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Abstract. For efficiency and cost control reasons, system designers’ will is to 
use an integrated set of methods and tools to describe specifications and design, 
and also to perform dependability analyses. The SAE (Society of Automotive 
Engineers) AADL (Architecture Analysis and Design Language) has proved to 
be efficient for architectural modeling. We present a modeling framework 
allowing the generation of dependability-oriented analytical models from 
AADL models, to facilitate the evaluation of dependability measures, such as 
reliability or availability. We propose a stepwise approach for system 
dependability modeling using AADL. The AADL dependability model is 
transformed into a GSPN (Generalized Stochastic Petri Net) by applying model 
transformation rules that can be automated. The resulting GSPN can be 
processed by existing tools. The modeling approach is illustrated on a 
subsystem of the French Air Traffic Control System. 
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1   Introduction 

The increasing complexity of new-generation systems raises major concerns in 
various critical application domains, in particular with respect to the validation and 
analysis of performance, timing and dependability-related requirements. Model-
driven engineering approaches based on architecture description languages aimed at 
mastering this complexity at the design level have emerged and are being increasingly 
used in industry. In particular, AADL (Architecture Analysis and Design Language) 
[1] has received a growing interest during the last years. It has been recently 
developed and standardized under the auspices of the International Society of 
Automotive Engineers (SAE), to support the design and analysis of complex real-time 
safety-critical systems in avionics, automotive, space and other application domains. 
AADL provides a standardized textual and graphical notation for describing software 
and hardware system architectures and their functional interfaces. AADL may be used 
to perform various types of analysis to determine the behavior and the performance of 
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the system being modeled. The language has been designed to be extensible to 
accommodate analyses that the core language does not support.  

Besides describing the systems’ behavior in the presence of faults, the developers 
are interested in obtaining quantitative measures of relevant dependability properties 
such as reliability, availability and safety. For pragmatic reasons, the system designers 
using an AADL-based engineering approach are interested in having an integrated set 
of methods and tools to describe specifications and design, and to perform 
dependability evaluations. The AADL Error Model Annex [2] has been recently 
standardized to complement the description capabilities of the core language by 
providing features with precise semantics to be used for describing dependability-
related characteristics in AADL models (faults, failure modes, repair policies, error 
propagations, etc.). However, at the current stage, no methodology and guidelines are 
available to help the developers in the use of the proposed notations to describe 
complex dependability models reflecting real-life systems with multiple interactions 
and dependencies between components. One of our objectives is to propose a 
structured method for AADL dependability model construction. 

The AADL Error Model Annex mentions that stochastic automata such as fault 
trees and Markov chains can be generated from AADL specifications enriched with 
dependability-related information. Indeed, Markov chains are recognized to be 
powerful means for modeling system dependability taking into account dependencies 
between system components. Usually, they are automatically generated from higher 
level formalisms such as Generalized Stochastic Petri Nets (GSPNs). The latter allow 
structural model verification, before the Markov chain generation. Such verification 
support facilities are very useful when dealing with large models.  

During the last decade, various approaches have been defined to support the 
systematic construction and validation of dependability models based on GSPNs and 
their extensions (see e.g. [3-5]). We propose to take advantage of such approaches in 
the context of an AADL-based engineering process, to i) build the dependability-
oriented AADL model and to ii) generate dependability-oriented GSPN models from 
AADL models by model transformation. In this way, the complexity of GSPN model 
generation is hidden to users familiar with AADL but who have a limited knowledge 
of GSPNs. The AADL and GSPN models are built iteratively, taking into account 
progressively the dependencies between the components, and validated at each 
iteration. The dependability-related information is not embedded in the AADL 
architectural model. Instead, it is described separately and then plugged in the 
system’s components. The user can easily unplug or replace the dependability-related 
information. This feature enhances the reusability and the readability of the AADL 
architectural model that can be used as is for other analyses (e.g., formal verification 
[6], scheduling and memory requirements [7], resource allocation with the Open 
Source AADL Tool Environment (OSATE)1, research of deadlocks and un-initialized 
variables with the Ocarina toolset2). 

To summarize, our objectives are threefold: i) present a structured and stepwise 
approach for building AADL dependability model, ii) show examples of model 
transformation rules to generate GSPNs from AADL dependability models and iii) 

                                                           
1 http://www.aadl.info/OpenSourceAADLToolEnvironment.html  
2 http://ocarina.enst.fr 
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exemplify the proposed approach on a subsystem of the French Air Traffic Control 
System. The set of model transformation rules is meant to be the basis for the 
implementation of a model transformation tool completely transparent to the user. 
Such a tool can be interfaced with one of the existing GSPN processing tools (e.g., 
Surf-2 [8], Möbius [9], Sharpe [10], GreatSPN [11], SPNP [12]) to evaluate 
dependability/performability measures. 

Compared to our work presented published in [13] and [14], we offer here a global 
view of our method’s steps, by presenting a case study reflecting a real system. In 
particular, the AADL to GSPN transformation rules are developed and illustrated.  

The remainder of the paper is organized as follows. Section 2 discusses related 
work. Section 3 presents the AADL concepts that are necessary for understanding our 
modeling approach. Section 4 gives an overview of our framework for system 
dependability modeling and evaluation using AADL and GSPNs. Section 5 presents 
examples of rules for transforming AADL into GSPN models. Section 6 applies our 
approach to a subsystem of the French Air Traffic Control System and Section 7 
concludes the paper. 

2   Background and Related Work 

To the best of our knowledge there are no contributions similar to our work in the 
current state of the art. Most of the published work on analyses using AADL has 
focused on the extension of the language capabilities to support formal verifications. 
For example, the COTRE project [6] provides a design approach bridging the gap 
between formal verification techniques and requirements expressed in Architecture 
Description Languages. AADL system specifications can be imported in the newly 
defined COTRE language. A system specification in COTRE language can be 
transformed into timed automata, Time Petri nets or other analytical models. Also, a 
transformation from AADL models to Colored Petri Nets, aiming at formally 
verifying certain properties through model checking, is presented in [15]. However, as 
far as we are aware of, published work does not address generation of dependability–
oriented quantitative evaluation models from AADL specifications.  

Considering the problem of generating dependability evaluation models from 
model-driven engineering approaches in a more general context, a significant amount 
of research has been carried out based on UML (Unified Modeling Language) [16]. 
For example, the European project HIDE ([17], [18]) proposed a method to 
automatically analyze and evaluate dependability attributes from UML models. It 
defined several model transformations from subsets of UML diagrams to i) GSPNs, 
Deterministic and Stochastic Petri Nets and Stochastic Reward Nets to evaluate 
dependability measures, ii) Kripke structures for formal verification and iii) to 
Stochastic Reward Nets for performance analysis. Also, [19] proposes an algorithm to 
synthesize dynamic fault trees (DFT) from UML system models. Other interesting 
approaches have been developed, aiming at obtaining performance measures by 
transforming UML diagrams (activity diagrams in [20], sequence and statechart 
diagrams in [21]) into GSPNs.  
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Similarly to UML users, the AADL users are interested in using modeling 
approaches allowing them to derive dependability evaluation models from AADL 
specifications. The approach proposed here aims at fulfilling this objective. 

3   AADL Concepts 

In the AADL, systems are particular composite components modeled as hierarchical 
collections of interacting application components (processes, threads, subprograms, 
data) and a set of execution platform components (processors, memory, buses, 
devices). The application components are bound to the execution platform. The 
AADL allows analyzing the impact of different architecture choices (such as 
scheduling policy or redundancy scheme) on a system’s properties [22].  

Each AADL system component has two levels of description: the component type 
and the component implementation. The type describes how the environment sees that 
component, i.e., its properties and features. Examples of features are in and out 
ports that represent access points to the component. One or more component 
implementations may be associated with the same component type, corresponding to 
different implementation structures of the component in terms of subcomponents, 
connections (between subcomponents’ ports) and operational modes.  

Dynamic aspects of system architectures are captured with the AADL operational 
mode concept. Different operational modes of a system or a system component 
represent different system configurations and connection topologies, as well as 
different sets of property values to represent changes in non-functional characteristics 
such as performance and reliability. Mode transitions model dynamic operational 
behavior and are triggered by events arriving through ports. Operational modes may 
represent fault-tolerance modes or different phases in a phased-mission system. This 
dynamics may influence dependability measures (i.e., availability), thus operational 
modes are taken into account in the dependability model.  

An AADL architectural model can be annotated with dependability-related 
information (such as faults, failure modes, repair policies, error propagation, etc.) 
through the standardized Error Model Annex. AADL error models are defined in 
libraries and can be associated with application components, execution platform 
components, and device components, as well as the connections between them. When 
an error model is associated with a component, it is possible to customize it by setting 
component-specific values for the arrival rate or the probability of occurrence for 
error events and error propagations declared in the error model. 

In the same way as for AADL components, error models have two levels of 
description: the error model type and the error model implementation. The error 
model type declares a set of error states, error events (internal to the 
component) and error propagations3. Occurrence properties specify the 
arrival rate or the occurrence probability of events and propagations. The error model 

                                                           
3 We will refer to error states, error events, error propagations and 
error transitions without the qualifying term error in contexts where the meaning 
is unambiguous (note that error states can model error-free states, error events 
can model repair events and error propagations can model all kinds of notifications). 
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implementation declares error transitions between states, triggered by events 
and propagations declared in the error model type.  

Figure 1 shows a simple error model, without propagations, considering two types 
of faults: temporary and permanent. A temporary fault leads the component in an 
erroneous state while a permanent fault leads it in a failed state. A temporary fault can 
be processed and the component recovers regaining its error free state. A permanent 
fault requires restarting the component. 

Error Model Type [independent]

error model independent
features

Error_Free: initial error state;
Erroneous: error state;
Failed: error state;
Temp_Fault: error event {Occurrence => poisson 1};
Perm_Fault: error event {Occurrence => poisson 2};
Restart: error event {Occurrence => poisson μ1};
Recover: error event {Occurrence => poisson μ2};

end independent;

Error Model Implementation [independent.general]

error model implementation independent.general
transitions

Error_Free-[Perm_Fault]->Failed;
Error_Free-[Temp_Fault]->Erroneous;
Failed-[Restart]->Error_Free;
Erroneous-[Recover]->Error_Free;

end independent.general;  

Fig. 1. Error model example without propagations 

Interactions between the error models of different components are determined by 
interactions between components of the architectural model through connections and 
bindings. Out propagations are sent out of a component through all features 
connecting it to other components. Thus, out propagations have an impact on any 
receiving component that declares an in propagation with the same name. In some 
cases, it is desirable to model how error propagations from multiple sources are 
handled. This is modeled by further customizing an error model to a system 
component by specifying filters and masking conditions for propagations by using 
Guard properties associated with its features.  

AADL allows modeling logical error states independently from the operational 
modes of a component. It also allows establishing a connection between the logical 
error states and the operational modes. For example, operational mode transitions may 
be constrained, through the use of Guard_Transition properties applied to ports, 
to occur depending on the error state configuration of several components.  

Several examples are given throughout the paper to illustrate how propagations and 
Guard_Transition properties are handled in AADL. 
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4   The Modeling Framework 

For complex systems, the main difficulty for dependability model construction arises 
from dependencies between the system components. Dependencies are of several 
types, identified in [4]: structural, functional, those related to the fault-tolerance and 
those associated with recovery and maintenance policies. Exchange of data or transfer 
of intermediate results from one component to another is an example of functional 
dependency. The fact that a thread runs on a processor induces a structural 
dependency between them. Changing the operational mode of a component according 
to a fault tolerance policy (e.g., leader/follower) represents a fault tolerance 
dependency. Sharing a maintenance facility between several execution platform 
components leads to a maintenance dependency. Having to follow a strict recovery 
order for application components is an example of recovery dependency. Functional, 
structural and fault tolerance dependencies are grouped into an architecture-based 
dependency class, as they are triggered by physical or logical connections between the 
dependent components at architectural level. On the other hand, recovery and 
maintenance dependencies are not always visible at architectural level. 

A structured approach is necessary to model dependencies in a systematic way, to 
avoid errors in the resulting model of the system and to facilitate its validation. In our 
approach, the AADL dependability-oriented model is built in an iterative way. More 
concretely, in the first iteration, we build the model of the system’s components, 
representing their behavior in the presence of their own faults and repair events only. 
They are thus modeled as if they were isolated from their environment. In the 
following iterations, we introduce dependencies in an incremental manner. 

The rest of this section is structured as follows. A general overview of our 
modeling framework is presented in subsection 4.1. In subsection 4.2, we illustrate 
how dependencies are modeled in AADL in the context of our approach. Subsection 
4.3 presents briefly how a GSPN model is generated from the AADL model. 

4.1   Overview 

An overview of our iterative modeling framework, which is decomposed in four main 
steps, is presented in Figure 2.  

 

Fig. 2. Modeling framework 
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The first step is devoted to the modeling of the system architecture in AADL (in 
terms of components and operational modes of these components). This AADL 
architectural model may be available if it has been already built for other purposes. 

The second step concerns the building of the AADL error models associated with 
components of the architectural model. The error model of the system is a 
composition of the set of components’ error models, taking into account the 
dependencies between these components.  

The description of architecture-based dependencies between components of the 
system is based on the analysis of the connections and bindings present in the 
architectural model. The corresponding error model is built based on the description 
of dependencies. Making maintenance and recovery assumptions may lead to the 
addition of components in the architectural model.  

The architectural model and the error model of the system form a dependability-
oriented AADL model, referred to as the AADL dependability model further on.  

The third step aims at building a dependability evaluation model, from the AADL 
dependability model, based on model transformation rules. Here, we focus on 
generating a GSPN from the AADL model. 

The fourth step is devoted to the processing of the dependability evaluation model 
(in our case under the form of a GSPN) to evaluate quantitative measures 
characterizing dependability attributes. This step is entirely based on existing GSPN 
processing algorithms and tools. Therefore, it is not considered here. 

To obtain the AADL dependability model, the user must perform the first and 
second steps described above. The third step is intended to be automatic in order to 
hide the complexity of the GSPN to the user.  

The iterative approach can be applied to the first two steps only or to the first three 
steps together. In both cases, the AADL dependability model is updated at each 
iteration. Modeling a dependency may either require to only add information in the 
model or to modify the existing model and to add new information (i.e., states and 
propagations). In the latter case, the AADL dependability model can be validated 
against its specification, based on the analysis and validation of the GSPN model, 
after each iteration.  

To evaluate dependability measures, the user must specify state classes for the 
overall system. For example, if the user wishes to evaluate reliability or availability, it 
is necessary to specify the system states that are to be considered as failed states. If in 
addition, the user wishes to evaluate safety, it is necessary to specify the failed system 
states that are considered as catastrophic. In AADL, state classes are declared by 
means of a derived error model for the overall system describing the states of a 
system as Boolean expressions referring to its subcomponents’ states. 

4.2   Modeling with Dependencies in AADL 

Architecture-based dependencies can be derived from the AADL architectural model. 
To these dependencies one has to add recovery and maintenance dependencies. The 
full set of dependencies can be summarized in a dependency block diagram to provide 
a global view of the system components and interactions. In the dependency block 
diagram, each component and each dependency are represented as distinct blocks. 
Blocks are connected through arcs. Their directions identify the directions of 



 A System Dependability Modeling Framework Using AADL and GSPNs 21 

dependencies. This diagram and the AADL architectural model are used to build the 
AADL error model progressively. Once the AADL error models of the components 
are built, the dependencies are added gradually. The order for introducing 
dependencies does not impact the final AADL dependability model. However, it may 
impact the reusability of parts of the model. Thus, the order may be chosen according 
to the context of the targeted analysis. Generally, fault tolerance and maintenance 
dependencies are modeled at the end, as their description strongly depends on the 
architecture.  

It is noteworthy that not all the details of the architectural model are necessary for 
the AADL dependability model. Only components that have associated error models 
and all connections and bindings between them are necessary. 

The rest of this subsection presents guidelines for modeling i) an architecture-
based dependency and ii) a maintenance or recovery dependency. 

4.2.1   Architecture-Based Dependency Modeling 
The architecture-based dependency is supported by the architectural model and must 
be modeled in the error models associated with dependent components, by specifying 
respectively outgoing and incoming propagations and their impact on the 
corresponding error model. An example is shown in Figure 3. Figure 3-a presents the 
AADL architectural model (Component 1 sends data to Component 2). Figure 3-b 
shows the corresponding dependency block diagram (the behavior of Component 2 
depends on that of Component 1). Figure 3-c presents the AADL dependability model 
where an error model is associated with each component to describe the dependency. 

- a - - b - - c -  

Fig. 3. Architecture-based dependency 

The error model of Figure 4 is associated with Component 1. It takes into account 
the sender-side dependency from Component 1 to Component 2. This error model is 
an extension of the one of Figure 1 that represents the behavior of a component as if it 
were isolated. The error model of Figure 4 declares an out propagation Error (see 
line d1) in the type and an AADL transition triggered by the out propagation in the 
implementation (see line d2).  

The error model receiver.general associated with Component 2 is not shown here 
but is similar. The only difference is the direction of the propagation Error. This in 
propagation triggers a state transition from Error_Free to Failed.  

When Component 1 is in the erroneous state, it sends a propagation through the 
unidirectional connection. As a consequence, the incoming propagation Error causes 
the failure of the receiving component Component 2. The in – out propagations 
Error defined respectively in the error model instance associated with Component 2 
and with Component 1 have identical names. In the rest of the paper, such 
propagations are referred to as name matching propagations. 
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(d1)

Error Model Type [sender]

error model sender
features

Error_Free: initial error state;
Erroneous: error state;
Failed: error state;
Temp_Fault: error event {Occurrence => poisson 1};
Perm_Fault: error event {Occurrence => poisson 2};
Restart: error event {Occurrence => poisson μ1};
Recover: error event {Occurrence => poisson μ2};
Error: out error propagation {Occurrence => fixed p};

end sender;

(d2)

Error Model Implementation [sender.general]

error model implementation sender.general
transitions

Error_Free-[Perm_Fault]->Failed;
Error_Free-[Temp_Fault]->Erroneous;
Failed-[Restart]->Error_Free;
Erroneous-[Recover]->Error_Free;
Erroneous-[out Error]->Erroneous;

end sender.general;  

Fig. 4. Error model example with dependency 

In real applications, architecture-based dependencies usually require describing 
how error propagations from multiple sources are handled by the receiver component. 
This is achieved by using Guard properties in which Boolean expressions are used to 
specify the consequences of a set of propagations occurring in a set of sender 
components on a receiver component. 

4.2.2   Maintenance and Recovery Dependency Modeling 
Maintenance dependencies need to be described when repair facilities are shared 
between components or when the maintenance or repair activity of some components 
has to be carried out according to a given order or a specified strategy. 

Components that are not dependent at architectural level may become dependent 
due to the fact that they share maintenance facilities or to the synchronization of the 
maintenance activities. Thus, the architectural model might need some adjustments to 
support the description of dependencies related to the maintenance policy. As error 
models interact only via propagations through architectural features (i.e., connections, 
bindings), the maintenance dependency between components’ error models must also 
be supported by the architectural model. This means that besides the system 
architecture components, we may need to add a component representing the shared 
repair facilities to model the maintenance dependencies. Figure 5-a shows an 
architectural model example where Component 3 and Component 4 do not interact 
(there is no architecture-based dependency between them). However, if we assume 
that they share one repairman, it is necessary to represent the repairman at the level of 
the architectural model, as shown in Figure 5-b in order to model the maintenance 
dependency between these components. 
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- a - - b -  

Fig. 5. Maintenance dependency 

 
 

Also, the error models of dependent components with regards to their recovery 
might need some adjustments. For example, to represent the fact that Component 3 
can only restart if Component 4 is running, one needs to distinguish between a failed 
state of Component 3 and a failed state where Component 3 is allowed to restart. 

4.3   AADL to GSPN Model Transformation 

The GSPN model of the system is built from the transformation of the AADL 
dependability model following a modular approach and taking into account the 
dependency block diagram.  

The GSPN of the global system is structured as a set of interacting subnets, where 
a subnet is associated with a component or a dependency block identified in the 
dependency block diagram. Two types of GSPN subnets are distinguished: 1) a 
component subnet is associated with each component and describes the component’s 
behavior in the presence of its own faults and repair events; and 2) a dependency 
subnet models the behavior associated with the corresponding dependency. In the 
AADL dependability model, each dependency is modeled as part of each of the error 
models involved in the dependency. GSPN dependency subnets are obtained from 
information concerning a particular dependency existing in (at least) two dependent 
error models. The global GSPN contains one subnet for the behavior of each 
component in the presence of its own faults and repair events, and one subnet for each 
dependency between components. It has the same structure as the dependency block 
diagram. The modular structure of the GSPN allows the user to validate the model 
progressively; as the GSPN is enriched with a subnet each time a new dependency is 
added in the error model of the system. So, if validation problems arise at GSPN level 
during iteration i, only the part of the current error model corresponding to iteration i 
is questioned. 

5   Transformation Rules 

In the next three subsections we present successively AADL to GSPN transformation 
rules for 1) isolated components, 2) name matching in – out propagations in 
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dependent components and 3) systems with operational modes necessary to describe 
fault tolerance dependencies. All transformation rules are defined to ensure that the 
obtained GSPN is correct by construction: bounded, live and reversible. They are 
aimed to be systematic in order to prepare the transformation automation. Also, the 
resulting GSPN is tool-independent, i.e., we do not use tool-specific features or 
predicates. It is worth noting that this section only presents a small set of 
transformation rules. A more complete set is presented in [23]. 

5.1   Isolated Components  

In the case of an isolated component or in the case of a set of independent 
components, the AADL to GSPN transformation is rather straightforward, as an error 
model represents a stochastic automaton. The number of tokens in a component 
subnet is always one, as a component can only be in one state.  

Table 1 shows the basic transformation rules.  

Table 1. Basic AADL error model to GSPN transformation rules 

AADL error model

element
GSPN element

State Place

Initial state Token in the corresponding place

Event GSPN transition (timed or immediate)

Timed
Occurrence property of an
event

Distribution or probability characterizing the
occurrence of associated GSPN transition

Immediate

AADL transition

(Source_State-[Event] ->
Destination_State)

Arcs connecting places (corresponding to AADL

Source_State and Destination_State) via GSPN
transition (corresponding to AADL Event)  

 
By applying the transformation rules presented in Table 1 to the error model shown 

in Figure 1, we obtain the GSPN of Figure 6.  

 

Fig. 6. GSPN corresponding to the error model of Figure 1 
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5.2   Transforming in – out Name Matching Propagations 

In the most general case, an out propagation declared in a propagation sender error 
model could trigger n AADL transitions in this same error model (e.g., a Failed 
propagation could be propagated out both from a FailStopped and a FailRandom 
states). Name matching in propagations could be declared in r≥2 propagation 
receiver error models and trigger mj AADL transitions in each j (j = 1…r) receiver 
error model. We identified and analyzed several transformation rules for the same 
AADL specification of in – out name matching propagations. Some of the rules 
are convenient when an out propagation has only one receiver. On the other hand, 
these rules are hard to automate in case there are several receivers (i.e., the in 
propagation is declared in several components’ error models) for the same out 
propagation. Also, the choice of a transformation rule for in – out name matching 
propagations impacts the transformation rules for systems with operational modes. 
The transformation rule for in – out name matching propagations we present here 
is very well adapted for the case where an out propagation has several receivers. It 
also simplifies the definition of the transformation rule for systems with operational 
modes. We first present an example of a pair of in – out name matching 
propagations declared in two connected components in Figure 7. Then we illustrate 
the chosen transformation rule on this example.  

 

Fig. 7. Sender and Receiver – name matching propagations 

In Figure 7, Component 1 plays the role of the propagation sender and it sends 
propagations named Error through the connection that arrives at Component 2. 
Component 2 plays the role of a receiver. If it receives a propagation named Error, it 
moves from Error_Free to Failed state. 

The transformation rule consists in decoupling the in and out propagations in the 
GSPN through an intermediary place that represents the fact that the out propagation 
Error occurred, as shown in Figure 8 (InOut_Error place). A token arrives in the 
InOut_Error place when a GSPN transition (Out_Error) corresponding to the out 
propagation (and characterized by its Occurrence property) occurs. The existence of a 
token in the InOut_Error place leads to the firing of an immediate GSPN transition 
In_Error (if the place Error_Free in Component 2 is marked) that corresponds to the 
in propagation. The intermediary place is emptied when the place corresponding to 
the source of the out propagation is empty and the GSPN transition corresponding to 
the in propagation is not enabled. We do not empty this place at the occurrence of 
the GSPN transition corresponding to the in propagation, as we need to memorize 
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the occurrence of the out propagation until all effects (immediate GSPN transitions) 
of the propagation occur. This memory is used in other transformation rules.  

The GSPN place NoPropag and the associated immediate transitions with 
probability (1-p) and 1 respectively model the situation where the propagation does 
not occur when Component 1 is in an Erroneous state. If the probability of occurrence 
of the out propagation is equal to 1, then this subnet is not necessary. 

 

Fig. 8. Propagation from sender to receiver - transformation rule 

In the general case of n AADL transitions triggered by an out propagation, with 
name matching in propagations in several receiver error models, one GSPN 
transition is created for each AADL transition triggered by the out propagation in the 
sender error model. Also, one intermediary place is created for each out propagation. 
One GSPN transition is created for each AADL transition triggered by the in 
propagation in the receiver error models. Consequently, the number of GSPN 
transitions (Ntr) describing the AADL propagation is given by: 

Ntr = 4*n + n* mj

j=1

r

∑ ,∀r ≥1                                              (1) 

 

where  n =  the number of AADL transitions triggered by the out propagation  
in the sender error model; 

           r = the number of receiver error models; 
         mj =  the number of AADL transitions triggered by the in propagation in 
  the receiver error model j. 
 

The first term of equation (1) represents the number of GSPN transitions that 
model the out propagation, i.e., 4 GSPN transitions for each one of the n out 
propagations. The second term represents the number of GSPN transitions that model 
the in propagation, i.e., one GSPN transition for each pair of in - out propagations. 

Figure 9-a shows an example of AADL dependability model with one sender and 
two receivers. It is transformed into the GSPN of Figure 9-b. 
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- a - - b -  

Fig. 9. Propagation from sender to two receivers 

Naturally, when transforming large AADL models formed of many components, 
the size of the corresponding GSPN increases. The state space size depends on the 
number of components and on the dependencies between them. We have analyzed the 
state space for GSPNs obtained using our transformation rules from AADL models 
with several dependent components. Indeed, the more independent or loosely coupled 
components are, the larger the state space gets. To address this problem, GSPN 
reduction methods, such as those mentioned in [24], may be efficiently used before 
processing it to obtain the underlying Markov chain. 

5.3   Systems with Operational Modes 

In AADL, there are several mechanisms for connecting logical error states and 
operational mode transitions. For space limitation reasons, in this section, we focus on 
the AADL to GSPN transformation rules for Guard_Transition properties, 
which allow constraining a mode transition to occur depending on the error state 
configuration of several components of a system. The rest of this subsection presents 
successively the AADL modeling of an example of a system with operational modes, 
using Guard_Transition properties, and illustrates the proposed transformation 
rule on this example. 

5.3.1   AADL Dependability Modeling of Guard_Transition Properties 
We first present an example of a modal AADL system in Figure 10 and we show in 
Figure 11 the association of a Guard_Transition property with the ports 
involved in mode transitions. The error state configuration necessary to allow a mode 
transition is expressed as a Boolean expression referring to error states and 
propagations. 

In Figure 10, the system is represented using the AADL graphical notation. It 
contains two identical active components and two operational modes (Comp1Primary 
and Comp1Backup). The system is initially in mode Comp1Primary. The transition 
from mode Comp1Primary to mode Comp1Backup occurs when propagations arrive 
through the ports Send2 of Comp1 and Send1 of Comp2. In this case, the second 
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Fig. 10. Example architectural model for a system with operational modes 

(g1)
(g2)
(g3)
(g4)
(g5)
(g6)

thread Comp
features

Send1, Send2: out event port;
Receive: in event port;

end Comp;

thread implementation Comp.generic
annex Error_Model {**

Model => dependent.general;
**};
end Comp.generic;

system SystemLevelModes
end SystemLevelModes;

system implementation SystemLevelModes.generic
modes

Comp1Primary: initial mode;
Comp1Backup: mode;
Comp1Primary-[Comp1.Send2, Comp2.Send1]->Comp1Backup;
Comp1Backup-[Comp1.Send1, Comp2.Send2]->Comp1Primary;

subcomponents
Comp1: system Comp.generic;
Comp2: system Comp.generic;

connections
event port Comp1.Send1->Comp2.Receive;
event port Comp2.Send1->Comp1.Receive;

annex Error_Model {**
Guard_Transition =>

(Comp1.Send2[FailedVisible] and Comp2.Send1[Error_Free])
applies to Comp1.Send2, Comp2.Send1;

Guard_Transition =>
Comp2.Send2[FailedVisible] and Comp1.Send1[Error_Free])

applies to Comp1.Send1, Comp2.Send2;
**};

end SystemLevelModes.generic;
 

Fig. 11. Guard_Transition property associations 
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component must take over and provide the service. The transition from mode 
Comp1Backup to mode Comp1Primary occurs when propagations arrive through the 
ports Send2 of Comp2 and Send1 of Comp1. The same error model is associated with 
both Comp1 and Comp2. It is based on the error model for isolated components (see 
Figure 1). It declares in addition an out propagation FailedVisible, which notifies the 
failure of the component and which is used in the Guard_Transition properties. 

 

Guard_Transition properties are associated with the ports involved in mode 
transitions. A mode transition occurs only if the Guard_Transition property 
associated with the port named in it evaluates to TRUE. In our example, the mode 
transition from mode Comp1Primary to Comp1Backup occurs when Comp1 sends the 
FailedVisible out propagation while Comp2 is Error_Free (see lines g1-g3 of Figure 
11). The complementary condition must hold for the occurrence of the transition from 
Comp1Backup to Comp1Primary (see lines g4-g6 of Figure 11). 

5.3.2   Transforming Guard_Transition Properties 
We illustrate the transformation rule on the example of a system with operational 
modes described in Figure 10 and Figure 11. Then, we discuss the use of this rule. 

Figure 12 shows the GSPN corresponding to the first Guard_Transition 
property (lines g1-g3) of Figure 11. The GSPN models of Comp1 and Comp2 are 
incomplete in this figure. 

 

Fig. 12. GSPN modeling of the Guard_Transition property 

Operational modes are directly mapped to Petri net places. 
The transformation rule assumes that the Boolean expression of the 

Guard_Transition property is in disjunctive normal form. If it is not the case, 
the Boolean expression must first be transformed into disjunctive normal form. Each 
conjunction (referring to states and/or propagations) is transformed into an immediate 
GSPN transition connected with: 

− places corresponding to the states and out propagations referred to in the AND 
expression via bi-directional arcs or inhibitor arcs (depending whether there are 
negations in the Boolean expression or not).  

− places corresponding to operational modes referred to in the mode transition 
triggered by the port having the Guard_Transition property. 
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If, in our example above, the Boolean expression in disjunctive normal form were 
formed of several conjunctions, then several GSPN transitions would be connected to 
the places Comp1Primary and Comp1Backup.  

An intermediary place corresponding to an out propagation is emptied when the 
place corresponding to the source of the out propagation is empty and the GSPN 
transitions corresponding to Guard_Transition conjunctions are not enabled. 

If an out propagation name-matches an in propagation in a receiver component 
and is referred to in a Guard_Transition property declared in another receiver 
component, the same intermediary place is used both for the name matching GSPN 
subnet and for the Guard_Transition subnet. The intermediary place is emptied 
when both emptying conditions related to the name-matching propagations rule and to 
the Guard_Transition rule are true. An example is shown in Figure 13. We consider 
the system presented in Figure 9 contains a third component, Comp3, and that Comp1 
is connected to it. The error model associated with the newly introduced Comp3 
declares an in propagation FailedVisible. The Guard_Transition is transformed 
as above and the name matching propagation of Comp1 and Comp3 reuses the 
intermediary place representing the occurrence of the FailedVisible propagation.  

 

Fig. 13. GSPN modeling of the Guard_Transition property taking into account a name 
matching propagation 

6   Case Study 

In this section we show how our modeling framework can be used to compare the 
availability of two candidate architectures for a subsystem of the French Air Traffic 
Control System. This subsystem is designed to achieve high levels of service 
availability and is further detailed in [25]4.  

In the rest of this section, we first present the AADL architectural models of the 
two candidate architectures in subsection 6.1. The dependency analysis based on these 
models is presented in subsection 6.2. Subsection 6.3 details the error models 

                                                           
4  The AADL modeling of the subsystem and the AADL to GSPN model transformation are not 

presented in the paper cited here.  
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describing some of these dependencies. Subsection 6.4 deals with the AADL to 
GSPN transformation while subsection 6.5 presents an example of dependability 
evaluation for the two candidate architectures.  

6.1   AADL Architectural Models 

The subsystem we consider here is formed of two fault-tolerant distributed software 
units that are in charge of processing flight plans (FPunit) and radar data (RDunit). 
Two processors can host these units. We consider two candidate architectures for this 
subsystem, referred to as Configuration1 and Configuration2. Figure 14 presents both 
candidate architectures using the AADL graphical notation.  

- a - - b -  

Fig. 14. AADL architectural model of Air Traffic Control System candidate architectures 

The FPunit and the RDunit have the same structure (presented in Figure 10), i.e., 
they are formed of two replicas (threads): one having the primary role (provides the 
service) while the other one has a backup role (monitors the primary). Both candidate 
architectures use two processors. The two replicas of each software unit are bound to 
separate processors. In Configuration1, the initially primary replicas of the FPunit and 
RDunit (FP_Comp1 and RD_Comp1) are bound to separate processors (FP_Comp1 
bound to Processor1 and RD_Comp1 bound to Processor2). In Configuration2, the 
initially primary replicas of the FPunit and RDunit are bound to the same processor, 
Processor1. The whole subsystem has two operational modes: Nominal and 
Reconfigured. Connections between replicas bound to separate processors are bound 
to a bus. Thus, the connection bindings to the bus depend on the operational mode of 
the subsystem. A bus failure causes the failure of the RDunit replica. The primary 
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replica of the FPunit exchanges data with both replicas of the RDunit. For the sake of 
clarity, we show the thread binding configurations in Figure 14-a and the bus and the 
connection bindings to the bus separately in Figure 14-b. 

6.2   Dependency Analysis 

The various interactions between this subsystem’s components induce dependencies 
between them. Most of them are architecture-based, thus they are visible on the 
architectural model. We took into account the following dependencies: 

− structural dependency between each processor and the threads that run on top of 
it. We assume that hardware faults can propagate and influence the software 
running on top of it. These dependencies (S1, S2, S3 and S4 in Figure 14) are 
supported by the architectural bindings of threads to processors. 

− recovery dependency between each processor and the threads that run on top of 
it. If a thread fails, it cannot be restarted if the processor on top of which it runs is 
in a failed state. These dependencies (R1, R2, R3 and R4 in Figure 14) are 
supported by the architectural bindings of threads to processors. 

− maintenance dependency between the two processors that share a repairman that 
is not simultaneously available for the two components. This maintenance 
dependency is not visible on the architectural model of Figure 14. 

− fault tolerance dependency between the two RDunit threads and the two FPunit 
threads. If the replica that delivers the service fails but the other one is error free, 
the two software replicas switch roles. Then, the failed replica is restarted. These 
dependencies (FT1 and FT2 in Figure 14) are supported by the connections 
between the replicas of each software unit. 

− structural dependency between the bus and the threads of the RDunit. If the bus 
fails, the broken connections bound to it make the RDunit fail in mode Nominal 
of Configuration1 and in mode Reconfigured of Configuration2. This 
dependency (F3 in Figure 14) is supported by the binding of the connection from 
the FPunit to the RDunit to the bus. 

− functional dependencies between the FPunit and the RDunit. The active FPunit 
thread may propagate errors to both RDunit threads. These dependencies (F1 and 
F2 in Figure 14) are supported by the connections of the FPunit replicas to the 
RDunit replicas. Note that we consider that RDunit errors do not propagate to the 
FPunit even though there is a connection from the RDunit to the FPunit. 

Figure 15 shows the dependency block diagram describing the dependencies 
between components of the Configuration1 of the Air Traffic Control System. We 
built the AADL dependability model iteratively, by integrating first the structural and 
functional dependencies and then the maintenance, recovery and fault tolerance 
dependencies. Due to space limitations, we further focus on the two grey-color 
blocks, which represent the functional dependency between a FPunit replica and both 
RDunit replicas and the fault tolerance dependency between the FPunit replicas.  

The dependency block diagram for Configuration2 is similar. In Configuration2, 
Processor1 is linked to RD_Comp1 via structural and maintenance dependency 
blocks and Processor2 is linked to RD_Comp2 via structural and maintenance 
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Fig. 15. Description of dependencies between components of Configuration1 of the Air Traffic 
Control System 

dependency blocks. The functional dependency block (F3) between the bus and the 
RD_Comp1 and RD_Comp2 is internally different (modes are taken into account 
differently in the two configurations). 

6.3   AADL Error Models 

We first describe in detail the functional dependency between a FPunit replica and the 
RDunit replicas and the fault tolerance dependency between the FPunit replicas. 
Then, we present the corresponding error models.  

− Functional dependency between a FPunit thread and the RDunit threads. An 
error propagated from the primary FPunit replica (FP_Comp1 or FP_Comp2) to 
both RDunit replicas (RD_Comp1 and RD_Comp2) will cause their failure. The 
FPunit replica will recover without need of restarting. Note that the RDunit 
replicas do not propagate errors to the FPunit replicas. Also, an error propagated 
from a FPunit replica does not impact the other FPunit replica. This means that 
we cannot use the same error model both for FPunit replicas and RDunit replicas. 
The error model associated with the FPunit replicas must declare an out Error 
propagation without declaring an in Error propagation. The error model 
associated with the RDunit replicas must declare an in Error propagation that 
matches the out propagation declared in the error model associated with the 
FPunit replicas.  

− Fault tolerance dependency between the FPunit threads. The behavior we 
intend to model is based on the specification presented in Section 5.3 (for 
systems with operational modes). In addition to the takeover by the backup 
replica when the primary replica fails, we add the following assumption. If both 
components fail one after the other, the first one restarted provides the service 
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and the FPunit goes to the corresponding mode. To model this behavior, we 
associate error models with FP_Comp1 and FP_Comp2 and we use 
Guard_Transition properties on the out ports Send of both components. 
These Guard_Transition properties are extensions of those presented in 
Figure 11. The behavior in the case of a double failure requires including the 
notification of the end of the restart procedure before moving to Error_Free state. 

Figure 16 presents the error model associated with the FPunit threads. Lines f1-f2 
correspond to the functional dependency presented above while lines t1-t4 correspond 
to the fault tolerance dependency. The rest of the error model is similar to the one 
presented in Figure 1 for isolated components. The component may propagate errors 
(out propagation Error) but it cannot be influenced by Error propagations, as it does 
not declare an in propagation Error. The end of the restart procedure is notified 
(IAmRestarted out propagation) before moving to Error_Free state. 

The only difference between the error model associated with the FPunit threads 
and the RDunit threads is the direction of the propagation Error and the AADL 
transition triggered by it. In the error model associated with the RDunit threads, Error 
is an in propagation triggering an AADL transition from Error_Free to Failed. 

(f1)
(t1)
(t2)

Error Model Type [forFP_Comp]

error model forFP_Comp
features

Error_Free: initial error state;
Erroneous: error state;
Restarted: error state;
Failed: error state;
Temp_Fault: error event {Occurrence => poisson 1};
Perm_Fault: error event {Occurrence => poisson 2};
Restart: error event {Occurrence => poisson μ1};
Recover: error event {Occurrence => poisson μ2};
Error: out error propagation {Occurrence => fixed p};
FailedVisible: out error propagation {Occurrence=>fixed 1};
IAmRestarted: out error propagation {Occurrence=> fixed 1};

end forFP_Comp;

(f2)
(t3)
(t4)

Error Model Implementation [forFP_Comp.general]

error model implementation forFP_Comp.general
transitions

Error_Free-[Perm_Fault]->Failed;
Error_Free-[Temp_Fault]->Erroneous;
Failed-[Restart]->Restarted;
Erroneous-[out Error]->Erroneous;
Restarted-[out IAmRestarted]->Error_Free;
Failed-[out FailedVisible]->Failed;
Erroneous-[Recover]->Error_Free;

end forFP_Comp.general;
 

Fig. 16. Error model forFP_Comp 
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Figure 17 presents the Guard_Transition properties that specify the 
conditions under which mode transition occur, according to the fault tolerance 
behavior described above. Mode transitions occur if one of the components sends the 
FailedVisible out propagation while the other one is Error_Free or if one of the 
components sends the IAmRestarted out propagation while the other component is 
not Error_Free (meaning that a double failure occurred and the first component has 
been restarted before the second one). 

Guard_Transition =>
(Comp1.Send2[FailedVisible] and Comp2.Send1[Error_Free])
or (Comp2.Send1[IAmRestarted] and not Comp1.Send2[Error_Free])

applies to Comp1.Send;
Guard_Transition =>

(Comp2.Send2[FailedVisible] and Comp1.Send1[Error_Free])
or (Comp1.Send1[IAmRestarted] and not Comp2.Send2[Error_Free])

applies to Comp2.Send;  

Fig. 17. Guard_Transition properties associated with Send ports of FPunit threads 

6.4   AADL to GSPN Model Transformation 

For these two dependencies, we use only the AADL to GSPN transformation rules 
presented in section 5. We first took into account the functional dependency from 
FT_Comp1 to RD_Comp1 and RD_Comp2 and then the fault tolerance dependency 
between FT_Comp1 and FT_Comp2. Before adding the fault tolerance dependency, 
the GSPN subnet FT1 did not exist and the FP_Comp1 and FP_Comp2 subnets were 
identical to the RD_Comp1 and RD_Comp2 subnets.  

Figure 18 presents the part of the GSPN corresponding to the functional 
dependency between the FP_Comp1 replica of the FPunit and the two replicas of the 
RDunit and to the fault tolerance dependency between the threads of the FPunit. For 
clarity reasons, immediate GSPN transition that empty intermediary places 
corresponding to out propagation are not shown. 

6.5   Evaluation of Quantitative Measures 

Figure 19 gives the unavailability of the two candidate architectures. Such 
quantitative measures are obtained from the processing of the GSPN derived from the 
AADL model. In Figure 19, the varying parameter is the occurrence rate of a bus 
failure; λc. λc≤10-6/h corresponds to a redundant bus. For Configuration1, the impact 
of this parameter is important when λc≥10-5/h. Configuration2 is much less influenced 
by λc, as in Nominal mode, the communication between the two units does not go 
through the bus. From a practical point of view, if λc≥10-5/h, Configuration2 is 
recommended. Otherwise the two candidate architectures are equivalent.  

Other analyses can be carried out on the same model. The results of several 
analyses allow taking a decision about what candidate architecture best suites the 
application. For example, performance analyses can be performed to determine the 
impact of the choices made to achieve dependability goals on a system’s performance. 
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Fig. 18. GSPN model of the Air Traffic Control System – two dependencies 

 

Fig. 19. Unavailability 
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7   Conclusion 

We presented a stepwise approach for system dependability modeling using AADL 
and GSPNs. The aim of this approach is to hide the complexity of traditional 
analytical models to end-users acquainted with AADL. In this way, we ease the task 
of evaluating dependability measures. Our approach assists the user in the structured 
construction of the AADL dependability model that is transformed into a GSPN to be 
processed by existing tools. To support and trace model evolution, this approach 
proposes that the user builds the AADL dependability model iteratively. Components’ 
behaviors in the presence of faults are modeled in the first iteration as if they were 
isolated. Then, each iteration introduces a new dependency between system’s 
components in the AADL dependability model. The AADL to GSPN model 
transformation is meant to be transparent to the user. Thus, it is based on rigorous and 
systematic rules aimed at supporting tool-based transformation automation. The 
model transformation can be performed iteratively, each time the AADL 
dependability model is enriched. In this way, the GSPN model can be validated 
progressively (hence the corresponding AADL architecture and error models can be 
validated progressively and corrected accordingly, if required). Finally, we illustrated 
the proposed approach on a subsystem of the French Air Traffic Control System. We 
have shown the principles of the transformation and some of the rules. The work in 
progress concerns the implementation of a model transformation tool to be easily 
integrated into AADL and GSPN based tools. 
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