A 3D Simulator of Multiple Legged Robots
Based on USARSim

Marco Zaratti, Marco Fratarcangeli, and Luca Iocchi

Dipartimento di Informatica e Sistemistica
Universita “La Sapienza”, Rome, Italy
Via Salaria 113 00198 Rome Italy
lastname@dis.uniromal.it

Abstract. This paper presents a flexible 3D simulator able to reproduce
the appearance and the dynamics of generic legged robots and objects
in the environment at full frame rate (30 frames per second). Such a
simulator extends and improves USARSim (Urban Search and Rescue
Simulator), a robot simulator in turn based on the game platform Un-
real Engine. This latter provides facilities for good quality rendering,
physics simulation, networking, highly versatile scripting language and a
powerful visual editor. Our simulator extends USARSim features by al-
lowing for the simulation and control of legged robots and it introduces a
multi-view functionality for multi-robot support. We successfully tested
the simulator capabilities by mimicking a virtual environment with up
to five network-controlled legged robots, like AIBO ERS-7 and QRIO.

1 Introduction

Robotic simulation is very important in developing robotics applications, both
for rapid prototyping of applications, behaviors, scenarios, and for debugging
purposes of many high-level tasks. Robot simulators have been always used in
developing complex applications, and the choice of a simulator depends on the
specific tasks we are interested in simulating. Moreover, simulators are also very
important for robotic education: in fact, they are powerful teaching tools, allow-
ing students to develop and experiment typical robotic tasks at home, without
requiring them to use a real robot.

2D simulators are widely used to evaluate the behaviors of robotic applica-
tions, they are very effective for many kinds of robots and applications, and are
easy to use and to customize. However, there are cases in which a 2D simulator
is not sufficient. For example, for mobile robots with higher mobility than wheels
(e.g., legged or snake-like robots) and in 3D environments, a 2D simulator may
be too simplistic to correctly model some behaviors.

A 3D simulator for mobile robots must also correctly simulate the dynamics
of the robots and of the objects in the environment, thus allowing for a cor-
rect evaluation of robot behaviors in the environment. The required accuracy of
dynamics simulation depends on the particular behavior we are interested in eval-
uating. Moreover, real-time simulation is important in order to correctly model
interactions among the robots and between the robots and the environment.

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 13-24] 2007.
© Springer-Verlag Berlin Heidelberg 2007



14 M. Zaratti, M. Fratarcangeli, and L. Iocchi

Since simulation accuracy is computationally demanding, it is often necessary
an approximation to obtain real-time performance.

Another important feature of a robotic simulator is easy integration of differ-
ent robotic platforms, different scenarios, different objects in the scene, as well
as support for multi-robot applications.

Finally, visual realism is not fundamental for robotic simulation, since may
be not adeguate to experiment and evaluate low-level sensor processes, such as
image processing. However, visual realism usually has a minimum impact on the
performance of the simulator (since most of the computation can be demanded
to graphics adapters of the PCs), while a simulator with visual realism can be
more attractive.

3D Robotic Simulators. There exist already several simulators that handle the
issues discussed above. As our aim is to address 3D physics simulation, let us see
how this feature is integrated in the simulators that have been used within the
RoboCup Four Legged league and in general for 3D modeling of complex robots.
There are several factors that make realistic robotics simulation hard to achieve.
In order to represent a valid tool for the robotics researcher, the simulator must
fulfill a number of requirements:

Flexibility: the simulator must allow for the simulation of different robots,
not even know a priori, as well sensors and actuators. The generic virtual
environment where the robots are placed, should be easy to model as well;

Physics Realism: to obtain plausible results, interaction among robots and be-
tween robots and the virtual environment must be carefully modeled through
the physical laws of rigid body dynamics;

Visual Realism: the appearance of the whole system must be as accurate as
possible to guarantee consistent sensor readings (e.g., images, audio);

Efficiency: simulation must be carried out in the most efficient way, hopefully
in real-time, with a visualization frame rate of 30 frames per second;

Modularity: it must be easy to add and modify the features of the environment
and of the robots, including the sensors input/output;

Effective Control: the simulator should be flexible enough to be easily inter-
faced to the same programming code that is used on the real robots.

The Asura Tearll] provides a development kit, namely the ASURA RoboCup
Software, aiming at reproducing the Four-legged League environment. Such a
development kit permits to develop strategies and sensor acquisition and process-
ing. However, it lacks in flexibility since it can simulate only the AIBO ERS-210
robot in the RoboCup framework and it does not permit dynamics simulation,
leading to a poor representation of the virtual system.

Zagal and Ruiz-del-Solar introduced UCHILSIM [7] in 2004. Such a simulator
reproduces with high fidelity the dynamics of AIBO motions and its interactions
with the objects in the game field. Physical simulation is carried out through

! Www.asura.ac.



A 3D Simulator of Multiple Legged Robots Based on USARSim 15

the open-source physical engine Open Dynamics Engind? (ODE) and objects
(e.g., robots) are defined in the VRML standard. The goal of this project was
to became a standard framework for learning complex AIBO behaviors. This
simulator was quite promising but it seems to be no longer developed.

Gazebo [3] is a multi-robot 3D simulator with graphical interface and dynam-
ics simulation (through ODE). It is able to simulate a wide range of sensors and
it comes with models of existing robots even if the simulator does not allow to
define complex objects (e.g., dummies for rescue arenas, moving people in the
scene, a ball in the soccer field). The robots and sensors can be controlled by the
Player [2] server or controllers can be written using a library provided with the
simulator. Simulated environment are described in XML and new robot/sensor
models can be created as plug-ins. Simulation of legged robots is supported but
not extensively used in the current release.

SimRobot [4] by Laue et al. simulates arbitrary user-defined robots in three-
dimensional space. To allow an extensive flexibility in building accurate models,
a variety of different generic bodies, sensors and actuators has been implemented
and specified in XML. The robot controllers are directly linked with the simu-
lator library to produce an executable file. Furthermore, the simulator follows a
user-oriented approach by including several mechanisms for visualization, direct
actuator manipulation, and interaction with the simulated world. Dynamics is
simulated through the ODE engine.

Webotd is a commercial general purpose mobile robotics simulation software.
It uses ODE to simulate dynamics and it has an extensive library of actuators,
sensors and robots like Aibo, Lego Mindstorms, Khepera, Koala and Hemisson.
While the mechanical features of the robots are well defined, the main limitation
of this simulator resides in the poor quality of the 3D graphical representation of
the virtual environments, including robots and in the lack of adequate modeling
tools.

USARSim (Urban Search and Rescue Simulatoﬁ [6/1] is a robot simulator
based on the industrial game engine Unreal Engindl. It simulates the reference
test arenas developed by National Institute of Standards and Technology (NIST)
and robots intended for the Urban Search & Rescue (USAR) tasks. Since Unreal
Engine has been deployed for the development of networked multi-player 3D
games, it solves many of the issues related to modeling, animation and render-
ing of the virtual environment. It is a complete game development framework
targeted at today’s mainstream PC, it provides tools to rapidly develop objects
and environment (Unreal Editor) and it is possible to define the behavior of the
objects through an ad-hoc script language (Unreal Script). Dynamics of rigid
bodies is transparently handled by the Karma physical engine [5]. As in Gazebo,
robot controllers use a TCP/IP interface to control the robots and so may
be programmed in any language that supports networking. The Client/Server
architecture can be advantageously used to carry out complex computations
on dedicated machines decoupling the simulation from intelligence processing.

2 Open Dynamics Engine www.ode.org.
3 www.cyberbotics.com/products/webots//.
www.unrealtechnology.com.



16 M. Zaratti, M. Fratarcangeli, and L. Iocchi

However, the current version of USARSim is not able to simulate legged robots,
like AIBOs, and it has several limitations like the total number of joints allowed
for each robot, a limited support for multi-robot scenarios and an approximative
collision handling.

Discussion. From the analysis of the existing simulators it appears that a gen-
eral 3D simulator for legged robots with good dynamics simulation, multi-robot
support, realistic appearance, and easy-to-use editing tools is not currently avail-
able. USARSim is the most promising, since it already implements many required
features and it can be easily extended. Unreal Engine has a significant industrial
support and a simulator based on it will benefit from new releases of this engine
as soon as they are available, with minimum effort. Unreal Engine uses a different
physical engine (Karma) than other simulators (using ODE). To our knowledge
there are no comparative studies between these two engines and we believe the
choice of ODE is given only by its open-source code. Unfortunately, the cur-
rent version of Unreal Engine (and USARSim) makes a partial (and sometimes
incorrect) use of the Karma engine. Finally, USARSim has been chosen as the
standard simulator for a new RoboCup Rescue simulation league.

In this paper we present a 3D simulator based on USARSind] that allows for
modeling complex legged robots (such as quadrupeds and humanoid ones) and
for simulating their interaction. The performance of the system allows for simu-
lating in real-time up to five of these robots in the environment. The simulator
presented in this paper extends USARSim by introducing some important fea-
tures: 1) it allows for the simulation and control of legged robots (four-legged,
humanoids, etc.) 2) it introduces a multi-view functionality for multi-robot sup-
port. Moreover, we fixed a few problems in the use of the physical engine Karma,
that was not fully and correctly integrated in the Unreal Engine.

We successfully tested the simulator by implementing AIBO ERS-7 and QRIO
robots, controlling five of them at full frame rate (30 fps). The simulator is
actually in use for the development of our team competing in the RoboCup
Four-Legged League.

2 3D Multi-robot Simulator Architecture

In order to use a simulator for multi-robot applications, it is important to provide
an effective interface to multiple robot control programs. A typical choice (e.g.,
Gazebo [3]) is to run the simulator as a server allowing robot control programs
to act as clients. The robot control programs receive from the simulator data
emulating sensor readings and send commands for the actuators. The simulator
server manages interaction among robots and between robots and objects in
the environment, maintaining an up to date representation of the world. For
a realistic simulation, it is thus important that the simulation is asynchronous
with respect to robot control programs. Moreover, the simulator must process
data in real-time, otherwise it will feed robot control programs with unrealistic
data.

® The simulator and demo videos are available from www.dis.uniromal.it/~spqr.



A 3D Simulator of Multiple Legged Robots Based on USARSim 17

Server

/ Image Server

_\ N‘f,tfy?rk Client

L

Controller
Robot A

USARSim
interface

<>

Client

Controller
Robot B

USARSim
interface

Camera Coordinates ﬁzi

Controller
Robot C

USARSim
interface

New Hinge
collision
&

primitives Oscillation H /
management reduction Sensory d@

Fig. 1. Multi-Robot architecture

Commands

S

When using a 3D simulator with realistic modeling of appearance and dynam-
ics of the environment, computational time is a main requirement and therefore
it is usually necessary to run this process on a different machine with respect to
robot control programs. Therefore, a networked client/server architecture should
be used for 3D multi-robot simulation. The server machine runs the 3D simula-
tor as a multi-client server. Other machines connected through TCP/IP act as
robot control programs.

The choice of USARSiIm as the basis for the simulator described in this paper
has required the implementation of another module, to overcome the problems
due to the fact that the underlying game engine is not designed to act as a multi
user server on a single machine. In fact, it is possible to use USARSim for multi-
robot applications as long as only one robot is provided with a video camera.
To simulate a multi-robot system with one camera per robot, it is necessary to
run one USARSim process (actually an Unreal client) for each robot. Moreover,
it is possible to run only one client per machine. This solution requires too
many resources for a single simulation: for example, if robot control programs
are separated from simulation we may need up to 2n machines for an n-robot
simulation. Otherwise it is possible to use a single machine switching among
robot cameras every t seconds, where t depends on the simulation load on the
machine. However, also this solution is not advisable because it offers extremely
low image acquisition rates, and it is not possible to access multiple cameras



18 M. Zaratti, M. Fratarcangeli, and L. Iocchi

at the same time. The solution proposed in this paper allows for using a single
machine for the simulation in presence of multiple robots with multiple cameras
without the aforementioned drawbacks.

The architecture of the multi-robot simulator we have implemented is depicted
in Figure[Il

The USARSim interface module on the clients manages all the communica-
tions with USARSim. It was created to translate or modify both outgoing com-
mands and incoming sensory data. This interface allows to adapt USARSim
to already existing controllers with minimal changes. It also allows to pre-
process sensory data if necessary (e.g., apply distortions introduced by real robot
cameras).

3 3D Multiple Legged Robot Simulator

In this section, we describe the main modifications and extensions that we im-
plemented in USARSim in order to allow the simulation of legged robots like
quadrupeds, bipeds, hexapods and so on. We conclude by presenting an exam-
ple with two different robots, Sony AIBO ERS-7 and Sony QRIO, operated by
independent controllers, coexisting and interacting in the same environment.

Oscillations of Rigid Parts. The first problem we faced was due to the oscillation
of all the rigid parts of the robots. The amplitude of the oscillations was +2mm
on X, Y and Z axis and it has been observed only when the simulation has
been run in networking mode, when server and clients were running on separate
machines. The cause was in the replication mechanism, used by Unreal Engine
to synchronize server and clients. We fixed this issue in a straightforward way
by using in the USARSim code a different data type not subject to network
optimizations.

Collision Handling. A collision primitive is an invisible volume with a simple
shape (e.g. a box, a cylinder), embedding a 3D mesh and it is used to simplify the
collision detection process with other meshes. It is also useful to define dynamic
properties like center of mass and inertia tensor. A well-defined collision handling
is crucial for a plausible physical simulation and so the correct definition of the
collision primitives.

In the original USARSim, each single part of a robot is defined by the class
KDpart where, beside other information, it is specified the shape of the robot
part and a default collision primitive. When the simulator loads a robot in the
virtual scene, the original USARSim assembles all its parts with the correspond-
ing collision primitives on the fly. The process however is prone to a sneaky
Unreal Engine bug causing the loading of the same default collision primitive
for each mesh. To bypass this bug, our approach has been to write a script, de-
rived from KDpart, for each part of the modeled robots. In this way, meshes and
collision primitives have not to be defined at run-time (with a new static-mesh
properties) but it is sufficient to specify them in the definition script of the robot.

Because this major change, our implementation lost compatibility with the
robots deployed with the original USARSim. To be able to continue to use these



A 3D Simulator of Multiple Legged Robots Based on USARSim 19

robots, we defined new scripts for each one of them, including the fine-tuning of
physical parameters like mass, center of mass, inertia tensor and friction.

Hinge Joint. Original USARSim defines one motorized joint to connect the dif-
ferent parts of the robot, the CarWheelJoint (Fig.[2]). Such a joint is provided by
Karma physics engine integrated in the Unreal Engine and allows two or three
DOFs, depending on its configuration. We did not use this joint because for our
objectives, only one DOF was needed. USARSim allows for locking the suspen-
sion DOF, leading to a one-DOF joint, however the resulting joint is not stable
enough for rigid parts, and it leads to instability of the simulation. Furthermore,
with the CarWheelJoint, it is rather difficult to obtain the relative rotation angle
among joined parts. Such angles cannot even be set precisely, since there is at
least an error of +0.5 degrees, and this error drift away (i.e. increase) over time.

| ——— steering axis (hinge) o
= e
(@)
<«———— suspension (prismatic)
! NE
- 5 —<— wheel rotation axis (hinge)

-7

Fig. 2. CarWheelJoint [5] Fig. 3. Hinge Joint [5]

For these reasons, we modified USARSim in order to use another joint model,
the Hinge (Fig. B]), also provided by Karma engine and not suffering from the
aforementioned issues. Hinge allows one DOF, may be controlled in angle, angu-
lar velocity and torque, the maximum allowed precision is 0.0055 degrees, and it
implements a feedback mechanism providing a stable control of the angle among
joined parts.

Original USARSim allows up to 16 joints for each robot. This bound have been
increased by modifying the size of some internal structures in the simulator code.

Multiple Views Support. Unreal Engine allows only one robot camera to be
accessed at each frame. If more robots are placed in the virtual environment,
only one robot controller may be correctly feed with image data. To allow the
simulation of multiple robots, we attempted to interleave images obtained by
accessing a different camera at every frame, but this solution is not feasible since
simulation and controller modules run asynchronously. The solution provided by
the original USARSim is to use the Unreal Engine multi-player support. Each
robot runs on a different computer with its graphical client and a central server
handles the whole simulation. This solution is obviously not suitable for multi-
robot development since it requires too much hardware.

To solve this problem, we introduced a special kind of robot, namely the Mul-
tiView. MultiView collects camera locations and orientations from each camera



20 M. Zaratti, M. Fratarcangeli, and L. Iocchi

Image Server
()

~Network

A R Controller Robot A
i 1Camera Coordinates
- Controller Robot B
Multi |Rendering
View .
. e . E Controller Robot C
k i3 J me— “,. : Controller Robot D

Fig. 4. Each robot camera is rendered by MultiView. Those images are then collected
and splitted by ImageServer which sends them to the controllers.

USARSim

A¢'Unreal Tournament 2004

Fig. 5. Multi-Robot example

on the robots and renders each robot view in a different subview. This image
mosaic is then grabbed by ImageServer, a thread running on the same machine
where the USARSim server resides, by direct access to the Direct3D frame buffer.
The views from each robot are extracted from the mosaic and sent across the
network to the corresponding controllers (Fig. M). This solution allowed us to
simulate and control multiple robots using cameras by running the simulator on
a single machine. The only limitation is in the reduced resolution of the images.
Observe that this is not a problem, since simulation can not anyway be used
to validate image processing. Moreover, for robots with low-resolution cameras
(such as AIBOs), actual resolution can be obtained.

AIBO Sensors. To simulate the AIBO ERS-7 we also added 3 new sensors:
a simplistic instant acceleration sensor, a contact sensor and a more flexible
IR distant sensor than the one already defined in the original USARSim. In



A 3D Simulator of Multiple Legged Robots Based on USARSim 21

particular, our IR distant sensor permits to set the maximal bound of the error
magnitude in function of the measured distance.

MultiView and the client/server architecture allow to mix easily different ro-
bots in the same simulation. Figure Bl shows an example of two different robots,
an AIBO and a QRIO humanoid robot, in the same map and handled remotely
by different controllers.

4 Run-Time Environment Management

The flexibility of Unreal Engine and Unreal Script allowed us to define the be-
havior of the virtual environment in real-time.

We define the complex behavior of the objects in the virtual environment
through events and triggers. An event is casted when an object, like a robot,
comes in contact with a trigger, that is an invisible volume that can be placed
anywhere in the map. Each event corresponds to an action like, for example,
an affine transformation applied to an object (e.g., open and close a door or a
passage), can turn on and off lights or motors. An event can activate users own
script routines, permitting endless possibilities. Events can be chained, sched-
uled, dispatched to many objects or randomly generated.

To manually control objects and robots in the simulation environment, we
defined new Unreal Tournament client console commands able, for example, to
reset the simulation, to change lighting conditions, to transfer objects and robots
from one place to another and so on.

Console commands can also be embedded into the script code defining the
behavior of the robots. For example, it would be possible for a robot to modify
the simulation laws in order to let it fly from one place to another.

5 Results

This section provides an investigation on physical behavior and the overall per-
formance of our simulator. The testing machine has an AMD Athlon XP Bur-
ton 3000+ CPU with 1Gb DDR400 RAM and the nVidia FX 5900XT graphic
adapter.

Physical Simulation. A plausible physical behavior is a primary concern if we
want to test and simulate algorithms operating on real robots. USARSim uses
Karma physics engine which is designed for video-games and not for robotics
simulation. This means that the realism of the physical simulation is always
sacrificed in order to achieve a smooth rendering frame rate (at least 30 fps).
However, the accuracy of the simulation is not severely compromised because
the approximations introduced by the Karma engine are comparable to the
measurement errors due to the real robot sensor and actuator noise. Thus, it
is not crucial to precisely quantify the approximation error, but it is important
to qualitatively estimate the behavior of the robots involved in the simulation.
Figures [6l and [ show the results of the two principal interactions that may hap-
pen on the RoboCup field: ball kicking and AIBO collisions. We experienced a



22 M. Zaratti, M. Fratarcangeli, and L. Iocchi

Fig. 6. AIBO kicking the ball Fig. 7. Three AIBOs collision

Time [s] Time [s]
5 15 2 35 45 55 65 75 85 5 50 55 60 6 7

Number of AIBOs
Rendering time [ms]

Rendering time [ms]

Fig. 8. AIBO creation stress test Fig. 9. 3 AIBOs collision

visually convincing behavior of the physical simulation and we can conclude that
it is adequate both for a RoboCup simulation and for more general robot-robot
and robot-environment interactions.

Performance. The first experiment, made to assess the simulator performance,
determines the maximum number of supported AIBOs at the same time in the
map using only the test bed PC. Each AIBO is created and set in walking
state to make full use of the physics engine. The graph in Fig. [8 shows that the
performance is still acceptable with five AIBOs, since the visualization frame
rate is still greater than 25 fps.

The second test stresses directly the physics engine making AIBOs to collide
with each other. When collisions occur, more than 75% of CPU time is devoted to
collision detection and response. The graph in Fig. [0 corresponds to the collision
of 3 AIBOs. It is very jagged and each performance drop corresponds to a contact
between two or more robots. This result confirms that collision handling is the
computation bottleneck.

In conclusion, the simulator can sustain at full frame rate five complex robots,
three of which can collide at the same time.



A 3D Simulator of Multiple Legged Robots Based on USARSim 23

6 Discussion

In this paper we have described the implementation of an extremely flexible
simulator for multiple legged-robots. It supports rigid-body dynamics, realistic
3D environments, client/server architecture and real-time rendering. The simu-
lator handles up to five legged robots at 30 frames per second on a middle-class
hardware. Furthermore, it is coded in Unreal Script, the scripting language of
Unreal Engine. This means that, although Unreal Engine is not open source, our
extension is open and will be shared through the community, therefore everyone
can access its script code, change its behavior, add new robots, sensors and any
other functionality that may be required employing little effort.

As stated before, the choice of using Unreal Engine solves many of the main
practical problems faced during the implementation of a robot simulator. How-
ever, such an engine has been devised primarily for games, not for robotic sim-
ulation. Thus, designers chose to sacrifice physical realism to obtain smoother
animation and they bounded the physical time step to the visualization frame
rate (i.e., the time step is equal to the frame rate), whereas the simulation and
visualization could be clearly separated.

However, the advantages of using an industrial product are in the great de-
velopment support they provide and in the availability of many effective tools
to create contents such as scenarios and objects. For example, the Unreal Editor
allows for easy creation of generic environments (Fig. [[)), even with scripted
objects reacting to changes in the system.

Moreover, improvements to the engine will directly reflect to improvements
in the simulator with little effort, while obtaining significant advantages. For
example, we intend to upgrade the simulator to use Unreal Engine 3 as soon
as it will be available. This will dramatically enhance rendering quality, physics
simulation, script and net code.

Applications. The primary use of this simulator is to evaluate the behavior of
legged robots in a dynamic environment, such as RoboCup soccer. The advan-
tages of using this simulator are evident in multi-robot contexts. As described
above, the simulator is able to simulate in real-time up to 5 robots. We believe
that with increasing CPU power it will soon possible to simulate a 4 vs. 4 game.

We have used the simulator to evaluate different situations, such as an at-
tacker robot against three defenders and a goalie, two attacker robots against
two defenders and a goalie. A first important process is debugging and refining
plans, i.e., evaluating if the robots take the correct decisions according to the cur-
rent state of the game. Note that a 2D simulator would have some limitations in
this process: for example, partial occlusions of the ball, contacts between robots
cannot be realistic modeled in 2D. A second process is to evaluate coordination
strategies: e.g., position of the robots that are not in possess of the ball, position
of the defenders, and decisions about when and how to pass.

In order to make development more effective we have implemented a USAR-
Sim interface (as described in Section ), thus the same control code can be
run connected to the simulator or on the real robot. This allows for a fast and
effective development of many tasks by the students of our group.



24

M. Zaratti, M. Fratarcangeli, and L. Iocchi

Fig. 10. Unreal Editor used to create RoboCup soccer field and a test arena

Future works. The extensions described in this paper will be integrated in the
USARSim simulator. Moreover, we are planning to make some further improve-
ments like enhancing sensor data message handling and making simpler and more
rapid the creation of new robots. A further major task will be the modification
of the Unreal Tournament deathmatch code in such a way to provide tools to
interact with the environment during the simulation run; for example, we intend
to implement tools like a game controller interface and a virtual referee placing
the robots for the RoboCup soccer setting.

References

. Carpin, S., Wang, J., Lewis, M., Birk, A., Jacoff, A.: High fidelity tools for rescue

robotics: results and perspectives. In: Proc. of RoboCup Symposium (2005)

. Gerkey, B., Vaughan, R.T., Howard, A.: The Player/Stage Project: Tools for Multi-

Robot and Distributed Sensor Systems. In: Proceedings of the 11th International
Conference on Advanced Robotics (July 2003)

. Koenig, N., Howard, A.: Gazebo - 3D Multiple Robot Simulator with Dynamics

(2006), http://playerstage.sourceforge.net/gazebo/gazebo.html

. Laue, T., Spiess, K., Rofer, T.: SimRobot - A General Physical Robot Simulator

and its Application in RoboCup. In: Proc. of RoboCup Symposium. Universitét
Bremen (2005)

. Mathengine: MathEngine Karma User Guide (March 2002)
. Wang, J., Lewis, M., Gennari, J.: A game engine based simulation of the NIST

Urban Search & Rescue arenas. In: Proceedings of the 2003 Winter Simulation
Conference (2003)

. Zagal, J.C.; Ruiz-del, J.: Solar. UCHILSIM: A Dynamically and Visually Realistic

Simulator for the RoboCup Four Legged League. In: Nardi, D., Riedmiller, M.,
Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276,
Springer, Heidelberg (2005)


http://playerstage.sourceforge.net/gazebo/gazebo.html

	A 3D Simulator of Multiple Legged Robots Based on USARSim
	Introduction
	3D Multi-robot Simulator Architecture
	3D Multiple Legged Robot Simulator
	Run-Time Environment Management
	Results
	Discussion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




