
Autonomous Learning of Ball Trapping in the
Four-Legged Robot League

Hayato Kobayashi1, Tsugutoyo Osaki2, Eric Williams2, Akira Ishino3,
and Ayumi Shinohara2

1 Department of Informatics, Kyushu University, Japan
2 Graduate School of Information Science, Tohoku University, Japan

3 Office for Information of University Evaluation, Kyushu University, Japan
{h-koba@i,ishino.uoc@mbox.nc}.kyushu-u.ac.jp

{osaki,ayumi}@shino.ecei.tohoku.ac.jp,eaw@ucla.edu

Abstract. This paper describes an autonomous learning method used with real
robots in order to acquire ball trapping skills in the four-legged robot league.
These skills involve stopping and controlling an oncoming ball and are essential
to passing a ball to each other. We first prepare some training equipment and
then experiment with only one robot. The robot can use our method to acquire
these necessary skills on its own, much in the same way that a human practicing
against a wall can learn the proper movements and actions of soccer on his/her
own. We also experiment with two robots, and our findings suggest that robots
communicating between each other can learn more rapidly than those without
any communication.

1 Introduction

For robots to function in the real world, they need the ability to adapt to unknown
environments. These are known as learning abilities, and they are essential in taking
the next step in RoboCup. As it stands now, it is humans, not the robots themselves,
that hectically attempt to adjust programs at the competition site, especially in the real
robot leagues. But what if we look at RoboCup in a light similar to that of the World
Cup? In the World Cup, soccer players can practice and confirm certain conditions on
the field before each game. In making this comparison, should robots also be able to
adjust to new competition and environments on their own? This ability for something
to learn on its own is known as autonomous learning and is regarded as important.

In this paper, we force robots to autonomously learn the basic skills needed for pass-
ing to each other in the four-legged robot league. Passing (including receiving a passed
ball) is one of the most important skills in soccer and is actively studied in the simu-
lation league. For several years, many studies [1,2] have used the benchmark of good
passing abilities, known as “keepaway soccer”, in order to learn how a robot can best
learn passing. However, it is difficult for robots to even control the ball in the real robot
leagues. In addition, robots in the four-legged robot league have neither a wide view,
high-performance camera, nor laser range finders. As is well known, they are not made
for playing soccer. Quadrupedal locomotion alone can be a difficult enough challenge.
Therefore, they must improve upon basic skills in order to solve these difficulties, all

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 86–97, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Autonomous Learning of Ball Trapping in the Four-Legged Robot League 87

before pass-work learning can begin. We believe that basic skills should be learned by
a real robot, because of the necessity of interaction with a real environment. Also, basic
skills should be autonomously learned because changes to an environment will always
consume much of people’s time and energy if the robot cannot adjust on its own.

There have been many studies conducted on the autonomous learning of quadrupedal
locomotion, which is the most basic skill for every movement. These studies began
as far back as the beginning of this research field and continue still today [3,4,5,6].
However, the skills used to control the ball are often coded by hand and have not been
studied as much as gait learning. There also have been several similar works related
to how robots can learn the skills needed to control the ball. Chernova and Veloso [7]
studied the learning of ball kicking skills, which is an important skill directly related
to scoring points. Zagal and Solar [8] studied the learning of kicking skills as well, but
in a simulated environment. Although it was very interesting in the sense that robots
could not have been damaged, the simulator probably could not produce complete, real
environments. Fidelman and Stone [9] studied the learning of ball acquisition skills,
which are unique to the four-legged robot league. They presented an elegant method
for autonomously learning these unique, advanced skills. However, there has thus far
been no study that has tried to autonomously learn the stopping and controlling of an
oncoming ball, i.e. trapping the ball. In this paper, we present an autonomous learning
method for ball trapping skills. Our method will enhance the game by way of learned
pass-work in the four-legged robot league.

The remainder of this paper is organized as follows. In Section 2, we begin by spec-
ifying the actual, physical actions used in trapping the ball. Then we simplify the learn-
ing process for ball trapping down to a one-dimensional model, and finally, we illustrate
and describe our training equipment used by the robots while training in solitude. In
Section 3, we formalize a learning problem and show our autonomous learning algo-
rithm for it. In Section 4, we experiment using one robot, two robots, and two robots
with communication. Finally, Section 5 presents our conclusions.

2 Preliminary

2.1 Ball Trapping

Before any learning can begin, we first have to accurately create the appropriate physical
motions to be used in trapping a ball accurately before the learning process. The picture
in Fig. 1 (a) shows the robot’s pose at the end of the motion. The robot begins by
spreading out its front legs to form a wide area with which to receive the ball. Then, the
robot moves its body back a bit in order to absorb the impact caused by the collision
of the body with the ball and to reduce the rebound speed. Finally, the robot lowers its
head and neck, assuming that the ball has passed below the chin, in order to keep the
ball from bouncing off of its chest and away from its control. Since the camera of the
robot is equipped on the tip of the nose, it actually cannot watch the ball below the chin.
This series of motions is treated as single motion, so we can neither change the speed
of the motion, nor interrupt it, once it starts. It takes 300 ms (= 60 steps × 5 ms) to
perform. As opposed to grabbing or grasping the ball, this trapping motion is instead

88 H. Kobayashi et al.

(a) trapping motion (b) pre-judgment motion

Fig. 1. The motion to actually trap the ball (a), and the motion to judge if it succeeded in trapping
the ball (b)

thought of as keeping the ball, similar to how a human player would keep control of the
ball under his/her foot.

The judgment of whether the trap succeeded or failed is critical for autonomous
learning. Since the ball is invisible to the robot’s camera when it’s close to the robot’s
body, we utilized the chest PSD sensor. However, the robot cannot make an accurate
judgment when the ball is not directly in front of their chest or after it takes a droopy
posture. Therefore, we utilized a “pre-judgment motion”, which takes 50 ms (= 10 steps
× 5 ms), immediately after the trapping motion is completed, as shown in Fig. 1 (b).
In this motion, the robot fixes the ball between its chin and chest and then lifts its body
up slightly so that the ball will be located immediately in front of the chest PSD sensor,
assuming the ball was correctly trapped to begin with.

2.2 One-Dimensional Model of Ball Trapping

Acquiring ball trapping skills in solitude is usually difficult, because robots must be
able to search for a ball that has bounced off of them and away, then move the ball to
an initial position, and finally kick the ball again. This requires sophisticated, low-level
programs, such as an accurate, self-localization system; a strong shot that is as straight
as possible; and a locomotion which utilizes the odometer correctly. In order to avoid
additional complications, we simplify the learning process a bit more.

First, we assume that the passer and the receiver face each other when the passer passes
the ball to the receiver, as shown Fig. 2. The receiver tries to face the passer while watch-
ing the ball that the passer is holding. At the same time, the passer tries to face the receiver
while looking at the red or blue chest uniform of the receiver. This is not particularly hard
to do, and any team should be able to accomplish it. As a result, the robots will face each
other in a nearly straight line. The passer need only shoot the ball forward so that the
ball can go to the receiver’s chest. The receiver, in turn, has only to learn a technique for
trapping the oncoming ball without it bouncing away from its body.

Ideally, we would like to treat our problem, which is to learn ball trapping skills,
one-dimensionally. In actuality though, the problem cannot be fully viewed in one-
dimension, because either the robots might not precisely face each other in a straight
line, or because the ball might curve a little due to the grain of the grass. We will discuss
this problem in Section 5.

Autonomous Learning of Ball Trapping in the Four-Legged Robot League 89

Fig. 2. One-dimensional model of ball trapping problem

Fig. 3. Training equipment for learning ball trapping skills

2.3 Training Equipment

The equipment we prepared for learning ball trapping skills in one-dimensional is fairly
simple. As shown in Fig. 3, the equipment has rails of width nearly equal to an AIBO’s
shoulder-width. These rails are made of thin rope or string, and their purpose is to
restrict the movement of the ball, as well as the quadrupedal locomotion of the robot, to
one-dimension. Aside from these rails, the robots use a slope placed at the edge of the
rail when learning in solitude. They kick the ball toward the slope, and they can learn
trapping skills by trying to trap the ball after it returns from having ascended the slope.

3 Learning Method

Fidelman and Stone [9] showed that the robot can learn to grasp a ball. They employed
three algorithms: hill climbing, policy gradient, and amoeba. We cannot, however, di-
rectly apply these algorithms to our own problem because the ball is moving fast in our
case. It may be necessary for us to set up an equation which incorporates the friction of

90 H. Kobayashi et al.

the rolling ball and the time at which the trapping motion occurs if we want to view our
problem in a manner similar to these parametric learning algorithms. In this paper, we
apply reinforcement learning algorithms [10]. Since reinforcement learning requires no
background knowledge, all we need to do is give the robots the appropriate reward for
a successful trapping so that they can successfully learn these skills.

The reinforcement learning process is described as a sequence of states, actions, and
rewards

s0, a0, r1, s1, a1, r2, . . . , si, ai, ri+1, si+1, ai+1, ri+2, . . . ,

which is a reflection of the interaction between the learner and the environment. Here,
st ∈ S is a state given from the environment to the learner at time t (t ≥ 0), and
at ∈ A(st) is an action taken by the learner for the state st, where A(st) is the set of
actions available in state st. One time step later, the learner receives a numerical reward
rt+1 ∈ R, in part as a consequence of its action, and finds itself in a new state st+1.

Our interval for decision making is 40 ms and is in synchronization with the frame
rate of the CCD-camera. In the sequence, we treat each 40 ms as a single time step,
i.e. t = 0, 1, 2, · · · means 0 ms, 40 ms, 80 ms, · · ·, respectively. In our experiments, the
states essentially consist of the information on the moving ball: relative position to the
robot, moving direction, and the speed, which are estimated by our vision system. Since
we have restricted the problem to one-dimensional movement in Section 2.2, the state
can be represented by a pair of scalar variables x and dx. The variable x refers to the
distance from the robot to the ball estimated by our vision system, and dx simply refers
to the difference between the current x and the previous x of one time step before. We
limited the range of these state variables such that x is in [0 mm, 2000 mm], and dx
in [−200 mm, 200 mm]. This is because if a value of x is greater than 2000, it will
be unreliable, and if the absolute value of dx is greater than 200, it must be invalid in
games (e.g. dx of 200 mm means 5000 mm/s).

Although the robots have to do a large variety of actions to perform fully-autonomous
learning by nature, as far as our learning method is concerned, we can focus on the fol-
lowing two macro-actions. One is trap, which initiates the trapping motions described
in Section 2.1. The robot’s motion cannot be interrupted for 350 ms until the trapping
motion finishes. The other is ready , which moves its head to watch the ball and prepar-
ing to trap. Each reward given to the robot is simply one of {+1, 0, −1}, depending on
whether it successfully traps the ball or not. The robot can make a judgment of that suc-
cess by itself using its chest PSD sensor. The reward is 1 if the trap action succeeded,
meaning the ball was correctly captured between the chin and the chest after the trap
action. A reward of −1 is given either if the trap action failed, or if the ball touches the
PSD sensor before the trap action is performed. Otherwise, the reward is 0. We define
the period from kicking the ball to receiving any reward other than 0 as one episode.
For example, if the current episode ends and the robot moves to a random position with
the ball, then the next episode begins when the robot kicks the ball forward.

In summary, the concrete objective for the learner is to acquire the correct timing
for when to initiate the trapping motion depending on the speed of the ball by trial
and error. Fig. 4 shows the autonomous learning algorithm used in our research. It
is a combination of the episodic SMDP Sarsa(λ) with the linear tile-coding function
approximation (also known as CMAC). This is one of the most popular reinforcement
learning algorithms, as seen by its use in the keepaway learner [1].

Autonomous Learning of Ball Trapping in the Four-Legged Robot League 91

while still not acquiring trapping skills do1

go get the ball and move to a random position with the ball;2

kick the ball toward the slope;3

s ← a state observed in the real environment;4

forall a ∈ A(s) do5

Fa ← set of tiles for a, s;6

Qa ←
�

i∈Fa
θ(i);7

end8

lastAction ← an optimal action selected by ε-greedy;9
−→e ← 0;10

forall i ∈ FlastAction do e(i) ← 1;11

reward ← 0;12

while reward = 0 do13

do lastAction;14

if lastAction = trap then15

if the ball is held then reward ← 1;16

else reward ← −1;17

else18

if collision occurs then reward ← −1;19

else reward ← 0;20

end21

δ ← reward − QlastAction;22

s ← a state observed in the real environment;23

forall a ∈ A(s) do24

Fa ← set of tiles for a, s;25

Qa ←
�

i∈Fa
θ(i);26

end27

lastAction ← an optimal action selected by ε-greedy;28

δ ← δ + QlastAction;29
−→
θ ← −→

θ + αδ−→e ;30

QlastAction ←
�

i∈FlastAction
θ(i);31

−→e ← λ−→e ;32

if player acting in state s then33

forall a ∈ A(s) s.t. a �= lastAction do34

forall i ∈ Fa do e(i) ← 0;35

end36

forall i ∈ FlastAction do e(i) ← 1;37

end38

end39

δ ← reward − QlastAction;40
−→
θ ← −→

θ + αδ−→e ;41

end42

Fig. 4. Algorithm of our autonomous learning (based on keepaway learner [1])

92 H. Kobayashi et al.

Here, Fa is a feature set specified by tile coding with each action a. In this paper,
we use two-dimensional tiling and set the number of tilings to 32 and the number of
tiles to about 5000. We also set the tile width of x to 20 and the tile width of dx to
50. The vector

−→
θ is a primary memory vector, also known as a learning weight vector,

and Qa is a Q-value, which is represented by the sum of
−→
θ for each value of Fa. The

policy ε-greedy selects a random action with probability ε, and otherwise, it selects the
action with the maximum Q-value. We set ε = 0.01. Moreover, −→e is an eligibility trace,
which stores the credit that past action choices should receive for current rewards. λ is
a trace-decay parameter for the eligibility trace, and we simply set λ = 0.0. We set the
learning rate parameter α = 0.5 and the discount rate parameter γ = 1.0.

4 Experiments

4.1 Training Using One Robot

We first experimented by using one robot along with the training equipment that was
illustrated in Section 2.3. The robot could train in solitude and learn ball trapping skills
on its own.

Fig. 5(a) shows the trapping success rate, which is how many times the robot success-
fully trapped the ball in 10 episodes. It reached about 80% or more after 250 episodes,
which took about 60 minutes using 2 batteries. Even if robots continue to learn, the suc-
cess rate is unlikely to ever reach 100%. This is because the trapping motions, which
force the robot to move slightly backwards in order to try and reduce the bounce effect,
can hardly be expected to capture a slow, oncoming ball that stops just in front of it.

Fig. 6 shows the result of each episode by plotting a circle if it was successful, a cross
if it failed in spite of trying to trap, and a triangle if it failed because of doing nothing.
From the 1st episode to the 50th episode, the robots simply tried to trap the ball while
it was moving with various velocities and at various distances. They made the mistake
of trying to trap the ball even when it was moving away (dx > 0), because we did not
give them any background knowledge, and we only gave them two variables: x and dx.
From the 51st episode to the 100th episode, they learned that they could not trap the
ball when it was far away (x > 450) or when it was moving away (dx > 0). From the
101st episode to 150th episode, they began to learn the correct timing for a successful
trapping, and from the 151st episode to 200th episode, they almost completely learned
the correct timing.

4.2 Training Using Two Robots

In the case of training using two robots, we simply replace the slope in the training
equipment with another robot. We call the original robot the Active Learner (AL) and
the one which replaced with slope the Passive Learner (PL). AL is the same as in case
of training using one robot. On the other hand, PL differs from AL in that PL does not
search out nor approach the ball if the trapping failed. Only AL does so. Other than this
difference, PL and AL are basically the same.

We experimented for 60 minutes by using both AL and PL that had learned in soli-
tude for 60 minutes using the training equipment. Theoretically, we would expect them

Autonomous Learning of Ball Trapping in the Four-Legged Robot League 93

0 50 100 150 200 250 300 350

episodes

0

20

40

60

80

100

tr
a
p
in

g
 s

u
cc

e
ss

 r
a
te

(a) one robot

0 50 100 150 200 250 300 350

episodes

0

20

40

60

80

100

tr
a
p
in

g
 s

u
cc

e
ss

 r
a
te

AL
PL

(b) two robots

0 50 100 150 200 250 300 350 400

episodes

0

20

40

60

80

100

tr
a
p
in

g
 s

u
cc

e
ss

 r
a
te

AL
PL

(c) two robots with communication

Fig. 5. Results of three experiments

to succeed in trapping the ball after only a short time. However, by trying to trap the ball
while in obviously incorrect states, they actually failed repeatedly. The reason for this
was because the estimation of the ball’s distance to the robot-in-waiting became unreli-
able, as shown in Fig. 7. This, in turn, was due to the other robot holding the ball below
its head before kicking it forward to its partner. Such problems can occur during the
actual games, especially in poor lighting conditions, when teammates and adversaries
are holding the ball.

Although we are of course eager to overcome this problem, we should not force a
solution that discourages the robots from holding the ball first, because ball holding
skills help them to properly judge whether or not they can successfully trap the ball. It
also serves another purpose, which is to give the robots a nicer, straighter kick. More-
over, there is no way we can absolutely keep the adversary robots from holding the ball.
Although there are several solutions (e.g. measuring the distance to the ball by using
green pixels or sending the training partner to get the ball), we simply continued to
make the robots learn without having made any changes. This was done in an attempt
to allow the robots to gain experience related to irrelevant states. In fact, it turns out
they should never try to trap the ball when x ≥ 1000 and dx ≥ 200. Moreover, they
should probably not try to trap the ball when x ≥ 1000 and dx ≤ −200.

Fig. 5(b) shows the results of training using two robots. They began to learn that
they should probably not try to trap the ball while in irrelevant states, as this was a

94 H. Kobayashi et al.

0 500 1000 1500 2000
x

-200

-150

-100

-50

0

50

100

150

200

d
x

failure
success
collision

(a) Episodes 1–50

0 500 1000 1500 2000
x

-200

-150

-100

-50

0

50

100

150

200

d
x

failure
success
collision

(b) Episodes 51–100

0 500 1000 1500 2000
x

-200

-150

-100

-50

0

50

100

150

200

d
x

failure
success
collision

(c) Episodes 101–150

0 500 1000 1500 2000
x

-200

-150

-100

-50

0

50

100

150

200

d
x

failure
success
collision

(d) Episodes 151–200

Fig. 6. Learning process from 1st episode to 200th episode. A circle indicates successful trapping,
a cross indicates failed trapping, and a triangle indicates collision with the ball.

0 20 40 60 80 100 120 140
time step

-500

0

500

1000

1500

2000

x
 /

 d
x

x
dx

Fig. 7. The left figure shows how our vision system recognizes a ball when the other robot holds
it. The ball looks to be smaller than it is, because a part of it is hidden by the partner and its
shadow, resulting in an estimated distance to the ball that is further away than it really is. The
right figure plots the estimated values of the both the distance x and the velocity dx, when the
robot kicked the ball to its partner, the partner trapped it, and then the partner kicked it back.
When the training partner was holding the ball under its head though (the center of the graph),
we can see the robot obviously miscalculated ball’s true distance.

Autonomous Learning of Ball Trapping in the Four-Legged Robot League 95

likely indicator that the training partner was in possession of the ball. This was learned
quite slowly though, because the AL can only learn successful trapping skills when PL
itself succeeds. If PL fails, AL’s episode is not incremented. Even if the player nearest
the ball can go get it, the problem is not resolved because then they just learn slowly in
the end, though simultaneously.

4.3 Training Using Two Robots with Communication

Training using two robots, like in the previous section, unfortunately takes a long time
to complete. In this section, we will look at accelerating their learning by allowing them
to communicate with each other.

First, we made the robots share their experiences with each other, as in [11]. How-
ever, if they continuously communicated with each other, they could not do anything
else, because the excessive processing would interrupt the input of proper states from
the real-time environment. Therefore, we made the robots exchange their experiences,
which included what action at they performed, the values of the state variables xt and
dxt, and the reward rt+1 at time t, but this was done only when they received a reward
other than 0, i.e. the end of each episode. They then updated their

−→
θ values using the

experiences they received from their partner. As far as the learning achievements for
our research is concerned, they can successfully learn enough using this method.

We also experimented in the same manner as Section 4.2 using two robots which
can communicate with each other. Fig. 5(c) shows the results of this experiment. They
could rapidly adapt to unforeseen problems and acquire practical trapping skills. Since
PL learned its skills before AL learned, it could relay to AL the helpful experience,
effectively giving AL about a 50% learned status from the beginning. These results in-
dicate that the robots with communication learned more quickly than the robots without
communication.

4.4 Discussion

The three experiments above showed that robots could efficiently learn ball trapping
skills and that the goal of pass-work by robots can be achieved in one-dimension. In
order to briefly compare those experiments, Fig. 8 presents a few graphs, where the x-
axis is the elapsed time and the y-axis is the total number of successes so far. Fig. 8(a)
and Fig. 8(b) shows the learning process with and without communication, respectively,
for 60 minutes after pre-learning for 60 minutes by using two robots from the beginning.
Fig. 8(c) and Fig. 8(d) shows the learning process with and without communication,
respectively, after pre-learning for 60 minutes in solitude.

Comparing (a) and (c) with (b) and (d) has us conclude that allowing AL and PL
to communicate with each other will lead to more rapid learning compared to no com-
munication. Comparing (a) and (b) with (c) and (d), the result is different from our
expectation. Actually, the untrained robots learned as much as or better than trained
robots for 60 minutes. The trained robots seems to be over-fitted for slow-moving balls,
because the ball was slower in the case of one robot learning than in the case of two
due to friction on the slope. However, it is still good strategy to train robots in solitude
at the beginning, because experiments that solely use two robots can make things more

96 H. Kobayashi et al.

0 10 20 30 40 50 60
minutes

0

20

40

60

80

100

120

140

to
ta

l
n
u
m

b
e
r

o
f

su
cc

e
ss

fu
l
tr

a
p
in

g

AL
PL

(a) without communication after pre-learning
by using two robots

0 10 20 30 40 50 60
minutes

0

20

40

60

80

100

120

140

to
ta

l
n
u
m

b
e
r

o
f

su
cc

e
ss

fu
l
tr

a
p
in

g

AL
PL

(b) with communication after pre-learning by
using two robots

0 10 20 30 40 50 60
minutes

0

20

40

60

80

100

120

140

to
ta

l
n
u
m

b
e
r

o
f

su
cc

e
ss

fu
l
tr

a
p
in

g

AL
PL

(c) without communication after pre-learning
in solitude

0 10 20 30 40 50 60
minutes

0

20

40

60

80

100

120

140

to
ta

l
n
u
m

b
e
r

o
f

su
cc

e
ss

fu
l
tr

a
p
in

g

AL
PL

(d) with communication after pre-learning in
solitude

Fig. 8. Total numbers of successful trappings with respect to the elapsed time

complicated. In addition robots should also learn the skills for a relatively slow-moving
ball anyway.

5 Conclusions and Future Work

In this paper, we presented an autonomous learning method for use in acquiring ball
trapping skills in the four-legged robot league. Robots could learn and acquire the skills
without human intervention, except for replacing discharged batteries. They also suc-
cessfully passed and trapped a ball with another robot and learn more quickly when
exchanging experiences with each other. All movies of the earlier and later phases of
our experiments are available on-line (http://www.jollypochie.org/papers/).

We also tried finding out whether or not robots can trap the ball without the use of the
training equipment (rails for ball guidance). We rolled the ball to the robot by hand, and
the robot could successfully trap it, even if the ball moved a few centimeters away from
the center of its chest. At the same time though, the ball would often bounce off of it,
or the robot did nothing if the ball happened to veer significantly away from the center
point. In the future, we plan to extend trapping skills into two-dimensions using layered
learning [12], e.g. we will try to introduce three actions of staying, moving to the left,

Autonomous Learning of Ball Trapping in the Four-Legged Robot League 97

and moving to the right into higher-level layers. Since two-dimensions are essentially
the same as one-dimension in this case, it may be possible to simply use a wide slope.
Good two-dimensional trapping skills can directly make keepers or goalies stronger. In
order to overcome the new problems associated with a better goalie on the opposing
team, robots may have to rely on learning better passing skills, as well as learning even
better ball trapping skills. A quick ball is likely to move straightforward with stability,
but robots as they are now can hardly trap a quick ball. Therefore, robots must learn
skills in shooting as well as how to move the ball with proper velocity. It would be most
effective if they learn these skills alongside trapping skills. This is a path that can lead
to achieving successful keepaway soccer [1] techniques for use in the four-legged robot
league.

References

1. Stone, P., Sutton, R.S., Kuhlmann, G.: Reinforcement learning for robocup soccer keepaway.
Adaptive Behavior 13(3), 165–188 (2005)

2. Hsu, W.H., Harmon, S.J., Rodriguez, E., Zhong, C.: Empirical comparison of incremental
reuse strtegies in genetic programming for keep-away soccer. In: Late Breaking Papers at the
2004 Genetic and Evolutionary Computation Conference (2004)

3. Hornby, G.S., Takamura, S., Yamamoto, T., Fujita, M.: Autonomous evolution of dynamic
gaits with two quadruped robots. IEEE Transactions on Robotics 21(3), 402–410 (2005)

4. Kim, M.S., Uther, W.: Automatic gait optimisation for quadruped robots. In: Proceedings of
2003 Australasian Conference on Robotics and Automation, pp. 1–9 (2003)

5. Kohl, N., Stone, P.: Machine learning for fast quadrupedal locomotion. In: The Nineteenth
National Conference on Artificial Intelligence, pp. 611–616 (2004)

6. Weingarten, J.D., Lopes, G.A.D., Buehler, M., Groff, R.E., Koditschek, D.E.: Automated
gait adaptation for legged robots. In: IEEE International Conference on Robotics and Au-
tomation, IEEE Computer Society Press, Los Alamitos (2004)

7. Chernova, S., Veloso, M.: Learning and using models of kicking motions for legged robots.
In: Proceedings of International Conference on Robotics and Automation (2004)

8. Zagal, J.C., Ruiz-del-Solar, J.: Learning to kick the ball using back to reality. In: Nardi,
D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI),
vol. 3276, pp. 335–347. Springer, Heidelberg (2005)

9. Fidelman, P., Stone, P.: Learning ball acquisition on a physical robot. In: 2004 International
Symposium on Robotics and Automation (ISRA) (2004)

10. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge
(1998)

11. Kretchmar, R.M.: Parallel reinforcement learning. In: The 6th World Conference on Sys-
temics, Cybernetics, and Informatics (2002)

12. Stone, P., Veloso, M.M.: Layered learning. In: de Mántaras, R.L., Plaza, E. (eds.) ECML
2000. LNCS (LNAI), vol. 1810, pp. 369–381. Springer, Heidelberg (2000)

	Autonomous Learning of Ball Trapping in the Four-Legged Robot League
	Introduction
	Preliminary
	Ball Trapping
	One-Dimensional Model of Ball Trapping
	Training Equipment

	Learning Method
	Experiments
	Training Using One Robot
	Training Using Two Robots
	Training Using Two Robots with Communication
	Discussion

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

