
R. de Lemos et al. (Eds.): Architecting Dependable Systems IV, LNCS 4615, pp. 383–408, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Towards Evidence-Based Architectural Design for
Safety-Critical Software Applications

Weihang Wu and Tim Kelly

Department of Computer Science, The University of York, York YO10 5DD
{Weihang.Wu,Tim.Kelly}@cs.york.ac.uk

Abstract. Robust software and system architectures have been increasingly
recognised as one of the keys to improving dependability. However, most
modern design methods and explanations of underlying design principles still
remain ad hoc. The communication between design and safety assessment in
practice is often characterised as an “over-the-wall” process. The problems are
exacerbated by the uncertainty problem in the early development lifecycle. In
this paper, we propose a Triple Peaks process framework, from which a system
model, deviation model, mitigation model are proposed and linked together.
The application of this framework is supported by the use of Bayesian Belief
Networks and collation of relevant evidence. We elaborate the linkage between
the three models by means of a case study. The central tenet in this paper is to
address safety concerns based upon evidence available at an architectural level.

Keywords: software architecture, design decisions, software safety evidence.

1 Introduction

1.1 Motivation

For many years there has been an objective to improve software and system safety.
Testing and inspection late in the system development lifecycle should no longer be
relied upon as the primary line of defence for engineering software systems of
significant size and complexity. Empirical experience shows that problems identified
in the late lifecycle are often costly to fix and may introduce unexpected new
problems [17]. Robust software and system architectures have been increasingly
recognised as one of the keys to improving safety.

However, most modern architectural design methods and explanations of
underlying design principles remain ad hoc. Architects or designers, who could claim
in their defence that they adopted a specific design pattern or followed an industry
standard, rarely articulate their design rationale and analyse the impact of their
decisions along with design alternatives in a precise and sound manner. The
communication between design and safety assessment in practice is often
characterised as an “over-the-wall” process [19]. The problems are exacerbated by the
presence of a high degree of uncertainty in the design detail that is available early in
the system development lifecycle.

384 W. Wu and T. Kelly

1.2 Software Safety Evidence

The development of software safety evidence is increasingly advocated in the safety
community [38] to explicitly evaluate the safety of software, as opposed to relying on
process prescription through safety standards such as IEC 61508 [3] and DO178B [5].
The tenet of using software safety evidence is straightforward: evidence shall be
provided for assessors to demonstrate sufficient mitigation of risks associated with the
use of software in safety-critical systems. The term “sufficiency” has been defined
and deployed in a variety of risk acceptance regimes in the domain of risk
management Risk mitigation has been generalised in terms of the following activities:
hazard elimination, hazard reduction, hazard detection and control [35]. In principle,
like other system components, software can only contribute to hazards in the system
context by means of deviations from its intended behaviour [35]. Thus, it is possible
to bring together the notion of “deviation”, “mitigation”, and “risk acceptance” with
the aid of “evidence”. Here we define an item of software safety evidence to be an
object encapsulating knowledge about potential deviations, plausible mitigation
options and estimated risk reduction, along with reference to partial specification
knowledge about a system and its environment.

 Very often, safety evidence is produced after design completion. The need for
incremental construction of safety evidence and corresponding safety arguments
(a.k.a., safety cases) has been increasingly recognised. By utilising structured safety
evidence explicitly from the very beginning of the system development lifecycle, the
key issues such as loss of safety rationale and late discovery of safety flaws may be
addressed. Figure 1 shows an evidence-oriented development process proposed by the
Australian software safety standard DefAust 5679 [2], in which consideration of
safety case development starts from the earliest stage of system development.

Fig. 1. The integrated development process (adapted from [2])

Towards Evidence-Based Architectural Design for Safety-Critical Software Applications 385

However, the linkage between the two processes (e.g., moving from preliminary
hazard analysis to architectural design) still remains undefined, especially for
software. Existing system safety approaches such as those advocated by ARP 4754
focus on the hazard analysis of purely functional requirements (i.e. Functional Failure
Analysis – FFA), from which quantitative failure targets are defined and allocated,
thereby driving the development of system and software architectures. Experience in
application of FFA to engine controller development has revealed this technique is
particularly vulnerable, as there is lack of rigorous techniques to identify and estimate
controller-related failures with respect to levels of design detail [9]. The SEI
(Software Engineering Institute) at Carnegie Mellon University has established a
design method termed Attribute-Driven Design (ADD) [11] to emphasise the active
role of quality attributes in architectural design. Yet there is little practical guidance
on how to address safety concerns using ADD. Furthermore, the nature and amount of
evidence changes as the design process progresses. Systematic techniques should be
provided to handle these evolution issues within a structured evidence framework.

1.3 Scope of Paper

In attempting to integrate architecture design and safety evidence development
processes in an effective manner, the interactions between the two must be elaborated
– i.e. how requirements are evaluated by risk assessment, and design choices justified
and design decisions driven by safety tradeoffs. In this paper, we introduce a Triple
Peaks model as a framework for architectural design for safety. The process we
present intertwines partial system specification, potential deviation concerns and
plausible mitigation mechanisms incrementally and iteratively, through which
incremental construction of safety arguments is facilitated and exploited. While risks
may be communicated in a qualitative manner, they must be evaluated quantitatively,
even in the early system development stages. We adopt Bayesian Belief Networks
(BBNs) as the flexible medium for risk-based reasoning. The causal nature of BBNs
allows reasoning about the propagation of software deviations and the effect of
mitigation chosen. We illustrate the process by means of an aircraft wheel brake
system (WBS) controller example extracted from ARP 4761 [1] and evaluate our
process by comparison with the conventional ARP approach. We argue that
systematic treatment of software safety evidence – guided by the Triple-Peaks model
– holds the key to gaining confidence in safety-related architectural decision making.

This paper is organised in the following six sections. Section 2 reviews related
work. Section 3 describes the process model within the evidence framework. Sections
4 and 5 elaborate the linkages between the three models by means of the WBS
example. Finally, section 6 discusses the findings based upon the case studies
conducted and section 7 presents the summary and future work.

2 Related Work

In order to inform architectural decisions, the first essential step for an architect is to
interpret system and software requirements so that they can be understood. Goal-
oriented methods, pioneered by van Lamsweerde [30, 31], proposed the use of goal

386 W. Wu and T. Kelly

modelling languages such as Knowledge Acquisition in Automated Specification
(KAOS) [31] to guide requirements elicitation and refinement. Alternatively,
scenario-based approaches have been proposed in the form of use cases [24], Use
Case Maps (UCMs) [14] and sequence diagrams [6] to elaborate requirements over a
known system structure. Goals and scenarios are complementary to each other and
can be combined in the design process [7]. Arguably, requirements to be addressed at
an architectural level include both functional and quality requirements (e.g., timing,
accuracy or reliability targets). Chung et al’s Non-Functional Requirements (NFR)
framework [40] and SEI’s quality-attribute scenario framework [11] have been
proposed for the purpose of formulating the quality requirements.

From the perspective of architecting dependable software, it is equally important to
address all possible negative requirements. In contrast with (positive) requirements,
negative requirements describe the system characteristics that are not allowed or
desired. Nevertheless, the formulation of negative requirements and the relationship
to positive requirements had not been explored until a decade ago. Potts et al
informally proposed the notion of obstacles that might challenge the achievement of
requirements within the Inquiry Cycle framework [45]. van Lamsweerde & Letier
extended the KAOS language to incorporate the notion of obstacles as goal violation
and provided heuristics on obstacle analysis over goals and resolution [32]. van
Lamsweerde elaborated the obstacle framework further through anti-goals and anti-
models in the context of security [29]. Rather than dealing with negative requirements
at a goal level, complementary approaches have extended the notion of scenarios for
the same purpose. Previous work at York [9] developed a method for deriving
functional hazards from use cases. Alexander later proposed a unified view of
deviation analysis over use cases in the form of misuse cases [8]. The safety
community also turned their attention to extending hazard analysis at the requirements
level to identify safety-related requirements errors. de Lemos et al [33] proposed an
integrated framework that facilitates requirements analysis and hazard analysis
iteratively and incrementally. Leveson et al [36] proposed to combine a set of hazard
analysis techniques into an integrated safety analysis for checking safety-related
requirements errors. All the approaches are defined solely in the context of
requirements without considerations of architectural characteristics.

Given the positive and negative requirements formulated, the plausible design
space must be elicited in order to capture the appropriate architectural choices. In the
early 90s, Lane [48] proposed a multidimensional design space, each dimension
representing relevant design choices to achieve a specific usability property. The SEI
later developed a tree-form design space in terms of architectural tactics with respect
to six common quality attributes [11]. The linkage between quality attributes and
design space was also elaborated by SEI through the notion of quality-attribute
reasoning frameworks [10]. A quality-attribute reasoning framework encapsulates
knowledge about relevant analytic models for a quality attribute. For example, a
performance reasoning framework imposes constraints on the relevant parameters for
various performance measures such as a hard deadline. The collection of these
frameworks thus offer an effective means of predicting system qualities and
rationalising the selection of tactics. However, no specific techniques are provided for
addressing the uncertainty and levels of design detail available in the early lifecycle.

Towards Evidence-Based Architectural Design for Safety-Critical Software Applications 387

From the viewpoint of safety, the reasoning framework should be built upon risk
assessment. NASA have developed a probabilistic risk assessment (PRA) scheme [49]
for more than two decades. The PRA approach is based upon the combination of fault
tree analysis (FTA) [51] and event tree analysis (ETA) [35] and mandates a generic
risk quantification and mitigation process that can be tailored to all phases of a project
lifecycle. We believe that the burden of combining FTA and ETA can be relieved by
the use of BBNs as a unified model. At the Jet Propulsion laboratory, a lightweight
approach to risk assessment was developed, namely Defects Detection and Protection
(DDP) [18]. The DDP scheme mandates the quantification of requirements, failure
modes and mitigation by means of expert judgement. The underlying formal model of
DDP is less justified, however.

Early work on argument-based design rationale (e.g., [16] and [46]) developed a
set of generic models of design processes in terms of three common elements:
issues/questions, positions/options, and arguments/criteria. The three elements are
consistent with our design scheme as described in the section 1.2. The issues represent
knowledge about deviations, the positions capture knowledge about possible
mitigations, and arguments feature knowledge about reasoning. While the proposed
design rationale models capture most common situations of design, they are too
general to be configured for software architecture design problems. We believe there
is a need to elaborate further the linkage of the three elements: i.e., how to generate
issues, how to move from issues to positions, and then from positions to arguments.

The relationship between requirements engineering and architectures has recently
been studied. Brandozzi and Perry [13] proposed the use of “architectural
prescriptions” to describe the mappings between goals and architectural structures.
Jackson et al [23] extended the problem frames approach to allow architectural
decisions to be considered in requirements models in terms of “architectural frames”.
Both approaches have explored the achievement of system functionality rather than
system qualities. Nuseibeh [41] proposed a Twin Peaks model which explicitly
features the challenges raised during the parallel development of requirements and
architectures. Leveson [34] proposed the intent specification approach to deriving
software safety requirements. An intent specification comprises two main dimensions:
intent and part-whole dimensions. The two dimensions dictate the requirements and
safety-related design decisions made respectively in the design process. Nevertheless,
there is lack of practical guidance on how to generate intent specifications.

The notion of BBNs was developed by combining probability theory and graph
theory [44]. A BBN represents a directed acyclic graph together with associated
conditional probability distributions based upon explicit independence assumptions,
thereby saving space of probabilistic computation [44]. In practice, BBNs are often
interpreted as causal models [44], in which the directed edges are captured by
knowledge about causal relations. Several tools such as Netica [4] are also available
for public evaluation. BBNs have already been applied to solving software
engineering problems. Fenton et al [50] developed generic BBN patterns to quantify
software safety risks. Sutcliffe et al proposed a method of constructing generic BBNs
to evaluate usability [20] and later developed an automated tool to evaluate reliability
and performance through different configurations of BBNs [21]. Bosch and Gurp [22]
proposed a generic BBN model as a software architecture evaluation framework.

388 W. Wu and T. Kelly

However, most of the BBN models developed are generic and thus need to be tailored
for a specific system domain.

At York, there has been a long-term objective to integrate software design and
safety analysis. A decade ago Fenelon et al [19] proposed a prototype of
compositional failure modelling language – Failure Propagation and Transformation
Notation (FPTN). In our previous work, we developed a collection of safety tactics
[55] as primitive building blocks for software safety design. In order to identify safety
concerns, we have also proposed a method for deviation analysis over UCMs [52].
We further elaborated it by developing a negative scenario framework and mitigation
action model [54] to help generate design options for the safety concerns formulated.
We also examined the application of Communication Sequential Processes (CSP) as
the implementation of FPTN for the purpose of architectural feedback [53]. Although
CSP can capture nondeterminism in both a qualitative and quantitative manner [39],
as a behaviour modelling language it is inadequate for capturing and evaluating
evidence for the purpose of risk assessment. The work outlined in this paper is
intended to offer a unified view of our previous work and address the need for risk-
based quantitative reasoning through the application of BBNs.

3 Evidence-Oriented Method Construction

We treat design as an iterative and incremental process of producing evidence in
which a system-to-be and its domain are better understood, credible deviation
concerns are exhaustively identified and sufficiently mitigated by design options
chosen, as Figure 2 suggests. Consequently, the design process comprises a number of
design stages, each representing a cycle of moving from system modelling to
deviation modelling and then mitigation modelling. The system model characterises
system behaviours in terms of goals and scenarios and system structures with respect
to viewpoints. The deviation model features the negative counterparts in terms of anti-
goals and negative scenarios. The mitigation model captures possible design space in
terms of mitigation actions to help inform decision-making. The proposed Triple-
Peaks model is based upon Nuseibeh’s Twin Peaks model and elaborates further the
interactions between the requirements and architecture models by means of the
deviation and mitigation models. From the viewpoint of evolutionary design, co-
existent nature of the requirements and architecture models makes it possible to
merge them into a single system model, thereby forming the Triple Peaks model.

At every single stage, appropriate evidence should be provided to justify the ‘state’
of the design progress – how safe the system-to-be would be given current knowledge
and evidence. At York we have developed Goal Structuring Notation (GSN) [27] for
communicating safety arguments. The items of evidence and their relationships to
safety claims are described in terms of goal structures. Figure 3 shows the principal
symbols of GSN. Goals can be refined by the aid of specific strategies. The goal
refinement process stops when the goals can be satisfied by evidence available.
Modular construction of GSN models is facilitated by the notation of ‘Away Goal’
and ‘Module References’ [26]: an away goal is a goal that is not defined (and
supported) within the module where it is presented but is instead defined (and
supported) in another module; a module reference is simply a goal structure packaged

Towards Evidence-Based Architectural Design for Safety-Critical Software Applications 389

in a module form. The development of the goal structures should proceed in parallel
with the design process and reflect the progress of design. In other words, it is
possible to use the goal structures to guide the development process. In GSN
terminology, generalised goal structures can be captured by GSN patterns [27].

Deviation
Model

System
Model

Mitigation
Model

G
oa

ls
,

sc
en

ar
io

s

Design
decisons

H
igh-risk

scenarios

 Specification
knowledge

Mitigation
knowledge

Deviation
knowledge

Safety cases

Deviation
modes

Mitigation actions

Safety
evidence

Causal reasoning
knowledge

System description

Fig. 2. The Triple-Peaks model

System shall tolerate
single component

failures

Fault tree
analysis System Model

Argument by
elimination of all

hazards

Subsystems are
independent

A/J

Goal Solution Strategy
Assumption/
Justification

Context

Solved-by Link
(one-to-one)

In-context-of Link
(one-to-one)

Many-to-one
relationship

Optional
relationship

n

Away Goal Module Reference

System is
acceptably safe

SafetyArgument

SafetyArgument

Fig. 3. The principal symbols of GSN

Figure 4 illustrates a sample GSN pattern for describing a system-independent
design process when the architect is required to identify all anti-goals and relevant
negative scenarios (as described in section 4.4 and 4.5) derived from a single system
goal, and choose appropriate avoidance actions to mitigate them. The claims that the
negative scenarios could not occur are satisfied by the analysis results of current
development process. Justification of the completeness of the anti-goals is based upon
the breadth of considerations of deviation modes. Credibility of the negative scenarios
identified is evaluated through BBN modelling. By developing GSN patterns tailored

390 W. Wu and T. Kelly

Fig. 4. A simple GSN pattern for the Triple Peaks process

for a specific system domain, system-specific development process model can be
instantiated to guide architecting safety-critical software applications.

The proposed Triple Peaks framework represents much of the existing, but
implicit, design practices in the dependability community. In order for the deployment
of this framework to be successful, the transitions between the three models must be
elaborated. Questions may be raised, for example:

• How do we capture and express the model elements such as goals and anti-goals
within this framework?

• How do we reason about the properties of the model elements such as
completeness, credibility and sufficiency?

Towards Evidence-Based Architectural Design for Safety-Critical Software Applications 391

Sections 4 and 5 elaborate the linkage between system model and deviation model,
and between deviation model and mitigation model, respectively. The WBS example
introduced in ARP 4761 is also used to illustrate our approach.

4 Moving from the System Model to Deviation Model

The system model comprises the description of the system under design. There are
three essential elements of the system model within our framework: goals, scenarios
and viewpoints. While a system model captures the desired properties of a composite
system, the deviation model features the undesirable states of the system. In contrast
with goals and scenarios in the system model, there are anti-goals and negative
scenarios in the deviation model.

4.1 Goals

A goal is an objective that a composite system should meet. Through seeking goals
explicitly from the requirements specification, the core system functionality and
qualities can be effectively elicited and justified. Despite the diverse forms of goal
formulation techniques (as discussed in section 2), there are four common elements of
a goal we found:

• Artefact. The artefact is the composite system or its parts onto which a goal is
applied.

• Context. The context are the pre-conditions that a goal refers to and evolves over.
• Stimulus. The stimulus is the trigger condition for the initiation of a goal.
• Response. The response captures the desired properties (i.e., postconditions) that

the artefact should hold over time. Quality constraints (e.g., deadline or failure
rate) can be specified in this part if they exist.

A sample goal can thus be expressed in the following form:

“The <artefact> shall <respond> upon <stimulus> when
<context>”

This goal formulation is consistent with the SEI’s quality attribute scenario
framework and thus can be applicable to both functional and quality goals. As an
example, consider the wheel braking system (WBS) of an aircraft [1]. We assume
there are a number of top-level goals that can be stated in terms of aircraft
functionality (e.g., controlling the aircraft on ground in this case) and qualities (e.g.,
safety). Each goal can be formulated in the stimulus-response form in spite of their
high level of abstraction. Each functional goal can be decomposed further into a set of
sub-goals and should evolve separately given that they are independent. The goal
decomposition may be guided by the use of scenarios, as described in the next
subsection. Goal structures can thus be constructed. Safety goals cannot simply be
decomposed via functional goals or system structures; their refinement is based upon
the results of deviation analysis (see sections 4.4 and 4.5) and the chosen mitigation.
For example, deviation analysis may reveal that a ‘late’ output of a controller is safety

392 W. Wu and T. Kelly

significant. A performance goal is thus derived and added into the safety goal
structures.

Figure 5 shows a part of the goal structure in which the core functionality of WBS
is elicited. All the goals in this structure are expressed using the above form. The
expression language used is a structured natural language, and some expression can
be very abstract at this level. For example, both the stimulus and response parts of the
top-level goal FnG1 are very general and need to be refined. This should be
acceptable, however, in the early development lifecycle in which many requirements
are volatile and unclear. Figure 6 shows the undeveloped goal structure of the aircraft-
level safety goal. In most cases, the top-level safety goal (i.e., SafeG1) is simply
derived from the certification authority. This achievement of this root goal is based
upon the satisfaction of all the supporting safety-related functional and quality goals.
Likewise, expressions of safety goals can be very abstract, as the concrete forms of
deviations and mitigations are still unknown. It can be seen that the modular features
of GSN makes it feasible to isolate development of different goal structures (e.g.,
functional and safety goal structures) and link them effectively via the notation of
Away Goal and Module References.

Fig. 5. A functional goal structure for the WBS example – Control the aircraft on ground

Towards Evidence-Based Architectural Design for Safety-Critical Software Applications 393

4.2 Scenarios

A scenario is a sequence of actions performed by objects instantiated within the
known structure of the composite system. Scenarios provide an effective way to
elaborate a goal in a white-box view. In other words, a goal defines a set of possible
scenarios; a scenario defines a possible realisation of a goal. There are many forms of
scenario formulation (see section 2). The use of UCMs is preferable based upon our
experience, as it offers a clear-cut notation of causal relationships between
architectural components in terms of responsibility points [14]. This is beneficial
when we conduct deviation analysis over scenarios, as described in section 4.5.
UCMs can be refined, as the underlying system structure is developed in more detail.

SafeG1

The aircraft system is
acceptably safe upon the
occurrence of any hazard when
it is operating

Goal Structure of
Functional Goal –
AircraftCtrOnGround

FnG1

SafeS1.2

Argument over all
identified safety related
performance goals

SafeG1.1.1

The aircraft system is acceptably
safe upon the occurrence of any
hazard when it is decelerating on
ground

SafeS1.1

Argument over all
identified safety related
functional goals

SafeC1

Definition of
acceptability

…...

All top-level functional
goals are independent

IndepArg

IA1
SafeS1.3

Argument over all
identified safety related
maintainability goals

SafeG1.1.2

The aircraft system is
acceptably safe upon the
occurrence of any hazard when
it is operating along flight path

Fig. 6. The top-level safety goal structure for the WBS example

In order to define a scenario (i.e., a UCM model), a goal must be provided. A
system structure (i.e., a component context diagram in UCM terminology) must also
be defined as the context of elaborating the goal. The system structure should be
derived from the predefined viewpoints as described in the next subsection. The
system structures should be independent of the requirements allocated. This is another
benefit of using UCMs, as component context diagrams and use case paths can be
developed separately. For the WBS example, the wheel braking goal has been
identified in Figure 5. The system architecture of the WBS has been defined in the
system description (see [1]) as the input of the design process. Therefore we can
elaborate the wheel braking goal through the system architecture. Figure 7 illustrates
an example scenario for the wheel braking goal – manual braking in normal mode. As
all relevant scenarios (in this example, manual braking in normal mode/alternative
mode/emergent mode and auto braking) are elicited for a specific goal, the goal can
be decomposed further given the responsibility points allocated. For instance, a sub-
goal of the WBS goal will be the goal of BSCU expressed as follows:

The BSCU controller shall output the brake command upon
arrival of pedal signal when airframe is on ground AND
aircraft is in landing/taxing/RTO flight phase.

394 W. Wu and T. Kelly

4.3 Viewpoints

In most cases, a system model has multiple structures due to the increasing size,
complexity and heterogeneity of modern software systems [42]. In practice, these
structures are classified in terms of viewpoints. An instance of a viewpoint is called a
view (i.e., a system structure). Yet there is no consensus on the number of appropriate
viewpoints in both research and practice that are considered necessary to describe
software architectures adequately. From the viewpoint of embedded systems
development, we define five essential viewpoints, as shown in Table 1. The first two
are defined at system level to capture system boundaries and its physical structures.
The remaining three viewpoints are defined at software level and consistent with
common viewpoint approaches in the software community (e.g., SEI’s three
viewtypes [15]). The recognition of multiple viewpoints has a significant impact on
the completeness of deviation analysis, as viewpoints are interconnected and
deviation arising from one view can propagate through another view (see section 4.5).

Pilot :
Human

Pedal :
MechanicalDevice

BSCU :
Controller

ServoValve :
Valve

Brake :
MechanicalDevice

press_pedal signal can_brake open engaged

Preconditions:
- Aircraft is on ground
- Aircraft is moving
- Aircraft is in landing/takeoff/rejected takeoff phase

Postconditions:
- Eight wheel brakes are applied

Fig. 7. An example scenario – manual braking in a normal mode

Table 1. The information description of the five viewpoints

Viewpoint Description Intent
Contextual
Viewpoint

How an embedded system interacts with its
operating environment

To reason about the environmental
properties of the system

System
Architecture
Viewpoint

How an embedded system is structured in
terms of physical units. At least one of these
units should be the controller or software

To reason about the physical
characteristics of the system

Development
Viewpoint

How the system’s software is structured in
terms of implementation units

To reason about the software
functions and maintenance

Run-Time
Viewpoint

How the system’s software is structured in
terms of run-time units

To reason about the runtime
behaviours of the software

Allocation
Viewpoint

How the system’s software is allocated onto
non-software structures (e.g., hardware
platform)

To reason about the impacts of the
underlying hardware platform and
development environment on software

Towards Evidence-Based Architectural Design for Safety-Critical Software Applications 395

4.4 Anti-goals

An anti-goal is a condition that, if true, would immediately prevent the composite
system from achieving the corresponding goal. Both goals and anti-goals are
complementary and thus capture the possible desired and undesired end states of a
composite system respectively. A common example of an anti-goal is the loss of
a system function where the function was a goal. Nevertheless, simple negation of a
goal in terms of propositional logic cannot guarantee the completeness of the
corresponding anti-goals. A less obvious but perhaps more severe anti-goal would be
inadvertent application of that function. Given some goal formulation, it is important
to ensure the exhaustiveness of deviations from that goal, at least from the viewpoint
of safety. In the safety community, the possible deviations of a system are often
characterised in terms of deviation or failure modes. Previous York’s work has
developed a collection of deviation modes for software systems: SHARD guidewords
[19]. We interpret the SHARD modes with respect to the goal formulation in the
following Table 2.

Table 2. The anti-goal interpretation using SHARD guidewords

SHARD Anti-Goal Interpretation
Omission Response part does not hold while stimulus and environment parts hold
Commission Stimulus or context parts do not hold while response part holds
Timing Timing constraint specified in the response part is violated while the other parts hold
Value Value constraint specified in the response part (e.g., accuracy or cost) is violated while

the other parts hold

By allocating the SHARD modes onto a formulated goal and interpreting them

using the above table, there can exist a high level of confidence on the exhaustiveness
of the set of anti-goals elicited. Notably, not all anti-goals can have safety implications;
anti-goals must be evaluated with respect to safety consequences (see section 5.1). Let
us return to the WBS example. As soon as the system goals of WBS are formulated,
the identification of anti-goals can start by considering the SHARD deviations first
without information about the elaborated scenarios. In this example, only omission and
commission modes are applicable. Table 3 illustrates an example anti-goal by negating
the context part – wheel braking when the context is not as intended. The definition of
the stimulus part is trivial in this case. The anti-goal elicited is abstract.

Table 3. An example anti-goal formulation

Portion of Goal Possible Value
Artefact WBS
Context NOT (Airframe is on ground AND aircraft is in landing/taxiing/RTO flight phase)
Stimulus N/A
Response All wheel brakes are applied

By expanding the negation operation on the context part using Boolean logic, we

can derive a set of well-refined anti-goals: e.g., wheel brakes applied when aircraft is
taking off or when aircraft is in air. It must be stressed that the expansion here cannot

396 W. Wu and T. Kelly

be achieved solely by formal Boolean logic and in many cases may need the help of
domain experts. For the example of inadvertent wheel braking when the aircraft is
taking off, we may need to distinguish further whether the aircraft is taking off before
the decision speed V1, as the corresponding safety consequences would be different
[1]. Obviously, this is impossible for formal logic alone to identify the two anti-goals.
When all anti-goals are identified and refined (say, eight anti-goals for the WBS
example), they should be linked to the anti-goals of the parent goal of the WBS (i.e.,
aircraft deceleration) in a bottom up manner, thereby forming an anti-goal structure.
The anti-goal structure in the WBS example is shown in Figure 8.

Fig. 8. The anti-goal structure – Total loss of aircraft deceleration

As seen in the Figure 8, the anti-goal structure should refer to the corresponding
functional goal structure. It should be noted that the expression languages used in
functional goals, safety goals and anti-goals are slightly different. The functional
goals are simply requirements and thus ‘shall’ statements are suitable; the safety goals
are claims in which ‘is/are’ statements are applicable; the anti-goals are hypotheses
about states & events of the system and thus ‘will’ statements should be used. The
construction of anti-goal structures will prompt the refinement of the safety-goal
structure in which decisions need to be made regarding how to mitigate these
identified anti-goals.

4.5 Negative Scenarios

Like a (positive) scenario, a negative scenario is a possible realisation of an anti-goal
with respect to the known system structure. In other words, negative scenarios can be
formulated using conventional scenario formulation techniques such as use case
templates. We previously proposed a stimulus-effect form [54] to emphasise the
status of causal propagation within a negative scenario. Not surprisingly, it can be
seen as the negation of the stimulus-response form of goals and positive scenarios. To

Towards Evidence-Based Architectural Design for Safety-Critical Software Applications 397

ensure an exhaustive set of negative scenarios elicited, a broad spectrum of candidate
stimuli must be considered. This spectrum should be based upon consideration of all
possible deviations. Credibility of these deviations will be discussed in section 5.1.
We here distinguish two classes of negative scenarios, which are consistent with the
decomposition principle of fault tree construction [51]:

• Primary negative scenarios. Those stimuli are identified from deviation analysis
over a positive scenario — a UCM model which is derived from a specific
viewpoint. This is often done by inductive analysis or “what-if” questions
conducted on every single action of a scenario.

• Supporting negative scenarios. Those stimuli are identified from deviation analysis
over other viewpoints but with possible contribution to primary negative scenarios.
For example, the failure of a run-time component in a runtime view can be caused
by malfunction of underlying hardware platform in the deployment view.

Furthermore, the systematic identification of anti-goals offers an effective means of
ensuring a broad spectrum of the end effects of the negative scenarios. By linking the
candidate stimuli with anti-goals through the stimulus-effect framework, the
exhaustiveness of negative scenarios can be justified. New anti-goals may also be
identified during negative scenario development. Another concern is the effectiveness
of the negative scenario elicitation. In practice, deviation analysis is aided by a set of
pre-defined component deviation modes. For example, the common deviation modes
for the components of valve type can be: stuck open, stuck close and leakage.
Automated analysis is thus possible by extending system structures with component
failure modes defined in the deviation knowledge base.

Let us continue the WBS example in which a wheel braking goal, four positive
scenarios in a form of UCMs, and eight anti-goals have been defined. Now we need to
perform deviation analysis over each of the four positive scenarios. Guidance on
deviation analysis over UCMs can be found in our previous work [52]. Simply put,
deviation analysis starts by forward search of each responsibility point across the use
case path in order to identify possible primary negative scenarios. For a given
responsibility point, deviation modes are allocated with respect to the type of the
component in which the responsibility point resides, and the end effect of that
deviation is identified along the use case path and linked to the identified anti-goals.
The forward search procedure for a specific responsibility point is similar to ETA in
which the initiating event is the deviation of that responsibility point and all possible
event sequences are analysed along the use case path. Figure 9 illustrates the
deviation analysis procedure for the scenario – the manual braking in normal mode.

The output of deviation analysis over the four UCM scenarios are fourteen primary
negative scenarios. Supporting scenarios must be identified by deviation analysis over
other views. To do this, we need to identify how the components in a UCM model can
be mapped onto other views. In the WBS example, the UCM models are defined
within the system architecture view, and all other views are still undefined. In this
case, the architect needs to make some assumptions such as a uni-processor
configuration and single monolithic software module in order for the remaining views
to be produced. Put another way, the BSCU controller is first mapped to a single
software module in both development and run-time views, and to a processor in the

398 W. Wu and T. Kelly

open

Pilot : Human
Pedal :

MechanicalDevice BSCU : Controller ServoValve : Valve
Brake :

MechanicalDevice

omission

commision

late

fail to activiate

fail to disengage
fail to disengage

fail to activiate
omission

commision

late

value

stuck open

stuck close

leak

AG1

AG2

AG3

AG4

AG1

AG2

AG1

AG3

AG1

AG5

AG6

AG6

AG5

AG6

AG1: total loss of wheel braking
AG2: inadvertent wheel braking

AG3: late wheel braking

AG4: over wheel braking

AG5: partial loss of wheel braking
AG6: asymmetric wheel braking

Note:

press_pedal signal can_brake engaged

Fig. 9. Deviation analysis over the example scenario (manual wheel braking)

allocation view. Deviation analysis is then performed upon the two components by
deviation mode allocation. Consequently, a set of supporting negative scenarios are
identified. All identified negative scenarios should be formulated in the stimulus-
effect form. Table 4 illustrates an example formulated negative scenario.

Table 4. An example negative scenario formulation

Source Stimulus Context Course of Propagation End Effect
BSCU Fails to

output
brake
command

Airframe is on ground AND
aircraft is in landing/taxiing/RTO
flight phase AND pilot presses
the pedal

Eight servo valves, eight
brakes

AG1: Total
loss of
wheel
braking

5 Moving from the Deviation Model to Mitigation Model

All the negative scenarios and anti-goals are hypothesised on the basis of current
knowledge about the system and its domain. Yet not all anti-goals identified are
safety significant. Moreover, it is impractical to completely address all the identified
safety concerns within a single design iteration. It must be possible to evaluate the
deviation model in terms of safety risks. A negative scenario leading to a safety-
significant anti-goal is a risk scenario. Only a small number of high-risk scenarios
(say three) will be considered in the mitigation model for every single design
iteration. As a result, the management of negative scenarios and assessment of
acceptability must be a continuous process through the whole architectural design.
The purpose of the mitigation model is to capture plausible mitigation space (i.e. a set
of mitigation action candidates) against the high-risk scenarios identified through
severity and credibility estimation. Cost-benefit analysis and design tradeoffs may be
performed in order to make optimal decisions. The following subsections will
describe our solutions to evaluating the deviation model using a BBN framework,
identifying mitigation space and performing safety design tradeoffs.

Towards Evidence-Based Architectural Design for Safety-Critical Software Applications 399

5.1 Severity and Credibility

Like most risk assessment methods, the evaluation is performed in terms of severity
and credibility estimation. Notably, we prefer the term “credibility” to the standard
term “likelihood” or “frequency”, because the former is more consistent with the
Bayesian interpretation of probability [25] that lies at the heart of our risk assessment
framework. Severity estimation is conducted by considering the safety consequences
of all identified anti-goals. Estimation proceeds from the anti-goal structures and
takes into account of the contribution to their parent anti-goals if they exist. For the
WBS example, the occurrence of the anti-goal AG1.1 does not necessarily lead to the
occurrence of its parent anti-goal AG 1 unless the anti-goals AG 1.2 and AG 1.3 also
hold, as shown in Figure 8. In fact, the anti-goal AG 1.1 should be detectable by the
pilot when the wheel braking is commanded and the pilot will be able to use spoiler
and thrust reversal to the maximum extent possible in order to achieve deceleration.
Hence, the severity classification of the anti-goal AG1.1 should be hazardous rather
than catastrophic.

Credibility estimation should be conducted over all the negative scenarios
identified and formulated in a stimulus-effect form. There are two parts to be
estimated: the stimulus and propagation parts – how credible is it for the occurrence
of the hypothesised stimulus and its propagation to manifest the anti-goal? At the
beginning of architectural design, it is plausible to make the worse-case assumption
that the propagation is completely credible (i.e., its credibility is 1) given that no
mitigation mechanisms are employed. Once mitigation actions are chosen against the
propagation, the credibility of the propagation should be re-estimated with respect to
the effectiveness of the chosen mitigation. Now our focus would be the stimuli of all
negative scenarios. To do so, we first distinguish two classes of stimuli:

• Stimuli of a random nature. The sources of the stimuli will be non-agent objects
such as hardware and natural environment.

• Stimuli of a systematic nature. The sources of the stimuli will be agents such as
human and software.

For the first class of stimuli, the architect should seek historical data to justify their
credibility. For the systematic stimuli, an analytic model should be constructed and
evaluated through data collected from the real world. The selection of analytic models
depends upon the classification of the stimulus: is it human operation error or software
design fault? For the former, further investigation is required to check if it is a slip-
related error or mistake-related error [47]. Task network analysis [28] may be chosen
to predict the credibility of slip-related errors, for instance. For the software design
faults, current design artefacts and the progress of development process must be
considered. If fault data determined by testing are available, for example, Rome
Laboratory’s software reliability prediction models [37] may be suitable. Alternatively,
if product metrics (e.g., quality of requirements specification) and process metrics
(e.g., competencies of the developers) can be estimated, Fenton’s defect prediction
model may be applicable. Notably, no model is complete or even representative. One
model may work well for a set of certain software, but may be completely off track for
other kinds of problems. Assumptions and justification made during the selection
procedure must be explicitly identified. Knowledge about historical data, the

400 W. Wu and T. Kelly

classifications of analytic models as well as the applicability rules could be codified in
a reasoning knowledgebase for the purpose of automation. If no applicable historical
data and analytic models are available, expert judgements would be required.

Let us carry on the WBS example. An assumption of 100% propagation hold for
all identified negative scenarios can be made. We then need to type-check the
stimulus and source parts of every scenario. Analytic models are then selected for
credibility estimation. Table 5 illustrates a portion of credibility estimation results for
the WBS example. It should be noted that the results of credibility are by no means
precise, as the level of design detail increases. In many cases, the credibility of the
scenario will need to be updated as the design process progresses and subsequent
design decisions are made upon the source of the stimulus. For example, the BSCU
software module will inevitably be decomposed in more finer-grained modules in
which the brake control responsibilities will be allocated. The update of evidence is
possible to be incorporated within the BBN framework described in the next
subsection. It must be stressed that the role of quantification is to prioritise scenarios
instead of obtaining precise numerical data – through which dominant scenarios are
identified and drive the design decision procedure.

Table 5. Example results of credibility estimation

Stimulus Classificat-
ion

Estimation
Forms

Assumptions/ Justification Credi-
bility

Pilot fails to
press pedal

Slip-related
error

Task network
analysis

Reason’s human error classification
[47]

1.5E-6

Power supply
loss

Random
failure

Historical data 1E-7

Existence of
software fault

Design
error

Fenton’s defect
prediction
model [50]

No fault/failure data but some
process and project management
metrics are available at this stage.

2.5E-3

5.2 Causal Bayesian Modelling

A negative scenario is inherently a causal chain starting from a stimulus and leading
to undesired end states (i.e., anti-goals). Through composing all identified negative
scenarios together, a causal structure can thus be formed. In BBN terminology, a
causal structure C is defined in a directed acyclic graph (DAG) form: C = (V, E),
where V is defined as a set of nodes, and E is defined as a set of directed edges among
V. We distinguish further between two subsets of V: V1 and V2, where V1
corresponding to the set of all the leaf nodes, V2 represents the set of the remaining
nodes such that V = V1 ∪ V2 and V1 ∩ V2 = ∅. Each element of the set V1
corresponds to a distinct anti-goal identified, whilst each element of the set V2
corresponds to a distinct architectural component identified from the source of
stimulus and propagation parts in the negative scenario framework. Each element of E
captures a distinct causal relation identified by knowledge about the sequence of
propagation of a stimulus as specified in the negative scenario framework. Figure 10
illustrates a portion of a causal structure for the WBS example. To simplify the BBN
computation, we remove the nodes WheelBrake(i) and ServoValve(i), as our main
focus here is the controller BSCU.

Towards Evidence-Based Architectural Design for Safety-Critical Software Applications 401

To form a causal model, the first step is to transfer all the nodes in V into variables
in which their value domains must be defined. For elements in V1, their value domain
will be simply Boolean true and false to indicate if an anti-goal occurs or not. For
elements in V2, their value domains will be their deviation modes allocated and the
normal mode (say, ok) during deviation analysis, as described in section 4.5. Finally,
we need to define a conditional probability table (CPT) for each variable with respect
to the credibility estimation results. Often, this would be a tedious step. However,
many BBN tools such as Netica allow us to define probability table by equation.
Figure 11 shows the equation definition for the BSCU variable using Netica
expression language. In general, careful justification is required when defining a CPT.
These judgements need to be captured in the safety arguments (i.e., GSN forms). The
following are a number of rules learnt from our experience:

AGTotalLossWBraking AGInadvertentWBraking

Wheel
Brake1

Servo
Valve1

BSCU

Processor

IO

SoftwareModule

Pedal

PowerSupply

Pilot

Wheel
Brake2

Wheel
Brake3

Wheel
Brake4

Wheel
Brake5

Wheel
Brake6

Wheel
Brake7

Wheel
Brake8

Servo
Valve2

Servo
Valve3

Servo
Valve4

Servo
Valve5

Servo
Valve6

Servo
Valve7

Servo
Valve8

Fig. 10. The causal structure for WBS example

• During the elicitation of negative scenarios, a single deviation is considered as the
stimulus for one scenario. But when composing scenarios to form a causal model,
the occurrence of multiple deviations must be taken into account. For the WBS
example, what if both power supply loss and processor failure happen
simultaneously? Obviously, the effect of process failure will not be exhibited by
the occurrence of power supply loss, thereby leading to no output of BSCU.

• Some deviations such as transient failure of processor or software faults may have
multiple effects in a non-deterministic manner [53]. In those cases, the architect
needs to make some assumptions: e.g., all chances are equal.

402 W. Wu and T. Kelly

P (BSCU | CPU, IO, SW, Pedal, Power) =

(Power == ok && CPU == ok && Pedal == ok && SW == ok && IO == ok) ? (BSCU == ok ? 1.0 :

0.0) :

(Power == loss) ? (BSCU == fail_to_output_brake ? 1.0 : 0.0) :

(Power == ok && Pedal == fail_to_activate) ? (BSCU == fail_to_output_brake ? 1.0 : 0.0) :

(Power == ok && Pedal == fail_to_disengage) ? (BSCU == ok ? 1.0 : 0.0) :

(Power == ok && Pedal == activate_inadvert) ? (BSCU == output_brake_inadvert ? 1.0 : 0.0) :

(Power == ok && Pedal == ok && CPU == crash) ? (BSCU == fail_to_output_brake ? 1.0 : 0.0) :

(Power == ok && Pedal == ok && IO == crash) ? (BSCU == fail_to_output_brake ? 1.0 : 0.0) :

 (Power == ok && Pedal == ok && IO == transient_failure) ?

 (BSCU == fail_to_output_brake ? 0.3 : BSCU == output_brake_late ? 0.5 : BSCU == ok ? 0.1 : 0.1) :

 (Power == ok && Pedal == ok && (CPU == transient_failure || SW == faulty))?

 (BSCU == fail_to_output_brake ? 0.3 : BSCU == output_brake_inadvert ? 0.3 : BSCU ==

output_brake_late ? 0.2 : 0.2) : 0

Fig. 11. The equation expression for the BSCU variable

Power Supply
ok
loss

 100
 0 +

BSCU
ok
fail to output brake
output brake inadvert
output brake late

99.8
.078
.076
.055

IO
ok
transient failure
crash

 100
0.01
 0 +

Pedal
ok
fail to activate
fail to disengage
activate inadvert

 100
 0 +
 0 +
 0 +

Software Module
ok
faulty

99.8
0.25

Pilot
ok
fail to press pedal
press pedal inadvert

 100
 0 +
 0 +

Processor
ok
transient failure
crash

 100
 0 +
 0 +

Total Loss of Wheel Braking
true
false

.078
99.9

Inadvertent Wheel Braking
true
false

.076
99.9

Fig. 12. The BBN evaluation results using Netica

• Like programming, comments for each statement (though not shown in the figure)
will be provided to enhance understanding and readability.

Figure 12 shows a fragment of the compiled BBN model produced by Netica. Note
that the belief numbers shown in the figure are based upon percentage and some
numbers are not shown completely (i.e., 0+) due to limitations of display. For
example, the probability of the anti-goal “Total Loss of Wheel Braking” calculated is
0.0007846, which falls short of civil aviation target 1E-7. Therefore, mitigation is
required. To do so, we need to identify the high-risk scenarios. This can be done

Towards Evidence-Based Architectural Design for Safety-Critical Software Applications 403

automatically by sensitivity analysis through Netica. There are three high-risk
scenarios, which must be considered in the mitigation model:

S1. Residual faults in the BSCU software leading to malfunctions of the BSCU
S2. I/O (transient or permanent) failures leading to malfunctions of the BSCU
S3. Processor (transient or permanent) failures leading to malfunctions of the BSCU

5.3 Mitigation Space and Safety Tradeoffs

We previously developed a mitigation action model in which mitigation actions are
organised in a tree form of five branches (i.e., elimination, reduction, detection,
resistance and minimisation) and codified by a template, which can be implemented
in a mitigation knowledgebase [54]. If we treat all the codified mitigation actions as
the whole design space, our concern then lies at how to identify the most appropriate
subset of these actions with respect to a specific negative scenario. Since negative
scenarios are formulated in a form of causal chains, a plausible mitigation space will
be defined by means of controllable parts of the causal chain for the purpose of
stopping the propagation. Therefore, the identification of the mitigation space is an
iterative procedure of locating the reachable BBN non-leaf nodes (i.e., architectural
components) with respect to a given anti-goal and searching applicable mitigation
action branches. For the WBS example, consider the scenario S1 identified in the
previous subsection. Clearly, the mitigation options would lie within the software
module and BSCU nodes. Mitigation actions applied to the BSCU can also help
address scenarios S2 and S3. We then need to determine which of the five branches of
mitigation will be applicable. For instance, the minimisation action branch (i.e.
minimisation of the effect of total loss of wheel braking) is irrelevant, as there is
nothing to act when BSCU fails to output the brake command as requested. The
procedure continues until all action candidates are located. Table 6 illustrates the
mitigation options for S1, accompanied by their rationale.

Table 6. A mitigation space for the negative scenari S1

ID Node Branch Mitigation Intent
Eliminat-
ion

Simplification Correctness of software design can be verified

Rigorous testing A amount of faults can be detected by testing
Following safety
standard

The process for high Development Assurance
Level (DAL) [5] produces ‘better’ software

Soft-
ware
module Reduct-

ion

Functional
redundancy

The likelihood of faults in different designs is
sufficiently low

Timeout No response of the BSCU is assumed to fail
Comparison Deviations can be detected in case of

discrepancy

Detection

Voting Deviations can be detected and tolerated in case
of discrepancy

Recovery Any error detected can be fixed
Reconfiguration Any error detected can be removed by

replacement

S1

BSCU

Resistan-
ce

Degradation Any error detected can be removed by removal
of the faulty component

404 W. Wu and T. Kelly

To make decisions in response to the mitigation space identified, cost-benefit-risk
analysis must be performed. The benefit of each action candidate is determined in
terms of its impact upon the credibility of the scenario that it is intended to address.
The cost of each option is estimated in terms of orders of magnitude. Both cost and
benefit estimates usually require the aid of domain experts and past experience. The
known vulnerabilities and side effects of each option are identified by the use of the
codified mitigation knowledge. As an example in Table 6, the effectiveness of
deploying functional redundancy to reduce software faults lies at a high degree of
diversity between module designs, which may be hard to implement in practice. This
can be done by means of tables [54] and the architect is free to choose specific
options based upon judicious considerations of the mitigation space. It must be
stressed that our method does not make decisions for the architects but aids them in
eliciting and rationalising their design decisions. For the WBS example, we chose the
simplification tactic against the dominant scenario S1 because of the limited number
of software input, and comparison and reconfiguration tactics against S2 and S3 by
assuming a stringent cost budget. Once mitigation actions are chosen, the system
model needs to be refined in the following possible ways:

 Add new components or remove existing components in specific view(s).
 Add new responsibilities (a.k.a., derived requirements) in specific view(s).
 Re-allocate existing responsibilities in specific view(s)

For the WBS example, the correctness of the monolithic software module in the
development view must be verified. In this case, no refinement of software module is
required by this decision. However, non-safety such as modifiability-related design
decisions can drive the decomposition of the monolithic module into a control
function module and compiler module so that the BSCU software can be portable to
different compilers. Two dual processors and buses are introduced in the allocation
view and the output of the BSCU is arbitrated, as indicated by the chosen comparison
tactic. Transient processor/bus failures can be repaired by rebooting the processor and
reloading its copy of software. Behaviours regarding the run-time comparison and
reboot behaviours must be captured in the scenario forms. At this point, both the
structures of functional goals and safety goals can be decomposed further to reflect
the refinement of the system model and derivation of safety requirements.

Likewise, a new deviation model will be generated upon the refinement of the
system model. In most cases, the step of identification of anti-goals can be skipped
unless new system goals (e.g., system monitoring) are identified. The main focus is
thus the elicitation of new negative scenarios. For the WBS, example negative
scenarios elicited can be failure of both processors and the use of potentially faulty
compiler. The process loops until all the core system requirements have been elicited
and all identified anti-goals are mitigated sufficiently with respect to the risk
acceptance. A stable architecture is therefore formed at the end of the design process.

6 Discussion

We have so far applied the proposed framework to a number of medium-size case
studies such as AGV [54] and WBS systems. The WBS example was selected for the

Towards Evidence-Based Architectural Design for Safety-Critical Software Applications 405

purpose of comparison with the ARP process which has been widely applied in
practice. We discuss our results in terms of the following three aspects:

Exhaustiveness. Establishing an argument of exhaustive identification of the design
issues (i.e., negative requirements) and design alternatives is recognised as the key to
the robustness of dependability design. Within the ARP framework, negative
requirements are identified through deviation analysis purely on system functions
(i.e., FFA) and refined through FTA during architecture definition. The transitions
from FFA to FTA and from system level to software level are undefined, however.
The exhaustiveness argument is thus implicit and cannot be validated. The techniques
presented in our approach provide semi-formal and multi-viewpoint support for
deviation identification: deviation analysis is started at goal level through top-down
goal formulation and refined at scenario level and component level through pre-
defined architectural viewpoints in a bottom-up manner. Moreover, there is no step
for identification and justification of design alternatives in the ARP process. The
exhaustiveness argument is inherently limited and subject to the competencies of
domain experts and the past experience of architects.

Effectiveness. Most software standards advocate heavyweight development
approaches in which the upfront specification of all system requirements is mandatory
before the design proceeds [12]. For the ARP example, a sequential ‘waterfall-like’
process is defined, starting from aircraft-level FFA, system-level FFA to system-level
FTA and software-level FTA, from which system and software safety requirements
are derived and architectures are validated. This form of waterfall model has been
known to be inadequate for handling the volatility and uncertainty commonly
involved in the real-world problems. The Triple-Peaks process presented in this paper
inspired from the Twin-Peaks model addresses requirements specification, design
issues and corresponding design alternatives iteratively and incrementally. The
process is receptive to requirements change, as only core system requirements are
analysed and achieved by a stable architecture defined. Incremental construction of
safety evidence is facilitated by means of GSN in a top-down manner, though it
remains to be seen whether the explicit recording of safety arguments is best done in
order to ‘fake’ a rational design process as described by Parnas and Clements [43].
The effectiveness of the design process is also enhanced by available knowledge
sources such as deviation modes, component deviation types and mitigation tactics,
though there is still lack of tool support available to integrate these techniques.

Rationality. Existing software design approaches often rely upon implicit reasoning,
through which design decisions are mainly promoted by design intuition. The linkage
between design decisions and requirements is largely undefined. Though the design
decisions are clearly identified within the ARP process, the steps moving from the
identified safety requirements to design decisions are still unclear. Our approach
elaborates the linkage between safety requirements and mitigation options chosen by
means of requirements formulation and prioritisation, design space analysis and cost-
benefit-risk analysis. With the aid of BBN tools, the notion of credibility can be
deployed in design and a level of confidence can thus be established. Deciding the

406 W. Wu and T. Kelly

stopping rules of the design process (i.e., when design issues identified are complete
and mitigation is adequate) is based upon risk acceptability criteria.

7 Summary

In this paper, we have presented an integrated approach to architectural design for
safety-critical software applications through a Triple Peaks framework. In particular,
we have demonstrated that how it is practical to conduct deviation analysis
simultaneously at both the requirements and architecture level. The key principle
underlying this paper is that software safety evidence must be collected in the early
development lifecycle, and architectural design decisions must be informed based
upon this evidence & quantitative risk assessment. Our future work includes seeking
possible automation of the linkage between BBN models and architectural choices,
and expanding the proposed method into other critical domains such as security-
critical software applications.

References

1. ARP 4761: Guidelines and Methods for Conducting the Safety Assessment Process on
Civil Airborne Systems and Equipment, Society of Automotive Engineers, Inc. (1996)

2. Australian Defence Standard Def(Aust) 5679: Procurement of Computer-based Safety
Critical Systems, Australian Department of Defence (1998)

3. IEC 615038 – Functional Safety of Electrical/Electronic/Programmable Electronic Safety-
Related Systems, International Electrotechnical Commission (1998)

4. Netica, Norsys Software Corp. (2006), http://www.norsys.com/
5. RTCA/DO-178B: Software Considerations in Airborne Systems and Equipment

Certification, Radio Technical Commission for Aeronautics (1992)
6. The United Modelling Language (UML) Specification. The Object Management Group

(2005)
7. Achour, C.B., Rolland, C., Souveyet, C.: Guiding Goal Modelling Using Scenarios. IEEE

Trans. on Software Engineering 24(2), 1055–1071
8. Alexander, I.: Misuse Cases: Use Cases with Hostile Intent. IEEE Software 20(1), 58–66
9. Allenby, K., Kelly, T.: Deriving Safety Requirements using Scenarios. In: the 5th IEEE

International Symposium on Requirements Engineering(RE’01), p. 228. IEEE Computer
Society Press, Los Alamitos (2001)

10. Bachmann, F., Bass, L., Klein, M.: Deriving Architectural Tactics: A Step Toward
Methodical Architectural Design, SEI (2003)

11. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison
Wesley, Reading, MA, USA (2003)

12. Boehm, B., Turner, R.: Balancing Agility and Discipline: A Guide for the Perplexed.
Addison-Wesley Professional, Reading (2003)

13. Brandozzi, M., Perry, D.E.: From Goal-Oriented Requirements to Architectural
Prescriptions: The Preskriptor Process. In: Proceedings of Third International Workshop
From SofTware Requirements to Architectures (STRAW’03), pp. 107–113 (2003)

14. Buhr, R.J.A., Casselman, R.S.: Use Case Maps for Object-Oriented Systems. Prentice-
Hall, Englewood Cliffs (1996)

15. Clements, P.: Documenting software architectures: views and beyond. Addison-Wesley,
Boston (2003)

Towards Evidence-Based Architectural Design for Safety-Critical Software Applications 407

16. Conklin, J., Begeman, M.L.: gIBIS: A Hypertext Tool for Exploratory Policy Discussion.
ACM Transactions on OfficeInformation Systems 6(4), 303–331

17. Easterbrook, S., Lutz, R., Covington, R., Kelly, J., Ampo, Y., Hamilton, D.: Experiences
Using Lightweight Formal Methods for Requirements Modeling. IEEE Trans. on Software
Engineering 24(1), 4–14

18. Feather, M.S., Cornford, S.L.: Quantitative risk-based requirements reasoning.
Requirements Engineering 8(4), 248–265

19. Fenelon, P., McDermid, J., Nicholson, M., Pumfrey, D.: Towards Integrated Safety
Analysis and Design. ACM Computing Reviews 2(1), 21–32

20. Galliers, J., Sutcliffe, A., Minocha, S.: An impact analysis method for safety-critical user
interface design. ACM Transactions on Computer-Human Interaction (TOCHI) 6(4),
341–369

21. Gregoriades, A., Sutcliffe, A.: Scenario-Based Assessment of Nonfunctional
Requirements. IEEE Trans. on Software Engineering 31(5), 392–409

22. Gurp, J.v., Bosch, J.: SAABNet: Managing Qualitative Knowledge in Software
Architecture Assessment. In: 7th IEEE International Symposium on Engineering of
Computer-Based Systems (ECBS 2000), IEEE Computer Society, Los Alamitos (2000)

23. Hall, J., Jackson, M., Laney, R., Nuseibeh, B., Rapanotti, L.: Relating Software
Requirements and Architectures using Problem Frames. In: Proceedings of the 10th
International Conference on Requirements Engineering, IEEE Computer Society, Los
Alamitos (2002)

24. Jacobson, I., Christerson, M., Jonsson, P., Oevergaard, G.: Object-Oriented Software
Engineering: A Use Case Driven Approach. Addison Wesley, Reading, Mass (1992)

25. Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University Press,
Cambridge (2003)

26. Kelly, T.: Using Software Architecture Techniques to Support the Modular Certification of
Safety-Critical Systems. In: Proceedings of Eleventh Australian Workshop on Safety-
Related Programmable Systems (2006), http://www-users.cs.york.ac.uk/ tpk/scs2006.pdf

27. Kelly, T.P.: Arguing Safety - A Systematic Approach to Safety Case Management
Department of Computer Science, DPhil Thesis, University of York, York (1999)

28. Kirwan, B., Ainsworth, L.K. (eds.): A Guide to Task Analysis: The Task Analysis
Working Group. Taylor & Francis, Abington (1992)

29. Lamsweerde, A.v.: Elaborating Security Requirements by Construction of Intentional
Anti-Models. In: Proceedings of the 26th International Conference on Software
Engineering, pp. 148–157. IEEE Computer Society, Los Alamitos (2004)

30. Lamsweerde, A.v.: Goal-Oriented Requirements Engineering: A Guided Tour. In:
Lamsweerde, A. (ed.) Proceedings of 5th IEEE International Symposium on Requirements
Engineering (RE’01), pp. 249–263. IEEE Press, Los Alamitos (2001)

31. Lamsweerde, A.v., Dardenne, A., Fickas, S.: Goal-directed Requirements Acquisition.
Science of Computer Programming 20, 3–50

32. Lamsweerde, A.v., Letier, E.: Integrating Obstacles in Goal-Driven Requirements
Engineering. In: Lamsweerde, A. (ed.) Proceedings of the 20th International Conference
on Software Engineering, pp. 53–62. IEEE Computer Society Press / ACM Press, Los
Alamitos (1998)

33. Lemos, R.d., Saeed, A., Anderson, T.: On the Safety Analysis of Requirements
Specifications. In: Proceedings of the 13th International Conference on Computer Safety,
Reliability and Security, Instrument Society of America, pp. 217–227 (1994)

34. Leveson, N.G.: Intent Specifications: An Approach to Building Human-Centered
Specifications. IEEE Trans. on Software Engineering 26(1), 15–35

408 W. Wu and T. Kelly

35. Leveson, N.G.: Safeware: System Safety and Computers. Addison-Wesley, Reading
(1995)

36. Leveson, N.G., Modugno, F., Reese, J.D., Partridge, K., Sandys, S.D.: Integrated Safety
Analysis of Requirements Specifications. In: Proceedings: 3rd International Conference on
Requirements Engineering (1997)

37. Lyu, M.R. (ed.): Handbook of Software Reliability Engineering. McGraw-Hill, New York
(1996)

38. McDermid, J.A.: Software Safety: Where’s the Evidence? In: McDermid, J.A. (ed.) The
6th Australian Workshop on IndustrialExperience with Safety Critical Systems and
Software (SCS’01) (Brisbane, 2001), Australian Computer Society (2001)

39. Morgan, C.: Of Probabilistic Wp and SP-and Compositionality. In: Symposium on the
Occasion of 25 Years of CSP (London, 2004), pp. 220–241. Springer, Heidelberg (2004)

40. Mylopoulos, J., Chung, L.: B.N. Representing and Using Non-Functional Requirements:A
Process-Oriented Approach. IEEE Trans. on Software Engineering 18(6), 497–497

41. Nuseibeh, B.: Weaving Together Requirements and Architectures. IEEE Computer 34(3),
115–114

42. Nuseibeh, B., Kramer, J., Finkelstein, A.: Expressing the relationships between multiple
views in requirements specification. In: Proceedings of the 15th international conference
on Software Engineering, pp. 187–196. IEEE Computer Society Press, Los Alamitos
(1993)

43. Parnas, D.L., Clements, P.C.A: rational design process: How and why to fake it. IEEE
Trans. on Software Engineering 12(2), 251–257

44. Pearl, J.: Causality: models, reasoning, and inference. Cambridge University Press,
Cambridge (2000)

45. Potts, C., Antón, A.I.: Inquiry-based Requirements Analysis. IEEE Software. 21–32.
46. Ramesh, B., Dhar, V.: Supporting systems development by capturing deliberations during

requirements engineering. IEEE Trans. on Software Engineering 18(6), 498–510
47. Reason, J.: Human Error. Cambridge University Press, Cambridge (1990)
48. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.

Prentice-Hall, Englewood Cliffs (1996)
49. Stamatelatos, M., Apostolakis, G., Dezfuli, H., Everline, C., Guarro, S., Moieni, P.,

Mosleh, A., Paulos, T., Youngblood, R.: Probabilistic Risk Assessment Procedures Guide
for NASA Managers and Practitioners, NASA Office of Safety and Mission Assurance
(2002)

50. The SERENE Partners: CSR, E., ERA, OT, TUV. The SERENE Method Manual SafEty
and Risk Evaluation using bayesian NEts: SERENE, ERA Technology Ltd. (1999)

51. Vesely, W.E.: Fault Tree Handbook. Nuclear Regulatory Commission (1987)
52. Wu, W., Kelly, T.: Deriving Safety Requirements as Part of System Architecture

Definition. In: Proceedings of 24th International System Safety Conference, System Safety
Society (2006)

53. Wu, W., Kelly, T.: Failure Modelling in Software Architecture Design for Safety.
SIGSOFT Softw. Eng. Notes 30(4), 1–7

54. Wu, W., Kelly, T.: Managing Architectural Design Decisions for Safety-Critical Software
Systems. In: Proceedings of the 2nd International Conference on the Quality of Software
Architectures, Springer, Heidelberg (2006)

55. Wu, W., Kelly, T.: Safety Tactics for Software Architecture Design. In: Proceedings of the
28th International Computer Software and Applications Conference, IEEE Computer
Society, Los Alamitos (2004)

	Towards Evidence-Based Architectural Design for Safety-Critical Software Applications
	Introduction
	Motivation
	Software Safety Evidence
	Scope of Paper

	Related Work
	Evidence-Oriented Method Construction
	Moving from the System Model to Deviation Model
	Goals
	Scenarios
	Viewpoints
	Anti-goals
	Negative Scenarios

	Moving from the Deviation Model to Mitigation Model
	Severity and Credibility
	Causal Bayesian Modelling
	Mitigation Space and Safety Tradeoffs

	Discussion
	Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

