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Abstract. We are looking for a generic solution for the optimized ball passing 
problem in the robotic soccer which is applicable to many digital simulated 
sports games with ball. In doing so, we show that previously published ball 
passing methods do not properly address the necessary balance between the an-
ticipated rewards, costs, and risks.  The multi-criteria nature of this optimization 
problem requires using the Pareto optimality approach.  We propose a scalable 
and robust solution for decision making, as its quality degrades in a graceful 
way once the real time constrains are kicking in.  

1   Introduction 

1.1   Ball Passing Algorithms: State of the Art  

Passing the ball to a teammate is a critically important player skill in many sports 
games with ball. Early RoboCup scholars have developed two reasonably good algo-
rithms for the simulated soccer [1, 2]. In both the soccer agent chooses values of the 
direction of the kick and its force. In [1] the anticipated outcome of passing ball is 
evaluated with two heuristic indicators: (1) the tactical value of the end point and (2) 
the likelihood of that the receiving teammate will intercept the ball. This algorithm is 
searching for both direct and leading passes including passes to self. The tactical 
value is the only criterion for selecting the best option; the likelihood of success is 
used as a constraint.  Although this method has proved to be rather good, it neglects 
risks such as the possible proximity of other opponents to the anticipated interception 
point. One more shortcoming is the requirement that the ball should be always inter-
cepted by the receiver in the minimal time. Indeed, this may result in lost opportuni-
ties in executing leading passes when the ball is sent to the point of the field still 
reachable by the teammate and having better tactical value.  

The algorithm implemented in [2] appears to be more sophisticated, as it is taking 
into account the opponent player congestion in the vicinity of the ball destination.  
Also are considered ball travel distance, opponent goal scoring opportunity if the pass 
is successful, and the possible outcomes if the ball would not be intercepted as in-
tended. The decision is made by deliberating on 5 options for each receiving  
teammate: direct pass, leading pass, pass to the expected location of the teammate, 
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pass to a point near teammate having low congestion, and pass along a low congestion 
line. Each alternative is evaluated using 9 performance indicators. With the purpose 
of making a choice, these indicators are analyzed using a decision tree.   

Even more advanced ball passing algorithm with player collaborating using aural 
messages was recently reported in a short paper [3]. As this algorithm is all based on a 
decision tree, it is possible that some indeed good ball passing options could be over-
looked. This is a general shortcoming of decision trees; in what follows, we discuss 
this in more detail.   

1.2   Unresolved Issues and Research Objectives  

In this paper, we address three issues.  

1. No benchmark. The existing algorithms are collections of sophisticated heuris-
tics; it is still unknown to what extent they could be improved and what the bench-
mark solution is.   

2. Smoothly balancing rewards and risk. We believe that implementing a continu-
ous spectrum of risk-taking vs. risk aversive strategies by the soccer agent is highly 
desirable.  However, in the existing methods this balancing does not render itself as a 
controlled feature.  

3. Avoiding possible conflicts with the real-time constraints. Reduction of required 
computations in existing algorithms can normally be done by removing some 
branches in the decision tree. That may result in abrupt loss in the quality of  
decisions.   

We resolve these issues using the multi-criteria decision analysis (MCDA). In do-
ing so, we are pursuing the following objectives.  

• Developing a theoretical framework for a totally optimal ball passing algorithm 
that could serve as a benchmark. We want this solution to be generic and thus reus-
able. This intention is standing in a concert with other RoboCup scholars looking for 
generic solutions [4].  
• Fully identifying rewards, risks, and costs involved in passing the ball and dem-
onstrating how they could be balanced in the proposed framework. We wish to offer a 
way to implementing a continuous spectrum of risk-taking and risk-aversive attitudes 
by the soccer player.  
• Addressing the real-time constraints. We want to propose a truly scalable solution 
with just one parameter which determines the amount of the required computations. 
We also want to design a robust ball passing algorithm that would be resulting only in 
a gradual loss of the decision quality if we are forced to bypass some computations.  

2   Rewards, Risks, and Costs in Ball Passing  

Prior to developing the optimal decision making algorithm, we identify the presuma-
bly complete list performance criteria that govern the decision to pass the ball.  

In doing so, we slightly modify the ball passing problem formulation as compared 
to [1, 2]. In our case, player with the ball considers all possible points (x, y) in the 
field and must decide to which point he should send the ball now and determine the 
ball speed in the end point.  This end speed affects the probability of the successful 
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interception by the receiving teammate; it also determines the ball travel time and thus 
the incurred risk.  The decision is made by comparing performance indicators calcu-
lated for different ball passing options.  

Once the passing player has made his choice of the point and of the ball end speed, 
he is able to determine the kicking force and direction, which are the actual decision 
variables. If the required kicking force exceeds the available limit, the point is just 
removed from the consideration. Likewise, points are eliminated if the perceived risks 
are prohibitively high.  

Each remaining potential destination point for pass is assigned a vector criterion 
having continuous values of its m components, which are the performance indicators.  
So there is a two-dimensional decision space (kicking_force, direction) and an  
m-dimensional criterion space. For the analysis, we make two modifications. First, we 
replace the decision space by a three-dimensional one (x, y, end_speed) with only two 
coordinates being independent; this space is much easier to visualize.  Second, in 
order to make our algorithm scalable when the real-time constraints are present, we 
replace the continuous decision space by a discrete one.  

We split the decision criteria in three categories: (1) gains, (2) risks, and (3) costs.   

Gains. We see two gains, or rewards, from passing the ball; we wish to maximize 
both.  

Both are similar to the indicators used in [1] and [3], which served their purpose 
very well. The first is the tactical value of the point (x, y) where the ball will be sent 
to. This function encourages sending the ball close to the opponent goal and discour-
ages destinations near own goal.  The second reflects the chance to score the opponent 
goal from the ball destination. Its value depends on the anticipated number of oppo-
nent players between the opponent goal and the destination point (x, y) of the pass.   

Risks. As proposed in [1], the risks involved in ball passing all are defined as soft 
constraints. We further improve this idea by dropping the requirement that the receiv-
ing player is intercepting the ball in minimal time. Rather, we assume that he must be 
chasing the ball if necessary.  Hence we have more risk factors than our predecessors.  

1. Opponent may reach (x,y) before the teammate. The risk function r1(x,y) is the 
time difference between the arrivals of the fastest teammate and the fastest opponent 
to this point.  
2. Ball can be intercepted by the opponent on its way to (x,y). The risk function 
r2(x,y) is the time difference between the intended arrival time of the ball in (x,y) and 
the earliest time when it can be stolen by the opponent.  
3. Teammate may be too late in point (x,y) after the ball rolls by. So the risk function 
r3(x,y) is the time difference between the arrivals of the teammate and the ball. How-
ever, this risk increases if the ball is moving in (x,y) too fast which is making it  
difficult to intercept.   
4. Too many opponents may get close by. The risk function r4(x,y) is the time differ-
ence between the arrivals of the ball and the second fastest opponent in (x,y).  
5. If the teammate fails to intercept the ball, it may cross the field boundary.  The 
risk function r5(x,y) is minus the time remained until the ball crosses this line after 
bypassing (x, y).  
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6. The receiving player may have too low stamina to chase the ball. The risk function 
r6(x,y) is time when the receiving teammate reported low stamina less current time.   
7. Ball may not reach the destination point at all, as (x, y) is too far away for given 
initial ball speed. As the ball movement is distorted by noise, the actual maximal ball 
traveling distance may differ from the calculated theoretical one, Dmax.  A soft con-
straint r7(x,y) is used to reflect this risk.  

We want to minimize each of these seven risk factors. For convenience, they could 
be scaled so that they all are taking values in, say (0, 10).  

Costs. The cost factor is the time required for obtaining the anticipated rewards, 
which we want to minimize. Taking this in consideration makes sense because the 
precision of the situation prediction substantially decreases with the forecast time. 
This criterion would be discouraging too long passes if, given all the rest conditions 
equal, shorter ones exist.  

Concept demonstration. With the sole purpose of the concept demonstration used 
throughout this paper, we have designed an example with three simplifications. (1) 
Decision space is further reduced to determining the pass direction only; end speed in 
the destination point is a fixed parameter of the algorithm. (2) Only the tactical value 
of the end point is used as the reward. (3) Risk and costs merged in just one parameter 
by applying heuristic rules.  

This allowed using two-dimensional displays for the visualization. The full-scale 
algorithm is treating all criteria separately. 

  
(a) applied risk factors 2 and 7 only (b) all seven risk factors applied 

Fig. 1. Screenshots of the software tool for analyzing the soccer player tactics. Of the original 
3600 points, most have been eliminated because the anticipated risk is inappropriately high.  
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Fig.1 shows a grid of 3600 points considered as candidates for passing the ball by 
player 11 from the right-hand team. Most are eliminated because the risk is too high. 
These points are shown in light gray; the darker points are the remaining alternatives. 
Player 11 must select the best one based on the vector of performance indicators 
available for each point.  

We wish this decision to be optimal in some sense. This sense is the Pareto  
optimality.  

3   Applying the Pareto Optimality Principle to Ball Passing  

Pareto optimality, first originated in economics, is now a standard principle for solv-
ing vector optimization problems with conflicting criteria [5].  In what follows, we 
will replace the reward function with the negation thereof; thus we want all our crite-
ria to be minimized simultaneously. In the general case, though, simultaneous mini-
mization cannot be achieved.  The Pareto optimality principle only offers a method 
for substantially reducing the set of decision alternatives by identifying among them 
the set of so-called non-dominated alternatives; altogether they are making the Pareto 
set, or the Pareto frontier.  

By definition, the criteria vector vi = {vi1,…,vim} is dominated by vector vj = 
{vj1,…,vjm} if the following condition holds: 

}{ jkik vvk >∀ . (1) 

This means that vj is located inside the cone in Rn with the vertex vi, the sides of 
this cone being parallel to the coordinate subspaces Rn-1. By definition, the Pareto set 
is the subset of non-dominated alternatives, i.e. whose cones do not contain other 
alternatives. The Pareto set is not necessarily convex, nor is it in the general case even 
connected. The computational complexity of determining the Pareto subset in the 
finite set with N elements is O(N2).   

The meaning of a non-dominated alternative vj is that outside the Pareto set there is 
no another alternative that outperforms vj simultaneously by all criteria; at least one 
criterion value is worse, anyway.  From this follows that the optimal decision should 
be sought within the Pareto set; all the rest alternatives could be eliminated as they are 
all inferior.  

In Section 4, we will be also using a weakened version of the dominance relation, 
which is called ε-domination [5, 6]. The set of non-ε-dominated points is referred to 
as ε-Pareto set. Elements lying outside this set are having at least one criterion that is 
worse by more than ε. 

Noteworthy that, eliminating ball passing alternatives before identifying the Pareto 
set, as it has been done in the existing algorithms, may result that some of the Pareto 
optimal points would be apparently removed without even evaluating thereof. This is 
exactly what may happen in decision trees. Unless the decision conditions are de-
signed so carefully that any eliminations do not affect the Pareto set, there is no  
guarantee that the decision tree yields optimal solution to the problem in all cases. 
However, the trouble is in that such a decision tree is difficult to design, and for each 
new applied problem this must be done over and over again. On the other hand, the 
Pareto optimality principle offers a general solution.  
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Fig. 2. Situation in Fig.1(b) with the points 
making the Pareto set shown in white 

Fig. 3. The ball passing alternatives in the 
criterion space. Points in the Pareto set shown 
in white. 

The Pareto set of the alternatives that player 11 in Fig.1(b) should be indeed choos-
ing from is shown in Fig 2.  This example suggests that either the leading pass to 
teammate 9 should be executed (five slightly different options), or player 11 should 
leave the ball for himself, i.e. execute so-called fast dribbling (two options). Passes to 
teammate 10 are not in the Pareto set. Note that some points near player 9 cannot be 
reached in minimal time; yet they are better for scoring the goal. Fig. 3 shows the 
situation as it occurs in the criterion space.   

The MCDA theory leaves the final choice of the single alternative from the Pareto 
set up to the decision maker. In our case, however, it is the algorithm developer who 
must formalize the player preferences which could be used for searching the Pareto 
set. This search is exactly about balancing the rewards, risks, and costs; in what fol-
lows, we explain this idea.   

A naïve approach suggests merging all criteria in just one and applying commonly 
known single-criterion optimization techniques. For example, one can use the utility 
function U of the decision variables (x,y), which is the weighted sum of risk Risk and 
gain Gain: 

),()1(),(),( yxRiskwyxwGainyxU −+−= , (2) 

where w is the positive weight, 0≤w≤ 1; it reflects the importance of Gain for the 
decision maker, as compared to Risk whose weight is thus 1-w. (Note the minus sign 
before Gain). 

To find the solution, function (2) must be minimized. Equation U(x,y) = c, where c 
is some constant, in the criterion space represents the slant strait line shown in Fig.3.  
Search for the optimal solution in this case would be moving this line towards the 
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origin by decrementing c until the line (shown in the dashed style) intersects with just 
one decision alternative B. Presumably, this would be the optimal, balanced solution 
sought.  

Unfortunately, this simple approach does work only when the Pareto set is convex 
[6]. If non-convexity is in place, some elements of the Pareto set would be never ren-
dered as the solutions to the optimization problem, no matter what values the decision 
maker assigns to w.  However, this is counter intuitive, as each point in the Pareto set 
is the best option for some combination of the decision maker preferences. In our 
example we can scan all possible preferences by varying the weight w in the range 
0≤w≤ 1. Note that, as β =tan(w), this parameter determines the angle β of the line 
U(x,y) = c (in Fig.3, w=0.335). For all possible weights, this would render only three 
points, A, B, and G of total seven available in the Pareto set (marked with black cir-
cles). The rest four would be never returned as solutions. This just illustrates the fact 
that with the multi-modal criteria functions which we are dealing with in the robotic 
soccer, a different way to finding the balanced optimal solution should be taken.  

4   Searching the Optimal Ball Passing Decision in the Pareto Set  

The different way is applying more sophisticated methods for searching the Pareto set 
that can work with non-convex problems. As there is a plethora of such methods, we 
will demonstrate just one, developed by the author of this paper. The method is called 
‘the randomized sequential elimination of the poorest alternatives’. Because it does 
not rely on any information about the criteria functions, it is applicable to any MCDA 
problem with a finite Pareto set. This nicety, comes at rather low cost: with the total 
of K elements in the Pareto set, the computational complexity of this algorithm is 
O(K2).  (Note that K<<N, where N is the number of points in the set of the alternatives 
before any eliminations.)  

The key assumption is that each criterion has its relative non-negative weight 
w1,…,wn whose sum is 1.  They are reflecting the preferences of the developer of the 
decision making algorithm. In what follows, the set of weights is regarded as a prob-
ability distribution.  

The algorithm has K-1 iterations, eliminating at a time one element from the Pareto 
having the worst value of j-th criterion.  The criterion index j is randomly selected 
with probability wj. Therefore, more important criteria tend to be chosen more fre-
quently than the less important ones.  The process ends when only one element  
remains in the working copy of the Pareto set. This is the approximation of the bal-
anced, optimal solution to the problem. With K increasing, this approximation con-
verges to the precise optimum.  

The scarce discrete subset of the real infinite Pareto set like shown in Fig.3 yields 
too rough approximation. (Note this is what has remained from the original 3600 
points.) Because further increasing the total number of points is not an option, we are 
using the ε-dominance relation instead of the strict one. This concession can be justi-
fied by that the criteria values are calculated with some errors, anyway. As we can 
guesstimate the standard deviation of these errors, we can choose ε of the same order 
of magnitude.  As the ε-Pareto set will include near-optimal alternatives, it will be 
much denser. The application of the random elimination in this case would result in 
much smaller volatility of the solution.  
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Fig.4 and 5 give the idea of what happens to the situation in Fig.2 and 3 once ε-
dominance is applied; the player indeed gets much more options to chose from. The 
cost for this is a slight deviation from the strict Pareto optimality and a longer, yet not 
prohibitive, computation time. The benefit is the better robustness of the solution 
search algorithm.  

Assigning weights to the criteria in the proposed framework has a transparent 
meaning.  Unlike using weights to sum up criteria similar to (2), in our method there 
is no way for that a higher value of one criterion apparently compensates for the in-
sufficient value of the other. So the proposed technique allows easily modeling the 
continuous spectrum of risk taking and risk aversive attitudes of the decision makers. 
This is made possible by changing weights.  

So far we have been using the example with the weight of Gain 0.335, i.e. Risk had 
about twice as much higher weight. This results in the risk-aversive decision shown in 
Fig. 4 and 5. Player 11 prefers to pass the ball to teammate 10 rather than taking the 
chance of sending the ball to teammate 9 whose position is much better.  By changing 
the weight in favor of risk taking, it is indeed possible to persuade the player to pass 
the ball to player 9 (see Fig. 6, 7).  

 

 

Fig. 4. Situation with the ε-Pareto set. Risky 
passes are avoided. 

Fig. 5. The ball passing alternatives in the 
criterion space. The Gain weight is 0.335. 

5   Addressing the Real-Time Constraints   

As described so far, the optimal ball passing decision making algorithm in terms of com-
putations appears to be even more demanding than the algorithms proposed in[1, 2, and 3].   
In the first experiments in 2003 with our simulated soccer team SFUnleashed we have 
indeed found that the quality of decisions made by players while passing the ball non-
monotonically depended on the total number of points N. Starting with small number of 
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point, quality was noticeably increasing with N. Then, with greater N, we observed signifi-
cantly decreased performance. Indeed, with large N the player process could not complete 
all required computations during one simulation cycle.    

As it should be expected for a real-time system like robotic soccer, attempts to util-
ize all the player potential by using sophisticated optimization may be counterproduc-
tive because of the prohibitive computation time. Still we decided to find a way out so 
that the real-time constraints were not so restrictive. Our solution comprises two ways 
for the time reduction.  

The first way is further reducing the number of alternatives that wittingly are not in 
the Pareto set; this can be done by replacing the equidistant grid (Fig.1-5) with ran-
domly scattered points in the vicinity of each teammate (Fig.6, 7).  

The second way is automatically adjusting the number of generated points N dur-
ing run time with respect to the actually available time in the simulation cycle. As we 
know that the complexity of the whole method is O(N2), it is always possible to esti-
mate affordable N in advance in the current simulation cycle and thus to prevent real-
time constraints from kicking in. Reducing N would result in only gradually increase 
of the random deviations from the theoretically optimal solutions, without any abrupt 
losses in the quality of decisions on the average. This behavior is quite different from 
that of the algorithms based on decision trees whose real-time scalability is very lim-
ited. Thus the proposed algorithm is robust by design and is indeed scalable with 
respect to tightened or relaxed real-time constraints.   

 

 

Fig. 6. Situation with 400 points randomly 
generated about the teammates  

Fig. 7. The ball passing alternatives in the 
criterion space. The Gain weight is 0.614.  

The full-blown algorithm is just a straightforward generalization of the simplified 
method illustrated in the above examples. The only difference is that instead of the 
two criteria function we are using all ten. The algorithms for computing these criteria 
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have been described in Section 2; some of them are similar to that can be found in the 
RoboCup literature.  

With the exception of particular performance criteria, the proposed optimal deci-
sion making framework is general enough to be applicable to a wide range of digital 
sports games with ball including all RoboCup leagues. 

References 

1. Stone, P., McAllester, D.: An Architecture for Action Selection in Robotic Soccer. In: Pro-
ceedings AGENTS’01, 5th International Conference on Autonomous Agents, May 28-June 
1, 2001, Montreal, Quebec, Canada, pp. 316–323 (2001) 

2. Reis, L.P., Lau, N.: FC Portugal Team Description: RoboCup 2000 Simulation League 
Champion. In: Stone, P., Balch, T., Kraetzschmar, G.K. (eds.) RoboCup 2000. LNCS 
(LNAI), vol. 2019, pp. 29–40. Springer, Heidelberg (2001) 

3. Wang, C., Chen, X., Zhao, X., Ju, S.: Design and Implementation of a General Decision-
making Model in RoboCup Simulation. International Journal of Advanced Robotic Sys-
tems 1(3), 207–212 (2004) 

4. Dylla, F., Ferrein, A., Lakemeyer, G., Murray, J., Obst, O., Rofer, T., Stolzenburg, F., Vis-
ser, U., Wagner, T.: Towards a League-Independent Qualitative Soccer Theory for Ro-
boCup. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. 
LNCS (LNAI), vol. 3276, pp. 29–40. Springer, Heidelberg (2005) 

5. Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, New York (2005) 
6. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, New 

York (1998) 


	Balancing Gains, Risks, Costs, and Real-Time Constraints in the Ball Passing Algorithm for the Robotic Soccer
	Introduction
	Ball Passing Algorithms: State of the Art
	Unresolved Issues and Research Objectives

	Rewards, Risks, and Costs in Ball Passing
	Applying the Pareto Optimality Principle to Ball Passing
	Searching the Optimal Ball Passing Decision in the Pareto Set
	Addressing the Real-Time Constraints
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




