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Abstract. For a robot in a dynamic environment, the ability to detect
motion is crucial. Motion often indicates areas of the robot’s surround-
ings that are changing, contain another agent, or are otherwise worthy of
attention. Although legs are arguably the most versatile means of loco-
motion for a robot, and thus the best suited to an unknown or changing
domain, existing methods for motion detection either require that the
robot have wheels or that its walking be extremely slow and tightly
constrained. This paper presents a method for detecting motion from
a quadruped robot walking at its top speed. The method is based on
a neural network that learns to predict optic flow caused by its walk,
thus allowing environment motion to be detected as anomalies in the
flow. The system is demonstrated to be capable of detecting motion in
the robot’s surroundings, forming a foundation for intelligently directed
behavior in complex, changing environments.

Keywords: robot vision, image processing.

1 Introduction

The ability to detect motion is important to a robot in a novel or changing envi-
ronment. Motion can potentially be a very significant clue about which parts of
the environment are interesting or dangerous. For example, consider a consumer
robot in the home, such as the commercially available Sony Aibo[1]. Motion can
give it clues to where humans are located in its environment, which will help
it interact with them more effectively. It can also be used to direct the robot’s
attention to potential danger, such as a stack of books sliding off of a desk or
the family dog preparing to pounce on it. As another example, consider a sur-
veillance robot [2]. Modern surveillance systems are primarily based on motion
detection. If a robot must stop its own motion in order to detect motion in its
surroundings, much of the advantage of using a robot instead of a simpler system
(such as a set of stationary cameras) is lost.

If a robot is to be able to deal with truly novel environments, it is also an
advantage for the robot to have legs rather than wheels. Legs allow traversal of
highly uneven surfaces. A legged robot can step over obstacles or climb stairs,
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whereas analogous feats are often impossible for a wheeled robot. However, the
motion of a legged robot is not as smooth as that of a wheeled robot. This charac-
teristic introduces additional challenges for detecting motion in the environment
while the robot itself is moving.

The main contribution of this paper is a method for detecting motion from
a quadruped robot while it is walking at its maximum speed (approximately
35cm/sec). The overall architecture is inspired by that of Lewis [3], but our
method differs in several important ways: preprocessing of optic flow has been
eliminated, a substantial postprocessing step has been added to the output of
the neural network, and the details of most of the architecture’s components
have been redesigned. These innovations make our method effective in a less
constrained environment than Lewis’s method requires, and also allow use of a
significantly faster-moving robot.

The paper is organized as follows. Section 2 gives a background on optic flow
and describes related work that uses optic flow for navigation and obstacle de-
tection on mobile robots. Section 3 introduces the method for detecting external
motion. Section 4 describes the setup of the system used in the experiments, as
well as the details of the experiments themselves. Section 5 presents the results
of these experiments, and Section 6 discusses these results as well as possible
directions for the future.

2 Background and Related Work

2.1 Optic Flow

Optic flow is a way of describing the apparent motion between two images of
the same scene taken in quick succession. It is typically expressed as a vector
field, with a two-dimensional vector for each pixel in the first image, representing
vertical and horizontal displacement. These vectors give a complete description
of where each pixel in the first image appears to have moved in the second image.

The apparent motion in two dimensions depends on the actual motion in three
dimensions in a complex manner. Sometimes it is difficult to determine whether
the motion is the result of the camera moving or objects in the scene moving.
In other cases, it is clear that an object is moving and not the camera, but the
actual direction of the object’s motion cannot be determined because only part
of the object is visible (this effect is known as the aperture problem).

For an intuitive understanding of some of these issues, consider a passenger
looking out the right-hand side window of a car at an adjacent vehicle while s/he
is waiting for a stoplight to turn green. Without prior knowledge, the scenes s/he
perceives if the car appears to move to the left could be interpreted in a number
of ways — the other car might be moving forward and the passenger’s car might
still be stationary, or the other car might be stopped and the passenger might
be moving backward, or both cars might be moving forward or backward at
different rates. Thus, while the optic flow field contains a wealth of knowledge,
interpretation can be difficult.
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Optic flow is formulated in terms of instantaneous (in space and time) image
intensity gradients. The key formula defining the optic flow between two images
in a sequence is

It+dt($+u(x’y)7y+v(x’y)) :It(xvy)’ (1)

where I;(z,y) is the image intensity at each pixel at time t, ;44 (x,y) is the
image intensity at time (¢ + dt), u(z,y) is the horizontal flow at each pixel, and
v(z,y) is the vertical flow at each pixel. Thus the horizontal and vertical optic
flows generate a “mapping” between corresponding pixels in the two images.

A perfect solution to the optic flow formula is rarely available because of
effects such as noise and occlusion. Instead of trying to compute a total solution,
most approaches attempt to minimize the error in equation (1) summed over all
pixels in the image. Computation of optic flow is an underconstrained problem;
therefore, in addition to minimizing the error in the pixel matching between
images, a smoothness constraint is typically included. This constraint is justified
because for images of real-world objects (which are, in general, smooth and
connected) the optic flow field is likely to be smooth at almost every pixel. The
objective function for optimization then becomes
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where f € {I,u,v}. The correctness and smoothness components to the opti-
mization are clearly visible as the first and second group of terms in the objective
function, respectively. As the optic flow field generates a more accurate matching
between pixel intensities in the two images, the first group of terms will decrease
towards zero. As the field becomes smoother (showing less variation between ad-
jacent pixels), the second group of terms will decrease towards zero. The relative
importance of these terms is regulated by the parameter A\. Because formulation
of the optic flow field is based on local gradient information, its computation is
often more accurate when images are only incrementally different.

Optic flow is often computed via iterative relaxation, by one variation or an-
other of an approach developed by Horn and Schunk in the 1980s [4]. In this ap-
proach, the proposed solution is initialized, and on each iteration, the solution is
refined by propagating information from each pixel to its local neighbors through
a local averaging of the optic flow field. This process is guided by the equations
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D=\ +1; + I.

In these equations, u*(4,7) and v*(i, ) are the k*" iteration’s estimates of the
horizontal and vertical flow at pixel (4,7), and f(z,y) is the local average of
function f(-) near pixel (z,y). Iteration continues until a convergence condition
is reached or a maximum number of iterations, kpyax, have occurred. Although
many alternatives have been studied, this 25-year-old approach continues to be
one of the most common and effective methods of optic flow computation.

2.2 Optic Flow in Navigation

Optic flow is useful in navigation and obstacle detection, and several groups have
used it for these purposes in robots [5, 6]. In general, the robots are wheeled (or
airborne) instead of legged, which means that their typical motion is smoother.
This regularity of motion makes normal optic flow easier to characterize, so
abnormalities such as the ones caused by obstacles can readily be detected.

A method for detecting obstacles in the walking path of a bipedal robot using
optic flow information was recently developed by Lewis [3]. In this method, a
neural network uses the robot’s joint angles and gait phase to predict optic flow
events. This prediction is compared to observed optic flow events, and any sig-
nificant difference between the two indicates that an obstacle has been detected.

The success of Lewis’s approach indicates that optic flow can be a source of
useful information even on legged robots. It also suggests that neural networks
are a promising tool for overcoming the difficulty of characterizing normal optic
flow on legged robots, as discussed above. However, Lewis’s experiments take
place in a highly constrained environment. The robot is tethered so that it walks
in a circle, and its camera is fixed at a slight downward angle so that it is always
focusing on the ground slightly in front of it, which is the same at all points
around the circle (with the exception of the obstacles it must detect during the
testing phase). It also walks very slowly (2cm/sec).

In order to be generally useful, a motion detection method for a legged robot
should be free of these constraints. If the robot cannot move freely through non-
uniform environments and still detect motion, there is little benefit to using a
legged robot at all — a wheeled robot or even a stationary camera could probably
do the same task more reliably. In addition, a robot should ideally not have to
slow down its own movements in order to accommodate the motion detection
algorithm.

The method presented in this paper is effective on a freely moving robot
walking at its top speed (35cm/sec). It also differs from Lewis’s approach in
that it operates on the raw optic flow field rather than on preprocessed data
(optic flow “events”), and a substantial postprocessing step has been added as
part of comparing the neural network’s prediction to the actual observed optic
flow. It is not clear to what extent the predictor neural network differs from that
of Lewis, because details of his architecture are not available.
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3 Motion Detection Method

The proposed method is depicted in Figure 1. First, the optic flow in the image
is calculated. The resulting vector field is then given as input to a neural network
along with information about the current position in the robot’s walk cycle and
readings from its three accelerometers. This neural network outputs a prediction
of the optic flow to be seen in the next image. When the robot receives this next
image, the optic flow is calculated and compared with the network’s prediction. A
postprocessing algorithm then looks for discontinuities in the difference between
the calculated and predicted optic flow to determine where in the image the
externally moving objects are likely to be found.

3.1 Optic Flow

Training and testing sequences of optic flow were obtained from the Aibo and
transferred to a set of image files on a desktop PC’s hard disk. Image sequences

Image 7+1

Accelerometer and
walk phase data

Optic flow
calculation

Predictor
neural net

flow ¢ ¢ predicted flow #+1

Difference and
postprocessing

|

Motion

Fig. 1. An overview of the method for detecting moving objects in the robot’s envi-
ronment. (Zf1 is a one-step delay operator.) Optic flow, accelerometer readings, and
information about the current phase of the robot’s walk are given as inputs to a neural
network, which then predicts the optic flow to be observed at the next timestep. The
difference between the prediction and the observed optic flow is then used to detect
any locations in the image that contain moving objects.
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Input layer (actual optic flow at time ¢ , walk phase and accelerometer info)

’ Previous hidden layer ‘

(copy)
’ Hidden layer Py
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Fig. 2. The simple recurrent network used to predict the optic flow. All projections are
full and feed-forward, except for the projection from the hidden layer to the previous
hidden layer. This projection is a direct copy of the hidden layer activations into the
previous hidden layer. In this way, some context is kept in the network, allowing it to
retain information from previous inputs.

were then loaded off the disk, the optic flow calculations were run, and the result-
ing flow fields were stored back to the disk for later use in training or comparison
against predicted flow. Although in principle these calculations could be done in
real time on the Aibo, offline experiments test the method more efficiently.

The optic flow fields were computed by a Matlab implementation of Horn &
Schunk’s iterative relaxation algorithm described in Section 2.1. Identical para-
meters, A = 1.0 and kpax = 1000, were used to compute all training and testing
data. These parameter choices resulted in very smooth fields. While generally
smooth fields might be expected given the Aibo’s known motion characteristics
and environment, additional work will have to be performed in the future to
understand whether using parameters that generate more rapidly-varying optic
flow fields could allow more accurate motion discrimination.

3.2 Predictor Neural Network

The predictor neural network, shown in Figure 1, accepts three types of infor-
mation as input. The first is an optic flow field. The second is a single number
indicating the robot’s position in the walk cycle at the time of the second image
(of the two images used to calculate the optic flow field). The third is a set of ac-
celerometer data corresponding to the same image. In the experiments described
in this paper, a simple recurrent network architecture [7] was used ! (Figure 2).

The network is trained on sequences of optic flow fields, which are generated
from sequences of robot camera images in which there is no external motion.
Thus, the network is effectively learning to produce what the next optic flow

! Informal experimentation indicated that a simple recurrent network performs better
than a three layer feed-forward network. However, such a non-recurrent network is
also capable of some success at this task.
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field should look like if there is no external motion, given the last optic flow field
observed and information about the robot’s acceleration and position in the walk
cycle. By comparing this prediction to the actual optic flow observed at the next
timestep, it is possible to see which parts of the image exhibit unpredictable
motion, indicating where objects moving relative to the world can be found in
the image.

3.3 Postprocessing

Consider the vector field resulting from taking the (vector) difference of the pre-
dicted and actual optic flow fields. Taking the magnitude of each of the elements
of this vector field results in a matrix of the same size, called the difference field.

The discontinuous motion of the robot’s camera and the noisy nature of real-
world sensor data make the optic flow prediction task quite difficult. Although
the neural network typically does a reasonable job of predicting optic flow for
image sequences containing no external motion, its prediction is occasionally
entirely wrong. Therefore, the naive approach — simply taking the size of the
difference field at each point to be the likelihood of external motion at that
point — will not suffice.

However, these magnitudes do contain useful information. Because the neural
network is trained with images from an environment in which nothing other than
the robot itself is moving, all of its targets during training were optic flow fields
with coherent motion. So, assuming the images contain no external motion, even
when the network makes a wrong prediction that prediction will be more or less
“equally wrong” at all points. If there is external motion in the scene, however,
there will often be sharp discontinuities in the difference field, which can be
discovered by running an edge detection algorithm on each difference field.

The edge detection used in the postprocessing step is rather unconventional.
Many edge detection algorithms are designed to find the best edges in an image,
even if that image has only poor candidates for edges. However, if there are
no sharp edges in the difference field at some timestep, there is probably no
motion in the image. Therefore, in this case the postprocessing algorithm should
not find any edges. To this end, first a binary version of the difference field is
obtained by finding its maximum element and replacing every element extremely
far away from this maximum? with a zero, and replacing the rest with ones.
Then a conventional edge detection algorithm (such as the Laplacian of Gaussian
method) is run over this binary difference field.

4 Experimental Procedure

The images used in the experiments discussed here were acquired by a Sony Aibo
ERS-7 walking across a standard 2004 RoboCup legged league field [8]. The Aibo

2 In practice, to be “extremely far away from the maximum,” an element must be
very close to zero and the maximum over the difference field must be large. This
constraint enforces that all edges found in the next step will correspond to very
sharp edges in the original difference field.
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Fig. 3. A typical trajectory used in our experiments

has three degrees of freedom in each of its four legs as well as its head. It has a
CMOS camera in the head, from which it is possible to capture approximately
25 images per second®. The robot always starts close to the center of the yellow
goal facing outward toward the field center (although not always in the exact
same location) and then walks most of the way across the field* using the fastest
available forward walk (approximately 35cm/sec)[9]. Due to the Aibo’s slight
left-right weight asymmetry, the forward walk curves slightly to the right over
long distances. Thus a typical trajectory looks like the one depicted in Figure 3.

The resolution of the Aibo images was first reduced by a factor of 6 in both
the horizontal and vertical directions by averaging 3-by-3-pixel blocks of half-
resolution Aibo images. Images were converted from full color to grayscale before
the optic flow computation, but no other image preprocessing (histogram equal-
ization, deblurring, etc.) was performed.

The resulting images and flow fields consisted of 35 columns by 27 rows. This
lowered image resolution allowed a simpler neural network to be trained and
decreased the runtime of optic flow computations. Exact runtime performance
was not recorded, but computing the optic flow field for one frame pair required
approximately 1s of CPU time on a 1.8GHz desktop machine. Real-time perfor-
mance will require that the current implementation be optimized for speed and
translated from Matlab to a language more suitable for embedded operation on
the Aibo.

As discussed in Section 3.2, a simple recurrent architecture was used for the
predictor neural network. This network had a 200-unit hidden layer. It was
trained with backpropagation (using momentum) on data from six runs of the
robot on an empty field, where each run consisted of approximately 150 sequen-
tial images. Training of this network took approximately 1050 epochs.

3 The hardware is capable of capturing 30 frames per second, but software overhead
reduces this number somewhat.

4 The length of these trajectories is constrained by the amount of memory available
on the Aibo.
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5 Results

As was discussed in Section 1, motion detection on a robot is most useful for alert-
ing the robot to potential anomalies in its environment, particularly those that
suggest there are changes taking place. Thus, robots will typically want to react
immediately as soon as any motion is detected; the value of such information
decays very rapidly. However, this means false positive motion detections are
particularly dangerous — each one is likely to distract the robot from its primary
task unnecessarily. Thus, before incorporating this technology into any robotic
system, it is important not only to demonstrate that it can provide useful infor-
mation about motion, but also that it can do so while keeping false positives to
a minimum.

The results shown here reflect these priorities. The parameters of the post-
processing algorithm were set to make the system maximally resistant to false
positives. Then, to judge the classification accuracy of the system, it was applied
to four sets of images from trajectories of the sort shown in Figure 3. Two of
these runs contained one moving robot, one contained three moving robots, and
one contained no external motion. Each image in the four sets was divided into
9 sectors (Figure 4), and each sector was labeled by hand as containing motion
or not. If less than 1/4 of the sector contained a moving object, the sector was
labeled as not containing motion. This ground truth was compared to the motion
detected by the system.

The system correctly labeled a significant portion of the image sectors contain-
ing motion, despite the postprocessing parameter values that virtually eliminated

Fig.4. An example image showing division into sectors, for use in the quantitative
evaluation of the motion detection method. Though both robots and the ball in this
image are moving, the middle sector would not be labeled as containing motion, because
less than 1/4 of it contains moving objects.
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Fig. 5. Classification accuracy for image sectors not containing motion. The z-axis
corresponds to the number of edge pixels in a sector required for motion to be detected
in that sector, and the y-axis is the fraction of total image sectors not containing
motion that were correctly labeled as not containing motion. As more edge pixels are
required for a sector to be labeled as containing motion, accuracy in labeling non-
moving sectors increases (i.e., false positives decrease), though there is a tradeoff with
accuracy in labeling moving sectors (see Figure 6). Note, however, that even when this
threshold is set to 1, accuracy is greater than 95% for all testsets.

false positive motion detections (see Figures 5 and 6). Note that if these parame-
ters are set to less extreme values, classification accuracy of sectors containing
motion can be improved, so in this sense Figure 6 reflects the “worst-case” re-
sult for motion detection. However, the current settings have the considerable
advantage that image sectors labeled as containing motion are virtually certain
to actually contain motion.

The typical qualitative behavior of the system is shown in Figures 7 and 8.
Figure 7 contains four sequential frames from one test run of the system. The
robot in the foreground is moving at full speed; all other parts of the image are
stationary relative to the world. For comparison, Figure 8 shows typical errors
from a testing run with no external motion. In this testing run, over 95% of the
sectors were correctly labeled as containing no motion (see Figure 5).

6 Discussion and Future Work

Based on informal observations, the system appears to detect motion more re-
liably when the moving object is closer to the robot and moving more rapidly.
Because the robot’s own motion is so rapid, it is understandable that slow-
moving objects would be hard to detect. Near motion will appear more rapid in
two dimensions; also, because of the downsampling, a moving object sufficiently
far away will appear as a single pixel whose color is changing slightly.
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Fig. 6. Classification accuracy for image sectors containing motion. The system can
detect a significant fraction of the motion in the robot’s environment while maintaining
the extremely low false positive rate shown in Figure 5. The z-axis corresponds to the
number of edge pixels in a sector required for motion to be detected in that sector. As
more edge pixels are required, fewer sectors containing motion are correctly labeled,
leading to a tradeoff between accuracy in motion detection and elimination of false
positives (Figure 5).

Fig. 7. Four sequential frames from a test run. The robot in the images is moving to
the left at full speed. Overlaid black squares on the image indicate the discontinuities
found by the postprocessing algorithm; when enough of these squares appear in a sector
of the image, the system concludes that this sector contains motion.

Fig. 8. Some typical errors on a field with no motion. The overlaid squares only indicate
discontinuities, and enough of these squares must appear in the same sector for motion
to be detected there. In the run from which these images were taken, in which there
was no motion on the field, 83% of the frames contained no discontinuities of this type,
and over 95% of the image sectors were correctly labeled as containing no motion.
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This observation suggests an important direction for future work: extension
of the system to work with larger images. Although the predictor neural network
will have to be larger, it should not make training intractable: training time for
the current network only requires a few hours of CPU time. Moreover, optic flow
calculation over a half-resolution image (as opposed to the 1/6 resolution images
currently used) has already been verified to be tractable.

Another important direction for future work is to implement the system to
run in real time on an Aibo robot. This extension is plausible given the size of the
images. The Aibo has a 576 MHz 64 bit RISC processor that allows for significant
amounts of onboard computation. Although the computation required to process
the images would reduce the rate at which images can be captured, a slower gait
could compensate for any challenges posed to the optic flow algorithm by the
increased time between images.

7 Conclusion

A method was presented for detecting external motion from a quadruped robot
while it is walking freely and quickly. The system is resistant to false positives
and is sufficiently accurate on real-world sensor data, and it is able to process this
data with a speed that suggests that future onboard implementation is possible.
Thus, it provides a way for a legged robot to sense motion in its environment,
allowing it to direct its attention more intelligently, and ultimately making it
more able to negotiate novel or changing environments.
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