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Abstract. Self-localization is a deeply investigated field in mobile
robotics, and many effective solutions have been proposed. In this
context, Monte Carlo Localization (MCL) is one of the most popular
approaches, and represents a good tradeoff between robustness and ac-
curacy. The basic underlying principle of this family of approaches is
using a Particle Filter for tracking a probability distribution of the pos-
sible robot poses.

Whereas the general particle filter framework specifies the sequence
of operations that should be performed, it leaves open several choices
including the observation and the motion model and it does not directly
address the problem of robot kidnapping.

The goal of this paper is to provide a systematic analysis of Particle
Filter Localization methods, considering the different observation models
which can be used in the RoboCup soccer environments. Moreover, we
investigate the use of two different particle filtering strategies: the well
known Sample Importance Resampling (SIR) filter, and the Auxiliary
Variable Particle filter (APF).

1 Introduction

The knowledge of the pose and the orientation of a mobile robot in its operat-
ing environment is of utmost importance for an autonomous robot. Therefore
self-localization is a well known problem in mobile robotics, and many effective
solutions have been proposed. The presence of an initial position guess about ro-
bot position determines a distinction between the position tracking and the global
localization problems. The prototype of the algorithms for the position track-
ing problem is Kalman Filter localization [6], while global positioning encloses
common frameworks like Multi Hypotheses Localization, Histogram Filters and
Particle Filters [1]. In the last years Particle Filter Localization, also known as
Monte Carlo Localization (MCL), became one of the most popular approaches
for solving the global localization problem.

Whereas the implementation of a particle filter for localization is straight-
forward, its performance is strongly affected by the modeling of the process to
estimate. Namely the user has to specify the system motion model, that is the
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probability distribution of successor states conditioned to the odometry readings,
and the observation model that describes the likelihood of a given observation
given the current robot position.

In the RoboCup Four-legged league the localization problem becomes a chal-
lenging task, because of the following reasons: i) the only sensor that can be used
for acquiring measures of the environment is a low resolution and low quality cam-
era; ii) the robot motion is affected by a considerable amount of noise due to both
the presence of opponents in the field of play and to the poor accuracy of the odom-
etry; iii) the computational power available for localization is rather limited.

The dynamic environment strongly violates the Markov assumption which
underlies most of the approaches proposed in literature. In order to cope with
such violations, several extensions have been proposed to the original Bayes
formulation of the localization problem. To this end the most popular technique
is known as sensor resetting [5]. It consists in bootstrapping the estimator with
hypotheses based on the raw observations.

The goal of this paper is to present a systematic analysis performed on the
Particle Filter localization, when considering the different observation models
which can be used in the RoboCup Four Legged league contexts. Moreover, we
investigate the use of two different particle filtering strategies: the well known
Sample Importance Resampling (SIR) filter [2], and the Auxiliary Variable Par-
ticle filter (APF) [8].

Localization based on APF has been previously proposed by Vlassis et al. [9]
for solving the vision based localization problem, together with a nonparametric
estimate of the likelihood function. The main focus of their work is on how to
compute a satisfactory nonparametric estimate of the direct observation model
p(x|z), expressing the probability of being in a given location x given the ob-
served panoramic camera image z. Such a distribution is expressed through a
Gaussian mixture learned from the data.

In contrast to [9], the contribution of our work is to investigate possible vari-
ants of the particle based localization algorithms, for parametric (feature based)
observation models, treating APF as an additional degree of freedom.

2 Particle Filtering

One of the most popular algorithms used in localization is the so-called Monte
Carlo Localization introduced by Dellaert et al. [1]. The core idea of the al-
gorithm is to estimate a robot pose distribution using a particle filter. The
system state is represented through a set of samples in the robot pose space{
x(i) = (x,y, θ)(i)

}
∈ �2 × [0 . . . 2π).

p(x) � 1
N

N∑

i=0

δx(i)(x)

here δx(i)(·) is the impulse function centered in the sample x(i). The denser are
the samples in a state space region the higher the probability that the robot is
in that region.
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Ideally one wants to sample from the posterior distribution

x
(i)
t ∼ p(xt|z0:t, u0:t)

but this is not possible in the general case because such a distribution is not
available in closed form. However b.

By representing the distribution through a set of weighted samples<w(i), x(i) >,
it is possible to estimate p(x). The samples are drawn from a proposal distribution
q(xt|z0:t, u0:t), while the weights for each sample are computed according to the
Importance Sampling Principle

w
(i)
t =

p(x(i)
t |z0:t, u0:t)

q(x(i)
t |z0:t, u0:t)

(1)

By choosing the motion model p(xt|x(i)
t−1, ut) as proposal distribution, we can

recursively compute the weights as

w
(i)
t ∝ p(zt|x(i)

t )w
(i)
t−1.

Two particle filtering techniques used in self-localization are the Sampling Im-
portance Resampling (SIR) [2] and the Auxiliary Variable Particle Filter (APF)
[8,9].

One of the main problems of the SIR algorithm is the degeneracy problem [8].
If the ratio between the variance of the proposal distribution and the observation
model is high, it can happen that only a few samples generated in the sampling
steps have a meaningful weight. The subsequent application of the resampling
operation results in the suppression of most of the samples generated, because
only those with greater weight are replicated, replacing the low-weighted parti-
cles. This fact reduces the chances that the filter achieves to a correct convergence
because it impoverishes the set diversity.

The APF has been introduced to lessen the degeneracy problem. The key
idea of this algorithm is to select the samples that will be propagated in the
subsequent updated estimate. Such a selection is performed by evolving the cur-
rent filter state using a reduced noise motion model, and evaluating the sample
weights according to the Importance Sampling (IS) principle. Then a set of in-
dices is sampled from the weights distribution, and only the surviving particles
will be used for computing the updated particle generation, by means of the
original motion model. This ensures an increased particle diversity, since the
resampling is performed before evolving the filter.

More in detail the APF exploits the following factorization over the joint
posterior of particle indices and robot poses

p(xt, i|z0:t, u0:t) ∝ p(zt|μ(i)
t )p(xt|x(i)

t−1, ut).

Here μt is a mean, a mode or some other indicator of the predicted distribution,
designed so that

p(i|z0:t, u0:t) ∝ p(zt|μ(i)
t ).
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Under the above hypotheses, we can sample from p(xt, i|z0:t, u0:t) by sampling
an index j with probability λ(j) = p(zt|μ(i)

t ). We denote with ji that the value of
the jth sampled index is the original index i. Subsequently, we can sample from
the motion model x

(j)
t ∼ p(xt|x(ji)

t−1), according to the value of the state referred
to by the drawn index.

According to the IS principle, the resulting weights will be:

w(j) =
p(zt|x(j)

t )
λ(j)

3 Algorithm Implementation

Given a filtering method, there are a number of implementation issues to be
considered and several parameters to be tuned. The motion model depends on
the robot kinematics and on the characteristics of the environment (i.e., the
friction with the surface and the presence of collisions). The observation model
depends on the characteristics of both the landmarks being observed and the
sensor.

Motion Model. When the robot moves, its pose estimate should be updated ac-
cording to the motion model, incorporating the relative movement ut, estimated
from the odometry. In the Sony AIBO, such a displacement can be obtained
by taking into account the joints measures returned from the internal motor
encoders. Inaccuracies in the model, as well as environment random phenomena
(such as slipping and collisions), affect reliability and precision of measuring such
a displacement.

A simple motion model can take into account such a noise by adding an
amount of random Gaussian noise to odometry update:

xt ∼ xt−1 ⊕ (ut + et)

where et is the random variable representing the noise affecting the odometry
measure ut, and ⊕ is the standard motion composition operator defined as in
[7].

A more complex motion model can also consider noise depending on the rel-
ative motion of the robot

xt ∼ xt−1 ⊕ (ut + α(ut)et)

where α(ut) is a matrix of functions of the odometry motion, and et represents
the noise affecting the movement for each time a unity distance is traveled. If α
is a constant, the variance of the odometry error grows linearly with the distance
traveled by the robot.

Finally, we can extend the previous model considering the presence of ran-
dom collisions. When a robot hits an object or another robot, it is likely to
stack, although the odometry measures a non zero displacement. We can take
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into account this phenomenon by including a prior of hitting an obstacle and
marginalizing it out, as follows.

xt ∼ hxt−1 + ¬h(xt−1 ⊕ (ut + α(ut)et))

where h is a binary random variable that takes into account the probability of
hitting an obstacle.

3.1 Observation Model

The environment of RoboCup Four-Legged League includes a set of features that
are normally used in localization: unique colored beacons (or markers), unique
colored goals, and white lines on the green carpet.

Since the beacons are of limited size they are usually entirely contained in an
image. The vision system on the robot can estimate the position of these beacons
in the robot reference frame. With these preconditions, developing a localization
algorithm should be straightforward, however the noise affecting both the robot
sensing and the robot motion, as well as the dynamic environment turns this
task into a challenging one.

In particular, the low resolution of the camera, combined with motion blurring
effects caused by the robot movements, affects the reliability and precision of
feature detection. This is particularly evident when a landmark located quite far
away from the robot is perceived. In this case a beacon occupy only a few pixels
in the image (as few as 10), and the estimation process is likely to fail.

An adequate observation model for a generic landmarks takes into account
these phenomena is

p(z|x) = p(ze) +
∑

i

p(zi|x)

here, p(z|x) is the probability of the reading z given the robot pose x. It can be
expressed as the conjunction of the following disjoint events:

– the reading is generated by a spurious reading with probability p(ze) or,
– it is due the landmark γi, with probability p(zi|x).

More in detail, p(zi|x) can be expressed as

p(zi|x) = p(z|γi, x)p(γi|x)

here, p(z|γi, x) is the probability of making the observation z given that it origi-
nates from landmark γi and the robot is in x, and p(γi|x) is the prior of perceiving
the landmark γi from the location x.

The measurement probability is a function of the angular (δα) and linear (δρ)
distance between the expected and the measured landmark locations. For every
type of landmark (beacon bi, goal post pi and line li) we use these equations:

p(z|bi, x) ∝ e(δ2
α/σ2

α)e(δ2
ρ/σ2

ρ)

p(z|pi, x) ∝ e(δ2
α/σ2

α)

p(z|li, x) ∝ e(δ2
θ/σ2

θ)e(δ2
ρ/σ2

ρ).
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In the previous equations we use α denote angular measurements, and ρ indi-
cates the distance. For lines across the fields (and corners, that are intersection
of lines), we assume that they are expressed in polar coordinates, so ρ and θ
indicates the hough parameters of a single detected line.

For a single beacon observation bi we use both angle and distance, while for
single goal post pi we only use the measured angle. This is because goal posts
are not recognized exactly and they are less reliable. Each σ inside equation is
specific to type of observation and are note the same.

The probability for the single observation models are then combined to form
definitive probabilities

pparticles =
∏

p(z|bi, x)
∏

p(z|pi, x)
∏

p(z|li, x)

4 Experiments

In this section we present the results of localization experiments for the methods
described in the previous section.

The experiments have been performed using standard Four-Legged soccer field
as used in RoboCup 2005 and RoboCup 2006. The scenario is more challenging
for localization task with respct to RoboCup 2004 setting (having a smaller field
and six beacons instead of four), where experiments in [3] have been performed.
We also use two different strategies to track real robot position: external camera
to track real position of robot and ground truth made using some measured
spot and a smoothing technique. For acquiring a smooth ground truth of robot
position we process off-line log data captured from the robot, as follows:

– we take a log containing images and internal information from the robot;
– we manually mark every feature on the images in the log;1

– we use the true perceptions to generate a log with reliable and more precise
measures about distances and angles for objects (these represent the real
ground truth of perception);

– we iterate the localization task several times on same input: first iteration the
localization is performed in normal way. The second iteration starts using the
last set of particles and use log backward from last to first frame. Running
localization many times we obtain a smoothed ground truth.

The same log (with ground truth on perception) is then used to run localiza-
tion methods (with different parameters) several times and to compare different
methods on the same input. Moreover, by using the external camera view and
the ground-truth of robot path, we can measure absolute errors in localization.

The subsequent path graphs use these conventions: green is used for field lines,
cyan for ground truth, red for SIR and blue for APF.

1 These data sets have been used also for evaluating color segmentation and image
processing and are available from www.dis.uniroma1.it/∼spqr
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Random walk without kidnapping. In the first experiment we consider the behavior
of SIR and APF using 100 particles, when the robot is in a random walk, without
obstacles. In Fig. 1, the left graph shows the result with sensor resetting disabled,
while the right one shows the behavior of sensor resetting. While the behaviour
of the two filters is similar in the first case, the SIR particle filter converges faster
and recover more precisely the position with sensor resetting enabled, while the
APF is less robust and more spikes are present in the calculated path.

Fig. 1. Random walk with sensor resetting disabled (left) and enabled (right)

Random walk with kidnapping. The second experiment considers another random
walk but with a teleporting of robot to simulate the kidnapping problem. The
kidnapping was performed from (a) to (b), shown in Fig. 2. Again the SIR filter
using sensor resetting recovers from erroneous positions quickly, while the APF
changes more slowly.

a
b

Fig. 2. Second experiment: random walkwith kidnapping from a to b

Playing mode. The third experiment has been done in a typical playing sequence.
When robot is in playing state, it interacts with other robot, competing for the
ball, occasionally kicking the ball itself. In such situations the odometry give
very noisy information to robot. Therefore, sensor resetting needs to be enabled.

Following [3], we performed experiments varying the observation frequency
(up to a fraction of 1/256) and adding Gaussian noise (approximately 15% of the
real distance and 10 degrees for the angle). As shown in Figure 3 the difference
between the two methods are negligible and both degrades its performance in a
similar way as in [3].
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Fig. 3. Performance of SIR and AUX compared a) when using only a fraction of ob-
servations and b) when additional gaussian noise is present

5 Conclusion

In this paper we have illustrated the performance of SIR-based particle filter and
Auxiliary Particle Filter, to accomplish a localization task based on visual land-
marks with AIBO robots. The results show that both the method are suitable
for this task, and that SIR is slightly better in combination with sensor resetting
techniques that are needed in the RoboCup soccer scenario.

Additional results, including the use of datasets used in [3] and [4], are pro-
vided in a technical report available from www.dis.uniroma1.it/∼spqr
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