed length and handling the remaining calls context insen-
sitively. Our abstract interpreter supports a combination of different numerical
domains, including constant folding, interval, octagon, polyhedron and src do-
mains. For our experiments, we used off-the-shelf implementations of the octagon
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abstract domain library [20], and the Parma Polyhedron Library [2]. Each library
was used with the same abstract interpreter to carry out the program analysis.

The tool constructs a CFG representation from the program, which is simpli-
fied using program slicing [29], constant propagation, and optionally by interval
analysis. A linearization abstraction converts operations such as multiplication
and integer division into non-deterministic choices. Arrays and pointers are mod-
eled by their allocated sizes while array contents are abstracted away. Pointer
aliasing is modeled soundly using a flow insensitive alias analysis.

Variable clustering. The analysis model size is reduced by creating small clus-
ters of related variables. For each cluster, statements that involve variables not
belonging to the current cluster are abstracted away. The analysis is performed
on these abstractions. A property is considered proved only if it can be proved
in each context by some cluster abstraction. Clusters are detected heuristically
by a backward traversal of the CFG, collecting the variables that occur in the
same expressions or conditions. The backward traversal is stopped as soon as the
number of variables in a cluster first exceeds 20 variables for our experiments.
The number of clusters ranges from a few hundreds to nearly 2000 clusters.

Iteration Strategy. The fixpoint computation is performed by means of an upward
iteration using widening to converge to some fixed point followed by a downward
iteration using narrowing to improve the fixed point until no more improvements
are possible. To improve the initial fixed point, the onset of widening is delayed
by a fixed number of iterations (2 iterations for our experiments). The iteration
strategy used is semi-naive. At each step, we minimize the number of applications
of post conditions by keeping track of nodes whose abstract state changed in the
previous iteration. In the case of the polyhedral domain, the narrowing phase is
cut off after a fixed number of iteration to avoid potential non termination.

6 Experiments

Our experiments involved the verification of C programs for runtime errors such
as buffer overflows, null pointer accesses, and string library usage checks. The
domains are compared simply based on their ability to prove properties.

Small Benchmarks. We first compare the domains on a collection of small
example programs [24]. These programs are written in the C language, and
range from 20-400 lines of code. The examples typically consist of statically or
dynamically allocated arrays accessed inside loops using aliased pointers, and
passed as parameters to string/standard library functions.

Table 1 summarizes the results on these examples. The table on the left shows
the total running times and the number of properties established. The properties
proved by the domains are compared pairwise. The pairwise comparison summa-
rizes the number of properties that each domain could (not) prove as compared
to other domains. In general, the src domain comes out slightly ahead in terms
of proofs, while remaining competitive in terms of time. An analysis of the failed
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Table 1. Comparison results on small examples. Prog.: Number of programs, #Prp.:
total number of properties, Prf : number of proofs, T: time taken in seconds. Detailed
pairwise comparison of the proofs is shown on the right.

Prog. #Prp. Int. Oct. Poly. srcs
Prf T Prf T Prf T Prf T

48 480 316 9 340 29 356 413 360 81

vs. Int. vs. Oct. vs. src

Oct. +29/ − 5
src +45/ − 1 +23/ − 3
Poly +46/ − 6 +24/ − 8 +7/ − 11

Table 2. Comparison of different implementation choices for src. SIMP: simplex
instead of weak optimization, Random: Random var. ordering, Reverse: reversal of
the implemented var. ordering, Random: Resolve conflicts randomly, Lex: choose
expr. with lower lex order, Arg1: Always retain, Arg2: Always replace existing expr.

opt. Var. Ordering Conflict Resolution
simp Random Reverse Random Lex Arg1 Arg2

Prf T Prf T Prf T Prf T Prf T Prf T Prf T
0/0 906 +4/-23 114 +1/-29 132 +1/-13 80 +2/-4 81 +6/-8 80 +6/-8 68

proofs revealed that roughly 25 are due to actual bugs (mostly unintentional) in
the programs, while the remaining were mostly due to modeling limitations.

Comparison of Implementation Choices. Our implementation of srcs re-
quires heuristics for optimization, variable ordering and conflict resolution while
abstracting. Table 2 compares the proofs and running times for some alternative
strategies for these operations. Each experiment in the table changes one option
at a time, leaving the others unchanged. The choices we made for these strategies
perform better than the more ad-hoc strategies used in these experiments. In
particular, the difference is most pronounced when the variable ordering used is
exactly the reverse of that suggested by our heuristic.

Network Controller Study. We studied the performance of our analyzer on a
commercial network controller implementation. The analysis is started at differ-
ent root functions assuming an unknown calling environment. Root functions are
chosen based on their position in the global call graph. Each analysis run first
simplifies the model using slicing, constant folding and interval analysis. Table 3
shows each of these functions along with the number of properties sliced away
as a result of all the front-end simplifications. Also note that a large fraction
of the properties can be handled simply by using interval analysis and constant
folding. Slicing the CFG to remove these properties triggers a large reduction in
the CFG size.

Table 4 compares the performance of the src domain with the octagon and
polyhedral domains on the CFG simplified by slicing, constant folding and in-
tervals. The interval domain captures many of the easy properties including the
common case of static arrays accessed in loops with known bounds. While the
src and octagon domains can complete on all the examples even in the absence
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Table 3. Front end statistics for network controller. #BB: number of basic blocks,
#Fun: number of functions, #BC:

∑
block n #Contexts(n), # of CFG blocks weighted

by the # of contexts for each block , #Prop: number of properties, Proof : number of
proofs by constant folding + intervals, Time: simplification time (sec), #BC Simpl:
Block-contexts after simplification.

Name KLOC #BB #Fun #BC #Prop Simplifications
×103 ×103 Proof Time #BC Simpl

F1 5.9 1.6 11 2.0 441 208 24 1.6
F2 6.4 1.7 9 2.2 545 223 77 1.9
F3 7.2 2.1 11 2.6 613 424 58 1.5
F4 9.4 3.3 12 4.8 995 859 128 1.6
F5 11.3 3.8 16 4.5 1133 644 268 3.2
F6 15.0 5.3 15 10.0 1611 1427 451 2.1
F7 14.5 2.1 5 2.5 733 354 30 1.5
F8 25.7 9.0 5 29.6 2675 2641 1266 2.4
F9 23.0 8.1 8 11.9 2461 2391 1350 2.0
F10 45.4 16.6 59 60.6 4671 4627 2h30m 6.6
10 164 15878 13798 12850

Table 4. Comparing the performance of abstract domains on simplified CFG. POct:
number of octagon proofs, TOct: octagon analysis time (seconds), PSRC , TSRC : src

proof and time taken, PPoly, TPoly: polyhedron time and proof.

Function F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Tot
POct 56 0 23 56 146 56 28 14 0 0 379
TOct 11 30.7 9 3.2 105 7.7 10.4 1.3 .9 .4 180
PSRC 56 12 22 56 146 56 28 14 0 14 404
TSRC 18.2 59.1 21.0 7.6 291.7 17 20.7 0.7 1.5 0.5 439
PPoly 42 0 23 0 62 0 0 0 0 0 127
TPoly 63 684 75 29 1697 63.5 51.1 2.7 4.2 1.4 2672

of such simplifications, running interval analysis as a pre-processing step nev-
ertheless lets us focus on those properties for which domains such as octagons,
src and polyhedra are really needed. In many situations, the domains produce
a similar bottom line. Nevertheless, there are cases where srcs capture proofs
missed by octagons and polyhedra. The src domain takes roughly 2.5× more
time than the octagon domain. On the other hand, the polyhedral domain proves
much fewer properties than both octagons and srcs in this experiment, while
requiring significantly more time. We believe that the iteration strategy used,
especially the fast onset of widening and the narrowing cutoff for polyhedra may
account for the discrepancy. On the other hand, increasing either parameter
only serve to slow the analysis down further. In general, precise widening oper-
ators [1] along with techniques such as lookahed widening [16], landmark-based
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widening [26] or widening with acceleration [15] can compensate for the lack of
a good polyhedral narrowing.

7 Conclusion

We have presented an abstract domain using symbolic ranges that captures many
properties that are missed by other domains such as octagons and intervals. At
the same time, our domain does not incur the large time complexity of the poly-
hedral domain. In practice, we hope to use the src domain in conjunction with
intervals, octagons and polyhedra to prove more properties with a reasonable
time overhead.

Many interesting avenues of future research suggest themselves. One inter-
esting possibility is to allow for a conjunction of many src constraints, each
using a different variable ordering. Apart from checking overflows, the src do-
main may also be useful for analyzing the numerical stability of floating point
loops [17]. The constraint handling techniques presented in this paper can be
directly applied to practical tools such as ARCHER [31] and ESP [12].

Acknowledgments. We gratefully acknowledge Ilya Shlyakhter for his useful
insights and the anonymous reviewers for their comments. We acknowledge the
efforts of Antoine Miné for his Octagon library and the Parma Polyhedra library
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Abstract. Developer-supplied data structure specifications are impor-
tant to shape analyses, as they tell the analysis what information should
be tracked in order to obtain the desired shape invariants. We observe
that data structure checking code (e.g., used in testing or dynamic anal-
ysis) provides shape information that can also be used in static analysis.
In this paper, we propose a lightweight, automatic shape analysis based
on these developer-supplied structural invariant checkers. In particular,
we set up a parametric abstract domain, which is instantiated with such
checker specifications to summarize memory regions using both notions
of complete and partial checker evaluations. The analysis then automati-
cally derives a strategy for canonicalizing or weakening shape invariants.

1 Introduction

Pointer manipulation is fundamental in almost all software developed in impera-
tive programming languages today. For this reason, verifying properties of inter-
est to the developer or checking the pre-conditions for certain complex program
transformations (e.g., refactorings) often requires detailed aliasing and structural
information. Shape analyses are unique in that they can provide this detailed
must-alias and shape information that is useful for many higher-level analyses
(e.g., typestate or resource usage analyses, race detection for concurrent pro-
grams). Unfortunately, because of precision requirements, shape analyses have
been generally prohibitively expensive to use in practice.

The design of our shape analysis is guided by the desire to keep the abstraction
close to informal developer reasoning and to maintain a reasonable level of inter-
action with the user in order to avoid excessive case analysis. In this paper, we
propose a shape analysis guided by the developer through programmer-supplied
data structure invariants. The novel aspect of our proposal is that these speci-
fications are given as checking code, that is, code that could be used to verify
instances dynamically. In this paper, we make the following contributions:
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– We observe that invariant checking code can help guide a shape analysis and
provides a familiar mechanism for the developer to supply information to
the analysis tool. Intuitively, checkers can be viewed as programmer-supplied
summaries of heap regions bundled with a usage pattern for such regions.

– We develop a shape analysis based on programmer-supplied invariant check-
ers (utilizing the framework of separation logic [17]).

– We introduce a notion of partial checker runs (using −∗ ) as part of the
abstraction in order to generalize programmer-supplied summaries when the
data structure invariant holds only partially (Sect. 3).

– We notice that the iteration history of the analysis can be used to guide the
weakening of shape invariants, which perhaps could apply to other shape
analyses. We develop an automatic widening strategy for our abstraction
based on this observation (Sect. 4.2).

In this paper, we consider structural invariants, that is, invariants concerning the
pointer structure (e.g., acyclic list, cyclic list, tree) but not data properties (e.g.,
orderedness). In the next section, we motivate the design of our shape analysis
and highlight the challenges through an example.

2 Overview

In Fig. 1, we present an example analysis that checks a skip list [16] rebalancing
operation to verify that it preserves the skip list structure. At the top, we show
the structure of a two-level skip list. In such a skip list, each node is either level
1 or level 0. All nodes are linked together with the next field (n), while the
level 1 nodes are additionally linked with the skip field (s). A level 0 node has
its s field set to null . In the middle left, we give the C type declaration of a
SkipNode and in the middle right, we give a checking routine skip1 that when
viewed as C code (assumed type safe) either diverges if there is a cycle in the
reachable nodes, returns false, or returns true when the nodes reachable from
the argument l are arranged in a skip list structure. The skip0 function is a
helper function for checking a segment of level 0 nodes. Intuitively, skip1 and
skip0 simply give the inductive structure of skip lists.

In the bottom section of Fig. 1, we present an analysis of the rebalancing
routine (rebalance). The assert at the top ensures that skip1(l) holds (i.e.,
l is a skip list), and the assert at the bottom checks that l is again a skip
list on return. We have made explicit these pre- and post-conditions here, but
we can imagine a system that connects the checker to the type and verifies
that the structure invariants are preserved at function or module boundaries. In
the figure, we show the abstract memory state of the analysis at a number of
program points using a graphical notation, which for now, we can consider as
informal sketches a developer might draw to check the code by hand. For the
program points inside the loop there are two memory states shown: one for the
first iteration (left) and one for the fixed point (right).

A programmer-defined checker can be used in static analysis by viewing the
memory addresses it would dereference during a successful execution as describ-
ing a class of memory regions arranged according to particular constraints. We
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struct SkipNode {

int d;
struct SkipNode* s;
struct SkipNode* n;

}
SkipNode;

bool skip1(SkipNode* l) {
if (l == null) return true;
else return skip1(l->s) &&

skip0(l->n, l->s);
}
bool skip0(SkipNode* l, SkipNode* e) {

if (l == e) return true;
else return l != null && l->s == null &&

skip0(l->n, e);
}

void rebalance(SkipNode* l) {
SkipNode *p, *c;
assert (l != null && skip1(l));
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p = l; // previous level 1 node
2 c = l->n; // cursor
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12 assert (l != null && skip1(l));
}

First Iteration At Fixed Point

Fig. 1. Analysis of a skip list rebalancing
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build an abstraction around this summarization mechanism. To name heap ob-
jects, the analysis introduces symbolic values (i.e., fresh existential variables).
To distinguish them from program variables, we use lowercase Greek letters
(α, β, γ, δ, ε, π, ρ, . . .). A graph node denotes a value (e.g., a memory address)
and, when necessary, is labeled by a symbolic value; the 0 nodes represent null .
We write a program variable (e.g., l) below a node to indicate that the value of
that variable is that node. Each edge corresponds to a memory region. A thin
edge denotes a points-to relationship, that is, a memory cell whose address is
the source node and whose value is the destination node (e.g., on line 5 in the
left graph, the edge labeled by n says that l->n points to c). A thick edge
summarizes a memory region, i.e., some number of points-to edges. Thick edges,
or checker edges, are labeled by a checker instantiation that describes the struc-
ture of the summarized region. There are two kinds of checker edges: complete
checker edges, which have only a source node, and partial checker edges, which
have both a source and a target node. Complete checker edges indicate a memory
region that satisfies a particular checker (e.g., on line 1, the complete checker
edge labeled skip1 says there is a memory region from l that satisfies checker
skip1). Partial checker edges are generalization that we introduce in our ab-
straction to describe memory states at intermediate program points, which we
discuss further in Sect. 3. An important point is that two distinct edges in the
graph denote disjoint memory regions.

To reflect memory updates in the graph, we simply modify the appropriate
points-to edges (performing strong updates). For example, consider the transi-
tion from program point 5 to point 9 and the updates on lines 6 and 7. For the
updates on line 8, observe that we do not have nodes for c->s or c->n in the
graph at program point 5. However, we have that from c , an instance of skip0
holds, which can be unfolded to materialize points-to edges for c->s and c->n
(that is, conceptually unfolding one step of its computation). The update can
then be reflected after unfolding.

As exemplified here, we want the work performed by our shape analysis to
be close to the informal, on-paper verification that might be done by the devel-
oper. The abstractions used to summarize memory regions is developer-guided
through the checker specifications. While it may be reasonable to build in generic
summarization strategies for common structures, like lists and trees (cf., [6,9]),
it seems unlikely such strategies will suffice for other structures, like the skip
lists in this example. Traversal code for checking seems like a useful and intu-
itive specification mechanism, as such code could be used in testing or dynamic
analysis (cf., [18]).

From this example, we make some observations that guide the design of our
analysis and highlight the challenges. First, in our diagrams, we have implicitly
assumed a disjointness property between the regions described by edges (to per-
form strong updates on points-to edges). This assumption is made explicit by
utilizing separation logic to formalize these diagrams (see Sect. 3). This choice
also imposes restrictions on the checkers. That is, all conjunctions are separating
conjunctions; in terms of dynamic checking, a compilation of skip1 must check
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that each address is dereferenced at most once during the traversal. Second, as
with many data structure operations, the rebalance routine requires a traversal
using a cursor (e.g., c). To check properties of such operations, we are often
required to track information in detail locally around the cursor, but we may be
able to summarize the rest rather coarsely. This summarization cannot be only
for the suffix (yet to be visited by the cursor) but must also be for the prefix
(already visited by the cursor) (see Sect. 3). Third, similar to other shape anal-
yses, a central challenge is to fold the graphs sufficiently in order to find a fixed
point (and to be efficient) while retaining enough precision. With arbitrary data
structure specifications, it becomes particularly difficult. The key observation we
make is that previous iterates are generally more abstract and can be used to
guide the folding process (see Sect. 4.2).

3 Memory Abstraction

M ::= β@f !→ r
|M1 ∗M2

| emp
| α.c(β)
| α1.c(β) ∗− α2.c(β)

(a) Abstract memory states

α1@f �→ α2 α1 α2
f

α@f �→ null α 0
f

α.c(β) α
c(β)

α1.c(β) ∗− α2.c(β) α1 α2
c(β)

(b) Edges

We describe our analysis within the
framework of abstract interpretation [5].
Our analysis state is composed of an
abstract memory state (in the form
of a shape graph) and a pure state
to track disequalities (the non-points-
to constraints). We describe the mem-
ory state in a manner based largely on
separation logic, so we use a notation
that is borrowed from there. A memory
state M includes the points-to relation
(β @ f !→ r ), the separating conjunction
(M1 ∗ M2 ), and the empty memory
state (emp) from separation logic, which
together can describe a set of possible
memories that have a finite number of points-to relationships. The separating
conjunction M1 ∗ M2 describes a memory that can be divided into two disjoint
regions (i.e., with disjoint domains) described by M1 and M2 . A field offset
expression β @ f corresponds to the base address β plus the offset of field f
(i.e., &(b.f) in C). For simplicity, we assume that all pointers occur as fields
in a struct. R-values r are symbolic expressions representing the contents of
memory cells (whose precise form is unimportant but does include null). Mem-
ory regions are summarized with applications of user-supplied checkers. We write
α.c(β) to mean checker c applied to α and β holds (i.e., c succeeds when applied
to α and β ). For example, α.skip1() says that the skip1 checker is successful
when applied to α . We use this object-oriented style notation to distinguish
the main traversal argument α from any additional parameters β . These addi-
tional parameters may be used to specify additional constraints (as in the skip0
checker in Fig. 1), but we do not traverse from them. We also introduce a notion
of a partial checker run α1.c(β) ∗− α2.c(β) that describes a memory region
summarized by a segment from α1 to α2 , which will be described further in the
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subsections below. Visually, we regard a memory state as a directed graph. The
edges correspond to formulas as shown in the inset (b).1 Each edge in a graph is
considered separately conjoined (i.e., each edge corresponds to a disjoint region
of memory).

Inductive Structure Checkers. The abstract domain provides generic sup-
port for inductive structures through user-specified checkers. Observe that a
dynamic run of a checker, such as skip1 (in Fig. 1), visits a region of memory
starting from some root pointer, and furthermore, a successful, terminating run
of a checker indicates how the user intends to access that region of memory. In
the context of our analysis, a checker gives a corresponding inductively-defined
predicate in separation logic and a successful, terminating run of the checker
bears witness to a derivation of that predicate.

π.c(ρ) := 〈M1 ; P1〉 ∨ · · · ∨ 〈Mn ; Pn〉
The definition of a checker c , with

formals π and ρ , consists of a finite
disjunction of rules. A rule is the conjunction of a separating conjunction of
a series of points-to relations and checker applications M and a pure, first-
order predicate P , written 〈M ; P 〉 . Free variables in the rules are considered
as existential variables bound at the definition. Because we view checkers as
executable code, the kinds of inductive predicates are restricted. More precisely,
we have the following restrictions on the Mi ’s: (1) they do not contain partial
checker applications (i.e., ∗−) and (2) the points-to edges correspond to finite
access paths from π . In other words, each Mi can only correspond to a memory
region reachable from π . A checker cannot, for example, posit the existence of
some pointer that points to π .

Each rule specifies one way to prove that a structure satisfies the checker
definition, by checking that the corresponding first-order predicate holds and
that the store can be separated into a series of stores, which respectively allow
proving each of the separating conjuncts. Base cases are rules with no checker
applications.

Example 1 (A binary tree checker). A binary tree with fields lt and rt can be
described by a checker with two rules:

π.tree() := 〈emp ; π = null〉 ∨ 〈(π@lt �→ γ) ∗ (π@rt �→ δ) ∗ γ.tree() ∗ δ.tree() ; π = null〉

Example 2 (A skip list checker). The “C-like” checkers for the two-level skip list
in Fig. 1 would be translated to the following:

π.skip1() := 〈emp ; π = null〉
∨ 〈(π@s �→ γ) ∗ (π@n �→ δ) ∗ γ.skip1() ∗ δ.skip0(γ) ; π = null〉

π.skip0(ρ) := 〈emp ; π = ρ〉
∨ 〈(π@s �→ null) ∗ (π@n �→ γ) ∗ γ.skip0(ρ) ; π = ρ ∧ π = null〉

Segments and Partial Checker Runs. In the above, we have built some
intuition on how user-specified checkers can be utilized to give precise summaries

1 For presentation, we show the most common kinds of edges. In the implementation,
we support field offsets in most places to handle, for example, pointer to fields.
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of memory regions. Unfortunately, the inductive predicates obtained from typical
checkers, such as tree or skip1 , are usually not general enough to capture the
invariants of interest at all program points. To see this, consider the invariant at
fixed point on line 5 (i.e., the loop invariant) in the skip list example (Fig. 1).
Here, we must track some information in detail around a cursor (e.g., p and
c), while we need to summarize both the already explored prefix before the
cursor and the yet to be explored suffix after the cursor. Such a situation is
typical when analyzing a traversal algorithm. The suffix can be summarized by
a checker application δ.skip0(ε) (i.e., the skip0 edge from c), but unfortunately,
the prefix segment (i.e., the region between l and p) cannot.

Rather than require more general checker specifications sufficient to capture
these intermediate invariants, we introduce a generic mechanism for summariz-
ing prefix segments. We make the observation that they are captured by partial
checker runs. In terms of inductively-defined predicates, we want to consider
partial derivations, that is, derivations with a hole in a subtree. This concept
is internalized in the logic with the separating implication. For example, the
segment from l to p on line 5 corresponds to the partial checker applica-
tion α.skip1() ∗− β.skip1(). Informally, a memory region satisfies α.skip1() ∗−
β.skip1() if and only if for any disjoint region that satisfies β.skip1() (i.e., is a
skip list from β ), then conjoining that region satisfies α.skip1() (i.e., makes a
complete skip list from α). This statement entails that β is reachable from α .
Our notation for separating implication is reversed compared to the traditional
notation −∗ to mirror more closely the graphical diagrams. Our use of separat-
ing implication is restricted to the form where the premise and conclusion are
checker applications that differ only in the unfolding argument because these are
the only partial checker edges our analysis generates.

Semantics of Shape Graphs. The concretization of an abstract memory state
with checkers is defined by induction on the structure of such memory states and
on the unfolding of inductive checkers with the usual semantics of the separation
logic connectors. A concrete store σ is part of the concretization of an abstract
memory state M if and only if there exists a mapping of the abstract nodes in M
into concrete addresses in σ (a valuation), such that M under the valuation is
satisfied by σ . Further details, including a full definition, is given in the extended
version [3].

4 Analysis Algorithm

In this section, we describe our shape analysis algorithm. Like many other shape
analyses, we have a notion of materialization, which reifies memory regions in
order to track updates, as well as blurring or weakening, which (re-)summarizes
certain memory regions in order to obtain a terminating analysis. For us, we
materialize by unfolding checker edges (Sect. 4.1) and weaken by folding memory
regions back into checker edges (Sect. 4.2). Like others, we materialize as needed
to reflect updates and dereferences, but instead of weakening eagerly, we delay
weakening in order to use history information to guide the process.
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Our shape analysis is a standard forward analysis that computes an abstract
state at each program point. In addition to the memory state (as described in
Sect. 3), the analysis also keeps track of a number of pure constraints P (pointer
equalities and disequalities). Furthermore, we maintain some disjunction, so our
analysis state has essentially the following form: 〈M1 ; P1〉 ∨ 〈M2 ; P2〉 ∨ · · · ∨
〈Mn ; Pn〉 (for unfoldings and acyclic paths where needed). Additionally, we
keep the values of the program variables (i.e., the stack frame) in an abstract
environment E that maps program variables to symbolic values that denote
their contents.2

4.1 Abstract Transition and Checker Unfolding

Because each edge in the graph denotes a separate memory region, the atomic
operations (i.e., mutation, allocation, and deallocation) are straightforward and
only affect graphs locally. As alluded to in Sect. 2, mutation reduces to the
flipping of an edge when each memory cell accessed in the statement exists in
the graph as a points-to edge. This strong update is sound because of separation
(that is, because each edge is a disjoint region).

When there is no points-to edge corresponding to a dereferenced location
because it is summarized as part of a checker edge, we first materialize points-to
edges by unfolding the checker definition (i.e., conceptually unfolding one-step
of the checker run). We unfold only as needed to expose the points-to edge that
corresponds to the dereferenced location. Unfolding generates one graph per
checker rule, obtained by replacing the checker edge with the points-to edges and
the recursive checker applications specified by the rule; the pure constraints in the
rule are also added to pure state. In case we derive a contradiction (in the pure
constraints), then those unfolded elements are dropped. Though, unfolding may
generate a disjunction of several graphs. A fundamental property of unfolding
is that the join of the concretizations of the resulting graphs is equal to the
concretization of the initial graph.

Example 3 (Unfolding a skip list). We exhibit an unfolding of the skip1 checker
from Example 2. The addition of the pure constraints are shown explicitly.

�

�

�

�

P

α
skip1

unfold−−−−→

�

�

�

�

P ∧ α = null

emp
∨

�

�

�

�

P ∧ α �= null

α β γ
n

s

skip0(γ) skip1

4.2 History-Guided Folding

We need a strategy to identify sub-graphs that should be folded into complete
or partial checker edges. What kinds of sub-graphs can be summarized without
losing too much precision is highly dependent on the structures in question and
the code being analyzed. To see this, consider the fixed-point graph at program
point 5 in this skip list example (Fig. 1). One could imagine folding the points-to

2 In implementation, we instead include the stack frame in M to enable handling
address of local variable expressions (as in C) in a smooth manner.
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edges corresponding to p->n and p->s into one summary region from p to c (i.e.,
eliminating the node labeled γ ), but it is necessary to retain the information that
p and c are “separated” by at least one n field. Keeping node γ expresses this
fact. Rather than using a canonicalization operation that looks only at one graph
to identify the sub-graphs that should be summarized, our weakening strategy is
based on the observation that previous iterates at loop join points can be utilized
to guide the folding process. In this subsection, we define the approximation test
and widening operations (standard operations in abstract interpretation-based
static analysis) over graphs as a simultaneous traversal over the input graphs.

Approximation Test. The approximation test on memory states M1 � M2

takes two graphs as input and tries to establish that the concretization of M1 is
contained in the concretization of M2 (i.e., M1:M2 ). Static analyses rely on the
approximation test in order to ensure the termination of fixed point computation.
We also utilize it to collapse extraneous disjuncts in the analysis state and most
importantly, as a sub-routine in the widening operation. Roughly speaking, our
approximation test checks that graph M1 is equivalent to graph M2 up to
unfolding of M2 . That is, the basic idea is to determine whether M1 � M2 by
reducing to stronger statements either by matching edges on both sides or by
unfolding M2 . To check this relation, we need a correspondence between nodes
of M1 and nodes of M2 . This correspondence is given by a mapping Φ from
nodes of M2 to those of M1 . The condition that Φ is such a function ensures any
aliasing expressed in M2 is also reflected in M1 . If at any point, this condition
on Φ is violated, then the test fails.

Initialization. The mapping Φ plays an essential role in the algorithm itself since
it gives the points from where we should compare the graphs. It is initialized
using the environment and then extended as the input graphs are traversed. The
natural starting points are the nodes that correspond to the program variables
(i.e., the initial mapping Φ0 = {E2(x) � E1(x) | x ∈ Var}).

Traversal.After initialization, we decide the approximation relation by traversing
the input graphs and attempting to match all edges. To check region disjointness
(i.e., linearity), when edges are matched, they are “consumed”. If the algorithm
gets stuck where not all edges are “consumed”, then the test fails. To describe this
traversal, we define the judgment M1 � M2[Φ] that says, “M1 is approximated
by M2 under Φ .”

In the following, we describe the rules that define M1 � M2[Φ] by following
the example derivation shown in Fig. 2 (from goal to axiom). A complete listing of
the rules is given in the extended version [3] (Appendix A). In Fig. 2, the top line
shows the initial goal with a particular initialization for Φ . Each subsequent line
shows a step in the derivation (i.e., a rewriting step) that is obtained by applying
the rule named on the right. The highlighting of nodes and edges indicates where
the rewriting applies. We are able to prove that the left graph is approximated
by the right graph because we reach emp � emp[Φ] .

First, consider the application of the pointsto rule (line 3 to 4). When both
M1 and M2 have the same kind of edge from matched nodes, the approximation
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1 δ ε
n

s

� α ζ
skip1

[ α � δ, ζ � ε ]

2 δ ε
n

s

skip1
� α

skip1
[ α � δ, ζ � ε ]

3 δ ε
n

s

skip1
� α β γ

n

s

skip0(γ) skip1
[ α � δ, ζ � ε ]

4 δ ε
skip1
� α β γ

skip0(γ) skip1
[ α � δ, ζ � ε, β � ε, γ � ε ]

5 ε

skip0(γ)

� β γ
skip0(γ)

[ α � δ, ζ � ε, β � ε, γ � ε ]

6 emp � emp [ α � δ, ζ � ε, β � ε, γ � ε ]

assume

unfold

pointsto (2x)

checker

unfold

Fig. 2. Testing approximation by reducing to stronger statements

relation obviously holds for those edges, so those edges can be consumed. Any
target nodes are then added to the mapping Φ so that the traversal can continue
from those nodes. In this case, the s and n points-to edges match from the pair
α � δ . With this matching, the mappings β � ε, γ � ε are added. We highlight
in Φ with underlines the mappings that must match for each rule to apply. The
checker rule is the analogous matching rule for complete checker edges. We apply
this edge matching only to points-to edges and complete checker edges. Partial
checker edges are treated separately as described below.

Partial checker edges are handled by taking the separating implication inter-
pretation, which becomes critical here. We use the assume rule (as in the first
step in Fig. 2) to reduce the handling of partial checker edges in M2 to the han-
dling of complete checker edges (i.e., a “−∗ right” in sequent calculus or “−∗
introduction” in natural deduction). It extends the partial checker edge in M2

to a complete checker edge by adding the corresponding completion to M1 . A
key aspect of our algorithm is that this rule only applies when we have matched
both the source and target nodes of the partial checker edge, that is, we have
delineated in M1 the region that corresponds to the partial checker edge in M2 .

Now, consider the first application of unfold in Fig. 2 (line 2 to 3) where we
have a complete checker edge from α on the right, but we do not have an edge
from δ on the left that can be immediately matched with it. In this case, we
unfold the complete checker edge. In general, the unfolding results in a disjunc-
tion of graphs (one for each rule, Sect. 4.1), so the overall approximation check
succeeds if the approximation check succeeds for any one of the unfolded graphs.
Note that on an unfolding, we must also remember the pure constraint P from
the rule, which must be conjoined to the pure state on the right when we check
the approximation relation on the pure constraints. In the second application
of unfold in Fig. 2 (line 5 to 6), the unfolding of β.skip0(γ) is to emp because
we have that β = γ . This equality arises because they are both unified with ε
(specifically, the pointsto steps added β � ε and γ � ε to Φ).

Finally, we also have a rule for partial checkers in M1 (i.e., a corresponding
“left” or “elimination” rule). Since it is not used in the above example, we present
it below schematically:
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α1 α′
1

c
f2

f1

c

c � α2
c

[Φ, α2 � α1]

α′
1

f2

f1

c

c � α′
2

c
[Φ, α2 � α1, α′

2 � α′
1] (α′

2 fresh)

apply

The rule is presented in the same way as in the example (i.e., with the goal on
top). Conceptually, this rule can be viewed as a kind of unfolding rule where
the complete checker edge in M2 is unfolded the necessary number of steps to
match the the partial checker edge in M1 .

Informally, the soundness of the approximation test can be argued from sep-
aration logic principles and from the fact that unfoldings have equivalent con-
cretizations. The approximation test is, however, incomplete (i.e., it may fail to
establish that an approximation relation between two graphs when their con-
cretizations are ordered by subset containment). Rather these rules have been
primarily designed to be effective in the way the approximation test is used by
the widening operation as described in the next subsection where we need to
determine if M1 is an unfolded version of M2 .

Widening. In this subsection, we present an upper bound operation M1�M2

that we use as our widening operator at loop join points. The case of disjunctions
of graphs will be addressed below. At a high-level, the upper bound operation
works in a similar manner as compared to the approximation test. We maintain a
node pairing Ψ that relates the nodes of M1 and M2 . Because we are computing
an upper bound here, the pairing Ψ need not have the same restriction as in the
approximation test; it may be any relation on nodes in M1 and M2 . From this
pairing, we simultaneously traverse the input graphs M1 and M2 consuming
edges. However, for the upper bound operation, we also construct the upper
bound as we consume edges from the input graphs. Intuitively, the basic edge
matching rules will lay down the basic structure of the upper bound and guide
us to the regions of memory that need to be folded.

Initialization. The initialization of Ψ is the analogous to the approximation test
initialization: we pair the nodes that correspond to the values of each variable
from the environments (i.e., the initial pairing Ψ0 ={〈E1(x), E2(x)〉 | x ∈ Var}).

Traversal. To describe the upper bound computation, we define a set of rewriting
rules of the form Ψ � (M1�M2) 	 M 
 Ψ ′ � (M ′

1�M ′
2) 	 M ′ . Initially, M is

emp , and then we try to rewrite until M ′
1 and M ′

2 are emp in which case M ′

is the upper bound. A node in M corresponds to a pair (from M1 and M2 ).
Conceptually, we build M with nodes labeled with such pairs and then relabel
each distinct pair with a distinct symbolic value at the end.

Figure 3 shows an example sequence of rewritings to compute an upper bound.
A complete listing of the rewrite rules is given in the extended version [3] (Ap-
pendix B). We elide the pairing Ψ , as it can be read off from the nodes in the
upper bound graph M (the rightmost graph). The highlighting of nodes in the
upper bound graph indicate the node pairings that are required to apply the
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Fig. 3. An example of computing an upper bound. The inputs are the graphs on the
first iteration at program points 5 and 9 in the skip list example (Fig. 1). The fixed-
point graph at 5 is obtained by computing the upper bound of this result and the upper
bound of the first-iteration graphs at 5 and 11.

rule, and the highlighting of edges in the input graphs show which edges are
consumed in the rewriting step. Roughly speaking, the upper bound operation
has two kinds of rules: matching rules for when we have the same kind of edge on
both sides (like in the approximation test) and weakening rules where we have
identified a memory region to fold. We use the prefix m- for the matching rules
and w- for the weakening rules.

Line 1 shows the state after initialization: we have nodes in upper bound graph
for the program variables. The first two steps (applying rule m-checker) match
complete checker edges (first from 〈β, ζ〉 and then from 〈γ, η〉). Note that the
second application is enabled by the first where we add the pair 〈γ, η〉 . Extra
parameters are essentially implicit target nodes.

l, p

�
l pskip1

? Yes, always.

l p
n

s

�
l pskip1

? Yes, see Fig. 2.

The core of the upper bound
operation are three weakening
rules where we fold memory re-
gions. The next rule application
w-aliases is such a weakening step
(line 3 to 4). In this case, a node
on one side is paired with two nodes on the other (〈α, δ〉 and 〈α, ε〉). This situ-
ation arises where on one side, we have must-alias information, while the other
side does not (l and p are aliased on the left but not on the right). In this case,
we want to weaken both sides to a partial checker edge. To see that this is indeed
an upper bound for these regions, consider the diagram in the inset. As shown on
the first line, aliases can always be weakened to a partial checker edge (intuitively,
from a zero-step segment to a zero-or-more step segment). On the second line, we
need to check that a skip1 checker edge is indeed weaker than the region between
δ and ε . This check is done using the approximation test described in the previ-
ous subsection. The check we need to perform here is the example shown in Fig. 2.
Observe that we utilize the edge matching rules that populates Ψ to delineate
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the region to be folded (e.g., the region between δ and ε in the right graph). For
the w-aliases rule, we do not specify here how the checker c is determined, but in
practice, we can limit the checkers that need to be tried by, for example, tracking
the type of the node (or looking at the fields used in outgoing points-to edges).

There are two other weakening rules w-partial and w-checker that are not used
in the above example. Rule w-partial applies when we identify that an (unfolded)
memory region on one side corresponds to a partial checker edge on the other.
In this case, we weaken to the partial checker edge if we can show the partial
checker edge is weaker than the memory region. Rule w-partial is shown below
schematically:

M1 ∗ α β
c

� M2 ∗
δ

γ

f2

f1

c

	 M ∗ α,γ β,δ

M1 � M2 	 M ∗ α,γ β,δ
c

w-partial

if
δ

γ

f2

f1

c

� γ δ
c

[ γ � γ, δ � δ ]

Observe that we find out that the region in the right graph must be folded be-
cause the corresponding region in the left graph is folded (and also indicates which
checker to use). Rule w-checker is the analogous rule for a complete checker edge.

In Fig. 3, the last step is simply matching points-to edges. When we reach
emp for M1 and M2 , then M is the upper bound. In general, if, in the end,
there are regions we cannot match or weaken in the input graphs, we can obtain
an upper bound by weakening those regions to " in the resulting graph (i.e., a
summary region that cannot be unfolded). This results in an enormous loss in
precision that we would like avoid but can be done if necessary.

M ′
1:M M ′

2:M

(M1 ∗ M ′
1) ∨ (M2 ∗ M ′

2):(M1 ∨ M2) ∗ M

Soundness. The basic idea is that
we compute an upper bound by
rewriting based on the derived rule
of inference in separation logic shown in the inset. For each memory region in
the input graphs, either they have the same structure in the input graphs and we
preserve that structure or we weaken to a checker edge only when we can decide
the weakening with � . That is, during the traversal, we simply alternate be-
tween weakening memory regions in each input graph to make them match and
applying the distributivity of separating conjunction over disjunction to factor
out matching regions.

Termination. We shall use this upper bound operation as our widening operator,
so we check that it has the stabilizing property (i.e., successive iterates eventually
stabilize) to ensure termination of the analysis. Consider an infinite ascending
chain M0 � M1 � M2 � · · · and the corresponding widening chain M0 �
(M0�M1) � ((M0�M1)�M2) � · · · (i.e., the sequence of iterates). The widen-
ing chain stabilizes because the successive iterates are bounded by the size of M0 .
Over the sequence of iterates, the only rule that may produce additional edges
not present in M0 is w-aliases, but its applicability is limited by the number of
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nodes. Then, nodes are created in the result only in two cases: the target node
when matching points-to edges (m-pointsto) and any additional parameter nodes
when matching complete checker edges (m-checker). Points-to and complete
checker edges are only created in the resulting graph because of matching, so the
number of nodes is limited by the points-to and complete checker edges in M0 .

Disjunctions of graphs. In general, we consider widening disjunctions of graphs.
The widening operator for disjunctions is based on the operator for graphs and
attempts to find pairs that can be widened precisely in the sense that no region
need be weakened to " (i.e., because an input region could not be matched). In
addition to this selective widening process, the widening may leave additional
disjuncts, up to some fixed limit (perhaps based on trace partitioning [11]).

4.3 Extensions and Limitations

The kinds of structures that can be described with our checkers are essentially
trees with regular sharing patterns, which include skip lists, circular lists, doubly-
linked lists, and trees with parent pointers. Intuitively, these are structures where
one can write a recursive traversal that dereferences each field once (plus pointer
equality and disequality constraints). However, the effectiveness of our shape
analysis is not the same for all code using these structures. First, we materialize
only when needed by unfolding inductive definitions, which means that code that
traverse structures in a different direction than the checker are more difficult to
analyze. This issue may be addressed by considering additional materialization
strategies. Second, in our presentation, we consider partial checker edges with one
hole (i.e., a separating implication with one premise). This formulation handles
code that use cursors along a path through the structure but not code that uses
multiple cursors along different branches of a structure.

5 Experimental Evaluation

Code Analysis Max. Max.
Size Time Graphs Iter.

Benchmark (loc) (sec) (num) (num)

list reverse 19 0.007 1 3
list remove element 27 0.016 4 6
list insertion sort 56 0.021 4 7
binary search tree find 23 0.010 2 4
skip list rebalance 33 0.087 6 7

scull driver 894 9.710 4 16

We evaluate our shape
analysis using a pro-
totype implementation
for analyzing C code.
Our analysis is writ-
ten in OCaml and
uses the CIL infras-
tructure [14]. We have
applied our analysis
to a number of small
data structure manip-
ulation benchmarks and a larger Linux device driver benchmark (scull). In the
table, we show the size in pre-processed lines of code, the analysis times on a
2.16GHz Intel Core Duo with 2GB RAM, the maximum number of graphs (i.e.,
number of disjuncts) at any program point, and the maximum number iterations
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at any program point. In each case, we verified that the data structure manip-
ulations preserved the structural invariants given by the checkers. Because we
only fold into checkers based only on history information, we typically cannot
generate the appropriate checker edge when a structure is being constructed.
This issue could be resolved by using constructor functions with appropriate
post-conditions or perhaps a one graph operation that can identify potential
foldings. For these experiments, we use a few annotations that add a checker
edge that say, for example, treat this null as the empty list (1 each in list
insertion sort and skip list rebalance).

The scull driver is from the Linux 2.4 kernel and was used by McPeak and
Necula [12]. The main data structure used by the driver is an array of doubly-
linked lists. Because we also do not yet have support for arrays, we rewrote the
array operations as linked-list operations (and ignored other char arrays). We
analyzed each function individually by providing appropriate pre-conditions and
inlining all calls, as our implementation does not yet support proper interpro-
cedural analysis. One function (cleanup module) was not completely analyzed
because of an incomplete handling of the array issues; it is not included in the
line count. We also had 6 annotations for adding checker edges in this example.
In all the test cases (including the driver example), the number of graphs we
need to maintain at any program point (i.e., the number of disjuncts) seems to
stay reasonably low.

6 Related Work

Shape analysis has long been an active area of research with numerous algo-
rithms proposed and systems developed. Our analysis is closest to some more
recent work on separation logic-based shape analyses by Distefano et al. [6] and
Magill et al. [9]. The primary difference is that a list segment abstraction is built
into their analyses, while our analysis is parameterized by inductive checker def-
initions. To ensure termination of the analysis, they use a canonicalization op-
eration on list segments (an operation from a memory state to a memory state),
while we use a history-guided approach to identify where to fold (an operation
from two memory states to one). Note that these approaches are not incompat-
ible with each other, and they have different trade-offs. The additional history
information allowed us to develop a generic weakening strategy, but because
we are history-dependent, we cannot weaken whenever (e.g., we cannot weaken
aggressively after each update). Recently, Berdine et al. [2] have developed a
shape analysis over generalized doubly-linked lists. They use a higher-order list
segment predicate that is parameterized by the shape of the “node”, which es-
sentially adds a level of polymorphism to express, for example, a linked list of
cyclic doubly-linked lists. We can instead describe custom structures monomor-
phically with the appropriate checkers, but an extension for polymorphism could
be very useful.

Lee et al. [8] propose a shape analysis where memory regions are summarized
using grammar-based descriptions that correspond to inductively-defined pred-
icates in separation logic (like our checkers). A nice aspect of their analysis is
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that these descriptions are derived from the construction of the data structure
(for a certain class of tree-like structures). For weakening, they use a canon-
icalization operation to fold memory regions into grammar-based descriptions
(non-terminals), but to ensure termination of the analysis, they must fix in ad-
vance a bound on the number of nodes that can be in a canonicalized graph.

TVLA [18] is a very powerful and generic system based on three-valued logic
and is probably the most widely applied tool for verifying deep properties of com-
plex heap manipulations. The framework is parametric in that users can provide
specifications (instrumentation predicates) that affect the kinds of structures
tracked by the tool. Our analysis is instead parameterized by inductive checker
definitions, but since we focus on structural properties, we do not handle any
data invariants. Much recent work has been targeted at improving the scalabil-
ity of TVLA. Manevich et al. [10] describe a strategy to merge memory states
whose canonicalizations are “similar” (i.e., have isomorphic sets of individuals).
Our folding strategy can be seen as being particularly effective when the mem-
ory states are “similar”; like them, we would like to use disjunction when the
strategy is ineffective. Arnold [1] identifies an instance where a more aggressive
summarization loses little precision (by allowing summary nodes to represent
zero-or-more concrete nodes instead of one-or-more). Our abstraction is related
in that our checker edges denote zero-or-more steps.

Hackett and Rugina [7] present a novel shape analysis that first partitions
the heap using region inference and then tracks updates on representative heap
cells independently. While their abstraction cannot track certain global prop-
erties like the aforementioned shape analyses, they make this trade-off to ob-
tain a very scalable shape analysis that can handle singly-linked lists. Recently,
Cherem and Rugina [4] have extended this analysis to handle doubly-linked lists
by including the tracking of neighbor cells. McPeak and Necula [12] identify a
class of axioms that can describe many common data structure invariants and
give a complete decision procedure for this class. Their technique is based on
verification-condition generation and thus requires loop invariant annotations.
PALE [13] is a similar system also based on verification-condition generation
but instead uses monadic second-order logic. Weis et al. [19] have extended
PALE with non-deterministic field constraints (and some loop invariant infer-
ence), which enables some reasoning of skip list structures.

Perry et al. [15] have also observed inductive definitions in a substructural
logic could be an effective specification mechanism. They describe shape invari-
ants for dynamic analysis with linear logic (in the form of logic programs).

7 Conclusion

We have described a lightweight shape analysis based on user-supplied structural
invariant checkers. These checkers, in essence, provide the analysis with user-
specified memory abstractions. Because checkers are only unfolded when the
regions they summarize are manipulated, these specifications allow the user to
focus the efforts of the analysis by enabling it to expose disjunctive memory
states only when needed. The key mechanisms we utilize to develop such a shape
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analysis is a generalization of checker-based summaries with partial checker runs
and a folding strategy based on guidance from previous iterates. In this paper,
we have focused on using structural checkers to analyze algorithms that traverse
the structures unidirectionally. We believe such ideas could be applicable more
broadly (both in terms of utilizable checkers and algorithms analyzed).

Acknowledgments. We would like to thank Hongseok Yang, Bill McCloskey,
Gilad Arnold, Matt Harren, and the anonymous referees for providing helpful
comments on drafts of this paper.
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Abstract. Existing shape analysis algorithms infer descriptions of data
structures at program points, starting from a given precondition. We
describe an analysis that does not require any preconditions. It works by
attempting to infer a description of only the cells that might be accessed,
following the footprint idea in separation logic. The analysis allows us
to establish a true Hoare triple for a piece of code, independently of
the context in which it occurs and without a whole-program analysis.
We present experimental results for a range of typical list-processing
algorithms, as well as for code fragments from a Windows device driver.

1 Introduction

Existing shape analysis engines (e.g., [25,9,15,13,4]) require a precondition to
be supplied in order to run. Simply put, this means that they cannot be used
automatically without either knowing the execution context (which might be
an entire operating system, or even be unknown) or by manually supplying a
precondition (which for complex code can be hard to determine). If, though,
we could discover preconditions then, combined with a usual forwards-running
shape analysis, we could automatically generate true Hoare triples for pieces of
code independently of their context.

This paper defines footprint analysis , a shape analysis that is able to dis-
cover preconditions (as well as postconditions). Our results build on the work
on shape analysis with separation logic [9]; the footprint analysis algorithm is
itself parameterized by a standard shape analysis based on separation logic. In
essence, we are leveraging the “footprint” idea of [21]. Separation logic gives us
mechanisms whereby a specification can concentrate on only the cells accessed
by a program, while allowing the specification to be used in wider contexts via
the “frame rule”. For program analysis this suggests, when considering a code
fragment in isolation, to try to discover assertions that describe the footprint,
rather than the entire global state of the system. This is the key idea that makes
our analysis viable: the entire global state can be enormous, or even unknown,
where we can use much smaller assertions to talk about the footprint.

Footprint analysis runs forwards, updating the current heap when it can in the
usual way of shape analysis.However,when a dereference to a potentially-dangling
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pointer is encountered, that pointer is added into the “footprint assertion”, which
describes the cells needed for the program to run safely. If we start the analysis
with the empty heap as the initial footprint assertion then, ideally, it would find
the collection of safe states, ones that do not lead to a dereference of a dangling
pointer or other memory fault.

We say ideally here because there is a complication. In order to stop the
footprint assertion from growing forever it is periodically abstracted. The ab-
straction we use is an overapproximation and, usually in shape analysis, this
leads to incompleteness while maintaining soundness. But, abstracting the foot-
print assertion is tantamount to weakening a precondition, and so for us is a
potentially unsound step. As a result, we also use a post-analysis phase, where
we run a standard forwards shape analysis to filter out the unsafe preconditions
that have been discovered. For each of the safe preconditions, we also generate
a corresponding postcondition.

The source of this complication is, though, also a boon. In shape domains
it can be the case that a reasonably general assertion can be obtained from a
specific concrete heap using the domain’s abstraction function. For example, a
linked list of length three is often abstracted as a linked list of unknown length.
This nature of the shape domains is what lets footprint analysis often find a
reasonably general precondition, which is synthesized from concrete assertions
generated when we encounter potential memory faults.

We show by experimental results that footprint analysis is indeed able to dis-
cover non-trivial preconditions, in a number of cases resembling the precondition
that we would normally write by hand. Intuitively, the algorithm works well be-
cause pointer programs are often insensitive to the abstractions we use, and so
the step for filtering out unsound preconditions often does nothing. A limitation
of the paper is that we do not have a thorough theoretical explanation to back
this intuition up,1 so the method might be regarded as having a heuristic char-
acter. We felt it reasonable to describe our discovery algorithm now because the
results of the analysis are encouraging, and the algorithm itself employs the foot-
print idea in a novel way. Also, there are several potential further applications
of having in place an analysis that discovers preconditions, which we describe
at the end of the paper. We hope that further theoretical understanding of our
method will be forthcoming in the future.

Context and Further Discussion. For precondition discovery one of the first
things that come to mind is to use an underapproximating backwards analysis.
While possible in principle, we have found it difficult to obtain precise and effi-
cient backwards analyses for shape domains. As far as we are aware the problem
of finding a useful backwards-running shape analysis is open.

Footprint analysis can be seen as an instance of the general idea of relational
program analysis [7]. The purpose of a relational analysis is to compute an
1 Mooly Sagiv has suggested starting from a � value and homing in on the needed

states using a greatest fixed-point computation, as in [27]. We have not been able to
make that approach work, and it does not describe what our analysis is doing, but
it and other approaches are worth exploring.
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overapproximation of the transition relation of a program. After the post-analysis
check to filter out unsound preconditions, footprint analysis returns a set of true
Hoare triples for a program, and from this it is easy to construct the relational
overapproximation.

The shape analysis of [14] tracks relationships between input and output
heaps. In the examples there, a precondition was typically supplied as input;
for example, for in-place list reversal the input indicated an acyclic linked list.
However, it might be possible to use a similar sort of idea to replace the separate
preconditions and postconditions used in our algorithm, which might result in
an improved precondition discovery method.

2 Basic Ideas

In this section we illustrate how our algorithm finds a precondition via a fixed-
point calculation, using a simple example. The paper continues in the next sec-
tion with the formal development.

The abstract states in the analysis consist of two assertions (H,F ), repre-
sented as separation logic formulae (see [22] for the basics of separation logic).
H represents the currently known or allocated heap and F the cells that are
needed (the footprint). As described above, the analysis runs forwards, adding
pointers into the footprint assertion F when dereferences to potentially dan-
gling pointers are encountered. In doing this care is needed in the treatment of
variables, especially what we call footprint variables .

The algorithm is attempting to discover a precondition that describes “safe
heaps”, ones that do not lead to a dereference of a dangling pointer or other
memory fault when the program in question is run. We illustrate with a program
that disposes all the elements in an acyclic linked list. Footprint analysis discovers
the precondition pictured in Figure 1, which says that c points to a linked list
segment terminating at 0. This precondition describes just what is needed in
order for the program not to dereference a dangling pointer during execution.
We now outline how footprint analysis finds this assertion.

We begin symbolic execution with c==c ∧ emp as the current heap and emp as
the footprint. Note that c==c allows for a state where c (or any other location)
is dangling. The current heap includes a footprint variable c , and assertion emp

1: while (c!=0) {
2: t=c;
3: c=c->tl;
4: free(t);
5: }

Discovered Precondition: c==c ∧ lseg(c ,0)

Fig. 1. Program delete list, and discovered precondition when run in start state
(c==c ∧ emp, emp)
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Current Heap Footprint Heap
First iteration
pre: c!=0 ∧ c==c ∧ t==c ∧ emp emp
post: t!=0 ∧ c==c1 ∧ t==c ∧ c �→ c1 c �→ c1

Second Iteration
pre: c!=0 ∧ c==c1 ∧ t==c1 ∧ emp c �→ c1

post: t!=0 ∧ c==c2 ∧ t==c1 ∧ c1 �→ c2 c �→ c1 * c1 �→ c2

abs post: t!=0 ∧ c==c2 ∧ t==c1 ∧ c1 �→ c2 lseg(c ,c2 )

Third Iteration
pre: c!=0 ∧ c==c2 ∧ t==c2 ∧ emp lseg(c ,c2 )
post: t!=0 ∧ c==c3 ∧ t==c2 ∧ c2 �→ c3 lseg(c ,c2 ) * c2 �→ c3

abs post: t!=0 ∧ c==c3 ∧ t==c2 ∧ c2 �→ c3 lseg(c ,c3 )

Fig. 2. Pre and Post States at line 3 during footprint analysis of delete list

represents the empty heap. When execution enters the loop and gets to line 3,
we will attempt a heap dereference to c->tl but where we do not know that c is
allocated in the precondition. This is represented in the precondition for the first
iteration in Figure 2. At this point the knowledge that c points to something is
added to the footprint: we need that information in order for our program not to
commit a memory fault. Also, though, in order to continue symbolic execution
from this point, this knowledge is added to the allocated heap as well, as pictured
in the postcondition for the first iteration in Figure 2. Notice that we express
that c points to something in terms of the footprint variable c . Because it is
not a program variable, and so not changed by the program, this will enable us
to percolate the footprint information back to the precondition.2

Now, the next statement in the program, line 4, removes the assertion c !→
c1 from the current heap, using the knowledge that t=c , but that assertion
is left in the footprint. Then, when we execute the second iteration of the loop
we again encounter a state where c is not allocated in the current heap. At this
point we again add a pointer to the footprint and to the current heap: see the
pre and post for the second iteration in Figure 2. The assertion in the footprint
part uses the separating conjunction *, which requires that the conjuncts hold
for separate parts of memory (and so here, denote distinct cells). Notice that
the footprint variable c1 was known to equal c in the precondition. Also, in the
postcondition we generate another footprint variable, c2 .

So, after two iterations, we have found a linked list of length two in the
footprint. But, this way of generating new footprint variables is a potential source
of divergence in the analysis. In order to enable the fixed-point calculation to
converge we abstract the footprint part of the assertion, as indicated in Figure
2, and the footprint now says that there is a list segment from c to c2 . This
2 Notice also, though, that an additional footprint variable c1 is added: the footprint

variables resemble those typically used for seeding initial program states, but seeding
does not cover all of their uses.



406 C. Calcagno et al.

abstraction step has lost the information that the list is of length two, in that
the assertion is satisfied by lists of length three, four, and so on.3

Continuing our narrative symbolic execution, the free statement will delete
the assertion “c1 !→ c2 ” from the current heap (but not the footprint), and
when we go into the third iteration we will again try to dereference c->tl when
it is not known to be allocated from the current heap in the free command. We
put a !→ assertion in the current and footprint parts again, and then abstract.
Now, when we apply abstraction the assertion “c2 !→ c3 ” is swallowed into the
list segment. Except for the names of newly-generated footprint variables, the
abstracted post we obtained in the second iteration is the same as in the third,
and we view the newly-generated footprint variables as alpha-renameable. The
reader can see the relevance to fixed-point convergence.

Finally, we can exit the loop by removing “c2 !→ c3 ” from the current heap
in the free command, and adding the negation of the loop conditional to the
heap and footprint, and forgetting about t because it is a local variable. A bit of
logic tells us that the footprint part is equivalent to c3 == 0 ∧ lseg(c ,c3 ),
and when we add this to the initial precondition c==c we obtain the overall
precondition pictured in Figure 1.

3 Programming Language and Generic Analysis

In this section we define the programming language used in the formal part of
the paper. We also set up a generic analysis, following the tradition of abstract
interpretation [8], which will have the shape and footprint analyses described
later as instances.

Programming Language. In the paper, we use a simple while language extended
with heap operations:

E,F ::= x | f(E1, . . . , En)
b ::= E = F | E �= F
a[E] ::= [E] := F | dispose(E) | x := [E]
a ::= x := E | x := new(E)
c ::= a[E] | a | c1; c2 | if b c1 c2 | while b c

An expression E is either a variable or a heap-independent term f(E1, . . . , En).
The language has two classes of atomic commands. a[E] attempts to dereference
cell E, updating it ([E] := F ), disposing it (dispose(E)), or reading its content
(x := [E]). The other atomic commands, denoted a, do not access existing cells.

3 This step of abstraction depends on which abstract domain we plug into our footprint
analysis; several have appeared in the literature, and the footprint analysis does not
depend on any one choice. In this example, we have assumed that the “lseg” predicate
describes “possibly circular list segments”, which allows the abstraction step we have
done. If circularity were outlawed in our abstract domain, as in the particular domain
of [9], then one more loop iteration would be needed before abstraction could occur.
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Generic Analysis. The analyses in this paper will use the topped powerset P�(S)
of a set S; i.e., the powerset with an additional greatest element. A set X ∈ P(S)
represents a disjunction of its elements x ∈ X , and " indicates that the analysis
detected an error in a given program. When D = P�(S), we call S the underlying
set of the abstract domain D.

Given function t:S → P�(S′) and partial or total function f :S ⇀ S′, we can
lift them to functions t†,P�(f) : P�(S)→ P�(S′) by

t†(X) def= if (X = ") then " else
⊔

x∈X t(x)
P�(f)(X) def= if (X = ") then " else {f(x) | x ∈ X}.

The generic analysis framework consists of the following data.

(1) A set S of abstract states, inducing the abstract domain D = P�(S), which
forms a complete lattice (D,�,⊥,",�,�).

(2) For all boolean expressions b, atomic commands a, a[E] and expressions E,
the operators

rearr(E):S → P�(S[E]), filter(b):S ⇀ S,

exec(a[E]):S[E]→ S, exec(a):S → S, abs:S → S.

Here S[E] is a subset of S (for all E), and it consists of abstract states where
cell E is explicitly represented by a points-to fact E !→E′.

This framework does not ask for transfer functions to be given directly, but
rather asks for more refined ingredients, out of which transfer functions are
usually made in shape analysis. rearr(E) typically takes an abstract state and
attempts to “concretize” cell E, making it a points-to fact of the form E !→E′.
When instantiating the generic analysis with the one in [9], this operation cor-
responds to unwinding an inductive definition, and when instantiating with [24]
it is the materialization of a summary node. The abstraction map abs simplifies
states, as illustrated in the example in the previous section. In [9,25] it is called
canonicalization. filter(b) is used to filter states that do not satisfy boolean con-
dition b, and exec(a[E]) and exec(a) implement update (after rearrangement).

Given this data, abstract transfer functions of the primitive commands are:4

[[b]] def= P�(filter(b))
[[a[E]]] def= (P�(abs ◦ exec(a[E])) ◦ rearr(E))† [[a]] def= P�(abs ◦ exec(a)).

The execution of a command accessing E is done in three steps: first the cell
E is exposed by rearr(E), then the state is updated according to the semantics
of the command a[E] by exec(a[E]) and finally the resulting state is abstracted
by abs. The execution of a command a that does not access the heap does not
4 Our analysis specification presumes that abstraction is applied after every transfer

function, but it is also possible to instead take it out of the transfer functions and
apply only often enough to allow the loop computations to converge.
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involve the rearrangement phase. The reader is referred to [9] for an extensive
treatment of transfer functions defined in terms of rearr, exec and abs.

We may then define monotone functions [[c]]:D → D for each command c in
the usual way of abstract interpretation.5

[[c1; c2]] = [[c2]] ◦ [[c1]] [[if b c1 c2]](d) = ([[c1]] ◦ [[b]])(d) � ([[c2]] ◦ [[¬b]])(d)
[[while b c]](d) = [[¬b]](lfix λd′. d � ([[c]] ◦ [[b]])(d′))

4 Underlying Shape Analysis Based on Separation Logic

We assume that we are given three disjoint countable sets of variables:

– Vars for program variables x, y;
– PVars for primed variables x′, y′;
– FVars for footprint variables x, y.

In the following, primed variables will be used as notation for existential quan-
tified variables whereas footprint variables will be used to store initial values of
program variables or cells.

Let Locs and Vals be countable infinite sets of locations and values, respec-
tively, such that Locs ⊆ Vals. When V is set to be the union of Vars, PVars and
FVars, our concrete storage model is given by:

Stacks def= V → Vals Heaps def= Locs ⇀fin Vals States def= Stacks× Heaps.

Each state consists of stack and heap components. The stack component s
records the values of program, primed and footprint variables, and the heap
component h specifies the identities and contents of allocated cells. Note that
this model can allow data structures of complex shape, because a pair of ad-
dresses can be a value so a cell can have two outgoing pointers.

The analysis described in this paper uses separation logic assertions (called
symbolic heaps) to represent abstract states. Symbolic heaps H are given by the
following grammar:

E,F ::= nil | x | x′ | x̄ | · · ·
Π ::= true | E = E | E �= E | Π ∧Π | · · ·
Σ ::= true | emp | E !→E | Σ ∗Σ | · · ·
H := Π ∧Σ

Intuitively, in a symbolic heap Π ∧Σ, the first conjunct Π contains only expres-
sions describing the relations among program, primed and footprint variables
given by the stack whereas Σ describes the allocated heap. The predicate E !→F
is true when the cell E is allocated, its value is F , and nothing else is allocated.
5 Our requirement of a complete lattice and monotonicity can be weakened if we

include a widening operator.
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Σ1 ∗Σ2 holds when the heap can be split into components, one of which makes
Σ1 true and the other of which makes Σ2 true. See [22]. We assume that primed
variables in each symbolic heap H are existentially quantified.

The use of · · · is to allow for various other predicates, such as for list segments
and for trees. In this sense, the present section is setting down a parameterized
analysis which can be instantiated, e.g., by [3,5,16]. More importantly, we are
emphasizing that our footprint analysis algorithm (in the next section) is not
tied to any of these particular analyses.

We define a “separation-logic-based shape analysis” to consist of the following.

1. An instance (S, {S[E]}E, rearr, filter, exec, abs) of the generic analysis from
Section 3.

2. The shape analysis should use separation logic, in the style of [9]. This means
that the underlying set S of the abstract domain consists of sets of symbolic
heaps, and that for each expression E, all the symbolic heaps in the subset
S[E] of S are of the form Π ∧ (E !→F ) ∗Σ. We say that cell E is exposed by
the points-to relation.

3. A sound theorem prover 
 for proving entailments between symbolic heaps.
4. For each symbolic heap Π ∧Σ in S and fresh footprint variable x, the new

symbolic heap Π∧(E !→x)∗Σ is in S[E], or it can be shown to be inconsistent
by the given theorem prover.

5. None of rearr, filter, exec and abs introduces new footprint variables into
given symbolic heaps.

6. Writing G for the set of symbolic heaps in S containing only footprint vari-
ables, abs maps elements of G to G. Moreover, for all Π0 with footprint
variables only, if Π ∧Σ is in G, then Π0 ∧Π ∧Σ is in G, unless it is proved
to be inconsistent by the theorem prover.

5 Footprint Analysis

Now suppose we are given a separation-logic-based shape analysis as specified
in the last section. Recall that S is the set of symbolic heaps and G is the set of
symbolic heaps whose only free variables are footprint variables. Our footprint
analysis is an instance of the generic analysis in Section 3, where the abstract
domain of our algorithm is the topped powerset

P�(S ×G).

A pair (H,F ) in S×G represents the current heap H and the computed footprint
F at the current program point. Note that the footprint can contain footprint
variables only. The algorithm relies on this requirement to ensure that the com-
puted footprint is a property of the initial states, rather than the states at the
current program point.

We specify our algorithm by defining the data required by the generic analysis,
which we call newRearr, newFilter, newExec, newAbs in order to avoid confusion
with the abstract transfer functions of the given underlying shape analysis, which
the footprint analysis will be defined in terms of.
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First, we give the definition of newRearr, in terms of the rearrangement rearr
of the given shape analysis:

newRearr(E) : S ×G→ P�(S[E]×G)
newRearr(E)(H,F ) def= let H = rearr(E)(H)

in if ¬ (H=") then {(H ′, F ) | H ′ ∈ H}
else if (H 
 E=x0 for some footprint var x0) and

¬(F ∗ x0 !→x1 
 false for some fresh x1)
then {(H ∗ E !→x1, F ∗ x0 !→x1)}
else "

This subroutine takes two symbolic heaps, H for the overapproximation of the
reachable states and F for the footprint, and exposes a specified cell E from H .
Intuitively, it first calls the rearrangement step of the underlying shape analy-
sis to prove that a dereferenced cell E is allocated. In case this first attempt
fails, the subroutine adds the missing cell to the footprint and the current sym-
bolic heap. This is the point at which the underlying shape analysis would have
stopped, reporting a fault. Note that before adding the points-to relation to F ,
the subroutine checks whether E can be rewritten in terms of a footprint vari-
able x0. This ensures that the computed footprint is independent of the values
of variables whose value changes (program variables) or is determined during
execution (primed variables).

Next, we define the subroutine newFilter:

newFilter(b) : S ×G ⇀ S ×G

newFilter(b)(H,F ) def= if (filter(b)(H) is not defined) then undefined
else let H ′ = filter(b)(H)

in if ¬ (H 
 b⇔b for some b with footprint vars only)
then (H ′, F )
else (H ′, b ∧ F )

This subroutine tries to rewrite b in terms of footprint variables only. If it suc-
ceeds, the rewriting gives an additional precondition b that will make the test
b hold: the computation can then pass through the filter, and the result of the
rewriting is conjoined to the footprint. On the other hand, if the rewriting fails,
the analyzer keeps the given footprint F .

Finally, the subroutine newExec is defined by the execution of exec for the
first component H for shape invariants.

newExec(a[E])(H,F )def=(exec(a[E])(H), F ) newExec(a)(H,F )def=(exec(a)(H), F )

And newAbs is defined by applying abstraction to both the shape and footprint:

newAbs(H,F ) def= (abs(H), abs(F ))

5.1 Hoare Triple Generation

We show how the footprint analysis algorithm can be used to generate true Hoare
triples. First there is a pre-processing step which generates an initial symbolic
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heap that saves the initial values of program variables into footprint variables.
Then, after running footprint analysis, we run a post-processing step which takes
the output of our algorithm and, for each computed precondition, it runs the
underlying shape analysis to compute the appropriate postcondition.

Let x1, . . . , xn be program variables that appear in a given program c. Write
[[−]]s for the given shape analysis and [[−]]f for the corresponding footprint anal-
ysis. Formally, the Hoare triple generation for a program c works as follows:

let Π0
def= (x1=x1 ∧ ... ∧ xn=xn) and F def= [[c]]f ({(Π0 ∧ emp, emp)})

in if (F=") then report the possibility of a catastrophic fault
else{
{F ′}c{

∨
H′∈HH ′} | (H,F )∈F ∧ F ′=ren(Π0∧F ) ∧H=[[c]]s({F ′}) ∧H�="

}
.

Here ren(Π0 ∧ F ) renames all the footprint variables by primed variables.
If the underlying shape analysis is sound with respect to a concrete semantics

of a programming language then we automatically get true Hoare triples. How-
ever, it would be easy to generate some true Hoare triples, if we were content
to generate precondition false. What our algorithm is aiming at is to generate
preconditions that cover as many “safe states” as possible, ones which ensure
that the program will not commit a memory fault. There can be, of course, no
perfect such algorithm for computability reasons. In our case, though, it is well
to mention two possible sources of inaccuracy.

First, because the analysis applies abstraction to the footprint (the even-
tual precondition), this can lead us outside of the safe states (it is essentially
weakening a precondition). We have found that it very often leads to safe pre-
conditions in our experimental results. An intuitive reason for this is that the
safety of typical list programs is often insensitive to the abstraction present in
shape analyses. But, because this “often” is not “always”, as we will see in the
next section, the Hoare triple generation just described filters out these unsafe
pre-states by calling the (assumed to be sound) underlying shape analysis.

Second, our algorithm does not perform as much case analysis on the structure
of heap as is theoretically possible, and this leads to incompleteness (where fewer
safe states are described than might otherwise be). We have made this choice for
efficiency reasons. We believe that our experimental results in the next section
show that this is not an unrealistic engineering decision. But we also discuss an
example (append.c) where the resulting incompleteness arises.

Finally, we point out that from true Hoare triples computed by our analysis,
one can easily construct a relational overapproximation of the transition relation
of a program. Suppose that our analysis generated a set

{
{Pi}c{Qi}

}
i∈I

of true
Hoare triples for a given program c. Then, by [6], there is a state transformer r
(i.e., relation from States to States ∪ {wrong}) with the following three proper-
ties: (1) the transformer r satisfies triple {Pi}r{Qi} for all i ∈ I; (2) it satisfies
the locality conditions in separation logic6; and (3) the transformer overapprox-
imates all the other state transformers satisfying (1) and (2) (i.e., it is bigger

6 The locality conditions are safety monotonicity and frame property in [28].
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than those state transformers according to the subset ordering.) Indeed, [6] gives
an explicit definition of the transformer r.7 This transformer overapproximates
the relational meaning of program c, since all the triples {Pi}c{Qi} hold for c
and the meaning of c satisfies the locality conditions.

6 Experimental Results

Our experimental results are for an implementation of our analysis developed
using the CIL infrastructure [19]. We used two abstract domains for the experi-
ments, one based on the simple list domain in [9] and the other with the domain
of [2] which uses a higher-order variant of the list segment predicate to describe
composite structures.

List program examples. Table 1 shows the results of applying the footprint anal-
ysis to a set of list programs taken from the literature.8 The Disjuncts column
reports the number of disjuncts of the computed preconditions. Amongst all the
computed preconditions, some can be unsafe and there can be redundancy in
that one can imply another. The Unsafe Pre column indicates the preconditions
filtered out when we re-execute the analysis. In the Discovered Precondition
column we have dropped the redundant cases and used implication to obtain
a compact representation that could be displayed in the table. For the same
precondition, the table shows different disjuncts on different lines. For all tests
except one (merge.c, discussed below) our analysis produced a precondition from
which the program can run safely, without generating a memory fault, obtaining
a true Hoare triple. We comment on a few representative examples.

del-doublestar uses the usual C trick of double indirection to avoid unnec-
essary checking for the first element, when deleting an element from a list.

void del-doublestar(nodeT **listP, elementT value)
{ nodeT *currP, *prevP;
prevP=0;
for (currP=*listP; currP!=0; prevP=currP, currP=currP->next) {

if (currP->elmt==value) { /* Found it. */
if (prevP==0) *listP=currP->next;
else prevP->next=currP->next;
free(currP);

} } }

7 Formally, r ⊆ States × (States ∪ {wrong}) is defined by:

(s, h)[r]wrong ⇐⇒ ∀i ∈ I. (s, h) ∈ [[Pi ∗ true]]
(s, h)[r](s′, h′) ⇐⇒ ∀i ∈ I.∀h0, h1. (s, h0) ∈ [[Pi]] ∧ h0 • h1 = h

=⇒ ∃h′
0. (s′, h′

0) ∈ [[Qi]] ∧ h′
0 • h1 = h′.

where [[Pi]], [[Qi]] are the usual meaning of assertions and • is a partial heap-combining
operator in separation logic.

8 In some cases the reported memory consumption was exactly the same for different
programs; this happens because the memory chunks allocated by OCAML’s runtime
system are too coarse to observe small differences between example programs.
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The first disjunct of the discovered precondition is

listP|->x_ * ls(x_,x1_) * x1_|->elmt:value

This shows the cells that are accessed when the element being searched for
happens to be in the list. Note that it does not record list items which might
follow the value: they are not accessed.9 A postcondition for this precondition
has just a list segment running to x2 :

listP|->x_ * ls(x_,x2_)

The other precondition

listP|->x_ * ls(x_,0)

corresponds to when the element being searched for is not in the list. The algo-
rithm fails to discover a circular list in the precondition

listP|->x_ * ls(x_,x_)

The program infinitely loops on this input, but does not commit a memory safety
violation. This is an example of incompleteness in our algorithm.10

Further issues can be seen by contrasting append.c and append-dispose.c.
The former is the typical algorithm for appending two lists x and y. The com-
puted precondition is

ls(x_,0)

Again, notice that nothing reachable from y is included, as the appended list is
not traversed by the algorithm: it just swings a pointer from the end of the first
list. However, when we post-compose appending with code to delete all elements
in the acyclic list rooted at x, which is what append-dispose.c does, then the
footprint requires an acyclic list from y as well

ls(x,0) * ls(y,0)

The only program for which we failed to find a safe precondition was merge.c,
the usual program to merge two sorted lists: instead, footprint analysis returned
all unsafe disjuncts (which were pruned at re-execution time). The reason is that
our analysis essentially assumes that the safety of the program is insensitive to
the abstraction performed in the analysis, and this is false for merge.c.

9 This point could be relevant to interprocedural analysis, where [23,10] pass a use-
ful but coarse overapproximation of the footprint to a procedure, consisting of all
abstract nodes reachable from certain roots.

10 Note that the problem here does not have to do with circular lists per se, as our algo-
rithm succeeds in finding preconditions for algorithms for circular linked lists (e.g.,
traverse-circ.c); rather, it has to do with incompleteness arising from avoidance
of case analysis mentioned in Section 5.1.
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Table 1. Experimental results for list programs

Program
Time
(sec)

Space
(Mb)

# of
Disj.

Uns
Pre Discovered Precondition

sappend.c 0.035 0.74 4 0 ls(x,0)
append-dispose.c 0.099 0.74 17 0 ls(x,0)*ls(y,0)
copy.c 0.031 0.74 4 0 ls(c,0)
create.c 0.014 0.49 1 0 emp

del-doublestar.c 0.045 0.49 10 0
listP�→x *ls(x ,x1 ) *x1 �→elmt:value,
listP�→x *ls(x ,0)

del-all.c 0.014 0.49 4 0 ls(c,0)
del-all-circular.c 0.015 0.49 3 0 c�→c *ls(c ,c)

del-lseg.c 0.639 1.23 48 0

z=0∧ls(c,z)*ls(z,0),
z=w∧ls(c,z)*ls(z,w)*w�→0,
z=w∧w =0∧ls(c,z)*ls(z,w)*w�→w ,
z=c∧c�→0,
z=c∧z=c ∧c�→c *ls(c ,0),
c=0∧emp

find.c 0.057 0.74 12 0

ls(c,b)*b�→0,
b =0∧ls(c,b)*b�→b ,
b=c∧b=c ∧c�→c *lseg(c ,0),
b=c∧c�→0,
c=0∧emp

insert.c 0.170 0.74 10 0

e1=0∧e2=0∧c =d ∧
c�→c *ls(c ,d )*d�→dta:e3,

e1=0∧e2=0∧c =0∧c�→c *ls(c ,0),
e1=0∧c�→0,
e1=0∧e2=0∧c�→c *c �→-,
e1=0∧c�→-,
c=0∧emp

merge.c 0.561 1.47 30 30 —
reverse.c 0.020 0.74 4 0 ls(c,0)
traverse-circ.c 0.013 0.49 3 0 c�→c *ls(c ,c)

IEEE 1394 firewire driver routines. We then changed the abstract domain in
our implementation, swapping the simple list domain for the domain from [2].
Table 2 reports experimental results on several routines from a firewire driver for
Windows.11 We emphasize that the ability of that domain to analyze the driver
code is not a contribution of the present paper: it was already shown in [2] when
preconditions were generated by environment code or supplied manually. Here,
we are just using that domain with our footprint analysis algorithm.

The procedure t1394Diag PnpRemoveDevice, for which our analysis timed out,
has five while loops, two of which are nested, and multiple nested conditionals.

11 After dropping redundant disjunct and simplify by implication, the precondition for
device drivers remain still considerably large. Therefore, due to space limitations, in
this table, we do not report the discovered preconditions.
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Table 2. Experimental results from firewire device driver routines

Program Time (s) Memory
# of
Disjuncts

Unsafe
Pre

t1394Diag-CancelIrp.c 0.08928 1.23Mb 11 2
t1394Diag-CancelIrpFix.c 0.20461 1.23Mb 10 0
t1394Diag PnpRemoveDevice T/O — — —
t1394-BusResetRoutine.c 0.14924 1.23Mb 4 0
t1394-GetAddressData.c 0.08692 1.23Mb 9 2
t1394-GetAddressDataFix.c 0.08906 1.23Mb 3 0
t1394-IsochDetachCompletionRoutine.c 1.76640 2.70Mb 39 0
t1394-SetAddressData.c 0.06614 1.23Mb 9 1
t1394-SetAddressDataFix.c 0.12242 1.23Mb 9 0

At the time of writing, our analysis does not implement several optimizations
for scalability. For example, we have not yet implemented the acceleration tech-
niques based on widening from [5].

For five (out of nine) of these routines our analysis found only sound precondi-
tions from which it is ensured the program will run safely. For three of these rou-
tines (t1394Diag CancelIrp, t1394 GetAddressData, t1394 SetAddressData)
for which it was known to have memory errors (see [2] for details), our analysis
found two kinds of preconditions:

– Safe preconditions that exclude the errors. The analyzer generated true
Hoare triples for these preconditions.

– Unsafe preconditions that lead to (in this case) known memory errors. For
these analyzed routines the memory errors occur when they are given empty
lists. All of these unsafe empty-list cases are included in the discovered pre-
conditions. But, they are the only reasons for the preconditions to be unsafe;
if we semantically rule out these empty-list cases from these preconditions
by altering them manually, the preconditions cover only safe states as can
be confirmed by re-execution.

The errors were fixed in t1394Diag CancelIrpFix, t1394 GetAddressDataFix
and t1394 SetAddressDataFix, such that the routines run safely even for the
empty-list cases. The analysis correctly discovered this fact, by computing safe
preconditions that include empty-list cases (in addition to all the other cases in
the safe preconditions for the original routines).

7 Conclusion

We have presented a shape analysis that is able to discover preconditions, and
we have presented initial experimental results. We are not aware of another
published shape analysis that discovers preconditions (which is why we have not
compared our analysis or experimental results to other work in shape analysis).
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We have used two abstract domains in our experiments, one for simple linked
lists and another for composite structures [9,2], but others could be used as
well as long as they possess the basic separation logic structure that drives
our analysis. Several other abstract domains based on separation logic formulae
have been described [3,5,16,12], and we expected that other shape domains that
have appeared (e.g., [25,15,13,4,18,1]) could be modified to have the requisite
structure. This would not require using separation logic formulae literally, but
rather needs the abstract domain to reflect the the partial commutative monoid
of heap composition used in its semantics (as was done in [26,17]).

One of the basic ideas used in our analysis, that of abstracting preconditions as
well as postconditions, could conceivably be replayed for other abstract domains
than our shape domains. It would require more work to investigate for any
given domain. We emphasize, though, that this general idea is not a significant
contribution of the present paper, and we make no claims about application to
other sorts of domain (e.g., numerical domains). Rather, the main contribution
is the way that the footprint idea is used to design a particular family of shape
analyses that discover preconditions, and the demonstration that some of the
resulting analyses can possess a non-trivial degree of precision.

Footprint analysis has potential benefits for speeding up and improving the
accuracy of interprocedural and concurrency shape analyses. With the footprint
analysis one might analyze several procedures independently, and then use the
results as (partial) summaries to avoid (certain) recomputations in an (even
whole program) interprocedural analysis [23,10]. A thread-modular concurrency
analysis has recently been defined [11]. The logic upon which it is based [20]
requires preconditions for concurrent processes, but in [11] this issue is skirted
by assigning the empty heap as a precondition to each concurrent process: the
ideas here might be used to extend that analysis. We add that there are numerous
technical problems to be overcome for this potential to be realized, such as the
right treatment of cutpoints [23] together with footprints.

A further off possible application is when the calling context is not even
available, or very large (e.g., an operating system): one might use footprint
analysis to analyze code fragments that would otherwise require a whole-program
analysis. Our experiments give initial indications on such an idea, but more work
is needed to evaluate its ultimate viability. Conversely, there is the persistent
problem of analyzing programs that themselves call other unknown or as yet
unwritten procedures. It would be conceivable to use footprint analysis to treat
the unknown procedures as “black holes”, where one starts footprint analysis
again after a black hole to discover a precondition for the code that comes after;
this would then function as a postcondition for the procedure call itself.

We do not mean to imply that the use of footprint analyses in these areas is
in any way straightforward, and only hope that this work might help to spur
further developments towards obtaining truly modular shape analyses.

Acknowledgments. We are grateful to Byron Cook, Noam Rinetzky and Mooly
Sagiv for discussions. This research was supported by the EPSRC.
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Abstract. Shape analyses are often imprecise in their numerical reason-
ing, whereas numerical static analyses are often largely unaware of the
shape of a program’s heap. In this paper we propose a lazy method of
combining a shape analysis based on separation logic with an arbitrary
arithmetic analysis. When potentially spurious counterexamples are re-
ported by our shape analysis, the method constructs a purely arithmetic
program whose traces over-approximate the set of counterexample traces.
It then uses this arithmetic program together with the arithmetic analy-
sis to construct a refinement for the shape analysis. Our method is aimed
at proving properties that require comprehensive reasoning about heaps
together with more targeted arithmetic reasoning. Given a sufficient pre-
condition, our technique can automatically prove memory safety of pro-
grams whose error-free operation depends on a combination of shape,
size, and integer invariants. We have implemented our algorithm and
tested it on a number of common list routines using a variety of arith-
metic analysis tools for refinement.

1 Introduction

Automatic formal software verification tools are often designed either to prove
arithmetic properties (e.g. is x always greater than 0 at program location 35?)
or data structure properties (e.g. does p always point to a well-formed list at
program location 45?). Shape analyses are developed to reason about the linked
structure of data on the heap, while arithmetic analyses are designed to reason
about the relationships between integer values manipulated by a program. Since
integers can be stored in the heap and certain properties of data structures (such
as the length of lists) are integer valued, there is non-trivial interaction between
the two theories. Thus, combining a shape analysis and an arithmetic analysis
is not just a matter of applying each analysis separately.
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We propose a new technique for combining a shape analysis based on separa-
tion logic [25] with an arbitrary arithmetic analysis. The combination technique
operates by using the arithmetic analysis as a back-end for processing abstract
counterexamples discovered during the shape analysis. Our shape analysis is
based on those described in [4] and [22]. It is an application of abstract interpre-
tation [11] where the abstract domain uses a fragment of separation logic. As in
[4], we assume that the shape analysis supports arithmetic reasoning in its sym-
bolic execution engine, but does not maintain enough arithmetic information in
its widening step. To refine this widening step will be the job of the arithmetic
analysis tool.

The shape analysis communicates with the arithmetic analysis via counterex-
ample programs—integer programs that represent the arithmetic content of the
abstract counterexamples. Because the language of communication consists of
integer programs, any integer analysis tool can be used without modification to
strengthen our shape analysis. Viewed another way, this technique allows any
tool targeting integer programs to be applied—again without modification—
to programs that manipulate the kinds of heap-based data structures that our
shape analysis supports.

In summary, we present a new combination of shape and arithmetic analyses
with the following novel collection of characteristics:

– Any arithmetic analysis can be used. The combination is not tied to any
particular verification paradigm, and we can use tools based on abstract
interpretation, such as Astrée[7], just as easily as those based on model
checking, such as Blast[19], SLAM[2], and ARMC[24].

– The arithmetic analysis explicitly tracks integer values which appear quan-
tified in the symbolic states but are absent in the concrete states, such as
list lengths. This use of new variables in the arithmetic program to reason
about quantified values makes soundness of the combination technique non-
obvious. This conjunction under quantifiers aspect also makes it difficult to
see the combination technique as an instance of standard abstract domain
constructions such as the direct or reduced product, or as a use of Hoare
logic’s conjunction rule.

– The shape analysis which will be strengthened explores the same abstract
state space as the standard one would. That is, we do not explore the carte-
sian product of the shape and arithmetic state spaces. In this way the com-
bined analysis treats the shape and arithmetic information independently (as
in independent attribute analyses) except for the relations between shape
and arithmetic information identified by the shape analysis as critical to
memory- or assert-safety.

– Arithmetic refinement is performed only on-demand, when the standard
shape analysis has failed to prove memory safety on its own.

– Because we track shape information at all program points, our analysis is
able to verify properties such as memory-safety and absence of memory leaks.
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2 Motivating Example

Consider the example code fragment in the left half of Figure 1. This program
creates a list of length n and then deletes it. Neither an arithmetic static analysis
nor a traditional shape analysis alone can prove that curr is not equal to NULL
at line 15. As we will see, our analysis is able to prove that this program is
memory-safe.

Consider how a shape analysis without arithmetic support would treat this
program. Using symbolic execution and widening, the analysis might find an
invariant stating that, at location 4, curr is a pointer to a well-formed singly-
linked and NULL-terminated list and i is a pointer to a single heap cell. In
separation logic, we would express this invariant as ∃k, v. lsk(curr ,NULL)∗i !→ v
where ls is a recursively-defined list predicate and k represents the length of the
list. Note that the shape analysis has not attempted to infer any invariance
properties of the integer values k and v.

From this point the analysis might explore the path 4 → 12 → 13 → 14 →
15, obtaining

∃k. lsk(curr ,NULL) ∧ j = 0 ∧ j < n (1)

1 List * curr = NULL; | 1 curr = 0;
2 int i = malloc(sizeof(int)); | 2 skip;
3 *i = 0; | 3 int v = 0;

| int k = 0;
4 while(*i < n) { | 4 while(v < n) {
5 t = (List*) malloc(sizeof(List)); | 5 t = nondet();
6 t->next = curr; | 6 skip;
7 t->data = addr; | 7 skip;
8 addr += next_addr(addr); | 8 addr += next_addr(addr);
9 curr = t; | 9 curr = t;
10 *i = *i + 1; | 10 v = v + 1;

| k = k + 1;
11 } | 11 }
12 free(i); | 12 skip;
13 int j = 0; | 13 int j = 0;
14 while(j < n) { | 14 while(j < n) {
15 t = curr->next; | 15 if(k > 0)

| b := nondet();
| t := b;
| else error();

16 free(curr); | 16 skip;
17 curr = t; | 17 curr = t;
18 j++; | 18 j++;

| k = k - 1;
19 } | 19 }

Fig. 1. Left: Example showing motivation for combined shape and arithmetic reason-
ing. Right: Arithmetic counterexample program produced by the shape analysis.
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At line 15, the program looks up the value in the next field of curr. But if the
list is empty, then curr = NULL and the lookup will fail. Because (1) does not
imply that curr �= NULL, this case cannot be ruled out and the analysis would
report a potential violation of memory safety.

However, this case cannot actually arise due to the fact that the second loop
frees only as many heap cells as the first loop allocates. To rule out this spurious
counterexample, we need to strengthen the invariants associated with the loops,
essentially discovering that the value stored in the heap cell at i tracks the
length of the list being created in the first loop and j tracks the length of the
unprocessed portion of the list in the second loop. Our algorithm achieves this
by generating a counterexample program representing all paths that satisfy the
shape formulas and could lead to the potential memory error.

The program we generate for this counterexample is given in the right half
of Figure 1. We have numbered each line with the line number in the original
program from which it is derived. Newly added commands are un-numbered. The
counterexample program involves two new variables, k and v, which represent
the length of the list and the value pointed to by i, respectively.1 New variables
are added whenever the shape analysis encounters an integer value, such as the
length of a list or the contents of an integer-valued heap cell.

Note that the control flow of the counterexample program is reminiscent of
the control flow of the original program. The only difference here is that the
counterexample program has an additional branch at location 15. This corre-
sponds to a case split in the shape analysis—the memory access at location 15
in the original program is safe provided that k (the length of the list) is greater
than 0. Also note that heap commands have been replaced by purely arithmetic
commands that approximate their effect on the arithmetic program’s stack vari-
ables. Two examples of this are the command at location 5, where allocation
is replaced by nondeterministic assignment, and the command at location 10,
where the heap store command that updates the contents of i is replaced by a
command that updates the integer variable v.

Another unique aspect of our counterexample programs is that they may con-
tain looping constructs. As such, they represent not just a single counterexample,
but rather a set of counterexamples. Returning to the example in Figure 1, re-
call that the loop invariant at location 4 is ∃k. lsk(curr ,NULL). To evaluate the
memory safety of the command at location 15, we start with this invariant and
compute postconditions along the path from 4 to 15. We then discover that the
resulting postcondition is too weak to prove memory safety at location 15 and
wish to generate a counterexample. Because the error state in the counterexam-
ple follows from the loop invariant at location 4, the counterexample can contain
any number of unrollings of this loop. Rather than commit to a specific number
and risk making overly specific conclusions based on the counterexample, we in-
stead include a loop in the counterexample program. As we will see, this makes
the set of paths through the counterexample program correspond to the full set

1 The role of the third new variable, b, is more subtle. It arises due to expansion of a
definition during theorem proving. This is discussed in detail in Section 4.1.
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of abstract counterexamples. This ensures that the arithmetic tool generates a
strengthening that rules out all spurious counterexamples (i.e. it is forced to
discover a strengthening that is also a loop invariant) and is key to making the
collaboration between the shape analysis and arithmetic analysis tool work.

Now let us look at this collaboration in more detail. While trying to prove
that error() in the counterexample program (Figure 1) is not reachable, an
arithmetic analysis tool such as Astrée[7], Blast [19], or ARMC [24] might
prove the following arithmetic invariant at location 15: k = n−j. The soundness
theorem for our system establishes that this invariant of the arithmetic coun-
terexample program is also an invariant of the original program. As such, it is
sound to conjoin this formula with our shape invariant at this location, obtaining
∃k. lsk(curr ,NULL)∧k = n− j. Note that the arithmetic invariant is conjoined
inside the scope of the quantifier. This is sound because the variables we add to
the counterexample program (such as k) correspond to the existentially quanti-
fied variables and their values correspond to the witnesses we used when proving
those existential formulas. We formally prove soundness in Section 5.

Now, armed with the strengthened invariant, the shape analysis can rule out
the false counterexample of NULL-pointer dereference at location 15. We will
have the formula lsk(curr ,NULL)∧k = n− j ∧ j < n, from which we can derive
k > 0—a sufficient condition for the safety of the memory access.

3 Preliminaries

Our commands include assignment (e:= f), heap load (x:= [e]), heap store
([e]:= f), allocation (x:= alloc()), disposal (free(e)), non-deterministic assign-
ment (x := ?), and an assume command, which is used to model branch condi-
tions. Note that brackets are used to indicate dereference. We use C to denote
the set of commands and the meta-variable c to range over individual commands.
The concrete semantics are standard (see [25]) and are omitted. We present only
the concrete semantic domains and then move directly to a presentation of the
abstract domain and its associated semantics.

The concrete semantic domain consists of pairs (s, h), where s is the stack and
h is the heap. Formally, the stack is simply a mapping from variables to their
values, which are either integers or addresses.

Val def= Int ∪ Addr

Stack def= Var → Val

The heap is a finite partial function from non-null addresses to records, which
are functions from a finite set of fields to values: Record def= Field → Val , and
Heap def= (Addr − {0}) fin

⇀ Record . We also have a state abort which is used to
indicate failure of a command. This may occur due to a failed assert statement
or an attempt to dereference an address that is not in the domain of the heap.

Our analysis uses a fragment of separation logic [25] as an abstract representa-
tion of the contents of the stack and the heap. We have expressions for denoting
addresses and records. Address expressions are simply variables or the constant
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NULL, which denotes the null address. Integer expressions include variables and
the standard arithmetic operations. Value expressions refer to expressions that
may denote either integers or addresses. Record expressions are lists of field
labels paired with value expressions.

Address e, f, g ::= x | NULL
Integer Expressions m,n ::= x | i | v1 + v2 | v1 − v2 | . . .
Value Expressions v, k ::= e | m
Record ρ ::= label : v, ρ | ε

Our predicates are divided into spatial predicates, which describe the heap, and
pure predicates, which describe the stack. The predicate emp denotes the empty
heap, and e !→ [l1 : v1, l2 : v2, . . . , ln : vn] describes the heap consisting of a single
heap cell at address e that contains a record where field l1 maps to value v1,
l2 maps to v2, etc. The atomic pure predicates include the standard arithmetic
predicates (<, ≤, =, etc.) and equality and disequality over address expressions.
Spatial formulas are built from conjunctions of atomic spatial predicates using
the * connective from separation logic. Intuitively, P ∗ Q is satisfied when the
domain of the heap described by P is disjoint from that described by Q. Thus,
(e !→ ρ1) ∗ (f !→ ρ2) implies that e �= f .

We also allow existential quantification and adopt the convention that un-
mentioned fields are existentially quantified. That is, if a record always contains
fields s and t, we write e !→ [s : v] to abbreviate ∃z. e !→ [s : v, t : z].

From the atomic predicates we can inductively define predicates describing
data structures, such as the following predicate for singly-linked list segments.

lsk(e, f) def=
(
k > 0 ∧ ∃x′. e !→ [n : x′] ∗ lsk−1(x′, f)

)
∨
(
emp ∧ k = 0 ∧ e = f

)
The length of the list is given by k, while e denotes the address of the first cell
(if the list is non-empty) and f denotes the address stored in the “next” field
(n) of the last cell in the list. If the list is empty, then k = 0 and e = f .

Our implementation actually uses a doubly-linked list predicate. However,
in this paper we will use the simpler singly-linked list predicate in order to
avoid letting the details of the shape analysis obscure the arithmetic refinement
procedure, which is our main focus.

Our abstract states are drawn from the following grammar, where we use the
notation +x to represent a list of variables.

Spatial Form Σ ::= e !→ ρ | lsk(e, f) | emp | S1 ∗ S2

Pure Form Π ::= x | e ≤ f | e = f | ¬P | P1 ∧ P2

Memory M ::= ∃+x. Σ ∧Π | "

The formula " is satisfied by all concrete states, including abort, and is used
to indicate failure of a command. Elements of Π are called pure formulas, while
elements of Σ are called spatial formulas. We take terms from M as the elements
of our abstract domain and refer to them as abstract state formulas. We will use
the meta-variables S, P , and Q to refer to such formulas.
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In the left column of Figure 3, we give the postcondition rules for our com-
mands. These are given as Hoare triples {P} c {Q}, where P and Q are abstract
state formulas. To take the postcondition of state S with respect to command c,
we search for an S′ such that S ⇒ S′ and {S′} c {Q} is an instance of the rule
for c in Figure 3. The formula Q is then the postcondition of the command. If
we cannot find such an S′, this corresponds to a failure to prove memory safety
of command c and the abstract postcondition is ". For more on this process,
see the discussion of the “unfold” rule in [22] and the section on “rearrangement
rules” in [13].

4 Algorithm

A shape analysis based on separation logic, such as those in [22] and [13], will
generate an abstract transition system (ATS), which is a finite representation of
the reachable states of the program given as a transition system (A) with states
labeled by abstract state formulas. Such formulas are either formulas of separa-
tion logic or ", which indicates a potential violation of memory safety. If a path
from the initial state to " is found (a counterexample to memory safety), our al-
gorithm translates this path into an arithmetic program (Tr(A)). This arithmetic
program is then analyzed to obtain strengthenings for the invariants discovered
during shape analysis. The results of the arithmetic analysis are then combined
with the shape analysis results to produce a more refined ATS (Â). A particular
property of this combination is that if " can be shown to be unreachable in the
arithmetic program, then the original program is memory safe.

Definition 1. An abstract transition system is a tuple (Q,L, ι, � ) where
Q is a set of states, ι ∈ Q is the start state, and L : Q → S is a function
that labels each state with a separation logic formula describing the memory
configurations associated with that state (or "). The last component, � is a
labeled transition relation. The labels are either program commands (c) or an
empty label (ε). Thus, � ⊆ Q×(C∪{ε})×Q. For convenience, if t ∈ (C∪{ε})
and q, q′ ∈ Q, we will write q

t� q′ to abbreviate (q, t, q′) ∈ � .

We assume that quantified variables in the state labels are α-renamed to be
disjoint from the set of variables present in the commands labeling the edges.
We will refer to the edges labeled with commands as postcondition edges and the
edges labeled with ε as weakening edges. The reason for these names can be seen
in the following definition of well-formedness, which we require of our ATSs.

Definition 2. An ATS (Q,L, ι, � ) is well-formed iff for all q, q′ ∈ Q and
c ∈ C, i) q

c� q′ implies that {L(q)}c{L(q′)} is a valid separation logic triple
and ii) q

ε� q′ implies (L(q) 
 L(q′)) is a valid separation logic entailment.

This ensures that the annotations associated with the abstract states are con-
sistent with the commands labeling the edges. That is, if q

c� q′ and c terminates
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when executed from a state satisfying L(q), then it terminates in a state sat-
isfying L(q′). Well-formedness also ensures that the weakening edges are valid
entailments. The algorithms defined in [22] and [13] automatically construct an
abstract transition system that satisfies this condition.

In order to focus on the specifics of generating arithmetic programs from coun-
terexamples, which is the main contribution of this paper, we assume that the
abstract transition system has already been generated by running a separation
logic based shape analysis on the input program. The interested reader can refer
to [22] and [13] for details on how the ATS is generated.

An example of the abstract transition system that the shape analysis might
generate is given in Figure 2. This ATS corresponds to the program discussed
in Section 2. Dotted lines are used for weakening edges, while solid lines denote
postcondition edges. We abbreviate assume(e) as a(e). Note that the shape anal-
ysis has discovered an invariant for the loop at control location 4, indicated by
the cycle at the bottom of the second column of states.

At control location 15, the system splits based on the value of k, the length
of the list. This is the one non-standard modification we make in our separation
logic shape analysis. Such an analysis would ordinarily try to execute curr :=
[curr.next] at location 15 given the precondition ∃k. lsk(t,NULL). Since this
precondition does not imply that the command is memory safe (the list could be
empty), the analysis would simply conclude ". Instead, our shape analysis will
check to see if there is some condition under which the memory access would be
safe. More precisely, our theorem prover internally performs case splits and if one
of these cases results in safe execution, it returns this condition to the analysis.
The analysis then splits based on this condition and continues exploring the safe
branch (the unsafe branch remains labeled with "). For our definition of lists,
this condition is always a check on the length of the list. This is a key component
of our technique as it makes explicit the way in which size information about
data structures affects the safety of the program. It will then be the job of
the arithmetic analysis tool to show that the unsafe branch is infeasible due to
arithmetic constraints among the variables.

4.1 Generating Arithmetic Programs

The arithmetic program is generated by converting edges in the ATS to com-
mands that do not reference the heap. This translation involves making use of the
information about heap cells that the shape analysis has provided. For example,
given the state x !→ [data : y+2], we know that the command z = [x.data] will
result in z containing the value y + 2. We can achieve the same effect with the
command z = y + 2, which does not reference the heap but instead exploits the
fact that the shape analysis has determined the symbolic value for the contents
of the data field of x.

The fact that our formulas can involve existential quantifiers makes the com-
bination more expressive, and the translation more involved. Given the formula
∃y. x !→ [data : y + 2], it is clearly no longer sound to replace the command z
= x->data with the command z := y + 2. Since y is not a program variable,
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1: emp

3: i  0 ∧ curr = NULL

4: curr = NULL ∧ i  0

curr := NULL;
i = malloc(...)

a(i ≥ n)

5: curr = NULL
∧ i  0 ∧ 0 < n

a(*i < n)

6: t   * i  0
∧ curr = NULL ∧ i < n

t := malloc(...)

7: t  next: curr  i  0
∧ curr = NULL ∧ i < n

...

4: ∃x. t  next: t', data: – 

t'  next: NULL, data: – 
 i  x ∧ curr = t ∧ ...

4: ∃k, x. lsk(t,NULL)  i  x ∧ 

curr = t

4: ∃k, x. t  next: t', data: – 

lsk(t',NULL)  i  x ∧ curr = t ∧ 

...

4: t  next: curr'  i  1  data: addr'

 curr' = NULL  curr = t ∧ ...

a(i ≥ n)
a(j < n)

a(j ≥ n) ...

15: ∃k. lsk(t,NULL) ∧ curr = t ∧ j < n

14: ∃k. lsk(t,NULL) ∧ curr = t 

16: ∃k. curr  next: x, data: – 

lsk-1(t,NULL)
∧ j < n ∧ a > 0

k :
= k 

- 1

T

...

4: ∃x. t  next: NULL, data: –

 i  x  curr = t

lines
4 - 10

lines
4 - 10

a(
i ≥

 n
);

 fr
ee

(i)
; j

 =
 0

*i := 0

[t.next] := curr

t := [curr.next]

15: ∃k. lsk(t,NULL) ∧ curr = t

∧ j < n ∧ k = 0
15: ∃k. lsk(t,NULL) ∧ curr = t

∧ j < n ∧ k > 0

a(k > 0)a(k = 0)

free(curr)

17: ∃k. lsk-1(t,NULL)

∧ j < n ∧ a > 0

curr = t

18: ∃k. lsk-1(curr,NULL)

∧ j < n ∧ a > 0 ∧ curr = t

t := [curr.next]

Fig. 2. Sample ATS after shape analysis

its value is not specified from the point of view of the arithmetic analysis tool.
We must therefore ensure that the arithmetic program we generate contains a
variable y, corresponding to the quantified variable in the formula and that in
executions of the arithmetic program, y’s value is constrained in such a way that
it satisfies the separation logic formulas we received from the shape analysis.

We can formalize this idea of using the arithmetic commands to enable rea-
soning about quantified variables with the following definition, which describes
the properties the arithmetic command (c′ in the definition) must have.

Definition 3. Let q
c� q′ be an edge in an ATS (Q,L, ι, � ). Let L(q) = ∃+x. P

and L(q′) = ∃+y. Q be abstract state formulas. A command c′ is a quantifier-
free approximation (QFA) of the edge q

c� q′ iff for any pure formulas P ′

and Q′, the triple {P ′} c′ {Q′} implies the triple {∃+x. P ∧ P ′} c {∃+y. Q ∧Q′}.
That is, reasoning using c′ is an over-approximation of reasoning under the
quantifier in the pre- and postconditions of c. In Section 5 on soundness, we
show that such reasoning can be extended to the whole program by replacing
each command in the original ATS with a quantifier-free approximation of that
command and reasoning about the ATS thus obtained.

Translating Postcondition Edges. To find a purely arithmetic QFA for each
of the heap-manipulating commands, let us first look at the rules that are used
for adding postcondition edges to the ATS. These are given in the left column of
Figure 3. They are presented as Hoare triples where the pre- and postconditions
are abstract state formulas. We use the notation S[x′/x] to mean S with x′

substituted for x.
Note that the first three rules result in the abstract post-state having

one more quantifier than the abstract pre-state: they each have the form



428 S. Magill et al.

Shape Analysis Postcondition Rule Arith. Cmnd.
{∃�z. S} x:=E {∃x′, �z. x = E[x′/x] ∧ S[x′/x]} x′:= x;

x:= E[x′/x]
{∃�z. S} x:= ? {∃x′, �z. S[x′/x]} x′:= x; x:= ?
{∃�z. S} x:= alloc() {∃x′, �z. S[x′/x] ∗ (x �→ [ ])} x′:= x; x:= ?

{∃�z. S ∗ (E �→ [ρ, t : F ])} x:= [E.t] {∃x′, �z. x = F [x′/x] ∧ x′:= x;
(S ∗ (E �→ [ρ, t : F ]))[x′/x]} x:= F [x′/x]

{∃�z. S ∗ (E �→ [ρ])} free(E) {∃�z. S} ε
{∃�z. S ∗ (E �→ [ρ, t : G])} [E]:= F {∃�z. S ∗ (E �→ [ρ, t : F ])} ε

{∃�z. S} assume(P ) {∃�z. S ∧ P} assume(P )

Fig. 3. Rules for generating arithmetic commands from abstract postcondition edges

{∃+z. S} c {∃x, +z. S′}. Our goal is to find an arithmetic command c′ corre-
sponding to the original command c, and to use c′ to reason about c. As such,
we would like c′ to contain the new quantified variable. To do this in a way
such that c′ is a QFA, we need c′ to record the witness for the existential in the
postcondition. As an example, consider the command for assignment.

{∃+z. S} x:= E {∃x′, +z. x = E[x′/x] ∧ S[x′/x]}

The variable x′ in the postcondition represents the old value of x. Thus, the
value of x before the assignment is the witness for x′ in the postcondition. We
can record this fact using the sequence of commands x′:=x; x:= E. We use the
same idea to handle the other two rules that add a quantifier.

Capturing the quantification in the new command is only part of the process.
We must also over-approximate the effect of the command on the program vari-
ables. For commands like allocation (x:= alloc()), the best we can do is replace
this with the nondeterministic assignment x:= ?. However, for lookup we can
use the technique mentioned at the beginning of this section: if the precondition
tells us that the t field of cell E contains the value F , we can replace x:= [E.t]
with x:= F (and the precondition for lookup will always have this form).

The other heap commands (heap store and free) are replaced with no-ops. This
may be surprising since these commands can have indirect effects on the values
of integer variables in the abstract state formulas. Values stored in the heap can
later be loaded into variables. This case is already handled by our rule for lookup,
as can be seen by considering what happens when we translate the command
sequence [x.data] := y + 3; z := [x.data] to arithmetic commands. The
first command will be converted to a no-op. To translate the second command,
we need to know its precondition. Supposing we start from the state x !→ [ ], the
postcondition of the first command is x !→ [data : y + 3]. This means that the
translation will convert the second command to z:= y + 3, which has the same
effect on the program variable z as the original commands. So indirect updates
to program variables through the heap will be properly tracked.

Also, freeing memory cells can decrease the size of lists in the heap. To incor-
porate reasoning about the length of lists, we must talk about how we translate
weakening edges in the ATS.
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Translating Weakening Edges. Weakening edges are added by the shape
analysis to the abstract transition system for two reasons. First, they are used to
rewrite abstract states into a form to which we can apply one of the postcondition
rules. For example, to execute x := [a.next] from the state

∃k. lsk(a,NULL) ∧ a �= NULL

we must first notice that this formula implies

∃y, k. a !→ [next : y] ∗ lsk(y,NULL) ∧ a �= NULL

We can then apply the third postcondition rule to this state to get

∃y, k. a !→ [next : y] ∗ lsk(y,NULL) ∧ a �= NULL ∧ x = y

The other use of weakening edges is to show that certain formulas are invariant
over executions of a loop. For example, suppose we start in a state

∃k. lsk(a,NULL)

And after executing some commands, reach the state

∃x, k. a !→ [next : x] ∗ lsk(x,NULL)

If both these states are associated with the same program location, then we
have found a loop invariant since the second formula implies the first. This
fact is recorded in the ATS by connecting the second state to the first with a
weakening edge.

In both cases, we need to record information about the quantified variables
so that our arithmetic analysis can discover arithmetic relationships involving
these quantified variables. As with postcondition edges, we do this by recording
the witnesses for the quantified variables.

Recall that we have a weakening edge in the ATS only if ∃+x. P 
 ∃+y. Q.
Our goal then is to find an arithmetic command c′ such that for any P ′, Q′, if
{P ′}c′{Q′} then ∃+x. P ∧P ′ 
 ∃+y. Q∧Q′. We generate such a c′ by analyzing the
proof of entailment between ∃+x. P and ∃+y. Q. As we are interested in tracking
the values of existentially quantified variables, it is the rules for existential quan-
tifiers that end up being important for generation of the arithmetic commands.
In Figure 4 we present the standard rules for introduction and elimination of ex-
istential quantifiers, modified to produce the appropriate arithmetic commands.
The full details of entailment for our fragment of separation logic are omitted
for space reasons, but the system is similar to that described in [3].

The notation P 
 Q〈c〉 is used to mean that P entails Q and c is the arith-
metic command that is a quantifier-free approximation of this entailment. For
existential elimination, we simply record the new constant that was introduced
for reasoning about the quantified variable on the left. We also nondetermin-
istically assign to the constant once we are done with it to ensure that it will
not appear free in any invariants the arithmetic tool produces. For existential
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E-Elim

∃�y. P [a/x] � ∃�z. Q 〈c′〉
∃x, �y. P � ∃�z. Q 〈a:=x; c′; a:= ?〉

E-Intro

∃�y. P � ∃�z. Q[t/x] 〈c′〉
∃�y. P � ∃x, �z. Q 〈x:= t; c′〉

Fig. 4. Rules for generating arithmetic commands from proofs for weakening edges

introduction, we record the witness used to establish the existential formula on
the right. We do this by having our entailment checker return a witness in ad-
dition to returning a yes/no answer to the entailment question. This is possible
because the entailment procedure sometimes proves existentials constructively.
When entailment is proved without finding a witness (e.g. as happens when un-
rolling an inductive definition with a quantified body), t in the premise is a fresh
logical constant, and so x:= t is equivalent to x:= ?.

As an example, suppose we want to generate arithmetic commands that
model the entailment ∃k. lsk(a,NULL) ∧ a �= NULL 
 ∃x, k. a !→ [next : x] ∗
lsk(x,NULL)∧a �= NULL. We first introduce a new constant b for the existential
on the left, resulting in the formula lsb(a,NULL) ∧ a �= NULL and the arith-
metic command b:= k. We then unroll the list segment predicate according to
the definition, obtaining ∃x. a !→ [next : x]∗ lsb−1(x,NULL)∧a �= NULL. Since x
arises due to the expansion of a definition, we use nondeterministic assignment in
the generated command producing x:= ?. We then apply existential elimination
again, obtaining a !→ [next : c] ∗ lsb(c,NULL) ∧ a �= NULL and c:=x. Finally,
we prove the formula on the right side of the entailment, obtaining witnesses for
the existentially quantified variables x (witness is c) and k (witness is b−1). We
then “forget” about the constants we added with the commands b:= ?; c:= ?.
Thus, the full sequence of commands for this entailment is

b := k; x := ?; c := x; k := b - 1; b := ?; c := ?

The updates to k here reflect the fact that, at this point in the execution, the
length of the list predicate being tracked by the shape analysis has decreased in
size by 1. Due to the commands b := ? and c := ?, any quantifier free invariant
that holds after executing this sequence of commands will be expressed without
reference to b and c.

4.2 Precision

We can get a sense for the precision of this analysis by examining the places
in which nondeterministic assignment is used to over-approximate a command.
One such place is the rule for allocation. This should not concern us as the goal
is to use these arithmetic programs to discover properties of the integer values
involved in the program, whereas allocation returns a pointer value, which the
shape analysis is already capable of reasoning about. We can use this observation
to optimize our approach. If we keep track of type information we can ensure
that we only generate arithmetic commands when those commands result in the
update of integer-valued variables.
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The other place where nondeterministic assignment occurs is in the rule for
existential elimination when the entailment checker does not return a witness.
This is actually the source of all imprecision in the arithmetic translation. It can
happen that an integer value such as 3 is stored in a list element, resulting in
the state

∃k, d. x !→ [data : 3, next : k] ∗ lsd(k,NULL)

If we then abstract this state to ∃d. lsd(x,NULL), we lose the information about
the value stored in the data field of the heap cell at x. If this field is accessed
again, it will be assigned a nondeterministic value by the shape analysis. To
remedy this would require a notion of refinement on the shape analysis side
of the procedure. And indeed our technique would interact well with such a
shape refinement system. One could interleave arithmetic refinement and shape
refinement, calling one when the other fails to disprove a counterexample. We
leave development of such a system for future work.

4.3 Combined Analysis

Using the translation of individual edges described above, we can define the
translation of ATSs and the result of the combined analysis:

Definition 4 (Translated arithmetic program). For an ATS A =
(Q,L, i, � ), the translated arithmetic program Tr(A) = (Q,L′, i, �′ ) is
an ATS defined such that if q

c� q′ and c′ is the arithmetic command associated
with this edge, then we have q

c′�′ q′.

Definition 5 (Combination). Given an ATS A = (Q,L, ι, � ) and its
well-formed translation Tr(A) = (Q,L′, ι, �′ ), where L′(q) is a pure for-
mula for each q, the combination of A and Tr(A) is defined to be the ATS
Â = (Q, L̂, ι, � ) where if L(q) = ∃+z. S and L′(q) = S′ then L̂(q) = ∃+z. S ∧ S′.

Note that false ∧ " is equivalent to false. So for an abstract state where the
shape analysis obtained", indicating a potential safety violation, if an arithmetic
analysis can prove the state is unreachable (has invariant false), then it is also
unreachable in the combined analysis.

5 Soundness

The soundness result hinges on the fact that the translation for commands de-
fined in Section 4 results in a quantifier-free approximation.

Theorem 1. For each postcondition rule in Figure 3 the associated arithmetic
command is a quantifier-free approximation of the original command.

We also use the fact that the translation for weakening edges produces a
quantifier-free approximation.

Theorem 2. If ∃+x. P 
 ∃+y. Q 〈c〉 and {P ′} c {Q′} then ∃+x. P∧P ′ 
 ∃+y. Q∧Q′.
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Proofs of these theorems can be found in an expanded version of this paper [21].
Given these results, we can show that invariants discovered based on analyzing
the arithmetic program can be soundly conjoined to the formulas labeling states
in the ATS.

Theorem 3 (Soundness). For an ATS A, suppose that we have run an arith-
metic analysis on Tr(A) and obtained (pure) invariants at each program point.
Then Â is well-formed.

Proof. This follows directly from the fact that the c′ commands are QFAs of
the original edges. Let q

c� q′ be any edge in Â. Suppose L(q) = ∃+x. P and
L(q′) = ∃+y. Q. Then L̂(q) = ∃+x. P ∧ L′(q) and L̂(q′) = ∃+y. Q ∧ L′(q′). We must
show that the following triple holds

{∃+x. P ∧ L′(q)} c {∃+y. Q ∧ L′(q′)}

Let c′ be the arithmetic command associated with this edge in A′. Since
{L′(q)} c′ {L′(q′)} and c′ is a QFA of {∃+x. P} c {∃+y. Q}, our goal follows
immediately from the definition of QFA.

6 Experimental Results

We have developed a preliminary implementation of our analysis and tested it on
a number of programs where memory safety depends on relationships between
the lengths of the lists involved. For example, a function may depend on the fact
that the result of filtering a list has length less than or equal to that of the original
list. As arithmetic back-ends we have used OctAnal [23], Blast [19], and ARMC
[24]. Preliminary results show two trends. First, there is no tool among those we
tried that is strictly stronger than the others. That is, there is no tool among
these three that is able to prove memory safety for all of our sample programs.
However each program was able to be proven by some tool. In such cases, the
ability to choose any arithmetic tool allows one to prove the greatest number
of programs. Secondly, the performance characteristics of the tools are highly
dependent on the type of input they are given. As our examples are all relatively
small, OctAnal outperformed the tools based on model checking. However, for
large programs that contain many arithmetic commands which are not relevant
to proving memory safety, we would expect the relative performance of model
checking tools to improve, as these tools only consider the variables needed to
prove the property of interest. More experiments are necessary to fully explore
the advantages and disadvantages of various arithmetic provers in the context
of our combination procedure.

7 Related Work

The work presented here describes a way of lazily combining two abstract inter-
preters: the shape analysis produces abstracted versions of the input program for
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which an arithmetic analysis is then called. More eager combination approaches
have been previously discussed in the literature (e.g. [11,17,18]).

Recent work [6] has described a method in which the TVLA [27] shape anal-
ysis is lazily combined with an arithmetic analysis based on Blast. This work
reverses the strategy that we propose: they are lazily providing some additional
spatial support for what is primarily an arithmetic analysis, whereas we are lazily
providing additional arithmetic support for a shape analysis. Which approach
is better depends on the program in question. Programs that are concerned pri-
marily with integer calculations, but occasionally use a heap data structure may
be better analyzed with the approach in [6]. Programs which have as their main
function manipulation of heap data, or for which memory safety must be verified,
would be better analyzed with our approach.

Another related approach is the shape analysis in [22], which uses predicate
abstraction to retain facts about integer values during widening, but does not
provide a predicate inference scheme. Thus, these predicates must be supplied
by the user. Since our method uses a separate arithmetic tool to perform the
refinement, we inherit any predicate inference that tool may perform.

Connections between shape and arithmetic reasoning are exploited through-
out the literature (e.g. [1,15,10,8,29,14]). Also, people have looked at ways of
combining abstract interpreters over different domains [11,17,18]. For example,
one could imagine combining the shape analysis in [22] or [13] with an abstract
interpretation over the domains of convex polyhedra [12] or octagons [23]. Our
approach has the advantage of allowing the use of any of these abstract domains
as well as arithmetic analyses that are not based on abstract interpretation. Fur-
thermore, given the way in which information about quantified values is shared
between the analyses, it is not clear that our approach can be seen as an instance
of one of the standard constructions for combinations of abstract domains.

Other shape analyses are known to support arithmetic reasoning, but typically
in only very limited ways that allow them to use naive arithmetic widening steps.
For example, the shape analysis described in [4] provides a combined analysis
that maintains arithmetic information. In this case the set of arithmetic vari-
ables in the abstract domain is extremely limited: each list-segment in the shape
analysis invariant is associated with an arithmetic variable. Furthermore, only
one inequality per variable is allowed, as the inequalties only occur between a
variable and its “old version”. Given these restrictions, the widening operation in
[4] can be naive in terms of its handling of arithmetic. Our refinement-based pro-
cedure uses arbitrary arithmetic analysis tools to strengthen the shape analysis
invariant being inferred, meaning that we have access to the most sophisticated
widening operations available. More arithmetic is supported in [9], but also with
an aggressive widening since the arithmetic reasoning is targeted to within a
loop body.

Another combination of shape and arithmetic is given in [26], which presents
a means of reasoning about size properties of data structures tracked via a shape
analysis based on reference counting and must-alias information.
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A number of approaches based on combining a numerical analysis with a shape
analysis based on shape graphs (such as [27]) have been explored. Examples
include [16] and [28]. However ours is the first attempt to carry out such general
arithmetic reasoning in a shape analysis where the abstract domain consists of
separation logic formulas.

Our method makes use of a notion of generalized path (i.e. a path through the
program where the number of unrollings through some loops are unspecified).
Uses of this concept can be found elsewhere in the literature (e.g. [20,5]). In
particular, our work can be seen as fitting nicely into the framework proposed
in [5]. As in this work, we use a refinement procedure based upon analyzing
generalized paths. However, our work is unique in that the paths arise due to
a shape analysis based on abstract interpretation rather than a software model
checker. Furthermore, the way in which quantifiers in the generalized path are
expressed as variables in the translated path is not present in this other work.

8 Conclusion

Shape analyses are typically imprecise in their support for numerical reasoning.
While an analysis that fully tracks correlations between shape and arithmetic in-
formation would typically be overkill, we often need a small amount of arithmetic
information in shape analysis when arithmetic and spatial invariants interact.
We have proposed a lazy method of combining a fixed shape analysis with an
arbitrary arithmetic analysis. This method treats shape and arithmetic informa-
tion independently except for key relationships identified by the shape analysis.
Crucially, these relationships may be over values which are only present in the
abstract states. When potentially spurious counterexamples are reported by our
shape analysis, our method constructs a purely arithmetic program and uses
available invariant inference engines as a form of refinement. This new adaptive
analysis is useful when a proof of memory safety or assert-validity requires deep
spatial reasoning with targeted arithmetic support.
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Abstract. Airbus has started introducing abstract interpretation based static 
analysers into the verification process of some of its avionics software products. 
Industrial constraints require any such tool to be extremely precise, which can 
only be achieved after a twofold specialisation process: first, it must be  
designed to verify a class of properties for a family of programs efficiently; sec-
ond, it must be parametric enough for the user to be able to fine tune the analy-
sis of any particular program of the family. This implies a close cooperation  
between the tool-providers and the end-users. Astrée is such a static analyser: it 
produces only a small number of false alarms when attempting to prove the ab-
sence of run-time errors in control/command programs written in C, and pro-
vides the user with enough options and directives to help reduce this number 
down to zero. Its specialisation process has been reported in several scientific 
papers, such as [1] and [2]. Through the description of analyses performed with 
Astrée on industrial programs, we give an overview of the false alarm reduction 
process from an engineering point of view, and sketch a possible customer-
supplier relationship model for the emerging market for static analysers. 

Keywords: avionics software, verification, abstract interpretation, static analy-
sis, run-time errors, Astrée. 

1   Introduction 

Verification activities are responsible for a large part of the overall costs of avionics 
software developments. Considering the steady increase of the size and complexity of 
this kind of software, classical Validation and Verification processes, based on mas-
sive testing campaigns and complementary intellectual analyses, hardly scale up 
within reasonable costs. Therefore, Airbus has decided to introduce formal proof 
techniques providing product-based assurance into its own verification processes. 

Available formal methods include model checking, theorem proving and abstract 
interpretation based static analysis ([3], [4], [5]). The items to be verified being final 
products, i.e. source or binary code, model checking is not considered relevant. Some 
theorem proving techniques have been successfully introduced to verify limited soft-
ware subsets. However, to prove properties of complete real-size programs with these 
techniques does not seem to be within the reach of software engineers yet. 

On the other hand, abstract interpretation based static analysers aiming at proving 
specific properties on complete programs have been shown to scale to industrial 
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safety-critical programs. Among these properties, one is to quote worst-case execu-
tion time assessment ([7]), stack analysis, accuracy of floating-point computations 
([8]), absence of run-time errors, etc. Moreover, these analysers are automatic, which 
is obviously a requirement for industrial use. 

Yet, however precise any such tool may be, a first run of it on a real-size industrial 
software will typically produce at least a few false alarms. For safety and industrial 
reasons, this number of false alarms should be as small as possible, and an engineer-
ing user should be able to be reduce it down to zero by a new fine tuned analysis.  
Indeed, the fewer false alarms are produced, the fewer costly, time-consuming and er-
ror-prone complementary intellectual analyses are necessary. Hence the need for both 
specialised and parametric tools outputting comprehensible diagnoses, which can only 
be achieved through a close cooperation between the tool-providers and the end-users. 

The Astrée static analyser has proved to meet these requirements. In this paper, we 
first give an overview of this tool and its specialisation process. Then, we describe the 
analysis process: how we run the tool, how we analyse the resulting alarms, and how 
we tune the parameters of the tool to reduce the number of false alarms. Next, we  
illustrate the alarm reduction process with a report on the analysis of a real-size indus-
trial control/command program, and an example of alarm analysis for another avion-
ics program. Finally, we assess the analysis results, and state Airbus’s position on the 
perspectives for a tool such as Astrée within a possible new kind of customer-supplier 
relationship. 

2   The Astrée Analyser 

Astrée is a parametric Abstract Interpretation based static analyser that aims at prov-
ing the absence of RTE (Run-Time Errors) in programs written in C. 

The underlying notion has been defined in several papers, such as [2, §2]: “The ab-
sence of runtime errors is the implicit specification that there is no violation of the C 
norm (e.g., array index of bounds), no implementation-specific undefined behaviours 
(e.g., floating-point division by zero), no violation of the programming guidelines 
(e.g., arithmetic operators on short variables should not overflow the range [-
32768,32767] although, on the specific platform, the result can be well-defined 
through modular arithmetics).” 

As explained in [1, §3.1], this tool results from the refinement of a more general-
purpose analyser. It has been specialised in order to analyse synchronous con-
trol/command programs very precisely, thanks to specific iterator and abstract do-
mains described in [1]. This is the result of the “per program family specialisation 
process”. Furthermore, the parametric nature of Astrée makes it possible for the user 
to specialise it for any particular program within the family. 

3   The Alarm Reduction Process 

Even for a program belonging to the family of synchronous control/command pro-
grams, the first run of Astrée will usually produce false alarms to be further investi-
gated by the industrial user. The user must tune the tool parameters to improve the 
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precision of the analysis for a particular program. This final “per program specialisa-
tion process” matches the adaptation by parameterisation described in [1, §3.2]. 

3.1   The Need for Full Alarm Investigation 

We do not use Astrée to search for possible run-time errors; we use it in order to 
prove that no run-time error can ever occur. As a consequence, every single alarm has 
to be investigated. 

Besides, every time Astrée signals an alarm, it assumes the execution of the ana-
lysed program to stop whenever the precondition of the alarm is satisfied, because the 
program behaviour is undefined in case of error, e.g. an out-of-bounds array assign-
ment might destroy the code1. Thus, any satisfiable alarm condition may “hide” more 
alarms. 

Let us give a simple example with variable i of type int in interval [0,10]: 

1      int t[4]; 

2      int x = 1; 

3      int y; 

4      t[i] = 0; 

5      y = 1/x; 

Astrée reports a warning on line 4 (invalid dereference), but not on line 5. How-
ever, executing instruction 4 with i>3 will typically overwrite the stack, e.g. set vari-
able x to 0, so that instruction 7 may produce a division by zero. Since the execution 
is assumed to stop whenever i>3 on line 4, Astrée assumes i to be in interval [0,3] 
from line 4. 

That is the reason why exhaustive alarm analysis is required: every false alarm 
should disappear by means of a more precise automated analysis, or, failing that, be 
proved by the user to be impossible in the real environment of the program. 

3.2   How to Read an Alarm Message 

The following alarm will be discussed later in this paper: 

P3_A_3.c:781.212-228:: 

[call#APPLICATION_ENTRY@449:loop@466>=4:call#SEQ_C4_10_
P@673:call#P_3_A_3_P@118:]: 

WARN: float arithmetic range [-inf, inf] not included 
in [-3.40282e+38, 3.40282e+38] 

Let us explain how this message reads. Astrée warns that some simple precision 
floating-point computation may yield a result that cannot be represented in the type 

                                                           
1 For a complete explanation, refer to [6, §4.1]. 
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float. It points precisely to the operation that may cause such a run-time error: line 
781 of the (pre-processed) file P3_A_3.c, between columns 212 and 2282: 

_R1= PADN10 - X3A3Z15 ; 

where variables _R1, PADN10 and X3A3Z15 have type float. 
All other information describe the context of the alarm. The analysis entry point3 is 

the APPLICATION_ENTRY function, defined on line 449 of some file. This function 
contains a loop on line 466. From the fourth loop iteration, at least in the abstract se-
mantics computed by the tool, there exists an execution trace such that: 

- function SEQ_C4_10_P is called on line 673; 
- SEQ_C4_10_P, defined in some file, calls function P_3_A_3_P on line 118 of 

this file; 
- the result of the floating-point subtraction of the operands PADN10 and 

X3A3Z15 does not range in [-3.40282e+38, 3.40282e+38]. 

Of course, this does not necessarily mean there exists such an erroneous execution 
in the concrete semantics of the program: one is now to address this issue via a dedi-
cated method. 

3.3   Dealing with Alarm Investigation 

As explained above, every alarm message refers to a program location in the pre-
processed code. It is usually useful to get back to the corresponding source code, to 
obtain readable context information. 

When Astrée fails to prove an operation free from run-time errors, it outputs an 
alarm message, together with a brief explanation of the reason why the alarm was 
raised. Most such alarm conditions are expressed in terms of intervals. To investigate 
them, one makes use of the global invariant of the most external loop of the program, 
which is available in the Astrée log file (provided the –-dump-invariants analy-
sis option is set). Considering every global variable processed by the operation 
pointed to by an alarm, one may extract the corresponding interval, which is a sound 
over-approximation of the range of this variable4. The user may also use the 
__ASTREE_log_vars((V1,...,Vn)); directive when the ranges of local vari-
ables are needed. 

Then, we have to go backwards in the program data-flow, in order to get to the 
roots of the alarm: either a bug or insufficient precision of the automated analysis. 
This activity can be quite time-consuming. However, it can be made easier for a con-
trol/command program that has been specified in some graphical stream language 
such as SAO, SCADETM or SimulinkTM, especially if most intermediate variables are 
declared global. The engineering user can indeed label every arrow representing a 
                                                           
2 Line numbers start from 1, whereas column numbers start from 0. 
3 The user provides Astrée with an entry point for the analysis, by means of the --exec-fn 

option. Usually, this is the entry point of the program. 
4 If the main loop is unrolled N times (to improve precision), the N first values of variables are 

not included in the global invariant. The __ASTREE_log_vars((V
1
,...,V

n
)); direc-

tive is needed to have Astrée output these values. However, the global invariant is enough to 
deal with alarms occurring after the Nth iteration. 
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global variable with an interval, going backwards from the alarm location. The origin 
of the problem is usually found when some abrupt inexplicable increase in variable 
ranges is detected. 

At this point, we know whether the alarm originated in some local code with lim-
ited effect or in some definite specialised operator (i.e., function or macro-function). 
Indeed, an efficient approach is first to concentrate on alarms in operators that are 
used frequently in the program, especially if several alarms with different stack con-
texts point to the same operators: such alarms will usually affect the analysis of the 
calling functions, thus raising more alarms. For control/command programs with a 
fairly linear call-graph, it can be also quite profitable to pick alarms originating early 
in the data-flow first. To get rid of such alarms may help eliminate other alarms origi-
nating later in the data-flow. 

Once we have found the roots of the alarm, we will usually need to extract a re-
duced example to analyse it. Therefore, we: 

- write a small program containing the code at stake; 
- build a new configuration file for this example, where the input variables V are 

declared volatile by means of the __ASTREE_volatile_input((V 
[min, max])); directive. The variable bounds are extracted from the global 
invariant computed by Astrée on the complete program; 

- run Astrée on the reduced example (which takes far less time than on a complete 
program). 

Such a process is not necessarily conservative in terms of RTE detection. Indeed, 
as the abstract operators implemented in Astrée are not monotonic, an alarm raised 
when analysing the complete program may not be raised when analysing the reduced 
example. In this case, this suggests (though does not prove) that the alarm under in-
vestigation is probably false, or that the reduced example is not an actual slice of the 
complete program with respect to the program point pointed to by the alarm. 

However, this hardly ever happens in practice: every alarm raised on the complete 
program will usually be raised on the reduced example as well. Furthermore, it is 
much easier to experiment with the reduced example: 

- adding directives in the source to help Astrée increase the precision of the analysis; 
- tuning the list of analysis options; 
- changing the parameters of the example itself to better understand the cause of 

the alarm. 

Once a satisfactory solution has been found on reduced examples, it is re-injected 
into the analysis of the complete program: in most cases, the number of alarms de-
creases. 

4   Verifying a Control/Command Program with Astrée 

Let us illustrate this alarm reduction process for a periodic synchronous con-
trol/command program developed at Airbus. Most of its C source code is generated 
automatically from a higher-level synchronous data-flow specification. Most generated 
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C functions are essentially sequences of calls of macro-functions coded by hand. Like 
in [1, §4], it has the following overall form: 

declare volatile input, state and output variables; 

initialise state variables; 

loop forever 

read volatile input variables, 

compute output and state variables, 

write to volatile output variables; 

wait for next clock tick; 

end loop 

This program is composed of about 200,000 lines of (pre-processed) C code proc-
essing over 10,000 global variables. Its control-flow depends on many state variables. 
It performs massive floating-point computations and contains digital filters. 

Although an upper bound of the number of iterations of the main loop is provided 
by the user, all these features make precise automatic analysis (taking rounding errors 
into account) a grand challenge. A general-purpose analyser would not be suitable. 

Fortunately, Astrée has been specialised in order to deal with this type of pro-
grams: only the last step in specialisation (fine tuning by the user) has to be carried 
out. The automated analyses are being run on a 2.6 GHz, 16 Gb RAM PC. Each 
analysis of the complete program takes about 6 hours. 

First Analysis 

Program Preparation 
The program is being prepared in the following way: 

- some assembly functions are recoded in C or removed; 
- compiler built-in functions are redefined: 

double fabs(double x) { 

if (x>=0.) return x; else return (-x); 

} 

double sin(double x) { 

double y; 

__ASTREE_known_fact((y>=-1.0)); 

__ASTREE_known_fact((y<=1.0)); 

return y; 

} 

double cos(double x) { 

double y; 
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__ASTREE_known_fact((y>=-1.0)); 

__ASTREE_known_fact((y<=1.0)); 

return y; 

} 

volatile void waitforinterrupt(void) { 

__ASTREE_wait_for_clock(()); 

} 

In this way, we provide Astrée with a model of external functions. On the one hand, the 
ASTREE_known_fact((...)); directive helps Astrée bound the values computed by 
trigonometric functions. On the other hand, the __ASTREE_wait_for_clock(()); 
directive delimits the code executed on each iteration of the main loop. Its counterpart is the 
__ASTREE_max_clock((3600000)); directive in the analysis configuration file, 
which provides Astrée with an upper bound of the number of iterations of this loop. 

Finally, the analysis configuration file contains __ASTREE_volatile_input((V 
[min, max])); directives describing the ranges of all the volatile inputs of the  
program. 

Analysis Options 

Table 1. List of options 

Option Meaning 

--config-sem prog.config 
Analysis configuration file. 

--exec-fn APPLICATION_ENTRY 
Entry point of the program. 

--inner-unroll 15 
Inner loops5 are unrolled at most 15 
times (to improve precision). 

--dump-invariants Prints the invariant of the most ex-
ternal loop of the program, i.e. the 
ranges of all global variables. 

 

Results 
Under the above conditions, this first analysis produces 467 alarms. 

Let us take a closer look at the three following messages, the first of which has 
been described earlier: 

P3_A_3.c:781.212-228:: 

[call#APPLICATION_ENTRY@449:loop@466>=4:call#SEQ_C4_10_
P@673:call#P_3_A_3_P@118:]: 

WARN: float arithmetic range [-inf, inf] not included 
in [-3.40282e+38, 3.40282e+38] 

                                                           
5 The main loop is unrolled 3 times (default). 
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P3_A_3.c:781.355-362:: 

[call#APPLICATION_ENTRY@449:loop@466>=4:call#SEQ_C4_10_
P@673:call#P_3_A_3_P@118:if@781=true:]: 

WARN: float arithmetic range [-inf, inf] not included 
in [-3.40282e+38, 3.40282e+38] 

P3_A_3.c:781.409-416:: 

[call#APPLICATION_ENTRY@449:loop@466>=4:call#SEQ_C4_10_
P@673:call#P_3_A_3_P@118:if@781=true:]: 

WARN: float arithmetic range [-inf, inf] not included 
in [-3.40282e+38, 3.40282e+38] 

Floating-point overflow is being suspected. Let us show line 781 of the pre-
processed P3_A_3.c file: 

{static NUM _R1;static INT _R2;static BOO _R3; if ( 
BLBPO ) { _R1=0; _R2=0; if ( B3A3Z09 )  X3A3Z15 = 
PADN10 ; else  X3A3Z15 = SYNC_11_E2 ; } else { if ( 
B3A3Z09  ^ _R3) { if ( B3A3Z09 ) { _R2= SYNC_11_E7 ; 
_R1= PADN10 - X3A3Z15 ; } else { _R2= SYNC_11_E4 ; _R1= 
SYNC_11_E2 - X3A3Z15 ; } } else { if (_R2>0) _R2=_R2-1; 
if ( B3A3Z09 )  X3A3Z15 =( PADN10 -(_R1*_R2/ SYNC_11_E7 
)); else  X3A3Z15 =( SYNC_11_E2 -(_R1*_R2/ SYNC_11_E4 
)); } } _R3= B3A3Z09 ;} 

We emphasize the three program locations using bold type. Looking up in the 
source file, we can see this is an expansion of macro-function SYNC: 

SYNC(11,PADN10,SYNC_11_E2,B3A3Z09,SYNC_11_E4,BLBPO,SYNC
_11_E7,X3A3Z15) 

From constant definitions and global variable ranges, we can find the values or in-
tervals of every variable occurring in the computation. 

No code is generated for “11”, a macro-function occurrence number. PADN10 is 
an intermediate variable used in several contexts, so its global interval is of no use. 
Yet, looking at the source code, we easily notice that this variable is no more than a 
copy of global variable X3A3Z01, the range of which has been computed by Astrée : 

X3A3Z01 in [-1e+06, 1.41851e+06] 

The SYNC_11_E2 float constant has value 0. All other inputs of the SYNC 
macro-function are integer constants (with value 17) or Booleans. Astrée has also 
output an interval for the result of the macro-function: 

X3A3Z15 in [-3.40282e+38, 3.40282e+38] 

Unsurprisingly, considering overflow is suspected, that is the largest possible range 
for a simple-precision floating-point number. 
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In order to analyse these alarms, we may wonder why the X3A3Z01 input has so 
large a range. Looking a few lines backwards in the data-flow, we notice its interval 
depends upon the analysis by Astrée of another occurrence of the SYNC macro-
function: 

SYNC(14,X3A3Z09,SYNC_14_E2,BAPRO2U,SYNC_14_E4,BLBPO,SYN
C_14_E7,X3A3Z01) 

INV(1,BLBPO,PADB12) 

ET(1,PADB12,BIMPACC,PADB11) 

MEM_N(19,X3A3Z01,PADB11,PADN10) 

CONF1_I(11,BLSOL,CONF1_11_E2,CONF1_11_E3,BLBPO,PADB15) 

INV(2,PADB15,B3A3Z09) 

SYNC(11,PADN10,SYNC_11_E2,B3A3Z09,SYNC_11_E4,BLBPO,SYNC
_11_E7,X3A3Z15) 

We can look up the range of the input of this first SYNC in the global invariant: 

X3A3Z09 in [-4966.87, 6738.46] 

The analysis of this first SYNC has multiplied the ranges between the X3A3Z09 
input and the X3A3Z01 output by a factor of 200. The factor is even higher for the 
second SYNC. Building more SYNC-based reduced examples, we easily convince our-
selves that the analysis of this macro-function causes variable ranges to blow up. The 
larger the input range, the larger the factor. As a consequence, several occurrences of 
it in the data-flow will eventually cause alarms, hence maximal simple-precision 
range, hence more alarms when the outputs are used elsewhere. 

For once, Astrée does not implement a dedicated abstract domain to handle this 
type of code. There is no way the user can make the analysis more precise. This is 
where support from the tool-provider is needed. 

From the reduced example extracted by Airbus, the Astrée development team 
found out that the frequency of widening steps was too high for this macro-function to 
be analysed precisely enough. They delivered a new version of the tool implementing 
new options, for the user to be able to tune widening parameters. In particular, the 
new --fewer-widening-steps-in-intervals <k> option makes Astrée 
widen unstable interval constraints k times less often. On the reduced examples, all 
alarms disappear with k=2. 

4.1   Improving the Precision of the Analysis 

The --fewer-widening-steps-in-intervals 2 option is being added to 
the list of analysis options. All SYNC-related alarms disappear, and we get 327 re-
maining alarms. 

We notice that many calling contexts of the widely used linear two-variable inter-
polation function G_P give rise to alarms within the source code of this function. 
Here is an example: 
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g.c:200.8-55:: 

[call#APPLICATION_ENTRY@449:loop@466>=4:call#SEQ_C1_P@7
11:call#P_2_7_1_P@360:call#G_P@977:if@132=false:if@137=
true:if@165=false:if@169=false:loop@177=2:]: 

WARN: float division by zero [0, 45] 

To understand the problem and be able to tune the analysis parameters, one is to 
build a reduced example from function P_2_7_1_P. The following code is being ex-
tracted from the original function: 

void P_2_7_1_P () { 

PADN13 = fabs(DQM); 

PADN12 = fabs(PHI1F); 

X271Z14 = G_P(PADN13, PADN12, G_50Z_C1, G_50Z_C2, & 
G_50Z_C3 [0][0], & G_50Z_C4 [0][0], ((sizeof( 
G_50Z_C1 )/sizeof(float))-1), (sizeof( G_50Z_C2 
)/sizeof(float))-1); 

} 

where: 

- fabs returns the module of a floating-point number; 
- DQM,  PHI1F, PADN13, PADN12 and X271Z14 are floating-point numbers; 
- G_50Z_C1, G_50Z_C2, G_50Z_C3 and G_50Z_C4 are constant interpolation 

tables. 

DQM and PHI1F are declared as volatile inputs in the analysis configuration file. 
Their ranges are extracted from the global invariant computed by Astrée on the full 
program: 

DQM in [-37.5559, 37.5559] 

PHI1F in [-199.22, 199.22] 

On this reduced example, we get the same alarms as on the full program. All of 
them suspect an overflow or a division by zero in the last instruction of the G_P func-
tion: 

return(Z2*(Y2-C2[R3])+Z1*(C2[G2]-Y2))/(C2[G2]-C2[R3]); 

However, when reading the code of G_P, one notices that G2=R3+1 always holds 
at this point. Moreover, in this reduced example, the interpolation table G_50Z_C2 is 
such that G_50Z_C2[i+1]-G_50Z_C2[i]>1 for any index i. Hence, these 
alarms are false alarms; we must now tune the analysis to get rid of them. 

To do so, we have to make Astrée perform a separate analysis for every possible 
value of R3, so it can check no RTE can possibly happen on this code. The way to do 
so is to ask for a local partitioning on R3 values between: 

- the first program point after which R3 is no longer written; 
- the first program point after which R3 is no longer read. 
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Let us implement this, using Astrée partitioning directives: 

__ASTREE_partition_begin((R3)); 

G2=R3+1; 

Z1=(X1-C1[R2])*(*(C4+(TAILLE_X)*R3+R2)) + 
(*(C3+(TAILLE_X+1)*R3+R2)); 

Z2=(X1-C1[R2])*(*(C4+(TAILLE_X)*G2+R2)) + 
(*(C3+(TAILLE_X+1)*G2+R2)); 

return(Z2*(Y2-C2[R3])+Z1*(C2[G2]-Y2))/(C2[G2]-C2[R3]); 

__ASTREE_partition_merge(()); 

This hint makes the alarms disappear on the reduced example. 

4.2   An Even More Precise Analysis 

The analysis of the whole program is being re-launched after the partitioning direc-
tives have been inserted in the G_P function. All alarms within the G_P function dis-
appear, and many alarms depending directly or indirectly on variables written after a 
call of function G_P disappear as well: the overall number of alarms boils down to 11. 

Here is one of them: 

PB_9_6.c:610.214-254:: 

[call#APPLICATION_ENTRY@449:loop@466>=4:call#SEQ_C3_2_P
@501:call#P_B_9_6_P@304:]: 

WARN: float division by zero [0, 131070] 

This alarm occurs within the code of the EANCAL_ANI6_0 macro-function. We 
use bold type to emphasize the program location which is referred to: 

#define EANCAL_ANI6_0(NN,_S1) {\ 

... 

if ((_REG_ANI6_PM1 < 0x19) || (_REG_ANI6_PM2 < 0x19))\ 

  {\ 

     BOVFANI6BIS0 = TRUE;\ 

     _S1=9216.0;\ 

  }\ 

else\ 

  {\ 

     BOVFANI6BIS0 = FALSE;\ 

     _S1=460800.0/(_REG_ANI6_PM1 + _REG_ANI6_PM2);\ 

  }\ 

}; 
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where variables _REG_ANI6_PM1 and _REG_ANI6_PM2 of type unsigned 
int are declared volatile inputs in the configuration file of the analysis. This is obvi-
ously not a false alarm.  

4.3   Results 

On this control/command program, it has been possible for a non-expert user from in-
dustry to reduce the number of alarms down to zero. 

5   Verifying Another Kind of Avionics Programs with Astrée 

We will now give an example of alarm analysis on another synchronous program, 
where the need for specialisation is obvious. This program is not quite a con-
trol/command program. It lies on the boundary of the family of programs for which 
Astrée has been specialised. Nevertheless, the analyser is still precise on this program, 
raising few false alarms. 

This avionics software product is meant to format data from input media to output 
media. It is composed of basic functions, and its control flow is defined by constant 
configuration tables. Unlike the previous program, it performs very limited floating-
point computations, but processes many structured data types. 

5.1   The Alarm 

The alarm message to be further investigated is the following: 

mess_conv.c:1058.29-85:: 

[call#main@8483:call#SQF_Se_Gateway@8501:loop@591=1:cal
l#XMM_Se_Message@612:call#XMC_Se_ReceiveUnrefreshMess@8
98:loop@1046>=2:]: 

WARN: unsigned int->unnamed enum conversion range [0, 
4294967295] not included in [0, 66] 

The alarm occurs on line 1058 of the pre-processed mess_conv.c file, which we 
emphasize in bold type below: 

1: if (IdFctConv < GST_Ct_T_STRUCT_GW_SIZE.NB_GW) { 

2:   P_ID_Fct_Conv = (const XMT_Ts_Messages *) 

                          &XMC_Ct_T_TABLE_GW[IdFctConv]; 

3:   Nb_Conv = P_ID_Fct_Conv->Conv_Number; 

4:   Index_1ere_Conv = P_ID_Fct_Conv->Begin_List_Index; 

5:   if ((Index_1ere_Conv < GST_Ct_T_STRUCT_GW_SIZE.NB_GW_LIST) 

        && ((Index_1ere_Conv + (TCD_Td_uInt32) Nb_Conv) 

           <= GST_Ct_T_STRUCT_GW_SIZE.NB_GW_LIST)) { 

6:     for (cpt_nb_conv = 0; 
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       cpt_nb_conv < (TCD_Td_uInt32) Nb_Conv; 

       cpt_nb_conv++) { 

7:       Index_Conv = Index_1ere_Conv + cpt_nb_conv; 

8:       P_List_Index_Conv = 

            (const XMT_Ts_FunctionsListMessages *) 

            &XMC_Ct_T_TABLE_GW_LIST[Index_Conv]; 

9:       Function_Id =(TED_Te_FunctionName) 

                      P_List_Index_Conv->GW_Name_Function; 

5.2   Analysis 

Just before this piece of code, the abstract value of IdFctConv is [0, 51]. Con-
sequently, the abstract value of the P_ID_Fct_Conv pointer after instruction 2 is an 
interval containing more than one value. 

It follows that the abstract value of Nb_Conv is an interval: [2, 342]. Indeed, 
its lower bound is the minimum value of the Conv_Number field for elements of the 
XMC_Ct_T_TABLE_GW[]array with indexes ranging from 0 to 51, which is actually 
2. Its upper bound is the maximum value of the same field in the same array slice, 
which is in fact 342. 

Similarly, Index_1ere_Conv ranges in [0, 1117]. 
Let us now consider instruction 6 (the for loop). The loop test expression is 

cpt_nb_conv < (TCD_Td_uInt32) Nb_Conv, and the initial value of the 
cpt_nb_conv loop counter is zero. Because of the abstraction and the interval 
computed for Nb_Conv, this abstract value computed by Astrée for cpt_nb_conv 
in the body of the loop is [0, 341]. 

Then, using the range computed for Index_1ere_Conv, the abstract value for 
Index_Conv after instruction 7 is [0, 1458]. 

In the concrete semantics of the program, XMC_Ct_T_TABLE_GW_LIST[] is a 
constant table of size 8192. It contains significant data up to index 1118, and all re-
maining locations have value 232-1. Instruction 9 uses the P_List_Index_Conv 
pointer computed by instruction 8 to read the GW_Name_Function field of  the 
element at index Index_Conv in this array. 

From the abstract value computed for Index_Conv after instruction 7, i.e. [0, 
1458], Astrée considers that accesses to the XMC_Ct_T_TABLE_GW_LIST[] ar-
ray beyond index 1118 are possible. 

However, we have checked that no real execution of the program computes in-
dexes greater than 1118, thus, the Function_Id variable cannot be assigned the 
232–1 value. Hence, this is a false alarm. 

5.3   The Way to Avoid This False Alarm 

Looking at the XMC_Ct_T_TABLE_GW[]array, we notice that all values of vari-
ables Index_1ere_Conv and Nb_Conv are bound by the following relation: In-
dex_1ere_Conv + Nb_Conv < 1118. Such a relation is usually precisely 
caught by the octagon domain of Astrée. We have now to find out why the constraint 
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computed in this case, i.e. Index_1ere_Conv + Nb_Conv <= 1459, is not 
precise enough. 

This constraint is computed by Astrée after instruction 4. It is imprecise because 
the abstract value of Nb_Conv (resp. Index_1ere_Conv) results from the join of 
the values of the Conv_Number field (resp. Begin_List_Index) for all possible 
values of index IdFctConv, i.e. [0, 51]. 

In order to force Astrée not to compute the above mentioned joins too early, we 
add partitioning directives into the code.  

__ASTREE_partition_begin((IdFctConv)); is inserted before instruction 2, 
while the related __ASTREE_partition_merge(()); is inserted after instruction 4. 
These directives make Astrée perform a separate analysis for each individual possible 
value of IdFctConv.  

The consequence is that the precise Index_1ere_Conv + Nb_Conv <= 
1119 constraint is now computed by Astrée after instruction 4. 

Nevertheless, the alarm does not disappear. At this point, there is no way left for 
the user to tune the analysis better. That is a typical case in which support from the 
tool-developers is needed. After a slight improvement by the Astrée team dealing with 
product reduction between the interval and the octagon abstract domains, this alarm is 
no longer raised. 

6   Conclusion 

The experiments described in this paper show that the Astrée static analyser can be 
used by engineers from industry to prove the absence of RTE on real avionics pro-
grams, and that such non-expert users can meet the zero false alarms objective. 
Among the reasons for this success, one is to quote the fact that the user does not have 
to provide Astrée with the invariant of the program to be analysed, only a few clues 
on how to find it are necessary. The next step for this tool could be its transfer to op-
erational software development teams, which requires an industrial version of Astrée, 
guaranteeing perennial support. 

Moreover, our experience with tools like Astrée gives us the opportunity to sketch 
a customer-supplier relationship model that could be appropriate for abstract interpre-
tation based tools. 

Indeed, the specialisation process of a precise abstract interpretation based analyser 
makes it necessary for the tool designers to receive accurate information on the tar-
geted type of programs from the end-users. The customer must therefore reveal de-
tailed information about the structure of the targeted programs, their execution model, 
their dimensions and the type of computations they perform, and provide representa-
tive examples. 

Furthermore, any change in the analysed program may cause the analyser to be-
come too imprecise for the false alarm reduction process to be industrially feasible. If 
the case arises, the tool-supplier has to adapt the analyser. As a consequence, the pro-
viders of such tools must be prepared to update their products, e.g. add or improve ab-
stract domains, whenever the set of parameters is no longer sufficient to analyse some 
program of the family precisely, even after the tool specialisation has been performed. 
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This kind of support comes on top of the usual list of services that any tool-provider 
has to offer. 

In brief, a dedicated tool requires a one-to-one customer-supplier relationship. 

Acknowledgements. We warmly thank every member of the Astrée team for their con-
stant support. 
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Abstract. Denotational static analysis of Java bytecode has a nice and
clean compositional definition and an efficient implementation with bi-
nary decision diagrams. But it models only the functional i.e., input/out-
put behaviour of a program P , not enough if one needs P ’s internal
behaviours i.e., from the input to some internal program points. We
overcome this limitation with a technique used up to now for logic pro-
grams only. It adds new magic blocks of code to P , whose functional
behaviours are the internal behaviours of P . We prove this transforma-
tion correct with an operational semantics. We define an equivalent de-
notational semantics, whose denotations for the magic blocks are hence
the internal behaviours of P . We implement our transformation and in-
stantiate it with abstract domains modelling sharing of two variables and
non-cyclicity of variables. We get a static analyser for full Java bytecode
that is faster and scales better than another operational pair-sharing
analyser and a constraint-based pointer analyser.

1 Introduction

Static analysis determines at compile-time properties about the run-time be-
haviour of computer programs. It is used for optimising their compilation [1], de-
riving loop invariants, verifying program annotations or security constraints [15].
This is very important for low-level languages such as Java bytecode, downloaded
from insecure networks in a machine-independent, non-optimised format. Since
its source code is not available, its direct analysis is desirable.

Correctness is usually mandatory for static analysis and proved w.r.t. a refer-
ence semantics of the analysed language. Abstract interpretation [8] shows here
its strength since it derives static analyses from the semantics itself, so that they
are by construction correct or even optimal. The derived analyses inherit seman-
tical features such as compositionality and can only model program properties
that can be formalised in terms of the reference semantics.

There are three main ways of giving semantics to a piece of code c [21]:
operational semantics models c’s execution as a transition relation over config-
urations, which include implementational details such as activation stacks and
return points from calls; denotational semantics provides instead a denotation
i.e., a function from the input state provided to c (the values of the variables be-
fore c is executed) to the resulting output state (the same values after c has been

H. Riis Nielson and G. Filé (Eds.): SAS 2007, LNCS 4634, pp. 452–467, 2007.
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executed); axiomatic semantics derives the weakest precondition which must hold
before the execution of c from a given postcondition which holds after it.

public class List {
private C head; private List tail;

public List(C head, List tail) {
this.head = head; this.tail = tail;

}

private List() {
List cursor = null;
for (int i = 5; i > 0; i--)
cursor = new List(new C(i),cursor);

head = new C(0); tail = cursor;
}

public List clone() {
if (tail == null) return new List(head,null);
else return new List(head,tail.clone());

}

public List deepClone() {
if (tail == null)
return new List(head.clone(),null);

else
return new List(head.clone(),tail.deepClone());

}

public static void main(String[] args) {
List v1 = new List();
List v2 = v1.clone();
v2 = v1.deepClone();

}
}

Fig. 1. Our running example

A major drawback of denota-
tional semantics is that denotations
model only the functional i.e., in-
put/output behaviour of the code:
they do not express its internal i.e.,
input/internal program points be-
haviours. The derived static anal-
yses inherit this drawback, which
makes them often useless in prac-
tice, with some notable exceptions
for analyses which are not focused
on internal program points, such
as strictness analysis. Consider the
Java code in Fig. 1, which imple-
ments a list of C’s with two cloning
methods: clone returns a shallow
copy of a list and deepClone a deep
copy, where also the C’s have been
cloned. Hence, in main:

1. the return value of clone
shares data structures with the
list v1, namely, its C’s objects.
Moreover, it is a non-cyclical
list, since v1 is a non-cyclical
list;

2. the return value of deepClone
does not share with v1, since it
is a deep copy, and is also non-
cyclical.

Sharing analysis of pairs of variables and non-cyclicity analysis of variables,
based on denotational semantics and implemented with a pair-sharing
domain [16] and a non-cyclicity domain [14], can only prove 2, since 1 needs
information at the internal program point just after the call to clone. If we add
a command at the end of main, they cannot even prove 2 anymore.

Years ago abstract interpretation was mainly applied to logic (sometimes
functional) languages and denotational semantics was one of the standard ref-
erence semantics. The above problem about internal program points was solved
with a magic-sets transformation of the program P , specific to logic languages,
which adds extra magic clauses whose functional behaviours are the internal
behaviours of P [3,4,7]. Codish [6] kept the overhead of the transformation small
by exploiting the large overlapping between the clauses of P and the new magic
clauses. Abstract interpretation has moved later towards mainstream impera-
tive languages, even low-level ones such as Java bytecode. Suddenly, operational



454 É. Payet and F. Spoto

semantics became the reference semantics. This was a consequence of the lack
of a magic-sets transformation for imperative languages and of the intuitive def-
inition of operational semantics, very close to an actual implementation of the
run-time engine of the language.

Our contributions here are the definition of a magic-sets transformation for
Java bytecode, its proof of correctness, its implementation inside our Julia de-
notational analyser [17], its instantiation with two domains for pair-sharing [16]
and non-cyclicity [14] and its evaluation and comparison with an operational
analyser for pair-sharing [12] and the points-to analyser Spark [9]. Julia is one
or two orders of magnitude faster. It scales to programs of up to 19000 methods,
for which the other two analysers are not always applicable.

To understand why we want to rediscover denotational static analysis and
why its implementation Julia is so efficient, consider the following:

– if method m (constructor, function, procedure. . . ) is called in program points
p1, . . . , pn, denotational analyses compute m’s denotation only once and then
extend it at each pi. Hence they can be very fast for analysing complex soft-
ware where n is often large. Operational analyses process instead m from
scratch for every pi. Memoisation, which takes note of the input states for
which m has been already analysed and caches the results, is a partial solu-
tion to this problem, since each pi often calls m with different input states;

– denotations i.e., functions from input to output, can be represented as
Boolean functions, namely, logical implications from the properties of the
input to the properties of the output. Boolean functions have an efficient
implementation as binary decision diagrams [5]. Hence there is a potentially
very efficient implementation of denotational static analyses, which is not
always the case for operational static analyses;

– denotational semantics is compositional i.e., the denotation of a piece of
code is computed bottom-up from those of its subcomponents (commands
or expressions). The derived static analyses are hence compositional, an in-
valuable simplification when one formalises, implements and debugs them;

– denotational semantics does not use activation stacks nor return points from
calls. Hence it is simpler to abstract than an operational semantics;

– denotational semantics models naturally properties of the functional be-
haviour of the code, such as information flows [15]. Operational semantics is
very awkward here.

These are not theoretical insights, as our experiments show in Section 7.

2 Our Magic-Sets Transformation for Java Bytecode

The left of Fig. 2 reports the Java bytecode for the main method in Fig. 1, after
a light preprocessing performed by our Julia analyser. It has a simple sequential
control, being a single block of code. This is because we do not consider excep-
tions for simplicity, which are implicitly raised by some instructions and break the
sequential structure of the code without changing the sense of our magic-sets
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new List
dup List

call List()
store 1 of type List
load 1 of type List

call List.clone():List
store 2 of type List
load 1 of type List

call List.deepClone():List
store 2 of type List

return void

load 2 of type int

if_le int
load 0 of type List

new C
dup C
const 0

call C(int)
putfield List.head:C
load 0 of type List
load 1 of type List

putfield List.tail:List
return void

if_gt int
new List
dup List
new C
dup C

load 2 of type int
call C(int)

load 1 of type List
call List(C,List)

store 1 of type List
increment 2 by -1

load 0 of type List
call java.lang.Object()

const null
store 1 of type nil

const 5
store 2 of type int

Fig. 2. The Java bytecode of main and of the empty constructor of List in Fig. 1

transformation (our actual implementation in Julia considers exceptions). The
code in Figure 2 is typed i.e., instructions are decorated with the type of their
operands, and resolved i.e., method and field references are bound to their corre-
sponding definition. For type inference and resolution we used the official
algorithms [10]. A method or constructor implementation in class κ, named m,
expecting parameters of types τ and returning a value of type t is written as
κ.m(τ ) : t. The call instruction implements the four invoke’s available in Java
bytecode. It reports the explicit list of method or constructor implementations
that it might call at run-time, accordingly with the semantics of the specific
invoke that it implements. We allow more than one implementation for late-
binding, but we use only one in our examples, for simplicity. Dynamic lookup
of the correct implementation of a method is performed by filter instructions at
the beginning of each method, which we do not show for simplicity.

Local variable 1 on the left of Fig. 2 implements variable v1 in Fig. 1. Hence,
just after the call to clone, it shares with the return value of clone, left on top of
the stack, and is non-cyclical; after the call to deepClone, it does not share with
the return value of deepClone, left on top of the stack, and is non-cyclical. To
prove these results with a denotational analysis, our magic-sets transformation
builds new magic blocks of code whose functional behaviours are the internal
behaviours just after the calls to clone and deepClone on the left of Fig. 2.

Let us describe this transformation. It starts by splitting the code after the two
calls to clone and deepClone, since we want to observe the intermediate states
there. For reasons that will be clear soon, it also splits the code before each call.
The result is in Fig. 3. The original code is split into blocks 0, . . . , 5 now. These
have outgoing dashed arrows leading to new grey magic blocks m0, . . . ,m5.
Block mk contains the same bytecode as block k plus a leading blockcall mp,
where p is the predecessor of block k, if any.
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The functional behaviour of magic block mk coincides with the internal be-
haviour at the end of block k. For instance, the functional behaviours of m2 and
m4 are maps from the input state provided to the program to the intermediate
states just after the calls to clone and deepClone, respectively. To understand
why, let us start from m0. It is a clone of block 0 so that, at its end, the com-
putation reaches the intermediate state at the internal program point between 0
and 1. Block m1 executes m0 (because of the blockcall m0 instruction), then
the same instructions as block 1. At its end, the computation reaches hence the
intermediate state at the internal program point between 1 and 2. The same
reasoning applies to the other magic blocks.

Consider the Java bytecode of the empty constructor of List in Fig. 1 now,
called by main and shown on the right of Fig. 2. It is not sequential since
it contains a loop. Its magic-sets transformation is in Fig. 4. As for main,

new List
dup List

0

call List()
store 1 of type List
load 1 of type List

new List
dup List

1

call List.clone():List

blockcall m0
call List()

store 1 of type List
load 1 of type List

  2

store 2 of type List
load 1 of type List

blockcall m1
call List.clone():List

3

call List.deepClone():List

blockcall m2
store 2 of type List
load 1 of type List

  4

store 2 of type List
return void

blockcall m3
call List.deepClone():List

5 blockcall m4
store 2 of type List

return void

   m5

   m4

   m3

   m2

   m1

   m0

Fig. 3. The magic-sets transformation of the
Java bytecode on the left of Fig. 2

we split the original code before
each call; each magic block mk
contains the code of k plus a
leading blockcall to the pre-
decessor(s) of k, if any. Since 8
has two predecessors 7 and 11,
block m8 starts with blockcall
m7 m11 i.e., there are two ways of
reaching 8 and the states observ-
able at its end are obtained by
executing load 2 of type int
from a state reachable at the
end of 7 or 11. Something new
happens for m6. It starts with
a call to m0 in Fig. 3, which
provides the intermediate states
just before the only call in the
program to this empty construc-
tor of List. Block m6 contin-
ues with a makescope List()
instruction which builds the
scope of the constructor: in
Java bytecode the caller stores
the actual arguments on the
operand stack and the callee
retrieves them from the local
variables [10]. Hence makescope
List() copies the List object,

left on top of the stack by m0 (i.e., the implicit this parameter), into local
variable 0 and clears the stack. At the end of m6 we observe hence the states
reachable at the internal program point between blocks 6 and 7. This is why
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load 0 of type List
                               6

call java.lang.Object()
const null

store 1 of type nil
const 5

store 2 of type int

blockcall m0
makescope List()
load 0 of type List

7

load 2 of type int

blockcall m6
call java.lang.Object()

const null
store 1 of type nil

const 5
store 2 of type int

                            8

if_gt int
new List
dup List
new C
dup C

load 2 of type int

if_le int
load 0 of type List

new C
dup C
const 0

blockcall m7 m11
load 2 of type int

9

call C(int)
load 1 of type List

blockcall m8
if_gt int
new List
dup List
new C
dup C

load 2 of type int

                           10

call List(C,List)
store 1 of type List
increment 2 by -1

blockcall m9
call C(int)

load 1 of type List

                  11 blockcall m10
call List(C,List)

store 1 of type List
increment 2 by -1

   12

call C(int)
putfield List.head:C
load 0 of type List
load 1 of type List

putfield List.tail:List
return void

blockcall m8
if_le int

load 0 of type List
new C
dup C
const 0

   13

blockcall m12
call C(int)

putfield List.head:C
load 0 of type List
load 1 of type List

putfield List.tail:List
return void

     m11

       m10

   m9

      m13        m12

                              m8     m7   m6

Fig. 4. The magic-sets transformation of the constructor on the right of Fig. 2

we split the code before each call: to allow the states of the callers at the call
points to flow into the callees.

3 A Formalisation of Our Magic-Sets Transformation

We formalise here the magic-sets transformation. From now on we assume that
P is a program i.e., a set of blocks as those in Fig. 3 and Fig. 4. We assume
that the starting block of a method has no predecessors and does not start
with a call, without loss of generality since it is always possible to add an
extra initial block containing nop; we assume that the other blocks have at
least a predecessor, since otherwise they would be dead-code and eliminated;
we assume that each call starts a block and that each return ends a block
with no successors; we assume that the main method is not called from inside
the program, without loss of generality since we can always rename main into
main’ wherever in the program and add a new main which wraps a call to
main’.

Original blocks are labelled with k and magic blocks with mk with k ∈ N. If
& is a label, P (&) is block & of P . We write block & with n bytecode instructions
and m immediate successor blocks b1, . . . , bm, with m,n ≥ 0, as

ins1
ins2···
insn

�

⇒ b1···
bm

or just as
ins1
ins2···
insn

�

when m = 0.

The magic-sets transformation of P builds a magic block mk for each block k.
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Definition 1. The magic block mk, with k ∈ N, is built from P (k) as

magic
(

code
k⇒ b1···

bm︸ ︷︷ ︸
P (k)

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

blockcall mp1···mpl

code

mk

if l > 0

blockcall mq1···mqu

makescope κ.m(τ):t
code

mk

if l = 0 and u > 0

code
mk if l = 0 and u = 0

where p1, . . . , pl are the predecessors of P (k) and q1, . . . , qu those of the blocks
of P which begin with a call to the method κ.m(τ ) : t starting at block k. ��

Definition 1 has three cases. In the first case block k does not start a method
(or constructor). Hence it has l > 0 predecessors and magic block mk begins
with a blockcall to their magic blocks, as block m8 in Fig. 4. In the second
and third case block k starts a method or constructor κ.m(τ ) : t, so that it has
no predecessors. If the program P calls κ.m(τ ) : t (second case) there are u > 0
predecessors of those calls, since we assume that call does not start a method.
Magic block mk calls those predecessors and then uses makescope to build the
scope for κ.m(τ ) : t, as for block m6 in Fig. 4. Otherwise (third case), P never
calls κ.m(τ ) : t and mk is a clone of k, as for block m0 in Fig. 3.

4 Operational Semantics of the Java Bytecode

In this section we describe an operational semantics of the Java bytecode, which
we use in Section 5 to prove our magic-sets transformation correct.

Definition 2. A state of the Java Virtual Machine is a triple 〈l || s ||μ〉 where l
maps local variables to values, s is a stack of values (the operand stack), which
grows leftwards, and μ is a memory, or heap, which maps locations into objects.
We do not formalise further what values, memories and objects are, since this
is irrelevant here. The set of states is Σ. ��
The semantics of a bytecode instruction ins different from call and blockcall
is a partial map ins from states to states. For instance, the semantics of dup t is

dup t = λ〈l || s ||μ〉.〈l || top :: s ||μ〉

where s = top :: s′ and top has type t. This is always true since legal Java
bytecode is verifiable [10]. The semantics of load i of type t is

load i of type t = λ〈l || s ||μ〉.〈l || l(i) :: s ||μ〉

where l(i) exists and has type t since legal Java bytecode is verifiable.
Also the semantics of a return t bytecode is a map over states, which leaves

on the operand stack only those elements which hold the return value of type t:

return t = λ〈l || s ||μ〉.〈l || vs ||μ〉
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where s = vs :: s′ and vs are the stack elements which hold the return value.
If t = void then vs = ε. We formalise later in Definition 5 how control returns
to the caller. Also the semantics of a conditional bytecode is a map over states,
undefined when its condition is false. For instance, the semantics of if le t is

if le t = λ〈l || s ||μ〉.
{
〈l || s′ ||μ〉 if top ≤ 0
undefined otherwise,

where s = top :: s′ and top has numerical type t.
When a caller transfers the control to a callee κ.m(τ ) : t, the Java Virtual

Machine performs an operation makescope κ.m(τ ) : t which copies the topmost
stack elements into the corresponding local variables and clears the stack.

Definition 3. Let κ.m(τ ) : t be a method or constructor and p the number
of stack elements needed to hold its actual parameters, including the implicit
parameter this, if any. We define (makescope κ.m(τ ) : t) : Σ → Σ as

makescope κ.m(τ ) : t = λ〈l || s ||μ〉.〈[i !→ vi | 0 ≤ i < p] || ε ||μ〉,

where s = vp−1 :: · · · :: v0 :: s′ since legal Java bytecode is verifiable. ��
Definition 3 formalises the fact that the ith local variable of the callee is a copy
of the element p− 1− i positions down the top of the stack of the caller.

Definition 4. A configuration is a pair 〈b ||σ〉 of a block b (not necessarily in
P ) and a state σ. It represents the fact that the Java Virtual Machine is going
to execute b in state σ. An activation stack is a stack c1 :: c2 :: · · · :: cn of
configurations, where c1 is the topmost, current or active configuration. ��
We can define now the operational semantics of a Java bytecode program.

Definition 5. The (small step) operational semantics of a Java bytecode pro-
gram P is a relation a′ ⇒P a′′ (P is usually omitted) providing the immediate
successor activation stack a′′ of an activation stack a′. It is defined by the rules:

ins is not a call nor a blockcall

〈 ins
rest

�
⇒ b1···

bm

||σ〉 :: a⇒ 〈 rest
�⇒ b1···

bm

|| ins(σ)〉 :: a
(1)

b is the block where method κ.m(τ ) : t starts
σ = 〈l || pars :: s ||μ〉, pars are the actual parameters of the call

σ′ = (makescope κ.m(τ ) : t)(σ)

〈 call κ.m(τ):t
rest

�

⇒ b1···
bm

||σ〉 :: a⇒ 〈b ||σ′〉 :: 〈 rest
�⇒ b1···

bm

||〈l || s ||μ〉〉 :: a

(2)

〈 k||〈l || vs ||μ〉〉 :: 〈b ||〈l′ || s′ ||μ′〉〉 :: a⇒ 〈 b ||〈l′ || vs :: s′ ||μ〉〉 :: a
(3)

1 ≤ i ≤ m

〈 k⇒ b1···
bm

||σ〉 :: a⇒ 〈bi ||σ〉 :: a
(4)
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1 ≤ i ≤ l

〈 blockcall mp1···mpl
rest

mk

||σ〉 :: a⇒ 〈P (mpi) || σ〉 :: 〈 rest
mk ||σ〉 :: a

(5)

〈 mk ||σ〉 :: 〈b ||σ′〉 :: a⇒ 〈 b ||σ〉 :: a
(6)

��

Rule (1) executes an instruction ins, different from call and blockcall, by
using its semantics ins. The Java Virtual Machine moves then forward to run
the rest of the instructions. Instruction ins might be here a makescope, whose
semantics is given in Definition 3. Rule (2) calls a method. It looks for the block
b where the latter starts and builds its initial state σ′, by using makescope. It
creates a new current configuration containing b and σ′. It removes the actual
arguments from the old current configuration and the call from the instructions
still to be executed at return time. Control returns to the caller by rule (3),
which rehabilitates the configuration of the caller but forces the memory to be
that at the end of the execution of the callee. The return value of the callee is
pushed on the stack of the caller. Rule (4) applies when all instructions inside
a block have been executed; it runs one of its immediate successors, if any. This
rule is normally deterministic, since if a block of the Java bytecode has two or
more immediate successors then they start with mutually exclusive conditional
instructions and only one thread of control is actually followed. Rule (5) runs
a blockcall by choosing one of the called blocks mpi and creating a new con-
figuration where it can run. This is true non-determinism, corresponding to the
fact that there might be more ways of reaching a magic block and hence more
intermediate states at an internal program point. Rule (6) applies at the end
of the execution of a magic block mk . It returns the control to the caller of
mk and keeps the state reached at the end of the execution of mk . Rules (1)
and (2) can be used both for the original and for the magic blocks of the pro-
gram; rules (3) and (4) only for the original blocks; rules (5) and (6) only for
the magic ones.

Our small step operational semantics allows us to define the set of intermediate
states at a given, internal program point ∗, provided ∗ ends a block. This can
always be obtained by splitting after ∗ the block where ∗ occurs.

Definition 6. Let σin be the initial state provided to the method main of P
starting at block bin . The intermediate states at the end of block k ∈ N during
the execution of P from σin are

Σk = {σ | 〈bin ||σin 〉 ⇒∗ 〈 k⇒ b1···
bm

||σ〉 :: a} ��

Note that Σk is in general a set since there might be more ways of reaching block
k, for instance through loops or recursion.
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5 Correctness of the Magic-Sets Transformation

By using the operational semantics of Section 4, we show that the final states
reached at the end of the execution of a magic block mk are exactly the inter-
mediate states reached at the end of block k, before executing its successors: the
functionalbehaviour of mk coincides with the internalbehaviour at the end of k.

Theorem 1. Let σin be the initial state provided to the main method of P and
k ∈ N a block of P . We have Σk =

{
σ
∣∣〈P (mk) ||σin 〉 ⇒∗ 〈 mk ||σ〉

}
. ��

In Section 6 we define a denotational semantics for the Java bytecode and prove it
equivalent to our operational semantics of Section 4 w.r.t. functional behaviours.
By Theorem 1, we will conclude that the denotational semantics of mk is the
internal behaviour at the end of block k.

6 Denotational Semantics of the Java Bytecode

A denotational semantics for the Java bytecode maps each block of code b in a
denotation [[b]] i.e., in a partial function from an initial state at the beginning of
b to an output or final state at the end of the execution of the code starting at
b. Hence, if bin is the initial block of method main, then [[bin ]] is the functional
behaviour of the whole program.

Definition 7. A denotation is a partial function from an input state to an
output or final state. The set of denotations is written as Δ. Let δ1, δ2 ∈ Δ.
Their sequential composition is δ1; δ2 = λσ.δ2(δ1(σ)), which is undefined when
δ1(σ) is undefined or when δ2(δ1(σ)) is undefined. ��
It follows that the semantics ins of a bytecode ins is a denotation.

Let δ ∈ Δ be the functional behaviour of a method κ.m(τ ) : t. At its beginning
the operand stack is empty and the local variables hold the actual arguments of
the call. At its end the operand stack holds the return value of κ.m(τ ) : t only,
if any (the semantics of return drops all stack elements but the return value.
See Section 4). From the point of view of a caller executing a call κ.m(τ ) : t,
the local variables and the operand stack do not change, except for the actual
arguments which get popped from the stack and substituted with the return
value, if any. The final memory is that reached at the end of κ.m(τ ) : t. These
considerations let us extend δ into the denotation of the call instruction.

Definition 8. Let δ ∈ Δ and κ.m(τ ) : t be a method. We define the operator
extend κ.m(τ ) : t ∈ Δ !→ Δ as

(extend κ.m(τ ) : t)(δ) = λ〈l || pars :: s ||μ〉.〈l || vs :: s ||μ′〉

where 〈l′ || vs ||μ′〉 = δ((makescope κ.m(τ ) : t)(〈l || pars :: s ||μ〉)), pars are the
actual parameters passed to κ.m(τ ) : t and vs its return value, if any. ��
An interpretation is a set of denotations for each block of P . Sets can express
non-deterministic behaviours, which means for us that we can observe more
intermediate states between blocks. The operations extend and ; over denotations
are consequently extended to sets of denotations.
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Definition 9. An interpretation for P is a map from P ’s blocks into sets of
denotations. The set of interpretations I is ordered by pointwise set-inclusion. ��

Given an interpretation ι providing the functional behaviour of the blocks of P ,
we can determine the functional behaviour [[b]]ι of the code starting at a given
block b, not necessarily in P , which can call methods and blocks of P .

Definition 10. Let ι ∈ I. The denotations in ι of an instruction are

[[ins]]ι = {ins} if ins is not a call nor a blockcall

[[blockcall mp1 · · ·mpl]]
ι = ι(P (mp1)) ∪ · · · ∪ ι(P (mpl))

[[call κ.m(τ ) : t]]ι = (extend κ.m(τ ) : t)(ι(bκ.m(τ ):t))

where bκ.m(τ):t is the block where method or constructor κ.m(τ ) : t starts. The
function [[ ]]ι is extended to blocks as
[[

ins1···
insn

�

⇒ b1···
bm

]]ι

=

{
[[ins1]]

ι ; · · · ; [[insn]]ι if m = 0
[[ins1]]

ι ; · · · ; [[insn]]ι ; (ι(b1) ∪ · · · ∪ ι(bm)) if m > 0.

with the assumption that if n = 0 then [[ins1]]
ι ; · · · ; [[insn]]ι = {id}, where the

identity denotation id is such that id = λσ.σ. ��

The blocks of P are in general interdependent, because of loops and method
calls, and a denotational semantics must be built through a fixpoint computation.
Given an empty approximation ι ∈ I of the denotational semantics, one improves
it into TP (ι) ∈ I and iterates the application of TP until a fixpoint1.

Definition 11. The transformer TP : I !→ I for P is defined as TP (ι)(b) =
[[b]]ιfor every ι ∈ I and block b of P . ��

Proposition 1. The operator TP is additive, so its least fixpoint exists [20]. ��

Definition 12. Let P be a Java bytecode program (possibly enriched with its
magic blocks). Its denotational semantics DP is the least fixpoint �i≥0T

i
P of TP ,

where T 0
P (b) = ∅ for every block b of P and T i+1

P = TP (T i
P ) for every i ≥ 0. ��

We show now that the operational semantics of Section 4 and the denotational
semantics of this section coincide, so that (Theorem 1) the denotation of a magic
block mk is the internal behaviour at the end of block k.

Theorem 2. Let b a block (not necessarily of P ) and σin an initial state for
b. The functional behaviour of b, as modelled by the operational semantics of
Section 4, coincides with its denotational semantics:

{σout | 〈b ||σin 〉 ⇒∗
P 〈b′ ||σout 〉 �⇒P } = {δ(σin) | δ ∈ [[b]]DP, δ(σin ) is defined }. ��

1 Our implementation Julia performs smaller fixpoints on each strongly-connected
component of blocks rather than a huge fixpoint over all blocks. This is important
for efficiency reasons but irrelevant here for our theoretical results.
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7 Experiments

We have implemented our magic-sets transformation inside the generic anal-
yser Julia for Java bytecode [17] and used it with two abstract domains. The
first [16] overapproximates the set of pairs of program variables, which for the
Java bytecode means local variables or stack elements, which share i.e., reach
the same memory location; it is used for automatic program parallelisation and
to support other analyses. The second [14] overapproximates the set of cyclical
program variables, those which reach a loop of memory locations; it needs a
preliminary pair-sharing analysis. We used Boolean formulas to abstract sets of
denotations by relating properties of their input to properties of their output.
For instance, (l1 , s1 )⇒ (l1 , l2 ) abstracts those denotations δ such that for every
state σ, where only local variable 1 and stack element 1 might share (the base
of the stack is s0 ), we have that in δ(σ) only local variables 1 and 2 might share
(for simplicity, we do not report variables sharing with themselves [16]). We have
implemented Boolean formulas through binary decision diagrams [5].

Let us consider pair-sharing. Julia computes the formula (l1 , s0 ) as abstract
denotation for block m2 in Fig. 3. It states that (l1 , s0 ) is true for m2 i.e., at its
end, only local variable 1, which holds the list v1 of Fig. 1, might share with stack
element 0 (the base of the stack), which holds the return value of clone. Hence
Julia proves that all other pairs of local variables and stack elements definitely
do not share. This is an optimal approximation of the behaviour of the program
between blocks 2 and 3. Julia computes (l1 , l2 ) as abstract denotation for block
m4 . Hence it proves that local variables l1 (v1 in Fig. 1) and l2 (v2 in Fig. 1)
might share there, while all other local variables and stack elements definitely
do not share; in particular, the return value of deepClone (the stack element
0) does not share with v1. Note that v1 and v2 actually share after the call
to deepClone, whose return value has not been stored into v2 yet. This is an
optimal approximation of the behaviour of the program between blocks 4 and 5.
Let us consider cyclicity analysis. Julia computes false as abstract denotation of
both m2 and m4 in Fig. 3 i.e., it proves that no local variable and stack element
might be cyclical there, which is an optimal approximation of the behaviour of
the program between blocks 2 and 3 and between blocks 4 and 5. In conclusion,
Julia proves both points 1 and 2 of Section 1.

Fig. 1 shows a simple program. More complex benchmarks such as those in
Fig. 5 challenge the scalability, the efficiency and the precision of the analyses.
The first 4 benchmarks, which are the smallest, have been also analysed with
the pair-sharing analyser in [12] so we can build a comparison. The others are
progressively larger to check the scalability of the analyses. Fig. 5 reports their
size (number of methods), their preprocessing time with Julia (extraction and
parsing of the .class files, building a high-level representation of the bytecode
and the magic-sets) and its percentage due to the magic-sets transformation,
which is never more than 31%. We consider two scenarios: whether the Java
libraries are not analysed (calls to the missing classes use a worst-case assump-
tion) or they are analysed, for more precise but more costly analyses. We used
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libraries are not included libraries are included
methods preproc. magic-sets methods preproc. magic-sets

Qsort 8 369 2.14% 72 767 3.65%
IntegerQsort 9 369 2.14% 72 765 3.66%

Passau 10 351 1.51% 13 388 1.19%
ZipVector 13 395 2.48% 76 778 4.08%

JLex 130 1292 14.53% 744 2160 10.97%
JavaCup 293 1502 9.8% 1136 2657 21.88%

julia 1441 3351 13.56% 4809 8552 14.9%
jess 1506 3344 25.1% 6046 9911 28.88%

jEdit 2473 6887 22.74% 7943 15156 30.77%
soot 15617 75925 10.49% 19032 84709 14.54%

Fig. 5. Size and preprocessing times (in milliseconds) for our benchmarks

sharing analysis cyclicity analysis
libr. not included libr. included libr. not included libr. included
time precision time precision time precision time precision

Qsort 127 35.09% 267 71.79% 20 0.00% 43 10.71%
IntegerQsort 208 36.17% 295 53.46% 23 0.00% 38 17.18%

Passau 152 36.88% 118 43.03% 14 5.88% 6 100.00%
ZipVector 251 21.15% 395 40.47% 34 0.00% 50 7.69%

JLex 1438 30.34% 2312 33.86% 269 17.00% 877 32.64%
JavaCup 2418 16.26% 4996 22.96% 474 14.78% 1836 29.04%

julia 10829 11.03% 33589 12.22% 2852 9.95% 5245 17.23%
jess 24526 12.79% 66163 15.96% 4136 8.19% 8293 24.05%

jEdit 42332 16.34% 135208 19.92% 6654 4.95% 15926 10.33%
soot 125819 6.26% 282923 7.69% 113884 9.89% 196456 11.82%

Fig. 6. Time (in milliseconds) and precision of our sharing and cyclicity analyses

an Intel Xeon machine running at 2.8GHz, with 2.5 gigabytes of RAM, Linux
2.6.15 and Sun jdk 1.5.

Fig. 6 reports the results of pair-sharing and cyclicity analyses with Julia. Pre-
cision, for sharing analysis, is the percentage of pairs of distinct local variables or
stack elements which are proved not to share, definitely, before a putfield, an
arraystore or a call. We consider only variables and stack elements of refer-
ence type since primitive types cannot share in Java (bytecode); only putfield’s,
arraystore’s and call’s since it is there that sharing analysis helps other analy-
ses (see for instance [14] for its help to cyclicity analysis). Precision, for cyclicity
analysis, is the percentage of local variables or stack elements which are proved to
be non-cyclical, definitely, before a getfieldbytecode. We consider only variables
and stack elements of reference type since primitive values are never cyclical; only
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Julia [12]
Qsort 496 ≥1625

IntegerQsort 577 ≥1335
Passau 502 ≥1595

ZipVector 646 ≥2780

Julia [9] Julia [9]
Qsort 1.0 93 JavaCup 7.7 99

IntegerQsort 1.1 92 julia 42.1 fails
Passau 0.5 89 jess 76.1 fails

ZipVector 1.2 90 jEdit 150.4 fails
JLex 4.5 95 soot 367.7 452

Fig. 7. The table on the left reports the times (in milliseconds) of our pair-sharing
analysis and of that in [12]. The table on the right reports the times (in seconds) of
our pair-sharing analysis and of the points-to analysis in [9].

getfield’s since cyclicity information is typically used there, for instance to prove
termination of iterations over dynamic data-structures [18]. For better efficiency,
we cache the analysis of each bytecode so that, if it is needed twice, we only com-
pute it once. This happens frequently with our magic-sets transformation, which
introduces code duplication. For instance, block m1 in Figure 3 shares three byte-
codes which block 1. This technique has been inspired by a similar optimisation
of the analysis of magic logic programs, defined in [6]. Since it caches the func-
tional behaviour of the code, it is different from memoisation, which only caches
its behaviour for each given input state.

We are not aware of any other cyclicity analysis for Java bytecode. An oper-
ational pair-sharing analyser was instead applied [12] to the smallest 4 bench-
marks in Fig. 5, without including the library classes, but we could not use their
analyser. It takes time P + T + A: P is the preprocessing time, which they do
not report. Since they use the generic analyser Soot, we could compute P with
Soot version 2.2.2; T is the time to transform the output of Soot into the
format required in [12]. We cannot estimate T without the analyser; A is the
preliminary running time reported in [12], normalised w.r.t. the relative speeds
of our machine and theirs. Fig. 7 on the left compares the running time of Ju-

lia, including preprocessing and without analysing the libraries, with P + A,
since T is unknown. Julia is faster, even without T . Exceptions, subroutines,
static initialisers and native methods are not tested by such small benchmarks,
so it is not clear if the analyser in [12] is ready for real analyses. Precision is
expressed as a level of multivariance which we cannot translate into our more
natural notion. Another analysis for (definite) sharing is implemented in [13] for
a subset of Java. Times and precision are not reported. The code is not publicly
available.

We compared our pair-sharing analysis with the Spark [9] points-to analysis,
also based on Soot. Points-to and sharing information are somehow similar. We
compare Spark against Julia including all Java libraries, since that is what
Spark does. Soot, Spark and Julia are all written in Java. Hence a compar-
ison is relatively fair. Fig. 7 on the right compares the overall running times,
including preprocessing. Julia is always faster, up to two orders of magnitude
as in the case of Passau; it completes all analyses while Spark stops in three
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cases with hard-to-understand run-time errors (for jEdit and jess: This operation
requires resolving level hierarchy but someclass is at resolving level dangling ; for
julia: couldn’t find class jdd.bdd.BDD, which does not exist and is not used by
Julia). We stress that sharing and points-to analyses are anyway different anal-
yses and neither of them is an abstraction of the other. Hence this comparison
only indicates that Julia compares well w.r.t. an existing tool.

The Cibai tool [11] is able to derive class invariants from Java source code
rather than from bytecode. It currently includes an abstract domain tracking
abstract locations, which should provide some sharing information, although this
is not detailed in [11]. No precision about sharing analysis is reported by the tool.
It has been applied to programs of a few hundreds methods, which is still away
from the 19032 methods of Julia (Figure 5). The tool is not freely available on
the net so we could not build a comparison.

8 Conclusion

Our experiments show that denotational analyses of Java bytecode, with a pre-
liminary magic-sets transformation, are feasible, fast and compare well with
other analyses. We will soon use widenings [8] to further improve their efficiency.

Our magic-sets transformation is completely independent from the abstract
domains, which can be developed without even knowing its existence. Then all
abstract domains defined so far for the analysis of Java bytecode can in principle
be used in our framework. The domain developer must only specify the internal
program points where he wants to observe the results of the analysis, which
depends on the specific goal for which he develops the abstract domain.

The efficiency of the static analyses based on our magic-sets transformation
is partially a consequence of the fact that it enables the use of binary deci-
sion diagrams to represent the abstract domain elements. Then a challenge of
our approach is its application to abstract domains which are difficult to repre-
sent through binary decision diagrams, such as those for class analysis [19] and
path-length analysis [18]. In the first case we are using set-constraints; in the
second case we are using the Parma Polyhedra Library [2]. The results of these
experiments should confirm the applicability of our framework.
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