

Lecture Notes in Computer Science 4615
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Rogério de Lemos
Cristina Gacek
Alexander Romanovsky (Eds.)

Architecting
Dependable
Systems IV

13

Volume Editors

Rogério de Lemos
University of Kent, Computing Laboratory
Canterbury, Kent CT2 7NF, UK
E-mail: r.delemos@kent.ac.uk

Cristina Gacek
Alexander Romanovsky
Newcastle University, School of Computing Science
Newcastle upon Tyne, NE1 7RU, UK
E-mail: {cristina.gacek, alexander.romanovsky}@ncl.ac.uk

Library of Congress Control Number: 2007931900

CR Subject Classification (1998): D.2, D.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-74033-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-74033-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12102341 06/3180 5 4 3 2 1 0

Foreword

On a recent visit to Sweden I had the pleasure of traveling by train between Stockholm
and Malmö over several segments that spanned a few days. The trains always ran on time
and were very comfortable. Particularly convenient was the fact that a passenger could
get on the Internet during the trip simply by using her ticket number as the access code.
One of the features on the on-line provider’s home page was a map of that area of Swe-
den, with the train’s current location updated in real-time. Impressed by this, I made a
point of mentioning it to my Swedish host, and the conversation quickly turned to how
much today’s systems, such as my train, rely on and are controlled by software.

My host subsequently relayed a somewhat less pleasant experience with the same
type of train on which I had just arrived. During one of his recent trips, the software
controlling the angle at which one of the train’s cars entered and exited curves was not
functioning properly. As a result, the G-force experienced by the passengers during
turns had almost doubled. The problem was fixed at the next station, where the train
sat idle for some time while it literally rebooted. I found myself having two reactions
to this story. As a traveler, my first thought was that it is a good thing we do not have
to reboot airplanes in mid-flight. As a software engineer, I wondered exactly how the
software was constructed and what caused this particular problem.

As this story illustrates, as “regular” people we constantly depend on software in
our daily lives, yet frequently do not realize it and rarely, if ever, stop to analyze the
implications of that dependence and the extent of the software’s actual dependability.
On the other hand, as software engineering professionals, we are not only becoming
increasingly aware of the importance of software dependability, but have amassed an
arsenal of techniques and tools to help us ensure it. Many of these techniques and
tools have traditionally been used to ensure dependability in existing systems “after
the fact,” that is, after the system has been designed, and possibly implemented and
even deployed. However, a new class of emerging techniques gives dependability
first-class status in the development of software-intensive systems by integrating de-
pendability into software engineering processes from their inception. These techniques
rely on a software system’s architecture as the principal driver of dependability.

This book is the fourth in a series of collected papers on software architecture-
based dependability solutions. The book addresses a number of on-going challenges
(such as system modeling and analysis for dependability and ensuring dependability in
distributed systems) as well as some timely issues (such as the role of the Architecture
Analysis and Design Language—AADL—standard in modeling dependable systems,
architecture-driven dependability in the automotive domain, and the benefits of fol-
lowing the model-driven architecture paradigm in ensuring software dependability).
This book joins its three companion volumes in forming an indispensable source for
the fast-growing community of software researchers and practitioners who are con-
fronting the challenges posed by this important topic and architecting the software
systems on which we rely every day.

Nenad Medvidovic
University of Southern California

Preface

This is the fourth book in a series on Architecting Dependable Systems we started
five years ago that brings together issues related to software architectures and the
dependability of systems. This book includes expanded and peer-reviewed papers
based on the selected contributions to the Workshop on Architecting Dependable
Systems (WADS), organized at the 2006 International Conference on Dependable
Systems and Networks (DSN 2006), and a number of invited papers written by recog-
nized experts in the area.

Identification of the system structure (i.e., architecture) early in its development
process makes it easier for the developers to make crucial decisions about system
properties and to justify them before moving to the design or implementation stages.
Moreover, the architectural level views support abstracting away from details of the
system, thus facilitating the understanding of broader system concerns. One of the
benefits of a well-structured system is the reduction of its overall complexity, which
in turn leads to a more dependable system that typically has fewer remaining faults
and is capable of dealing with errors and faults of different types in a well-defined,
cost-effective and disciplined way.

System dependability is defined as the reliance that can be justifiably placed on the
service delivered by the system. It has become an essential aspect of computer sys-
tems as everyday life increasingly depends on software. It is therefore a matter for
concern that dependability issues are usually left until too late in the process of sys-
tem development.

Making decisions and reasoning about structure happen at different levels of ab-
straction throughout the software development cycle. Reasoning about dependability
at the architectural level has recently been in the focus of researchers and practitioners
because of the complexity of emerging applications. From the perspective of software
engineering, traditionally striving to build software systems that are fault-free, archi-
tectural consideration of dependability requires the acceptance of the fact that system
models need to reflect that it is impossible to avoid or foresee all faults. This requires
novel notations, methods and techniques providing the necessary support for reason-
ing about faults (including fault avoidance, fault tolerance, fault removal and fault
forecasting) at the architectural level.

This book comes as a result of bringing together research communities of software
architectures and dependability, and addresses issues that are currently relevant to im-
proving the state of the art in architecting dependable systems. The book consists of four
parts: Architectural Description Languages, Architectural Components and Patterns,
Architecting Distributed Systems, and Architectural Assurances for Dependability.

The first part entitled “Architectural Description Languages” (ADLs) includes four
papers focusing on various aspects of defining and using ADLs with an aim to ensure
system dependability. The first paper of this part, “Architecting Dependable Systems
with the SAE Architecture Analysis and Description Language (AADL),” is prepared
by J. Tokar. The Avionics Systems Division of the Society of Automotive Engineers
(SAE) has recently adopted this language to support incorporation of formal methods

VIII Preface

and engineering models into analysis of software and system architectures. The SAE
AADL is a standard that has been specifically developed for embedded real-time
safety critical systems. It supports the use of various formal approaches to analyzing
the impact of system composition from hardware and software components and al-
lows the generation of system glue code with the performance qualities predicted. The
paper highlights features of AADL that facilitate the development of system architec-
tures and demonstrates how the features can be used to conduct a wide variety of
dependability analysis of the AADL architectural models. To help in the understand-
ing of AADL, the paper begins with a discussion of software and systems architecture
and then shows how the AADL supports these concepts.

The second paper, written by A.-E. Rugina, K. Kanoun and M. Kaâniche and enti-
tled “A System Dependability Modeling Framework using AADL and GSPNs,” de-
scribes a modeling framework that generates dependability-oriented analytical models
from Architecture Analysis and Design Language (AADL) specifications, which are
then used for evaluating dependability measures, such as reliability or availability.
The proposed stepwise approach transforms an AADL dependability model into a
Generalized Stochastic Petri Net (GSPN) by applying model transformation rules that
can be automated and then processed by existing tools.

P. Cuenot, D. Chen, S. Gérard, H. Lönn, M.-O. Reiser, D. Servat, R. T. Kolagari,
M. Törngren and M. Weber contribute to the book with the paper “Towards Improv-
ing Dependability of Automotive Systems by Using the EAST-ADL Architecture
Description Language.” Management of engineering information is critical for devel-
oping modern embedded automotive systems. Development time, cost efficiency,
quality and dependability all benefit from appropriate information management. Sys-
tem modeling based on an architecture description language is a way to keep this
information in one information structure. EAST-ADL is an architecture description
language for automotive embedded systems. It is currently refined in the ATESST
project. The focus of this paper is on describing how dependability is addressed in the
EAST-ADL. The engineering process defined in the EASIS project is used as an
example illustrating support for engineering processes in EAST-ADL.

The final paper of the first part is “The View Glue” written by A. Radjenovic and
R. Paige. It focuses on domain-specific architecture description languages (ADLs),
particularly for safety critical systems. In this paper, the authors outline the require-
ments for safety critical ADLs, the challenges faced in their construction, and present
an example – AIM – developed in collaboration with the safety industry. Explaining
the key principles of AIM, the authors show how to address multiple and cross-
cutting concerns through active system views and how to ensure consistency across
such views. The AIM philosophy is supported by a brief exploration of a real-life jet
engine case study.

The second part of this book is entitled “Architectural Components and Patterns”
and contains five papers. In the first paper, entitled “A Component-Based Approach
to Verification and Validation of Formal Software Models,” D. Desovski and B.
Cukic present a methodology for the automated decomposition and abstraction of
Software Cost Reduction (SCR) specifications. The approach enables one to identify
components in an SCR specification, perform the verification component by compo-
nent, and apply compositional verification methods. It is shown that the algorithms
can be used in large specifications.

 Preface IX

In the paper “A Pattern-Based Approach for Modeling and Analyzing Error Re-
covery,” A. Ebnenasir and B. H. C. Cheng present an object analysis pattern, called
the corrector pattern, that provides a generic reusable strategy for modeling error
recovery requirements in the presence of faults. In addition to templates for construct-
ing structural and behavioral models of recovery requirements, the corrector pattern
also contains templates for specifying properties that can be formally verified to en-
sure the consistency between recovery and functional requirements. Additional prop-
erty templates can be instantiated and verified to ensure the fault-tolerance of the
system to which the corrector pattern has been applied. This analysis method is vali-
dated in terms of UML diagrams and demonstrated in the context of an industrial
automotive application.

The third paper of this part, “Architectural Fault Tolerance Using Exception Han-
dling,” is written by R. de Lemos. This paper presents an architectural abstraction
based on exception handling for structuring fault-tolerant software systems. The pro-
posed architectural abstraction transforms untrusted software components into ideal-
ized fault-tolerant architectural elements (iFTE), which clearly separate the normal
and exceptional behaviors, in terms of their internal structure and interfaces. The
feasibility of the proposed approach is evaluated in terms of a simple case study.

R. Buskens and O. Gonzalez contribute to the book with the paper “Model-Centric
Development of Highly Available Software Systems.” They present the Aurora Man-
agement Workbench (AMW) as a solution to the problem of integration a high avail-
ability (HA) middleware with the system that uses it. AMW is an HA middleware and
a set of tools for building highly available distributed software systems. It is unique
in its approach to developing highly available systems: developers focus only on
describing key architectural abstractions of their system as well as system HA needs
in the form of a model. Tools then use the model to generate much of the code needed
to integrate the system with the AMW HA middleware, which also uses the model to
coordinate and control HA services at run-time. The paper discusses initial successes
using the approach proposed in developing commercial telecom systems.

The final paper of this part, written by L. Grunske, P. Lindsay, E. Bondarev, Y. Pa-
padopoulos and D. Parker and entitled “An Outline of an Architecture-Based Method
for Optimizing Dependability Attributes of Software-Intensive Systems,” provides an
overview of 14 different approaches for optimizing the architectural design of systems
with regard to dependability attributes and cost. As a result of this study, the authors
present a meta-method that specifies the process of designing and optimizing architec-
tures with contradicting requirements on multiple quality attributes.

Part three of the book is on “Architecting Distributed Systems” and includes six
papers focusing on approaches to architectural level reasoning about dependability
concerns of distributed systems. This part starts with a paper by P. Inverardi and L.
Mostarda that is entitled “A Distributed Monitoring System for Enhancing Security
and Dependability at an Architectural Level.” The paper presents the DESERT tool
that allows the automatic generation of distributed monitoring systems for enhancing
security and dependability of a component-based application at the architectural level.
The DESERT language permits one to specify both the component interfaces and
interaction properties in terms of correct component communications. DESERT uses
these specifications to generate one filter for each component. Each filter locally
detects when its component communications violate the property and can undertake a
set of reaction policies.

X Preface

In their paper, entitled “Architecting Dynamic Reconfiguration in Dependable Sys-
tems,” A. T. A. Gomes, T. V. Batista, A. Joolia and G. Coulson introduce a generic
approach to supporting dynamic reconfiguration in dependable systems. The proposed
approach is built on the authors’ view that dynamic reconfiguration in such systems
needs to be causally connected at runtime to a corresponding high-level software
architecture specification. More specifically, two causally connected models are de-
fined, an architecture-level model and a runtime-level model. Dynamic reconfigura-
tion is applied either through an architecture specification at the architectural level, or
through reconfiguration primitives at the runtime level. This approach supports both
foreseen and unforeseen reconfigurations—these are handled at both levels with a
well-defined mapping between them.

T. Dumitraş, D. Roşu, A. Dan and P. Narasimhan, in their paper “Ecotopia: An
Ecological Framework for Change Management in Distributed Systems,” present
Ecotopia, a framework for change management in complex service-oriented architec-
tures (SOA) that is ecological in its intent: it schedules change operations with the
goal of minimizing the service-delivery disruptions by accounting for their impact on
the SOA environment. Ecotopia handles both external change requests, such as soft-
ware upgrades, and internal changes requests, such as fault-recovery actions. The
authors evaluate the Ecotopia framework using two realistic change-management
scenarios in distributed enterprise systems.

In the fourth paper, entitled “Generic-Events Architecture: Integrating Real-World
Aspects in Event-Based Systems,” A. Casimiro, J. Kaiser, and P. Veríssimo describe
an architectural solution consisting of an object model environment, which can be
easily composed, representing software/hardware entities capable of interacting with
the environment, and an event model that allows one to integrate real-world events
and events generated in the system. The architectural solution and the event-model
permit one to compose large applications from basic components, following a hierar-
chical composition approach.

The fifth paper is by C. Heller, J. Schalk, S. Schneele, M. Sorea, and S. Voss and is
entitled “Flexible Communication Architecture for Dependable Time-Triggered Sys-
tems.” The authors propose an approach expressed in terms of a dependable and flexi-
ble communication architecture that supports flexibility in the use of time-triggered
technologies and delivers a highly effective, reliable and dependable system design.
This work is undertaken in the context of safety-critical aerospace applications.

The final paper of this part is by L. Baresi, S. Guinea, and M. Plebani and is enti-
tled “Business Process Monitoring for Dependability.” This paper proposes a dynamic
technique for ensuring that dependability requirements of service-based business
processes are maintained during runtime. The approach is based upon the concept of
supervision rules, which are the union of user-defined constraints. These rules are
used to monitor how a BPEL process evolves, and specify corrective actions that must
be executed when a set of constraints is violated. For facilitating the specification of
these rules, the authors provide suitable languages and tools that enable one to ab-
stract from the underlying technologies, and to hide how the system guarantees the
dependability requirements.

The fourth part of this book is on “Architectural Assurances for Dependability”
and contains three papers. The first paper, “Achieving Dependable Systems by Syner-
gistic Development of Architectures and Assurance Cases” by P. J. Graydon, J. C.

 Preface XI

Knight and E. A. Strunk, explains the basic principles of assurance-based develop-
ment, and shows how the proposed approach can be used to provide assurance case
goals for architectural choices. In this approach, first the architecture is developed to
provide evidence required in the assurance case, and then the assurance case is refined
as architectural choices are made. In this context, choices are better informed than an
architecture chosen in an ad hoc manner.

The next paper, entitled “Towards Evidence-Based Architectural Design for
Safety-Critical Software Applications,” is prepared by W. Wu and T. Kelly. This
paper proposes a Triple Peaks process framework, within which a system model,
deviation model, and mitigation model are proposed and linked together. The applica-
tion of this framework is supported by the use of Bayesian Belief Networks and colla-
tion of relevant evidence. The link between the three models is elaborated by means
of a case study. The core contribution of this paper is addressing safety using evi-
dence available at the architectural level.

The paper “Extending Failure Modes and Effects Analysis Approach for Reliabil-
ity Analysis at the Software Architecture Design Level,” by H. Sozer, B. Tekiner-
dogan and M. Aksit, shows how the Failure Mode and Effect Analysis (FMEA) and
Fault Tree Analysis (FTA) can be extended and used in combination for conducting
reliability evaluation of software systems at the architecture design level. The exten-
sions of FMEA and FTA are related to using a failure domain model for systematic
derivation of failures, prioritization of failure scenarios based on a user’s perception,
and an FTA impact analysis model that does not explicitly require a running system.
The software architecture reliability analysis approach (SARAH) proposed in the
paper is illustrated using an industrial case for analyzing the reliability of the software
architecture of a digital TV.

Architecting dependable systems is now a well-recognized area, attracting interest
and contributions from many researchers. We are certain that this book will prove
valuable for both developers designing complex applications and researchers building
techniques supporting them. We are grateful to many people who made this book
possible. Our thanks go to the authors of the contributions for their excellent work,
the DSN 2006 WADS participants for their active participation in the discussions, and
Alfred Hofmann from Springer for believing in the idea of a series of books on this
important topic and for helping us to get it published. Last but not least, we very
much appreciate the efforts of our reviewers who helped us in ensuring the high qual-
ity of the contributions. They are L. Baresi, L. Bass, T. V. Batista, J. Bryans, R.
Buskens, F. Castor Filho, B. H.C. Cheng, A. C. Costa, B. Cukic, D. Desovski, T.
Dumitras, J. Durães, A. Ebnenasir, L. Grunske, C. Heller, N. Henderson, M.
Kaâniche, K. Kanoun, T. Kelly, S. Kharchenko, M. Klein, H. Lönn, T. Maxino, L.
Mostarda, P. Narasimhan, R. F. Paige, P. Pelliccione, A. Radjenovic, S. Riddle, G.
Rodrigues, D. Rosu, A.-E. Rugina, S. Schneele, E. Strunk, B. Tekinerdogan, M.
Tichy, J. L. Tokar, S. Voss and several anonymous reviewers.

Rogério de Lemos
Cristina Gacek

Alexander Romanovsky

Table of Contents

Part 1. Architectural Description Languages

Architecting Dependable Systems with the SAE Architecture Analysis
and Description Language (AADL) . 1

Joyce L. Tokar

A System Dependability Modeling Framework Using AADL and
GSPNs . 14

Ana-Elena Rugina, Karama Kanoun, and Mohamed Kaâniche

Towards Improving Dependability of Automotive Systems by Using the
EAST-ADL Architecture Description Language . 39

Philippe Cuenot, DeJiu Chen, Sébastien Gérard, Henrik Lönn,
Mark-Oliver Reiser, David Servat, Ramin Tavakoli Kolagari,
Martin Törngren, and Matthias Weber

The View Glue . 66
Alek Radjenovic and Richard Paige

Part 2. Architectural Components and Patterns

A Component-Based Approach to Verification and Validation of Formal
Software Models . 89

Dejan Desovski and Bojan Cukic

A Pattern-Based Approach for Modeling and Analyzing Error
Recovery . 115

Ali Ebnenasir and Betty H.C. Cheng

Architectural Fault Tolerance Using Exception Handling 142
Rogério de Lemos

Model-Centric Development of Highly Available Software Systems 163
Rick Buskens and Oscar Gonzalez

An Outline of an Architecture-Based Method for Optimizing
Dependability Attributes of Software-Intensive Systems 188

Lars Grunske, Peter Lindsay, Egor Bondarev,
Yiannis Papadopoulos, and David Parker

XIV Table of Contents

Part 3. Architecting Distributed Systems

A Distributed Monitoring System for Enhancing Security and
Dependability at Architectural Level . 210

Paola Inverardi and Leonardo Mostarda

Architecting Dynamic Reconfiguration in Dependable Systems 237
Antônio Tadeu A. Gomes, Thais V. Batista, Ackbar Joolia, and
Geoff Coulson

Ecotopia: An Ecological Framework for Change Management in
Distributed Systems . 262

Tudor Dumitraş, Daniela Roşu, Asit Dan, and Priya Narasimhan

Generic-Events Architecture: Integrating Real-World Aspects in
Event-Based Systems . 287

António Casimiro, Jörg Kaiser, and Paulo Verissimo

Flexible Communication Architecture for Dependable Time-Triggered
Systems . 316

Christoph Heller, Josef Schalk, Stefan Schneele, Maria Sorea, and
Sebastian Voss

Business Process Monitoring for Dependability . 337
Luciano Baresi, Sam Guinea, and Marco Plebani

Part 4. Architectural Assurances for Dependability

Achieving Dependable Systems by Synergistic Development of
Architectures and Assurance Cases . 362

Patrick J. Graydon, John C. Knight, and Elisabeth A. Strunk

Towards Evidence-Based Architectural Design for Safety-Critical
Software Applications . 383

Weihang Wu and Tim Kelly

Extending Failure Modes and Effects Analysis Approach for Reliability
Analysis at the Software Architecture Design Level 409

Hasan Sozer, Bedir Tekinerdogan, and Mehmet Aksit

Author Index . 435

R. de Lemos et al. (Eds.): Architecting Dependable Systems IV, LNCS 4615, pp. 1–13, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Architecting Dependable Systems with the SAE
Architecture Analysis and Description Language (AADL)

Joyce L. Tokar

Pyrrhus Software,
P.O. Box 1352, Phoenix, AZ 85001, USA

tokar@pyrrhusoft.com

Abstract. Architecture Description Languages provide significant opportunity
for the incorporation of formal methods and engineering models into the
analysis of software and system architectures. The SAE AADL [1] is a standard
that has been developed for embedded real-time safety critical systems which
will support the use of various formal approaches to analyze the impact of the
composition of systems from hardware and software and which will allow the
generation of system glue code with the performance qualities predicted. This
paper will highlight the components and features of AADL that facilitate the
development of system architectures comprised of both hardware and software
components. It will demonstrate how the features of AADL may be used to
conduct a wide variety of dependability analysis on AADL architectural
models. To help in the understanding of AADL the paper will begin with a
discussion of software and systems architecture. It will then show how the
AADL supports these concepts.

Keywords: Architecture description language, Architecture analysis,
Dependability, Modeling.

1 Introduction

An architecture involves multiple views (perspectives) of the system [3] and relies, in
whole or part, on patterns or styles of representation. These views enable the
exchange of information about a system or system of systems (SOS) across a wide
variety of domains of discourse. For example, a logical view of an architecture
describes the logical relationships between various components of a system that may
be used to assess the logical flow of information through a system. Whereas a
physical view of an architecture describes how the architecture is realized in the
physical environment.

Architecture is embodied in its components, both hardware and software; their
relationships to each other and the environment; and the principles governing its
design and evolution. The architecture of a program or computing system is the
structure or structures of the system, which comprise software and hardware elements,
the externally visible properties of those elements, and the relationships among them.

Thus, architecture helps to organize a system into components and interfaces
between these components. There are both functional and nonfunctional

2 J.L. Tokar

characteristics that can be modeled as properties of a component or system. These
properties along with the model itself can then be used in analysis of the system.

1.1 Architecture: The Foundation of Good Software and Systems Engineering

Research in Architecture Description Languages (ADLs) has been focused on finding
methods to reduce the cost of developing applications and for increasing the potential
for commonality between different members of a closely related product family.
Software development based on common architectural idioms has shifted from the
lines-of-code view to coarser-grained architectural elements and their overall
interconnection structure [4]. To support architecture-based development, formal
modeling notations, analysis and development tools that operate on architectural
specifications are needed. Architecture description languages and their accompanying
toolsets have been proposed as the answer. An ADL for software applications focuses
on the high-level structure of the overall application rather than the implementation
details of any specific source module.

The AADL is an architecture descriptions language that includes support for the
development of both the execution platform components and the software components
in the system architectural specification. Thus, the characteristics of both the software
and the execution platform are available for analysis.

AADL is based upon the ground-breaking work in architecture description
languages funded by United States (US) Defense Advanced Research Projects
Agency (DARPA) and the US Army Aviation and Missile Command (AMCM).
Experiences from the use of the MetaH language and toolset developed my
Honeywell Technology Laboratories [4] provided the foundation for the definition
and development of the AADL.

1.2 Software and Systems Development with Modeling Languages

With modeling languages the approach to software and systems development is more
integrated with the variety of participants from domains across the entire operational
embedded system. The architecture model may be refined from the requirements
phase through development into integration. This enables the detection of errors early
in the process rather than at integration level. Functional interfaces and systems
interface are integrated into the overall model development which provides a
predictable system at the completion of development.

Analysis of the architecture may take place throughout the development cycle.
Preliminary abstract models may be analyzed for feasibility prior to actual system
construction. These models may also be used to evaluate interfaces and design
constraints. Model analysis facilitates the early detection of errors and flaws in a system.

2 The SAE Architecture Analysis and Description Language
(AADL)

A key to an AADL-based engineering process is an architectural specification that is
an abstraction of the system. The architectural specification must be semantically
strong enough to reflect relevant aspects of the application domain.

 Architecting Dependable Systems with the SAE AADL 3

Since the AADL was designed for real-time embedded system, the architectural
specification focuses on the task structure and interaction topology of a system and
captures both the software architecture and hardware architecture. This real-time
architecture model is the basis for various analyses, ranging from schedulability
analysis to reliability and safety analysis.

The architectural specification is the basis for automated system generation and
component integration. The actual components of a system may be hand-coded
software, or components modeled in a domain-specific notation and auto-generated.

Although there is a considerable diversity in the capabilities of different ADLs, all
share a similar conceptual basis, or ontology, that determines a common foundation of
concepts and concerns for architectural description [5]. The main elements of this
ontology include: components, connectors, systems, properties, constraints and styles.

2.1 The Elements of AADL

This section shows the correspondence between this ontology and AADL elements.
These AADL entities are used to construct analyzable models of real-time, embedded,
systems.

2.1.1 Components
Components represent the primary (computational) elements and data stores of a
system. Intuitively, they correspond to the boxes in box-and-line descriptions of
architectures. Typical examples of components include such things as clients, servers,
filters, objects, blackboards, and databases. In most ADLs components may have
multiple interfaces, each interface defining a point of interaction between a
component and its environment.

In AADL, the definition of components is extended to include execution platform
components such as buses and memories. A system is then the composition of
software components, execution platform components, and possibly other system
components. AADL supports multiple interfaces between components through the
definition of ports. AADL also supports the concept of a family of components
through the definition of multiple implementations that correspond to a component
type definition.

2.1.2 Connectors
Connectors facilitate the communication channels between components and
coordinate activities among components. Examples include simple forms of
interaction, such as pipes, procedure call, and event broadcast. Connectors may also
represent more complex interactions, such as client-server protocol or an SQL link
between a database and an application. Connectors have interfaces that define the
roles played by the various participants in the interaction represented by the
connector.

In AADL, connections are represented as the actual linkage between components.
Ports may be used to represent the flow of data and events between threads and
execution platform components. Data ports are used for unqueued state data. Event
data ports are used for queued message data. Event ports are used for events. A port
group represents a grouping of ports or port groups. Outside a component a port

4 J.L. Tokar

group is treated as a single unit. Inside a component the ports of a port group can be
accessed individually. Port groups allow collections of ports to be connected with a
single connection.

Interactions between components may also be represented by subprogram call
sequences. Flows represent the logical information flow through components.
Connections in AADL may be used to specify a mode change that may result in the
change of component configuration and interaction.

2.1.3 Systems
Systems represent related collections of components and connectors. In modern
ADLs, a key property of systems descriptions is that the overall topology of a system
is defined independently from the components and connectors that make up the
system. Systems may also be hierarchical: components and connectors may represent
subsystems that have internal architectures.

AADL has a package configuration element that enables the collection of
components and their connections into modules that may be reused in the definition of
a system. The AADL system component is used to represent the composition of
software components, execution platform components, and possibly other system
components along with their corresponding connections. A system may be composed
of a set of systems.

2.1.4 Properties
Properties represent semantic information about a system and its components that
goes beyond structure. Different ADLs focus on different properties, but virtually all
provide some way to define one or more extra functional properties together with
tools for analyzing those properties. For example, some ADLs allow one to calculate
overall system throughput and latency based on performance estimates of each
component and connector.

AADL provides a predefined set of properties that are applicable to the
components and connectors of the AADL. These properties specify various
characteristics of a system such as the system start-up time, or the binding of elements
to actual software or hardware modules. AADL includes support for user defined
property sets that provide additional information about a specific system or family of
systems that are unique to the user’s domain.

2.1.5 Constraints
Constraints represent claims about an architectural design that should remain true
even as it evolves over time. Typical constraints include restrictions on allowable
values of properties, topology, and design vocabulary. For example, an architecture
might constrain its design so that the number of clients of a particular server is less
than some maximum value.

In AADL, constraints appear in several different forms. In the language definition
itself, constraints are represented as assertions on the hybrid automata that describe
the behavior of an AADL specification. Component and connector constraints are
represented as limitations on the values of the corresponding properties. User may
define a design vocabulary to further constrain an AADL specification using annex
libraries and subclauses.

 Architecting Dependable Systems with the SAE AADL 5

2.1.6 Styles
Styles represent families of related systems. An architectural style typically defines a
vocabulary of design element types and rules for composing them. Examples include
dataflow architectures based on shared data space and a set of knowledge sources, and
layered systems. Some architectural styles additionally prescribe a framework as a set
of structural forms that specific applications can specialize.

AADL offers a variety of capabilities to support architectural styles. At the lowest
level, as mentioned earlier, component types may have multiple implementations thus
enabling the definition of a single interface that has a family of underlying
implementations. Components may be represented hierarchically. Thus, multiple
levels of a system may correspond to different levels in a component or system
hierarchy. Similarly, AADL supports the refinement of specifications that provides
for the layering of specification definition.

For example, a communication system within an aircraft may be viewed at the
highest level as a system consisting of a sending process, a receiving process, and a
bus. In this configuration, the system would indicate that data flows from the out data
port the sender to the in data port of the receiver via the bus.

Further analysis of this system may reveal that the bus is actually another system of
components attached at a lower level to another bus. The AADL specification may be
refined to reflect this enhancement to the definition of the system architecture. The
system may be refined further to reveal the actual execution platform components. At
each stage of the refinement process, the architecture may be analyzed to determine
more about the overall behavior of the system.

In addition, packages in AADL may be used to collect common architectural
elements together for reuse. Property sets may be used to define property values that
are unique to a given style. And annexes may be used to introduce additional
representations needed to enhance a given specification or family of specifications.

2.2 Combining Elements

Based on the common foundation for ADLs, AADL components represent the
elements of a system including software elements and execution platform elements.
Shared data, ports, and parameters represent the interfaces between components.
Components are linked together using subprogram call sequences and connections.
Logical data connections are represented using flows. Systems may be represented as
collections of components, hierarchies of components, or systems of systems.
Properties represent both functional and non-functional characteristics of an
architecture. Property values are intrinsically important to model analysis tools as well
as code generation and system generation. Properties may be used to represent some
of the design constraints of an architecture. Constant property values may be used to
represent invariants on a design. Users may build property sets to define properties to
be used to constrain a particular system or family of systems even further. A
component may have multiple implementations to supply support for families of
components.

Figure 1 shows the graphical symbols of the component categories in AADL.

6 J.L. Tokar

Fig. 1. AADL components graphical symbols

2.2.1 Application Components
Components represent the primary computational elements and data of a system. A
component may have multiple implementations, each implementation defining a
particular representation of a component in its specified environment.

The AADL system component represents the composition of software components
and execution platform components. Systems support the hierarchical organization of
threads and processes. A system may be comprised of a system of systems.

Software and execution platform components provide the basic modeling concepts
that are needed to describe the runtime architecture of an application system in terms
of concurrent tasks and their interaction as well as their mapping to the underlying
execution platform.

Processes represent virtual address spaces whose boundaries may be enforced at
execution time. Threads represent schedulable units of concurrent execution. Thread
groups are used to organize collections of threads within a process.

Data components represent potentially shareable data. And subprograms represent
callable sequences of code.

2.2.2 Execution Platform Components
AADL is designed to capture the physical components and the bindings of the
application components onto the execution platform. Hence, the language includes
the definition of execution platform components.

The processor component is defined to provide the scheduling and execution
services. Memory components represent storage for data and source code.

Devices provide interfaces to external and environmental components.
Bus components provide the physical connectivity between processors, memory

and devices.

2.2.3 AADL Component Type Extension Hierarchy
Component types can be declared in terms of other component types, i.e., a
component type can extend another component type – inheriting its declarations and
property associations. If a component type extends another component type, then
features, flows, and property associations can be added to those already inherited. A
component type extending another component type can also refine the declaration of

 Architecting Dependable Systems with the SAE AADL 7

inherited feature and flow declarations by more completely specifying partially
declared component classifiers and by associating new values with properties.

Component type extensions form an extension hierarchy, i.e., a component type
that extends another component type can also be extended. Figure 2 illustrates the
extension hierarchy. In this example, the component type GPS extends component
type Position System inheriting ports declared in Position System. It may add a port,
refine the data type classifier of a port incompletely declared in Position System, and
overwrite the value of one or more properties. Component types being extended are
referred to as ancestors, while component types extending a component type are
referred to as descendents.

Fig. 2. Graphical representation of an AADL type, type extension and implementation

AADL offers a variety of features that may be utilized in a component
implementation to refine and complete the component type definition. The refines
type clause refines the properties and features in the component type.
Subcomponents declare component parts. The calls clause specifies a sequence of
subprogram calls. Flows declare the logical flows through components. Modes declare
the modes of operation that are applicable to the component implementation.
Properties define the property associations for the component implementation.

2.2.4 AADL Subcomponents
A subcomponent represents a component contained within another component, i.e.,
declared within a component implementation. Subcomponents contained in a
component implementation may be instantiations of component implementations that
contain subcomponents themselves. This results in a component containment
hierarchy that ultimately describes the whole physical system as a system instance.

A subcomponent declaration may resolve required subcomponent access declared
in the component type of the subcomponent. A subcomponent may be declared to
apply to specific modes defined within the component implementation. Sub-
components can be refined as part of component implementation extensions.

Figure 3 provides an illustration of a containment hierarchy using the graphical
AADL notation. In this example, Sys1 represents a system. The implementation of
the system contains subcomponents named C3 and C4. Component C3, a
subcomponent in Sys1’s implementation, contains subcomponents named C1 and C2.

8 J.L. Tokar

Component C4, another subcomponent in Sys1’s implementation, contains a second
set of subcomponents named C1 and C2. The two subcomponents named C1 and
those named C2 do not violate the unique name requirement. They are unique with
respect to the local namespace of their containing component’s local namespace.

Fig. 3. Graphical representation of an AADL component containment hierarchy

2.2.5 AADL Interfaces and Connections
Ports represent the flow of data and events between threads and execution platform
components. Data ports are used for the transmission of unqueued state data. Event
data ports are used for queued message data associated with an event, such as data
transferred as part of a system interrupt. Event ports are used for events.

Connections represent the actual linkage between components. Immediate
connections represent data and events that are transmitted in the middle of a frame of
execution. Delayed connections represent data and events that are transmitted at the
deadline of the originating thread. Connections are one of three forms of interface
interaction supported by AADL. The other two are synchronous subprogram call and
shared data access.

The graphical representation of ports and connections is given in Figure 4.

Fig. 4. Graphical representation of AADL ports and connections

C1 C2 C1 C2

C3 C4

Sys 1

 Architecting Dependable Systems with the SAE AADL 9

The data that is transferred between components may be typed and characterized
by additional properties such as unit of measurement, range constraints on the data
values and constraints on the values of successive stream elements.

2.3 AADL Scheduling

AADL provides a precise specification of execution characteristics of threads and
processes. At the same time it does not prescribe a particular scheduling protocol.
AADL properties may be used to define the details of the scheduling policy and
thread dispatching. In addition, AADL threads may have properties that describe
their availability and priority for scheduling. Figure 5 shows the graphical
representation of the four types of AADL threads each with annotations that capture
their unique behaviors.

Fig. 5. Graphical representation of AADL threads

The AADL standard includes the specification of a hybrid automata that defines
the various states of execution that are applicable to the thread scheduling and
dispatching. In addition, since AADL supports the definition of modes of operation,
the hybrid automaton includes states for mode transition and mode hibernation.

2.4 AADL Dependability, Faults and Modes

There are often requirements in embedded real-time systems for high dependability,
fault-tolerance, and error recovery [6]. Dependability is the ability of a system to
continue to produce the desired service to the user when the system is exposed to
undesirable conditions. [7]. A fault is an anomalous undesired change in thread
execution behavior, possibly resulting from an anomalous undesired change in data
being accessed by that thread or from violation of a compute time or deadline
constraint [8].

There is a fault framework described within the AADL standard that enables the
user to describe what happens when a fault occurs. In addition, the Error Annex [9]
provides support for error models and analysis. The AADL standard also supports the
specification of mode transition actions.

2.4.1 AADL Specification of a Modal System
One method utilized to improve the dependability of a system is through the
replication of hardware components, software components, or both. The example
given Figures 6 and 7 demonstrates how AADL may be used to specify a system that
is comprised of a primary and backup mode of operation.

10 J.L. Tokar

system sys
features
 insignal: data port;
 outsignal: data port;
end sys;

system PrimaryBackupPattern
features
 insignal: data port;
 outsignal: data port;
 fault: in out event port ;
 restart: in out event port ;
 reinit: in out event port ;
end PrimaryBackupPattern;

Fig. 6. Textural representation of the AADL specification of the system type Primary
BackupPattern for a system whose external interface is comprised of two data ports:
insignal and outsigna1; and three event ports: fault, restart, and reinit

The implementation of the PrimaryBackupPattern system is provided in
Figure 7. This implementation refines the type definition with the specification of two
susbsystems: Primary and Backup. The implementation also specifies each of the
data port connections. It also defines three modes of operation: Primarymode,
Backupmode, and Reinitmode. The implementation indicates that this
implementation of the system will start up in Primarymode. It will transition from
Backupmode to Reinitmode as the result of a restart event. And will
transition from Reinitmode to Primarymode as the result of a reinit event.

system implementation PrimaryBackupPattern.impl
subcomponents
Primary: system sys;

 Backup: system sys;
connections
 inPrimary: data port insignal -> Primary.insignal;
 inBackup: data port insignal -> Backup.insignal;
 outPrimary: data port Primary.outsignal -> outsignal
 in modes (Primarymode);
 outBackup: data port Backup.outsignal -> outsignal
 in modes (Backupmode);
modes
 Primarymode: initial mode;
 Backupmode: mode;
 Reinitmode: mode;
 Backupmode –[restart]-> Reinitmode;
 Reinitmode –[Reinit.Complete]-> Primarymode;
end PrimaryBackupPattern.impl;

Fig. 7. Textural representation of an AADL implementation of the system PrimaryBackup
Pattern

 Architecting Dependable Systems with the SAE AADL 11

Note that the specification of the connections to the outsigna1 data port include
the specification of the mode to which the connection applies, thereby clearly
identifying what event has trigger the event that is supplying the output signal data.

The graphical representation of the system PrimaryBackupPattern is given
in Figure 8. Notice that the modes are encapsulated in the system components and the
backup modes and corresponding system are grey.

Fig. 8. Graphical representation of an AADL implementation of the system PrimaryBackup
Pattern

This example demonstrates many of the features of AADL as well as the textual
representation of the model. Architectures specified in AADL may use the graphical
notation or the textual notation.

2.5 AADL Annexes and Extensibility

Extensions to accommodate new analyses and unique hardware attributes take the
form of new properties and analysis specific notations that can be associated with
components may be defined as annex components. Users or tool vendors may define
extension sets to facilitate additional capabilities. Extension sets may be proposed for
inclusion in this standard. Such extensions will be defined as part of a new Annex
appended to the standard.

Presently, there are four standard annexes: the Graphical AADL Notation Annex
defines a set of graphical symbols for the graphical AADL notation. These graphical
symbols can be used to express relationships between components, features, and
connections in an AADL model. The AADL Meta Model and Interchange Formats,
defines the AADL meta model and XML-based interchange formats for AADL
models. The Language Compliance and Application Program Interface Annex
defines language-specific rules for source text to be compliant with an architecture
specification written in AADL. And the Error Model Annex defines features to enable
the specification of redundancy management and risk mitigation methods in an

12 J.L. Tokar

architecture, and enable qualitative and quantitative assessments of system properties
such as safety, reliability, integrity, availability, and maintainability.

Use of the features of the Error Model Annex in the evaluation of dependency and
reliability of components is defined further in the next chapter.

The standardization of additional annexes is under development including an
annex that defines a UML profile for AADL and a Behavior annex that supports
detailed component behavior modeling.

3 The SAE AADL Development Environment

The success of any new technology is dependent upon the availability of tools that
support the use of the technology. As such, the Software Engineering Institute (SEI)
in conjunction with the US Army and several other universities has developed an
open source tool kit for AADL called the Open Source AADL Tool Environment
(OSATE).

OSATE has been built as a set of plug-ins to the Eclipse environment and is itself
extensible. OSATE includes an AADL parser that translates textual AADL
specifications into in-core declarative AADL models. Those declarative AADL
models get persistently stored in XML according to the AADL Meta model
specification. OSATE also includes a semantic checker, various architecture analysis
plug-ins, an AADL XML to text translator, an AADL object model editor, and an
AADL graphical editing front-end.

4 Summary and Conclusions

The core AADL supports modeling of application systems and execution platforms as
interacting components with specific semantics and bindings. Such systems are
configurable in that components have multiple implementations. Semantics defined as
part of the component categories and their predefined properties address timing and
resource consumption as well as interaction consistency in terms of matching port
types and data communicated through the ports. Behavior descriptions allow for
model checking of behaviors as well as mode–specific analyses with less conservative
results. The core language does not provide properties and semantics for all possible
architecture analyses. Instead the AADL has been made extensible both in terms of
language notation and in terms of standard annexes to accommodate further analyses.

Model-based, architecture driven software system engineering is critical to
predictably developing and maintaining large-scale systems. Architecture analysis
early and throughout the life cycle improves predictability of non-functional
properties of mission-critical systems.

The SAE AADL, as an industry standard, provides a stable common framework for
contractors to cooperatively evolve large-scale systems and for tool vendors to
provide tools for a common architecture representation.

 Architecting Dependable Systems with the SAE AADL 13

References

1. Society of Automotive Engineers (SAE) Avionics Systems Division (ASD) AS-2C
Subcommittee. Avionics Architecture Description Language Standard, AS5506, vol. 1.0
(November 2004)

2. Clements, Paul, et al.: Documenting Software Architectures: Views and Beyond. SEI Series
in Software Engineering. Addison-Wesley, Reading (2002)

3. IEEE Std 1471-2000 IEEE Recommended Practice for Architectural Description of
Software-Intensive Systems –Description (2000)

4. Binns, Pamela, Englehart, M., Jackson, M., Vestal, S.: Domain Specific Software
Architectures for Guidance, Navigation and Control, Honeywell Technology Center,
Minneapolis, MN. International Journal of Software Engineering and Knowledge
Engineering 6(2), 201–227 (1996)

5. Garlan, David, Monroe, R.T., Wile, D.: Acme: Architectural Description of Component-
Based Systems. In: Foundations of Component Based Systems, Cambridge University
Press, Cambridge (2000)

6. Feiler, Peter, H., Gluch, D.P., Hudak, J.H., Lewis, B.A.: Embedded System Architecture
Using SAE AADL. Technical Note CMU/SEI-2004-TN-005 (June 2004)

7. LaPrie, J.-C.: Dependable Computing and Fault Tolerance: Concepts and Terminology. In:
Proceedings of the 15th International Symposium on Fault-Tolerant Computing (FTCS-15),
Ann Arbor, MI, pp. 2–11 (1985)

8. IFIP WG10.4 on Dependable Computing and Fault Tolerance. In: Laprie, J.-C. (ed.)
Dependability: Basic Concepts and Terminology, Dependable Computing and Fault
Tolerance, vol. 5, Springer, Wien, New York (1992)

9. Society of Automotive Engineers (SAE) Avionics Systems Division (ASD) AS-2C
Subcommittee. SAE Architecture Analysis and Design Language (AADL) Annex vol. 1:
Annex A: Graphical AADL Notation, Annex C: AADL Meta-Model and Interchange
Formats, Annex D: Language Compliance and Application Program Interface Annex E:
Error Model Annex, AS5506/1, vol. 1.0 (June 2006)

R. de Lemos et al. (Eds.): Architecting Dependable Systems IV, LNCS 4615, pp. 14–38, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A System Dependability Modeling Framework Using
AADL and GSPNs

Ana-Elena Rugina, Karama Kanoun, and Mohamed Kaâniche

LAAS-CNRS, University of Toulouse
7 avenue Colonel Roche

31077 Toulouse Cedex 4, France
Phone: +33(0)5 61 33 62 00, Fax: +33(0)5 61 33 64 11

{rugina,kanoun,kaaniche}@laas.fr

Abstract. For efficiency and cost control reasons, system designers’ will is to
use an integrated set of methods and tools to describe specifications and design,
and also to perform dependability analyses. The SAE (Society of Automotive
Engineers) AADL (Architecture Analysis and Design Language) has proved to
be efficient for architectural modeling. We present a modeling framework
allowing the generation of dependability-oriented analytical models from
AADL models, to facilitate the evaluation of dependability measures, such as
reliability or availability. We propose a stepwise approach for system
dependability modeling using AADL. The AADL dependability model is
transformed into a GSPN (Generalized Stochastic Petri Net) by applying model
transformation rules that can be automated. The resulting GSPN can be
processed by existing tools. The modeling approach is illustrated on a
subsystem of the French Air Traffic Control System.

Keywords: dependability modeling, evaluation, AADL, GSPN, model
transformation.

1 Introduction

The increasing complexity of new-generation systems raises major concerns in
various critical application domains, in particular with respect to the validation and
analysis of performance, timing and dependability-related requirements. Model-
driven engineering approaches based on architecture description languages aimed at
mastering this complexity at the design level have emerged and are being increasingly
used in industry. In particular, AADL (Architecture Analysis and Design Language)
[1] has received a growing interest during the last years. It has been recently
developed and standardized under the auspices of the International Society of
Automotive Engineers (SAE), to support the design and analysis of complex real-time
safety-critical systems in avionics, automotive, space and other application domains.
AADL provides a standardized textual and graphical notation for describing software
and hardware system architectures and their functional interfaces. AADL may be used
to perform various types of analysis to determine the behavior and the performance of

 A System Dependability Modeling Framework Using AADL and GSPNs 15

the system being modeled. The language has been designed to be extensible to
accommodate analyses that the core language does not support.

Besides describing the systems’ behavior in the presence of faults, the developers
are interested in obtaining quantitative measures of relevant dependability properties
such as reliability, availability and safety. For pragmatic reasons, the system designers
using an AADL-based engineering approach are interested in having an integrated set
of methods and tools to describe specifications and design, and to perform
dependability evaluations. The AADL Error Model Annex [2] has been recently
standardized to complement the description capabilities of the core language by
providing features with precise semantics to be used for describing dependability-
related characteristics in AADL models (faults, failure modes, repair policies, error
propagations, etc.). However, at the current stage, no methodology and guidelines are
available to help the developers in the use of the proposed notations to describe
complex dependability models reflecting real-life systems with multiple interactions
and dependencies between components. One of our objectives is to propose a
structured method for AADL dependability model construction.

The AADL Error Model Annex mentions that stochastic automata such as fault
trees and Markov chains can be generated from AADL specifications enriched with
dependability-related information. Indeed, Markov chains are recognized to be
powerful means for modeling system dependability taking into account dependencies
between system components. Usually, they are automatically generated from higher
level formalisms such as Generalized Stochastic Petri Nets (GSPNs). The latter allow
structural model verification, before the Markov chain generation. Such verification
support facilities are very useful when dealing with large models.

During the last decade, various approaches have been defined to support the
systematic construction and validation of dependability models based on GSPNs and
their extensions (see e.g. [3-5]). We propose to take advantage of such approaches in
the context of an AADL-based engineering process, to i) build the dependability-
oriented AADL model and to ii) generate dependability-oriented GSPN models from
AADL models by model transformation. In this way, the complexity of GSPN model
generation is hidden to users familiar with AADL but who have a limited knowledge
of GSPNs. The AADL and GSPN models are built iteratively, taking into account
progressively the dependencies between the components, and validated at each
iteration. The dependability-related information is not embedded in the AADL
architectural model. Instead, it is described separately and then plugged in the
system’s components. The user can easily unplug or replace the dependability-related
information. This feature enhances the reusability and the readability of the AADL
architectural model that can be used as is for other analyses (e.g., formal verification
[6], scheduling and memory requirements [7], resource allocation with the Open
Source AADL Tool Environment (OSATE)1, research of deadlocks and un-initialized
variables with the Ocarina toolset2).

To summarize, our objectives are threefold: i) present a structured and stepwise
approach for building AADL dependability model, ii) show examples of model
transformation rules to generate GSPNs from AADL dependability models and iii)

1 http://www.aadl.info/OpenSourceAADLToolEnvironment.html
2 http://ocarina.enst.fr

16 A.-E. Rugina, K. Kanoun, and M. Kaâniche

exemplify the proposed approach on a subsystem of the French Air Traffic Control
System. The set of model transformation rules is meant to be the basis for the
implementation of a model transformation tool completely transparent to the user.
Such a tool can be interfaced with one of the existing GSPN processing tools (e.g.,
Surf-2 [8], Möbius [9], Sharpe [10], GreatSPN [11], SPNP [12]) to evaluate
dependability/performability measures.

Compared to our work presented published in [13] and [14], we offer here a global
view of our method’s steps, by presenting a case study reflecting a real system. In
particular, the AADL to GSPN transformation rules are developed and illustrated.

The remainder of the paper is organized as follows. Section 2 discusses related
work. Section 3 presents the AADL concepts that are necessary for understanding our
modeling approach. Section 4 gives an overview of our framework for system
dependability modeling and evaluation using AADL and GSPNs. Section 5 presents
examples of rules for transforming AADL into GSPN models. Section 6 applies our
approach to a subsystem of the French Air Traffic Control System and Section 7
concludes the paper.

2 Background and Related Work

To the best of our knowledge there are no contributions similar to our work in the
current state of the art. Most of the published work on analyses using AADL has
focused on the extension of the language capabilities to support formal verifications.
For example, the COTRE project [6] provides a design approach bridging the gap
between formal verification techniques and requirements expressed in Architecture
Description Languages. AADL system specifications can be imported in the newly
defined COTRE language. A system specification in COTRE language can be
transformed into timed automata, Time Petri nets or other analytical models. Also, a
transformation from AADL models to Colored Petri Nets, aiming at formally
verifying certain properties through model checking, is presented in [15]. However, as
far as we are aware of, published work does not address generation of dependability–
oriented quantitative evaluation models from AADL specifications.

Considering the problem of generating dependability evaluation models from
model-driven engineering approaches in a more general context, a significant amount
of research has been carried out based on UML (Unified Modeling Language) [16].
For example, the European project HIDE ([17], [18]) proposed a method to
automatically analyze and evaluate dependability attributes from UML models. It
defined several model transformations from subsets of UML diagrams to i) GSPNs,
Deterministic and Stochastic Petri Nets and Stochastic Reward Nets to evaluate
dependability measures, ii) Kripke structures for formal verification and iii) to
Stochastic Reward Nets for performance analysis. Also, [19] proposes an algorithm to
synthesize dynamic fault trees (DFT) from UML system models. Other interesting
approaches have been developed, aiming at obtaining performance measures by
transforming UML diagrams (activity diagrams in [20], sequence and statechart
diagrams in [21]) into GSPNs.

 A System Dependability Modeling Framework Using AADL and GSPNs 17

Similarly to UML users, the AADL users are interested in using modeling
approaches allowing them to derive dependability evaluation models from AADL
specifications. The approach proposed here aims at fulfilling this objective.

3 AADL Concepts

In the AADL, systems are particular composite components modeled as hierarchical
collections of interacting application components (processes, threads, subprograms,
data) and a set of execution platform components (processors, memory, buses,
devices). The application components are bound to the execution platform. The
AADL allows analyzing the impact of different architecture choices (such as
scheduling policy or redundancy scheme) on a system’s properties [22].

Each AADL system component has two levels of description: the component type
and the component implementation. The type describes how the environment sees that
component, i.e., its properties and features. Examples of features are in and out
ports that represent access points to the component. One or more component
implementations may be associated with the same component type, corresponding to
different implementation structures of the component in terms of subcomponents,
connections (between subcomponents’ ports) and operational modes.

Dynamic aspects of system architectures are captured with the AADL operational
mode concept. Different operational modes of a system or a system component
represent different system configurations and connection topologies, as well as
different sets of property values to represent changes in non-functional characteristics
such as performance and reliability. Mode transitions model dynamic operational
behavior and are triggered by events arriving through ports. Operational modes may
represent fault-tolerance modes or different phases in a phased-mission system. This
dynamics may influence dependability measures (i.e., availability), thus operational
modes are taken into account in the dependability model.

An AADL architectural model can be annotated with dependability-related
information (such as faults, failure modes, repair policies, error propagation, etc.)
through the standardized Error Model Annex. AADL error models are defined in
libraries and can be associated with application components, execution platform
components, and device components, as well as the connections between them. When
an error model is associated with a component, it is possible to customize it by setting
component-specific values for the arrival rate or the probability of occurrence for
error events and error propagations declared in the error model.

In the same way as for AADL components, error models have two levels of
description: the error model type and the error model implementation. The error
model type declares a set of error states, error events (internal to the
component) and error propagations3. Occurrence properties specify the
arrival rate or the occurrence probability of events and propagations. The error model

3 We will refer to error states, error events, error propagations and
error transitions without the qualifying term error in contexts where the meaning
is unambiguous (note that error states can model error-free states, error events
can model repair events and error propagations can model all kinds of notifications).

18 A.-E. Rugina, K. Kanoun, and M. Kaâniche

implementation declares error transitions between states, triggered by events
and propagations declared in the error model type.

Figure 1 shows a simple error model, without propagations, considering two types
of faults: temporary and permanent. A temporary fault leads the component in an
erroneous state while a permanent fault leads it in a failed state. A temporary fault can
be processed and the component recovers regaining its error free state. A permanent
fault requires restarting the component.

Error Model Type [independent]

error model independent
features

Error_Free: initial error state;
Erroneous: error state;
Failed: error state;
Temp_Fault: error event {Occurrence => poisson 1};
Perm_Fault: error event {Occurrence => poisson 2};
Restart: error event {Occurrence => poisson μ1};
Recover: error event {Occurrence => poisson μ2};

end independent;

Error Model Implementation [independent.general]

error model implementation independent.general
transitions

Error_Free-[Perm_Fault]->Failed;
Error_Free-[Temp_Fault]->Erroneous;
Failed-[Restart]->Error_Free;
Erroneous-[Recover]->Error_Free;

end independent.general;

Fig. 1. Error model example without propagations

Interactions between the error models of different components are determined by
interactions between components of the architectural model through connections and
bindings. Out propagations are sent out of a component through all features
connecting it to other components. Thus, out propagations have an impact on any
receiving component that declares an in propagation with the same name. In some
cases, it is desirable to model how error propagations from multiple sources are
handled. This is modeled by further customizing an error model to a system
component by specifying filters and masking conditions for propagations by using
Guard properties associated with its features.

AADL allows modeling logical error states independently from the operational
modes of a component. It also allows establishing a connection between the logical
error states and the operational modes. For example, operational mode transitions may
be constrained, through the use of Guard_Transition properties applied to ports,
to occur depending on the error state configuration of several components.

Several examples are given throughout the paper to illustrate how propagations and
Guard_Transition properties are handled in AADL.

 A System Dependability Modeling Framework Using AADL and GSPNs 19

4 The Modeling Framework

For complex systems, the main difficulty for dependability model construction arises
from dependencies between the system components. Dependencies are of several
types, identified in [4]: structural, functional, those related to the fault-tolerance and
those associated with recovery and maintenance policies. Exchange of data or transfer
of intermediate results from one component to another is an example of functional
dependency. The fact that a thread runs on a processor induces a structural
dependency between them. Changing the operational mode of a component according
to a fault tolerance policy (e.g., leader/follower) represents a fault tolerance
dependency. Sharing a maintenance facility between several execution platform
components leads to a maintenance dependency. Having to follow a strict recovery
order for application components is an example of recovery dependency. Functional,
structural and fault tolerance dependencies are grouped into an architecture-based
dependency class, as they are triggered by physical or logical connections between the
dependent components at architectural level. On the other hand, recovery and
maintenance dependencies are not always visible at architectural level.

A structured approach is necessary to model dependencies in a systematic way, to
avoid errors in the resulting model of the system and to facilitate its validation. In our
approach, the AADL dependability-oriented model is built in an iterative way. More
concretely, in the first iteration, we build the model of the system’s components,
representing their behavior in the presence of their own faults and repair events only.
They are thus modeled as if they were isolated from their environment. In the
following iterations, we introduce dependencies in an incremental manner.

The rest of this section is structured as follows. A general overview of our
modeling framework is presented in subsection 4.1. In subsection 4.2, we illustrate
how dependencies are modeled in AADL in the context of our approach. Subsection
4.3 presents briefly how a GSPN model is generated from the AADL model.

4.1 Overview

An overview of our iterative modeling framework, which is decomposed in four main
steps, is presented in Figure 2.

Fig. 2. Modeling framework

20 A.-E. Rugina, K. Kanoun, and M. Kaâniche

The first step is devoted to the modeling of the system architecture in AADL (in
terms of components and operational modes of these components). This AADL
architectural model may be available if it has been already built for other purposes.

The second step concerns the building of the AADL error models associated with
components of the architectural model. The error model of the system is a
composition of the set of components’ error models, taking into account the
dependencies between these components.

The description of architecture-based dependencies between components of the
system is based on the analysis of the connections and bindings present in the
architectural model. The corresponding error model is built based on the description
of dependencies. Making maintenance and recovery assumptions may lead to the
addition of components in the architectural model.

The architectural model and the error model of the system form a dependability-
oriented AADL model, referred to as the AADL dependability model further on.

The third step aims at building a dependability evaluation model, from the AADL
dependability model, based on model transformation rules. Here, we focus on
generating a GSPN from the AADL model.

The fourth step is devoted to the processing of the dependability evaluation model
(in our case under the form of a GSPN) to evaluate quantitative measures
characterizing dependability attributes. This step is entirely based on existing GSPN
processing algorithms and tools. Therefore, it is not considered here.

To obtain the AADL dependability model, the user must perform the first and
second steps described above. The third step is intended to be automatic in order to
hide the complexity of the GSPN to the user.

The iterative approach can be applied to the first two steps only or to the first three
steps together. In both cases, the AADL dependability model is updated at each
iteration. Modeling a dependency may either require to only add information in the
model or to modify the existing model and to add new information (i.e., states and
propagations). In the latter case, the AADL dependability model can be validated
against its specification, based on the analysis and validation of the GSPN model,
after each iteration.

To evaluate dependability measures, the user must specify state classes for the
overall system. For example, if the user wishes to evaluate reliability or availability, it
is necessary to specify the system states that are to be considered as failed states. If in
addition, the user wishes to evaluate safety, it is necessary to specify the failed system
states that are considered as catastrophic. In AADL, state classes are declared by
means of a derived error model for the overall system describing the states of a
system as Boolean expressions referring to its subcomponents’ states.

4.2 Modeling with Dependencies in AADL

Architecture-based dependencies can be derived from the AADL architectural model.
To these dependencies one has to add recovery and maintenance dependencies. The
full set of dependencies can be summarized in a dependency block diagram to provide
a global view of the system components and interactions. In the dependency block
diagram, each component and each dependency are represented as distinct blocks.
Blocks are connected through arcs. Their directions identify the directions of

 A System Dependability Modeling Framework Using AADL and GSPNs 21

dependencies. This diagram and the AADL architectural model are used to build the
AADL error model progressively. Once the AADL error models of the components
are built, the dependencies are added gradually. The order for introducing
dependencies does not impact the final AADL dependability model. However, it may
impact the reusability of parts of the model. Thus, the order may be chosen according
to the context of the targeted analysis. Generally, fault tolerance and maintenance
dependencies are modeled at the end, as their description strongly depends on the
architecture.

It is noteworthy that not all the details of the architectural model are necessary for
the AADL dependability model. Only components that have associated error models
and all connections and bindings between them are necessary.

The rest of this subsection presents guidelines for modeling i) an architecture-
based dependency and ii) a maintenance or recovery dependency.

4.2.1 Architecture-Based Dependency Modeling
The architecture-based dependency is supported by the architectural model and must
be modeled in the error models associated with dependent components, by specifying
respectively outgoing and incoming propagations and their impact on the
corresponding error model. An example is shown in Figure 3. Figure 3-a presents the
AADL architectural model (Component 1 sends data to Component 2). Figure 3-b
shows the corresponding dependency block diagram (the behavior of Component 2
depends on that of Component 1). Figure 3-c presents the AADL dependability model
where an error model is associated with each component to describe the dependency.

- a - - b - - c -

Fig. 3. Architecture-based dependency

The error model of Figure 4 is associated with Component 1. It takes into account
the sender-side dependency from Component 1 to Component 2. This error model is
an extension of the one of Figure 1 that represents the behavior of a component as if it
were isolated. The error model of Figure 4 declares an out propagation Error (see
line d1) in the type and an AADL transition triggered by the out propagation in the
implementation (see line d2).

The error model receiver.general associated with Component 2 is not shown here
but is similar. The only difference is the direction of the propagation Error. This in
propagation triggers a state transition from Error_Free to Failed.

When Component 1 is in the erroneous state, it sends a propagation through the
unidirectional connection. As a consequence, the incoming propagation Error causes
the failure of the receiving component Component 2. The in – out propagations
Error defined respectively in the error model instance associated with Component 2
and with Component 1 have identical names. In the rest of the paper, such
propagations are referred to as name matching propagations.

22 A.-E. Rugina, K. Kanoun, and M. Kaâniche

(d1)

Error Model Type [sender]

error model sender
features

Error_Free: initial error state;
Erroneous: error state;
Failed: error state;
Temp_Fault: error event {Occurrence => poisson 1};
Perm_Fault: error event {Occurrence => poisson 2};
Restart: error event {Occurrence => poisson μ1};
Recover: error event {Occurrence => poisson μ2};
Error: out error propagation {Occurrence => fixed p};

end sender;

(d2)

Error Model Implementation [sender.general]

error model implementation sender.general
transitions

Error_Free-[Perm_Fault]->Failed;
Error_Free-[Temp_Fault]->Erroneous;
Failed-[Restart]->Error_Free;
Erroneous-[Recover]->Error_Free;
Erroneous-[out Error]->Erroneous;

end sender.general;

Fig. 4. Error model example with dependency

In real applications, architecture-based dependencies usually require describing
how error propagations from multiple sources are handled by the receiver component.
This is achieved by using Guard properties in which Boolean expressions are used to
specify the consequences of a set of propagations occurring in a set of sender
components on a receiver component.

4.2.2 Maintenance and Recovery Dependency Modeling
Maintenance dependencies need to be described when repair facilities are shared
between components or when the maintenance or repair activity of some components
has to be carried out according to a given order or a specified strategy.

Components that are not dependent at architectural level may become dependent
due to the fact that they share maintenance facilities or to the synchronization of the
maintenance activities. Thus, the architectural model might need some adjustments to
support the description of dependencies related to the maintenance policy. As error
models interact only via propagations through architectural features (i.e., connections,
bindings), the maintenance dependency between components’ error models must also
be supported by the architectural model. This means that besides the system
architecture components, we may need to add a component representing the shared
repair facilities to model the maintenance dependencies. Figure 5-a shows an
architectural model example where Component 3 and Component 4 do not interact
(there is no architecture-based dependency between them). However, if we assume
that they share one repairman, it is necessary to represent the repairman at the level of
the architectural model, as shown in Figure 5-b in order to model the maintenance
dependency between these components.

 A System Dependability Modeling Framework Using AADL and GSPNs 23

- a - - b -

Fig. 5. Maintenance dependency

Also, the error models of dependent components with regards to their recovery
might need some adjustments. For example, to represent the fact that Component 3
can only restart if Component 4 is running, one needs to distinguish between a failed
state of Component 3 and a failed state where Component 3 is allowed to restart.

4.3 AADL to GSPN Model Transformation

The GSPN model of the system is built from the transformation of the AADL
dependability model following a modular approach and taking into account the
dependency block diagram.

The GSPN of the global system is structured as a set of interacting subnets, where
a subnet is associated with a component or a dependency block identified in the
dependency block diagram. Two types of GSPN subnets are distinguished: 1) a
component subnet is associated with each component and describes the component’s
behavior in the presence of its own faults and repair events; and 2) a dependency
subnet models the behavior associated with the corresponding dependency. In the
AADL dependability model, each dependency is modeled as part of each of the error
models involved in the dependency. GSPN dependency subnets are obtained from
information concerning a particular dependency existing in (at least) two dependent
error models. The global GSPN contains one subnet for the behavior of each
component in the presence of its own faults and repair events, and one subnet for each
dependency between components. It has the same structure as the dependency block
diagram. The modular structure of the GSPN allows the user to validate the model
progressively; as the GSPN is enriched with a subnet each time a new dependency is
added in the error model of the system. So, if validation problems arise at GSPN level
during iteration i, only the part of the current error model corresponding to iteration i
is questioned.

5 Transformation Rules

In the next three subsections we present successively AADL to GSPN transformation
rules for 1) isolated components, 2) name matching in – out propagations in

24 A.-E. Rugina, K. Kanoun, and M. Kaâniche

dependent components and 3) systems with operational modes necessary to describe
fault tolerance dependencies. All transformation rules are defined to ensure that the
obtained GSPN is correct by construction: bounded, live and reversible. They are
aimed to be systematic in order to prepare the transformation automation. Also, the
resulting GSPN is tool-independent, i.e., we do not use tool-specific features or
predicates. It is worth noting that this section only presents a small set of
transformation rules. A more complete set is presented in [23].

5.1 Isolated Components

In the case of an isolated component or in the case of a set of independent
components, the AADL to GSPN transformation is rather straightforward, as an error
model represents a stochastic automaton. The number of tokens in a component
subnet is always one, as a component can only be in one state.

Table 1 shows the basic transformation rules.

Table 1. Basic AADL error model to GSPN transformation rules

AADL error model

element
GSPN element

State Place

Initial state Token in the corresponding place

Event GSPN transition (timed or immediate)

Timed
Occurrence property of an
event

Distribution or probability characterizing the
occurrence of associated GSPN transition

Immediate

AADL transition

(Source_State-[Event] ->
Destination_State)

Arcs connecting places (corresponding to AADL

Source_State and Destination_State) via GSPN
transition (corresponding to AADL Event)

By applying the transformation rules presented in Table 1 to the error model shown

in Figure 1, we obtain the GSPN of Figure 6.

Fig. 6. GSPN corresponding to the error model of Figure 1

 A System Dependability Modeling Framework Using AADL and GSPNs 25

5.2 Transforming in – out Name Matching Propagations

In the most general case, an out propagation declared in a propagation sender error
model could trigger n AADL transitions in this same error model (e.g., a Failed
propagation could be propagated out both from a FailStopped and a FailRandom
states). Name matching in propagations could be declared in r≥2 propagation
receiver error models and trigger mj AADL transitions in each j (j = 1…r) receiver
error model. We identified and analyzed several transformation rules for the same
AADL specification of in – out name matching propagations. Some of the rules
are convenient when an out propagation has only one receiver. On the other hand,
these rules are hard to automate in case there are several receivers (i.e., the in
propagation is declared in several components’ error models) for the same out
propagation. Also, the choice of a transformation rule for in – out name matching
propagations impacts the transformation rules for systems with operational modes.
The transformation rule for in – out name matching propagations we present here
is very well adapted for the case where an out propagation has several receivers. It
also simplifies the definition of the transformation rule for systems with operational
modes. We first present an example of a pair of in – out name matching
propagations declared in two connected components in Figure 7. Then we illustrate
the chosen transformation rule on this example.

Fig. 7. Sender and Receiver – name matching propagations

In Figure 7, Component 1 plays the role of the propagation sender and it sends
propagations named Error through the connection that arrives at Component 2.
Component 2 plays the role of a receiver. If it receives a propagation named Error, it
moves from Error_Free to Failed state.

The transformation rule consists in decoupling the in and out propagations in the
GSPN through an intermediary place that represents the fact that the out propagation
Error occurred, as shown in Figure 8 (InOut_Error place). A token arrives in the
InOut_Error place when a GSPN transition (Out_Error) corresponding to the out
propagation (and characterized by its Occurrence property) occurs. The existence of a
token in the InOut_Error place leads to the firing of an immediate GSPN transition
In_Error (if the place Error_Free in Component 2 is marked) that corresponds to the
in propagation. The intermediary place is emptied when the place corresponding to
the source of the out propagation is empty and the GSPN transition corresponding to
the in propagation is not enabled. We do not empty this place at the occurrence of
the GSPN transition corresponding to the in propagation, as we need to memorize

26 A.-E. Rugina, K. Kanoun, and M. Kaâniche

the occurrence of the out propagation until all effects (immediate GSPN transitions)
of the propagation occur. This memory is used in other transformation rules.

The GSPN place NoPropag and the associated immediate transitions with
probability (1-p) and 1 respectively model the situation where the propagation does
not occur when Component 1 is in an Erroneous state. If the probability of occurrence
of the out propagation is equal to 1, then this subnet is not necessary.

Fig. 8. Propagation from sender to receiver - transformation rule

In the general case of n AADL transitions triggered by an out propagation, with
name matching in propagations in several receiver error models, one GSPN
transition is created for each AADL transition triggered by the out propagation in the
sender error model. Also, one intermediary place is created for each out propagation.
One GSPN transition is created for each AADL transition triggered by the in
propagation in the receiver error models. Consequently, the number of GSPN
transitions (Ntr) describing the AADL propagation is given by:

Ntr = 4*n + n* mj

j=1

r

∑ ,∀r ≥1 (1)

where n = the number of AADL transitions triggered by the out propagation
in the sender error model;

 r = the number of receiver error models;
 mj = the number of AADL transitions triggered by the in propagation in
 the receiver error model j.

The first term of equation (1) represents the number of GSPN transitions that
model the out propagation, i.e., 4 GSPN transitions for each one of the n out
propagations. The second term represents the number of GSPN transitions that model
the in propagation, i.e., one GSPN transition for each pair of in - out propagations.

Figure 9-a shows an example of AADL dependability model with one sender and
two receivers. It is transformed into the GSPN of Figure 9-b.

 A System Dependability Modeling Framework Using AADL and GSPNs 27

- a - - b -

Fig. 9. Propagation from sender to two receivers

Naturally, when transforming large AADL models formed of many components,
the size of the corresponding GSPN increases. The state space size depends on the
number of components and on the dependencies between them. We have analyzed the
state space for GSPNs obtained using our transformation rules from AADL models
with several dependent components. Indeed, the more independent or loosely coupled
components are, the larger the state space gets. To address this problem, GSPN
reduction methods, such as those mentioned in [24], may be efficiently used before
processing it to obtain the underlying Markov chain.

5.3 Systems with Operational Modes

In AADL, there are several mechanisms for connecting logical error states and
operational mode transitions. For space limitation reasons, in this section, we focus on
the AADL to GSPN transformation rules for Guard_Transition properties,
which allow constraining a mode transition to occur depending on the error state
configuration of several components of a system. The rest of this subsection presents
successively the AADL modeling of an example of a system with operational modes,
using Guard_Transition properties, and illustrates the proposed transformation
rule on this example.

5.3.1 AADL Dependability Modeling of Guard_Transition Properties
We first present an example of a modal AADL system in Figure 10 and we show in
Figure 11 the association of a Guard_Transition property with the ports
involved in mode transitions. The error state configuration necessary to allow a mode
transition is expressed as a Boolean expression referring to error states and
propagations.

In Figure 10, the system is represented using the AADL graphical notation. It
contains two identical active components and two operational modes (Comp1Primary
and Comp1Backup). The system is initially in mode Comp1Primary. The transition
from mode Comp1Primary to mode Comp1Backup occurs when propagations arrive
through the ports Send2 of Comp1 and Send1 of Comp2. In this case, the second

28 A.-E. Rugina, K. Kanoun, and M. Kaâniche

Fig. 10. Example architectural model for a system with operational modes

(g1)
(g2)
(g3)
(g4)
(g5)
(g6)

thread Comp
features

Send1, Send2: out event port;
Receive: in event port;

end Comp;

thread implementation Comp.generic
annex Error_Model {**

Model => dependent.general;
**};
end Comp.generic;

system SystemLevelModes
end SystemLevelModes;

system implementation SystemLevelModes.generic
modes

Comp1Primary: initial mode;
Comp1Backup: mode;
Comp1Primary-[Comp1.Send2, Comp2.Send1]->Comp1Backup;
Comp1Backup-[Comp1.Send1, Comp2.Send2]->Comp1Primary;

subcomponents
Comp1: system Comp.generic;
Comp2: system Comp.generic;

connections
event port Comp1.Send1->Comp2.Receive;
event port Comp2.Send1->Comp1.Receive;

annex Error_Model {**
Guard_Transition =>

(Comp1.Send2[FailedVisible] and Comp2.Send1[Error_Free])
applies to Comp1.Send2, Comp2.Send1;

Guard_Transition =>
Comp2.Send2[FailedVisible] and Comp1.Send1[Error_Free])

applies to Comp1.Send1, Comp2.Send2;
**};

end SystemLevelModes.generic;

Fig. 11. Guard_Transition property associations

 A System Dependability Modeling Framework Using AADL and GSPNs 29

component must take over and provide the service. The transition from mode
Comp1Backup to mode Comp1Primary occurs when propagations arrive through the
ports Send2 of Comp2 and Send1 of Comp1. The same error model is associated with
both Comp1 and Comp2. It is based on the error model for isolated components (see
Figure 1). It declares in addition an out propagation FailedVisible, which notifies the
failure of the component and which is used in the Guard_Transition properties.

Guard_Transition properties are associated with the ports involved in mode
transitions. A mode transition occurs only if the Guard_Transition property
associated with the port named in it evaluates to TRUE. In our example, the mode
transition from mode Comp1Primary to Comp1Backup occurs when Comp1 sends the
FailedVisible out propagation while Comp2 is Error_Free (see lines g1-g3 of Figure
11). The complementary condition must hold for the occurrence of the transition from
Comp1Backup to Comp1Primary (see lines g4-g6 of Figure 11).

5.3.2 Transforming Guard_Transition Properties
We illustrate the transformation rule on the example of a system with operational
modes described in Figure 10 and Figure 11. Then, we discuss the use of this rule.

Figure 12 shows the GSPN corresponding to the first Guard_Transition
property (lines g1-g3) of Figure 11. The GSPN models of Comp1 and Comp2 are
incomplete in this figure.

Fig. 12. GSPN modeling of the Guard_Transition property

Operational modes are directly mapped to Petri net places.
The transformation rule assumes that the Boolean expression of the

Guard_Transition property is in disjunctive normal form. If it is not the case,
the Boolean expression must first be transformed into disjunctive normal form. Each
conjunction (referring to states and/or propagations) is transformed into an immediate
GSPN transition connected with:

− places corresponding to the states and out propagations referred to in the AND
expression via bi-directional arcs or inhibitor arcs (depending whether there are
negations in the Boolean expression or not).

− places corresponding to operational modes referred to in the mode transition
triggered by the port having the Guard_Transition property.

30 A.-E. Rugina, K. Kanoun, and M. Kaâniche

If, in our example above, the Boolean expression in disjunctive normal form were
formed of several conjunctions, then several GSPN transitions would be connected to
the places Comp1Primary and Comp1Backup.

An intermediary place corresponding to an out propagation is emptied when the
place corresponding to the source of the out propagation is empty and the GSPN
transitions corresponding to Guard_Transition conjunctions are not enabled.

If an out propagation name-matches an in propagation in a receiver component
and is referred to in a Guard_Transition property declared in another receiver
component, the same intermediary place is used both for the name matching GSPN
subnet and for the Guard_Transition subnet. The intermediary place is emptied
when both emptying conditions related to the name-matching propagations rule and to
the Guard_Transition rule are true. An example is shown in Figure 13. We consider
the system presented in Figure 9 contains a third component, Comp3, and that Comp1
is connected to it. The error model associated with the newly introduced Comp3
declares an in propagation FailedVisible. The Guard_Transition is transformed
as above and the name matching propagation of Comp1 and Comp3 reuses the
intermediary place representing the occurrence of the FailedVisible propagation.

Fig. 13. GSPN modeling of the Guard_Transition property taking into account a name
matching propagation

6 Case Study

In this section we show how our modeling framework can be used to compare the
availability of two candidate architectures for a subsystem of the French Air Traffic
Control System. This subsystem is designed to achieve high levels of service
availability and is further detailed in [25]4.

In the rest of this section, we first present the AADL architectural models of the
two candidate architectures in subsection 6.1. The dependency analysis based on these
models is presented in subsection 6.2. Subsection 6.3 details the error models

4 The AADL modeling of the subsystem and the AADL to GSPN model transformation are not

presented in the paper cited here.

 A System Dependability Modeling Framework Using AADL and GSPNs 31

describing some of these dependencies. Subsection 6.4 deals with the AADL to
GSPN transformation while subsection 6.5 presents an example of dependability
evaluation for the two candidate architectures.

6.1 AADL Architectural Models

The subsystem we consider here is formed of two fault-tolerant distributed software
units that are in charge of processing flight plans (FPunit) and radar data (RDunit).
Two processors can host these units. We consider two candidate architectures for this
subsystem, referred to as Configuration1 and Configuration2. Figure 14 presents both
candidate architectures using the AADL graphical notation.

- a - - b -

Fig. 14. AADL architectural model of Air Traffic Control System candidate architectures

The FPunit and the RDunit have the same structure (presented in Figure 10), i.e.,
they are formed of two replicas (threads): one having the primary role (provides the
service) while the other one has a backup role (monitors the primary). Both candidate
architectures use two processors. The two replicas of each software unit are bound to
separate processors. In Configuration1, the initially primary replicas of the FPunit and
RDunit (FP_Comp1 and RD_Comp1) are bound to separate processors (FP_Comp1
bound to Processor1 and RD_Comp1 bound to Processor2). In Configuration2, the
initially primary replicas of the FPunit and RDunit are bound to the same processor,
Processor1. The whole subsystem has two operational modes: Nominal and
Reconfigured. Connections between replicas bound to separate processors are bound
to a bus. Thus, the connection bindings to the bus depend on the operational mode of
the subsystem. A bus failure causes the failure of the RDunit replica. The primary

32 A.-E. Rugina, K. Kanoun, and M. Kaâniche

replica of the FPunit exchanges data with both replicas of the RDunit. For the sake of
clarity, we show the thread binding configurations in Figure 14-a and the bus and the
connection bindings to the bus separately in Figure 14-b.

6.2 Dependency Analysis

The various interactions between this subsystem’s components induce dependencies
between them. Most of them are architecture-based, thus they are visible on the
architectural model. We took into account the following dependencies:

− structural dependency between each processor and the threads that run on top of
it. We assume that hardware faults can propagate and influence the software
running on top of it. These dependencies (S1, S2, S3 and S4 in Figure 14) are
supported by the architectural bindings of threads to processors.

− recovery dependency between each processor and the threads that run on top of
it. If a thread fails, it cannot be restarted if the processor on top of which it runs is
in a failed state. These dependencies (R1, R2, R3 and R4 in Figure 14) are
supported by the architectural bindings of threads to processors.

− maintenance dependency between the two processors that share a repairman that
is not simultaneously available for the two components. This maintenance
dependency is not visible on the architectural model of Figure 14.

− fault tolerance dependency between the two RDunit threads and the two FPunit
threads. If the replica that delivers the service fails but the other one is error free,
the two software replicas switch roles. Then, the failed replica is restarted. These
dependencies (FT1 and FT2 in Figure 14) are supported by the connections
between the replicas of each software unit.

− structural dependency between the bus and the threads of the RDunit. If the bus
fails, the broken connections bound to it make the RDunit fail in mode Nominal
of Configuration1 and in mode Reconfigured of Configuration2. This
dependency (F3 in Figure 14) is supported by the binding of the connection from
the FPunit to the RDunit to the bus.

− functional dependencies between the FPunit and the RDunit. The active FPunit
thread may propagate errors to both RDunit threads. These dependencies (F1 and
F2 in Figure 14) are supported by the connections of the FPunit replicas to the
RDunit replicas. Note that we consider that RDunit errors do not propagate to the
FPunit even though there is a connection from the RDunit to the FPunit.

Figure 15 shows the dependency block diagram describing the dependencies
between components of the Configuration1 of the Air Traffic Control System. We
built the AADL dependability model iteratively, by integrating first the structural and
functional dependencies and then the maintenance, recovery and fault tolerance
dependencies. Due to space limitations, we further focus on the two grey-color
blocks, which represent the functional dependency between a FPunit replica and both
RDunit replicas and the fault tolerance dependency between the FPunit replicas.

The dependency block diagram for Configuration2 is similar. In Configuration2,
Processor1 is linked to RD_Comp1 via structural and maintenance dependency
blocks and Processor2 is linked to RD_Comp2 via structural and maintenance

 A System Dependability Modeling Framework Using AADL and GSPNs 33

Fig. 15. Description of dependencies between components of Configuration1 of the Air Traffic
Control System

dependency blocks. The functional dependency block (F3) between the bus and the
RD_Comp1 and RD_Comp2 is internally different (modes are taken into account
differently in the two configurations).

6.3 AADL Error Models

We first describe in detail the functional dependency between a FPunit replica and the
RDunit replicas and the fault tolerance dependency between the FPunit replicas.
Then, we present the corresponding error models.

− Functional dependency between a FPunit thread and the RDunit threads. An
error propagated from the primary FPunit replica (FP_Comp1 or FP_Comp2) to
both RDunit replicas (RD_Comp1 and RD_Comp2) will cause their failure. The
FPunit replica will recover without need of restarting. Note that the RDunit
replicas do not propagate errors to the FPunit replicas. Also, an error propagated
from a FPunit replica does not impact the other FPunit replica. This means that
we cannot use the same error model both for FPunit replicas and RDunit replicas.
The error model associated with the FPunit replicas must declare an out Error
propagation without declaring an in Error propagation. The error model
associated with the RDunit replicas must declare an in Error propagation that
matches the out propagation declared in the error model associated with the
FPunit replicas.

− Fault tolerance dependency between the FPunit threads. The behavior we
intend to model is based on the specification presented in Section 5.3 (for
systems with operational modes). In addition to the takeover by the backup
replica when the primary replica fails, we add the following assumption. If both
components fail one after the other, the first one restarted provides the service

34 A.-E. Rugina, K. Kanoun, and M. Kaâniche

and the FPunit goes to the corresponding mode. To model this behavior, we
associate error models with FP_Comp1 and FP_Comp2 and we use
Guard_Transition properties on the out ports Send of both components.
These Guard_Transition properties are extensions of those presented in
Figure 11. The behavior in the case of a double failure requires including the
notification of the end of the restart procedure before moving to Error_Free state.

Figure 16 presents the error model associated with the FPunit threads. Lines f1-f2
correspond to the functional dependency presented above while lines t1-t4 correspond
to the fault tolerance dependency. The rest of the error model is similar to the one
presented in Figure 1 for isolated components. The component may propagate errors
(out propagation Error) but it cannot be influenced by Error propagations, as it does
not declare an in propagation Error. The end of the restart procedure is notified
(IAmRestarted out propagation) before moving to Error_Free state.

The only difference between the error model associated with the FPunit threads
and the RDunit threads is the direction of the propagation Error and the AADL
transition triggered by it. In the error model associated with the RDunit threads, Error
is an in propagation triggering an AADL transition from Error_Free to Failed.

(f1)
(t1)
(t2)

Error Model Type [forFP_Comp]

error model forFP_Comp
features

Error_Free: initial error state;
Erroneous: error state;
Restarted: error state;
Failed: error state;
Temp_Fault: error event {Occurrence => poisson 1};
Perm_Fault: error event {Occurrence => poisson 2};
Restart: error event {Occurrence => poisson μ1};
Recover: error event {Occurrence => poisson μ2};
Error: out error propagation {Occurrence => fixed p};
FailedVisible: out error propagation {Occurrence=>fixed 1};
IAmRestarted: out error propagation {Occurrence=> fixed 1};

end forFP_Comp;

(f2)
(t3)
(t4)

Error Model Implementation [forFP_Comp.general]

error model implementation forFP_Comp.general
transitions

Error_Free-[Perm_Fault]->Failed;
Error_Free-[Temp_Fault]->Erroneous;
Failed-[Restart]->Restarted;
Erroneous-[out Error]->Erroneous;
Restarted-[out IAmRestarted]->Error_Free;
Failed-[out FailedVisible]->Failed;
Erroneous-[Recover]->Error_Free;

end forFP_Comp.general;

Fig. 16. Error model forFP_Comp

 A System Dependability Modeling Framework Using AADL and GSPNs 35

Figure 17 presents the Guard_Transition properties that specify the
conditions under which mode transition occur, according to the fault tolerance
behavior described above. Mode transitions occur if one of the components sends the
FailedVisible out propagation while the other one is Error_Free or if one of the
components sends the IAmRestarted out propagation while the other component is
not Error_Free (meaning that a double failure occurred and the first component has
been restarted before the second one).

Guard_Transition =>
(Comp1.Send2[FailedVisible] and Comp2.Send1[Error_Free])
or (Comp2.Send1[IAmRestarted] and not Comp1.Send2[Error_Free])

applies to Comp1.Send;
Guard_Transition =>

(Comp2.Send2[FailedVisible] and Comp1.Send1[Error_Free])
or (Comp1.Send1[IAmRestarted] and not Comp2.Send2[Error_Free])

applies to Comp2.Send;

Fig. 17. Guard_Transition properties associated with Send ports of FPunit threads

6.4 AADL to GSPN Model Transformation

For these two dependencies, we use only the AADL to GSPN transformation rules
presented in section 5. We first took into account the functional dependency from
FT_Comp1 to RD_Comp1 and RD_Comp2 and then the fault tolerance dependency
between FT_Comp1 and FT_Comp2. Before adding the fault tolerance dependency,
the GSPN subnet FT1 did not exist and the FP_Comp1 and FP_Comp2 subnets were
identical to the RD_Comp1 and RD_Comp2 subnets.

Figure 18 presents the part of the GSPN corresponding to the functional
dependency between the FP_Comp1 replica of the FPunit and the two replicas of the
RDunit and to the fault tolerance dependency between the threads of the FPunit. For
clarity reasons, immediate GSPN transition that empty intermediary places
corresponding to out propagation are not shown.

6.5 Evaluation of Quantitative Measures

Figure 19 gives the unavailability of the two candidate architectures. Such
quantitative measures are obtained from the processing of the GSPN derived from the
AADL model. In Figure 19, the varying parameter is the occurrence rate of a bus
failure; λc. λc≤10-6/h corresponds to a redundant bus. For Configuration1, the impact
of this parameter is important when λc≥10-5/h. Configuration2 is much less influenced
by λc, as in Nominal mode, the communication between the two units does not go
through the bus. From a practical point of view, if λc≥10-5/h, Configuration2 is
recommended. Otherwise the two candidate architectures are equivalent.

Other analyses can be carried out on the same model. The results of several
analyses allow taking a decision about what candidate architecture best suites the
application. For example, performance analyses can be performed to determine the
impact of the choices made to achieve dependability goals on a system’s performance.

36 A.-E. Rugina, K. Kanoun, and M. Kaâniche

Fig. 18. GSPN model of the Air Traffic Control System – two dependencies

Fig. 19. Unavailability

 A System Dependability Modeling Framework Using AADL and GSPNs 37

7 Conclusion

We presented a stepwise approach for system dependability modeling using AADL
and GSPNs. The aim of this approach is to hide the complexity of traditional
analytical models to end-users acquainted with AADL. In this way, we ease the task
of evaluating dependability measures. Our approach assists the user in the structured
construction of the AADL dependability model that is transformed into a GSPN to be
processed by existing tools. To support and trace model evolution, this approach
proposes that the user builds the AADL dependability model iteratively. Components’
behaviors in the presence of faults are modeled in the first iteration as if they were
isolated. Then, each iteration introduces a new dependency between system’s
components in the AADL dependability model. The AADL to GSPN model
transformation is meant to be transparent to the user. Thus, it is based on rigorous and
systematic rules aimed at supporting tool-based transformation automation. The
model transformation can be performed iteratively, each time the AADL
dependability model is enriched. In this way, the GSPN model can be validated
progressively (hence the corresponding AADL architecture and error models can be
validated progressively and corrected accordingly, if required). Finally, we illustrated
the proposed approach on a subsystem of the French Air Traffic Control System. We
have shown the principles of the transformation and some of the rules. The work in
progress concerns the implementation of a model transformation tool to be easily
integrated into AADL and GSPN based tools.

Acknowledgements. This work is partially supported by 1) the European
Commission (ASSERT European IP No. IST 004033 and ReSIST NoE No. IST
026764), 2) the European Social Fund and 3) Zonta International Foundation.

References

1. SAE-AS5506: SAE Architecture Analysis and Design Language (AADL), International
Society of Automotive Engineers, Warrendale, PA, USA (November 2004)

2. SAE-AS5506/1: SAE Architecture Analysis and Design Language (AADL) Annex vol. 1,
Annex E: Error Model Annex, International Society of Automotive Engineers,
Warrendale, PA, USA (June 2006)

3. Bondavalli, A., Chiaradonna, S., Di Giandomenico, F., Mura, I.: Dependability Modeling
and Evaluation of multiple-phased systems, using DEEM. IEEE Transactions on
Reliability 53, 509–522 (2004)

4. Kanoun, K., Borrel, M.: Fault-tolerant systems dependability. Explicit modeling of
hardware and software component-interactions. IEEE Transactions on Reliability 49, 363–
376 (2000)

5. Bernardi, S., Bobbio, A., Donatelli, S.: Petri Nets and Dependability. In: Desel, J., Reisig,
W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS, vol. 3098, pp.
125–179. Springer, Heidelberg (2004)

6. Farines, J.-M., et al.: The Cotre project: rigorous software development for real time
systems in avionics. In: 27th IFAC/IFIP/IEEE Workshop on Real Time Programming,
Zielona Góra, Poland (2003)

7. Singhoff, F., Legrand, J., Nana, L., Marcé, L.: Scheduling and Memory Requirements
Analysis with AADL. In: SIGAda Int. Conf. on Ada, Atlanta, GE, USA (2005)

38 A.-E. Rugina, K. Kanoun, and M. Kaâniche

8. Béounes, C., et al.: Surf-2: a program for dependability evaluation of complex hardware
and software systems. In: 23rd IEEE Int. Symposium on Fault Tolerant Computing,
Toulouse, France, IEEE Computer Society Press, Los Alamitos (1993)

9. Deavours, D.D., et al.: The Mobius Framework and its Implementation. IEEE Transactions
on Software Engineering 28, 956–969 (2002)

10. Hirel, C., Sahner, R., Zang, X., Trivedi, K.: Reliability and performability modeling using
SHARPE 2000. In: 11th Int. Conf. on Computer Performance Evaluation: Modelling
Techniques and Tools, Schaumburg, IL, USA (2000)

11. Bernardi, S., Bertoncello, C., Donatelli, S., Franceschinis, G., Gaeta, R., Gribaudo, M.,
Horvath, A.: GreatSPN in the new millenium. In: Tool Session of 9th Int. Workshop on
Petri Nets and Performance Models, Aachen, Germany (2001)

12. Ciardo, G., Trivedi, K.S.: SPNP: The Stochastic Petri Net Package (Version 3.1). In: 1st
Int. Workshop on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, San Diego, CA, USA (1993)

13. Rugina, A.E., Kanoun, K., Kaâniche, M.: An Architecture-based Dependability Modeling
Framework using AADL. In: 10th IASTED Int. Conf. on Software Engineering and
Applications, Dallas, USA (2006)

14. Rugina, A.E., Kanoun, K., Kaâniche, M.: Modélisation de la sûreté de fonctionnement à
partir du langage AADL. In: 15ème Congrès de Maîtrise des Risques et de Sûreté de
Fonctionnement, Lille, France (2006)

15. Hugues, J., Kordon, F., Pautet, L., Vergnaud, T.: A Factory To Design and Build
Tailorable and Verifiable Middleware. In: Kordon, F., Sztipanovits, J. (eds.) Monterey
Workshop 2005. LNCS, vol. 4322, pp. 121–142. Springer, Heidelberg (2007)

16. OMG: Unified Modelling Language Specification (October 2004), http://www.omg.org
17. Majzik, I., Bondavalli, A.: Automatic Dependability Modeling of Systems Described in

UML. In: Int. Symposium on Software Reliability Engineering (1998)
18. Bondavalli, A., et al.: Dependability Analysis in the Early Phases of UML Based System

Design. Int. Journal of Computer Systems-Science&Engineering 16, 265–275 (2001)
19. Pai, G.J., Bechta Dugan, J.: Automatic Synthesis of Dynamic Fault Trees from UML

System Models. In: 13th Int. Symposium on Software Reliability Engineering, Annapolis,
USA (2002)

20. Lòpez-Grao, J.P., Merseguer, J., Campos, J.: From UML Activity Diagrams To Stochastic
Petri Nets: Application to Software Performance Engineering. In: 4th Int. Workshop on
Software and Performance, Redwood City, CA, USA (2004)

21. Bernardi, S., Donatelli, S., Merseguer, J.: From UML Sequence Diagrams and Statecharts
to Analysable Petri Net Models. In: 3rd Int. Workshop on Software and Performance,
Rome, Italy (2002)

22. Feiler, P.H., Gluch, D.P., Hudak, J.J., Lewis, B.A.: Pattern-Based Analysis of an
Embedded Real-time System Architecture. In: 18th IFIP World Computer Congress, ADL
Workshop, Toulouse, France (2004)

23. Rugina, A.E., Kanoun, K., Kaâniche, M.: AADL-based Dependability Modelling, LAAS-
CNRS Research Report n°06209 (April 2006)

24. Ajmone Marsan, M., et al.: Modelling With Generalized Stochastic Petri Nets. John Wiley
& Sons, Chichester (1995)

25. Kanoun, K., Borrel, M., Morteveille, T., Peytavin, A.: Availability of CAUTRA, a Subset
of the French Air Traffic Control System. IEEE Transactions on Computers 48, 528–535
(1999)

R. de Lemos et al. (Eds.): Architecting Dependable Systems IV, LNCS 4615, pp. 39–65, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Towards Improving Dependability
of Automotive Systems by Using the

EAST-ADL Architecture Description Language

Philippe Cuenot1, DeJiu Chen2, Sébastien Gérard3,
Henrik Lönn4, Mark-Oliver Reiser5, David Servat3,

Ramin Tavakoli Kolagari5, Martin Törngren2, and Matthias Weber6

1 Siemens VDO, 1 Avenue Paul Ourliac, BP 1149 31036 Toulouse Cedex 1, France
philippe.cuenot@siemens.com

2 Royal Institute of Technology, SE-100 44 Stockholm, Sweden
{chen,martin}@md.kth.se

3 CEA List , Commissariat à l'Énergie Atomique Saclay, F-91191 Gif sur Yvette Cedex, France
{sebastien.gerard,david.servat}@cea.fr

4 Volvo Technology Corporation, Electronics and Software, SE-405 08 Gothenburg, Sweden
henrik.lonn@volvo.com

5 Technical University of Berlin, Software Engineering Group, D-10587 Berlin, Germany
{moreiser,tavakoli}@cs.tu-berlin.de

6 Carmeq GmbH, D-10587 Berlin, Germany
matthias.weber@carmeq.com

Abstract. The complexity of embedded automotive systems calls for a more
rigorous approach to system development compared to current state of practice.
A critical issue is the management of the engineering information that defines
the embedded system. Development time, cost efficiency, quality and most
importantly, dependability, all benefit from appropriate information
management. System modeling based on an architecture description language is
a way to keep the engineering information in one information structure. The
EAST-ADL was developed in the EAST-EEA project (www.east-eea.org) and
is an architecture description language for automotive embedded systems. It is
currently refined in the ATESST project (www.atesst.org). This chapter
describes how dependability is addressed in the EAST-ADL. The engineering
process defined in the EASIS project (www.easis-online.org) is used as an
example to illustrate the support for engineering processes in EAST-ADL.

Keywords: architecture description language, automotive systems, systems
engineering.

1 Introduction

Current development trends in automotive software feature increasing standardization
of the embedded software structure. The need to integrate software from different
suppliers, supporting dependable real-time execution, and managing changes, all call

40 P. Cuenot et al.

for an integrated approach for software-based vehicle systems. Unfortunately, the last
decade has shown that even connecting rather simple stand-alone systems to
integrated systems has led to a number of unexpected vehicle failures. The complexity
of embedded automotive systems calls for a more rigorous approach to system
development than is current state of practice. A critical issue is the management of the
engineering information that defines the embedded system. Development time, cost
efficiency, quality and most importantly, dependability all benefit from appropriate
information management.

Dependability is a broad concept covering many qualities that are otherwise
considered separately, including reliability, availability, safety and security (see [22],
[33], [35]). It refers to the overall property of a system that justifies placing one’s
reliance or trust on it [2]. Design for dependable computer systems involves
techniques from, at least, three major engineering approaches [33]: safety-
engineering, dependability-engineering, and real-time system engineering. The safety
engineering approach addresses the environmental consequences of faults and often
relies on dependability services (e.g. fault-tolerance) to control hazards that cannot be
eliminated by design. The dependability engineering approach emphasizes the quality
of services when faults occur, with a focus on reliability. The engineering of real-time
systems often takes both fault tolerance and safety solutions into consideration but
pays special attention to hazardous timing-dependent behaviors. In such approaches,
models play a central role in making and justifying design decisions and in providing
early quality feedbacks. From a system development point of view, one challenge is
to enable an integrated analysis and design and hence to make the information align
with each other during design or changes.

System modeling based on an architecture description language (ADL) is a way to
keep the engineering information in a well-defined information structure. The EAST-
ADL was developed in the EAST-EEA project (www.east-eea.org), and is an
architecture description language for automotive embedded systems. It is currently
refined in the ATESST project (www.atesst.org). The guidelines for this refinement
process are the identification and integration of the most adequate approaches and
techniques for each need (specific to the automotive domain). The EAST-ADL2
language contains thus UML2 basic constructs, the requirement concepts from
SysML, practical variability approaches for highly complex product lines developed
fro the automotive domain, function modeling from SysML, behavior from SOTA
tools and UML2, error behavior from AADL, implementation modeling from
AUTOSAR, and finally non functional properties from MARTE are reused.

The differences between SysML and EAST-ADL are the following: the SysML
language is reused as far as possible, EAST-ADL providing for the
framework/ontology to guide the use of SysML concepts in an automotive context.
The SysML-based part of EAST-ALD2 is linked to the automotive implementation
concepts from AUTOSAR and augmented with concepts from AADL and MARTE.
Variability constructs and verification and validation constructs are further
contributions beyond plain SysML.

This chapter describes how the refinement made on several sub parts of the EAST-
ADL language address the issue of system dependability. Section 2 presents an
overview of the language constructs, the subsequent sections deal in turn with several
aspects of dependability: requirements, variability modeling, analysis methods and

 Towards Improving Dependability of Automotive Systems 41

engineering process support. The latter uses EASIS engineering process as an
example. Finally, future steps which form the ongoing work in the ATESST project
are underlined and some conclusions drawn.

2 Overview of the EAST-ADL

EAST-ADL is an architecture description language, dedicated to automotive
embedded electronic systems, developed in the context of the ITEA cooperative
project EAST-EEA (http://www.east-eea.net/) finished in 2004.

This language is intended to support the development of automotive embedded
software, by capturing all the related engineering information. The scope is the
embedded system (hardware and software) and its environment. On top of the formal
description of the elements, the language defines different abstraction levels that
reflect different detail level of the architecture and implicitly different stages of an
engineering process. The detailed process definition is company specific.

The EAST-ADL language constructs support:

• vehicle feature modeling including variability concepts to support product
families

• vehicle environment modeling to define context and perform validation
• Structural and behavioral modeling of software and hardware entities

supporting refinement to code and binaries in the context of distributed
system

• requirements modeling and tracing with all modeling entities
• other information part of the system description, such as a definition of

component timing and failure modes, necessary for system verification
purposes.

The language is structured in five abstraction layers, each with corresponding
system representation (in brackets):

0. operational level supporting final binary software deployment (Operational
Architecture)

I. implementation level with reusable code (platform independent) and
AUTOSAR compliant software and system configuration for hardware
deployment (Implementation Architecture)

II. design level for detailed functional definition of software including
elementary decomposition (Design Architecture)

III. analysis level for abstract functional definition of features in system context
(Functional Analysis Architecture)

IV. vehicle level for elaboration of electronic features (Vehicle Feature Model)

Note that environment model spans all abstraction levels, and that requirements
and variability constructs apply to modeling elements regardless of abstraction level.
Depending from the different abstraction view, structural decomposition of the
automotive electronic system is decomposed based on functional definition of the
system. At vehicle level, feature are stamped from their interaction with vehicle
environment, and then refined during Analysis and Design level with ADL function

42 P. Cuenot et al.

description. Toward ADL function description, external behavioral description is
documented to support integration in the architecture with EAST-ADL semantics,
while internal behavioral definition is either defined with native ADL representation
(state chart for example), or mainly referencing external tool with dedicated feature
for algorithm numerical representation. At implementation level, relation between
ADL function and software component is set, to allow software deployment on
hardware architecture at operational kevel. Starting from Design level, hardware
elements are part of the core language, and allow to model sensor, actuator and
hardware elements to represent core, peripheral, pins, communication bus, and
middleware service applicable to automotive context and standardized with
AUTOSAR initiative.

The ATESST project is currently aiming to refine the EAST-ADL language in the
context of dependability concerns, supporting OMG standard alignment and the new
automotive domain standardization AUTOSAR (http://www.autosar.org/).

To support a sound EAST-ADL language in relation to the new automotive
standard, the lower levels of the language have been reworked to support software
and hardware model entities standardized in the AUTOSAR templates. Detailed
adjustments are in progress to assess matching of AUTOSAR ontology with abstract
representation at design level.

To cover dependable systems, on going activities enrich requirement constructs to
satisfy the needs of different integrity levels, refine the modeling entities to support
necessary analysis methods, to finally being able to support an engineering process
for safety. Transversal to these concepts, with same consideration for dependability,
the variability constructs of EAST-ADL are improved to support vehicle product
lines, the major productivity driver in automotive industry.

3 Dependability Requirements

In order to better support the development of dependable systems, the EAST-ADL
does not only include means to create analysis and design models of the system to be
developed (at varying abstraction levels), but also language means

• to specify required properties of the system (at varying degrees of
abstraction),

• to trace requirements between system refinement and system decomposition
levels

• to require satisfaction of requirements for system components,
• to refine the specification of requirements by behavioral models
• to verify requirements by verification and validation activities.

The EAST-ADL does not start from scratch but closely aligns its requirements
concepts to SysML 1.1 [27], as currently standardized by the OMG organization.
However, extensions and adjustments are made to these proposals based on the needs
of the automotive application domain.

 Towards Improving Dependability of Automotive Systems 43

3.1 Basic Requirements Relations

Four requirement relations from SysML are used in the EAST ADL, Figure 1.

Requirement

New requirements derived
after a system decomposition

or system refinement

Derive-Req

V&V-cases that verify
the requirement

Verify-ReqSystem components
which have to

satisfy the requirement

Satisfy-Req

Behavioral models that specify
the requirement in more detail

Refine-Req

Fig. 1. The basic requirements relations refine, verify, derive, and satisfy. (adopted from
SysML).

First and foremost, requirements may be used to textually specify required
properties of the system to be developed. The textual specification of a requirement
can be refined (using the “refine” relationship from SysML) by attaching behavioral
models – such as use-cases, activity diagrams or state machines – to requirements.

Requirements are refined into more detailed requirements after a system
refinement or a system decomposition step. This concept is supported by the “derived
requirement” relationship to allow a hierarchical view of requirements to be defined.
It allows analysis of requirements to determine multiple derived requirements that
support a source of requirement, and the document requirement over the system
decomposition, but also over the different abstraction view point of feature
development from different disciplines.

Specific UML constructs such as use case or activity diagram assist requirement
analysis for better description or prepare further refinement. These constructs are
associated to requirement entities via a “refine” construct.

Requirements apply to the various system components which are introduced to
satisfy them. This concept is modeled using the “satisfy” relation from SysML.

Requirements traceability is completed by the verification and validation
relationships. These defines how the verification and validation activities, such as the
testing activities fit criteria explicit for the verification and validation goals and how
its associated verification and validation cases, such as test cases, verify the
requirement. This is modeled using the SysML “verifies” relationship along with
constructs that capture and relate V&V to the requirement and system components.

The “satisfy” and “derive” relations are illustrated in Figure 2.

44 P. Cuenot et al.

Vehicle Feature Model

<<Feature>>
ABS

<<Feature>>
ABS

<<ADLFunctionType>>
ABS Block

<<ADLFunctionType>>
ABS Block

Functional Analysis Architecture

<<ADLFunctionType>>
ABS Slippage controller
<<ADLFunctionType>>
ABS Slippage controller

Functional Design Architecture

<<FunctionalRequirement>>
ABSFunctionality

Id : 0001
text : ABS shall reduce break
distance in all driving
condition

<<FunctionalRequirement>>
ABSFunctionality

Id : 0001
text : ABS shall reduce break
distance in all driving
condition

<<FunctionalRequirement>>
ABSActivation

Id : 0003
text : ABS shall detect
individual wheel
acceleration

<<Derive-Req>>

<<FunctionalRequirement>>
ABSControl

Id : 0004
text : ABS shall control
break force via wheel
slippage control

<<Derive-Req>>

<<FunctionalRequirement>>
ABSSlippage

Id : 0006
text : ABS shall control
Slippage with PI
Controler

<<FunctionalRequirement>>
ABSSlippage

Id : 0006
text : ABS shall control
Slippage with PI
Controler

<<Derive-Req>>

<<Satisfy-Req>>

<<Satisfy-Req>>

<<Satisfy-Req>>

<<Satisfy-Req>>

Fig. 2. The figure illustrates requirements tracing and linking to system components

The refinement of a requirement by means of a use case is illustrated in Figure 3.

Slippage

<<Functional
Requirement>>

ABSFunctionality

Id : 0001
text : ABS shall
reduce brake
distance in all
driving condition

<<Functional
Requirement>>

ABSFunctionality

Id : 0001
text : ABS shall
reduce brake
distance in all
driving condition

Driver

Wheel

Brake

Road Condition

<<Include>>

Activate ABS

Sticking

Road

<<Include>>

Use Case

<<Refine-Req>>

Fig. 3. The figure illustrates the refinement relation

3.2 Requirements Types

Methodically, EAST ADL differentiates between functional requirements, which
typically focus on some part of the “normal” functionality that the system has to
provide (e.g. “ABS shall control brake force via wheel slip control”), and quality
requirements, which typically focus on some external property of the system seen as a
whole (e.g. “ABS shall have an MTTF of 10.000 hours”).

Quality requirements are further classified from standardized enumeration list:
Performance, Dependability, HMI, Configurability, Ergonomy, Safety, Security,

 Towards Improving Dependability of Automotive Systems 45

Others. Below, the two examples “safety requirements” and “timing requirements”
are discussed in more detail.

3.3 Safety-Related Requirements

In order to perform safety assessments of the vehicle systems, safety requirements in
the refined EAST-ADL have attributes and related entities to define the requirement
and the hazard it mitigates. Hazards or hazardous events are part of the environment
model and are characterized by attributes for severity, exposure and controllability
[16]. The hazardous event may be further detailed by e.g. use cases, sequence or
activity diagrams.

Safety requirement attributes includes safety integrity level (SIL), operation state,
fault time span, emergency operation times, safety state, and functional redundancy to
record dependability characteristics [16]. A requirement can be traced from the
abstract vehicle model all the way to its derived requirements allocated to the final
hardware and software components. Depending on abstraction level, some or all of
these attributes are applicable.

3.4 Timing Requirements

Embedded systems have several timing requirements. On the top level, there are
performance requirements based on e.g. ergonomics or safety. To meet such top level
timing requirements, or to sustain the selected design regarding resource scheduling
or interaction between components, timing requirements can be seen on all
abstraction levels of an automotive system. Timing errors are the source of many
failures, and it is thus important to correctly express and subsequently analyze timing
properties. Examples of timing requirements that are supported by the EAST-ADL
include end-to-end deadlines, period timing and worst case execution time. The goal
is to be able to support the analysis techniques necessary for high integrity automotive
systems.

3.5 Explicit Modeling of Verification and Validation (V&V) Artifacts

In order to support the development of dependable systems, the EAST-ADL offers
detailed means to explicitly model central artifacts of verification and validation
activities and to relate these artifacts to requirements. This allows for explicitly and
continuously planning, tracking, updating and managing important V&V-activities
and their impact on the system in parallel to the development of the system.

The combination of a V&V-case, its environment (element V&V Stimuli,
V&VIntendedOutCome, V&VActualOutCome) and its target object (element
V&VTarget) is described as a V&V context. A V&V-case will take very different
forms, depending on the kind of V&V activity performed, e.g. safety analysis,
specification, design or implementation review, functional analysis by simulation,
SIL-testing, HIL-testing, or vehicle testing. In general it consists of a number of
V&V-procedures to be applied to the target object, which are recorded close the
modeling artifact. Each procedure may contribute a dedicated aspect in the
verification of some requirement and the EAST-ADL allows documenting this
relationship by means of the “verifies” relation. These informations and relations

46 P. Cuenot et al.

between model, requirement and verification validation information are a way to
ensure all requirements are satisfied in the configuration that correspond to produced
vehicle. Also test coverage control is simplified by centralized information analysis,
and guarantee adequate usage and representation of environment for validation,
critical for correctness and safety of realized functions. The context of function reuse
will also benefit from these formals associations, by a consistent functional package.

The basic association of a V&V-case to a requirement and to its V&V context is
illustrated in Figure 4.

<<FunctionalRequirement>>
ABSActivation

Id : 0003
text : ABS shall detect
individual wheel
acceleration

<<V&VCase>>
ABSActivationTest

V&V Method: Dynamic with HIL
V&V Purpose : Test for individual wheel
slippage with alternative wheel
acceleration
V&V TestCase: simulate slippage behavior
at each wheel individually

<<Verify-Req>>

<<V&VContext>>

<<V&VTarget>>
Chassis Network HIL-Prototype

<<V&VStimuli>>
HIL test script

<<V&VIntendedOutcome>>
Intended ABS activation

<<V&VActualOutcome>>
Actual ABS activation

Fig. 4. The figure illustrates the verification of a requirement

4 Variability Modeling for Safety-Related Systems

Most of the systems developed today are variable systems. This holds in particular for
automotive systems where the systems or parts of them are reused rather than
developed from scratch. In order to develop dependable systems, reuse must be
supported systematically to be safe, beneficial and effective. The main technique to
systematize reuse is to manage the system’s variability appropriately. There are two
reasons:

• Reuse means handling of changes (i.e. variability); systematic reuse
essentially means handling of expected and wished changes. So one has to
ask how changes occur, which changes are right and wished, and which
changes are occasional, uncoordinated or historically conditioned and hence
possibly dispensable. Thus, if a product is changed in the course of time,
these questions should be asked at all stages of development. Because in any
stage individual solutions or approaches may need to be realized, or short-
cuts or simplifications may be necessary as a result of short development
schedules. These temporary changes should not become methodical, e.g. by
putting them as a specific and reusable variant in a reuse platform; this
means that techniques must be provided to prevent developers from making
short-term solutions part of a reuse framework. Variability management
provides for the right amount of the right changes to be communicated

 Towards Improving Dependability of Automotive Systems 47

throughout the system development process. As a consequence, future
manufacturer development teams as well as suppliers will profit from
variability management, since it can provide improved systems produced in
shorter and more cost-effective development cycles.

• By managing the variability, differences are made explicit. Explicit
documentation is beneficial for all stakeholders that need an abstract view on
the system, like business management or customers. The system’s variability
is the basis on which they can decide for their choices: management becomes
aware of the diversity and resulting complexity of the products with the
consequence that variants are brought as assets to market consciously; and
the customer is given access to the product portfolio with all its variants.

Variability in the automotive domain is highly complex. The complexity of
automobile electronics arises because of the distribution of a variety of interacting
functions over a number of different components and a large number of interfaces, as
well as the variation resulting from inevitable product differentiation.

This situation is problematic, because so far there is no methodical support to reuse
features or artifact elements between different model ranges and thus achieve
economies of scale: we use the term model range in order to describe a set of vehicles
that have recognizable commonalities; these vehicles can also differ from one another
with respect to the choices e.g. made by a customer. This kind of differentiation
within the model range we call model range specific variability. Forms of model
range specific variability include variability through optional equipment, variability
through special purpose vehicles (police cars, taxis …), variability through country-
specific equipment, and variability through specific design (cabriolet, estate …).

The classical definition of a software product line is based on kinds of product
families that are similar to model ranges and furthermore asks for explicit activities to
manage the commonalities and differences of the products: “A software product line
is a set of software-intensive systems sharing a common, managed set of features that
satisfy the specific needs of a particular market segment or mission and that are
developed from a common set of core assets in a prescribed way” [7].

Model range specific variability must be managed in order to realize reliable and
reusable artifact specifications and to make the model range specific variability
visible.

In the automotive domain beneficial reuse is based on using artifacts between
different model ranges. Different model ranges can also differ in their underlying
variability approach and thus a technique is needed to express variability and
commonality of model ranges, i.e. a technique to manage model range spanning
variability. Such a technique is needed to develop systems because a practical and
successful way to realize dependability is to profit from previous system
development: previous artifact elements and variability approaches are improved by
usage in practice.

In the remainder of this section we describe how model range spanning variability
can be handled. We distinguish between two cases of variability management: the
global perspective for the entire vehicle represented in EAST-ADL by the vehicle
feature layer (cf. Section 4.1) and variability of individual development artifacts, e.g.
the component diagrams and their related behavioral descriptions on the functional
design layer (Section 4.2).

48 P. Cuenot et al.

4.1 Variability Modeling on the Vehicle Level

Variability management is required on two levels: First, within each artifact – such as
a requirements specification, a design model or test case – variability with respect to
the artifact’s contents has to be defined. For example, it has to be specified that
certain requirements are only valid for selected models or in some markets. Second,
all such variants and combinations defined on the artifact level have to be coordinated
and strategically managed on a global perspective for the entire product range. In this
section we focus on the latter, the big picture, while the next section is then devoted to
a discussion of artifact level variability modeling.

Variability modeling for large industrial product ranges is faced with several
challenges. First of all, the degree of complexity is enormously high. Today’s global
automotive manufacturers, for example, usually comprise several brands, most of
them partitioned in divisions for passenger vehicles and commercial vehicles each
including many model ranges. Those manufacturers also offer their products in many
diverse markets and market segments with diverse legislation and customer demands.
And clients expect to be able to further customize the model of their choice. All these
different aspects lead to product variability. In recent years, parts of the industry tried
to face this challenge by avoiding variability wherever possible. While this is
certainly an important approach, it cannot be the only way to deal with the problem.
From a marketing perspective, it is of utmost importance to tailor products as closely
as possible to the customers’ expectations. Consequently, variability of substantial
complexity will remain an important issue for automotive development.

Another challenge for modeling variability in this context is related to the way
automotive industry is organized. Development and production in this domain are
traditionally characterized by a high degree of collaboration between an original
equipment manufacturer (OEM) and its suppliers. From the perspective of a
development methodology this means, that no actor, neither the OEM nor any of the
suppliers, actually has a global view on the system and its development artifacts. In
particular, even for the OEM, many subsystems appear as black-boxes in the overall
design of the vehicle and vehicle range. Especially for variability modeling on the
vehicle level – as a means to globally manage development from a central perspective
– this is an important aspect to be taken into account.

Finally, the development of the artifacts themselves poses an important challenge
for variability modeling, or, more precisely speaking, the methods, languages and
formalisms in which these artifacts are formulated and the tools in which they are
maintained. These methods and tools are of very different form and nature, thus
introducing a vast heterogeneity in automotive development. Due to the involvement
of a multitude of different actors (esp. different companies), the size of automotive
corporations, the long adoption cycles for new methods and tools and the need to
maintain legacy artifacts relying on legacy methods and tools, this heterogeneity of
development means cannot be eliminated, however desirable this may seem.

Therefore, we can summarize the most important challenges to be considered when
providing a feasible concept for variability modeling on the vehicle level as follows:

• variability of very high complexity
• high degree of collaboration within and between automotive companies
• heterogeneity of development processes, methods and tools.

 Towards Improving Dependability of Automotive Systems 49

One of the most common concepts of variability modeling are feature models,
which were introduced by Kang et al. [17], [18]. In particular, they are used to
document what characteristics are common to all products and which characteristics
differ from one product to another. Also dependencies between characteristics are
defined in feature models. A feature in this context is a certain characteristic or trait
that each product instance may or may not have. Usually, feature models are
hierarchically structured as feature trees or directed acyclic graphs, i.e. tree-like
structures in which a node – here a feature – may have more than one parent. A small
sample feature tree is shown in Figure 5. Apart from documenting the commonalities
and differences between products of a product range, feature models also serve as
coarse-grained requirements. This last aspect often is not well covered by feature
modeling methodologies in that they lack a detailed definition how features and
requirements are related. It is one aim of the effort of refining the EAST-ADL in the
ATESST project to provide a detailed proposal for this which serves the needs of the
automotive domain.

FrontWiper

Basic
Advanced

Speed-Ctrld Rain-Ctrld

LowEnergy
Consumption Basic ACC

Radar

CruiseControl

Body Electronic SystemEngine Control Infotainment /
Telematics

Car

Fig. 5. The figure depicts a sample feature model. Edges connected with an arc denote
alternative features (e.g. cruise controls Basic and ACC). A filled circle means that the
corresponding feature is mandatory; an optional feature is supplied with an empty circle.

Feature models are, by now, a well-established instrument for variability modeling
in traditional software engineering domains. However, when applying this technique
for the development of complex software intensive systems, in particular automotive
control systems, several open issues arise due to the challenges described above. This
is true, even though feature models are to some extent an answer to the above
challenges: By providing an abstract view on a system’s variant and invariant
characteristics, feature models are able to serve as a link between management,
marketing and development within a single company. They also serve as a link
between companies to assist communication, from contract negotiations to inspection
of the supplied deliverables. Finally, they can provide a central view of variability in a
wide range of development artifacts, thus becoming the core of all variability and
evolution management. Some open issues remain however and these are subject to
recent research activities of the software product line community. In the course of the

50 P. Cuenot et al.

ATESST project, results emerging from these activities are integrated and, where
necessary, adapted or complemented to meet the demands of the automotive domain.

For the purpose of this overview, we only introduce one of these issues briefly to
provide an example. When applying feature modeling in traditional software domains,
the process of configuration – i.e. selecting or deselecting optional features and thus
choosing one of the model’s possible products – is usually an interactive activity of a
customer or an engineer acting on behalf of a customer and takes place for each
delivered product separately. In contrast, feature models used as a central view on an
automotive manufacturer’s product range are far too complex and include far too
many purely technical features to be directly configured by the customer. Many
choices depend on the country for which the vehicle is built or what supplier is
currently able to offer a certain subcomponent at the lowest price. Therefore, many
configuration decisions have to be pre-defined and documented and the remaining
variability has to be packaged and set up for customer configuration.

Management

Marketing

„All North American cars have
cruise control, because this
feature is expected there.“

„All North American cars include ACC.
All competitors have it.“

„Canadian cars must include ACC.
National legislation requires it.“

Fig. 6. The figure depicts an example of several orthogonal product decisions with different
rationales and from different stakeholders, all influencing the same feature

The pre-defined configuration decisions can become impressively complex:
selection decisions for several hundreds or even thousands of features are often each
influenced by several orthogonal considerations (illustrated in Figure 6). Therefore it
is not feasible to supply each feature with a logical expression stating when the
corresponding feature will be selected, because these would each be influenced by
many different orthogonal considerations and will therefore be extremely difficult to
adapt to changes of individual considerations. To solve this problem, so called
product decisions and product sets are used to clearly document the orthogonal
configurations considerations, their rationale and the person responsible for them. For
a detailed discussion of this problem and the mentioned solution concept please refer
to [31] and [32].

4.2 Variability Modeling of Artifacts

On the artifact level, the situation is much different. While variability definitions can
become fairly complex here too, the mere size of these definitions is not one of the

 Towards Improving Dependability of Automotive Systems 51

primary problems. Also the number of engineers or teams which are directly
manipulating an individual artifact is comparatively manageable in most cases. In
contrast, the main difficulty for variability modeling within artifacts consists in that
the concepts for defining variability are closely coupled with the structure and nature
of the artifact’s contents. The challenge is to find a concept suitable to express
variability in artifacts ranging from requirements specifications with their rather
textual content over EAST-ADL’s component diagrams – namely the functional
analysis architecture and the functional design architecture – to test case descriptions.

In addition, the many semantic relations between artifacts pose another important
challenge to variability modeling on this level, because they bring about manifold
dependencies of the variability definitions across artifacts. For example, when a
certain signal is defined as being variable within a component’s interface in the
functional design architecture, this must be reflected by the variability definition
within the state machine specifying the component’s behavior: all transitions
triggered by the respective signal have to be labeled variable, if sufficient detail is
considered.

Another challenge to be solved on this level is to check whether all variability
defined as desirable on the global vehicle level can be realized by way of the
variability provided within the artifacts. In other words, for all desired product
variants, there must exist a corresponding valid configuration of the artifacts.
Similarly, it must be possible to discover redundancies in the variability definitions,
i.e. possible configurations which are superfluous according to the global variability
definition of the vehicle level.

To solve these obstacles, an approach called variation point propagation [37] is
used. The basic idea of this approach is that whenever a variation point is added to an
artifact, a number of additional variation points are deduced based on a set of
predefined rules. The fact that the EAST-ADL is designed as a comprehensive
framework consisting of a fixed set of mutually aligned artifact types is a great
opportunity for this approach.

Regardless of whether the internal - component view - or external - vehicle view -
variability is considered, the complexity of variability calls for a rigorous approach to
avoid the introduction of potentially dangerous failures. With the same means, the
potential of improved reliability through re-use can be realized.

5 Dependability Analysis Methods

The purpose of an architecture description language is to capture engineering
information for documentation as well as analysis. One focus of EAST-ADL is to
enable an integrated dependability analysis and architecture design. This section will
discuss some analyses that are of particular concern for EAST-ADL as a means to
improve dependability and provide an overview of current language support for error
modeling and the integration of an external tool for safety and reliability analysis.

As a key element of safety analysis, hazard analysis aims to identify hazards and
the causes and consequences of system failures. Normally, hazard analysis also
involves the assessment of hazard levels in terms of probability and criticality and the
generation of safety requirements. For safety critical systems, it is preferable to

52 P. Cuenot et al.

perform such an analysis at different design stages and levels of abstraction [35]. Two
well-known techniques for identifying unknown hazards are HAZOP (Hazard and
Operability Studies) [20] and FFA (Functional Failure Analysis) [34].

Revealing the factors causing hazards is an essential step toward specifying safety
requirements and designing hazard control solutions. This activity is also referred to
as hazard causal analysis [22]. Common techniques for this type of analysis include
FMEA (Failure Modes and Effects Analysis) [28] and FTA (Fault Tree Analysis)
[37]. FMEA is a bottom-up technique that derives the possible causes of
system/component failures by reasoning about the effects of abnormal behaviors and
other details within a system/component. The results from FMEA are often captured
in tabular form. FTA is a top-down technique that searches for the possible causes of
a given system/component hazard by going back from a top-level failure event to the
lower-level events contributing to it. The results from FTA are presented as fault trees
depicting the causal or logical relationships of events. In recent years, several
adaptations of such classical techniques, originally developed for physical systems,
have been proposed, targeting software programs at different levels of detail, such as
the extensions of HAZOP in [5], [21], SW FMEA in [24] and SW FTA in [6]
and [23].

The focus of classical safety analysis techniques lies, in general, on supporting the
reasoning of possible failures (i.e. in terms of failure modes) and on recording the
causal relationships in failure events (e.g. in tabular and tree structures). The analysis
usually requires a description of the logical structure of systems, e.g. as a data flow
diagram. However, it is up to the engineers, based on their understanding of the
systems, to determine the actual failures of concern and the propagations. Another
common limitation of classical techniques is the combinational effects of multiple
component failures. While a component can have failure modes, it might make sense
to consider the effect of multiple component failures in a certain time sequence.
Historically, the discontinuity between system and software safety requirements has
made the translation from system safety requirements to software requirements
difficult. Fault trees, constructed for hazard causal analysis, have also been used or
interpreted as safety requirements. However, since traditional fault trees cover only
the causal aspect of failures in Boolean logic, they are considered insufficient for
specifying software systems because of the lack of information concerning ordering,
timing and synchronization.

Over the years, various formal safety analysis techniques have been proposed to
extend and complement classical safety analysis techniques and also to automate the
activities. These formal techniques differ from the classical ones in that they provide
executable models, e.g. by the use of Petri-nets in [14] and temporal formulas in [15],
and by using some formal/mathematical methods to check safety properties (e.g.
model-checkers or theorem-provers). The use of formal safety analysis techniques,
although not new, is still immature. Some major obstacles relate to integrating system
design and formal safety assessment in respect of the engineering activities, the
models, and the tools [11]. Recent research efforts addressing formal safety analysis
of complex systems include the European project ESACS (FP5) [4] and its follow-up
project ISAAC (FP6) [1] for aeronautical systems. The ESACS methodology
distinguishes models of nominal and failure behaviors by providing an extended
system model that refines the model for nominal system behaviors by adding failure

 Towards Improving Dependability of Automotive Systems 53

modes. The modeling is supported by formal languages like AltaRica [19] and the
analysis by various tools. For example, the toolset and environment FSAP/NuSMV-
SA [3] has been developed for safety analysis. It provides support for model
construction with a library of predefined failure modes, automatic fault injection and
definition of safety requirements in temporal logic formulas, automatic fault tree
construction and simulation.

The aim of reliability and availability analysis is to estimate the failure rates and
repair time of a system or its components. One way of performing the analysis is to
first define a stochastic process describing the error propagations, e.g. by using
Markov modeling, and then to derive the overall reliability and availability from the
reliability of the parts. The analysis can be based on fault trees. For example, the
Galileo fault tree analysis tool [36] supports reliability analysis by transforming fault
trees into equivalent Markov models. It implements the DIFTree (Dynamic
Innovative Fault Tree) analysis methodology, which combines static and dynamic
fault tree analysis techniques. The dynamic fault trees extend traditional (static) fault
trees by ordering failure behaviors and their functional dependencies.

Architecture modelling and error
modelling in an Eclipse environment

External tool for safety and
reliability analysis

Analysis
plug-in

Fig. 7. A conceptual illustration of an EAST-ADL error models and its integration with the
external analysis tool HiP-HOPS

The EAST-ADL will support several types of analysis, several of which directly or
indirectly target safety. Examples of these include the mentioned safety and reliability
analysis techniques. To this end, the EAST-ADL language provides explicit support
for modeling error behaviors and propagations, deriving and managing the safety
requirements, and integrating external analysis tools. As a first step towards this goal,
a proof-of-concept integration of the HiP-HOPS method (Hierarchically Performed
Hazard Origin and Propagation Studies) [29] has been development. Figure 7
illustrates the architecture modeling and error modeling in an Eclipse environment
and an example output produced by HiP-HOPS. The integration is performed through
the Eclipse plug-in technology. The HiP-HOPS method integrates a set of classical
techniques for safety and reliability analysis, including FFA, FTA, and FMEA, and

54 P. Cuenot et al.

provides the possibility of taking the combinations of errors and the temporal ordering
into consideration. The method and tool has been incorporated earlier into the
European projects TTA and SETTA. The analysis leverages include fault trees from
functional failures to their causes in terms of software and hardware errors,
calculations of minimal cut-sets, FMEA tables for component errors and their effects
on the behaviors and reliability of entire system.

The language support for safety and reliability analysis is provided through the
EAST-ADL error modeling package, targeting an architectural solution at different
levels of abstraction captured in EAST-ADL. It also enables the traceability to system
requirements and the associated V&V cases, environmental conditions, and
architectural relationships such as communication and allocation. The concept is
shown in the Figure 8, where the components A and B represent components of
different types in an automotive EE system like function blocks, software and
hardware components. The A_Rel_B represents an architectural relationship between
two components, which can for example be an allocation or a communication.

Error_Model_1

A_Rel_B

Error_Model_2

PropagatesTo
Error_Behavior_2

EAST-ADL Error Model

EAST-ADL Architecture Model

EAST-ADL Requirements
Model

Safety
Requirements

Hazard

Satisfies

EAST-ADL Verification and Validation Model

EE System

Derives

Functional, quality spefiic
requirements, & design

constraints

V&V Cases

Targets

Satisfies

BA

Targets

ErrorPropatations

PropagatesThrough

Fig. 8. The figure depicts the major relationships of EAST-ADL error modeling and other parts
of the language

The EAST-ADL modeling package extends the architecture modeling support by
allowing the failure semantics to be specified for every architectural entity and
provides explicit information about the error propagations. The architectural entities
of concern include abstract functional blocks in the Functional Analysis Architecture
(FAA), software design components in the Functional Design Architecture (FDA),
and hardware components in the Implementation Architecture (IA). Each architectural
entity is associated with an error model, consisting of a set of local error behaviors.
Each local error behavior specifies a particular failure semantics that relates a set of
component internal failure events and a set of local effects of external failures (e.g., a

 Towards Improving Dependability of Automotive Systems 55

failure of underlying hardware component or a value failure of input) to a particular
local failure mode that can propagate to the environment (e.g., value failures of an
output). It is also possible to associate several alternative error models to an
architectural entity, of which one particular instance will be chosen for a particular
analysis through the use of EAST-ADL variability mechanism (see Section 4). The
specifications of failure semantics can be based on logical or temporal expressions,
depending on the analysis techniques and tools of interest and available. Safety
requirements are derived through error behaviors of abstract functional blocks in the
FAA in combinations with some environmental conditions of concern as well as the
underlying software and hardware component failures. Such environmental conditions
together with the system functional failures define system hazards, while the
component failures reveal the causing factors of hazards.

The propagations of local error behaviors of the architectural entities are captured
and controlled through an explicit error propagation construct, which provides an
abstraction for describing and specifying the relationships of errors across abstraction
levels and compositional hierarchies. Through this propagation construct, EAST-ADL
supports the specifications of advanced properties of error propagations, such as the
logical and temporal relationships of source and target errors, the enabling conditions
of propagations, and the synchronizations of multiple propagation paths. Traceability
is ensured through explicit associations from error propagations to the predefined
architectural relationships like communication, synchronization, and allocation. In
Figure 8, this is illustrated by the propagationThrough relationship from error
propagations to the relationships between Component A and B. Currently, error
propagations from software and hardware components to abstract functional blocks,
and between hardware and software components are allowed in the language.

6 An Engineering Process for Safety

A key component for improving safety is an adequate development process. This
section describes how the EAST-ADL entities can be used in an engineering process
that has safety as a prerequisite. This process was developed in the EASIS project
(http://www.easis.org) [8]. Note that the EAST-ADL itself is not tailored for a
specific process, so this is only an example of its use.

The scope of the EASIS Engineering Process is the initial stages of development,
from requirements to design. The implementation, integration and testing stages of a
typical V-model development process are not considered.

The EASIS Engineering Process contains 5 main parts (see Figure 9):

• Part 1: Specify requirements Collection and integration of system and safety
requirements

• Part 2: Development of functional architecture (FAA model) Definition of an
abstract, hardware independent functional architecture based on identified
requirements

• Part 3: Development of hardware architecture Initial definition of hardware
architecture based on needs of the FAA model

• Part 4: Development of design architecture (basic FDA model) Definition of
a basic design architecture, which realizes the abstract functional architecture

56 P. Cuenot et al.

previously defined. The architecture is adapted to hardware architecture, OS,
middleware services.

• Part 5: Refinement of the design architecture (FDA model) Handling of
faulty hardware and signals is added to the basic design architecture.

Fig. 9. The figure depicts the major process steps and artifacts of the EASIS engineering
process

Although these 5 parts are presented sequentially, they are in practice iterated
several times, as the design evolves and affects previous development steps.

Figure 10 shows an example system model that captures some of the items relevant
for the EASIS engineering process. The rendering of each artifact may be adjusted
depending on needs, e.g. tabular notations may be appropriate for Hazard lists and
requirements and parts of the model may be viewed separately (e.g. per function, per
ECU, per domain).

Below, the 5 parts of the EASIS Engineering Process will be discussed in relation
to this example.

Part 1: Specify requirements
The EAST ADL System model has a Vehicle Feature Model to capture the intended
functions and features of the vehicle. Requirements on these features, or on the entire
vehicle, are recorded in the first step. The outcome of the “Specify requirements” part
is a structured set of requirements, which includes both general requirements and
those specifically concerned with safety.

Requirements are typically expressed in natural language or restricted natural
language. They may also be refined with executable or structured models. In either
case, requirements are associated to the target entity with an ADLSatisfy association.
Requirements that are derived from other requirements are traced to the base
requirement with the ADLDeriveReqt association.

 Towards Improving Dependability of Automotive Systems 57

To identify Safety requirements, a Hazard Analysis may be performed. Hazards are
recorded and linked to the related function or feature. Safety requirements identified
to mitigate the Hazard are linked to the Hazard and to the related system entity.

Fig. 10. Example model as it may evolve in the EASIS Engineering Process

Part 2: Development of functional architecture (FAA Model)
Based on the requirements identified in the previous part, a first step towards
implementation can be taken. The functional architecture is an abstract description of
the system, leaving out details and focusing on what the system should do. The FAA
is specified in two steps, first specifying the functional architecture and then the
functional behavior. This low-detail description is an important means to identify
basic interfacing and interaction problems within and between systems at an early

58 P. Cuenot et al.

stage. The ADLFunction AF1 in Figure 10 is an example of basic analysis model with
associated requirements and an ADLRealizes association to the Feature it realizes.
Sensor and actuator concerns are omitted from the example, except in the hardware
architecture.

An FAA hazard analysis is performed in this stage to investigate the need for
changes in the solution or further safety requirements. The FAA model is also verified
to decide whether the requirements from Part 1 are satisfied. Analysis w.r.t.
consistency, timing and formal properties is performed, and depending on the
application domain and character of the models, simulation, prototyping, formal
verification, inspection, etc. can be used. Examples of tools include Matlab/Simulink
for control systems or statecharts for discrete systems. The list of the identified FAA
blocks can also be used as basic input for dependability related activities (e.g.
FMEA).

Specify
Requirements

Natural Language
Requirements

Structured
System
Requirements

Preliminary
Hazard Analysis

Risk Mitigation
Requirements

Functional
Architecture

Functional
Architecture

Dynamic
Behaviour

Function
Behavior

FAA Hazard
Analysis (FHA)

Hardware
Architecture

Design
System/HW
Architecture

Identify HW
Failure Model

Identify
necessary HW
redundancy

Design
Architecture

Allocation of
FAA to HW

Design of Sens./
Actuator
Algorithms

Functional
Behaviour

Refined
Functional IF

Basic Design
Hazard Analysis

Configuration of
RCP System

Validate Basic
FDA Model

Refined
Design

SW Framework
Integration

Sensor-/Actuator
Diagnostics

Plausibility
checks

Counter-measures

Degraded Modes

Design Hazard
Analysis (DHA

Configuration of
RCP System

Validate FDA
Model

Fig. 11. The figure presents a summary of major and minor process steps

Part 3: Development of Hardware Architecture
Based on the system requirements and the FAA, a preliminary hardware architecture
is defined, see preliminary HA1 in Figure 10. It includes e.g. electronic control units
for computations, connections for data interchange and sensors and actuators for the
abstract I/O defined in the FAA.

This hardware architecture is analyzed w.r.t. dependability requirements, leading to
a description of necessary redundancy. Analysis will also identify the possible failure
modes, and requirements on mitigation can be found, such as software and hardware
redundancy.

 Towards Improving Dependability of Automotive Systems 59

Part 4: Development of design architecture (basic FDA model)
In this stage, a more concrete design of the functional aspects of the system is defined.
The final allocation of functional components to the Hardware Architecture (as
defined in the HA) is specified. Operating system concepts and platform services and
its impacts on the functional architecture are added to the design. Domain specific
services for diagnostics, network management, etc. are included. The behavior of each
function is modeled under normal operation circumstances (no faults). The result is
the basic FDA model, see F1 (Basic) in Figure 10.

Part 5: Refinement of the design architecture (FDA model)
With the basic FDA model as a basis, the handling of faulty hardware and signals is
added in this step, giving a final FDA model which includes the safety concept of the
function/system under development. The system is re-validated to cover the recent
adjustment of the FDA. Figure 10, F1 is the final, redundant design architecture with
allocation constraints defining the intended hardware allocation.

Figure 11 presents a summary of the process steps.

7 EAST-ADL Compliance with Standards

Safety through modeling techniques can only be achieved if the approach can be
effectively used, which in turn relies on tools and mature concepts. Tool availability
and validation of concepts is enabled by standardization or alignment with existing
standards. Standardization of the EAST ADL is ensured in two contexts: AUTOSAR
and the OMG.

The AUTOSAR platform is a future de-facto standard for Automotive embedded
systems. It defines a set of middleware components that provides a standardized
platform for application software. The modeling approach for application software
components and hardware architecture contains the details necessary for correct
integration. In ATESST, the entities corresponding to software components and
hardware components are taken from the AUTOSAR standard, but put in a context
where the EAST ADL system modeling concepts can be used. AUTOSAR compliant
software architecture can thus be modeled with support for e.g. variability,
requirements, traceability and verification and validation.

The OMG standards in the scope of EAST-ADL include UML2, SysML [27] and
Marte (see below).The refined EAST-ADL will be aligned with these approaches.
Alignment with UML2 is done by construction because EAST-ADL is designed as a
UML2 profile. SysML concepts are re-used wherever applicable, for example
regarding requirements and plant modeling constructs. Many of the EAST ADL
concepts are thus reused SysML concepts, or specializations of these. Marte
harmonization, finally, is done by integrating Marte concepts in the EAST ADL
where real-time and embedded system properties are modeled.

The EAST-ADL2 language contains thus UML2 basic constructs, the requirement
concepts from SysML, practical variability approaches for highly complex product
lines developed fro the automotive domain, function modeling from SysML, behavior
from SOTA tools and UML2, error behavior from AADL, implementation modeling
from AUTOSAR, and finally non functional properties from MARTE are reused.

60 P. Cuenot et al.

The differences between SysML and EAST-ADL are the following: the SysML
language is reused as far as possible, EAST-ADL providing for the
framework/ontology to guide the use of SysML concepts in an automotive context.
The SysML-based part of EAST-ALD2 is linked to the automotive implementation
concepts from AUTOSAR and augmented with concepts from AADL and MARTE.
Variability constructs and verification and validation constructs are further
contributions beyond plain SysML.

Since Marte is work in progress, some background is provided here. Marte is an
ongoing effort to define a standard on UML profile for Modeling and Analysis of
Real-Time and Embedded system [9][12]. The background of MARTE, is that a
consensus has emerged that, while a useful tool, UML is lacking in some key areas
that are of particular concern to real-time and embedded system designers and
developers. In particular, [13] noticed that firstly the lack of quantifiable notions of
time and resources was an impediment to its broader use in the real-time and
embedded domain. Secondly, the need for rigorous semantics definition is also a
mandatory requirement for a widespread usage of the UML for RT/E systems
development. And thirdly, specific constructs were required to build models using
artifacts related the real-time operating system level such as task and semaphore.

Fortunately, and contrary to an often expressed opinion, it was discovered that
UML had all the requisite mechanisms for addressing these issues, in particular
through its extensibility facilities. This made the job much easier, since it was
unnecessary to add new fundamental modeling concepts to UML – so called
“heavyweight” extensions. Consequently, the job consisted in defining a standard way
of using these capabilities to represent concepts and practices from the real-time and
embedded domain. Yet special care had to be paid on the precise semantics definition
of the profile itself. This was achieved by: 1) the explicitation of a domain language
which gives the precise rationale for the constructs introduced, in a UML-independent
fashion; 2) the resolution of all semantical variation points and ambiguities of the
UML constructs used for the projection of this domain language onto a UML profile.
The result is a UML profile with rigorous semantics, which, because it spans across a
wide range of UML modeling elements, allows when used, to rely on a completely
reassessed set of elements and thus gives a solid ground as far as semantics is
concerned. Indeed such an approach should be the golden rule, but may not be
adopted as often and as deeply as possible because of lack of time when defining a
profile. This was made possible here by the definition of a fully devoted OMG
consortium called the ProMarte consortium1 who was responsible to answer the
OMG request for proposal issued to add to UML modeling capabilities firstly for
modeling Real Time and Embedded Systems (RTES), and secondly for analyzing
schedulability and performance properties of UML specifications [25]. The profile
called Marte is intended to replace the existing UML Profile for schedulability,
performance and time [26]. Modeling capabilities have to ensure both hardware and
software aspects of RTES in order to improve communication/exchange between
developers. It has also to foster the construction of models that may be used to make
quantitative analysis regarding hardware and software characteristics. Finally, it
should enable interoperability between development tools used all along the
development process.

1 www.promarte.org

 Towards Improving Dependability of Automotive Systems 61

Marte

TCRM
(Time & Concurrent Resource)

RTEM
(RealTime&Embedded modelling)

RTEA
(RealTime&Embedded Analysing)

NFP
(Non-Functional

Properties)
Time Platform

Allocation Modelling

REAM
(Real-time /Embedded
Application Modelling)

ExPM
(Execution Platform

Modelling)

GQAM
(Generic Quantitative
Analysis Modelling)

SAM
(Schedulability

Analysis Modelling)

PAM
(Performance

Analysis Modelling)

Fig. 12. Current architecture of the Marte profile

The alignment of EAST-ADL2 with MARTE will be centered on the expression of
non functional properties – borrowing MARTE framework to rewrite elements
currently defined by plain UML constructs – and the component model. The ProMarte
consortium agreed to the introduction of an appendix section to the standard for the
definition of EAST-ADL2. This section will deal with how to make EAST-ADL2
models using Marte, it will be initiated shortly after the vote of the initial release of
the standard by the OMG and further refined in the context of the Marte Finalization
Task Force (FTF).

8 Conclusions

Traffic safety can be improved in two fundamentally different ways. First, new
technical systems may be introduced that directly address traffic safety by influencing
traffic in some way, regardless of whether they are to be built into the vehicles
themselves as active or passive safety systems or if they are to become part of the
transport infrastructure.

The introduction of information technology in the automotive industries over the
last decade, and the fact that electronic control units have become more and more
inter-connected, has led to safety visions that were unimaginable fifteen years ago.
But with such highly advanced, extremely complex functions – often spanning several
classical sub-domains such as engine control and telematics – appropriate design
methods and tools have become crucial. This is why a second approach is also needed

62 P. Cuenot et al.

to increase traffic safety: Safety systems and technology should be complemented by
improved development methodology.

The benefit of such additional perspective is threefold:

• By making the vehicles and the transport infrastructure more reliable in
general – even with respect to vehicle features not directly related to safety –
traffic will become safer. For example, if the failure rates of a motor control
subsystem can be reduced by a certain amount, fewer breakdowns will
impede the transportation infrastructure.

• Once development methods and tools are improved, completely new safety
functions will become possible. For example, experts agree that
dependencies between automotive sub-domains (such as motor control,
chassis, telematics) are a significant source of errors in the electronics
system, because they cannot be handled well during the development
process. Therefore, many interesting functions for next-generation cars are
currently not taken into consideration simply because they would introduce
additional dependencies of this kind.

• The need for mechanical fall-back systems and the redundant design of
safety-critical systems can be limited, provided design errors can be avoided,
and component failures can be predicted or handled in an appropriate
manner. The cost penalty of advanced systems is thus reduced, making them
accessible in large volumes. In addition, vehicle weight and fuel
consumption are reduced, making transportation more environmentally
friendly.

This context gives the fundament for further research in model-based development
to meet automotive needs. This is the overall context of the ATESST project, which
further investigates the definition of an architecture description language for
automotive embedded systems. The result is a refinement of an existing approach, the
EAST-ADL that was developed in the EAST-EEA project. The previous version of
the EAST-ADL was mainly focused on the architecture-induced complexity of
embedded systems. ATESST extends this to adequately address the application- and
environment-induced complexity. A further challenge in ATESST is to consolidate
EAST-ADL solutions and harmonize it with existing approaches in industry. The
resulting language will be an ontology for automotive electronics and software,
making system models unambiguous, consistent and exchangeable.

The purpose of this chapter was to show how the currently refined EAST-ADL –
defined in the ATESST project – provides extra support for modeling dependable
embedded automotive systems, with emphasis on requirement specification and
traceability, and support for dedicated engineering process for safety and standard
analysis techniques.

In this area, the main contributions are the following:

o Modeling in general means that the engineering information is formalized and
available for automatic analysis and synthesis. Modeling also enables
visualization and information organization for enhanced understanding during
manipulation and review. This is a way to secure correctness and thus improve
dependability.

 Towards Improving Dependability of Automotive Systems 63

o The dependability is improved by adding an ADL which is tailored for
automotive needs. It will thus be possible to apply in a way that fits existing
processes.

o EAST-ADL2 integrates concepts from different approaches in a way that
makes it possible to keep all information in one structure. The risk of
inconsistencies and integration-related errors is thus reduced.

o Traceability between requirements and between requirements and
design/implementation is a way to make sure all requirements are handled.
Managing verification and validation information in the system model is a way
to ensure that all requirements are satisfied in the configurations that
correspond to produced vehicles. Both aspects are possible due to the
integrated system model that EAST-ADL2 provides.

o Automotive systems interact with the dynamics of the vehicle and
environment. Verification and validation with an adequate representation of
the plant/environment is thus critical for the correctness and safety of realized
functions. This is handled in a uniform way from early concepts to final
implementation in the EAST-ADL2.

References

1. Akerlund, O., Bieber, P., Boede, E., Bozzano, M., Bretschneider, M., Castel, C., Cavallo,
A., Cifaldi, M., Gauthier, J., Griffault, A., Lisagor, O., Lüdtke, A., Metge, S.,
Papadopoulos, C., Peikenkamp, T., Sagaspe, L., Seguin, C., Trivedi, H., Valacca, L.:
ISAAC, a framework for integrated safety analysis of functional, geometrical and human
aspects. Embedded Real Time Software, Toulouse (2006)

2. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of
dependable and secure computing. IEEE Transactions on Dependable and Secure
Computing 1(1), 11–33 (2004)

3. Bozzano, M., Villafiorita, A.: Improving System Reliability via Model Checking: The
FSAP/NUSMV−SA Safety Analysis Platform. In: Anderson, S., Felici, M., Littlewood, B.
(eds.) SAFECOMP 2003. LNCS, vol. 2788, pp. 302–9743. Springer, Heidelberg (2003)

4. Bozzano, M., Villafiorita, A., Åkerlund, O., Bieber, P., Bougnol, C., Böde, E.,
Bretschneider, M., Cavallo, A., Castel, C., Cifaldi, M., Cimatti, A., Griffault, A., Kehren,
C., Lawrence, B., Lüdtke, A., Metge, S., Papadopoulos, C., Passarello, R., Peikenkamp,
T., Persson, P., Seguin, C., Trotta, L., Valacca, L., Zacco, G.: ESACS: an integrated
methodology for design and safety analysis of complex systems. ESREL, Maastricht
(2003)

5. Chudleigh, M.F., Catmur, J.R., Redmill, F.: A Guideline for HAZOP Studies on Systems
which include a Programmable Electronic System. In: SAFECOMP’95, Belgirate, Italy,
pp. 42–58 (1995)

6. Clarke, S.J., McDermid, J.: Software Fault Trees and Weakest Preconditions: A
Comparison and Analysis. Journal of Software Engineering (1993)

7. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. The SEI Series
in Software Engineering. Addison-Wesley, Boston (2002)

8. EASIS (Electronic Architecture and System Engineering for Integrated Safety Systems)
URL: http://www.easis.org

64 P. Cuenot et al.

9. Espinoza, H., Medina, J., Dubois, H., Gérard, S., Terrier, F.: Towards a UML-Based
Modelling Standard for Schedulability Analysis of Real-Time Systems. MARTES
Workshop at MODELS Conference (2006), available at http://wo.uio.no/as/WebObjects/
theses.woa/ wa/these?WORKID=45427

10. Espinoza, H., Dubois, H., Gérard, S., Medina, J., Petriu, D.C., Woodside, C.M.:
Annotating UML Models with Non-functional Properties for Quantitative Analysis. In:
Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 79–90. Springer, Heidelberg
(2006)

11. Fenelon, P., McDermid, J.A., Nicolson, M., Pumfrey, D.J.: Towards integrated safety
analysis and design. ACM SIGAPP Applied Computing Review 2(1) (1994)

12. Gerard, S., Espinoza, H.: Rationale of the UML profile for Marte. Chapter of the book:
From MDD Concepts to Experiments and Illustrations, pp. 43–52 (2006)

13. Gérard, S., et al.: Efficient System Modeling of Complex Real-time Industrial Networks
Using The ACCORD/UML Methodology. In: Architecture and Design of Distributed
Embedded Systems (DIPES 2000), Paderborn University, Germany, Kluwer Academic
Publishers, Dordrecht (2000)

14. Gorski, J., Wardzinski, A.: Deriving real-time requirements for software from safety
analysis. In: Proceedings of the Eighth Euromicro Workshop on Real-Time Systems, pp.
9–14 (1996)

15. Hansen, K.M., Ravn, A., Stavridou, P.V.: From safety analysis to software requirements.
IEEE Transactions on Software Engineering 24(7), 573–584 (1998)

16. ISO TC22 SC3 WG16 preliminary results for introduction of future Automotive standard
ISO 26262 ”Road vehicle - Functional Safety” (planned for 2008)

17. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature Oriented
Domain Analysis (FODA) – Feasibility Study. Technical Report, CMU/SEI-90-TR-21
(1990)

18. Kang, K.C., Kim, S., Lee, J., Shin, E., Huh, M.: FORM: A Feature-Oriented Reuse
Method with Domain-Specific Reference Architectures. Annals of Software
Engineering 5, 143–168 (1998)

19. Kehren, C., Seguin, C., Bieber, P., Castel, C., Bougnol, C., Heckmann, J.-P., Metge, S.:
Advanced Multi-System Simulation Capabilities with AltaRica. In: 22nd Int. System
Safety Conf. System Safety Society (2004)

20. Kletz, T.: HAZOP: and HAZAN: Identifying and assessing process industry standards. 3rd
edn. Washington, DC: Hemisphere (1992)

21. Lano, K., Clark, D., Androutsopoulos, K.: Safety and Security Analysis of Object-
Oriented Models. In: Anderson, S., Bologna, S., Felici, M. (eds.) SAFECOMP 2002.
LNCS, vol. 2434, Springer, Heidelberg (2002)

22. Leveson, N.G.: Safeware: System safety and computers. Addison-Wesley Publishing
Company, Reading (1995)

23. Leveson, N.G., Cha, S.S., Shimeall, T.J.: Safety Verification of Ada Programs Using
Software Fault Trees. IEEE Software, 48–59 (1991)

24. Lutz, R.R., Shaw, H.-Y.: Applying Adaptive Safety Analysis Techniques. In: Proceedings
of the 10th International Symposium on Software Reliability Engineering, Boca Raton, FL
(1999)

25. Object Management Group, UML Profile for Modeling and Analysis of Real-Time and
Embedded systems (MARTE) RFP, realtime/05-02-06 (2005)

26. Object Management Group, UML Profile for Schedulability, Performance, and Time,
Version 1.1. formal/05-01-02 (2005)

 Towards Improving Dependability of Automotive Systems 65

27. Object Management Group, Systems Modeling Language (SysML) Specification, ptc/06-
05-04 (2006)

28. Palady, P.: Failure Modes and Effects Analysis. PT Publications, West Palm Beach, FL
(1995)

29. Papadopoulos, Y., McDermid, J.A.: Hierarchically Performed Hazard Origin and
Propagation Studies. In: Felici, M., Kanoun, K., Pasquini, A. (eds.) SAFECOMP 1999.
LNCS, vol. 1698, pp. 139–152. Springer, Heidelberg (1999)

30. ProMarte consortium, Joint UML Profile for MARTE Initial Submission, realtime/05-11-
01 (November 2005) available at, http://www.omg.org/cgi-bin/doc?realtime/05-11-01

31. Reiser, M.-O., Weber, M.: Using Product Sets to Define Complex Product Decisions. In:
Obbink, H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 21–32. Springer, Heidelberg
(2005)

32. Reiser, M.-O., Weber, M.: Managing highly complex product families with multi-level
feature trees. In: Proceedings of the 14th IEEE International Requirements Engineering
Conference, RE, pp. 146–155. IEEE Computer Society Press, Los Alamitos (2006)

33. Rushby, J.: Critical system properties: Survey and taxonomy. Reliability Engineering and
System Safety 43(2), 189–214 (1994)

34. ARP-4761, S.A.E.: Aerospace recommended practice: guidelines and methods for
conducting the safety assessment process on civil airborne systems and equipment. 12th
edn. SAE, 400 Commonwealth Drive Warrendale PA United States (1996)

35. Storey, N.: Safety-Critical Computer Systems. Addison-Wesley, Reading (1996)
36. Sullivan, K.J., Dugan, J.B., Coppit, D.: The Galileo fault tree analysis tool. In: Proc. of the

29th Annual IEEE International Symposium on Fault-Tolerant Computing, pp. 232–235.
IEEE Computer Society Press, Los Alamitos (1999)

37. Tessier, P., Gérard, S., Terrier, F., Geib, J.-M.: Using variation propagation for Model-
Driven Management of a System Family. In: Obbink, H., Pohl, K. (eds.) SPLC 2005.
LNCS, vol. 3714, pp. 222–233. Springer, Heidelberg (2005)

38. Vesely, W.E.: Fault Tree Handbook, US Nuclear Regulatory Committee Report NUREG-
0492, US NRC, Washington, DC (1981)

R. de Lemos et al. (Eds.): Architecting Dependable Systems IV, LNCS 4615, pp. 66–88, 2007.
© Springer-Verlag Berlin Heidelberg 2007

The View Glue

Alek Radjenovic and Richard Paige

The University of York, Department of Computer Science, Heslington, York, YO10 5DD
{alek,paige}@cs.york.ac.uk

Abstract. In this paper we focus on domain-specific Architecture Description
Languages (ADLs), particularly for safety critical systems. We argue that exist-
ing standards for architectural modelling are insufficient for achieving the nec-
essary levels of control of the development process for such systems. We
outline the requirements for safety critical ADLs, the challenges faced in their
construction, and present an example - AIM - developed in collaboration with
the safety industry. Explaining the key principles of AIM, we show how to ad-
dress multiple and cross-cutting concerns through active system views and, how
to ensure consistency across such views. The AIM philosophy is supported by a
brief exploration of a real-life jet engine case study.

Keywords: architectural views, view consistency, software architectures, mod-
elling, safety critical systems.

1 Introduction

There is wide-spread recognition that software systems are becoming increasingly
large and complex. Such systems are inherently difficult to manage, understand, de-
sign, implement, test and maintain. This is partly a direct consequence of the number
of features software is required to offer.

Moreover, software features are exposed to frequent requests for modification,
largely due to changes in customer requirements. For real-time embedded systems,
hardware obsolescence presents a great challenge.

As a large-scale system is developed, a number of deliverables are produced, e.g.,
requirements specifications and design documents. Changes impact on each deliver-
able, which should ideally remain consistent. However, changes that occur later in the
lifecycle will have wider impact, thus increasing the cost of change. In large and
complicated or complex software systems the cost of change is disproportionately lar-
ger than the size of change.

Recently, two approaches have begun to show promise in tackling the challenges
associated with managing the size and complexity of modern complex software sys-
tems: software architectures and modelling.

Architecture is broadly defined as an organisation of a system describing its com-
ponents, their relationships, the system's environment and the rationale behind such an
organisation [1]. Research into architectures attempts to enable a better understanding
of large and complex software systems, facilitate predictable reuse of its parts (com-
ponents), assist in design and construction, support evolution, enable (formal)

 The View Glue 67

analysis and, help overall management by clearer understanding of requirements, im-
plementation strategies and potential risks

Modelling is a process that employs abstraction and focuses on higher-level system
constructs [2]. Thus, a model is a representation of a system's essential structure and
properties, obtained by omitting detail deemed unnecessary for a particular modelling
method. Research into modelling complements that on architecture. Indeed, model-
ling is regarded as a vehicle necessary for describing an architecture.

Consequently, we have witnessed the emergence of numerous precisely defined
languages to aid in systems modelling and creating architectural specifications. These
notations are more commonly known as architecture description languages (or,
ADLs). Although almost all ADLs have their own merits, they tend to focus on a par-
ticular, fairly narrow, aspect of system design and have not had much impact in being
accepted in everyday engineering practice [3].

A key technique used when building models is layering of abstractions, e.g., con-
structing a model of a network, and atop it constructing a model of a protocol, which
uses the network model. Most modelling approaches limit high-level design to one or
two abstraction levels. Next generation ADLs should support multiple abstraction
layers. This will let developers refine higher-level constructs into lower-level, more
detail-rich artefacts that safety-critical systems require. Although we have ways of
understanding function, state, and structure refinements, we need a mechanism that
lets us refine other non-functional and diverse concepts while preserving traceability.

Architectural (or model) views must become a primary design mechanism. Views
aren't novel-prominent approaches include the 4+1 View Model and the IEEE 1471
standard. However, the rigidity of the 4+1 View Model limits its support for specific
engineering practices. More importantly, to be sufficiently rigorous in the HIRTS
(High Integrity Real Time Systems) arena, view consistency is essential and neither
approach provides it. Changes to the artefacts in one view need to be automatically
applied to the relevant artefacts in another view [4].

All known modelling platforms today fail to ensure consistency across its set of
views. As a result, we cannot have sufficient guarantees about the consistency and
coherency of the system as a whole, even in cases when the analyses performed on
partial models returns satisfactory results. In this paper, we present an approach - a
modelling platform called AIM (Architectural Information Modelling). We argue
about the importance and role of dependency links in modelling dependable systems
and, demonstrate their role as a reliable ‘view glue’ in ensuring architectural view
consistency. Our argument is illustrated by examples from a real-life jet engine case
study provided by Rolls Royce plc.

In section 2, we introduce the key principles of the AIM platform, followed by a brief
description of the case study in section 3. Next, in section 4, we illustrate how to apply
the modelling concepts of AIM to the presented case study. In the last section, we sum-
marise the potential benefits of our approach in the design of safety critical systems.

2 AIM in a Nutshell

AIM is a generic, extensible platform for modelling software and systems in multi-
team environments with particular focus on the HIRTS domain.

68 A. Radjenovic and R. Paige

2.1 Top Level Organisation

At the top level, AIM is greatly similar to (and thus has been aligned with) the tradi-
tional 3-tier RDBMS (relational database management systems). Organising AIM in
this way has the benefits of using proven and mature technologies (such as RDBMS,
SQL, XML, PHP, etc) for the tool implementation making it straightforward, modern
and cross-platform.

The traditional 3-tier database system comprises of the Data Layer, Business Logic
and, Presentation Layer. The Data Layer holds the actual data, organised into various
tables which are in turn linked together through declarations of dependency relation-
ships. The Business Logic provides the rules according to which diverse information
can be added, viewed, updated or removed from the tables and, by which groups of
users. It can also provide a mechanism to synchronise access to the database by mul-
tiple users. The Presentation Layer makes sure that the interface for data manipulation
is easy to use and includes filtering capabilities, i.e. allows the end user to deal only
with a subset of data at any one time.

The three layers in AIM - Data, Rules and, Views - follow the same logic as de-
scribed above. The AIM Data layer contains the model information such as the struc-
ture, the functionality or the data flow within the target modelled system. The Rules
layer describes the dependency links, constraints and/or various design rules. The
Views layer (which corresponds to the Presentation layer in the RDBMS) provides
each of the users (or, each of the groups of users with the same set of concerns) with a
view-driven design environment. Figure 1 below illustrates the top level organisation
of the AIM platform.

The 3-layered approach described above provides clear separation of information
that describes the system and restrictions imposed on its development and operation.
It facilitates formalism with a very small set of syntactic and semantic rules. In addi-
tion, its view-driven development approach provides a platform for a straightforward
application of various kinds of analyses, such as model checking, resource allocations
and budgets, circularity, required connections, schedulability, priority inversions, and
flow latency.

2.2 Data Layer

The AIM Data layer is the key repository of the information contained in the model. It
is further divided into four abstraction sub-layers: Core Notation, Language Factory,
Modelling Language, and Model. This was necessary because AIM was created to
support multiple design and implementation languages and notations, including the
programming languages.

By definition, a model is a representation of the essence of an artefact. During the
process of modelling we omit detail. Consequently, models are necessarily incom-
plete and there is always a trade-off between the explanatory power and the complex-
ity. Needless to say, all modelling technologies will omit differing levels – differing
kind and differing amount – of detail.

Figure 2 illustrates this division into sub-layers. It is important to note that AIM
defines only the two most abstract layers, the Core Notation and the Language Fac-
tory, in a precise manner. Various modelling languages (or their AIM representations)

 The View Glue 69

are custom-defined in the Language Factory notation and will depend on the system
being modelled, user preferences, or a specific company policy. The models, such as
the Architectural, AADL and Ada in the picture below, are parts of a single integral
AIM model which describes the target system through multiple levels of abstraction.
This further allows multiple stakeholder groups (such as control engineers, system ar-
chitects or, developers) to work under the same (AIM) umbrella simultaneously.

Fig. 1. Top level organisation of the AIM platform

AIM Core Notation, the most abstract of the four sub-layers, is based on and
aligned with two key meta-models: the MOF (Meta Object Facility) defined by OMG,
and Ecore which is the (meta) model used to represent models in EMF (Eclipse Mod-
elling Framework, www.eclipse.org). MOF 2 is closely aligned and borrows from the
UML Infrastructure 2.0 [5]. The main intention in defining the AIM Core Notation as
a subset of MOF and Ecore was to enable data exchange and model transformations
between AIM models, on one hand, and UML models and tool implementations in
Eclipse, on the other.

AIM Core Notation is a reflective notation just like MOF or Ecore, i.e. it can be
used to define itself, and so there is no need to define another language to specify its
semantics. This is achieved by propagating the metadata through to the instances (ob-
jects) of the modelling constructs itself allowing the discovery and manipulation of
metadata, as well as the use of objects, without prior knowledge of the objects’ spe-
cific features.

The next level in the abstraction layers stack, the Language Factory, is an in-
stance of its meta-model – the Core Notation. In other words, by using the modelling
artefacts defined in the Core Notation, we are able to create the Language Factory
layer.

70 A. Radjenovic and R. Paige

Fig. 2. The four sub-layers of the AIM Data layer

The design philosophy driving the organisation of this layer was to provide a
common ground to most, if not all, modelling languages and notations. The hypothe-
sis is that every model would need to describe some, or all, of the following aspects of
a software system:

• structure
• functionality
• data and control flow
• coordination
• non-functional characteristics

Accordingly, we have defined a modelling construct to describe each of the five
aspects above, as follows: Component for the structure, Service for the functionality,
Connection for the data and control flow, Coordination for the coordination and,
Property for the non-functional characteristics. Each of these is explained next in
some detail.

At the top level of the Language Factory meta-model is the model element (Figure
3). It is composed of zero or more collections of properties, data types and compo-
nents, organised (or, packaged) in their corresponding sets (each having a name and
an optional namespace classifier).

Each collection is tagged with a name and a namespace, creating a unique, global
footprint for every model element that is defined. This arrangement supports modular-
ity, low coupling and high cohesion i.e. the component based approach to design.
Later, we demonstrate how trusted components and composable architectures are sup-
ported by the 3-tier design described in an earlier section.

The AIM data type system predefines several basic types such as – integer, float,
string, Boolean, reference and URI (uniform resource identifier). With the provision
of the built-in template mechanism, additional, more complex, derived data types can
be defined inside custom-made type sets. The templates provided include: enumera-
tions, ranges, sets, arrays and records.

 The View Glue 71

Fig. 3. AIM Language Factory - top level

Each property set is a collection of property definitions. A property definition in-
cludes a name and a type reference at a minimum. By default, a property can be at-
tached to all model constructs (other than types or properties, obviously) unless its
scope is restricted by the definition. Besides scope, other optional features can be
specified. These include: default values, units and, whether assigning a value is re-
quired or not. It is worth mentioning here that AIM defines two special literal values:
UNDEF and NULL. The former indicates that no value is assigned, and the latter
represents a zero-value (which has different meanings for different types: 0 for inte-
gers, empty string for strings, false for Boolean, etc).

Next, we go into some detail describing the modelling elements that represent, in
our opinion, the five ‘pillars’ of software design: structure, functionality, data and
control flow, coordination and, non-functional properties.

The Component is the top level modelling construct which describes the structure
of the target system. Components, like types and properties, are organised in their cor-
responding collections – component sets. They are further broken down into five spe-
cialised collections: Services, Subcomponents, Connections, Coordination and Prop-
erties.

Component Services describe the desired functionality of the component (i.e. its
relationship to its environment) without going into detail of how such functionality is
achieved. All services are grouped in the component’s interface. Most commonly the
services will describe the functionality that the component provides. In addition, ser-
vices required by the component can also be specified.

The Connections describe the data and control flow inside the system. In its sim-
plest form, a connection is represented with two endpoints (attached to a component
or a service) and a connector between them. In order to allow composition, a single
connector can be attached to multiple endpoints representing more complex data
flows.

72 A. Radjenovic and R. Paige

The Coordination section of the component deal with state machines as well as
modal operation of the component. In this (optional) section one or more states (or,
modes) are named, where the first one in the list represents the initial state. Each state
can also specify a list of components that are active in that state. If two or more states
are named, then one or more transitions between the states can also be specified. A
component can switch from one or more (source) states to a different (target) state
when one or more events occur. The user can also specify one or more actions to take
place before the switch between the states occurs.

The Properties section of a component lists zero or more property assignments. A
property assignment associates a property (defined inside one of the property sets,
mentioned earlier) with a value. In addition, one or more of the component's constitu-
ent parts (elements) can be associated with the property in order to support batch as-
signments. If no elements are specified, then the property is associated with the com-
ponent itself. The types of elements must match one of the types declared in the scope
section of the property declaration, and the literal value must be of the same type as
the property itself.

2.3 Rules Layer

The Rules Layer in AIM provides a platform for describing the dependency links.
This layer is vital in expressing the relationships that are cross-cutting and orthogonal
to the ones defined by the meta-models. The presence of this layer enables clear sepa-
ration between the information artefacts and their mutual dependencies. The Rules
Layer represents the key traceability mechanism, enforces model integrity, defines in-
ter-language mapping (transformation) and, provides support for change control.

We recognise two distinct types of dependency links: implicit and explicit.
The implicit dependencies are those implied by the make-up of the meta-models.

These include:

• Reflective: types of elements, which correspond to types defined either in the
meta-model or in one of the (data) type sets; also, in case of refinement or
extension, types of ancestors and descendants (e.g. Components defined in
the Language Factory meta-model are derived from Containers in the Core
Notation meta-model).

• Content: relationship between containers and their contents (e.g. Compo-
nents and their Subcomponents, Connections or, Services)

• View: automatically derived from view definitions (see View-driven Design
section below)

The explicit dependencies are those that need intervention from designers and have
to be defined explicitly. We categorise them in three groups:

• Constraint Logic
• Design Rules
• Transformation Rules

AIM modelling is essentially a component-based approach. The constraint logic
addresses the compositional aspects of the design. For example, a networking server
component is designed to operate in the presence of multiple client components which

 The View Glue 73

can be attached to it. However, the sum of the maximal throughputs of the clients
must not exceed the throughput of the server. Defining a constraint on the server
component would prevent inadvertent over-allocation of the networking resources.
Thus, the constraint logic helps to control predictable but undesired emergent behav-
iour.

The design rules govern the way model elements are designed. They enforce the
architectural design decisions and prevent the design erosion. For example, a design
rule may enforce the use of data types only from a particular type set, or from a par-
ticular namespace. Another example could be to ensure that all network enabled
model elements communicate through a particular server component and not directly
with each other.

The transformation rules define mapping between elements of two languages de-
fined in the AIM Language Factory meta-model. Two languages focus on differing
levels of abstraction and one-to-one mapping is possible only for a a very limited
number of artefacts. An example is given in Figure 4. In MASCOT language [6], sen-
sors and clocks are modelled as components. In AADL [7], sensors are normally
modelled as components, and clocks are (temporal) properties.

The capability needed in the Rules Layer in order to describe the explicit depend-
ency links is based around a common platform.

Most importantly, we have to be able to refer to any model element or a list of
elements. By this we mean both the meta-model artefacts as well as their instances in
the model. Because all meta-models and model instantiations are expressed in XML,
we use XPath [8] for this purpose. XPath is a language for finding information in an
XML document. It is used to navigate through elements and attributes in an XML
document. XPath includes a myriad of built-in functions for string values, numeric
values, date and time comparison, node manipulation, sequence manipulation, Boo-
lean values, and much more.

The AIM platform was designed to be extensible (this was demonstrated for the
Data Layer earlier). AIM adopts the same kind of philosophy for the Rules Layer, too.
Taking advantage of XPath, AIM provides an open and extensible platform for speci-
fying constraints, design rules and language transformations.

Fig. 4. Inter-language dependencies

74 A. Radjenovic and R. Paige

The Rules Layer defines two basic kinds of rules:

• Boolean rules
• Generic dependency rules

Boolean rules are composed of AIM Boolean functions, XPath expressions, other
Boolean rules and the standard (AND, OR and NOT) logic operators. XPath expres-
sions are used as arguments (parameters) to the AIM Boolean functions which all re-
turn a Boolean TRUE or FALSE. Combining Boolean rules with AND, OR and NOT
operators more complex rules can be formed. Rules can be attached to an element in
order to define scope. Such rules will be checked for True value by an AIM compliant
tool. Unattached rules will not be checked; for example, complex rules are often bro-
ken down into smaller and simpler sub-rules which can be reused and do not need to
be attached to any particular element. Their scope is resolved from the top (i.e. from
the parent rule(s)).

In the example below, a design rule named Disconnected is composed of rules
HasChildren and HasConnections, both of which use an internal Boolean function
Empty(), as well as the standard logic operator NOT. While HasChildren is an unat-
tached rule, the other two rule (HasConnections and Dosconnected) rule will only be
performed on the elements of type component. Of course, all rules defined here are
reusable and can be used to form other more complex rules in the model.

<rule type="bool" name="HasChildren" param="object">
 NOT Empty(object/)
</rule>
<rule type="bool" name="HasConnections" scope="component" param="object">
 NOT Empty(object/Connections/)
</rule>
<rule type="bool" name="Disconnected" scope="component" param="object">
 NOT (HasChildren(object) AND IsConnected(object))
</rule>

Both the constraint logic and the design rules use Boolean rules as their underlying
mechanism. In addition, Boolean rules are optionally tagged by the kind label (of
string type) to further categorise the rule. Predefined kinds include:
PRECONDITION, POSTCONDITION, INVARIANT and, DESIGN, but more can
be added in a straightforward fashion.

A generic dependency rule provides a non-specific association between model
and meta-model artefacts. For each such rule we define:

• source artefacts (XPath expression)
• target artefacts (XPath expression)
• link type
• body

The link types are descriptive tag which categorise different kinds of cross-cutting
dependencies. External tools use these tags to extract relevant information for further
analysis. Body is of type TEXT and is an optional part of the declaration. It can be

 The View Glue 75

used to store further information about the dependency and is normally processed by
an external tool. For this reason, the format of the body text is not specified by AIM.

An example of a generic dependency rule is given in Section 4.3.
Transformation rules are instantiations of generic dependency rules. Their link

type is a reserved keyword XFORM. The body of the XFORM generic dependency
rule describes in detail how source artefacts are transformed into target artefacts.

Fig. 5. Rules in AIM

2.4 Views Layer

The Views Layer contains a collection of user-defined views of the modelled system
and/or its parts. Five key issues had to be addressed in order to describe this layer.
They are:

1. View definition: what is a view?
2. View template: what comprises a view in general terms and how do we de-

fine a mechanism by which to develop a view?
3. View instantiation: how do we extract the necessary information from the

underlying model database in order to populate the view?
4. View presentation: how do we present the extracted information?
5. View-driven design: how do we allow users to actively use views as their

primary means of system design?
Next, we delve into each of these issues and give detailed answers to the questions

raised.

76 A. Radjenovic and R. Paige

The ‘conventional’ perception of an (architectural) view and the common practice
of defining it can probably best be described one of the most encompassing defini-
tions which states that the view is “a representation of a whole system from the per-
spective of a related set of concerns” [1]. Indeed, the two of the most widely accepted
view-based design methods, “The 4+1 View of the System” [9] and the “Siemens
Views” [10], fit well with this definition. However, such definition states explicitly
that the view takes into account the whole system. This is the natural consequence of
the research at the time. Views in these two methods are created separately, much like
the diagrams in UML. Considering the whole system in each of the views was thought
to be a sufficient condition for the consistency of the views across the system. This
proved not to be the case, as illustrated by the significant body of work on consistency
checking in, e.g., UML.

In AIM, we take a somewhat different approach. We believe that the Data and
Rules layers ensure sufficient cohesion of the data within the model that the projec-
tion of the system as a whole is not necessary within any of the views. On the con-
trary, apart from very few people involved in the development of the system (such as
the system architects), in real world many of the other stakeholder groups will not
want to view the whole of the system and yet, their contribution to the system devel-
opment can hardly be called negligible. Most users will more likely be interested in
just a part of the system (in which they have the expertise) and its interface to the rest
of the system.

Although our approach to views is in many ways substantially different from the
conventional approach, our view definition differs only slightly from that in IEEE
1471:

• A view is a representation of a whole system, or its part, from the perspective
of a related set of concerns.

There are two kinds of view templates we can define in AIM.
The first kind, called language view templates, is used for defining views within a

model specified in a particular AIM language. The language view template declara-
tion consists of three distinct declarations:

1. language: one of the languages specified by the Language Factory meta-
model

2. scope: part of the system that is the view’s focus of interest
3. viewpoint: a set of meta-model artefacts from which the view is developed

Views are not meant to be a cross-language design mechanism. This would be
similar to a text in English interspersed with French and German phrases, and written
in Arabic alphabet in places. A view template needs to specify precisely which lan-
guage it is to use.

By declaring the scope, the users specify which part of the model they are inter-
ested in exploring and/or modifying. Here, they can either select one or more from a
list of already declared components or use the keyword MODEL to view the modelled
system from the top. Normally, system architects would use the latter option.

A viewpoint represents a set of artefacts from the specified language which should
appear in the specified view. Naturally, all information present in the model should be
available for the view creation. This is only to be expected since the view is the pri-
mary design mechanism as explained later in the text.

 The View Glue 77

If the view’s scope is declared with the keyword MODEL, then the viewpoint dec-
laration has to use one of the three keywords: PSET, TSET or, CSET. They indicate
that the content of the view will either be the property sets, the type sets or, the com-
ponent sets.

Most of the time, however, a view will be specified with its scope pointing to a
component or a collection of components. The viewpoint declaration in this case is
only slightly more complex. Again, we use the XPath expressions as a filter to extract
a subset of the available information from the Data Layer that is of interest to a par-
ticular group of stakeholders.

By specifying multiple, incongruent components in the scope declaration, and by
the powerful filtering capabilities of the viewpoint declaration, we are able to address
all classes of cross-cutting concerns, ranging from e.g. the safety engineers’ perspec-
tive of the system to the e.g. source version control system’s.

Users are not restricted to any particular set of views. All views in AIM are custom
made, much like the queries into a standard database. Figure 6 suggests some of the
kinds of views possible in AIM.

Finally, because viewpoint declarations are language dependent and model inde-
pendent, once declared they can be saved and reused across multiple projects. Simi-
larly, through a change of the scope declaration (which is model dependent, except
when using the MODEL keyword), the view templates can also be reused.

An example of a view template definition is given below:

<viewtemplate type="language" language="AL" scope="package">
 <viewpoint>
 <item name="component"/>
 <item name="interface"/>
 </viewpoint>
</viewtemplate>

Fig. 6. An example of views possible in AIM

78 A. Radjenovic and R. Paige

Here, we are interested only in the package elements and their subparts, and would
like to display the components and their interfaces defined in the architectural model
(described in the Architectural Language, or AL – see Section 4.1 below).

The other type of a view template is called a rule view template. Views defined us-
ing this mechanism allow us to specify concrete values for placeholders in the source
and target XPath expressions of a generic dependency rule. We do this by ‘attaching’
a rule between model artefacts, and as a result, instantiate a generic rule. This is a
cross-language type of view meaning that, in this case, model artefacts can come from
different AIM languages.

A view in AIM is an instantiation of an AIM view template. With the help of an
AIM compliant tool, the display of a selected view (based on the chosen view tem-
plate) is a three-stage process:

1. Sub-model selection: the tool selects the Data Layer section that represents
a model described in the language named in the language declaration of the
view template

2. Scope selection: the tool narrows down its search space by targeting only
those sections of the sub-model that match the scope declaration pattern

3. View population: XPath expressions specified in the viewpoint declaration
are applied to the selected search space in order to extract the matching
model information.

Initially, of course, all views are empty. As the development of the system evolves,
more artefacts are added to each of the views. These artefacts represent real elements
in the final system model (the right-most blocks in Figure 2).

Potentially, there may be considerable diversity of possible views in AIM. Hence,
we do not recommend any particular approach to view presentation. Possible options
are tabular, or tree-like approach, or a mixture of the two - which have been imple-
mented in our prototype tool. Other alternatives include translation to UML diagrams.
During our research, we have shown that this is possible; however, work in this direc-
tion was not pursued for two reasons. Firstly, there are significant differences in the
XML representation of diagrams in various commercial UML tools and, we lacked
the resources to investigate them. Secondly, and more importantly, views in AIM
were devised to be first class citizens and a primary tool for model specification. This
is explained in some detail next.

Views in AIM are its primary design mechanism. Although model modifications
are possible through direct editing of the XML text, an AIM tool is the more advis-
able option. Clearly, one-way flow of information – from the model database to a
view displayed by a tool – is not sufficient. In a view-driven design environment, any
model manipulation through views must be propagated back to the model database
(the Data Layer). This means that addition, deletion or modification of model arte-
facts is as important as the display of such information.

In AIM, the synchronisation of views with the model database, i.e. the synchroni-
sation between the Data Layer and the Views Layer, is achieved in the Rules Layer.
View dependencies are automatically defined from view templates. For example,
model artefacts belonging to two or more views will be tagged with an overlap flag.
This mechanism ensures that any modifications to the artefacts made in one view, are
propagated to the other view(s) and that the owners of those other views are notified

 The View Glue 79

of the change. It is also possible to flag these artefacts as read-only (either temporarily
or permanently): thus, although they are part of more than one view, they can be
modified in only one of them.

In conclusion, view consistency is ensured by two things:

1. Single model repository
2. View dependencies

3 Case Study

The case study presented here is an electronic engine controller (EEC) software for
the TAY jet engine manufactured by Rolls Royce plc. The case study material was
provided in two parts: the top level software architecture documentation and the
source code in SPARK Ada 83 programming language.

3.1 TAY Software Architecture

The documentation provided is written in English narrative style. It describes the ra-
tionale behind the design decomposing the entire software system into smaller subsys-
tems and Ada packages. Arguments are supported throughout with a series of ‘box
and line’ diagrams adhering to no particular graphical notation.

At the top level, the authors address the following three issues:

1. The scope diagram shows the decomposition of software into three major areas
and indicates the primary source of software requirements for each (Figure 7).

2. The context diagram explains the environment with which the software will in-
teract/communicate (Figure 7).

3. The top level design diagram depicts the design philosophy breaking down the
software system into a series of subsystems (Figure 8).

This introduction is followed by a scrutiny of various aspects of the target system,

such as the functionality, data flows and package dependencies.
For example, the functionality is described with a diagram shown in Figure 9. Thir-

teen major functional groups are recognised (each of which is to be further split into
multiple packages in the final implementation) as well as the key types of communi-
cation between them.

This is followed by the hardware support ACG (application communications
graph) (Figure 10) which shows EEC software in the context of its hardware, their in-
terfaces to each other and, dependencies in terms of control and data exchange be-
tween various software and hardware entities.

In addition to Functional and Hardware Support ACG’s, the authors also suggest a
host of utilities to be used by all software packages. These include: Control, Data, IO,
Timer and Validation utilities. Although these are described in a section called ‘Utili-
ties ACG’, no graph is actually provided. An assumption could therefore be made that
utility packages are not interdependent. It will be shown later, during model extrac-
tion from the source code that this is not the case

80 A. Radjenovic and R. Paige

Fig. 7. TAY software: scope (left) and context (right) diagrams

What follows is a decomposition of each application into a set of packages show-
ing major dependencies between packages within an application and with packages in
other applications. However, this approach is somewhat inconsistent throughout the
document. To explain this more clearly, and example is given in Figure 11.

Here, the decomposition and dependencies of the Lane Control application and its
packages are presented. The diagram indicates application dependencies such as:
Starting and Shutdown application depends on the Lane Control application which in

 The View Glue 81

turns depends on the Box Management application. It also indicates package
dependency on application (LaneChange depends on Box Management), application
dependency on package (Starting and Shutdown, and LaneChange), and package-
package dependency (LaneChange and HealthIO). This mixed approach is confusing
to some extent. One might ask questions: “what application does HealthIO belong
to?” or “ which package in Box Management is LaneChange dependent on?”

Fig. 8. Top level design diagram

Fig. 9. Functional Applications Communications Graph

82 A. Radjenovic and R. Paige

Fig. 10. Hardware Support Application Communications Graph

However, it was shown during the work on the case study that even this kind of
logic is easily modelled in AIM and that the model merging of the top level design
with the low level implementation reveals the missing detail and restores the ‘hidden’
dependencies.

3.2 TAY Source Code

TAY source code, written in SPARK Ada 83 programming language, is a medium
size software system with around 200,000 lines of code in 991 files. The source text

Fig. 11. An example of application and package dependencies

 The View Glue 83

was delivered with a series of linked HTML files describing Ada packages, their pur-
pose, their internal make-up (such as access subprograms, inputs, outputs, and test-
points) and any requirements imposed on the package (such as the scheduling
requirements and, required subprograms and types).

4 TAY Model in AIM

AIM principles and methods described above are demonstrated in this section on the
TAY case study. Due to space constraints, only relatively simplified models are
shown. This is, however, sufficient to illustrate AIM modelling applied in practice.

4.1 The Architecture Meta-Model

In order to create an AIM model from the design documentation, it was necessary to
recognise and categorise the kind of information that is being described. In simple
words, we needed to create a language which would be used to generate the architec-
tural model. We shall call this language the Architecture Language (AL) and we
define it by using the Language Factory meta-model. Again, AL is a meta-model (a
language) which is used to create the model of the software architecture documenta-
tion. The table below summarises the AL elements.

It is worth noting that states and transitions do not get any mention in the design
documentation, hence no coordination elements are defined in AL.

All ‘boxes’ in Figure 8, apart from the top one, are modelled as subsystems. The
top box is the software system and is described by the model element. Observing the
relationships in the same diagram, it is clear that subsystems can be composed of
other subsystems.

Figure 9 depicts applications and their communication. Although not obvious,
these functional applications grouped together form subsystems from the previous
graph. Closer scrutiny of the documentation reveals that not all applications are
shown in Figure 9. A few others are present in Figure 10, whereas the rest are named
throughout the text. It is already easy to see that systematic usage of a modelling plat-
form such as AIM brings immediate benefits by detecting discrepancies like these.

Table 1. Architectural language elements

Component Service Subcomponent Connection
End

Connec-
tor

Property

SUBSYSTEM
SUBSYSTEM
APPLICATION

SUBSYSTEM
APPLICATION

 ReqDoc: URI

APPLICATION PACKAGE
->
-->

ArchDoc: URI

PACKAGE
INPUT
OUTPUT

PACKAGE
APPLICATION

 FilePfx: string

84 A. Radjenovic and R. Paige

Fig. 12. Air data software architecture design

Further along in the software architecture documentation, applications are broken
down into Ada packages and each is accompanied by a diagram such as the one
shown in Figure 12. A diagram of this type provides information on:

1. Decomposition of the application into its packages
2. Internal communication between application’s packages with the direction of

data flow
3. Dependency of the application’s packages on external (other applications’)

packages
4. Dependency of application’s packages on other applications

(Note that the solid line rounded rectangles represent packages, the dashed line rec-

tangles are external applications, the large solid line rectangle with the label in its bot-
tom right corner is the application being described, the solid arrowed lines represent
package-to-package communication, and the dashed arrowed lines are communication
paths between applications and packages).

The first two in the list above provided enough information for the creation of the
AL model structure and the communication flow between various entities. The bottom
two in the same list, enabled us to specify a collection of generic dependency rules in
the Rules Layer.

4.2 The Ada Meta-Model

The Ada language meta-model (ADAL) is another language meta-model that had to
be defined via the AIM Language Factory. Although it is really a meta-model, we call
it so instead of ‘Ada Language’ in order to avoid confusion with the Ada

 The View Glue 85

programming language. ADAL is clearly less abstract than AL, in the sense that this
‘abstraction layer’ resides much closer to the real system (source code). One way to
look at it is that ADAL describes the Ada source text. Table 2 shows a somewhat
simplified list of ADAL elements.

Table 2. Ada language elements

Compo-
nent

Service Subcom-
ponent

Connection
End

Connector Property

PACKAGE
INPUT
OUTPUT
TESTPOINT

FILE PACKAGE WITH ReqDoc: URI

FILE
INPUT
OUTPUT

OBJECT
SUBPROG
RAM

OBJECT
SUBPROG
RAM

Path: URI
FileName: URI

OBJECT DATA
->
<-

Constant: Boolean
Public: Boolean
Declared: FileLoc
Initialised: Booleean

SUBPROG
RAM

RETURN OBJECT OBJECT PARAM
Public: Boolean
Declared: FileLoc
Body: FileLoc

For model extraction, a custom-made Ada language parser was used in order to

‘map’ the source code into the ADAL model. During this process of reverse engineer-
ing, all data types were stored in the newly (automatically) created AIM type sets.
Each file became a FILE component, and they were grouped under the PACKAGE
component. The contents of the files were parsed and Ada objects (constants, vari-
ables) were converted into OBJECT components and inserted as subcomponents of
the corresponding FILE components. Similar processing took place with Ada
subprograms. The bodies of subprograms were ignored. However, file locations (line
numbers) were recorded and stored in a property attached to the SUBPROGRAM
component. It is easy to see how, for example, an external analysis tool could parse
the model, locate each subprogram body, analyse its contents and attach additional
temporal properties such as Execution Period, WCET (worst case execution time),
Memory Size, and so on.

Equally, developers can use the generated ADAL model to navigate effortlessly
through hundreds of files and thousands of lines of source text.

4.3 Model Merging

So far, we have created two models. In a top-down approach, we ‘described’ the
software architecture from the documentation received. We used the Architecture
Language we defined for this purpose and created an architectural model
(ARCHMOD, from now on). Because the TAY software was already implemented,
we were also able to model in a bottom-up fashion and reverse engineer the source
code. We extracted the second model (ADAMOD, from now on) using the Ada Meta-
model which we created from the same platform (AIM Language Factory) as the Ar-
chitecture Language.

86 A. Radjenovic and R. Paige

One of the key tasks in carrying out this case study was to examine if the imple-
mented system was correctly aligned with its architectural blueprint, and if not, to
evaluate the degree of ‘model erosion’. These findings are outside scope of this arti-
cle. However, the first step in this line of investigation after the two models were cre-
ated was to somehow attempt to link them together. This was achieved by defining
generic dependency rules and using rule view templates to create active AIM views
for linking artefacts from one model to the other.

For example, we first defined a generic dependency rule with link type called
PKGDEP (standing from ‘package dependency’). We define source artefacts as pack-
ages from the architectural model. For example, an XPath expression used could be:

/ARCHMOD/SUBSYSTEM/APPLICATION/PACKAGE{[@name=”%Package

Name%”]}

During the rule instantiation, the following steps take place:
1. AIM scans the expression above and removes all text inside the curly brackets

[11]
2. The remaining text is evaluated as a standard XPath expression. In this case, it

will return all PACKAGE nodes from the ARHCMOD
3. In the view created by a rule view template, the user selects one node from the

list of PACKAGE nodes
4. The selected node’s name (for example AirData) replaces the %Pack-

ageName% placeholder and the concrete XPath expressions now becomes:
/ARCHMOD/SUBSYSTEM/APPLICATION/PACKAGE[@name=”AirData”]

We define the target artefacts in a similar fashion.
Finally, a rule instance would look something like this:

Source:
 /ARCHMOD/SUBSYSTEM/APPLICATION/PACKAGE[@name=
”AirData”]
Target: /ADAMOD/PACKAGE[@name=”AirData”]
Link: PKDEP

The mechanism described above allowed us to create permanent relationships be-
tween elements in the architectural model and those in the low-level Ada model. The
creation of dependency links across the two languages ensures that the changes cre-
ated, for example, by the system architects are propagated back to the developers, and
vice versa.

In conclusion, using the AIM platform, we have been able to create two models for
the TAY engine EEC. The first one describes the architecture of the system software
which until now was specified only in plain English. To do this, we used a specially
created language which we called AL. The second model describes the existing
SPARK Ada 83 source text, in another specially created language which we called
ADAL. English and Ada are very different languages in every aspect. On the other
hand, AL and ADAL have been defined from the same platform and are compatible
with each other. It is precisely because of this that we have been able to define the de-
pendencies between the two languages in a straightforward fashion and merge the two
models. The model data resides in a single repository and the relationships are defined

 The View Glue 87

in an orthogonal fashion within the Rules Layer. In addition, both AL and ADAL
(once defined) have become reusable assets within the organisation. We have also de-
fined a number of rule view templates which enabled us to instantiate cross-language
types of views. This was the key tool in identifying the discrepancies between the sys-
tem design (i.e. the architectural specification) and the system implementation (i.e. the
Ada source code). This powerful and easy-to-use feature of the AIM platform helped
us, very quickly, to isolate parts of the system where the implementation diverged
from the intended design.

Under the assumption that TAY software is correct (because it was already imple-
mented, tested, certified and deployed at the time of our work on this case study), we
rectified the inconsistencies in the design documentation. As a result, the architectural
specification is now up-to-date and in sync with the implementation.

Furthermore, because the system is now described in a precise fashion (as an AIM
compliant model), a range of formal analyses is possible to further validate the fault-
free behaviour of the system.

5 Summary

We have created a modelling platform, AIM, to help us overcome some of the key
limitations of ADLs that prevent them from being deployed in the safety critical sys-
tems arena. We acknowledged the fact that the development of large scale software
systems such as these is driven by a multitude of stakeholder groups. These groups of-
ten have divergent sets of concerns.

Views are commonly used in architectural design and modelling to address differ-
ent perspectives of the system. The difficulty arises because it is extremely beneficial
that such views are brought together into a single design process. The consistency
across all views is difficult, if not impossible to achieve. Models created are therefore
either kept separate or discarded instead of being integrated on the same platform.

In order to address this issue, we designed AIM around three layers and kept model
data, cross-cutting dependencies and views separate. This allowed us to display dif-
ferent perspectives of the system as well as create orthogonal relationships without
jeopardising the integrity of the model. Consequently, the single model repository and
the separate layer for dependencies represent the true view glue, ensuring view consis-
tency in the model.

References

1. IEEE, IEEE Recommended Practice for Architectural Description of Software-Intensive
Systems, IEEE. p. 29 (2000)

2. Finkelstein, A., Kramer, J., Nuseibeh, B.: Software process modelling and technology.
Advanced software development series. Wiley, Chichester (1994)

3. Medvidovic, N.T.R.: A Classification and Comparison Framework for Software Architec-
ture Description Languages. Software Engineering 26(1), 70–93 (2000)

4. Radjenovic, A., Paige, R.: Architecture Description Languages for High-Integrity Real-
Time Systems. IEEE Software 23(2), 71–79 (2006)

5. OMG, Unified Modeling Language: Infrastructure. OMG (2006)

88 A. Radjenovic and R. Paige

6. Simpson, H.R.: The MASCOT Method. Software Engineering Journal 1(3), 103–120
(1986)

7. SAE, Architecture Analysis & Design Language (AADL). Society of Automotive Engi-
neers (AS-2C) (2004)

8. Clark, J., DeRose, S.: XML Path Language (XPath) Version 1.0, in W3C Recommenda-
tion (1999)

9. Kruchten, P.: Architectural Blueprints - The ’4+1’ View Model of Software Architecture,
Rational Software Corp. p. 15

10. Soni, D., Nord, R., Hofmeister, C.: Software Architecture in Industrial Applications. In:
International Conference on Software Engineering (1995)

11. Kande, M.C.V., Strohmeier, A., Sendall, S.: Bridging the Gap between IEEE 1471, Archi-
tecture Description Languages and UML. Swiss Federal Institute of Technology:
Lausanne. p. 16 (2002)

R. de Lemos et al. (Eds.): Architecting Dependable Systems IV, LNCS 4615, pp. 89–114, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Component-Based Approach to Verification and
Validation of Formal Software Models

Dejan Desovski and Bojan Cukic

Lane Department of CSEE
West Virginia University, Morgantown, WV, 26506, USA

{desovski,cukic}@csee.wvu.edu

Abstract. Formal methods for verification of software systems often face the
problem of state explosion and complexity. We present a divide and conquer
methodology that leads to component based analysis and verification of formal
requirements specifications expressed using Software Cost Reduction (SCR)
models. The proposed methodology has the following steps: model partitioning,
partition verification and composition of verification results. We define a novel
decomposition methodology for SCR specifications based on minimum cut
graph algorithms. Experimental validation of our methodology brought to light
the importance of several concepts that have been advocated in the software de-
velopment community for a long time: modularity, encapsulation, information
hiding and the avoidance of global variables. The advantages of the composi-
tional verification strategy are demonstrated in the case study, which analyses
the Personnel Access Control System. Our approach offers significant savings
in terms of time and memory requirements needed to perform formal system
verification.

1 Introduction

By definition, a high assurance system is a system for which compelling evidence is
required to demonstrate that it delivers its services in a manner that satisfies certain
critical properties. Consequently, during the development of a high assurance system
we must prove that it does not contain any faults or, if that is out of our reach, that
failures are highly unlikely to occur. High assurance software systems continue to
pose significant challenges for verification and validation. Software industry relies
mostly on informal methods (e.g., code review or testing) for quality assurance pur-
poses. However, even the most experienced quality assurance engineers can often
overlook faults.

Formal methods hold a promise for the development of provably correct software
applications. Despite enthusiasm in the research community, formal methods are
rarely used in software industry. Continual complaints regarding the difficulty of ap-
plying them to practical software applications are due, in part, to scalability problems.
The challenges of formal approaches are caused by the large state-spaces and the
complexity of any practical software application. The automated formal verification
methodologies, such as model checking, often hit the state-space explosion barrier,
while the approaches involving theorem proving require advanced skills and

90 D. Desovski and B. Cukic

knowledge. Several techniques have been investigated to combat the complexity and
state-space explosion. For example, partial order reduction [2], abstractions [6][11],
assume guarantee reasoning [13] and other approaches have been proposed, but prac-
tical applications of formal methods to real-life software systems remain as uncom-
mon as they were a decade ago.

In order to apply formal methods, the underlying software model must be recorded
in some form of a formal notation. For our research purposes, we selected one of the
most mature requirements specification notations: Software Cost Reduction (SCR)
[12]. Typical SCR requirement specification consists of two parts. The operational
part describes system operation, while the property-based part encodes the logical and
temporal properties that the system must satisfy in operation. SCR tables in the opera-
tional part represent the system as a finite state machine, while the properties are first
order logic formulas representing state or transition (two-state) invariants which must
hold for the system. Having this separation makes it possible to perform verification
and detect possible inconsistencies using formal methods like theorem proving or
model checking. When we talk about “verification” in the remainder of the paper, we
are referring to the formal consistency verification between the stated properties and
the operational description of a given system.

The role of the properties is similar to the notion of checklists used for certification
of systems in other engineering disciplines. If all items (properties) on the checklist
are satisfied, the system is certified for use; if not, the engineer must present sufficient
evidence that they are true so that the system can become certified. Consequently, this
list must be complete in the sense that it must contain all needed properties that estab-
lish system correctness.

SCR specifications deal with reactive systems that monitor variables in the envi-
ronment and react accordingly by changing the controlled variables in a single step.
There are no explicit loops in the control flow, except for one main loop, which iter-
ates through the reading of monitored variables and producing the control variables.

We present a methodology for automated decomposition and abstraction of SCR
specifications. The main hypothesis is that components of complex system specifica-
tions can be identified at the points of minimal coupling (minimal control and/or in-
formation exchange). By applying graph-theoretic minimum cut algorithms, we can
identify these points and decompose the specification.

Automated decomposition of specifications remains one of the most elusive re-
search goals. An approach to specification decomposition has been presented in [8].
The authors propose an algorithm for slicing system specifications represented with
Colored Petri Nets. Slicing the specification improves the understanding of the com-
plex system models and helps with identifying high-risk components early in the life
cycle. The underlying ideas of [8] are similar to our approach. We want to decompose
complex system specifications into smaller parts with manageable complexity. In-
stead of ad-hoc decomposition criteria, we propose using minimum coupling. In other
words, our approach to decomposition creates system components such that have
minimal coupling (information exchange and/or control connectivity) with the rest of
the system.

Several abstraction and slicing criteria for SCR have been proposed in [11]. We
demonstrate how minimum cut graph algorithms can be used to decompose SCR
specifications, as well as to automate the specific SCR abstraction method. Proposed

 A Component-Based Approach to Verification and Validation 91

methodology provides automated abstraction of “irrelevant” monitored variables and
provides guidance on how to perform verification and validation of system models.
Consequently, domain and specification experts can focus their formal verification
efforts on the identified components, combine the results and provide evidence re-
garding the correctness of the system as a whole. We present the existing theory and
propose a strategy for verification of decomposable SCR requirements specifications
for efficient verification of SCR models.

The paper is organized as follows. Section 2 provides background and introduces a
motivational example that is used throughout the exposition. Section 3 reviews the
theoretical basis for compositional verification of SCR models. Section 4 presents the
proposed decomposition methodology and the strategy for component-based verifica-
tion. The case study of the Personnel Access Control System (PACS) SCR specifica-
tion is given in Section 5. Section 6 concludes the paper.

2 Background and a Motivating Example

In this section, we present notational background, i.e., the SCR requirements capture
methodology. To illustrate the key concepts we present a small SCR specification of a
nuclear reactor safety injection system, which was introduced in [7] and is available
as an example with the SCR toolset.

2.1 Software Cost Reduction (SCR) Method

In SCR we represent the environmental quantities as monitored and controlled vari-
ables. The environment non-deterministically produces a sequence of input events,
where an input event represents a change in some monitored quantity. The system,
represented as a finite state machine, begins execution in an initial state. It responds to
each input event by changing the state and, possibly, by producing one or more output
events. Output events are changes in controlled variables. An assumption of the
model is that at each state transition exactly one monitored variable changes its value,
often referred to as “one input” assumption. To concisely capture the system behav-
ior, SCR specifications may include two types of internal auxiliary variables: terms,
and mode classes. Mode classes and terms often capture historical information.

In the SCR operational model, system Σ is defined as a finite state machine
Σ = (V, S, Θ, ρ), where V = { r1, r2, …, rn } is the set of state variables, S is the set of
states, Θ : S → boolean is the initial state predicate, and ρ : S × S → boolean is the
next state predicate representing the transition relation. A state s in S is a function that
maps each variable x ∈ V to a value x(s) from its set of legal values. Usually, the evo-
lution of the system described by the transition relation ρ is deterministic, i.e., it can
be represented as a function that maps a given state and an input event to only one
possible next state. To construct the next state predicate ρ, SCR uses the composition
of smaller functions described in a tabular notation, thus improving the readability
and understandability of the specification. There are three kinds of tables in SCR re-
quirements specifications, event tables, condition tables, and mode tables. These

92 D. Desovski and B. Cukic

tables describe the values of each dependent variable, that is, each controlled variable,
mode class, or term.

In SCR, a state is a function that maps each variable in the specification to a value,
a condition is a predicate defined on a system state, and an event is a predicate de-
fined on a pair of adjacent system states implying that the value of at least one state
variable has changed. When a variable changes value, we say that an event “occurs".
The following notation is used to denote an event in which some condition becomes
true:

c'¬cc = ∧def)@T((1)

where c is a condition evaluated in the current state, and the primed condition is
evaluated in the next state. Informally the notation @T(c) can be read as “at true c,”
meaning that we are interested in the event when the logical value of the predicate c
changes from false in the current state to true in the next state. Similarly an opposing
event is denoted with @F(c) - “at false c”, meaning that we are interested in the event
when the logic value of the predicate c changes from true to false.

c'ccc = ¬∧=¬)T(@)@F(def (2)

We can also have conditioned events, denoting that we are interested in the event
only when some predicate already holds. The expression “@T(c) WHEN d” repre-
sents a conditioned event, which is defined by:

dc'¬cdc = ∧∧def WHEN)@T((3)

where the unprimed conditions c and d are evaluated in the current state and the
primed condition c is evaluated in the next state.

The keyword NEVER denotes a special event that is always false. We use the
NEVER event in the SCR tables to denote transitions which should never occur dur-
ing the operation of the system. In addition, there is a special condition keyword
INMODE, which is shorthand for specifying that the value of the mode variable is
equal to the mode specified in the first column of the row. Similarly, @T(INMODE)
denotes the event when the mode variable becomes equal to the mode specified in the
first column of the row. We give an example of an SCR requirements specification
using all these constructs and keywords in the next section.

The SCR model requires the entries in each table to satisfy consistency and com-
pleteness properties. The completeness property, in the sense of SCR, is defined as
complete definition of the tables, i.e. there cannot be cells which are empty or
missing, and each enumerated value must be used as a possible assignment in the cor-
responding variable specification table. The consistency property ensures that the
conditions or events used in specifying the variable are disjoint, i.e. there cannot be
non-deterministic assignments of two or more values to a single variable at any point
in time. These properties are automatically checked by the SCR toolset and guarantee
that all of the tables describe total functions [10]. We must note that the defined com-
pleteness and consistency properties do not guarantee the correctness of the developed
specification; they just provide assurance in the structural accuracy.

 A Component-Based Approach to Verification and Validation 93

2.2 Motivating Example – Safety Injection System

To illustrate the key SCR constructs and the problems we are facing when performing
verification we presents a simple specification of a nuclear safety system. The Safety
Injection System (SIS) SCR specification describes the safety system of a water cool-
ant system in a nuclear reactor [7]. Based on the pressure sensor readings the system
decides whether a safety injection of water is needed in the reactor cooling system. The
sensor system uses triple modular redundancy to deal with possible sensor failures and
erroneous readings. Depending on the pressure monitored by three sensors and using
majority voting, the system performs injection if the pressure is too low. Fig. 1 presents
a visual interface used for simulation and testing of the SIS specification.

Fig. 1. Visual Interface of the SIS specification

2.2.1 SCR Tables of the SIS Specification
The SIS specification is a small specification with 5 monitored variables, 1 controlled
variable, 3 term variables, and 2 mode variables. The SCR specification first defines
the variables by giving their types and domains. The pressure sensors PG, PR and PB
are monitored variables defined as integers having the range between [0, 2000] psi.
The other two monitored variables are RESET and BLOCK representing switches on the
control table with two possible values {ON, OFF}.

Table 1. MajorityPermit Condition Function

 Conditions
 ((PG < permit) AND (PR < permit))

OR ((PR < permit) AND (PB < permit))
OR ((PG < permit) AND (PB < permit))

NOT (((PG < permit) AND (PR < permit))
OR ((PR < permit) AND (PB < permit))

 OR ((PG < permit) AND (PB < permit)))
MajorityPermit = TRUE FALSE

The MajorityPermit term variable is a boolean variable and its specification is given by

the condition Table 1. From Table 1 we see that MajorityPermit is set to TRUE when any
two pressure sensors are less than the value of the permit constant, which is defined as

94 D. Desovski and B. Cukic

1000 psi in the specification document. When we do not have two sensors which are
less than permit the MajorityPermit variable is set to FALSE.

The MajorityLow term variable (Table 2) is specified in an analogous way as the Major-
ityPermit variable. The only difference is that the low constant is now used, which is de-
fined as 900 psi in the specification document. Table 1 and Table 2 are examples of
modeless condition tables, since their definition does not involve a mode variable.

Table 2. MajorityLow Condition Function

 Conditions
 ((PG < low) AND (PR < low))

OR ((PR < low) AND (PB < low))
OR ((PG < low) AND (PB < low))

NOT (((PG < low) AND (PR < low))
OR ((PR < low) AND (PB < low))

OR ((PG < low) AND (PB < low)))
MajorityLow = TRUE FALSE

Table 3. PermitStatus Mode Transition Function

Source Mode(s) Events Destination Mode
BelowPermissive @F(MajorityPermit) AbovePermissive
AbovePermissive @T(MajorityPermit) BelowPermissive

Table 3 presents the mode table for the PermitStatus mode variable. The first row of

the table specifies that if the previous value of the PermitStatus is BelowPermissive and the
boolean variable MajorityPermit becomes false then PermitStatus is assigned AbovePermissive
as the new value. Similarly, the second row states that if the previous value was Above-
Permissive and MajorityPermit becomes true, the next value of PermitStatus will be BelowPer-
missive. So, the assignment of a new value to a mode variable depends on its previous
value, and an event causing the transition.

Table 4. M_Pressure Mode Transition Function

Source Mode(s) Events Destination Mode
Low @F(MajorityLow) Normal
Low @F(MajorityPermit) VoterFailure

Normal @T(MajorityLow) WHEN MajorityPermit Low
Normal @T(MajorityLow) WHEN (NOT MajorityPermit) VoterFailure

VoterFailure @T(MajorityPermit) Low
VoterFailure @F(MajorityLow) Normal

The mode variable M_Pressure is defined by the function described in Table 4. The
table specifies the following transitions for the M_Pressure variable: 1) in case the cur-
rent mode is Low and the MajorityLow variable becomes false, then the new mode for
M_Pressure will be Normal; 2) in case the current mode is Low and the MajorityPermit vari-
able becomes false, then the new mode for M_Pressure will be VoterFailure; 3) if the
mode is Normal and MajorityLow becomes true when MajorityPermit is true, then the next
value for the M_Pressure will be Low; 4) if the current mode is Normal and the MajorityLow

 A Component-Based Approach to Verification and Validation 95

variable becomes true when MajorityPermit is not true, then the new mode will be Voter-
Failure; 5) if the current mode is VoterFailure and the MajorityPermit variable becomes true
then the new mode for M_Pressure will be low; and 6) if the current mode is VoterFailure
and the MajorityLow variable becomes false, then the new mode will be Normal.

Table 5. OVERRIDDEN Event Function

Modes for PermitStatus Events
AbovePermissive Never @T(Inmode)
BelowPermissive @T(Block = ON) WHEN (Reset = OFF) @T(Reset = ON)
BelowPermissive Never @T(Inmode)
OVERRIDDEN' = TRUE FALSE

The OVERRIDEN term variable is specified by the regular SCR event table given in
Table 5. Depending on the current value of the PermitStatus mode variable, the
new value of OVERRIDEN is assigned to TRUE or FALSE. In essence, OVERRIDEN be-
comes TRUE only if PermitStatus is BelowPermissive and the monitored variable Block
becomes equal to ON when the Reset variable is equal to OFF. Whenever PermitStatus
becomes equal to AbovePermissive or BelowPermisive, or in the event that the Reset
variable becomes equal to ON when the PermitStatus is BelowPermissive, the OVERRIDEN
variable becomes equal to FALSE.

Table 6. Safety_Injection Condition Function

Modes for M_Pressure Conditions
Normal FALSE TRUE

Low NOT OVERRIDDEN OVERRIDDEN
VoterFailure TRUE FALSE

Safety_Injection = ON OFF

The controlled variable Safety_Injection (Table 6) determines whether a safety injec-

tion is performed or not depending on the current value of the M_Pressure mode vari-
able. When M_Pressure is Normal, the value of the Safety_Injection variable is OFF; when
the M_Pressure is Low and the OVERRIDEN variable is FALSE, the Safety_Injection is ON, oth-
erwise in the same mode when the OVERRIDEN variable is TRUE the Safety_Injection is
OFF; finally if the mode of M_Pressure is VoterFailure then Safety_Injection is ON.

Fig. 2. Dependency Graph of the Safety Injection SCR specification

96 D. Desovski and B. Cukic

Given the SCR specification in tabular notation, we can observe that there are de-
pendencies between the variables (Fig. 2). In other words, the value of a particular
variable depends on values of some other variables. This dependency chain starts with
the monitored variables, used by the system to observe changes in the environment,
and ends with controlled variables, which are produced by the system in order to af-
fect the environment. The SCR toolset [12] includes dependency graph browser,
which is used for navigation through or manual slicing of the specification under de-
velopment.

2.2.2 Problems in the Verification
Once the operational part of the SIS is specified, we proceed with verification of the
stated properties that the specification must satisfy. We are focusing on safety proper-
ties, which can be either state or transition properties.

For example, we would like to prove that the following property holds:

Override Works: Reset = ON => not OVERRIDDEN. (4)

This property states that the system cannot be stuck in overridden mode, i.e., if the
monitored variable Reset is ON, then Overriden should be false.

pan: out of memory
 (Spin Version 4.2.5 -- 2 April 2005)
Warning: Search not completed
Full statespace search for:
 never claim - (not selected)
 assertion violations +
 cycle checks - (disabled by -DSAFETY)
 invalid end states +
State-vector 40 byte, depth reached 499999, errors: 0
1.1879e+07 states, stored
2.2326e+06 states, matched
1.41116e+07 transitions (= stored+matched)
 0 atomic steps
hash conflicts: 1.92053e+06 (resolved)
Stats on memory usage (in Megabytes):
522.675 equivalent memory usage for states
475.349 actual memory usage for states (compression: 90.95%)
 State-vector as stored = 36 byte + 4 byte overhead
33.554 memory used for hash table (-w23)
14.000 memory used for DFS stack (-m500000)
27.836 other (proc and chan stacks)
0.082 memory lost to fragmentation
536.822 total actual memory usage

Fig. 3. Execution of the SPIN on the complete model

We first tried to run the model checker SPIN on the whole model. As expected,
this was unsuccessful because we run out of memory (see Fig. 3). Since PG, PB, PR are
integer variables with a large range we expect state space explosion when using ex-
plicit model checkers like SPIN. The application of the symbolic model checking tool
SMV was successful and proved the property in 16 seconds. We also tried to apply
the inductive theorem proving tool SALSA, however, it was unsuccessful in proving
the property because of the incompleteness of the tool.

 A Component-Based Approach to Verification and Validation 97

2.2.3 Proposed Approach
We explore how to utilize the modular structure of the SIS specification in order to
enable more efficient verification of the stated properties. For example, the SIS speci-
fication can be decomposed into two parts: the triple modular redundancy sensor
module (lower left corner of Fig. 4), and the control module (upper part in Fig. 4).
The properties that involve variables within a single component can be soundly veri-
fied by abstracting the rest of the system. The properties that involve variables within
several components can be verified either by combining the affected components or
by using compositional proof rules.

Fig. 4. Decomposition of the SIS specification

In order to verify the Override Works property, we observe that we can focus on
the identified control module. Application of the SPIN model checker verifies the
property in 0.062 seconds avoiding the state explosion problem. SMV also verifies
the property in 0.016 seconds, which is 1000 times faster than performing verification
on the complete system.

We just demonstrated a single property, which is not enough to establish the cor-
rectness of the whole system (i.e., our checklist representing required properties is far
from complete). However, we see that being able to verify properties focusing just on
components of the specification is beneficial from performance standpoint. We must
note that in general this is not as easy as illustrated in the given example. The underly-
ing assumptions for this methodology to work are that the original specification is
modular in nature and that the properties have been stated on component boundaries,
or they involve only few components. Emergent system properties should be pre-
sented as conjunctions of component properties to ease their compositional verifica-
tion. Next, we present a decomposition methodology that identifies the components of
a given SCR specification and present a strategy for efficient verification of decom-
posable specifications.

3 Theoretical Basis for the Verification of Decomposable Models

In this section, we review the theoretical foundation for the compositional verification
of SCR requirements specifications based on [15]. As mentioned previously, the SCR
model of a given system Σ can be viewed as a finite state machine, represented by the
quadruple Σ = (V, S, Θ, ρ) where:

98 D. Desovski and B. Cukic

• V is a set of variables. It contains the monitored, controlled, and internal (term and
mode class) variables of the system;

• S is the set of system states. Each state s ∈ S maps each variable x ∈ V to a value in
its set of legal values. The value of a variable x in state s is denoted by x(s);

• Θ : S → boolean is a one-state predicate defining the set of initial states;
• ρ : S × S → boolean is a two-state predicate defining the transitions of Σ. A state s

may transition to a sate s’ if ρ(s, s’) is true.

The properties the system must satisfy, called system invariants, are represented by
the first order logical formulae (predicates), defined on a single state, or a transition.
The truth value of a single state predicate φ(s) is calculated by replacing the variables
it involves with the values from s. Two-state predicate ϕ(s, s’) is evaluated with val-
ues from s replacing unprimed variables and values from s’ replacing primed vari-
ables. The following are standard definitions for reachability and invariants (e.g. see
[4]).

Definition 1: Given a state machine Σ = (V, S, Θ, ρ), a state s ∈ S is reachable, de-
noted ReachableΣ(s), if and only if it is one of the initial states or if there exists an-
other reachable state s1 from which we can make a transition to the state s.

ReachableΣ(s) ⇔ Θ(s) ∨ ∃ s1 ∈ S : ReachableΣ(s1) ∧ ρ(s1, s) (5)

Often we need to use induction on the number of steps, so the following definition
is beneficial. A state s ∈ S reachable in n steps denoted Reachable n

Σ(s) is defined by:

⎩
⎨
⎧

>∧∈∃
=Θ

⇔
Σ

−Σ
0),,()(:

0),(
)(

11
1

1 nsssReachableSs

ns
sReachable n

n

ρ
 (6)

■

Definition 2: Given a state machine Σ = (V, S, Θ, ρ), a one-state predicate φ(s) is a
state invariant of Σ if and only if it holds for all reachable states.

φ ∈ Inv(Σ) ⇔ ∀ s ∈ S : ReachableΣ(s) ⇒ φ(s) (7)

■

Definition 3: A two-state predicate ϕ (s, s’) is a transition invariant of Σ if and only if
it holds for all pairs of adjacent reachable states.

ϕ ∈ Inv(Σ) ⇔ ∀ s, s’ ∈ S : (ReachableΣ(s) ∧ ρ(s, s’)) ⇒ ϕ (s, s’) (8)

■
The following theorems (Theorem 1 and 2) are also given in [4].

Theorem 1: Let Σ = (V, S, Θ, ρ), then φ(s) is a state invariant of Σ if the following
holds:

(∀ s ∈ S : Θ(s) ⇒ φ(s)) ∧ (∀ s, s’ ∈ S : φ(s) ∧ ρ(s, s’) ⇒ φ(s’)) (9)

The proof follows from definitions 1 and 2, by using induction on the number of
steps. Basically we ensure that the property φ(s) holds for the initial states, and then

 A Component-Based Approach to Verification and Validation 99

show that if it holds in the current state, it must also hold in the next state defined by
the transition relation, thus covering all reachable states as required by definition 2.
However, it covers more than just the reachable states, thus causing incompleteness.
Some unreachable states can cause the right side of the premise to fail and dispute the
validity of some probable invariant. ■

This theorem gives us the initial deductive rule for proving single state invariants (Eq.
10). In this shorter notation φ is a single state property and φ’ denotes the same prop-
erty evaluated in the next state.

()
()Σ∈

′⇒∧⇒Θ
Inv

,

φ
φρφφ (10)

We can strengthen the rule by using additional previously proven invariants. This
allows us to reduce the incompleteness in the previous rule by using invariants that
restrict the unreachable states causing it to fail. The deduction rules (Eq. 11) are ob-
tained, where α represents a single state invariant and β represents a transition invari-
ant for the system Σ.

() () ()
()Σ∈

′⇒∧′∧∧⇒Θ∧Σ∈
Inv

,,Inv

φ
φρααφφαα ; and () ()

()Σ∈
′⇒∧∧⇒ΘΣ∈

Inv

,,Inv

φ
φρβφφβ (11)

Theorem 2: Let Σ = (V, S, Θ, ρ), then ϕ(s, s’) is a transition invariant of Σ if the fol-
lowing holds: ∀ s, s’ ∈ S : ρ(s, s’) ⇒ ϕ(s, s’).

The proof follows from definition 3 by removing the requirement that the state s
should be reachable. This introduces incompleteness, meaning that there might be in-
variants that we might not be able to prove by this theorem. ■

Like in the previous case, this theorem gives us the initial deduction rule (Eq. 12) for
proving transition invariants.

()Σ∈
⇒
Invϕ

ϕρ (12)

It also can be strengthened by using auxiliary state or transition invariants as pre-
sented in (Eq. 13).

() ()
()Σ∈

⇒∧′∧Σ∈
Inv

,Inv

ϕ
ϕρααα ; and () ()

()Σ∈
⇒∧Σ∈

Inv

,Inv

ϕ
ϕρββ (13)

The problem in using these rules for verification of system properties is that they
rely on the specification of entire system Σ = (V, S, Θ, ρ). We would like to apply our
decomposition methodology to divide the system into smaller subsystems
Σ1, Σ2, …, Σn, and perform the verification task on these components instead on the
complete system.

3.1 Compositional Verification Rules

Abadi and Lamport [1] argue that the most natural way of representing composition
of systems is by using conjunction of their specifications. This idea of representing

100 D. Desovski and B. Cukic

the system specification as a conjunction of subsystems is central in the underlying
theory on compositional verification of SCR requirements specifications. Similar to
[1], we also limit our interest to safety properties, and advocate specifying SCR prop-
erties that are associated with components.

Without the loss of generality, we consider how to decompose a given system
Σ = (V, S, Θ, ρ) into two subsystems Σ1 and Σ2 allowing us to perform verification on
the components. We use the same definition of parallel composition of state machines
as given by Jeffords and Heitmeyer in [15].

Definition 4: Given two state machines Σ1 = (V, S, Θ1, ρ1) and Σ2 = (V, S, Θ2, ρ2),
with the same set of variables and the same allowed values for each of the variables,
their parallel composition Σ1||Σ2 is defined as conjunction, i.e., Σ1||Σ2 = (V, S, Θ1∧Θ2,
ρ1∧ρ2). ■

Theorem 3: All reachable states within n steps of Σ1||Σ2 are those that are reachable in
both Σ1 and Σ2 within n steps.

Reachablen
Σ1||Σ2(s) ⇔ Reachablen

Σ1(s) ∧ Reachablen
Σ2(s) (14)

The proof follows from definitions 1 and 4 using induction on the number of steps
needed to reach the state. Since the set of all reachable states is obtained when we let
the number of steps to go to infinity

{s : s ∈ S ∧ ReachableΣ(s)} = {s : s ∈ S ∧ Reachablen→∞
Σ(s)} (15)

we conclude that all reachable states of Σ1||Σ2 are those that are reachable in both Σ1

and Σ2. ■

Corollary 1: Invariants of each of the subsystems are also invariants of the composi-
tion, i.e., Inv(Σi) ⊆ Inv(Σ1||Σ2) for i = 1, 2. From Theorem 3 it follows that each com-
ponent contains all reachable states of the composition and possibly some more. Al-
though this seams contradictory for verification purposes, we will show in Section 4
that focusing the verification on properties that are stated on components boundaries
and performing abstractions will reduce the state spaces of the derived components. ■

Since the components may have additional reachable states, possibly invalidating
properties that might hold true, we can use already proven invariants from the other
components to strengthen the deduction rules. The rules (Eq. 16) can be used for this
purpose, where α represents a single state invariant and β represents a transition in-
variant for the subsystem Σ1.

() () ()
()21

221

||Inv

,,Inv

ΣΣ∈
′⇒∧′∧∧⇒Θ∧Σ∈

φ
φρααφφαα ; () ()

()21

221

||Inv

,,Inv

ΣΣ∈
′⇒∧∧⇒ΘΣ∈

φ
φρβφφβ (16)

A similar sound compositional rule for proving a two-state property ϕ is invariant
is given in (Eq. 17):

() ()
()21

21

||Inv

,Inv

ΣΣ∈
⇒∧′∧Σ∈

ϕ
ϕρααα ; and () ()

()21

21

||Inv

,Inv

ΣΣ∈
⇒∧Σ∈

ϕ
ϕρββ (17)

 A Component-Based Approach to Verification and Validation 101

Thus, the strategy for verification would be to decompose a given system into
components which if composed using parallel composition result in the system itself.
Then we prove invariants that hold for the components by using the deduction rules.
From the Corollary 1 it follows that the proven invariants also hold for the complete
system. Jeffords and Heitmeyer in [15] present a strategy for verification that per-
forms abstraction by removing a single variable from the specification and uses the
automatically generated invariants [14] for the abstracted variable to strengthen the
deduction rules. Our approach extends this strategy by considering components of the
specification (i.e. sets of variables) which have low coupling and information ex-
change with the rest of the specification. Instead of automatically generating invari-
ants for the abstracted components, our approach is to specify properties on compo-
nent level and later try to prove that they are invariants and use them in the
certification process of the system as a whole.

Since each component usually assumes some properties about the environment for
its correct operation, the rules (Eq. 16) and (Eq. 17) can be considered as assume-
guarantee rules. We use them to prove and guarantee some properties of the compo-
nent and consequently the system based on assumptions about the environment. These
assumptions are either properties stating the correctness of components that the spe-
cific component interacts with, or assumptions about the monitored variables.

4 Component-Based Verification

Complex systems typically contain subsystems, which include different and possibly
disjoint sets of monitored variables. For example, in an avionic system we have a
navigation subsystem that depends on the altitude, speed, and direction; another life-
support subsystem would deal with the cabin pressure and temperature. Several speci-
fication slicing techniques [8][11] have been proposed in order to tame a system’s
complexity and avoid state space explosion in formal verification. However, most of
them are done ad hoc and require user’s experience in order to be applied success-
fully. Verification of such complex specifications can be extremely time-consuming,
especially if we are not familiar with the specified system.

Since the early days of the SCR Method, Parnas et al. [16] have argued that com-
plex systems must be built by utilizing a modular structure. They demonstrate how in-
formation hiding and abstraction principles are to be followed in the design of the
Onboard Flight Program (OFP) for the A-7E aircraft by writing a hierarchical module
guide document. The guide is intended to achieve the following goals:

1. A software engineer should be able to understand the responsibility of a module
without understanding the module’s internal design;

2. A reader with a well-defined concern should easily be able to identify the relevant
modules without studying irrelevant modules;

3. The number of branches at each non-terminal module in the hierarchy graph should
be small enough so that the designers can prepare convincing arguments demon-
strating that the sub-modules have no overlapping responsibilities and that the
module covers all of the intended responsibilities.

102 D. Desovski and B. Cukic

These principles, since their introduction, have lead to the development of the ob-
ject oriented programming methodologies. We argue that the same principles should
be followed when writing the operational part (SCR tables) of any large SCR specifi-
cation. The responsibilities of the components should be stated by the property-based
part of the specification, creating a checklist for verification and validation of the
components and the system as a whole. The verification process is simplified if the
properties are stated on component boundaries (involving only the variables within a
single component), as advocated by Abadi and Lamport [1].

Given an SCR specification in tabular notation, dependencies between the vari-
ables can be observed easily. Dependency chains end with controlled variables, which
are generated by the system and affect the environment. They start with the moni-
tored variables, which are used by the system to observe the changes in the environ-
ment. How the monitored variables are used, and how the controlled variables are
produced is formally defined by the SCR specification and its constructs: tables, term
variables, mode class variables, etc.

Our hypothesis is that if a given SCR model has modular structure as advocated by
Parnas et al. in [16], then the boundaries of different subsystems in complex SCR
specifications can be automatically identified at the points of minimal coupling with
the rest of the specification. The expectation is that the subsystems generally trans-
form monitored variables into a smaller set of derived variables (term variables),
which are then further utilized to calculate the values of controlled variables.

We use minimum cut graph algorithms [5] on the dependency graphs to identify
these points of minimal coupling and decompose the system in smaller components.
The overarching idea is to apply a divide and conquer approach in the verification of
SCR specifications. The minimum cuts result in partitioning of the set of variables.
Each partition represents a smaller component of the specification. Only the proper-
ties that involve the variables contained in the given partition need to be used for its
verification.

Because of the decreased state space of the components, we expect to avoid the
state explosion problem while performing model checking, or if it happens, the same
decomposition procedure can be applied recursively to the components of interest.
After each component has been verified, the resulting abstract model will contain
fewer states that should be verified.

4.1 Decomposition of Variable Dependency Graphs

One approach to specification decomposition has been presented in [8]. The authors
propose an algorithm for slicing system specifications represented with Colored Petri
Nets. The slicing is performed by selecting a particular node of interests (CPN place
or transition) and following the control flow of the CPN backwards in order to iden-
tify arcs, places, guards and transitions that lead to that node. Cukic et al. [8] argue
that slicing the specification improves the understanding of the complex system mod-
els and helps with identifying high-risk components early in the life cycle.

The underlying ideas in [8] are very similar to our current approach: We want to
decompose complex system specifications to smaller, more manageable and under-
standable parts. Instead of ad-hoc decomposition criteria, we propose using minimum

 A Component-Based Approach to Verification and Validation 103

coupling, i.e., the boundaries of system components should have minimal coupling
(information exchange and/or control connectivity) with the rest of the system.

Several abstraction and slicing methods for SCR have been proposed in [3][11].
We summarize them below.

1. Removal of irrelevant variables. This method is similar to the “program slicing”
technique [17], which removes irrelevant variables for the purpose of program
analysis and understanding. Based on the property that we want to verify, only the
relevant variables for this particular property obtained by reflexive and transitive
closure on the dependency relation are preserved. This method is fully automated
and already implemented in the existing SCR toolset.

2. Removal of detailed monitored variables. If a relevant variable for a given property
is the only one that depends on a set of monitored variables, then these monitored
variables can be removed, and the relevant variable can be treated as a monitored
variable.

3. Replacement of a detailed variable with an abstract variable. In this case, the do-
main of a detailed variable is partitioned in equivalence classes and its size (the
number of distinct input values) is reduced to the number of classes taking one rep-
resentative for each class.

Methods 2 and 3 have not been fully automated [9]. We show how the minimum
cut graph algorithm can be used to decompose SCR specifications, as well as to
automate the abstraction Method 2. Our methodology provides automatic abstraction
of irrelevant monitored variables and provides guidance on how to perform verifica-
tion and validation of system models. The specification and domain experts can focus
their verification and validation efforts by combining the results and providing evi-
dence for the correctness of the system as a whole.

In order to apply the minimum cut algorithms, we transform the dependency graph
produced by the SCR tool to an undirected graph having specific properties of inter-
est. In general, we want to identify internal system variables that represent the points
of minimal coupling and, consequently, module boundaries. Therefore, partitioning
cuts can be applied to the vertices of the dependency graph only, and not to the edges.

We will represent each variable v of the specification by two vertices vin and vout
connected by the undirected edge (vin, vout). The weight of the newly introduced edge
will depend on the type of the variable. We do not want to split monitored (input) and
controlled (output) variables, since they cannot imply meaningful system partitions.
Therefore, these edges will have infinite weight, w(vin, vout) = ∞. Conversely, term and
mode variables will have their weights set to 1, w(vin, vout) = 1. Each undirected edge
(v, u) of the dependency graph (vout, uin) will assume weight w(vout, uin) = ∞, as we do
not want to cut any existing dependency edges either.

This transformation is linear on the number of vertices and edges requiring
O(n + m) time. It produces an undirected graph with 2n vertices and m + n edges. The
choice of the cost of the edges in our transformed graph will force the minimum cut
algorithm to produce cuts, as intended, on vertices only. Fig. 5 presents an example of
the dependency graph transformation.

104 D. Desovski and B. Cukic

v vout vin
1

∞

∞

∞

∞

Fig. 5. Transformation of the dependency graph to undirected graph

The application of the minimum cut algorithm will find a partitioning of the verti-
ces of the transformed graph in two sets, which minimizes the cost of the edges con-
necting the both sets. Thus, the cut will contain one or more edges with cost 1 and no
edges with infinite cost, thus performing partition of the variables of the specification
that crosses the minimal number of variables. The minimum cut algorithm can be re-
cursively applied to the obtained partitions in order to further decompose the system.
Since our transformation is linear and does not expand significantly the size of the
problem, the time required to calculate the minimum cut is still polynomial with re-
spect to the size of the specification.

Theorem 4: If an SCR variable r is the only variable which depends on several moni-
tored variables r1, r2, …, ri, then a minimum cut of the transformed graph will split
this variable.

rout rin
1

∞

∞

∞

∞

r1in
∞ r1out

ri-in
∞ ri-out

…

Fig. 6. Minimum cut of the transformed graph of a variable directly dependant on several moni-
tored variables

The proof is intuitive, by construction (see Fig. 6). If we generate the transformed
graph of this specific dependency, then the cut splitting the variable r has a cost of 1.
This is also a regular cut of the transformed graph because there are no other variables
that depend on the given set of monitored variables. Consequently, it is a valid mini-
mum cut, which will be identified by the algorithm. ■

Corollary 2: The proposed methodology automates the abstraction Method 2 – Re-
moval of Detailed Monitored Variables.

Corollary 2 follows directly from Theorem 4. Calculating the minimal cuts of the
transformed graph will automatically identify the variables to which this abstraction
method can be applied. ■

 A Component-Based Approach to Verification and Validation 105

The proposed methodology not only identifies the variables that directly depend on a
set of monitored variables, but it also identifies the variables that are deeper in the de-
pendency graph and have minimal coupling with the other parts of the system. These
variables, according to our hypothesis, are the “semi-controlled” variables defining
the boundaries of the subsystems contained in the specification. However, we must
note that this hypothesis might not hold, i.e., there are many ways one can write an
SCR specification for a given system, some of them better than others. Different
specifications might not follow generally recognized rules for writing good specifica-
tions. There is a list of properties that a specification should have; for example: being
complete, unambiguous and minimal. However, from the V&V perspective, the most
desired property and the most difficult to achieve is for the specification to be easily
verifiable. We argue that one measure that provides insight if a specification is “open”
to verification methodologies is whether it is decomposable, and one such test is our
proposed decomposition methodology.

4.2 The Strategy for Verification of Decomposable Models

Based on the theory presented in Section 3, we propose the following strategy for
verification of decomposable models. As stated previously, the overarching idea is to
apply a divide and conquer approach in the verification of SCR specifications. The
minimum cuts decomposition results in partitioning of the variables, where each par-
tition represents a smaller component of the complete specification. The verification
of these parts is performed against the properties involving only variables contained
in the given partition.

Jeffords and Heitmeyer in [15] present a strategy for verification that performs ab-
straction by removing a single variable from the specification and uses the automati-
cally generated invariants [14] for the abstracted variable to strengthen the deduction
rules. They state that the problem on how to decompose a given system for perform-
ing compositional verification is still open, and should be automatable and accessible
to non-experts. Our approach extends their work by considering components of the
specification (i.e. sets of variables) which have low coupling and information ex-
change with the rest of the specification. Instead of automatically generating invari-
ants for the abstracted components, our approach is to specify properties at the com-
ponent level and later try to prove that they are invariants and use them in the
certification process of the system as a whole.

Given a specification of a system Σ = (V, S, Θ, ρ) and a set P of desired properties
to be proven as invariants, we apply the following steps.

− Step 1. Apply the decomposition algorithm to obtain partitioning of the set of vari-
ables V, to disjoint subsets V1, V2, …, Vn.

According to our heuristic hypothesis, each of these sets should represent one compo-
nent of the system.

− Step 2. Construct each component system Σi from Vi, i = 1 to n, and Σ as follows:

1. Delete from Θ the initial state definitions of variables in V – Vi , and assign the re-
sult to Θi.

106 D. Desovski and B. Cukic

2. Delete from ρ the functions defining the variables in V – Vi, and assign the result
to ρi.

This step essentially makes all variables in V – Vi to behave as monitored variables for
the subsystem Σi,. In other words, by removing the functions defining them, these
variables can assume any allowed value non-deterministically. This introduces in-
completeness in the verification process in the following sense: in order to prove
some properties for the component that are necessary for the system correctness, we
might need to rely on some explicit or implicit assumptions that this component
makes about its environment or other interfacing components. The goal is to make all
needed assumptions explicit during the specification process, i.e. the created verifica-
tion checklist of properties should be complete in order to allow verification of the
system.

− Step 3. For each component Σi select those properties from the set P that depend
only on the variables found in Vi . Try to prove that these properties are invariants
for the component and, consequently, from the corollary of Theorem 3, invariants
for the system.

Our minimum cut decomposition approach guarantees that the component Σi has the
least number of dependencies on other system variables. Consequently, this selection
of properties ensures that most of the variables V – Vi will be abstracted away by us-
ing the abstraction method 1 and reduces the incompleteness of the component verifi-
cation process.

− Step 4. Use the compositional verification rules together with the invariants proven
in the previous step to prove the rest of the properties, or those properties which
have failed in step 3.

Each derived component represents an abstraction of the complete system. However,
components usually allow auxiliary behaviors that might invalidate the properties we
would like to prove. The minimum cut decomposition approach minimizes the de-
pendency of a single component on external variables, thus reducing auxiliary behav-
iors and making it often possible to prove invariants for the system without using ex-
tra invariants.

− Step 5. The properties that depend on variables contained in several components
can be demonstrated in parts if they can be represented as conjunction of compo-
nent properties. Or, they can be proven by creating larger subsystems from unions
of the required sets of variables Vi ∪ Vj and repeating the steps 2, 3 and 4.

Assuming that a given system specification Σ is decomposable; the proposed strategy
should improve the time and memory requirements for verification of the system
properties. In Section 5 we demonstrate how an SCR specification, which originally
was not decomposable, can be refactored into a decomposable specification. We iden-
tify the main principles for designing decomposable specifications and use the pro-
posed strategy to verify the required system properties.

 A Component-Based Approach to Verification and Validation 107

5 Case Study

We demonstrate our methodology on an SCR specification of Personnel Access Con-
trol System (PACS), originally described in a prose requirements document from the
National Security Agency [18]. The SCR specification had been originally developed
as an example on how to write high quality formal requirements specification.

A high quality requirements specification must not only be easy to understand and
change, precise, and unambiguous, it must also avoid implementation bias. In addi-
tion, it should be complete and consistent and organized as a reference document. Un-
fortunately, requirements specifications with all of these attributes are extremely rare.
The original specification was developed focusing on two important aspects of a high
quality requirements specification: the formulation of a set of system modes, which
make the specification more concise and easier to understand, and the design of the
specifications for ease of change.

5.1 PACS Description

PACS checks information on magnetic cards and uses PIN numbers to limit physical
access to a restricted area to authorized users. To gain access, the user swipes an ID
card containing the user's name and Social Security Number (SSN) through a card
reader. After using its database of names and SSNs to validate that the user has the
required access privileges, the system instructs the user to enter a four-digit personal
identification number (PIN). If the entered PIN matches a stored PIN in the system
database, PACS allows the user to enter the restricted area through a gate. To guide
the user through this process, PACS displays messages on a single-line display
screen. A security officer monitors and controls PACS using a console with the sec-
ond single-line display screen, an alarm, a reset button, and a gate override button.

To initiate the validation process, PACS displays the message “Insert Card” on the
user display. Upon detecting a card swipe it validates the user name and SSN. If the
card is valid, PACS displays “Enter PIN.” If the card is unreadable or the information
on the card fails to match the information in the systems database, PACS displays
“Retry” for a maximum of three tries. If after three tries the user's card is still invalid
or there is no match, the system displays “See Officer” on both the user’s display and
the officer’s display, and turns on an alarm (either a sound or a light) on the officer's
console.

Before system operation can resume, the officer must reset PACS by pushing the
reset button. The user, who also has three tries to enter a PIN, has a maximum of five
seconds to enter each of the four digits before PACS displays the “Invalid PIN” mes-
sage. If an invalid PIN is entered three times or the time limit is exceeded, the system
displays “See Officer” on both the user and the officer display. After receiving a valid
PIN, PACS unlocks the gate and instructs the user to “Please Proceed.” After 10 sec-
onds, the system automatically closes the gate and resets itself for the next user.

Fig. 7 presents a Visual Interface of the PACS system, which was used during the
development of the specification.

108 D. Desovski and B. Cukic

Fig. 7. Visual Interface of the PACS specification

5.2 Applying the Decomposition Procedure

The initial application of our decomposition algorithm on the PACS dependency
graph was not successful in the sense that it did not identify the components we were
expecting. Namely, from [18] we can see that PACS system has at least two compo-
nents: the card reader and the PIN reader. Our decomposition heuristic could not de-
tect these two components from the original specification leading to the conclusion
that information hiding principles (advocated by Parnas et al. in [16]) have not been
followed. After the careful review of the original specification and its dependency
graph, we concluded that there are several factors limiting the decomposability of this
specification:

• The behavior of the card reader is specified in the system status mode table, instead
of being encapsulated as a separate component;

• The behavior of the PIN reader is separated from the system status mode table,
however its information hiding can be improved (e.g. there are variables which are
not completely encapsulated, adding unnecessary dependencies);

• The specification contains two variables which directly affect most of the other vari-
ables in the system (mReset and mOverride). Although the behavior introduced by
these two variables is simple (e.g. reset of all the variables in the system by mRe-
set), they introduce additional dependency links that our algorithm cannot break.

To remedy the encapsulation problems, we refactored the original specification by
applying the following principles:

1. Define term variables to represent the result of the operation of each component,
thus encapsulating the internal component behavior.

2. Use mode classes for component specification.
3. Use the defined term variables when referring to the results of other components

(do not break the encapsulation and information hiding by using internal compo-
nent variables).

4. Avoid the use of global variables.

 A Component-Based Approach to Verification and Validation 109

To break the dependencies on the global variables, we had to remove them from
the specification. There are several ways this could be done in the future – we can de-
note these variables as global and relax the cost of the dependencies links that are
connected to them, allowing the decomposition algorithm to break these links.

For the PACS specification, we defined term variables tCardValid and tPINValid
to encapsulate the behavior of the two components. Both of them have the same do-
main {Unknown, Yes, No, Error} denoting that, for example, tCardValid is either Un-
known – we do not currently know the result of the card entry and validation, Yes –
the card is successfully swiped and validated, No – the card is not valid, or Error – the
user exceeded the number of allowed non-valid swipes. The Error state allows us to
encapsulate the tNumCReads variable, counting the number of non-valid swipes
within the component. For each component we used a mode class (mcCard and
mcPIN), which simplifies the specification of their behavior. The system mode status
table mcStatus and the other external variables to the components are changed only to
refer to the defined terms.

Input the name of the dependencies file:
PACS2NewDependencies.dg

Cut 1: cost = 1
mcCard_OUT, mcCard_IN, mCardInput_OUT, mCardInput_IN, mCardValid_OUT,

mCardValid_IN, tCardValid_OUT, tNumCReads_OUT, tNumCReads_IN,
Cut 2: cost = 1
mcPIN_OUT, mcPIN_IN, mDigit1_OUT, mDigit1_IN, mDigit2_OUT,

mDigit2_IN, mDigit3_OUT, mDigit3_IN, mDigit4_OUT, mDigit4_IN, mPIN-
Valid_OUT, mPINValid_IN, tNumPReads_OUT, tNumPReads_IN, tPINValid_OUT,

the rest of the system:
mcStatus_OUT, mcStatus_IN, cGate_OUT, cGate_IN, cGuardAlarm_OUT,

cGuardAlarm_IN, cGuardDisplay_OUT, cGuardDisplay_IN, cUserDisplay_OUT,
cUserDisplay_IN, mGate_OUT, mGate_IN, tCardValid_IN, tPINValid_IN,

No more cuts.

Fig. 8. Decomposition of the refactored PACS specification

After this refactoring, our decomposition algorithm correctly identified the two
components of the system, leaving only the control component (Fig. 8).

These changes in the operational part of the specification imply only small changes
in the specification of properties. Because we removed the mReset and mOverride
variables, we had to remove one of the properties which referred to these variables.
The rest of the properties were either unchanged or only had replacement of the
mCardValid or mPINValid monitored variables, with the corresponding term vari-
ables tCardValid and tPINValid.

We used the SPIN model checker with default options and increased the depth
limit to 180000 in order to achieve complete verification to verify all properties for
the complete refactored PACS specification. This took 35.405 seconds and required
553.342 MB of memory on a machine with Pentium M 1.5GHz processor and 1GB of
RAM.

110 D. Desovski and B. Cukic

5.3 Applying the Compositional Verification Strategy

• Step 1 of our verification strategy gives the following partitioning of the variables:
V1 = {mCardValid, mCardInput, tNumCReads, mcCard, tCardValid},
V2 = {mDigit1, mDigit2, mDigit3, mDigit4, mPINValid, mcPIN, tNumPReads, tPINValid},
V3 = {mGate, mcStatus, cGuardAlaram, cGuardDisplay, cGate, cUserDisplay}.

• In step 2, we derived the three components presented in Fig. 9, Fig. 10, and
Fig. 11. In the figures, we omitted the variables on which the components do not
have explicit dependency. Since the properties of interests for each component are
only those that depend on the variables within the component, the variables from
the set V – Vi are going to be abstracted by applying the abstraction method 1 de-
scribed in Section 4.1.

Fig. 9. The Card reading component

Fig. 10. The PIN Reading component

Fig. 11. The Control component

• Next, in step 3 we need to prove the properties that hold for the identified compo-
nents.

The verification of the Control component (Fig. 11) with SPIN took 0.093 seconds and
required 2.827MB of memory, establishing the following invariants for the system:

 A Component-Based Approach to Verification and Validation 111

AlarmStatus: (cGuardAlarm = On) <=> (cUserDisplay = SeeOfficer)

CardSuccess: ((cUserDisplay = InsertCard OR cUserDisplay = Retry) AND
 mcStatus = CheckCard AND @T(tCardValid = Yes)) => (cUserDisplay' = EnterPIN)

GateStatus: (cUserDisplay = PleaseProceed) <=> (cGate = Open)

PINSuccess: ((cUserDisplay = EnterPIN OR cUserDisplay = InvalidPIN) AND
 mcStatus = CheckPIN AND @T(tPINValid = Yes)) => (cUserDisplay' = PleaseProceed)

Safety: (cUserDisplay = SeeOfficer) <=> (cGuardDisplay = SeeOfficer).

The verification of the Card-Reading component takes 0.062 seconds and requires
2.724MB of memory, establishing the following invariants for the system:

CardErrors: (mcStatus = CheckCard AND @T(tCardValid = No)) =>
 (tNumCReads' = tNumCReads + 1)

NumCardErrors: (tNumCReads <= MaxCardError).

Similarly, the verification of the PIN-Reading component takes 2.327 seconds and
requires 55.320MB of memory, establishing the following properties as invariants:

NumPINErrors: (tNumPReads <= MaxPINError)

PINErrors: (mcStatus = CheckPIN AND @T(tPINValid = No)) =>
 (tNumPReads' = tNumPReads + 1).

We should note that the verification of the PIN-Reading component requires most
resources, because its state space is larger. Consequently, by applying step 3 of our
verification strategy, we verified 9 out of the 14 invariants, in total of 2.482 seconds
and requiring maximum 55.320MB of memory, which is for an order of magnitude
more efficient than performing verification on the complete system.

The rest of the properties include variables that span across more than one compo-
nent. We were not successful in applying the deduction rules in step 4 to prove the
remaining 5 properties, partly because the automated translation from the SCR toolset
to Promela currently does not handle assumptions. The results in using Salsa and
SMV suggest that the problem in verification of these 5 properties is the over-
approximation introduced by the decomposition. We would need to come up with ad-
ditional invariants or rewrite these properties, but that was not our goal in this study.

CardDisplay1: (tNumCReads > 0 AND tNumCReads < MaxCardError) <=>
 (cUserDisplay = Retry)

CardDisplay2: (tNumCReads = MaxCardError) => (cUserDisplay = SeeOfficer)

PINDisplay1: (tNumPReads > 0 AND tNumPReads < MaxPINError) <=>
 (cUserDisplay = InvalidPIN)

PINDisplay2: (tNumPReads = MaxPINError) => (cUserDisplay = SeeOfficer)

PINEntry: (@C(tPINValid) => (mcStatus = CheckPIN))

By using step 5 of our strategy and creating unions of components, we are success-
ful in verifying the rest of the properties. Combining the Card-Read and Control com-
ponents allows verification of the CardDisplay1 and CardDisplay2 properties in
0.124 seconds with 3.544MB of memory. More demanding is the union of the

112 D. Desovski and B. Cukic

PIN-Read and Control components, which allows verification of the remaining 3
properties in 16.734 seconds and 273.060MB or memory. Table 7 summarizes the re-
sults of the case study.

Table 7. The resources needed and number of verified properties for each component

Module Time (seconds) Memory (MB) Properties Proven

Complete PACS 35.405 553.342 14
Control 0.093 2.827 5
Card Read 0.062 2.724 2
PIN Read 2.327 55.320 2
Card Read + Control 0.124 3.544 2
PIN Read + Control 16.734 273.060 3

6 Conclusions

In order to perform verification and validation of complex system specifications, it is
beneficial to identify the sub-components, apply abstraction and compositional verifi-
cation methods. Our approach is based on the hypothesis that specification compo-
nents can be automatically identified at the points that have minimal coupling with the
rest of the system. In the case of SCR specifications, these points are presented by the
variables in the specification, and coupling appears in the dependency graph. Apply-
ing the minimum cut algorithms, we can identify these points in the graph and per-
form specification decomposition.

We observed that our hypothesis holds true for specifications that follow the prin-
ciple of information hiding. The proposed algorithms are polynomial and therefore
applicable to large specifications. We demonstrated that our algorithm automates the
abstraction procedure for removal of detailed monitored variables in the SCR specifi-
cations.

We presented the theoretical framework for compositional verification of the SCR
specification properties. The identified deduction rules are sound, but incomplete in
general, possibly requiring additional inductive invariants that should be used to
prove some of the system invariants. Although we are focusing on the SCR require-
ments model, the same approach should be applicable to similar formal models (e.g.
Reactive Modules [13]), and this is one of the subjects for future research.

Assuming that the specification under review is decomposable, we proposed veri-
fication strategy that provides significant reductions in the required time and memory.
Each derived component represents an abstraction of the complete system; however,
it usually allows additional behaviors that might invalidate the properties we would
like to prove. The minimum cut decomposition approach minimizes the dependency
of a single component on external variables. Our approach considers components of
the specification (i.e. sets of variables) which have low coupling and limited informa-
tion exchange with the rest of the specification. We specify properties at component
level, prove that they are system invariants, and use them in the certification process.
This does not always work, because of the additional behavior that the abstract com-
ponents might have when considered by themselves. The invariants proven this way

 A Component-Based Approach to Verification and Validation 113

can be used to prove additional invariants by using the strengthening compositional
and assume-guarantee rules.

During our experiments with the PACS system, we identified the basic principles
that need to be followed when writing decomposable SCR specifications. They echo
the long time advocated principles of modularity, encapsulation, and information hid-
ing in the software development process:

1. Define component border variables that will represent the result of the operation of
each component, thus enabling encapsulation of the internal component behavior.
In SCR models, these variables are represented as term variables.

2. Use variables that capture the internal state of the system modules in order to
achieve specification modularity and ease of change. In SCR models, these vari-
ables are represented as mode class variables.

3. Use the defined border variables (from 1) when referring to the results of other
components (do not break the encapsulation by using internal component vari-
ables).

4. Avoid the use of global variables, or break the dependencies caused by them.

The results of the PACS case study demonstrate the advantages of decomposable
specifications. Following the proposed verification strategy we achieved significant
reduction in time and memory required for automated verification. The strategy al-
lows us to perform the verification component by component, and combine the ob-
tained results.

References

1. Abadi, M., Lamport, L.: Conjoining Specifications. ACM Transactions on Programming
Languages and Systems 17(3), 507–534 (1995)

2. Alur, R., Brayton, R.K., Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Partial-Order Re-
duction in Symbolic State-Space Exploration. Formal Methods in System Design 18, 97–
116 (2001)

3. Bharadwaj, R., Heitmeyer, C.L.: Model Checking Complete Requirements Specifications
Using Abstraction. Automated Software Engineering 6, 37–68 (1999)

4. Bharadwaj, R., Sims, S.: Salsa: Combining Constraint Solvers with BDDs for Automatic
Invariant Checking. In: Proceedings of Tools and Algorithms for the Construction and
Analysis of Systems (2000)

5. Chekuri, C., Goldberg, A., Karger, D., Levine, M., Stein, C.: Experimental study of mini-
mum cut algorithms. In: Proceedings of the 8th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA’97), New Orleans, pp. 324–333 (1997)

6. Clarke, E.M., Grumberg, O., Long, D.E.: Model Checking and Abstraction. ACM Trans-
actions on Programming Languages and Systems 16(5), 1512–1542 (1994)

7. Courtois, P.J., Parnas, D.L.: Documentation for Safety Critical Software. In: proceedings
of 15th International Conference on Software Engineering, Baltimore, MD (May 17- 21,
1993)

8. Cukic, B., Ammar, H.H., Lateef, K.: Identifying High-Risk Scenarios of Complex Systems
Using Input Domain Partitioning. In: proceedings of the 9th International Symposium on
Software Reliability Engineering (ISSRE’98), November 4-7, 1998 Paderborn, Germany,
pp. 164–173 (1998)

114 D. Desovski and B. Cukic

9. Heitmeyer, C., Archer, M., Bharadwaj, R., Jeffords, R.: Tools for constructing require-
ments specifications: The SCR toolset at the age of ten. International Journal of Computer
Systems Science and Engineering 5, 95–114 (2005)

10. Heitmeyer, C.L., Jeffords, R.D., Labaw, B.G.: Automated consistency checking of re-
quirements specifications. ACM Transactions on Software Engineering and Methodol-
ogy 5(3), 231–261 (1996)

11. Heitmeyer, C., Kirby Jr., J., Labaw, B., Archer, M., Bharadwaj, R.: Using Abstraction and
Model Checking to Detect Safety Violations in Requirements Specifications. IEEE Trans-
actions on Software Engineering 24(11), 927–948 (1998)

12. Heitmeyer, C., Kirby, J., Labaw, B., Bharadwaj, R.: SCR*: A Toolset for Specifying and
Analyzing Requirements. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, Springer,
Heidelberg (1998)

13. Henzinger, T.A., Qadeer, S., Rajamani, S.K.: You Assume, We Guarantee: Methodology
and Case Studies. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 440–451.
Springer, Heidelberg (1998)

14. Jeffords, R., Heitmeyer, C.: Automatic Generation of State Invariants from Requirements
Specifications. In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, Springer, Heidelberg
(1998)

15. Jeffords, R.D., Heitmeyer, C.L.: A Strategy for Efficiently Verifying Requirements Speci-
fications Using Composition and Invariants. In: proceedings of 9th European Software
Engineering Conference held jointly with 11th International Symposium on Foundations
of Software Engineering (ESEC/FSE’03), Helsinki, Finland (September 1-5, 2003)

16. Parnas, D.L., Clements, P.C., Weiss, D.M.: Modular Structure of Complex Systems. In:
Proceedings of the 7th International Conference on Software Engineering, pp. 408–417
(1984)

17. Weiser, M.: Program Slicing. IEEE Transactions on Software Engineering SE-10(4), 352–
357 (1984)

18. Requirements Specification for Personnel Access Control System: National Security
Agency (2003)

A Pattern-Based Approach for Modeling and

Analyzing Error Recovery�

Ali Ebnenasir1,�� and Betty H.C. Cheng2

1 Department of Computer Science
Michigan Technological University
Houghton, Michigan 49931, USA

aebnenas@mtu.edu
http://www.cs.mtu.edu/∼aebnenas

2 Department of Computer Science and Engineering
Michigan State University

East Lansing, Michigan 48824, USA
chengb@cse.msu.edu

http://www.cse.msu.edu/∼chengb

Abstract. Several approaches exist for modeling recovery of fault-
tolerant systems during the requirements analysis phase. Most of these
approaches are based on design techniques for recovery. Such design-
biased analysis methods unnecessarily constrain an analyst when spec-
ifying recovery requirements. To remedy such restrictions, we present
an object analysis pattern, called the corrector pattern, that provides a
generic reusable strategy for modeling error recovery requirements for
embedded systems. In addition to templates for constructing structural
and behavioral models of recovery requirements, the corrector pattern
also contains templates for specifying properties that can be formally
verified to ensure the consistency between recovery and functional re-
quirements. Additional property templates can be instantiated and ver-
ified to ensure the fault-tolerance of the system to which the corrector
pattern has been applied. We validate our analysis method in terms of
UML diagrams, where we (1) use the corrector pattern to model recovery
in UML behavioral models, (2) generate and model check formal models
of the resulting UML models, and (3) visualize the model checking re-
sults in terms of the UML diagrams to facilitate model refinement. We
demonstrate our analysis method in the context of an industrial auto-
motive application.

Keywords: Requirements Analysis, Fault-Tolerance, Formal Methods,
Error Recovery, Corrector, UML.

� This work was partially sponsored by NSF grants EIA-0000433, EIA-0130724, CDA-
9700732, CCR-9901017, CNS-0551622, CCF-0541131, NSF CAREER CCR-0092724,
ONR grant N00014-011-0744, DARPA Grant OSURS01-C-1901, Siemens Corporate
Research, a grant from the Michigan State University’s Quality Fund, and a grant
from Michigan Technological University.

�� The work presented here was performed largely while this author was a postdoctoral
researcher at Michigan State University with support from NSF and ONR.

R. de Lemos et al. (Eds.): Architecting Dependable Systems IV, LNCS 4615, pp. 115–141, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.cs.mtu.edu/~aebnenas
http://www.cse.msu.edu/~chengb

116 A. Ebnenasir and B.H.C. Cheng

1 Introduction

High costs and complexity of developing fault-tolerant distributed systems are
largely due to the crosscutting nature of fault-tolerance concerns and the re-
quirement for coordinated recovery by system components [1]. The complexity
of developing fault-tolerant embedded systems is exacerbated as embedded sys-
tems should operate under the constraints of physical systems. Several existing
approaches (such as ROPES [2] and COMET [3]) put more emphasis on the
requirements analysis phase by developing and analyzing object-oriented con-
ceptual models (i.e., abstract implementation-independent models that capture
system requirements) of embedded systems before entering design and imple-
mentation phases. For example, ROPES [2] requires the development of both
structural and behavioral models that specify correctness conditions for design
solutions refined from a conceptual model. To facilitate the rigorous development
of fault-tolerant embedded systems, we follow the above approaches in presenting
a method for modeling and analyzing nonmasking fault-tolerance in embedded
software systems at the requirements analysis phase, where, in the ideal case, a
nonmasking fault-tolerant system guarantees error recovery [4].1

Numerous approaches exist for the design and implementation of recovery
from error conditions in sequential [6, 7] and concurrent (respectively, distrib-
uted) programs [1,8,9]. For example, Randell [6] presents the concept of recovery
blocks for implementing recovery in sequential programs and uses atomic actions
for the design of error recovery in asynchronous concurrent programs [1]. Cris-
tian [7] focuses on the concept of exceptional conditions and systematic handling
thereof. Schneider [8] presents a replication-based method for recovery from fail-
ures in client-server distributed systems. Saridakis [10] presents a set of design
patterns based on existing recovery mechanisms [9]. The UML profile for fault-
tolerance [11] and several aspect-oriented approaches [12,13,14] use redundancy
of services to mask faults, which is sometimes impractical and costly [15]. More-
over, most existing analysis methods for fault-tolerance [16, 17, 18, 19] assume
that a specific fault-tolerance design mechanism will be used (e.g., exception
handling, redundancy) and specify analysis requirements within those design
constraints. As such, error recovery requirements may be overly constrained and
preclude useful solutions or even finding a solution. For example, it is difficult
to specify and model self-stabilization [20] solely based on exception handling.
While a specific error recovery mechanism should certainly be considered at de-
sign time based on the constraints of the problem at hand, we believe that, at
the requirements analysis level, an abstract specification of error containment
and state restoration in distributed systems helps developers to detect the in-
consistencies between recovery and functional requirements independent of the
design and implementation techniques.

1 We emphasize that our proposed approach facilitates the creation and analysis of
the conceptual models of nonmasking fault-tolerant systems. For such models to
be realized in practice, one has to use fault-tolerance preserving refinements [5] to
develop design and implementation artifacts.

A Pattern-Based Approach for Modeling and Analyzing Error Recovery 117

In order to specify and analyze recovery for embedded systems, we introduce
an object analysis pattern, called the corrector pattern, that provides a reusable
strategy for eliciting and specifying error correction constraints in UML object
models. Object analysis patterns apply a similar approach to that used by design
patterns [21], but instead of focusing on design they address the construction
of the conceptual model of a system [2]. Patterns for the analysis stage of soft-
ware development are not new (see [22,23]). For example, Fowler [22] presents a
method for characterizing recurring ideas in business modeling as reusable analy-
sis patterns. Konrad et al. [23] present domain-specific object analysis patterns
for analyzing the conceptual models of embedded systems. We introduce the
corrector pattern that serves to modularize the requirements of error recovery,
thereby facilitating tracing and reasoning about recovery in different stages of
system development.

Our method comprises fault modeling, recovery modeling, and automated
analysis of the UML models of fault-tolerant embedded systems. Specifically,
to construct the UML model of a nonmasking Fault-Tolerant System (FTS),
we start with the UML model of its fault-intolerant version, where a Fault-
Intolerant System (FIS) meets its functional requirements in the absence of
faults (i.e., when no faults occur) and provides no guarantees in the presence of
faults (i.e., when faults occur). Then we model faults in the UML model of the
FIS to produce a model with faults. We use the notion of state perturbation to
model different types of faults in UML behavior diagrams [20, 4, 15]. Next, we
specify error states reached due to the occurrence of faults from where recov-
ery should be provided. Subsequently, we add instances of the corrector pattern
to the model with faults to model recovery and to generate a candidate UML
model of a nonmasking FTS. To generate a valid UML model of the nonmask-
ing FTS, we have to ensure that the candidate UML model is interference-free.
That is, in the absence of faults, the candidate model meets all functional re-
quirements of the FIS, and in the presence of faults, the candidate model meets
recovery requirements; i.e., when faults stop occurring, the system will eventu-
ally recover from error conditions. To ensure interference-freedom, we extend
McUmber and Cheng’s UML formalization framework [24] to generate formal
specifications of faults, fault-tolerance and functional concerns in the Promela
modeling language [25]. Subsequently, we use the SPIN model checker [25] to
detect inconsistencies between the corrector pattern and the functional UML
model. The automated analysis with the SPIN model checker coupled with a
new visualization tool, called Theseus [26], that animates counterexample traces
in terms of the original UML diagrams and generates corresponding sequence
diagrams enables a roundtrip engineering process for modeling and analyzing
recovery requirements.

We demonstrate our approach by modeling and analyzing an adaptive cruise
control (ACC) system in UML obtained from industry. We have also validated the
corrector pattern for several other industrial examples [27] including a diffusing
computation program for a hierarchical distributed system [28]. The remainder of
this paper is organized as follows. Section 2 presents an overview of the proposed

118 A. Ebnenasir and B.H.C. Cheng

approach. Section 3 introduces an approach to modeling faults and nonmasking
fault-tolerance in terms of UML state and sequence diagrams. Section 4 presents a
systematic method for eliciting and specifying error conditions. Section 5 presents
the corrector pattern. Section 6 focuses on formal analysis of the UML model of
FTSs using the model checker SPIN [25]. Section 7 discusses related work. Finally,
Section 8 gives concluding remarks and discusses future work.

2 Overview

In this section, we present an overview of our pattern-based modeling approach.
Figure 1 illustrates the steps of our approach (including modeling faults, specify-
ing error conditions, instantiating the corrector pattern, and automated analysis)
annotated with the relevant paper section number on the lower left corner of each
step. For a given FIS S and a fault-type f , we start from a valid UML model of S
that captures all global properties of S that should hold in the absence of faults
f . A UML model of S uses class diagrams to capture structural constraints of
S and uses behavior diagrams to capture the behaviors of S. Subsequently, we
model the effect of f on each component of S modeled as an object in UML.
Then we specify the error conditions that denote the set of states from where
recovery should be provided. Subsequently, to specify the requirements of de-
tecting and correcting error conditions, we compose instances of the proposed
corrector pattern with the UML model of S, which results in creating a candidate
UML model of a nonmasking version of S. To ensure the correctness of such a
composition, we first employ an extended version of the Hydra [24] formalization
tool to generate the Promela specifications of the candidate UML model. Then
we use the SPIN model checker to verify the correctness of the composition. If
the model checking is successful, then the candidate model is indeed a UML
model of a nonmasking fault-tolerant version of S. Otherwise, using the Theseus
visualization tool [26], we animate the analysis errors (illustrated as counterex-
amples) in the state and sequence diagrams. Using such a visualization, we help
developers to revise the candidate model to eliminate the inconsistencies be-
tween functional and recovery requirements. The revised model can again be
model checked until analysis is successful or an upper bound is reached in the
number of model checking attempts. The latter case indicates that, given the
available resources, we have not been able to verify that the current instance of
the corrector pattern is consistent with the functional concerns.

In our approach, we separate the functional concerns from fault-tolerance
concerns where we start with a valid UML model of the FIS and incrementally
add fault-tolerance concerns in terms of the instances of the corrector pattern.
The motivation behind such a separation of concerns is two-fold. First, fault-
tolerance is added only for dealing with faults, and the added fault-tolerance
concerns should not conflict with functional requirements in the absence of faults.
Second, fault-tolerance requirements evolve as we encounter new types of faults.
Thus, there exist two options: either (1) develop from scratch a system that meets
its functional requirements in the absence of f and provide desired functionalities

A Pattern-Based Approach for Modeling and Analyzing Error Recovery 119

Model faults in
state diagrams

Valid UML model of the FIS
(i.e., class/state diagrams)

UML model
with faults

Specify correction constraints
(i.e., error conditions)

Model check the
candidate

model using SPIN

Candidate UML model
(i.e., composition of the

functional UML model and
the corrector pattern)

Instantiate the corrector
pattern

in the UML model with
faults

Promela
specification of the
candidate model

Generate Promela
code using Hydra

An UML
model of the
nonmasking

FTS

Visualize the
counterexamples
using Theseus

Model
checking

successful?
Yes

No

Sec. 3

Sec. 4

Sec. 5

Sec. 6

Revise the
candidate model

manually

Modeling artifact

Process

Legend

Data flow

Decision

Fig. 1. An overview of the proposed approach

in the presence of f , or (2) incrementally add new fault-tolerance functionalities
while preserving the existing functionalities in the absence of f . We adopt the
latter as it seems to be less expensive than the former approach and better
handles legacy systems.

3 Modeling

In this section, we present the basic concepts of modeling FISs, faults, and
nonmasking fault-tolerance in UML. The motivation behind using UML is two-
fold. First, UML is a modeling language well-accepted in both academia and
industry. Second, UML state diagrams enable us to capture any form of recovery
that can be expressed in a state machine-based formalism.

120 A. Ebnenasir and B.H.C. Cheng

3.1 UML Models

We use conventional UML notations [29] to represent the UML-based conceptual
models of FISs (respectively, FTSs). Since our focus is on modeling and analyzing
fault-tolerant embedded systems, we follow Douglass [2] in using UML class dia-
grams to model structural constraints of (software and hardware components of)
embedded systems during the object analysis phase. We use UML behavior dia-
grams to capture high-level behavioral information of UML object models. The
combination of class and behavior diagrams yields a conceptual object analysis
model.

Depending on the semantics of object interactions, the complexity of auto-
matic analysis of an FTS varies from polynomial (in a shared memory model [30])
to undecidable (in an asynchronous message-passing model [31]). For example,
Kulkarni and Arora [30] show that automated analysis of nonmasking fault-
tolerance for models of distributed systems has an exponential complexity (in
the size of the model). To facilitate an automated analysis method with a man-
ageable complexity, we consider a high atomicity model where transitions of state
diagrams are executed atomically and any instance of message passing between
two objects takes place in an atomic step. An atomic transition is executed in
a test-and-set fashion. A motivation behind this assumption is that modeling
fault-tolerance in a high atomicity model provides an impossibility test in the
early stages of development (which could potentially reduce development costs).
That is, if a conceptual model of an FTS cannot be derived from the concep-
tual model of its fault-intolerant version in the high atomicity model, then it
would be impossible to derive a model of the FTS in a lower atomicity level. A
theoretical investigation of this claim can be found in [32].2

Underlying Computational Model. In a UML object model M with n
objects O1, · · · , On, we denote the state transition diagram of each object Oi by
SDi = < Si, δi >, where Si is the set of states in the state diagram SDi and
δi denotes the set of transitions of SDi (1 ≤ i ≤ n). A state of an object Oi is
a valuation of its state variables (i.e., attributes). A transition of Oi is of the
form (a, evt[grd]/act, b), where a and b are states, evt denotes a triggering event,
grd represents a guard condition and act denotes an action that Oi executes
during a transition from a to b. A global state predicate is defined over a set of
states of multiple objects. A local state predicate is specified over the set of states
of only one object Oi (i.e., Si). A scenario is a sequence of states 〈s0, s1, · · ·〉,
where each si is a state of some object Oj (1 ≤ j ≤ n). The messages in the
sequence diagrams correspond to the transitions in the state diagrams. We use
UML sequence diagrams to represent scenarios in that a sequence diagram may
capture multiple scenarios. A behavior of an object Oj (1 ≤ j ≤ n) is a scenario
〈s0, s1, · · ·〉 such that ∀si : i ≥ 0 : si ∈ Sj .

2 In cases such atomicity assumptions do not hold (e.g., distributed systems), one
can use existing tolerance-preserving refinement techniques (e.g., [5]) to generate a
refined model from a high atomicity model developed using our proposed approach.

A Pattern-Based Approach for Modeling and Analyzing Error Recovery 121

Modeling Functional Requirements. In order to model functional require-
ments, we extend Gouda and Arora’s [4] notion of closure, where a fault-tolerant
system remains in a set of legitimate states as long as no faults have occurred. A
set of legitimate states (also called an invariant) can be computed by identifying
the set of states that are reachable by system actions from a given set of initial
states. (Techniques of how to extract an invariant from user requirements are
beyond the scope of this work. Examples can be found in [33,34].) In the invari-
ant, no system action violates its safety and liveness requirements. Intuitively,
safety requirements stipulate that nothing bad ever happens and the liveness
requirements specify that something good will eventually occur. For example,
in a cruise control system, the actual speed of the car must not exceed 1% of
the desired speed set by the driver (i.e., safety), and when the driver applies the
brakes, the cruise control system will eventually be deactivated (i.e., liveness).
We represent safety requirements by a set of transitions, say B, that must not
occur in the behaviors of any object. Since we start with a functional model of
an FIS system that meets its safety and liveness requirements in the absence
of faults (i.e., when no faults occur) and incrementally model fault-tolerance,
we do not explicitly specify liveness requirements. Nonetheless, we require that
while modeling fault-tolerance concerns, no deadlock states (states with no out-
going transitions) should exist in the invariant of the nonmasking FTS. The
deadlock freedom requirement captures the fact that, in the absence of faults,
fault-tolerant embedded systems have non-terminating computations and always
react to their environment. We say a scenario 〈s0, s1, · · ·〉 meets safety require-
ments iff (if and only if) ∀i : i ≥ 0 : (si, si+1) /∈ B. A scenario 〈s0, s1, · · ·〉 meets
liveness requirements iff every state si, for i ≥ 0, has a next state and some
desired conditions eventually become true in that scenario. Thus, an invariant
has two properties: (1) starting from any state in the invariant, the subsequent
states are also in the invariant (i.e., closure), and (2) from every state in the
invariant, all scenarios meet safety and liveness requirements. A UML model M
meets its functional requirements iff there exists a non-empty invariant I for M .
A functional scenario is a scenario whose states all belong to the invariant.

Running Example: Adaptive Cruise Control (ACC). The ACC system
comprises a standard cruise control system and a radar system to automatically
adjust the distance between the car and the front vehicle (i.e., target vehicle)
for collision avoidance; the ACC requirements were obtained from industrial
collaborators. The ACC system has different modes of operation (see Figure 2),
namely closing, coasting, matching, disengaged or resume mode. When the radar
detects a target vehicle, the ACC system enters the closing mode. In the closing
mode, the goal is to control the way that the car approaches the target vehicle,
and to keep the car in a fixed trail distance from the target vehicle with a zero
relative speed. The trail distance is the distance that the target vehicle travels
in a fixed amount of time (e.g., 2 seconds). The distance to the target vehicle
must not be less than a safety zone, which is 90% of the trail distance. The ACC
system calculates a coasting distance that is the distance at which the car should

122 A. Ebnenasir and B.H.C. Cheng

start decelerating in order to achieve the trail distance; i.e., the car enters the
coasting mode. In the matching mode, the relative speed of the car is zero; i.e.,
the speed of the car matches the speed of the target vehicle. In cases where the
speed of the car is so fast (greater than a maximum speed vmax) that a collision
is unavoidable, the ACC system must raise an alarm for the driver, and must
deactivate the cruise control system, i.e., the disengaged mode. When the radar
loses the target vehicle and the cruise control system is active, the system is in
the resume mode.

Fig. 2. The adaptive cruise control system

The class diagram of the ACC system includes three main classes, namely
Control, Car, and Radar (see Figure 3). (We use Sans Serif font to denote state
variables, methods and classes.) (i) The Control class has a set of Boolean state
variables that represent different modes of the ACC system. The Brakes state
variable is set when the control receives a signal from the brakes subsystem
indicating that the brakes have been applied. The ACC system must be disen-
gaged when the Control receives a Brakes signal. The method setpUpdate() updates
the setpoint, which is the desired speed determined by the driver. The Radar
sets Control.target to true by invoking the targetDet() method. Depending on the
computed trail distance, the Control object also calculates the safetyZone such
that the distance to the target vehicle never becomes the safetyZone value. (ii)
The Car class models the engine management functionalities such as acceleration
and deceleration. A Car object matches the real speed of the car, denoted realv,
with the setpoint (using the method matchSpeed()). The car calculates its real
speed using the data received from the speed sensors located in the car. The
getRealV() method may be invoked by the Control to receive the real speed of
the car. (iii) The Radar measures the distance of the car to the target vehicle,
kept in the state variable currDist, which is also used by the Control by invok-
ing Radar.getDistance().The Radar also measures the speed of the target vehicle
(kept in Radar.targetSpeed) that can be accessed using the Radar.getTargetSpeed()
method.

An invariant of the ACC system (denoted IACC) is a global state predicate
that specifies a set of states, in which (i) if a target vehicle has been detected then
the ACC system is in one of the following modes: closing, coasting, matching,
or disengaged; (ii) the distance with the target vehicle is greater than the safety

A Pattern-Based Approach for Modeling and Analyzing Error Recovery 123

+getRealV()
+matchSpeed()
+isAccelerating()
+setDisengaged()

-realv : double
-disengaged : bool

Car

+TurnOn()
+TurnOff()
+getDistance()
+getTargetSpeed()

-currDist : double
-on : bool
-targetSpeed : double

Radar

+setpUpdate()
+targetDet()
+isCoasting()
+setDistance()

-closing : bool
-coasting : bool
-matching : bool
-target : bool
-alarm : bool
-resume : bool
-setpoint : double
-Brakes : bool
-safetyZone : double
-v_max : double

Control

Samples speed Controls throttle

Monitors
1 1

111 1

Fig. 3. Excerpted class diagram of the ACC system

zone distance; (iii) if the ACC system is in the cruise mode and the target is
lost then ACC will go to the resume mode; (iv) if the driver applies the brakes
then the ACC system must be in the disengage mode, and (v) if the closing
speed of the car is greater than the maximum speed vmax, then the ACC system
must alarm the driver of a potential collision and must disengage. Therefore, the
invariant IACC is equal to the following set of states:

{s : (target(s) ⇒ (closing(s) ∨ coasting(s) ∨ matching(s) ∨ disengaged(s))) ∧
(safeyZone(s) < currDist(s)) ∧ ((¬target(s) ∧ cruise(s)) ⇒ resume(s)) ∧

(Brakes(s) ⇒ disengaged(s)) ∧
(realv(s) > vmax(s) ⇒ (alarm(s) ∧ disengaged(s)))}

Notation. var(s) denotes the value of a system variable var in a state s.
Note that the above predicate is specified in terms of the variables of all three

objects. The variables target, closing, coasting, matching, resume, alarm, Brakes, vmax

and safetyZone belong to the Control object. disengaged and realv are state variables
of the Car object, and currDist is in the Radar object.

3.2 Modeling Faults in UML

In this section, we illustrate how to model faults in UML behavior diagrams
in the context of the ACC system. Since our focus is on the behavioral object
models, we omit the fault modeling at the class diagram level (see [27] for
details).

Modeling Faults in State Diagrams. We systematically model a fault-type
as a set of transitions in UML state diagrams (see Figure 4). Representing faults
as a set of transitions has already appeared in previous work [20, 15], and it
is known that state perturbation is sufficiently expressive to represent different
types of faults (e.g., crash, input-corruption, Byzantine) from different behav-
ioral categories (e.g., transient, intermittent, permanent) [20, 15]. Moreover, we
assume that faults stop occurring in a finite amount of time so that eventually

124 A. Ebnenasir and B.H.C. Cheng

recovery can occur [20, 35]. Depending on the occurrence of faults, we classify
faults into two categories of conditional and arbitrary faults. A conditional fault-
type may occur only in particular states of the state transition diagram of an
object. An arbitrary fault-type has no precondition and may occur at any state
(e.g., environmental noise). Given a conditional fault-type f , we model the effect
of f on the state diagram SDi of each object Oi by introducing a new set of
transitions in SDi denoted fi, for 1 ≤ i ≤ n (see Figure 4). We denote the set
of transitions of SDi in the presence of faults fi by δi ∪ fi.

We model an arbitrary fault-type as a separate fault state transition diagram
(e.g., FD1 in Figure 5) that executes concurrently with an object state diagram
(e.g., SD1 in Figure 5). In Figure 5, the transitions of the arbitrary faults in FD1

may trigger at any state of the state diagram SD1. Modeling fault transitions
is a modeling activity similar to drawing regular transitions of an object Oi in
its state diagram SDi. The key difference is in the semantics of fault transitions
in that an object Oi does not have control over the execution of faults fi (see
dashed arrows in Figure 4), whereas the execution of regular transitions (see
solid arrows in Figure 4) is controlled by the thread of execution in Oi.

State1 State2

State4 State3

ErrorState_1 ErrorState_2

ErrorState_3

ErrorState_5

ErrorState_4

Object transitions Transitions of fault-type

Legend: Object transitions
in the fault-spanfi

Fault-Span

Invariant
fi

Fig. 4. Modeling conditional faults in UML state diagrams

When modeling a fault type fi in a state diagram SDi of the UML model of
the FIS, modelers should identify the effect of fi on the behavior of each object
Oi. In the absence of faults, an object Oi of the FIS is in its invariant. When
fi occurs, Oi may reach error states that are outside its invariant.3 Modelers
should identify the scope of the states reachable by a combination of fault and
regular transitions from the invariant, which is called the fault-span of Oi for
3 Faults are the cause of errors, and from error states failures may occur [36].

A Pattern-Based Approach for Modeling and Analyzing Error Recovery 125

fault fi (denoted fi-span of Oi) [30]. For example, in Figure 4, all error states
are only reachable when faults occur. Thus, introducing faults in a state diagram
may require new states and transitions to be added to that state diagram. In
fact, given a UML model M , its invariant I and a fault-type f , starting from
I, the set of states reachable by a combination of fault and system transitions
comprises the global fault-span of M , denoted f -span of M . More precisely, the
f -span of M has two properties: (1) the f -span of M contains I, and (2) starting
from every state in the f -span of M , any fault or system action will result in
another state in the f -span; i.e., closure of the f -span of M in the set of system
and fault actions. In Figure 5, the fault-span is identified by calculating the
asynchronous automata-theoretic product of the two state machines SD1 and
FD1, which results in a new state diagram that simultaneously includes fault
and regular transitions. A behavior of an object that originates in its fault-span
outside its invariant may lead to failures (i.e., violate safety requirements, fall
into non-progress cycles, or reach a deadlock state). For example, in Figure 4, if
the object is in State1 then the faults fi may non-deterministically transition to
ErrorState 1 from where the object may either be trapped in a non-progress cycle
(comprising ErrorState 1 and ErrorState 2) or be deadlocked in ErrorState 5.

Object
State Transition Diagram

Fault
State Transition Diagram

SD_1

FD_1

SD_ArbitraryFaults

Fig. 5. Modeling arbitrary faults in a state diagram

ACC Example: The ACC system is subject to an arbitrary fault-type fACC that may
non-deterministically set the disengaged signal in the Car object to false. Hence, we
model the effect of fACC on the Car object as a state machine concurrent with the car
state machine (see Figure 6). Note that in the fACC state machine in Figure 6, once
the fault transition from State1 to State2 sets Car.disengaged to false, Car.disengaged
remains false until a system recovery action resets it back to true.

Modeling Faults in Sequence Diagrams. In UML sequence diagrams, we
model the effect of a fault-type fi on an object Oi as a self message to Oi that
may occur non-deterministically (see Figure 7). Such a representation of faults
in sequence diagrams is based on how faults are modeled in the state diagram
of Oi. Thus, modeling faults in SDi affects all sequence diagrams in which Oi

is involved. Such sequence diagrams represent scenarios with faults. Formally,
a scenario with fault f is a sequence of states σ = 〈s0, s1, · · ·〉, where for every

126 A. Ebnenasir and B.H.C. Cheng

transition t = (si, si+1) in σ either t is a valid transition of a functional object or
t is a fault transition. To identify scenarios with faults, modelers should update
every scenario in which Oi is involved, and should discover failure scenarios
that could take place due to the occurrence of faults. The identification of such
failure scenarios helps developers to recognize the functional objects that could
participate in recovery.

CalculatingRealV

if ~disengaged then Accelerate if ~disengaged then Decelerate

[(Realv > setpoint) AND
(~disengaged)]

[(Realv < setpoint) AND
(~disengaged)]

[disengaged]

State1 State2

[disengaged] /
disengaged := false

[~disengaged]

Fault transition System transition

Legend:
State

fACC state machine

Excerpted state machine
of the car object

Event[guard]/action
~ denotes
 negation

Event[guard]/action

Car_WithFaults

Fig. 6. Modeling faults in the state transition diagram of the car

ACC Example: In Figure 7, once the Control detects a Brakes signal, it invokes
Car.setDisengaged() illustrating that the engine controller should be deactivated
(i.e., disengaged). However, if faults fACC occur, then the disengaged flag will be
reset to false, which in turn results in the reactivation of the engine controller,
possibly resulting in acceleration while brakes are applied. This is a scenario with
faults that must be corrected.

UML models with faults. Modeling a fault-type f in the state diagrams of
a UML model M creates a UML model Mf that has been augmented with fault
f . We call Mf a UML model with faults f .

Comment on the complexity of modeling faults, fault-span and scenar-
ios with faults. The proposed modeling approach in this section includes three
main tasks, namely modeling (conditional or arbitrary) faults in state diagrams,
modeling fault-spans in state diagrams and modeling scenarios with faults. The
fault modeling task should be done manually and the other two tasks can be
automated. While modeling (conditional and arbitrary) fault transitions in state

A Pattern-Based Approach for Modeling and Analyzing Error Recovery 127

diagrams may seem to be a tedious task for large systems, we argue that (1) the
scale of such a modeling activity does not go beyond the complexity of modeling
regular transitions in the state diagrams of all functional objects, and (2) tech-
niques that facilitate the modeling of regular transitions can directly be reused
to facilitate fault modeling. In cases where more than one type of fault should
be modeled, UML extension techniques (e.g., stereotyping) would help develop-
ers to distinguish the transitions of different fault-types and their corresponding
fault-spans. Since it is difficult to manually identify all scenarios with faults
(respectively, model the fault-span of an object) and the number of such sce-
narios may increase exponentially, we are currently investigating the integration
of a software tool we have previously developed [37, 38], called Fault-Tolerance
Synthesizer (FTSyn), in UML as FTSyn automatically generates fault-span and
scenarios with faults in terms of finite-state automata.

ctrl: Control c: Car r: Radar

Accelerate()

The occurrence of faults
leads to acceleration while

brakes are applied

targetDet()

closing := true;

disengage()

Brakes := true

Ack

disengaged := false

faults occur

fACC

Fig. 7. Coasting scenario in the presence of fACC

3.3 Modeling Nonmasking Fault-Tolerance

In this section, we extend the definition of nonmasking fault-tolerance from
Arora [15] in the context of UML models. Intuitively, nonmasking fault-tolerance
requires recovery to the invariant after faults stop occurring [15]. More precisely,
let S be an FIS, I be an invariant of S, and f be a given fault-type perturbing
the state of S. (Note that the FIS S provides no guarantees about its behavior
when f occurs.) A system S′ is a nonmasking f -tolerant (i.e., nonmasking fault-
tolerant against f) version of S if and only if the following conditions are satisfied:
(1) in the absence of f , the FTS S′ meets the functional requirements specified
for S, and (2) in the presence of f , the FTS S′ guarantees recovery to I.

Before defining what we mean by a nonmasking fault-tolerant UML model, we
define recovery scenarios. Let M be a UML model of S and I be an invariant of
S defined in M . We say a scenario σ = 〈s0, s1, · · ·〉 in M recovers to the invariant
I iff ∃i : i ≥ 0 : si ∈ I. Note that once a state in the invariant is reached, the

128 A. Ebnenasir and B.H.C. Cheng

closure property guarantees that the system remains in the invariant as long as
there are no faults. We say a scenario σ in the UML model M violates recovery
requirements iff σ does not recover to the invariant of M . Violation scenarios
could take place if a deadlock state or a non-progress cycle is reached due to
the occurrence of f . We say a UML model M recovers to the invariant I iff
all scenarios of M recover to I. Accordingly, a UML model M violates recovery
requirements iff there exists a scenario that violates recovery requirements. We
say a UML model M ′ (derived from M) is nonmasking f -tolerant if M ′ satisfies
the following conditions: (1) the set of functional scenarios of M ′ is a non-empty
subset of the set of functional scenarios of M starting in a subset of I, and (2)
all scenarios with fault f recover to I.

4 Specifying Error Conditions

In order to model recovery, we need to specify the set of error states from where
recovery should be provided. The notion of invariant simplifies the task of spec-
ifying error states as it characterizes the set of states from where functional
requirements are guaranteed to be met in the absence of faults. The occurrence
of faults may falsify the invariant, thereby reaching states from where failures
may occur. Thus, for a given UML model M and its invariant I, the weakest set
of error states is ¬I. However, some states in ¬I may be unreachable by either
system or fault actions. In fact, for a specific fault-type f , the set of reachable
error states is equal to the intersection of ¬I and FS − I, where FS denotes
the f -span of M . A fault-intolerant system may stay in FS − I forever for two
reasons: reaching a deadlock state or falling in a cycle whose states all belong to
FS − I (called a non-progress cycle).

In order to ensure recovery, we have to resolve deadlock states and non-
progress cycles. For programs whose processes can read and write all program
variables in an atomic step, resolving deadlock states amounts to the addition
of actions that establish the truth value of I once it is falsified. Such actions
are called convergence actions [4] as they guarantee the convergence of system
behaviors to its invariant. Likewise, non-progress cycles can be resolved by break-
ing cycles and adding convergence actions. However, in concurrent and distrib-
uted programs, resolving deadlock states and non-progress cycles is a non-trivial
task [30, 39]. To illustrate the complexity of providing recovery, consider a dis-
tributed program with two processes and an invariant ((x − y) = c) ∧ (y ≥ z),
where x, y, and z are program variables and c is a constant. In an error state
where the invariant does not hold, a process that cannot read z may decrease the
value of y to establish the equality (x − y = c) for the sake of recovery. This re-
covery action may potentially violate the second conjunct of the invariant due to
decreasing the value of y. In such cases, convergence should be provided in a co-
ordinated fashion. In the above example, if y is left unchanged and each process
is allowed to modify only one of the variables x and z, then coordinated recov-
ery is achievable. In the next section, we present the corrector pattern, which

A Pattern-Based Approach for Modeling and Analyzing Error Recovery 129

facilitates modeling and analysis of the recovery of concurrent and distributed
programs and provides a means to verify the correctness of such recovery.

5 Corrector Pattern

In this section, we introduce a template for the corrector pattern that we use for
modeling and analyzing nonmasking fault-tolerance. We have also developed a
corresponding detector pattern [27] to specify error detection, but due to space
constraints, we do not include it here. While design patterns are traditionally
classified in terms of structural, behavioral, and creational patterns [21], the
corrector pattern provides a reusable strategy (for decomposing error conditions)
that can be refined to different design mechanisms. In order to facilitate its
use, we define a template for the corrector pattern based on the fields used
in the design patterns presented by Gamma et al. [21], with modifications to
reflect analysis-level information. For example, we do not use the Implementation
and Sample Code fields. The Structure field captures structural constraints of the
corrector pattern represented by UML class diagrams. The corrector pattern
also includes several new fields that are added for the purpose of specifying and
analyzing fault-tolerance concerns. For example, the corrector pattern includes
the Correction Requirements field that specifies a set of requirements that must
be met by the corrector pattern to ensure that the corrector pattern is itself
nonmasking fault-tolerant. We use the ACC system to demonstrate how to use
the corrector pattern to add nonmasking fACC -tolerance to the ACC system.
Next, we describe the fields of the corrector pattern. Example application of each
field to the ACC system is denoted in italics.

Intent. The corrector pattern captures the recurring problem of restoring the
state of a computing system from one state predicate to another (e.g., from
outside an invariant to the invariant).

Correction Predicate. A correction predicate, say X , is a condition whose
truth value should be established (e.g., invariant). In a UML model M , a cor-
rection predicate is a state predicate that could be either local or global. In
a distributed system, it is difficult for an object to correct a global correction
predicate X in an atomic step [40]. Thus, it is desirable to decompose X into
a set of local predicates X1, · · · , Xn, and to specify the correction of X based
on the correction of X1, · · · , Xn, where each Xi (1 ≤ i ≤ n) represents the local
state of a system component. Since global deadlock and non-progress conditions
are often specified in terms of a conjunction of the local state of all objects, we
limit the scope of the application of the corrector pattern to the correction of
conjunctive error predicates.4

ACC Example: The occurrence of fACC may perturb the ACC system to a state
s, where the cruise control system is engaged in engine management even though

4 Conjunctive predicates comprise an important class of predicates in distributed sys-
tems [41].

130 A. Ebnenasir and B.H.C. Cheng

brakes have been applied. This introduces a deadlock state as long as the brakes
are applied. We represent this error condition by the conjunctive predicate
(Xcontrol ∧ ¬Xcar) that should be corrected, where Xcontrol ≡ Control.Brakes and
Xcar ≡ Car.disengaged. The correction predicate XACC is the negation of the
above error condition, i.e., XACC ≡ ¬(Xcontrol ∧ ¬Xcar) ≡ (Xcontrol ⇒ Xcar).
Note that if XACC is false (i.e., error has occurred), then the invariant IACC
(specified in Section 3) is violated. To provide nonmasking fACC-tolerance, we
must ensure that the condition XACC will eventually hold after fACC stops oc-
curring. Moreover, in the context of the ACC example, there is only one way to
correct XACC; it is by setting the state variable Car.disengaged to true (because the
state variable Control.Brakes represents an input signal and cannot be changed).

Corrector Elements (Participants). We use corrector elements ci, 1 ≤ i ≤
n, such that each ci is responsible for correcting Xi. Each corrector element ci is
indeed a participant of the corrector pattern and has its own correction predicate
Xi.5

Distinguished Element. An element cindex (1 ≤ index ≤ n) that finalizes the
correction of X based on the correction of X1, · · · , Xn is called the distinguished
element.

Structure. We present two basic structures for the corrector pattern: sequen-
tial and parallel. The correction of X can be done either (i) sequentially, where
participants ci, for 1 ≤ i ≤ n, correct their correction predicates Xi one after an-
other, or (ii) in parallel, where all elements ci correct their correction predicates
concurrently. For example, if the inter-object associations in an UML object
model form a linear (respectively, hierarchical) structure then a sequential (re-
spectively, parallel) corrector is more appropriate. We illustrate the structure
of the sequential corrector pattern in Figure 8. The shadowed objects repre-
sent the elements of the corrector pattern encapsulated in a dashed box that
denotes an instance of the corrector pattern. The distinguished element of the
corrector pattern is depicted by the dark shading. A combination of sequential
and parallel correctors may also be used for the correction of a predicate. Due
to space constraints, we omit the presentation of such combinations and the
parallel corrector (see [27] for details).

In Figure 8, each corrector participant ci is associated with a class Classi

in which the predicate Xi (1 ≤ i ≤ n) should be corrected. (Note that Classi

may be associated with multiple corrector elements, each belonging to a differ-
ent instance of the corrector pattern.) The distinguished element is associated
with the participant cn, which establishes the correction of Xn and X . Figure 9
illustrates the application of an instance of the sequential corrector to the class
diagram of the ACC system.

5 In the design and implementation phases, the corrector elements may be realized as
independent software/hardware components that execute concurrently with other
components of an embedded system. We conjecture that any additional execution
overhead on system performance incurred by adding corrector elements would not
be worse than the use of conventional redundancy mechanisms.

A Pattern-Based Approach for Modeling and Analyzing Error Recovery 131

Class_1 Class_n

. . .
c_1 c_n

. . .

1

*

1

*

Class_2

c_2

Class_(n-1)

c_(n-1)

1

*

1

*

Witnesses for Witnesses for

corrects corrects corrects corrects

The n-th corrector is the distinguished element that corrects X

Partial System Model

Sequential Corrector

Fig. 8. The structure of the sequential corrector

Controls throttle

c_car

detect_Brakes correct_disengaged

CarControl

c_control

11

Witnesses for

Radar

Monitors
1 1

Samples speed

1 1

Fig. 9. Composition of a sequential corrector pattern with the ACC system

Witness Predicate. Since we decompose the global correction predicate X into
a set of local correction predicates X1, · · · , Xn, we should specify what implies
the truth value of X . Towards this end, we introduce the notion of a witness
predicate Z that is a local condition belonging to the distinguished element of
the corrector pattern. The truth value of the witness predicate is an indication
that X has been corrected. We also consider a witness predicate Zi for each
element ci to represent that ci corrects Xi. We say ci witnesses iff Zi is true. In
the case of the sequential corrector, the distinguished element cindex (i.e., cn)
sets the value of Zindex (i.e., Zn) to true if c1, · · · , cn−1 witness their correction
predicates and Xn holds.

Invariant. The invariant of the correction pattern is a state predicate IC such
that IC = {s : (∀i : 1 < i ≤ n : (Zi(s) ⇒ (∀j : 1 ≤ j < i : Zj(s))))}. Intuitively,
it means that, in an invariant state s, if a corrector element ci witnesses, then
all its predecessors should also witness.

Behavior. The state diagram of each corrector element ci in Figure 8 is con-
currently composed with the state diagram of its associated class Classi in order

132 A. Ebnenasir and B.H.C. Cheng

to create a composite concurrent state transition diagram. Figure 10 depicts a
possible scenario for correcting a predicate X ≡ (X1 ∧ X2 ∧ · · · ∧ Xn) in a se-
quential fashion. The distinguished element can witness if all its predecessors
c1, · · · , cn−1 have already witnessed their correction predicates. In other words,
if Z holds then Z1 ∧ · · · ∧ Zn must hold as well. Notice that, for nonmasking
fault-tolerance, we do not explicitly impose any order on the recovery of cor-
rector elements as long as recovery to the invariant is guaranteed. Nonetheless,
depending on the problem at hand, satisfying the above requirement may require
us to impose a specific recovery order. For example, in a token ring protocol, the
direction of token circulation should be consistent with the order of recovering
elements.

c_1: Corrector c_(n-1): Corrector c_n: Corrector. . .

corrected?

c_2: Corrector

corrected?
. . .

witness

Distinguished
element

Yes

Yes

Fig. 10. The behavior of a sequential corrector

ACC Example: The instance of the corrector pattern applied to the ACC system
comprises two elements ccontrol and ccar modeled as two new objects in the UML
model of the ACC system (see Figures 9 and 11). The element ccontrol behaves
as a detector that only monitors the state of the Control.Brakes signal (i.e., de-
tects Xcontrol) and the element ccar should correct Xcar when it is false; i.e.,
when Car.disengaged is false, it should be set to true. The element ccontrol sets
its witness predicate Zcontrol to true when Xcontrol holds; i.e., when brakes are
applied. The element ccar sets its witness predicate Zcar to true when Xcontrol

and Xcar hold. The invariant of the corrector pattern is equal to Zcar ⇒ Zcontrol.
More specifically, ccar continuously checks with ccontrol to see whether brakes are
applied or not. If ccontrol witnesses, then ccar corrects its correction predicate
(i.e., Xcar ≡ Car.disengaged) if necessary. Such a correction is established by a
local corrective action that sets the state variable Car.disengaged and the witness
predicate Zcar to true.

Correction Requirements. In order to ensure the recovery of the composition
of an instance of the corrector pattern with the UML model of an FIS, the
behavior of the corrector pattern and its participants should meet the following
requirements (from [42]): (1) Safeness. It is never the case that the witness

A Pattern-Based Approach for Modeling and Analyzing Error Recovery 133

predicate Z is true when the correction predicate X is false; i.e., the corrector
pattern never lies. (2) Progress. It is always the case that if X becomes true then
Z will eventually hold. (3) Stability. It is always the case that once Z becomes
true, it will remain true as long as the predicate X is true (i.e., Z remains
stable). (4) Convergence. The correction predicate X will eventually hold and
will continuously remain true. Each participant ci should also meet the above
requirements for Zi and Xi. The first three requirements (safeness, stability, and
progress) specify the requirements for the detection of the predicate X while the
convergence states that X will eventually hold. A pattern that only meets the
safeness, progress, and stability requirements guarantees to detect the correction
predicate X if it ever holds, but does not guarantee to establish X if it is falsified.
In special instances of the corrector pattern, we may have some participants ci

that perform only as a detector.
The correction requirements can be specified in Linear Temporal Logic (LTL)

[43] using (i) the universal operator �, where �Y means that the state predicate
Y always holds; (ii) the next state operator ©, where ©Y means that in the
next state Y holds, and (iii) the eventuality operator �, where �Y means that
the state predicate Y eventually holds. We respectively specify safeness and
stability as �(Z ⇒ X) and �(Z ⇒ (©(Z ∨ ¬X))). We specify progress as the
following LTL expression: �(X ⇒ �Z), and the LTL formula �(�X) specifies
the convergence requirement.6

Nonmasking fault-tolerance of the corrector pattern. Since the instances
of the corrector pattern are also subject to faults, we must ensure that the
corrector pattern is itself nonmasking fault-tolerant to the effect of faults. To
guarantee the nonmasking fault-tolerance of the corrector pattern, it has to
eventually recover to its invariant IC . For example, if faults occur after some
corrector element ci (i > 1) witnesses, then the witness predicate of some cj ,
for 1 ≤ j < i, may be falsified due to the effect of faults. As a result, the
invariant Zi ⇒ (∀j : 1 ≤ j < i : Zj) will no longer hold. However, since Xj holds
(notice that Zj was set to true because Xj had become true at some point),
after faults stop occurring, the progress property of the element cj guarantees
that Zj will again become true, thereby resulting in the recovery of the entire
corrector pattern to its invariant IC . In another scenario, the effect of faults may
cause Zi to become true while none of its predecessors has witnessed, thereby
violating the invariant predicate IC . (In this case, faults directly violate the
safety of the corrector pattern, which is not a concern since recovery to IC is
the only requirement.) Since the convergence requirement guarantees that all
predecessors of ci will eventually witness, the invariant IC will eventually be
established. Therefore, a design of the corrector pattern that recovers to its
invariant after faults stop occurring is itself nonmasking fault-tolerant to the
effect of faults.

6 The correction requirements can also be specified using Dwyer et al. [44] specification
patterns. For example, the safeness and stability can be represented in terms of the
Universality specification pattern defined by Dwyer et al. [44].

134 A. Ebnenasir and B.H.C. Cheng

ctrl: Control c: Car

fACC
disengaged :=

false;

c_control: Corrector c_car: Corrector

setBrakes()

Brakes?

Yes

Disengaged?

No
witnesses()

Yes

setDisengaged()

witness

faults may corrupt the
state of the ACC system

outside its invariant

local corrective
action

Fig. 11. The behavior of the sequential corrector applied to the ACC system

ACC Example: The effect of fACC faults on the corrector pattern applied to the
ACC system is that faults may corrupt the value of the witness predicates Zcontrol

and Zcar to false. The progress of the corrector element ccontrol guarantees that
the corrector pattern will recover to its invariant Zcar ⇒ Zcontrol if Zcar holds
and Zcontrol has been falsified by faults.

Remark. In this section, we only considered the application of an instance of
the corrector pattern for the ACC system. While the ACC example is small, the
number of the elements of an instance of the corrector pattern cannot go beyond
the number of system components. Moreover, for nonmasking fault-tolerance, it
is often the case that only one instance of the corrector pattern should be instan-
tiated to model the correction of the violations of system invariant, which does
not hinder the scalability of our approach. Moreover, even though composing a
corrector pattern with the functional model of an FIS system may add a layer
of complexity, the modularity provided by the corrector pattern facilitates the
management of such complexity. (Other pattern-driven methods may also suffer
from this additional layer of complexity introduced by pattern instantiation.)

6 Generating Promela Code and Automated Analysis

In order to enable rigorous analysis of modeling artifacts in model-driven de-
velopment of fault-tolerant systems, we generate formal specifications of UML
models and use model checkers for detecting the inconsistencies between fault-
tolerance and functional requirements. Towards this end, we extend the Hydra

A Pattern-Based Approach for Modeling and Analyzing Error Recovery 135

UML formalization framework [24] to generate the formal specifications of the
UML models of faults and FTSs in the Promela modeling language [25]. Hydra
[24] is a generic framework for generating formal specifications from UML dia-
grams. Promela is a language for modeling concurrent and distributed programs
in the model checker SPIN [25]. The syntax of Promela is based on the C pro-
gramming language. A Promela model comprises (1) a set of variables, (2) a set
of (concurrent) processes modeled by a predefined type, called proctype, and (3) a
set of asynchronous and synchronous channels for inter-process communications.

Hydra uses a set of mapping rules (see Figure 12 for a high-level summary)
to translate the entities in a UML metamodel to the entities in a Promela meta-
model. For example, Hydra translates each UML object to a proctype in Promela.
Thus, each element ci of the corrector pattern is formalized as a separate process
that is concurrently executed with the processes that represent UML functional
objects. The transitions of the state diagram of each object are formalized either
as message-passing actions or as regular assignment actions of the correspond-
ing process in Promela. The inter-object associations are formalized as message
exchange channels in Promela.

UML Metamodel Entity Promela Metamodel Entity
Object → proctype

Instance variable → Variable
Association → Channel

Generalization → Duplicated proctype
State → State block

Composite State → proctype
Concurrent Composite State → Concurrent proctypes

Transition → Messages/Assignments

Fig. 12. An excerpted set of formalization rules in Hydra [24]

Extending Hydra for fault formalization. In UML state diagrams, we
distinguish fault transitions from regular transitions by defining a Fault stereo-
type [29]. The extended Hydra treats the transitions of a fault-type f differently
than other transitions in that it integrates the transitions of f (modeled in differ-
ent state diagrams) in a separate process Fault f in Promela that is concurrently
executed with all other processes. The actions of Fault f are all non-deterministic
atomic actions that can be either variable assignment actions or send/receive
operations on communication channels (already defined in the Promela model
of the system). For example, a message loss fault is modeled as an action that
removes a message (or the acknowledgement of a message) from a channel. As
another example, a fault action may non-deterministically change the value of a
Boolean variable from true to false or vice versa. Such a formalization is advan-
tageous in that the resulting Promela model modularizes fault transitions and
separates them from the functional part of the Promela specifications so that
the effect of faults on system behaviors can easily be simulated and analyzed.

136 A. Ebnenasir and B.H.C. Cheng

Analysis. We use the SPIN model checker to simulate and verify the Promela
specifications generated by Hydra. Moreover, we visualize the results of checking
Promela models in UML state/sequence diagrams. For example, while verifying
the UML model of an FTS against the correction requirements, we may find
counterexamples that represent the inconsistencies of the corrector pattern and
the functional objects. To analyze such inconsistencies, we use SPIN to gen-
erate the counterexamples and use Theseus [26] to visualize each step of the
SPIN counterexample in UML state/sequence diagrams. Such a visualization of
counterexamples facilitates the analysis and refinement of UML models.

ACC Example: In the formalization of the UML model of the ACC system, five
proctypes are generated corresponding to the Control, Car and Radar objects and
the corrector elements ccontrol and ccar. Fault formalization results in the gener-
ation of a Fault ACC proctype that, when executed, may non-deterministically set
the values of Car.disengaged, Zcontrol and Zcar to false. To verify the nonmasking
fault-tolerance of the candidate model (i.e., the composition of the UML model
and the corrector pattern), we first verify the invariant IACC as an assertion,
without including the Fault ACC proctype in the generated Promela model (i.e.,
model in the absence of faults). The corresponding LTL property is specified as
�(IACC), which was verified in the absence of faults. We also verify that, in the
absence of faults, the candidate model does not deadlock. This ensures that the
corrector pattern does not interfere with the functional model in the absence of
faults. Afterwards, we verified the progress (denoted �(XACC ⇒ �Zcar)) and
the convergence (denoted �(�XACC)) of the corrector pattern while including
the Fault ACC proctype in the Promela model in order to ensure that the cor-
rector pattern is itself nonmasking fault-tolerant. The reachability of the invari-
ant IACC is also ensured by the convergence of the corrector pattern; i.e., the
candidate model eventually recovers to its invariant. In the verification of the
correction requirements, the Theseus [26] visualization tool highlighted a set of
safety-violating transitions in the state diagram of the Control object that would
reach a state where Control.Brakes was false, but Zcontrol had remained true. This
was a counterexample illustrating how the safeness of ccontrol would be violated.
Since ccontrol is instantiated as a detector, we had to modify the model so that
this inconsistency is resolved. Towards this end, we added some actions that
would atomically set Zcontrol to false if the brakes were no longer applied. Notice
that, in this case, resolving the inconsistencies of the corrector pattern and the
functional model required a change in the behavior of the functional model. Such
modifications illustrate how the addition of fault-tolerance concerns may require
some changes in functional requirements.

7 Related Work

In this section, we discuss related work for modeling and analyzing error re-
covery. Several approaches [45,46] exist for modeling and analyzing dependabil-
ity aspects, most of which focus on system availability and reliability without

A Pattern-Based Approach for Modeling and Analyzing Error Recovery 137

providing a reusable artifact for specifying error recovery. For example, Lopez-
Benitez [45] presents a technique based on stochastic Petri nets for modeling and
analyzing local and global system availability in the presence of node and com-
munication link failures. Huszerl and Majzik [47] generate stochastic Petri nets
from UML state charts in order to provide quantitative measures for comparing
different redundancy management strategies against crash failures. Bondavalli
et al. [46] present an approach for dependability analysis in both structural
and behavioral UML models based on an intermediate Petri net model gener-
ated from UML diagrams. While they also model faults as timed transitions in
Petri net models and generate a tool-independent intermediate Petri net model
from UML diagrams, their approach for modeling fault-tolerance is based on
exception handling and replication, whereas the corrector pattern provides an
abstract reusable modeling artifact, which can be refined to a fault-tolerance
design mechanism (e.g., exception handling).

In error recovery based on exception handling [48,49, 50, 51], the focus is on
the design of systems that tolerate exceptional conditions by systematic excep-
tion resolution. For example, Xu et al. [48] formally model exception handling in
distributed systems and use coordinated atomic actions [52] to provide a distrib-
uted mechanism for exception resolution. Garcia and Beder and Rubira [50, 51]
separate the concern of exception handling from functional concerns by intro-
ducing a meta-level architecture that captures the logic of exception handling
in concurrent and distributed systems. While their approach provides a set of
patterns for designing different tasks involved in exception handling, no mea-
sures are provided for ensuring the fault-tolerance of exception handlers and
for verifying the interaction between error recovery and functional concerns in
concurrent systems.

In addition to the above approaches, several formal models for error recovery
exist in the literature [4,42, 53, 37, 54] that provide a foundation for automated
analysis of error recovery. Arora and Gouda [4] introduce the notion of conver-
gence that presents a generic point of view of recovery in the presence of different
types of faults. Based on Arora and Gouda’s work [4], Arora and Kulkarni [42]
show that a wide range of legacy fault-tolerance mechanisms can be captured
by two basic fault-tolerance components, namely detectors and correctors, upon
which we have developed two fault-tolerance analysis patterns [27]. Belli and
Grosspietsch [53] provide a hybrid formal framework for modeling and speci-
fying fault-tolerance against erroneous inputs and design flaws, where they use
Petri nets for hierarchical specification of concurrent systems and regular expres-
sions for specifying low-level system actions. Magee and Maibaum [54] use modal
action logic to specify and verify fault-tolerance in component-based systems,
where they adopt a state-based model in partitioning the system state space to
the set of normal and abnormal states. Aforementioned approaches provide for-
mal frameworks for specifying and analyzing fault-tolerance concerns, whereas
the corrector pattern provides a semi-formal means for capturing and specifying
fault-tolerance concerns in earlier stages of the system development lifecycle.

138 A. Ebnenasir and B.H.C. Cheng

In summary, the corrector pattern provides a design-independent abstraction
for capturing the requirements of error recovery before any design decision is
made. Such an abstraction simplifies the task of modeling as the focus is on
identifying constraints (i.e., correction predicates) that should be satisfied by a
fault-tolerant system independent of what design mechanism is used to realize
recovery. Moreover, the use of the corrector pattern enables modular specification
and analysis of recovery requirements, which in turn simplifies the traceability
of recovery from requirements analysis to design and implementation phases. In
addition to providing a means for early modeling of recovery, we are investigating
the application of techniques for the addition of fault-tolerance [37] in automatic
specification and instantiation of the corrector pattern in UML state diagrams.

8 Conclusions and Future Work

In this paper, we introduced an object analysis pattern, called the corrector
pattern, for modeling and analyzing nonmasking fault-tolerance, where a non-
masking fault-tolerant program guarantees to recover from error conditions to
a set of legitimate states (called invariant). Instances of the corrector pattern
are added to the UML model of a system to create the UML model of its
fault-tolerant version. The corrector pattern also provides a set of constraints
for verifying the consistency of functional and fault-tolerance requirements and
the fault-tolerance of the corrector pattern itself. We extended McUmber and
Cheng’s UML formalization framework [24] to generate formal specifications of
the UML model of fault-tolerant systems in Promela [25]. Subsequently, we used
the SPIN model checker [25] to detect the inconsistencies between fault-tolerance
and functional requirements. To facilitate the automated analysis of nonmasking
fault-tolerance, we employed the Theseus visualization tool [26] that animates
counterexample traces and generates corresponding sequence diagrams in terms
of the UML model elements. Even though in this paper we presented only the cor-
rector pattern for specifying nonmasking fault-tolerance, we have also developed
a companion detector pattern [27] for modeling failsafe fault-tolerance, where a
failsafe fault-tolerant system guarantees safety even when faults occur. The use
of the detector and corrector patterns simplifies and modularizes fault-tolerance
concerns and helps to separate the analysis of functional and fault-tolerance con-
cerns, while providing a means to analyze their mutual impact. As an extension
of this work, we are investigating the application of a synthesis tool that we have
previously developed (called Fault-Tolerance Synthesizer [38]) in automating the
identification of the fault-span, scenarios with faults, and the instantiation of the
corrector pattern.

Acknowledgements

The authors greatly appreciate the feedback from Heather Goldsby and com-
ments from the anonymous reviewers for ADS.

A Pattern-Based Approach for Modeling and Analyzing Error Recovery 139

This work was partially sponsored by NSF grants EIA-0000433, EIA-0130724,
CDA-9700732, CCR-9901017, CNS-0551622, CCF-0541131, CAREER CCR-
0092724, ONR grant N00014-011-0744, DARPA Grant OSURS01-C-1901, Air
Force Research Lab under subcontract MICH 06-S001-07-C1, Siemens Corpo-
rate Research, a grant from the Michigan State University’s Quality Fund, and
a grant from Michigan Technological University.

References

1. Campbell, R.H., Randell, B.: Error recovery in asynchronous systems. IEEE Trans-
actions on Software Engineering SE-12(8) (1986)

2. Douglass, B.P.: Doing Hard Time: Developing Real-Time Systems with UML, Ob-
jects, Frameworks and Patterns. Addison-Wesley, Reading (1999)

3. Gomaa, H.: Designing Concurrent, Distributed, and Real-Time Application with
UML. Addison-Wesley, Reading (2000)

4. Arora, A., Gouda, M.G.: Closure and convergence: A foundation of fault-tolerant
computing. IEEE Transactions on Software Engineering 19(11), 1015–1027 (1993)

5. Demirbas, M., Arora, A.: Convergence refinement. In: International Conference on
Distributed Computing Systems, pp. 589–597 (2002)

6. Randall, B.: System structure for software fault-tolerance. IEEE Transactions on
Software Engineering, 220–232 (1975)

7. Cristian, F.: Exception handling and software fault-tolerance. IEEE Transactions
on Computers, C-31(6) (1982)

8. Schneider, F.B.: Implementing fault-tolerant services using the state machine ap-
proach: A tutorial. ACM Computing Surveys 22(4), 299–319 (1990)

9. Elnozahy, E.N., Alvisi, L., Wang, Y.-M., Johnson, D.B.: A survey of rollback-
recovery protocols in message-passing systems. ACM Computing Surveys 34(3),
375–408 (2002)

10. Saridakis, T.: A system of patterns for fault-tolerance. In: The 7th European Con-
ference on Pattern Languages of Programs (EuroPLoP), pp. 535–582 (2002)

11. UML profile for modeling quality of service and fault tolerance characteristics and
mechanisms (2002), http://www.omg.org/docs/ptc/04-06-01.pdf

12. France, R., Georg, G.: An aspect-based approach to modeling fault-tolerance con-
cerns. Technical Report 02-102, Computer Science Department, Colorado State
University (2002)

13. Tichy, M., Schilling, D., Giese, H.: Design of self-managing dependable systems
with uml and fault tolerance patterns. In: Proceedings of the 1st ACM SIGSOFT
workshop on Self-managed systems (WOSS), Newport Beach, CA, pp. 105–109
(2004)

14. Tkatchenko, M., Kiczales, G.: Uniform support for modeling crosscutting structure.
Appeared in AOM Workshop held in conjunction with AOSD (2005)

15. Arora, A.: A foundation of fault-tolerant computing. PhD thesis, The University
of Texas at Austin (1992)

16. Ilic, D., Troubitsyna, E.: Modeling fault tolerance of transient faults. In: Proceed-
ings of Rigorous Engineering of Fault-Tolerant Systems, pp. 84–92 (2005)

17. Laibinis, L., Troubitsyna, E.: Fault tolerance in use case modeling. In: the Work-
shop on Requirements for High Assurance Systems (2005)

18. Rubira, C.M.F., de Lemos, R., Ferreira, G.R.M., Castor Filho, F.: Exception han-
dling in the development of dependable component-based systems. Software Prac-
tice and Experience 35, 195–236 (2005)

http://www.omg.org/docs/ptc/04-06-01.pdf

140 A. Ebnenasir and B.H.C. Cheng

19. Shui, A., Mustafiz, S., Kienzle, J., Dony, C.: Exceptional use cases. In: Briand,
L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 568–583. Springer,
Heidelberg (2005)

20. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM 17(11) (1974)

21. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Publishing Company, Read-
ing (1995)

22. Fowler, M.: Analysis Patterns: Reusable Object Models. Addison-Wesley, Reading
(1997)

23. Konrad, S., Cheng, B.H.C., Campbell, L.A.: Object analysis patterns for embedded
systems. IEEE Transactions on Software Engineering 30(12), 970–992 (2004)

24. McUmber, W.E., Cheng, B.H.C.: A general framework for formalizing UML with
formal languages. In: the proceedings of 23rd International Conference of Software
Engineering, pp. 433–442 (2001)

25. Holzmann, G.: The model checker SPIN. IEEE Transactions on Software Engineer-
ing 23(5), 279–295 (1997)

26. Goldsby, H., Cheng, B.H.C., Konrad, S., Kamdoum, S.: A visualization framework
for the modeling and formal analysis of high assurance systems. In: Proceedings of
the ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems (MODELS), Genova, Italy, pp. 707–721 (2006)

27. Ebnenasir, A., Cheng, B.H.C.: A framework for modeling and analyzing fault-
tolerance. Technical Report MSU-CSE-06-5, Computer Science and Engineering,
Michigan State University, East Lansing, Michigan (January 2006)

28. Ebnenasir, A., Kulkarni, S.S.: Hierarchical presynthesized components for auto-
matic addition of fault-tolerance: A case study. In: the extended abstracts of the
ACM workshop on the Specification and Verification of Component-Based Systems
(SAVCBS), Newport Beach, California (2004)

29. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User
Guide. Addison-Wesley, Reading (1999)

30. Kulkarni, S.S., Arora, A.: Automating the addition of fault-tolerance. In: Proceed-
ings of the 6th International Symposium on Formal Techniques in Real-Time and
Fault-Tolerant Systems, pp. 82–93 (2000)

31. Fischer, M.J., Lynch, N.A., Peterson, M.S.: Impossibility of distributed consensus
with one faulty processor. Journal of the ACM 32(2), 373–382 (1985)

32. Kulkarni, S.S., Ebnenasir, A.: Enhancing the fault-tolerance of nonmasking pro-
grams. In: Proceedings of the 23rd IEEE International Conference on Distributed
Computing Systems (ICDCS), pp. 441–449 (2003)

33. Gries, D.: The Science of Programming. Springer, Heidelberg (1981)
34. Tiwari, A., Rueß, H., Säıdi, H., Shankar, N.: A technique for invariant generation.

In: Margaria, T., Yi, W. (eds.) ETAPS 2001 and TACAS 2001. LNCS, vol. 2031,
pp. 113–127. Springer, Heidelberg (2001)

35. Varghese, G.: Self-stabilization by local checking and correction. PhD thesis,
MIT/LCS/TR-583 (1993)

36. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Transactions on Dependable and
Secure Computing 1(1) (2004)

37. Ebnenasir, A.: Automatic Synthesis of Fault-Tolerance. PhD thesis, Michigan State
University (2005)

38. Ebnenasir, A., Kulkarni, S.S.: FTSyn: A framework for automatic synthesis of fault-
tolerance, http://www.cs.mtu.edu/∼aebnenas/research/tools/ftsyn.htm

http://www.cs.mtu.edu/~aebnenas/research/tools/ftsyn.htm

A Pattern-Based Approach for Modeling and Analyzing Error Recovery 141

39. Kulkarni, S.S., Ebnenasir, A.: Complexity issues in automated synthesis of failsafe
fault-tolerance. IEEE Transactions on Dependable and Secure Computing 2(3),
201–215 (2005) (to appear)

40. Mittal, N., Garg, V.K.: On detecting global predicates in distributed computa-
tions. In: Proceedings of the 21st IEEE International Conference on Distributed
Computing Systems (ICDCS), Phoenix, Arizona, USA, pp. 3–10, (April 2001)

41. Garg, V.K., Waldecker, B.: Detection of strong unstable predicates in distributed
programs. IEEE Transactions on Parallel and Distributed Systems 7(12), 1323–
1333 (1996)

42. Arora, A., Kulkarni, S.S.: Detectors and Correctors: A theory of fault-tolerance
components. In: IEEE International Conference on Distributed Computing Sys-
tems (ICDCS), pp. 436–443 (May 1998)

43. Emerson, E.A.: Handbook of Theoretical Computer Science: Chapter 16, Temporal
and Modal Logic. Elsevier Science Publishers B.V., Amsterdam (1990)

44. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of the 21st International Conference on
Software Engineering (ICSE99), Los Angeles, CA, USA, pp. 411–420 (1999)

45. Lopez-Benitez, N.: Dependability modeling and analysis of distributed programs.
IEEE Transactions on Software Engineering 20(5), 345–352 (1994)

46. Bondavalli, A., et al.: Dependability analysis in the early phases of UML-based sys-
tem design. International Journal of Computer Systems Science and Engineering 5,
265–275 (2001)

47. Huszerl, G., Majzik, I.: Modeling and analysis of redundancy management in dis-
tributed object-oriented systems by using uml statecharts. In: 27th Euromicro
Conference, pp. 200–207 (2001)

48. Xu, J., Romanovsky, A., Randell, B.: Coordinated exception handling in distrib-
uted object systems: From model to system implementation. In: Proceedings of
the 18th IEEE International Conference on Distributed Computing Systems, pp.
12–21. IEEE Computer Society Press, Los Alamitos (1998)

49. Beder, D.M., Randall, B., Romanovsky, A., Snow, C.R., Stroud, R.J.: An appli-
cation of fault-tolerance patterns and coordinated atomic actions to a problem in
railway scheduling. ACM SIGOPS Operating System Review 34(4) (2000)

50. Garcia, A.F., Beder, D.M., Rubira, C.M.F.: A unified meta-level software archi-
tecture for sequential and concurrent exception handling. The Computer Journal,
British Computer Society 44(6), 569–587 (2001)

51. Beder, D., Rubira, C.: A meta-level software architecture based on patterns for
developing dependable collaboration-based designs. In: Proceedings of the second
Brazilian workshop on fault-tolerance (2000)

52. Xu, J., Randell, B., Romanovsky, A.B., Rubira, C.M.F., Stroud, R.J., Wu, Z.:
Fault tolerance in concurrent object-oriented software through coordinated error
recovery. In: FTCS, pp. 499–508 (1995)

53. Belli, F., Grosspietsch, K.E.: Specification of fault-tolerant system issues by predi-
cate/transition nets and regular expressions-approach and case study. IEEE Trans-
actions on Software Engineering 17(6), 513–526 (1991)

54. Magee, J., Maibaum, T.: Towards specification, modelling and analysis of fault tol-
erance in self managed systems. In: Proceedings of the 2006 international workshop
on Self-adaptation and self-managing systems, pp. 30–36 (2006)

R. de Lemos et al. (Eds.): Architecting Dependable Systems IV, LNCS 4615, pp. 142–162, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Architectural Fault Tolerance Using
Exception Handling

Rogério de Lemos

Computing Laboratory
University of Kent, UK

r.delemos@kent.ac.uk

Abstract. When building dependable systems by integrating untrusted software
components that were not originally designed to interact with each other, it is
inevitable the occurrence of architectural mismatches related to assumptions in
the failure behaviours. These mismatches if not prevented during system design
have to be tolerated during run-time. This paper presents an architectural
abstraction based on exception handling for structuring fault-tolerant software
systems. Exception handling has been used effectively for incorporating fault
tolerance into software systems. The proposed architectural abstraction
transforms untrusted software components into idealised fault tolerant
architectural elements (iFTE), which clearly separate the normal and
exceptional behaviours, in terms of their internal structure and interfaces. An
advantage of this architectural abstraction is that it can be instantiated into both
components and connectors. Moreover, the proposed abstraction clearly
facilitates system structuring, and the analysis of exception propagation, which
can make the overall system quite complex if exceptions, and their respective
handlers, and not properly incorporated into system design. The feasibility of
the proposed approach is evaluated in terms of a simple case study.

1 Introduction

Fault tolerance aims at delivering correct service despite the presence of faults [2]. A
fault tolerant system should be well-structured to ensure that the extra software does
not add to the complexity of the system, and improves the overall system
dependability [13]. The architecture of a software system is an abstraction of its actual
structure. The identification of the system structure early in its development process
allows abstracting away from system details, thus assisting the understanding of
broader system concerns [18].

The architecture of a software system can be seen as a set of connected
components, their externally visible properties and their relationships [6].
Consequently, software architectures are usually described in terms of its components
– which represent computation units, connectors – which encapsulate the interaction
between components, and their configuration – which characterizes the topology of
the system in terms of the interconnection of components via connectors [12] [18].

Fault tolerance aims to avoid system failure via error detection and system
recovery at run-time [2]. At the architectural level, error detection relies on

 Architectural Fault Tolerance Using Exception Handling 143

monitoring mechanisms, or probes, for detecting erroneous states at the interfaces of
architectural elements or in the interactions between these elements. On the other
hand, system recovery aims, first, to eliminate erroneous states from the system –
known as error handling, and second, to reconfigure the system architecture for
isolating those architectural elements that might have caused the erroneous states –
known as fault handling. Architectural abstractions offer a number of features that are
suitable for the provision of fault tolerance and error confinement [9]. Architectures
also provide a global system perspective that enables high-level interpretation of
system faults, thus facilitating their identification. The separation between
computation and communication/coordination, which enforces modularisation and
information hiding, facilitates error detection, confinement, and system recovery. The
architectural configuration, which imposes structural constraints, helps to identify
anomalies in the system structure. Explicit system structuring facilitates the
introduction of mechanisms such as program assertions, pre- and post-conditions, and
invariants that enable the detection of potential erroneous architectural states.
Architectural changes for supporting fault handling during system recovery can
include the addition, removal, or replacement of components and connectors,
modifications to the configuration or parameters of components and connectors, and
alterations in the component/connector network’s topology.

This paper presents an architectural abstraction for structuring fault tolerant
software systems based on exception handling. This abstraction known as the
idealised fault tolerant architectural element (iFTE) provides the means for
incorporating error detection and error handling into software architectures. This
abstraction was previously introduced [7], and in this paper, in addition of defining an
improved version of the iFTE, we also provide more details of the architectural
abstraction, such as, the definition of the iFTE in terms of an architectural description
language, the description on how exceptions are propagated among architectural
elements, and the definition of a formal model for validating the internal and external
behaviours of the iFTE against pre-identified normal and exceptional behavioural
scenarios. The rest of the paper is organized as follows. In Section 2, we describe an
architectural abstraction in terms of its interfaces and its internal structure, and how it
enables the propagation of exceptions at the architectural level. Section 3 presents an
embedded system case study, which demonstrates the feasibility of the proposed
approach. Related work is presented in Section 4. Finally, the last section presents
some concluding remarks and directions for future research.

2 Idealised Fault Tolerant Architectural Element (iFTE)

Exception handling has shown to be an effective mechanism for incorporating fault
tolerance into software systems [5]. It allows to structure systems in such a way that
exceptional and the normal behaviour can be kept separate. The idealised fault-
tolerant component is a structuring concept that makes it easy to identify what parts of
a system have what responsibilities for trying to cope with which sorts of faults [1].

The incorporation of exception handling at the architectural level has been
suggested as a valuable mechanism for error handling, if properly incorporated into
the system structure [10]. It allows one to reason about the software fault tolerance

144 R. de Lemos

properties at a higher level of abstraction by properly assigning exceptional behaviour
responsibilities among the architectural components and connectors of a software
system.

The architectural abstraction being advocated for the structuring of fault-tolerant
systems is the idealised fault-tolerant architectural element (iFTE) [7]. The iFTE
enforces the principles associated with the concept of the idealised fault-tolerant
component [1], and includes the following responsibilities:

1. detection of errors in the architectural elements or their interactions;
2. raising and handling of internal exceptions associated with the detected errors;
3. handling of exceptions that were raised externally by other architectural elements;
4. masking of internal or external exceptions by means of redundant resources;
5. propagation of exceptions, internal or eternally raised, that cannot be masked.

Similar to the idealised fault-tolerant component, the architectural approach being
introduced advocates the complete separation on how architectural elements should
deal with their normal and abnormal behaviours. An advantage of the proposed
architectural abstraction is that it can be instantiated into both idealised fault-tolerant
architectural components and connectors, whose interactions are governed by
exception communication rules:

1. idealised fault-tolerant architectural component - responsible for preventing
internal errors from propagating to the rest of the system by handling them as
internal exceptions, and constraining the error behaviours by signalling them as
external exceptions;

2. idealised fault-tolerant architectural connector - responsible for resolving potential
conflicts between exceptions signalled by the collaborating components,
preventing the propagation of errors caused mismatches by handling them as
internal exceptions, and constraining these errors by signalling them as external
exceptions.

The idealised fault-tolerant architectural element (iFTE) is a specialisation of the
peer-to-peer style [6]. In this architectural style any element can interact with other
elements for providing services to them or requesting their services. In the proposed
architectural abstraction communication between architectural elements is a
request/reply interaction, connectors are first class architectural elements that
coordinate the interactions between components, and provided and required
exceptional interfaces are included for enforcing the behaviour of the idealised fault-
tolerant component [1].

2.1 iFTE: Architectural Abstraction

The general model of an iFTE is shown in Figure 1. The iFTE has four types of
external interfaces, and these are clearly partitioned into normal and abnormal
(exceptional) behaviour:

1. I_iFTE_PS defines an access point for the (fault-tolerant) services provided by the
iFTE (PS – provided services);

2. I_iFTE_PE defines an access point where iFTE signals its external exceptions (PE
– provided exceptions);

 Architectural Fault Tolerance Using Exception Handling 145

3. I_iFTE_RS specifies services required by the iFTE for implementing its normal
behaviour or handling exceptions (RS – required services);

4. I_iFTE_RE specifies the external exceptions that the iFTE is able to handle (RE –
required exceptions).
These interfaces can be instantiated according to the different services that are

provided and required by the iFTE. For example, a component that provides several
services is expected to have an independent set of interfaces, in terms of services and
exceptions, for each of the services it provides.

Fig. 1. The idealised fault-tolerant architectural element (iFTE)

The Architecture Analysis & Design Language (AADL) [16] is used for
representing the iFTE architectural abstraction, as shown in Figure 2. The ports are
defined under features, while the permitted connections between the different ports
are defined under flows. Each interface is partitioned into two parts for representing
the input and output ports of the interface. For example, I_iFTE_PS_i represents the
input of a provided services interface of the iFTE, while I_iFTE_PS_o represents its
output.

Fig. 2. The AADL model of an iFTE

I_iFTE_PS

I_iFTE_PE

I_iFTE_RS

I_iFTE_RE

<<element>>
idealised fault-tolerant architectural element

system ifte_abstraction
 features
 I_iFTE_PS_i: in event data port Service;
 I_iFTE_PS_o: out event data port Service;
 I_iFTE_PE_o: out event data port Exception;
 I_iFTE_RS_i: in event data port Service;
 I_iFTE_RS_o: out event data port Service;
 I_iFTE_RE_i: in event data port Exception;
 flows
 Ret_Ser_a: flow path I_iFTE_PS_i -> I_iFTE_PS_o;
 Sig_Exc_a: flow path I_iFTE_PS_i -> I_iFTE_PE_o;
 Req_Ser_b: flow path I_iFTE_PS_i -> I_iFTE_RS_o;
 Ret_Ser_b: flow path I_iFTE_RS_i -> I_iFTE_PS_o;
 Sig_Exc_b: flow path I_iFTE_RS_i -> I_iFTE_PE_o;
 Ret_Ser_c: flow path I_iFTE_RE_i -> I_iFTE_PS_o;
 Sig_Exc_c: flow path I_iFTE_RE_i -> I_iFTE_PE_o;
end ifte_abstraction;

146 R. de Lemos

There are seven different relationships that can be established between the
interfaces of an iFTE. After a services request is made through I_iFTE_PS_i, the
iFTE may respond in three different ways: Ret_Ser_a - returns normal services
through I_iFTE_PS_o, Req_Ser_b - it requests external services through
I_iFTE_RS_o, or Sig_Exc_a - it signals either an interface or an internal exception
through I_iFTE_PE_o. After a request for external services is made through
I_iFTE_RS_o, four behaviours are possible. If the external architectural element
returns a normal service through I_iFTE_RS_i: Ret_Ser_b - the iFTE returns a
normal service through I_iFTE_PS_o, or Sig_Exc_b - the iFTE signals an exception
through I_iFTE_PE_o. If the external architectural element signals an exception
through I_iFTE_RE_i: Ret_Ser_c - the iFTE returns normal services through
I_iFTE_PS_o, or Sig_Exc_c - the iFTE propagates an exception through
I_iFTE_PE_o in case is not able to handle the external exception.

Fig. 3. The operational profile of an iFTE

 Architectural Fault Tolerance Using Exception Handling 147

From the above relationships between the interfaces of an abstract representation of
an iFTE, we can identify seven different scenarios that represent the operational
profile of an iFTE. These seven scenarios are described in Figure 3 in terms of an
UML sequence diagram in which each scenario is alternative sequence of events.

2.2 iFTE: Detailed Design

The detailed design of an iFTE is shown in Figure 4, and it contains five architectural
elements:

1. Normal component implements the normal behaviour of the iFTE, and it can be
associated with an existing component or system;

2. Abnormal component handles the exceptions raised by the Normal component,
and those propagated from the environment of the iFTE;

3. Provided component acts like a bridge between the provided services of the iFTE
and its environment. It manages the provided interfaces of the iFTE by providing
the required services, detecting interface exceptions from requests made to the
iFTE, and signalling exceptions when the Abnormal component is not able to
handle the exception;

4. Required component acts like a bridge between the required services of the iFTE
and its environment. It manages the required interfaces by requesting services from
other architectural elements, and detecting exceptional conditions raised by
components with which the iFTE interacts;

5. Coordinator connector coordinates the interaction between the four internal
components of an iFTE;

Fig. 4. General model of the idealised fault-tolerant architectural element (iFTE)

The internal architectural elements of the iFTE interact through internal interfaces,
and these interfaces also enforce the separation between normal and exceptional
behaviours. Between Provided (Required) and the Coordinator, there are two
interfaces, one, representing the request (provision) of services, and the other the

148 R. de Lemos

propagation of exceptions. Between Normal and the Coordinator, there are two sets
of interfaces representing essentially the access points for the provided (I_N_PS and
I_N_PE) and required (I_N_RS and I_N_RE) services: through the first set of
interfaces the Normal component provides its services and raises exceptions, and
through the second type of interfaces the Normal receives requested services or
external exceptions. The same type of interfaces exists between the Abnormal and
Coordinator (I_A_PE). If an exception is raised by the Normal component, this
exception is signalled through interface I_N_PE to the Coordinator, which
propagates the exception to the Abnormal component through I_A_RE. If the
Abnormal is able handle the exception, it informs the Provided component through
the I_A_PS, otherwise it propagates an exception to Provided through I_A_PE.
From the above description of the internal structure of an iFTE, it can be observed
that the general notion of having an architectural element with four interfaces can be
recursively applied to the architectural elements of the iFTE. Each of the four
architectural elements listed above have got four types of interfaces for each type of
service that an iFTE provides and requires.

In the following, the main architectural elements that make up an iFTE are
presented in more detail.

2.2.1 Provided and Required Components
The Provided and Required components are very similar in their internal
behaviours, except for the interface exception signalled by the Provided, so in the
following we focus on the Provided component. These components in addition of
managing the interfaces of the iFTE, they are also responsible for acting like
integrators that remove architectural mismatches that might occur when integrating
different architectural elements. For example, they would be responsible for changing
the type of exception being propagated for avoiding potential mismatches between
exceptions and their respective handlers, since the latter might be different depending
on the context.

Fig. 5. The AADL model of the Provided component

 system Provided
 features
 I_P_PS_i: in event data port Service;
 I_P_PS_o: out event data port Service;
 I_P_PE_o: out event data port Exception;
 I_P_RS_i: in event data port Service;
 I_P_RS_o: out event data port Service;
 I_P_RE_i: in event data port Exception;
 flows
 Sig_Exc_a: flow path I_P_PS_i -> I_P_PE_o;
 Req_Ser_b: flow path I_P_PS_i -> I_P_RS_o;
 Ret_Ser_b: flow path I_P_RS_i -> I_P_PS_o;
 Sig_Exc_b: flow path I_P_RE_i -> I_P_PE_o;

 end Provided;

 Architectural Fault Tolerance Using Exception Handling 149

The Provided component is described in Figure 5 in terms of AADL. There are
four different relationships that can be established between the interfaces of the
Provided component. A request for services made through I_P_PS_i, can either
signal an interface exception through I_P_PE_o (Sig_Exc_a), or be forwarded to
the Normal component through I_P_RS_o (Req_Ser_b). The request service
returns through interfaces I_P_RS_i and I_P_PS_o (Ret_Ser_b), or an exception
has been propagated through interface i_P_PE_o, and signalled through interface
I_P_RE_i and (Sig_Exc_b).

2.2.2 Normal Component
The behaviour of the Normal component is presented in Figure 6. There are six
different relationships that can be established between the interfaces of the Normal
component. When a service is requested by the Coordinator through I_N_PS_i,
three possible internal behaviours are possible: Ret_Ser_a in which normal services
are returned through I_N_PS_o, Sig_Exc_a in which an exception is signal through
I_N_PE_o, and Req_Ser_b in which Normal has to request through interface
I_N_RS_o an external service in order to be able to provide the services being
required. If the external architectural element returns normal service through
I_N_RS_i, then two behaviours are possible. Either Normal returns the normal
service through I_N_PS_o, represented by Ret_Ser_b, or an internal exception
might be raised, which causes the Normal to signal an exception through the interface
I_N_PE_o, represented by Sig_Exc_b. Finally, in case the external architectural
element signals an exception trough I_N_RE_i, this exception has to be propagated to
the Abnormal component through the interface I_N_PE_o, which is represented by
Sig_Exc_c.

Fig. 6. The AADL model of the Normal component

2.2.3 Abnormal Component
The Abnormal component is represented in Figure 7. There are seven different
relationships that can be established between the interfaces of the Abnormal
component. Exceptions are signalled to the Abnormal component through the

 system Normal
 features
 I_N_PS_i: in event data port Service;
 I_N_PS_o: out event data port Service;
 I_N_PE_o: out event data port Exception;
 I_N_RS_i: in event data port Service;
 I_N_RS_o: out event data port Service;
 I_N_RE_i: in event data port Exception;
 flows
 Ret_Ser_a: flow path I_N_PS_i -> I_N_PS_o;
 Sig_Exc_a: flow path I_N_PS_i -> I_N_PE_o;
 Req_Ser_b: flow path I_N_PS_i -> I_N_RS_o;
 Ret_Ser_b: flow path I_N_RS_i -> I_N_PS_o;
 Sig_Exc_b: flow path I_N_RS_i -> I_N_PE_o;
 Sig_Exc_c: flow path I_N_RE_i -> I_N_PE_o;

 end Normal;

150 R. de Lemos

interface I_A_RE_i. If an exception is received, it can either be handled and the
success is notified through I_A_RS_o to the Normal component (Ret_Ser_a), or
the exception is propagated to the Provided component through the I_A_PE_o
interface (Sig_Exc_a). If Abnormal requires services either from the Normal
component or from another external architectural element, then the request is made
through the I_A_RS_o interface (Req_Ser_b). The return of this request can either
be the requested service via I_A_RS_i (Ret_Ser_b), or an exception via I_A_RE_i
(Sig_Exc_b). In case the Abnormal component requires further external services
then a request is made through the I_A_RS_i interface (Req_Ser_c). The final
relationship is related to the situation in which an exception is propagated via
I_A_RE_i for the Abnormal to recover the iFTE to an error free state (Sig_Exc_d).

The final architectural element of the iFTE is the Coordinator connector, which is
responsible for coordinating the exchange between the iFTE internal components.
This connector encapsulates all the complexity associated with the iFTE, which
includes the request and return of services between the different components, and the
propagation of exceptions.

Fig. 7. The AADL model of the Abnormal component

It is worth noting that in the context of some applications, in particular service
oriented architectures the idealised fault-tolerant architectural element (iFTE) does
not necessarily need to be represented as a self-contained element. In such
architectural configurations, a single interface of the Normal component can be
accessed by several other architectural elements, and the Normal component might
have other interfaces through which it can be accessed. In those architectural
configurations, that contain components and connectors that are not based on the
idealised fault-tolerant architectural element (iFTE), additional mechanisms should be
provided for dealing with their exceptional behaviour. In the presence of such non-
fault-tolerant architectural elements, the separation of behaviours between normal and
exceptional behaviours should nevertheless be enforced at the level of the

 system Abnormal
 features
 I_A_PS_i: in event data port Service;
 I_A_PS_o: out event data port Service;
 I_A_PE_o: out event data port Exception;
 I_A_RS_i: in event data port Service;
 I_A_RS_o: out event data port Service;
 I_A_RE_i: in event data port Exception;
 flows
 Ret_Ser_a: flow path I_A_RE_i -> I_A_PS_o;
 Sig_Exc_a: flow path I_A_RE_i -> I_A_PE_o;
 Req_Ser_b: flow path I_A_RE_i -> I_A_RS_o;
 Ret_Ser_b: flow path I_A_RS_i -> I_A_PS_o;
 Sig_Exc_b: flow path I_A_RS_i -> I_A_PE_o;
 Req_Ser_c: flow path I_A_RS_i -> I_A_RS_o;
 Sig_Exc_d: flow sink I_A_RE_i;
 end Abnormal;

 Architectural Fault Tolerance Using Exception Handling 151

architectural configuration. This separation enhances the software understandability
and maintainability, which also contributes positively to its dependability.

2.3 Exception Propagation

This section presents how exceptions are propagated among architectural abstractions
(iFTEs), and the context in which they should be handled. In an architectural
configuration, exceptions are propagated between components and connectors, or
vice-versa, and they can be handled either in the context of components, or
connectors.

This work follows previous work on the propagation of exceptions in object-
oriented designs that were based on cooperative actions [8]. In this paper, objects are
replaced by components and cooperations by connectors, but both components and
connectors can be represented as iFTEs. This presentation will be based on the
architectural configuration of Figure 8, which contains three components and a
connector of the type iFTE. The connector (conn_X) defines the cooperation between
the three components (comp_A, comp_B, comp_C). There is nothing in particular
regarding this configuration, which is a generic configuration that allows illustrating
in simple terms the exception propagation between architectural elements – the
principles illustrated here can be applied to other architectural configurations
involving iFTEs.

In order to maintain the architectural integrity, internal exceptions are propagated
through interface of the architectural element either as declared or undeclared
architectural exceptions [4]. For the idealised fault-tolerant architectural connector,
this may require to translate the type of an external exception being propagated. The
objective of this translation is to deal with potential mismatches that might exist
between collaborating idealised fault-tolerant architectural components. With such
approach, internal exceptions that are raised inside components and connectors are
encapsulated by their architectural interfaces.

2.3.1 From Components to Connectors
If the normal part of a component raises an internal exception after a service has been
requested this exception should be treated by the component’s abnormal part.
According to Figure 8, comp_B signals an internal exception that should be handled
in the context of the component (1). For that, it should use locally available resources
or request external resources in a way that is transparent to the rest of the system –
this scenario characterises the component context in handling exceptions. However, if
the component’s abnormal part cannot handle the exception, then this exception
should be propagated to the connector, or connectors, managing the component’s
interactions (exception 2 is propagated to conn_X).

From the perspective of component’s environment, the component is responsible
for handling exceptions that are propagated from other components or connectors
with which collaborates, and propagate exceptions that it cannot handle locally. By
partitioning the component’s structure into normal and abnormal ensures that no other
behaviour at the component’s interface is allowed except for the normal and
exceptional behaviours that are specified in terms of what is provided and what is
required.

152 R. de Lemos

Fig. 8. Propagation and handling of exceptions

2.3.2 From Connectors to Components
When a connector receives an exception propagated from one of its collaborating
components, it attempts first to handle the exception at the context of the role played
by that component, before handling this exception at the collaboration context. The
handling exceptions at the context of roles is beneficial compared with handling of
exceptions at the collaborations level because the latter might require more
sophisticated and complex means for making sure that all the collaborating
components are error free. For example, in Figure 8, when comp_B propagates the
exception to conn_X, the exception is first handled at the role context (3) before
being propagated to the collaboration context (4). If the exception cannot be handled
at the connector level, then it has to be propagated to all collaborating components
(5). When this happens, it is the responsibility of the collaborating components to
handle these exceptions individually. Different from the forward propagation scenario
between components and connectors, such as the exception (2) in Figure 8, this
backward propagation essentially notifies the collaborating components that they
might be in an erroneous state, and that they should recover from it.

Another scenario in which exceptions have to be handled at the context of the
connector is when an internal exception is raised because there was a violation of the
collaborative behaviour associated with the connector (internal exception 4, in Figure
8). As before, either the connector handles locally the exception, or propagates the
exception to the collaborating components for them to take the necessary corrective
actions (exception that is propagated by conn_X to comp_A, comp_B and
comp_C).

Although the collaborating components should not be aware of the additional
behaviour introduced by a connector and its respective exceptions, the exceptions
being propagated should be meaningful for the collaborating components. An
example of such exception might be a failure exception notifying one of the
collaborating components that the requested service cannot be provided. The same

 Architectural Fault Tolerance Using Exception Handling 153

happens when the connector receives an exception from one of the collaborating
components. Depending on its handlers, either the connector can treat this exception
locally, or request the collaboration from other components for handling the
exception.

2.3.3 From Connectors to Connectors
Since connectors may not be able to interconnect directly with other connectors, the
propagation of exceptions has to be made through the components that play roles in
the different connectors. For example, Figure 9 shows a particular scenario in which
the cooperation related to connector conn_Y is nested within a cooperation associated
with connector conn_X. In case comp_C fails, which provides two different services
for the two connectors – assuming independent services, an exception (1) is
propagated to conn_Y. If this connector is not able internally to handle the exception,
it propagates forward the exception (2) to the collaborating component (comp_B). If
comp_B is not able to treat the exception, it propagates the exception (3) to
conn_X. Again, if this connector cannot deal with this exception, it should propagate
backward the exception (4) to the collaborating components.

Fig. 9. Exception propagation in nested cooperations

2.4 Verification of the iFTE

The general model of the iFTE, in terms of its components, connectors and their
interactions was modelled in UPPAAL using extended timed automata [11], where
the interactions between architectural elements were assumed to be blocking
request/reply, and represented as synchronous channels. In the behavioural modelling
of architectural elements, each of the provided and required interfaces is partitioned
into two places for representing input and output of the ports – similar to the AADL
model. For example, I_iFTE_PS_i represents the input of the provided services
interface of the iFTE, while I_iFTE_PS_o represents its output. In order to simplify
the UPPAAL modelling of the iFTE abstraction and its detailed design the backward
propagation of exceptions were not modelled.

154 R. de Lemos

The verification of the iFTE was performed in two parts, first, as an architectural
abstraction in terms of the behaviour of the iFTE interfaces, and then in terms of the
behaviour of the architectural elements that implement an iFTE.

2.4.1 iFTE: Architectural Abstraction
The behaviour of an iFTE is represented as an extended timed automaton that
captures the relations between the four types of interfaces, as shown in Figure 10. In
this diagram, the places Client and Server represent two other architectural elements
interconnected to the iFTE, the other places connected to these two represent the
interfaces of an iFTE, and the committed places represent internal states of the iFTE –
these are directly related to the flows specified on the AADL model of the iFTE,
presented in Figure 2. The annotated transitions on the iFTE represent the interactions
between the iFTE and the Client and Server. In order to simplify the UPPAAL
modelling of the architectural abstraction, the backward propagation of exceptions
was not considered.

Ret_Ser_a

Sig_Exc_a

Sig_Exc_c

Sig_Exc_b

Ret_Ser_c

Ret_Ser_b

Req_Ser_b

I_iFTE_RS_iI_iFTE_PS_o

I_iFTE_PE_i

Server

I_iFTE_RS_o

I_iFTE_PE_o

I_iFTE_PS_i

Client

ifte_re?

ifte_rs_ret?

ifte_rs_call!

ifte_pe!

ifte_ps_ret!

ifte_ps_call?

Fig. 10. An extended timed automaton model of an iFTE

For analysing the correctness of the iFTE architectural abstraction, a small
architectural configuration consisting of three architectural elements: a Client, Server
and iFTE, were modelled using UPPAAL. This configuration was model checked to
ascertain the inexistence of deadlocks, and to confirm the proper flow of services
requests and propagation of exceptions.

The same iFTE model was employed to verify the propagation and handling of
exceptions on the architectural configurations shown in Figures 8 and 9. The outcome
of the analysis has confirmed the proper flow of service requests and the forward
propagation of exceptions.

 Architectural Fault Tolerance Using Exception Handling 155

2.4.2 iFTE: Detailed Design
For verifying the detailed design of an iFTE, the same configuration consisting of
three architectural elements, employed above, was used. However, instead of using an
architectural abstraction for representing an iFTE, the iFTE is represented in terms of
its internal architectural elements. Again, a single provided and required services are
considered, however more services could have been considered in the model, however
these should be assumed to be independent from each other.

The extended timed automata model of the internal architectural elements of the
iFTE follow their respective specifications made in AADL. In the following, only the
Normal and Abnormal components are presented in more detail.

Ret_Ser_a

Sig_Exc_c

Sig_Exc_b

Ret_Ser_b

Sig_Exc_a

Req_Ser_b

I_N_RE_i I_N_RS_o

I_N_PS_i

I_N_RS_i

I_N_PE_oI_N_PS_o

Coordinator

nc_re?

nc_pe!
nc_rs_call!

nc_rs_ret?

nc_ps_ret!

nc_ps_call?

Fig. 11. An extended timed automaton model of Normal component

The modelling of the Normal component is shown in Figure 11 follows from the
modelling of the iFTE, described above. The place Coordinator represents the
internal connector Coordinator, the four interfaces of Normal are partitioned in
terms of inputs and outputs, and the committed places represent the internal states of
the Normal component, which is consistent with the AADL representation of Figure
6. The labelled transitions between the Coordinator and the places representing the
Normal interfaces are synchronisation channels that capture the interaction between
the Coordinator connector and the Normal component. In the following, we describe
some of its behaviours. The Coordinator requests a service through nc_ps_call?,
which might have three possible outcomes: the Normal returns the service
(Ret_ser_a) through channel nc_ps_ret!, the Normal signals an exception
(Sig_Exc_a) through channel nc_pe!, or an external service (Req_ser_b) is

156 R. de Lemos

requested through nc_rs_call!. Once the requested service returns through nc_rs_ret?,
there are two possible outcomes. Either Normal returns a service (Ret_Ser_b), or an
exception (Sig_Exc_b). In case the service requested returns an exception (nc_re?),
the Normal propagates that exception to the Abnormal component

The modeling of the Abnormal component follows closely that of the Normal
component, so in the following, we focus on the internal states of the Abnormal
component. From the Coordinator, the Abnormal receives an exception (ac_re?)
originated either from the Normal component, or from an external service required by
the Abnormal. The handling of this exception can follow three possible paths:
Ret_Ser_a - Abnormal handles the exception and returns a service to the
Coordinator (ac_ps_call!), Req_Ser_b – Abnormal request additional service
either from the Normal or another external architectural element (ac_rs_call!), and
Sig_Exc_a – Abnormal is not able to handle the exception and propagates the
exception (ac_pe!). When the Abnormal receives the requested service
(ac_rs_ret?): handles the original exception and returns to normal service
(Ret_Ser_b), propagates the exception because is not able to handle it (Sig_Exc_b),
or requests additional services (Req_Ser_c).

I_A_PS_o

Ret_Ser_b

Ret_Ser_a

Sig_Exc_b

Sig_Exc_a

Req_Ser_bReq_Ser_c

I_A_RE_i

I_A_RS_i
I_A_PE_o

I_A_RS_o

Coordinator

ac_ps_call!
ac_re?ac_pe! ac_rs_call!

ac_rs_ret?

Fig. 12. An extended timed automaton model of Abnormal component

For analysing the correctness of the detailed design of an iFTE, the architectural
configuration previously employed was used. Instead of the model of the architectural
abstraction, the detailed model of an iFTE was employed. The analysis has shown that
the configuration was deadlock free, and that the propagation of exceptions across the
internal architectural elements of an iFTE was according to specification of the
architectural abstraction.

 Architectural Fault Tolerance Using Exception Handling 157

3 Case Study

The example that has been chosen is a simplified version of the control system for a
mining environment [19]. The extraction of minerals from a mine produces water and
releases methane gas to the air. In addition to extracting minerals, the mining control
system is used to drain water from the sump, and to remove air from the mine when
the methane level becomes high. The mining control system consists of three
subsystems for extracting minerals, for controlling the level of water in the sump, and
for controlling the level of methane in the mine. When the water reaches a high level,
the pump is turned on and the sump is drained until the water reaches a low level. A
water flow sensor is able to detect the flow of water in the pipe. However, the pump is
situated underground, and for safety reasons it must not start, or continue to run, when
the amount of methane in the mine exceeds a safety limit. For controlling the level of
methane, there is an air extractor controller that monitors the level of methane inside
the mine, and when the level is high an air extractor is switched on to remove air from
the mine. The whole system is also controlled from the surface via an operator
console that should handle any emergencies raised by the automatic system.

3.1 Architectural Representation

The architectural representation of the mining control system is shown in Figure 13.
In this representation, components and connectors are represented as stereotyped
UML2.0 components, and the links between the architectural elements are
represented as dependencies. It is assumed that in this system all the architectural
elements are iFTEs, except for the four sensors (AirFlow, MethaneHigh, WaterLow,
WaterHigh).

In this architectural configuration, there are three controllers implemented as
idealised fault tolerant connectors: MineralExtractorController, AirExtractor
Controller, and PumpController. Each controller is responsible for dealing with the
normal behaviour of the system, and handling any exceptions that are propagated by
the components. Depending on the state of the sensors (MethaneHigh, WaterLow,
WaterHigh), one of the controllers will be always activated: in normal conditions –
the water level and the concentration of methane are low, the MineralExtractor
Controller is activated, when the water level is high and the concentration of methane
low the PumpController is activated, and when the concentration of the methane is
high the AirExtractorController is activated. In case there is a failure in one of the
architectural elements that cannot be handled by the system, it is the responsibility of
the MineralExtractorController to notify the key elements of the architectural
configuration that such a failure as occurred. In the configuration of Figure 13, this is
done through backward exception propagation from the MineralExtractorController
interface I_MEC_PE.

3.2 Exception Propagation

In order to exemplify the flow of exceptions, in the following, we consider the case in
which the AirExtractor fails. The propagation of exceptions is represented in a
simplified architecture of the mining control system, as shown in Figure 14.

158 R. de Lemos

Fig. 13. Architectural configuration of the mining control system

When an error is detected inside the AirExtractor, an internal exception is raised
(1) and locally handled. If AirExtractor is not able to handle this exception, it
propagates an exception to AirExtractorController (2). Again this component
attempts to handle this exception at the role context (3), but if it fails, it propagates
the exception to Controller (4). Since the concentration of methane is high and the
AirExtractor has failed, there is nothing that Controller can do, except to propagate
an exception among its collaborating architectural elements (5). Upon receiving this
exception, the MineralExtractor, the PumpController and the AirExtractor
Controller should shut down their activities, and the OperatorInterface should raise
an alarm for the operator to take the appropriate measures.

3.3 Evaluation

Aiming to analyse the request of services and the propagation of exceptions on
architectural configuration of iFTEs, the mining control system, as represented in
Figure 13, was modelled using extended timed automata templates used for modelling
the iFTE architectural abstraction. Although the model did not include the internal
architectural elements of an iFTE, it was enough to represent the basically
functionality of the mining control system. Using model checking, it was verified that
the architectural configuration was free of deadlocks, and all the system states were
reachable. Based on this preliminary analysis, the model was validated by checking
whether there was a proper invocation of services and propagation of exceptions
according to predefined scenarios. For example, the exception propagation
represented in Figure 14 was demonstrated to occur. This analysis was performed by
simulating the model, and make sure that no alternatives traces existed that would
lead to non-expected propagation scenario. This has shown that the architectural
configuration was able to tolerate some faults that might occur in the system.
However, this analysis was not exhaustive due to limitations in the modeling

I_OI_RS

I_AEC_RS

I_MEC_RS

I_PC_RS

I_AEC_RE

<<iFTComponent>>
OperatorInterface

I_OI_PS

I_OI_PE

<<iFTConnector>>
AirExtractorController

<<iFTConnector>>
MineralExtractorController

<<iFTConnector>>
PumpController

I_AEC_PS

I_AEC_PE
I_MEC_PS

I_MEC_PE

I_PC_PS

I_PC_PE

<<iFTComponent>>
MineralExtractor

<<iFTComponent>>
Pump

<<Component>>
WaterFlow

I_ME_PS

I_ME_PE

I_P_PS

I_P_PE

I_WF_PS

I_MEC_RE

I_PC_RE

<<iFTComponent>>
AirExtractor

<<Component>>
AirFlow

I_AE_PS

I_AE_PE

I_AF_PS

<<Component>>
MethaneLevel

I_MH_PS

I_WL_PS

<<Component>>
WaterLevel

I_ME_RE

 Architectural Fault Tolerance Using Exception Handling 159

Fig. 14. Representation of an exceptional scenario

technique, which is not flexible enough to allow the incremental development of the
models in order to represent a wide range of failures.

The complete analysis of the impact of using the iFTE when architecting fault
tolerant systems is beyond the scope of this paper. However, brief comments can be
made from the experience of using the architectural abstraction. As already mentioned
in the Introduction the separation between computation and coordination enforces
modularisation, which facilitates the process of decomposing the different
architectural elements in terms of normal and exceptional behaviour. Hence, one of
the advantages of using iFTE when architecting fault tolerant is its ability to be
instantiated to both components and connectors. However, this modularisation, which
is helpful for achieving a good structuring for the purpose of error confinement and
handling, has its disadvantages. The performance of the system might be affected
because more components are involved for the provision of the same services, but this
is the price that has to be paid for enforcing the separation between normal and
exceptional behaviour. Concerning scalability, this is more a limitation of exception
handling than the architectural abstraction being proposed. Since exception handling
for the provision of fault tolerance is an application dependent technique, it depends
on the characteristics of the application and the availability of redundancies to
determine how many exceptions, and their respective handlers, are necessary for a
system. The use of architectural abstractions like the iFTE tends to facilitate the
design of systems which are more complex in nature, which in our case, means to
have more exceptions to handle or propagate in order to tolerate faults.

4 Related Work

In the context of error handling, although exceptional handling at the architectural
level has been reported in the literature, most of the contributions still consider the
component to be the place where exceptions should be handled. An example of such
contribution is the idealised C2 component (iC2C), based on the idealised fault-
tolerant component, which has been proposed for structuring software systems

160 R. de Lemos

compliant with the C2 architectural style [10]. This is also case of architectural
approaches based on Catalysis [14] and DUALLY [15]. A more general strategy for
exception handling is the integration of two complementary strategies, a global
exception handling strategy for inter-component composition, and a local exception
handling strategy for dealing with errors in reusable components [4]. An important
issue when dealing with exceptions at the architectural level is techniques for
analysing the flow of exceptions. The Aereal framework allows specifying rules to be
associated with the propagation of exceptions, and checking for violations of these
rules [3]. However, when considering collaborating components, components alone
might not be able to handle exceptions. Instead, components might need to
collaborate with other components for handling a particular failure scenario, in the
same way that components need to collaborate to deliver a specified correct service.

5 Conclusions

In this paper, we have presented an architectural approach, based on exception
handling, for structuring fault-tolerant software. In this approach, the architectural
elements are partitioned into normal and exceptional parts, thus promoting a clear
separation of concerns on how errors are detected, and how they should be handled.
The proposed idealised fault-tolerant architectural element (iFTE) has been
represented using AADL and verified using model checker UPPAAL. The overall
feasibility of the proposed architectural abstraction, and its respective detailed design,
has been evaluated in the context of simple case study, the mining control system.

Although the idealised fault-tolerant architectural element (iFTE) has shown to be
effective in obtaining well-structured systems by promoting error confinement, one
major limitation concerning this concept is its failure assumptions, which might be
difficult to enforce considering the inherent complexity of some software
components. For example, when a software component fails, how to enforce the only
output it produces is a failure exception? It is clear that when devising abstractions for
structuring software systems at the architectural level, more realistic failure
assumptions have to be considered, and currently work is in progress that considers
different fault-tolerant architectural abstractions that are able to enforce more realistic
failure assumptions. Concerning the verification of the architectural abstraction, more
appropriate formal techniques, like the B method and CSP, are being investigated that
would allow to perform a more thorough analysis in exception. Regarding the
representation of the proposed architectural solution using an architectural description
language, work has already started in representing the iFTE in terms of the AADL
Error Model Annex [17], which complements the description capabilities of the
AADL core language.

Overall, since exception handling is an application dependent solution, special care
has to be taken for avoiding increasing system complexity unnecessarily because any
undesirable circumstance might be considered an exception. Moreover, since the
handling of exceptions rely on rollback and rollforward techniques for error recovery,
if these are not properly implemented, complexity might also increase. These issues
can be considered a weakness when devising solutions that can be applied to a wide
range of fault-tolerant software applications. For that, validation means that include

 Architectural Fault Tolerance Using Exception Handling 161

regression testing and fault injection are being integrated to a development approach
based on the iFTE. These provide additional assurances that the final system code is
an actual implementation of its architectural representation.

Acknowledgements

The author would like to thank Patrick H. S. Brito, Fernando Castor Filho, Paulo
Asterio de C. Guerra, and Cecília Mary F. Rubira for their contributions to this paper.

References

[1] Anderson, T., Lee, P.A.: Fault Tolerance: Principles and Practice. Prentice-Hall,
Englewood Cliffs (1981)

[2] Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic Concepts and Taxonomy of
Dependable and Secure Computing. IEEE Transactions on Dependable and Secure
Computing 1(1), 11–33 (2004)

[3] Castor Filho, F., Brito, P.H.S., Rubira, C.M.F.: A Framework for Analyzing Exception
Flow in Software Architectures. In: Proceedings of the ICSE 2006 Workshop on
Architecting Dependable Systems (WADS). St. Louis, MI, USA. May 2005. pp. 21–27
(2005)

[4] Castor Filho, F., de C Guerra, P.A., Pagano, V.A., Rubira, C.M.F.: A Systematic
Approach for Structuring Exception Handling in Robust Component-Based Software.
Journal of the Brazilian Computer Society 3(10) (2005)

[5] Cristian, F.: Exception Handling. Dependability of Resilient Computers. Anderson, T.,
(ed.) BSP, pp. 68–97 (1989)

[6] Clements, P., et al.: Documenting Software Architectures: Views and Beyond. Addison-
Wesley, Reading (2003)

[7] de Lemos, R., de C. Guerra, P.A., Rubira, C.: A Fault-Tolerant Architectural Approach
for Dependable Systems. IEEE Software (Special Issue on Software Architectures), 80–
87 (2006)

[8] de Lemos, R., Romanovsky, A.: Exception Handling in a Cooperative Object-Oriented
Approach. In: Proceedings of the 2nd IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC’99) Saint Malo, France. May 1999, pp. 3–13
(1999)

[9] Gacek, C., de Lemos, R.: Architectural Description of Dependable Software Systems. In:
Besnard, D., Gacek, C., Jones, C.B. (eds.) Structure for Dependability: Computer-Based
Systems from an Interdisciplinary Perspective, pp. 127–142. Springer-Verlag, London,
UK (2006)

[10] de C. Guerra, P.A., Rubira, C., de Lemos, R.: A Fault-Tolerant Software Architecture for
Component-Based Systems. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.)
Architecting Dependable Systems. LNCS, vol. 2677, pp. 129–149. Springer, Heidelberg
(2003)

[11] Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a Nutshell. International Journal on
Software Tools for Technology Transfer 1(1–2), 134–152 (1997)

[12] Perry, D.E., Wolf, A.L.: Foundations for the Study of Software Architectures. SIGSOFT
Software Engineering Notes 17(4), 40–52 (1992)

162 R. de Lemos

[13] Randell, B.: System Structure for Software Fault Tolerance. IEEE Transactions on
Software Engineering 1(2), 220–232 (1975)

[14] Rubira, C.M.F., de Lemos, R., Ferreira, G.R.M., Castor Filho, F.: Exception Handling in
the Development of Dependable Component-Based Systems. Software-Practice and
Experience 35(3), 195–236 (2005)

[15] Di Ruscio, D., Muccini, H., Pelliccione, P., Pierantonio, A.: Towards Weaving Software
Architecture Models. In: ECBS, Joint Meeting of the 4th MBD and 3rd MOMPES.
Potsdam, Germany, March 2006 (to appear)

[16] SAE-AS5506 Architecture Analysis and Design Language. Society of Automotive
Engineers (SAE) (2004)

[17] SAE-AS5506/1 SAE Architecture Analysis and Design Language (AADL) Annex, vol. 1
Annex E: Error Model Annex. International Society of Automotive Engineers.
Warrendale, USA (June 2006)

[18] Shaw, M., Garlan, D.: Software Architectures: Perspectives on an Emerging Discipline.
Prentice-Hall, Inc. Upper Saddle River, NJ (1996)

[19] Sloman, M., Kramer, J.: Distributed Systems and Computer. Networks. Prentice Hall,
Englewood Cliffs (1987)

R. de Lemos et al. (Eds.): Architecting Dependable Systems IV, LNCS 4615, pp. 163–187, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Model-Centric Development of Highly Available
Software Systems*

Rick Buskens1 and Oscar Gonzalez2

1 Lockheed Martin Advanced Technology Laboratories
rbuskens@atl.lmco.com

2 Bell Laboratories, Alcatel-Lucent
ojgonzale@alcatel-lucent.com

Abstract. In today’s rapidly evolving marketplace, the ability to quickly build
and deploy new systems is an increasingly critical factor in a company's
success. For certain domains, such as telecommunications, it is taken for
granted that systems will be highly available, with expectations of “5 9s” or
even higher availability, translating to five minutes or less downtime per year.
However, building highly available systems is generally very challenging, and
becoming even more challenging as the systems increase in complexity. High
availability (HA) middleware solutions partially address this challenge by
providing common HA services that system developers can use. However,
developers still need to spend significant effort integrating their systems with
the HA middleware. In this paper, we present the Aurora Management
Workbench (AMW) as a solution to the integration problem. AMW is an HA
middleware and tools for building highly available distributed software
systems. It is unique in its approach for developing highly available systems:
developers focus only on describing key architectural abstractions of their
system as well as system high availability needs in the form of a model. Tools
then use the model to generate much of the code needed to integrate the system
with the AMW HA middleware, which also uses the model to coordinate and
control HA services at run-time. This paper describes our approach and our
initial successes using it to develop commercial telecom systems.

Keywords: high availability, middleware, model-centric software development.

1 Introduction

Developing highly available distributed software systems is a challenging task, and
becoming even more challenging as system size and complexity continue to rise. To
succeed at this task, software system developers must not only intimately understand
the domain of the systems they build, they must also be experts in high availability.

High availability (HA) middleware aims to relieve some of this complexity by
providing reusable foundational building blocks, or services, for reliability. ISIS [4]
and Horus [26] are two early examples of such middleware; ARMOR [17] is another

* This work was done while the author was at Bell Laboratories.

164 R. Buskens and O. Gonzalez

more current example. Systems such as DOORS [8], Eternal [24] and AQuA [10] are
CORBA-based HA middleware solutions that contributed to the development of the
FT-CORBA [13] specification. Work in progress by the Service Availability Forum
(SAF) [31] aims to standardize HA middleware APIs that are platform-independent.
There are also a number of commercial HA middleware solutions [9,12,14]. All HA
middleware solutions require run-time configuration to be specified – e.g., the
assignment of software components to processing nodes, heartbeat monitoring time
intervals and monitoring periods, etc. – through a combination of manually-generated
configuration files and/or graphics user interface tools.

Leveraging existing HA middleware solutions requires significant design and
development work in order to integrate the HA middleware with a software system of
interest. A critical requirement is that the object model of the software system must
align with the object model of the HA middleware. The impact of numerous
application-specific issues on high availability must also be understood, such as how
dependencies and interactions among software components constrain how high
availability features may be used. Refer to Fig. 1. In the figure, the HA run-time
infrastructure and HA middleware library code are provided by an HA middleware
vendor. To “glue together” the software system (application) with the HA middleware
requires application-specific HA code to be written by a developer. Typically, the
amount of such code for any sizeable software system is large – on the order of many
tens or even hundreds of thousands of lines of code. Furthermore, once a system has
been built to be highly available, it is vitally important that the resulting system can
be thoroughly tested to ensure it meets its fault tolerance needs.

Hardware Platform

Operating System

Application

HA middleware
library code

Application-
developed
HA code

HA Run-Time
Infrastructure

Run-time
configuration
information

Hardware Platform

Operating System

Application

HA middleware
library code

Application-
developed
HA code

HA Run-Time
Infrastructure
HA Run-Time
Infrastructure

Run-time
configuration
information

Run-time
configuration
information

Fig. 1. Typical Software System Leveraging HA Middleware

In the commercial world, this often leads to a dilemma we refer to as the
“developer’s paradox”. Developers may want or need to build reliability into their
systems. However, market forces typically pressure developers to incorporate as
many functional features into their systems as possible, for it is these features that
drive revenue for their products. Time that is spent building reliability into a system is
therefore time not spent developing revenue-generating features.

To address this critical challenge, the objective of the work presented herein is to
make it as simple as possible to build and test highly available software systems. We

 Model-Centric Development of Highly Available Software Systems 165

achieve this by getting developers to describe their application and its reliability needs
in an abstract and simple way. Code generation tools translate these abstract
descriptions into much of the code necessary to integrate application software with an
HA middleware to provide overall system reliability. The abstract descriptions also
specify behavioral properties that must be met at run-time. We refer to the overall
approach as model-centric development for building highly available systems. Model-
centric development based on the UML [34] has been around for years, and papers
have been published on using the UML to model dependability concerns [27]. Our
work differs significantly from this work in that our models are at an even higher
level of abstraction than the design-level models supported by the UML. Techniques
to support dependability modeling and analysis of distributed object-oriented
applications designed in compliance with the FT-CORBA specification have also
been developed [20]. Our work does not address dependability modeling and analysis.
The main contributions of our work are: (1) model abstractions of distributed systems
and high availability that replace traditional hand coding of software; and (2) an HA
middleware and code generation tools that leverage the model to simplify application
integration. We are not aware of any other work that focuses on this particular
integration problem. While our solution contains several novel reliability features,
discussion of these features is not the focus of this paper, unless such features are
enabled by our approach. We focus instead on presenting the key concepts that enable
a separation of concerns so that developers can describe many of their HA needs in a
declarative way rather than through detailed design models or actual code.

The remainder of this paper is organized as follows. Section 2 examines key issues
faced by developers when building highly available software systems. Section 3
briefly describes the general area of model-centric development and how we intend to
apply it to address high availability. Section 4 discusses the Aurora Management
Workbench (AMW), our model-centric approach towards developing highly available
software systems. We briefly describe our solution implementation in Section 5, and
summarize our experiences of applying this solution in practice in Section 6. Future
work is presented in Section 7. Summary and conclusions are presented in Section 8.

2 The Challenges of Building Highly Available Systems

Building highly available systems poses numerous challenges. In this section, we
discuss what we believe are four of the most important challenges. Each challenge is
discussed both generally and in the context of integrating with an HA middleware.
For convenience, the discussion focuses on software systems.

2.1 Significance of System Architecture

System architecture has a critically large impact on the set of issues that must be
addressed in order to construct a highly available system. Consider two
implementations of the same software system (application) in an environment where
only crash failures occur. One implementation consists of a single process P that
maintains state S (Fig. 2(a)). For simplicity, suppose we design P to be resilient to
failures by having P checkpoint its state S every time S changes. Fig. 2(b) shows a

166 R. Buskens and O. Gonzalez

second implementation that consists of two interdependent communicating processes,
A and B. State S in the single process implementation is now partitioned into states SA
and SB. To design this second implementation to be resilient to failures requires
managing the communication channels between A and B, including re-establishing the
channels after process failures, coordinating the checkpoints of SA and SB so that a
consistent snapshot of the current overall system state is taken, and re-synchronizing
SA and SB when either A or B fails and is recovered. Additionally, testing of a larger
number of scenarios is necessary in order to confirm correct behavior under failures.

P

S

(a)

SA SB

BA

(b)

P

S

(a)

P

S

PP

SS

(a)

SA SB

BA

(b)

SA SB

BA

SASA SBSB

BBAA

(b)

Fig. 2. Different Architecture Realizations for Same Problem

As the above example illustrates, more complex system architectures require more
issues to be addressed when building highly available systems as compared to less
complex system architectures, with a commensurate increase in effort required to
achieve high availability. Practical systems today are significantly more complex than
the simple examples presented above. Furthermore, a simple system architecture that
meets application functional requirements is often in direct conflict with the more
complex architecture that is necessary to meet system scalability, performance, and
availability requirements. Unfortunately, it is the system developer who must deal
with the added complexity. High availability middleware solutions available today
offer limited assistance in dealing with these kinds of architectural issues.

2.2 Initialization and Run-Time Upgrades

Almost without exception, published research ideas on fault tolerance are described
with respect to a system in operation. In practice, developers spend significant time
addressing initialization and run-time upgrades. While fault tolerance techniques that
are applied during normal system operation can usually also be applied during system
initialization or upgrades, often the unique behavior of initialization or upgrades will
allow for special, more efficient, techniques to be used.

Initialization refers to starting up a system and bringing it to a point where the
system can begin to perform its function. Any and all state information is derived
from typically static configuration data (e.g., stored in databases, configuration files,
etc.) plus initialization activities involving interaction among components (of the
system being initialized and/or other systems). Checkpointing during initialization can
often be avoided, as any state lost due to failures can usually be easily re-derived. For
large systems, intelligent failure handling during initialization is important both to
permit successful initialization of portions of the system and to keep initialization
times low in spite of unexpected failures [25].

 Model-Centric Development of Highly Available Software Systems 167

Run-time upgrades result in a change to the run-time configuration of a system
while the system is operational. Examples of run-time upgrades include adding a
component (hardware or software) to a system or replacing a component with a newer
version. For systems requiring very high availability (e.g., 5 9’s or higher), upgrades
must be performed without disrupting ongoing operation. Because normal operational
state continues to change while the system is being upgraded, simple rollback
recovery techniques cannot be easily applied when failures occur during an upgrade.

Support for initialization and run-time upgrades, along with fault detection and
recovery during these system states, must also integrate seamlessly with fault
detection and recovery support during normal operation. Significant portions of these
capabilities are application-specific; hence the burden of ensuring these capabilities
are performed properly rests on the shoulder of the developer.

2.3 Expertise Required

Constructing highly available systems requires significant expertise in fault tolerance.
Developers must thoroughly understand not only the system components they are
responsible for developing and the relationship of these components with others in the
system, they must also understand techniques for fault detection, isolation and
recovery, state preservation, etc., and how interdependencies among system
components affect the way in which these techniques must be realized to meet system
availability needs.

Developers that use an HA middleware must map their desired approaches for
providing high availability to calls to the HA middleware APIs. To maximize
flexibility of the HA middleware, these APIs tend to implement basic, low-level
services that can be composed to provide higher-level, more complex HA services.
The developer is responsible for constructing the appropriate higher-level services
from the basic building blocks. This usually translates into a significant amount of
coding for the developer (more on this in Section 6).

The HA middleware must also be configured for run-time operation. This run-time
configuration must be kept consistent with the API usage in the code to ensure proper
operation, made more difficult by the fact that developers writing system code are
typically not the same as those who specify the run-time configuration. Mismatches
between API usage and the run-time configuration can lead to incorrect or even
inconsistent and unexpected behavior of the HA middleware at run-time.

2.4 Testability

Another significant challenge in building highly available systems is in testing them
to ensure they perform correctly. Thorough testing is necessary. To ensure correct
behavior requires that failures be injected to trigger HA operation at key points during
system operation. For any practical system, this a monumental task. Ideally, testers
need to be able to control the behavior of the HA run-time infrastructure and how it
interacts with the rest of the system. Today’s HA middleware solutions offer limited
assistance with this task.

168 R. Buskens and O. Gonzalez

3 Model-Centric Development for High Availability Services

Model-centric development offers significant promise as a technique for building
software systems more quickly and easily than by traditional methods [30]. The basic
principle is that important system characteristics are captured via abstractions that
form a model of the system. The model then acts as input for code generation.

Commercial tools such as IBM’s Rational Software Architect [16] and Telelogic’s
Rhapsody [33] are two examples of model-driven development tools for software
developers. These tools allow developers to compose high-level models from
foundational model primitives, where systems comprise software components that
implement state machines and interact through various communication mechanisms.

A second class of model-centric development tools aims to provide high-level
model abstractions customized for specific domains. Rather than allow developers to
build models by using and composing low-level primitives, domain-specific modeling
languages (DSMLs) define model elements that capture the essential high-level
model components of the specific domain. Researchers at Vanderbilt University have
taken this a step further and developed the Generic Modeling Environment (GME)
[19] that provides a DSML for developing other DSMLs.

To address many of the challenges of building highly available software systems
described in Section 2, we have developed a more holistic approach to building such
systems through the use of models. In particular, we have developed a domain-
specific modeling language for modeling system high availability characteristics.
Interestingly, a sizeable number of the key model elements capture architectural
elements of software systems. In addition to the novelty of the modeling language
itself, our approach offers two additional unique characteristics:

1. Our domain-specific modeling language incorporates both architectural attributes
and run-time behavioral attributes, making it easier for developers to ensure that
these two sets of attributes are well-matched, and enabling tools to be developed to
check for inconsistencies in the specification of such attributes;

2. Our approach is the first we know of that uses model-centric development to
address the integration of a software system with an HA middleware.

Model
Specification

Code
Generation

Configured
Run-Time

HA Services

Desired
Run-Time

Fault Tolerance
Behavior

System
Architecture

Model
Specification

Code
Generation

Code
Generation

Configured
Run-Time

HA Services

Configured
Run-Time

HA Services

Desired
Run-Time

Fault Tolerance
Behavior

Desired
Run-Time

Fault Tolerance
Behavior

System
Architecture

System
Architecture

Fig. 3. Model-centric approach to developing highly-available systems

 Model-Centric Development of Highly Available Software Systems 169

Fig. 3 captures the essence of our approach. Models developed using our domain-
specific modeling language capture both architectural and run-time behavior attributes
of the software system being developed. These models then act as the single source
for both code generation, reducing programmer effort and easing integration of the
HA middleware with the system being developed, as well as the configuration of run-
time HA services. The next section discusses our solution in detail.

4 Aurora Management Workbench

The Aurora Management Workbench (AMW) is our implementation of a model-
centric approach to building highly available systems [6]. AMW consists of a
modeling language for specifying highly available systems, code generators that
generate code from the model, and a high availability middleware – including run-
time entities – that coordinate initialization, fault detection and recovery, and run-time
upgrade procedures using the model. An overview of AMW is presented next.

4.1 Overview

Refer to Fig. 4. Compared with the typical software system that utilizes an HA
middleware (Fig. 1), AMW’s configuration specification – i.e., the model – contains
build time information used for code generation purposes. In addition, because the
complete model is available to the HA middleware rather than being embedded in the
code written by system developers, the HA run-time infrastructure is able to provide
additional HA services that have traditionally been considered application-specific.
With this approach, functional code traditionally written to capture application-
specific fault tolerance behavior is replaced with high-level specifications of desired
behavior. That is, model abstractions replace traditionally hand-written code. While
developers must still write application-specific code to support high availability, the

Hardware Platform

Operating System

Application

HA middleware
library and

generated code

Application-
developed
HA code

HA Run-Time
Infrastructure

Additional/enhanced
HA services

Build-time
and run-time
configuration
information

Hardware PlatformHardware Platform

Operating SystemOperating System

Application

HA middleware
library and

generated code

Application-
developed
HA code

HA Run-Time
Infrastructure

Additional/enhanced
HA services

Build-time
and run-time
configuration
information

Build-time
and run-time
configuration
information

Fig. 4. AMW approach to developing highly available systems

170 R. Buskens and O. Gonzalez

quantity of such code written is significantly reduced and focuses only on application-
specific needs that cannot be captured in the high-level models.

AMW provides its own implementation of an HA middleware. In keeping with
our objective of making it as simple as possible for developers to build highly
available systems, AMW aims for as much transparency to the developer as possible.
Existing HA middleware solutions do not permit the same level of transparency for
the various HA services, including management of inter-component communication
channels (Section 4.5) and transparent fault injection (Section 4.4) to name a few.
Even with code generation from model specifications, leveraging existing HA
middleware solutions would require significantly more work for system developers
than is required with AMW. We now discuss key aspects of AMW in more detail.

4.2 Model Abstractions: System Architecture

System architecture is defined as the structure of the system, defined in terms of
system elements, any externally visible properties of the elements, and the
relationship among the elements [1]. Fig. 5 pictorially captures the key system
architecture elements of the AMW model. The key system architecture elements are:

• Node or processor. This type of system element hosts the executing software
entities of the system. Nodes may be heterogeneous in terms of processing
capacity, memory, disk space, operating system, or any other attributes. During
operation, nodes contain zero or more capsules.

• Process or capsule. This system element is the smallest unit that can be started
from within an operating system shell. In a UNIX environment, a capsule is
equivalent to a UNIX process. Capsules contain one or more software components.

• Software component or server. This system element is a logical entity to be treated
as the smallest software unit for initialization, recovery, upgrades, etc. A software
component supports one or more communications interfaces and interacts with
other software components through message passing.

• Interface: a communications port into a software component. In our model, each
component has one AMW interface and zero or more application interfaces.

• Communication link, or simply link: a channel that supports communication
between two components. Specifically, a communication link allows one
component to send messages to a specific interface of another component.

• Interdependency: describes an application-specific relationship between software
components. We have identified three types of dependencies that impact the
ordering of initialization, recovery, and run-time upgrade events among system
elements. These dependency types are: communication dependencies, data
dependencies and relationship dependencies [25].

To facilitate ease of use and to ease integration of high availability services into
individual system software components, AMW components are comprised of three
parts: a management part provided by AMW, an application part provided by the
developer, and a linkage part also provided by the developer (Fig. 6). The
management part provides most of the high availability support infrastructure needed
by a software component. It shields all interaction involving the system component

 Model-Centric Development of Highly Available Software Systems 171

AMW
Interface

Application
Interface

Component

Process

Processor

Communications link
Interdependency

AMW
Interface

Application
Interface

Component

Process

Processor

Communications link
Interdependency

Fig. 5. Key AMW System Architecture Elements

and the AMW run-time infrastructure, and provides some high availability services
that are completely transparent to the system component itself. The application part
implements the functional capabilities of the system. The linkage part hooks the
management and application parts together by providing any system-specific support
for high availability. Typically, the linkage part is only a very small amount of code.

In AMW, we further distinguish the logical architecture of the system (e.g., the
types of components that may reside within certain types of capsules) from the
physical, or deployment, architecture of the system (e.g., how many capsules of a
particular type are actually instantiated, which nodes are they instantiated on, etc.). A
key benefit of our deployment architecture model is that decisions traditionally made
at design time and often embedded in application code are now captured in a model
that allows the HA middleware to make these decisions at run-time. One illustrative
example is assigning a capsule to run on one of a set of nodes based on the
availability and load conditions of all suitable nodes. We know of no other high
availability middleware that supports this capability today. Furthermore, the UML
does not yet support such dynamic deployment models.

Fig. 7 presents a simple example of a partial architectural specification that
illustrates the logical architecture of an example system. The figure shows two types,
or classes, of capsules, CC1 and CC2, that each contains different types, or classes, of
components/servers. CC1 contains components of type A and B, and CC2 contains
components of type C. Components of type A have no explicit application interfaces
(i.e., there is no direct way to send a message to these components). Components of
types B have two communications interfaces, BIf1 and BIf2. Similarly, components
of type C have two communications interfaces, CIf1 and CIf2. Components of type A
communicate with components of type B through communications interface BIf1 and
with components of type C through communications interface CIf2. Similarly,
components of types B and C interact with each other through communications
interfaces BIf2 and CIf1. Finally, components of type A have dependencies on
components of type B; components of type B have dependencies on components of

172 R. Buskens and O. Gonzalez

application
interfaces

AMW
management
component

linkage
component

application
component

AMW management interface

application
interfaces

AMW
management
component

linkage
component

application
component

AMW management interface

Fig. 6. Detailed AMW component model

type C. (We discuss how these interdependencies affect run-time operation in Section
4.5.) The specification in the right portion of the figure captures what is graphically
depicted in the left hand side of the figure.

Developing the model specification of the physical system architecture is almost
identical to the procedure followed to capture the logical system architecture. Two
key differences are that each specification of an instance of an element must
reference, or derive from, the corresponding type specification and that there must be
a specification for each instance of an element. For example, given the logical
specification in Fig. 7, suppose that the physical architecture required one capsule of
type CC1 containing two components of type A and one component of type B as well
as two capsules of type CC2 each containing one component of type C. The
corresponding physical specification, which forms an augmentation to the logical
specification of Fig. 7, is shown in Fig. 8. Note that attributes defined as part of the
corresponding class specifications – e.g., the links and interfaces specifications as
well as the dependency information – are automatically inherited by the instance
specifications. (These inherited attributes can be overridden, if desired.)

With traditional HA middleware solutions, application developers must write code
or develop executable scripts to address application-specific fault tolerance behavior
(e.g., to implement fault escalation policies). With AMW, application-specific
behavior is captured as high-level declarative policies that are interpreted by the
AMW run-time infrastructure and translated into coordinated fault management
activities between AMW and the application. This eliminates much of the coding
normally required by developers. Run-time behavioral policy specifications in AMW
support the following fault management activities:

• Fault detection. Behavior attributes such as monitoring frequency are specified in
the model to aid in detecting software failures.

• State preservation. The AMW model supports specifications related to state
preservation (i.e., checkpointing). These specifications are used by AMW so that
AMW can coordinate recovery actions. Note that coordination of these recovery
actions has traditionally been the responsibility of the application. Our approach
enables this coordination to be performed mainly by the HA infrastructure,
simplifying application development.

 Model-Centric Development of Highly Available Software Systems 173

• Fault isolation/fault containment. Knowledge of the communication links among
application components allows AMW to isolate faulty components efficiently.
Declaration of failure groups allows AMW to treat a group of components
atomically from a failure perspective.

• Fault recovery. Examples of behavior attributes that are used during recovery
include replication strategies, component criticality and interdependencies.

• Fault escalation. AMW provides declarative support for complex, hierarchical,
multi-component, system-wide (i.e., cross-node) fault escalation policies; no
coding is required on the part of the developer to implement this application-
specific behavior. While we are aware of HA middleware solutions that support
declarative fault escalation policies, such policies are typically non-hierarchical or
are confined to a single node [14].

capsuleclass CC1 {
serverclass { A B };

};
capsuleclass CC2 {

serverclass { C };
};
serverclass A {

links { BIf1 CIf2 };
};
serverclass B {

interfaces { BIf1 BIf2 };
links { CIf1 };

};
serverclass C {

interfaces { CIf1 CIf2 };
links { BIf2 };

};
dependency {

A : B;
B : C;

};
…

Communications link
Interdependency

A

B

C

BIf1

BIf2

CIf1

CIf2

CC1

CC2

Architecture
Specification

(Partial)

capsuleclass CC1 {
serverclass { A B };

};
capsuleclass CC2 {

serverclass { C };
};
serverclass A {

links { BIf1 CIf2 };
};
serverclass B {

interfaces { BIf1 BIf2 };
links { CIf1 };

};
serverclass C {

interfaces { CIf1 CIf2 };
links { BIf2 };

};
dependency {

A : B;
B : C;

};
…

Communications link
Interdependency

A

B

C

BIf1

BIf2

CIf1

CIf2

CC1

CC2

Architecture
Specification

(Partial)

Fig. 7. Example AMW logical architecture specification (partial)

capsule C1: CC1 {
server A1: A;
server A2 : A;
server B1 : B;

};
capsule C2: CC2 {

server C1 : C;
};
capsule C3: CC2 {

server C2 : C;
};

capsule C1: CC1 {
server A1: A;
server A2 : A;
server B1 : B;

};
capsule C2: CC2 {

server C1 : C;
};
capsule C3: CC2 {

server C2 : C;
};

Fig. 8. Example AMW physical architecture specification (partial)

Fig. 9 provides an example specification capturing desired run-time behavior in the
AMW model, specifically focused on failure groups and declaratively specifying fault
escalation policies. The logicalGroup model construct defines a group of software

174 R. Buskens and O. Gonzalez

process components containing those elements specified in the members model
construct (in this case, the group consists of only a single member). The fault
escalation strategy, identified by the escalationStrategy model construct, defines a
policy for fault escalation for members of the logical group. In this particular instance,
the fault escalation strategy consists of two components: a leaky bucket strategy
followed by a migration strategy. The leaky bucket strategy specifies that member
capsule1 should be restarted on a processor when it fails, unless it fails more than
three times in a 100-second window, in which case the node on which capsule1 was
running when this failure threshold is reached should be rebooted (indicated by the
auxiliaryAction). At this point, the escalation strategy specifies that capsule1 should
be migrated to run on a different processor. The strategy further specifies that at most
three processor migrations are permitted.

Note that traditional highly available systems would require the above policy
specification to be implemented within the system code itself and would require
several hundred or more lines of code to be implemented. Furthermore, a change to
the policy would require modification of this code. With AMW, a change to the
policy simply requires changing the specification; no changes to the AMW run-time
infrastructure or the system itself are needed.

AMW further supports declaring fault tolerance behavior not only for traditional
run-time operation, but also for initialization and run-time upgrades, where special
considerations may warrant special behavior.

4.3 Code Generation

A key aspect of model-centric software development is code generation from the
model descriptions. Code generation in AMW provides much of the needed software
for integrating an application with the AMW HA middleware. It not only reduces
developer effort but also results in improved code quality over manual efforts.

Fig. 10 illustrates the basic operation. System architectural specifications plus
specifications of desired run-time behavioral policies are combined to form a

logicalGroup myFailureGroup {
members { capsule1 };
escalationStrategy {

escalationStrategy leakyBucket {
numRetries 3;
timeWindow 100;
auxiliaryAction NODE_REBOOT;

};
escalationStrategy migrate {

maxMigrations 3;
};

};
};

Impacts single process/capsule

Migrate process to new node;
do this at most 3 times

Failover/restart process;
at most 3 times in 100 seconds;
reboot node if rate exceeded

Failure Group and Fault
Escalation Specification

logicalGroup myFailureGroup {
members { capsule1 };
escalationStrategy {

escalationStrategy leakyBucket {
numRetries 3;
timeWindow 100;
auxiliaryAction NODE_REBOOT;

};
escalationStrategy migrate {

maxMigrations 3;
};

};
};

Impacts single process/capsule

Migrate process to new node;
do this at most 3 times

Failover/restart process;
at most 3 times in 100 seconds;
reboot node if rate exceeded

Failure Group and Fault
Escalation Specification

Fig. 9. Example AMW run-time behavior specification

 Model-Centric Development of Highly Available Software Systems 175

configuration file. This configuration file acts as input to AMW’s code generation.
Code generation produces code that implements capabilities that handles much of the
integration of system software components with the AMW HA middleware, a number
of which are application-specific. Once AMW code generation is complete, the work
that remains for the developer is system-specific functional behavior (i.e., behavior
that is not related to high availability operation) as well as a small amount of activity
required by the developer to complete the integration of system software components
with the AMW HA middleware.

AMW has two code generators. The first of these utilizes system architecture and
fault tolerance behavior specifications of our model to generate highly integrated code
impacting initialization, fault detection and recovery, and run-time upgrades:

• For each component, a set of tables that hold strongly typed communication
handles used to communicate with other components. Developers thus use
structured messages for component interaction, versus unstructured byte streams.

• For each component, a management interface between the component and our HA
middleware run-time system. This includes a messaging infrastructure, hidden
from the developer that is customized to application-specific HA needs.

• For each component that performs checkpointing, a set of strongly typed APIs for
saving, deleting, and restoring checkpoints. The strong typing of the checkpointing
APIs simplifies application developer effort, eliminating the need for developers to
write conversion routines that convert structured data to unstructured data. These
APIs completely hide the details of where the checkpoint data is stored. Control of
the checkpoint destination (either file or backup component) is managed by the
AMW run-time infrastructure, simplifying developer effort.

• For each capsule, code that coordinates component creation and instantiation,
including thread management, event processing, etc.

In addition, the generated code contains hooks for transparent fault injection, to
enable controlled testing of high availability services during system operation. As the
emphasis is on testing HA infrastructure operation, fault injection capabilities are
focused around message exchanges between HA-enabled system components and the
AMW HA middleware. Specifically, messages can be lost/dropped or delayed and, in
some cases, corrupted. These capabilities apply both to incoming messages (those
sent by the AMW HA middleware to the system component) and to outgoing
messages (those sent by the system component to the AMW HA middleware).

The second code generator takes an augmented model of the system that also
includes descriptions of component messaging interfaces (messages plus messaging
content/parameters) then generates actual messaging interfaces for each component,
skeleton implementations of the message handlers for the component, a skeleton
implementation of the component tied to the corresponding interfaces, plus makefiles
needed to build the skeleton versions of executable system entities.

In short, the two code generators together enable the construction of an executable
skeleton system from high-level specifications of the system, its architecture, and its
fault tolerance needs. To fully exercise the fault tolerance behaviors of the skeleton
system, the developer must add code to integrate the application with the AMW

176 R. Buskens and O. Gonzalez

Fig. 10. AMW code generation

run-time infrastructure. This integration effort varies across applications, but in
general is minimal. Specifically, developers are responsible for:

• Code that instantiates and terminates components. As the components themselves
are system-specific, they require system-specific actions for creation and
destruction. Specific component creation actions might include allocating
resources, such as memory. Specific component destruction actions might include
freeing of those resources. Note that AMW is responsible for coordinating the
creation and destruction of these components.

• Code that maintains system-specific component-level data structures. Invocation of
these maintenance routines is triggered by AMW as part of initialization,
shutdown, failover and auditing activities.

• Invocations of checkpointing APIs, for state preservation purposes. While AMW
provides application-specific APIs for checkpointing, based on model
specifications of data types to be checkpointed, developers must currently
determine what data to checkpoint and when to perform the checkpoints.

4.4 Model-Driven Run-Time Services

As discussed previously, the AMW model supports declarative specifications of
desired run-time fault tolerance behavior. These specifications are used by the AMW
run-time infrastructure and replace application-specific code that would otherwise be
written by developers. By separating the specification of run-time fault tolerance
behavior from application code, AMW enables different specifications of run-time
behavior to be used for different instances of the same application. For example, one
instance of an application may run in an environment where minimal fault tolerance is
required; the same application operating in another environment may require more
stringent fault tolerance.

 Model-Centric Development of Highly Available Software Systems 177

Compared with other approaches, our model enables advanced behavior to be
handled by the AMW run-time infrastructure, which operates at a finer granularity of
control than existing solutions [9, 12, 14], while still not requiring explicit coding by
developers. In particular, high availability issues related to application architecture are
more insulated from application code. This allows AMW to manage traditional
application-independent activities, such as starting and stopping capsules, as well as
other application-dependent activities traditionally handled within application code.
Some examples include:

• Inter-component communication channels are automatically managed by AMW.
This includes setting up the communication channels between communicating
components before the components are initialized, monitoring the status of the
communication channels, and automatically triggering the setup of new channels
as a part of failure recovery or run-time upgrades. To achieve this without
developer involvement requires separating component creation from component
initialization. AMW first creates components, then sets up inter-component
communication channels, then triggers component initialization.

• Component and capsule monitoring performed by AMW to detect entity crashes
and hangs requires no coding by developers. Detecting application-specific failures
is achieved by overwriting a callback function with application-specific tests.

• The AMW run-time infrastructure manages the destination to which data is
checkpointed (e.g., file or backup component). To the application developer,
checkpointing is location transparent. A component checkpoints relevant data at
relevant times or upon relevant events; AMW transparently directs the
checkpointed data to a corresponding file or backup component. When failures
associated with the checkpoint destination occur, AMW automatically executes
recovery actions to restore the checkpoint destination, then coordinates with the
component taking the checkpoints to trigger a “dump” of the checkpoint data.

• Assignment of capsules to nodes is performed at run-time by AMW. Traditional
HA middleware solutions require that one specify exactly the set of nodes where a
capsule should execute. AMW specifications describe where a capsule can
execute. At run-time, AMW assigns a capsule to one of the suitable nodes based on
current conditions of the nodes – e.g., whether they are operational or not and how
much the nodes are already loaded.

• Often the most complex parts of building highly available systems are fault
handling and fault escalation. In AMW, system-wide fault escalation is driven by
declarative policies in our model and requires no coding by developers. The AMW
run-time infrastructure interprets these policies during fault handling. To resolve a
recurring fault, AMW escalates from the lowest to the highest impact recovery
action. Fig. 9 showed an example model specification for fault escalation.

• AMW facilitates the reconfiguration of a distributed system during operation to
reflect a controlled changed in available resources. The support provided by AMW
allows an application to create and completely integrate new application software
components and additional processing nodes into a running system. Removal of
software components and processing nodes is also supported. This capability
avoids downtime that might otherwise be required to perform these operations and
is the starting building block for more complex services such as software upgrades.

178 R. Buskens and O. Gonzalez

4.5 The AMW Run-Time Infrastructure

The responsibility of the AMW run-time infrastructure is to manage all high
availability related aspects of the software system in operation. It consists of two
main components, shown in Fig. 11:

• Configuration manager (ConfigMgr). The ConfigMgr manages the run-time
configuration of software system components, including the processor on which a
capsule executes, the assignment of application components to capsules, the fault
tolerance characteristics of capsules and components, component interdependencies,
etc. In addition, the ConfigMgr also coordinates all run-time HA related activities,
including initialization, reconfiguration after failures, and run-time configuration
upgrades. It also receives failure notifications and correlates the notifications to
perform fault isolation. Each software system will have one active ConfigMgr. To
handle failures of the ConfigMgr itself, each software system may have any
number of optional standby ConfigMgrs.

• Element manager (ElementMgr). ElementMgr starts, stops, and monitors software
system entities, and reports detected failures to the ConfigMgr. One ElementMgr
resides on each processor in the system.

Additionally, AMW provides an interface that allows it to interact with the “external”
world (i.e., entities outside of the AMW operational infrastructure). This permits
externally-generated messages and events to be sent to the AMW run-time
infrastructure to control its operation, inject failures, trigger run-time upgrades, etc. It
also allows external entities to register for and receive AMW events. This is useful
for OA&M applications. Importantly, this interface enables AMW to integrate and
co-exist with other high availability solutions (a unique feature of AMW, and
especially important when dealing with legacy applications).

We intended to leverage an existing high availability middleware and run-time
infrastructure in our efforts, rather than developing our own. However, the model-
centric approach, combined with our fine-grained object model plus our aim to make
high availability as transparent as possible to software developers, required greater
capability to be provided by the run-time infrastructure than existing solutions would
allow. In particular, a critical requirement of the run-time infrastructure is that it can
understand and use the AMW model.

Support for fault injection in the run-time infrastructure is also included. In
addition to supporting the injection of message delays and losses and some forms of
message corruption, failures of the AMW run-time infrastructure itself (e.g.,
ConfigMgr, ElementMgr) can be injected.

4.6 Addressing the Challenges

Section 2 presented four key challenges faced by developers building highly available
systems. AMW addresses each of the challenges. Specifically:

• Addressing the complexity of system architecture. Key components in the AMW
model are architectural specifications, introduced for the explicit purpose of
simplifying developer effort to address high availability issues directly related to

 Model-Centric Development of Highly Available Software Systems 179

architectural decisions. Code generation from the AMW model then provides a
substantial portion of the code needed to integrate system components with the
AMW high availability infrastructure.

• Addressing the complexity of system architecture. Key components in the AMW
model are architectural specifications, introduced for the explicit purpose of
simplifying developer effort to address high availability issues directly related to
architectural decisions. Code generation from the AMW model then provides a
substantial portion of the code needed to integrate system components with the
AMW high availability infrastructure.

• Addressing initialization and run-time upgrades. As already described, AMW
handles not only fault detection and recovery of a software system during normal
operation, it also provides initialization support and support for run-time
configuration upgrades, as well as fault tolerance services during initialization and
run-time upgrades. Furthermore, AMW’s initialization, fault detection and
recovery and run-time configuration upgrades capabilities are tightly integrated.

• Reducing the level of expertise required. The architectural and run-time behavior
specifications in the AMW model replace traditional hand-written code to
implement high availability capabilities for system software. In addition, the high-
level nature of the model abstractions makes them easy to learn and use.

• Addressing the concerns of testability. Code generated by AMW contains hooks
for fault injection. The AMW run-time infrastructure is instrumented with fault
injection hooks as well. Collectively, this enables testing of a wide variety of
scenarios where failures may occur in practice. While the focus is naturally on
testing high availability services in the context of a software system, extremely
fine-grained control is provided (e.g., drop the first initialization message received
by system component X, then delay delivery of the response to the second
initialization message by 30 seconds).

AMW
Run-Time

Infrastructure

Application Layer

Processor 1 Processor 2 Processor n

Config
Mgr

Element
Mgr

Element
Mgr

Element
Mgr

AMW
Run-Time

Infrastructure

Application Layer

Processor 1 Processor 2 Processor n

Config
Mgr

Element
Mgr

Element
Mgr

Element
Mgr

Fig. 11. AMW run-time infrastructure components

180 R. Buskens and O. Gonzalez

5 AMW Implementation

AMW is being used in Alcatel-Lucent’s field-deployed products. It exposes a C++
API for application-specific integration with the AMW HA middleware and a
CORBA API for application messaging. The AMW code generators and run-time
infrastructure comprise 250K source lines of highly modular C++ code. The
modeling language is text-based, as examples in the previous sections show.

While the focus of this paper is on the use of high-level models to minimize or
replace traditional hand-coding of software in order to make a software system highly
available, we now briefly details of some aspects of the AMW implementation:

• Failure assumptions. Processors and processes fail only by crashing, and do not
generate spurious events before or during a crash (“fail silent”). Application
components fail either by crashing or by not responding (e.g., due to deadlocks,
etc.). Inter-processor communication links do not fail. Alternatively, the
communications infrastructure between processors contains redundant links (dual-
link solutions are readily available in hardware today). Any number of processors,
processes and software components, including AMW run-time infrastructure
components, may fail simultaneously. Failure detection is accurate. These
assumptions have proven sufficient to date in situations where AMW is used.
Since these failure assumptions are captured internally in AMW (i.e., they are not
exposed to developers through the AMW model), they can easily be extended.

• Failure detection. Application component failures are detected through periodic
callbacks into the component. A positive response to the callback indicates a fault-
free component; a negative response or no response after a configurable timeout
indicates a faulty component. The callback may invoke a number of application-
specific tests, such as data structure audits, as appropriate for the component.
Process failures are detected via a periodic heartbeat messaging mechanism
between AMW management components residing within the process (refer to Fig.
6) and the AMW ElementMgr residing on the same processor as the component. A
positive heartbeat response indicates a fault-free process; a negative response or no
response indicates a faulty component. Processor failures are detected via a
periodic heartbeat messaging mechanism between AMW ElementMgrs residing on
the different processors. An adaptive algorithm based on [3] determines which
ElementMgrs monitor each other. ElementMgrs perform local fault isolation and
event correlation, then report the failures to the ConfigMgr whereupon recovery is
initiated. The specific detection techniques are inherent in the current
implementation of AMW. However, the period and timeout values in both the
callbacks and heartbeating are configured in the AMW model. These values may
be changed dynamically without altering a single line of application code.

• Replication strategies. AMW supports three replication strategies, captured at the
component level in the AMW model (the impact on process replication is
automatically derived from component level replication strategies). Replication
strategy no recovery instantiates and initializes a component at system startup but
does not recover the component if it fails for any reason. This configuration is

 Model-Centric Development of Highly Available Software Systems 181

useful when a component is needed only for first-time initialization purposes (e.g.,
a database containing initial configuration data for the component). For the restart
replication strategy, a single, active instance of a component is instantiated and
initialized at system startup and recovered (by restarting the component) if it fails.
Specifying an active-standby replication strategy causes instantiation and
initialization of two instances of the component at system startup, housed in
different processes executing on different processors. If the primary instance fails,
the backup instance is promoted to become the new primary instance. If either the
primary or backup instance fails, a new backup instance will be started.
Resynchronization of in-memory checkpoint data will be triggered automatically
by AMW. Replication strategies are specified external to the component itself.
That is, the component contains no code that assumes any particular replication
strategy. The model captures all unique characteristics of each replication strategy
so that the AMW run-time infrastructure can configure the application to achieve
the desired behavior. At run-time, the AMW ConfigMgr exchanges messages with
the application component to trigger appropriate behavior.

• State preservation. Checkpoints may be taken of entire data structures or of
specific elements of larger data structures. Checkpoints may be taken periodically
or on an event-driven basis. A novel capability of our code generation approach is
that checkpoints are location-transparent. The AMW run-time infrastructure
determines where to store a component’s checkpoint data (e.g., at a corresponding
backup component, a file, etc.). Calls to AMW’s checkpoint APIs in application
code then automatically route the checkpoint data to the AMW-determined
location without application knowledge. This simplifies application development
effort to support checkpointing, as application components need not concern
themselves with deciding where to store checkpoint data nor deal with issues
related to failures of these storage locations. It also eases application-specific
failure recovery activities, as the AMW run-time infrastructure coordinates state
resynchronization across components.

• Run-time reconfiguration. Today’s implementation of AMW supports processors,
processes and application components to be added or removed during operation,
through interaction with the AMW ConfigMgr. What distinguishes AMW from all
other implementations of HA middleware solutions is that, in the case of adding a
new entity, AMW coordinates the complete integration of the new entity into the
running system. This includes, where appropriate, automatically instantiating
active and standby instances of the component, automatically setting up a
checkpoint location for the active component, automatically setting up
communication channels between the new component and existing components,
automatically triggering new component initialization, automatically promoting
appropriate components to play an active role, and automatically registering
components to be monitored for failure detection. Traditionally, all of the above
activities are performed manually and through code hand-written specifically for
the component. Using AMW, all of these activities are coordinated automatically.
In addition, the reconfiguration activity is robust to failures.

182 R. Buskens and O. Gonzalez

6 Results

This section presents results of experiments and real systems that use AMW. We first
compare the effort required to develop a simple highly available client-server
application using AMW versus a commercially available HA middleware. We then
briefly describe a real system that uses AMW and provide quantitative data to help
assess the benefits provided by AMW. Finally, we discuss and quantify the minimal
time required to develop a skeletal new application to be made highly available.

6.1 Example 1: Developing a Simple Client-Server Application

Our first example illustrates the effort needed to build a simple, highly-available
client-server application using AMW. The application consists of two client
components residing in the same process and one server component that resides in
another process. The server provides a simple service: a counter is incremented and
its value is returned for each client request. Clients issue requests to the server
periodically. The clients and server are configured as active-standby. Checkpointing
between the active and standby servers preserves counter values across failures. The
clients must not be started unless the server is active. Fault detection of the clients
and server and their encapsulating processes is achieved through periodic monitoring
and process termination. See Fig. 12 for the application architecture.

For this application, the AMW tools generate 1213 lines of code – 590 lines of
code for the clients and 623 lines of code for the server. Only sixteen lines of code
were hand-written to implement the above service (see Fig. 13). Six lines of client-
side code were hand-written to queue a periodic timer, send a request to the server,
and print the counter value returned by the server. Ten lines of server-side code were
hand-written to initialize and increment the counter, print the counter value after each
increment, and checkpoint the counter value. The entire application, including all high
availability and fault injection support, was developed in less than two hours.

Communications link
Interdependency

Client
Capsule

Backup
Server

Server
Capsule

Active
Server

Server
Capsule

checkpoints

Client 1

Client 2

Communications link
Interdependency

Client
Capsule

Backup
Server

Server
Capsule

Active
Server

Server
Capsule

checkpoints

Client 1Client 1

Client 2Client 2

Fig. 12. Architecture of simple client-server application

The same client-server application was written using a commercially available HA
middleware and took two weeks to develop. A total of 1030 lines of hand-written
code were needed to implement the application and integrate it with the commercial
HA middleware. This did not include any hooks to support fault injection.

 Model-Centric Development of Highly Available Software Systems 183

Manually Written/Modified Code
AMW Generated Code

Client Software
(number of lines of code)

590

6

Server Software
(number of lines of code)

623

10

Manually Written/Modified Code
AMW Generated Code
Manually Written/Modified CodeManually Written/Modified Code
AMW Generated CodeAMW Generated Code

Client Software
(number of lines of code)

590

6

Server Software
(number of lines of code)

623

10

Fig. 13. AMW generated versus hand-written code

6.2 Example 2: Telecommunications Call Processing

AMW is used in field-deployed telecommunications call processing systems.
Telecommunications call processing systems, also referred to as switching systems,
primarily setup and teardown call sessions between interested parties; these sessions
may involve voice-only calls, data-only calls, or a combination of both. A
telecommunications call processing network architecture contains functional elements
that provide call control, access control, service control, and location registration
functions (for wireless networks). Call processing scenarios refer to various groupings
of such functions coordinated through sequences of signaling messages. Call
processing software must process each call request within a few hundred milliseconds
[23], and the entire system should not be out of service for more than a few minutes
per year [36].

One such telecommunications call processing systems using AMW consists of
several million lines of code comprising a few thousand software components and
many tens of thousands of communication links executing on tens of processors.
Roughly 150K source lines of code, spread across hundreds of source code files and
makefiles, are generated by AMW tools to integrate the product with the AMW HA
middleware. This translates into significant development savings (10-15 man-years
of effort) versus writing the code manually.

6.3 Thirty Minutes to a Running Skeleton Highly Available System

Rapid application development (RAD) aims to produce prototypes of systems
quickly, albeit typically with reduced features and reduced scalability, and to iterate
on these prototypes to add capabilities over time [21]. Typical RAD tools (e.g.,
Borland’s C++ Builder [5] and Microsoft Visual Studio [22]) leave high availability
as a concern that must be addressed by developers. AMW’s tools and run-time
infrastructure help to address high availability issues much sooner in development,
where problems are much easier to identify and fix. Our experience shows
impressively that a skeleton of a complete system can be operational in less than
thirty minutes after the model specification is developed. Developers can then
incrementally add functionality to the system. System testers have immediate access
to a running system where configured fault tolerance behaviors and the HA
middleware itself can be tested, even before the application programs are designed.

184 R. Buskens and O. Gonzalez

7 Future Work

Numerous directions for future work remain, as there are still many challenges to
overcome. Below is a sampling of exciting research directions:

• Support for richer model abstractions. Richer model abstractions would further
simplify developer effort to build highly available systems. An ambitious goal is
to incorporate high-level availability objectives in the model (e.g., expressing a
desire for “5 9s” availability), then have the AMW run-time infrastructure
automatically identify and maintain a running configuration of the software system
to achieve the high-level objectives.

• Simplifying evolution of legacy software to leverage AMW. The cross-cutting
nature of high availability concerns makes it difficult to add high availability to an
existing software system. Similarly, evolving a highly available software system
to use a new high availability infrastructure such as AMW is equally challenging.
Source code transformation technology (e.g., as in [2,35]) and aspect-oriented
programming [18] can address this evolution through significant automation.

• Simplifying integration of third-party software. To preserve the integrity of third-
party software that is integrated into a larger system, minimal changes (ideally,
none) are made to the third-party software to preserve its integrity, in spite of the
fact that overall system availability is usually compromised. Where source code is
available, program transformation and aspect-oriented programming techniques are
viable and promising alternatives to improve availability of third-party software.

• Incorporating AMW tools into an integrated development environment (IDE).
IDEs such as IBM’s Eclipse [11] offer developer productivity improvements by
providing an integrated environment in which developers can design their systems
and develop and test their code. Incorporating AMW model specification and code
generation tools as plug-ins into this framework will enhance the ability of this
valuable infrastructure for building highly available systems.

• Support for additional programming languages. Support for additional
programming languages, such as Java or C#, enables widespread use of AMW in
different application domains, including those where systems are developed using
multiple programming languages.

• Integrating AMW with modeling tools. Architectural modeling tools, such as
Kansas State University’s Cadena [15,7], enable developers to build formally
verifiable models of the system architecture. Vanderbilt University’s system
execution modeling (SEM) research [32] allows simulation of component behavior
before the component implementation is complete. Integrating AMW with these
modeling tools permits examination of high availability system characteristics at
the model level without requiring execution in an operational environment.

• Support for additional fault tolerance techniques. Additional fault detection and
recovery techniques, such as customizable fault detectors as supported in ARMOR
[17] and compiler-based techniques [29], will enrich AMW capabilities.

• Contributing to standards. We are looking into standardization of AMW’s rich set
of high availability services and novel model-based means to provide these
services in forums such as the Service Availability Forum (SAF) [31].

 Model-Centric Development of Highly Available Software Systems 185

8 Summary and Conclusions

Developing highly available distributed software systems is a challenging task. Four
issues contribute significantly to this challenge: system architecture, the need to
seamlessly integrate fault detection and recovery services with initialization and run-
time upgrade services, the high level of fault tolerance expertise needed by system
developers to build highly available systems, and the need to thoroughly test a system
to ensure it meets fault tolerance requirements. While high availability middleware
solutions help in building highly available software systems by avoiding the need to
redevelop common high availability services, they do not address all of these issues.

To address the above issues, we developed the Aurora Management Workbench
(AMW), which takes a model-centric approach to building highly available software
systems. AMW consists of a novel modeling language for specifying characteristics
of software systems important for high availability, novel code generators that
generate code from the model, and a novel high availability middleware, including
run-time entities, that use the model to coordinate initialization, fault detection and
recovery, and run-time upgrade procedures. Architectural specifications are
significant and critical elements of the model. Fault injection hooks are provided in
both the AMW run-time infrastructure software and the generated code that enable
fine-grained testing of high availability behavior “out of the box”.

With AMW, developers capture a system’s architecture and its high availability
needs using the model language elements. AMW’s code generators use the model
specification to generate much of the code required to integrate a software system
with AMW’s high availability middleware. Run-time infrastructure components also
use the model specification to realize desired operational fault tolerance behavior.
While developers must still write some code to complete the integration of their
software with AMW, the effort required to do so is typically minimal and primarily
consists of manipulating application-specific state information in response to startup,
shutdown and failure recovery events.

AMW was evaluated in an experimental setting. In this setting, a simple highly
available client-server application was developed in only a few hours using AMW
and required less than twenty lines of hand-written code. The same application took
approximately two weeks to develop using a commercial high availability middleware
and required more than one thousand lines of hand-written code.

AMW is used in large, deployed telecommunications products consisting of
several million lines of code comprising a few thousand software components and
many tens of thousands of communication links executing on tens of processors. This
clearly demonstrates that a model-centric approach to HA software development is
effective in building highly available large and complex distributed software systems.

Acknowledgements. The success of AMW in practice is due to the heroic efforts of
the team that took a research prototype of the ideas captured in this paper and
transformed it into a hardened asset suitable for use in real products. We thank this
team tremendously for their efforts.

186 R. Buskens and O. Gonzalez

References

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. SEI Series
in Software Engineering (2003)

2. Baxter, I., Pidgeon, C., Mehlich, M.: DMS: Program Transformations for Practical
Scalable Software Evolution. In: Proceedings of the 2004 International Conference on
Software Engineering, Scotland, UK (May 2004)

3. Bianchini, R., Buskens, R.: Implementation of On-Line Distributed System-Level
Diagnosis Theory. IEEE Transactions on Computers 41(5) (1992)

4. Birman, K.: ISIS: A System for Fault Tolerance in Distributed Systems. Technical Report
TR 86-744, Department of Computer Science, Cornell University, Ithaca, NY (April 1986)

5. Borland C++ Builder, http://www.borland.com/us/products/cbuilder/index.html
6. Buskens, R., Sabnani, K.: Towards Rapid Development of Configurable, Reliable, and

Scalable Wireless Applications, PIMRC (2000)
7. Childs, A., Greenwald, J., et al.: CALM and Cadena: Metamodeling for Component-Based

Product Line Development. IEEE Computer 39(2) (2006)
8. Chung, P., Huang, Y., Yajnik, S., et al.: DOORS – Providing Fault Tolerance of CORBA

Objects. In: IFIP International Conference On Distributed Systems Platforms and Open
Distributed Processing (Middleware’98), The Lake District, England (1988)

9. Clovis Software, http://www.clovis.com
10. Cukier, M., Ren, J., Sabnis, C., et al.: AQuA: An Adaptive Architecture that Provides

Dependable Distributed Objects. In: Proceeding of the IEEE 17th Symposium on Reliable
Distributed Systems (SRDS-17), West Lafayette, IN (1998)

11. Eclipse Integrated Development Environment (IDE), http://www.eclipse.org
12. Enea, http://www.enea.com
13. Ericsson, Eternal Systems, et al.: FT-CORBA. Joint Revised Submission. OMG TC

Document orbos/99-12-19, OMG, Framingham, MA (1999)
14. GoAhead Software, http://www.goahead.com
15. Hatcliff, J., Deng, W., et al.: Cadena: An Integrated Development, Analysis, and

Verification Environment for Component-Based Systems. In: Proceedings of the 2003
International Conference on Software Engineering, Portland, Oregon (2003)

16. IBM Rational Software Architect, www.ibm.com/software/awdtools/architect/swarchitect/
index.html

17. Iyer, R.K., Kalbarczyk, Z., Whisnant, K., Bagchi, S.: A Flexible Software Architecture for
High Availability Computing. In: Proceedings of the High-Assurance Systems
Engineering Symposium, Washington D.C. (1998)

18. Kiczales, G., Lamping, J., et al.: Aspect-Oriented Programming. In: Proceedings of the
1997 European Conference on Object-Oriented Programming, Jyvaskyla, Finland (1997)

19. Ledeczi, A., Maroti, M., et al.: The Generic Modeling Environment. Workshop on
Intelligent Signal Processing, Budapest, Hungary (May 2001)

20. Majzik, I., Huszcrl, G.: Towards Dependability Modeling of FT-CORBA Architectures.
In: Proceedings of the 4th European Dependable Computing Conference (2002)

21. Martin, J.: Rapid Application Development, Macmillan Publishing Co. Inc. (1991)
22. Microsoft Visual Studio, msdn.microsoft.com/vstudio
23. Modarressi, A.R., Skoog, R.A.: Signaling System No. 7: A Tutorial. IEEE

Communications Magazine 28(7) (1990)
24. Moser, L.E., Melliar-Smith, P.M., et al.: The Eternal System: An Architecture for

Enterprise. In: Proceeding of the 3rd International Enterprise Distributed Object
Computing, Mannheim, Germany (1999)

 Model-Centric Development of Highly Available Software Systems 187

25. Ren, Y., Buskens, R., Gonzalez, O.: Dependable Initialization of Large-Scale Distributed
Software. In: Proceedings of the 2004 International Conference on Dependable Systems
and Networks (2004)

26. van Renesse, R., Maffeis, S., Birman, K.: Horus: A Flexible Group Communication
System. Communications of the ACM 39(4) (1986)

27. Rodrigues, G., Rosenblum, D., Emmerich, W.: A Model Driven Approach for Software
Systems Reliability. In: Proceedings of the 26th International Conference on Software
Engineering (2004)

28. Royce, W.: Managing the Development of Large Software Systems. In: Proceedings of
IEEE WESCON, vol. 26(8) (1970)

29. Roy-Chowdhury, A.: Manual and Compiler Assisted Methods for Generating Fault-
Tolerant Parallel Programs, PhD thesis, University of Illinois at Urbana-Champaign
(1996)

30. Schmidt, D.: Model-Driven Engineering. IEEE Computer 39(2) (2006)
31. Service Availability Forum, http://www.saforum.org
32. Slaby, J.M., Baker, S., Hill, J., Schmidt, D.C.: Applying System Execution Modeling

Tools to Evaluate Enterprise Distributed Real-Time and Embedded System QoS. In:
Proceedings of the 12th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA ’06), IEEE Computer Society Press, Los
Alamitos (2006)

33. Telelogic Rhapsody, www.telelogic.com/Products, www.ilogix.com/sublevel.aspx?id=53
34. Unified Modeling Language, http://www.uml.org
35. Waddington, D.G., Yao, B.: High Fidelity C++ Code Transformation. In: Proceedings of

the 5th Workshop on Language Descriptions, Tools and Applications (LDTA) (April
2005)

36. Zorpette, G.: Keeping the Phone Lines Open. IEEE Spectrum 26(6) (1989)

An Outline of an Architecture-Based Method for
Optimizing Dependability Attributes of

Software-Intensive Systems

Lars Grunske1, Peter Lindsay1, Egor Bondarev2,
Yiannis Papadopoulos3, and David Parker3

1 School of Information Technology and Electrical Engineering
ARC Centre for Complex Systems,

The University of Queensland,
4072 Brisbane (St.Lucia), Australia

grunske,pal@itee.uq.edu.au
2 Eindhoven University of Technology, System Architectures and Networking Group

5600 MB, Eindhoven, The Netherlands
e.bondarev@tue.nl

3 Department of Computer Science, University of Hull
Hull HU6 7RX, U.K.

y.i.papadopoulos@hull.ac.uk, d.j.parker@dcs.hull.ac.uk

Abstract. Dependability requirements such as safety and availability often con-
flict with one another making the development of dependable systems challeng-
ing. It is not always possible to design a system that fulfils all of its dependability
requirements and consequently, it is necessary to identify conflicts early in the
development process and to optimize the architectural design with regard to de-
pendability and cost. This paper first provides an overview of fifteen different ap-
proaches to optimizing system designs at an architectural level. Then an abstract
method is proposed that synthesises the main points of the different approaches
to yield a generic approach that could be applied across a wide variety of different
system attributes.

1 Introduction

Complex mission- and safety-critical systems play a vital role in many application do-
mains, including air traffic control, railway signalling, and healthcare. The design and
development of such systems is challenging because systems and software engineers
need to deal with a large number of dependability requirements, such as safety, avail-
ability and reliability, while keeping life-cycle costs as low as practicable. We define
dependability of a software-intensive system as its “ability to deliver service that can
justifiably be trusted” [1].

As Avizienis et al. [1] point out, for all but the simplest systems “dependability is
typically interpreted in a relative, probabilistic sense: . . . due to the unavoidable pres-
ence or absence of faults, systems are never totally available, reliable, safe, or secure”.
Dependability requirements often conflict with one another [2], making trade-offs nec-
essary. For example, when faults are detected in a system, a shutdown may be required

R. de Lemos et al. (Eds.): Architecting Dependable Systems IV, LNCS 4615, pp. 188–209, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Outline of an Architecture-Based Method for Optimizing Dependability Attributes 189

to prevent escalation of hazardous conditions; the decision of whether to trigger a shut-
down involves a trade-off between safety (absence of catastrophic consequences on the
user and the environment) and availability of the system (the system’s “readiness for
correct service” [1]).

The architectural design phase is critical in system development: decisions made in
this phase have a significant impact on the cost and quality of the final system [3,4].
System dependability is a particularly important cost driver, with design decisions re-
garding the levels of performance, integrity and fault tolerance required in a system
having a significant impact on its development, deployment and maintenance costs.
Changes to the architectural design late in its development are typically very costly be-
cause of the amount of rework required, and it can lead to long delays. For these reasons
it is important that architectural design decisions are made carefully, and it is critically
important that system architects are provided with methodologies and techniques that
enable potential designs to be evaluated against system dependability requirements.

A number of techniques are now in widespread use for evaluating different aspects of
system dependability at the level of architectural design models [3]. For example, Fault
Tree Analysis [5] is widely used in industry to quantitatively predict the likelihood of
hazardous system failures from assumptions about component failure rates, and thus to
assess the safety of a system design. Markov Analysis [6] is often used to predict sys-
tem availability and reliability (the system’s “continuity of correct service” [1]) based
on assumptions about component failure rates. Queuing Networks [7] are often used to
predict system timing performance based on assumptions about input rates and compo-
nent processing time. Of course, prediction of component performance is still a matter
of research for many technologies with prediction of the nature and number of faults in
software components being particularly troublesome. Nevertheless, despite these limi-
tations, software and systems engineers do manage to develop systems with reasonably
predictable dependability attributes. The challenge is how to combine these different
techniques into a single evaluation framework that enables informed trade-offs between
different system attributes, including dependability and cost. More specifically, to what
extent is it possible to automate the analysis, and to derive architectural designs that are
optimal with respect to the different dependability attributes that are under considera-
tion (remembering that a single optimal solution may not be possible).

This paper reviews 15 different methods for optimising various aspects including
dependability, cost and performance. The focus is on comparing the methods from five
different viewpoints: the optimisation objectives pursued by each method; the heuristic
and meta-heuristic techniques used for searching in large design spaces; the architec-
tural models used for evaluation of dependability attributes; the techniques used for
multi-objective optimisation; and the intended applications. We contend that enough
commonalities exist among the different approaches to enable us to abstract and define
a generic method for architecture-based dependability optimisation. From this, specific
approaches can be derived through a tailoring process to suit particular optimisation
problems and applications. The development of a conceptual framework that integrates
the different approaches into a single generic approach is this paper’s main contri-
bution to research. The derived generic optimisation method and its tailoring process

190 L. Grunske et al.

summarise and capture, we hope, some of the useful common experience that has been
generated by research in this field during the last 20 years.

The rest of this paper is organized as follows: Section 2 contains the review of de-
pendability optimisation approaches. The common elements of a generic method are
described in Section 3 while the method itself is specified in section 4. Section 5, de-
scribes the tailoring process for the abstract method and Section 6 discusses limitation
of the current approach. Finally, in section 7, we draw conclusions and outlines the
future prospects of this work.

2 Overview of Current Dependability Optimization Approaches

There is a long established body of work on optimising hardware architectures in terms
of reliability and cost using exact mathematical methods such as dynamic programming
[8,9] and integer programming [10]. The aim of this work has been the optimisation
of architectures via automatic selection of components and appropriate fault tolerant
schemes to meet reliability and cost requirements. Whilst this work has shown that
exact techniques can calculate guaranteed optimal solutions, they often do so by im-
posing constraints on the design that are undesirable in real systems. For example, they
typically use multiple identical copies of a component for redundancy where in prac-
tice however it would be better to use diverse components or technologies, to protect
against common-mode failures. Similarly, exact methods typically make overly sim-
plistic assumptions about the nature of architectures, such as that they consist simply of
components connected in parallel or in series.

The rest of this section outlines 15 approaches from the literature over the last two
decades concerned with trade-off analysis and/or optimisation on architectural design
models. Although much of this work has focused on reliability and cost optimisation,
some of the approaches concern other criteria related to dependability and performance,
including safety, resource usage and timing performance.

Approach 1. To the best of our knowledge, the first use of a meta-heuristic, in this
case a Genetic Algorithm (GA), for reliability optimisation is described by Coit et al
in [11]. The GA was used to maximise reliability, given cost and weight constraints,
and minimise cost, given reliability and weight constraints, on 33 variations [9] of the
Redundancy Allocation Problem (RAP) as defined by Fyffe et al [8]: that is, the problem
of deciding on the configuration and degree of replication of components in a system.
A penalty function based on degree of infeasibility (i.e., the number of constraints not
satisfied) and search time ensured that the GA was able to proceed through the infeasible
region, which was found to be the most efficient route to the optimum solution. To allow
for the stochastic nature of the GA, the experiments described in the paper were run 10
times for each problem with the best solution being kept. Components could be mixed
flexibly within functional unit subsystems: this feature enabled the GA to find solutions
with higher reliability in 27 out of 33 problems than when exact methods such as those
in [8,9] were used. In the remaining problems, 4 of the solutions were identical and in
2 the solutions gave a slightly lower reliability.

An Outline of an Architecture-Based Method for Optimizing Dependability Attributes 191

Approach 2. In his PhD [12], Nicholson describes an approach that addresses reliabil-
ity but also focuses on the real-time aspects of the architecture. The approach involves
two phases. The goal of the first phase is to find an optimal architecture topology which
includes decisions about appropriate redundancies. The second phase aims at finding
optimal deployment architectures, which specify how software components are mapped
to real-time tasks and how these real-time tasks are then mapped to hardware nodes.
Nicholson argues that this distinction is necessary since the two phases involve optimiza-
tion problems with different complexities. As a result, Genetic Algorithms are applied in
the first phase and Simulated Annealing is used as a search heuristic in the second phase.
The optimisation parameters used include worst case reaction times (WCRT), reliabil-
ity metrics (e.g. mean time to failure -MTTF), resource usage metrics, and production
costs. The overall approach is implemented in the tools X-Alloc and X-Topmeter and is
used with success on the case study of a computer assisted braking system.

Approach 3. Ant Colony Optimisation (ACO) is a meta-heuristic optimisation method
that was inspired by the action of real ant colonies. Liang and Smith [13] present an
approach to solving the Redundancy Allocation Problem (see Approach 1 above) using
a specific ant colony system, where each ‘ant’ corresponds to a particular system con-
figuration. Mimicking the use of pheromones to establish a positive feedback loop, a
particular configuration path is chosen with greater probability as the number of times
it is chosen increases. This leads to the quick identification of solutions that satisfy the
criteria. An adaptive penalty function is used to accommodate the constraints and de-
termine the amount of pheromone on the trail. Ant mutation is used to discourage local
optima convergence and good paths are enhanced by creating duplicates of the current
best solution. One shortcoming of the Ant system is that it may be sensitive to its para-
meters and the method with which trail updates are carried out. When compared to the
Coit and Smith GA [11] it produced good solutions with low variation over the multiple
runs, however the GA produced ‘better’ solutions with higher reliability results.

Approach 4. Thiele et al. [14,15] present an approach for design space exploration
and architecture optimisation for Network Processor Architectures. The approach is
based on models for packet processing tasks, a description of workload streams enter-
ing a system, and a specification of a feasible space of architectures including compu-
tation and communication resources. For each architectural alternative, the model data
is statically analysed by Real-Time Calculus [14] in order to evaluate performance. The
design alternatives are the subject for the multi-objective optimization performed by
the SPEA2 framework [15]. This framework enables architecture optimisation using
genetic algorithms.

Approach 5. Palermo et al. [16] introduce a design space exploration framework for pa-
rameterized embedded System-on-Chip (SoC) architectures. The framework targets the
power-consumption/response-time optimisation problem for embedded devices. It uses
the following three architecture generation and evaluation algorithms: Random Search
Pareto (RSP), Pareto Simulated Annealing (PSA) and Pareto Reactive Tabu Search
(PRTS). The authors claim that the use of these algorithms reduces search efforts by
three orders of magnitude. The assessment of the relevant quality attributes is provided

192 L. Grunske et al.

by simulation and dynamic profiling of the target systems. The framework is illustrated
by the case study of a GSM encoding application.

Approach 6. Another technique for the design space exploration of embedded System
on ChiP (SoC) systems has been developed by Palesi et al. [17]. This technique fo-
cuses on the architecture optimisation with respect to the power/latency trade-offs. For
architecture generation and evaluation, it reuses the genetic algorithms implemented by
the SPEA2 framework [15]. The instrumentation for architecture mutations is based on
parameterizations of the hardware IP blocks.

Approach 7. TSRAP [18] is a system that uses a Tabu Search algorithm on the Fyffe et
al [8] formulations of the Redundancy Allocation Problem (RAP), maximising reliabil-
ity whilst keeping cost and weight within constraints. It is argued that Tabu search suits
the inherent neighbourhood structure of the RAP and its deterministic action reduces
its sensitivity to search parameters such as the initial solution. TSRAP starts from a
random feasible configuration and evaluates every possible single point change to that
configuration. The evaluation uses a penalty function that modifies the optimisation
goal with a penalty based on the degree of constraint violation allowing the search to
progress through the infeasible region. The best solution of the current iteration is cho-
sen, provided it is not Tabu, and the process is repeated. In order to prevent the search
from settling in local optima each move is recorded in a Tabu list and may not be used
for future moves whilst it remains on the list. This continues until the maximum num-
ber of iterations, without an improvement to the best feasible solution found, is reached.
Working on the same example problem, TSRAP is found to be more efficient than the
GA used in Coit and Smith [11] because each move makes only a single point change
to one subsystem which can be re-evaluated independently from the rest of the system.
In the example problem this leads to approximately 14 times fewer evaluations. TSRAP
also found superior solutions with greater consistency and less variability.

Approach 8. Pareto frontier based algorithms may allow a true multi-objective search
but often pursue a very large number of solutions which may be unmanageable. Kulturel-
Konak et al. [19] seek to overcome this by using a Multinomial Tabu Search to identify
the Pareto frontier before passing this through a pruning method that reduces the set us-
ing user specified guidelines. The proposed Multinomial Tabu Search operates in similar
way to the Tabu Search described in [18] except that at each iteration one of the multiple
objectives is randomly selected to be the optimisation goal. Solutions are compared, and
if applicable, added to a list of non dominated solutions. In order to improve diversity
in this list, when a threshold for iterations without updating the list is reached, a non-
dominated solution is selected as the current move and the tabu list is emptied before
continuing. Once the Pareto frontier is identified a pruning method based around a Monte
Carlo simulation is used to significantly reduce the frontier according to priorities set
by the user, thus providing a manageable set of trade-off solutions for the designer.

Approach 9. A generic framework for architecture optimisation has been proposed by
Künzli et al. in [20]. This modular design space exploration framework allows the use
of various optimisation techniques depending on the problem domain. The framework
provides the following multi-objective optimisation techniques: black-box optimisation,
randomized search and problem-dependent search. The multi-objective evaluation

An Outline of an Architecture-Based Method for Optimizing Dependability Attributes 193

module of the framework deploys the concept of Pareto-dominance. The framework
is based on the PISA (platform and programming language independent interface for
search algorithms) protocol that specifies a problem-independent interface between the
search/ selection strategies on one hand and the problem domain-specific estimation and
variation operators on the other. The framework is illustrated by a simple application ex-
ample where the design is optimized for the most efficient cache architecture.

Approach 10. Papadopoulos and Grante [21] describe an approach to multi-objective
optimization of safety critical systems with application on automotive designs. The goal
is to find optimal tradeoffs among safety and reliability (treated as separate objectives)
and cost in the design of such systems. A GA which promotes population diversity [22]
is used to progressively improve a Pareto set of non-dominated solutions that repre-
sent different tradeoffs among the parameters of the optimisation. The approach departs
from earlier work in that the safety and reliability model (i.e. a set of system fault trees)
is automatically synthesised from an engineering model that is augmented with infor-
mation about component failures. It also moves beyond the classical “success-failure”
model introducing a failure scheme in which components can exhibit more than one
failure mode which include not only the loss but also the commission of functions as
well as value and timing failures.

Approach 11. Fredriksson et al. [23] describe a single-objective optimization approach
that is targeted towards hard real-time systems. The goal is to find an optimal allocation
from components to tasks. Genetic algorithms are chosen as the optimization strategy,
where each gene represents a component and contains a reference to the task it is as-
signed. Each allocation produced by the GA is evaluated by a fitness function, which
sums up memory consumption on the stack and CPU overhead. Both parameters are
determined using a basic scheduling analysis algorithm based on parameters such as
worst-case execution times or required stack usage that are attached to each component
in the system.

Approach 12. Grunske [24] describes a method that focuses on improvement of re-
liability within given cost and weight constraints. The method uses a multi-objective
optimisation strategy that is implemented by a simple evolutionary algorithm which
progressively improves a set of Pareto optimal solutions. Reliability is evaluated using
Reliability Block Diagrams, which are generated separately for each function delivered
by the system, based on the components that are needed to perform this function. The
approach is illustrated on a case study of a satellite control system and two of its main
functions.

Approach 13. A process for architecture optimisation of real-time component-based
software systems has been proposed by Bondarev et al. [25]. The process aims at
design-time prediction of performance, and resolving performance trade-offs. Eval-
uation of properties is based on (a) models of individual components, (b) synthesis
of the models into an executable system model, and (c) simulation of the generated
system model. Pareto principles are employed to identify un-dominated architectures.
Extensive visualisation support helps the designer to identify bottlenecks in the un-
dominated architectures and further optimise them. Architecture variations are created

194 L. Grunske et al.

Method & Reference Application Area/Case Study
Optimization

Approach/Strategy
Dependability Evaluation

Models
Dependability Improving

Measures

Coit et al. [11]
Reliability Design, Redundancy

Allocation Problem
Genetic algorithm, Single

optimisation goal with constraints

Reliability Block Diagrams
(RBD), Simple Weight and Cost

Estimations

Component substitution &
replication

Nicholson [12]
Safety-critical, Real-time

Systems/Computer Assisted
Braking System

Multi-Objective
Optimisation/Genetic Algorithms

and Simulated Annealing

Reliability Block Diagrams
(RBD), Schedulability Analysis

N-Version Programming,
Redundancy, Task Allocation

Liang and Smith [13]
Reliability Design, Redundancy

Allocation Problem
Ant system, Single optimisation

goal with constraints

Reliability Block Diagrams
(RBD), Simple Weight and Cost

Estimations

Component substitution &
replication

Thiele et al. [14] Network Processor Architectures
Multi-Objective

Optimisation/Genetic Algorithms

Real-Time Calculus (RTC):
Analytical approach employing
workload and resource curves

Hardware Topology, SW/HW
Mapping

Palermo et al. [16]
Embedded systems on SoC
platforms/GSM encoding

application

RSP, PRTS and PSA Algorithms/
power-vs-delay trade-off

Simulation and dynamic profiling
Hardware parameters: number

and size of cache, ALU,
multiplier and memory blocks

Palesi et al. [17]
Embedded systems on SoC

platforms

Genetic Algorithms of SPEA2
framework/ power-vs-delay

trade-off
Simulation Hardware parameterizations

Kulturel-Konak et al. [18]
Reliability Design, Redundancy

Allocation Problem
Tabu Search, Single optimisation

goal with constraints
Reliability Block Diagrams

(RBD), Simple Weight and Cost
Component substitution &

replication

Kulturel-Konak et al. [19]
Reliability Design, Redundancy

Allocation Problem

Multi-Objective Optimisation,
Multinomial Tabu search with

Pareto pruning

Reliability Block Diagrams
(RBD), Simple Weight and Cost

Component substitution &
replication

Künzli et al. [20] Generic
Multi-Objective

Optimisation/Multiple
randomized-search algorithms

Performance run-time profiling
(used in case-study)

Task allocations, Hardware
Topology, SW/HW Mapping,

Parameters

Papadopoulos and Grante [21]
Safety Critical Systems /

Automotive design
Multi-Objective

Optimisation/Genetic Algorithms

Automatically constructed Fault
Trees, Simple Weight and Cost

Estimations

Component substitution &
replication

Fredriksson et al. [23]
Real-time Systems/ Generic Case

Study
Single-Objective

Optimisation/Genetic Algorithms
Schedulability Analysis, Analysis

of the Memory Consumption
Component to Task Allocation

Grunske [24]
Mission-Critical Embedded

Systems/Satelite Control
Application

Multi-Objective
Optimisation/Evolutionary

Algorithms

Reliability Block Diagrams
(RBD), Simple Weight and Cost

Estimations

Component Replication (Two
Channel Redundancy, Triple

Modular Redundancy)

Bondarev et al. [25]
Real-time component-based
software systems/ car radio

navigation system

Manual, guided by results of
architecture analysis tool

Task synthesis from component
model and task simulation

Software components, SW/HW
mapping, parameters of hardware

blocks and hardware topology

Pimentel et al. [26]
Embedded systems on

heterogeneous platforms
Multi-Objective Optimisation

Trace transformations, Kahn
Process Networks, Simulation

Task re-allocations, Hardware
Parameters and Topology,

SW/HW Mapping

Livolsi et al. [27]
Component-Based Systems/
Financial System Case Study

Multi-Objective
Optimisation/Evolutionary

Algorithms

Hardware Parameters and
Topology

Fig. 1. Overview of architecture optimization methods

by the changing of software components, hardware/software mapping and hardware
topology. The process is illustrated by a case study on a car radio navigation system.

Approach 14. Pimentel et al. [26] describe a SESAME framework for exploration and
optimisation of embedded system architectures at multiple abstraction levels. The frame-
work deploys both analytical and simulation methods for evaluation of quality attributes.
Analytical methods are fast and work with high levels of abstraction, while simulation
methods are more detailed and require detailed system specifications. The framework
focuses on predicting performance-related quality attributes and exploration of heteroge-
neous multiprocessing systems with respect to these quality attributes. The performance
evaluation methods used are the following: Kahn Process Networks, trace transforma-
tions and simulation. The SPEA2 framework [15] is used for multi-objective architecture
optimisation. The approach is illustrated by a Motion-JPEG encoder case study.

Approach 15. Livolsi et al. [27] propose a guided architecture-based design optimisa-
tion technique for component-based systems. The technique enables exploring possible
architectures by repeatedly applying evolutions to initial architectures, with the quality
attributes of each architecture being evaluated throughout. The found quality attributes
provide feedback that guides the designer to the next iteration. An optimisation iteration
cycle contains three modules: Corrector, Effector and Evaluator. The Corrector module

An Outline of an Architecture-Based Method for Optimizing Dependability Attributes 195

takes initial architectures and system requirements as an input and creates generation
guidelines for the Effector module. The latter applies evolutionary algorithms to gen-
erate a new population of architectural alternatives. The Evaluator module takes the
new population, assesses its quality attributes and performs multi-objective evaluation
using Pareto-optimal principles. The evaluation results are sent to the Corrector mod-
ule for the next iteration. This optimisation technique is supported by the ABACUS
software toolkit.

Figure 1 provides a summary of our review. The table defines the application area,
optimisation strategy, evaluation models and dependability improving measures used
for each approach.

3 Basic Elements of a Dependability Optimization Approach

There are three elements that seem to be shared by all dependability optimisation ap-
proaches: a set of evaluation models, a set of improvement measures and a set of opti-
misation strategies. A discussion of these three elements follows:

3.1 Dependability Evaluation/Prediction Based on Architecture Specifications

All of the approaches employ a model of the system architectural design, at some level
of abstraction, that enables dependability attributes to be evaluated quantitatively. It is
outside the scope of this paper to discuss how well design-time dependability evalua-
tion methods can predict the dependability of the system when it is eventually put into
operation: we simply assume the methods are well established and reliable. Many if not
all of the methods mentioned here are certainly well established, and have been shown
to improve system dependability.

Evaluation methods can be divided into two categories: analytical and simulation
-based. Analytical methods (eg [14,26]) apply formal mathematical theories, such as
process algebra, state machines, Petri Nets and Queuing Networks to predict values of
dependability or more general Quality Attributes (QAs). By contrast, simulation-based
approaches (eg [16,17,25]) emulate the behaviour of the designed system by executing
its architecture models.

Analytical methods have a number of benefits, such as being able to discover worst-
and best-case boundary cases. For trivial systems, they provide results fast, but for com-
plex systems the required computation normally increases exponentially or worse [28],
which limits their use in large industrial cases.

Simulation-based techniques may require a considerable amount of computation to
simulate system execution, but often the amount of time required grows linearly with
the system complexity, which makes them good candidates for evaluation of large sys-
tems. Because they step through the execution of the system model, they can provide
useful insights into the system architecture, such as task interleaving and synchroni-
sation, and bottlenecks that might arise. However, like system testing, simulation is
limited to evaluating particular runs of the system, and so may mis problematic cases.
Cost estimation is typically done analytically.

196 L. Grunske et al.

Most of the evaluation methods are constrained to specific domains of software ar-
chitectures (i.e. component-based, object-oriented, streaming or event-based architec-
tures). Moreover, these methods, with some exceptions, require a specific type of soft-
ware architecture to be deployed. For instance, the framework presented in [25] works
only for ROBOCOP, CORBA and Koala architectures. This happens mainly due to the
fact that tuning an approach to a specific type of architecture allows simplifying spec-
ification (model) structures, reducing prediction-error rates, and making the approach
learning-curve less steep.

Many of the conventional methods work for embedded systems generally, indepen-
dent of particular application domains. For example, the RTC method [14] has been
successfully applied to medical, consumer electronics, automotive and control systems.

It is important to note that the prediction accuracy resulted from the available meth-
ods is heavily dependent on the accuracy of data specified in their input models: the
phrase “garbage in - garbage out” perfectly holds here. That issue imposes strict re-
quirements for well-established process of model specification and maintenance when
using the method.

Examples of evaluation techniques addressing specific quality attributes are the fol-
lowing: reliability evaluation is addressed in [29], [30] and [31]; timing performance is
addressed in [7] and [32]; task latencies and resource usage are tackled in [25] and [14];
and safety is dealt with in [33] and [34].

3.2 Dependability Improving Measures

Optimisation methods employ a variety of measures for improving the dependability
of an architecture. An example of these measures is the integration of redundancy
mechanisms in order to improve reliability [35]. Another quality improving measure
is the reassignment of software elements to another hardware platform in order to avoid
common cause failures and to reduce the workload of a specific hardware platform.
These measures can be seen as transformations that take an architecture specification
ArchSpecti as input and produce a new and hopefully improved version of the archi-
tecture specification ArchSpecti+1. A transformation may rewrite any part of the initial
architecture specification. It may change the deployment view, the structure view or the
behaviour view. It may replace certain system components or it may change how system
functionality will be allocated to them. To be generally applicable to different systems
and different types of architecture specification the transformations must be specified in
an abstract way. Since most architecture specifications are represented as graphs, graph
transformations are one possible specification formalism of such transformations at an
abstract level [36].

In the context of the optimisation of system architectures, transformations that re-
spect system requirements (i.e., preserve system functionality and satisfy associated
constraints) and increase specific dependability attributes are especially interesting.
Such transformations are similar to refactorings at the code level, hence the use of
the name architectural. To ease the selection of a transformation, each architectural
refactoring needs in addition to the transformation specification a set of pre-conditions
and goals/post-conditions. Pre-conditions describe restrictions in order to ensure the
correct application of a transformation rule. Examples of these preconditions include

An Outline of an Architecture-Based Method for Optimizing Dependability Attributes 197

constraints that disallow the repeated application of the same refactoring to one com-
ponent or applications that would violate system level design constraints, such as me-
chanical or economical constraints. Goals describe the desired outcomes of a transfor-
mation rule application, e.g., this refactoring will improve the reliability of the system.
However, the desired outcome can’t be guaranteed, because whether or not the goal
is achieved often depends on the context in which the refactoring is applied. As an
example the goal of the triple modular redundancy pattern, where three copies of a
component are used in conjunction with a two-out-of-three voter, is to reduce the pos-
sibility that a failure of a single component has an affect on the correct behaviour of the
system. Consequently, this refactoring should be used to increase reliability properties.
However, if the reliability of the replicated components is higher than the reliability of
the introduced voter component an application has exactly the opposite effect. In this
case, the reliability of the overall system would be reduced, since failures of the voter
component would decrease the system’s reliability.

Some refactorings may improve some dependability attributes but decrease others:
for example, modular redundancy can improve reliability but may degrade performance.

Based on a repeated selection and application of architecture transformations a search
graph can be created, where nodes describe possible architecture specifications and di-
rected edges between nodes represent the application of a transformation rule. This
graph is also known as the design space [27].

3.3 Optimization Strategy/Design Space Exploration

In general, the optimal design of dependable systems is a complex combinatorial prob-
lem. Using the terminology introduced in the previous section, the goal of locating
optimal ArchSpeci requires the exploration of a typically large non-continuous design
space. Such exploration is prone to premature convergence to local optima when auto-
mated search techniques are applied.

The naı̈ve approach to such exploration is to conduct a random search. In this ap-
proach, solutions are selected at random from the search space and the best solution
yet found is kept. This technique relies on computational speed to potentially obtain
solutions quicker than a human designer through brute computational force. Naturally,
such an approach has very poor scalability and there is no guarantee of good solutions.
A human designer may be able to use experience and accumulated knowledge to infer
good design solutions but this is often limited by the time available to try alternative
solutions. As systems increase in size so a combinatorial explosion expands the search
space to potentially infinite size. The problem of massively increased search space size
is one that affects all search techniques and is commonly tackled by introducing a cost
function and by putting bounds on maximum cost to be considered. For example a re-
duction in search space size could be achieved by limiting the maximum number of
redundant components allowed in a subsystem. Even with constraints, though, the po-
tential for combinatorial explosion remains.

To tackle that problem a number of heuristics, which include simulated annealing,
Tabu search, genetic and ant colony-based algorithms have been applied to the prob-
lem. Each of these techniques is stochastic in that whilst they have a random element,
the search is guided providing better than random performance. In their simple form,

198 L. Grunske et al.

each of these heuristics can readily tackle single-objective optimisations and through
the use of penalty functions can incorporate multiple constraints. However, the use of
constraints to manage multi-objectivity presupposes knowledge of where the optimum
solution for a given problem lies. Even if this information is available, it can often be
tricky to fine-tune the penalty weighting for constraint violations. It is to overcome
these shortcomings and provide a true multi-objective search that the concept of Pareto
optimality has been worked into heuristic techniques. A Pareto optimal set contains
individual solutions that are un-dominated (Solution A dominates solution B if A out-
performs B on every dependability attribute of interest) by other solutions in the search
space. They represent a selection of trade-offs that can be presented to the designer to
ultimately choose the best for a specific application.

Simulated annealing (SA) is a technique that mimics the process in which the crystals
in heated metals are formed as they cool. Recent work [37] has included the use of SA
in multi-objective optimisations. Individual rather than population based, the algorithm
starts from a random initial solution which is then mutated. There are several factors
affecting whether the mutated result is kept and these are its dominance relative to the
previous position and an acceptance function that is composed of the solutions fitness
and the current temperature. If the new solution dominates the old then it is accepted
as the current solution. If the new solution is dominated by the current solution then
an acceptance function determines whether the move is accepted. Early in the search,
the high temperature in the analogy allows a random search through the dominated
region. In the final case where neither the current or new solution is dominant the new
solution is always accepted. This avoids stagnation and encourages search in the middle
region of the Pareto set. SA for multi-objective search has an inherent weakness over
population-based algorithms such as genetic algorithms as it is individual based and
can only search one area of the search space at a time. Further research in this relatively
new area will include parallelising the algorithm and making use of populations.

There is a greater body of work making use of Genetic algorithms (GAs) to solve
multi-objective problems [15,38,39]. GAs are based on the evolutionary processes
found in nature and unlike SA maintain a population of potential solutions. These
are randomly chosen with a selective pressure to choose individuals with a higher
fitness to be mutated and combined to form a new generation of potential solutions.
The methodology does not guarantee finding an optimum but has been shown to be
an effective way of finding at least near-optimal solutions to particular problems. GAs
provide strong global search whilst having relatively weak local search characteris-
tics. Care must also be taken to reduce convergence to local optima. [39] provides a
good example of an approach to multi-objective optimisation using GAs, where an un-
dominated population and a working set of potentially un-dominated solutions are both
maintained during evolution. Individuals are selected from the un-dominated set to be
altered through mutation and crossover operators. The fitness function encourages par-
ents to be selected from un-crowded regions of the Pareto estimated set to ensure the
trade-off set is evenly distributed and no one area is too concentrated. Weaknesses in
this approach involve the tuning of parameters such as the maximum size of the non-
dominated population. In order to balance performance with effectiveness the size of the

An Outline of an Architecture-Based Method for Optimizing Dependability Attributes 199

non-dominated population is capped which can potentially lead to good solutions being
lost depending on the size and nature of the Pareto set.

Hybrid approaches such as [40] suggest the mixing of the use of GAs and SA to
overcome the complementary weaknesses in each. Where SA ’wastes’ computation
early in the search identifying areas containing good solutions GAs can make use of
their population search to quickly identify promising areas. The SA is then well placed
to provide a thorough local search of these Areas, a traditional weakness of GAs.

Tabu search (TS) is another search technique that is individual rather than population
based. Where SA randomly picks a change to the current individual, TS evaluates all
possible single point changes to the current individual and selects the best move from
these. A list of Tabu moves encourages the search of new areas and discourages the
reversal of moves by temporarily preventing the selection of previously made moves. A
noted weakness of TS is a tendency to search only a small proportion of the entire search
space unless specific diversification measures are taken. [19] uses a modified Tabu search
to identify the complete (or large) Pareto frontier. They note that, whilst the Pareto set
offers a selection of trade-offs, the sheer number of individuals in that set, potentially
infinite, makes choosing solutions from within that set unmanageable. To overcome this
they use a Monte Carlo simulation-based pruning algorithm to significantly reduce the
size of the Pareto set whilst maintaining the basic properties of the frontier.

It seems clear that despite progress in various areas, none of the techniques offers
an overwhelming advantage in performing multi-objective search and the techniques
that use combinations of methods to overcome the weaknesses of individual algorithms
are desirable.

4 The Abstract Method at a Glance

This subsection describes an abstract method for multi-objective design space optimisa-
tion of software-intensive systems. This method has been synthesized from the above-
mentioned techniques proposed by industry and academia and specifies the process of
designing and optimising architectures with contradicting requirements on the multiple
quality attributes (QA).

Figure 2 depicts the abstract method in terms of an iterative design workflow. The
workflow is represented by logical blocks (actors and data types) and arrows (actions
and data-relations). The workflow diagram has two constraints: (a) only an actor can
initiate a certain action and, (b) an actor cannot be a source of a data-relation. The input
to the workflow is a set of functional requirements and constraints. In the design space
identification phase, the Architect creates an initial population of architectures based on
the system requirements and his/her own experience and intuition. The population of
architectures forms a solution space [27]. Each of the architectures may be character-
ized by a set of quality attributes (examples of these in different dependability domains
are given above). To predict values of the quality attributes, the architecture becomes
input to a specific QA Analyser tool. This QA Analyser determines (with some level of
accuracy) the values of the relevant quality attributes that form a so-called quality space
[27]. The available techniques that can be used for such QA Analyser, are outlined in
subsection 3.1.

200 L. Grunske et al.

Fig. 2. An abstract method for multi-objective architecture optimisation of software-intensive
systems

The solution space and quality space form the design space of a particular iteration.
The design space can be represented by a multi dimensional diagram locating architec-
tures along QA-related axes according to their predicted QA values.

The next workflow iteration involves extending the architecture population. At this
phase, the architect defines priorities between multiple quality attributes, based on the
dependability requirements. Normally, one dependability requirement addresses one
quality attribute. In the case of conflicting requirements, the architect consults project
stakeholders to identify the right priorities. As an example, QA priorities can be speci-
fied as weighted cost functions. The architect sets the priorities at the beginning of the
optimisation process and may tune the priority values during next iterations.

A more advanced way to prioritize contradicting quality attributes is to employ utility
functions [41]. In particular, utility functions allow dealing with the situations when a
value of a quality attribute comes close to the required value, but still the corresponding
requirement cannot be met. If the utility function for this quality attribute is set to be
low, the architecture can be accepted for further consideration.

These priorities (utility functions), together with the current design space (population
of architectures including its quality attributes) are the input to a Design Space Analyser

An Outline of an Architecture-Based Method for Optimizing Dependability Attributes 201

tool. This tool plays a crucial role in the whole architecture optimisation process. The
main functions of the Design Space Analyser are as follows:

1. Evaluation of the Current Design Space and Finding the Set of Non-dominated
Architectures. The evaluation process can be based either on the Pareto-frontiers
methods [42], or on the various cost function approaches [43]. In case of the Pareto-
frontiers methods, the evaluation identifies the set of non-dominated architectures.
If a cost function (e.g. weighted sums or products) were used, the result would be
one specific order that reflects the fulfilment of the different optimisation objectives.

2. Identification of Weak Points in the Design of the Non-dominated Architec-
tures. This step requires some knowledge on how certain design decisions influ-
ence values of quality attributes. The initial data for extracting such knowledge
can be obtained from the QA Analyser output (e.g., task behaviour timelines or
the hardware resource load imposed by tasks). Based on this input, the Design
Space Analyser tool can identify weak points or bottlenecks in the design of non-
dominated architectures. An example of this function follows. Imagine, a system
has strict requirements on the response time of a certain task. The QA Analyser
tool finds/predicts the response time value by simulating the execution of the ar-
chitecture. The Design Space Analyser acquires the simulation timeline of the task
and analyses the bottlenecks in the system that led to the response time increase.
Examples of such bottlenecks are: low buffer capacity or network bandwidth, high
processor load by other tasks, task blocking and deadlock.

3. Identification of Guidelines for Generation of Next Architecture Populations.
Having the data about weak points and bottlenecks in the architecture designs and
knowing how each particular bottleneck influences the architecture dependability,
the Design Space Analyser creates guidelines for generating of a new set of archi-
tectures. The guidelines may specify: (a) a generation algorithm for the next iter-
ation, (b) variable elements in the architecture (e.g. measures to improve quality),
(c) value diapasons for these variable elements. For instance, the guidelines may
specify for a system that processor frequency and buffer capacity could be reduced
up to 50 per cent of their current values without any consequences for high-priority
QAs. At the same time, the guidelines may point out that the system bus bandwidth
causes signal delays and should be increased.

The guidelines that are generated by the Design Space Analyser, together with the avail-
able design space, form an input for an Evolution Engine. The Evolution Engine is re-
sponsible for generation of new architecture populations. Possible working principles
for the Evolution Engine are described in subsection 3.3.

The newly generated architecture population is sent to the QA Analyser to determine
their quality attribute values. Once the QA values are found, the architect may take a
decision to stop the architecture optimisation process, or to continue with next iteration.
The criteria for the stop-decision are the following: (a) convergence point achieved - no
enhancement seen in comparison to previous iterations; (b) requirements satisfaction -
all relevant requirements are met; and (c) no time available for next iterations.

The one important feature of this generalized iterative method is that different tech-
niques for QA analysis and architecture generation can be applied during the same
process. We call this feature - cascaded optimisation. Cascaded optimisation allows

202 L. Grunske et al.

varying the analysis and architecture generation techniques depending on the current
situation. For instance, once the Design Space Analyser notices that local search pro-
vided by Simulated Annealing algorithm comes close to local optima, then it generates
and sends a guideline to the Evolution Engine to change from local to global search
algorithms (from Simulated Annealing to Genetic Algorithm) in order to explore the
wider space.

5 Tailoring the Abstract Method

The abstract method for dependability optimisation, as presented in the previous section,
has been extracted from several existing approaches and consequently there are already
several successful instantiations of the method. However, one question remains: how to
apply the abstract method in a new application area within a new context. In this section
we provide some guideline for tailoring the abstract method towards a specific problem.

To tailor the abstract method, the system architect must select, for each of the basic
elements, an appropriate representation that fits their needs. The first choice the system
architect must make is to identify a set of dependability evaluation methods for the QA
Analyser, in order to determine the quality of an architecture specification. This selec-
tion must be based on the dependability requirements that are of interest for the system
stakeholders. Once the set of relevant dependability requirements have been identified,
an appropriate dependability-attribute specific evaluation method must be chosen for
each of the requirements. This selection depends on the required accuracy of the pre-
diction, the existing information about the dependability attributes of the architectural
elements, and the budgeted evaluation time. Additionally, most dependability evalua-
tion methods are based on specific assumptions that must hold in order to obtain cor-
rect evaluation results. Moreover, some evaluation methods only work in one specific
architecture style, e.g. the pipes-and-filters style. As a result, the selection of an appro-
priate dependability evaluation method is a difficult task, where no generic recipe can
be given. However, to select an appropriate dependability evaluation method, we advise
consulting the literature surveys that compare different evaluation methods in specific
dependability domains. Examples of such surveys are [7,32] for performance, [29] for
reliability and [33] for safety.

The second element of the abstract dependability evaluation method, i.e. the depend-
ability improving measures that are used in the design space analyser, must be chosen
in accordance with the required dependability attributes. Currently, several pattern cat-
alogues have been developed, that focus on one specific dependability domain. As an
example, Grunske [44] describes patterns to improve the safety of a system and Sari-
dakis [45] focuses on improving the fault tolerance of an architectural design. These
pattern catalogues can guide the system architect to select relevant dependability im-
provment measures for the specific problem. Additionally, the selection and application
of these measures/patterns should be guided by an initial analysis of the weaknesses of
the architecture specification. As an example to improve the reliability of a system a
sensitivity analysis [46] that identifies the components with the most influence on the
system reliability could be used. For safety, single points of failures can be identified
by a Minimal Cutset Analysis [33].

An Outline of an Architecture-Based Method for Optimizing Dependability Attributes 203

The third element, the Optimization Strategy/Design Space Exploration Technique, is
the hardest element to select. This is because the selection should be made based on the
solution landscape, which is often not known prior the optimisation. Despite this prob-
lem, different optimisation strategies have different performance characteristics. Fur-
thermore, these characteristics depend on strategy-specific parameters, like the number
of elements in each generation of an evolutionary algorithm. The survey of Ehrgott and
Gandibleux [47] is recommended, to help select the most appropriate optimisation strat-
egy and its parameters,. Additionally, a general introduction to a variety of optimisation
strategies and heuristics is given in Reeves’ book on modern heuristics [48].

To have a deeper understanding in the tailoring process of the abstract method, we
will consider two examples. The first example is the satellite control system as used in
Approach 12 [24]. The problem in this case is to improve the availability of the system,
while keeping the cost and the weight of the system as low as possible. Only one quality
improving measure, namely introducing redundancy, was chosen. Restricting the num-
ber of quality improving transformations also restricts the design space. Consequently,
the result of the optimisation could be improved by selecting other transformations, e.g.
transformations that detect and mask faults [45]. As the optimization strategy, evolu-
tionary algorithms are used. Choosing this option has been proven successful, since the
evolutionary algorithm was able to find the Pareto optimal solution in the limited design
space after a few iterations. However, this does not imply that the selection would also
be appropriate for a complex design space. To evaluate the candidate architectures in the
evolutionary algorithm, Reliability Block Diagrams (RBD) have been selected. RBDs
assume the components fail independently and that a component can only be in two
states: ether the component functions as specified, or it has failed. Both assumptions
lead to an oversimplified evaluation model and consequently a more sophisticated eval-
uation model like Component Fault Trees [49] or Failure Propagation Tables [34,50]
would be more appropriate.

The second example for the tailoring process of the abstract method is the design
case of a JPEG decoder presented in [51]. The goal was to increase system perfor-
mance and robustness while keeping the system cost at the lowest possible rate. Sim-
ulations of architecture specification models were used as the dependability evaluation
method. The used simulation [52] returns various performance metrics, like worst-case
latency, throughput and processor usage. The method also allows calculating robust-
ness in a way described below. The designer increases environmental-, platform-, or
user-workload rate on a system, slightly deviating from the worst-case scenarios speci-
fied for the system. These ”worse than worst-case” scenarios are also simulated and the
predicted performance values are compared to the values obtained for worst-case sce-
narios. The deviation rate characterizes the system robustness - the ability of a system
to provide correct services under unspecified overload conditions.

The following dependability improvement measures were chosen: Adjusting the ca-
pacity of a hardware blocks (frequency, bandwidth, memory size), changing the topol-
ogy of a hardware architecture, and changing the mapping (deployment) of software
components onto hardware nodes. In principal, other transformations could be also se-
lected, namely replacing software components providing the same services and chang-
ing a topology of component assembly. Their application could have enhanced the

204 L. Grunske et al.

quality of the resulting solution. The example did not use any of the above-mentioned
automatic optimisation strategies. The set of solutions were generated by architects. We
believe that the design case would benefit from utilisation of appropriate architecture
generation techniques (e.g. Simulated Annealing or Tabu Search) and consequently the
approach would benefit from the abstract method presented in this paper.

After reviewing these two examples, it becomes clear that the tailoring process of the
abstract method involves many decisions that could significantly influence the outcome
of the dependability optimisation. However, by providing the abstract method and the
guidelines in this section, the number of false or suboptimal decisions could be reduced.

6 Current Limitations of Architecture Based Dependability
Evaluation and Optimisation Methods

There are several known limitations for architecture-based dependability evaluation and
optimisation methods. In this section, we would like discuss the most important ones.

Inability to find all Pareto optimal solutions. The design spaces of most real-world
applications are complex, if not infinite. As a result, a complete exploration of the de-
sign space is infeasible. To perform a guided search, heuristics, like simulated anneal-
ing, genetic algorithms or Tabu search are used in the abstract method. These heuristics
help to search complex design spaces; however, there is no guarantee that globally op-
timal solutions will be found. Often these heuristics only produce suboptimal or locally
optimal solutions, yet these solutions are often better than the original non-optimised
architecture specification.

Inaccurate dependability evaluation results due to inaccurate information about
dependability attributes of components. The outcomes of dependability evaluations
at an architectural level are always estimations of the real dependability attributes of
the system in operation. The reason for this is that most parameters used for depend-
ability evaluation, like the failure rate of a software component, cannot be quantified
exactly. There is always a degree of uncertainty. Furthermore, due to the early stage of
development it is often unclear if the evaluation result quantifies the dependability of
the real system after it has been built. The reason for this inaccuracy is that compo-
nents have not yet been built, and consequently only (educated) guesses can be made
about relevant dependability metrics of these components. Furthermore, if components
are purchased off-the-shelf, than the dependability evaluation relies on the correctness
of the dependability parameters provided by the component vendors [53].

Inaccurate dependability evaluation results due to limitation of the evaluation
model. Another source of inaccurate dependability evaluation results are the limita-
tions of the dependability evaluation models and methods themselves. These models
and methods make assumptions in order reduce the complexity of the dependability
evaluation. As an example Gokahale [54] has identified several weaknesses of current
reliability evaluation models. These limitations include modelling limitations such as
the inability to model failure dependencies between components, the need for the model
to have Markov properties, and the inability of current reliability evaluation methods to
handle concurrent execution of components.

An Outline of an Architecture-Based Method for Optimizing Dependability Attributes 205

Problems with formalising and automating architecture transformations. Another
requirement of fully automated architecture optimisation approaches is the need for for-
mal and automatable architecture transformations. This limits the selection of the archi-
tecture transformations to only the class of dependability improving measures that can
be formally specified and applied without intervention of the system architect. How-
ever, some transformations need additional information that must be provided by the
system architect in order to apply the transformation. Examples are transformations
that add additional components into the architecture. These components must be for-
mally specified and basic component-based dependability metrics must be added to
allow evaluations of the system’s dependability attributes after the transformation.

To conclude this section, there are currently several limitations of standard depend-
ability optimisation approaches. The knowledge of these limitations is important for
system architects that want to use the abstract method presented in this paper for their
own project, since they apply also to almost any instantiation of the abstract method.

7 Conclusion and Future Work

Over the last 20 years, the design of software intensive systems has shifted towards
tightly integrated system architectures, which are characterized by extensive sharing of
information and hardware. In such architectures, a large number of shared processors
and communication channels allow a large number of potential configuration options at
design time and a large number of potential reconfigurations at runtime. Architecture-
based assessment technologies can answer questions regarding the dependability of in-
dividual configurations, whether they are schedulable or reliable for example. However,
technological support is also needed in addressing the issue of a global dependability
optimisation, i.e. a method that can aid the development of a hardware and software
architecture that will guarantee optimal use of resources in the context of the given
dependability and cost constraints.

In this paper, we performed a comparative review of methods that have recently
been proposed to address variants of this complex architecture optimisation problem.
Because of the sheer computational complexity of the problem and the consequent im-
practicality of using exact optimization techniques, only heuristic and meta-heuristic
techniques have been considered here. These include approaches that use genetic al-
gorithms, hill climbing, simulated annealing, Tabu search, and ant algorithms to solve
various formulations of the architecture optimisation problem. Our review suggests that
none of these methods consistently outperforms the others, either in the quality of de-
rived solutions or the computational effort needed and that, in general, performance
largely depends on the formulation of the problem and the shape of the landscape of the
potential design space. However, in general, it appears to be the case that the various
formulations of the problem exhibit many local optima which suggests that a global
heuristic such as a Genetic Algorithms can generally improve the quality of the solu-
tions reached by reducing the probability of the search getting stuck in local optima. Us-
ing a hybrid combination of a global heuristic with local search techniques also seems
to provide a successful strategy, which further improves the quality of solutions and
reduces computational effort. This is indeed an area where current research is largely

206 L. Grunske et al.

focused and where we expect to see some significant results in the future. These devel-
opments, in conjuction with developments on parallel search algorithms (e.g. parallel
GAs) as well as progress on parallel and GRID computing, create possibilities for major
advances in the optimisation of dependable systems in the near future.

Despite the wide diversity of the methods that we reviewed, significant common-
alities were identified to enable us to define an abstract, generic, meta-method for
architecture-based dependability optimisation from which specific approaches can be
tailored. Although only a skeleton of this meta-method and its tailoring process have
been provided in this paper, our long term aim is refinement of this approach and de-
velopment of tools that can support its application and reuse across different applica-
tions. Such a meta-method could guide developers in the optimisation of dependability-
critical systems by providing a general reusable framework which will enable additional
functionality (e.g. new heuristics) to be included or specific actions to be taken to suit
particular formulations of the optimisation problem.

References

1. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of de-
pendable and secure computing. IEEE Trans. Dependable Secur. Comput. 1, 11–33 (2004)

2. Clements, P.C., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods and
Case Studies. Addison Wesley Longman, Reading (2001)

3. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison-
Wesley, Reading (2003)

4. Grunske, L.: Early quality prediction of component-based systems–a generic framework.
Journal of Systems and Software 80, 678–686 (2007)

5. Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault Tree Handbook. U. S. Nuclear
Regulatory Commission (1996)

6. IEC (International Electrotechnical Commission): IEC 61165: Application of Markov tech-
niques (1995-2003)

7. Balsamo, S., Marco, A.D., Inverardi, P., Simeoni, M.: Model-Based Performance Prediction
in Software Development: A Survey. IEEE Transactions on Software Engineering 30, 295–
310 (2004)

8. Fyffe, D.E., Hines, W.W., Lee, N.K.: System reliability allocation and a computational algo-
rithm. IEEE Transactions on Reliability 17, 64–69 (1968)

9. Nakagawa, Y., Miyazaki, S.: Surrogate constraints algorithm for reliability optimisation
problems with two constraints. IEEE Transactions on Reliability 30, 175–180 (1981)

10. Ghare, P.M., Taylor, R.E.: Optimal redundancy for reliability in series system. Operations
Research 17, 838–847 (1969)

11. Coit, D.W., Smith, A.E.: Reliability optimization of series-parallel systems using a genetic
algorithm. IEEE Transactions on Reliability 35, 535–544 (1996)

12. Nicholson, M.: Selecting a Topology for Safety-Critical Real-Time Control Systems. PhD
thesis, Department of Computer Science, University of York (1998)

13. Liang, Y.C., Smith, A.E.: An ant system approach to redundancy allocation. In: Ange-
line, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.) Proceedings of the
Congress on Evolutionary Computation, pp. 1478–1484. IEEE Press, Los Alamitos (1999)

14. Thiele, L., Chakraborty, S., Naedele, M.: Real-time calculus for scheduling hard real-time
systems. In: Proc. IEEE International Symposium on Circuits and Systems (ISCAS), Geneva,
Switzerland, pp. 101–104 (2000)

An Outline of an Architecture-Based Method for Optimizing Dependability Attributes 207

15. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary
Algorithm. In: Giannakoglou, K., Tsahalis, D., Periaux, J., Papailou, P., Fogarty, T., (eds.)
EUROGEN 2001, Evolutionary Methods for Design, Optimization and Control with Appli-
cations to Industrial Problems, Athens, Greece pp. 95–100 (2002)

16. Palermo, G., Silvano, C., Zaccaria, V.: A flexible framework for fast multi-objective design
space exploration of embedded systems. In: Chico, J.J., Macii, E. (eds.) PATMOS 2003.
LNCS, vol. 2799, pp. 249–258. Springer, Heidelberg (2003)

17. Givargis, T., Palesi, M.: Multi-objective design space exploration using genetic algorithms.
In: Proceedings of the 10th International Symposium on Hardware/Software Codesign
(CODES-02, pp. 67–72. ACM Press, New York (2002)

18. Kulturel-Konak, S., Coit, D.W., Baheranwala, F.: Reliability optimization of series-parallel
systems using a genetic algorithm. IIE Transactions 45, 254–260 (2006)

19. Kulturel-Konak, S., Smith, A.E., Coit, D.W.: Pruned pareto-optimal sets for the system re-
dundancy allocation problem based on multiple prioritized objectives. Journal of Heuristics
(2006) (inPrint)

20. Künzli, S., Thiele, L., Zitzler, E.: Modular design space exploration framework for embedded
systems. IEE Proceedings - Computers and Digital Techniques 152, 183–192 (2005)

21. Papadopoulos, Y., Grante, C.: Evolving car designs using model-based automated safety
analysis and optimisation techniques. Journal of Systems and Software 76, 77–89 (2005)

22. Andersson, J., Wallace, D.: Pareto optimization using the struggle genetic crowding algo-
rithm. Engineering Optimization 34, 623–643 (2002)

23. Fredriksson, J., Sandström, K., Åkerholm, M.: Optimizing Resource Usage in Component-
Based Real-Time Systems. In: Heineman, G.T., Crnković, I., Schmidt, H.W., Stafford, J.A.,
Szyperski, C.A., Wallnau, K. (eds.) CBSE 2005. LNCS, vol. 3489, pp. 49–66. Springer,
Heidelberg (2005)

24. Grunske, L.: Identifying ”good” architectural design alternatives with multi-objective opti-
mization strategies. In: Osterweil, L.J., Rombach, H.D., Soffa, M.L. (eds.) 28th International
Conference on Software Engineering (ICSE 2006),, Shanghai, China, May 20-28, 2006, pp.
849–852. ACM Press, New York (2006)

25. Bondarev, E., Chaudron, M.R.V., de With, P.H.N.: A process for resolving performance
trade-offs in component-based architectures. In: Gorton, I., Heineman, G.T., Crnkovic, I.,
Schmidt, H.W., Stafford, J.A., Szyperski, C.A., Wallnau, K.C (eds.) CBSE 2006. LNCS,
vol. 4063, pp. 254–269. Springer, Heidelberg (2006)

26. Pimentel, A.D., Erbas, C., Polstra, S.: A systematic approach to exploring embedded system
architectures at multiple abstraction levels. IEEE Trans. Computers 55, 99–112 (2006)

27. Livolsi, D., O’Neill, T., Leaney, J., Denford, M., Dunsire, K.: Guided architecture-based
design optimisation of CBSs. In: ECBS 2006, pp. 247–258. IEEE Computer Society Press,
Los Alamitos (2006)

28. Gritzalis, S., Spinellis, D., Georgiadis, P.: Security protocols over open networks and distrib-
uted systems: formal methods for their analysis, design, and verification. Computer Commu-
nications 22, 697–709 (1999)

29. Goseva-Popstojanova, K., Trivedi, K.S.: Architecture-based approach to reliability assess-
ment of software systems. Perform. Eval 45, 179–204 (2001)

30. Reussner, R.H., Schmidt, H.W., Poernomo, I.: Reliability prediction for component-based
software architectures. Journal of Systems and Software – Special Issue of Software Archi-
tecture – Engineering Quality Attributes 66, 241–252 (2003)

31. Hamlet, R.G., Mason, D.V., Woit, D.M.: Theory of software reliability based on components.
In: Proceedings of the 23rd International Conference on Software Engineering, ICSE 2001,
Toronto, Ontario, Canada, 12-19 May 2001, pp. 361–370. IEEE Computer Society Press,
Los Alamitos (2001)

208 L. Grunske et al.

32. Becker, S., Grunske, L., Mirandola, R., Overhage, S.: Performance prediction of component-
based systems – a survey from an engineering perspective. In: Reussner, R., Stafford,
J.A., Szyperski, C.A. (eds.) Architecting Systems with Trustworthy Components. LNCS,
vol. 3938, pp. 169–192. Springer, Heidelberg (2006)

33. Grunske, L., Kaiser, B., Papadopoulos, Y.: Model-driven safety evaluation with state-event-
based component failure annotations. In: Heineman, G.T., Crnković, I., Schmidt, H.W.,
Stafford, J.A., Szyperski, C.A., Wallnau, K. (eds.) CBSE 2005. LNCS, vol. 3489, pp. 33–
48. Springer, Heidelberg (2005)

34. Papadopoulos, Y., McDermid, J.A., Sasse, R., Heiner, G.: Analysis and synthesis of the be-
haviour of complex programmable electronic systems in conditions of failure. Int. Journal of
Reliability Engineering and System Safety 71, 229–247 (2001)

35. Laprie, J.C.(ed.): Dependability: basic concepts and terminology. Springer, Heidelberg
(1992)

36. Grunske, L.: Formalizing architectural refactorings as graph transformation systems. In: 6th
International Conference on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD05), pp. 324–329. IEEE Computer Society Press, Los
Alamitos (2005)

37. Nam, D., Park, C.H.: Multiobjective Simulated Annealing: A Comparative Study to Evolu-
tionary Algorithms. International Journal of Fuzzy Systems 2, 87–97 (2000)

38. Horn, J., Nafpliotis, N., Goldberg, D.E.: A Niched Pareto Genetic Algorithm for Multiob-
jective Optimization. In: Proceedings of the 1st IEEE Conference on Evolutionary Compu-
tation, IEEE World Congress on Computational Intelligence, Piscataway, New Jersey, vol. 1,
pp. 82–87. IEEE Service Center, Los Alamitos (1994)

39. Knowles, J.D., Corne, D.W.: Approximating the Nondominated Front Using the Pareto
Archived Evolution Strategy. Evolutionary Computation 8, 149–172 (2000)

40. Yim, J.S., Kyung, C.M.: Datapath layout optimisation using genetic algorithm and simulated
annealing. IEE Proceedings - Computers and Digital Techniques 145, 135–141 (1998)

41. Walsh, W.E., Tesauro, G., Kephart, J.O., Das, R.: Utility functions in autonomic systems.
In: 1st International Conference on Autonomic Computing (ICAC 2004), New York, USA,
17-19 May 2004, pp. 70–77. IEEE Computer Society Press, Los Alamitos (2004)

42. Mattson, C.A., Messac, A.: Pareto frontier based concept selection under uncertainty, with
visualization. Optimization and Engineering 6, 85–115 (2005)

43. Zanchettin, C., Ludermir, T.B.: The influence of different cost functions in global optimiza-
tion techniques. In: Proc. 9th Brazilian Symposium on Neural Networks (SBRN’06), Los
Alamitos, CA, USA, pp. 17–31. IEEE Computer Society Press, Los Alamitos (2006)

44. Grunske, L.: Transformational patterns for the improvement of safety properties in architec-
tural specifications. In: Proceedings of The Second Nordic Conference on Pattern Languages
of Programs (VikingPLoP 03), Bergen, Norway (2003)

45. Saridakis, T.: A system of patterns for fault tolerance. In: Proceedings of the EuroPlop (2002)
46. Gokhale, S.S., Trivedi, K.S.: Reliability prediction and sensitivity analysis based on software

architecture. In: 13th International Symposium on Software Reliability Engineering (ISSRE
2002), Annapolis, MD, USA, November 12-15, 2002, pp. 64–78. IEEE Computer Society
Press, Los Alamitos (2002)

47. Ehrgott, M., Gandibleux, X.: A Survey and Annotated Bibliography of Multiobjective Com-
binatorial Optimization. OR Spektrum 22, 425–460 (2000)

48. Reeves, C.R.: Modern Heuristic Techniques for Combinatorial Problems. John Wiley &
Sons, New York (1995)

49. Grunske, L., Kaiser, B.: Automatic generation of analyzable failure propagation models from
component-level failure annotations. In: 5th International Conference on Quality Software
(QSIC 2005), Melbourne, September 19-20, 2005, pp. 117–123. IEEE Computer Society
Press, Los Alamitos (2005)

An Outline of an Architecture-Based Method for Optimizing Dependability Attributes 209

50. Papadopoulos, Y., Parker, D., Grante, C.: Automating the failure modes and effects analy-
sis of safety critical systems. In: Int. Symposium on High-Assurance Systems Engineering
(HASE 2004), pp. 310–311. IEEE Computer Society Press, Los Alamitos (2004)

51. Bondarev, E., Chaudron, M.R.V., de Kock, E.A.: Exploring performance trade-offs of a jpeg
decoder using the deepcompass framework. In: WOSP ’07: Proceedings of the 6th interna-
tional workshop on Software and performance, pp. 153–163. ACM Press, New York, USA
(2007)

52. Bondarev, E., Chaudron, M.R.V., de With, P.H.N.: Compositional performance analysis of
component-based systems on heterogeneous multiprocessor platforms. In: EUROMICRO
’06: Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Ad-
vanced Applications, Washington, DC, USA, pp. 81–91. IEEE Computer Society Press, Los
Alamitos (2006)

53. de Castro Guerra, P.A., Romanovsky, A.B., de Lemos, R.: Integrating COTS software com-
ponents into dependable software architectures. In: 6th IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC 2003), Hakodate, Hokkaido,
Japan, May 14-16, 2003, pp. 139–142. IEEE Computer Society Press, Los Alamitos (2003)

54. Gokhale, S.S.: Architecture-based software reliability analysis: Overview and limitations.
IEEE Transactions on Dependable and Secure Computing 4, 32–40 (2007)

A Distributed Monitoring System for Enhancing

Security and Dependability at Architectural
Level

Paola Inverardi and Leonardo Mostarda

Dip. di Informatica, Università di L’Aquila, Coppito 67100, L’Aquila, Italy
{inverard,mostarda}@di.univaq.it

Abstract. In this work we present the DESERT tool that allows the
automatic generation of distributed monitoring systems for enhancing
security and dependability of a component-based application at architec-
tural level. The DESERT language permits to specify both the compo-
nents interfaces and interaction properties in term of correct components
communications. DESERT uses these specifications to generate one fil-
ter for each component. Each filter locally detects when its component
communications violate the property and can undertake a set of reaction
policies. DESERT allows the definition of different reaction policies to
enhance system security and dependability. DESERT has been used to
monitor applications running on both mobile and wired infrastructures.

1 Introduction

In this work we present the DESERT tool that allows the automatic generation
of distributed monitoring systems for enhancing security and dependability of a
component-based application at architectural level.

In our system model we assume a set of black-box components that interact
with each other by exchanging messages. A message encodes information about
the type of communication, i.e. a request or a reception, the kind of service
and its parameters and the (returned) data. This architectural level model has
shown to be flexible enough to model several types of distributed systems and
communication patterns. For instance, in [1] we model mobile sensors applica-
tions. In this case components are sensor devices and communication is achieved
by means of send and receive asynchronous invocations. In [2] we have modeled
CORBA middleware based applications. In this case we have CORBA compo-
nents that communicate by means of different types of service invocations (i.e.,
asynchronous, synchronous and deferred synchronous invocations).

At the architectural level we define an anomalous component as one that in-
teracts with the remaining components in order to subvert the ’correct’ system
behavior. Anomalous component interactions can have different origins and their
detection constitutes the basis to provide different functionalities of the system.
For instance, anomalous interactions can originate by a malicious component
that exploits other components vulnerabilities (see [3] for an extended survey).

R. de Lemos et al. (Eds.): Architecting Dependable Systems IV, LNCS 4615, pp. 210–236, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Distributed Monitoring System for Enhancing Security and Dependability 211

In this case the component detection constitutes the basis to build an Intrusion
Detection System (IDS)[4,5,6,7,8] to enhance the system security functionality.
In the field of dependable computing, anomalous components interactions can be
a consequence of architectural mismatch [9] and/or of components faults that
lead to system failure. In this case the detection mechanism can be the basis
for error detection and system recovery [10]. In the field of performance evalu-
ation, anomalies on components interactions can be a consequence of degraded
response time, thus detection mechanisms can be used to provide reconfiguration
mechanisms.

Today’s monitoring tools [11] are a viable solution to detect anomalous com-
ponents interactions. They are tools that: (i) gather information about appli-
cations, (ii) interpret the gathered information; (iii) respond appropriately (i.e.
they can undertake different reaction policies). A monitoring system can be char-
acterized by the functionalities it provides. Modern monitoring tools are used
to increase security, dependability and performance (see Section 2 for a detailed
survey). Moreover they can be part of the target system therefore they can add
new system behaviors.

In this work we present the DESERT tool [12,2,1,13] that allows the generation
of distributed monitoring systems for component based applications.

The monitoring definition is obtained starting from a DESERT program writ-
ten in the DESERT definition language. The DESERT program contains both
an interfaces descriptions part and a global automaton one (Figure 1 part 2).
The interfaces descriptions part is obtained by means of an interface descrip-
tion language that permits to describe each component of the system in terms
of its name and the services that it requires/provides. The global automaton
part can contain different state machines (that in the following will be referred
to as interaction properties) that are described by means of a DESERT state
machine definition language. A state machine describes the correct messages
exchange among components (i.e. the correct component communications). As
we are going to see in Section 3.2, the state machines can model complex com-
munication patterns but they are not suitable to describe temporal properties
(i.e, the DESERT approach is appropriate for applications without timeliness
requirements).

Fig. 1. DESERT phases

212 P. Inverardi and L. Mostarda

The DESERT program is a means to define a logically centralized monitoring
tool. This monitoring tool: (i) gathers all messages exchanged among compo-
nents; (ii) checks the messages consistency with respect to the property defined
by the global automaton; (iii) in case of mismatches undertakes a set of reaction
policies. Different reaction policies can be defined to provide different function-
alities of the system. For instance, when a component misbehaves for malicious
purposes isolation of this component can be the correct reaction to enhance the
system security. In case the component performs anomalous interactions as a
consequence of a fault, recovery reaction can improve the system dependability.

The implementation of the logically centralized monitoring system can pose
problems of security, reliability and performance. Furthermore, already existing
legacy distributed systems could not allow the addition of a new component
which monitors the information flow in a centralized way.

To overcome these problems DESERT automatically decomposes the global
automaton in a set of local automata that are assigned one for each component. A
local automaton constitutes the basis to build a filter that is interposed between
its component and the environment (see Figure 1 part 3). The filter captures
all incoming/outgoing component messages and uses the local automaton to
locally detect violation of the policy expressed by the global automaton. In other
words, the filters taken as a whole system constitute a monitoring system that
is “equivalent”(see [12,13] for a formal description) to the centralized one.

The DESERT tool implements both a front-end and a set of back-ends. The
former, starting from the DESERT program and a component name (e.g. C2),
produces the platform independent specification of the C2 local automaton.
The latter translates the C2 local automaton specification in a specific filter
implementation. For instance for distributed applications where the components
communicate by using the CORBA middleware we have implemented a CORBA
back-end. This back-end automatically produces a new CORBA component (the
filter) that is interposed between the component communications and the envi-
ronment.

We point out that the novelty of this work is the description of the DESERT
definition language and the overview of the DESERT distribution basic steps. In
fact in [12,13] we primarily focus on the proofs of correctness and completeness
of the distribution process while in [2] and in [1] we only sketch how the approach
can be suitable for different areas (i.e, enforcement and security respectively).

The paper is organized as follows. In the next section we present an overview
of the monitoring system technology and we summarize the contribution of our
architectural level monitoring technology. Section 3 introduces our monitoring
definition language, in particular, Section 3.1 describes our interface description
language and Section 3.2 the state machine specification language. Section 4
shows how interfaces and state machine can be used to define a logically cen-
tralized monitoring system. Section 5 summarizes the different reaction policies
that can be set to generate different monitoring systems for different areas of
applications. Section 6 sketches the generation of the distributed implementa-
tion of the logically centralized monitoring system. Section 7 describes different

A Distributed Monitoring System for Enhancing Security and Dependability 213

case studies in which we have applied our monitoring approach. We show how
our reaction policies can be tuned in order to output different monitoring sys-
tems used for different functionalities of the system. Finally, Section 8 provides
conclusive remarks and future work.

2 Monitoring Tools at Glance: Concepts and Terminology

Monitoring systems have been around since the 1960s. Originally they were con-
ceived with a centralized structure and used to debug centralized systems. To-
day’s monitoring systems monitor distributed applications and themselves have
a distributed architecture. Generally speaking, a monitoring system can be de-
fined as tools that: (i) gathers system information; (ii) interprets the gathered
information; (iii) after interpretation can undertake a set of reaction policies.
Monitoring provides a solution for areas of growing concerns: lack of depend-
ability, security and performance enhancement and tools to support distributed
applications.

Fig. 2. Monitoring uses Fig. 3. Monitoring activities

In Figure 2 we show the primary uses of monitoring tools. Dependability
includes cases in which interpretation involves detection of system errors and re-
action policies are undertaken to enhance the system fault tolerance [11]. Perfor-
mance evaluation includes detection of the system response time degradation. In
this case reactions can include system reconfiguration, dynamic program tuning
and on-line steering. Security involves the interpretation of information in order
to detect attacks. In this case interpretation of information can be performed
using a set of predefined intrusion signatures and/or the correct system behavior
definition. The former are referred to as misuse detection systems [8,14,15,16]
while the latter are referred to as anomaly detection systems [17,7,18,5,19,12,4].
Debugging and testing employs monitoring techniques to extract data values
from an application being tested. Control includes cases in which the monitor-
ing implements part of system functional requirements. Finally, enforcement [20]
is the case in which the monitor interprets information in order to ensure desired
system behaviors.

214 P. Inverardi and L. Mostarda

Despite the various monitoring system utilizations their definition involves the
following standard activities: (i) sensor initialization; (ii) gathering; (iii) event
interpretation specification; (iv) event interpretation; (v) reaction policies spec-
ification; (vi) reaction policies execution (see Figure 3). Each activity can be
performed either by the user or by the monitoring system itself.

In order to describe the above activities in the following we introduce some
basic concepts common to all monitoring systems.

Information arrives to the monitoring tools in the form of events. Events can
regard the system states, interactions among system parts and system activities.
We point out that events can be related to different layers of abstraction, i.e,
hardware-level, process level and application level. A sensor is the monitoring
element that locally gathers events. Sensor automatically sends events when they
occur or it is the monitoring system itself that can request them.

Sensor initialization (see Figure 3) includes configuration and installation.
Configuration is carried out by deciding what events a sensor will gather and the
definition of additional sensor capabilities, e.g., local conditions checking. Sensor
installation is carried out by placing the sensor code at the correct location. This
is usually performed through code instrumentation1 or conceiving the sensor as
an external observer that sniffs all communications among system parts.

Gathering is the activity in which sensors collect events and forward them
to the monitoring system. The gathering can be either off-line or in-line. The
former is characterized by the fact that the gathering code uses the resources
of the target system. The latter is characterized by the fact that the gathering
code uses resources separated from the target system ones.

Event interpretation is the heart of the monitoring system, where the moni-
toring system interprets events. Event interpretation is achieved using the event
interpretation specification that is usually defined by means of errors conditions
description and/or description of correct system behaviors. Event interpretation
can be categorized either as synchronous or asynchronous. Asynchronous is when
events are interpreted after system execution. Synchronous when the system is
suspended until event interpretation.

Reaction policies execution can take place after event interpretation and its
implementation must comply with the reaction policies specification. Reaction
policies specification are a consequence of the monitoring system uses. Earlier
monitoring systems were only involved in logging and tracing reactions. Nowa-
days monitoring systems embed complex reactive utilities that can be undertaken
after event interpretation.

Generally speaking, reaction policies can be either non-intrusive or intrusive.
Non-intrusive reaction policies do not affect the program behavior except for

execution speed and program size. Logging and tracing are examples of these
monitoring system reactions. Logging can be performed to record violations of
the correct system behavior. Tracing can be viewed as a high-level logging utility

1 Instrumentation requires code access and can be manually performed by the user or
automatically by code analysis.

A Distributed Monitoring System for Enhancing Security and Dependability 215

that records all sequences of interactions resulting in the anomalous system
behavior.

Intrusive reaction policies affect, to some degree, the state, the configura-
tion and/or the execution of the system (see [10] for an extended survey). For
instances intrusive reaction policies are: (i) termination; (ii) shunning; (iii) re-
configuration; (iv) rollback; (v) rollforward. Termination refers to the monitoring
system ability to terminate part (or the whole) system execution. Shunning is
the case in which the monitoring system denies the traffic generated by a specific
source or a set of sources. Reconfiguration can physically alter the location or
functionality of network or system elements. For instance, in the field of depend-
ability, reconfiguration can be useful to switch in spare components or reassign
tasks among non-failed components. In the case of security reconfiguration can
be used to isolate the attackers. Rollback brings the system back to a previous
saved state. Rollforward brings the system, in a new ’safe’ state.

In this paper we focus on monitoring systems that use formal specifications for
event interpretation (in the following referred to as specification-based monitor-
ing systems). Different names, that depend on the monitoring system uses, can
refer to a specification-based monitoring system. In the field of security they are
referred to as specification-based and anomaly-based IDSs [5,12,4]. In the field
of dependability and correctness checking they can be referred to as software-
fault monitors [11] and enforcement mechanisms [20],respectively. Despite these
various uses, a specification-based monitoring system is usually interpreted as
a tool that takes an application and a specification of software properties and
checks that the execution meets the properties, i.e., that the properties hold for
the given execution. A property can describe the correct communication among
system parts, the correct system states and the correct system activities. A spec-
ification language is a language that is used to describe properties.

Fig. 4. Specification language categorization

In Figure 4 we show the elements that can characterize a specification lan-
guage: (i) the language type; (ii) the abstraction level; (iii) property type; (iv)
the monitoring directives. The type of language used to define a property can
be based on algebra, automata, logic and so on. The abstraction level refers to
the support that the language provides in order to specify the property and the
knowledge about the domain, the design and the implementation of the system.

216 P. Inverardi and L. Mostarda

For instance, a language that provides support to specify properties for CORBA
middleware would be classified domain-based. A language that allows the spec-
ification of properties in implementation independent fashion would be design
based. Finally, properties that involve statements and variables of a system have
to be defined by means of implementation-dependent language.

Two types of properties can be specified: safety and temporal ones. A safety
property expresses that something bad never occurs. A temporal property in-
cludes progress and bounded liveness [11]. Monitoring directives specify that a
property can be evaluated at different levels,i.e, program , module, statement
and so on.

The DESERT tool allows the automatic generation of distributed specification-
based monitoring systems for enhancing security and dependability in distributed
black-box components applications. The black-box nature of the components im-
poses that our events can be observable messages exchanged among them. The
DESERT language allows the definition of both the system model and the correct
system behavior. The system model is provided by means of an interface descrip-
tion language. This language permits to describe each component of the system in
terms of its name and the services that it requires/provides. The correct system
behavior is provided by means of a global automaton that describes the correct
messages exchange among components (i.e. interaction properties). As described
in [20] automata can describe safety and bounded liveness properties.

A monitoring system, based on the global automaton, gathers all messages
exchanged among components and verifies that such messages do not violate
the policies expressed by the global automaton. Our monitoring system is off-
line since it does not use the resources of the target system (in particular it is
implemented as an external observer). Moreover, it is synchronous since messages
are delivered only after interpretation.

Architectural level monitoring permits to obtain implementation-independent
description, however DESERT provides the basic mechanisms to add design
and implementation details into the properties descriptions. Moreover, as we
describe in Section 5 DESERT allows the definition of reaction policies tailored
for security and dependability purposes.

3 The DESERT Definition Language

In this section we describe the DESERT definition language that permits to
specify both the system model and the global automaton. The system model
specifies the components interfaces descriptions.

3.1 Components Interfaces Descriptions

This part is composed of a set of component interface declarations. A component
interface declaration is composed of: (i) the component name; (ii) a list of services
description.

A service description is either of the form !serviceName(Parameters).return
Type or ?serviceName1(Parameters1).returnType1. The former declares that

A Distributed Monitoring System for Enhancing Security and Dependability 217

the component is a client of the service serviceName having the formal parame-
ters Parameters and the returned value type returnType. The latter declares
that the component provides the service serviceName1 to the environment.

Fig. 5. Components interfaces

The Parameters is constituted by a sequence of the type T1D1 X1 , T2 D2

X2, . . . , Tn Dn Xn, with n ≥ 0 (n = 0 means an empty sequence of parameters).
Ti is a label that can take one of the following values: in and out. in specifies
that the parameter Xi is an input service parameter (i.e., it must be provided to
the service). out specifies that Xi is an output service parameter (i.e., it contains
an output after the service execution). Di is the Xi domain and defines the set
of values that the parameter can take.

Suppose that a component is a client (server) of the service !serviceName
(Parameters) .returnType (?serviceName1(Parameters1).returnType1).The
label returnType (returnType1) defines the set of values that the component
client (server) can receive (send) back after the serviceName (serviceName1)
synchronous service invocation. We point out that the type of service invocation
(i.e. synchronous and asynchronous) is specified by means of a label that is pre-
fixed to the service declaration. Optionally, a user can add variables declarations
in the components interfaces descriptions.

In Figure 5 we sketch part of the case study that refers to a cooling water pipe
distributed industrial application (see [2] for a detailed description). It concerns
the monitoring of messages exchanged among a set of components that collect
and correlate data on the amount of water that flows in different water pipes.
This water is used to cool industrial machinery. The water pipes are monitored
by the server components C1 and C2 that interact with Programmable Logic
Controllers (PLCs) in order to obtain the data related to each water flow. The
clients C3 and C4 request services on the servers in order to write/read the
water flow data.

C1 can receive incoming requests of the ?acquireC1Resource() .int and ?set
Data(in double data).void services in order to allow the exclusive access to the
Area 1 data and to manually set its local data, respectively. C2 can receive in-
coming requests of the ?acquireC2Resource() .int and ?sync().void services in
order to allow the exclusive access to the Area 2 data and to accept a synchro-
nization request, respectively. Moreover, C2 can require the !setData(in double

218 P. Inverardi and L. Mostarda

data) .void service to C1 in order to send its data to C1. In particular C2 sends
its data after the reception of a sync() request. C3 and C4 are client of the ser-
vices exposed by the component C1 and C2. Notice that we relate the variable
count to the component C2. We point out that this variable is used in the state
machine definition, i.e., it is part of the monitoring system definition.

The goal of the overall application is to ensure consistency on the water flows
data that are used for billing purposes. To this extent we define a state machine.

3.2 The Global Automaton

After the components interfaces descriptions, the DESERT program has to de-
scribe a state machine that defines the correct components communications.

In the following we introduce some notation useful to describe our automata.
Let us suppose that the C interface declaration defines a service of the type
!serviceName(T1 D1 X1, . . . , Tn Dn Xn).returnType (i.e., C is a client of the
serviceName service) and S exports the service ?serviceName(T1 D1 X1, . . . ,
Tn Dn Xn).returnType (i.e., S is a server of the serviceName service). The
notation C c, x; is used to declare two instances (i.e.,c and x) of the component
C. The symbol ’*’ denotes an unknown type of component (see case study of
Section 7 for examples).

In the following we describe the events that we monitor at architectural level.
Let us consider the declarations C c; and S s; :

– !serviceName (X1, . . . , Xn) c s defines an event that can be observed when c
performs the serviceName (X1, . . . , Xn) service invocation on s. It is worth
noticing that when the invocation is executed the parameter X1 . . . Xn are
suitable instantiated by c.

– ?serviceName (X1, . . . , Xn) c s defines an event that can be observed when
s performs the serviceName (X1, . . . , Xn) service-receive invocation on s.

– If the serviceName service is synchronous we can define the symmetrical
invocation !serviceName s c and ?serviceName s c, i.e., the answer to the
serviceName service observed on the server and client side, respectively.

The receive invocation ?serviceName(X1, . . . , Xn) c s has associated the de-
fault variables ?serviceName.Xi, with 1 ≤ i ≤ n, each of them contains the Xi

parameter value when the invocation is performed at the s server side. The send
invocation !serviceName(X1, . . . , Xn) c s has associated the default variables
!serviceName.Xi, with 1 ≤ i ≤ n, each of them contains the Xi parameter
value when the invocation is performed at the c server side. If the serviceName
service is synchronous then the default variable !serviceName (?serviceName)
contains the serviceName returned value sent (received) by s (c). We point out
that all invocations that include the symbol ∗ define the same variables (see [13]
for details).

Let p be one of the above invocations. Each transition of the global automa-
ton can be labeled with a piece of information of the form p[P]{code}. The label

A Distributed Monitoring System for Enhancing Security and Dependability 219

[P] is a predicate that the invocation p must verify, the field {code} a piece
of code executed when the transition is performed. In particular, as we are
going to see in section 7, a predicate is a means to avoid attacks/faults caused
by invocations with malformed formats (e.g., sql injection and buffer overflow)
while the code can be executed to perform more complex checks based on the
component variables.

A state machine describes the system traces that an external observer should
see in the case of correct components interactions. In particular, these traces
are related only to the services invocations defined inside the global automaton
alphabet.

Fig. 6. Global automaton Fig. 7. Simple property

In Figure 6 we show a portion of the state machine declaration that is related
to our case study [13,2]. In this case we have the component instance c1 of the
type C1, c2 of the type C2, c3 of the type C3 and c4 of the type C4. We can
observe that in the state 0 both clients c3 and c4 have the possibility to perform
an acquireC2Resource() service invocation on the server c2. In the case that c4
performs the invocation the state machine moves from state 0 to 1. We point out
that this invocation is observed at the c4 client side. In state 1 this invocation
is observed at the c2 server and the global automaton state can be changed
from 1 to 2. From the state 2 two possible transitions exit. One models the c2
acquireC2Resource service response when its returned value is equal to 0. This
is expressed by the condition !acquireC2Resource == 0 (e.g., this is the case of
server busy). The other one models the c2 acquireC2Resource service response
when its returned value is equal to 1. If the latter is applied then the state
machine moves to state 4, where the c2 services can be provided to the client c4.
Notice that each time the service sync() is received by c2 the related variable
count is updated. Moreover, the state machine does not include the description
of the service !getData().byte[] and other components services (see Figure 5). In
Figure 7 we show a more simple policy in which concurrent services invocations
are allowed. This is represented by multiple transitions that enter and exit from
the same state.

220 P. Inverardi and L. Mostarda

We remark that different global automata can define different security poli-
cies and can be used to concurrently monitor the components. However, in the
remaining we focus on a single automaton since all results can be easily extended
to multiple concurrent automata.

In the following we sketch strengths and weaknesses of the DESERT definition
language.

The DESERT language flexibility allows the definition of monitoring systems
in different contexts. For instance, in the context of CUSPIS project [21] user
services are implemented by a client (e.g. c) that performs invocations on finite
set of servers s1, . . . , sn. Servers can interact with each other and with further
components. In this case a global system view is needed to ensure the correct-
ness of interactions scattered over several components. We have defined a server
side policy that characterizes client sessions in terms of both servers received
invocations (e.g. ?serviceName(Parameters) c si) and servers performed invo-
cations (e.g. !serviceName(Parameters) si sj). In the case of wireless sensor
networks (see [1] for details), the automaton can contain only invocations of the
form !serviceName(listOfParameters) c s (i.e., a client side policy). This is
the case in which mobile devices (e.g. sensors) send asynchronous service invo-
cations to unknown servers, therefore, we have to write client side policies.

If the state machine describes all possible services invocations we may incur
in the usual state explosion problem. However, the crucial property commonly
only interests a subset of the global system behavior. Moreover, it is worth notice
that the global automaton does not allow the definition of temporal constraints
so that DESERT is a tool unsuitable to model interactions with timeliness re-
quirements.

4 A Logically Centralized Monitoring System

A DESERT user defines the global automaton at the level of system integration,
i.e., she defines the correct components communications by having a global sys-
tem view. From the global automaton perspective it is easy to derive a logically
centralized monitoring system. The logically centralized monitoring system does
not have a concrete counterpart but its knowledge makes it easy to understand
the filters system generation (i.e., the distributed monitoring system implemen-
tation) that is hidden by the DESERT tool. Therefore for the sake of simplicity
we will describe the monitoring use and the reaction policies referring to a cen-
tralized approach. In Section 6 we show how the distributed implementation of
the centralized approach is automatically generated.

In the following we use the case study of Section 3 to describe all actions that
the centralized monitoring system can undertake, i.e., (i) send invocation accep-
tance; (ii) buffering action; (iii) receive invocation acceptance; (iv) forwarding
action;(v) anomaly detection action.

The logically centralized monitoring system has a buffer used to store the com-
ponents invocations it captures. Suppose that the monitoring system picks the
invocation !acquireC2Resource () c4 c2 up from its local buffer and the global

A Distributed Monitoring System for Enhancing Security and Dependability 221

automaton of Figure 6 is in state 0. Then the monitoring system can ’accept’
this invocation since there is a 0-exiting transition labeled with it and there is
not a predicate to be satisfied. Accept means that the monitoring system buffers
the invocation ?acquireC2Resource() c4 c22 and changes the automaton state
to 1 (in the following this monitoring system activity will be referred to as send
invocation acceptance). In state 1 there is the possibility that the monitoring
system picks an invocation !acquireC2Resource() c3 c2 up from the buffer (i.e.,
the client c3 requires the access to the same c2 resources). This invocation cannot
be accepted since there is not a 1-exiting transition labeled with it. Therefore,
the monitoring system checks the existence of a state reachable from 1 where the
following conditions hold: (i) there is an exiting transition t labeled with the in-
vocation !acquireC2Resource() c3 c2; (ii) the predicate related to the transition
t is satisfied (in our case 0). In this case the monitoring system puts the invoca-
tion back to process it later (buffering action). By continuing our example, the
monitoring system can pick the invocation ?acquireC2Resource() c4 c2 up from
the buffer and accepts it by means of the 1-exiting transition. In this case the
monitoring system forwards the acquireC2Resource invocation to the server c2
and changes the automaton state to 2 (receive invocation acceptance). Since the
service acquireC2Resource is synchronous the monitoring system has to wait
for the result ?acquireC2Resource to put it in the buffer. In any automaton
state invocations that are not described in the global automaton are forwarded
without any check, e.g. all getData() service invocations are forwarded, (for-
warding action). An anomalous component invocation is detected when: (i) the
invocation cannot be accepted in the current automaton state (e.g. q) and in any
state reachable from q; (ii) the invocation was buffered and not consumed after
a finite amount of time3; (iii) the invocation is related to services not present in
the interfaces definitions (anomaly detection action).

After an anomaly detection action our centralized monitoring system can un-
dertake a reaction policy. In the next section we describe all different reaction
policies that can be set by means of the DESERT tool. Different reaction poli-
cies allow the generation of monitoring tools for different areas, e.g. security,
dependability and enforcement (see Section 2).

5 The DESERT Reaction Policies and the Application
Areas

In Figure 8 we show all reaction policies that can be set in order to generate
monitoring systems for different uses.

2 The buffering is needed since it is the global automaton that can (or cannot) define
when the related receive invocation must be delivered. This is strictly related to
wether or not the receive invocation is defined inside the global automaton alphabet.

3 The amount of time must be chosen by the user. In particular it can be assigned
at ’the global automaton level’ (i.e, all invocations must be consumed after a fixed
amount of time) and/or to each single invocation.

222 P. Inverardi and L. Mostarda

Fig. 8. DESERT reaction policies

The logging reaction policy permits to obtain a monitoring system that does
not affect the system behavior. Different levels of logging can be set up. The com-
plete logging allows the logging of all messages exchanged among components4.
The partial logging permits to log all messages exchanged among components
that belong to the global automaton alphabet. The violation logging permits
to log all messages exchanged among components that violate the property ex-
pressed by the global automaton. For instance, the logging reaction policies can
support off-line and on-line testing. In the former case complete logs can be pro-
duced and analyzed in order to detect traces that violate the case tests. In the
latter case the monitoring system can produce a violation log in which all traces
violating the global automaton policy are recorded. In other words we can test
the run time system traces with respect to the global automaton ones.

The Shunning reaction policy can be partial and complete. In the partial
shunning the monitoring system logs the information details of any anomalous
message m that violates the property. When m has been logged, the monitoring
discards m and does not deliver it to the receiver. In the complete shunning
the monitoring system registers the sender of the message m and denies all
future messages send by it, i.e., the monitoring system isolates the component
that performed the violation. The shunning reaction policies can be used in the
field of security [1] in order to isolate the component that attacks the system.
However, it can generate components anomalous behaviors as a consequence of
no returned value to them, therefore shunning cannot be applied in order to
enhance the system fault tolerance.

In the retry reaction policy the monitoring system discards and logs any mes-
sage m that mismatches the correct behavior. After m has been discarded the
monitoring returns an error to the component that has sent m. An error is a
value that a component recognizes either as an exception or a failure condition.
The retry reaction policy can be a means to improve the system fault tolerance.
The error detection mechanism is provided by our monitoring tool that detects a
component misbehavior. Moreover, the error value returned can be a simple re-
covery mechanism to let the component try again. It is worth noticing that while
the shunning policy can be always applied without having any type component
knowledge the retry reaction requires that the component explicitly declares a
handled returned error value.

4 We log for each invocation: time, service name, parameters or returned value, sender
and receiver.

A Distributed Monitoring System for Enhancing Security and Dependability 223

Termination refers to the monitoring system ability to terminate the com-
ponents generating the anomalous behavior. This reaction can be followed by
a reinitialization phase in which components can be configured and restarted.
Notice that in this case the monitoring system must have a mechanism to stop
and restart a component execution.

Hybrid reaction policies include the case in which different reaction policies
are assigned to different invocations. For instance, the shunning policy can be
associated to each invocation related to services that are critical for the system
security. The retry policy can be used for invocations that can be performed
after the correct system login, i.e., this policy can be used to recover authorized
components.

We can observe that both retry and shunning policies produce a monitor-
ing system that acts like an enforcement mechanism (EM). As defined in [20]
enforcement mechanisms compare a formal specification with the system steps.
When there is a violation of the formal specification an EM can either termi-
nate the system execution or replace an unacceptable execution step with an
acceptable one.

6 The Distribution Process

The implementation of the logically centralized monitoring system is not prac-
tical in systems composed by a large number of distributed components and of
interactions properties, where the parsing efficiency, scalability and failure can
become relevant issues. Moreover, already existing legacy distributed systems
could not allow the addition of a new component which monitors the information
flow in a centralized way. The DESERT solution is an algorithm to automati-
cally distribute the logically centralized monitoring system (i.e., the ’centralized’
DESERT program) on each component of the system. It performs this genera-
tion by decomposing the global automaton in a set of local automata that are
assigned one for each component of the system. A local automaton constitutes
the basis to build a filter that locally monitors its component communications.
The set of filters taken as a whole system constitutes a distributed monitoring
system “equivalent” to the central one.

In Figure 9 we show the basic components of the DESERT tool that allow the
generation of the monitoring system implementation. A graphical user interface
allows the description of both components interfaces and state machines. These
descriptions are stored in XML format.

The front end is composed of the following components: the local automaton
generator, the parser and the semantic controller. The local automaton generator
component takes in input the XML file and a component name (e.g. C2). It
forwards the XML file to the parser and semantic component that performs all
syntax and semantic checks, respectively. In the case that there are not errors
the local automaton generator generates the XML specification of the C2 local
automaton. We remark that this process can be performed locally on the host
where C2 resides on.

224 P. Inverardi and L. Mostarda

Fig. 9. The DESERT C2 filter generation

The C2 local automaton (in the following denoted with AC2) is part of the
global automaton enriched with transitions labeled with synchronization mes-
sages (see Figure 10) that in the following will be referred to as dependencies
messages. These transitions are applied by the filter C2 to send (receive) informa-
tion to (from) other filters. Dependencies allow the simulation of the centralized
monitoring system. In [12,13] we show all formal proofs, we discuss the overhead
introduced by such synchronization messages and we show how it does not con-
stitute a problem since they are small in size (i.e., they are integer). Moreover,
in [13] we also point out that both the time required to exchange the synchro-
nization messages and their parsing can slow the application response time (i.e,
the DESERT tool enhance security and dependability issues at the expense of
the system response time).

The C2 local automaton specification is platform independent and may be
translated into different filter implementations. For instance for distributed ap-
plications where the components communicate by using the CORBA middle-
ware we have implemented a CORBA back-end. This back-end automatically
produces a new CORBA component (the filter) that is interposed between the
component communications and the environment. The filter exposes all services
that the component requires and provides to the environment (see Figure 10).
The entire process of filter generation is polynomial on the global automaton
size. We point out that the filters work at the middleware level therefore we do
not require components source code.

In the following we sketch the local automata generation and we discuss the
filters actions. For the sake of presentation we introduce some notation. We use
the notation q′ = δ(q, p) to denote a global automaton rule that exits from
the state q, enters in q′ and is labeled with the invocation p. We denote with
q′ = δC(q, p) the same rule projected on the AC local automaton. We denote
with k(q, q′)(p) an integer that uniquely identifies the global automaton rule q′ =
δ(q, p). We use P (q, q′)(p) (C(q, q′)(p)) to denote the predicate (code) related to
the rule q′ = δ(q, p).

A Distributed Monitoring System for Enhancing Security and Dependability 225

Fig. 10. The behavior of the run-time filters

Local automata are generated by performing two phases: local automata gen-
eration and dependencies generation.

In the local automata generation phase each rule of the global automaton is
projected on a local automaton. Suppose that the global automaton defines the
rule q′ = δ(q, p) and p is an invocation locally observed on the component C.
Then this phase adds the rule q′ = δ(q, p), the predicate P (q, q′)(p) and the code
C(q, q′)(p) to the AC local automaton. In other words, looking at the global
automaton, interactions that happen locally on a component C are projected
on AC . For instance in Figure 10 we show the AC2 local automaton related
to our case study. It is worth noticing that it contains only rules labeled with
invocations locally observed on the component C2.

The local automata obtained after this phase are not sufficient to realize the
correct monitoring. A local automaton AC can be constituted by disconnected
sub-automata. The filter FC cannot be able to choose the right sub-automaton.
Moreover, given a sub-automaton it cannot establish the next one. Our solution
is to enrich local automaton with dependencies information and to link the sub-
automata with ε-moves.

A dependency can be of the form !k(q1, q2)(p1) FC {FC1, . . . , FCn} and
?k(q3, q4)(p3) FCi FCj. The former (outgoing dependency) is always related
to the AC rule q2 = δC(q1, p1) and is used by the filter FC to inform the
filters FC1, . . . , FCn that it has applied such local rule. The latter (incoming
dependency) is used by the filter FCj to receive the integer k(q3, q4)(p3) sent
by the filter FCi.

The dependencies generation phase is used to add transitions labeled with
dependencies to the local automata. In the following we sketch the different
sub-phases that compose the dependency generation.

In the first sub-phase the dependencies generation considers each state q of
the global automaton that is exited by transitions projected on different local au-
tomata. Suppose that q is exited by the transitions qi = δ(q, pi), with 1 ≤ i ≤ n,
that are projected on the n different local automata ACi. In this case the depen-
dencies generation phase considers each automata ACi and relates the outgoing

226 P. Inverardi and L. Mostarda

dependency !k(q, qi)(pi) FCi {FC1, . . . FCn} to its rule qi = δCi(q, pi), with
q �= qi. Moreover, the phase considers each filter FCj, with j �= i, and adds
to ACj the rule qi = δCj(q, ?k(q, qi)(pi) FCi FCj). Suppose that the local au-
tomata of the filters FC1, . . . FCn are in state q and the filter FCi applies the ACi

rule qi = δCi(q, pi). In this case FCi has to parse the outgoing dependency related
to this rule, i.e.,it sends the integer k(q, qi)(pi) to the filters FC1, . . . FCn. Each
filter FCj , with j �= i, can accept the integer by applying the transition labeled
with the related incoming dependency (i.e., qi = δCj(q, ?k(q, qi)(pi) FCi FCj)).
In other words, dependencies ensure that filters synchronize with each other so
that exactly one q-exiting transition, labeled with an invocation, is accepted.
This validates the constraint imposed by the global automaton. In the case that
different filters, at the same time, want to apply a q-exiting rule a leader elec-
tion can be performed to elect the one that will apply its local rule. We point
out that synchronization among filters is required only when the states of the
applied rules are different.

In the second sub-phase the dependencies generation considers each rule q′ =
δ(q, p), with q �= q′, projected on a filter FC and all filters FC1, . . . FCn where
a q′-exiting rule has been projected. The phase relates to the rule q′ = δ(q, p)
the dependency !k(q, q′)(p) FC {FC1, . . . FCn} and for each local automaton of
the filter FCi, with 1 ≤ i ≤ n, defines the rule q′ = δCi(q, ?k(q, q′)(p) FC FCi).
Each filter FCi applies this dependency when FC has applied the rule q′ = δ(q, p)
and parsed the related dependency !k(q, q′)(p) FC {FC1, . . . FCn}. In this way
the filters FC1, . . . FCn synchronize to the state q′ and the ordering imposed
by the global automaton is respected, i.e., q′-exiting rules can be applied only
after the q-exiting rule is applied.

Finally, ε-moves can be added to each local automaton in order to correctly
link eventually disconnected states.

The FC -filter activities are similar to the ones of the logically centralized
monitoring system. It checks that both C local invocations and incoming depen-
dencies verify the policy defined by the local automaton. It has a buffer where it
can store all C-local invocations and all incoming dependencies. Moreover, it can
undertake all reactions policies defined by the logically centralized monitoring
system. In the following we sketch the FC filter activities by assuming that its
AC local automaton is in state q.

Suppose that the filter FC picks the invocation !servicName(parameters)
C S from its buffer, such invocation labels a q-exiting transition and verifies

the related predicate. Then FC updates the AC state, forwards the invocation
to the filter FS and parses the dependencies (if any) related to such rule (send
invocation acceptance).

Suppose that the filter FC picks the invocation ?servicName(parameters)
S C up from its buffer, such invocation labels a q-exiting transition and verifies

the related predicate. Then FC updates the AC state, forwards the invocation
seviceName to component S and parses the dependencies (if any) related to
such rule (receive invocation acceptance). We point out that when the service is

A Distributed Monitoring System for Enhancing Security and Dependability 227

synchronous the filter waits for the service answer and puts it back in its local
buffer.

The filter forwards without any check, invocations that are not defined inside
the global automaton alphabet (forwarding action). It puts back in the buffer,
invocations that cannot be accepted in the current state q, but can be accepted
in a state reachable from q (buffering action). It accepts each incoming depen-
dency that labels a transition exiting from the current automaton state(incoming
dependency acceptance). Finally, FC locally detects the anomalous interactions
when: (i) the invocation cannot be accepted in the current automaton state (e.g.
q) and in any state reachable from q; (ii) the invocation was buffered and not
consumed after a finite amount of time; (iii) the invocation is related to services
not present in the interfaces definitions; (iv) an incoming dependency cannot be
accepted (anomaly detection action).

Fig. 11. The local automata

In Figure 11 we show part of the local automata related to our case study
where we denote with eps an ε move. When the distributed monitoring sys-
tem starts, all local automata are in state 0. Filter FC3 and FC4 synchronize
so that exactly one of them performs its local invocation. Suppose that FC4
gains the right. Under this assumption FC4: (i) sends the integer 0 to the fil-
ters FC3 and FC2; (ii) sends the message acquireC2Resource() to the filter
FC2; (iii) changes the local automaton state to 1. Both filters FC2 and FC3
receive the dependency 0 and move to the state 1. We remark that any FC3
invocation has to be buffered so that mutual exclusion is ensured. We can ob-
serve that the service !setData(data) C2 C1 can be provided after the chain
of invocations !acquireC2Resource() C4 C2, ?acquireC2Resource() C4 C2,
!acquireC2Resource C2 C4, !sync(), ?sync() is performed.

228 P. Inverardi and L. Mostarda

We remark that the local automata generation and the filters generation is
hidden to the user by the DESERT tool. The user has to describe the centralized
specification (i.e., system model and global automaton) and apply the DESERT
tool in order to generate the filters system. As it is shown in [13,12] the filters
simulate the logically centralized monitoring system. Filters realize a peer-to-
peer minitoring that enhances security and fault tolerance w.r.t. the centralized
implementation. This is consequence of the fact that a distributed implementa-
tion has not a single point of vulnerability. Moreover, when a filter fails unrelated
filters can continue their activities.

7 The Case Studies

In this section we show different case studies where we have applied the DESERT
tool. These case studies are related to different applications that run on both
mobile and wired infrastructures.

In the following we sketch how DESERT can be applied to enhance the secu-
rity in a component based application.

Component based software development (CBSD) aims to build a system from
existing components. In contrast to traditional development, where system inte-
gration is often a marginal aspect, component integration is the centrepiece of
CBSD. Developers have to face problems of components adaptation and ensure
an acceptable security and dependability level. It is a widely accepted fact that
components integration problems cannot be always addressed at development
time. Components can be poorly documented so that the integration developers
can make mistakes in the integration process. Components can contain bugs or
malicious code, therefore security flaws are introduced. Components can be em-
ployed not exactly in the contexts for which they are intended, therefore, faults
are introduced at the integration level. A component may have more function-
alities than the developers know about and so he/she cannot understand the
implications of introducing the component inside the system (see [3,9] for an
extended survey).

Unsolved integration problems often result in the possibility of anomalous
components interactions5. The DESERT tool can be used to generate monitoring
systems providing a further layer that enhances the security of the integration
code.

For instance in the case study presented in this paper we have monitored
the components to ensure the consistency of water flow data. In this case study
components are written in java so that tools to obtain the source code can be

5 Notice that very often it is not possible to establish the nature of the component
anomalous interactions. As it is described in [10] an external observer cannot dis-
tinguish when a component is interacting in anomalous way as a consequence of
malicious intents or internal fault. However, from our point of view we can deal with
such violations with different reaction policies. In particular, when the security is
a crucial aspect we can isolate anomalous components. In the case that the fault
tolerance must be enhanced we can recover such components.

A Distributed Monitoring System for Enhancing Security and Dependability 229

used. This permits to analyze the components logic and produce rogue imple-
mentations that exploits bugs and overcomes the static security measures. In
the simulation phase rogue clients were produced in order to: (i) exploit the
components vulnerabilities; (ii) perform unauthorized access; and (iii) simulate
race conditions. Furthermore, malicious clients were used to obtain fake water
flow data. Local filters were able to discover such anomalous behavior (see [13]
for details), apply the DESERT shunning reaction (see Section 5 for details),
isolate the attackers and alert the system manager.

In [2] we have used DESERT to automatically assemble a set of components.
In this context, one of the main goals is to compose and eventually adapt loosely
coupled independent components to make up a system [22,23]. Building a dis-
tributed system from reusable or COTS components introduces a set of prob-
lems, mainly related to compatibility and communication. Often, components
may have incompatible or undesired interactions. One widely used technique to
deal with these problems is to use adaptors. They are additional components
interposed between the components forming the system that is being assembled.
The intent of the adaptors is to moderate the communication of the compo-
nents in a way that the system complies only to a specific behavior. In [2] we
use the SYNTHESIS tool to produce a global automaton specification (i.e. a
centralized adaptor) that forces the system to exhibit only a set of safe or de-
sired behaviors. For example, the adaptor forces the system to exhibit only the
subset of deadlock-free and/or explicitly specified wanted behaviors. Such spec-
ification is automatically distributed and implemented by the DESERT tool by
using the retry policy. In this case the monitoring system acts like an enforce-
ment mechanism that ensures the policy described by the global automaton.
The retry policy is used to enhance the system fault tolerance since it allows the
anomalous components to continue their execution.

In [1] we have used DESERT to provide intrusion detection facilities in the
the CoP protocol [24]6. CoP is a protocol used for routing on mobile wireless
sensor networks (WSNs).

In the following we summarize attacks that can be undertaken in wireless
sensor networks (see [25] for an extended survey).

1. Compromised Node: Due to an external intervention, a sensor may be com-
promised and can be used to subvert the correct WSN behavior.

2. False Node: Additional fake nodes could be thrown in the sensed area
sending false data or blocking the passage of true data.

3. Node Malfunction or Outage: A node in a WSN may malfunction and gener-
ate inaccurate or false data or it could just stop functioning hence compromising
used paths.

4. Message Corruption: Attacks against the integrity of a message occur when
an intruder inserts itself between the source and the destination and modifies
the contents of a message.

6 The research was partially funded by the European project COST Action 293,
“Graphs and Algorithms in Communication Networks” (GRAAL). Preliminary re-
sults contained in this paper appeared in the [1].

230 P. Inverardi and L. Mostarda

5. Denial of Service: A denial of service attack may take several forms. It may
consist in jamming the radio link or it could exhaust resources or misroute data.

Generally speaking, state machines can be used to face the above attacks
(see [8,12,4] for details). For instance, messages corruption can be avoided by
means of the predicates that define the correct message format. Denial of service
can be detected by bounding the number of messages in each automaton path.
Moreover, the automaton paths permit to describe the correct ordering among
invocations. In the following we show how the DESERT tool has been used to
address some of the above attacks by means of the CoP protocol [24]. To this
extent we have enhanced the DESERT definition language with invocations that
can contain the component type names. Suppose that C and S are two different
types of components and their interfaces are defined by using the DESERT
notation (see 3 for details). The invocation !serviceName (X1, . . . , Xn) C S
defines that one of the possible instances of the component C is sending the
serviceName asynchronous invocation to the component instances of the type S.
The invocation ?serviceName (X1, . . . , Xn) C S defines that a set of instances
of the component S can receive the asynchronous invocation of the serviceName
service.

In the field of location-awareness and clustering protocols like CoP, we model
a mobile WSN by a set of sensors AH = {s1, s2, . . . , sk}. Let L ⊆ AH be
a subset {l1, l2, . . . , lm} of sensors identifying the clusterhead of a given pro-
tocol P . In other words, the sensors in L characterize a set of areas Ar =
{Ar1, Ar2, . . . , Arm} (clusters) where each area Ari represents the portion of
the sensed area where the corresponding li plays the clusterhead role. There can
be different roles according to P , let R = {C1, C2, . . . , Cn} be the set of roles.
Each Ci has associated an interface that characterizes all messages sent/received
by sensors playing that role. It is worth noticing that in this case role is used as
synonymous of component type.

In Figure 12 we show the four types of roles that each sensor can play and the
corresponding interfaces according to the described CoP protocol. Considering
an area denoted with AV GN we define the Out-range, the In-range and the
Clusterhead roles that are played by sensors residing in it, and the Extern role
representing the sensor playing the clusterhead role inside an adjacent AV GN

area.
The role Out-range models a sensor s located in a position that is inside the

AV GN but at a distance greater than ds (ds is a natural number) from the AV GN

center. This role defines an interface composed by the ?pos(double x, double
y).void and !send(double x, double y, int dest, char [] msg).void asynchronous
services. ?pos(double x, double y).void specifies that the sensor s can receive the
incoming message pos(double x, double y) used to set up its initial position. The
parameters double x and double y are suitably instantiated with the coordinates
of s. !send(double x, double y, int dest, char [] msg).void specifies that s can send
the message msg towards the sink dest. The parameters x and y are instantiated
with the current position of s and dest is an integer that denotes a sink.

A Distributed Monitoring System for Enhancing Security and Dependability 231

Fig. 12. The CoP roles

Fig. 13. Global Automaton

232 P. Inverardi and L. Mostarda

The role In-range models a sensor s located in a position inside an AV GN

and at distance at most ds from the corresponding center. This role adds to
the Out-range role the following services: !leader(double x, double y).void, ?no−
leader().void and ?leader(double x, double y).void. The service !leader(double
x, double y).void specifies that the sensor s can send the message leader(double
x, double y) in order to become clusterhead. The parameters double x and double
y are suitably instantiated with the coordinates of s. ?no − leader().void is
implemented by s in order to accept the notification sent by the clusterhead
when it leaves its role. ?leader(double x, double y).void is used by s to receive
the notification of a sensor s′ that requires to be clusterhead. The parameters
double x and double y are suitably instantiated with the coordinates of s′.

The role Clusterhead is played by a sensor s providing the forward of messages
towards the right sink. This role defines the following services: !no−leader().void,
?forward(double x, double y, int dest, char [] msg).void, !forward(double
x, double y, int dest, char [] msg).void and ?send(double x, double y, int dest,
char [] msg).void. The !no− leader().void service specifies that the sensor s can
send the asynchronous message no − leader() to the environment. This message
is sent by s in order to leave its clusterhead role due to its movement or to
its draining battery. ?forward(double x, double y, int dest, char [] msg).void
implements the service used by s in order to receive the message msg. This
message is forwarded by a clusterhead s′ that resides in an area surrounding the
one of s. The parameters x and y denotes the position of the clusterhead s′ and
dest encodes the sink. The service !forward(double x, double y, int dest, char []
msg).void is used by s in order to forward the message msg towards the sink
dest. The parameters x and y denotes the position of s. The service ?send(double
x, doubley, int dest, char [] msg).void is used by s in order to receive a message
msg sent by a sensor s′ residing inside the AV GN . The parameters x and y
denotes the position of s′ and dest is an integer that denotes a sink.

The role Extern models one of the clusterheads surrounding the current
AV GN .

All roles have associated the real numbers x and y used to store the current
position of the sensor and the string role that encodes the current role played
by the sensor.

Starting from the description of the CoP protocol we now point out some
basic properties that should be guaranteed in order to obtain a fair behavior of
the protocol.

1. For each area AV GN there must be at most one sensor playing as cluster-
head.

2. When a finite amount of data has been collected by a clusterhead, it must
be forwarded in the correct direction.

3. A clusterhead that changes its status to normal sensor due to a movement
or because of the draining battery has to forward all the collected messages
before its movement.

4. All messages forwarded by a clusterhead have to be received by the clus-
terhead of the adjacent VGN area.

A Distributed Monitoring System for Enhancing Security and Dependability 233

5. When a clusterhead leaves its role a new sensor (if any in the area) has to
take its role.

We formalize these properties by defining a state machine that will be given
in input to our tool in order to produce the distributed “patch” for the sensors
participating in the CoP protocol.

Figure 13 shows the Global Automaton related to the sensors based system
of Figure 12. This automaton defines the correct sequences of messages inside
each AV GN . At the beginning (state q0) all the sensors are informed about their
positions7. According to their position, each sensor sets its local variable role.
The In-Range sensors candidate themselves to become leader. Once the Clus-
terHead has been elected, the system moves to state q1 and the real interaction
can start. This transition, in practice, realizes property 1. Property 2 is realized
by the path q1, q2, q3. In this example we fixed the ”finite amount of data” by
means of a maximum of three collected messages after which the clusterhead
necessarily forwards them. Property 3 is realized by means of transition q1, q5,
in fact, if the system state is q1 there are no messages stored in the clusterhead.
When data is forwarded, it is received by the Extern role, i.e., some clusterhead
of another AV GN on the way to the specified sink.8 And this realizes property 4.
Finally, property 5 is valid by means of transition q1, q5. From q5, in fact, a new
ClusterHead must be elected before any other communication can occur.9 Note
that, when a ClusterHead receives a forward (transition q1, q6), it necessarily
has to forward it (transition q5, q1).

Concerning the predicates, check1(msg) is used to verify the correct format
of the message msg forwarded by the ClusterHead. This predicate permits to
check that msg is not a buffer overflow attack. The check2(msg) is similar to
the above one, however it adds a test verifying that msg is equivalent to the
compression of the two messages previously received by the ClusterHead. The
predicate check(x, y) verifies that the leader is at distance at most ds from the
AV GN center.

We have used the DESERT tool to automatically generate a filter for each
sensor. Each filter is constituted by a few lines of code installed in the sensors.
This realizes a distributed system that locally detects violation of the sensors
interactions policies and is able to minimize the information sent among sensors
in order to discover attacks across the network.

7 It is worth notice that the position is informed by means of the invocation pos that
exits from the state 0. In particular this invocation is performed by a component
not modeled inside the system (i.e., the satellite component) therefore we use the
symbol ’*’ in the sender field.

8 Note that, in our example, while a clusterhead is collecting messages (i.e., the system
is either in q2 or q3 or q4), it is not allowed to receive a forward. This, in fact, can
happen only at q1. In order to not waste messages, this means that, according to the
scheduling at the MAC layer, there is some time that is a priori set up. During such
a time a clusterhead can wait for other messages without incurring in any forward.

9 Again, in order to not waste forward messages we may think of a buffer for the
In-Range roles in which a forward is temporarily stored till a new ClusterHead is
elected.

234 P. Inverardi and L. Mostarda

In [1] we show how our method affects the performance of the CoP protocol.
The experiments are performed running the powered protocol over hundreds of
random instances of mobile WSNs. We show the overhead in terms of consumed
energy and in terms of performed instructions by the filtered sensors. The ex-
periments also show the estimated percentage reduction of the network lifetime
respect to the original CoP protocol.

Fig. 14. Average of the residual compu-
tational power depending on messages ex-
changed inside an AV GN

Fig. 15. Average of the residual energy
depending on messages exchanged inside
an AV GN

In Figure 14 we show the lifetime of the system inside an AV GN . Considering
each kind of message of the sensors as a different set of instructions, we show
the overhead in terms of percentage of computational power loss. The cost of
ensuring the normal protocol behavior in terms of number of instructions is in-
creased, on average, around 24%. Notice that transmission/receptions operations
are much more expensive than local computations. According to the consump-
tion values expressed in [26,24], transmitter and receiver electronics consume an
equal amount of energy per bit, namely 5nJ/bit. While the energy to support
the signal above some acceptable threshold against power attenuation caused by
the distance is just 100pJ/bit/m2.

In Figure 15 we show that, on average, the percentage of the draining of the
sensors batteries inside an AV GN is increased by around 20%.

Concerning the detection of attacks we detect any behavior that violates the
property expressed by the global automaton. We use the DESERT shunning pol-
icy in order to isolate the attacker. In particular each malicious node is isolated
by its filter and by the filters of all surrounding nodes10.

8 Conclusions and Future Works

In this work we presented the DESERT tool that allows the automatic generation
of distributed monitoring systems for enhancing security and dependability at
architectural level.
10 When the filter of a sensor is compromised other surrounding filters detect and

discard the anomalous invocation. Moreover, they observe with each other in order
to send exactly one alert towards the sink.

A Distributed Monitoring System for Enhancing Security and Dependability 235

An architectural level definition language permits to specify both the system
model and the correct system behavior. The system model is provided by means
of an interface description language. The correct system behavior is provided by
means of state machines. These ’centralized’ specifications are used by the front-
end and the back-end of the DESERT tool in order to generate a distributed
monitoring system implementation. The monitoring system is constituted by one
filter for each component that locally detects violation of the global specification.

DESERT has been used for applications running on both mobile and wired
infrastructures.

In future work we are developing more complex detection and recovery mech-
anism. It can happen that the retry reaction policy causes a condition in which
the same component retry several times as a consequence of the same condition
error. Moreover, very often the component generating the anomalous behavior
does not always correspond to the source that triggered the error11. In both
cases we exploit the integration level view provided by the global automaton.
We analyze the state reached in the global computation so that we can identify
the sources of errors and we can recover several distributed components.

References

1. Inverardi, P., Mostarda, L., Navarra, A.: Distributed IDSs for enhancing security
in mobile wireless sensor networks. In: IEEE International Workshop on Perva-
sive Computing and Ad Hoc Communications (IEEE PCAC’06), IEEE Computer
Society Press, Los Alamitos (2006)

2. Inverardi, P., Mostarda, L., Tivoli, M., Autili, M.: Automatic synthesis of distrib-
uted adaptors for component-based system. In: Proceedings of the 21st Automated
Software Engineering (ASE) Conference (2005)

3. Lindqvist, U., Jonsson, E.: A map of security risks associated with using cots.
Computer 31, 60–66 (1998)

4. Orset, J.M., Alcalde, B., Cavalli, A.: An EFSM-based intrusion detection system for
ad hoc networks. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707,
Springer, Heidelberg (2005)

5. Ko, C., Ruschitza, M., Levitt, K.: Execution monitoring of security-critical pro-
grams in distribute system: A specification-based approach. IEEE (1997)

6. White, G.B., Fisch, E.A., Pooch, U.W.: Cooperating security managers: A peer-
based intrusion detectionn system. IEEE Network (1996)

7. Stillerman, M., Marceau, C., Stillman, M.: Intrusion detection for distributed ap-
plications. Communications of the ACM (1999)

8. Eckmann, S.T., Vigna, G., Kemmer, R.A.: Statl: An attack language for state-
based intrusion detection. Journal of Computer Security 10, 71–104 (2002)

9. de Lemos, R., Gacek, C., Romanovsky, A.: Architectural Mismatch Tolerance. In:
Architecting Dependable Systems. LNCS, vol. 2677, pp. 175–196. Springer, Hei-
delberg (2003)

10. Avizienis, A., Laprie, J., Randell, B., Landwehr, C.: Basic Concepts and Taxonomy
of Dependable and Secure Computing. IEEE Transaction on Dependableand Secure
Computing 1, 11–33 (2004)

11 In this case a severe reaction policy would terminate several components.

236 P. Inverardi and L. Mostarda

11. Delgado, N., Gates, A.Q., Roach, S.: A Taxonomy and Catalog of Runtime
Software-Fault Monitoring Tools. IEEE Transactions on Software Engineering 30,
859–871 (2004)

12. Inverardi, P., Mostarda, L.: A distributed intrusion detection approach for secure
software architecture. In: Morrison, R., Oquendo, F. (eds.) EWSA 2005. LNCS,
vol. 3527, pp. 168–184. Springer, Heidelberg (2005)

13. Mostarda, L.: Distributed detection systems for secure software architectures,
Ph.D, Thesis in computer Science, University of L’Aquila (2006)

14. Porras, P.A., Neumann, G.P.: Event monitoring enabling responses to anomolous
live disturbances. Proc. of 20th NIS Security Conference (1997)

15. Snapp, S.R., Dias, J.B.G.V., Goan, T., Heberlein, L.T., Ho, C., Levitt, K.N.,
Mukherjee, B., Smaha, S.E., Grance, T., Teal, D.M., Mansur, D.: Dids (distrib-
uted intrusion detection system) - motivation architecture and early prototype. In:
Proc. 14th National Security Conference vol. 1, pp. 361–370 (1997)

16. Vigna, G., Kemmerer, R.A.: Netstat: a network-based intrusion detection system.
Journal Computer Security 7, 37–71 (1999)

17. Javitz, H.S., Valdes, A.: The nides statistical component description and justifica-
tion. Technical report - Columbia University (1994)

18. Vaccaro, H., Liepins, G.: Detection of anomalous computer session activity. In:
Proc. of the 1989 Synopsium on Security and privacy, pp. 280–289 (1989)

19. Sen, K., Vardhan, A., Agha, G., Rosu, G.: Effecient decentralized monitoring of
safety in distributed system. In: ICSE (2004)

20. Schneider, F.B.: Enforceable security policies. ACM Trans. on Information and
System Security 3, 30–50 (2000)

21. European Commision 6th Framework Program - 2nd Call Galileo Joint Undertak-
ing: Cultural Heritage Space Identification System (CUSPIS),
http://www.cuspisproject.info

22. Crnkovic, I., Larsson, M.: Building reliable component-based Software Systems.
Artech House, Boston, London (2002)

23. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, Reading (2004)

24. McCann, J.A., Navarra, A., Papadopoulos, A.A.: Connectionless Probabilistic
(CoP) routing: an efficient protocol for Mobile Wireless Ad-Hoc Sensor Networks.
In: IPCCC (2005)

25. Perrig, A., Stankovic, J., Wagner, D.: Security in wireless sensor networks. Com-
mun. ACM 47, 53–57 (2004)

26. Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: Energy-Efficient Communi-
cation Protocols for Wireless Microsensor Networks. In: Proc. of the Hawaiian Int.
Conf. on Systems Science (2000)

http://www.cuspisproject.info

R. de Lemos et al. (Eds.): Architecting Dependable Systems IV, LNCS 4615, pp. 237–261, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Architecting Dynamic Reconfiguration in
Dependable Systems

Antônio Tadeu A. Gomes1, Thais V. Batista2, Ackbar Joolia3, and Geoff Coulson3

1 Laboratório Nacional de Computação Científica (LNCC)
Av. Getúlio Vargas 333, 25651-075 Petrópolis-RJ, Brazil
2 Universidade Federal do Rio Grande do Norte (UFRN)

Departamento de Informática
Campus Universitário – Lagoa Nova, 59072-970 Natal-RN, Brazil

3 Computing Dept, Infolab21, Lancaster University
Lancaster LA1 4WA, UK

atagomes@lncc.br, thais@ufrnet.br, joolia@comp.lancs.ac.uk,
geoff@comp.lancs.ac.uk

Abstract. The need for dynamic reconfiguration is a complicating factor in the
design of dependable systems, as it demands from software architects both
rigour and planning. Although recent research has shown that systematic and
integrated “specification-to-deployment” environments are promising
approaches to architecting dependable systems, few proposals have yet
considered dynamic reconfiguration, and then only in specific situations. In this
paper, we propose a generic approach to supporting dynamic reconfiguration in
dependable systems. The proposed approach is built on our view that dynamic
reconfiguration in such systems needs to be causally connected at runtime to a
corresponding high-level software architecture specification. In more detail, we
propose two causally-connected models: an architecture-level model and a
runtime-level model. Dynamic reconfiguration can be applied either through an
architecture specification at the architecture level, or through reconfiguration
primitives at the runtime level. Both foreseen and unforeseen reconfigurations
are supported. We discuss the issues involved in handling these two types of
reconfiguration at both levels and the mapping between them. We also discuss
an implementation of our approach that evaluates its main benefits.

Keywords: dependable systems, dynamic reconfiguration, specification-to-
deployment environments.

1 Introduction

Computer systems are an integral part of everyday life. Therefore, dependability—
along with its various dimensions (availability, reliability, safety, integrity,
maintainability, and security)—has become a key issue in the design of such systems.
Until recently, the concerns associated with dependability have been mostly on
system design and implementation, and less attention has been paid to the need for the

238 A.T.A. Gomes et al.

dynamic reconfiguration of dependable systems. However, this is set to change. For
example, network systems design and autonomic computing are two application areas
in which dependability and dynamic reconfiguration must be taken into account
together. Modern network systems, such as access and backbone routers, have strong
requirements for both 24x7 operation and managed software evolution (e.g. to allow
network operators to dynamically deploy new QoS/ resource management and
security strategies) [11]. And in autonomic systems such as self-organized sensor
networks [2], minimising the degree of human-manned reconfiguration is the central
tenet.

The need for dynamic reconfiguration is a complicating factor in building
dependable systems (irrespective of the reasons why dynamic reconfiguration is
necessary), as it demands from software architects both appropriate rigour and
planning for adaptability. Recent research has shown that systematic and integrated
“specification-to-deployment” environments are promising approaches to architecting
dependable systems; but few proposals have yet considered dynamic reconfiguration,
and then only in particular application areas such as embedded systems [36], or have
focused on specific aspects such as adaptive fault recovery [15]. More specifically,
previous work in this area has not yet considered a more comprehensive integration
(and possible extension) of classical software architecture concepts, such as
architectural styles [13] (we discuss the concepts of software architecture and
architectural style in Section 2.2 below), and the most recent developments in
reconfigurable runtime technologies, such as the adoption of reflective or aspect-
oriented programming techniques [23,24].

In this paper, we propose just such a generic approach to architecting dynamic
reconfiguration in dependable systems. The proposed approach is built on our view
that dynamic reconfiguration needs to be causally connected at runtime to a
corresponding high-level architecture specification. In more detail, we propose two
causally-connected models, as depicted in Fig. 1: a runtime-level model and an

Architecture-Level Model

reconfiguration
notifications

configuration
management

style
enforcement

Runtime-Level Model

transaction
control

reconfiguration
API

en
ac

tm
en

to
f

sp
ec

if
ic

at
io

ns

architecture
specifications

calls to
reconfiguration

primtives

re
co

nf
ig

ur
at

io
n

co
m

m
it

/ r
ol

lb
ac

k

Fig. 1. The architecture- and runtime-level models

 Architecting Dynamic Reconfiguration in Dependable Systems 239

architecture-level model (Fig. 1 also depicts some of the services—e.g. the
configuration management service—that we discuss later in the paper). Dynamic
reconfiguration can be applied either through reconfiguration primitives at the
runtime level or through architecture specifications at the architecture level—using,
for instance, general-purpose architecture description languages (ADLs) or domain-
specific languages (DSLs). Moreover, we argue that both foreseen and unforeseen
reconfigurations should be supported.

Our previous publications [3,20] have focused on the design and implementation of
our approach using two mature technologies—the OpenCOM reflective component
runtime [10] and the Acme ADL [14]. By providing a less technology-grounded
overview of our approach, we aim in this paper at thinking forward about the more
stringent requirements for dynamic reconfiguration in dependable systems. The
remainder of the paper is structured as follows. The key elements of our approach to
dynamic reconfiguration in dependable systems at the runtime and architecture levels
(and causality relationships between them) are presented in Section 2. The issue of
handling foreseen and unforeseen reconfigurations at both levels is then discussed in
Section 3. Sections 4 and 5 summarise our implementation efforts to date, including a
detailed case study, and is therefore an up-to-date account of our previous work
[3,20]. Section 6 is devoted to a discussion of related work, and Section 7 provides
concluding remarks.

2 Dynamic Reconfiguration at the Runtime and Architecture
Levels

The essential elements of our approach are summarised in the the following list (see
also Fig. 1) and discussed in detail in the following two sub-sections:

• reconfiguration primitives – used to initiate reconfiguration requests at the
runtime level;

• reconfiguration notification service – used to support causal connection
between the runtime and architecture levels by enabling the former to notify
the latter of any changes arising from calls to the reconfiguration primitives;

• reconfiguration transaction service – used to atomically group sequences of
calls to the reconfiguration primitives and also to enable rollback in aborted
reconfigurations;

• mapping from architecture-level concepts to runtime-level concepts – used to
formalise the correspondences between the two levels;

• configuration management service – used to map architecture level
reconfiguration specifications onto sequences of calls to the reconfiguration
primitives;

• style enforcement service – used to embody and enforce rules and constraints
on reconfigurations specified at the architecture level.

240 A.T.A. Gomes et al.

2.1 Runtime Level

A runtime defines a deployment and execution environment for software systems.
Runtime-level models are becoming quite sophisticated in their capabilities for
dynamic reconfiguration, providing (among other services) primitives that allow
inspecting and adapting the structure of a system (i.e. its configuration) and its
behaviour. Examples of such primitives—referred to as reconfiguration primitives
in this paper—include addition, removal, and replacement of software elements,
(dis)connection between such elements, (dis)closure of element interfaces, etc. Such
reconfiguration primitives can be used to introduce dependable functionality in the
system.

To motivate the functionality that should be provided at the runtime level, consider
a dependable web-based client-server application. In a very simple configuration, two
servers (primary and secondary) are involved. If the primary server is no longer
available, the client is automatically switched to the secondary server. For this
runtime-level reconfiguration to be causally connected with the architecture level, the
runtime should provide a reconfiguration notification service to inform the
architecture level about the calls to the reconfiguration primitives that are involved in
the client switching.

The runtime should also be able to manage complex reconfiguration operations,
such as the client switching reconfiguration in the aforementioned example. This
specific reconfiguration operation involves two related calls to reconfiguration
primitives: a disconnection from the primary server, followed by a connection to the
secondary one. For such cases we argue that the runtime-level model should provide a
reconfiguration transaction service, whose aim is twofold: (i) to provide the
architecture level with a view of multiple calls to reconfiguration primitives as
generating a single reconfiguration notification (an example of this is provided in
Section 2.2); and (ii) to keep track of the calls to the reconfiguration primitives
involved in a reconfiguration operation so that a rollback can be done if such
operation is invalidated at the architecture level. This service is therefore essential for
a proper dependability support as it prevents the system to be in an invalid state both
at architectural and runtime levels.

Finally, a runtime must preserve the safety and integrity of a dependable system
even within single calls to reconfiguration primitives, especially where multithreading
is employed. To understand this, consider again the client switching reconfiguration.
In this situation, we need to suspend all threads issuing new requests from the client
to the primary server, and wait for the completion of the currently outstanding
requests before actually disconnecting these elements.

2.2 Architecture Level

Software architecture modelling plays an important role in the development of
dependable software. An architecture specification uses high-level representations
such as ADLs or DSLs to embody information about a system’s configuration while
abstracting away details about the internal implementation of its elements. Such a
specification allows the software architect to reason about structural properties early
in the development process, fostering dependable and extensible designs. Typically,

 Architecting Dynamic Reconfiguration in Dependable Systems 241

an architecture specification also describes some principles governing the system’s
design and evolution. In our view, architectural specifications and styles must also
consider and enforce dependability requirements. Architectural styles [13] are the
most common way to describe such principles in software architecture modelling.
These are defined in terms of formally-described software element types, as well as
rules that govern the composition of such elements. For instance, a pipeline style
might comprise a basic set of pipe and filter element types and rules that permit only
non-circular compositions of such elements in a configuration. A configuration
following a specific style can thus be seen as an instance of such style at the runtime
level.

In our view, three main issues should be addressed at the architecture level to
allow its causal connection with the runtime level.

First, there must be a precise (complete) mapping from architecture-level
concepts to runtime-level concepts. Surprisingly, this is a largely overseen
requirement in the literature [1].

Second, the architecture level should be able to handle architecture specifications
not only during system deployment (i.e. an initial configuration that is set up from
‘scratch’ based on a complete specification) but also over a currently running system
(in which case the current specification will typically be a delta from the original
configuration). Getting back to our example of a dependable web based client-server
application, imagine that the primary-backup configuration can no longer cope with
the load from the clients. The system architect then decides to replace the primary
server with a more sophisticated implementation that is able to detect an imminent
overload and redirect new client calls to the secondary server. This is a typical
situation in which the system architect might enact a “partial” specification. We argue
that, in such cases, the system architect could be provided with a configuration
management service that would map (either full or partial) architecture
specifications onto reconfiguration primitives to be effected at the runtime level.
Moreover, partial specifications should allow for both architectural construction and
destruction (the latter to correctly represent element removals and disconnections at
the runtime level).

Thirdly and finally, architectural styles should be extensively used at the
architecture level as a means of constraining reconfigurations in running systems. For
instance, it would be interesting to associate our dependable web-based application
with a runtime impersonation of the client-server style, which would forbid invalid
reconfigurations such as clients with dangling connections. In this case, the figure of a
style enforcement service comes into play, handling style-specific rules governing
reconfigurations. A style enforcement service would receive reconfiguration
notifications from the runtime level and check whether any of the corresponding calls
to reconfiguration primitives have violated the architectural rules defined in the
corresponding style. Note that the definition of architectural rules depends on the
target functionality domain—e.g. a layered style and a client-server style each have
their specific constraints—and can vary considerably. To avoid specific controller
implementations for each style of interest, a generic style enforcement service should
be devised. This controller would be configurable with regard to the rules it can
enforce. More specifically, validation scripts would be used as runtime

242 A.T.A. Gomes et al.

representations of architectural rules. Such scripts (implemented, for example, as code
in an interpreted language, or as finite state machines) could be loaded to (or unloaded
from) the style enforcement service during runtime. “Running” styles could therefore
be evaluated and refined/ fixed without compromising the availability of the
dependable system—as long, of course, as the running configuration did not violate
the rules of the modified style.

It is important to bear in mind that a call to a reconfiguration primitive at the
runtime level may be part of a complex reconfiguration operation, implementing
some dependable functionality, and therefore it is not sufficient for the style
enforcement service to check each call in isolation. To understand this, consider a
system that follows a pipeline style (i.e. a system in which non-contiguous
configurations and ‘cycle’ connections are disallowed), such as a software-based
router. In a dependable implementation, this router could adapt to new network
conditions by inserting a new element (e.g. a new packet scheduler) in the middle of
the pipeline. This reconfiguration operation could be regarded as valid from the point
of view of the currently defined architectural rules. Nevertheless, inserting such an
element might involve sequences of distinct calls to reconfiguration primitives in the
configuration. For example: (i) the addition of the new element, (ii, iii) disconnections
between the two to-be-neighbour elements, and (iv) new connections between these
two elements and the new one. Any of the first three calls would appear invalid if
treated in isolation. Hence the need for the style enforcement service at the
architecture level interacting with the transaction service at the runtime level. The
way such interaction is accomplished depends, however, on the type of
reconfiguration in question; this issue is discussed in the next section.

3 Handling Foreseen and Unforeseen Reconfigurations

Dynamic reconfiguration can be classified as either programmed or ad-hoc, according
to the moment at which it is specified. Programmed reconfiguration [37] is specified
at design time while ad-hoc reconfiguration is unpredictable at design time but can
occur at runtime. While the former is important for automatic reconfiguration, the
latter is suitable for software maintenance. In this sense, programmed reconfiguration
is related to the concept of self-organizing architectures [16,29].

The example (in Section 2) of a dependable web based client-server application
illustrates a common situation in which both types of reconfiguration can co-exist at
the architecture level. First, consider the simpler configuration involving two servers
with automatic client switching on failure. This situation can be foreseen at design
time, so an important requirement at the architecture level is to provide constructs to
specify such a situation as a programmed reconfiguration. More specifically, to
support such type of reconfiguration the architecture-level model must provide
predicate-action constructs to specify the situations that trigger reconfigurations and
which reconfigurations must take place. Now consider the case of the system architect
replacing the primary server with the more sophisticated implementation that, on
overload, redirects new client requests to the secondary server. This situation has not
been predicted at design time; therefore, it is interesting that ad-hoc reconfiguration—in

 Architecting Dynamic Reconfiguration in Dependable Systems 243

terms of enacting partial specifications—be available at the architecture level as well.
In this case, the style enforcement service is called to analyse the reconfiguration
specified in the partial specification, and if the architectural rules are not violated, the
system representation at the architecture level is updated and the related
reconfiguration operation is executed atomically at the runtime level by the
transaction service. Note that, in this situation, the style enforcement service can make
the transaction service completely aware of the beginning and end of the
reconfiguration operation.

Ad-hoc reconfiguration can be also effected directly at the runtime level. For
instance, dependability requirements identified at runtime can be inserted in the
application using ad-hoc reconfiguration. The notification service described in
Section 2.1 is then crucial to keep the architecture level consistent with the runtime
configuration, and vice-versa.

Architecture-level consistency can be attained through an additional configuration
update service, which would provide causal connection in the runtime-to-architecture
direction by updating the system representation at the architecture level. Although this
can be of interest to provide full causal connection in both directions—e.g. for the
purpose of architecture analysis [1]—we expect that in practice most systems will
employ either architecture or runtime level ad-hoc reconfigurations, but not both
simultaneously. More specifically, we believe that runtime level ad-hoc
reconfiguration is more likely to happen in lower-level system environments—e.g.
those driven primarily by OS events—whereas architecture level ad-hoc
reconfiguration seems more suitable for higher-level functionality. In Section 4 we
discuss an implementation of our approach that provides full causal connection in the
architecture-to-runtime direction only. This mechanism guarantees that dependable
conditions and statements of the architectural level are enforced at the runtime level.

Runtime-level consistency, on the other hand, can be provided through the
combination of the runtime-level transaction service and the architecture-level style
enforcement service, as in the case of architecture level ad-hoc reconfiguration. In
contrast to what happens in the architecture level, however, the style enforcement
service cannot make the transaction service aware of which calls to reconfiguration
primitives start and finish the reconfiguration operation at the runtime level. Ideally,
the transaction service should be also transparent (at least selectively) to someone
calling reconfiguration primitives at this level, thus allowing the seamless adoption of
our approach in legacy systems.

4 The Plastik Architecture

To experiment with our approach, we have been developing an architecture called
Plastik, which extends and causally integrates two existing technologies. The runtime-
level technology is based on the OpenCOM reflective component model [10] and the
associated notions of reflective meta-models and component frameworks. The
architecture-level technology is based on the Acme ADL [14] and the associated

244 A.T.A. Gomes et al.

Armani first-order predicate logic (FOPL) constraint language [26]. Both of these
technologies are presented below, with a particular emphasis on the model extensions
provided by Plastik to underpin the concepts discussed in the previous sections.

4.1 The Runtime-Level

We have chosen OpenCOM as the basis of Plastik’s runtime-level model because of
its high performance and good support for dynamic reconfiguration in comparison
with related technologies [6]. Besides, it has been successfully used over the past few
years for building reconfigurable software in a variety of domains [4,11]. Fig. 2
provides a pictorial view of the fundamental entities of OpenCOM’s model:
components (language-independent units of functionality and deployment), interfaces
and receptacles (units of service provision and consumption respectively), bindings
(runtime associations between interfaces and receptacles), and capsules (containers
offering runtime kernel services such as (un)loading, instantiating and destroying
components, and (un)binding interfaces and receptacles). Other first-class entities in
the model—omitted in Fig. 2 for clarity—are caplets (nested sub-scopes within
capsules), loaders (pluggable caplet-specific loading mechanisms), and binders
(pluggable intra- and inter-caplet binding mechanisms). These provide OpenCOM-
based software with capsule distribution transparency, thus playing a crucial role in
facilitating the uniform deployment of such software in a wide range of platforms
from standard PCs, to resource-poor PDAs, to OS-bare embedded systems, to high-
speed network processor hardware.

Above those fundamental entities, the notions of reflective meta-models [9] and
component frameworks (CFs) [34] are extensively employed in OpenCOM to manage
and constrain dynamic reconfiguration. The reflective meta-models provide
OpenCOM with ‘low-level’ facilities to programmatically inspect, adapt, and extend
diverse system aspects (e.g. configuration topology, call interception and thread
management) at runtime. These facilities thus offer openness and flexibility to system
developers. CFs, on the other hand, are targeted at system- and application-level
functionality. CFs are tightly-coupled sets of components (usually deployed as
composites) that work together to address a focused domain of functionality. When
deployed as composites, CFs can be also encapsulated in ‘outer’ CFs. Importantly,
CFs in OpenCOM can incorporate policies that determine to what extent the CF can

component
receptacle

binding

interface

capsule
services

capsule

Fig. 2. Fundamental entities of OpenCOM’s model

 Architecting Dynamic Reconfiguration in Dependable Systems 245

capsule
services

capsule

CF
domain
policies

component

CF

domain
policies

Fig. 3. Component frameworks (CFs) in OpenCOM

be reconfigured at runtime. Fig. 3 illustrates the notion of CFs in OpenCOM. As will
be seen, CFs are central in our approach to causally connecting the runtime- and
architecture-level models.

Reconfiguration transaction service. This is implemented in OpenCOM by per-CF
proxy components—i.e. each CF is given an internal, dedicated proxy for the runtime
kernel services, as illustrated in Fig. 4. Such a component addresses three issues.
First, it provides inter-CF isolation; a proxy component prevents other components
within one CF from interfering with other CFs because such components cannot
access the kernel services directly. Second, proxy components allow for deferred
reconfigurations; they can defer actual calls to reconfiguration primitives that make
up a reconfiguration operation.1 Deferring such an operation allows a style
enforcement service to validate it at the architecture level before the proxy actually
commits it (i.e. forwards the deferred calls to the actual kernel services), with the
possibility of rollback on failure. For all this to be possible the style enforcement
service is explicitly notified about pending transactions—refer to the Plastik
implementation of the reconfiguration notification service described below. Third,
proxy components offer a local registry service, which allows arbitrary meta-data—
expressed in terms of <key,value> pairs—to be attached at runtime to any OpenCOM
element. These are read and potentially modified by any component within the CF
(including the proxy).

Reconfiguration notification service. Plastik implements this service based on
OpenCOM’s interception meta-model [9]. This allows a programmer to interpose

1
 As mentioned in Section 3, in an ideal scenario the runtime should allow for “implicit”
reconfiguration transactions. In our current implementation, however, the proxy component
includes transaction primitives for systems to explicitly scope multiple calls to
reconfiguration primitives.

246 A.T.A. Gomes et al.

capsule
services

capsule

CF

component

proxy

local
registry

queue of
pending

calls

Fig. 4. Per-CF reconfiguration transaction service in OpenCOM

interceptors (small software modules) at bindings between interfaces and receptacles.
For the reconfiguration notification service, interceptors are associated with the
interfaces provided by proxy components. This permits that actions such as
reconfiguration operations and updates of registry entries within a CF be sensed and
notified to interested parties. To receive such notifications, interested parties must
subscribe to per-CF notifier components that manage which subscribers are interested
in which notifications. The following subsection provides an example of this service
usage at the architecture level.

Safe reconfiguration primitives. Work in this area is not yet complete in the context
of the Plastik architecture. However, ongoing work on it has progressed in the con-
text of a related OpenCOM project [31], and we are currently integrating this with
Plastik.

4.2 The Architecture Level

We have chosen Acme as the basis of Plastik’s architecture-level model because it
offers sufficient generality to straightforwardly describe a variety of system
structures. Besides, it comes with tools that provide a good basis for designing and
manipulating architectural specifications and generating code.

Plastik employs the standard Acme constructs: components and connectors
(elements of computation and interaction), ports and roles (interfaces of components
and connectors respectively), attachments (associations between ports and roles),
representations (internal decompositions of components/ connectors), properties
(annotations on other Acme constructs), systems (configurations of components and
connectors), and families (architectural styles). Plastik also employs Armani
expressions embedded in Acme family specifications to define invariants
(architectural rules) over Acme systems.

Fig. 5 provides an example of the specification (and an associated graphical
representation) of a simplified software-based router in Acme (the RouterInst system).
The example also illustrates the use of the family construct as a means of specifying
the main component types involved in a typical router (the Classifier, Forwarder and
Scheduler types) and an architectural rule on the pipeline composition of such
components (the validTopology rule).

 Architecting Dynamic Reconfiguration in Dependable Systems 247

Family Router extends PlastikMF with {
 Property Type IPPacket = Record
 [Type: string; IPHdr: string; Payld: string];

 Component Type Classifier: PlastikMF = {
 Port i : ProvidedPort = new ProvidedPort extended with {
 Property packet: IPPacket; }; };
 Port o1, o2 : RequiredPort = new RequiredPort;
 };

 Component Type Forwarder: PlastikMF = {
 Port i : ProvidedPort = new ProvidedPort;
 Port o : RequiredPort = new RequiredPort;
 };

 Component Type Scheduler: PlastikMF = {
 Port i1, i2 : ProvidedPort = new ProvidedPort;
 Port o : RequiredPort = new RequiredPort;
 Property algorithm: string = "FIFO";
 };

 Connector Type connPath: PlastikMF = {
 Role src : ProvidedRole = new ProvidedRole;
 Role snk : RequiredRole = new RequiredRole;
 };

 Rule validTopology = Invariant
 Forall c1,c2:Component in sys.Components |
 (reachable(c1,c2) =>
 (((satisfiesType(c1, Classifier) AND
 satisfiesType(c2, Forwarder))
 OR
 (satisfiesType(c1, Forwarder) AND
 satisfiesType(c2, Scheduler)))
 AND
 (!(satisfiesType(c1,Classifier) AND
 satisfiesType(c2, Scheduler)))))
 AND
 !reachable(c1,c1); // no cycles allowed...
}; // end family spec

System RouterInst = new Router extended with {
 Component cls = new Classifier;
 Component fwd = new Forwarder;
 Component sch = new Scheduler;
 Connector CtoF, FtoS = new connPath;

 Attachments {
 cls.o1 to CtoF.src;
 CtoF.snk to fwd.i;
 fwd.o to FtoS.src;
 FtoS.snk to sch.i1;
 };
}; // end system spec

fwd
(Forwarder)

CtoF FtoScls
(Classifier)

sch
(Scheduler)

Fig. 5. Router description in Acme

248 A.T.A. Gomes et al.

Mapping architecture-level concepts to the runtime level. We address this first
issue by defining a set of Acme-to-OpenCOM correspondences, which are shown in
Table 1. The system- and representation-to-CF correspondences are central: Acme
families naturally correspond to CF specifications as domain-specific units of re-
usable and dynamically reconfigurable functionality. Notice that, for system-to-CF
correspondences, it is always assumed that software systems in OpenCOM are
themselves contained in (outermost) CFs. Although somehow restrictive in general,
we consider this characteristic particularly interesting for dependable systems. The
one-to-one mapping between Acme connectors and OpenCOM components arises
from the possibility of easily supporting ‘rich’ connectors (such as SQL statements or
RPC channels) as inter-capsule bindings. Acme properties are mapped onto registry
entries in the CF proxy component. For the mappings involving OpenCOM interfaces
and receptacles, a more precise semantic proved to be necessary on the corresponding
Acme constructs. The proposed solution to this was to devise a generic PlastikMF
family that defines port and role types identifying units of service provision
(ProvidedPort, ProvidedRole) and consumption (RequiredPort, RequiredRole). The
rest of the correspondences are intuitively clear from Table 1.

Table 1. Acme-to-OpenCOM correspondences

Acme OpenCOM
system/ representation CF
component/ connector component
port/ role interface/ receptacle
attachment binding
property registry entry (proxy)

Enacting partial specifications and programmed reconfigurations. Plastik extends
the classic Acme constructs with the following additional ones:

• an on-do construct: this allows software architects to express runtime conditions
(using Armani expressions) under which programmed reconfigurations
(specified in extended Acme) should take place in an architecture. This construct
is used to map dependability requirements identified at specification time to the
correspondent programmed reconfiguration operations.

• detach and remove constructs: these allow software architects to dismantle
parts of an architecture by deleting attachments or destroying existing
components, connectors or representations.

• a dependencies construct: this allows software architects to express runtime
dependencies among components/ connectors. This construct itself
intrinsically supports dependability as it avoids that a reconfiguration
operation leads the system to an inconsistent state where the dependencies
between the architectural elements are not available. This can be thought of as
a ‘syntactic sugar’ to the on-do construct; it is useful when the runtime
condition is a component or connector instantiation and the programmed

 Architecting Dynamic Reconfiguration in Dependable Systems 249

reconfiguration operations associated with the established condition comprise
other component/ connector instantiations as well as attachments between
them.

Fig. 6 builds on the previous Acme example and provides the specification of a

dynamically reconfigurable router that employs an on-do statement, and associated
detach, remove and dependencies statements.2 The intended effect of the specification
is that on detecting an MPLS packet in an IPv4 flow (via the Packet property), the

System RouterInst : Router = new Router extended with {

 ... // same as in Fig. 5

on (cls.i.packet.Type == “MPLS”) do {
// open room for a new Priority scheduler
detach FtoS.snk from sch.sch;
remove sch;

 Component psch = new Scheduler extended with {
 Property algorithm: string = “Priority”;

dependencies {
// Priority scheduler depends on a connection

 // with IPv4 forwarder.
 Attachments {
 FtoS.snk to psch.sch1;
 };
 };
 };

 Component mfwd = new Forwarder extended with {
dependencies {

 // MPLS forwarder depends on a connection
 // with the Priority scheduler.
 Connector mCtoF, mFtoS: connPath = new connPath;

 Attachments {
 cls.o2 to
 mCtoF.src;
 mCtoF.snk to
 mfwd.fwd;
 mfwd.fromfwd to
 mFtoS.src;
 mFtoS.snk to
 psch.sch2;
 };
 };
 };
 };
};

fwd
(Forwarder)

CtoF FtoScls
(Classifier)

psch
(Prio Schr)

mfwd
(MPLS Fwdr)mCtoF mFtoS

Fig. 6. Specification of a dynamically reconfigurable router in Plastik

2
 This example comes out of a related OpenCOM project on programmable networking [11].

250 A.T.A. Gomes et al.

configuration should subsequently support MPLS forwarding as well as IPv4
forwarding. Furthermore, the standard FIFO scheduler component is to be replaced by
a priority scheduler so that MPLS packets have precedence over IPv4 packets.

Configuration management service. Although conceptually at the architecture level,
this service is implemented in Plastik at the runtime level as per-CF configurator
components. Such components interpret specifications in (extended) Acme to
reconfiguration operations that are effected at the runtime level, according to the
Acme-to-OpenCOM correspondences presented above. The first task accomplished
by a configurator is to initialise its CF with a full specification of an Acme system or
representation. This involves establishing the initial state of the CF in terms of
loading, instantiating and binding the necessary OpenCOM components, and ensuring
that the rest of the runtime machinery (including the other Plastik services) is
instantiated. Having established the runtime environment, the configurator processes
the Acme family specifications and the on-do and dependencies statements related
with the system/ representation, generating scripts to be deployed on Plastik’s style
enforcement service (see below). Family specifications are translated to validation
scripts, as mentioned in Section 2. Similarly, on-do and dependencies statements are
translated to runtime representations called programmed reconfiguration scripts. In
the case of such statements, the corresponding runtime conditions are registered in the
notifier component as events of interest to the style enforcement service. Fig. 7
illustrates these ideas.

Style enforcement service. As depicted in Fig. 7, this architecture-level service is
also implemented at the runtime level as per-CF components called policers. Such

capsule
services

capsule

CF

component proxy

configurator

policer

full/ partial
architecture

specifications in
extended Acme

generated
scripts

notifier

event
sub

Lua
interpreter script

exec
event
pub

transaction/
condition

indications

Fig. 7. Per-CF configuration management and style enforcement services in OpenCOM

 Architecting Dynamic Reconfiguration in Dependable Systems 251

components host both validation and programmed reconfiguration scripts. Whenever
a proxy notifies a policer about a pending transaction (see Subsection 4.1 for a
discussion of transactions), the latter executes the validation scripts to ascertain the
correctness of the corresponding reconfiguration operation, committing or aborting it
accordingly. Similarly, programmed reconfiguration scripts effect reconfiguration
operations in response to notifications about runtime conditions of interest.

Both validation and programmed reconfiguration scripts are uniformly
implemented as programs in the interpreted language Lua [19]. We have chosen Lua
because it provides fast code interpretation, high flexibility, and a small footprint
(around 100k). This last feature is particularly important since Plastik is designed to
be potentially deployable in resource-poor platforms.

5 Case Study

To evaluate our approach, we have experimented with the architectural specification
of a telemedicine system called AToMS (AMI Teleconsultation and Monitoring
System) [18]. This system aims at fostering the ubiquitous adoption of pre-hospital
drug treatment for patients with acute myocardial infarction (AMI) in Brazil.
Crucially, only an specialist (cardiologist) can diagnose an AMI patient as elegible to
drug treatment, based on the result of an eletrocardiogram (ECG) and the patient’s
clinical state. The AToMS system helps emergency teams (located at the place the
first assistance is delivered—e.g. in an ambulance) and specialists (remotely located
at a teleconsultation center) to exchange information about the patient and decide on
his/her elegibility for promptly receiving the drug treatment. In this system,
emergency teams carry portable devices communicating with ECGs that collect
monitored data from the patient. The ECG data is sent to the teleconsultation center
together with information about the patient’s clinical state through a wireless network
(e.g. GPRS, WiFi mesh, or WiMAX). The teleconsultation center puts the emergency
team promptly in contact with available cardiologists, which can then remotely decide
on the applicability of drug treatment based on the data provided to them.

5.1 Architecture Baseline

Fig. 8 presents a pictorial representation of the AToMS software architecture. A
partial description of such architecture in Acme is given in Fig. 9. As can be seen
from these figures, the system follows a pub-sub style at its outermost level. The
ETSubsys and VCSubsys components (representing the emergency teams and the
teleconsultation center, respectively) are internally composed as client-server
subsystems. Within ETSubsys, ETCli components represent ‘rich’ client applications
running on the portable devices held by the emergency teams, whereas the ETSrv
component represents a web service. These components communicate with each other
through an asynchronous SOAP connector deployed over a wireless medium. Within

252 A.T.A. Gomes et al.

M
on

B
us

ETSubsysETSubsys TCSubsysTCSubsys

annMon rcvMon

rcvTel

T
el

B
us

annTel

AToMSSystem
(Publisher/Subscriber family)

ETCli
1

conn
1
...

conn
N

...

ETCli
N

ETSrv

annTel

recvReq
sendReq

ETSubsys
(Client/Server family)

TCCliconn

TCSrv

recvReq

sendReq

rcvTel

rcvMon

TCSubsys
(Client/Server family)

WebSrv
sendReq

WebCli
1

WebCli
N

...

conn
1

conn
N

sendReq sendReq

recvReq

TCCli
(Client/Server family)

Fig. 8. Pictorial representation of the AToMS architecture

TCSubsys, TCCli components represent web applications accessed by cardiologists
through standard web browsers (synchronous HTTP), whereas the TCSrv component
represents another web service. Teleconsultation requests/ replies and monitoring
notifications are exchanged asynchronously between the two aforementioned web
services through two message bus connectors (TelBus e MonBus), which will be
typically deployed over a wired network.

5.2 Dimensions of Dependability

The AToMS system presents various dependability dimensions, many of which can
be considered at the architecture level. Some of these are described below.

 Architecting Dynamic Reconfiguration in Dependable Systems 253

System AToMSSys = new PubSubFam extended with {
 Component ETSubsys = new ParticipantT extended with {
 Ports { annTel, annMon: p_announce = new p_announce; };
 Representation rep = new CliSrvFam extended with {
 Component ETCli1: ClientT = new ClientT;
 Component ETSrv: ServerT = new ServerT extended with {
 Ports{ annTel; };
 };
 Connector conn1: CSConnT = new CSConnT extended with {
 Property protocol: string = "SOAP";
 };
 Attachments { ETCli1.sendReq to conn1.cliSide;
 ETSrv.recvReq to conn1.srvSide; ...};
 };
 Bindings { ETSrv.annMon to ETSubsys.annMon;
 ETSrv.annTel to ETSubsys.annTel; };
 }; //end of ETSubsys spec.
 Component TCSubsys = new ParticipantT extended with {
 Ports{ rcvTel, rcvMon: p_receive = new p_receive; };
 Representation rep = new CliSrvFam extended with {
 Component TCCli: ClientT = new ClientT extended with {
 Representation rep = new CliSrvFam extended with {
 Component WebCli1: ClientT = new ClientT;
 Component WebSrv: ServerT = new ServerT extended with{
 Ports{ sendReq; };
 };
 Connector conn1: CSConnT = new CSConnT extended with {
 Property protocol: string = "HTTP";
 };
 Attachments { WebCli1.sendReq to conn1.cliSide;
 WebSrv.recvReq to conn1.srvSide; ...};};
 Bindings { WebSrv.sendReq to TCCli.sendReq; };};};
 Component TCSrv: ServerT = new ServerT extended with {
 Ports { rcvTel; rcvMon; };
 };
 Connector conn: CSConnT = new CSConnT extended with {
 Property protocol : string = "SOAP";
 };
 Attachments { TCCli.sendReq to conn.cliSide;
 TCSrv.recvReq to conn.srvSide; };
 };
 Bindings { TCSrv.rcvTel to TCSubsys.rcvTel;
 TCSrv.rcvMon to TCSubsys.rcvMon; };
 }; //end of TCSubsys spec.
 Connector TelBus: EventBusT = new EventBusT extended with {
 Roles { pubTel: r_publisher = new r_publisher;
 subTel: r_subscriber = new r_subscriber; };
 };
 Connector MonBus: EventBusT = new EventBusT extended with {
 Roles { pubMon: r_publisher = new r_publisher;
 subMon: r_subscriber = new r_subscriber; };
 };
 Attachments { ETSubsys.annTel to TelBus.pubTel;
 ETSubsys.annMon to MonBus.pubMon;
 TCSubsys.rcvTel to TelBus.subTel;
 TCSubsys.rcvMon to MonBus.subMon; };
};

Fig. 9. AToMS description in Acme

254 A.T.A. Gomes et al.

First, in an ideal situation the applications running on the portable devices should
be able to communicate with a teleconsultation center irrespective of the emergency
team’s current location. Therefore, to enhance its robustness, the AToMS system
must be able to use many different wireless technologies (e.g. WiFi in an indoor
setting such as a shopping center, or GPRS outdoors). Moreover, detecting an
available technology should be transparent to the emergency team—the same should
also apply to the switching between technologies during operation. Clearly, such
scenario calls for the dynamic reconfiguration of the system in terms of triggering
smart handovers between different wireless networks. In Plastik, such reconfiguration
can be foreseen at the architecture level, as depicted in Fig. 10. This figure builds on
the specification provided in Fig. 9 by describing an on-do statement, and associated
remove and dependencies statements. Also, a new Acme family (WirelessCliSrvFam)
inheriting from the client-server style is defined as a means of specifying a connector
type with specific wireless-related properties. The intended effect of the specification
in Fig. 10 is that on detecting that a WiFi connection cannot be hold, the associated
connector instance is replaced by another one that implements a GPRS connection.

Family WirelessCliSrvFam extends CliSrvFam with {
 Property Type RFSPropT = Enum { Excellent, VeryGood, Good
 Low, VeryLow, Disconn};
 Connector Type WCSConnT extends CSConnT with {
 Property technology : string = “WiFi”; //default tech.
 Property RFS : RFSPropT;
 };
};

System AToMSSys = new PubSubFam extended with {
 Component ETSubsys = new ParticipantT extended with {
 ...
 Representation rep = new WirelessCliSrvFam extended with {
 ...
 Connector conn1: WCSConnT = new WCSConnT extended with {
 Property protocol: string = “SOAP”; // initially WiFi
 };
 ...

on (conn1.technology == “WiFi” AND
 conn1.RFS in {VeryLow, Disconn})) do {

remove conn1; //components are detached automatically
 Connector conn1: WCSConnT = new WCSConnT extended with {
 Property protocol: string = “SOAP”;
 Property technology : string = “GPRS”;

dependencies {
 Attachments { ETCli1.sendReq to conn1.cliSide;
 ETSrv.recvReq to conn1.srvSide; };
 };
 };
 };
 ...
 };
 };
 ...
};

Fig. 10. Specification of a dynamically reconfigurable wireless connector in Plastik

 Architecting Dynamic Reconfiguration in Dependable Systems 255

It is important to bear in mind that many exceptional situations may happen in the
AToMS system which could not be foreseen by the system architect. For instance,
suppose that within ETSubsys a GPRS connection is currently in use between a client
and the server. Because of its current location, the client experiences some
intermittence in its GPRS connection, but no other wireless technology is available
therein for a handover. An alternative solution could thus be to apply an ad-hoc
reconfiguration—for instance, by dropping in a retransmission module to work over
the lossy connection. To guarantee that the client interface does not change, and that
the retransmission of messages in case of failure occurs transparently to it, it is
interesting that such module be inserted into the wireless connector, as part of the
communication protocol, or into the client, as an application-level plug-in.

As ETSubsys follows the client-server style, the aforementioned ad-hoc
reconfiguration can be constrained so that the new module can be inserted into the
wireless connector or the client component, but not in between them. The
architectural rule in the client-server style which constrains such reconfiguration is
depicted in Fig. 11. This rule mandates that if two components are connected, one
must be a client and the other one must be the server.

In Plastik, the rule depicted in Fig. 11 is mapped to a validation script in Lua, as
illustrated in Fig. 12. Such script is to be hosted by the policer component in the CF
implementing ETSubsys. Functions prefixed by rtk and rmm (shown in bold font in
the figure) are implemented by the Lua interpreter as a set of operation invocations on
the OpenCOM runtime kernel services and reflective meta-models respectively. The
validation script is called in the context of a transaction (identified by parameter
‘tid’), which is scoped by the proxy component in the same CF as the policer. More
details about the mappings between Acme rules and Lua validation scripts can be
found in [20].

5.3 Discussion

As it currently is, Plastik was able to cover the major dependability issues that arose
in the presented case study. Nevertheless, some aspects have been identified for future
investigation.

The first one is that the on-do construct does not allow dealing with sets of
elements in a system or representation specification in a flexible way. Although the
condition expressions in on-do statements can use the ‘forall’ and ‘exists’ Armani
quantifiers, in the case of Fig. 11 the only possible way to describe the intended

Rule ClientServerConnection = Invariant
Forall c1:component in self.components

 Forall c2:component in self.components
 connected(c1, c2) =>
 (declaresType(c1, ClientT) AND
 declaresType(c2, ServerT)) OR
 (declaresType(c1, serverT) AND
 declaresType(c2, ClientT))

Fig. 11. Client-server style rule in Acme

256 A.T.A. Gomes et al.

function lvs_ClientServerConnection(tid)
 local forAllExp_1 = true
 for _,c1 in ipairs(rmm.enumInstances(tid))
 local forAllExp_2 = true
 for _,c2 in ipairs(rmm.enumInstances(tid))
 local boolExp = true
 if rmm.connected(c1, c2) then
 local c1cat = rtk.getProp(tid, c1, “Category”)
 local c2cat = rtk.getProp(tid, c2, “Category”)
 boolExp =
 ((c1cat == “Client” and
 c2cat == “Server”) or
 (c1cat == “Server” and
 c2cat == “Client”))
 end –-if
 if not boolExp then
 forAllExp_2 = false; break
 end –-if
 end –for
 if not forAllExp_2 then
 forAllExp_1 = false; break
 end –if
 end –for
 return forAllExp_1
end --function

Fig. 12. Validation script in Lua

programmed reconfiguration was to replicate the on-do statement for each connector
in ETSubsys.

A second point is that there is currently no adequate support in Plastik for
managing dynamic reconfiguration in distributed systems. For the programmed
reconfiguration in Fig. 10 to be possible, the ETSubys component had to be mapped
onto a widely-distributed capsule. Although the degree of capsule distribution is
implementation dependent in OpenCOM, the general intention is that capsules be
relatively tightly-coupled so that centralised state can be held [10]. For widely-
distributed systems, inter-capsule bindings (e.g. using RPC or pub-sub or streaming)
are preferred. Currently, Plastik does not support the explicit management of such
type of bindings.

6 Related Work

There has been a good amount of research over the past few years on specification-to-
deployment environments, although much of it has focused on particular application
areas or specific aspects. Little of it, however, has comprehensively addressed
dynamic reconfiguration issues, which in our belief is cructial to enabling the
architecture of dependable systems. In the following paragraphs we survey relevant
research, classifying the work in two main categories: dynamic software architecture
techniques and reconfigurable runtime technologies.

 Architecting Dynamic Reconfiguration in Dependable Systems 257

Dynamic software architecture techniques. Aster [5,22] is a development
environment providing an ADL with an embedded property sub-language that
supports the architectural specification of object-oriented distributed systems and their
non-functional requirements. Based on an application specification, an Aster tool
selects appropriate middleware objects and integrates them with the described
application. Aster supports ad-hoc reconfiguration at the architecture level, but does
not support any kind of programmed reconfiguration. Furthermore, Aster focuses on
high-level functionality and cannot realistically be used for architecting systems in
stringent environments such as the networking examples considered above.

Mae (Managing Architectural Evolution) [33] is an architectural evolution
environment based on xADL [12]. Mae explicitly supports programmed
reconfiguration by employing a configuration versioning mechanism (i.e.
configurations are basically checked in and out to/ from a version space), but does not
support ad-hoc reconfiguration.

The work in [30] presents an approach to runtime software evolution based on the
C2 ADL [35] and focused on connector-centred reconfiguration. This work has
similarities to our approach as regards providing some causal connection between
architecture- and runtime-level models. Nevertheless, reconfigurations can be applied
only at the architecture level and enforced only on connectors.

ArchWare [28] is a specification-to-deployment environment that also provides
some causal connection between architecture- and runtime-level models. ArchWare
strengths reside in its formal support at the architecture level, which is provided by a
specific π calculus-based ADL, and its reflective capabilities at the runtime level,
which are provided by an implementation of the hyper-code abstraction [21]. In
contrast, we departed from two mature technologies (OpenCOM and Acme),
leveraging both of them through the definition of precise inter-model mappings and a
few extensions leading to the enablement of causally-connected reconfiguration.

Three other pieces of work on specification-to-deployment environments have
bearing on our approach. First, in [7], architectural styles are treated basically as
policies for system self-repair in the runtime infrastructure—i.e. the system is
monitored during runtime so that style-prescribed reconfigurations are effected when
style constraints are violated. Therefore, this system supports both programmed and
ad-hoc reconfigurations. However, it does not consider the enactment of partial
specifications directly provided by software architects during runtime—i.e.
architecture-level ad-hoc reconfigurations are not considered. Second, in [15], an
architectural runtime configuration management system is proposed, the focus of
which is on adaptive fault recovery. The fundamental facility provided by this work,
however, resides in enhancing adaptation visibility through visual tooling; this work
relies on human judgement and intervention for determining whether a
reconfiguration was valid or not. Third, work by Georgiadis et al. [16] discusses the
feasibility of using architectural constraints as the basis for the specification and
deployment of self-organising architectures at distributed execution environments.
Finally, the work presented in [1] addresses the issue of precise mapping between
architecture- and runtime-level models. In contrast to our approach, however, its
primary contribution is to provide semi-automated incremental synchronization
between architecture- and runtime- views, thus ensuring conformance between the
architecture specification and the configuration of the running system.

258 A.T.A. Gomes et al.

Reconfigurable runtime technologies. FORMAware [27] is a reflective component-
based framework that augments explicit architectural specifications with meta-
information to constrain dynamic reconfiguration. FORMAware supports ad-hoc
reconfiguration, which is managed by a transaction service; however, programmed
reconfiguration is not supported. Another fundamental difference between
FORMAware and our approach is that we adopt an ADL for the definition of
architectural invariants, whereas FORMAware style rules are described as pieces of
procedural code. This lowers its level of abstraction with respect to our approach.

Koala [36] is a component model that uses an ADL based on Darwin [25] to
manage the complexity of software in consumer electronics products. Dynamic
reconfiguration is, however, restricted to switching between pre-existing components
based on statically defined conditions. Furthermore, there is no causal connection
between the architecture- and runtime-level models.

Fractal [6] is a hierarchically-structured Java based component model which uses
an XML-based ADL to specify the high level structure of an application, and which
provides runtime reflective features to support dynamic reconfiguration. Nevertheless,
Fractal has no support for the description of constraints at the architecture level, and
again provides no causal connection between the levels.

Finally, Knit [32] is a component definition and linking language that promotes the
wrapping and reuse of existing code (in C). One of its main features is minimising
componentisation overhead; thus it is particularly useful for designing and
implementing complex, low-level systems. Knit also provides some support for
specifying and enforcing architectural rules, but it has nothing comparable to a fully
general ADL. Also, in comparison with our approach, Knit is programming language-
specific and does not support either ad-hoc or programmed reconfiguration.

7 Final Remarks

We have motivated and discussed an approach to dynamic reconfiguration in
dependable systems. The approach can be seen as bearing on dependability in two
distinct ways. First, it helps us view dynamic reconfiguration as a concern that goes
very naturally with generally-applied approaches to software engineering for
dependability—such as ADLs, model driven development (MDD) paradigms, and
domain specific languages. Second, our approach is intrinsically internally
dependable though its use of system elements such as the reconfiguration transaction
service, and policing components that are automatically generated from architecture-
level specifications.

Our approach is also highly generic in that it supports both programmed and ad-
hoc reconfiguration at both the architecture and the runtime levels.

In future work we plan to evaluate the Plastik architecture in the context of real
application scenarios. We are especially interested in applying the approach in the
resource-poor and ‘primitive’ application environments (e.g. embedded systems and
sensor networks) in which OpenCOM itself is routinely applied. This will be a strong
test of the viability of our approach (and especially its runtime machinery).

We also plan to broadly evaluate the Plastik reconfiguration strategies using highly
dependable (and possibly distributed) applications. We intend to consider dependable

 Architecting Dynamic Reconfiguration in Dependable Systems 259

scenarios where software reconfiguration is specified in the architecture model and
reified in the OpenCOM runtime and also where the reconfiguration is triggered by
the runtime level. In this way we can explore the power of the Plastik dynamic
reconfiguration mechanisms to the realization of the self-organizing, self-repairing
and self-healing support commonly demanded by dependable applications.

More generally, we plan to formalise the interface between the runtime and
architecture levels of the architecture, and on this basis, to explore the wider
application of our approach. For example, this will enable us to plug in different and
independently-developed architecture levels that conform to specific MDD paradigms
(e.g. UML-based models [8] or DSL-oriented specification frameworks [17]). We
believe that such a research direction will contribute strongly to bringing dynamic
reconfiguration more into the mainstream of dependable systems design and
deployment.

References

1. Abi-Antoun, M., Aldrich, J., Garlan, D., Schmerl, B., Nahas, N., Tseng, T.: Improving
System Dependability by Enforcing Architectural Intent. In: Workshop on Architecting
Dependable Systems. St. Louis (MO), USA (2005)

2. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless Sensor Networks –
A Survey. Computer Networks 38, 393–422 (2002)

3. Batista, T., Joolia, A., Coulson, G.: Managing Dynamic Reconfiguration in Component-
Based Systems. In: Morrison, R., Oquendo, F. (eds.) EWSA 2005. LNCS, vol. 3527, pp.
1–17. Springer, Heidelberg (2005)

4. Blair, G., Coulson, G., Grace, P.: Research Directions in Reflective Middleware: the
Lancaster Experience. In: Proc. 3rd Workshop on Reflective and Adaptive Middleware
(RM2004) co-located with Middleware 2004, Toronto, Ontario – Canada pp. 262–268
(2004)

5. Blair, G.S., Blair, L., Issarny, V., Tuma, P., Zarras, A.: The Role of Software Architecture
in Constraining Adaptation in Component-Based Middleware Platforms. In: IFIP/ACM
International Conference on Middleware. Hudson River Valley (NY), USA (2000)

6. Bruneton, E., Coupaye, T., Stefani, J-B.: Recursive and Dynamic Software Composition
with Sharing. In: International Workshop on Component-Oriented Programming. Malaga,
Spain (2002)

7. Cheng, S-W., Garlan, D., Schmerl, B., Sousa, J.P., Spitznagel, B., Steenkiste, P., Hu, N.:
Using Architectural Style as the Basis for Self-Repair. In: Working IEEE/IFIP Conference
on Software Architecture, Montreal, Canada (2002)

8. Costa, P., Coulson, G., Mascolo, C., Picco, G.P., Zachariadis, S.: The RUNES Middleware
– a Reconfigurable Component-Based Approach to Networked Embedded Systems. In:
Annual International Symposium on Personal Indoor and Mobile Radio Communications.
Berlin, Germany (2005)

9. Coulson, G., Blair, G.S., Clarke, M., Parlavantzas, N.: The Design of a Highly
Configurable and Reconfigurable Middleware Platform. ACM Distributed Computing
Journal 15, 109–126 (2002)

10. Coulson, G., Blair, G.S., Grace, P., Joolia, A., Lee, K., Ueyama, J.: OpenCOM v2: A
Component Model for Building Systems Software. In: IASTED Software Engineering and
Applications. Cambridge (MA), USA (2004)

260 A.T.A. Gomes et al.

11. Coulson, G., Blair, G.S., Hutchison, D., Joolia, A., Lee, K., Ueyama, J., Gomes, A.T.A.,
Ye, Y.: NETKIT: A Software Component-Based Approach to Programmable Networking.
ACM SIGCOMM Computer Communications Review 33, 55–66 (2003)

12. Dashfoy, E.M., van der Hoek, A., Taylor, R.N.: A Highly-Extensible, XML-Based
Architecture Description Language. In: Working IEEE/IFIP Conference on Software
Architecture, pp. 28–31. Amsterdam, The Netherlands (2001)

13. Garlan, D., Allen, R.J., Ockerbloom, J.: Exploiting Style in Architectural Design. In:
SIGSOFT Symposium on the Foundations of Software Engineering. New Orleans (LA),
USA (1994)

14. Garlan, D., Monroe, R., Wile, D.: Acme: Architectural Description of Component-Based
Systems. In: Leavens, G.T., Sitaraman, M. (eds.) Foundations of Component-Based
Systems, pp. 47–68. Cambridge University Press, Cambridge (2000)

15. Georgas, J.C., van der Hoek, A., Taylor, R.N.: Architectural Runtime Configuration
Management in Support of Dependable Self-Adaptive Software. In: Workshop on
Architecting Dependable Systems. St. Louis (MO), USA (2005)

16. Georgiadis, I., Magee, J., Kramer, J.: Self-organising Software Architectures for
Distributed Systems. In: First Workshop on Self-healing Systems. Charleston, USA, pp.
33–38 (2002)

17. Gomes, A.T.A., Coulson, G., Blair, G.S., Soares, L.F.G.: A Component-Based Approach
to the Creation and Deployment of Network Services in the Programmable Internet.
Technical Report MCC-42/03, PUC-Rio, Brazil (2003)

18. Gomes, A.T.A., Ziviani, A., de Souza e Silva, N.A., Feijoo, R.A.: Towards a ubiquitous
healthcare system for acute myocardial infarction patients in Brazil. In: Pervasive
Computing and Communications Workshops. Pisa, Italy (2006)

19. Ierusalimsky, R., Figueiredo, L.H., Celes, W.: Lua – An Extensible Extension Language.
Software: Practice and Experience 26, 635–652 (1996)

20. Joolia, A., Batista, T., Coulson, G., Gomes, A.T.A.: Mapping ADL Specifications to an
Efficient and Reconfigurable Runtime Component Platform. In: Working IEEE/IFIP
Conference on Software Architecture. Pittsburgh (MA), USA, pp. 131–140 (2005)

21. Kirby, G.N.C., Connor, R.C.H., Cutts, Q.I., Dearle, A., Farkas, A.M., Morrison, R.:
Persistent Hyper-Programs. In: Albano, A., Morrison, R. (eds.) Persistent Object Systems,
Workshops in Computing, pp. 86–106. Springer, Heidelberg (1992)

22. Kloukinas, C., Issarny, V.: Automating the Composition of Middleware Configurations.
In: IEEE International Conference on Automated Software Engineering, Grenoble, France,
pp. 241–244 (2000)

23. Kon, F., Costa, F., Campbell, R., Blair, G.S.: The Case for Reflective Middleware.
Communications of the ACM. 45(6), 33–38 (2002)

24. Lagaisse, B., Joosen, W.: True and Transparent Distributed Composition of Aspect-
Components. In: Proc. ACM/IFIP Middleware 2006, Melbourne, Australia (2006)

25. Magee, J., Dulay, N., Eisenbach, S., Kramer, J.: Specifying Distributed Software
Architectures. In: European Software Engineering Conference. Sitges, Spain, pp. 137–153
(1995)

26. Monroe, R.T.: Capturing Software Architecture Design Expertise with Armani. Technical
Report CMU-CS-98-163, Carnegie-Mellon University, USA (1998)

27. Moreira, R., Blair, G.S., Carrapatoso, E.: FORMAware – Framework of Reflective
Components for Managing Architecture Adaptation. In: International Symposium on
Distributed Objects and Applications. Rome, Italy (2001)

 Architecting Dynamic Reconfiguration in Dependable Systems 261

28. Morrison, R., Kirby, G., Balasubramaniam, D., Mickan, K., Oquendo, F., Cimpan, S.,
Warboys, B., Snowdon, B., Greenwood, R.M.: Support for Evolving Software
Architectures in the ArchWare ADL. In: Working IEEE/IFIP Conference on Software
Architecture. Oslo, Norway, pp. 69–78 (2004)

29. Oreizy, P., Gorlic, M., Taylor, R., Medvidovick, N., et al.: An Architecture-Based
Approach to Self-Adaptive Software. IEEE Intelligent Systems 14, 54–62 (1999)

30. Oreizy, P., Taylor, R.N.: On the Role of Software Architectures in Runtime System
Reconfiguration. IEE Proceedings 145(5), 137–145 (1998)

31. Pissias, P., Coulson, G., Joolia, A.: Supporting Dynamic Reconfiguration in Multithreaded
Component-Based Systems. Technical Report, Lancaster University, UK (2006)

32. Reid, A., Flatt, M., Stoller, L., Lepreau, J., Eide, E.: Knit: Component Composition for
Systems Software. In: Symposium on Operating Systems Design and Implementation. San
Diego (CA), USA, pp. 347–360 (2000)

33. Roshandel, R., van der Hoek, A., Mikic-Rakic, M., Medvidovic, N.: Mae – A System
Model and Environment for Managing Architectural Evolution. ACM Transactions on
Software Engineering and Methodology 3, 240–276 (2004)

34. Szyperski, C., Gruntz, D., Murer, S.: Component Software – Beyond Object-Oriented
Programming, 2nd edn. Addison-Wesley, New York (2002)

35. Taylor, R.N., Medvidovic, N., Anderson, K.M., Whitehead, E.J., Robbins, J.E., Nies,
K.A., Oreizy, P., Dubrow, D.L.: A Component- and Message-Based Architectural Style
for GUI Software. IEEE Transactions on Software Engineering 22, 390–406 (1996)

36. van Ommering, R., van der Linden, F., Kramer, J., Magee, J.: The Koala Component
Model for Consumer Electronics Software. IEEE Computer 33, 85–87 (2000)

37. Wermelinger, M.: Towards a Chemical Model for Software Architecture Reconfiguration.
In: IEE Proceedings - Software, vol. 145, pp. 130–136 (1998)

R. de Lemos et al. (Eds.): Architecting Dependable Systems IV, LNCS 4615, pp. 262–286, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Ecotopia: An Ecological Framework for
Change Management in Distributed Systems

Tudor Dumitraş1, Daniela Roşu2, Asit Dan2, and Priya Narasimhan1

1 ECE Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
2 IBM T.J. Watson Research Center, Hawthorne, NY 10532, USA

tudor@cmu.edu, drosu@us.ibm.com, asit@us.ibm.com,
priya@cs.cmu.edu

Abstract. Dynamic change management in an autonomic, service-oriented
infrastructure is likely to disrupt the critical services delivered by the
infrastructure. Furthermore, change management must accommodate complex
real-world systems, where dependability and performance objectives are
managed across multiple distributed service components and have specific
criticality/value models. In this paper, we present Ecotopia, a framework for
change management in complex service-oriented architectures (SOA) that is
ecological in its intent: it schedules change operations with the goal of
minimizing the service-delivery disruptions by accounting for their impact on
the SOA environment. The change-planning functionality of Ecotopia is split
between multiple objective-advisors and a system-level change-orchestrator
component. The objective advisors assess the change-impact on service
delivery by estimating the expected values of the Key Performance Indicators
(KPIs), during and after change. The orchestrator uses the KPI estimations to
assess the per-objective and overall business-value changes over a long time-
horizon and to identify the scheduling plan that maximizes the overall business
value. Ecotopia handles both external change requests, like software upgrades,
and internal changes requests, like fault-recovery actions. We evaluate the
Ecotopia framework using two realistic change-management scenarios in
distributed enterprise systems.

Keywords: Dynamic Change Management, Service Orchestration, Fault-
Tolerant Architecture, Performability, Autonomic Computing.

1 Introduction

Enterprises demand highly available online systems and satisfactory service levels
(e.g., average response time) in the face of change. The kinds of changes that can
occur are diverse, and can include recovery actions in response to failures, or
upgrades due to new versions of software that become available. Current change-
management strategies, for the most part, tend to execute a change request as soon as
possible (e.g., as soon as a fault is detected or an upgrade is requested), rather than
looking for the best time to do so. The downtime (or the perceived lack of
responsiveness/availability) due to change management can disrupt the performance
expectations of services and have an adverse effect on business.

 Ecotopia: An Ecological Framework for Change Management in Distributed Systems 263

Generate
List of

Change
Operations

Generate
Change

Schedule

External: Requests for
HW & SW Upgrade

Internal: System Management
Events (e.g. faults, expected

workload changes)

Timed Change
Schedule

Enterprise SLAs

Change Planner

(e.g., response time,
availability,
recovery time)

Generate
List of

Change
Operations

Generate
Change

Schedule

External: Requests for
HW & SW Upgrade

Internal: System Management
Events (e.g. faults, expected

workload changes)

Timed Change
Schedule

Enterprise SLAs

Change Planner

(e.g., response time,
availability,
recovery time)

Fig. 1. Dynamic change management is likely to disrupt the critical services running in the IT
infrastructure. Ecotopia handles changes based on both external requests (e.g., software
upgrades) and events detected internally by the autonomic management infrastructure (e.g.,
faults) while taking into account their impact of the service-level agreements. The output is a
timed schedule that seeks to wait for the most opportune time to apply each change operation
and to maximize the enterprise business value.

Industry analysts indicate that "unmanaged change is one of the leading causes of
downtime or missed service-level agreements (SLAs)." [1] Gartner Group states that
“to address the 80 percent of unplanned downtime caused by "people failures,"
enterprises should invest in improving their change and problem management
processes (to reduce downtime caused by application failures) and in automation
tools, such as job scheduling and event management (to reduce downtime caused by
operator errors).” [2] Thus, we hypothesize that it is more appropriate to seek the most
opportune time to execute the change operations in a distributed service-oriented
infrastructure, based on the change’s impact on the service-level objectives (e.g.
response time, availability, and recovery time). Such an impact-sensitive change-
management strategy aims to respect the overall performance and dependability
guarantees of the running services, yet allowing the system to incorporate changes of
various kinds.

Fig. 1 illustrates the main elements of the change-planning problem. In typical IT
infrastructures, there are multiple kinds of change operations, originating from
various sources. Some changes are planned in advance (e.g., deploying new
applications, upgrading obsolete software, increasing the system capacity), and are
derived from an external request for change (RFC). In other cases, changes are due to
“firefighting” (i.e., mitigating the negative effects of unplanned situations), and are
triggered by internal system-management events, e.g., faults or load surges. Change
requests are characterized by a set of (partially) ordered change operations and by
change objectives such as the deadline for implementing the change. The change-
operation planner must produce a timed change-schedule for executing the changes
and, in the process, must consider both the impact of the changes on all the relevant
quality-of-service requirements as expressed by service-level objectives (SLOs), as
well as the objectives of each change operation.

An SLO defines bounds and targets for a level-of-service metric (e.g., response
time, recovery time, availability), called Key Performance Indicator (KPI). An SLO
also has a specific business value metric (e.g., the penalties associated with a missed

264 T. Dumitraş et al.

change deadline or with a degraded performance) for gauging the utility of fulfilling
the objective [3]. The change schedule must maximize the aggregated business value,
associated with all of the enterprise’s SLOs. This optimization must span a long time-
horizon, to account for both transient effects that might occur during the change
execution, and permanent effects that might persist after the change has been
finalized.

The change planner must be “ecological” in nature, i.e., it must assess the impact
of the change on the environment and its SLOs by considering a number of factors:
the inter-dependencies among various system components, the available prior
knowledge of workload fluctuations or anticipated load surges during prime-time, as
well as the degree of resource sharing across heterogeneous, off-the-shelf components
that sometimes span independent administrative domains. In these environments, the
high-level service objectives translate into component-level objectives that can be
managed by component-specific configuration managers. For example, a workload
manager prioritizes and routes the service requests by monitoring the response-time
objectives, while a dependability manager primes backup nodes in anticipation of
failures and performs recovery by monitoring the availability objectives. These
managers use extensive, and sometimes proprietary, domain knowledge (e.g.,
workload characteristics, resource-utilization models), and can perform sophisticated
request classification, prioritization, monitoring and request routing [4].

As a result, we believe that the complexity and the distributed nature of objective-
management in real-world systems makes it unfeasible for a fully centralized change-
operation planner to directly assess the impact of change operations on each service
KPI. Rather, the impact on service KPIs should be estimated by the component-
specific managers that control these services. However, component-specific managers
might not be able to directly assess SLO business values necessary for estimating the
overall change-impact, either because they do not directly implement the enterprise
SLO models or because the service spans multiple managers and administrative
domains.

Building on this principle, we propose Ecotopia, a change-management framework
that decouples the impact assessment (handled by multiple objective advisors, e.g.,
performance and dependability advisors) from the change-operation scheduling
(handled by a change orchestrator). The orchestrator builds the change-operation
schedule and estimates its business value impact based on the service KPIs predicted
by the objective advisors. The advisors are software components that incorporate the
domain knowledge to answer "what-if" questions about service KPIs (such as
performance and availability forecasts), given a description of the change operations
and the timing properties associated with their execution. The orchestrator leverages
the advisors’ predictions to compute the per-objective and the aggregate business
value, and to converge towards an optimal change-operation schedule through an
iterative refinement process. The objective advisors themselves can be composite,
third-party services.

The novel characteristics of the Ecotopia framework for orchestrating change-
management operations are:

 Ecotopia: An Ecological Framework for Change Management in Distributed Systems 265

− Rich “what-if” interaction model that enables the use of fine-grained objective-
advisor knowledge for an effective change scheduling decision. Our “what-if”
model includes:
• Timeline of prediction points: the advisors inform the orchestrator of the

expected workload changes during the scheduling timeline. The orchestrator
uses these guidelines to bootstrap the scheduling algorithms.

• Proactive actions: the advisors can inform the orchestrator about specific
actions that may improve the impact on KPIs during related change
operations. The orchestrator can include these operations in the final schedule
if they result in an improved overall business-value.

− Integrated management of both internal (e.g., faults, workload changes) and
external (e.g., upgrades, capacity increases) changes. This approach is necessary
because both types of changes affect a common pool of resources and services.
Existing solutions [5, 6] assume different decision makers for the two types of
changes.

− Complex business value functions for SLOs and change-request deadlines that can
change along with the underlying enterprise service models, enabled by
compliance with WS-Agreement standard [3]. Existing solutions support only
priority-based models [5] or embedded, hard-coded utility functions [4, 7, 8].

− Optimization based on the long-term impact of change on performance and
dependability objectives, accounting for both the time during and after execution of
the change. Existing solutions consider only one of the two impact components
(e.g., [7] considers the impact during change execution, [5, 9] consider the impact
after the change).

In Section 2 we compare Ecotopia with the state of the art in impact-aware change
management. Section 3 describes the design of Ecotopia framework and Section 4
describes the current implementation. Section 5 presents two case studies of change
management that we use to validate our architecture. Section 6 discusses the
applicability of our ecological approach for realistic systems and outlines directions
for future work.

2 Background

In their seminal paper, Segal and Frieder [10] identify a set of general requirements
for any dynamic updating system: preserving program correctness (during and after
the update), minimizing human intervention, supporting program restructuring and
low-level program changes (e.g., both implementations and interfaces), supporting
distributed programs (communicating across mutually distrustful administrative
domains), not requiring special-purpose hardware and not constraining the language
and environment. Their survey illustrates that in general, research has focused on
mechanisms for implementing change at different levels of granularity (e.g. replacing
components, objects, procedures), rather than on impact assessment and coordination
of distributed changes. Kramer and Magee [11] note that faults, as well as live
upgrades, might have a disruptive effect on the functionality of a distributed system,
and that the techniques to mitigate these problems could be combined in a unified

266 T. Dumitraş et al.

framework. For instance, a change-management system that totally separates the
functional application concerns from the configuration management concerns (such as
Kramer and Magee's Conic system), can provide a good basis for implementing fault
recovery [11]. Conversely, an infrastructure built for fault-tolerance can provide a
good basis for live upgrades because of the inherent redundancy [12, 13]. For
example, a fault-tolerant CORBA system using the interception approach provides all
the ingredients needed for dynamic change management of CORBA objects,
including an interceptor (i.e., the indirection layer needed when switching to a new
version), replication mechanisms (for incrementally upgrading some replicas while
others continue to provide service) and state extraction/restoration mechanisms (for
maintaining consistency between versions) [12].

In the Ecotopia framework, we also adopt this unifying approach of considering
both external (e.g., software upgrades) and internal change requests (e.g., operations
needed to mitigate the effects of a fault). Additionally, the goal of our ecological
framework is to manage the impact of change-management on the SOA environment
(the running services and the existing resources). We assess this impact by asking and
answering “what-if” questions about the outcome of the change operations. We
assume some advance knowledge of the workload, as a running system has different
behavioral profiles depending on the system load and the outcome of the changes will
depend on the workload as well. Ecotopia tries to minimize the negative impact on the
environment by using the answers to the “what-if” questions to determine the most
opportune time to apply the changes, given the existing resources, the state of the
running services and the workload.

2.1 Workload Prediction

Many workloads are characterized by a day-night periodicity [14]: the incoming
request load increases during the day, with comparable peak request-rates from day to
day, and decreases at nighttime to a very low baseline level. System administrators
take advantage of this knowledge to over-provision the system for the highest expected
loads [15] and to run maintenance activities (such as change management) during the
night. There are also workloads with more complex patterns. The 1998 World Cup
workload1 [16] shows that the incoming load increases suddenly around game times,
with lower peaks for the games played over a weekend. This trend is typical for sites
dedicated to sporting events; this can be observed on Alexa.com2 [17], by comparing
statistics for two different sites covering the same event (e.g., f1.com and fi-live.com):
even if the peak loads are different, the access patterns are the same. On-line auction
sites, such as ebay.com, exhibit similar load surges before the closing time of an
auction. Furthermore, recognizable patterns of warnings and notifications that precede
system events may facilitate the workload prediction [18, 19].

Ecotopia uses the ability to predict when the system is under high and low load for
optimizing across multiple service-level objectives. For instance, an enterprise system

1 This is the workload of a website dedicated the 1998 soccer World Cup in France. With 1.4

billion requests in the server logs, this is the largest web workload ever analyzed.
2 Alexa is a tool for comparing statistics on the popularity and workloads of different websites.

 Ecotopia: An Ecological Framework for Change Management in Distributed Systems 267

may have two objectives: performance, expressed as average response time, and
dependability, expressed as the expected recovery time after a system failure. After a
fault (which, unlike a failure, does not completely disable the system), Ecotopia relies
on knowledge of the workload to schedule the reconfiguration operations when the
incoming load is low and avoid the penalties due to downtime during a busy period.
Note that we do not assume that flash-crowd events (sudden load surges due to an
unexpected increase in the site’s popularity) are predictable; however, we show that
exploiting irregular, but predictable workloads – such as the World Cup 98 trace [16]
– allows Ecotopia to improve the scheduling of change operations when pursuing
multiple objectives. Workload prediction is an optional part of the framework;
Ecotopia’s orchestrator can function with third-party advisors that answer “what-if”
questions without providing workload predictions, e.g., [8].

2.2 “What-if” Questions

Existing service-orchestration products [5, 20], perform resource arbitration between
node groups by evaluating the impact just after the resource changes are enacted.
While allowing the orchestration of distributed services [4], this approach is limited
because it ignores the long-term impact of change management (e.g. interaction with
expected workload change). The CHAMPS project [7] focuses on scheduling
operations to satisfy external RFC deadlines. It develops a complex dependency-
tracking framework and it formulates the scheduling problem as the optimization of a
generic cost function given a set of constraints (representing the impact during
change, e.g., due to service unavailability), providing a centralized approach for both
scheduling and impact analysis. Our work is based on the observation that centralized
impact evaluation is not appropriate for complex enterprise environments.

The problem of optimizing business value in a decentralized manner has also been
addressed in the context of autonomic management of storage systems. Hippodrome
[9] refines the initial configuration of a storage system through an iterative process,
using a performance model to estimate the throughput and capacity of a particular
configuration. Like our framework, Hippodrome separates between optimization and
impact assessment, although the interactions between the two components are more
tightly integrated and is based on a proprietary protocol. We submit that for complex
systems integrating multi-vendor components we need an open communication
protocol, for instance based on Web Services. The K2 middleware [21] goes further in
distributing the autonomic management functionality by eliminating the centralized
decision-maker and allowing individual “allocation pools” to manage their own
objectives. In K2, distributed decision algorithms determine the goal configuration
and the allocation pools start moving in that direction; if conditions change part-way
through reconfiguration, the system changes its direction without having to invalidate
the previous plan. However, none of these systems consider the evolution in time of
the KPIs and the long-term impact of their decisions which are necessary for avoiding
system instability and minimizing the overall business impact.

Thereska et al. [8] define a “resource advisor” predicting the impact of data
placement and encoding choices on performance. The advisor has a hierarchical
design, based on several ”what-if” modules (for predicting the CPU, network and disk
delays and cache hit rates) that can be combined together for end-to-end KPI

268 T. Dumitraş et al.

predictions. Although it does not account for the detailed KPI evolution (it does not
attempt to predict incoming request rates), the advisor continuously monitors the
infrastructure and uses historical data to overprovision the system based on the peak
loads observed. The authors report that prediction errors are less than 15% in most
cases. This is an example of a third-party objective advisor that could be connected to
the Ecotopia framework. Our orchestrator doesn’t need to know the details of the
performance models for storage systems; instead, it can use the “what-if” predictions
to perform an ecological change management.

2.3 Timing the Application of Change Operations

The idea of waiting for the most opportune time to apply a change is widely accepted
with respect to security patches for enterprise infrastructures. Beattie et al. [22] show
that there is a sweet-spot for the time when security patches should be applied.
Patches applied too early, without enough testing in the field, may introduce critical
bugs or may conflict with local configurations. Patches applied too late leave the
system exposed to security threats for an extended period of time. The authors argue
that patching should be delayed until the risk of a security breach outweighs the risk
of introducing bugs, and they develop a mathematical model for estimating the
optimal time to apply a security patch.

Gorbenko et al. [23] tackle the problem of achieving high dependability of
composite Web Services undergoing online upgrades of their components. They
advocate running multiple versions of a service in parallel and using third-party
interception middleware to switch to a new replica when the confidence in its
correctness is sufficiently high. The “confidence in correctness” metric is computed
based on comparing the responses from different versions of a service and using
Bayesian inference to reason about future failure rates. This approach is the closest to
our focus on the long-term impact of change operations, except that we use impact
assessment across multiple service-level objectives and we use standard metrics, such
as business value, for evaluating this impact.

Roşu et al. [24] introduce the approach of evaluating change plans based on actual
SLO business values, which are computed by the orchestrator based on the service
KPIs provided by objective advisors. Ecotopia extends this approach to a compressive
“what-if” protocol appropriate for management of complex change requests. Other
change orchestration solutions evaluate change plans in disconnection from the actual
SLO of the enterprise, based on hard-coded utility models embedded in the resource
advisors [4, 5, 8]. In [25], the change manager uses WS-Agreement specification to
define business value parameters whereas the specification of the objective and
business value functions is hard-coded in the orchestrator implementation. Neither of
these approaches is appropriate for systems in which the objective and value models
can evolve in time.

3 Design of an Ecological Change-Management Framework

A primary design goal for a change-management framework that targets distributed,
service-oriented infrastructures is to make minimal assumptions about the kinds of

 Ecotopia: An Ecological Framework for Change Management in Distributed Systems 269

“knobs” that the various software components are prepared to expose to a change-
management system for enabling the control of change impact. The key to achieving
this goal is the separation of scheduling and impact analysis. In Ecotopia, these tasks
are performed by different components, which may come from different providers.

Service orchestration refers to an executable business process that combines
multiple services by defining their interactions dynamically, with the goal of aligning
the behavior of the composite service with the business objectives [20]. Ecotopia
contains an orchestration engine that queries multiple objective advisors for KPI
predictions and combines their outputs into a change-operation schedule. The
predictions are based on detailed domain knowledge of each system component, but
this knowledge is not exposed outside the objective advisors. Instead, the advisors
answer simple “what-if” questions [8] about the impact of concrete change operations
on service KPIs, considering the workload and the tentative schedules of these
operations. The orchestration is driven by the enterprise SLAs, which define methods
for computing the business value [3] that corresponds to the predicted KPI values.
The business value reflects the utility of a given change schedule, allowing us to
compare schedules and make an “ecological” choice: considering the impact on the IT
environment, we select the change schedule that minimizes the service-delivery
disruptions and that maximizes the overall business value.

General assumptions. We assume that KPI predictions can be derived from some
knowledge of future incoming loads, either because the workloads exhibit clear trends
[14, 16], or because fluctuations are preceded by recognizable patterns of warnings
and notifications [18, 19]. Furthermore, we assume that the execution times of all the
change operations submitted to the Ecotopia orchestrator can be estimated and that
services do not have hard real-time constraints (which is typical of enterprise
systems).

3.1 Framework Components

Fig. 2 illustrates the main components and interactions in the Ecotopia framework.
The ChangeManager receives high-level RFCs, decomposes them into finer-grained
change operations and related dependencies, and forwards them to a centralized
component called the orchestrator. The orchestrator receives the list of change
operations and their execution constraints and generates a change plan through an
iterative process. Distributed components called objective advisors analyze the impact
of planned change operations; the orchestrator identifies the relevant advisors by
querying the SystemConfigurationDatabase. The objective advisors represent
the service managers in the infrastructure and can use manager-specific knowledge to
estimate the impact of a change plan on the service KPIs. The orchestrator consumes
these estimations and schedules the change operations with the goal of maximizing
the overall business value. The interaction between the orchestrator and the advisors
is based on the Web Services standard, which facilitates compatibility in a complex
system with components built by different providers. The orchestrator sends the final
schedule to the ScheduleExecutor, which triggers the change operations at
the indicated times. The ChangeManager is analogous to the Task Graph Builder

270 T. Dumitraş et al.

Orchestrator
Maximize Overall Business Value

P
red

icted
 K

P
Is

R
eso

u
rce A

rb
itratio

n

R
eq

u
ests

Te
n

ta
ti

ve
 S

ch
ed

u
le

C
h

an
g

e O
p

eartio
n

s

A
d

viso
rs

Change
Manager

Schedule Executor

Final
Schedule

R
es

ou
rc

es

Dependability
Advisor

Performance
Advisor

<schedule>
<time/>
<action/>

</schedule>

<change>
<action/>
</change>

<deadline/>

System

Configuration

RFC

Initiate Resource
Actions

Analyze Impact
on KPIs

Objective Advisors

SLAs
System
Management
Events

P
ro

active A
ctio

n
s

Orchestrator
Maximize Overall Business Value

P
red

icted
 K

P
Is

R
eso

u
rce A

rb
itratio

n

R
eq

u
ests

Te
n

ta
ti

ve
 S

ch
ed

u
le

C
h

an
g

e O
p

eartio
n

s

A
d

viso
rs

Change
Manager

Schedule Executor

Final
Schedule

R
es

ou
rc

es

Dependability
Advisor

Performance
Advisor

<schedule>
<time/>
<action/>

</schedule>

<change>
<action/>
</change>

<deadline/>

System

Configuration

RFC

Initiate Resource
Actions

Analyze Impact
on KPIs

Objective Advisors

SLAs
System
Management
Events

P
ro

active A
ctio

n
s

Fig. 2. Ecotopia’s distributed ecological architecture for change management separates the
tasks of impact assessment (performed by the objective advisors) and change scheduling
(performed by the orchestrator). The orchestrator receives requests for change, queries the
objective advisors with “what-if” questions about the tentative change schedule and uses the
answers to refine the schedule with the goal of maximizing business value. The “what-if”
interactions are based on an open protocol that allows the integration of third-party objective
advisors.

from [7], and the ScheduleExecutor is similar to the TIO Provisioning Manager
[5]. In this paper, we focus on the orchestrator, the objective advisors and their
interactions, which are novel.

Objective advisors. The objective advisors (e.g., performance and dependability
advisors) exploit the functionality provided by the component-specific configuration
managers. The advisors can be hierarchical and may span multiple administrative
domains in order to manage end-to-end KPIs (in a similar manner to the resource
advisor described in [8]). The Ecotopia advisors estimate the impact of observed,
predicted, or scheduled events on a few service KPIs; for instance, we can define a
performance advisor that predicts violations of the response-time objectives. The
predictions do not depend on the actual enterprise business-value models, which are
handled by the orchestrator.

The API of the advisors contains two functions, shown in see Table 1.
GetCurrentKPIs() queries the KPI predictions if changes are not applied and it is
used to assess the baseline for the change impact. GetImpactKPIs() retrieves the
KPI predictions given a tentative change-operation schedule and is used to assess the
impact the change schedule. These function invocations are synchronous (i.e., the
requestor waits to receive the KPI predictions before proceeding). The reply includes
the KPI predictions for the entire time horizon of the decision. This might span

 Ecotopia: An Ecological Framework for Change Management in Distributed Systems 271

multiple timeline points where the service KPIs change due to specific events such as
expected workload changes or failures. These timeline points are called prediction
points. The advisor reply includes one set of KPI predictions for each prediction point
on the decision horizon. The replies can also suggest a set of proactive actions that
are expected to improve the KPIs in conjunction with the change operations (e.g., a
“checkpoint database” action might reduce the recovery time). Proactive actions are
included in the final change-operation schedule only if they improve the overall
business value.

Orchestrator. The orchestrator is a resource broker and a change–operation planner.
The orchestrator starts scheduling a group of change operations in two situations (see
Table 1): (i) InitiateChange() indicates that a change sequence has been initiated,
following a RFC; (ii) InitiateResourceBrokering() indicates that a predicted
or observed infrastructure event (e.g., a fault, a workload change) mandates a resource
reassignment. All of these invocations on the orchestrator are asynchronous (i.e., a
response containing the schedule is not provided immediately). During the scheduling
process, the orchestrator communicates with the objective advisors, asking “what-if”
questions in order to assess the impact of tentative change-operation schedules on the
future service KPI values.

Table 1. APIs of the Ecotopia framework components

Orchestrator

InitiateChange():
request for scheduling a group of change operations derived from an RFC.

InitiateResourceBrokering(): request for reallocation of resources (e.g. nodes)
to mitigate the impact of an event detected by the system management infrastructure (e.g.
a hardware fault).

ChangeSLA():
request for integration of SLA updates.

Objective Advisors

GetCurrentKPIs():
request for current KPI predictions for a given time interval, assuming no change applied
(i.e., only infrastructure events such as workload variation or node failures will occur).

GetImpactKPIs(): request for KPI predictions over a given time interval for a
schedule of change operations.

Based on the predicted KPIs, the orchestrator creates a tentative change-operation

schedule and computes its overall business value (BV). The SLA defines service-level
objectives based on the monitored KPIs (e.g., a target for the average response-time)
and associates a business-value function to each SLO (e.g., a penalty for each request
that misses the target). The orchestrator computes the overall BV for a particular state
of the system by adding the business values of all the services and SLOs defined in

272 T. Dumitraş et al.

the service-level agreement. A change schedule will modify the overall BV by
altering the state of the system and its monitored KPIs. When the orchestrator needs
to choose among several alternative options for changing the system (e.g., whether to
include a proactive action in the schedule or not; all the possible times for scheduling
a change operation), it uses the overall BV to select the best change-operation
schedule. The overall BV reflects the utility of a change schedule and provides a way
of comparing the effects of changes affecting multiple KPIs and SLOs.

The orchestrator is also invoked when an SLA has changed through
ChangeSLA(), which indicates a modification in the overall business-value
calculations. The orchestrator retrieves the new SLOs and the corresponding BV
expressions and automatically updates its scheduling engine (more comprehensive
mechanisms for managing SLAs updates are described in [24]). This is a reflexive
hook allowing the orchestrator to update itself. In this case the change is applied
immediately or at a specified time in the future, so it does not go through the
scheduling process. New service-level agreements are typically defined in order to re-
align the business and IT objectives of the enterprise; therefore, the effect of the new
SLAs must be reflected as soon as they are available.

The goal of change-operation scheduling is to maximize the business value for a
certain time horizon. The Ecotopia orchestrator computes schedules for change-
operation groups, which correspond to a request for change (RFC) or to a request for
resource brokering. A schedule indicates when each individual change operation from
the group will start executing. Using the overall business value, defined in the current
SLAs, to compare different schedules, the orchestrator converges, through an iterative
process, to the best feasible schedule.

3.2 “What-If” Interaction Protocol

The interaction protocol is at the heart of the Ecotopia framework. As shown in
Fig. 2, a change sequence is initiated by the ChangeManager with the
InitiateChange() function, or by an advisor with the InitiateResource
Brokering() function. The orchestrator initiates the “what-if” interaction by calling
the GetCurrentKPIs()functions of each of the advisors to learn about their
prediction points during the decision time horizon and to establish a baseline state for
assessing the impact of the proposed schedules. Then the orchestrator creates and
refines schedules through an incremental process. It invokes the GetImpactKPIs()
functions on each of the advisors to acquire the KPI predictions necessary for
assessing the impact of each of the proposed partial and complete schedules.

The orchestrator and the objective advisors exchange all the information about the
current change group and change-operation schedule needed to asses the impact on
the KPIs and to improve the schedule. Table 2 summarizes these parameters.

A change operation is defined by a name, a scope and a set of properties. The
name is an enterprise-specific descriptor (e.g., "Upgrade database software to version
10.0") recognized by all of the related objective advisors and service managers. The
scope identifies the resources (e.g., "database node DB1") involved by the operation.

 Ecotopia: An Ecological Framework for Change Management in Distributed Systems 273

Table 2. Scheduling parameters

CG(n, e1…n, d1…n, R, D) Change-operation group
n Number of change operations in the group
ei Change operation
ei

' Optional change operation
di Duration of change operations ei
R(ei,ej) True if ei must be executed before ej
D Deadline of the change group
m Number of prediction points
Ppk Prediction point
TH Time horizon for scheduling and impact assessment
ti Time instant when change operation ei is scheduled to

begin.

The properties are a list of <name, value> pairs that describe operation
characteristics such as the duration of executing the operation, the additional load
imposed, etc. Change operations can be mandatory, such as the operations derived
from an RFC, or optional, such as the resource-brokering operations. The scheduler
can discard optional operations if they do not improve the business value. The set of
operations in a group may expand during the scheduling process due to the proactive
actions suggested by the objective advisors; in general, proactive actions can be
considered optional.

Each change group defines a partial order among its constituent operations,
indicating their precedence dependencies. A group may also specify a deadline for
completing the execution of all its constituent operations and a business-value
expression reflecting the penalty of late completion, which will be factored into the
overall business value of the system to be maximized by the orchestrator. If the
deadline information is missing, then the aggregated business value of the SLOs is the
only criterion for selecting a schedule. A change-operation group can be preempted
by the arrival of a group with a higher priority (e.g., if a previous change has damaged
the system and needs to be rolled back).

The orchestrator uses the current KPI predictions as scheduling guidelines. The
scheduler starts by invoking the GetCurrentKPIs() function of the objective
advisors to retrieve the future variation of all the relevant KPIs due to infrastructure
events (e.g., faults, workload surges) and changes that have already been scheduled.
These prediction points indicate the time instants when the objective advisors expect
the KPIs to change. After the scheduling of a change group is completed, the advisors
add its impact on the infrastructure to the current KPI predictions.

To minimize the communication costs, the orchestrator might cache business-value
information for partial schedules. Each unique schedule is tagged with an identifier
(similar to a hash key), known to the orchestrator and advisors, and its related KPI
predictions are saved. The orchestrator retrieves the predictions whenever it modifies
the partial schedule by adding one or more change-operations, and thereby avoids
repeating most of the computations.

274 T. Dumitraş et al.

4 Ecotopia Implementation

In this paper, we focus on the implementation of Ecotopia’s orchestrator. The
objective advisors rely on functionality provided by component-specific configuration
managers [4, 5, 26, 27]. These managers encapsulate the extensive, and sometimes
proprietary, domain knowledge (e.g., workload characteristics, resource-utilization
models), needed for assessing the impact of change operations on the service KPIs.
For evaluating our framework, we have developed configurable emulators for the
goal-advisors. We implement the orchestrator and the objective advisors as Web
Services, which means that the orchestrator can interact with any third-party advisors
that support the “what-if” interaction protocol described in Section 3.2.

4.1 Objective-Advisor Implementation

While the orchestrator is a centralized component, the objective advisors are
distributed. Ecotopia uses an objective advisor for each SLO of each service defined
the service-level agreement. For example, a performance advisor monitors the service
to assess the response time, and a dependability advisor assesses the recovery time
and the availability based on the amount of redundancy available in the current
configuration. We implement the objective advisors in our framework in a
hierarchical manner: as each service is composed of several other services, the advisor
that corresponds to a top-level service queries several lower-level advisors
corresponding to the component services. Every resource from the IT infrastructure is
treated as a service: the network, the CPU, the disk, etc. have service-level objectives
specifying the target for a set of KPIs, such as response time, throughput and recovery
time.

The service composition and the mapping of services onto physical resources
define a request queuing-path for each service. A change operation modifies this
queuing path, either by altering its structure (e.g., by defining a new service
composition), or by modifying the parameters of the component queues (e.g., by
replacing a CPU with a faster one or by removing a replica from a load-balanced
system). The advisors use this domain knowledge to answer "what-if" questions about
service KPIs (such as performance and availability forecasts), based on the
description of the change operations and the schedule.

The advisors corresponding to the primitive services contain analytical models of
the corresponding resources and estimate the value of the KPIs based on the workload
and configuration. For instance, the performance advisors estimate the response time
of a primitive resource using the operational laws of queuing theory [28, 29], based
on the incoming request rates and the known peak throughput of the resource. Higher-
level advisors compute their KPI predictions by combining the outputs of the lower-
level advisors along the corresponding queuing path. The composite queuing paths
can be either sequential (e.g., a request travels through a front-end, a local-area
network and then a back-end) or parallel (e.g., a load-balancer forwards the request to
one of several servers for further processing). The parallel queuing paths do not
necessarily have the same length; for instance, a request for a data item present in a
proxy cache has a shorter path than a request that results in a cache miss and that

 Ecotopia: An Ecological Framework for Change Management in Distributed Systems 275

timet0 t1 t2 t3 tn

R
es

po
ns

e
Ti

m
e ≈

timet0 t1 t2 t3 tn

R
es

po
ns

e
Ti

m
e ≈

Fig. 3. A KPI (e.g., average latency) varies in time, depending on the workload and the system
configuration. We represent this variation by a vector of <t, KPI(t)> pairs indicating the time
when a KPI changes and the new value. This corresponds to a step function as shown in the
figure.

needs to be forwarded to the application server for processing. The parallel queues
have probabilities associated with each alternative path representing the percentage of
requests that travel along those paths.

Our implementation is similar to the resource advisor described in [8]; in addition,
we leverage workload predictions to estimate the long-term KPI variation. KPIs
change in time; therefore, the advisors provide KPI estimations as time-varying
functions KPI(t). A KPI value is assumed to hold for a period of time, until some
event causes the KPI to take another value. This means that KPI(t) is a step function,
as shown in Fig. 3. When replying to the invocation of GetCurrentKPIs(), the
objective advisor will provide a list of pairs <Ppk, KPI(Ppk)>, indicating the times
(prediction points) Ppk when the KPI is expected to change and the corresponding
KPI values (see Table 2). GetImpactKPIs() returns a similar list, indicating the
effect of the suggested change schedule on the KPIs, computed using the service
queuing-path created by the change.

4.2 Orchestrator Implementation

The orchestrator generates change-operation schedules, which associate start times t1,
t2 … tn with operations e1, e2 … en, respectively, which have the respective durations
d1, d2 … dn (see Table 2). The schedule must comply with the partial ordering among
operations and the group deadline D (if defined). During scheduling, the orchestrator
queries the objective advisors for predictions of the impact on KPIs during the
relevant time-horizon and uses these predictions to compute the overall business value
and to refine the schedule. The time horizon TH must be long enough to include the
deadline D, but in general will be longer, in order to account for the KPI impact after
the change has been executed. The aim of the scheduling process is to provide the
best possible business value.

The orchestrator does not know the closed-form equation that yields the overall
business value because part of this computation is performed inside the objective
advisors, which act as black boxes for the orchestrator. In scheduling-theory terms,
this means that the scheduling problem has an unknown objective function [30].
Given that the complexity of scheduling algorithms depends on their objective
functions, it is impossible for us to reason about the complexity of our problem.
Moreover, even if we had a closed-form expression for the business value, this would
most likely be a non-regular objective function (a regular objective function is non-
decreasing in the completion times of the change operations); there are few theoretical
results for scheduling problems with non-regular objective functions. We therefore

276 T. Dumitraş et al.

focus on approximate scheduling algorithms that make the best effort to compute a
solution close to the optimal schedule.

Business-value model. The SLO business values are functions that associate a dollar
value with various levels of service provided by the system. A service-level objective
defines a target for a particular KPI. A service may have multiple SLOs (some of
these objectives may track a common KPI, e.g., the target bounds for average latency
and maximum latency), and each SLO has a business-value function. Since the KPIs
change in time (see Fig. 3), the business values are also time-variable functions. At
time t, a KPI value is KPI(t) and the corresponding business value is:))((tKPIBVSLO

.

For each KPI that changes at times t0, t1,… tn, the business value for the time interval
[t0, tn] is computed using a weighted average:

()
()()

0

1

0
1

0

)(
],[

tt

tttKPIBV
ttBV

n

n

i
iiiSLO

nSLO −

−
=
∑

−

=
+

 (1)

The business-value functions of different SLOs are designed to be additive. They
are used for reasoning about the multiple impacts of various change operations and
for selecting the best trade-offs. We add the business values of all the SLOs to
compute the overall business value, which reflects the utility of the proposed schedule
of operations:

() ()],[],[0
 All

0 n
SLO

SLOnAll ttBVttBV
k

k∑=
(2)

Scheduling assumptions. In this paper, we make a few simplifying assumptions
about our scheduling problem. First, we assume that all the operations in a change
group are mandatory (there are no proactive actions). Second, we assume that all the
change-operation groups have explicit deadlines. When not defined explicitly, the
deadline can be fixed to the end of the time horizon for business-value evaluation; it
makes no sense to schedule operations past this time horizon because we would not
be able to see their impact on the business value. Third, the operations in a change
group are totally ordered (i.e. an operation must complete before the next one can
begin). While these assumptions are somewhat constraining, we believe that in
practice there are many change-management situations that satisfy these constraints
(we provide an example in Section 5).

Scheduling algorithms. The algorithms we have implemented are based on the
following pattern. Each operation ek has a feasible scheduling interval, defined by the
earliest and latest times when ek can be scheduled to allow enough time for the prior
and subsequent operations:

∑∑ =

−

=
−≤≤ n

ki ik

k

i i dDtd
1

1
 (3)

 Ecotopia: An Ecological Framework for Change Management in Distributed Systems 277

time

Pp1 Pp2 Ppm

D

≈

ek

dk{e1,…ek-1} {ek+1,…en}
tk

time

Pp1 Pp2 Ppm

D

≈

ek

dk{e1,…ek-1} {ek+1,…en}
tk

Fig. 4. Our Greedy algorithm for scheduling change operations first chooses the change
operation ek and the time tk that yield the best business value. This placement splits the timeline
and the change-operation group in two, and we apply the same algorithm to the two halves of
the problem.

Using these bounds, we try to schedule each change operation at the earliest
possible time, the latest possible time and at all the m prediction points (time instants
indicating the future variation of the KPIs) that fall within this feasible interval.

The baseline scheduler is a backtracking algorithm that generates and evaluates all
of the possible placements for the change operations in a group. We start with the first
event e1 and we place it at all the prediction points from its feasibility interval (t1=0,
t1=Pp1, t1=Pp2, etc.). For each of these values of t1, we repeat the algorithm for the
remaining operations and the new boundaries of the timeline (since we have started
with the first operation, the deadline stays the same and the start time becomes t1+d1,
the time when e1 will complete). When we have successfully scheduled all the
operations from the change group, we compute the corresponding business value by
invoking GetImpactKPIs() on the relevant advisors. We then backtrack to try other
possible placements of en, then of en-1 etc., and we save the schedule that generates the
highest business value.

If the KPIs are expressed as step functions, as shown in Fig. 3, and the business
values are linear functions of the KPI values (which would make them step functions
as well), this algorithm generates the optimal schedule. For each operation ek, there
may be m assignments of tk. An assignment of tn-1 will be tested in combination with
m assignments of tn. An assignment of tn-2 will be tested with m assignments of tn-1,
each of which will be tested with m assignments of tn; therefore, an assignment of tn-2
requires m2 more operations for determining the best corresponding business value.
By induction, this algorithm, henceforth called Backtracking, has the worst-case
complexity O(mn).

A more realistic scheduler uses a polynomial best-effort algorithm that is not
guaranteed to provide an optimal solution. We achieve this with a greedy algorithm:
we place each operation ek at each prediction point from its feasibility interval and we
compute the business value that corresponds to this placement (during this step, we
are only interested in the impact of ek, so we invoke GetImpactKPIs() on the
relevant advisors for a schedule that contains only ek). We select the operation and the
placement that yield the best possible business value. This placement splits
the timeline and the change-operation group in two, and the same algorithm is applied
recursively to the two segments of the problem, as shown in Fig. 4. Operations e1…ek-

1 will be scheduled between [0, tk], and operations ek+1…en will be scheduled between
[tk+dk, D].

The first iteration of this algorithm performs nm BV comparisons. In the worst
case, the timeline partitioning will be skewed such that e1 will be chosen and all the
prediction points will fall after t1+d1. the second iteration will then require m(n-1) BV

278 T. Dumitraş et al.

comparisons. Since there are n iterations, this algorithm (Greedy1) has the
complexity O(n2m).

This algorithm has the disadvantage that it tends to give priority to the short
operations that have a small negative impact. These operations get the best
placements, sometimes leaving the large operations to be scheduled during busier
periods, thus affecting the overall business value. To avoid this situation, we can
modify the selection condition in the following manner: at each iteration, we choose
the operation ek that displays the largest business value variation depending on the
scheduling time. This strategy leads to selecting the operation most sensitive to
placement first. This algorithm, called Greedy2, has the same complexity as the
previous one: O(n2m).

Schedule Stability. The schedules generated by the orchestrator remain constant in
the absence of any additional change requests, SLA updates or system management
events such as faults or workload changes. Fig. 5 shows that all the changes that might
affect the final schedules are always initiated outside the scheduling loop involving
the orchestrator and the advisors, which ensures the stability of our protocol. The
advisors generate deterministic KPI predictions for a given change group (i.e., the
same tentative schedule will yield the same predictions).3 The predictions returned by
GetCurrentKPIs() will be adjusted in between change groups because the
effects of the change that has just been scheduled are factored into the KPI
predictions; however, no such adjustment is performed inside the scheduling loop.
The algorithms presented above are guaranteed to converge if the KPI predictions are
deterministic for a given change group. Other autonomic management systems based
on iterative optimization loops [9, 21] may oscillate between borderline decisions
because a resource reconfiguration will affect the performance metrics which may
subsequently trigger another reconfiguration. Ecotopia, where all of the changes are
initiated outside the scheduling loop and the “what-if” analysis considers a long time-
horizon, guarantees that such infinite cyclic dependencies are broken and that
thrashing cannot occur.

Canceling and Undoing Scheduled Changes. One corner case when the KPI
predictions are not deterministic is when a fault or a load-surge prediction occurs
while the scheduling loop is executing. Rather than updating the KPI predictions, in
this case, we cancel the scheduling of the change group in order to avoid confusing
the scheduler. Moreover, a fault or a load surge will typically be associated with a
change request that has the highest urgency, so it is important to start scheduling this
change as soon as possible. In general, whenever the orchestrator receives an urgent
change request, it will preempt the currently executing scheduling process, and will
start working on the new request immediately.

In some cases, it becomes obvious that a scheduled change does not have the
desired effect and must be abandoned. If the change group has been scheduled but not
yet implemented, it can be canceled easily. More often, however, this decision is
taken only after the change has been finalized. In this case, another change has to be

3 The interaction protocol described in Section 3.2 also relies on this property because the

orchestrator and the advisors cache the KPI predictions corresponding to partial schedules.

 Ecotopia: An Ecological Framework for Change Management in Distributed Systems 279

Schedule
Execution

Orchestrator

OrchestratorOrchestratorObjective AdvisorsChange
Manager

System
Management

RFC

Change
Group

Tentative
Schedule

Final
Schedule

KPI
Predictions

SLAs

Fault
Notifications

Workload
Predictions

Monitoring
Data

Schedule
Execution

Orchestrator

OrchestratorOrchestratorObjective Advisors
OrchestratorOrchestratorObjective AdvisorsChange

Manager

System
Management

RFC

Change
Group

Tentative
Schedule

Final
Schedule

KPI
Predictions

SLAs

Fault
Notifications

Workload
Predictions

Monitoring
Data

Fig. 5. The scheduling loop of Ecotopia is designed such that all the change requests originate
from outside of the iterative interaction between the orchestrator and the objective advisors.
This ensures that the scheduling process does not oscillate between borderline decisions.

scheduled to undo the effects of the previous one. The logs of the orchestrator can
assist this operation by defining the reverse operations needed to undo the undesirable
change, but the process must be guided by an administrator since the autonomic
infrastructure has failed to take into account the negative effects of the change. In
many cases, these errors are due to bad SLAs, which then have to be reworked by the
system administrator. If the KPI predictions are accurate enough, we are confident
that human interventions for correcting the orchestrator’s decisions will be
uncommon. Note that, since the decision to undo is not made by the orchestrator, the
stability guarantees described above are not affected.

5 Case Study: Two-Tiered Enterprise Infrastructure

We consider a two-tiered system, where the physical hosts are organized in
independently-managed node-groups. The first tier is a node group of application
servers managed by application server middleware (e.g., IBM WebSphere Extended
Deployment [6]) and the second tier is a node group of database servers, managed by
database cluster infrastructure (e.g., Oracle Clusterware [27]). The two node-group
managers perform various management tasks (e.g., load balancing, request routing,
fault recovery).

This infrastructure, illustrated in Fig. 6, provides two services, each mapped onto
corresponding application-server and database services. The two services processing
Web transactions are load-balanced across three application-servers, Srv1 to Srv3.
These front-end services query two database services that connect to separate
database partitions. The database group comprises three nodes:

− DB1 acts as primary server for Service1 and as backup for Service2;
− DB2 is part of the logical primary server for Service2, which is distributed on

two database nodes;

280 T. Dumitraş et al.

Srv2

Srv1

Srv3

App. Server
Group DB Group

Database

Service 1 Primary
Service 2 Backup

Service 2
Primary

Service 2 Primary
Service 1 Backup

Service 1

Service 2
DB1

DB2 DB3

Front-end Srv2Srv2

Srv1Srv1

Srv3Srv3

App. Server
Group DB Group

Database

Service 1 Primary
Service 2 Backup

Service 2
Primary

Service 2 Primary
Service 1 Backup

Service 1

Service 2

Service 1

Service 2
DB1

DB2 DB3

Front-endFront-end

Fig. 6. Example: two-tier system

− DB3 is also part of the logical primary for Service2 and it is a backup for
Service1 as well.

Each of the two enterprise services has response time, recovery time and
availability objectives. The business value associated with these SLOs depends on the
related KPIs, such as ‘total number of transactions’, ‘number of transactions with
response time below target’, etc.

A performance advisor evaluates the impact of change operations on the end-to-
end response time for each service by exploiting the knowledge provided by the node-
group managers (e.g., expected workload variations, service overheads). Similarly, a
dependability advisor evaluates the impact on the recovery time and the availability
SLOs.

5.1 Qualitative Evaluation

For evaluating the Ecotopia change-management framework in this context, we
discuss two realistic change-management scenarios for this case study: a crash of
node DB1 and an upgrade of the database software. We complement this analysis with
measurements illustrating the trade-off between the cost and the loss of optimality of
different scheduling algorithms (Section 5.2).

Scenario 1: Hardware crash. When the dependability advisor detects the crash of
DB1, the corresponding node-group manager takes immediate recovery measures. The
database recovery manager handles the failover of Service1 to its backup node,
DB3. As a result, DB3 handles queries for both services, while DB2 continues to
handle only queries for Service2. However, since the database group now has
fewer nodes, and an accompanying higher risk of failing the availability objectives,
the change-management system must decide whether removing one node from the
application server group and adding it to the database group would improve the
overall business value and when these operations should be scheduled.

 Ecotopia: An Ecological Framework for Change Management in Distributed Systems 281

Srv1

Srv2

Srv3

DB1

DB2
DB3

Workload
(Service1)

Resp. Time
(Service1)

Resp. Time
(Service2)

Recov. Time
(Service 1)

Recov. Time
(Service2)

Availability
(Service1)

Availability
(Service2)

B
us

in
es

s V
al

ue

t

t

t

t

t

t

t

t

Remove node from App. Srv

Crash

Add node to DB Group

Workload
(Service2)

Checkpoint

H-off

H-off

(a)

(b)

(c)

(d)

Srv1

Srv2

Srv3

DB1

DB2
DB3

Workload
(Service1)

Resp. Time
(Service1)

Resp. Time
(Service2)

Recov. Time
(Service 1)

Recov. Time
(Service2)

Availability
(Service1)

Availability
(Service2)

B
us

in
es

s V
al

ue

t

t

t

t

t

t

t

t

Remove node from App. Srv

Crash

Add node to DB Group

Workload
(Service2)

Checkpoint

H-off

H-off

(a)

(b)

(c)

(d)

Fig. 7. Hardware crash and fault-management scenario

Fig. 7 shows the impact of these change operations. After the crash of DB1, the
lack of a backup leads to a sharp decrease of the predicted availability of Service1
and a drop in the corresponding business value – indicated by point (a) in the figure.
However, since the load of Service2 is high at this point, transferring a node from
the application-server group to the database group would fail to meet the response
time objective. Therefore, the orchestrator delays the change operations until the load
of Service2 decreases, at point (b). During the node transfer, the response time
decreases for both services, but after the hand-off – point (c) – the response times, as
well as the availability of Service1, may return to normal. However, since
Service2 has been continuously sending queries to the database, its log kept
growing, leading to an increase of the recovery time. To solve this problem, the
dependability advisor requests a proactive action in the form of a database checkpoint
(synchronizing the modified data blocks in memory with the disk and shortening the
log processed during recovery). After the checkpoint, indicated by point (d), the
response time and the recovery time for Service2 decrease to normal operating
levels.

Scenario 2: Database upgrade. A similar impact analysis must be undertaken when
upgrading the database software (Fig. 8). In this case, a request for change is
decomposed into finer-grained change operations: each database node is upgraded
separately and, for upgrading DB1, Service1 is handed off to DB3 (its backup)
before the upgrade and restored at the end. The analysis must consider the impact of

282 T. Dumitraş et al.

WAS1

WAS2

WAS3

DB1

DB3

Workload
Service 2

B
us

in
es

s V
al

ue

t

t

DB2

Workload
Service 1

Resp. Time
(Service 1)
Resp. Time
(Service 2)

Recov. Time
(Service 1)

Recov. Time
(Service 2)

Availability
(Service 1)

Availability
(Service 2)

t

t

t

t

t

t

Upgrade
Upgrade

H-off

H-offUpgradeH-off

H-off

WAS1

WAS2

WAS3

DB1

DB3

Workload
Service 2

B
us

in
es

s V
al

ue

t

t

DB2

Workload
Service 1

Resp. Time
(Service 1)
Resp. Time
(Service 2)

Recov. Time
(Service 1)

Recov. Time
(Service 2)

Availability
(Service 1)

Availability
(Service 2)

t

t

t

t

t

t

Upgrade
Upgrade

H-off

H-offUpgradeH-off

H-off

Fig. 8. Database-upgrade scenario

these operations on service objectives and their corresponding business values. For
instance, if the load on Service1 is high, we can reorder the change operations to
perform the upgrades on nodes DB2 and DB3, which are used by Service2. In fact,
the upgrade of DB1 must be delayed until both services register low incoming request
rates because a high request rate during the upgrade may overload DB3, which also
handles both Service1 and Service2. By delaying the upgrade, the penalties
incurred for violating the response time objectives are minimal, thus maximizing the
aggregate business value for the duration of the changes. The reordering must take
into account the dependencies between change operations; thus, the hand-offs of
Service1 should precede and follow the upgrade of DB1.

These scenarios show that delaying the change operations may sometimes improve
the overall business value. Such situations are typical of change management in an
enterprise infrastructure; similar operations occur at a much larger scale in many real-
life deployments. This illustrates the complexity of predicting the impact of change
due to the strong dependencies on the actual implementations of objective managers.
Our framework addresses these issues by delegating the impact assessment to
objective-specific advisors that encapsulate all the relevant domain knowledge.

5.2 Quantitative Evaluation

Using a traditional scheduler, which does not optimize for long-term impact [5, 7, 9,
21], would result in executing all of the change operations as soon as possible, instead
of waiting for the most opportune time when the incoming load is low. The outcome
of such impact-insensitive scheduling is a missed opportunity for optimizing the
overall business value. Instead, the scheduling algorithms presented in Section 4.2

 Ecotopia: An Ecological Framework for Change Management in Distributed Systems 283

0.5 0.6 0.7 0.8 0.9 1
10

1

10
2

10
3

10
4

10
5

Optimality

B
V

 E
va

lu
at

io
ns

Greedy1
Greedy2
Backtracking

0.5 0.6 0.7 0.8 0.9 1
10

0

10
2

10
4

10
6

Optimality

C
om

pa
ris

on
s

Greedy1
Greedy2
Backtracking

Fig. 9. Scheduling algorithms: trade-off between cost and loss of optimality. The Greedy
algorithms are polynomial and yield schedules with a business value within 95% of the optimal
achievable business value, which is computed using the exponential backtracking algorithm.

find the optimal schedule for these two scenarios and the run-times of all the
algorithms – including the exponential backtracking scheduler – are comparable (less
than 1s).

We also test our scheduler using several randomly-generated input sets, and we
explore the trade-off between complexity and the loss of optimality. The most
appropriate complexity measure is the number of times the business value needs to be
evaluated, since these evaluations require communication between the orchestrator
and the advisors; we do not report the run-times because they depend heavily on the
hardware resources used for simulation. The loss of optimality shows how close the
BV of the resulting schedule was to the BV of the optimal schedule, as generated by
the backtracking algorithm. Fig. 9 shows that, for small problems (e.g., 5 change
operations and 10 KPI prediction points), the two (polynomial) greedy algorithms
obtain near-optimal results and they need one or two orders of magnitude fewer BV
evaluations than the exponential, optimal backtracking algorithm.

For larger problems, we cannot use the backtracking algorithm and, therefore, we
cannot measure the loss of optimality of the greedy schedulers. For 100 change events
and 100 prediction points, the greedy algorithms required up to 36673 business-value
evaluations and 67342 comparisons, sometimes with significant differences between
the two algorithms (between 3% and 68%). Greedy1 also exhibits a higher variance
of the number of BV evaluations than Greedy2. While we could easily construct a
scenario where Greedy2 performs better than Greedy1, the two algorithms
produced identical schedules for all but one of the randomly generated scenarios.

6 Discussion

By focusing on the communication protocol for impact assessment rather than on
building a monolithic change-management system, Ecotopia facilitates changes that
might span multiple independent administrative domains and that might target
heterogeneous software infrastructures. Our generic orchestrator can communicate

284 T. Dumitraş et al.

with third-party advisors, which are built with specific, proprietary domain
knowledge about a service/system/vendor, and construct schedules using only the
information available from such advisors. This approach mirrors the philosophy of
Service-Oriented Architectures, which is to focus on interaction protocols rather than
on implementation bindings.

The separation between scheduling and impact assessment makes Ecotopia
applicable to realistic systems, although it may limit its optimization capabilities
when the advisors cannot provide a comprehensive impact analysis (e.g., some
services may not provide latency estimations, which are required for end-to-end
response-time management). Moreover, the KPI predictions will inevitably have a
degree of inaccuracy, especially when the time frame of the predictions is far ahead in
the future. The orchestrator will generate change schedules even with imperfect
information about the system; however, the quality of the schedules will improve with
accurate impact analysis. If the advisors provide incorrect information, the
orchestrator might take the system to a state with unacceptable service levels; in this
case, a downgrade or the rollback of the changes can be scheduled using the same
process described above. This raises two questions that we plan to investigate in the
future: how much prediction inaccuracy can the orchestrator tolerate while keeping its
ability to offer meaningful recommendations, and what kind of predictions and impact
analysis can the advisors perform to enable ecological change-management planning.

Another open question is how to determine the typical size of realistic change-
operation groups, which is important for selecting a good scheduling algorithm. The
optimal scheduling-algorithm works well for the case study presented in this paper;
however, we cannot use it for change groups with more than 10 operations, because
of its exponential complexity. For very large problem sets, we may need to use
heuristics such as genetic algorithms or simulated annealing [30]. We also plan to
investigate the possibility of defining an adaptive scheduler that selects the best
algorithm depending on the properties of the change-operation group (e.g., its size).

The best way to express the KPI variation in time also warrants further exploration.
The step function representation used in this paper might be too constraining; for
instance, it cannot describe a recovery time that increases linearly with the increase
over time of the database log, as depicted in Fig. 7. However, this representation is
easy to understand and to use (as opposed to a describing a generalized function), and
it can approximate well an arbitrary KPI trajectory if enough change points are
selected. Furthermore, using the change points as scheduling guidelines, allows us to
use simple algorithms even for a scheduling problem with an unknown objective
function.

7 Conclusions

This paper investigates the problem of performing dynamic change management
while maximizing the aggregate business value across all SLOs of the enterprise. We
propose Ecotopia, a novel ecological framework for change management that tackles
the complexity and the distributed nature of SLO management in real-world systems
by separating the impact assessment (performed by the objective advisors) from the
scheduling and business-value computation and aggregation (performed by the

 Ecotopia: An Ecological Framework for Change Management in Distributed Systems 285

orchestrator). A novel “what-if” interaction protocol between advisors and
orchestrator enables an efficient computation of SLO business values and change
schedule refinement, Ecotopia performs ecological change management by taking
into account the impact on the enterprise SLOs, the long-term KPI variations and the
heterogeneous types and sources of change operations (both internal and external).
We validate our framework using two realistic change scenarios that emphasize that
impact assessment is essential for maximizing the business value. Our preliminary
simulations compare the trade-offs between the cost and the loss of optimality of three
scheduling strategies.

Acknowledgments. The authors would like to thank Biswaranjan Bhattacharjee and
Joel Wolf of IBM Research, Florin Oprea of Carnegie Mellon University, as well as
Jean-Charles Fabre of LAAS CNRS for their input during the early stages of this
research.

References

1. Kirkley, J.: Aligning IT and Business as the Economy Rebounds. Enterprise Leadership,
BMC Software 2 (2004)

2. Gartner Group: High Availability Q&A: Failures, Standards and Metrics. Networked
Systems Management Research Note QA-05-2701 (1998)

3. Global Grid Forum: Web services agreement specification (WS-Agreement). Draft,
version 11 (2004)

4. Whalley, I., et al.: Experience with collaborating managers: node group manager and
provisioning manager. Cluster Computing 9, 401–416 (2006)

5. IBM Tivoli Intelligent Orchestrator, http://www-306.ibm.com/software/tivoli/products/
intell-orch

6. IBM WebSphere Extended Deployment, http://www-306.ibm.com/software/webservers/
appserv/extend

7. Keller, A., et al.: The CHAMPS system: Change management with planning and
scheduling. In: Network Operations and Management Symposium, pp. 395–408. Seoul,
Korea (2004)

8. Thereska, E., et al.: Informed Data Distribution Selection in a Self-predicting Storage
System. In: International Conference on Autonomic Computing, Dublin, Ireland (2006)

9. Anderson, E., et al.: Hippodrome: Running Circles Around Storage Administration. In:
USENIX Conference on File and Storage Technologies (FAST ’02), Monterey, CA,
13(2002)

10. Segal, M., Frieder, O.: On-the-fly program modification: Systems for dynamic updating.
IEEE Software 10, 53–65 (1993)

11. Kramer, J., et al.: Towards Unifying Fault and Change Management. In: Workshop on
Future Trends of Distributed Computing Systems in the 1990s, Cairo, Egypt, pp. 57–63
(1990)

12. Moser, L.E., et al.: Eternal: fault tolerance and live upgrades for distributed object
systems. In: DARPA Information Survivability Conference and Exposition (DISCEX 00),
Hilton Head, SC, pp. 184–196 (2000)

13. Bloom, T., Day, M.: Reconfiguration in Argus. In: Workshop on Configurable Distributed
Systems, London, England, pp. 176–187 (1992)

286 T. Dumitraş et al.

14. Dilley, J.: Web server workload characterization. Technical Report HPL-96-160, Hewlett-
Packard Laboratories (1996)

15. Vallamsetty, U., et al.: Characterization of E-Commerce Traffic. Electronic Commerce
Research 3, 167–192 (2003)

16. Arlitt, M., Jin, T.: A workload characterization study of the 1998 World Cup Web site.
IEEE Network 14, 30–37 (2000)

17. www.alexa.com
18. Pertet, S., Narasimhan, P.: Proactive Recovery in Distributed CORBA Applications. In:

International Conference on Dependable Systems and Networks (DSN), Florence, Italy,
pp. 357–366 (2004)

19. Zhang, Q., et al.: Workload-aware load balancing for clustered Web servers. IEEE
Transactions on Parallel and Distributed Systems 16, 219–233 (2005)

20. Peltz, C.: Web services orchestration and choreography. IEEE Computer 36, 46–52 (2003)
21. Golding, R.A., Wong, T.M.: Walking toward moving goalposts: agile management for

evolving systems. Hot topics in autonomic computing, HotAC, Dublin, Ireland (2006)
22. Beattie, S., et al.: Timing the Application of Security Patches for Optimal Uptime. In:

Large Installation System Administration Conference, Philadelphia, PA, pp. 233–242
(2002)

23. Gorbenko, A., et al.: Dependable Composite Web Services with Components Upgraded
Online. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.) Architecting Dependable
Systems III. LNCS, vol. 3549, pp. 92–121. Springer, Heidelberg (2005)

24. Roşu, D., Dan, A.: Managing end-to-end lifecycle of global service policies. In:
International Conference on Service Oriented Computing, Amsterdam, The Netherlands,
pp. 570–575 (2005)

25. Keller, A.: Automating the Change Management Process with Electronic Contracts. In:
International Workshop on Service Oriented Solutions for Cooperative Organizations,
Yorktown Heights, NY, pp. 99–107 (2005)

26. WebSphere Extended Deployment Version 5.1 Information Center (2004)
27. Oracle Corporation: Oracle Real Application Cluster 10g. Oracle Technical White Paper

(2005)
28. Lazowska, E., et al.: Quantitative System Performance: Computer System Analysis sing

Queuing Network Models. Prentice-Hall, Englewood Cliffs (1984)
29. Urgaonkar, B., et al.: An analytical model for multi-tier internet services and its

applications. In: International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS), Banff, Alberta, Canada, pp. 291–302 (2005)

30. Pinedo, M.: Scheduling: Theory, Algorithms, and Systems. Prentice-Hall, Englewood
Cliffs (2002)

Generic-Events Architecture: Integrating

Real-World Aspects in Event-Based Systems�

António Casimiro1, Jörg Kaiser2, and Paulo Verissimo1

1 Univ. Lisboa
{casim,pjv}@di.fc.ul.pt

2 Univ. Magdeburg
kaiser@ivs.cs.uni-magdeburg.de

Abstract. In a future networked physical world, a myriad of smart sen-
sors and actuators assess and control aspects of their environments and
autonomously act in response to it. To a large extent, such systems oper-
ate proactively and independently of direct human control. They include
computer hardware and software parts mixed with mechanical devices.
Besides the regular computer communication channels, they also estab-
lish interaction channels among them directly through the environment.
These characteristics pose a number of fundamentally new consistency
and correctness challenges which, if not met, may hinder the dependabil-
ity of such systems, and ultimately lead to unexpected failures.

This paper describes an architectural framework and event model capa-
ble of solving these pressing problems. Firstly, we offer an innovative com-
posable object model representing software/hardware entities capable of
interacting with the environment. Secondly, we provide event-based com-
munication seamlessly integrating real-world events and events generated
in the system. The crucial parts of our work are the generic-events archi-
tecture GEAR, hosting the COSMIC middleware supporting the events
model, with attributes to express spatial and temporal properties.

1 Introduction

In a future networked physical world, a myriad of smart sensors and actuators as-
sess and control aspects of their environments and autonomously act in response
to it. Examples range in telematics, traffic management, team robotics or home
automation to name a few. In fact, this is also made possible by the continu-
ous improvement of technologies that are relevant for the construction of these
systems, including trustworthy visual, auditory, and location sensing [1], com-
munication and processing. To a large extent, such systems operate proactively
and independently of direct human control, instead driven by the perception of
the environment and the ability to organize their own computations and actua-
tions dynamically. The challenging characteristics of these applications include
� This work was partially supported by the EC, through project IST-FP6-STREP-

26979 (HIDENETS), and by the FCT, through the Large-Scale Informatic Systems
Laboratory (LaSIGE).

R. de Lemos et al. (Eds.): Architecting Dependable Systems IV, LNCS 4615, pp. 287–315, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

288 A. Casimiro, J. Kaiser, and P. Verissimo

sentience and autonomy of components, issues of responsiveness and safety criti-
cality, geographical dispersion, mobility and evolution. In order to deal with these
challenges, it is of fundamental importance to use adequate high-level models,
abstractions and interaction paradigms. Unfortunately, when facing the specific
characteristics of the target systems, the shortcomings of current architectures
and middleware interaction paradigms become apparent.

As basic building blocks of such systems we often find computer hardware and
software parts mixed with mechanical devices, and one or more network inter-
faces. In consequence, these components have different characteristics compared
to pure software components. Moreover, these artifacts, besides the regular com-
puter communication channels, also establish interaction channels among them
directly through the environment. They are able to spontaneously disseminate
information in response to events observed in the physical environment or to
events received from other components. Larger autonomous components may be
composed recursively from these building blocks.

However, classical event/object models are usually software oriented and, as
such, when transported to a real-time, embedded systems setting, their harmony
is cluttered by the conflict between, on the one side, send/receive of “software”
events (message-based), and on the other side, input/output of “hardware” or
“real-world” events, register-based. In terms of interaction paradigms, and al-
though the use of event-based models appears to be a convenient solution [2,3],
these often lack the appropriate support for non-functional requirements like
reliability, timeliness or security.

The afore-mentioned characteristics pose a number of fundamentally new con-
sistency and correctness challenges which, if not met, may hinder the dependabil-
ity of such systems, and ultimately lead to unexpected failures. We believe that
the first step in solving the former lies on an architecture allowing to: express
and represent the software/hardware structure of these components and their
composability; bridge the consistency gap between the events representing the
physical environment generated by sensor readings and the events encapsulating
state changes resulting from computations of the system.

This paper describes an architectural framework and event model capable of
solving these pressing problems. Firstly, we offer an innovative composable ob-
ject model which represents software/hardware entities capable of interacting
with the environment. Secondly, we provide event-based communication seam-
lessly integrating real-world events and events generated in the system. After
providing an overview of related work, the paper starts by clarifying several is-
sues concerning our view of the system, about the interactions that may take
place and about the information flows. This view is complemented by providing
an outline of the component-based system construction and, in particular, by
showing that it is possible to compose larger applications from basic compo-
nents, following an hierarchical composition approach. The crucial parts of our
work, the generic-events architecture GEAR, hosting the COSMIC middleware
supporting the events model, are then introduced.

Generic-Events Architecture: Integrating Real-World Aspects 289

The Generic-Events Architecture (GEAR) describes the event-based inter-
action between the components via a generic event layer. This layer integrates
different communication channels including the interactions through the environ-
ment. Because interaction with the physical world requires real-time properties,
concepts of time describing the aging of information and temporal consistency
have to be included, in order to allow correct representation of these interactions
by algorithms. The paper devotes particular attention to this issue by discussing
the temporal aspects of interactions and the needs for predictability.

Finally, an appropriate event model is presented, as well as the COoperating
Smart devices (COSMIC) middleware, which reflects the properties of GEAR
and allows specifying events with attributes to express spatial and temporal
properties. This is complemented by the notion of Event Channels (EC), which
are abstractions of the underlying network and enforce the respective quality
attributes of event dissemination. Event channels reserve the needed computa-
tional and network resources for highly predictable event systems.

The paper is organized as follows. Section 2 presents related work. Then,
Section 3 introduces fundamental notions and abstractions related to the sentient
object model adopted in this paper. GEAR is then described in Section 4, while
Section 5 describes the event model and the COSMIC middleware, which may be
used to specify the interaction between sentient objects. The temporal aspects
of interactions, which are crucial in the context of this paper, are covered in
Section 6. Then, Section 7 presents two examples of the applicability of GEAR
concepts. Finally, Section 8 concludes the paper.

2 Related Work

Our work considers a wired physical world in which a very large number of
autonomous components cooperate. They are interconnected by multiple het-
erogeneous networks. Islands of tight control may be realized by a control net-
work and cooperate via wired or wireless networks covering a large number of
these subnetworks. In an earlier work, we referred to such a network structure
as a Wide-Area-Network of Controller-Area-Networks (WAN-of-CANs) [4]. Due
to the dynamic nature of interactions, it will be difficult or impossible to know
a priori the communication participants and secondly, because of heterogeneity,
we have to support a variety of different addressing structures and mechanisms.
Thirdly, components should be autonomous and no control transfer should be
bound to communication. In general, event-based systems supporting auton-
omy of components and the spontaneous dissemination of information have been
recognized as appropriate to support large scale distributed systems [5,6]. Au-
tonomy is achieved by a data driven model in which components decisions and
actions are based on sharing data rather than on explicit control transfer [7].
Dynamic interactions are supported by content and subject related addressing
schemes that enable communication without a priori knowing addresses or names
of communication participants. Intended for large general purpose distributed
applications, systems like [5,8,3] require quite complex infrastructures and do

290 A. Casimiro, J. Kaiser, and P. Verissimo

not consider stringent quality aspects like timeliness and dependability issues.
A comprehensive overview and taxonomy is provided in [6]. Some publisher sub-
scriber communication systems have been proposed to be used in control appli-
cations. The Information Bus [9] and its realization by the TIBCO Rendezvous
software [10] integrates some soft real-time features. E.g., it is possible to create
several prioritized queues and explicitly associate event types with event queues
but real-time programming can be not handled at the same abstract level as the
event programming. The NDDS protocol [11] and its successors from RTI [12]
have some real-time properties. Its architecture explicitly assumes the Ethernet
as the underlying interface. Therefore, real-time can only be assured on a prob-
abilistic basis. It means that the communication load must be known in advance
and that deviations from the load hypothesis are minimally tolerated. Deadlines
are specified only for subscriptions. Therefore message scheduling is supported
only in the queues maintained in the receiver side.

In the area of large control systems, Autonomous Decentralized Systems
(ADS) have been proposed [13]. They provide a shared data field which decou-
ples producers of information and consumers which autonomously may retrieve
(control) information from the data field. ADS is based on a quite complex
content-based addressing scheme similar to Linda [14] and thus is difficult to run
on resource constraint components as smart sensors and actuators.

In [2] a real-time event system for CORBA has been introduced. The events are
routed via a central event server which provides scheduling functions to support
the real-time requirements. Such a central component is not available in an in-
frastructure envisaged in our system architecture and the developed middleware
TAO (The Ace Orb) is quite complex and unsuitable to be directly integrated
in smart devices. There are efforts to implement CORBA for control networks,
tailored to connect sensor and actuator components [15,16]. They are targeted
for the CAN- Bus [17], a popular network developed for the automotive industry.
However, in these approaches the support for timeliness or dependability issues
does not exist or is only very limited.

A new scheme to integrate smart devices in a CORBA environment is pro-
posed in [18] and has lead to the proposal of a standard by the Object Manage-
ment Group (OMG) [19]. Smart transducers are organized in clusters, connected
to a CORBA system by a gateway. They form isolated subnetworks in which a
special master node enforces the temporal properties. A CORBA gateway allows
to access sensor data and to write actuator data by means of an interface file
system (IFS). In contrast to the event channel model introduced in this paper,
all communication inside a cluster relies on a single technical solution of a syn-
chronous communication channel. Secondly, although the temporal behavior of
a single cluster is rigorously defined, no model to specify temporal properties for
cluster-to-CORBA or cluster-to-cluster interactions is provided.

It should be noted however that all the event-based systems discussed in this
section lack the holistic view of an architecture which integrates the events of
the environment with those of the system. This is a pre-condition to meet the
fundamentally new consistency and correctness challenges brought by complex

Generic-Events Architecture: Integrating Real-World Aspects 291

systems of embedded systems. In particular, we address the kind of synchrony
properties that allow the ordering and the scheduling of the events on the com-
munication medium, and the conditions for their enforcement.

3 Sentient Object Model

3.1 Information Flow and Interaction Model

We consider a component-based system model that incorporates previous work
developed in the context of the IST CORTEX project [20]. A fundamental idea
underlying the approach is that applications can be composed of a large num-
ber of smart components, which can sense and interact with their surrounding
environment. They are referred to as sentient objects, a metaphor elaborated
in CORTEX and inspired on the generic concept of sentient computing intro-
duced in [21]. Sentient objects accept input events from a variety of different
sources (including sensors, but not constrained to that), process them, and pro-
duce output events, whereby they actuate on the environment and/or interact
with other objects. The following kinds of interactions can take place in the
system: (i) environment-to-object interactions, reporting about the state of the
former, and/or notifying about events taking place therein; (ii) object-to-object
interactions, complementing the assessment of each individual object about the
surrounding space, or serving collaboration with other objects; (iii) object-to-
environment interactions, with the purpose of forcing a change in the state of
the latter.

The environment can be a producer or consumer of information while inter-
acting with sentient objects, which it does through transducers: sensors and ac-
tuators. The latter perform the necessary transformations between the physical
real-time entities and their computerized representations in the system [22]. In
our architecture, there are two kinds of transducers: dumb sensors and actuators,
which interact with the objects by disseminating or capturing raw transducer
information; and smart sensors and actuators, with enhanced processing capa-
bilities, capable of “speaking” the “dialect” of our event model. Transducers
may, or may not be part of a sentient object’s body, as discussed in Section 3.4.

A distinguishing aspect of our work from many of the existing approaches,
is that we consider that sentient objects may indirectly communicate with each
other through the environment, through links established between actuations
and sensing operations. Thus the environment constitutes an additional inter-
action and communication channel and is in the control and awareness loop of
the objects. It has been shown that in systems ignoring these hidden channels
(e.g., feedback loops) inconsistencies may arise that can lead to unexpected fail-
ures [22]. In order to deal with the global information flow through computer
system and environment in a seamless way, handling “software” and “hardware”
events uniformly, it is necessary to find adequate abstractions. As discussed
in Section 4, the Generic-Events Architecture introduces the abstractions of
Generic Event and Event Layer to deal with these issues.

292 A. Casimiro, J. Kaiser, and P. Verissimo

3.2 Component-Based Object Model

The approach proposed in this paper is based on a component-based object
model that incorporates some of the ideas developed in the context of the COR-
TEX project. Applications are composed of a (possibly large) number of smart
components that are able to sense their surrounding environment and interact
with it, which are referred to as sentient objects [23] (see Figure 1).

� � � � � � � �

� � 	 �
 �� �

�
�
�
�

�
�
�
�
�
�
�
��
�
�

�
�
�
�

�
�
�
�
�

��
�
�

Fig. 1. The sentient object metaphor

Sentient objects can take several different forms: they can simply be software-
based components, but they can also comprise mechanical and/or hardware parts,
amongst which the very sensorial apparatus that substantiates “sentience”, mixed
with software components to accomplish their task. We refine this notion by con-
sidering a sentient object as an encapsulating entity, a component with internal
logic and active processing elements, able to receive, transform and produce new
events. This interface hides the internal hardware/software structure of the ob-
ject, which may be complex, and shields the system from the low-level functional
and temporal details of controlling a specific sensor or actuator.

3.3 Sentient Object Composition

Given the inherent complexity of the envisaged applications, the number of si-
multaneous input events and the internal size of sentient objects may become
too large and difficult to handle. Therefore, it should be possible to consider the
hierarchical composition of sentient objects so that the application logic can be
separated across as few or as many of these objects as necessary. On the other
hand, composition of sentient objects should normally be constrained by the
actual hardware component’s structure, preventing the possibility of arbitrarily
composing sentient objects.

This is illustrated in Figure 2, where a sentient object is internally composed
of a few other sentient objects, each of them consuming and producing events,
some of which only internally propagated.

To give a more concrete example of such component-aware object composition
we consider a fully-fledged sentient object, for example a car. The car is com-
posed of several sentient objects, like: WLAN receiver and transmitter processor;
velocity sensor processor; cruise speed control processor and actuator; doppler
radar control; GPS CCD camera input treatment modules; control elements such
as cruise speed, platoon, ambient, visual display, etc. The car (together with all
of its embedded software) is in turn a sentient object, and the environment
internal to its own structure becomes this larger object’s body.

Generic-Events Architecture: Integrating Real-World Aspects 293

� � �

� �
 � � � � � �

� � � � � � � �

� � � � � � � � � � � �

� � � � � � �

� � � � �

� � � � � � � 	
 � � � � � � �

� � 	 �
 � � � � � � � �

� � � � � � � 	
 � � � � � � �

Fig. 2. Component-aware sentient object composition

� � � �

� � � �

� � � �

� � � � 	
 � �

� � � � � �

� � � �
 � �

� � � � 	 � �

� � � � � � � 	
 � � �
 � � 	 � � �
 �

� � � � � � � � � � �

� � � � � � � 	
 � � �
 � � 	 � � �
 �

� � � � � � � � � � �

�
 � � � � � � 	 �

�
 � � � 	
 � �
 �

� � � � � � � � � � � ! " �

�
 � � � � � � 	 �

# 	 $ % � � � � � � � � � � 	 & � � % � ' �
 ' 	 � �

� � � � � � � � 	

# 	 $ %

� � � � � � ' � � � $ � & 	
 � � 	 � �

� � � � � � � � 	

�
 � � � 	
 � �
 �

� � � � � � � 	 � � � � � � (� � � �

Fig. 3. Information flow through a sentient object (C.E- control element)

Figure 3 shows this perspective. The car as an object receives events from
various different sources, namely operational networks (e.g., WLAN receiver),
remote sources (e.g., GPS receiver) or local sources (e.g. velocity sensor). Like-
wise, it produces events to be consumed by different sinks, for instance events
transmitted through networks (e.g., WLAN transmitter) to the environment or
other objects, events to remote sinks (e.g., doppler radar actuator) or events to
local sinks (e.g., speed control actuator). At this level of abstraction, it should be
possible to define cooperation activities among several cars as sentient objects
(say, platooning) without the need to know the internal structure of cars, or the
events produced by body objects or by smart sensors within the body. Note that
interactions within the local scope are referred to as interactions with the body
of the object. This concept will be developed in the next section.

3.4 Encapsulation and Scoping

Now an important question is about how to represent and disseminate events in
a large-scale networked world. As we have seen above, any event generated by a
sentient object could, in principle, be visible anywhere in the system and thus
received by any other sentient object. However, there are substantial obstacles
to such universal interactions, originating from the components heterogeneity in
such a large-scale setting.

294 A. Casimiro, J. Kaiser, and P. Verissimo

Firstly, the components may have severe performance constraints, particularly
because we want to integrate mobile units, smart sensors and actuators in such an
architecture. Secondly, the bandwidth of the participating networks may vary
largely. Such networks may be low power, low bandwidth fieldbuses, or more
powerful wireless networks as well as high speed backbones. Thirdly, the networks
may have widely different reliability and timeliness characteristics. Consider a
platoon of cooperating vehicles. Inside a vehicle there may be a field-bus like
CAN [24,17], TTP/A [18], LIN [25] or FlexRay [26], with a comparatively low
bandwidth. On the other hand, the vehicles are communicating with others in
the platoon via a direct wireless link. Finally, there may be multiple platoons of
vehicles which are coordinated by an additional wireless network layer.

At the abstraction level of sentient objects, such heterogeneity is reflected by
the notion of body-vs-environment. At the network level, we assume the WAN-of-
CANs structure [4] to model the different networks. The notion of body and envi-
ronment is derived from the recursively defined component-based object model.
A body is similar to a cell membrane and represents a quality-of-service container
for the sentient objects inside. On the network level, it may be associated with
the components coupled by a certain CAN. A CAN defines the dissemination
quality which can be expected by the cooperating objects.

In the above examples, a vehicle (robot or car) may be a sentient object, whose
body is composed of the respective lower level objects (sensors and actuators)
which are connected by the internal network (see Figure 2). Correspondingly, the
platoon can be seen itself as an object composed of a collection of cooperating
vehicles, its body being the environment encapsulated by the platoon zone. At
the network level, the wireless network represents the respective CAN. However,
several platoons united by their CANs may interact with each other and objects
further away, through some wider-range, possible fixed networking substrate,
hence the concept of WAN-of-CANs.

The notions of body-environment and WAN-of-CANs are very useful when
defining interaction properties across such boundaries. Their introduction obeyed
to our belief that a single mechanism to provide quality measures for interac-
tions is not appropriate. Instead, a high level construct for interaction across
boundaries is needed which allows to specify the quality of dissemination and
exploits the knowledge about body and environment to assess the feasibility of
quality constraints. As we will see in Section 4, the notion of an event channel
represents this construct in our architecture.

4 Generic-Events Architecture

Although literature has classically studied the networking and sensing/actuating
problems in isolation, we propose the innovative concept of generic event, be it
derived from the boolean indication of a door opening sensor, from the electrical
signal embodying a network packet (at the WLAN aerial) or from the arrival of
a temperature event message.

Generic-Events Architecture: Integrating Real-World Aspects 295

Likewise, the programs running in sentient objects have very often consistency
requirements that derive, even if remotely, from what are called real-time entities,
in fact representations of state variables of the surrounding environment. Some
of these, referred to as time-value entities, have consistency conditions based
on the timeliness of the operations controlled by the computer, vis-a-vis their
evolution in the environment (e.g., for the cooling system to consistently use the
temperature of the engine it must obey some timeliness constraints) [22].

To fulfil this vision, we require an event model that satisfies these two sets
of requirements. On the one hand, a model that treats the information flow
through the whole computer system and environment in a seamless way, handling
“software” and “hardware” events in a generic way. On the other hand, one that
allows defining global, end-to-end, non-functional criteria in the time domain,
such as temporal consistency, or QoS guarantees. We address these issues in this
section and following ones.

We propose the Generic-Events Architecture (GEAR), depicted in
Figure 4, which we briefly describe in what follows (for a more detailed descrip-
tion please refer to [27]). The unusual L-shaped structure is crucial to ensure
some of the properties described.

� � � � � �� � � � � �� � � � � �

� � 	
 � � 	 � �

� 	 � � �

� � 	
 � � 	 � �

� 	 � � �

� � � �

�
 � � �
 � �
 �

� � � �

�
 � � �
 � �
 �

� � � �

�
 � � �
 � �
 �

� � � � � � � � � 	
 � � � � � � � � � �
 � � � � � � �

� � �
 � � � � �
 � �
 � � � � �
 � � � � � � � � �

� � 	
 � � 	 � �

� 	 � � �

� � 	
 � � 	 � �

� �
 � �
 �

� � � � � �

� �
 � �
 �

� � � � � �

� �
 � �
 �

� � � � � �
� � � � � � � 	
 � � � � �

� � � � � � � � � � � �

� � �
 �

� 	 � � �

� � �
 �

� 	 � � �

� � �
 �

� 	 � � �

� �
 � �
 �

� � � � � �

Fig. 4. Generic-Events architecture

Environment: The physical surroundings, remote and close, solid and etherial,
of sentient objects.

Body: The physical embodiment of a sentient object (e.g., the hardware where
a mechatronic controller resides, the physical structure of a car). Note that
due to the compositional approach taken in our model, part of what is “envi-
ronment” to a smaller object seen individually, becomes “body” for a larger,

296 A. Casimiro, J. Kaiser, and P. Verissimo

containing object. In fact, the body is the “internal environment” of the ob-
ject. This architecture layering allows composition to take place seamlessly,
in what concerns information flow.

Translation Layer: The layer responsible for physical event transformation
from/to their native form to event channel dialect (in Section 5 we further
elaborate on the definition of the events flowing through event channels),
between environment/body and an event channel. This layer performs ob-
servation and actuation operations on the lower side (as represented by the
sensor and actuator symbols in the figure), and transactions of event de-
scriptions on the other. On the lower side this layer may also interact with
dumb sensors or actuators, therefore “talking” the language of the specific
device. These interactions are done through operational networks (hence the
antenna symbol in the figure).

Event Layer: The layer responsible for event propagation in the whole system,
through several Event Channels (EC):. In concrete terms, this layer is a kind
of middleware that provides important event-processing services which are
crucial for any realistic event-based system. For example, some of the services
that imply the processing of events may include publishing, subscribing,
discrimination (zoning, filtering, fusion, tracing), and queuing.

Communication Layer: The layer responsible for “wrapping” events (as a
matter of fact, event descriptions in EC dialect) into “carrier” event-messages,
to be transported to remote places. For example, a sensing event generated by
a smart sensor is wrapped in an event-message and disseminated, to be caught
by whoever is concerned. The same holds for an actuation event produced by
a sentient object, to be delivered to a remote smart actuator. Likewise, this
may apply to an event-message from one sentient object to another. Dumb
sensors and actuators do not send event-messages, since they are unable to
understand the EC dialect (they do not have an event layer neither a commu-
nication layer— they communicate, if needed, through operational networks).

Regular Network: This is represented in the horizontal axis of the block
diagram by the communication layer, which encompasses the usual LAN,
TCP/IP, and real-time protocols, desirably augmented with reliable and/or
ordered broadcast and other protocols.

GEAR introduces some innovative ideas in distributed systems architecture.
While serving an object model based on production and consumption of generic
events, it treats events produced by several sources (environment, body, objects)
in a homogeneous way. This is possible due to the use of a common basic di-
alect for talking about events and due to the existence of the translation layer,
which performs the necessary translation between the physical representation of
a real-time entity and the EC compliant format. Crucial to the architecture is
the event layer, which uses event channels to propagate events through regular
network infrastructures. The event layer is realized by the COSMIC middleware,
as described in Section 5.

The GEAR architecture serves an object model based on production and
consumption of generic events. Events are presented to objects through Event

Generic-Events Architecture: Integrating Real-World Aspects 297

Channels (EC), which are in charge of propagating them to the relevant objects
(those having subscribed to that event class). However, not only objects produce
or consume events, but this is transparent, since it is dealt with by ensuring all
these entities (objects and other) speak the EC dialect.

Events are produced by several sources which are treated in a homogeneous
way. Event sources include:

• the environment where physical events take place, such as the detection of
the opening of a gate, or of the change of a semaphore light, the sampling
of a temperature at a given time.

• the body of the object (or object compound), taken as that part of the
environment which is aggregated to the object or object compound and
would not make sense otherwise (e.g., the body of a robot, the hardware of
a car, the embodiment of a mechatronic device), and where similar kinds
of physical events take place, for example, the sampling of a car’s velocity.
Note that part of what is ’environment’ for an isolated object, may become
’body’ of a compound object of which that object is part.

• the objects themselves may generate an event, when they invoke produce,
which manifests itself as: a piece of information or a command they wish
to make available to other objects; a notification they produce “to whom it
may concern”; an actuation command on the body or on the environment,
for example, controlling the speed of a car, or telling a gate to close.

The flow of information (external environment and computational part) is
seamlessly supported by the L-shaped architecture. It occurs in a number of
different ways, as illustrated in Figure 5, which demonstrates the expressiveness
of the model with regard to the necessary forms of information encountered in
real-time cooperative and embedded systems.

Smart sensors produce events which report on the environment (they deserve
the ’smart’ adjective because they speak the EC dialect). Body sensors produce
events which report on the body. They are disseminated by the local event layer
module, on an event channel (EC) propagated through the regular network,
to any relevant remote event layer modules where entities showed an interest
on them, normally, sentient objects attached to the respective local event layer
modules.

Sentient objects consume events they are interested in, process them, and
produce other events. Some of these events are destined to other sentient ob-
jects. They are published on an EC using the same EC dialect that serves, e.g.,
sensor originated events. However, these events are semantically of a kind such
that they are to be subscribed by the relevant sentient objects, for example,
the sentient objects composing a robot controller system, or, at a higher level,
the sentient objects composing the actual robots in a cooperative application.
Smart actuators, on the other hand, merely consume events produced by sentient
objects, whereby they accept and execute actuation commands. Alternatively
to “talking” to other sentient objects, sentient objects can produce events of a
lower level, for example, actuation commands on the body or environment. They

298 A. Casimiro, J. Kaiser, and P. Verissimo

Fig. 5. Information flow in the whole system

publish these exactly the same way: on an event channel through the local event
layer representative. Now, if these commands are of concern to local actuator
units (e.g., body, including internal operational networks), they are passed on
to the local translation layer. If they are of concern to a remote smart actuator,
they are disseminated through the distributed event layer, to reach the former.
In any case, if they are also of interest to other entities, such as other sentient
objects that wish to be informed of the actuation command, then they are also
disseminated through the EC to these sentient objects.

A key advantage of this architecture is that event-messages and physical events
can be globally ordered, if necessary, since they all pass through the event layer.
The model also offers opportunities to solve a long-lasting problem in real-time
computer control and embedded systems: the inconsistency between computer
message passing and physical feedback loop information flows. We address this
issue in Section 6.3.

5 Event Model and Middleware

An event model and a middleware suitable for smart components must sup-
port timely and reliable communication and also must be resource efficient. The
COSMIC (COoperating Smart devices) middleware, which is described
ahead in this section, is aimed at supporting the interaction between those com-
ponents according to the concepts introduced so far. However, we first introduce
the event model.

Generic-Events Architecture: Integrating Real-World Aspects 299

5.1 Event Model

Based on the WAN-of-CANs model, we assume that components, smart sen-
sors/actuators or sentient objects, are connected to some form of CAN as a
fieldbus or a wireless sensor network which provides specific network properties.
E.g. a fieldbus developed for control applications usually includes mechanisms
for predictable communication while other networks only support a best effort
dissemination. A gateway connects these CANs to the next level in the net-
work hierarchy. The event system should allow the dynamic interaction over a
hierarchy of such networks and comply with the overall generic event model.

We introduced the notion of an event channel to cope with differing properties
and requirements, and to have an object to which we can assign resources and
reservations, as needed when striving for predictability. Although the concept of
an event channel is not new [2,8], it has not yet been used to reflect the properties
of the underlying heterogeneous communication networks and mechanisms as
described by the GEAR architecture. Rather, existing event middleware allows
to specify the priorities or deadlines of events handled in an event server. Event
channels allow to specify the communication properties on the level of the event
system in a fine grained way. An event channel is defined by:

event channel := 〈subject, quality attributeList, handlers〉

The subject determines the types of events which may be issued to the chan-
nel. Every event subject is therefore associated to its own event channel. The
quality attributes model the properties of the underlying communication net-
work and dissemination scheme. These attributes include latency specifications,
dissemination constraints and reliability parameters. The notion of zones sup-
ports this approach. Our goal is to handle the temporal specifications as 〈bound,
coverage〉 pairs [28], which is orthogonal to the more technical questions of how
to achieve a certain synchrony property of the dissemination infrastructure. Ex-
ception handlers can be provided to deal with situations such as the violation of
specified timeliness bounds for the channel.

Events are typed information carriers and are disseminated in a publisher/
subscriber style [9,29], which is particularly suitable because it supports gener-
ative, anonymous communication [14] and does not create any artificial control
dependencies between producers of information and the consumers. This decou-
pling in space (no references or names of senders or receivers are needed for
communication) and the flow decoupling (no control transfer occurs with a data
transfer) are well known [9,29,7] and crucial properties to maintain autonomy of
components and dynamic interactions.

Events are exchanged between sentient objects through event channels. To
cope with the requirements of an ad-hoc environment, an event includes the
description of the context in which it has been generated and quality attributes
defining requirements for dissemination. This is particularly important in an
open, dynamic environment where an event may travel over multiple networks.
An event instance is specified as:

300 A. Casimiro, J. Kaiser, and P. Verissimo

event := 〈subject, context attributeList, quality attributeList, contents〉

A subject defines the type of the event and is related to the event contents. It
supports anonymous communication and is used to route an event. The subject
has to match to the subject of the event channel through which the event is dis-
seminated. Attributes are complementary to the event contents. They describe
individual functional and non-functional properties of the event. The context
attributes describe the environment in which the event has been generated, e.g.
a location, an operational mode or a time of occurrence. The quality attributes
specify timeliness and dependability aspects in terms of 〈validity interval, omis-
sion degree〉 pairs. These timeliness, and other temporal aspects of the interac-
tions will be further addressed in Section 6.

5.2 COoperating Smart Devices Middleware

The COSMIC (COoperating Smart devices) middleware, maps the channel prop-
erties to lower level protocols of the regular network. Based on our previous work
on predictable protocols for the CAN-Bus, COSMIC defines an abstract network
which provides hard, soft and non real-time message classes [30].

Correspondingly, this allows us to distinguish three event channel classes with
different synchrony properties: hard real-time channels, soft real-time channels
and non-real-time channels.

Hard real-time channels (HRTC) guarantee event propagation within the de-
fined time constraints in the presence of a specified number of omission faults.
HRTECs are supported by a reservation scheme which is similar to the scheme
used in time-triggered protocols like TTP [31], TTP/A [18], and TTCAN [24].
However, a substantial advantage over a TDMA scheme is that due to CAN-Bus
properties, bandwidth which was reserved but is not needed by a HRTEC can
be used by less critical traffic [30].

Soft real-time channels (SRTC) exploit the temporal validity interval of events
to derive deadlines for scheduling. The validity interval defines the point in
time after which an event becomes temporally inconsistent. Therefore, in a real-
time system an event is useless after this point and may me discarded. The
transmission deadline (DL) is defined as the latest point in time when a message
has to be transmitted and is specified in a time interval which is derived from
the expiration time: tevent ready < DL < texpiration − Δnotification

texpiration defines the point in time when the temporal validity expires.
Δnotification is the expected end-to-end latency which includes the transfer time
over the network and the time the event may be delayed by the local event
handling in the nodes. As said before, event deadlines are used to schedule the
dissemination by SRTECs. However, deadlines may be missed in transient over-
load situations or due to arbitrary arrival times of events. On the publisher side
the application’s exception handler is called whenever the event deadline expires
before event transmission. At this point in time the event is also not expected
to arrive at the subscriber side before the validity expires. Therefore, the event
is removed from the sending queue. On the subscriber side the expiration time

Generic-Events Architecture: Integrating Real-World Aspects 301

is used to schedule the delivery of the event. If the event cannot be delivered
until its expiration time it is removed from the respective queues to prevent the
communication system to be loaded by outdated messages.

Non-real-time channels do not assume any temporal specification and dis-
seminate events in a best effort manner. An instance of an event channel is
created locally, whenever a publisher makes an announcement for publication or
a subscriber subscribes for an event notification. When a publisher announces
publication, the respective data structures of an event channel are created by
the middleware. When a subscriber subscribes to an event channel, it may spec-
ify context attributes of an event which are used to filter events locally. E.g.
a subscriber may only be interested in events generated at a certain location.
Additionally the subscriber specifies quality properties of the event channel. A
more detailed description of the event channels can be found in [32].

On the architectural level, COSMIC distinguishes three layers roughly de-
picted in Figure 6. Two of them, the event layer and the abstract network layer
are implemented by the COSMIC middleware. The event layer provides the API
for the application and realizes the abstraction of event and event channels.

The abstract network implements real-time message classes and adapts the
quality requirements to the underlying real network. An event channel handler
resides in every node. It supports the programming interface and provides the
necessary data structures for event-based communication. Whenever an object
subscribes to a channel or a publisher announces a channel, the event channel
handler is involved. It initiates the binding of the channel’s subject, which is
represented by a network independent unique identifier to an address of the
underlying abstract network to enable communication [7]. The event channel
handler then tightly cooperates with the respective handlers of the abstract
network layer to disseminate events or receive event notifications. It should be
noted that the QoS properties of the event layer in general depend on what the
abstract network layer can provide. Thus, it may not always be possible to e.g.
support hard real-time event channels because the abstract network layer cannot
provide the respective guarantees. In [32], we describe the protocols and services
of the abstract network layer particularly for the CAN-Bus.

As can be seen in Figure 6, the hard real-time (HRT) message class is sup-
ported by a dedicated handler which is able to provide the time triggered message
dissemination. The HRT handler maintains the HRT message list, which contains
an entry for each local HRT message to be sent. The entry holds the parameters
for the message, the activation status and the binding information. Messages are
scheduled on the bus according to the HRT message calendar which comprises
the precise start time for each time slot allocated for a message. Soft real-time
message queues order outgoing messages according to their transmission dead-
lines derived from the temporal validity interval. If the transmission deadline is
exceeded, the event message is purged out of the queue. The respective appli-
cation is notified via the exception notification interface and can take actions
like trying to publish the event again or publish it to a channel of another class.
Incoming event messages are ordered according to their temporal validity. If an

302 A. Casimiro, J. Kaiser, and P. Verissimo

�

event
notifications

HRT-msg
list

SRT-msg
queue

NRT-msg
queue

HRT-msg
calendar

HRTC
Handler

S/NRTC
Handler

Abstract Network
Layer

CAN Layer
RX Buffer TX Buffer

RX, TX, error
interrupts

Event Channel
Specs.

Event Layer

send
messages

exception
notification

exceptions,
notifications

ECH:
Event Channel

Handler

� � � � � � � � � � � � �
 � � � � �
 � � � �

� � � � � � �

� � � � �
 � �

 � � � � !

� � � � �
 � �

Global
Time

Service

event
notifications

HRT-msg
list

SRT-msg
queue

NRT-msg
queue

HRT-msg
calendar

HRTC
Handler

S/NRTC
Handler

Abstract Network
Layer

CAN Layer
RX Buffer TX Buffer

RX, TX, error
interrupts

Event Channel
Specs.

Event Layer

send
messages

exception
notification

exceptions,
notifications

ECH:
Event Channel

Handler

� � � � � � � � � � � � �
 � � � � �
 � � � �

� � � � � � �

� � � � �
 � �

 � � � � !

� � � � �
 � �

Global
Time

Service

Fig. 6. Internal structure of COSMIC

event message arrive, the respective applications are notified. At the moment,
an outdated message is deleted from the queue and if the queue runs out of
space, the oldest message is discarded. However, there are other policies possi-
ble depending on event attributes and available memory space. Non real-time
messages are FIFO ordered in a fixed size circular buffer.

6 Temporal Aspects of Interactions

Any interaction needs some form of predictability. If safety critical scenarios
are considered, temporal aspects become crucial and have to be made explicit.
The problem is how to define temporal constraints and how to enforce them by
appropriate resource usage in a dynamic ad-hoc environment. In a system where
interactions are spontaneous, it may be also necessary to determine temporal
properties dynamically. To do this, the respective temporal information must be
stated explicitly and available during run-time. Secondly, it is not always ensured
that temporal properties can be fulfilled. In these cases, adaptations and timing
failure notification must be provided [33,28].

In most real-time systems, the notion of a deadline is the prevailing scheme to
express and enforce timeliness. However, firstly, a deadline only weakly reflects
the temporal characteristics of the information which is handled. In a dynamic
cooperative control system suffering from weak links it is important to consider
issues like ageing of information or the urgency and importance of control actions,
which is not possible within the notion of a simple deadline.

Secondly, a deadline often includes implicit knowledge about the system and
the relations between activities. In a rather well defined, closed environment,
it is possible to make such implicit assumptions and map these to execution
times and deadlines. E.g. the engineer knows how long a vehicle position can be
used before the vehicle movement outdates this information. Thus he maps this
dependency between speed and position on a deadline which then assures that
the position error can be assumed to be bounded. In an open environment, this

Generic-Events Architecture: Integrating Real-World Aspects 303

implicit mapping is not possible any more because, as an obvious reason, the
relation between speed and position, and thus the error bound, cannot necessarily
be reverse engineered from a deadline.

Thirdly, as is emphasized in the work of Mock [34], the notion of a deadline
assumes a passive environment and an active control system. In this classical
view, the physical properties of the environment define the real-time constraints
which are imposed as deadlines on a control system. This simple distinction in a
passive environment and an active control system does not reflect the situation
in a cooperative scenario where multiple active and mobile entities interact. The
cooperating entities form part of the environment perceived by an individual
component and they are active. Consider a team of robots which cooperatively
move or lift an object too heavy for a single robot. In such a coordination task
where mutual dependencies exist, the notion of a deadline is hardly useful when
timing the interaction.

Therefore, we need a more elaborated model of representing and exploiting
temporal information in such an environment. To derive such a model, we briefly
review the notion of events in the physical environment and their representation
in a machine.

6.1 Events

In the physical world, an event is defined as a singular occurrence in space and
time. It can be defined as a cut of the time line and point in space and thus
has no temporal or spatial extension. An event may lead to a state change in
the physical world which may be called an effect. The effect is the subject of
an observation [35,36,22]. The observation has a temporal and spatial distance
to the related event. In a dynamic system, it is beneficial to store and transfer
information about the temporal and spatial occurrence of an event together with
the event itself because implicit assumptions about where and when the event
occurred may be difficult. Information related to these issues is called the event
context. In GEAR, a generic event is a happening that takes place in the event
layer at a given instant of the time line, 〈E,T GE〉. The happening is internal to
the system, has an event channel compliant representation, and may be related
with physical events taking place in the environment. That is, the ’event’ is the
happening as seen by the event layer, at a given instant in the time line.

It is useful to consider the event model in the terms defined in [37,35,36,22],
i.e. a real-time entity (RTe), which is the element of the physical world, a real-
time image, which is a representation of the environment and can be a sin-
gle image of a RTe or a complex representation derived from multiple sensor
readings, and a real-time object, which refers to the data structure in which a
real-time image or a real-time entity are stored and communicated. A real-time
image derived from one or more observations may be encapsulated in a 〈context,
value〉 pair, where context describes relevant aspects of the environment/system
state in which the value has been derived. The classical 〈time, value〉 model of
an event therefore refers to the temporal aspect of the context only. It is useful in

304 A. Casimiro, J. Kaiser, and P. Verissimo

a dynamic system as envisaged in this paper to include more information, e.g.
location information or a network zone.

6.2 Temporal Properties of Events

In order to deal with real-time sentient objects we need to understand the impli-
cations of timeliness requirements in the context of the proposed generic-events
architecture. This will be done by establishing fundamental correctness criteria
for the operation of the system. The system architecture, including the proto-
cols and mechanisms materialising the event layer middleware, must be built so
that the strict observation of the established criteria is ensured. On the other
hand, given the distributed nature of the problem, the correctness of operation
does not depend solely on the observation of timeliness constraints, but also on
the consistency and coordination among the distributed actors in the system.
In this respect, note that the information flow is defined in terms of events, and
it is controlled at the event layer, where everything passes. As such, and very
importantly, all consistency criteria that must be secured apply as well to regu-
lar messages, messages through operational network channels, and input/output
feedback paths through the environment. No hidden channel problems need af-
fect the operation of the system [22].

We illustrate the nature and the temporal properties of generic events with a
few examples.

Examples of generic events
1 door opened;
2 door opened as observed at T ;
3 door is open;
4 door is open as observed at T ;
5 temperature is X;
6 temperature is X as observed at T ;
7 position of crankshaft is Y;
8 position of crankshaft is Y as observed at T ;
9 crankshaft reached ignition point I;
10 crankshaft reached ignition point I as observed at T ;
11 value of variable Z is ’entering-zone mode’;
12 set variable ’cruise speed’ to S;
13 set variable ’cruise speed’ to S within T ;

The difference between (1) and (2) is that in (1) we know at T GE that the
door has opened in some (near) past instant, whereas in (2) we know at T GE

that it opened at T . The difference of the former to (3) and (4) is that here
we know the state of the door, without necessarily knowing when it opened.
In fact, note that generic events report state (3) as well as change of state (1),
what in other more classical models used to denote “state” and “events”, with
regard to the physical environment. This said, in GEAR nothing prevents the
periphery of the system (e.g., smart sensors) from being organized in the best
suited way (e.g., state sampling, event latching, etc.), for each generic-event flow
to be produced.

Generic-Events Architecture: Integrating Real-World Aspects 305

Given that T GE establishes the event production instant, there is apparently
redundant timing information in some lines, e.g. (2) or (4). However, this is
an important characteristic of GEAR: T GE denotes the time at which E was
produced on the event channel and serves any generic type of event; T is part
of E, thus invisible to the EC, but it denotes the time at which a given real-
time entity was observed to have a given state or to have changed its state. The
separation of concerns enforced by T and T GE is very important, as we detail
ahead.

When we say in (11) that we know at T GE that “ Z = ’entering-zone mode’ ”,
this marks the point at which this internal state change is relevant for the sys-
tem, e.g., as alerted by the platoon leader sentient object, in a cooperating cars
scenario. Likewise, in (12), when (e.g., the leader again) publishes the command
to change the state of the ’cruise speed’ variable to S, the reference point is T GE.

However, when we say in (3) that we know at T GE that “the door is open”, or
in (5) that “the temperature is X”, we might as well try to know how trustworthy
this information is, since the temperature and door are time-value entities. For
example, by the time T GE when we learn that “the temperature is X”, it might
already be way higher than X! Even if, as we say in (4), we know at T GE that
“the door is open at T ”, or as in (6), that “the temperature is X at T ”, this
still may not solve our problem. There are important implications of the way we
handle time-value entities that we discuss below, using definitions in [22].

Firstly, saying, as in (6), that we know at T GE that “the temperature is X
at T ”, might seem to provide a precise indication. However, what T portrays
is the time at which the periphery of the system observed the temperature.
When observing the value of a continuous variable, it is relevant to define the
error. For an observation 〈r(Ei)(ti), Ti〉 of the value of an RTe Ei at ti receiving
timestamp Ti, the observation error in the value domain is given by νi =
|Ei(Ti)−r(Ei)(ti)|: we expect the value of Ei at Ti, but we get an approximation
of the value (r(Ei)), measured approximately (ti) at Ti. That is, the error has
two components, the inaccuracy of the sensing apparatus, and the observation
positioning error. On the other hand saying, as in (4), that we know at T GE

that “the door is open at T ”, has analogous constraints. Here, when observing
the time at which a given discrete value Ei occurs (e.g., opening of the door),
the observation error (jitter) is defined in the time domain, ζi = |Ti − ti|: Ei

assumed a given value at ti, but the system logs it as having happened at Ti.
In order for our measurements to be useful, we establish bounds on the ob-

servation errors, for classes of events produced in certain conditions (e.g., that
maxima of the sensor errors and of the clocks precision are known for that class).
The fact that observations of a class of events meet an error bound allows us
to abstract from measurement details and henceforth trust observations of that
class. We say they are consistent :

– Given a known Vo, we say that an observation is consistent in the value
domain, if and only if νi ≤ Vo

– Given a known To, we say that an observation is consistent in the time
domain, if and only if ζi ≤ To

306 A. Casimiro, J. Kaiser, and P. Verissimo

This deals with the consistency at the observation instant. Secondly, we must
deal with the consistency at the use instant. We must ensure that the information
is sufficiently fresh when it is about to be used. For example, when we say in
(5) that we know at T GE that “the temperature is X”, it is important that
the interval between the time when it was measured and T GE, is known and
short enough to be useful, so that the temperature hasn’t drifted too much
in the meantime. I.e. for the information provided by this generic event to be
meaningful for whatever the system intends to do with it. This must be ensured
by the infrastructure, and a practical way is to define a fixed parameter, known
at design time, based on estimates of the variable’s dynamics. This interval has
been called absolute validity interval for databases [38], or temporal accuracy
interval for control [36].

In fact, in GEAR we generalise this concept and we use the following two
important notions to relate the value domain and the temporal domain of infor-
mation: temporal consistency and temporal validity.

Temporal consistency relates a bound ν in the value domain to a point in
time t. In general, since we consider real-time entities, the value v of the RTe
is dependent on the time and can be described as a function over time (value
over time [22]): fc(t) = v. For a point in time ta > t, the equation becomes
fc(ta) = v + δa where δa is the change of the value in the interval [t, ta]. Tem-
poral consistency defines a bound ν on the value v at time ta for which v is
an acceptable representation of the RTe. The time-value entity is temporally
consistent at ta if and only if 0 ≤ |δa| ≤ ν.

Temporal validity considers fc and defines a time interval during which all
values v of the time-value entity can be considered to be temporally consistent.
Thus, given the temporal validity interval [ta, tb] and a function fc(t), for any
tc, ta ≤ tc ≤ tb : fc(tc) = v + δc (0 ≤ |δc| ≤ ν).

Temporal consistency specifies how close an observed RTe captured in a time-
value entity represents the value in the real world. Temporal validity intervals are
derived from the knowledge of both the temporal consistency requirements and
the function fc. Both, temporal consistency and temporal validity can be used to
reason about properties of an event independently of any implementation issues,
thus they should be part of a specification. Figure 7a) shows the simple case when
f(t) is a linear function. Temporal consistency of a value v is defined by a unique
interval which matches the temporal validity interval for t0 as observation point.

Figure 7b) highlights the fact that temporal consistency is independent from
a temporal validity interval. There is an implication in only one direction: A
value in the temporal validity interval is always temporally consistent. However,
the reverse is not true: A temporally consistent value may exist outside of a
temporal validity interval. Note that if f(t) is known, it may be possible to
make predictions about the error and choose the right points in time for values
bounded by ν just by a clock.

Figure 7c) shows a difficult case of a discrete function. It shows a discrete
binary function which represents e.g. the state of a switch, a door, a traffic light,
etc. It is very difficult to define temporal validity intervals because the function

Generic-Events Architecture: Integrating Real-World Aspects 307

�

� �

�

�

� � � 	
 � � � � 	 � 	 � � � � � � �
 	 �

� � � � � � � � 	 � � � � � � �
 �
 � � �
 � � � � � � � �

�

�

�

�

� �

�

� �

�

� � � � � � 	 � � � � � � � 	 � �
 � � � � �

�

�

� � � � � � 	 � � � � � � � 	 � � � 	 � �
 � � � � �

�

 � � � � � � � � � � � � �
 � � � �

� �

�

�

�

�

�

�

�

�

� � � 	
 � � � 	 � 	 � � � � � � �
 	 �

� � � � � � � � 	 � � � � � � �
 �
 � � �
 � � � � � � �

�

�

�

�

� � � � � � 	 � � � � � � � 	 � �
 � � � � �

�

�

� � � � � � 	 � � � � � � � 	 � � � 	 � �
 � � � � �

�

 � � � � � � � � � � � � �

� �

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

� �

�

�

� � � 	
 � � � � 	 � 	 � � � � � � �
 	 �

� � � � � � � � 	 � � � �
 � � � � � � � � � �
 � � 	 � �
 � � �

� � � � � � � 	 � � �
 � � � � � � � �
 �
 � � �
 � � � � � � � �

�

�

�

�

� �

�

� �

�

� � � � � � 	 � � � � � � � 	 � �
 � � � � �

�

�

� � � � � � 	 � � � � � � � 	 � � � 	 � �
 � � � � �

�

� �

�

�

�

�

�

�

� �

�

�

�

�

�

�

 � � � � � �

� �
 � � 	 	 � �
 � � 	 � � �

� �
 � � 	 	 � �
 � � � � 	 � � �

� � � � � �

Fig. 7. RTe behaviours: a) Linear monotonic function; b) Continuous cyclic function;
c) Discrete function

is not steady. How small the interval Δt ever is, it may include a rising or falling
edge of the function and therefore a temporal inconsistency. Although temporal
consistency can be easily specified, no temporal validity interval can be defined.

Finally, coming back to our examples of generic events, the difference between
(1,2) and (5,6) concerns the nature of the variable: discrete in the former, and
continuous in the latter. Lines (7-10) illustrate how this distinction, so much used
in computer control, may turn out to be pretty much artificial. The position of
an engine’s crankshaft is a continuous variable: an angle that goes from 0 to
360 degrees (0 again) and so forth. So, there is apparently no difference between
(5,6) and (7,8). However, the crankshaft evolves so quickly that addressing it as
a continuous variable may imply a very high error. Hence, if we “fabricate” a
discrete variable which is the arrival of the crankshaft to the ignition point I,
as in (9), then this is equivalent to the kind of event in (1). This ambiguity was
addressed in [22] as the duality between value over time and time of a value.

In conclusion, we have shown the fundamental consistency guarantees to be
ensured by this kind of architectures: value and time domain observation con-
sistency; and temporal consistency.

6.3 Event Ordering and the Hidden Channel Problem

As mentioned before, one important problem in real-time computer control and
embedded systems is the inconsistency between computer message passing and
physical feedback loop information flows. This stems from the difficulty in en-
suring a proper ordering of event-messages (exchanged among computers in the
system) and physical events (which may propagate through the environment,
establishing precedence relations not perceived by the system). This is also re-
ferred as the problem of hidden channels, which we briefly introduce and discuss
in this section. Let us consider a classical example that was given by Kopetz and
Veŕıssimo [35] long time ago (see Figure 8).

308 A. Casimiro, J. Kaiser, and P. Verissimo

� � � � � � � � � 	
 � �
 � �

� � � �

� � � � �

� � � � � � � � � � � � � �

	 � �

� � � � � � � �

� � � � � � � �

� � � � � � �

� � � � �

� � � � � � �

Fig. 8. Example of interaction through the environment

The operator sends a message to open the valve over the network. At the
same time she informs the monitor to be prepared that the flow in the pipe
will change. This message is delayed and thus, when the flow sensor reports an
increased throughput, the monitor infers a broken valve and erroneously shuts
down the system. The communication via the physical (hidden) channel between
the valve and flow sensor is faster than the worst case delays in the network.

Now, what is the interpretation of this example in terms of the event ar-
chitecture? The event layer supports multiple channels and channel classes to
disseminate event messages. Event messages have a temporal validity, from which
transmission and delivery deadlines are derived. A possible application design
is depicted in Figure 9a). The command from the operator is not a safety crit-
ical event and thus, it is pushed to a soft real-time channel. The valve and the
monitor have subscribed to this channel. The flow sensor may publish through-
put periodically to a hard real-time channel because the monitor has to react
on flow changes with a guaranteed latency. The problem with the scenario is
that because of the interaction through the physical channel, it is not possible
to apply one of the usual ordering schemes based on some history mechanism
because there is no gap detection property. The physical channel simply cannot
carry any ordering information. The problem is how to detect the causal rela-
tionship between the event which caused the valve to open and the subsequent
message of the flow sensor. Any attempt to solve this problem in an asynchro-
nous system will fail. We need some mechanism based on time to detect the
(potential) causal dependency between the event generated by the flow sensor
and the previous command of the operator.

The dissemination of events through the event layer alone does not help much
if we only consider the communication over the regular network. The question
is how to include the physical channel? Figure 9b) sketches the situation.

We recognize that we have a physical (hidden) channel between the valve and
the flow sensor. This channel has a known latency. Within the GEAR architec-
ture, it can be interpreted to be propagated via a kind of operational network
coupling the valve and the flow sensor. The physical property of a flow speed
is transferred through the translation layer of GEAR by the smart flow sensor.

Generic-Events Architecture: Integrating Real-World Aspects 309

 � � �

� � � � � � � � �

� � � � � � �

� � � �

� � � � � � � � �

� � � � � � �

� � � �

� � � � � � � � �

� � � � � � �

 �
 � � �

 � � � � � � �

� � � � � � �

� � � �

 � �
 � �

� � � � � � � � � � � �

� � � � � 	 � � � � �

 � � �

� � � � � � � � �

� � � � � � �

� � � �

� � � � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � �

� � � � � � � � � � �

� � � �

� � � �

 � �
 � �

Fig. 9. The example modelled in an event system: a) without physical channel; b)
including the physical channel

At the event layer it is provided as a periodic event propagated through a hard
real-time channel. So far, no ordering property is available in the system. The
monitor can not decide whether the event from the flow sensor is dependent on
a soft real-time command event previously published by the operator. There is
no gap detection property. We need a synchrony property to solve this problem.

We address the problem using the theory developed in [39]. Hidden channels
are not directly controlled, instead their effect is incorporated in the design of the
regular computer communication system. The latter is endowed with the ade-
quate synchronism so as to guarantee that hidden channels do not cause ordering
inversions. This is akin to designing a real-time causal delivery messaging sys-
tem sensitive to both computer (send, receive) and real-world (sense, act) events.
The communication system is tuned with the propagation time parameters of
the environment.

Given the above, the problem can be addressed by resorting to a solution
based on a model of partial synchrony, such as the TCB [28]. We make the
assumption that we have a network where we can specify 〈bound, coverage〉 pairs
and have best effort mechanisms to enforce deadline delivery for soft real-time
events. The TCB provides awareness in the case an event misses the deadline
or is delivered in a different order at different nodes. It doesn’t make sense to
defer a hard real-time event to provide a global order between hard real-time
and soft real-time events. In other words, the event from the flow sensor is not
deferred until the (soft real-time) command event has been delivered to the
monitor. Thus, the HRT event from the flow sensor may be delivered before the
soft real-time command event. However, this would be known to the monitor,
which, with the help of the TCB, would be able to detect when an event has not
been delivered within a certain time bound. The latency of the entire chain of
event dissemination as depicted in Figure 10 would be used to set the TCB to an
appropriate value (the minimum propagation time of the event chain, including
the propagation time through the physical channel).

310 A. Casimiro, J. Kaiser, and P. Verissimo

� � � � � � � � � �

� � � � �

� � � � � � � � �

� � � �
 � � � � � � � � �

� � � � �

 � �
 � � � �

� � � � � � �

� � � � � �
 � � � � � � � � �

� � � � �
 � � � � � � � �

� � � � �
 � � � � � � � � � � �

� � � � � �
 � � � � � �

� � � � � � �

 � � � � � �

 � �
 � �

 � � � � � �

 � �
 � � � �

� � � � �

 � �
 � �

� � � �
 � � � � � � � � �

� � � � � 	 � � � � � � �

� � � � � � �

� � � � �

� � � � � � 	

� � 	 �

 � � 	

� � � � � � �

� � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � �

� � � � � � �

� � � " � � #

� � � � � �

� � � � � � 	

� � � � � � � � � �

� � � � � � 	

� � � � �
 � � "

� � � � � �

� � � � � � �

� � � � � � 	

� 	 � � � � �

� � � � �

�

 � � �

Fig. 10. Temporal analysis of event flow

Considering the flow sensor as a sentient object, it consumes the physical
event from the environment generated by the actuation of the valve. In turn, it
generates a generic event pushed to the respective channel. The latency can be
calculated easily from the latency of the physical channel and the HRT channel
of the event layer. At the abstraction level of sentient objects, we have three
sentient objects and two event channels, one disseminating the commands and
one disseminating the flow in the pipe (throughput) measured by the flow sensor.
Figure 10 show this in different detail.

The main benefit including the physical channel would be the fact that now
the bounds for the latencies as needed for setting the TCB is explicitly stated
in the design phase.

7 Practical Examples

This section addressed two short examples of proof-of-concept prototypes that
have been developed in the course of the CORTEX project, in which we used
some of the concepts elaborated in this paper. A more detailed description of
the cooperating cars example is provided in [40], while the coordinated robots
example and the COSMIC middleware are further detailed in [41].

7.1 Cooperating Cars

In the first scenario we consider several cars (sentient objects) with the ability
to ’consume’ events from the environment and ’produce’ events to it. These
events are disseminated and received through Event Channels, using the GEAR
architecture. We assume that the cars can freely move around and, for simplicity,
we do not consider obstacles. Because of that, a fundamental safety rule consists
in ensuring that no car crashes occur, which requires every car to know the

Generic-Events Architecture: Integrating Real-World Aspects 311

position of other cars. Therefore, each car periodically publishes its position as
a GEAR event, which will be consumed by the cars that subscribed it and that
fulfil the conditions to receive it (e.g. they are in the same ’zone’).

One solution to satisfy the safety rule is to provide each car with a temporally
consistent image of the external and internal (body) environment. Smart sensors
publish events about the relevant real-time entities of the environment. Body
sensors do the same with respect to the body. These events define the state
of a ’zone’ surrounding the car. Now, suppose all sentient objects feature a
module, call it constructor, in charge of building a real-time image (RT-image)
of the zone. The constructor subscribes to the environment and body events,
and maybe other relevant events. The external environment events contribute
to form a public RT-image of the zone. That image is enriched with inputs from
other objects, and from the object’s own body, part of which may not be made
public. What is important is that all these events obey global consistency rules.

The safety rule is illustrated on the left of Figure 11. The grey car must keep
outside the dashed circles around the black cars, and so he must always know
the position of the black cars with a bounded error (ε). This error depends on
how much time has passed since the last position of the car was published and
on the maximum speed of that car. Therefore, both of them must be bounded.

�

� � � � 	 � 	 � � � 	 � � � � � � � � � �

� � � � � � 	 � � � 	 � � � � � � � �

�

�

Fig. 11. Safety rules in the cooperating cars scenario

The problem would be easily solvable if we could assume a reliable and timely
propagation of events through EC modules. The system would be configured
so that at every P time units the grey car would receive information from the
black car (see Figure 11 on the right). Every car would be able to construct
a RT-image of the surrounding cars with a bounded accuracy (related with
the propagation latency, Δ, and the period, P), and all the images would be
consistent among them. However, since we have to assume asynchronous Event
Channels (the abstract network layer is not able to provide real-time channels
in the operational environment, typically wireless, considered here), it is not
possible to ensure the temporal consistency of the RT-image. Events can take
more than Δ to be propagated, incurring in timing failures.

In this example we assume that the architecture, despite uncertainty of com-
munication, is endowed with perfect timing failure detection (TFD), such as
supported by a timely computing base (TCB) [28]. This allows the construction

312 A. Casimiro, J. Kaiser, and P. Verissimo

of event-channel handlers that, despite not being able to provide real-time prop-
erties, are able to provide indications when some specified timeliness bound is
violated. This kind of EC modules can be exploited by fail-safe applications,
such as the cars we consider here, which can stop as soon as a timing failure oc-
curs. Considering our cooperating cars scenario, the required timeliness bounds
would have to be specified as quality parameters of the EC modules. The EC
module would then observe the timeliness of the events, with the help of the
TFD service, and execute a fail-safety procedure to stop the car, in case of a
timing failure.

7.2 Coordinated Robots

The coordinated robots example focuses on a demo of two cooperating robots,
depicted in Figure 12. Each robot is equipped with smart distance sensors, speed
sensors, acceleration sensors and one of the robots (the “guide” (KURT2) in front
(Figure 12)) has a tracking camera allowing to follow a white line.

Fig. 12. Cooperating robots

The robots form a WAN-of-CANs system in which their local CANs are inter-
connected via a wireless 802.11 network. COSMIC provides the event layer for
seamless interaction. The “blind” robot (N.N.) is searching the guide randomly.
Whenever the blind robot detects (by its front distance sensors) an obstacle,
it checks whether this may be the guide. For this purpose, it dynamically sub-
scribes to the event channel disseminating distance events from rear distance
sensors of the guide(s) and compares these with the distance events from its
local front sensors. If the distance is approximately the same it infers that it
is really behind a guide. Now N.N. also subscribes to the event channels of the
tracking camera and the speed sensors to follow the guide. The demo application
highlights the following properties of the system:

Generic-Events Architecture: Integrating Real-World Aspects 313

Dynamic interaction of robots which is not known in advance: In princi-
ple, any two a priori unknown robots can cooperate. All what publishers and
subscribers have to know to dynamically interact in this environment is the
subject of the respective event class.

Interaction through the environment: The cooperation between the
robots is controlled by sensing the distance between the robots. If the guide
detects that the distance grows, it slows down. Respectively, if the blind
robot comes too close it reduces its speed. The local distance sensors pro-
duce events which are disseminated through a low latency, highly predictable
event channel. The respective reaction time can be calculated as function of
the speed and the distance of the robots and define a dynamic dissemination
deadline for events. Thus, the interaction through the environment will se-
cure the safety properties of the application, i.e. the follower may not crash
into the guide and the guide may not loose the follower.

Cooperative sensing: The blind robot subscribes to the events of the line
tracking camera. Thus it can “see” through the eye of the guide. Because
it knows the distance to the guide and the speed as well, it can foresee the
necessary movements.

8 Conclusion and Future Work

The paper addresses problems of building large distributed systems interact-
ing with the physical environment and being composed from a huge number of
smart components, in essence, systems-of-embedded-systems. We cannot assume
that the network architecture in such a system is homogeneous. This work is a
contribution towards achieving seamless integration of different components in
such an environment, controlling the flow of information by explicitly specifying
functional and temporal dissemination constraints.

The paper presented the general model of a sentient object to describe com-
position, encapsulation and interaction in such an environment and developed
the Generic Event Architecture GEAR which integrates interactions through
the environment and the network. To our knowledge, it is the first architecture
to provide the possibility for hidden channel avoidance in the model, that is, a
seamless integration of physical and computer information flows. This may have
important implications on the way to architect systems-of-embedded-systems.

The notion of event channel has been introduced which allows to specify qual-
ity aspects explicitly, namely temporal properties. The COSMIC middleware is
a first attempt to put these concepts into operation. COSMIC allows the inter-
operability of tiny components over multiple network boundaries and supports
the definition of different real-time event channel classes.

We believe the concepts elaborated here to be of interest to build innovative
event-based systems that have to portray some kind of real-time behaviour,
because they deal with the environment. This serves application areas such as:
small-scale embedded systems; federated large-scale embedded systems; ambient
intelligence settings; ad-hoc and mobile dynamically configurable systems.

314 A. Casimiro, J. Kaiser, and P. Verissimo

References

1. Hightower, J., Borriello, G.: Location systems for ubiquitous computing. IEEE
Computer 34(8), 57–66 (2001)

2. Harrison, T., Levine, D., Schmidt, D.: The design and performance of a real-time
corba event service. In: Proceedings of the 1997 Conference on Object Oriented
Programming Systems, Languages and Applications (OOPSLA), Atlanta, Georgia,
pp. 184–200. ACM Press, New York (1997)

3. Meier, R., Cahill, V.: Steam: Event-based middleware for wireless ad hoc networks.
In: Proceedings of the International Workshop on Distributed Event-Based Systems
(ICDCS/DEBS’02), Vienna, Austria, Vienna, Austria, pp. 639–644 (2002)

4. Casimiro, A.,(ed.): Preliminary definition of cortex system architecture. CORTEX
project, Deliverable D4 (April 2002), IST-2000-26031

5. Bacon, J., Moody, K., Bates, J., Hayton, R., Ma, C., McNeil, A., Seidel, O., Spiteri,
M.: Generic support for distributed applications. IEEE Computer 33(3), 68–76
(2000)

6. Meier, R., Cahill, V.: Taxonomy of distributed event-based programming systems.
The Computer Journal 48(5), 602–626 (2005)

7. Kaiser, J., Mock, M.: Implementing the real-time publisher/subscriber model on
the controller area network (CAN). In: Proc. 2nd International Symposium on
Object-oriented Real-time distributed Computing, Saint-Malo, France (May 1999)

8. (OMG), O.M.G.: CORBAservices: Common Object Services Specification - Noti-
fication Service Specification, Version 1.0 (2000)

9. Oki, B., Pfluegl, M., Seigel, A., Skeen, D.: The information bus - an architecture
for extensible distributed systems. Operating Systems Review 27(5), 58–68 (1993)

10. TIBCO: Tibco rendezvous concepts, release 7.0 (April 2002)
11. Parado-Castellote, G., Schneider, S., Hamilton, M.: NDDS: The realtime publish

subscribe network. In: IEEE Workshop on Middleware for Distributed Real-Time
Systems and Services, pp. 222–232 (1997)

12. RTI: Real-time inovations. network data delivery service, http://www.rti.com
13. Mori, K.: Autonomous decentralized systems: Concepts, data field architectures,

and future trends. In: Int. Conference on Autonomous Decentralized Systems
(ISADS93). (1993)

14. Carriero, N., Gelernter, D.: Linda in context. Communications of the ACM 32(4),
444–458 (1989)

15. Kim, K., Jeon, G., Hong, S., Kim, T., Kim, S.: Integrating subscription-based and
connection-oriented communications into the embedded CORBA for the CAN Bus.
In: Proc. IEEE Real-time Technology and Application Symposium (May 2000)

16. Lankes, S., Jabs, A., Bemmerl, T.: Integration of a CAN-based connection-oriented
communication model into Real-Time CORBA. In: Workshop on Parallel and Dis-
tributed Real-Time Systems, Nice, France (April 2003)

17. Robert Bosch GmbH: CAN Specification V2.0. Technical report (September 1991)
18. Kopetz, H., Holzmann, M., Elmenreich, W.: A Universal Smart Transducer In-

terface: TTP/A. International Journal of Computer System, Science Engineer-
ing 16(2) (2001)

19. (OMG), O.M.G.: Smart transducer interface, initial submission (June 2001)
20. CORTEX Consortium: CORTEX project Annex 1, Description of Work (October

2000) http://cortex.di.fc.ul.pt
21. Hopper, A.: The Clifford Paterson Lecture, 1999 Sentient Computing. Philosophi-

cal Transactions of the Royal Society London 358(1773), 2349–2358 (2000)

http://www.rti.com
http://cortex.di.fc.ul.pt

Generic-Events Architecture: Integrating Real-World Aspects 315

22. Veŕıssimo, P., Rodrigues, L.: Distributed Systems for System Architects. Kluwer
Academic Publishers, Dordrecht (2001)

23. Meier, R.(ed.): Preliminary definition of cortex programming model. CORTEX
project, IST-2000-26031, Deliverable D2 (March 2002)

24. Führer, T., Müller, B., Dieterle, W., Hartwich, F., Hugel, R.: Walther, M.: Time
triggered communication on CAN (2000), http://www.can-cia.org/can/ttcan/
fuehrer.pdf.

25. LIN Consortium: Local Interconnect Network: LIN Specification Package Revision
1.2. Technical report (November 2000)

26. FlexRay Consortium: FlexRay Communications System Protocol Specification,
Version 2.0. Technical report (June 2004)

27. Veŕıssimo, P., Casimiro, A.: Event-driven support of real-time sentient objects. In:
Proceedings of the 8th IEEE International Workshop on Object-oriented Real-time
Dependable Systems, Guadalajara, Mexico (January 2003)

28. Veŕıssimo, P., Casimiro, A.: The Timely Computing Base model and architec-
ture. Transactions on Computers - Special Issue on Asynchronous Real-Time Sys-
tems 51(8), 916–930 (2002)

29. Eugster, P.T., Felber, P., Guerraoui, R., Kermarrec, A.M.: The many faces of
publish/subscribe. Technical Report DSC ID:200104, EPFL, Switzerland (2001)

30. Livani, M., Kaiser, J., Jia, W.: Scheduling hard and soft real-time communication
in the controller area network. Control Engineering 7(12), 1515–1523 (1999)

31. Kopetz, H., Grünsteidl, G.: TTP - A Time-Triggered Protocol for Fault-Tolerant
Real-Time Systems. Technical Report rr-12-92, Institut für Technische Informatik,
Technische Universität Wien, Treilstr. 3/182/1, A-1040 Vienna, Austria (1992)

32. Kaiser, J., Mitidieri, C., Brudna, C., Pereira, C.: COSMIC: A Middleware for
Event-Based Interaction on CAN. In: Proc. 2003 IEEE Conference on Emerging
Technologies and Factory Automation, Lisbon, Portugal (September 2003)

33. Becker, L.B., Gergeleit, M., Schemmer, S., Nett, E.: Using a flexible real-time
scheduling strategy in a distributed embedded application. In: Proc. of the 9th
IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA), Lisbon, Portugal (September 2003)

34. Mock, M.: On the real-time cooperation of autonomous systems. Fraunhofer Series
in Information and Commnication Technology 6(2204) (2204)

35. Kopetz, H., Veŕıssimo, P.: Real-time and Dependability Concepts. In: Mullender,
S.J. (ed.) Distributed Systems, 2nd edn. pp. 411–446. ACM-Press, Addison-Wesley,
New York (1993)

36. Kopetz, H.: Real-Time Systems. Kluwer Academic Publishers, Dordrecht (1997)
37. Kopetz, H., Kim, K.H.: Temporal uncertainties in interactions among real-time

objects. In: 9th Symp. on Reliable Distributed Systems (SRDS-9), Huntsville, AL,
USA, pp. 165–174. IEEE Computer Society Press, Los Alamitos (1990)

38. Ramamritham, K.: The origin of TCs. In: Proceedings of the First ACM Interna-
tional Workshop on Active and Real-Time Database Systems, Skovde,Sweden, pp.
50–62. Springer, Heidelberg (1995)

39. Veŕıssimo, P.: Causal delivery protocols in real-time systems: A generic model.
Journal of Real-Time Systems 10(1), 45–73 (1996)

40. Martins, P., Sousa, P., Casimiro, A., Veŕıssimo, P.: Dependable adaptive real-time
applications in wormhole-based systems. In: Proceedings of the 2004 International
Conference on Dependable Systems and Networks, Florence, Italy, pp. 567–572.
IEEE Computer Society Press, Los Alamitos (2004)

41. Kaiser, J., Brudna, C., Mitidieri, C.: Cosmic: a real-time event-based middleware
for the can-bus. J. Syst. Softw. 77(1), 27–36 (2005)

http://www.can-cia.org/can/ttcan/fuehrer.pdf.
http://www.can-cia.org/can/ttcan/fuehrer.pdf.

Flexible Communication Architecture for

Dependable Time-Triggered Systems

Christoph Heller, Josef Schalk, Stefan Schneele,
Maria Sorea, and Sebastian Voss

EADS Deutschland GmbH,
Corporate Research Centre,

81663 Munich, Germany
stefan.schneele@eads.net

http://www.eads.net

Abstract. The trend for more flexible communication architectures, in
particular for safety critical aeronautic applications, reflects the grow-
ing need for an optimized design approach. Customer requirements for
additional functionality and changes caused by unpredictable obsoles-
cence policies may necessitate requests for renewal of technologies dur-
ing the product life cycle in a maintainable approach. The challenge is
to develop an architecture approach, allowing reusability of existing ap-
plication code, scalability and providing independence of the underlying
system communication.

Over recent years, shared networks have become a rapidly emerging
technology in aeronautics and space, since they offer — in contrast to
point-to-point connections — more flexibility in terms of architecture and
reduced wiring. Thus, they present the prospect of potential savings in
cost and weight. In particular, due to their reliability and strongly deter-
ministic behavior, time-triggered shared networks have evolved as eligible
communication protocols for safety-critical applications in aerospace.

We propose an approach in terms of dependable and flexible
communication architecture that permits more flexibility in the use of
time-triggered technologies and delivers a more effective, reliable and
dependable system design.

1 Introduction

The present trend in aeronautic technology is to replace mechanical controls with
electronic x-by-wire solutions. Fly-by-wire technology was already introduced in
the 1980s [1]. Apart from the aeronautic industry, this trend also took place
in the space and for the automotive industries, as well as many other sectors.
These x-by-wire controls require a system to respond to stimuli within some
small upper limit of time. Hence, they are classified as (hard) real-time (RT)
systems. As outlined in section 2 there are applications where it is favorable
to build up a control of this nature as a distributed RT system, instead of a

R. de Lemos et al. (Eds.): Architecting Dependable Systems IV, LNCS 4615, pp. 316–336, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Flexible Communication Architecture 317

centrally controlled system. In many cases the subsystems, a distributed system
is composed of, differ in terms of computing power and architecture, or they are
dynamic in their temporal behavior. The distributed system can therefore be
classified as heterogeneous.

Proper intra-system communication is crucial for a distributed system to be
able to operate reliably and dependably [2] [3].1 Commercial reasons entail that
communication architecture is increasingly realized as shared communication
buses instead of several discrete point-to-point connections (for instance ARINC-
429) [4]. This replacement exerts an additional burden of complexity on system
designers. Bus arbitration, mapping signals to frames, scheduling, and the electri-
cal configuration of a bus with many subscribers are not trivial issues. Selection
of a specific bus may introduce additional design constraints. Furthermore, it is
an acknowledged fact that the impact of the underlying protocol on architectural
decisions and on software development is highly significant. Taking the many dif-
ferent aspects into consideration, this situation may be regarded as leading to
suboptimal system configurations, which are difficult to maintain and to scale.

In this paper we propose a novel architecture approach that supports a high
degree of static and dynamic heterogeneity for the integrated components. Fur-
thermore, we further argue that optimal configuration of the underlying commu-
nication protocol leads to a higher level for flexibility of the entire architecture.

The remainder of this paper is structured as follows. Section 2 provides back-
ground information on the characteristics of shared-bus architectures and the
usage of time-triggered protocols.

Section 3 analyzes the requirements and challenges confronting a flexible com-
munication architecture for dependable distributed systems in the aeronautic
field of application.

Section 4 describes the implementation of methods designed to realize the
approaches presented in section 3. The dependable and flexible architectural ap-
proach is introduced. The architecture consists of two key elements, namely the
Abstraction Layer and the Communication Layer. The overall approach com-
prising both layers is referred to as Communication Abstraction Layer. The Ab-
straction Layer providing the physical implementation of these services is hidden
to the application. This releases the system designer from bus specific consid-
erations. The quality of services guarantees system requirements, in particular
those related to timing and fault-tolerance. The Communication Layer com-
prises capabilities which enable bus designers to implement a protocol-specific
and optimized bus configuration. There is the additional possibility of migra-
tion between the various time-triggered protocols. These capabilities consist of
a set of design rules for supporting the migration, an application-specific set of
physical parameters, and a feasible scheduling mechanism with the focus on an
optimized bus load. The paper concludes with a discussion of the architecture
presented and forecasts future developments in this research area.

1 Dependability of a computing system is the ability to deliver service that can justi-
fiably be trusted. Reliability is the continuity of a correct service.

318 C. Heller et al.

2 Time-Triggered Protocols for Dependable Distributed
Systems

The communication architecture presented in this paper has been developed for
dependable distributed systems on the basis of a time-triggered bus. This section
provides background information on shared-bus architectures and the properties
of time-triggered communication.

2.1 Distributed Systems

An electronic control system can be built up either as a centrally controlled
system or a distributed system. A centrally controlled system consists of a cen-
tral processing system with all other functional units like sensors and actuators
directly connected with this central unit via point-to-point connections. The pe-
ripheral units are more or less ”stupid” devices, whereas all system intelligence
is located inside the central unit.

The following definition of the term distributed system can be found in the
literature [5].

”A distributed system consists of a collection of distinct processes, which
are spatially separated, and which communicate with one another by
exchanging messages. [...] A system is distributed if the message trans-
mission delay is not negligible compared to the time between events in
a single process.”

If we elaborate on this citation, a distributed system consists of several sub-
systems, interacting by exchanging messages to render the functionality of the
global system. Other forms of interaction like shared memory or repository sys-
tems are not feasible for aeronautic systems due to the spatial separation and
encapsulation required.

The advantages of a distributed system architecture are increased compos-
ability, scalability and manageability as a result of the functional encapsulation
of the subsystems. A distributed architecture is also preferable in terms of relia-
bility, since if one subsystem failed, the remainder of the system might be able to
continue operating. It is even possible that other subsystems take over the func-
tionality of the failed one. Finally, a distributed architecture is the prerequisite
to reduce the wiring complexity of a system, as for example several sensors and
actuators can be integrated into one smart subsystem with a reduced number of
interfaces to the other subsystems.

2.2 Shared-Buses Versus Point-to-Point Connections

A proper intra-system communication is crucial for the reliable operation of a
distributed system.

From the communication point of view, the subsystems are called nodes. The
interconnections between the nodes can be realized as several discrete point-to-
point connections or as a shared bus. A point-to-point connection is a communi-
cation channel with one transmitting node and one or more receiving nodes. This

Flexible Communication Architecture 319

allows each transmission to utilize the full available bandwidth of the communi-
cation channel. If the system is based on a shared bus, only one communication
channel is used, to which all nodes are connected. Since more than one node
is generally able to transmit on the shared bus, the available bandwidth of the
communication channel has to be shared among the nodes. Furthermore, it is
conceivable that multiple nodes might attempt to transmit simultaneously. It is
therefore necessary to use a dedicated protocol to organize bandwidth allocation
and arbitration of the shared communication medium. The benefits of a shared
bus architecture, which have to be assessed in tandem with these additional ex-
penses entailed, are greater flexibility, scalability and composability, as well as
a reduced and simplified wiring compared with an architecture based on point-
to-point connections. Because reduced harnesses also lead to reduced weight,
shared buses are the technology of choice in aeronautic applications. This paper
only addresses shared-bus architectures.

2.3 Time-Triggered Versus Event-Triggered Communication

As previously mentioned, a suitable protocol is required to organize the band-
width allocation and arbitration of a shared communication bus. The communi-
cation can either be organized according to an event-triggered or a time-triggered
principle — both having their specific benefits and drawbacks.

In the case of event-triggered communication, the message sending is trig-
gered by the occurrence of external events. Such an event might be the sudden
change of state in a monitored physical variable or a user input. Event-triggered
communication protocols have to implement mechanisms for ensuring that si-
multaneous events do not lead to message collisions. This can be achieved by
assigning each type of message a certain priority level. The sending of a mes-
sage is delayed until all transmissions with greater priority levels are completed.
It is not possible to specify worst-case transmission delays or jitters for event-
triggered messages, as events in general occur arbitrarily. In theory, a message
could be infinitely delayed by other messages with greater levels of priority. If an
event-triggered protocol (like CAN [6]) were be used for a dependable distrib-
uted system, additional complexity is required at application or even at system
level to solve the problem of an unpredictable intra-system communication.

If a time-triggered protocol is used to organize communication on the shared
bus, the message transmission is triggered by the progression of time. A periodi-
cally repeated communication schedule specifies which message is sent by which
node at which point in time. A prerequisite for the correct operation of a time-
triggered system is a consistent knowledge of the global time among all nodes.
This requires either a clock master, which informs all nodes about the global
time, or a distributed mechanism that synchronizes the local clocks of the nodes
and generates a global timebase. The latter is used by most implementations
of time-triggered protocols, FlexRay or TTP/C among them. Correct message
scheduling and clock synchronization ensure collision-free accesses to the shared
bus. The major advantage of time-triggered communication is its determinism.
Since the message transmission times are specified a-priori, the transmission

320 C. Heller et al.

delay of each message is known and the transmission jitter is reduced to the
imprecision of the clock synchronization. Using time-triggered operating sys-
tems, it is possible to synchronize application and communication, resulting in a
deterministic system with exact knowledge at which point in time a message is
produced, transmitted and consumed. A side-effect of time-triggered communica-
tion is greater transparency of the system health state, derivable from the known
sending instants of each node. Because of these characteristics, time-triggered
protocols seem to be appropriate for the design of dependable distributed real-
time applications.

Another advantage is their greater efficiency compared to event-triggered pro-
tocols. In order to allow for robustness against variations in the occurrence of
events, an event-triggered system should be designed in a way that its expected
busload is less than 60-70% [7]. Besides the gaps required for the clock synchro-
nization, time-triggered protocols can utilize the full bandwidth of the shared
bus. Since the messages for time-triggered communication are identified by their
temporal occurrence, no identifiers for the type or sender of the message have
to be transmitted. This also increases the efficiency of the time-triggered com-
munication principle.

The main drawback of time-triggered communication is the lack of flexibil-
ity compared to event-triggered communication. In an event-triggered system,
messages or nodes can simply be removed or added, provided that this is compli-
ant with the expected busload. In a time-triggered system, the communication
schedule defines the participating nodes and the messages they exchange. This
schedule has to be specified at the design phase of the system. Adding or re-
moving messages or nodes involves setting up a new communication schedule.
Nevertheless, the advantages of time-triggered protocols make them important
for dependable distributed systems, especially in the aeronautic domain.

Table 1 gives a comparison of the event-triggered and time-triggered commu-
nication principle.

The analyses and the developed communication architecture presented in this
paper are based on TTP/C [8] and FlexRay [9], as at the date of origin of this
paper, they are the most common implementations of a time-triggered protocol.

3 Requirements in a Communication Architecture for
Time-Triggered Systems

In designing a distributed system architecture with a time-triggered bus, there
are a lot of requirements which have to be taken into account. In this chapter
we address the requirements of aeronautic communication systems in general,
and especially under the consideration of a time-triggered protocol. Due to their
reliability, strongly deterministic behavior and heterogeneous character the con-
figuration get rather complex. The complexity involved in defining a consistent
parameterization of a time-triggered protocol means that we need to describe
the requirement for a scheduling strategy, in order to meet system requirements
and handle complexity in configuration. Furthermore, on the basis of all these

Flexible Communication Architecture 321

Table 1. Comparison of event-triggered and time-triggered systems

Event-Triggered

Flexibility nodes/messages can be added/removed even at runtime
Reliability communication scenario unpredictable
System Health opaque: no message = no event or faulty node?
Bus Load not deterministic, depends on occurrence of events
Efficiency larger frame overhead

bus load has to be less than 60-70%
Message Content event observation

ideal for rare events

Time-Triggered

Flexibility communication schedule has to be specified at design time
Reliability deterministic communication
System Health transparent: each node sends periodically
Bus Load as defined in the communication schedule
Efficiency less frame overhead (no message/node identifiers)

full bandwidth can be used
Message Content state observation

ideal for frequently changing variables

requirements we evaluate the need for a middleware approach and a suitable
Communication Abstraction Layer.

3.1 Requirements of Distributed Aeronautic Systems

The functional and architectural requirements in communication are manifold in
distributed aeronautical systems. The functional hard real-time demands placed
on aeronautic systems are obvious. They necessitate bounded and acceptable
message transmission delays and jitters from the underlying communication.

In terms of architecture, distributed aeronautic systems often have to cope
with heterogeneity, demanding flexibility from the intra-system communication.
This paper distinguishes between two forms of heterogeneity: static heterogeneity
on the one hand, and dynamic heterogeneity on the other one.

A system is heterogeneous in a static manner, if, for example, it consists of a
heterogeneous set of subsystems, differing in their hard- or software architecture.
As a consequence of this, the individual subsystems might differ in their com-
puting power and the way in which the communication medium is interfaced. In
modern civil aircraft 2 Integrated Modular Avionics (IMA) is the reference ar-
chitecture for control systems. An IMA module is a powerful computation unit,
running an ARINC 653 [10] compatible operating system to execute complex
control algorithms. In a distributed system, such an IMA module might be con-
nected with rather simple sensor/actuator modules, equipped with a low-cost
microcontroller and without a dedicated operating system. If the time-triggered
2 e.g. Boeing 787, Airbus A380.

322 C. Heller et al.

bus is the only communication interface of a subsystem, it might be beneficial
to synchronize its application with the timebase of the time-triggered bus. This
could either be done by using a time-triggered operating system or by using a
simple sequencing routine. Both would call the application tasks in a predefined
sequence, synchronized with communication on the bus. As the name IMA im-
plies, several functions are integrated in one module. Thus, the interface to the
time-triggered bus is probably not the only communication interface of the IMA
module under consideration. The AFDX [11] network that acts as a backbone,
interconnecting the individual modules of the IMA architecture, might — from
a hierarchical perspective — be more important than the time-triggered bus in-
terface. It might therefore be detrimental to synchronize the operating system
with the less important time-triggered bus. Since the IMA software architecture
restricts the usage of interrupts — their usage could either be completely or tem-
porarily prohibited — an IMA module would have to interface a time-triggered
bus in an asynchronous manner. Hence, the communication architecture devel-
oped has to support software architectures with and without operating system,
and synchronous and asynchronous bus accesses.

Apart from its heterogeneous hardware and software architecture, another
aspect of a statically heterogeneous communication system might be unequal
assignment of the (static) bus bandwidth among the nodes. The system might
consist of nodes sending a lot of messages requiring significant bandwidth, as
well as nodes, requiring only a small amount of bandwidth.

Finally, the topology of the bus itself could be heterogeneous. A set of nodes
could be located close to each other, resulting in short interconnections, whereas
other nodes could be located in a remote distribution from the others. The
structure of the bus could be a linear bus, a star or even a combination of these
two topologies.

Dynamic heterogeneity is the other form of heterogeneity a communication
system might have to deal with. This is characterized by a change in the com-
munication scenario at runtime. If a system has to switch between different op-
erational modes, it might be expected that such a change also implies a change
in the intra-system communication. Hence, it might be necessary to change the
bandwidth allocation among the nodes dynamically at runtime. In an aeronautic
application, the communication might be different depending on whether the air-
craft is parked on the ground or flying at cruising altitude. The communication
architecture should be able to adapt to changing communication requirements
at run-time. In some situations, e.g. related to maintenance, an important com-
munication requirement relates to integrating a new device on-the-fly without
having complete knowledge of the communication architecture.

Another form of dynamic heterogeneity lies in the type of messages which the
subsystems exchange. Generally, there are two types of message: event messages
and state messages. A state message is sent periodically, corresponding to the
sampling of the message value. State messages are therefore ideal for the cyclic
communication of a time-triggered system. Nevertheless, scenarios are conceiv-
able, where the transmission of a state message is inappropriate, as it would

Flexible Communication Architecture 323

cause a lot of transmissions without new information content. This applies to
rarely changing values, for example observation of whether the user has pressed
a button. Instead of periodically sending a message with the content ”button
not pressed”, it is more efficient just to send a message for the event when the
button is pressed. Since such a message is coupled to the occurrence of an event,
it is called event message. Both types of messages should be supported by the
communication architecture.

3.2 The Complexity of Time-Triggered Protocols

Using a time-triggered protocol for the communication of a distributed system
significantly increases the necessary effort for the system design process com-
pared to using an event-triggered protocol. If an event-triggered protocol is
used, the application can be implemented regardless of the system communi-
cation, provided that the expected busload lies in a valid range. When using a
time-triggered protocol, the communication also has to be precisely specified.
If the application is synchronized with the bus, communication and application
have to be well inter-coordinated.

System designers who are highly qualified in their system domain have to
address complex communication aspects which may lead to a suboptimal con-
figuration. Such issues are very often solved by using a higher bandwidth but
this adds additional and avoidable electrical complexity to the system. Taking
all these aspects into consideration, the impact of introducing a time-triggered
bus into existing design processes is immense. There are also many open issues
pending related to integration within chance and configuration management.

Even the generation of a proper parameter set to realize the bus configura-
tion obtained from the bus designer, is a complex problem for time-triggered
protocols subject to analysis. A TTP/C node is configured using a data struc-
ture called message description list (MEDL) [12], which has to be loaded in the
communication controller 3 before communication can be established. A MEDL
is organized in the form of interlinked tables consisting of binary values. For
example, more than 750 parameters have to be set for the most simple TTP/C
configuration.4

The complexity of FlexRay parameterization lies in the same order of mag-
nitude. The analyzed FlexRay communication controllers 5 are parameterized
using register settings. The existence of different communication controller im-
plementations for FlexRay differing in their parameter sets again increases the
complexity of the problem. The most common data interchange formats for
FlexRay parameter sets are the Controller-Host Interface (CHI) file and the
Field Bus Exchange Format (FIBEX) [16]. The CHI file is based on a propri-
etary format and contains a mixture of functions and configuration parameters,

3 The analyses are based on the AS8202NF TTP/C controller. [13].
4 A network consisting of four nodes. Only one cluster mode implemented, consisting

of four round slots (cf. [8]).
5 MB88121B [14], MFR4300 [15].

324 C. Heller et al.

as well as write instructions that directly set the registers of the communica-
tion controller to the desired values. Similar to the MEDL files, the parameter
settings are not directly human-readable. The FIBEX file, in contrast, is a stan-
dardized XML6 file format for describing message-based communication systems.
Nevertheless, the large number of parameters and numerous interdependencies
means that setting the parameters by hand is not advisable. A dedicated tool is
inevitably required to generate the parameter defined in the bus design.

3.3 Scheduling in Time-Triggered Architectures

A scheduling strategy is a key component for obtaining high level of perfor-
mance with time-triggered systems. In order to fulfill system requirements, time-
triggered systems must react within precise timing constraints. As a consequence,
the correct behavior of these systems depends on the value of the computation
and on the time at which the results are produced and transmitted.

Schedulers coordinate the execution of system tasks in order to meet the
requirements for their temporal behavior. Since a shared system is a multi-
processor system, these tasks can overlap in time and may be characterized by
different priority and computation duration. The CPUs are assigned to various
task according to a scheduling policy with the help of a scheduling algorithm.
A feasible schedule is required to take into account the different system require-
ments, e.g. fault tolerance, determinism, scalability, reliability, validation and
verification, etc. . This schedule must be compliant with the system require-
ments. In addition to task scheduling at system level, a time-triggered system
must also involve communication of messages at the protocol level. This means
that the traditional scheduling approach has to be extended by considering mes-
sage scheduling to address the whole complexity in designing heterogeneous sys-
tems based on a time-triggered bus.

3.4 Middleware Approaches and Abstraction Layer

Common bus systems only specify the Physical Layer and the Data Communica-
tion Layer with respect to the ISO/OSI model [17]. For instance, the transporta-
tion of messages with more than 8 Byte is not addressed in a CAN [6] based
system. There are basically two methods to access the Data Communication
Layer in embedded software development. On one hand, software engineers can
interface the bus hardware directly. On the other hand, a common Communica-
tion Abstraction Layer could be introduced to provide a standard interface even
for applications which are addressing different functionalities. The first approach
is proprietary and may lead to problems with integrating subsystems from differ-
ent vendors on the same shared bus. Different strategies related, e.g. to start-up
and fault scenarios, means that the second approach clearly demonstrates sig-
nificant benefits in terms of dependability and scalability. An adoption of the
generic Communication Abstraction Layer to a specific application has to be
6 http://www.w3.org/XML/

Flexible Communication Architecture 325

carried out by configuration files. However, the use of common Communication
Abstraction Layers is not yet state-of-the art in the aeronautical sector for sub-
systems. This is because there is no open industry standard for systems without
an operating system in conformity with ARINC 653 [10]. There are a number of
open standards in other industry sectors, such as the OSEK [18] initiative within
the automotive industry, or the Smart Distributed System (SDS) from Honey-
well [19] used for production equipment. The differences between these layers are
mainly based on optimization for a specific field of application (e.g. real time con-
straints) and hardware environments (e.g. size of ROM, RAM, ...). An overview
of all the available and ongoing work related to Middleware and service oriented
computing would be beyond the scope of this paper. [20] gives an interesting
overview of the state-of-the art in Middleware technology. A promising domain-
independent approach addressing the whole design methodology and validation
and the verification of integrated embedded systems is being developed in the
context of the EU sponsored project ”Dependable Embedded Components and
Systems” (DECOS) [21]. The goal of DECOS is to develop homogeneous and
operation system based platforms. Services such as virtual communication links
for running CAN based legacy code on top of time-triggered networks are un-
doubtedly of interest, but they are outside the scope of the systems and hardware
addressed in this paper, due to the overhead they introduce [22].

The next section introduces a Communication Abstraction Layer, optimized
for heterogeneous embedded aeronautical applications, and strategies for an op-
timal configuration of the underlying protocols are presented.

4 Achieving Flexibility with Time-Triggered Systems

In order to meet the demands of the heterogeneous time-triggered communi-
cation system presented in section 3.1, the system architecture and its design
process have to be flexible. Some flexibility aspects have to be implemented in
the configuration of the protocols, while others are implemented in the software
architecture and the system design. The objective is to have a design process
that supports different types of nodes and different implementations of time-
triggered protocols to permit code reusability ease of possible migration and
facilitate certification issues.

4.1 Communication Abstraction Layer Concept

As referred to above, nodes with different hardware configurations might require
different routines for accessing functionalities and data provided by the time-
triggered bus. In order to alleviate the dependence between hardware and soft-
ware, the underlying hardware has to be abstracted. This could either be done by
implementing a dedicated driver for each combination of host and bus controller
implementation, or by introducing a Hardware Abstraction Layer (HAL) and a
generic driver covering all time-triggered protocols. The set of dedicated drivers
has to provide the same function calls and data structures for the higher levels

326 C. Heller et al.

of the software architecture. A drawback of this approach is the complexity in-
volved. Up to n ·m different drivers would have to be implemented for n different
host controllers and m different bus controllers to be covered by the approach.
A reasonable mitigation could be usage of a HAL in combination with a generic
driver. This would require the implementation of n HALs for each different host
controller and m instances of the generic FlexRay interface. This results in only
n + m different implementations and is therefore the approach of choice.

The driver itself should support both operation modes, the asynchronous and
synchronous mode — depending on the requirements of the application. On top
of these drivers several layers are settled. Figure 1 gives a comprehensive overview
of the proposed architecture. A Communication Abstraction Layer itself consists
of a two-layered approach, namely an Abstraction Layer and a Communication
Layer.

Fig. 1. Architectural Approach

All layers are implemented in ANSI C. The standard interface of the driver
is the Communication Layer. This layer provides basic services to the operation
system and to a sequencer:

1. Start Communication
2. Stop Communication
3. Sending of Raw Data
4. Receiving of Raw Data
5. Mode Change
6. Local Clock Synchronization
7. Error Handling

The adaptation to specific bus configuration is performed via configuration
files to maintain the integrity of the driver code. These configuration files can

Flexible Communication Architecture 327

be mainly interpreted as a C structure containing the register settings of the
respective bus controller. There is currently no standard available incorporating
different bus systems. Typical proprietary options would have been the tabular
MEDL format for TTP/C or the CHI format for FlexRay. A new structure was
therefore introduced. As referred to above, such structures consist mainly of a
large number of parameters and should be automatically checked for consistency
and errors. These configuration files are processed during the initialization phase
of the communication controller. The example in figure (2) shows the control flow
of a TTP/C initialization sequence.

Fig. 2. Initialization Sequence

The function calls of the Communication Layer are intended to access the
buffers on the frame level of the communication controller directly. They are there-
fore more suitable for integration within system calls. Performance tests showed
that addressing a bus controller at signal level overloads common CPUs. Cyclic
redundancy checks (CRC) and specific status are usually attached to the appli-
cation’s signals. Moreover, several instances of a signal are triggered to perform
redundant data transmission. A higher level of abstraction is therefore desirable
for working with signals at application level. This is achieved by introducing the
Abstraction Layer. The core services of the Abstraction Layer are:

1. Set Message Value
2. Get Message Value

328 C. Heller et al.

3. Sender Status
4. Receiver Status
5. Message Refresh Rate
6. Host Specification
7. Controller Status
8. ARINC 653 Calls

The service Host specification is necessary because referring signals by name
is not always adequate. For example, redundant systems might entail specifying
the dedicated sending or receiving host of a signal in order to perform voting
algorithms at application level. These functions offer an appropriate level of
abstraction to the application developer by using additional information from
a bus independent communication matrix. The communication matrix specifies
the system level requirements related to communication, such as bit size, sign,
redundancy level, value range and maximal latency. This allows for syntactic and
semantic run-time checks. As yet, there are also no open standards for defining
the communication matrix.

4.2 Integration into Application Layer

A standard approach in aeronautics is to generate the application code with
SCADE [23]. As this C code does not contain any system calls, the Abstraction
Layer does not need to be integrated into the SCADE design process. In order
to satisfy the inputs and outputs of SCADE Tasks, communication tasks have to
be appropriately scheduled to access the time-triggered bus. There are basically
two ways of integrating these communication tasks into the Abstraction Layer:
deployment with or without an operating system in conformity with ARINC
653. In an environment without an operating system, the standard interface
of the Abstraction Layer would be utilized. The benefit is that this interface
software relies on an approved framework, and is not affected by changing the
communication technology.

The ARINC 653 standard specifies two possibilities for establishing commu-
nication. The standard provides for a Queuing Port and a Sampling Port. In
queuing mode, each new occurrence of a message overwrites the previous one.
This represents the typical time-triggered communication behavior. In the sam-
pling mode, the messages are stored in FIFO order. This mode of communication
is specified for each signal within the communication matrix. Depending on the
underlying time-triggered protocol the sampling mode places heavy constraints
on the task schedule. The necessary API calls for achieving an ARINC 653 com-
pliance are limited to CREATE PORT, WRITE MESSAGE, READ MESSAGE,
GET PORT STATUS and GET PORT ID. Figure 3 illustrates the interdepen-
dence between the different software layers.

4.3 Introduction of the Bus Designer

As referred to section 3.2, the complexity of configuring a system based on a
time-triggered bus is immense. In order to address this complexity and keep the

Flexible Communication Architecture 329

Fig. 3. Application Integration

system design approach feasible, the role of a bus designer should be integrated
into the design process as shown in figure 4. The bus designer will support the
whole process right from the start by providing design constraints for the system
designer and will deliver an optimized protocol specific bus configuration to
the final system integration. The bus configuration has to satisfy all constraints
expressed by the hardware and protocol independent communication matrix and
the application task schedule, delivered by the system designer.

4.4 Implementation of Scheduling Strategy

As stated in section 4.3, the role of the bus designer is to support the entire de-
sign process by providing design constraints and suitable scheduling strategies.
As part of the scheduling strategy, task scheduling and message scheduling have
to be considered in the new design process that incorporates the bus designer.
Although, task and message scheduling are two separate activities under the re-
sponsibility of the system designer and bus designer respectively, there is a strong
interrelation between those two activities. It is therefore necessary to combine
the detailed knowledge of system designer, for example protocol-independent
task schedule with all its parameters (e.g. response times, deadlines, computa-
tion, etc.,) with the protocol-specific knowledge of the bus designer, in order
to obtain a possible optimized task and message scheduler for the parameters
under consideration. A scheduling strategy therefore has to support the system
development by defining the dependencies between task and message schedule.
The scheduling strategy should also allow for finding feasible scheduling poli-
cies to provide improved system utilization with enhanced predictability on the
basis of different system requirements as well as requirements imposed by the
time-triggered communication.

When designing a communication scheduler the system designer usually will
take system specific and protocol specific constraints into account. When

330 C. Heller et al.

Fig. 4. Role of Bus Designer

considering different time-triggered protocols, such as TTP/C and FlexRay, this
approach would lead to sub-optimal bus configurations, given the higher level of
complexity by comparison with traditional communication protocols, like CAN.
The amount of parameters in the mentioned time-triggered protocol above at-
tains a complexity requiring detailed knowledge of the underlying protocol. An
additional scheduling strategy is needed for optimizing parameters and achieving
a feasible schedule to meet all system requirements:

We therefore address this problem by proposing a scheduling approach based
on separation of scheduling related parameters using the knowledge of the system
and bus designer.

The application-specific parameters can be assigned to the role of the system
designer who provides specific information about the system requirements. These
parameters can be divided in mainly architectural, physical, and function related
parameters. Architectural Parameters describe the topology, such as number
of nodes, star, bus, or hybrid architecture, etc. Function related parameters
can be described by the attributes of signals or messages which realize system
functionality, such as refresh rate, size, priority, etc. The definition of physical
parameters and bus specific parameters is assigned to the role of the bus designer.
These parameters include cycle length, slot length, number of slots, etc., and are
rather protocol specific.

The role of the bus designer is indisputable to obtain optimal bus configuration
on the basis of the given system requirements.

Flexible Communication Architecture 331

Fig. 5. Scheduling strategy

A two-step approach is proposed for achieving this goal, as illustrated in
figure 5:

– Firstly, the bus-specific parameters are set in compliance with the time-
triggered protocol under consideration. This is done with reference to the
given system requirements as an input provided by the system designer.

– The allocation of payload to time-triggered slots has to be performed as a
second step. This entails developing a feasible scheduling policy which is
characterized by a set of rules, also known as scheduling algorithms. These
algorithms have to be developed in accordance with system requirements.
The task schedule provided by the system designer has a major impact on
designing a feasible communication schedule. In this context, the relation
between task and message schedule is significant.

4.5 Necessary Tools

It is obvious the approach described above requires consistent tool support.
Stand-alone tools for all common bus systems are available on the market and
usually have adequate maturity. The challenge is to integrate them into the
existing design processes, e.g. code generation tools have to work in accordance
with high aeronautic safety requirements.

There is therefore a need to develop a tool which integrates the configuration
of the different layers and the task and message scheduling with the aim of
supporting optimized bus parameterization. Research is currently being carried
out into arranging such tools around a common repository. The aim is not to
generate certified code, but to create configuration files for certifiable layers that
can be verified automatically.

4.6 Configuration of Time-Triggered Protocols

Aside from the system design process and software architecture, many flexibility
aspects of a time-triggered system have to be implemented with configuration

332 C. Heller et al.

and parameterization of the underlying protocol. Further information about the
methods presented in this subsection can be found in [24].

One of these aspects is the bandwidth allocation which is specified in the
scheduling-related parameters of the protocols. FlexRay and TTP/C use a time
division multiple access (TDMA) scheme to access the shared bus. The available
transmission time on the bus is split into slots which are exclusively assigned to a
specific node. The nodes are allowed to utilize the full communication bandwidth
of the bus within their assigned slots. FlexRay additionally provides a dynamic
segment, which is executed alternately with the static TDMA scheme. The dy-
namic segment can be used by each node. An arbitrating mechanism based on
the minislotting scheme with the use of message priorities regulates bus accesses
in this segment.

Organization of the TDMA scheme is different for FlexRay and TTP/C. In
the case of FlexRay, all the slots must have the same length but a node can be
assigned to more than one slot per round. In the case of TTP/C, each node can
only utilize one slot per TDMA round, whereas the length of the slots may be
different. The configuration therefore has to assign the individual nodes with the
correct number of slots or a correct slot length on the basis of the node’s com-
munication requirements. Changing the bandwidth allocation at runtime might
be necessary for a dynamically heterogeneous communication system. This is
not trivial for both protocols, since they are intended for use with rather sta-
tic communication schedules. The FlexRay implementations analyzed do not
allow changes in slot size or slot allocation within the static TDMA segment.
The dynamic segment with its priority management therefore has to be used for
this purpose. TTP/C offers the possibility of implementing different communi-
cation schedules (cluster modes). The protocol is then able to switch between
the schedules at runtime. This can be achieved using a special service provided
by the protocol, called cluster mode change. The service has restricted usability,
because the length of the individual slots has to be the same for all cluster modes
and it is not possible to assign nodes for different slots in different cluster modes.

A heterogeneous architecture for the bus, interconnecting the individual nodes
of a time-triggered network also has to be considered for the configuration of
the protocol deployed. Above the physical layer (cf. ISO/OSI model [17]), the
impact of the bus topology is reduced to different transmission delays resulting
from the physical layer drivers, star couplers and the cables themselves. Since the
clock synchronization mechanisms used by the analyzed protocols are based on
comparison of the expected arrival time and the actual arrival time of received
frames, knowledge of the delay caused by the bus topology is required. In order
to achieve this, each transmission on the shared bus has to be regarded as a
virtual point-to-point connection between the sending and receiving node. The
delay caused by the hardware involved in this virtual connection is summed
up and used as a correction term for the expected arrival time of the frame.
These terms are the action point offsets for FlexRay and the delay correction
parameters for TTP/C.

Flexible Communication Architecture 333

Time-triggered communication systems are intended for periodic transmission
of state messages (cf. 2.3). Special mechanisms are required, if event messages
should be transmitted in addition. For this purpose, FlexRay implements the
dynamic segment that is not assigned to a specific node but can be used by any
node in the network. The decision on which messages are transmitted in the
dynamic segment is based on the message priorities and is performed according
to a minislotting scheme [9]. TTP/C does not provide a mechanism for the
transmission of event messages at protocol level. Such a mechanism has to be
implemented on top of the protocol at application level. A certain amount of
bandwidth has to be reserved and — if required — used for the transmission of
an event message.

5 Discussion

The approach presented above provides the fundamental benefit of a flexible
communication architecture for time-triggered distributed systems. Important
aspects of the proposed approach are summarized in this section.

As already anticipated in section 2.3, it not possible to achieve the same
level of flexibility with a time-triggered protocol as with an event-triggered one.
Parameterization of the analyzed protocols FlexRay and TTP/C permits incor-
poration of a heterogeneous bus topology or statically heterogeneous assignment
of the available bandwidth among the nodes. The weak point in time-triggered
communication is dynamic flexibility. In particular, dynamic redistribution of
the bandwidth at system runtime is cumbersome. Flexibility aspects aimed at
supporting different hardware and software architectures are addressed with the
presented Abstraction Layer and introduce the bus designer into the system
design process.

One of the central assumptions made for the Abstraction Layer and its related
configuration files is that the description of the overall communication matrix
of a system can be realized in practical terms independently of hardware and
protocol to obtain a clear separation between communication and bus config-
uration. If this were not the case, a standard aeronautical utility bus system
would be selected. This might anyhow be the most promising way forward. All
configurations could then be optimized for this unique solution. The Abstraction
Layer is eligible because it acts as a standard interface. However, all migration
aspects would become obsolete. Nevertheless, the role of a bus designer is es-
sential for achieving optimal bus configuration. The interfaces between system
and bus designer should be carefully defined to avoid interdisciplinary miscon-
ception. An additional risk for the introduced concept arises from the complex
industrial relations between airframers and multiple suppliers. A solution can
only bring benefit if it is supported by both sides. Many years of experience
demonstrates that international efforts for open standard specifications such as
ARINC 664 (AFDX) [11] are the most promising way forward. The usability
of this approach for an open specification should be determined after successful
integration within first prototypes.

334 C. Heller et al.

The resources required to develop the required tools referred to in the previous
chapters are immense. Each single problem that is targeted by this approach,
in terms of scheduling or optimal parameterization, relates to ongoing fields of
research. These problems are not covered by standard tools.

In many sectors, a trend is emerging with standardized interfaces and hard-
ware abstraction for embedded systems. This trend should also be assimilated by
the aeronautical industry at the utility system level. The approach presented in
this paper is an initial step towards a standardized and industry-wide interface
description for dependable distributed systems.

6 Conclusion and Future Prospects

The objective of this paper was to present an approach for a dependable and
flexible communication architecture in shared systems, based on a time-triggered
protocol. The approach allows more flexibility and scalability in the use of the
protocol and provide an efficient and reliable system design because it permits
reusability of existing code.

The paper began with a comparison of shared buses and point-to-point con-
nections for the interconnection of a distributed system. It highlighted the ad-
vantages of greater flexibility provided by a shared bus architecture. The advan-
tages offered by a deterministic time-triggered intra-system communication for a
distributed system have been identified, in particular those related to reliability.

Section 3 of the paper presented the requirements defined for a distributed
system by the aeronautic environment. The challenges posed by the complexity
of time-triggered protocols were identified and the need to adapt the system
design process and introduce a Communication Abstraction Layer was explained.
Explanations were provided as to why current middleware approaches are not
appropriate to meet these challenges.

Section 4 described the implementation of an Abstraction Layer to provide
flexible support for different hardware and software architectures by alleviating
dependency between these two. An outline was provided for the manner in which
the Abstraction Layer is integrated into an application and the kind of tools
required for the system design process. In addition, an initial scheduling strategy
approach was proposed to meet the higher requirements of dependable time-
triggered system design. Flexibility aspects that have to be considered in the
protocol configuration were also addressed in this section.

Possible weak points and open issues of the presented approach have been
discussed in section 5.

The stand-alone tools already developed for configuration and scheduling of
the time-triggered bus will be integrated in a single coherent framework. The
whole approach will be implemented in a realistic use case system within the
coming months. More research has to be carried out into developing suitable
hardware platforms. The level of support of the event driven protocol CAN will
be a big challenge in the future. Since it is based assumptions other than time-
triggered protocols, harmonization of the Abstraction and Communication Layer

Flexible Communication Architecture 335

will therefore be more difficult but still possible. As far as the FlexRay driver
developed in the course of this project is concerned, improving integration of
different FlexRay controller implementations, namely the Bosch and Freescale
chips, remains an open issue. At the current stage of development, there is no
unique FlexRay driver, although there are platform-specific drives available for
both implementations. The configuration of the FlexRay protocol and the im-
plementation of a specific configuration should be separated and highlighted.
Providing practical proof of hardware independent communication design will
be one of the most important outputs of the exercise with use-case system being
deployed.

References

1. Traverse, P., Lacaze, I., Souyris, J.: Airbus fly-by-wire: A total approach to de-
pendability. IFIP (2004)

2. Laprie, J.: Dependable computing and fault tolerance: concepts and terminology.
Digest of FTCS-15 , 2–11 (1985)

3. Echtle,: Fehlertoleranzverfahren, 3rd edn. Springer-Verlag, Berlin (1990)
4. Aeronautical Radio Inc.: ARINC Specification 429-17 Part 1. Prepared by the

Airlines Electronical Engeneering Commitee, Annapolis (2006)
5. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.

Commun. ACM 21(7), 558–565 (1978)
6. Lawrenz, W.: Controller Area Network. Huethig (2000)
7. Claesson, V., Ekelin, C., Suri, N.: The event-triggered and time-triggered medium-

access methods. In: 6th IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing ISORC, Hakodate, Hokkaido, Japan, pp. 131–134.
IEEE Computer Society Press, Los Alamitos (2003)

8. TTTech Computertechnik AG: Time-triggered protocol TTP/C high level specifi-
cation document, protocol verson 1.1. Technical report, TTAgroup (2003)

9. FlexRay Consortium: FlexRay communications system protocol specification, ver-
sion 2.1, revision A (URL) last visited (September 2006), http://www.flexray.com

10. Aeronautical Radio Inc.: ARINC Specification 653: Avionics Application Software
Standard Interface. Prepared by the Airlines Electronical Engeneering Commitee,
Annapolis (1991)

11. Aeronautical Radio Inc.: ARINC Specification 664 3. ed.: Aircraft Data Network,
Part 5 - Network Damain Characteristics and Interconnection. Prepared by the
Airlines Electronical Engeneering Commitee, Annapolis (1991)

12. TTChip Entwicklungsgesellschaft mbH: TTP/C controller C2NF, controller sched-
ule (MEDL) structure document, firmware version 2.0.3. Technical report, TTA-
group (2004)

13. Austriamicrosystems AG: TTP-C2NF communication controller –data sheet. Data
Sheet Rev.1.6 (2006)

14. Robert Bosch GmbH: FlexRay IP-Module. User’s Manual Revision 1.2.3, Auto-
motive Electronics (2006)

15. Freescale Semiconductor: MFR4300 data sheet, rev. 1. Data sheet (2006)
16. Association for Standardisation of Automation and Measuring Systems: FIBEX -

Field Bus Exchange Format Version 2.0. (2006)
17. ISO/IEC: Information technology - open systems interconnection - basic reference

model - the basic model. Technical Report 7498-1 (1994)

http://www.flexray.com

336 C. Heller et al.

18. OSEK. Technical report, TTAgroup (2005)
19. Woolever, B.: Application Layer Protocol Specification Version 2.0. Technical re-

port, Honeywell Inc. MICRO SWITCH Division (1999)
20. RWTH Aachen: ULLA integration to middleware and existing technologies.

Project report, RWTH Aachen University (2005)
21. Kopetz, H., Obermaisser, R., Peti, P., Suri, N.: From a federated to an integrated

architecture for dependeble real-time embedded systems. DECOS (2005)
22. Fuhrmann, H., Geilsdorf, H., Klein, L., Schneele, S.: System entwicklung basierend

auf der decos architektur. Informationstagung Miktroelektronik 2006 pp. 139–150
Wien, Austria (2006)

23. Berry, G., Michael Kishinevsky, S.S.: System Level Design and Verification Using
a Synchronous Language. Technical report, Esterel Technologies (2001)

24. Heller, C.: Time-triggered protocols for heterogeneous communication systems.
Diploma Thesis, Department of Wireless Networks, RWTH Aachen University,
Kackertstr. 9, 52072 Aachen, Germany (2006)

Business Process Monitoring

for Dependability

Luciano Baresi, Sam Guinea, and Marco Plebani

Dipartimento di Elettronica e Informazione - Politecnico di Milano
Piazza L. da Vinci 32, I-20133 Milano, Italy
{baresi,guinea,mplebani}@elet.polimi.it

Abstract. This paper studies dependability in the context of service-
based business processes, and proposes a dynamic technique for ensur-
ing dependability requirements are met. On one hand, business processes
are modeled using BPMN, which provides stakeholders with a suitable
level of abstraction. On the other, we provide Dynamo, a run-time busi-
ness process supervision framework that guarantees the dependability
requirements are satisfied. Supervision rules let the user customize how
the system deals with business-related situations that might hamper the
dependability of the application. The main features of the proposed in-
frastructure are demonstrated on a simple case study in the domain of
banking services.

1 Introduction

Dependability is a key concept in the actual use of software systems, however it
may be fuzzy to some. Therefore, we will start by giving a classical definition
of what is intended by dependability, which also serve as a way to frame our
research.

As placed by Laprie et al. in [1], dependability is “the ability to deliver a
service that can justifiably be trusted”. They also go on to say that a service is
its behavior as it is perceived by its users, be them other systems or people. In
their definition, they stress that dependability is a three-way problem. In fact, to
be able to understand and ensure dependability, we must study: (a) the threats
that can lead us to a situation in which the system in not dependable, (b) the
attributes we want to maintain in the system, and (c) the means we can adopt to
ensure overall dependability. It is not our interest to give a thorough presentation
of what dependability means; however, in order to position our work we shall
very briefly go over the three main concepts.

Typical threats can be either faults, failures or errors. The principal attributes
encompassed by dependability, and that we want to maintain, are: availability
(i.e., the readiness for correct service), reliability (i.e., continuity of correct ser-
vice), safety (i.e., absence of catastrophic events on the user or the environment),
confidentiality (i.e., no unauthorized disclosure of information), integrity (i.e., no
improper state alterations), and maintainability (i.e., ability to undergo repairs).

R. de Lemos et al. (Eds.): Architecting Dependable Systems IV, LNCS 4615, pp. 337–361, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

338 L. Baresi, S. Guinea, and M. Plebani

Finally, the means we can adopt to ensure these properties can be subdivide into:
fault prevention, fault tolerance, fault removal, and fault forecasting.

In our work, we tackle the dependability of composite Web services defined
using BPEL (Business Process Execution Language). With respect to the very
simple presentation we have given of threats, properties, and means involved in
dependability, we can position our research as follows.

First of all, in our business processes we use external services that are not
under our jurisdiction. This means that we cannot ensure that, during the sys-
tem’s life-cycle, they will not change in quality and/or functionality, for better
or for worse. As we shall see, this has direct consequences on the nature of the
threats we are exposed to. Failures, in fact, can be related to functional and/or
non-functional properties that were not ensured by the parties involved in the
distributed system.

Second, in our researchwe concentrateon providing a generaland flexible means
to ensure safety properties. More properly, since our context is that of business
processes, we will go one step further and say that we ensure “business-related
safety” properties. Ultimately, what we provide is a means that designers can use
to prevent catastrophic events (from a business point of view) for their users.

However, it is very common for such systems to have an overwhelming number
of stakeholders, which leads to the existence of many different perceptions of the
offered service. For example, if we think of a web-based bookstore, an experienced
user might be confident with using the system to buy his goods. In contrast, an
unexperienced user might be much more cautious and feel the need to check
every detail several times before placing an order. Even though the two users
interact with the same business process, the perception they have of the service
is different. In the first case, the user trusts the technology (and the brand) he
utilizes, but in the second case, the user might have preferred more controls and
more user-oriented warnings. This leads us directly to our next consideration.

We believe that, in very much the same way, the extremely high number
of stakeholders demands that we consider the existence of diverse dependabil-
ity requirements. Our working hypothesis, therefore, is that if a given business
process is released for different (classes of) users, which will use the system at
different times and within different contexts, we cannot conceive a single set of
safety properties. This imposes that the application that is run must come from
the intertwining of the actual business process and diverse sets of dependability
constraints.

These concepts integrate well with Dynamo [23,25,24], our prototype frame-
work for the run-time monitoring and recovery of BPEL processes [3]. Dynamo
is conceived to:

– support for separation of concerns. We want process designers to be able
to concentrate on one aspect of their system at a time. They must be able
to focus on defining the business logic without having to necessarily think
about supervision and dependability. These aspects should be designed later
on, and automatically intertwined with the process to create a supervised
version of the application.

Business Process Monitoring for Dependability 339

– provide a timely reaction to anomalous situations. Our approach wants to
be a solution capable of discovering anomalies as soon as they occur, and
trying to fix them immediately. Dynamo supports an ECA (Event - Condi-
tion - Action) approach. Given a supervision rule, the triggering event is the
execution of the invoke activity the rule is associated with. The condition is
the monitoring constraint expressed in the form of pre- and post-condition
on the external invocation. The action is the strategy that must be applied
when the constraint is violated.

– offer a high degree of customizability. The degree of invasiveness of the su-
pervision activities must be modifiable. The use of pre- and post-conditions
in a process requires a certain degree of invasiveness. The process provider
might want to be able to switch on and off certain checks in order to fa-
vor performance over everything else, thus we need dynamic monitoring and
the degree of monitoring must be a direct consequence of how monitoring
has been “doing” up until then. If things are going well, we might want to
switch some of the upcoming checks off, or, on the contrary, if things are
going wrong we might feel the need to notch the supervision up a bit.

– embed a high degree of adoptability. To foster the adoptability of our ap-
proach a requirement was to use as much pre-existing technologies as possi-
ble. We did not want to try to re-invent what is already standard or widely
accepted. This is one of the main reasons for using BPEL as our service
composition technology.

The paper introduces the concept of supervision rule as the union of user-
defined constraints, to monitor how the BPEL process evolves, and reaction
strategies, to specify corrective actions that must be executed when set con-
straints are violated. The former defines the triggering conditions that make the
system apply the latter. As soon as a constraint is violated, the associated re-
action warns the system manager (and the user if needed) and tries to keep the
system on track by adopting corrective actions.

Our main requirement is to provide a framework in which dependability is
ensured, in accordance with the user’s “perception” of the system.

Since stakeholders are our key players, we also want to provide them with
suitable languages and tools to abstract from the underlying technologies and
hide how the system guarantees the dependability. To this end, we adopt BPMN
(Business Process Modeling Notation, [5]) as high-level notation to let users de-
sign business processes. Dynamo usually works by annotating standard BPEL
processes with supervision directives. In this paper, however we propose to ex-
tend our business models with a high-level means of modeling dependability
aspects. Therefore, we introduce high-level versions of the languages supplied by
Dynamo: WSCoL (Web Service Constraint Language,[25]) for the monitoring
directives and WSRS (Web Service Reaction Strategies, [38]) for the reaction
strategies. A semi-automatic process is then in charge of transforming the high-
level artifacts into the annotated BPEL processes required by Dynamo.

The rest of the paper is organized as follows. Section 2 introduces the case
studies used in the paper and arguments dependability. Section 3 presents

340 L. Baresi, S. Guinea, and M. Plebani

Dynamo, while Section 4 introduces our prototype tools. Section 5 surveys some
related approaches and Section 6 concludes the paper.

2 Dependability: An Example

In order to better clarify the motivations behind our proposal, we will introduce
a simple case study. It will also come in handy, as a running example, when we
will analyze our approach in greater depth in the upcoming sections.

Start
loan

end loan

Fig. 1. The loan management example

The example takes place in the field of banking services. In particular, Flex-
iBank is interested in providing flexible loans to their customers. These loans are
managed by the bank so that each customer must pay back a certain quota once
a month. The amount payed by the customer, and the date in which the payment
is due, are defined in accordance with specific customer data. The bank allows
their clients to choose between two different kinds of interest rates, which will be
used to determine their monthly pays. The first is a static interest rate, which is
defined once and for all during the contractual phase when the loan is discussed
between the client and a bank officer. The second is a variable rate. This interest
rate is determined as a function of the ECB’s (European Central Bank) interest
rate. This can be advantageous for the client, but could also prove to be a bad

Business Process Monitoring for Dependability 341

choice if the ECB rate rises too much. Therefore, the bank also allows the client
to change the kind of interest rate being used once every five years. If the loan
is shorter than five years, then the kind of interest can only be changed once. If
the clients should ever want to change it again after it has already been changed
during such a period of time, then the loan payment will need to be stopped and
re-negotiated.

FlexiBank has decided to manage these loans through the use of long-running
and stateful BPEL processes. Therefore, their starting point was to model their
process using BPMN. This modeling notation was chosen since it provides the
level of abstraction needed to allow the business expert to collaborate in its de-
finition. An example of BPMN is given in Figure 1, in which it is used to define
our example. A new instance of the process is created each time a client signs
a contract with the bank. The internal state of the process contains the total
amount of the loan, the number of scheduled payments, the kind of interest rate
chosen, and the value of the interest rate currently being used. The process con-
tinuously cycles between client payments. It distinguishes between two possible
sequences of activities for managing each payment. The first consists in simply
paying, taking into account the value of the static interest rate stored within
the process. The second, on the other hand, interacts with an external service
to obtain the ECB’s interest rate, prior to issuing the payment. The process
also allows to change the kind of interest rate being used between payments.
More subtle business rules, such as the frequency in which a client can issue a
change in interest rate type, are not shown in the figure as to keep it as simple
as possible for the business expert.

At this point, the model needs to be completed with notions of dependabil-
ity. We propose to use special purpose supervision rules that state the safety
properties we want to ensure, as well as appropriate reaction strategies (or cor-
rective measures) we want to attempt if anomalies are discovered at run-time. In
the following we will refer to these rules as supervision rules. Together with our
supervision-aware run-time framework called Dynamo, they allow us to guar-
antee dependability. We will now look at an example of such a rule by stating
it informally. How to express the same rule in a more rigorous fashion will be
treated later.

An example could be: “If the process is using a variable interest rate and
its value approaches 3.0% (let us say more then 2.5%) then we should let the
end-user know via e-mail. If the value surpasses 3.0% and the rate type has not
already been changed once in the last five years then we should change the rate
type to fixed to favor our clients. If the value surpasses 3.0% and the rate type has
already been changed, then we should notify the end-user immediately as well
as the process management team at the bank, so they can start re-negotiating
the loan payment”.

While remaining at the same level of abstraction as BPMN, these rules can
be stated in a high-level version of our WSCoL and WSRS languages, which
represent the core matter of upcoming sections. The abstraction we provide is
interested in stating two things: (1) properties that must hold for the data objects

342 L. Baresi, S. Guinea, and M. Plebani

introduced in our business model, and (2) what actions should be attempted
when these properties are unsatisfied at run-time. The following models the
dependability aspects we want to introduce.

Monitoring expression:
CalculatedRate.get(rate) <= 2.5

Recovery strategies:
if CalculatedRate.get(rate) >= 3.0 &&

ConfigParams.get("lastChange") - now >= 5Y
then notify(client_email, mess) &&

Call changeRateType with fixedRate at process
else if CalculatedRate.get(rate) >= 3.0 &&

ConfigParams.get("lastChange") - now < 5Y
then notify(client_email, mess1) &&

notify(bank_email, mess2)
else

notify(client_email, mess)

It can be disputed, however, that the above rules, although adopting the
correct level of abstraction, are still too hard to write for a business expert.
We make this dispute our own, and advocate that the same is also true for
business models in general. In fact, the correctness and soundness of a BPMN
business model is the direct consequence of a collaboration between the business
expert and a process designer. The same is true for the the modeling of the
dependability requirements. This is easy to see if we look at the impact a certain
recovery strategy might have on the business; the extent of the impact can only
be known by a business expert and therefore his/her input is necessary.

The high level of abstraction used in defining these supervision rules repre-
sents a valid middle ground between a natural language description (given by
a business expert), and a thorough specification given in WSCoL (the language
our run-time framework understands). The gaps between BPMN and BPEL,
and between the so-designed supervision rules and their run-time counterparts,
are, as we shall see, managed by means of proper semi-automatic translations.

Dynamo was born as a tool for fostering the joint use of run-time monitoring,
to identify the triggering conditions, and reaction strategies to make a BPEL sys-
tem behave accordingly. The approach is quite invasive: extra time and resources
are spent at run-time to verify, step-by-step, if defined pre- and post-conditions
hold. The payoff is that any situation we might perceive as problematic is dis-
covered immediately, giving us a chance to do something about it.

3 Our Approach

Our approach ensures dependability capabilities to BPEL processes through
the execution of three main activities: data collection, data analysis, and re-
covery. All three activities contribute significantly to the effectiveness of the
framework.

Business Process Monitoring for Dependability 343

Fig. 2. Conceptual model for the supervision framework

Figure 2 illustrates how the three main activities are tight together to provide
a single coherent framework. Conceptually there are five main component types:

– Data Collectors are responsible for the monitoring data required by the frame-
work to monitor the functional and/or non-functional properties of the sys-
tem. This can consist in simply obtaining the data from appropriate probes,
or in manipulating them for analysis.

– Data Sources are probes that can be called by the data collectors when su-
pervision is being achieved. The most typical data source in Dynamo is the
business process itself. Most of the time, in fact, the end-user will be inter-
ested in asserting properties for the data the process sends to, and receives
from, a remote service These data represent a subset of the process’ internal
state.

However, at times, the data we can obtain from the process is simply not
enough. Conceptually, in fact, although the data pertaining to the business
logic and the monitoring data may overlap, they are not necessarily the
same. Let us imagine, for example, we need need to check the amount of
money involved in a bank transaction and that the process only knows the
amount in US dollars. If the property is defined in euros, and the correct
amount does not only depend on the exchange rate between dollars and
euros at the exact moment of the analysis (a factor the process does not
internally know), but also on the price of a certain stock at the NASDAQ
stock exchange. The exchange rate and the stock price need to be collected
from data sources that are external to the process. In our approach we allow

344 L. Baresi, S. Guinea, and M. Plebani

data to be collected from any source. The only limitations are imposed by
the technological aspects of how this is achieved.

– The Storage component is a component that can be used to persistently store
monitoring data (and/or monitoring results —as we can see in Figure 2). It
is, to all means, a special case of data source. Its particularity is that it does
not give you data pertaining to the current activation of the framework,
but data that pertained to a previous activation. This means that it can
provide data from a previous process execution, or from a previous step in
the same process. This allows us to confront how well the process is executing
with respect to previous instances, and to define, for example, the margin of
fluctuation of a given response time we are willing to accept, and to react if
a service seems to be behaving “differently” to how it has in the past.

– Data Analyzers verify whether properties hold by analyzing the monitoring
data received from data collectors. In the conceptual model we allow the
framework to possess more than one data analyzer. It might be convenient,
in fact, to have special purpose analyzers for certain monitoring activities,
and for certain kinds of monitoring data. When the actual analysis has been
completed, the analyzer produces a monitoring result which can cause re-
covery to be activated, and can be stored for future analysis should it be
needed.

– The Recovery Manager is the component responsible for activating the strate-
gies that will try to “keep the process on track” when an anomaly is detected.
Access to the monitoring results and monitoring data allows the component
to determine the degree to which a certain property has been infringed, and
to choose the most appropriate recovery. As we shall see in the upcoming
sections, there is a wide range of activities the stakeholder can choose from
when defining his/her recovery strategies. In the conceptual model, recovery
cannot require any extra data. This was chosen to preserve a clear separa-
tion between the recovery itself and the “reasons” for which recovery is being
performed.

3.1 Supervision Rules

Figure 3 illustrates the conceptual model behind the definition of Supervision
Rules. A rule is made up of a Monitoring Expression and a set of Reaction Strate-
gies. There are also two further elements that help maintain and apply rules: a
Location, which is an XPath expression to indicate the point of the process for
which we a supervision rule, and a set of optional Parameters, which are meta-
level information used at run-time to decide whether the supervision rule should
be taken into account or not. In the case no parameters have been defined the
monitoring property is evaluated by default.

Currently, supported parameters are priority, validity, and trusted providers,
but other attributes can be added easily. When the designer decides to attach a
priority to a rule, he uses a simple notion of ”importance”. When the process in
execution has reached a point for which a supervision rule is defined, we compare
the priority associated with the supervision rule with a process threshold value.

Business Process Monitoring for Dependability 345

Parameter Location
Supervision

Rule

Data Collection Data Analysis

Condition

Atomic Action

Reaction Step

Monitoring
Expression

Reaction
Strategy

Variable

1

1

1..*

1..*

1..*

1..*

1
1..*

1..*
1..*

Fig. 3. Conceptual model of a supervision rule

The rule is taken into account only if its priority is less than or equal to the
threshold value. The validity parameter defines a time window. If the process
is run within this window, supervision is performed. On the other hand, every
time the process is run outside of this window the specific rule is ignored. A
validity parameter is defined using three optional values: from, to, and every. This
means that the time window may have both a lower and an upper time bound
and it can be repeated with a user-defined frequency. Trusted providers are
service providers for which supervision is not necessary. This is useful because,
in abstract process definitions, the actual service to which the process binds to
could be chosen at deployment-time or at run-time. If no trusted providers are
defined the supervision rule is always checked.

3.2 Monitoring Expressions

WSCoL is the language we propose for defining monitoring expressions and
thus it allows the designer to define Data Collection and Data Analysis. The lan-
guage was inspired by the lightweight version of JML [27] [28] (Java Modeling
Language), a language designed for specifying behavioral interfaces in Java pro-
grams, which combines design by contract [26] and interface definition languages
such as Larch [18]. At its core WSCoL is a first-order logic that allows the de-
signer to:

– define and predicate on variables containing data originating both within the
process and outside of the process, and to retrieve data previously stored in
a storage component. It is also allows designers to define variable aliases to
simplify their WSCoL expressions and recovery strategies.

– use pre-defined variable functions for data manipulation, depending on the
variable’s dataType, e.g. string concatenation.

346 L. Baresi, S. Guinea, and M. Plebani

– use the typical boolean operators such as && (and), || (or), ! (not), =>
(implies), and <=> (if and only if), the typical relational operators, such as
<, >, ==, <=, and >=, and the typical mathematical operators such as +,
−, ∗, /, and %.

– predicate on sets of variables through the use of the universal and the ex-
istential quantifiers, and of special language constructs such as min, max,
sum, product, and avg.

WSCoL supports data collection through the concept of Variables, which play
a pivotal role in the definition of monitoring properties. In fact, a WSCoL mon-
itoring property simply states relationships that must hold between variables.
While defining these variables, the designer implicitly defines the data collection
needed to obtain their values. Depending on the nature of the data collection
being performed, WSCoL supports three possible kinds of variables:

– A WSCoL internal variable corresponds to a monitoring datum that origi-
nates within the process in execution. In WSCoL internal variables can only
contain simple XSD typed values. These variables should not be confused with
BPEL variables, which on the contrary are meant to match and hold the com-
plex XSD types defined in the WSDLs of the services with which the process
interacts. Since we only accept simple XSD types as valid WSCoL variable
contents, when we define a WSCoL internal variable, what we we are actually
doing is to define some data extraction from a complex BPEL variable.

– A WSCoL external variable indicates a monitoring datum that originates
outside of the process in execution. This is useful when the correctness of
a service invocation can only be established by referring, for example, to
contextual data such as the time and/or place of execution, or the ID of
the end-user. External variables can also represent a way to achieve data
transformation on WSCoL internal, external, and historical variables.

WSCoL provides a special purpose mechanism for retrieving external
variables if the data collector we want to use supplies a WSDL interface.
return<X>(), where X indicates the XSD type of the return value, allows us
to query any external data source.

– a WSCoL historical variable consists of a monitoring datum that is related
to previous process executions, or to previous activations of the Dynamo
framework on the same process in execution. WSCoL allows designers to
store variables —into a persistent storage component— contextually to the
analysis of a pre- or post-condition. A historical variable is therefore implic-
itly tied to the process definition and to the process instance it belonged
to, as well as to the pre- or post-condition in which the storage operation
was performed. The syntax for the storage operation (store) also creates an
alias as a side effect.

WSCoL also supports aliasing (let construct). Aliasing during data collection
allows us to refer to a certain WSCoL variable with another name. This has two
main advantages. The first is that it greatly simplifies the specification of data
analysis and of recovery strategies, allowing for less verbose expressions. The

Business Process Monitoring for Dependability 347

second is that it allows the specific variable to be collected only once, but to
be referenced any number of times in the analysis or recovery specifications.
This is particularly important when we have to deal with external variables that
may return different values depending on the exact moment in which they were
collected. Moreover, it is possible to append data extraction (under the form of
XPATH expressions) to aliases to further refine their contained values.

Returning to the example illustrated in Figure 1, we are now capable of
specifying the monitoring expression Dynamo will need to check at run-time
in order to guarantee dependability. The monitoring expression is defined as a
post-condition to the call to the external service responsible for calculating the
variable interest rate. Figure 4 uses a tree-like representation to illustrate the
XML structure of the BPEL variable that contains the remote service’s response.
This BPEL variable is the concretization of the abstract data object shown in
Figure 1 with the name “CalculatedRate”. Therefore, the WSCoL monitoring
expression can be defined as:

($rateOut/parameters/rate) <=2.5;

The expression states “when” the retuned message can be considered correct.
In practice, it states that the BPEL internal variable called rateOutmust contain
a rate value which is less than or equal to 2.5%.

3.3 Recovery Strategies

WSRS (Web Service Reaction Strategies, [38]) allows the designer to associate a
set of Reaction Strategies to the same Monitoring Expression. The idea of having
more than one strategy allows the designer to differentiate the actual strategy
depending on the extent to which a monitoring rule was not honored.

Recovery strategies are made up of Strategy Steps. which in turn are made
up of Atomic Steps. In presenting our solution, we ill start by explaining the

getRateSoapOut

parameters

dateOfCalculation institutionrate

Fig. 4. Structure of the message containing the calculated rate

348 L. Baresi, S. Guinea, and M. Plebani

atomic recovery actions, and then proceed to present how they can be mixed
and matched to create complex strategies, and how the framework can choose
between one or the other.

We have defined ten different possible “atomic” recovery actions that can be
performed when anomalous situations arise. Keep in mind that these actions
are always performed immediately after a pre- or a post-condition has been
evaluated, and therefore while the process is momentarily blocked. This is due
to the fact that our approach is intrinsically synchronous, and that once the
supervision framework is activated the process must wait before proceeding.

Moreover, all of these actions have instance validity, and do not —in any
way— alter the process definition itself. The syntax and the semantics of these
actions are:

– ignore simply ignores the fact that an anomaly has arisen.
– notify(message, email) takes two parameters: the former is a notification

message and the second being the email address to which it should be sent.
– halt takes no parameter and stops the process in execution.
– retry(times) declares that, in the wake of an anomalous situation, the system

should continue to retry to invoke the Web service up to a certain number
of times. This recovery action should only be used in conjunction with post-
conditions. Once a service has been reinvoked the post-condition needs be
re-evaluated to see if the recovery was successful.

– rebind(new service URI) indicates that the service being invoked is to be
substituted with another service that implements the same WSDL interface,
and whose URI is passed as a parameter. Once the dynamic rebinding has
been achieved, the new service is invoked and the monitoring step is reiter-
ated. In our approach, the effects of the rebind action remain valid for every
other call to the same service in the process.

– change monitoring rules(analysis, recovery) allows the designer to modify
how monitoring is being achieved and therefore to relax (or reinforce) the
constraints. The only parameter that is compulsory is analysis. It replaces
the old monitoring analysis specifications with new ones. If necessary, the
designer can also modify data collection accordingly by adding new variables
(internal, external, or historical) or by creating new aliases. The definition
of new recovery strategies is also optional. Once the modifications have been
taken out, the monitoring activities are re-performed.

– change monitoring params(params) modifies the monitoring parameters [25]
associated with the monitoring activities being considered. This allows the
designer to modify the monitoring activity’s priority level, redefine the list
of trusted providers by adding (or removing) providers, or change the time-
frames within which the monitoring activity is to be performed. All these
actions may result in the monitoring activity being “switched-off”. Once
these modifications have been taken out, the parameters are reconsidered to
decide whether the monitoring activities should be re-performed.

– change process params(params) modifies the global parameters associated
with the process instance in execution. This allows the designer to dynam-
ically activate or de-activate sets of monitoring rules, based on the actual

Business Process Monitoring for Dependability 349

way services are performing during the execution. For example, as we have
already mentioned, monitoring rules can be grouped together by giving them
the same priority level. Therefore, using different levels a designer can create
up to five monitoring rule sets. So if he/she decides to modify the overall
process priority in the wake of a certain anomaly, this can have the effect
of activating monitoring rules for certain BPEL activities further down the
line.

– call(wsdl, operation, ins, sendback, xslt) consists of a call to an external
Web service. The first two parameters identify the service (through a WSDL
URI) and the name of the operation that should be called. The third para-
meter (ins) represents the data that are to be sent to the service. sendback
is a boolean value (to be used exclusively in post-conditions) which states
whether the service being called returns a message type which is compatible
with that of the service for which we are verifying the post-condition, and,
therefore, wether it should substitute it. If the sendback value is false, the
designer can use the optional xslt parameter to define a transformation ca-
pable of mapping the values returned from the called service onto the soap
body expected by the process.

The external service being called obviously does not share the same data
space as the process. However, this recovery action is still useful since it
gives designers great flexibility. A designer can statically devise a new exter-
nal BPEL process containing quite complex logic. For example, he/she might
define a new process that uses run-time information (coming both from the
process and from the monitoring activities) to provide an augmented rebind-
ing where UDDI registries are queried for appropriate candidates.

– process callback(event name, params) is, potentially, the most disruptive of
the nine recovery actions, since it allows direct access to a process’ internal
state. This action allows complex recovery logic to be directly embedded into
the executing process by means of a specific event handler (event name),
which is called by the recovery subsystem when the anomaly arises.

A BPEL event handler is an inner-process that is made public through the
business process’ WSDL interface. When we send it an event, the handler
executes in an independent thread from the main business logic, which in the
meanwhile continues to remain synchronously blocked, since it is waiting for
an answer from the monitoring subsystem. The advantage is that the event
handler and the main process share the same state. Once the event handler
thread completes, the monitoring subsystem is warned to unblock the main
business process.

The disadvantage is that event handlers will have to be statically embed-
ded into the process prior to deployment. This means that the recovery logic
is defined once and for all, and that it can be personalized —in order to take
into account contextual information such as who is executing the process,
and how and from where— only through the parameterization of the event
handler itself. Params contains such data (under the form of internal, exter-
nal or historical variables). Moreover, when the event handler is created, the

350 L. Baresi, S. Guinea, and M. Plebani

designer also has to provide a proper correlation set that can be shared with
the monitoring subsystem to ensure correct interactions.

Different strategies are associated with Conditions, which are heavily based
on aliases. This allows us to be less verbose, and conditions to be evaluated
only once. Reaction Strategies define what the recovery subsystem should do to
attempt to keep things on track. We define complex strategies by combining
Strategy Steps, which are in turn conjunctions of atomic recovery actions. Strat-
egy steps are separated by the traditional “or” symbol (||), and the order in
which they are specified once again is important. If we write strategy step 1 ||
strategy step 2 || ... we intend the recovery subsystem should first apply step 1
and, if that is not effective, then try step 2, and so on. If no step is successful,
the process provider is notified and the process is halted. On the other hand,
a single strategy step is a conjunction (&&) of atomic recovery actions. Once
again, the order in which the atomic actions are specified is relevant, since it
also defines their order of execution.

How to know if a single strategy step is successful or not depends on the
actions it contains. We can distinguish between two groups of recovery actions:
those that require monitoring to be re-evaluated at the completion of the strategy
step, and those that do not. In particular, retry, rebind, change monitoring rules,
change monitoring params, change process params, and call all need monitoring
to be re-evaluated. This re-evaluation tells us whether the strategy step was suc-
cessful. Notice that every time monitoring is re-evaluated, all pertinent aliases
are updated, since it means re-performing both data collection and data analy-
sis). If the recovery step is unsuccessful, then the overall state is restored, as if
the strategy step had not been performed. If a strategy step does not contain
activities that require monitoring to be re-evaluated, the step is automatically
considered successful, unless the strategy step could not be performed for some
reason (e.g. a necessary external service is unreachable).

When defining complex recovery strategies, a designer must keep in mind that
it is not always possible to aggregate steps arbitrarily. In general, strategy steps
that do not contain actions that require monitoring to be re-considered should
only be used as last steps. For example, steps containing only halts, ignores, or
notifies are always considered successful, and therefore always invalidate any fol-
lowing steps. This is exactly the case of the above example, in which step number
four can always be considered successful. change monitoring rules can also invali-
date following steps by replacing the recovery strategies that are going to be used
thereon. Once again, such issues are left up to the designer. Figure 5 illustrates
the rules for the coexistence of atomic actions within a same strategy step.

Returning to our running example, the client stated three possible recovery
strategies. The first asked the system to notify him/her when the variable rate
reached 2.5%. The second was to change the rate type to “static” should the
variable rate grow beyond 3.0%. But this strategy is only feasible when the rate
has not been changed in the last five years. Therefore, another strategy is needed.
In that case the system should just notify the client, and tell the bank that they
are going to have to re-negotiate the payment.

Business Process Monitoring for Dependability 351

Fig. 5. Rules for combining atomic actions within single strategy steps, where ch mon r
stands for change monitoring rules, ch mon p for change monitoring params,
ch process p for change process params, and p callback for process callback

Such recovery strategies can be defined in WSRS in the following manner:

let $vRate = ($rateOut/parameters/rate);
let $lastChange = ($configParams/lastChange);
let $daysPassed = (returnInt(WSDL, timePassed, ’<input><date>’ +

$lastChange + ’</date></input>’, /timePassed/days));

if ($vRate>2.5 && $vRate<3)
notify(client_email, mess);

else if ($vRate>=3 && $daysPassed >= 1825)
notify(client_email, mess) && call(processWSDL,

changeRateType, inputs, false, null);
else if ($vRate>=3 && $daysPassed < 1825)

notify(client_email, mess1) && notify(bank_email, mess2);

Three aliases are defined to simplify the definition of the strategies. The first
contains the value of the variable interest rate. The second contains the date of
the last time the rate was changed. In order to simplify both the process and
the definition of the recovery, this value defaults to exactly five years prior to
the instantiation of the process. The third, on the other hand, uses a WSCoL
external variable to discover how long it has been since the last time the rate was
changed. It calls a special utility service which provides functions for treating
dates and times. For the sake of clarity, the actual atomic recovery strategies are
defined using simplified versions of their real counterparts.

4 Supporting Tools

The solution to dependability introduced in the previous sections, and shown
in Figure 6, requires two different classes of supporting tools. First of all, we
need to conceive a viable solution to the problem of mapping BPMN models

352 L. Baresi, S. Guinea, and M. Plebani

Supervision
Rules

Supervision
Rules

BPMN
Model

BPEL
Process

Dependable
BPEL Process

Business
domain

Execution
domain

Deployment
domain

Fig. 6. Elements and transformations for dependability

onto executable BPEL processes. Then, we can think of exploiting the last ver-
sion of Dynamo to supply the run-time checks required to enforce dependability.
The former problem can easily be solved by exploiting already available tools
and integrating them into the proposed framework. The latter problem requires
that the terms used in the supervision rules be suitably translated into their
WSCoL and WSRS equivalents. Moreover, the solution we propose treats busi-
ness and supervision as separted concerns and thus we need to emphasize how
Dynamo exploits aspect-oriented programming [22] to support the independent
deployment of a business process and its supervision logic.

4.1 BPMN vs. BPEL

One of the pivotal moments in allowing stakeholders to design their models with
BPMN and to obtain dependability by means of Dynamo is the translation that
must occur between BPMN models and BPEL processes. This is a well-known
problem in the area of business process modeling and BPMN has demonstrated
to be a valid abstraction of business processes [35]. The BPMN specification
includes BPD (Business Process Diagram [40]), which is a graphical and human-
readable description of a business process. The execution of these processes are
then guaranteed by a more technical standard, such as BPEL.

In the last few years, there have been several initiatives aimed at mapping
BPMN onto BPEL [6]. This means that we do not need to develop a completely
new solution, but we can exploit existing ones, and complement them with our
tools. The selection of the right tool was guided by two factors. First, it had
to offer the capability of augmenting BPMN models with information regarding
the external services chosen for interaction. Second, it had to support us in our
definition of supervision rules. Moreover, the results of the BPMN to BPEL
transformation had to be “standard” and “visible” to ease the integration with
Dynamo.

Business Process Monitoring for Dependability 353

In the end, we selected Borland Together [2] . We envision the tool being
used in a two-step process. First, the business process is designed through the
collaboration between the business expert and the process designer. Second, the
process is augmented by the process designer, in order to make it runnable.

The business expert starts by defining who participates in the process, its main
tasks, and the message flow between the BPMN model and its participants. Dur-
ing the definition of the business process, the business and the designer experts
can identify three different kinds of participants: the process itself, its clients,
and the external services with which to collaborate (which must be identified
through their WSDL interfaces). Furthermore, there are three kinds of tasks:
receive tasks, which are only able to receive messages from participants, reply
tasks, which send messages to participants, and service tasks, which create a
conversation between the process and an external Web service.

At this point of the design process, the inherent structures of the exchanged
messages are not important. A high-level abstraction in which only the names
of the messages, and the names of the messages’ sub-parts are enough. As soon
as these are defined, the tool can check whether the process is well-formed with
respect to BPMN’s constructs. These information are what the end-user then
uses as the starting point for defining high-level supervision rules.

Such a specification, however, is not enough to guarantee dependability, since
messages are only names, while our approach requires that the supervision rules
relate to real BPEL messages which are mapped to complex XML schema defi-
nitions. This is only possible after the process designer complements the BPMN
process with the real service endpoints, and the real structure of the Data
Objects. All the required information can be retrieved automatically from the
WSDL interfaces of the external Web services.

Moreover, the BPMN-BPEL translation also imposes the definition of: (a) the
conditions associated with automatically generated BPEL branch statements
(like switch and while elements) and (b) the role played by each participant.

The filling of these gaps is the responsibility of the process designer. Using
Borland’s tool, the designer translates the high-level conditions into BPEL spe-
cific language conditions; e.g. the switch condition simply referred to as variable
rate in Figure 1 must be translated into

bpws:getVariableData(loan,currentRateType)=variable.
In other words, these last definitions narrow the gap between the source

BPMN model and the target BPEL process. A second validation step then checks
whether all the relevant information has been defined and if the tool can proceed
to generate the actual BPEL code.

This activity creates a set of files: the set of wrapper WSDL interfaces used
locally to refer to the external Web services, the BPEL process, the WSDL
interface of the process itself, and all the files needed to deploy the process
into the ActiveBPEL [16] execution engine, which is the standard BPEL engine
supported by Together.

At the end of the transformation the designer is left with a BPD diagram
augmented with the structure of the data exchanged between the process and

354 L. Baresi, S. Guinea, and M. Plebani

its partners, and a BPEL process that is agnostic with respect to all possible
supervision rules, and that can be deployed once and for all to the our Dynamo
framework.

The BPD diagram represents the starting point for the definition of the high-
level supervision rules. Before going to the end-client the process designer and the
business expert must once again collaborate to identify the subset of the service
invocations for which the user can define rules, and the set of data objects he/she
can refer to during the specification.

Referring to the example provided in Section 2 and illustrated in Figure 1,
we provided the stakeholder with the BPD diagram, the CalculatedRate data
object, and a data object containing a subset of the configuration parameters
used by the business logic during its life-cycle. These two data objects contain
the variable rate the end-client wants to check and the last time the rate type
was changed, that is the data the end-user needed to define his/her rule.

The stakeholder first defines his/her dependability supervision rules using nat-
ural language, while the design expert annotates them in our high-level version
of WSCoL. Once the rules have been agreed on, the designer can proceed to
translate them into the real WS-CoL rules that will instruct our supervision
framework.

4.2 Dynamo

Dynamo is based on AOP-like techniques. These techniques play a pivotal role
in allowing us to keep the business logic separate from the definition of the
supervision activities, and thus foster the concept of dependability. AOP allows
us to envision the supervision activities as a cross-cutting concern that can be
“weaved” directly into the process. It also guarantees that the business process
is defined once and for all, regardless of the different supervision requirements
imposed by different stakeholders.

We have decided to relegate all the supervision activities to special purpose
components that exist outside of the execution engine. This gives us two main
advantages. The first is that this allows us to distribute the supervision environ-
ment more freely, for example as a stand-alone service that any process developer
can take advantage of. No knowledge of monitoring or recovery needs to be em-
bedded into the execution environment, meaning that our solution can be used
in conjunction with whatever BPEL execution engine the designer chooses to
adopt. The second main advantage is that, thanks to this decision, we can man-
age the framework’s own configuration and setup more freely. For example, we
can choose to change the data analyzer we are using on-the-fly, or we can use a
different storage component, etc.

The main obstacle at this point becomes how to automatically instruct the
business process to interact correctly with the external supervision framework.
This is where the AOP-like techniques come in handy. They provide us with the
“glue” we need to tie the process to Dynamo.

Figure 7 illustrates the solution we propose. Reading the figure from left to
right it is possible to understand the transformation the process must undergo

Business Process Monitoring for Dependability 355

in order to allow for run-time supervision. The automatically generated BPEL
process only considers the business logic, without having to take into account
any notion of supervision. The process, as we see it on the left-hand side of
Figure 7, in fact, interacts with the partner services on the internet through
BPEL invoke activities.

Fig. 7. An overview of our proxy based implementation

An external supervision definition file (once again see Figure 7) contains all
the information needed to actually tie the process definition to the Dynamo
framework. This file is defined conjunctively by the business expert and the
design expert. In fact, it contains information regarding the subset of activities
and data objects the end-clients can use in their supervision rules.

This file is used at deployment-time by a component called BPEL2, responsible
for producing the BPEL code that will “glue” the process to Dynamo. This code
is responsible for “pushing” the run-time data needed to provide supervision
towards the Dynamo framework. The code that is created is then automatically
inserted into the process definition, creating a new version of the process capable
of interacting correctly with Dynamo. This process can be seen on the right-hand
side of Figure 7.

In this modified version of the process, every time there is a pre- or post-
condition might need to be checked, the interaction the process would have had
with the outside world is channeled through the Dynamo Proxy. This component
is the main component of this prototype. It is responsible for managing external
or historical data collection, data analysis and recovery. It is also responsible for
invoking the original Web service (the one for which we are verifying pre- and/or
post-conditions), since the original process no longer performs the invocation,
and for returning its response to the process.

Performance. The loss in performance can be attributed to (a) the time it
takes the execution to figure out if supervision is required, and (b) the amount
of time it takes to actually perform monitoring and recovery. Evaluation has
demonstrated that, in average, it takes the system less than 2ms to figure out if

356 L. Baresi, S. Guinea, and M. Plebani

supervision is required. These tests have been performed on an AMD Athlon(tm)
XP 2600+ (1.93Ghz) with 512MB of RAM, running Windows XP. The loss due
to the actual supervision, on the other hand, depends on the nature of the
monitoring property and of the recovery definition. The reason for this is that it
depends on how long it takes the external services we need invoke to complete,
be them external variables in WSCoL properties, or various atomic action, such
as retry, rebind, call, and callback.

5 Related Work

Many approaches concentrate on a more traditional definition of dependability,
and often build upon results previously obtained for component-based systems.
Candea et al. [17] propose a solution to enforce greater availability through the
use of micro-reboots, in which single components are preemptively rebooted
to assure a ready-state where upcoming failures should be less likely to occur.
This requires a continuos monitoring of the different Web services, which might
not be feasible when the various components are distributed or under diverse
jurisdictions.

Hall et al [39] propose a solution to the reliability problem. They propose
a container-based approach in which a transparent proxy places itself between
the client and the Web service itself. The proxy can then implement a different
number of fault-tolerance policies. One such policy could be to adopt replication,
and then have the proxy use a certain voting scheme when it receives multiple
answers.

Fault-tolerance is a highly perceived problem in the domain of grid computing
as well. A common solution, present in systems such as Condor [4], is to use
check-pointing. This involves periodically saving the state of an application, in
order to be able to restart it promptly. This typically introduces high levels of
performance overhead. Plank [21] proposes concurrent check-pointing as a way
to avoid such overhead. A second problem arises in dynamic and heterogeneous
systems, such as SOAs, where a restart can require the data to be sent to all the
nodes in the system.

An approach which presents an abstraction-level more similar to that of our
solution, and which also provides service execution monitoring, is Cremona (Cre-
ation and monitoring of WS-Agreements) [19]. WS-Agreement is a standardiza-
tion effort of the Global Grid Forum [9] that defines an agreement protocol based
on XML. This standard defines agreements for interfaces, security and quality of
service properties. Cremona provides a framework that simplifies the definition,
management, and run-time monitoring of the state of the agreements.

Spanoudakis and Mahbub [30] also propose a framework for monitoring re-
quirements of WS-BPEL-based service compositions. Their approach uses event-
calculus for specifying the requirements that must be monitored. Requirements
can be behavioral properties of the coordination process or assumptions about
the atomic or joint behavior of deployed services. The first can be extracted au-
tomatically from the BPEL specification of the process, while the latter must be

Business Process Monitoring for Dependability 357

specified by the user. Events are then observed at run-time. They are stored in a
database and the run-time checking is done by an algorithm based on integrity
constraint checking in temporal deductive databases. Like in our approach, er-
roneous situations can be found only after they occur. However, it is much less
responsive in discovering run-time erroneous situations and cannot be used to
enforce dependability.

Exception handling in business workflows has also been considered outside
the domain of service oriented computing; Casati et al. [12] provide an environ-
ment for designing reaction strategies in generic business workflows. Exceptions
are specified using ECA rules that consider data, workflow, temporal and ex-
ternal events. Their approach is similar to ours since events are raised when a
task is started or completed. However, their rules are less flexible; in fact, the
definition of their rules is pattern-oriented; instead, in our work we do not force
rigid schemas onto the designers. F. Daniel [15], on the other hand, proposes a
portable approach to exception handling in workflow management systems. He
proposes a means to enrich XPDL workflows with standard exception handling
constructs, starting from a universal and high-level event-condition-action lan-
guage. Through a rule compiler he then yields portable process and exception
definitions in an automated way.

Rule engines are widely exploited in recovery management. DIOS++ [29] is a
framework for rule-based autonomic adaptation and for controlling distributed
sensor-monitored scientific applications. DIOS++ provides a distributed rule en-
gine that adopts if - then - else client-defined rules like those described in this
paper. RuleBAM [20] is an another framework that uses policies and rules; it
uses Business Activity Management (BAM) polices to define the system require-
ments and to automatically produce executable business rules that implement
recovery. These approaches however are not specifically tailored towards SOAs.
They also do not provide specific mechanisms for complex strategies, but only
atomic actions.

As far as recovery actions for SOAs are concerned, Pautasso et al. [34] provide
an autonomic reconfiguration component for JOpera, a proprietary distributed
service composition and deployment platform. It allows the system to automat-
ically reconfigure its deployment strategy in the wake of QoS problems (e.g.
excessive workload). Recovery strategies are chosen according to goals such as
the minimization of resource allocation or response times. However, the use of
proprietary languages and tools greatly reduces the possible diffusion of JOpera.
Canfora et al. [11] propose a re-planning technique for QoS-based dynamic bind-
ing. Their goal is to trigger re-planning when the measured QoS violates an SLA
or deviates greatly from estimations, and to obtain new service compositions that
guarantee the needed functionality and the overall desired QoS. With respect to
our approach, however, they do not cover functional properties.

Regarding the use of aspect oriented programming to weave cross-cutting
concerns into BPEL processes, Courbis et al. [14] propose a proprietary solution
based on their semantic analyzer toolkit called SmartTools. Using this tool they
have produced a process engine that uses the visitor design pattern to traverse

358 L. Baresi, S. Guinea, and M. Plebani

abstract syntax trees (which represent their processes) in order to execute ap-
propriate code for each language construct they encounter. Aspects are activated
through redirection. With respect to our approach, this solution is closed and
more research oriented. Charfi et al. [13], on the other hand, propose a slightly
different approach in which AOP is used to produce a container-based middle-
ware to be used in conjunction with a BPEL engine. This middleware intercepts
the process calls to enforce policies such as security, persistence, and reliable
messaging. With regards to our approach, such a solution is much more QoS
oriented and less functional.

Much work has been accomplished in the field of dynamic composition of
SOAs, introducing interesting techniques that can be used for process re-
organization in the wake of anomalies. Mecella et al. compose services [10] start-
ing from a finite transition system representation of the needed service. In a
different way, Traverso et al. [36] [41] consider dynamic compositions a plan-
ning problem. Given a set of abstract BPEL descriptions, and a composition
requirement, they generate an executable BPEL process by combining all the
possible behaviors of each service into a parallel state transition system. This
representation, together with the process requirement, is the input for a planner
that extracts the executable BPEL process. However, both Mecella and Tra-
verso limit client intervention to the definition of the set of services that can be
used in the composition. Again our approach allows for greater flexibility and
for personalized recovery.

Finally, we can also mention the work by Di Nitto et al. [31] and SH-BPEL
(Self-Healing BPEL [33]). They both propose to extend BPEL by means of suit-
able external rules to increase its flexibility and its capability of dealing with
anomalous situations. Both the approaches do not consider monitoring and de-
pendability as first class citizens, but they are more interested in supporting the
dynamic reconfiguration of BPEL processes. To this end, some of the solutions
they propose could easily become new atomic actions for our reaction strategies,
but the key motivations of our approach and these proposals are different.

A business process can also be made personal by using some well-known
workflow patterns [8]: for example exclusive choice, deferred choice and mul-
tiple instance. These patterns help us customize a business process according
to the dependability constraints of the different stakeholders. These patterns
are used as starting point for enforcing dependability by means of pi-calculus.
Puhlmann [37] proposes a formal method where each workflow activity is mapped
onto a pi-calculus process with pre- and post-conditions (to constrain the evolu-
tion). Even if the solution is interesting for its degree of precision and rigor, it
lacks flexibility, which hampers the idea of stakeholder-oriented dependability,
and user-friendliness given the choice of pi-calculus as model notation.

6 Conclusions

The paper studies the concept of dependability in the context of business-
oriented BPEL processes. It concentrates on the capability to tailor the amount

Business Process Monitoring for Dependability 359

of checks that must be done while the process executes, as well as the capability
to react as soon as a given dependability condition is violated. Dynamo oversees
the execution of dependable processes by checking monitoring expressions and
by reacting as soon as they are violated by means of the associated reaction
strategies.

In this paper, the work is intentionally general. There are many other kinds
properties that reside under the dependability umbrella, such as confidential-
ity, integrity, etc. Not all of them can be easily guaranteed using our approach.
However, since our work is intentially general, in order to achieve versatility,
sometimes it is simply a matter of finding ways to obtain the run-time infor-
mation needed for verifying such properties. In fact, we have studied the use
of our techniques, and in particular of WSCoL and Dynamo, in expressing and
guaranteeing confidentiality requirements [42].

The main novel contributions of this paper is the adoption of BPMN as
friendly notation for business process modeling, but this choice also leads to
other novelties because BPMN models must be semi-automatically translated
into executable BPEL process and supervision rules must be re-casted accord-
ingly.

The paper describes our first experiments to ease the definition of supervision
rules. Our base languages (WSCoL and WSRS) supply the necessary functional-
ity, but they are not easy and straightforwardly usable by non experts. Besides
proposing to raise the abstraction level as for modeled processes, we are also
working on form-based languages and supervision patterns to support the defi-
nition of the rules themselves.

References

1. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic Concepts and Tax-
onomy of Dependable and Secure Computing. IEEE Transactions on Dependable
and Secure Computing 1(1), 11–33 (2004)

2. BorlandTogether technologies. http://www.borland.com/us/products/together/
index.html

3. Business Process Execution Language for Web Services v1.1,
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/

4. Condor. http://www.cs.wisc.edu/condor
5. Business Process Modeling Notation Specification. http://www.bpmn.org/
6. Object Management Group (OMG) - Business Process Management Initiative.

http://www.bpmn.org/
7. Wikipedia. http://www.wikipedia.org/
8. Workflow patterns. http://is.tm.tue.nl/research/patterns/patterns.html
9. WS-Agreement Structure. http://www-unix.mcs.anl.gov/~keahey/Meetings/

GRAAP/WSAgreement Structure.pdf
10. Berardi, D., Calvanese, D., De Giacomo, G., Mecella, M.: Composition of services

with nondeterministic observable behavior. In: Benatallah, B., Casati, F., Traverso,
P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 520–526. Springer, Heidelberg (2005)

11. Canfora, G., Di Penta, M., Esposito, R., Villani, N.L.: Qos-aware replanning of
composite web services. In: 2005 IEEE International Conference on Web Services
(ICWS 2005), pp. 121–129. IEEE Computer Society Press, Los Alamitos (2005)

http://www.borland.com/us/products/together/index.html
http://www.borland.com/us/products/together/index.html
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
http://www.cs.wisc.edu/condor
http://www.bpmn.org/
http://www.bpmn.org/
http://www.wikipedia.org/
http://is.tm.tue.nl/research/patterns/patterns.html
http://www-unix.mcs.anl.gov/~keahey/Meetings/GRAAP/WSAgreement Structure.pdf
http://www-unix.mcs.anl.gov/~{}keahey/Meetings/GRAAP/WSAgreement Structure.pdf

360 L. Baresi, S. Guinea, and M. Plebani

12. Casati, F., Fugini, M.G., Mirbel, I.: An environment for designing exceptions in
workflows. In: Pernici, B., Thanos, C. (eds.) CAiSE 1998. LNCS, vol. 1413, pp.
139–157. Springer, Heidelberg (1998)

13. Charfi, A., Mezini, M.: An aspect-based process container for bpel. In: AOMD
’05: Proceedings of the 1st workshop on Aspect oriented middleware development,
ACM Press, New York (2005)

14. Courbis, C., Finkelstein, A.: Towards aspect weaving applications. In: Roman, G.-
C., Griswold, W.G., Nuseibeh, B. (eds.) ICSE, pp. 69–77. ACM Press, New York
(2005)

15. Daniel, F.: A portable approach to exception handling in workflow management
systems. Technical report, Politecnico di Milano - Dipartimento di Elettronica e
Informazione (2006)

16. Active Endpoints. ActiveBPEL engine architecture. http://www.activebpel.org/
docs/architecture.html

17. Candea, G., Kawamoto, S., Fujiki, Y., Friedman, G., Fox, A.: Microreboot - A
Technique for Cheap Recovery. In: 6th Symposium on Operating System Design
and Implementation (OSDI 2004), pp. 31–44 (2004)

18. Guttag, J.V., Horning, J.J., Garland, S.J., Jones, K.D., Modet, A., Wing, J.M.:
Larch: languages and tools for formal specification. Springer, Heidelberg (1993)

19. Ludwig, H., Dan, A., Kearney, R.: Cremona: An Architecture and Library for
Creation and Monitoring of WS-Agreements. In: Service-Oriented Computing -
ICSOC 2004, Second International Conference, New York, USA, November 15-19,
2004, pp. 65–74 (2004)

20. Jeng, J.J., Flaxer, D., Kapoor, S.: RuleBAM: A rule-based framework for business
activity management. In: IEEE SCC, pp. 262–270. IEEE Computer Society Press,
Los Alamitos (2004)

21. Plank, J.S.: Efficient checkpointing on MIMD architectures. PhD thesis, Princeton,
NJ, USA (1993)

22. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Videira Lopes, C., Loingtier,
J.M., Irwin, J.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

23. Baresi, L., Ghezzi, C., Guinea, S.: Smart monitors for composed services. In:
Service-Oriented Computing - ICSOC 2004, Second International Conference, New
York, USA, November 15-19, 2004, pp. 193–202 (2004)

24. Baresi, L., Guinea, S.: Dynamo: Dynamic Monitoring of WS-BPEL Processes. In:
Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp.
478–483. Springer, Heidelberg (2005)

25. Baresi, L., Guinea, S.: Towards Dynamic Monitoring of WS-BPEL Processes. In:
Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp.
269–282. Springer, Heidelberg (2005)

26. Leavens, G., Cheon, Y.: Design by Contract with JML. Java Modeling Language
Project (2003), http://www.jmlspecs.org

27. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral
interface specification language for java. ACM SIGSOFT Software Engineering
Notes 31(3), 1–38 (2006)

28. Leavens, G.T., Cheon, Y., Clifton, C., Ruby, C., Cok, D.R.: How the design of JML
accommodates both runtime assertion checking and formal verification. Science of
Computer Programming 55(1-3), 185–208 (2005)

http://www.activebpel.org/docs/architecture.html
http://www.activebpel.org/docs/architecture.html
http://www.jmlspecs.org

Business Process Monitoring for Dependability 361

29. Liu, H., Parashar, M.: DIOS++: A framework for rule-based autonomic manage-
ment of distributed scientific applications. In: Kosch, H., Böszörményi, L., Hell-
wagner, H. (eds.) Euro-Par 2003. LNCS, vol. 2790, pp. 66–73. Springer, Heidelberg
(2003)

30. Mahbub, K., Spanoudakis, G.: A framework for requirements monitoring of service
based systems. In: Service-Oriented Computing - ICSOC 2004, Second Interna-
tional Conference, New York, USA, November 15-19, 2004 (2004)

31. Colombo, M., Di Nitto, E., Mauri, M.: SCENE: A Service Composition Execution
Environment Supporting Dynamic Changes Disciplined Through Rules. In: Dan,
A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 191–202. Springer,
Heidelberg (2006)

32. Momotko, M., Nowicki, B.: Visualisation of (Distributed) Process Execution based
on Extended BPMN. In: Mař́ık, V., Štěpánková, O., Retschitzegger, W. (eds.)
DEXA 2003. LNCS, vol. 2736, pp. 280–284. Springer, Heidelberg (2003)

33. Modafferi, S., Mussi, E., Pernici, B.: Sh-bpel: a self-healing plug-in for ws-bpel
engines. In: MW4SOC ’06: Proceedings of the 1st workshop on Middleware for
Service Oriented Computing (MW4SOC 2006), pp. 48–53. ACM Press, New York
(2006)

34. Pautasso, C., Alonso, G.: Flexible binding for reusable composition of web services.
In: Gschwind, T., Aßmann, U., Nierstrasz, O. (eds.) SC 2005. LNCS, vol. 3628, pp.
151–166. Springer, Heidelberg (2005)

35. Irassar, P., Kloppmann, M.: From Business Process Modeling with BPMN and
BPDM to Business Process Execution with BPEL and SCA. In: Dan, A., Lamers-
dorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, Springer, Heidelberg (2006)

36. Pistore, M., Traverso, P., Bertoli, P., Marconi, A.: Automated synthesis of com-
posite BPEL4WS web services. In: ICWS, pp. 293–301. IEEE Computer Society
Press, Los Alamitos (2005)

37. Puhlmann, F., Weske, M.: Using the pi-calculus for formalizing workflow patterns.
In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM
2005. LNCS, vol. 3649, pp. 153–168. Springer, Heidelberg (2005)

38. Guinea, S.: Dynamo: a Framework for the Supervision of Web Service Composi-
tions. PhD thesis, Politecnico di Milano (2006)

39. Hall, S., Dobson, G., Sommerville, I.: A Container-based Approach to Fault Toler-
ance in Service-Oriented Architectures (2004), http://www.cs.wisc.edu/condor/

40. White, S.: Introduction to BPMN (2003), http://www.bpmn.org/
41. Trainotti, M., Pistore, M., Calabrese, G., Zacco, G., Lucchese, G., Barbon, F.,

Bertoli, P., Traverso, P.: Astro: Supporting composition and execution of web
services. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS,
vol. 3826, pp. 495–501. Springer, Heidelberg (2005)

42. Baresi, L., Guinea, S., Plebani, P.: WS-Policy for Service Monitoring. In: Bussler,
C., Shan, M.-C. (eds.) TES 2005. LNCS, vol. 3811, pp. 72–83. Springer, Heidelberg
(2006)

http://www.cs.wisc.edu/condor/
http://www.bpmn.org/

R. de Lemos et al. (Eds.): Architecting Dependable Systems IV, LNCS 4615, pp. 362–382, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Achieving Dependable Systems by Synergistic
Development of Architectures and Assurance Cases

Patrick J. Graydon1, John C. Knight1, and Elisabeth A. Strunk2

1 Department of Computer Science
University of Virginia

151 Engineer’s Way, P.O. Box 400740
Charlottesville, VA 22904-4740, USA

{graydon,knight}@cs.virginia.edu
2 Software Systems Engineering Dept.

The Aerospace Corporation
15049 Conference Center Drive, CH3/320

Chantilly, VA 20151-3824
elisabeth.a.strunk@aero.org

Abstract. Assurance Based Development (ABD) is an approach to the
construction of critical computing systems in which the system and an argument
that it meets its assurance goals are developed simultaneously. ABD touches all
aspects of the system lifecycle, but in this paper we focus on how the evolving
assurance argument can guide architectural choices to increase system
dependability. The goals with this approach to architectural choice are twofold.
The first is to develop the architecture so that it provides the required evidence.
The second is to refine the assurance case as architectural choices are made so
that the evidence that will be provided supports the assurance claims.
Combining development and assurance in this way facilitates detection—and
thereby avoidance—of potential assurance difficulties as they arise, rather than
after development is complete.

1 Introduction

It is essential that there be a high degree of assurance that a critical computing system
will operate dependably in its expected environment, and system architecture plays a
major role in achieving that dependability. Unless the architecture of the system is
well-matched to both its dependability needs and the associated assurance of that
dependability, developers may waste effort on activities that bring unnecessary gains
in one part of a system while failing to provide the needed assurance of dependability
in others. This can happen in any phase of the lifecycle, but it is especially important
for a system’s architecture because inappropriate architectural decisions can have a
major impact on subsequent development activities. Nevertheless, current approaches
to assuring dependability—in the system’s architecture, and in other aspects of its
development—are frequently ad hoc.

 Achieving Dependable Systems 363

Assurance Based Development (ABD) is a novel approach to the development of
critical computing systems in which development of the system and of its assurance
argument are integrated. The assurance argument, presented in an assurance case,
documents how evidence from the system and the process used to construct it
supports the system’s dependability claims. Integrating system development and
system assurance means that dependability-related development objectives are clearly
laid out, and can be addressed specifically when making architectural choices. In this
paper, we describe the ABD process and how it can be used to develop a software
architecture.

In ABD, the assurance case and architecture are developed in parallel. Each
architectural choice a developer makes is assessed in terms of its impact on: (1) the
system’s functionality; (2) the development activities that will be needed; (3) the
evidence that will be needed in the assurance case; and (4) the argument structure of
the assurance case. The goals with this approach to architectural choices are twofold.
The first is to develop the architecture so that it provides the evidence required in the
assurance case. The second is to refine the assurance case as architectural choices are
made so that the evidence which will be provided supports the claim that the system is
adequately dependable.

Combining architecture development and dependability assurance in this way
promotes detection—and thereby avoidance—of potential assurance difficulties as
they arise. Inevitably, architectural choices are made without complete knowledge of
their impact on subsequent development, and so it is always possible that a decision
will have to be rethought. Nevertheless, by including explicit attention to
dependability assurance goals while creating the system’s architecture, the chances
that a decision will not support the overall dependability goal are reduced. Where this
is not done, there is the very real danger that inadequate dependability might only be
revealed during evaluation carried out after development is complete.

Since dependability assurance is considered and addressed throughout
development, ABD can increase the confidence that can be placed in an architecture.
Furthermore, the increased efficiency of the development processes allows resource
savings during development of typical critical systems when ABD is used.
Nevertheless, it is not possible to show that architectures chosen with the help of the
assurance case will always be superior to architectures chosen in an ad hoc manner
because of the many variables involved in development. The architect will have been
able to make better informed choices than that would have been possible otherwise,
and so his or her goals are more likely to be achieved.

2 Assurance Cases

Assurance cases are the state of the art in rigorous but non-formal dependability
argumentation and, as such, provide the foundation on which the ABD approach to
architectural development rests. The most common use of assurance cases at present
occurs in the documentation of safety, and safety cases have been built for a variety of
production systems. In general, a safety case is “a documented body of evidence that
provides a convincing and valid argument that a system is adequately safe for a given

364 P.J. Graydon, J.C. Knight, and E.A. Strunk

application in a given environment” [2]. Special graphic notations have been designed
to enable the documentation of assurance cases in a manner that is easy for humans to
understand and that can be manipulated by machine. The most widely used of these
notations is the Goal Structuring Notation (GSN) [17].

G01
The aircraft Flight Control
System is safe to
operate.

ST01

Argument by
addressing all
credible hazards

ST02
Argument for
compliance with
applicable safety
regulations

C01

System hazard
analysis

C02

DO-178B
standard [14]

C03

FCS operating
procedures

G02
Hazard of aircraft exiting
flight envelope
sufficiently mitigated.

C04

Flight envelope

G03
Control logic enforces
flight envelope
constraints on pilot.

G04
Control logic will not
command hazardous
maneuver.

G05
Direct control law
provides pilot override
mechanism.

S01

Control logic
design

S02

Model
checking
analysis

Legend

G: Goal (property to be
shown)

C: Context (inclusion
indicated by)

ST: Strategy (type of
argument being made to
support goal)

S: Solution (factual basis
for the argument)
: remains to be supported

Fig. 1. Example assurance case

In its simplest form, an assurance case contains an instance of each of three
essential elements: (1) an assurance goal or claim; (2) evidence that the goal has been
satisfied; and (3) an argument linking the evidence to the goal in a way that leads one
to believe that the goal is justified by the evidence. This basic structure is
supplemented with a variety of other elements, including assumptions, justifications,
and context, and applied recursively to produce, for real systems, a hierarchic
structure with the overall goal for the system at the root. The hierarchic structure
makes the overall argument manageable at each level. Figure 1 illustrates the use of
GSN in a simple completely hypothetical safety case. In the figure, the assurance goal
is stated in the box at the top and the remainder of the figure documents the argument
for belief in that goal.

The overall argument in an assurance case is a set of logical inferences that show
why the evidence implies that the system’s assurance goals have been met. The goals,

 Achieving Dependable Systems 365

evidence, and hence the assurance argument are specific to a particular system, and so
each assurance case is unique. However, patterns have been developed for common
argument fragments [10].

3 Assurance Based Development

Assurance Based Development integrates the various separate activities that occur in
the construction of a critical system, i.e., it integrates requirements and context
analysis, system development, and assurance case creation. The primary goal is to
ensure that the choice of development techniques will allow evidence generated
during development to be sufficient for the system’s assurance case. Creating a
system architecture is one stage of ABD. We describe the overall ABD process in this
section, elaborating its implications for system architecture below.

The major components of Assurance Based Development and their high-level
interactions are shown in Figure 2. Shown on the left of the figure are components
labeled system context and system requirements, with the former enclosing the latter;
the context in which a system operates influences the system requirements in many
ways. The system requirements are used by both the system assurance case and the
system development artifacts. The system requirements include the dependability
requirements such as availability and safety, and thus determine the primary goal of
the assurance case. The system requirements include the functional requirements also
and so are the starting point for the development lifecycle.

At the center of the technique are the system assurance case and the system
development artifacts. These two components are developed in parallel, and their

System
assurance

case

System
development

artifacts

A
ssurance
linking

Assurance-
component

development

System
context

System
requirements

System
dependability

goal

System
functional

requirements

Argument
validation

ABD composite

Fig. 2. Assurance Based Development

366 P.J. Graydon, J.C. Knight, and E.A. Strunk

development is coordinated using a technique that we refer to as assurance linking.
Assurance linking ensures that assurance goals and development artifacts are coupled
explicitly and systematically so as to reveal the evidence needed by the assurance case
from the development artifact. Assurance linking enables developers to check that the
properties possessed by development artifacts are the properties necessary to support
the goal in the assurance case for which the development artifact provides evidence.

As an example of assurance linking, consider the problem of developing a software
component in a safety-critical system such that the component meets an assurance
goal of having a failure rate per unit time below some threshold p, where p is perhaps
10-3, i.e., not in the ultra-dependable range. Testing might be the basic strategy chosen
to meet this goal. Such a goal requires several pieces of evidence if it is to be believed
as part of an assurance case. These pieces of evidence are: (1) that the specification
for the component is correct (a complex assurance subgoal); (2) that the component
has been tested according to its test plan (a development subgoal); (3) that testing
according to the test plan demonstrates in a statistically valid way that its failure rate
is below the threshold (a developmental and documentation subgoal); (4) that the test
cases were the result of a random process of selection from the expected operational
environment (an analysis subgoal); and (5) that these items of evidence were recorded
and reported accurately.

A technique called ABD composite production is the process of developing a
component and its associated assurance case elements. The assurance case plays a
predictive role in ABD since it is used to determine the necessary properties that each
development artifact must have in order to support the system assurance argument.

Development of an architecture, therefore, consists of repeatedly making an
architectural choice, assessing the value and suitability of the evidence that will result
from it, and developing the associated assurance argument fragment. The assurance
argument fragment is then analyzed to ensure that its derived premises are both
satisfiable and practical, and that it is free of fallacious reasoning and other flaws.

If the synergy between the system and its assurance case is not present, then the
basis for each development choice, including those made in architecture, will tend to
be factors such as cost, experience and convenience although dependability will
sometimes be considered. Thus there will be no guarantee that the choices made will
be those that facilitate the system meeting its dependability goals nor that the
evidence developed will be that needed in the assurance case.

4 Existing Techniques for Architecture Development

In any discussion of architecture, it is important to have a precise definition of what
the term means. In this paper, by the term architecture, we mean the following:

The architecture of a system is the system's fundamental organization,
embodied in its components, their relationships to each other and to the
environment, and the principles guiding its design and evolution. [1]

 Achieving Dependable Systems 367

There is no rigorous, prescribed process for developing a system architecture or a
software architecture. There are several principles that are known to promote certain
useful qualities in an architecture, e.g., modularization that facilitates information
hiding, and there are architectures that are commonly used because they possess
important properties, e.g., redundancy allows certain types of fault to be masked.

In practice, most architectural development tends to be driven primarily by desired
system functionality. The dominant technique used, therefore, is functional
decomposition using informal “box-and-arrow” models. Once a model is thought
capable of supplying the necessary functionality, attention turns to issues such as
encapsulation and performance. Dependability as an architectural issue is often either:
(1) assumed to be addressed by some architectural pattern; (2) an afterthought that has
to be argued with an architecture that is a fait accompli; (3) argued in a fragmented
and uncoordinated manner as development proceeds; or (4) some combination of
items (1)-(3). The first approach leads to a partial argument where the contribution to
dependability or lack thereof by many of the architectural decisions is missing. The
second approach can lead to a lot of rework as architectural decisions are discovered
that do not meet the needs of the assurance argument. Finally, the third approach
leads to an incomplete and unsatisfactory argument.

Developers of safety-critical systems pay attention explicitly to system
dependability both during development and during evaluation, and the process they
follow shares some characteristics with ABD. However, although dependability goals
influence architectural choices, the goals considered are typically just overall system
reliability or availability targets, and the process tends to have the characteristics of
item (3) above.

In the experience of the authors, for systems in general, architects often use an
iterative process such as the one shown in Figure 3. In each iteration, the architect
makes a tentative architectural choice based on functional decomposition and then
examines the software as it would be given that choice using a box-and-arrow style of
model. He or she speculates as to whether, with respect to obvious alternative choices,
the new choice combined with the previous choices would:

• allow the resulting system to meet its functional requirements;
• allow partitioning of the software into modules that can be divided evenly over

the available team members;
• result in a system with adequate performance; and
• result in software with acceptable volume and complexity.

An architect typically starts the development of an architecture with a choice that
he or she hypothesizes will allow the required overall system functionality to be
provided. Understandably, an architect usually proposes architectural choices with
which his or her team is already familiar: a team that has used the same architectural
pattern in the last several projects will often start by proposing that pattern for the
next project. Clearly, they could not propose an architectural choice with which they
were totally unfamiliar. Also, architects are hesitant to use architectural choices with
which they have little or no experience, as their unfamiliarity will make their

368 P.J. Graydon, J.C. Knight, and E.A. Strunk

Propose an architectural choice

Speculate on effect of choice

Is
arch.

accept-
able?

Identify
choice

to revisit

All
modules

small
enough

?

Normal startRework start

No

Yes

No

Yes

Proceed to lower-level design

Identify
choice

to revisit

Fig. 3. Traditional process for architecture development

conclusions about the acceptability of the choice tenuous, thus adding to perceived
project risk.

Selection of architectural choices is guided by the architect’s sense of the next
most “pressing” issue. Once convinced, albeit informally, that their choice could
supply the necessary functionality, the architect turns to issues such as performance,
flexibility, maintainability or similar. Following that the architect might turn to
mundane but important issues such as whether the components of the architecture can
be implemented effectively by the available team structure.

This development process does not guarantee an acceptable architecture. As a
tentative architecture becomes more complex, answering questions such as whether
proper functionality will be supplied or whether acceptable performance will be
achieved requires techniques such as architectural modeling and prototyping. In some
cases, the answers are not obtained until the system is built at which point the
“wrong” answer can be disastrous because selecting a new choice is either impractical
or very expensive.

When the perceived drawbacks are costly enough, however, architects will revisit
choices. They will replace them with alternatives and re-assess the system as a whole.
They will then consider replacing any further choices that examination reveals to be
sub-optimal given the repaired choice.

In some cases, architectural choices are affected by non-technical considerations
such as standards, imposed choices, and workload balancing. External standards often
have to be followed to facilitate certification in regulated industries such as medical
devices. Similarly, development decisions such as the choice of target hardware
platforms or the choice of software development tools are sometimes imposed as an

 Achieving Dependable Systems 369

enterprise-wide decision. Finally, limited development resources may force engineers
to accept compromises that increase development risk, reduce functionality, or make
maintenance or enhancement more difficult.

In the special case of safety critical systems, the general architectural approaches
summarized above are sometimes enhanced by including consideration of the safety
argument during development. For example, it has been advocated that developers
create a preliminary safety case early in the system lifecycle and update it periodically
as development progresses [9, 12]. ABD takes this idea to its limit by tightly coupling
the development of the system and its assurance argument so as to make visible to the
developer the assurance obligations incident upon each part of the system.

Attribute Driven Design (ADD) is an architectural development technique that is
closely related to ABD [18]. In ADD, architectural choices are influenced by quality
properties as well as more conventional software architecture considerations. The
major difference between ABD and ADD is that ABD uses the rigorous argument of a
safety case to fully document the rationale for believing that quality attributes have
been achieved and guides development to ensure that this argument will be valid.

5 Architecture in Assurance Based Development

As discussed in section 3, the fundamental concept underlying Assurance Based
Development is that system development decisions are based on being able to meet
assurance goals and on supporting the associated assurance argument. The
development of a system’s architecture is a part of the overall development, and so
the architectural decisions in ABD are based on meeting assurance goals. With this
approach, the role of architecture in dependability is clear, and the architectural
choices made can be optimized to achieve the desired dependability and the
associated assurance without expending unnecessary cost. The ABD process is
summarized in Figure 4.

The starting point, as with any development, is the given architecture. This is the
high-level architecture within which the computing system will operate. The high-
level architecture will define the functional requirements for the computing system
and the associated dependability requirements. The top-level goal in the computing
system’s assurance argument is derived from these requirements. Thus, any system
that demonstrably meets this goal solves the problem that it was created to solve,
providing the desired functionality with the desired dependability when operated in
the intended context.

The ABD process for developing a system architecture proceeds differently from
the process discussed in the previous section. The architect begins by examining the
top-level goal in the assurance case. This goal will include the dependability
requirements as well as the functionality itself. The architect seeks an architectural
choice that will allow the goal to be met. His or her first step is to make an
architectural choice that results in a satisfactory argument that the goal has been met
and sub-goals that can be addressed practically by subsequent development activities.
Each choice is evaluated in terms of seven criteria, which are discussed in detail in
section 5.2. These criteria have been selected so as to help developers avoid making

370 P.J. Graydon, J.C. Knight, and E.A. Strunk

Nothing left to do

Previous choice
seems poor

in retrospect

Reconsider/
unmake choice
and the choices
that depended

on it

Rework
start

Normal start

Describe given architecture and
define top-level assurance goal

Enumerate candidate
architectural choices

Consider each candidate choice
with respect to the seven criteria

Select an architectural choice

Proceed to
low-level design

Check that the new assurance
fragment is valid that and its

sub-goals can likely be satisfied

Describe the resulting
architecture and add argument

fragment to assurance case

Fig. 4. Architecture development in ABD

choices that will need to be re-visited because they make successful completion of the
system and its assurance case impractical or even impossible.

Once the choice is made, the evidence that results from the choice becomes an
integral part of the argument that the top-level goal of the assurance case is met. Thus
acceptance of the choice by the architect requires that he or she develop the associated
argument fragment for the assurance case. This argument fragment must show that the
top-level goal will be met, provided the premises generated by the architectural choice
are met.

As an example of the concept, consider the development of a simple autopilot
system that has to provide an altitude-hold capability for a general-aviation aircraft.
Such a requirement could be implemented as a control loop that reads a set of sensors,
computes an adjustment to the actuators, and sends commands to the actuator servos
according to a simple, periodic real-time schedule. The dependability requirements
would be quite extreme, however, because safe flight depends on the system
operating correctly when in use [14]. In this case, a system reliability of 1x10-7 over
three hours together with a significant safety requirement might be required.

The given architecture for such a system would include much of the rest of the
aircraft’s avionics system. In particular, the mechanisms by which the sensor signals
are made available and the actuators are commanded would be defined.

 Achieving Dependable Systems 371

The architect faced with the stated assurance goal would need to make an initial
architectural choice that would ensure hardware and software failure rates which,
when suitably composed, would meet the goal. The choice, therefore, might include
an NMR hardware system1 combined with software developed with a rigorous
process and a comprehensive test plan. The detailed characteristics of the selected
NMR hardware system and of the software development process would be the
evidence for the argument fragment, and the architectural choice would not be
accepted unless this argument was considered adequate.

In the remainder of this section, we describe the Assurance Based Development of
architecture in detail. In section 5.1 we discuss the determination of architectural
choices and in section 5.2 selection from them. In section 5.3 we present the use of
architectural choices, and we review the overall process in section 5.4. A detailed
example of ABD applied to architecture is presented in section 6.

5.1 Candidate Architectural Choices

With dependability as a central criterion in making architectural choices, it is
important to ensure that all possible candidate choices are considered. Several general
textbooks have been written on architecture [15, 3, 4, 5], and a great deal of research
has been conducted on architectural support for dependability [e.g., 16], and it is not
necessarily the case that the architect will be familiar with the field. This research has
been motivated in most cases by seeking to achieve specific dependability metrics
(e.g., reliability, availability and safety) within general system categories (e.g.,
servers, clients and embedded systems), and the relevant literature tends to be
organized from these perspectives.

Determining the architectural choices in ABD is a two-phase process. In the first
phase, the architectural choices that might be able to address the current subject
assurance goal are enumerated. Care has to be taken to include: (1) all available
general architectural patterns; (2) all architectural choices from experience with
similar systems; and (3) architectural choices from beyond the architect’s personal
experience.

In the second phase, the functionality and assurance evidence that each choice can
provide is elaborated. Because the candidate choices are necessarily generic, the
architect must consider how the choice would apply to the situation at hand and
determine the functionality and evidence that would result.

Patterns are a general and commonly used technique, and they have proven
especially important in architecture and design. They can be used in Assurance Based
Development where they consist of architectural choices coupled with assurance case
argument fragments, the composite being used to capture experience thereby allowing
future developers contemplating similar architectural decisions to benefit from that
experience.

1 N Modular Redundancy (NMR) executes N replicates of a system in parallel on separate

hardware and selects an output by voting. Defects in a minority of the replicates can be
masked with this technique. N is often three giving Triple Modular Redundancy (TMR).

372 P.J. Graydon, J.C. Knight, and E.A. Strunk

5.2 Selection of an Architectural Choice

Selection of a suitable architectural choice from the enumerated candidate set is based
on seven criteria (discussed below): functionality, subsequent restrictions,
dependability, cost, feasibility, standards, and additional non-functional requirements.
A candidate architectural choice can be rejected based on just one or several of the
criteria, or it can be modified to suit the needs of the system under development if a
change can deal with the problem.

Much of the pruning of the set will be based on the architect’s experience. In many
cases, an experienced architect might consider only a single candidate architectural
choice in which he or she has considerable confidence. In such a case, these criteria
are exit criteria from the selection process for that choice.

It might appear that, except for dependability, these criteria will have the same
meanings and roles in ABD as they do in traditional architectural development. This
is not the case, however, because several of the criteria can influence and can be
influenced by the dependability argument. Note also that these criteria are not
disjoint, and so evaluating a criterion cannot necessarily be done in isolation. We
examine each criterion briefly with an emphasis on its overall role in dependability.

• Functionality. Once an architectural choice has been instantiated for the system
under development, the architect needs to check by inspection, analysis,
prototyping and/or modeling that there are no detectable deterrents to achieving
the desired functionality. The functionality criterion is the same in ABD as in
existing techniques.

• Restrictions imposed on later choices. To a greater or lesser extent, each
architectural choice that is made restricts subsequent choices throughout the rest
of software development. Making an architectural choice at one level of
abstraction generates subgoals for subsequent refinement, and those subgoals can
only be met in certain ways. Of particular importance in this context is the
possibility of an architectural choice restricting the selection of techniques later in
the process that either facilitate dependability of contribute to its assessment.

• Evidence of dependability. Each system development choice must give rise to
evidence that, along with an assurance strategy, is sufficient to argue that the
assurance goal will be met.

• Cost. Clearly, any architectural choice has to be cost effective, not only in terms
of software construction effort but in a complete sense. If provision of adequate
evidence for the assurance argument would require resources beyond those
available, the candidate architectural choice has to be rejected. The issue is not
whether the system can be built within budget but whether the system can be
built and have a satisfactory assurance case within budget. While cost is a
consideration in all systems, regulations sometimes demand justification that risk
has been reduced as low as reasonably practical (ALARP). In such systems, cost
may directly appear in the assurance case in addition to providing guidance on
selection.

• Feasibility. The architectural choice must not be infeasible. Moreover, it must not
preclude the completion of an architecture that can be instantiated, the

 Achieving Dependable Systems 373

completion of a system that is fit for use in its intended context, or the creation of
a convincing assurance case for that system.

• Applicable standards. Applicable standards have two effects on the selection of
an architectural choice. First, a standard might preclude certain choices by
definition. Second, standards might require certain development practices that
restrict or preclude certain forms of evidence that would otherwise be required
for the assurance case.

• Non-functional requirements. Non-functional requirements derive from
stakeholder interests, and they have an effect that is similar to the effect of a
standard. Non-functional requirements often prescribe certain aspects of
development or certain characteristics of the desired system. Such prescriptions
limit the available architectural choices and are likely to affect the assurance
evidence in the same way that a standard can.

As an example of the application of these criteria, consider again the simple
autopilot example mentioned earlier. Assume that the choices that the architect can
make are: (1) a single processor running the entire application; (2) a pair of processors
both running the entire application and comparing outputs; (3) three processors with
each running the entire application and voting on their results (TMR); and (4) a
distributed implementation in which several processors are connected together with a
real-time bus and different parts of the application are run on different nodes.

The evidence for the assurance case that each choice provides would depend on the
specific characteristics of the equipment chosen and the planned approach to the
development of the software. The dependability requirements from the given
architecture are such that options (1) and (2) might have to be rejected based on the
dependability criterion. Option (4) might have to be rejected because of cost.

Applying these criteria can be quite involved since they are neither independent of
each other nor independent of decisions at other points in development. Consider, for
example, the applicable standards criterion. If such a standard prescribes use of a
particular programming language, this might preclude the subsequent use of certain
forms of static analysis that depend on certain language features (such as strong
typing) or on the existence of a formal semantic definition of the language.

5.3 Using an Architectural Choice

Once an architectural choice has been made, precise descriptions (i.e., specifications)
of the choice itself and the assurance evidence that implementing it will provide
constitute an ABD composite. The ABD composite documents the link between the
choice and the evidence.

Once the ABD composite has been formed, the choice is integrated into the
evolving system architecture. The architecture can be documented in any manner that
is deemed appropriate. In particular, an architectural description language can be
employed thereby facilitating a variety of analyses.

The next step is to document the argument fragment to which the evidence applies
and to integrate the fragment into the evolving assurance case. As with the

374 P.J. Graydon, J.C. Knight, and E.A. Strunk

architecture itself, the assurance case can be documented in any suitable manner, but
the use of GSN would be a likely choice.

The assurance case fragment to be added as the result of a choice identifies the
affected development artifacts and describes the contribution that these artifacts will
make to the argument. In some cases, the choice will introduce new goals, obligating
the developers to supply specific evidence later in the process, while in others the
choice will directly support a goal with evidence from a development artifact.

The role of the ABD composite is to document the link between the development
stage where the evidence is created and the location in the assurance case where the
evidence is part of the argument. As development proceeds, there is an obligation to
ensure that the evidence is prepared as expected. Any changes in the anticipated
development activity must be traced back to the assurance case so as to check that the
effects of the change on assurance have been considered, and the mechanism that
supports this traceback is the ABD composite.

It is possible that an architectural choice will prove unacceptable after it has been
selected and subsequent choices have been made. To address this, a developer must
isolate the problematic choice, select an alternative, and re-examine any choices made
after the readdressed choice.

5.4 Termination of the Architectural Development Process

The ABD process continues as long as architectural choices are being made that
produce subgoals which need to be refined using architectural techniques. Thus, as
each architectural choice is made, new subgoals will be generated to support the
assurance argument fragment that derives from the choice.

Each of these subgoals starts the process described in this section over again unless
the architect is convinced that the subgoal is not best addressed by an architectural
solution. The architect deems the architecture complete when, in his or her judgement,
all of the modules in the system require no further decomposition, are sufficiently
well defined, and are cohesive enough that it is likely that those responsible for
designing and implementing them will be able to do so successfully.

An assurance case for a complete architecture may contain unsubstantiated goals
that could be addressed through architecture; these will be addressed by design,
implementation, and verification choices as the ABD process proceeds. Many
architectural patterns are also design patterns, and so it is likely that some goals could
be addressed through either architecture or design. Because architecture is more
centralized than design, goals that can be addressed through design should be left to
designers in order to keep the architecture phase from becoming a bottleneck.

6 An Illustrative Example

In order to illustrate the process of developing an architecture using ABD, we present
an illustrative example of the use of the technique on a realistic application. The
process is quite extensive, and so in the summary we examine only two architectural
choices. In addition, although the application is real, we have made a number of

 Achieving Dependable Systems 375

assumptions about aspects of the application that either have not been documented by
the system developers or are necessary for ABD but not for the application in its
present form.

The system we use for illustration is part of a software-based system for alerting
pilots to runway incursions at airports. Lockheed Martin, in collaboration with the
National Aeronautics and Space Administration (NASA), is developing a research
prototype system known as the Runway Incursion Prevention System (RIPS) [7, 8] to
address this realistic safety-related problem. The Federal Aviation Administration
(FAA) defines a runway incursion as “any occurrence at an airport involving an
aircraft, vehicle, person, or object on the ground, that creates a collision hazard or
results in the loss of separation with an aircraft taking off, intending to take off,
landing, or intending to land.” [7]. The RIPS system operates in the cockpit of an
aircraft (referred to as ownship), collects information about the position of the aircraft
and of other aircraft and traffic in the vicinity, examines that information for evidence
of a runway incursion involving the ownship aircraft, and alerts the pilot to such
incursions via an Integrated Display System (IDS) if a collision is possible.

Our illustrative example is based on a part of RIPS called the Runway Safety
Monitor (RSM). The RSM was not developed using ABD, and so our example is
strictly for purposes of illustration. Our work is not part of the RIPS development
activity. In constructing the example, we have drawn upon the RSM documentation
for descriptions of the problem to be solved, the sources of data available for the
purpose of detecting incursions, and of the systems on board the aircraft and on the
ground with which an incursion detection system might interact.

6.1 The Given Architecture

The RSM makes use of the existing systems on board the aircraft including a
computer, the aircraft’s ground location system that provides the aircraft’s position,
and broadcasts on the Automatic Dependent Surveillance - Broadcast (ADS-B) link
that provides the positions of other traffic. These sources of data are known to be
unreliable in that data might be unavailable for periods of up to several seconds
because of limitations in the basic equipment. This lack of reliability in the data is not
a serious problem provided the pilot knows that RIPS is not able to report incursions.

While the decision to implement RSM as a software entity that uses this equipment
is an architectural decision, it is an architectural decision at the level of RIPS rather
than that of the RSM system. In effect, the architects of RIPS decided to delegate the
task of alerting the pilot to a software sub-component rather than a separate system
running on its own processors. The outcome of these decisions constitute the given
architecture.

The given architecture is shown in Figure 5. The IDS system polls the RSM at a
frequency of 1 Hz to determine whether a runway incursion involving ownship is in
progress. To perform its computation, the RSM will need to know where the ownship
aircraft (the aircraft it is installed in) is located, and where other aircraft that might
conflict are located. It will obtain the former from the aircraft’s ground location
system and the latter from the contents of broadcasts on the ADS-B bus.

376 P.J. Graydon, J.C. Knight, and E.A. Strunk

ADS-B
transceiver

OWNSHIP AIRCRAFT

P
hysical w

orld

RSM

IDS

ADS-B
transceiver

OTHER AIRCRAFT

Lo
ca

tio
n

se
ns

or
s

RSM

IDS

P
hy

si
ca

l w
or

ldLocation
sensors

Fig. 5. The given RSM architecture

6.2 The Top Level Assurance Goal

The problem to be solved is to detect incursions involving ownship. The top-level
goal of our assurance case states both the required functionality and dependability of
the system as shown in Figure 6. For purposes of illustration, we have assumed
dependability requirements for the RSM that place it in the ultra-dependable category
and classify the system as safety critical.

G1

Detect runway incursions
(see requirement 1) or report
failure (see requirement 2)

C1

RSM system
context

C2

RSM system
requirements

Fig. 6. Top-level assurance case goal

In this example, we assume that the RSM is required to meet the following two
requirements (recall that the data sources are unreliable):

• Requirement 1: If the quality of the supplied data is adequate, to detect runway
incursions involving ownship within t time units after they begin with probability
greater than or equal to p0.

• Requirement 2: If the quality of the supplied data is inadequate, to report a
failure of RSM with probability greater than or equal to p1 within u time units.

Note the inclusion in Figure 6 of the system’s context in GSN. The details of the
system’s context are crucial to the proper refinement of the goal and the analysis
associated with both the functionality and the dependability of the system.

6.3 The First Architectural Choice

There are many candidate architectural choices that meet the two requirements in the
top-level goal. For example, the overall approach to the real-time requirements could

 Achieving Dependable Systems 377

be either sequential or concurrent, and if concurrent then either synchronous or
asynchronous. The choice will be influenced, in part, by the services available from
the target operating system, in part, by the anticipated verification approach, and by
several other factors.

The requirement for the detection of missing or corrupt data can similarly be
addressed using various architectural mechanisms. A number of different system
modules could take action when data is missing, and data defects could be signaled by
a data collection module by generating an event, by a time-out, or by using special
coded data values. Feasibility is an important criterion in this aspect of selection
because there has to be a high level of assurance that defective data will be detected
and that the timing element of the requirements is met.

The experience of the authors leads us to select a sequential code implementation
with each software module responsible for detecting and reporting errors in the data it
handles. Choosing sequential code with distributed error detection allows us to divide
the top-level goal into three concerns: 1) RSM primary functionality; 2) RSM timing,
and 3) RSM detection of defective data. The resulting assurance case fragment is
shown in Figure 7. An important item in this fragment is goal G2.4. This goal requires
that evidence be supplied and that an argument developed which shows that the three
modules do not interfere with each other. This is an important aspect of the
verification that must be constructed if this architecture is used, yet this is not
obviously so without the assurance case as a reference.

6.4 The Second Architectural Choice

The first architectural choice generated four subgoals, and in a complete application
of ABD all four would be addressed. For purposes of illustration, we address only
one, the RSM functionality (goal G2.1 in Figure 7).

There are many candidate architectures that might be used including several
patterns, an object-oriented approach, and functional decomposition. We selected
functional decomposition of the RSM functionality (see Figure 8) because it
facilitates the use of some forms of static analysis including determination of worst-
case execution time. That decision leads in this example to the following six modules:

• The ownship runway locator, which determines whether the aircraft in which the
RSM is presently using a runway, and, if so, builds a model of that runway;

• The runway database, which stores the location and necessary geometric details
of all of the runways for which RSM service will be available;

• The runway model, which stores the geometry of the runway including the
bounds of the incursion zone;

• The ownship position component, which collects information about the position
of the aircraft from the aircraft’s ground location system;

• The conflict detector, invoked if the aircraft is found to be using a runway,
determines whether ownship is in conflict with any other monitored traffic within
that runway’s incursion zone, and

• The traffic positions component, which collects information about the position of
other traffic within a specified region from ADS-B broadcasts.

378 P.J. Graydon, J.C. Knight, and E.A. Strunk

G1

Detect runway incursions
(see requirement 1) or report
failure (see requirement 2)

G2.1

RSM functionality is
implemented with required
dependability

G2.2

RSM timing is
implemented with required
dependability

S1

RSM requirements met by
composition of architectural
elements and freedom of
interference

G2.3

RSM failure detection is
implemented with required
dependability

C1

RSM system
context

C2

RSM system
requirements

G2.4

Functionality, timing, and
error detection are
independent

Fig. 7. Argument fragment from first architectural choice

ADS-B transceiver

OWNSHIP AIRCRAFT

Physical w
orld

RSM

IDSLocation
sensors

Ownship position Conflict detector

Traffic positions

Ownship runway locator

Runway database

Runway
model

Fig. 8. Functional decomposition of RSM functionality

 Achieving Dependable Systems 379

The assurance case fragment that accompanies this architectural choice is shown in
Figure 9. It details the assurance responsibility allocated to each of the new components
listed above and how these responsibilities, if satisfied, demonstrate the satisfaction of
sub-goal G2.1.

Although not shown, the detailed arguments for goals G2.2 and G2.3 in Figure 7
are similar to the argument for goal G2.1. The argument for goal G2.2 is facilitated by
the decision to use functional decomposition for goal G2.1. To show that goal G2.2 is
met requires several forms of evidence, including assurance that various modules will
execute within specified time bounds. One of those modules is that which is
associated with goal G2.1. Functional decomposition as the architectural choice for
goal G2.1 eases the task of determining worst-case execution time (WCET) for that
module. WCET is not easy to establish with any architecture and can be essentially
impossible with some modern processors. However, assurance over timing is
essential, and that makes many other candidate architectural choices unacceptable.

The argument for goal G2.4 will be different from goals G2.1, G2.2 and G2.3.
This goal is concerned with the composition of the evidence from the other three. It is
not sufficient to know that each of the other three goals will be met in order to use
that evidence to argue that goal G1 will be met. Goal G2.1 might be met, for example
but there might be side effects that impact the composition of goals G2.1, G2.2,
and G2.3.

Turning now to the other selection criteria, we ask ourselves whether, given this
architectural choice, it is likely that the system can be built within the specified
budget, schedule, technology constraints, etc. At this point the architecture is not yet
complete, much less the low-level design and implementation, so our assessment will
be speculative—as would any such assessment at this point in the development of a
system. Given our experience and knowledge and the proposed architecture as it
stands, how likely do we think it is that we will encounter a difficulty that will force
revisions that would cause the project’s schedule to slip or, worse, cause the effort to
fail completely?

To perform this assessment, we consider the components in our candidate
architecture and the responsibilities upon them described in our assurance case
fragment. Will it be possible, for example, to construct the ownship runway locator so
that, provided the components it depends upon perform as described, the ownship
runway locator demonstrably satisfies the goals with which it is associated? Given
what we know about the probability of data errors, reasonableness checks on the
incoming data coupled with the use of formal techniques to implement and verify the
algorithm seem like a plausible way to construct a component, later in the process,
that can be shown to meet its goals using a software reliability modeling technique.
Thus, we decide that the architectural choices we made are appropriate given the
knowledge we have of the system at the time the architecture is created. Furthermore,
although there is no way to know for sure that the architecture is the best one, we
were able to assess it against the system’s assurance goals, and that assessment gives
us much higher confidence that the architecture is satisfactory than would experience
and intuition alone.

380 P.J. Graydon, J.C. Knight, and E.A. Strunk

G
2.
1

RS
M

 fu
nc

tio
na

lity
 is

im

pl
em

en
te

d
co

rre
ct

ly
wi

th

re
qu

ire
d

de
pe

nd
ab

ilit
y

Vi
ew

 1

GF
3.
4

Ru
nw

ay
 d

at
ab

as
e

co
rre

ct
ly

re
tri

ev
es

 th
e

de
ta

ils
 o

f t
he

re

le
va

nt
 ru

nw
ay

s
wi

th
 p

>=
p5

GF
3.
2

Co
nf

lic
t d

et
ec

to
r c

or
re

ct
ly

de
te

ct
s

co
nf

lic
t (

if
on

e
is

oc
cu

rri
ng

) w
ith

p>

=p
3

if
in

fo
rm

at
io

n
is

ad
eq

ua
te

S2
.1

Fu
nc

tio
na

l
co

m
po

sit
io

n

GF
3.
1

O
wn

sh
ip

 ru
nw

ay
 lo

ca
to

r c
or

re
ct

ly
co

ns
tru

ct
s

m
od

el
 o

f r
un

wa
y

ow
ns

hi
p

is
us

in
g

(if
 a

ny
) w

ith

p>
=p

2
if

in
fo

rm
at

io
n

is
ad

eq
ua

te

G
F3
.5

O
wn

sh
ip

 p
os

itio
n

co
m

po
ne

nt

co
rre

ct
ly

re
po

rts
 o

wn
sh

ip
 p

os
itio

n
wi

th
 p

>=
p6

 if
 in

fo
rm

at
io

n
is

ad
eq

ua
te

G
F3
.6

Ru
nw

ay
 m

od
el

 c
or

re
ct

ly
st

or
es

an

d
re

po
rts

 in
cu

rs
io

n
zo

ne

ge
om

et
ry

 w
ith

 p
>=

p7

GF
3.
3

O
wn

sh
ip

 ru
nw

ay
 lo

ca
to

r c
or

re
ct

ly
co

m
bi

ne
s

in
fo

rm
at

io
n

fro
m

 th
e

re
m

ai
ni

ng
 c

om
po

ne
nt

s
wi

th
 p

>=
p4

GF
3.
7

Tr
af

fic
 p

os
itio

ns
 c

om
po

ne
nt

 c
or

re
ct

ly
re

po
rts

 th
e

po
sit

io
ns

 o
f o

th
er

 tr
af

fic

wi
th

in
 th

e
gi

ve
n

re
gi

on
 w

ith
 p

>=
p8

 if

in
fo

rm
at

io
n

is
ad

eq
ua

te

GF
3.
8

Co
nf

lic
t d

et
ec

to
r c

or
re

ct
ly

co
m

bi
ne

s
in

fo
rm

at
io

n
fro

m
 th

e
re

m
ai

ni
ng

 c
om

po
ne

nt
s

wi
th

 p
>=

p9

Fig. 9. Assurance of functionality split across functional decomposition

 Achieving Dependable Systems 381

7 Conclusion

There are a number of choices that must be made when designing a system’s
architecture, and those choices can have a profound impact on the finished system’s
dependability. Currently, there is little guidance for making the right choices, given
the level of dependability that must be met by the system. If system development is
coupled with system assurance, however, the system’s assurance case can guide
architectural choices, providing concrete dependability criteria against which to gauge
potential alternatives.

In this paper, we have explained the basic principles of Assurance Based
Development, and shown how this development paradigm can be used to provide
assurance case goals for architectural choices. We have presented an example system
architecture and shown how evolving its assurance case in parallel with the
architecture kept us continuously appraised of the specific dependability goals each
part of our system was obliged to meet. Whereas with standard architecture
development techniques we would have had to wait until system development was
more complete to analyze the effect of our choices on the system’s dependability, we
were able to assess the choices against specific assurance case goals for the RSM.

Finally, software system architecture is currently very much an art, and the
creativity in finding a good architecture is due in large part to the difficulty in creating
general guidelines from a wide variety of systems. Because it is not clear whether the
context in which one successful decision was made is similar to that in which a new
choice must be made, whether the same choice should be made for the new system is
likewise unclear. With ABD, the specific situation in which a choice is made is much
more clearly defined because of the assurance goal that accompanies it. Thus, not
only does ABD guide specific architectural choices, it helps lay a foundation for good
architectural engineering.

Acknowledgements

We thank David Green of Lockheed Martin for giving us extensive help in
understanding the RSM and all of the associated artifacts. We are very grateful to
NASA Langley Research Center for suggesting the use of the system for study. We
appreciate William Greenwell’s assistance with the assurance case material presented
here and his contribution of the hypothetical safety case in Figure 1. This work was
sponsored in part by NSF grant CCR-0205447 and in part by NASA grant NAG1-
02103.

References

[1] ANSI/IEEE standard, 1471-2000, Recommended Practice for Architectural Description
of Software-Intensive Systems -Description

[2] Bishop, P., Bloomfield, R.: A Methodology for Safety Case Development. In: Proc. of the
Sixth Safety-critical Systems Symposium, Birmingham (February 1998),
http://www.adelard.co.uk/resources/papers/index.htm

382 P.J. Graydon, J.C. Knight, and E.A. Strunk

[3] de Lemos, R., Gacek, C., Romanovsky, A. (eds.): Architecting Dependable Systems.
LNCS, vol. 2677. Springer, Heidelberg (2003)

[4] de Lemos, R., Gacek, C., Romanovsky, A. (eds.): Architecting Dependable Systems II.
LNCS, vol. 3069. Springer, Heidelberg (2004)

[5] de Lemos, R., Gacek, C., Romanovsky, A. (eds.): Architecting Dependable Systems III.
LNCS, vol. 3549. Springer, Heidelberg (2005)

[6] EUROCONTROL. The EUR RVSM Pre-Implementation Safety Case, ver. 2.0.
Document RVSM 691 (August 14, 2001)

[7] Green, D.F.: Runway Safety Monitor Algorithm for Runway Incursion Detection and
Alerting. Technical report NASA CR-2002-211416 (January 2002)

[8] Green, D.F.: Runway Safety Monitor Algorithm for Single and Crossing Runway
Incursion Detection and Alerting. Technical report NASA CR-2006-214275 (February
2006)

[9] Kelly, T.P.: A Systematic Approach to Safety Case Management. In: Proc. of SAE 2004
World Congress, Detroit, MI (March 2004)

[10] Kelly, T., McDermid, J.: Safety Case Patterns – Reusing Successful Arguments. In: Proc.
of IEE Colloquium on Understanding Patterns and Their Application to System
Engineering, London (1998)

[11] Kinnersly, S.: Whole Airspace ATM Safety Case - Preliminary Study (November 2001)
[12] MoD, 00-56 Safety Management Requirements for Defence Systems, U.K. Ministry of

Defence, Defence Standard, Issue 3 (December 2004)
[13] Nagra. Project Opalinus Clay: Safety Report. Technical report NTB 02-05. (December

2002)
[14] RTCA. Software Considerations in Airborne Systems and Equipment Certification,

document RTCA/DO-178B. Washington, DC: RTCA (December 1992)
[15] Shaw, M., Garlan, D.: Software Architecture: Perspectives On An Emerging Discipline.

Prentice-Hall, Englewood Cliffs (1996)
[16] Strunk, E.A., Knight, J.C.: Dependability Through Assured Reconfiguration in Embedded

System Software. IEEE Transactions on Dependable and Secure Computing 3(3), 172–
187 (2006)

[17] Weaver, R.A., Kelly, T.P.: The Goal Structuring Notation - A Safety Argument Notation.
In: Proc. of Dependable Systems and Networks, Workshop on Assurance Cases (July
2004) http://www-users.cs.york.ac.uk/ tpk/dsn2004.pdf

[18] Wojcik, R., Bachmann, F., Bass, L., Clements, P., Merson, P., Nord, R., Wood, B.:
Attribute-Driven Design (ADD), Version 2.0. Technical report CMU/SEI-2006-TR-023
(November 2006)

R. de Lemos et al. (Eds.): Architecting Dependable Systems IV, LNCS 4615, pp. 383–408, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Towards Evidence-Based Architectural Design for
Safety-Critical Software Applications

Weihang Wu and Tim Kelly

Department of Computer Science, The University of York, York YO10 5DD
{Weihang.Wu,Tim.Kelly}@cs.york.ac.uk

Abstract. Robust software and system architectures have been increasingly
recognised as one of the keys to improving dependability. However, most
modern design methods and explanations of underlying design principles still
remain ad hoc. The communication between design and safety assessment in
practice is often characterised as an “over-the-wall” process. The problems are
exacerbated by the uncertainty problem in the early development lifecycle. In
this paper, we propose a Triple Peaks process framework, from which a system
model, deviation model, mitigation model are proposed and linked together.
The application of this framework is supported by the use of Bayesian Belief
Networks and collation of relevant evidence. We elaborate the linkage between
the three models by means of a case study. The central tenet in this paper is to
address safety concerns based upon evidence available at an architectural level.

Keywords: software architecture, design decisions, software safety evidence.

1 Introduction

1.1 Motivation

For many years there has been an objective to improve software and system safety.
Testing and inspection late in the system development lifecycle should no longer be
relied upon as the primary line of defence for engineering software systems of
significant size and complexity. Empirical experience shows that problems identified
in the late lifecycle are often costly to fix and may introduce unexpected new
problems [17]. Robust software and system architectures have been increasingly
recognised as one of the keys to improving safety.

However, most modern architectural design methods and explanations of
underlying design principles remain ad hoc. Architects or designers, who could claim
in their defence that they adopted a specific design pattern or followed an industry
standard, rarely articulate their design rationale and analyse the impact of their
decisions along with design alternatives in a precise and sound manner. The
communication between design and safety assessment in practice is often
characterised as an “over-the-wall” process [19]. The problems are exacerbated by the
presence of a high degree of uncertainty in the design detail that is available early in
the system development lifecycle.

384 W. Wu and T. Kelly

1.2 Software Safety Evidence

The development of software safety evidence is increasingly advocated in the safety
community [38] to explicitly evaluate the safety of software, as opposed to relying on
process prescription through safety standards such as IEC 61508 [3] and DO178B [5].
The tenet of using software safety evidence is straightforward: evidence shall be
provided for assessors to demonstrate sufficient mitigation of risks associated with the
use of software in safety-critical systems. The term “sufficiency” has been defined
and deployed in a variety of risk acceptance regimes in the domain of risk
management Risk mitigation has been generalised in terms of the following activities:
hazard elimination, hazard reduction, hazard detection and control [35]. In principle,
like other system components, software can only contribute to hazards in the system
context by means of deviations from its intended behaviour [35]. Thus, it is possible
to bring together the notion of “deviation”, “mitigation”, and “risk acceptance” with
the aid of “evidence”. Here we define an item of software safety evidence to be an
object encapsulating knowledge about potential deviations, plausible mitigation
options and estimated risk reduction, along with reference to partial specification
knowledge about a system and its environment.

 Very often, safety evidence is produced after design completion. The need for
incremental construction of safety evidence and corresponding safety arguments
(a.k.a., safety cases) has been increasingly recognised. By utilising structured safety
evidence explicitly from the very beginning of the system development lifecycle, the
key issues such as loss of safety rationale and late discovery of safety flaws may be
addressed. Figure 1 shows an evidence-oriented development process proposed by the
Australian software safety standard DefAust 5679 [2], in which consideration of
safety case development starts from the earliest stage of system development.

Fig. 1. The integrated development process (adapted from [2])

Towards Evidence-Based Architectural Design for Safety-Critical Software Applications 385

However, the linkage between the two processes (e.g., moving from preliminary
hazard analysis to architectural design) still remains undefined, especially for
software. Existing system safety approaches such as those advocated by ARP 4754
focus on the hazard analysis of purely functional requirements (i.e. Functional Failure
Analysis – FFA), from which quantitative failure targets are defined and allocated,
thereby driving the development of system and software architectures. Experience in
application of FFA to engine controller development has revealed this technique is
particularly vulnerable, as there is lack of rigorous techniques to identify and estimate
controller-related failures with respect to levels of design detail [9]. The SEI
(Software Engineering Institute) at Carnegie Mellon University has established a
design method termed Attribute-Driven Design (ADD) [11] to emphasise the active
role of quality attributes in architectural design. Yet there is little practical guidance
on how to address safety concerns using ADD. Furthermore, the nature and amount of
evidence changes as the design process progresses. Systematic techniques should be
provided to handle these evolution issues within a structured evidence framework.

1.3 Scope of Paper

In attempting to integrate architecture design and safety evidence development
processes in an effective manner, the interactions between the two must be elaborated
– i.e. how requirements are evaluated by risk assessment, and design choices justified
and design decisions driven by safety tradeoffs. In this paper, we introduce a Triple
Peaks model as a framework for architectural design for safety. The process we
present intertwines partial system specification, potential deviation concerns and
plausible mitigation mechanisms incrementally and iteratively, through which
incremental construction of safety arguments is facilitated and exploited. While risks
may be communicated in a qualitative manner, they must be evaluated quantitatively,
even in the early system development stages. We adopt Bayesian Belief Networks
(BBNs) as the flexible medium for risk-based reasoning. The causal nature of BBNs
allows reasoning about the propagation of software deviations and the effect of
mitigation chosen. We illustrate the process by means of an aircraft wheel brake
system (WBS) controller example extracted from ARP 4761 [1] and evaluate our
process by comparison with the conventional ARP approach. We argue that
systematic treatment of software safety evidence – guided by the Triple-Peaks model
– holds the key to gaining confidence in safety-related architectural decision making.

This paper is organised in the following six sections. Section 2 reviews related
work. Section 3 describes the process model within the evidence framework. Sections
4 and 5 elaborate the linkages between the three models by means of the WBS
example. Finally, section 6 discusses the findings based upon the case studies
conducted and section 7 presents the summary and future work.

2 Related Work

In order to inform architectural decisions, the first essential step for an architect is to
interpret system and software requirements so that they can be understood. Goal-
oriented methods, pioneered by van Lamsweerde [30, 31], proposed the use of goal

386 W. Wu and T. Kelly

modelling languages such as Knowledge Acquisition in Automated Specification
(KAOS) [31] to guide requirements elicitation and refinement. Alternatively,
scenario-based approaches have been proposed in the form of use cases [24], Use
Case Maps (UCMs) [14] and sequence diagrams [6] to elaborate requirements over a
known system structure. Goals and scenarios are complementary to each other and
can be combined in the design process [7]. Arguably, requirements to be addressed at
an architectural level include both functional and quality requirements (e.g., timing,
accuracy or reliability targets). Chung et al’s Non-Functional Requirements (NFR)
framework [40] and SEI’s quality-attribute scenario framework [11] have been
proposed for the purpose of formulating the quality requirements.

From the perspective of architecting dependable software, it is equally important to
address all possible negative requirements. In contrast with (positive) requirements,
negative requirements describe the system characteristics that are not allowed or
desired. Nevertheless, the formulation of negative requirements and the relationship
to positive requirements had not been explored until a decade ago. Potts et al
informally proposed the notion of obstacles that might challenge the achievement of
requirements within the Inquiry Cycle framework [45]. van Lamsweerde & Letier
extended the KAOS language to incorporate the notion of obstacles as goal violation
and provided heuristics on obstacle analysis over goals and resolution [32]. van
Lamsweerde elaborated the obstacle framework further through anti-goals and anti-
models in the context of security [29]. Rather than dealing with negative requirements
at a goal level, complementary approaches have extended the notion of scenarios for
the same purpose. Previous work at York [9] developed a method for deriving
functional hazards from use cases. Alexander later proposed a unified view of
deviation analysis over use cases in the form of misuse cases [8]. The safety
community also turned their attention to extending hazard analysis at the requirements
level to identify safety-related requirements errors. de Lemos et al [33] proposed an
integrated framework that facilitates requirements analysis and hazard analysis
iteratively and incrementally. Leveson et al [36] proposed to combine a set of hazard
analysis techniques into an integrated safety analysis for checking safety-related
requirements errors. All the approaches are defined solely in the context of
requirements without considerations of architectural characteristics.

Given the positive and negative requirements formulated, the plausible design
space must be elicited in order to capture the appropriate architectural choices. In the
early 90s, Lane [48] proposed a multidimensional design space, each dimension
representing relevant design choices to achieve a specific usability property. The SEI
later developed a tree-form design space in terms of architectural tactics with respect
to six common quality attributes [11]. The linkage between quality attributes and
design space was also elaborated by SEI through the notion of quality-attribute
reasoning frameworks [10]. A quality-attribute reasoning framework encapsulates
knowledge about relevant analytic models for a quality attribute. For example, a
performance reasoning framework imposes constraints on the relevant parameters for
various performance measures such as a hard deadline. The collection of these
frameworks thus offer an effective means of predicting system qualities and
rationalising the selection of tactics. However, no specific techniques are provided for
addressing the uncertainty and levels of design detail available in the early lifecycle.

Towards Evidence-Based Architectural Design for Safety-Critical Software Applications 387

From the viewpoint of safety, the reasoning framework should be built upon risk
assessment. NASA have developed a probabilistic risk assessment (PRA) scheme [49]
for more than two decades. The PRA approach is based upon the combination of fault
tree analysis (FTA) [51] and event tree analysis (ETA) [35] and mandates a generic
risk quantification and mitigation process that can be tailored to all phases of a project
lifecycle. We believe that the burden of combining FTA and ETA can be relieved by
the use of BBNs as a unified model. At the Jet Propulsion laboratory, a lightweight
approach to risk assessment was developed, namely Defects Detection and Protection
(DDP) [18]. The DDP scheme mandates the quantification of requirements, failure
modes and mitigation by means of expert judgement. The underlying formal model of
DDP is less justified, however.

Early work on argument-based design rationale (e.g., [16] and [46]) developed a
set of generic models of design processes in terms of three common elements:
issues/questions, positions/options, and arguments/criteria. The three elements are
consistent with our design scheme as described in the section 1.2. The issues represent
knowledge about deviations, the positions capture knowledge about possible
mitigations, and arguments feature knowledge about reasoning. While the proposed
design rationale models capture most common situations of design, they are too
general to be configured for software architecture design problems. We believe there
is a need to elaborate further the linkage of the three elements: i.e., how to generate
issues, how to move from issues to positions, and then from positions to arguments.

The relationship between requirements engineering and architectures has recently
been studied. Brandozzi and Perry [13] proposed the use of “architectural
prescriptions” to describe the mappings between goals and architectural structures.
Jackson et al [23] extended the problem frames approach to allow architectural
decisions to be considered in requirements models in terms of “architectural frames”.
Both approaches have explored the achievement of system functionality rather than
system qualities. Nuseibeh [41] proposed a Twin Peaks model which explicitly
features the challenges raised during the parallel development of requirements and
architectures. Leveson [34] proposed the intent specification approach to deriving
software safety requirements. An intent specification comprises two main dimensions:
intent and part-whole dimensions. The two dimensions dictate the requirements and
safety-related design decisions made respectively in the design process. Nevertheless,
there is lack of practical guidance on how to generate intent specifications.

The notion of BBNs was developed by combining probability theory and graph
theory [44]. A BBN represents a directed acyclic graph together with associated
conditional probability distributions based upon explicit independence assumptions,
thereby saving space of probabilistic computation [44]. In practice, BBNs are often
interpreted as causal models [44], in which the directed edges are captured by
knowledge about causal relations. Several tools such as Netica [4] are also available
for public evaluation. BBNs have already been applied to solving software
engineering problems. Fenton et al [50] developed generic BBN patterns to quantify
software safety risks. Sutcliffe et al proposed a method of constructing generic BBNs
to evaluate usability [20] and later developed an automated tool to evaluate reliability
and performance through different configurations of BBNs [21]. Bosch and Gurp [22]
proposed a generic BBN model as a software architecture evaluation framework.

388 W. Wu and T. Kelly

However, most of the BBN models developed are generic and thus need to be tailored
for a specific system domain.

At York, there has been a long-term objective to integrate software design and
safety analysis. A decade ago Fenelon et al [19] proposed a prototype of
compositional failure modelling language – Failure Propagation and Transformation
Notation (FPTN). In our previous work, we developed a collection of safety tactics
[55] as primitive building blocks for software safety design. In order to identify safety
concerns, we have also proposed a method for deviation analysis over UCMs [52].
We further elaborated it by developing a negative scenario framework and mitigation
action model [54] to help generate design options for the safety concerns formulated.
We also examined the application of Communication Sequential Processes (CSP) as
the implementation of FPTN for the purpose of architectural feedback [53]. Although
CSP can capture nondeterminism in both a qualitative and quantitative manner [39],
as a behaviour modelling language it is inadequate for capturing and evaluating
evidence for the purpose of risk assessment. The work outlined in this paper is
intended to offer a unified view of our previous work and address the need for risk-
based quantitative reasoning through the application of BBNs.

3 Evidence-Oriented Method Construction

We treat design as an iterative and incremental process of producing evidence in
which a system-to-be and its domain are better understood, credible deviation
concerns are exhaustively identified and sufficiently mitigated by design options
chosen, as Figure 2 suggests. Consequently, the design process comprises a number of
design stages, each representing a cycle of moving from system modelling to
deviation modelling and then mitigation modelling. The system model characterises
system behaviours in terms of goals and scenarios and system structures with respect
to viewpoints. The deviation model features the negative counterparts in terms of anti-
goals and negative scenarios. The mitigation model captures possible design space in
terms of mitigation actions to help inform decision-making. The proposed Triple-
Peaks model is based upon Nuseibeh’s Twin Peaks model and elaborates further the
interactions between the requirements and architecture models by means of the
deviation and mitigation models. From the viewpoint of evolutionary design, co-
existent nature of the requirements and architecture models makes it possible to
merge them into a single system model, thereby forming the Triple Peaks model.

At every single stage, appropriate evidence should be provided to justify the ‘state’
of the design progress – how safe the system-to-be would be given current knowledge
and evidence. At York we have developed Goal Structuring Notation (GSN) [27] for
communicating safety arguments. The items of evidence and their relationships to
safety claims are described in terms of goal structures. Figure 3 shows the principal
symbols of GSN. Goals can be refined by the aid of specific strategies. The goal
refinement process stops when the goals can be satisfied by evidence available.
Modular construction of GSN models is facilitated by the notation of ‘Away Goal’
and ‘Module References’ [26]: an away goal is a goal that is not defined (and
supported) within the module where it is presented but is instead defined (and
supported) in another module; a module reference is simply a goal structure packaged

Towards Evidence-Based Architectural Design for Safety-Critical Software Applications 389

in a module form. The development of the goal structures should proceed in parallel
with the design process and reflect the progress of design. In other words, it is
possible to use the goal structures to guide the development process. In GSN
terminology, generalised goal structures can be captured by GSN patterns [27].

Deviation
Model

System
Model

Mitigation
Model

G
oa

ls
,

sc
en

ar
io

s

Design
decisons

H
igh-risk

scenarios

 Specification
knowledge

Mitigation
knowledge

Deviation
knowledge

Safety cases

Deviation
modes

Mitigation actions

Safety
evidence

Causal reasoning
knowledge

System description

Fig. 2. The Triple-Peaks model

System shall tolerate
single component

failures

Fault tree
analysis System Model

Argument by
elimination of all

hazards

Subsystems are
independent

A/J

Goal Solution Strategy
Assumption/
Justification

Context

Solved-by Link
(one-to-one)

In-context-of Link
(one-to-one)

Many-to-one
relationship

Optional
relationship

n

Away Goal Module Reference

System is
acceptably safe

SafetyArgument

SafetyArgument

Fig. 3. The principal symbols of GSN

Figure 4 illustrates a sample GSN pattern for describing a system-independent
design process when the architect is required to identify all anti-goals and relevant
negative scenarios (as described in section 4.4 and 4.5) derived from a single system
goal, and choose appropriate avoidance actions to mitigate them. The claims that the
negative scenarios could not occur are satisfied by the analysis results of current
development process. Justification of the completeness of the anti-goals is based upon
the breadth of considerations of deviation modes. Credibility of the negative scenarios
identified is evaluated through BBN modelling. By developing GSN patterns tailored

390 W. Wu and T. Kelly

Fig. 4. A simple GSN pattern for the Triple Peaks process

for a specific system domain, system-specific development process model can be
instantiated to guide architecting safety-critical software applications.

The proposed Triple Peaks framework represents much of the existing, but
implicit, design practices in the dependability community. In order for the deployment
of this framework to be successful, the transitions between the three models must be
elaborated. Questions may be raised, for example:

• How do we capture and express the model elements such as goals and anti-goals
within this framework?

• How do we reason about the properties of the model elements such as
completeness, credibility and sufficiency?

Towards Evidence-Based Architectural Design for Safety-Critical Software Applications 391

Sections 4 and 5 elaborate the linkage between system model and deviation model,
and between deviation model and mitigation model, respectively. The WBS example
introduced in ARP 4761 is also used to illustrate our approach.

4 Moving from the System Model to Deviation Model

The system model comprises the description of the system under design. There are
three essential elements of the system model within our framework: goals, scenarios
and viewpoints. While a system model captures the desired properties of a composite
system, the deviation model features the undesirable states of the system. In contrast
with goals and scenarios in the system model, there are anti-goals and negative
scenarios in the deviation model.

4.1 Goals

A goal is an objective that a composite system should meet. Through seeking goals
explicitly from the requirements specification, the core system functionality and
qualities can be effectively elicited and justified. Despite the diverse forms of goal
formulation techniques (as discussed in section 2), there are four common elements of
a goal we found:

• Artefact. The artefact is the composite system or its parts onto which a goal is
applied.

• Context. The context are the pre-conditions that a goal refers to and evolves over.
• Stimulus. The stimulus is the trigger condition for the initiation of a goal.
• Response. The response captures the desired properties (i.e., postconditions) that

the artefact should hold over time. Quality constraints (e.g., deadline or failure
rate) can be specified in this part if they exist.

A sample goal can thus be expressed in the following form:

“The <artefact> shall <respond> upon <stimulus> when
<context>”

This goal formulation is consistent with the SEI’s quality attribute scenario
framework and thus can be applicable to both functional and quality goals. As an
example, consider the wheel braking system (WBS) of an aircraft [1]. We assume
there are a number of top-level goals that can be stated in terms of aircraft
functionality (e.g., controlling the aircraft on ground in this case) and qualities (e.g.,
safety). Each goal can be formulated in the stimulus-response form in spite of their
high level of abstraction. Each functional goal can be decomposed further into a set of
sub-goals and should evolve separately given that they are independent. The goal
decomposition may be guided by the use of scenarios, as described in the next
subsection. Goal structures can thus be constructed. Safety goals cannot simply be
decomposed via functional goals or system structures; their refinement is based upon
the results of deviation analysis (see sections 4.4 and 4.5) and the chosen mitigation.
For example, deviation analysis may reveal that a ‘late’ output of a controller is safety

392 W. Wu and T. Kelly

significant. A performance goal is thus derived and added into the safety goal
structures.

Figure 5 shows a part of the goal structure in which the core functionality of WBS
is elicited. All the goals in this structure are expressed using the above form. The
expression language used is a structured natural language, and some expression can
be very abstract at this level. For example, both the stimulus and response parts of the
top-level goal FnG1 are very general and need to be refined. This should be
acceptable, however, in the early development lifecycle in which many requirements
are volatile and unclear. Figure 6 shows the undeveloped goal structure of the aircraft-
level safety goal. In most cases, the top-level safety goal (i.e., SafeG1) is simply
derived from the certification authority. This achievement of this root goal is based
upon the satisfaction of all the supporting safety-related functional and quality goals.
Likewise, expressions of safety goals can be very abstract, as the concrete forms of
deviations and mitigations are still unknown. It can be seen that the modular features
of GSN makes it feasible to isolate development of different goal structures (e.g.,
functional and safety goal structures) and link them effectively via the notation of
Away Goal and Module References.

Fig. 5. A functional goal structure for the WBS example – Control the aircraft on ground

Towards Evidence-Based Architectural Design for Safety-Critical Software Applications 393

4.2 Scenarios

A scenario is a sequence of actions performed by objects instantiated within the
known structure of the composite system. Scenarios provide an effective way to
elaborate a goal in a white-box view. In other words, a goal defines a set of possible
scenarios; a scenario defines a possible realisation of a goal. There are many forms of
scenario formulation (see section 2). The use of UCMs is preferable based upon our
experience, as it offers a clear-cut notation of causal relationships between
architectural components in terms of responsibility points [14]. This is beneficial
when we conduct deviation analysis over scenarios, as described in section 4.5.
UCMs can be refined, as the underlying system structure is developed in more detail.

SafeG1

The aircraft system is
acceptably safe upon the
occurrence of any hazard when
it is operating

Goal Structure of
Functional Goal –
AircraftCtrOnGround

FnG1

SafeS1.2

Argument over all
identified safety related
performance goals

SafeG1.1.1

The aircraft system is acceptably
safe upon the occurrence of any
hazard when it is decelerating on
ground

SafeS1.1

Argument over all
identified safety related
functional goals

SafeC1

Definition of
acceptability

…...

All top-level functional
goals are independent

IndepArg

IA1
SafeS1.3

Argument over all
identified safety related
maintainability goals

SafeG1.1.2

The aircraft system is
acceptably safe upon the
occurrence of any hazard when
it is operating along flight path

Fig. 6. The top-level safety goal structure for the WBS example

In order to define a scenario (i.e., a UCM model), a goal must be provided. A
system structure (i.e., a component context diagram in UCM terminology) must also
be defined as the context of elaborating the goal. The system structure should be
derived from the predefined viewpoints as described in the next subsection. The
system structures should be independent of the requirements allocated. This is another
benefit of using UCMs, as component context diagrams and use case paths can be
developed separately. For the WBS example, the wheel braking goal has been
identified in Figure 5. The system architecture of the WBS has been defined in the
system description (see [1]) as the input of the design process. Therefore we can
elaborate the wheel braking goal through the system architecture. Figure 7 illustrates
an example scenario for the wheel braking goal – manual braking in normal mode. As
all relevant scenarios (in this example, manual braking in normal mode/alternative
mode/emergent mode and auto braking) are elicited for a specific goal, the goal can
be decomposed further given the responsibility points allocated. For instance, a sub-
goal of the WBS goal will be the goal of BSCU expressed as follows:

The BSCU controller shall output the brake command upon
arrival of pedal signal when airframe is on ground AND
aircraft is in landing/taxing/RTO flight phase.

394 W. Wu and T. Kelly

4.3 Viewpoints

In most cases, a system model has multiple structures due to the increasing size,
complexity and heterogeneity of modern software systems [42]. In practice, these
structures are classified in terms of viewpoints. An instance of a viewpoint is called a
view (i.e., a system structure). Yet there is no consensus on the number of appropriate
viewpoints in both research and practice that are considered necessary to describe
software architectures adequately. From the viewpoint of embedded systems
development, we define five essential viewpoints, as shown in Table 1. The first two
are defined at system level to capture system boundaries and its physical structures.
The remaining three viewpoints are defined at software level and consistent with
common viewpoint approaches in the software community (e.g., SEI’s three
viewtypes [15]). The recognition of multiple viewpoints has a significant impact on
the completeness of deviation analysis, as viewpoints are interconnected and
deviation arising from one view can propagate through another view (see section 4.5).

Pilot :
Human

Pedal :
MechanicalDevice

BSCU :
Controller

ServoValve :
Valve

Brake :
MechanicalDevice

press_pedal signal can_brake open engaged

Preconditions:
- Aircraft is on ground
- Aircraft is moving
- Aircraft is in landing/takeoff/rejected takeoff phase

Postconditions:
- Eight wheel brakes are applied

Fig. 7. An example scenario – manual braking in a normal mode

Table 1. The information description of the five viewpoints

Viewpoint Description Intent
Contextual
Viewpoint

How an embedded system interacts with its
operating environment

To reason about the environmental
properties of the system

System
Architecture
Viewpoint

How an embedded system is structured in
terms of physical units. At least one of these
units should be the controller or software

To reason about the physical
characteristics of the system

Development
Viewpoint

How the system’s software is structured in
terms of implementation units

To reason about the software
functions and maintenance

Run-Time
Viewpoint

How the system’s software is structured in
terms of run-time units

To reason about the runtime
behaviours of the software

Allocation
Viewpoint

How the system’s software is allocated onto
non-software structures (e.g., hardware
platform)

To reason about the impacts of the
underlying hardware platform and
development environment on software

Towards Evidence-Based Architectural Design for Safety-Critical Software Applications 395

4.4 Anti-goals

An anti-goal is a condition that, if true, would immediately prevent the composite
system from achieving the corresponding goal. Both goals and anti-goals are
complementary and thus capture the possible desired and undesired end states of a
composite system respectively. A common example of an anti-goal is the loss of
a system function where the function was a goal. Nevertheless, simple negation of a
goal in terms of propositional logic cannot guarantee the completeness of the
corresponding anti-goals. A less obvious but perhaps more severe anti-goal would be
inadvertent application of that function. Given some goal formulation, it is important
to ensure the exhaustiveness of deviations from that goal, at least from the viewpoint
of safety. In the safety community, the possible deviations of a system are often
characterised in terms of deviation or failure modes. Previous York’s work has
developed a collection of deviation modes for software systems: SHARD guidewords
[19]. We interpret the SHARD modes with respect to the goal formulation in the
following Table 2.

Table 2. The anti-goal interpretation using SHARD guidewords

SHARD Anti-Goal Interpretation
Omission Response part does not hold while stimulus and environment parts hold
Commission Stimulus or context parts do not hold while response part holds
Timing Timing constraint specified in the response part is violated while the other parts hold
Value Value constraint specified in the response part (e.g., accuracy or cost) is violated while

the other parts hold

By allocating the SHARD modes onto a formulated goal and interpreting them

using the above table, there can exist a high level of confidence on the exhaustiveness
of the set of anti-goals elicited. Notably, not all anti-goals can have safety implications;
anti-goals must be evaluated with respect to safety consequences (see section 5.1). Let
us return to the WBS example. As soon as the system goals of WBS are formulated,
the identification of anti-goals can start by considering the SHARD deviations first
without information about the elaborated scenarios. In this example, only omission and
commission modes are applicable. Table 3 illustrates an example anti-goal by negating
the context part – wheel braking when the context is not as intended. The definition of
the stimulus part is trivial in this case. The anti-goal elicited is abstract.

Table 3. An example anti-goal formulation

Portion of Goal Possible Value
Artefact WBS
Context NOT (Airframe is on ground AND aircraft is in landing/taxiing/RTO flight phase)
Stimulus N/A
Response All wheel brakes are applied

By expanding the negation operation on the context part using Boolean logic, we

can derive a set of well-refined anti-goals: e.g., wheel brakes applied when aircraft is
taking off or when aircraft is in air. It must be stressed that the expansion here cannot

396 W. Wu and T. Kelly

be achieved solely by formal Boolean logic and in many cases may need the help of
domain experts. For the example of inadvertent wheel braking when the aircraft is
taking off, we may need to distinguish further whether the aircraft is taking off before
the decision speed V1, as the corresponding safety consequences would be different
[1]. Obviously, this is impossible for formal logic alone to identify the two anti-goals.
When all anti-goals are identified and refined (say, eight anti-goals for the WBS
example), they should be linked to the anti-goals of the parent goal of the WBS (i.e.,
aircraft deceleration) in a bottom up manner, thereby forming an anti-goal structure.
The anti-goal structure in the WBS example is shown in Figure 8.

Fig. 8. The anti-goal structure – Total loss of aircraft deceleration

As seen in the Figure 8, the anti-goal structure should refer to the corresponding
functional goal structure. It should be noted that the expression languages used in
functional goals, safety goals and anti-goals are slightly different. The functional
goals are simply requirements and thus ‘shall’ statements are suitable; the safety goals
are claims in which ‘is/are’ statements are applicable; the anti-goals are hypotheses
about states & events of the system and thus ‘will’ statements should be used. The
construction of anti-goal structures will prompt the refinement of the safety-goal
structure in which decisions need to be made regarding how to mitigate these
identified anti-goals.

4.5 Negative Scenarios

Like a (positive) scenario, a negative scenario is a possible realisation of an anti-goal
with respect to the known system structure. In other words, negative scenarios can be
formulated using conventional scenario formulation techniques such as use case
templates. We previously proposed a stimulus-effect form [54] to emphasise the
status of causal propagation within a negative scenario. Not surprisingly, it can be
seen as the negation of the stimulus-response form of goals and positive scenarios. To

Towards Evidence-Based Architectural Design for Safety-Critical Software Applications 397

ensure an exhaustive set of negative scenarios elicited, a broad spectrum of candidate
stimuli must be considered. This spectrum should be based upon consideration of all
possible deviations. Credibility of these deviations will be discussed in section 5.1.
We here distinguish two classes of negative scenarios, which are consistent with the
decomposition principle of fault tree construction [51]:

• Primary negative scenarios. Those stimuli are identified from deviation analysis
over a positive scenario — a UCM model which is derived from a specific
viewpoint. This is often done by inductive analysis or “what-if” questions
conducted on every single action of a scenario.

• Supporting negative scenarios. Those stimuli are identified from deviation analysis
over other viewpoints but with possible contribution to primary negative scenarios.
For example, the failure of a run-time component in a runtime view can be caused
by malfunction of underlying hardware platform in the deployment view.

Furthermore, the systematic identification of anti-goals offers an effective means of
ensuring a broad spectrum of the end effects of the negative scenarios. By linking the
candidate stimuli with anti-goals through the stimulus-effect framework, the
exhaustiveness of negative scenarios can be justified. New anti-goals may also be
identified during negative scenario development. Another concern is the effectiveness
of the negative scenario elicitation. In practice, deviation analysis is aided by a set of
pre-defined component deviation modes. For example, the common deviation modes
for the components of valve type can be: stuck open, stuck close and leakage.
Automated analysis is thus possible by extending system structures with component
failure modes defined in the deviation knowledge base.

Let us continue the WBS example in which a wheel braking goal, four positive
scenarios in a form of UCMs, and eight anti-goals have been defined. Now we need to
perform deviation analysis over each of the four positive scenarios. Guidance on
deviation analysis over UCMs can be found in our previous work [52]. Simply put,
deviation analysis starts by forward search of each responsibility point across the use
case path in order to identify possible primary negative scenarios. For a given
responsibility point, deviation modes are allocated with respect to the type of the
component in which the responsibility point resides, and the end effect of that
deviation is identified along the use case path and linked to the identified anti-goals.
The forward search procedure for a specific responsibility point is similar to ETA in
which the initiating event is the deviation of that responsibility point and all possible
event sequences are analysed along the use case path. Figure 9 illustrates the
deviation analysis procedure for the scenario – the manual braking in normal mode.

The output of deviation analysis over the four UCM scenarios are fourteen primary
negative scenarios. Supporting scenarios must be identified by deviation analysis over
other views. To do this, we need to identify how the components in a UCM model can
be mapped onto other views. In the WBS example, the UCM models are defined
within the system architecture view, and all other views are still undefined. In this
case, the architect needs to make some assumptions such as a uni-processor
configuration and single monolithic software module in order for the remaining views
to be produced. Put another way, the BSCU controller is first mapped to a single
software module in both development and run-time views, and to a processor in the

398 W. Wu and T. Kelly

open

Pilot : Human
Pedal :

MechanicalDevice BSCU : Controller ServoValve : Valve
Brake :

MechanicalDevice

omission

commision

late

fail to activiate

fail to disengage
fail to disengage

fail to activiate
omission

commision

late

value

stuck open

stuck close

leak

AG1

AG2

AG3

AG4

AG1

AG2

AG1

AG3

AG1

AG5

AG6

AG6

AG5

AG6

AG1: total loss of wheel braking
AG2: inadvertent wheel braking

AG3: late wheel braking

AG4: over wheel braking

AG5: partial loss of wheel braking
AG6: asymmetric wheel braking

Note:

press_pedal signal can_brake engaged

Fig. 9. Deviation analysis over the example scenario (manual wheel braking)

allocation view. Deviation analysis is then performed upon the two components by
deviation mode allocation. Consequently, a set of supporting negative scenarios are
identified. All identified negative scenarios should be formulated in the stimulus-
effect form. Table 4 illustrates an example formulated negative scenario.

Table 4. An example negative scenario formulation

Source Stimulus Context Course of Propagation End Effect
BSCU Fails to

output
brake
command

Airframe is on ground AND
aircraft is in landing/taxiing/RTO
flight phase AND pilot presses
the pedal

Eight servo valves, eight
brakes

AG1: Total
loss of
wheel
braking

5 Moving from the Deviation Model to Mitigation Model

All the negative scenarios and anti-goals are hypothesised on the basis of current
knowledge about the system and its domain. Yet not all anti-goals identified are
safety significant. Moreover, it is impractical to completely address all the identified
safety concerns within a single design iteration. It must be possible to evaluate the
deviation model in terms of safety risks. A negative scenario leading to a safety-
significant anti-goal is a risk scenario. Only a small number of high-risk scenarios
(say three) will be considered in the mitigation model for every single design
iteration. As a result, the management of negative scenarios and assessment of
acceptability must be a continuous process through the whole architectural design.
The purpose of the mitigation model is to capture plausible mitigation space (i.e. a set
of mitigation action candidates) against the high-risk scenarios identified through
severity and credibility estimation. Cost-benefit analysis and design tradeoffs may be
performed in order to make optimal decisions. The following subsections will
describe our solutions to evaluating the deviation model using a BBN framework,
identifying mitigation space and performing safety design tradeoffs.

Towards Evidence-Based Architectural Design for Safety-Critical Software Applications 399

5.1 Severity and Credibility

Like most risk assessment methods, the evaluation is performed in terms of severity
and credibility estimation. Notably, we prefer the term “credibility” to the standard
term “likelihood” or “frequency”, because the former is more consistent with the
Bayesian interpretation of probability [25] that lies at the heart of our risk assessment
framework. Severity estimation is conducted by considering the safety consequences
of all identified anti-goals. Estimation proceeds from the anti-goal structures and
takes into account of the contribution to their parent anti-goals if they exist. For the
WBS example, the occurrence of the anti-goal AG1.1 does not necessarily lead to the
occurrence of its parent anti-goal AG 1 unless the anti-goals AG 1.2 and AG 1.3 also
hold, as shown in Figure 8. In fact, the anti-goal AG 1.1 should be detectable by the
pilot when the wheel braking is commanded and the pilot will be able to use spoiler
and thrust reversal to the maximum extent possible in order to achieve deceleration.
Hence, the severity classification of the anti-goal AG1.1 should be hazardous rather
than catastrophic.

Credibility estimation should be conducted over all the negative scenarios
identified and formulated in a stimulus-effect form. There are two parts to be
estimated: the stimulus and propagation parts – how credible is it for the occurrence
of the hypothesised stimulus and its propagation to manifest the anti-goal? At the
beginning of architectural design, it is plausible to make the worse-case assumption
that the propagation is completely credible (i.e., its credibility is 1) given that no
mitigation mechanisms are employed. Once mitigation actions are chosen against the
propagation, the credibility of the propagation should be re-estimated with respect to
the effectiveness of the chosen mitigation. Now our focus would be the stimuli of all
negative scenarios. To do so, we first distinguish two classes of stimuli:

• Stimuli of a random nature. The sources of the stimuli will be non-agent objects
such as hardware and natural environment.

• Stimuli of a systematic nature. The sources of the stimuli will be agents such as
human and software.

For the first class of stimuli, the architect should seek historical data to justify their
credibility. For the systematic stimuli, an analytic model should be constructed and
evaluated through data collected from the real world. The selection of analytic models
depends upon the classification of the stimulus: is it human operation error or software
design fault? For the former, further investigation is required to check if it is a slip-
related error or mistake-related error [47]. Task network analysis [28] may be chosen
to predict the credibility of slip-related errors, for instance. For the software design
faults, current design artefacts and the progress of development process must be
considered. If fault data determined by testing are available, for example, Rome
Laboratory’s software reliability prediction models [37] may be suitable. Alternatively,
if product metrics (e.g., quality of requirements specification) and process metrics
(e.g., competencies of the developers) can be estimated, Fenton’s defect prediction
model may be applicable. Notably, no model is complete or even representative. One
model may work well for a set of certain software, but may be completely off track for
other kinds of problems. Assumptions and justification made during the selection
procedure must be explicitly identified. Knowledge about historical data, the

400 W. Wu and T. Kelly

classifications of analytic models as well as the applicability rules could be codified in
a reasoning knowledgebase for the purpose of automation. If no applicable historical
data and analytic models are available, expert judgements would be required.

Let us carry on the WBS example. An assumption of 100% propagation hold for
all identified negative scenarios can be made. We then need to type-check the
stimulus and source parts of every scenario. Analytic models are then selected for
credibility estimation. Table 5 illustrates a portion of credibility estimation results for
the WBS example. It should be noted that the results of credibility are by no means
precise, as the level of design detail increases. In many cases, the credibility of the
scenario will need to be updated as the design process progresses and subsequent
design decisions are made upon the source of the stimulus. For example, the BSCU
software module will inevitably be decomposed in more finer-grained modules in
which the brake control responsibilities will be allocated. The update of evidence is
possible to be incorporated within the BBN framework described in the next
subsection. It must be stressed that the role of quantification is to prioritise scenarios
instead of obtaining precise numerical data – through which dominant scenarios are
identified and drive the design decision procedure.

Table 5. Example results of credibility estimation

Stimulus Classificat-
ion

Estimation
Forms

Assumptions/ Justification Credi-
bility

Pilot fails to
press pedal

Slip-related
error

Task network
analysis

Reason’s human error classification
[47]

1.5E-6

Power supply
loss

Random
failure

Historical data 1E-7

Existence of
software fault

Design
error

Fenton’s defect
prediction
model [50]

No fault/failure data but some
process and project management
metrics are available at this stage.

2.5E-3

5.2 Causal Bayesian Modelling

A negative scenario is inherently a causal chain starting from a stimulus and leading
to undesired end states (i.e., anti-goals). Through composing all identified negative
scenarios together, a causal structure can thus be formed. In BBN terminology, a
causal structure C is defined in a directed acyclic graph (DAG) form: C = (V, E),
where V is defined as a set of nodes, and E is defined as a set of directed edges among
V. We distinguish further between two subsets of V: V1 and V2, where V1
corresponding to the set of all the leaf nodes, V2 represents the set of the remaining
nodes such that V = V1 ∪ V2 and V1 ∩ V2 = ∅. Each element of the set V1
corresponds to a distinct anti-goal identified, whilst each element of the set V2
corresponds to a distinct architectural component identified from the source of
stimulus and propagation parts in the negative scenario framework. Each element of E
captures a distinct causal relation identified by knowledge about the sequence of
propagation of a stimulus as specified in the negative scenario framework. Figure 10
illustrates a portion of a causal structure for the WBS example. To simplify the BBN
computation, we remove the nodes WheelBrake(i) and ServoValve(i), as our main
focus here is the controller BSCU.

Towards Evidence-Based Architectural Design for Safety-Critical Software Applications 401

To form a causal model, the first step is to transfer all the nodes in V into variables
in which their value domains must be defined. For elements in V1, their value domain
will be simply Boolean true and false to indicate if an anti-goal occurs or not. For
elements in V2, their value domains will be their deviation modes allocated and the
normal mode (say, ok) during deviation analysis, as described in section 4.5. Finally,
we need to define a conditional probability table (CPT) for each variable with respect
to the credibility estimation results. Often, this would be a tedious step. However,
many BBN tools such as Netica allow us to define probability table by equation.
Figure 11 shows the equation definition for the BSCU variable using Netica
expression language. In general, careful justification is required when defining a CPT.
These judgements need to be captured in the safety arguments (i.e., GSN forms). The
following are a number of rules learnt from our experience:

AGTotalLossWBraking AGInadvertentWBraking

Wheel
Brake1

Servo
Valve1

BSCU

Processor

IO

SoftwareModule

Pedal

PowerSupply

Pilot

Wheel
Brake2

Wheel
Brake3

Wheel
Brake4

Wheel
Brake5

Wheel
Brake6

Wheel
Brake7

Wheel
Brake8

Servo
Valve2

Servo
Valve3

Servo
Valve4

Servo
Valve5

Servo
Valve6

Servo
Valve7

Servo
Valve8

Fig. 10. The causal structure for WBS example

• During the elicitation of negative scenarios, a single deviation is considered as the
stimulus for one scenario. But when composing scenarios to form a causal model,
the occurrence of multiple deviations must be taken into account. For the WBS
example, what if both power supply loss and processor failure happen
simultaneously? Obviously, the effect of process failure will not be exhibited by
the occurrence of power supply loss, thereby leading to no output of BSCU.

• Some deviations such as transient failure of processor or software faults may have
multiple effects in a non-deterministic manner [53]. In those cases, the architect
needs to make some assumptions: e.g., all chances are equal.

402 W. Wu and T. Kelly

P (BSCU | CPU, IO, SW, Pedal, Power) =
(Power == ok && CPU == ok && Pedal == ok && SW == ok && IO == ok) ? (BSCU == ok ? 1.0 :
0.0) :
(Power == loss) ? (BSCU == fail_to_output_brake ? 1.0 : 0.0) :
(Power == ok && Pedal == fail_to_activate) ? (BSCU == fail_to_output_brake ? 1.0 : 0.0) :
(Power == ok && Pedal == fail_to_disengage) ? (BSCU == ok ? 1.0 : 0.0) :
(Power == ok && Pedal == activate_inadvert) ? (BSCU == output_brake_inadvert ? 1.0 : 0.0) :
(Power == ok && Pedal == ok && CPU == crash) ? (BSCU == fail_to_output_brake ? 1.0 : 0.0) :
(Power == ok && Pedal == ok && IO == crash) ? (BSCU == fail_to_output_brake ? 1.0 : 0.0) :
 (Power == ok && Pedal == ok && IO == transient_failure) ?
 (BSCU == fail_to_output_brake ? 0.3 : BSCU == output_brake_late ? 0.5 : BSCU == ok ? 0.1 : 0.1) :
 (Power == ok && Pedal == ok && (CPU == transient_failure || SW == faulty))?
 (BSCU == fail_to_output_brake ? 0.3 : BSCU == output_brake_inadvert ? 0.3 : BSCU ==
output_brake_late ? 0.2 : 0.2) : 0

Fig. 11. The equation expression for the BSCU variable

Power Supply
ok
loss

 100
 0 +

BSCU
ok
fail to output brake
output brake inadvert
output brake late

99.8
.078
.076
.055

IO
ok
transient failure
crash

 100
0.01
 0 +

Pedal
ok
fail to activate
fail to disengage
activate inadvert

 100
 0 +
 0 +
 0 +

Software Module
ok
faulty

99.8
0.25

Pilot
ok
fail to press pedal
press pedal inadvert

 100
 0 +
 0 +

Processor
ok
transient failure
crash

 100
 0 +
 0 +

Total Loss of Wheel Braking
true
false

.078
99.9

Inadvertent Wheel Braking
true
false

.076
99.9

Fig. 12. The BBN evaluation results using Netica

• Like programming, comments for each statement (though not shown in the figure)
will be provided to enhance understanding and readability.

Figure 12 shows a fragment of the compiled BBN model produced by Netica. Note
that the belief numbers shown in the figure are based upon percentage and some
numbers are not shown completely (i.e., 0+) due to limitations of display. For
example, the probability of the anti-goal “Total Loss of Wheel Braking” calculated is
0.0007846, which falls short of civil aviation target 1E-7. Therefore, mitigation is
required. To do so, we need to identify the high-risk scenarios. This can be done

Towards Evidence-Based Architectural Design for Safety-Critical Software Applications 403

automatically by sensitivity analysis through Netica. There are three high-risk
scenarios, which must be considered in the mitigation model:

S1. Residual faults in the BSCU software leading to malfunctions of the BSCU
S2. I/O (transient or permanent) failures leading to malfunctions of the BSCU
S3. Processor (transient or permanent) failures leading to malfunctions of the BSCU

5.3 Mitigation Space and Safety Tradeoffs

We previously developed a mitigation action model in which mitigation actions are
organised in a tree form of five branches (i.e., elimination, reduction, detection,
resistance and minimisation) and codified by a template, which can be implemented
in a mitigation knowledgebase [54]. If we treat all the codified mitigation actions as
the whole design space, our concern then lies at how to identify the most appropriate
subset of these actions with respect to a specific negative scenario. Since negative
scenarios are formulated in a form of causal chains, a plausible mitigation space will
be defined by means of controllable parts of the causal chain for the purpose of
stopping the propagation. Therefore, the identification of the mitigation space is an
iterative procedure of locating the reachable BBN non-leaf nodes (i.e., architectural
components) with respect to a given anti-goal and searching applicable mitigation
action branches. For the WBS example, consider the scenario S1 identified in the
previous subsection. Clearly, the mitigation options would lie within the software
module and BSCU nodes. Mitigation actions applied to the BSCU can also help
address scenarios S2 and S3. We then need to determine which of the five branches of
mitigation will be applicable. For instance, the minimisation action branch (i.e.
minimisation of the effect of total loss of wheel braking) is irrelevant, as there is
nothing to act when BSCU fails to output the brake command as requested. The
procedure continues until all action candidates are located. Table 6 illustrates the
mitigation options for S1, accompanied by their rationale.

Table 6. A mitigation space for the negative scenari S1

ID Node Branch Mitigation Intent
Eliminat-
ion

Simplification Correctness of software design can be verified

Rigorous testing A amount of faults can be detected by testing
Following safety
standard

The process for high Development Assurance
Level (DAL) [5] produces ‘better’ software

Soft-
ware
module Reduct-

ion

Functional
redundancy

The likelihood of faults in different designs is
sufficiently low

Timeout No response of the BSCU is assumed to fail
Comparison Deviations can be detected in case of

discrepancy

Detection

Voting Deviations can be detected and tolerated in case
of discrepancy

Recovery Any error detected can be fixed
Reconfiguration Any error detected can be removed by

replacement

S1

BSCU

Resistan-
ce

Degradation Any error detected can be removed by removal
of the faulty component

404 W. Wu and T. Kelly

To make decisions in response to the mitigation space identified, cost-benefit-risk
analysis must be performed. The benefit of each action candidate is determined in
terms of its impact upon the credibility of the scenario that it is intended to address.
The cost of each option is estimated in terms of orders of magnitude. Both cost and
benefit estimates usually require the aid of domain experts and past experience. The
known vulnerabilities and side effects of each option are identified by the use of the
codified mitigation knowledge. As an example in Table 6, the effectiveness of
deploying functional redundancy to reduce software faults lies at a high degree of
diversity between module designs, which may be hard to implement in practice. This
can be done by means of tables [54] and the architect is free to choose specific
options based upon judicious considerations of the mitigation space. It must be
stressed that our method does not make decisions for the architects but aids them in
eliciting and rationalising their design decisions. For the WBS example, we chose the
simplification tactic against the dominant scenario S1 because of the limited number
of software input, and comparison and reconfiguration tactics against S2 and S3 by
assuming a stringent cost budget. Once mitigation actions are chosen, the system
model needs to be refined in the following possible ways:

 Add new components or remove existing components in specific view(s).
 Add new responsibilities (a.k.a., derived requirements) in specific view(s).
 Re-allocate existing responsibilities in specific view(s)

For the WBS example, the correctness of the monolithic software module in the
development view must be verified. In this case, no refinement of software module is
required by this decision. However, non-safety such as modifiability-related design
decisions can drive the decomposition of the monolithic module into a control
function module and compiler module so that the BSCU software can be portable to
different compilers. Two dual processors and buses are introduced in the allocation
view and the output of the BSCU is arbitrated, as indicated by the chosen comparison
tactic. Transient processor/bus failures can be repaired by rebooting the processor and
reloading its copy of software. Behaviours regarding the run-time comparison and
reboot behaviours must be captured in the scenario forms. At this point, both the
structures of functional goals and safety goals can be decomposed further to reflect
the refinement of the system model and derivation of safety requirements.

Likewise, a new deviation model will be generated upon the refinement of the
system model. In most cases, the step of identification of anti-goals can be skipped
unless new system goals (e.g., system monitoring) are identified. The main focus is
thus the elicitation of new negative scenarios. For the WBS, example negative
scenarios elicited can be failure of both processors and the use of potentially faulty
compiler. The process loops until all the core system requirements have been elicited
and all identified anti-goals are mitigated sufficiently with respect to the risk
acceptance. A stable architecture is therefore formed at the end of the design process.

6 Discussion

We have so far applied the proposed framework to a number of medium-size case
studies such as AGV [54] and WBS systems. The WBS example was selected for the

Towards Evidence-Based Architectural Design for Safety-Critical Software Applications 405

purpose of comparison with the ARP process which has been widely applied in
practice. We discuss our results in terms of the following three aspects:

Exhaustiveness. Establishing an argument of exhaustive identification of the design
issues (i.e., negative requirements) and design alternatives is recognised as the key to
the robustness of dependability design. Within the ARP framework, negative
requirements are identified through deviation analysis purely on system functions
(i.e., FFA) and refined through FTA during architecture definition. The transitions
from FFA to FTA and from system level to software level are undefined, however.
The exhaustiveness argument is thus implicit and cannot be validated. The techniques
presented in our approach provide semi-formal and multi-viewpoint support for
deviation identification: deviation analysis is started at goal level through top-down
goal formulation and refined at scenario level and component level through pre-
defined architectural viewpoints in a bottom-up manner. Moreover, there is no step
for identification and justification of design alternatives in the ARP process. The
exhaustiveness argument is inherently limited and subject to the competencies of
domain experts and the past experience of architects.

Effectiveness. Most software standards advocate heavyweight development
approaches in which the upfront specification of all system requirements is mandatory
before the design proceeds [12]. For the ARP example, a sequential ‘waterfall-like’
process is defined, starting from aircraft-level FFA, system-level FFA to system-level
FTA and software-level FTA, from which system and software safety requirements
are derived and architectures are validated. This form of waterfall model has been
known to be inadequate for handling the volatility and uncertainty commonly
involved in the real-world problems. The Triple-Peaks process presented in this paper
inspired from the Twin-Peaks model addresses requirements specification, design
issues and corresponding design alternatives iteratively and incrementally. The
process is receptive to requirements change, as only core system requirements are
analysed and achieved by a stable architecture defined. Incremental construction of
safety evidence is facilitated by means of GSN in a top-down manner, though it
remains to be seen whether the explicit recording of safety arguments is best done in
order to ‘fake’ a rational design process as described by Parnas and Clements [43].
The effectiveness of the design process is also enhanced by available knowledge
sources such as deviation modes, component deviation types and mitigation tactics,
though there is still lack of tool support available to integrate these techniques.

Rationality. Existing software design approaches often rely upon implicit reasoning,
through which design decisions are mainly promoted by design intuition. The linkage
between design decisions and requirements is largely undefined. Though the design
decisions are clearly identified within the ARP process, the steps moving from the
identified safety requirements to design decisions are still unclear. Our approach
elaborates the linkage between safety requirements and mitigation options chosen by
means of requirements formulation and prioritisation, design space analysis and cost-
benefit-risk analysis. With the aid of BBN tools, the notion of credibility can be
deployed in design and a level of confidence can thus be established. Deciding the

406 W. Wu and T. Kelly

stopping rules of the design process (i.e., when design issues identified are complete
and mitigation is adequate) is based upon risk acceptability criteria.

7 Summary

In this paper, we have presented an integrated approach to architectural design for
safety-critical software applications through a Triple Peaks framework. In particular,
we have demonstrated that how it is practical to conduct deviation analysis
simultaneously at both the requirements and architecture level. The key principle
underlying this paper is that software safety evidence must be collected in the early
development lifecycle, and architectural design decisions must be informed based
upon this evidence & quantitative risk assessment. Our future work includes seeking
possible automation of the linkage between BBN models and architectural choices,
and expanding the proposed method into other critical domains such as security-
critical software applications.

References

1. ARP 4761: Guidelines and Methods for Conducting the Safety Assessment Process on
Civil Airborne Systems and Equipment, Society of Automotive Engineers, Inc. (1996)

2. Australian Defence Standard Def(Aust) 5679: Procurement of Computer-based Safety
Critical Systems, Australian Department of Defence (1998)

3. IEC 615038 – Functional Safety of Electrical/Electronic/Programmable Electronic Safety-
Related Systems, International Electrotechnical Commission (1998)

4. Netica, Norsys Software Corp. (2006), http://www.norsys.com/
5. RTCA/DO-178B: Software Considerations in Airborne Systems and Equipment

Certification, Radio Technical Commission for Aeronautics (1992)
6. The United Modelling Language (UML) Specification. The Object Management Group

(2005)
7. Achour, C.B., Rolland, C., Souveyet, C.: Guiding Goal Modelling Using Scenarios. IEEE

Trans. on Software Engineering 24(2), 1055–1071
8. Alexander, I.: Misuse Cases: Use Cases with Hostile Intent. IEEE Software 20(1), 58–66
9. Allenby, K., Kelly, T.: Deriving Safety Requirements using Scenarios. In: the 5th IEEE

International Symposium on Requirements Engineering(RE’01), p. 228. IEEE Computer
Society Press, Los Alamitos (2001)

10. Bachmann, F., Bass, L., Klein, M.: Deriving Architectural Tactics: A Step Toward
Methodical Architectural Design, SEI (2003)

11. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison
Wesley, Reading, MA, USA (2003)

12. Boehm, B., Turner, R.: Balancing Agility and Discipline: A Guide for the Perplexed.
Addison-Wesley Professional, Reading (2003)

13. Brandozzi, M., Perry, D.E.: From Goal-Oriented Requirements to Architectural
Prescriptions: The Preskriptor Process. In: Proceedings of Third International Workshop
From SofTware Requirements to Architectures (STRAW’03), pp. 107–113 (2003)

14. Buhr, R.J.A., Casselman, R.S.: Use Case Maps for Object-Oriented Systems. Prentice-
Hall, Englewood Cliffs (1996)

15. Clements, P.: Documenting software architectures: views and beyond. Addison-Wesley,
Boston (2003)

Towards Evidence-Based Architectural Design for Safety-Critical Software Applications 407

16. Conklin, J., Begeman, M.L.: gIBIS: A Hypertext Tool for Exploratory Policy Discussion.
ACM Transactions on OfficeInformation Systems 6(4), 303–331

17. Easterbrook, S., Lutz, R., Covington, R., Kelly, J., Ampo, Y., Hamilton, D.: Experiences
Using Lightweight Formal Methods for Requirements Modeling. IEEE Trans. on Software
Engineering 24(1), 4–14

18. Feather, M.S., Cornford, S.L.: Quantitative risk-based requirements reasoning.
Requirements Engineering 8(4), 248–265

19. Fenelon, P., McDermid, J., Nicholson, M., Pumfrey, D.: Towards Integrated Safety
Analysis and Design. ACM Computing Reviews 2(1), 21–32

20. Galliers, J., Sutcliffe, A., Minocha, S.: An impact analysis method for safety-critical user
interface design. ACM Transactions on Computer-Human Interaction (TOCHI) 6(4),
341–369

21. Gregoriades, A., Sutcliffe, A.: Scenario-Based Assessment of Nonfunctional
Requirements. IEEE Trans. on Software Engineering 31(5), 392–409

22. Gurp, J.v., Bosch, J.: SAABNet: Managing Qualitative Knowledge in Software
Architecture Assessment. In: 7th IEEE International Symposium on Engineering of
Computer-Based Systems (ECBS 2000), IEEE Computer Society, Los Alamitos (2000)

23. Hall, J., Jackson, M., Laney, R., Nuseibeh, B., Rapanotti, L.: Relating Software
Requirements and Architectures using Problem Frames. In: Proceedings of the 10th
International Conference on Requirements Engineering, IEEE Computer Society, Los
Alamitos (2002)

24. Jacobson, I., Christerson, M., Jonsson, P., Oevergaard, G.: Object-Oriented Software
Engineering: A Use Case Driven Approach. Addison Wesley, Reading, Mass (1992)

25. Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University Press,
Cambridge (2003)

26. Kelly, T.: Using Software Architecture Techniques to Support the Modular Certification of
Safety-Critical Systems. In: Proceedings of Eleventh Australian Workshop on Safety-
Related Programmable Systems (2006), http://www-users.cs.york.ac.uk/ tpk/scs2006.pdf

27. Kelly, T.P.: Arguing Safety - A Systematic Approach to Safety Case Management
Department of Computer Science, DPhil Thesis, University of York, York (1999)

28. Kirwan, B., Ainsworth, L.K. (eds.): A Guide to Task Analysis: The Task Analysis
Working Group. Taylor & Francis, Abington (1992)

29. Lamsweerde, A.v.: Elaborating Security Requirements by Construction of Intentional
Anti-Models. In: Proceedings of the 26th International Conference on Software
Engineering, pp. 148–157. IEEE Computer Society, Los Alamitos (2004)

30. Lamsweerde, A.v.: Goal-Oriented Requirements Engineering: A Guided Tour. In:
Lamsweerde, A. (ed.) Proceedings of 5th IEEE International Symposium on Requirements
Engineering (RE’01), pp. 249–263. IEEE Press, Los Alamitos (2001)

31. Lamsweerde, A.v., Dardenne, A., Fickas, S.: Goal-directed Requirements Acquisition.
Science of Computer Programming 20, 3–50

32. Lamsweerde, A.v., Letier, E.: Integrating Obstacles in Goal-Driven Requirements
Engineering. In: Lamsweerde, A. (ed.) Proceedings of the 20th International Conference
on Software Engineering, pp. 53–62. IEEE Computer Society Press / ACM Press, Los
Alamitos (1998)

33. Lemos, R.d., Saeed, A., Anderson, T.: On the Safety Analysis of Requirements
Specifications. In: Proceedings of the 13th International Conference on Computer Safety,
Reliability and Security, Instrument Society of America, pp. 217–227 (1994)

34. Leveson, N.G.: Intent Specifications: An Approach to Building Human-Centered
Specifications. IEEE Trans. on Software Engineering 26(1), 15–35

408 W. Wu and T. Kelly

35. Leveson, N.G.: Safeware: System Safety and Computers. Addison-Wesley, Reading
(1995)

36. Leveson, N.G., Modugno, F., Reese, J.D., Partridge, K., Sandys, S.D.: Integrated Safety
Analysis of Requirements Specifications. In: Proceedings: 3rd International Conference on
Requirements Engineering (1997)

37. Lyu, M.R. (ed.): Handbook of Software Reliability Engineering. McGraw-Hill, New York
(1996)

38. McDermid, J.A.: Software Safety: Where’s the Evidence? In: McDermid, J.A. (ed.) The
6th Australian Workshop on IndustrialExperience with Safety Critical Systems and
Software (SCS’01) (Brisbane, 2001), Australian Computer Society (2001)

39. Morgan, C.: Of Probabilistic Wp and SP-and Compositionality. In: Symposium on the
Occasion of 25 Years of CSP (London, 2004), pp. 220–241. Springer, Heidelberg (2004)

40. Mylopoulos, J., Chung, L.: B.N. Representing and Using Non-Functional Requirements:A
Process-Oriented Approach. IEEE Trans. on Software Engineering 18(6), 497–497

41. Nuseibeh, B.: Weaving Together Requirements and Architectures. IEEE Computer 34(3),
115–114

42. Nuseibeh, B., Kramer, J., Finkelstein, A.: Expressing the relationships between multiple
views in requirements specification. In: Proceedings of the 15th international conference
on Software Engineering, pp. 187–196. IEEE Computer Society Press, Los Alamitos
(1993)

43. Parnas, D.L., Clements, P.C.A: rational design process: How and why to fake it. IEEE
Trans. on Software Engineering 12(2), 251–257

44. Pearl, J.: Causality: models, reasoning, and inference. Cambridge University Press,
Cambridge (2000)

45. Potts, C., Antón, A.I.: Inquiry-based Requirements Analysis. IEEE Software. 21–32.
46. Ramesh, B., Dhar, V.: Supporting systems development by capturing deliberations during

requirements engineering. IEEE Trans. on Software Engineering 18(6), 498–510
47. Reason, J.: Human Error. Cambridge University Press, Cambridge (1990)
48. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.

Prentice-Hall, Englewood Cliffs (1996)
49. Stamatelatos, M., Apostolakis, G., Dezfuli, H., Everline, C., Guarro, S., Moieni, P.,

Mosleh, A., Paulos, T., Youngblood, R.: Probabilistic Risk Assessment Procedures Guide
for NASA Managers and Practitioners, NASA Office of Safety and Mission Assurance
(2002)

50. The SERENE Partners: CSR, E., ERA, OT, TUV. The SERENE Method Manual SafEty
and Risk Evaluation using bayesian NEts: SERENE, ERA Technology Ltd. (1999)

51. Vesely, W.E.: Fault Tree Handbook. Nuclear Regulatory Commission (1987)
52. Wu, W., Kelly, T.: Deriving Safety Requirements as Part of System Architecture

Definition. In: Proceedings of 24th International System Safety Conference, System Safety
Society (2006)

53. Wu, W., Kelly, T.: Failure Modelling in Software Architecture Design for Safety.
SIGSOFT Softw. Eng. Notes 30(4), 1–7

54. Wu, W., Kelly, T.: Managing Architectural Design Decisions for Safety-Critical Software
Systems. In: Proceedings of the 2nd International Conference on the Quality of Software
Architectures, Springer, Heidelberg (2006)

55. Wu, W., Kelly, T.: Safety Tactics for Software Architecture Design. In: Proceedings of the
28th International Computer Software and Applications Conference, IEEE Computer
Society, Los Alamitos (2004)

R. de Lemos et al. (Eds.): Architecting Dependable Systems IV, LNCS 4615, pp. 409–433, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Extending Failure Modes and Effects Analysis Approach
for Reliability Analysis at the Software Architecture

Design Level*

Hasan Sozer, Bedir Tekinerdogan, and Mehmet Aksit

Department of Computer Science, University of Twente,
P.O. Box 217 7500 AE Enschede, The Netherlands
{sozerh,bedir,aksit}@ewi.utwente.nl

Abstract. Several reliability engineering approaches have been proposed to
identify and recover from failures. A well-known and mature approach is the
Failure Mode and Effect Analysis (FMEA) method that is usually utilized
together with Fault Tree Analysis (FTA) to analyze and diagnose the causes of
failures. Unfortunately, both approaches seem to have primarily focused on
failures of hardware components and less on software components. Moreover,
for utilizing FMEA and FTA very often an existing implementation of the
system is required to perform the reliability analysis. We propose extensions to
FMEA and FTA to utilize them for the reliability analysis of software at the
architecture design level. We present the software architecture reliability
analysis approach (SARAH) that incorporates the extended FMEA and FTA.
The approach is illustrated using an industrial case for analyzing reliability of
the software architecture of a Digital TV.

Keywords: reliability analysis, FMEA, FTA, software architecture evaluation.

1 Introduction

A number of important trends can be observed in the development of embedded
systems. First, due to the high industrial competition and the advances in hardware
and software technology, there is a continuous demand for products with more
functionality. Second, the functionality provided by embedded systems is shifting
from hardware to software. Third, the functionality of embedded systems is not solely
developed by just one manufacturer only but it is host to multiple parties. Finally,
embedded systems are more and more integrated in networked environments that
affect these systems in ways that might not have been foreseen during their
construction. Altogether, these trends complicate the design and implementation of
embedded systems. As a result, major steps in technology are required to keep the
reliability [2] of these systems at the current level. Obviously, since embedded

* This work has been carried out as part of the TRADER project under the responsibility of the

Embedded Systems Institute. This project is partially supported by the Netherlands Ministry
of Economic Affairs under the Bsik program.

410 H. Sozer, B. Tekinerdogan, and M. Aksit

systems are now largely defined and controlled by software, it is also expected that
the software failures form a major threat for reliability. Therefore, appropriate
reliability analysis and design techniques should be provided to support the
anticipation and prevention of potential failures.

In the literature, Failure Mode and Effect Analysis (FMEA) together with Fault
Tree Analysis (FTA) are well-known and mature approaches to identify failure modes
of system components and evaluate their impact on the system reliability. It appears
though that these approaches have primarily focused on failures in hardware
components and less on software components. In fact this is not so strange because
historically, software formed only a small part of embedded systems and as such
hardware components primarily defined the quality of the system. The developments
and trends in embedded systems have provided an increasing awareness that
reliability analysis should not be limited to hardware components but should also
cover software components [6,7,15,16,21]. Further, for applying FMEA and FTA
very often a running system is required and less focus has been given to reliability
analysis before the system is actually implemented. However, it is of importance to
analyze the failures earlier in the life cycle, at the software architecture design level.
In this way, potential risks can be identified earlier, before committing organizational
resources for implementing the system.

Obviously, FMEA and FTA have provided their clear merits for reliability analysis
and it is worthwhile to extend and integrate these mature approaches in reliability
analysis for software components. Hence, we propose extensions to FMEA and FTA
and integrate them in our novel software architecture reliability analysis method
(SARAH). Hereby, we first construct a failure domain model by analyzing the
domain of failures and the relevant categories. The failure domain model is utilized to
derive general failure scenarios that can be defined as possible types of failures.
Failure scenarios are described using (adapted) FMEA worksheets. The prioritization
of failure scenarios is different from the conventional use of FMEA and FTA where
safety has been usually the main criteria for prioritizing failure scenarios. In the
industrial project that we are working in [19], we focus on the consumer electronics
domain, where safety is less or not an issue. Instead, it is the perception of the user for
a failure that defines the severity of that failure. Therefore, we prioritize the failure
scenarios based on their severity from the end-user perspective. Failure scenarios are
then utilized to derive a Fault Tree Set (FTS), which shows the causal and logical
connections among the failures. FTS is used to perform severity analysis, in which we
measure the impact and contribution of the other failures to the user perceived
failures. In FTA, severity analysis uses the probabilities of failure occurrences [6] that
are usually obtained from an already developed system. We introduce an impact
model to estimate the overall impact of a failure even if the probability values are not
known. To sum up, the extensions that we propose for FMEA and FTA relate to using
a failure domain model for systematic derivation of failures, the prioritization of
failure scenarios based on user perception, and finally an impact analysis model for
FTA that does not explicitly require a running system. The extended approaches are
utilized to perform sensitivity analysis, where we identify the sensitive components of
the architecture. These are the components that are associated with the most severe
failures. SARAH results in a failure analysis report that defines the sensitive

 Extending Failure Modes and Effects Analysis Approach 411

components of the architecture and provides information on the type of failures that
might happen frequently.

The remainder of this paper is organized as follows. Section 2 provides the
background information on conventional FMEA and FTA methods. In Section 3, we
give an overview of the analysis method. In Section 4, we present the industrial case,
in which software architecture for a Digital TV is introduced. This example will be
used throughout the paper to illustrate the steps of SARAH and to discuss our
experiences in the industrial context. Section 5 presents the specification and
derivation of the failure scenarios. In section 6, severity analysis based on fault trees
is explained. Section 7 presents the analysis of the architecture. Section 8 provides the
related work. Finally, in Section 9 we provide the conclusions.

2 FMEA and FTA

FMEA [17] is a well-known and mature approach for reviewing the causes and effects
of system failures systematically. The basic operations of the method are 1) to
question the ways that each component fails (failure modes) and 2) to consider the
reaction of the system to these failures (effects). The analysis results are organized by
means of a worksheet, which comprises information about each failure mode, its
causes, its local and global effects (concerning other parts of the product and the
environment), the associated component and its severity. A simplified FMEA
worksheet template is presented in Table 1.

Table 1. An example FMEA worksheet based on MIL-STD-1629A [12]

System: Car Engine
Date: 10-10-2000
Compiled by: J. Smith
Approved by: D. Green

ID Item ID
Failure
Mode

Failure Causes Failure Effects
Severity

Class

1
CE5 fails to

operate
Motor shorted Motor overheats

and burns
V

2 … … … … …

FMEA can be employed for risk assessment and for discovering potential single-

point failures. Systematic analysis increases the insight in the system and the analysis
results can be used for guiding the design, its evaluation and improvement. At the
downside, some failure modes can be overlooked [14] and some information (e.g.
failure probability, risk) regarding the failure modes can be incorrectly estimated at
early design phases. Since the technique focuses on individual components at a time,
combined effects and coordination failures can also be missed. In addition, FMEA
process is effort and time consuming.

FMEA is usually applied together with FTA. FTA [6] is based on a graphical
model (fault tree), which defines causal relationships between faults (a set of example
fault trees can be seen in Figure 5). Faults, which are assumed to be provided, are

412 H. Sozer, B. Tekinerdogan, and M. Aksit

defined as undesirable system states or events that can lead to a system failure. The
top node (i.e. root) of the fault tree represents the system failure and the leaf nodes
represent faults. The nodes of the fault tree are interconnected with logical connectors
(e.g. AND, OR gates) that infer propagation and contribution of faults to the failure.
Once the fault tree is constructed, it can be processed in a bottom-up manner to
calculate the probability that a failure would take place. This calculation is done based
on the probabilities of fault occurrences and interconnections between the faults and
the failure [6]. Additionally, the tree can be processed in a top-down manner for
diagnosis to determine the potential faults that may cause the failure.

3 Industrial Case: Digital TV (DTV) Software Architecture

At the Embedded Systems Institute (ESI, Netherlands), the TRADER (Television
Related Architecture and Design to Enhance Reliability) project is carried out
together with NXP Semiconductors and several other academic and industrial partners
[19]. The objective of the project is to develop methods and tools for ensuring
reliability of digital television (DTV) sets. Due to the increasing size and complexity
of software that is embedded in TVs, in practice, it is not feasible to design a perfect
system that is fault-free. To cope with the faults that cannot be detected, appropriate
fault tolerance mechanisms are required. In the DTV design in the TRADER project,
faults of which effects can be directly observed by the user require a special attention.
Such faults are considered to be important and they should be tolerated. Because
TRADER aims to anticipate also on faults in future releases, it is also important that
reliability analysis techniques are defined at the design level. From this perspective
one of the key aims in TRADER is the design of fault tolerant software architecture
with respect to the perception of TV users.

A conceptual architecture of DTV is depicted in Figure 1, which will be referred to
throughout the paper. Figure 1(a) presents a module view [4] of the whole DTV
structure with implementation units and direct dependencies among them. It mainly
comprises two layers. The bottom layer, namely the streaming layer, involves
modules taking part in streaming of audio/video information. The upper layer consists
of application-related and utility modules that control the streaming process. Figure
1(b) presents a view of the streaming layer in pipe-and-filter style [4]. The streaming
layer modules shown in Figure 1(a) correspond to the streaming layer components in
Figure 1(b) with the same names.

In the following, we briefly explain some of the important modules and
components that are shown in the architecture. For brevity, the components for
decoding and processing audio/video signals are not explained here.

Application Manager (AMR) initiates and controls execution of both resident and
downloaded applications in the system. It keeps track of application states, user
modes and redirects commands/information to specific applications or controllers
accordingly. Audio Controller (AC), controls audio features like volume level, bas
and treble based on commands received from AMR. Command Handler (CH)
interprets externally received signals (i.e. through keypad or remote control) and
sends corresponding commands to AMR. Communication Manager (CMR) employs

 Extending Failure Modes and Effects Analysis Approach 413

«subsystem»
Command Handler

«subsystem»
Application Manager

«subsystem»
Program Manager

«subsystem»
Program Installer

«subsystem»
Content Browser

«subsystem»
Teletext

«subsystem»
EPG

«subsystem»
Graphics Controller

«subsystem»
Last State Manager

«subsystem»
C/A

«subsystem»
Audio Controller

«subsystem»
Video Controller

«subsystem»
Tuner

«subsystem»
Video Processor

«subsystem»
Data Decoder & Interpreter

«subsystem»
Audio Processor

«subsystem»
Graphics

«subsystem»
Audio Out

«subsystem»
Video Out

«subsystem»
Communication Manager

Control Layer

Streaming Layer

Module Dependency (uses)KEY «subsystem»Layer

(a) Module View of the Digital TV Architecture

(b) Component-Connector View (pipe-and-filter style) of the Streaming Layer

Fig. 1. Conceptual Architecture of a Digital TV

414 H. Sozer, B. Tekinerdogan, and M. Aksit

protocols for providing communication with external devices. Conditional Access
(C/A) authorizes information that is presented to the user. Content Browser (CB)
presents and provides navigation of content residing in a connected external device.
Electronic Program Guide (EPG) presents and provides navigation of electronic
program guide. Graphics Controller (GC) is responsible for generation of graphical
images corresponding to user interface elements. Last State Manager (LSMR) keeps
track of last state of user preferences such as the volume level and the selected
program. Program Installer (PI) searches and registers programs together with the
channel information (e.g. frequency). Program Manager (PM) tunes to a specific
channel. Teletext (TXT) handles acquisition, interpretation and presentation of the
teletext pages. Video Controller (VC) controls the video features like scaling of the
video frames based on commands received from AMR.

4 Fundamental Steps of the Analysis Method

Software architecture forms one of the key artifacts in the software development life
cycle since it embodies the earliest design decisions and includes the gross-level
components that directly impact the subsequent analysis, design and implementation.
Accordingly, it is important that the architecture design supports the required qualities
of the software system. In general static analysis of formal architectural models is
applied or a set of architecture analysis methods as described in [5] are used to
analyze and predict the quality of the system. In this paper, we focus on software
architecture analysis methods that utilize scenarios for evaluating architectures. In
general, these analysis methods take as input the architecture design and measure the
impact of predefined scenarios on it to identify the potential risks and the sensitive
points of the architecture. This helps to predict the quality of the system before it is
built, thereby reducing unnecessary maintenance costs. A scenario is considered to be
a brief description of some anticipated or desired use of the system.

We propose a scenario-based architecture analysis method, SARAH that
incorporates FMEA and FTA. In contrast to general-purpose architectural analysis
methods in which scenarios can refer to different quality factors, we utilize the notion
of failure scenario to analyze the impact of failures. A failure scenario represents the
possible occurrence of a failure in a given component. The steps of SARAH are
presented in a UML activity diagram in Figure 2. The approach consists of two basic
processes: (1) Definition (2) Analysis.

Fig. 2. The Steps of the Analysis Method

 Extending Failure Modes and Effects Analysis Approach 415

In the definition process, first the software architecture is described (section 3).
Failure scenarios are then derived from a failure domain model that includes a
categorization of failures. Failure scenarios are described using a template like FMEA
worksheet (section 5). As a subsequent step the failure scenarios in the FMEA are
utilized in the FTA (section 6). Here, we introduce the Fault Tree Set (FTS) concept,
which is basically a set of possibly connected fault trees. We use an impact model
based on FTS to estimate the impact of a failure scenario on the occurrence of the
user-perceived failures. By combining the impact model together with the failure
prioritization, we measure the severity of a failure scenario based on the type of user-
perceived failures it can lead to and its contribution on the occurrence of these
failures. Section 6 describes in detail our analysis based on fault trees.

Based on the input from the definition process, in the analysis process, an
architectural level analysis (section 7.1) and a component level analysis (section 7.2)
is performed. The results are presented in the failure analysis report (section 8). In the
following sections the main steps of the method will be explained in detail using the
industrial case study.

5 Specification and Derivation of Failure Scenarios

In this section we define the process for deriving and specifying failure scenarios.
Section 5.1 introduces the scenario template that is used for describing failure
scenarios. Section 5.2 explains the derivation of the failure domain model, which
provides a categorization for failure scenarios. Section 5.3 explains the derivation of
general failure scenarios. Finally, Section 5.4 explains the derivation of concrete
failure scenarios based on general failure scenarios.

5.1 Failure Scenario Template

We define the concept of failure scenario to analyze the architecture with respect to
reliability. Reliability is the ability of the system to function without a failure, which
is as an event that occurs when the delivered service of a system deviates from a
correct service [2]. A correct service is delivered when the service implements the
required system function. An error is defined as the system state that may lead to a
failure and the cause of an error is called a fault [2]. Figure 3 depicts the fundamental
chain of threats that leads to a failure.

Fig. 3. The Fundamental Chain of Reliability Threats Leading to a Failure

A failure scenario specification includes a description of the fault, the error and the
failure (See Table 2). Additionally, the failure ID is used to uniquely identify a
scenario and the component ID defines the component for which the failure scenario
applies. Note that this template is similar to the FMEA worksheet (See Table 1). To
specify failure scenarios, we use FID, CID, fault, error and failure instead of the

416 H. Sozer, B. Tekinerdogan, and M. Aksit

Table 2. Template for Defining the Failure Scenarios

Attribute Explanation

FID A numerical value to identify the failures (i.e. Failure ID).

CID
An acronym defining the component for which the failure
scenario applies (i.e. Component ID).

Fault The description and the features of the cause of the error.

Error
The description and the features of the component state
that leads to the failure.

Failure
The description and the features of the deviation of the
component function from the required function.

concepts failure ID, related component, failure cause, failure mode and failure effect,
respectively.

5.2 Derivation of the Failure Domain Model

The failure scenario template can be used to describe scenarios. However, there exist
too many fault, error and failure types that can be considered. Hence, there is a high
risk that several potential and relevant failure scenarios are missed or that other
irrelevant failure scenarios are included. To define the relevant failures SARAH
defines relevant domain model for faults, errors and failures using a systematic
domain analysis process. This domain model provides a first scoping of the potential
scenarios. In fact, several researchers have already focused on modeling and
classifying failures for embedded systems. Avizienis et al [2], for example, provide a
nice overview of this related work and provide a comprehensive classification of
faults, errors and failures. The provided domain classification by Avizienis et al.,
however, is rather broad1, and one can assume that for a given reliability analysis
project not all the potential failures in this overall domain are relevant. Therefore, the
given domain is further contracted by focusing only on the faults, errors and failures
that are considered relevant for the actual project. Figure 4, for example, defines the
derived domain model that is considered relevant for the DTV project. Figure 4
includes three feature diagrams that depict a categorization for faults, errors and
failures.

In the feature diagram of fault (see Figure 4), faults are identified according to their
source, dimension and persistence. In SARAH, failure scenarios are defined per
component. For that reason, the source of the fault can be either (1) internal to the
component in consideration, (2) caused by other component(s) of the system or (3)
caused by the external entities with respect to the system. Faults can be introduced by
software or hardware, and be transient or persistent. The relevant features of an error
comprise the type of error together with its detectability and reversibility properties.
The features for failure include the type and the target. The target of a failure can be
the user or the other component(s) of the system.

1 Due to space limitations we do not show this domain model and refer the interested reader to

the corresponding publication.

 Extending Failure Modes and Effects Analysis Approach 417

Fault Dimension

Source

Persistence

internal (w.r.t. component)

external (w.r.t. system)

hardware

software

permanent

transient

other component(s)

Error Detectability

Type

Reversibility

data corruption

wrong value

detectable

undetectable

irreversible

reversible

deadlock

out of resources

too early/late

wrong execution path

Failure

Target

Type

user

other component(s)

timing

presentation quality

behavior

wrong value/presentation legend mandatory
feature

alternative
feature

Fig. 4. Failure Domain Model: Classification of (relevant) Faults, Errors and Failures

In principle, for different project requirements one may come up with a slightly
different domain model, but as we will show in the next sections this does not impact
the steps in the analysis method itself. The key issue here is that the failure domain
model is derived in accordance with the project requirements and the elements of a
failure scenario are defined as instances of this model.

5.3 Derivation of the General Failure Scenarios

The domain model defines a system-independent specification of the type of faults,
error and failures that could occur and is utilized for deriving so-called general failure
scenarios2. A general failure scenario is a system-independent failure scenario that
includes selected sub-features from the fault, error and failure features. The number
and type of general failure scenarios is implicitly defined by the failure domain
model.

In the fault classification (see Figure 4), for example, we can define faults based on
three features, namely Source, Dimension and Persistence. The feature Source can

2 The notion of general failure scenario is a specialization of the general scenario as defined by

Bachmann et al. [3].

418 H. Sozer, B. Tekinerdogan, and M. Aksit

have 3 different values, the features Dimension and Persistence 2 values. This means
that the fault classification captures 3×2×2 = 12 different faults. Similarly, from the
error classification we can derive 6x2x2 = 24 different errors, and 4x2 = 8 different
failures are captured by the failure classification. Since a general scenario is a
composition of selection of features from the failure domain model, we can state that
for the given failure domain model in Figure 4, 12x8x24 = 2304 general failure
scenarios can be in principle defined. One of these general failure scenarios is, for
example, shown in Table 3.

Table 3. Example General Failure Scenario Derived from the Failure Domain Model

Fault Error Failure
source: internal
dimension: software
persistence: transient

type: too early/late
detectability: detectable
reversibility: irreversible

type: timing
target: user

5.4 Derivation of the Concrete Failure Scenarios

Although general failure scenarios provide an indication of possible failure scenario
types, these do not reflect instantiated real failure scenarios. For example, the failure
scenario specified in Table 3 does not specify the associated component, the actual
fault, the error and the failure. SARAH includes additional steps to identify the
relevant failure scenarios and to change the general failure scenarios to concrete
failure scenarios. Unlike general failure scenarios, the concrete failure scenarios
relate to specific components in the architecture. The steps for deriving concrete
failure scenarios include (1) analyzing the domain (2) analyzing problems of existing
systems, and (3) consulting domain experts. We can illustrate this for the adopted
example case on the DTV architecture.

In the first step, we have analyzed the domain on corresponding digital TVs,
including requirements specifications, design documentation of existing systems,
literature on digital TV systems and real-time embedded systems.

In the second step, we have made use of the available DTV Problem Database
(PRDB) that had been developed to report on failures of earlier TV systems. The
primary goal of PRDB by recording failures was to solve the existing problems in
current TV sets and not to support the analysis of the system. This had a clear impact
on the PRDB. First of all, the reported problems were not in the format that we
required, and we had to interpret these first. Further, the PRDB also included outdated
information and we had to filter these out. Some problems were related to concrete
and older products but since existing TV systems share common properties with next
generation products, they have to cope with similar type of failures. For example, out-
of-spec signal is a typical fault leading to numerous errors in extraction of Teletext
information. Usually, specific instances of this type of fault have been reported in
PRDB and appropriate solutions were provided. However, in general, reception of
out-of-spec signals can pop up as a problem for every new TV system. By collecting
such regular problems we could derive useful failure scenarios. Despite of the
problems that we encountered in analyzing this PRDB it definitely provided valuable
input.

 Extending Failure Modes and Effects Analysis Approach 419

Finally, in the last step for deriving concrete failure scenarios we have consulted
digital TV domain experts to derive additional scenarios and to cross-validate the
previously identified scenarios.

Based on these steps, we have derived and specified 44 concrete failure scenarios
for the reliability analysis of the DTV. As an example, Table 4 presents a list of nine
selected concrete failure scenarios that have been derived. In Table 4 the five
attributes failure ID, component ID, fault, error and failure are represented as
columns headings. Failure scenarios are represented in rows. The failure ID (FID)
does not imply a specific ordering but it is only used to identify the concrete failure
scenarios. The column component ID (CID) includes acronyms of component names
from Figure 1 to which the identifiers refer. Note that the separate features of the
failure domain model are represented as keywords in the cells. For example, Fault
includes the features source, dimension and persistence as defined in Figure 4. Such
features are represented as keywords, which distinguish the fault, error and failure
categories. For example, failure scenario F5 indicates a permanent fault (wrong
implementation of a protocol). It leads to a timing error since a communicating party
can not receive an expected response on time. This error turns out to be a failure that
leads to a transient fault in F2 because the communication temporarily ceases. We
consider timing errors as irreversible whereas a wrong value, for instance, can be
rolled back (reversible). Apart from the different features, every column also includes
the keyword description, which is used to denote the domain specific details of the
concrete failure scenarios. Typically these descriptions are derived from domain
experts.

6 Fault Tree Set and Severity Analysis

A close analysis of the failure scenarios in Table 4 shows that they are connected to
each other. The columns Fault and Failure include the fields source and target
respectively. These fields represent the propagation and the links between failure
scenarios. For example, in failure scenario F2, the fault source is defined as
CMR(F5), indicating that the fault in F2 occurs due to a failure in component CMR as
defined in F5. The source of the fault can be caused by a combination of failures. This
is expressed by logical connectives. For example, the source of F1 is defined as
CH(F4) OR CMR(F6) indicating that F1 occurs due to a failure in component CH as
defined in F4 or due to a failure in component CMR as defined in F6. To make all
these connections explicit, in SARAH fault trees are defined. A fault tree is a model
for representing the cause-effect relations of failures and faults. The root of a fault
tree represents a failure and the leaf nodes represent faults. Since a failure can be
logically caused by a set of faults, the nodes of the fault tree are interconnected with
logical connectors.

Normally, a fault tree has one root (top) node, which represents the failure of the
system. However, a system may fail in many different ways each of which has a
different effect (i.e. annoyance caused) on the user. For example, a failure can be
transient, permanent or catastrophic. A failure scenario can contribute to one or more
user perceived failures. Hence, we define a Fault Tree Set (FTS) based on a given set

420 H. Sozer, B. Tekinerdogan, and M. Aksit

Table 4. Selected Failure Scenarios Derived for the DTV Architecture

FID CID Fault Error Failure

F1 AMR

description: Reception of
irrelevant signals.
source: CH(F4) OR CMR(F6)
dimension: software
persistence: transient

description: Working mode is
changed when it is not desired.
type: wrong path
detectability: undetectable
reversibility: reversible

description: Switching to an
undesired mode.
type: behavior
target: user

F2 AMR

description: Can not acquire

information.

source: CMR(F5)

dimension: software

persistence: transient

description: Information can not be

acquired from the connected device.

type: too early/late

detectability: detectable

reversibility: irreversible

description: Can not provide

information.

type: timing

target: CB(F3)

F3 CB

description: Can not acquire

information.

source: AMR(F2)

dimension: software

persistence: transient

description: Information can not be

presented due to lack of information.

type: too early/late

detectability: detectable

reversibility: irreversible

description: Can not present

content of the connected

device.

type: behavior

target: user

F4 CH

description: Software fault.

source: internal

dimension: software

persistence: permanent

description: Signals are interpreted in

a wrong way.

type: wrong value

detectability: undetectable

reversibility: reversible

description: Provide irrelevant

information.

type: wrong value/presentation

target: AMR(F1)

F5 CMR

description: Protocol

mismatch.

source: external

dimension: software

persistence: permanent

description: No communication with

the connected device.

type: too early/late

detectability: detectable

reversibility: irreversible

description: Can not provide

information.

type: timing

target: AMR(F2)

F6 CMR

description: Software fault.

source: internal

dimension: software

persistence: permanent

description: Signals are interpreted in

a wrong way.

type: wrong value

detectability: undetectable

reversibility: reversible

description: Provide irrelevant

information.

type: wrong value/presentation

target: AMR(F1)

F7 DDI

description: Out-of-spec

signals.

source: external

dimension: software

persistence: transient

description: Scaling information can

not be interpreted from meta-data.

type: wrong value

detectability: detectable

reversibility: reversible

description: Can not provide

data.

type: wrong value/presentation

target: IC(F8)

F8 IC

description: Inaccurate

scaling ratio information.

source: DDI(F7) AND

VC(F9)

dimension: software

persistence: transient

description: Video image can not be

scaled appropriately.

type: wrong value

detectability: undetectable

reversibility: reversible

description: Provide distorted

video image.

type: presentation quality

target: user

F9 VC

description: Software fault.

source: internal

dimension: software

persistence: permanent

description: Wrong scaling ratio

calculation.

type: wrong value

detectability: detectable

reversibility: reversible

description: Provide inaccurate

information.

type: wrong value/presentation

target: IC(F8)

 Extending Failure Modes and Effects Analysis Approach 421

of failure scenarios. Here, we introduce a set of definitions related to FTS, which will
be further used in the remainder of the paper. FTS is a graph G(V,E) with the
following properties:

1. V = F ∪ A
2. F is the set of failure scenarios each of which is associated with an architectural

component.
3. Fu ⊆ F is the set of failure scenarios comprising failures that are perceived by the

user (i.e. system failures). Vertices residing in this set constitute root nodes of fault
trees.

4. A is the set of gates representing the logical connectors.
5. ∀ g ∈ A,

 outdegree(g) = 1 ∧
 indegree(g) ≥ 1

6. A = AAND ∪ AOR such that,
 AAND is the set of AND gates,
 AOR is the set of OR gates.

7. E is the set of directed edges (u, v)
where u, v ∈ V.

For the example case, based on the failure scenarios in Table 4 we can derive the

FTS as depicted in Figure 5.

Fig. 5. Fault Trees Derived from the Failure Scenarios in Table 4

Here, the FTS consists of three fault trees. On the left the fault tree shows that F1 is
caused by F4 or F6. The middle column indicates that failure scenario F3 is caused by
F2 which is on its turn caused by F5. Finally, in the last column the fault tree shows
that F8 is caused by both F7 and F9.

In conventional FMEA and FTA, every fault is assigned a severity value to denote
how severe a fault is (e.g. faulty component can be repaired or not). In our model, we
take a user-centric approach and define severity based on the user-perception. We
assign severities to all failures based on their impact on the user. System failures that
we consider are not restricted to complete crash-down of the system. For instance, a
minor distortion in the brightness level of the video image and absence of any image

422 H. Sozer, B. Tekinerdogan, and M. Aksit

are both failures. However, the impact on the user perception for both failures is
different. For example, a complete black screen will upset the user more than a
temporary distortion in the image.

Severities based on user perception can be only defined for user perceived failures
(elements of the set Fu). We need to propagate these severity values to the other
failures (elements of the set F) as well. For this, we need to consider the impact of
such intermediate failures to the user perceived failures. In conventional FTA, this
impact is known as the sensitivity of the system failure (i.e. user perceived failure)
with respect to a fault (i.e. intermediate failure). Sensitivity analysis is based on cut-
sets in a fault tree and the probability values of fault occurrences [6]. However, this
analysis leads to complex formulas and it requires that the probability values are
known priori. We propose the following impact model by means of which one can
reason about and estimate the overall impact of a failure even if the probability values
are not known.

() ∫ ∂
∂=

==
=≠∧≠∈∀

∈∈

1

0
))(

'
(

),,'()(,')(

,)(,..
,,

dprootP
p

nodeimpact

ppfrootPpnodeP

pnProotnnodentsFn
FnodeFroot u

(1)

In equation (1) above, the impact calculation of an intermediate failure (node) on a
user-perceived failure (root) is presented. The probability of occurrence of root
(P(root)) is represented in terms of the occurrence probabilities of all other nodes as it
is done in FTA [6]. For example, the following probabilities can be defined for user-
perceived failures considering the fault trees presented in Figure 5: P(F1) = P(F4) +
P(F6) – (P(F4) × P(F6)), P(F3) = P(F2) = P(F5), P(F8) = P(F7) × P(F9). We
assign p’ to the probability of occurrence of node and fix the probability values of all
other nodes to p in P(root). Thus P(root) turns out to be a function of p and p’.
Recalling the example in Figure 6 again, if we are interested in impact of F4 on F1,
we transform P(F1) to P(F1) = p’ + p – (p’ × p). Then, we take a partial derivation of
P(root) with respect to p’. This gives the rate of change of P(root) with respect to p’.
For our example, this will yield to ∂/∂p’P(F1) = 1 – p. Finally, the result of the partial
derivation is integrated with respect to p for all possible probability values ([0-1]) to
calculate the overall impact. For the example case, ∫(∂/∂p’P(F1))dp = ∫(1 – p)dp = p –
p2/2. So, the result of the integration from 0 to 1 will be 0,5. When the probability
values are known, they can be included in the model instead of fixing them to p and
ranging them from 0 to 1. The basic shortcoming of this model is the equality
assumption for the probability values that are fixed to p. There exist similar
approaches in the literature where sensitivity/impact analyses are applied by changing
a parameter one at a time and fixing the others [7, 21]. However, such analyses are
applied for a specific architecture and the associated fault tree without providing a
generic model. In those studies, basically the parameters are varied and results
obtained from the reliability model are observed to assess the sensitivity.

Combining the impact model introduced above together with the severity degrees
assigned to the user perceived failures leads us to the following severity model, which
assigns severity to each node of a fault tree.

 Extending Failure Modes and Effects Analysis Approach 423

() ∫∑ ∂
∂×=

=∈∀=
=≠∧≠∈∀

∈∈

∈

1

0
))(

'
()(

),,'()(:,')(

,)(,..
,,

dprootP
p

rootseveritynodeseverity

ppfrootPFrootpnodeP

pnProotnnodentsFn
FnodeFroot

uFroot

u

u

(2)

In equation (2), severity(root) gives the severity of a user-perceived failure. This
can be based on a set of values in ordinal scale that defines user annoyance levels or it
can be based on a more sophisticated model. The severity of other failure
(severity(node)) is calculated based on the impact model introduced in equation (1)
and the severity values assigned to the user perceived failures they lead to. As a result,
the severity of a failure depends on the type of failures it leads to and to how much it
contributes (the impact) to these failures. Note in equation (2) that if there is no
connection between node and a root∈Fu in the fault tree, then the result of the partial
derivation and hence the whole severity calculation will yield to 0 (since there will be
no term in the function with p’ as the multiplier).

For the analysis presented in this paper, we adopt a simpler model for propagation
of severity values. As a diversion from the usual approach, we process the fault trees
in a top-down manner to assign severities to intermediate failures based on severities
of user-perceived failures. Given the FTS, the calculation of severities of failure
scenarios can be defined as follows.

()

() ()
()

()

()

()

∑∑

∈
∧∈

∀

∈∨∈
∧∈

∀
+=

∉∧∈∀
≤≤=∈∀

ANDOR Av

Evu

tsv
vINDEGREE

AvFv

Evu

tsv

u

uuu

vsvsfs

FfFf

stssfsFf

,

..
)(

,

..

,

51..,

(3)

In the first part of the equation, we take into account the failure scenarios with the
target user. A severity value (su) is assigned for each such failure based on their
severities with respect to the user-perception. These are the failures F1, F3 and F8.
We apply a prioritization of the failure scenarios based on the severity values that
range from 1 to 5 (See Table 5).

Table 5. The Severity Levels for the Prioritization of Failure Scenarios

Severity Type Annoyance Description

1. Very low User hardly perceives failure.

2. low A failure is perceived but not really annoying.

3. moderate Annoying performance degradation is perceived.

4. high User perceives serious loss of functions.

5. very high Basic functions fail. System locks up and does not respond.

424 H. Sozer, B. Tekinerdogan, and M. Aksit

The severity values for failures F1, F3 and F8 are depicted in Figure 6. These
values are then used in order to determine the severities of other failures as shown in
the second part of the equation (3). If a failure directly leads to another one or if it is
connected through an OR gate in which some other failures may exclusively cause the
same failure also, we add the severity of the resulting failure to the severity of failure
under consideration. If there is a connection through an AND gate where a
combination of failures results in another one, we share the severity value of the
resulting failure among contributing failures. In other words, we add the severity of
resulting failure divided by the number of contributing failures to the severity of each
contributing failure. For example, since F1 has the assigned severity value of 3, this is
also assigned to the failures F6 or F8 that are connected through an OR logic to F1. In
case of F7 and F9, the severity value is 4/2 because F8 has the severity value of 4 and
it has an AND gate with 2 failure scenarios connected to it. A failure scenario can be
connected to multiple gates and other failures in which the severity is derived as the
sum of severities calculated for all these connections.

Fig. 6. Fault Trees with the Severity Values

7 Analysis of the Software Architecture

In our example case, we defined a total of 44 failure scenarios including the scenarios
presented in Table 4. We completed the definition process by deriving the
corresponding fault tree set and calculating severity values as explained in Section 6.
The results that were obtained during the definition process are utilized by the
analysis process as described in the subsequent sub-sections.

7.1 Architecture-Level Analysis

The first step of the analysis process is the architecture-level analysis in which we
pinpoint the sensitive points of the architecture with respect to reliability. As a
primary and straightforward means of comparison, we consider the percentage of
failures (PF) that are associated with the components. For each component c the value
for PF is calculated as follows.

 Extending Failure Modes and Effects Analysis Approach 425

100
#

×=
failuresof

cwithassociatedfailuresof
PFc (4)

This means that simply the number of failures related to a component is divided by
the total number of failures (in this case 44). The results are shown in Figure 7. A first
analysis of this figure already shows that the Application Manager (AMR) and
Teletext (TXT) components have to cope with a higher number of failures than the
other components.

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

A
C

A
D

A
M

R

A
O

A
P

C
A

C
B

C
H

C
M

R

D
D

I

D
M

E
P

G G

G
C IC

LS
M

R P
I

P
M

R T

T
X

T

V
C

V
D

V
O

V
P

Architectural Components

P
er

ce
n

ta
g

e
o

f
F

ai
lu

re
s

Fig. 7. Percentage of the Failure Scenarios Impacting the Components

This analysis treats all failures equally. To take the severities of the failures into
account we define the Weighted Percentage of Failures (WPF) as the following.

()
()

() 100

..

×=
∑

∑

∈∀

=
∈∀

Fu

cucomp

tsFu

c us

us

WPF

(5)

For each component, we collect the set of failures associated with it and we add up
their severity values. After averaging this value with respect to the all failures and
calculating the percentage, we obtain the WPF value. The result of the analysis is
shown in Figure 8.

The weighted percentage presents different results compared to the previous one.
Two components can be associated with the same amount of failures but these failures
can have different severities. For example, AP and EPG have the same values in
Figure 7 but EPG has a greater value than AP in Figure 8. Nevertheless, the
Application Manager (AMR) and Teletext(TXT) components again appears to be the
most critical.

From the project perspective it is not always possible to focus on the total set of
possible failures due to the time constraints and the cost of fault tolerance. To
optimize the cost usually one would like to consider the failures that have the largest
impact on the system. For this, in SARAH the architectural components are ordered in

426 H. Sozer, B. Tekinerdogan, and M. Aksit

0,00

5,00

10,00

15,00

20,00

25,00

A
C

A
D

A
M

R

A
O

A
P

C
A

C
B

C
H

C
M

R

D
D

I

D
M

E
P

G G

G
C IC

LS
M

R P
I

P
M

R T

T
X

T

V
C

V
D

V
O

V
P

Architectural Components

W
ei

gh
te

d
 P

er
ce

n
ta

g
e

o
f

F
ai

lu
re

s

Fig. 8. Percentage of the Failure Scenarios Impacting the Components

ascending order with respect to their WPF values. The components are then
categorized based on the proximity of their WPF values. Accordingly, components of
the same group have WPF values that are close to each other. The results of this
prioritization and grouping are provided in Table 6, which also shows the sum of the
WPF values of the components for each group. Here we can see that, for example,
group 4 consists of two components AMR and TXT. The reason for this is that their
WPF values are the highest and close to each other. The sum of their WPF values is
20+13=33%.

Table 6. Components Grouped Based on the WPF Values

Group # Components WPF
1 AC, CA, CH, GC, IC, PI, AD, G, LSMR, PMR, AO, T, VO 23%
2 EPG, VC, VD, DDI, DM, VD, AP 27%
3 CB, CMR 17%
4 AMR, TXT 33%

To highlight the difference in impact of the component groups we define a Pareto

chart as presented in Figure 9.

0

20

40

60

80

100

group 1 group 2 group 3 group 4

p
er

ce
n

ta
g

e
o

f
co

m
p

o
n

en
ts

0

19

38

W
P

F

percentage of architectural components WPF

Fig. 9. Pareto Chart Showing the Largest Impact of the Smallest Set of Components

 Extending Failure Modes and Effects Analysis Approach 427

In the Pareto chart, the component groups shown in Table 6 are ordered along the
x-axis with respect to the number of components they include. The percentage of
components that each group includes is depicted with bars. The y-axis on the left hand
shows the percentage values from 0 to 100 and is used for scaling the percentages of
the architectural components whereas the y-axis on the right hand side scales the WPF
values. The plotted line represents the WPF value for each group. In the figure we
can, for example, see that group 4 (consisting of two components) represents about
8% of the components but has a WPF of 33%. Here, we group the components
according to their WPF values and assign importance to these components according
to the amount and severities of failures they are associated with (not according to their
functionality or other aspects). The components with the highest WPF values are
considered to be the most important ones to focus on.

7.2 Component-Level Analysis

The architectural level analysis provides only a quantitative analysis of the impact of
failure scenarios on the given architecture. However, for failure management and
recovery it is also necessary to define the type of failures that might occur in the
identified sensitive components. This is analyzed in the component-level analysis in
which the features of faults, errors and failures that impact the component are
determined. For the example case, in the architectural-level analysis it appeared that
components residing in the 4th group (see Table 6) had to deal with largest set of
failure scenarios. Therefore, in the component-level analysis, we will focus on the
members of this group, namely Application Manager and Teletext components.

Following the derivation of the set of failure scenarios impacting the component,
we group them in accordance with the features presented in Figure 4. This grouping
results in the distribution of fault, error and failure categories of failure scenarios
associated with the component.

For example, the results obtained for the Application Manager and Teletext
components are shown in Figure 10(a) and Figure 10(b), respectively. If we take a
look at the fault features presented on those figures for instance, we see that most of
the faults impacting the Application Manager Component are caused by the other
components. On the other hand, Teletext Component has internal faults as much as
faults stemming from the other components. As such, distribution of features reveals
characteristics of faults, errors and failures associated with the individual components
of the architecture.

7.3 Failure Analysis Report

SARAH defines a detailed description of the fault tree set, the failure scenarios, the
architectural level analysis and the component level analysis. These are described in
the failure analysis report that summarizes the previous analysis results and provides
hints for recovery. Sections comprised by the failure analysis report are listed in
Table 7, which are in accordance with the steps of SARAH.

428 H. Sozer, B. Tekinerdogan, and M. Aksit

0
10
20
30
40
50
60
70
80
90

100

int
er

na
l

oth
er

 co
mpo

ne
nts

ex
ter

na
l

so
ftw

ar
e

ha
rd

war
e

tra
ns

ien
t

pe
rm

an
en

t

p
er

ce
n

ta
g

e
o

f
fa

u
lt

s

0
10
20
30
40
50
60
70
80
90

100

da
ta

co
rru

pt
ion

de
ad

loc
k

wro
ng

 va
lue

wro
ng

ex
ec

uti
on

 p
ath

ou
t o

f r
es

ou
rc

es

too
 e

ar
ly/

lat
e

de
tec

tab
le

un
de

tec
ta

ble

re
ve

rsi
ble

irr
ev

er
sib

le

p
er

ce
n

ta
g

e
o

f
er

ro
rs

0
10
20
30
40
50
60
70
80
90

100

tim
ing

be
ha

vio
ur

pr
es

en
tat

ion
qu

ali
ty

wro
ng

 va
lue

/pr
es

e..
.

us
er

oth
er

 co
mpo

ne
nts

p
er

ce
n

ta
g

e
o

f
fa

ilu
re

s

(a) Fault, Error and Failure Features of the Failure Scenarios Associated with the Application
Manager Component

0
10
20
30
40
50
60
70
80
90

100

int
er

na
l

oth
er

 co
mpo

nen
ts

ex
ter

na
l

so
ftw

ar
e

ha
rd

war
e

tra
ns

ien
t

pe
rm

ane
nt

p
er

ce
n

ta
g

e
o

f
fa

u
lt

s

0
10
20
30
40
50
60
70
80
90

100

da
ta

co
rru

pti
on

de
ad

loc
k

wro
ng

va
lue

wro
ng

ex
ec

uti
on

 p
ath

ou
t o

f r
eso

ur
ce

s

to
o

ear
ly/

lat
e

de
tec

tab
le

un
de

te
cta

bl
e

re
ve

rsi
ble

irr
ev

er
sib

le

p
er

ce
n

ta
g

e
o

f
er

ro
rs

0
10
20
30
40
50
60
70
80
90

100

tim
ing

be
ha

vio
ur

pr
es

en
tat

ion
qu

ali
ty

wro
ng

va
lue

/p
re

se
... us

er

oth
er

co
m

po
ne

nts

p
er

ce
n

ta
g

e
o

f
fa

ilu
re

s

(b) Fault, Error and Failure Features of the Failure Scenarios Associated with the Teletext
Component

Fig. 10. Fault, Error and Failure Features of the Failure Scenarios Associated with the
Components in the 4th Group of the Pareto Chart

 Extending Failure Modes and Effects Analysis Approach 429

Table 7. Sections of the Failure Analysis Report

Section # Heading
1 Introduction
2 Software Architecture
3 Failure Domain Model
4 Failure Scenarios
5 Fault Tree Set
6 Architecture Level Analysis
7 Component Level Analysis

0
10
20
30
40
50
60
70
80
90

100

int
ern

al

other
co

mpo
n...

exte
rn

al

so
ftw

are

ha
rd

war
e

tra
nsie

nt

per
man

en
t

p
er

ce
n

ta
g

e
o

f
fa

u
lt

s

0
10
20
30
40
50
60
70
80
90

100

da
ta

 co
rru

pti
on

de
ad

loc
k

wro
ng

va
lue

wro
ng

ex
ec

utio
n.

..

ou
t o

f r
es

ou
rc

es

too
ea

rly
/la

te

dete
ct

ab
le

un
de

te
cta

bl
e

re
ve

rsi
ble

irr
ev

er
sib

le
p

er
ce

n
ta

g
e

o
f

er
ro

rs

0
10
20
30
40
50
60
70
80
90

100

tim
in

g

be
ha

vio
ur

pr
es

en
tat

ion
 q

ua
lity

wro
ng

va
lue

/pr
es

e.
..

us
er

ot
he

r co
mpo

ne
nt

s

p
er

ce
n

ta
g

e
o

f
fa

ilu
re

s

Fig. 11. Feature Distribution of Fault, Error and Failures for all Failure Scenarios

The first section describes the project context, information sources and specific
considerations (e.g. cost-effectiveness). The second section describes the software
architecture that is used as an input for the analysis. The third section presents the
failure domain model including the fault, error and failure features that are of interest
to the project. The fourth section contains list of failure scenarios annotated based on
this domain model. The fifth section depicts the fault tree set generated from the
failure scenarios together with the severities assigned to each. The sixth and seventh
sections include analysis results as presented in sections 7.1 and 7.2 of this paper.
Additionally, the sixth section includes the distribution of fault, error and failure
features for all failure scenarios as depicted in Figure 11.

8 Related Work

FMEA has been widely used in various industries such as automotive and aerospace.
It has also been extended to make it applicable to the other domains or to achieve
more analysis results. For instance, Failure Modes, Effects and Criticality Analysis
(FMECA) is a well-known method that is built upon FMEA. Additionally, FMECA

430 H. Sozer, B. Tekinerdogan, and M. Aksit

[12] incorporates severity and probability assessments for faults. The probabilities of
occurrence of faults (assumed to be known) are utilized together with the fault tree in
order to calculate the probability that the system will fail. On the other hand, a
severity is associated with every fault to distinguish them based on the cost of repair.
Note that the severity definition in our method is different from the one that is
employed by FMECA. We take a user-centric approach and define the severities for
failures based on their impact on the user.

Almost all reliability analysis techniques have primarily devised to analyze failures
in hardware components. These techniques have been extended and adapted to be
used for the analysis of software systems. For instance, in his book [15], Redmill
shows how Hazard and Operability Studies (HAZOP) can be applied to computer-
based systems. Application of FMEA to software has a long history [16]. Both FMEA
and FTA have been employed for the analysis of software systems and named as
Software Failure Modes and Effects Analysis (SFMEA) and Software Fault Tree
Analysis (SFTA), respectively. In SFMEA, failure modes for software components
are identified such as computational, logic and data I/O. This classification resembles
the failure domain model of SARAH. However, SARAH separates fault, error and
failure concepts and provides a more detailed categorization for each. Also, note that
the failure domain model can vary depending on the project requirements and the
system. In [11], SFTA is used for the safety verification of software. However, the
analysis is applied at the source code level rather than the software architecture design
level. It utilizes a set of failure-mode templates that outlines the failure modes of
programming language elements like assignments and conditional statements. These
templates are composed according to the control flow of the program to derive a fault
tree for the whole software.

In general, efforts for applying reliability analysis to software [10] mainly focus on
the safety-critical systems, whose failure may have very serious consequences such as
loss of human life and large-scale environmental damage. In our case, we focus on
consumer electronics domain, where the systems are usually not safety-critical.
FMEA has been used in other domains as well, where the methodology is adapted and
extended accordingly. To use FMEA for analyzing the dependability of Web
Services, new failure taxonomy, intrusions and various failure effects (data loss,
financial loss, denial of service, etc.) are taken into account in [9]. Utilization of
FMEA is also proposed in [22] for early robustness analysis of Web-based systems.
The method is applied together with the Jacobson’s method [18], which identifies
three types of objects in a system: 1) boundary objects that communicate with actors
in a use-case, 2) entity objects that are objects from the domain and 3) control objects
that serve as a glue between boundary objects and entity objects. In our method, we
do not presume any specific decomposition of the software architecture and we do not
categorize objects or components. However, we categorize failure scenarios based on
the failure domain model and each failure scenario is associated with a component.

Jacobson’s classification [18] is aligned with our failure domain model with
respect to the propagation of failures (fault.source, failure.target). The target feature
of failure, for instance, can be the user (i.e. actor) or the other components. In [20], a
modular representation called Fault Propagation and Transformation Calculus (FPTC)
is introduced. FPTC is used to specify the failure behavior of each component (i.e.

 Extending Failure Modes and Effects Analysis Approach 431

how a component introduces or transforms a failure type). This facilitates the
automatic derivation of the propagation of the failures throughout the system. In our
method, we represent the propagation of failure scenarios with fault trees. The
semantics of the transformation is captured in the “type” tags of failure scenarios.

In this work, we made use of spreadsheets that define the failure scenarios and
automatically calculate the severity values in the fault trees (after initial assignment of
the user-perceived failure severities). This is a straightforward calculation and as such
we have not elaborated on this issue. On the other hand, there is a body of work
focusing on tool-support for FMEA and FTA. In [9], for example, FMEA tables are
being integrated with a web service deployment architecture so that they can be
dynamically updated by the system. In [13], fault trees are synthesized automatically.
Further, multiple failures are taken into account, where a failure mode can contribute
to more than one system failure. The result of the fault tree synthesis is a network of
interconnected fault trees, which is analogous to the fault tree set in our method.

An advanced Failure Modes and Effect Analysis (AFMEA) is introduced in [8],
which also focuses on the analysis at the early stages of design. However, the aim of
this work is to enhance FMEA in terms of the number and range of failure modes
captured. This is achieved by constructing a behavior model for the system.

9 Conclusion

FMEA and FTA are well known techniques that have been successfully applied in
various domains like automotive and aerospace for reviewing the causes and effects
of system failures systematically. In this paper we have utilized these techniques for
early reliability analysis of software architectures. It appears that the techniques can
not be directly used as-is for analyzing reliability of software earlier in the life cycle
and as such need to be extended.

For the FMEA, we have utilized scenarios as the basic means to analyze the
software architecture [5]. We have separated fault, error and failure concepts in a
failure scenario as defined in the software reliability engineering domain [2]. We have
provided a systematic means for deriving failure scenarios based on a failure domain
model. For the analysis presented in this paper, we have also derived the fault, error
and failure categorizations through domain analysis techniques [1].

For the FTA, we have introduced a quantitative impact model based on fault trees
to estimate the impact of faults on the occurrence of a system failure. This model can
be used to reason about how sensitive the system reliability is with respect to
occurrence of a fault, even if the occurrence rates of faults are not known.
Furthermore, we have distinguished and prioritize failures based on their effect (i.e.
annoyance caused) on the user. We have incorporated this measure to our severity
calculation.

We have integrated the extended FMEA and FTA techniques with our software
architecture reliability analysis method (SARAH) and illustrated their application for
analyzing the reliability of the software architecture of a Digital TV. In our future
work we will experiment with the method to identify the potential failures of
embedded systems and as such improve their reliability.

432 H. Sozer, B. Tekinerdogan, and M. Aksit

Acknowledgments. We thank all members of the TRADER project, for their
feedback on this work and their input about the TV domain knowledge and reliability
issues. Particularly, we thank Rob Golsteijn from NXP Semiconductors, Paul L.
Janson from Philips Research, Iulian Nitescu from Philips TASS for their contribution
in deriving the conceptual architecture of DTV and possible failures. We also
specially thank Christian Hofmann from University of Twente, Teun Hendriks and
Jozef Hooman from ESI, the editors and anonymous reviewers for reviewing and
providing useful feedback to this paper.

References

1. Arrango, G.: Domain Analysis Methods. In: Schafer, R., Prieto-Diaz, R., Matsumoto, M.
(eds.) Software Reusability, pp. 17–49. Ellis Horwood, New York (1994)

2. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic Concepts and Taxonomy of
Dependable and Secure Computing. IEEE Trans. on Dependable and Secure
Computing 1(1), 11–33 (2004)

3. Bachman, F., Bass, L., Klein, M.: Deriving Architectural Tactics: A Step Toward
Methodical Architectural Design. CMU/SEI-2003-TR-004, Pittsburgh, PA (2003)

4. Clements, P., Bachman, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., Stafford, J.:
Documenting Software Architectures. Addison-Wesley, Reading (2002)

5. Dobrica, L., Niemela, E.: A Survey on Software Architecture Analysis Methods. IEEE
Trans. on Software Engineering 28(7), 638–654 (2002)

6. Dugan, J.B.: Software System Analysis Using Fault Trees. In: Lyu, M.R. (ed.) Handbook
of Software Reliability Engineering, ch. 15, pp. 615–659. McGraw-Hill, New York (1996)

7. Dugan, J.B., Lyu, M.R.: Dependability Modeling for Fault-Tolerant Software and
Systems. In: Lyu, M.R. (ed.) Software Fault Tolerance, ch. 5, pp. 109–138. John Wiley &
Sons, New York (1995)

8. Eubanks, C.F., Kmenta, S., Ishil, K.: Advanced Failure Modes and Effects Analysis using
Behavior Modeling. In: Proceedings of the ASME Design Theory and Methodology
Conference, New York (1997)

9. Gorbenko, A., Kharchenko, V., Tarasyuk, O.: FMEA- technique of Web Services Analysis
and Dependability Ensuring. In: Butler, M., Jones, C., Romanovsky, A., Troubitsyna, E.
(eds.) Rigorous Development of Complex Fault-Tolerant Systems. LNCS, vol. 4157, pp.
153–168. Springer, Heidelberg (2006)

10. Isaksen, U., Bowen, J.P., Nissanke, N.: System and Software Safety in Critical Systems.
Technical Report RUCS/97/TR/062/A, The University of Reading, UK (1997)

11. Leveson, N.G., Cha, S.S., Shimeall, T.J.: Safety Verification of Ada Programs using
Software Fault Trees. IEEE Software 8(4), 48–59 (1991)

12. MIL-STD-1629A: Procedures for Performing a Failure Modes, Effects and Criticality
Analysis. Department of Defense, Washington, DC (1980)

13. Papadopoulos, Y., Parker, D., Grante, C.: Automating the Failure Modes and Effects
Analysis of Safety Critical Systems. In: Proceedings of HASE’04, FL, pp. 310–311 (2004)

14. Redmill, F.: Exploring Subjectivity in Hazard Analysis. Engineering Management Journal
(IEE) 12(3) (2002)

15. Redmill, F., Chudleigh, M., Catmur, J.: System Safety: HAZOP and Software HAZOP.
John Wiley & Sons Ltd, Chichester (1999)

16. Reifer, D.J.: Software Failure Modes and Effects Analysis. IEEE Transactions on
Reliability R-28(3), 247–249 (1979)

 Extending Failure Modes and Effects Analysis Approach 433

17. Roland, E., Moriarty, B.: Failure Mode and Effects Analysis. In: System Safety
Engineering and Management, 2nd edn. John Wiley & Sons, Chichester (1990)

18. Rosenberg, D., Scott, K.: Use Case Driven Object Modeling with UML: A Practical
Approach. Addison-Wesley, Reading (1999)

19. Trader project web site (2006), http://www.esi.nl/site/projects/trader
20. Wallace, M.: Modular Architectural Representation and Analysis of Fault Propagation and

Transformation. In: Proceedings of FESCA, ENTCS vol. 141(3) (2005)
21. Yakoub, S., Cukic, B., Ammar, H.: Scenario-based Reliability Analysis of Component

Based Software. In: Proceedings of ISSRE’99, Boca Raton, FL, pp. 22–31 (1999)
22. Zhou, J., Stalhane, T.: Using FMEA for early robustness analysis of Web-based systems.

In: Proceedings of COMPSAC’04, Washington, DC, pp. 28–29 (2004)

Author Index

Aksit, Mehmet 409

Baresi, Luciano 337
Batista, Thais V. 237
Bondarev, Egor 188
Buskens, Rick 163

Casimiro, António 287
Chen, DeJiu 39
Cheng, Betty H.C. 115
Coulson, Geoff 237
Cuenot, Philippe 39
Cukic, Bojan 89

Dan, Asit 262
de Lemos, Rogério 142
Desovski, Dejan 89
Dumitraş, Tudor 262

Ebnenasir, Ali 115

Gérard, Sébastien 39
Gomes, Antônio Tadeu A. 237
Gonzalez, Oscar 163
Graydon, Patrick J. 362
Grunske, Lars 188
Guinea, Sam 337

Heller, Christoph 316

Inverardi, Paola 210

Joolia, Ackbar 237

Kaâniche, Mohamed 14
Kaiser, Jörg 287
Kanoun, Karama 14

Kelly, Tim 383
Knight, John C. 362
Kolagari, Ramin Tavakoli 39

Lindsay, Peter 188
Lönn, Henrik 39

Mostarda, Leonardo 210

Narasimhan, Priya 262

Paige, Richard 66
Papadopoulos, Yiannis 188
Parker, David 188
Plebani, Marco 337

Radjenovic, Alek 66
Reiser, Mark-Oliver 39
Roşu, Daniela 262
Rugina, Ana-Elena 14

Schalk, Josef 316
Schneele, Stefan 316
Servat, David 39
Sorea, Maria 316
Sozer, Hasan 409
Strunk, Elisabeth A. 362

Tekinerdogan, Bedir 409
Tokar, Joyce L. 1
Törngren, Martin 39

Verissimo, Paulo 287
Voss, Sebastian 316

Weber, Matthias 39
Wu, Weihang 383

	Title Page
	Foreword
	Preface
	Table of Contents
	Architecting Dependable Systems with the SAE Architecture Analysis and Description Language (AADL)
	Introduction
	Architecture: The Foundation of Good Software and Systems Engineering
	Software and Systems Development with Modeling Languages

	The SAE Architecture Analysis and Description Language (AADL)
	The Elements of AADL
	Combining Elements
	AADL Scheduling
	AADL Dependability, Faults and Modes
	AADL Annexes and Extensibility

	The SAE AADL Development Environment
	Summary and Conclusions
	References

	A System Dependability Modeling Framework Using AADL and GSPNs
	Introduction
	Background and Related Work
	AADL Concepts
	The Modeling Framework
	Overview
	Modeling with Dependencies in AADL
	AADL to GSPN Model Transformation

	Transformation Rules
	Isolated Components
	Transforming in – out Name Matching Propagations
	Systems with Operational Modes

	Case Study
	AADL Architectural Models
	Dependency Analysis
	AADL Error Models
	AADL to GSPN Model Transformation
	Evaluation of Quantitative Measures

	Conclusion
	References

	Towards Improving Dependability of Automotive Systems by Using the EAST-ADL Architecture Description Language
	Introduction
	Overview of the EAST-ADL
	Dependability Requirements
	Basic Requirements Relations
	Requirements Types
	Safety-Related Requirements
	Timing Requirements
	Explicit Modeling of Verification and Validation (V&V) Artifacts

	Variability Modeling for Safety-Related Systems
	Variability Modeling on the Vehicle Level
	Variability Modeling of Artifacts

	Dependability Analysis Methods
	An Engineering Process for Safety
	EAST-ADL Compliance with Standards
	Conclusions
	References

	The View Glue
	Introduction
	AIM in a Nutshell
	Top Level Organisation
	Data Layer
	Rules Layer
	Views Layer

	Case Study
	TAY Software Architecture
	TAY Source Code

	TAY Model in AIM
	The Architecture Meta-Model
	The Ada Meta-Model
	Model Merging

	Summary
	References

	A Component-Based Approach to Verification and Validation of Formal Software Models
	Introduction
	Background and a Motivating Example
	Software Cost Reduction (SCR) Method
	Motivating Example – Safety Injection System

	Theoretical Basis for the Verification of Decomposable Models
	Compositional Verification Rules

	Component-Based Verification
	Decomposition of Variable Dependency Graphs
	The Strategy for Verification of Decomposable Models

	Case Study
	PACS Description
	Applying the Decomposition Procedure
	Applying the Compositional Verification Strategy

	Conclusions
	References

	A Pattern-Based Approach for Modeling and Analyzing Error Recovery
	Introduction
	Overview
	Modeling
	UML Models
	Modeling Faults in UML
	Modeling Nonmasking Fault-Tolerance

	Specifying Error Conditions
	Corrector Pattern
	Generating Promela Code and Automated Analysis
	Related Work
	Conclusions and Future Work
	References

	Architectural Fault Tolerance Using Exception Handling
	Introduction
	Idealised Fault Tolerant Architectural Element (iFTE)
	iFTE: Architectural Abstraction
	iFTE: Detailed Design
	Exception Propagation
	Verification of the iFTE

	Case Study
	Architectural Representation
	Exception Propagation
	Evaluation

	Related Work
	Conclusions
	References

	Model-Centric Development of Highly Available Software Systems
	Introduction
	The Challenges of Building Highly Available Systems
	Significance of System Architecture
	Initialization and Run-Time Upgrades
	Expertise Required
	Testability

	Model-Centric Development for High Availability Services
	Aurora Management Workbench
	Overview
	Model Abstractions: System Architecture
	Code Generation
	Model-Driven Run-Time Services
	The AMW Run-Time Infrastructure
	Addressing the Challenges

	AMW Implementation
	Results
	Example 1: Developing a Simple Client-Server Application
	Example 2: Telecommunications Call Processing
	Thirty Minutes to a Running Skeleton Highly Available System

	Future Work
	Summary and Conclusions
	References

	An Outline of an Architecture-Based Method for Optimizing Dependability Attributes of Software-Intensive Systems
	Introduction
	Overview of Current Dependability Optimization Approaches
	Basic Elements of a Dependability Optimization Approach
	Dependability Evaluation/Prediction Based on Architecture Specifications
	Dependability Improving Measures
	Optimization Strategy/Design Space Exploration

	The Abstract Method at a Glance
	Tailoring the Abstract Method
	Current Limitations of Architecture Based Dependability Evaluation and Optimisation Methods
	Conclusion and Future Work
	References

	A Distributed Monitoring System for Enhancing Security and Dependability at Architectural Level
	Introduction
	Monitoring Tools at Glance: Concepts and Terminology
	The DESERT Definition Language
	Components Interfaces Descriptions
	The Global Automaton

	A Logically Centralized Monitoring System
	The DESERT Reaction Policies and the Application Areas
	The Distribution Process
	The Case Studies
	Conclusions and Future Works
	References

	Architecting Dynamic Reconfiguration in Dependable Systems
	Introduction
	Dynamic Reconfiguration at the Runtime and Architecture Levels
	Runtime Level
	Architecture Level

	Handling Foreseen and Unforeseen Reconfigurations
	The Plastik Architecture
	The Runtime-Level
	The Architecture Level

	Case Study
	Architecture Baseline
	Dimensions of Dependability
	Discussion

	Related Work
	Final Remarks
	References

	Ecotopia: An Ecological Framework for Change Management in Distributed Systems
	Introduction
	Background
	Workload Prediction
	“What-if” Questions
	Timing the Application of Change Operations

	Design of an Ecological Change-Management Framework
	Framework Components
	“What-If” Interaction Protocol

	Ecotopia Implementation
	Objective-Advisor Implementation
	Orchestrator Implementation

	Case Study: Two-Tiered Enterprise Infrastructure
	Qualitative Evaluation
	Quantitative Evaluation

	Discussion
	Conclusions
	References

	Generic-Events Architecture: Integrating Real-World Aspects in Event-Based Systems
	Introduction
	Related Work
	Sentient Object Model
	Information Flow and Interaction Model
	Component-Based Object Model
	Sentient Object Composition
	Encapsulation and Scoping

	Generic-Events Architecture
	Event Model and Middleware
	Event Model
	COoperating Smart Devices Middleware

	Temporal Aspects of Interactions
	Events
	Temporal Properties of Events
	Event Ordering and the Hidden Channel Problem

	Practical Examples
	Cooperating Cars
	Coordinated Robots

	Conclusion and Future Work
	References

	Flexible Communication Architecture for Dependable Time-Triggered Systems
	Introduction
	Time-Triggered Protocols for Dependable Distributed Systems
	Distributed Systems
	Shared-Buses Versus Point-to-Point Connections
	Time-Triggered Versus Event-Triggered Communication

	Requirements in a Communication Architecture for Time-Triggered Systems
	Requirements of Distributed Aeronautic Systems
	The Complexity of Time-Triggered Protocols
	Scheduling in Time-Triggered Architectures
	Middleware Approaches and Abstraction Layer

	Achieving Flexibility with Time-Triggered Systems
	Communication Abstraction Layer Concept
	Integration into Application Layer
	Introduction of the Bus Designer
	Implementation of Scheduling Strategy
	Necessary Tools
	Configuration of Time-Triggered Protocols

	Discussion
	Conclusion and Future Prospects
	References

	Business Process Monitoring for Dependability
	Introduction
	Dependability: An Example
	Our Approach
	Supervision Rules
	Monitoring Expressions
	Recovery Strategies

	Supporting Tools
	BPMN vs. BPEL
	Dynamo

	Related Work
	Conclusions
	References

	Achieving Dependable Systems by Synergistic Development of Architectures and Assurance Cases
	Introduction
	Assurance Cases
	Assurance Based Development
	Existing Techniques for Architecture Development
	Architecture in Assurance Based Development
	Candidate Architectural Choices
	Selection of an Architectural Choice
	Using an Architectural Choice
	Termination of the Architectural Development Process

	An Illustrative Example
	The Given Architecture
	The Top Level Assurance Goal
	The First Architectural Choice
	The Second Architectural Choice

	Conclusion
	References

	Towards Evidence-Based Architectural Design for Safety-Critical Software Applications
	Introduction
	Motivation
	Software Safety Evidence
	Scope of Paper

	Related Work
	Evidence-Oriented Method Construction
	Moving from the System Model to Deviation Model
	Goals
	Scenarios
	Viewpoints
	Anti-goals
	Negative Scenarios

	Moving from the Deviation Model to Mitigation Model
	Severity and Credibility
	Causal Bayesian Modelling
	Mitigation Space and Safety Tradeoffs

	Discussion
	Summary
	References

	Extending Failure Modes and Effects Analysis Approach for Reliability Analysis at the Software Architecture Design Level
	Introduction
	FMEA and FTA
	Industrial Case: Digital TV (DTV) Software Architecture
	Fundamental Steps of the Analysis Method
	Specification and Derivation of Failure Scenarios
	Failure Scenario Template
	Derivation of the Failure Domain Model
	Derivation of the General Failure Scenarios
	Derivation of the Concrete Failure Scenarios

	Fault Tree Set and Severity Analysis
	Analysis of the Software Architecture
	Architecture-Level Analysis
	Component-Level Analysis
	Failure Analysis Report

	Related Work
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /UseDeviceIndependentColorForImages
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

