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Abstract. Robust software and system architectures have been increasingly 
recognised as one of the keys to improving dependability. However, most 
modern design methods and explanations of underlying design principles still 
remain ad hoc. The communication between design and safety assessment in 
practice is often characterised as an “over-the-wall” process. The problems are 
exacerbated by the uncertainty problem in the early development lifecycle. In 
this paper, we propose a Triple Peaks process framework, from which a system 
model, deviation model, mitigation model are proposed and linked together. 
The application of this framework is supported by the use of Bayesian Belief 
Networks and collation of relevant evidence. We elaborate the linkage between 
the three models by means of a case study. The central tenet in this paper is to 
address safety concerns based upon evidence available at an architectural level. 
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1   Introduction 

1.1   Motivation 

For many years there has been an objective to improve software and system safety. 
Testing and inspection late in the system development lifecycle should no longer be 
relied upon as the primary line of defence for engineering software systems of 
significant size and complexity. Empirical experience shows that problems identified 
in the late lifecycle are often costly to fix and may introduce unexpected new 
problems [17]. Robust software and system architectures have been increasingly 
recognised as one of the keys to improving safety.  

However, most modern architectural design methods and explanations of 
underlying design principles remain ad hoc. Architects or designers, who could claim 
in their defence that they adopted a specific design pattern or followed an industry 
standard, rarely articulate their design rationale and analyse the impact of their 
decisions along with design alternatives in a precise and sound manner. The 
communication between design and safety assessment in practice is often 
characterised as an “over-the-wall” process [19]. The problems are exacerbated by the 
presence of a high degree of uncertainty in the design detail that is available early in 
the system development lifecycle. 
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1.2   Software Safety Evidence 

The development of software safety evidence is increasingly advocated in the safety 
community [38] to explicitly evaluate the safety of software, as opposed to relying on 
process prescription through safety standards such as IEC 61508 [3] and DO178B [5]. 
The tenet of using software safety evidence is straightforward: evidence shall be 
provided for assessors to demonstrate sufficient mitigation of risks associated with the 
use of software in safety-critical systems. The term “sufficiency” has been defined 
and deployed in a variety of risk acceptance regimes in the domain of risk 
management Risk mitigation has been generalised in terms of the following activities: 
hazard elimination, hazard reduction, hazard detection and control [35]. In principle, 
like other system components, software can only contribute to hazards in the system 
context by means of deviations from its intended behaviour [35]. Thus, it is possible 
to bring together the notion of “deviation”, “mitigation”, and “risk acceptance” with 
the aid of “evidence”. Here we define an item of software safety evidence to be an 
object encapsulating knowledge about potential deviations, plausible mitigation 
options and estimated risk reduction, along with reference to partial specification 
knowledge about a system and its environment. 

 Very often, safety evidence is produced after design completion. The need for 
incremental construction of safety evidence and corresponding safety arguments 
(a.k.a., safety cases) has been increasingly recognised. By utilising structured safety 
evidence explicitly from the very beginning of the system development lifecycle, the 
key issues such as loss of safety rationale and late discovery of safety flaws may be 
addressed. Figure 1 shows an evidence-oriented development process proposed by the 
Australian software safety standard DefAust 5679 [2], in which consideration of 
safety case development starts from the earliest stage of system development.  

 

Fig. 1. The integrated development process (adapted from [2]) 
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However, the linkage between the two processes (e.g., moving from preliminary 
hazard analysis to architectural design) still remains undefined, especially for 
software. Existing system safety approaches such as those advocated by ARP 4754 
focus on the hazard analysis of purely functional requirements (i.e. Functional Failure 
Analysis – FFA), from which quantitative failure targets are defined and allocated, 
thereby driving the development of system and software architectures. Experience in 
application of FFA to engine controller development has revealed this technique is 
particularly vulnerable, as there is lack of rigorous techniques to identify and estimate 
controller-related failures with respect to levels of design detail [9]. The SEI 
(Software Engineering Institute) at Carnegie Mellon University has established a 
design method termed Attribute-Driven Design (ADD) [11] to emphasise the active 
role of quality attributes in architectural design. Yet there is little practical guidance 
on how to address safety concerns using ADD. Furthermore, the nature and amount of 
evidence changes as the design process progresses. Systematic techniques should be 
provided to handle these evolution issues within a structured evidence framework. 

1.3   Scope of Paper 

In attempting to integrate architecture design and safety evidence development 
processes in an effective manner, the interactions between the two must be elaborated 
– i.e. how requirements are evaluated by risk assessment, and design choices justified 
and design decisions driven by safety tradeoffs. In this paper, we introduce a Triple 
Peaks model as a framework for architectural design for safety. The process we 
present intertwines partial system specification, potential deviation concerns and 
plausible mitigation mechanisms incrementally and iteratively, through which 
incremental construction of safety arguments is facilitated and exploited. While risks 
may be communicated in a qualitative manner, they must be evaluated quantitatively, 
even in the early system development stages. We adopt Bayesian Belief Networks 
(BBNs) as the flexible medium for risk-based reasoning. The causal nature of BBNs 
allows reasoning about the propagation of software deviations and the effect of 
mitigation chosen. We illustrate the process by means of an aircraft wheel brake 
system (WBS) controller example extracted from ARP 4761 [1] and evaluate our 
process by comparison with the conventional ARP approach. We argue that 
systematic treatment of software safety evidence – guided by the Triple-Peaks model 
– holds the key to gaining confidence in safety-related architectural decision making.  

This paper is organised in the following six sections. Section 2 reviews related 
work. Section 3 describes the process model within the evidence framework. Sections 
4 and 5 elaborate the linkages between the three models by means of the WBS 
example. Finally, section 6 discusses the findings based upon the case studies 
conducted and section 7 presents the summary and future work. 

2   Related Work 

In order to inform architectural decisions, the first essential step for an architect is to 
interpret system and software requirements so that they can be understood. Goal-
oriented methods, pioneered by van Lamsweerde [30, 31], proposed the use of goal 
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modelling languages such as Knowledge Acquisition in Automated Specification 
(KAOS) [31] to guide requirements elicitation and refinement. Alternatively, 
scenario-based approaches have been proposed in the form of use cases [24], Use 
Case Maps (UCMs) [14] and sequence diagrams [6] to elaborate requirements over a 
known system structure. Goals and scenarios are complementary to each other and 
can be combined in the design process [7]. Arguably, requirements to be addressed at 
an architectural level include both functional and quality requirements (e.g., timing, 
accuracy or reliability targets). Chung et al’s Non-Functional Requirements (NFR) 
framework [40] and SEI’s quality-attribute scenario framework [11] have been 
proposed for the purpose of formulating the quality requirements. 

From the perspective of architecting dependable software, it is equally important to 
address all possible negative requirements. In contrast with (positive) requirements, 
negative requirements describe the system characteristics that are not allowed or 
desired. Nevertheless, the formulation of negative requirements and the relationship 
to positive requirements had not been explored until a decade ago. Potts et al 
informally proposed the notion of obstacles that might challenge the achievement of 
requirements within the Inquiry Cycle framework [45]. van Lamsweerde & Letier 
extended the KAOS language to incorporate the notion of obstacles as goal violation 
and provided heuristics on obstacle analysis over goals and resolution [32]. van 
Lamsweerde elaborated the obstacle framework further through anti-goals and anti-
models in the context of security [29]. Rather than dealing with negative requirements 
at a goal level, complementary approaches have extended the notion of scenarios for 
the same purpose. Previous work at York [9] developed a method for deriving 
functional hazards from use cases. Alexander later proposed a unified view of 
deviation analysis over use cases in the form of misuse cases [8]. The safety 
community also turned their attention to extending hazard analysis at the requirements 
level to identify safety-related requirements errors. de Lemos et al [33] proposed an 
integrated framework that facilitates requirements analysis and hazard analysis 
iteratively and incrementally. Leveson et al [36] proposed to combine a set of hazard 
analysis techniques into an integrated safety analysis for checking safety-related 
requirements errors. All the approaches are defined solely in the context of 
requirements without considerations of architectural characteristics.  

Given the positive and negative requirements formulated, the plausible design 
space must be elicited in order to capture the appropriate architectural choices. In the 
early 90s, Lane [48] proposed a multidimensional design space, each dimension 
representing relevant design choices to achieve a specific usability property. The SEI 
later developed a tree-form design space in terms of architectural tactics with respect 
to six common quality attributes [11]. The linkage between quality attributes and 
design space was also elaborated by SEI through the notion of quality-attribute 
reasoning frameworks [10]. A quality-attribute reasoning framework encapsulates 
knowledge about relevant analytic models for a quality attribute. For example, a 
performance reasoning framework imposes constraints on the relevant parameters for 
various performance measures such as a hard deadline. The collection of these 
frameworks thus offer an effective means of predicting system qualities and 
rationalising the selection of tactics. However, no specific techniques are provided for 
addressing the uncertainty and levels of design detail available in the early lifecycle.  
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From the viewpoint of safety, the reasoning framework should be built upon risk 
assessment. NASA have developed a probabilistic risk assessment (PRA) scheme [49] 
for more than two decades. The PRA approach is based upon the combination of fault 
tree analysis (FTA) [51] and event tree analysis (ETA) [35] and mandates a generic 
risk quantification and mitigation process that can be tailored to all phases of a project 
lifecycle. We believe that the burden of combining FTA and ETA can be relieved by 
the use of BBNs as a unified model. At the Jet Propulsion laboratory, a lightweight 
approach to risk assessment was developed, namely Defects Detection and Protection 
(DDP) [18]. The DDP scheme mandates the quantification of requirements, failure 
modes and mitigation by means of expert judgement. The underlying formal model of 
DDP is less justified, however. 

Early work on argument-based design rationale (e.g., [16] and [46])  developed a 
set of generic models of design processes in terms of three common elements: 
issues/questions, positions/options, and arguments/criteria. The three elements are 
consistent with our design scheme as described in the section 1.2. The issues represent 
knowledge about deviations, the positions capture knowledge about possible 
mitigations, and arguments feature knowledge about reasoning. While the proposed 
design rationale models capture most common situations of design, they are too 
general to be configured for software architecture design problems. We believe there 
is a need to elaborate further the linkage of the three elements: i.e., how to generate 
issues, how to move from issues to positions, and then from positions to arguments.  

The relationship between requirements engineering and architectures has recently 
been studied. Brandozzi and Perry [13] proposed the use of “architectural 
prescriptions” to describe the mappings between goals and architectural structures. 
Jackson et al [23] extended the problem frames approach to allow architectural 
decisions to be considered in requirements models in terms of “architectural frames”. 
Both approaches have explored the achievement of system functionality rather than 
system qualities. Nuseibeh [41] proposed a Twin Peaks model which explicitly 
features the challenges raised during the parallel development of requirements and 
architectures. Leveson [34] proposed the intent specification approach to deriving 
software safety requirements. An intent specification comprises two main dimensions: 
intent and part-whole dimensions. The two dimensions dictate the requirements and 
safety-related design decisions made respectively in the design process. Nevertheless, 
there is lack of practical guidance on how to generate intent specifications. 

The notion of BBNs was developed by combining probability theory and graph 
theory [44]. A BBN represents a directed acyclic graph together with associated 
conditional probability distributions based upon explicit independence assumptions, 
thereby saving space of probabilistic computation [44]. In practice, BBNs are often 
interpreted as causal models [44], in which the directed edges are captured by 
knowledge about causal relations. Several tools such as Netica [4] are also available 
for public evaluation. BBNs have already been applied to solving software 
engineering problems. Fenton et al [50] developed generic BBN patterns to quantify 
software safety risks. Sutcliffe et al proposed a method of constructing generic BBNs 
to evaluate usability [20] and later developed an automated tool to evaluate reliability 
and performance through different configurations of BBNs [21]. Bosch and Gurp [22] 
proposed a generic BBN model as a software architecture evaluation framework. 
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However, most of the BBN models developed are generic and thus need to be tailored 
for a specific system domain.  

At York, there has been a long-term objective to integrate software design and 
safety analysis. A decade ago Fenelon et al [19] proposed a prototype of 
compositional failure modelling language – Failure Propagation and Transformation 
Notation (FPTN). In our previous work, we developed a collection of safety tactics 
[55] as primitive building blocks for software safety design. In order to identify safety 
concerns, we have also proposed a method for deviation analysis over UCMs [52]. 
We further elaborated it by developing a negative scenario framework and mitigation 
action model [54] to help generate design options for the safety concerns formulated. 
We also examined the application of Communication Sequential Processes (CSP) as 
the implementation of FPTN for the purpose of architectural feedback [53]. Although 
CSP can capture nondeterminism in both a qualitative and quantitative manner [39], 
as a behaviour modelling language it is inadequate for capturing and evaluating 
evidence for the purpose of risk assessment. The work outlined in this paper is 
intended to offer a unified view of our previous work and address the need for risk-
based quantitative reasoning through the application of BBNs. 

3   Evidence-Oriented Method Construction 

We treat design as an iterative and incremental process of producing evidence in 
which a system-to-be and its domain are better understood, credible deviation 
concerns are exhaustively identified and sufficiently mitigated by design options 
chosen, as Figure 2 suggests. Consequently, the design process comprises a number of 
design stages, each representing a cycle of moving from system modelling to 
deviation modelling and then mitigation modelling. The system model characterises 
system behaviours in terms of goals and scenarios and system structures with respect 
to viewpoints. The deviation model features the negative counterparts in terms of anti-
goals and negative scenarios. The mitigation model captures possible design space in 
terms of mitigation actions to help inform decision-making. The proposed Triple-
Peaks model is based upon Nuseibeh’s Twin Peaks model and elaborates further the 
interactions between the requirements and architecture models by means of the 
deviation and mitigation models. From the viewpoint of evolutionary design, co-
existent nature of the requirements and architecture models makes it possible to 
merge them into a single system model, thereby forming the Triple Peaks model. 

At every single stage, appropriate evidence should be provided to justify the ‘state’ 
of the design progress – how safe the system-to-be would be given current knowledge 
and evidence. At York we have developed Goal Structuring Notation (GSN) [27] for 
communicating safety arguments. The items of evidence and their relationships to 
safety claims are described in terms of goal structures. Figure 3 shows the principal 
symbols of GSN. Goals can be refined by the aid of specific strategies. The goal 
refinement process stops when the goals can be satisfied by evidence available. 
Modular construction of GSN models is facilitated by the notation of ‘Away Goal’ 
and ‘Module References’ [26]: an away goal is a goal that is not defined (and 
supported) within the module where it is presented but is instead defined (and 
supported) in another module; a module reference is simply a goal structure packaged 
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in a module form. The development of the goal structures should proceed in parallel 
with the design process and reflect the progress of design. In other words, it is 
possible to use the goal structures to guide the development process. In GSN 
terminology, generalised goal structures can be captured by GSN patterns [27].   
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Fig. 2. The Triple-Peaks model 
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Fig. 3. The principal symbols of GSN 

Figure 4 illustrates a sample GSN pattern for describing a system-independent 
design process when the architect is required to identify all anti-goals and relevant 
negative scenarios (as described in section 4.4 and 4.5) derived from a single system 
goal, and choose appropriate avoidance actions to mitigate them. The claims that the 
negative scenarios could not occur are satisfied by the analysis results of current 
development process. Justification of the completeness of the anti-goals is based upon 
the breadth of considerations of deviation modes. Credibility of the negative scenarios 
identified is evaluated through BBN modelling. By developing GSN patterns tailored 
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Fig. 4. A simple GSN pattern for the Triple Peaks process 

for a specific system domain, system-specific development process model can be 
instantiated to guide architecting safety-critical software applications. 

The proposed Triple Peaks framework represents much of the existing, but 
implicit, design practices in the dependability community. In order for the deployment 
of this framework to be successful, the transitions between the three models must be 
elaborated. Questions may be raised, for example: 

• How do we capture and express the model elements such as goals and anti-goals 
within this framework? 

• How do we reason about the properties of the model elements such as 
completeness, credibility and sufficiency? 
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Sections 4 and 5 elaborate the linkage between system model and deviation model, 
and between deviation model and mitigation model, respectively. The WBS example 
introduced in ARP 4761 is also used to illustrate our approach. 

4   Moving from the System Model to Deviation Model 

The system model comprises the description of the system under design. There are 
three essential elements of the system model within our framework: goals, scenarios 
and viewpoints. While a system model captures the desired properties of a composite 
system, the deviation model features the undesirable states of the system. In contrast 
with goals and scenarios in the system model, there are anti-goals and negative 
scenarios in the deviation model. 

4.1   Goals 

A goal is an objective that a composite system should meet. Through seeking goals 
explicitly from the requirements specification, the core system functionality and 
qualities can be effectively elicited and justified. Despite the diverse forms of goal 
formulation techniques (as discussed in section 2), there are four common elements of 
a goal we found:  

• Artefact. The artefact is the composite system or its parts onto which a goal is 
applied. 

• Context. The context are the pre-conditions that a goal refers to and evolves over. 
• Stimulus. The stimulus is the trigger condition for the initiation of a goal. 
• Response. The response captures the desired properties (i.e., postconditions) that 

the artefact should hold over time. Quality constraints (e.g., deadline or failure 
rate) can be specified in this part if they exist. 

 
A sample goal can thus be expressed in the following form: 

“The <artefact> shall <respond> upon <stimulus> when 
<context>” 

This goal formulation is consistent with the SEI’s quality attribute scenario 
framework and thus can be applicable to both functional and quality goals. As an 
example, consider the wheel braking system (WBS) of an aircraft [1]. We assume 
there are a number of top-level goals that can be stated in terms of aircraft 
functionality (e.g., controlling the aircraft on ground in this case) and qualities (e.g., 
safety). Each goal can be formulated in the stimulus-response form in spite of their 
high level of abstraction. Each functional goal can be decomposed further into a set of 
sub-goals and should evolve separately given that they are independent. The goal 
decomposition may be guided by the use of scenarios, as described in the next 
subsection. Goal structures can thus be constructed. Safety goals cannot simply be 
decomposed via functional goals or system structures; their refinement is based upon 
the results of deviation analysis (see sections 4.4 and 4.5) and the chosen mitigation. 
For example, deviation analysis may reveal that a ‘late’ output of a controller is safety 
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significant. A performance goal is thus derived and added into the safety goal 
structures.  

Figure 5 shows a part of the goal structure in which the core functionality of WBS 
is elicited. All the goals in this structure are expressed using the above form. The 
expression language used is a structured natural language, and some expression can 
be very abstract at this level. For example, both the stimulus and response parts of the 
top-level goal FnG1 are very general and need to be refined. This should be 
acceptable, however, in the early development lifecycle in which many requirements 
are volatile and unclear. Figure 6 shows the undeveloped goal structure of the aircraft-
level safety goal. In most cases, the top-level safety goal (i.e., SafeG1) is simply 
derived from the certification authority. This achievement of this root goal is based 
upon the satisfaction of all the supporting safety-related functional and quality goals. 
Likewise, expressions of safety goals can be very abstract, as the concrete forms of 
deviations and mitigations are still unknown. It can be seen that the modular features 
of GSN makes it feasible to isolate development of different goal structures (e.g., 
functional and safety goal structures) and link them effectively via the notation of 
Away Goal and Module References. 

 

Fig. 5. A functional goal structure for the WBS example – Control the aircraft on ground 
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4.2   Scenarios 

A scenario is a sequence of actions performed by objects instantiated within the 
known structure of the composite system. Scenarios provide an effective way to 
elaborate a goal in a white-box view. In other words, a goal defines a set of possible 
scenarios; a scenario defines a possible realisation of a goal. There are many forms of 
scenario formulation (see section 2). The use of UCMs is preferable based upon our 
experience, as it offers a clear-cut notation of causal relationships between 
architectural components in terms of responsibility points [14]. This is beneficial 
when we conduct deviation analysis over scenarios, as described in section 4.5. 
UCMs can be refined, as the underlying system structure is developed in more detail. 
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maintainability goals
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The aircraft system is 
acceptably safe upon the 
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Fig. 6. The top-level safety goal structure for the WBS example 

In order to define a scenario (i.e., a UCM model), a goal must be provided. A 
system structure (i.e., a component context diagram in UCM terminology) must also 
be defined as the context of elaborating the goal. The system structure should be 
derived from the predefined viewpoints as described in the next subsection. The 
system structures should be independent of the requirements allocated. This is another 
benefit of using UCMs, as component context diagrams and use case paths can be 
developed separately. For the WBS example, the wheel braking goal has been 
identified in Figure 5. The system architecture of the WBS has been defined in the 
system description (see [1]) as the input of the design process. Therefore we can 
elaborate the wheel braking goal through the system architecture. Figure 7 illustrates 
an example scenario for the wheel braking goal – manual braking in normal mode. As 
all relevant scenarios (in this example, manual braking in normal mode/alternative 
mode/emergent mode and auto braking) are elicited for a specific goal, the goal can 
be decomposed further given the responsibility points allocated. For instance, a sub-
goal of the WBS goal will be the goal of BSCU expressed as follows: 

The BSCU controller shall output the brake command upon 
arrival of pedal signal when airframe is on ground AND 
aircraft is in landing/taxing/RTO flight phase. 
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4.3   Viewpoints 

In most cases, a system model has multiple structures due to the increasing size, 
complexity and heterogeneity of modern software systems [42]. In practice, these 
structures are classified in terms of viewpoints. An instance of a viewpoint is called a 
view (i.e., a system structure). Yet there is no consensus on the number of appropriate 
viewpoints in both research and practice that are considered necessary to describe 
software architectures adequately. From the viewpoint of embedded systems 
development, we define five essential viewpoints, as shown in Table 1. The first two 
are defined at system level to capture system boundaries and its physical structures. 
The remaining three viewpoints are defined at software level and consistent with 
common viewpoint approaches  in the software community (e.g., SEI’s three 
viewtypes [15]). The recognition of multiple viewpoints has a significant impact on 
the completeness of deviation analysis, as viewpoints are interconnected and 
deviation arising from one view can propagate through another view (see section 4.5). 

Pilot : 
Human

Pedal : 
MechanicalDevice

BSCU : 
Controller

ServoValve : 
Valve

Brake : 
MechanicalDevice

press_pedal signal can_brake open engaged

Preconditions:
- Aircraft is on ground
- Aircraft is moving
- Aircraft is in landing/takeoff/rejected takeoff phase

Postconditions:
- Eight wheel brakes are applied  

Fig. 7.  An example scenario – manual braking in a normal mode 

Table 1. The information description of the five viewpoints 

Viewpoint Description Intent 
Contextual 
Viewpoint 

How an embedded system interacts with its 
operating environment 

To reason about the environmental 
properties of the system 

System 
Architecture 
Viewpoint 

How an embedded system is structured in 
terms of physical units. At least one of these 
units should be the controller or software  

To reason about the physical 
characteristics of the system 

Development 
Viewpoint 

How the system’s software is structured in 
terms of implementation units 

To reason about the software 
functions and maintenance 

Run-Time 
Viewpoint 

How the system’s software is structured in 
terms of run-time units 

To reason about the runtime 
behaviours of the software 

Allocation 
Viewpoint 

How the system’s software is allocated onto 
non-software structures (e.g., hardware 
platform) 

To reason about the impacts of the 
underlying hardware platform and 
development environment on software 
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4.4   Anti-goals 

An anti-goal is a condition that, if true, would immediately prevent the composite 
system from achieving the corresponding goal. Both goals and anti-goals are 
complementary and thus capture the possible desired and undesired end states of a 
composite system respectively. A common example of an anti-goal is the loss of  
a system function where the function was a goal. Nevertheless, simple negation of a 
goal in terms of propositional logic cannot guarantee the completeness of the 
corresponding anti-goals. A less obvious but perhaps more severe anti-goal would be 
inadvertent application of that function. Given some goal formulation, it is important 
to ensure the exhaustiveness of deviations from that goal, at least from the viewpoint 
of safety. In the safety community, the possible deviations of a system are often 
characterised in terms of deviation or failure modes. Previous York’s work has 
developed a collection of deviation modes for software systems: SHARD guidewords 
[19]. We interpret the SHARD modes with respect to the goal formulation in the 
following Table 2.  

Table 2. The anti-goal interpretation using SHARD guidewords 

SHARD  Anti-Goal Interpretation 
Omission Response part does not hold while stimulus and environment parts hold 
Commission Stimulus or context parts do not hold while response part holds 
Timing Timing constraint specified in the response part is violated while the other parts hold 
Value Value constraint specified in the response part (e.g., accuracy or cost) is violated while 

the other parts hold  

 
By allocating the SHARD modes onto a formulated goal and interpreting them 

using the above table, there can exist a high level of confidence on the exhaustiveness 
of the set of anti-goals elicited. Notably, not all anti-goals can have safety implications; 
anti-goals must be evaluated with respect to safety consequences (see section 5.1). Let 
us return to the WBS example. As soon as the system goals of WBS are formulated, 
the identification of anti-goals can start by considering the SHARD deviations first 
without information about the elaborated scenarios. In this example, only omission and 
commission modes are applicable. Table 3 illustrates an example anti-goal by negating 
the context part – wheel braking when the context is not as intended. The definition of 
the stimulus part is trivial in this case. The anti-goal elicited is abstract.  

Table 3. An example anti-goal formulation 

Portion of Goal Possible Value 
Artefact WBS 
Context NOT (Airframe is on ground AND aircraft is in landing/taxiing/RTO flight phase) 
Stimulus N/A 
Response All wheel brakes are applied 

 
By expanding the negation operation on the context part using Boolean logic, we 

can derive a set of well-refined anti-goals: e.g., wheel brakes applied when aircraft is 
taking off or when aircraft is in air. It must be stressed that the expansion here cannot 
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be achieved solely by formal Boolean logic and in many cases may need the help of 
domain experts. For the example of inadvertent wheel braking when the aircraft is 
taking off, we may need to distinguish further whether the aircraft is taking off before 
the decision speed V1, as the corresponding safety consequences would be different 
[1]. Obviously, this is impossible for formal logic alone to identify the two anti-goals. 
When all anti-goals are identified and refined (say, eight anti-goals for the WBS 
example), they should be linked to the anti-goals of the parent goal of the WBS (i.e., 
aircraft deceleration) in a bottom up manner, thereby forming an anti-goal structure. 
The anti-goal structure in the WBS example is shown in Figure 8.  

 

Fig. 8. The anti-goal structure – Total loss of aircraft deceleration 

As seen in the Figure 8, the anti-goal structure should refer to the corresponding 
functional goal structure. It should be noted that the expression languages used in 
functional goals, safety goals and anti-goals are slightly different. The functional 
goals are simply requirements and thus ‘shall’ statements are suitable; the safety goals 
are claims in which ‘is/are’ statements are applicable; the anti-goals are hypotheses 
about states & events of the system and thus ‘will’ statements should be used. The 
construction of anti-goal structures will prompt the refinement of the safety-goal 
structure in which decisions need to be made regarding how to mitigate these 
identified anti-goals. 

4.5   Negative Scenarios 

Like a (positive) scenario, a negative scenario is a possible realisation of an anti-goal 
with respect to the known system structure. In other words, negative scenarios can be 
formulated using conventional scenario formulation techniques such as use case 
templates. We previously proposed a stimulus-effect form [54] to emphasise the 
status of causal propagation within a negative scenario. Not surprisingly, it can be 
seen as the negation of the stimulus-response form of goals and positive scenarios. To 
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ensure an exhaustive set of negative scenarios elicited, a broad spectrum of candidate 
stimuli must be considered. This spectrum should be based upon consideration of all 
possible deviations. Credibility of these deviations will be discussed in section 5.1. 
We here distinguish two classes of negative scenarios, which are consistent with the 
decomposition principle of fault tree construction [51]:  

• Primary negative scenarios. Those stimuli are identified from deviation analysis 
over a positive scenario — a UCM model which is derived from a specific 
viewpoint. This is often done by inductive analysis or “what-if” questions 
conducted on every single action of a scenario.  

• Supporting negative scenarios. Those stimuli are identified from deviation analysis 
over other viewpoints but with possible contribution to primary negative scenarios. 
For example, the failure of a run-time component in a runtime view can be caused 
by malfunction of underlying hardware platform in the deployment view.  

Furthermore, the systematic identification of anti-goals offers an effective means of 
ensuring a broad spectrum of the end effects of the negative scenarios. By linking the 
candidate stimuli with anti-goals through the stimulus-effect framework, the 
exhaustiveness of negative scenarios can be justified. New anti-goals may also be 
identified during negative scenario development. Another concern is the effectiveness 
of the negative scenario elicitation. In practice, deviation analysis is aided by a set of 
pre-defined component deviation modes. For example, the common deviation modes 
for the components of valve type can be: stuck open, stuck close and leakage. 
Automated analysis is thus possible by extending system structures with component 
failure modes defined in the deviation knowledge base. 

Let us continue the WBS example in which a wheel braking goal, four positive 
scenarios in a form of UCMs, and eight anti-goals have been defined. Now we need to 
perform deviation analysis over each of the four positive scenarios. Guidance on 
deviation analysis over UCMs can be found in our previous work [52]. Simply put, 
deviation analysis starts by forward search of each responsibility point across the use 
case path in order to identify possible primary negative scenarios. For a given 
responsibility point, deviation modes are allocated with respect to the type of the 
component in which the responsibility point resides, and the end effect of that 
deviation is identified along the use case path and linked to the identified anti-goals. 
The forward search procedure for a specific responsibility point is similar to ETA in 
which the initiating event is the deviation of that responsibility point and all possible 
event sequences are analysed along the use case path. Figure 9 illustrates the 
deviation analysis procedure for the scenario – the manual braking in normal mode.  

The output of deviation analysis over the four UCM scenarios are fourteen primary 
negative scenarios. Supporting scenarios must be identified by deviation analysis over 
other views. To do this, we need to identify how the components in a UCM model can 
be mapped onto other views. In the WBS example, the UCM models are defined 
within the system architecture view, and all other views are still undefined. In this 
case, the architect needs to make some assumptions such as a uni-processor 
configuration and single monolithic software module in order for the remaining views 
to be produced. Put another way, the BSCU controller is first mapped to a single 
software module in both development and run-time views, and to a processor in the 
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Fig. 9. Deviation analysis over the example scenario (manual wheel braking) 

allocation view. Deviation analysis is then performed upon the two components by 
deviation mode allocation. Consequently, a set of supporting negative scenarios are 
identified. All identified negative scenarios should be formulated in the stimulus-
effect form. Table 4 illustrates an example formulated negative scenario. 

Table 4. An example negative scenario formulation 

Source Stimulus Context Course of Propagation End Effect 
BSCU Fails to 

output 
brake 
command  

Airframe is on ground AND 
aircraft is in landing/taxiing/RTO 
flight phase AND pilot presses 
the pedal 

Eight servo valves, eight 
brakes 

AG1: Total 
loss of 
wheel 
braking  

5   Moving from the Deviation Model to Mitigation Model 

All the negative scenarios and anti-goals are hypothesised on the basis of current 
knowledge about the system and its domain. Yet not all anti-goals identified are 
safety significant. Moreover, it is impractical to completely address all the identified 
safety concerns within a single design iteration. It must be possible to evaluate the 
deviation model in terms of safety risks. A negative scenario leading to a safety-
significant anti-goal is a risk scenario. Only a small number of high-risk scenarios 
(say three) will be considered in the mitigation model for every single design 
iteration. As a result, the management of negative scenarios and assessment of 
acceptability must be a continuous process through the whole architectural design. 
The purpose of the mitigation model is to capture plausible mitigation space (i.e. a set 
of mitigation action candidates) against the high-risk scenarios identified through 
severity and credibility estimation. Cost-benefit analysis and design tradeoffs may be 
performed in order to make optimal decisions. The following subsections will 
describe our solutions to evaluating the deviation model using a BBN framework, 
identifying mitigation space and performing safety design tradeoffs. 
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5.1   Severity and Credibility 

Like most risk assessment methods, the evaluation is performed in terms of severity 
and credibility estimation. Notably, we prefer the term “credibility” to the standard 
term “likelihood” or “frequency”, because the former is more consistent with the 
Bayesian interpretation of probability [25] that lies at the heart of our risk assessment 
framework. Severity estimation is conducted by considering the safety consequences 
of all identified anti-goals. Estimation proceeds from the anti-goal structures and 
takes into account of the contribution to their parent anti-goals if they exist. For the 
WBS example, the occurrence of the anti-goal AG1.1 does not necessarily lead to the 
occurrence of its parent anti-goal AG 1 unless the anti-goals AG 1.2 and AG 1.3 also 
hold, as shown in Figure 8. In fact, the anti-goal AG 1.1 should be detectable by the 
pilot when the wheel braking is commanded and the pilot will be able to use spoiler 
and thrust reversal to the maximum extent possible in order to achieve deceleration. 
Hence, the severity classification of the anti-goal AG1.1 should be hazardous rather 
than catastrophic.   

Credibility estimation should be conducted over all the negative scenarios 
identified and formulated in a stimulus-effect form. There are two parts to be 
estimated: the stimulus and propagation parts – how credible is it for the occurrence 
of the hypothesised stimulus and its propagation to manifest the anti-goal? At the 
beginning of architectural design, it is plausible to make the worse-case assumption 
that the propagation is completely credible (i.e., its credibility is 1) given that no 
mitigation mechanisms are employed. Once mitigation actions are chosen against the 
propagation, the credibility of the propagation should be re-estimated with respect to 
the effectiveness of the chosen mitigation. Now our focus would be the stimuli of all 
negative scenarios. To do so, we first distinguish two classes of stimuli:  

• Stimuli of a random nature. The sources of the stimuli will be non-agent objects 
such as hardware and natural environment.  

• Stimuli of a systematic nature. The sources of the stimuli will be agents such as 
human and software.  

For the first class of stimuli, the architect should seek historical data to justify their 
credibility. For the systematic stimuli, an analytic model should be constructed and 
evaluated through data collected from the real world. The selection of analytic models 
depends upon the classification of the stimulus: is it human operation error or software 
design fault? For the former, further investigation is required to check if it is a slip-
related error or mistake-related error [47]. Task network analysis [28] may be chosen 
to predict the credibility of slip-related errors, for instance. For the software design 
faults, current design artefacts and the progress of development process must be 
considered. If fault data determined by testing are available, for example, Rome 
Laboratory’s software reliability prediction models [37] may be suitable. Alternatively, 
if product metrics (e.g., quality of requirements specification) and process metrics 
(e.g., competencies of the developers) can be estimated, Fenton’s defect prediction 
model may be applicable. Notably, no model is complete or even representative. One 
model may work well for a set of certain software, but may be completely off track for 
other kinds of problems. Assumptions and justification made during the selection 
procedure must be explicitly identified. Knowledge about historical data, the 



400 W. Wu and T. Kelly 

classifications of analytic models as well as the applicability rules could be codified in 
a reasoning knowledgebase for the purpose of automation. If no applicable historical 
data and analytic models are available, expert judgements would be required.  

Let us carry on the WBS example. An assumption of 100% propagation hold for 
all identified negative scenarios can be made. We then need to type-check the 
stimulus and source parts of every scenario. Analytic models are then selected for 
credibility estimation. Table 5 illustrates a portion of credibility estimation results for 
the WBS example. It should be noted that the results of credibility are by no means 
precise, as the level of design detail increases. In many cases, the credibility of the 
scenario will need to be updated as the design process progresses and subsequent 
design decisions are made upon the source of the stimulus. For example, the BSCU 
software module will inevitably be decomposed in more finer-grained modules in 
which the brake control responsibilities will be allocated. The update of evidence is 
possible to be incorporated within the BBN framework described in the next 
subsection. It must be stressed that the role of quantification is to prioritise scenarios 
instead of obtaining precise numerical data – through which dominant scenarios are 
identified and drive the design decision procedure.  

Table 5. Example results of credibility estimation 

Stimulus Classificat-
ion 

Estimation 
Forms 

Assumptions/ Justification Credi-
bility 

Pilot fails to 
press pedal 

Slip-related 
error 

Task network 
analysis 

Reason’s human error classification 
[47] 

1.5E-6 
 

Power supply 
loss 

Random 
failure 

Historical data  1E-7 

Existence of 
software fault  

Design 
error 

Fenton’s defect 
prediction 
model [50] 

No fault/failure data but some 
process and project management 
metrics are available at this stage.  

2.5E-3 

5.2   Causal Bayesian Modelling 

A negative scenario is inherently a causal chain starting from a stimulus and leading 
to undesired end states (i.e., anti-goals). Through composing all identified negative 
scenarios together, a causal structure can thus be formed. In BBN terminology, a 
causal structure C is defined in a directed acyclic graph (DAG) form: C = (V, E), 
where V is defined as a set of nodes, and E is defined as a set of directed edges among 
V. We distinguish further between two subsets of V: V1 and V2, where V1 
corresponding to the set of all the leaf nodes, V2 represents the set of the remaining 
nodes such that V = V1 ∪ V2 and V1 ∩ V2 = ∅.  Each element of the set V1 
corresponds to a distinct anti-goal identified, whilst each element of the set V2 
corresponds to a distinct architectural component identified from the source of 
stimulus and propagation parts in the negative scenario framework. Each element of E 
captures a distinct causal relation identified by knowledge about the sequence of 
propagation of a stimulus as specified in the negative scenario framework. Figure 10 
illustrates a portion of a causal structure for the WBS example. To simplify the BBN 
computation, we remove the nodes WheelBrake(i) and ServoValve(i), as our main 
focus here is the controller BSCU. 
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To form a causal model, the first step is to transfer all the nodes in V into variables 
in which their value domains must be defined. For elements in V1, their value domain 
will be simply Boolean true and false to indicate if an anti-goal occurs or not. For 
elements in V2, their value domains will be their deviation modes allocated and the 
normal mode (say, ok) during deviation analysis, as described in section 4.5. Finally, 
we need to define a conditional probability table (CPT) for each variable with respect 
to the credibility estimation results. Often, this would be a tedious step. However, 
many BBN tools such as Netica allow us to define probability table by equation. 
Figure 11 shows the equation definition for the BSCU variable using Netica 
expression language. In general, careful justification is required when defining a CPT. 
These judgements need to be captured in the safety arguments (i.e., GSN forms). The 
following are a number of rules learnt from our experience: 
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Fig. 10. The causal structure for WBS example 

• During the elicitation of negative scenarios, a single deviation is considered as the 
stimulus for one scenario. But when composing scenarios to form a causal model, 
the occurrence of multiple deviations must be taken into account. For the WBS 
example, what if both power supply loss and processor failure happen 
simultaneously? Obviously, the effect of process failure will not be exhibited by 
the occurrence of power supply loss, thereby leading to no output of BSCU. 

• Some deviations such as transient failure of processor or software faults may have 
multiple effects in a non-deterministic manner [53]. In those cases, the architect 
needs to make some assumptions: e.g., all chances are equal. 
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P (BSCU | CPU, IO, SW, Pedal, Power) =  

(Power == ok && CPU == ok && Pedal == ok && SW == ok && IO == ok) ? (BSCU == ok ? 1.0 : 

0.0) : 

(Power == loss) ?  (BSCU == fail_to_output_brake ? 1.0 : 0.0) : 

(Power == ok && Pedal == fail_to_activate) ? (BSCU == fail_to_output_brake ? 1.0 : 0.0) : 

(Power == ok && Pedal == fail_to_disengage) ? (BSCU == ok ? 1.0 : 0.0) :  

(Power == ok && Pedal == activate_inadvert) ? (BSCU == output_brake_inadvert ? 1.0 : 0.0) : 

(Power == ok && Pedal == ok && CPU == crash) ? (BSCU == fail_to_output_brake ? 1.0 : 0.0) : 

(Power == ok && Pedal == ok && IO == crash) ? (BSCU == fail_to_output_brake ? 1.0 : 0.0) : 

 (Power == ok && Pedal == ok && IO == transient_failure) ?  

 (BSCU == fail_to_output_brake ? 0.3 : BSCU == output_brake_late ? 0.5 : BSCU == ok ? 0.1 :  0.1) : 

 (Power == ok && Pedal == ok && (CPU == transient_failure || SW == faulty))? 

     (BSCU == fail_to_output_brake ? 0.3 : BSCU == output_brake_inadvert ? 0.3 : BSCU ==

output_brake_late ? 0.2 : 0.2) : 0 

 

Fig. 11. The equation expression for the BSCU variable 
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Fig. 12. The BBN evaluation results using Netica 

• Like programming, comments for each statement (though not shown in the figure) 
will be provided to enhance understanding and readability. 

Figure 12 shows a fragment of the compiled BBN model produced by Netica. Note 
that the belief numbers shown in the figure are based upon percentage and some 
numbers are not shown completely (i.e., 0+) due to limitations of display. For 
example, the probability of the anti-goal “Total Loss of Wheel Braking” calculated is 
0.0007846, which falls short of civil aviation target 1E-7. Therefore, mitigation is 
required. To do so, we need to identify the high-risk scenarios. This can be done 
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automatically by sensitivity analysis through Netica. There are three high-risk 
scenarios, which must be considered in the mitigation model: 

S1. Residual faults in the BSCU software leading to malfunctions of the BSCU  
S2. I/O (transient or permanent) failures leading to malfunctions of the BSCU 
S3. Processor (transient or permanent) failures leading to malfunctions of the BSCU 

5.3   Mitigation Space and Safety Tradeoffs 

We previously developed a mitigation action model in which mitigation actions are 
organised in a tree form of five branches (i.e., elimination, reduction, detection, 
resistance and minimisation) and codified by a template, which can be implemented 
in a mitigation knowledgebase [54]. If we treat all the codified mitigation actions as 
the whole design space, our concern then lies at how to identify the most appropriate 
subset of these actions with respect to a specific negative scenario. Since negative 
scenarios are formulated in a form of causal chains, a plausible mitigation space will 
be defined by means of controllable parts of the causal chain for the purpose of 
stopping the propagation. Therefore, the identification of the mitigation space is an 
iterative procedure of locating the reachable BBN non-leaf nodes (i.e., architectural 
components) with respect to a given anti-goal and searching applicable mitigation 
action branches. For the WBS example, consider the scenario S1 identified in the 
previous subsection. Clearly, the mitigation options would lie within the software 
module and BSCU nodes. Mitigation actions applied to the BSCU can also help 
address scenarios S2 and S3. We then need to determine which of the five branches of 
mitigation will be applicable. For instance, the minimisation action branch (i.e. 
minimisation of the effect of total loss of wheel braking) is irrelevant, as there is 
nothing to act when BSCU fails to output the brake command as requested. The 
procedure continues until all action candidates are located. Table 6 illustrates the 
mitigation options for S1, accompanied by their rationale. 

Table 6. A mitigation space for the negative scenari S1 

ID Node Branch Mitigation  Intent 
Eliminat-
ion 

Simplification Correctness of software design can be verified 

Rigorous testing A amount of faults can be detected by testing 
Following safety 
standard 

The process for high Development Assurance 
Level (DAL) [5] produces ‘better’ software 

Soft-
ware 
module Reduct-

ion 

Functional 
redundancy 

The likelihood of faults in different designs is 
sufficiently low  

Timeout No response of the BSCU is assumed to fail 
Comparison Deviations can be detected in case of 

discrepancy  

Detection 

Voting Deviations can be detected and tolerated in case 
of discrepancy 

Recovery Any error detected can be fixed 
Reconfiguration Any error detected can be removed by 

replacement 

S1 

BSCU  

Resistan-
ce 

Degradation Any error detected can be removed by removal 
of the faulty component 
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To make decisions in response to the mitigation space identified, cost-benefit-risk 
analysis must be performed. The benefit of each action candidate is determined in 
terms of its impact upon the credibility of the scenario that it is intended to address. 
The cost of each option is estimated in terms of orders of magnitude. Both cost and 
benefit estimates usually require the aid of domain experts and past experience. The 
known vulnerabilities and side effects of each option are identified by the use of the 
codified mitigation knowledge. As an example in Table 6, the effectiveness of 
deploying functional redundancy to reduce software faults lies at a high degree of 
diversity between module designs, which may be hard to implement in practice. This 
can be done by means of tables [54] and the architect is free to choose specific 
options based upon judicious considerations of the mitigation space. It must be 
stressed that our method does not make decisions for the architects but aids them in 
eliciting and rationalising their design decisions. For the WBS example, we chose the 
simplification tactic against the dominant scenario S1 because of the limited number 
of software input, and comparison and reconfiguration tactics against S2 and S3 by 
assuming a stringent cost budget. Once mitigation actions are chosen, the system 
model needs to be refined in the following possible ways: 

 Add new components or remove existing components in specific view(s). 
 Add new responsibilities (a.k.a., derived requirements) in specific view(s). 
 Re-allocate existing responsibilities in specific view(s) 

For the WBS example, the correctness of the monolithic software module in the 
development view must be verified. In this case, no refinement of software module is 
required by this decision. However, non-safety such as modifiability-related design 
decisions can drive the decomposition of the monolithic module into a control 
function module and compiler module so that the BSCU software can be portable to 
different compilers. Two dual processors and buses are introduced in the allocation 
view and the output of the BSCU is arbitrated, as indicated by the chosen comparison 
tactic. Transient processor/bus failures can be repaired by rebooting the processor and 
reloading its copy of software. Behaviours regarding the run-time comparison and 
reboot behaviours must be captured in the scenario forms. At this point, both the 
structures of functional goals and safety goals can be decomposed further to reflect 
the refinement of the system model and derivation of safety requirements.  

Likewise, a new deviation model will be generated upon the refinement of the 
system model. In most cases, the step of identification of anti-goals can be skipped 
unless new system goals (e.g., system monitoring) are identified. The main focus is 
thus the elicitation of new negative scenarios. For the WBS, example negative 
scenarios elicited can be failure of both processors and the use of potentially faulty 
compiler. The process loops until all the core system requirements have been elicited 
and all identified anti-goals are mitigated sufficiently with respect to the risk 
acceptance. A stable architecture is therefore formed at the end of the design process. 

6   Discussion 

We have so far applied the proposed framework to a number of medium-size case 
studies such as AGV [54] and WBS systems. The WBS example was selected for the 
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purpose of comparison with the ARP process which has been widely applied in 
practice. We discuss our results in terms of the following three aspects: 

 
Exhaustiveness. Establishing an argument of exhaustive identification of the design 
issues (i.e., negative requirements) and design alternatives is recognised as the key to 
the robustness of dependability design. Within the ARP framework, negative 
requirements are identified through deviation analysis purely on system functions 
(i.e., FFA) and refined through FTA during architecture definition. The transitions 
from FFA to FTA and from system level to software level are undefined, however. 
The exhaustiveness argument is thus implicit and cannot be validated. The techniques 
presented in our approach provide semi-formal and multi-viewpoint support for 
deviation identification: deviation analysis is started at goal level through top-down 
goal formulation and refined at scenario level and component level through pre-
defined architectural viewpoints in a bottom-up manner. Moreover, there is no step 
for identification and justification of design alternatives in the ARP process. The 
exhaustiveness argument is inherently limited and subject to the competencies of 
domain experts and the past experience of architects. 
 
Effectiveness. Most software standards advocate heavyweight development 
approaches in which the upfront specification of all system requirements is mandatory 
before the design proceeds [12]. For the ARP example, a sequential ‘waterfall-like’ 
process is defined, starting from aircraft-level FFA, system-level FFA to system-level 
FTA and software-level FTA, from which system and software safety requirements 
are derived and architectures are validated. This form of waterfall model has been 
known to be inadequate for handling the volatility and uncertainty commonly 
involved in the real-world problems. The Triple-Peaks process presented in this paper 
inspired from the Twin-Peaks model addresses requirements specification, design 
issues and corresponding design alternatives iteratively and incrementally. The 
process is receptive to requirements change, as only core system requirements are 
analysed and achieved by a stable architecture defined. Incremental construction of 
safety evidence is facilitated by means of GSN in a top-down manner, though it 
remains to be seen whether the explicit recording of safety arguments is best done in 
order to ‘fake’ a rational design process as described by Parnas and Clements [43]. 
The effectiveness of the design process is also enhanced by available knowledge 
sources such as deviation modes, component deviation types and mitigation tactics, 
though there is still lack of tool support available to integrate these techniques. 
 
Rationality. Existing software design approaches often rely upon implicit reasoning, 
through which design decisions are mainly promoted by design intuition. The linkage 
between design decisions and requirements is largely undefined. Though the design 
decisions are clearly identified within the ARP process, the steps moving from the 
identified safety requirements to design decisions are still unclear. Our approach 
elaborates the linkage between safety requirements and mitigation options chosen by 
means of requirements formulation and prioritisation, design space analysis and cost-
benefit-risk analysis. With the aid of BBN tools, the notion of credibility can be 
deployed in design and a level of confidence can thus be established. Deciding the 
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stopping rules of the design process (i.e., when design issues identified are complete 
and mitigation is adequate) is based upon risk acceptability criteria.   

7   Summary 

In this paper, we have presented an integrated approach to architectural design for 
safety-critical software applications through a Triple Peaks framework. In particular, 
we have demonstrated that how it is practical to conduct deviation analysis 
simultaneously at both the requirements and architecture level. The key principle 
underlying this paper is that software safety evidence must be collected in the early 
development lifecycle, and architectural design decisions must be informed based 
upon this evidence & quantitative risk assessment. Our future work includes seeking 
possible automation of the linkage between BBN models and architectural choices, 
and expanding the proposed method into other critical domains such as security-
critical software applications.  
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