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Abstract. We present a complete design of agents for the RoboCup Res-
cue Simulation problem that uses an evolutionary reinforcement learning
mechanism called XCS, a version of Holland’s Genetic Classifiers Sys-
tems, to decide the number of ambulances required to rescue a buried
civilian. We also analyze the problems implied by the rescue simulation
and present solutions for every identified sub-problem using multi-agent
cooperation and coordination built over a subsumption architecture. Our
agents’ classifier systems were trained in different disaster situations.
Trained agents outperformed untrained agents and most participants of
the 2004 RoboCup Rescue Simulation League competition. This system
managed to extract general rules that could be applied on new disaster
situations, with a computational cost of a reactive rule system.

1 Introduction

RoboCup Rescue has become a standard problem for the artificial intelligence,
intelligent robotics and multi-agents communities. In particular, the RoboCup
Rescue Simulation League problem (RCRSL) has proven to be a excellent envi-
ronment for AI and Machine Learning software testing.

Tadokoro et.al. [9] define RCRSL as a semi optimal behavior planning problem
with extremely complex constraints having widely time-varying multiples objec-
tives, these constraints include limited time for decision making, limited commu-
nication, constantly changing conditions and incomplete and partial information.

In this work we decided to focus on one of the multiple challenges RCRSL
offers, the victim rescue problem, which has the strongest impact on the team’s
performance. This problem depends on various simulation factors. We chose
four of them: world time and victim buriedness, damage and health points. All
this factors have a large feasible domain, which combined generate a very large
state-space.

Usually large state-space problems are managed through generalization tech-
niques such as neural networks and other function approximator; which allow
compact storage of learned information and transfer of knowledge between “sim-
ilar” states and actions [3].
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In order to manage this large state-space problem under RCRSL time restric-
tions, we use an accuracy-based evolutionary reinforcement learning mechanism
called XCS [11]. In particular the XCS decides how many Ambulance Teams are
required to make an effective rescue of a victim buried in a building.

Evolutionary reinforcement learning (ERL) is an approach to reinforcement
learning that takes advantage of Darwin’s theory of evolution. Evolutionary al-
gorithms can find satisfactory solutions in large state-spaces at a low computa-
tional cost. Methods from genetic algorithms, evolutionary programming, genetic
programming, and evolutionary strategies could all be used in this framework to
form effective decision making agents [5].

We compared our agents with other successful teams from the 2004 com-
petition and obtained satisfactory results. We believe this technique is able to
process the pertinent information from the environment and give the appro-
priate output to solve this problem. Additionally we give a short description
of our RoboCup Rescue decomposition into sub-problems and the solutions we
designed and implemented for each one of them.

2 XCS

The XCS classifier systems [10], as well as Holland’s Learning Classifier Systems
(LCS) [2], are domain independent adaptive learning systems. Its main distin-
guishing features are the base of classifier fitness on the accuracy of classifier
reward prediction instead of the prediction itself, and the use of a niche genetic
algorithm, i.e., a GA that operates on a subset of the classifier population.

The structure of XCS rules’ conditions are the translation of the conditional
part of the logical rules. Rules’ actions are binary strings that represent motion
actions.

A classifier is a compact representation of a complex set of environment states.
Rules have the form 〈condition〉 → 〈action〉. Conditions are strings of length l in
the alphabet {0, 1, ∗}. A classifier’s condition satisfies a message if its condition
matches the input message. A condition c matches message m if and only if:
∀i, (1 ≤ i ≤ l) → Πi(c) = Πi(m) ∨ Πi(c) = ′∗′ 1. Actions are fixed length
strings in the alphabet {0, 1}.

XCS are composed by three subsystems: A performance system, a learning
system and a rule discovery system.

The performance system takes an input from the environment, selects an
action and transforms it into an output message.

The learning system takes feedback signals from the environment and updates
the values of the four parameters that replaces the traditional fitness of LCS:
prediction, prediction error, accuracy, and fitness. This change allows a more
complete State × Actions → Prediction mapping than traditional LCS.

The rule discovery system uses a GA in order to create new rules. XCS’s
rule discovery system has two operations: niche GA and covering. The niche GA
acts over the Action Set [A], choosing random parents in proportion to the rules’
1 Where Πi represents the character located at the position i of the string.
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fitness. Offsprings are copies of the parents, modified by crossover and mutation.
Covering is triggered when the matches set is empty or its mean prediction is a
small fraction of the population [P] average prediction. Covering creates a new
classifier whose condition matches the current input message and its action is
generated randomly.

In the Reinforcement Learning (RL) research, two different approaches have
been stated. These two approaches are known as: searching in value function
space, and searching in policy space. In the first approach, RL algorithms try
to find the optimum value function for the problem. Then, to find the optimal
policy given the optimal values function, is immediate. The second approach
is to search an optimal policy directly over the space of the policies. For this
purpose, evolutionary algorithms are frequently used [5].

This RL approach based on evolutionary algorithms is called Evolutionary
Reinforcement Learning (ERL). The ERL algorithms vary in terms of the policies
representation method and the fitness evaluation for individual policies.

The two methods of policies’ representation are: a chromosome representation
and distributed rules-based representations. LCS [2] as well as XCS are examples
of a rules-based ERL.

The advantage of XCS from the ERL point of view is its generalization capac-
ity. For this reason, the XCS must be able to scale to more complex problems,
in contrast with the RL traditional algorithms [11].

3 Design

We present the result of our analysis and decomposition of RoboCup Rescue
into sub-problems. We use a hybrid approach for decision making, i.e. some
decisions are centralized while others are taken by platoon agents. Therefore,
platoon agents can take decision with slight relevance but central agents must
decide the most important matters.

3.1 Problems Categories

Sub-problems were divided into four categories: Common Problems, Fire Ex-
tinction, Rubble Cleaning and Victim Rescue. Now we describe some of the
identified problems and their solutions.

1. Common Problems

Civilian search: Our agents look for civilians in all the buildings in the
city. Each platoon must do this job when there is no other higher-priority
task to do. All agents have a “world model” which they share in every turn
to avoid visiting an already explored site and to provide central agents with
the necessary information to make decisions.

Route planning: This problem was solved by implementing the idea of
LongRoads proposed by ResQ Freiburg [4].
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Communication: In order to make information available for as many agents
as possible, we designed and built a communication protocol which intends
to use the messages as much as possible and gives preference to high-priority
information.

2. Victim Rescue
We decided to use a centralized approach for this task. The Ambulance
Center must decide which victim is going to be rescued next, the number of
ambulances that will be sent to the rescue site, which ambulances must go
and which one takes the victim to the refuge.

The next victim selection algorithm we are using is a based on the strat-
egy proposed by Damas Team [6]. It goal is to minimize future casualties
considering the next rescue.

The number of ambulances for each victim is determined using an XCS
classifier system whose structure and parameters are explained in Section
3.3. Once the number of ambulances is fixed, the nearest ambulances are
sent to the rescue. If we do not have enough ambulances, all free ambulances
are sent and the rest will be sent when they report themselves as freed. The
nearest ambulance of all takes the victim to the rescue.

3. Fire Extinction
The Fire Station Agent decides which fires to extinguish. It uses a set of
fixed rules that chooses how many fire brigades are going to be sent to each
fire and sends the nearest units. We consider a fire as a group of burning
buildings relatively close to each other. Each fire is built using clustering
techniques. Once the agent gets to the fire, it chooses which building is go-
ing to put out. Considering that all agents have a similar “world model”, it
is highly probable that the fire brigades assigned to this fire will choose the
same building.

4. Rubble Cleaning
We implemented several techniques for choosing the next road to be cleaned,
the Police Station sorts police agents to each one at the beginning of the
simulation.

– Road selection techniques:
• Select the nearest LongRoad and clean all its roads.
• Select the roads belonging to the most frequently used LongRoads.
• Select the roads around a certain spot of the map.
• Select the nearest road (only when all LongRoads are passable).

– Cleaning requests: If a platoon agent needs to go through a blocked
area, it sends a cleaning request to the Police Station, who assigns a
police force agent to clean it.
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Fig. 1. Subsumption Architecture Diagram - Ambulance Teams

3.2 Subsumption Architecture

Our agents’ conduct was modeled using Brooks’ Subsumption Architecture [1].
Each kind of agent has different behaviors but they all have the same structure.
We decided to sort our agent behaviors in four levels, which we describe next:

Level 0. This level contains the most basic behaviors, which are RoboCup
Rescue commands and actions.
Level 1. This level contains the default behavior of agents such as building
exploration and victim search.
Level 2. This defines those behaviors that are only activated by a central
order such as victim rescue and extinction of fires.
Level 3. This is where the highest-priority behavior are located.

Fig. 1 shows the subsumption diagram for ambulance platoon agents. Level 3
behaviors are shared by all platoon agents, Level 2 has the behaviors that entail
those agents main tasks, while Level 1 behaviors encode cooperation mechanisms.

3.3 Description of Genetic Classifiers

As we mentioned in Section 2, we use XCS genetic classifiers to support our
decision making. In particular we decide how many ambulances are required to
rescue a victim using this kind of system.

XCS Design for Victim Rescue. Our classifier system takes into account
the following attributes: health points, damage, buriedness and world time. Each
classifier contains 24 bits as shown in Fig. 2.

HP/Damage Buriedness World-Time Output
0 1 1 1 0 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 1 1 0 1

Fig. 2. Ambulance Center’s Classifier Structure
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Bits 0 to 7 contain the ratio of the victim’s health points to its damage, bits
7 to 14, its degree of buriedness, and the other 6 bits from the input represent the
simulation time in order to inform the system about how much time can be used
to rescue the victim. The translation between integer and binary representation
is accomplished by creating predefined ranges.

Each classifier has 3 output bits that represent the number of ambulances
that will be sent to rescue the victim.

4 Experiments and Results

Two different classifier sets were defined in order to train the XCS system using
the parameters shown in Table 1. The rules of the first set, called Foligno-Rules,
were generated using the classifier system on a learning phase over two maps
of the same city: FolignoEasy and Foligno. The second set of rules, Kobe-Rules,
was generated with the same procedure, only changing the maps to Kobe and
KobeEasy.

Table 1. XCS and GA Parameters

XCS Parameter Value
Genetic algorithm probability 0.2
Reinforcement update rate (α) 0.1
Min error (ε0) 0.5
Error Penalty (n) 5

Covering Parameter Value
Don’t care bit probability 0.2
Initial prediction 0
Initial error 100
Initial fitness 0
Max population size(|[P ]|) 100

GA Parameter Value
Replacement algorithm Elitist
Selection algorithm 8-tournament
Crossover algorithm One point
Mutation algorithm One point
Mutation probability 0.02

Each classifier set was initially empty. All new rules generated by covering
or by the evolutive steps of the XCS. After each simulation resulting rules were
stored and used in the next simulation.

We used the percentage of alive agents and the score at the end of each simula-
tion to measure the performance of the decision system for the rescue operations.
This procedure was repeated 900 times. The analyzed data are shown in Fig. 3.1.

We selected the trained classifier that showed the highest score and alive
agents at the end of the simulation. The rules used around the 250th simulation
for the Foligno-Rules training were selected for our experiments.

In order to observe the performance of the classifier system, we selected three
maps from different cities and compared the rescue task of our agents using
trained rules and random rules. Each group of agents’ results are a mean of 20
simulations, except for the results of ResQ Freiburg [4], DAMAS Team [6] and
5Rings [8], which were extracted from the 2004 competition logs.
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Fig. 3.2 shows the results of the experiments on all maps. It can be noticed
that on all test cases our agents show better results when using the trained set of
rules. These agents achieve higher scores and percentage of alive agents than the
ones using randomly generated rules. This demonstrates that the evolutionary
reinforcement learning system tends to refine and keep better rules for the XCS.
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3.2. Teams result over Kobe, Foligno and
Random maps

Our trained agents also managed to rescue more agents than DAMAS Team
and outperformed the 5Rings agents. However, ResQ Freiburg agents can solve
the victim rescue problem with better results by using all available Ambulance
Teams to rescue a civilian and choosing the rescue order with a GA [4].

5 Concluding Remarks and Future Work

This paper presents an approximation to the RoboCup Rescue simulation prob-
lem that uses an evolutionary reinforcement learning technique, particularly XCS
classifier systems, to support the decision making of a central agent that coor-
dinates several platoon agents on the complicated victim rescue task.

The agents can solve numerous coordination problems presented by RoboCup
Rescue using a distributive coordinated search for civilians, as well as road clean-
ing, and a centralized coordination for victim rescue and fire extinction.

Many ideas and approaches used by our agents are based on previous stud-
ies and agent teams. These included informed search using LongRoads, victim
selection minimizing future casualties, building clustering, token-based commu-
nications, distributed civilian search and road unblocking petitions.

The design proposed by this paper proved to be an effective solution to the
problem and is competitive with other agent teams. Reinforcement learning tech-
niques proved to be a feasible method to extract general rules that can support
decision making on RoboCup Rescue. In particular, the number of ambulances
needed to save a victim depends on several non-predictable factors; this study
found that a trained classifier system provides a good approximation at a low
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computational cost. We conclude that evolutionary reinforcement approaches
are appropriate for the RoboCup Rescue domain.

Even though this paper presents a successful decision support system and a
design for a RoboCup Rescue agents team, further development is needed to
present these agents on a competition. The agents must be revised in order to
assure compatibility with the current competition rules, since our agents were
developed and tested with the rules published in 2004.

Parameters of the GA should be examined in future studies. Determination
of which mutation and crossover strategies work best with this problem should
be considered.

The current design of the XCS classifier system for rescue task is currently
very simple. An extension of the elements taken into account by the rules shall
outperform the current system with a longer training procedure tradeoff.

We are currently meticulously studying an appropriate design for a XCS that
can determine the number of fire brigades needed to control and extinguish a
fire.
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