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Abstract. This paper shows that it is possible to retrieve all parame-
ters of the parabolic flight trajectory of an object from a time stamped
sequence of images captured by a single camera looking at the scene.
Surprisingly, it is not necessary to use two cameras (stereo vision) in
order to determine the coordinates of the moving object with respect
to the floor. The technique described in this paper can thus be used
to determine the three-dimensional trajectory of a ball kicked by a ro-
bot. The whole calculation can be done, at the limit, with just three
measurements of the ball position captured in three consecutive frames.
Therefore, this technique can be used to forecast the future motion of
the ball a few milliseconds after the kick has taken place. The compu-
tation is fast and allows a robot goalie to move to the correct blocking
position. Interestingly, this technique can also be used to self-calibrate
stereo cameras.

1 Introduction

The years 2004/2005 constitute a turning point in the small-size RoboCup
league. Several of the competing teams used chip kickers to lift the ball above
15 c¢m high robots placed at a distance of 30 to 50 cm from the kicking robot.
Unfortunately for the defending team, it is very difficult to position the goalie
when such a kick occurs. The projection of the parabolic flight of the ball on
the video images looks like a curve. It is not immediately clear, whether the
ball is flying high or is just rolling along a curved trajectory. Fig. [l shows the
apparent trajectory of a ball kicked high from a corner to the opposite corner of
the field. Fig[lis the combined result of observing the field with two cameras.
In this paper, we discuss only the mathematics for a single camera overlooking
the field. Generalizing to several cameras whose fields of view do not overlap is
straightforward.

It would be very useful for a defending team to be able to determine the
parameters of the parabolic ball trajectory (that is, the direction of the kick
and its height) immediately after the kick occurs. As we show, any three points
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Fig. 1. Chip kick as seen with two global cameras in a small-size field (the kick starts
in the lower right). The axis dimensions are given in meters. The cameras are located
at the coordinates (1.5,0) and (—1.5,0). Their fields of view overlap only slightly in
the middle of the field.

measured at any time in the apparent trajectory of the ball can be used to recon-
struct the three-dimensional parabolic path. We do not need to apply methods
from stereoscopic vision [I], [2].

Kim et al. [3] have studied a related problem: the reconstruction of the par-
abolic flight of a ball from a video of a soccer game. However, their method is
based on using the two extremes of the parabola (when the ball touches the
ground, at the start and at the end of the ballistic motion), and is not suitable
for predicting future parabolic motion using a minimal number of points just
after a kick. A variation of their method, in which they adjust a quadratic func-
tion to many alternative planes of motion, searching among them for an optimal
fit, is too cumbersome and inefficient. The method described here, by contrast,
is direct, does not require any search driven computation, and can be used for
forecasting future motion using only three video frames just after the kick.

2 Projective Transformation and Reconstructed Path

We adopt the following conventions. The origin of world coordinates is on the
floor. The camera is situated above the field. Figure [ shows how the two co-
ordinate systems (field and camera) are related. Without any corrective com-
putation, the flying ball is interpreted as a “virtual ball” rolling on the ground
along a curved path. In the general case, the three axis of the camera’s system of
coordinates are rotated relative to the field’s coordinate axis. Let us denote by R
the rotation matrix needed for transforming from world to camera coordinates,
and by ¢ the translation vector from the origin of the world system to the cam-
era coordinate system. Therefore, a point with world coordinates p = (z,y, 2)T
has coordinates ¢ = R(p — ¢) in the camera’s coordinate system. The inverse
transformation, from camera to world coordinates, is therefore p = R~1q + £.
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Fig. 2. Coordinate systems of the field and camera

Our computer vision system is self-calibrating. Just by selecting four points
on the field, whose world coordinates are known, such as the corners of the
field itself, the software computes automatically the rotation matrix R and the
translation vector ¢ mentioned above (by solving a system of linear equations,
see [2], [B]). Given the position of an object in a pixel of the imaging chip, the
computer vision can then determine its position in world coordinates on the
field.

In what follows, we assume that the successive projections of the ball on the
field, with world coordinates p; = (z;,y;,0), fori = 1..., have been transformed
to the camera coordinate system using the transformation R(p; — ¢). This is a
straightforward step since the matrix R and the vector ¢ are known from the
initial calibration step. This also means that the camera can have any angle and
displacement in relation to the world coordinates, and that the method described
next is completely general.

We assume also, for the sake of the computation, and without losing generality,
that the camera imaging chip is at a unit distance from the pinhole. The point
where parabolic flight starts to be measured has camera coordinates (xq, yo, 20)-
The velocity of the ball, after the kick, is given by the vector v = (vg, vy, V).
The parabolic flight of the ball is then described by the following parameterized
path, in the camera’s coordinate system:

1
(1'7y,2) = $0+U$t+ gwt27 y0+v t+
2 Y 2

Lo Lo

gyt , 20+ vt + 29zt
where ¢ is the time elapsed, starting with the first data point (¢ = 0 for that
point), and (g, gy,9-) are the components of the earth’s acceleration in the
camera’s coordinate system (which can be tilted with respect to the vertical)El

! Gravitational acceleration varies with the latitude, because the earth is not perfectly
spherical. The Geodetic Reference formula of 1967, used by geographers, is given by
g = —9.7803185(1 + 0.005278895sin?¢ — 0.000023462sin* ) m/s. Surface features of
the earth are not considered in the formula.
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Fig. 3. Apparent velocity of the “virtual” ball from frame to frame in m/s

The components of the earth’s acceleration with respect to the camera system
can be computed using the rotation matrix R:

(91 9y- 9-)™ = R(0,0,—-9.8)T

Let us assume that the kick is never so high as to reach the camera plane (that
is, z # 0). The projection of the position of the ball in the image plane of the
camera (at a unit distance from the pinhole) is then

(xo + vt + %gth Yo + vyt + égyt2)
zo + vt + %gzt2 " 20 4+ vst + %gth

Assume now that m points in m images are given, where the “virtual” ball
has been detected at times t1,%a,...,¢,, (setting t; = 0). Let us denote the
coordinates of the m points on the ground with respect to the camera system by
(24, yi, 20)s ooy (2, Yy 2h,). Then, since “virtual ball” and real ball have the
same projection on the camera chip, we have in general:

1 1
! yg):<$o+vxti+2g1t? yo+1}yti+29yt?) Eq.1

K
<Z/,’ ! 20+ vt + 39:12 7 20 + vt + 5 gat?

7 K2

We start processing the video sequence only when the ball is moving (which is
easy to check). We denote by «; the ratio /2] and by §; the ratio y;/z;. From
the expression above (and for the i-th point) we can derive two linear equations:

1 1
200 + vty — 1o — Vgt +0-yo + 0 vyty = — QQzOéit? + 29;151512

and

1 1
200i + 08t +0- 20 + 0 - vty — yo — vyt = — 29251‘7512 + L 9yts

2

We have two linear equations for six variables. Therefore, three points on the
parabolic flight path provide enough equations (six) which can be used to solve



Parabolic Flight Reconstruction from Multiple Images from a Single Camera 187
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Fig. 4. Reconstruction of the parabolic flight (20 to 30 points on the trajectory were
used)

the system. If we use more than 3 points, let us say m, then the general form of
the system of equations we obtain is

T
D(20,vz, 0, Va, Yo, vy) - =d

where D (for data) is a 2m x 6 matrix and d is a 2m-dimensional vector. Using
the pseudoinverse DT of D we find the solution

T _ +
(207vz7m07vw7y070y) =D"d

where DT = (DTD)~1D”. The pseudoinverse allows us to use as many points
for the calculation as we have already measured, because we are interested in
producing an estimate of the flight trajectory of the ball as soon as possible, but
also as precise as possible.

The computed initial position of the ball (xo,yo, 20) and the velocity vector
(vg, vy, v;) must be transformed now from the camera’s to the world’s frame of
reference. That is, we compute

(1'31, yéuﬂ Zg)v)T = RT($07 Yo, ZO)T + /

and

(vz U;Ua U;U)T = RT(UOC’ Uy UZ)T
where the superindex w means “world coordinates”. Since R is a rotation matrix,
its inverse is the transpose of R.

A word of caution: since we start the clock ¢; when we get hold of the first
data frame, it is necessary to start the calculation only when the ball is really
moving fast on the field (a ball being pushed by a robot is usually not so fast).
Fig. [3 shows the velocity of the ball on the ground, as computed from a series
of frames of a real game. The moment after the ball has been kicked (frame
10) is readily identifiable. Therefore, it is easy to avoid performing erroneous
calculations for a ball which has not been kicked (more about this below).
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3 Resetting the Clock

We assumed in the previous sections that the clock starts running with the first
available data point (after we detect that the ball was kicked). If we miss the
exact frame in which the ball was kicked, we can start the clock later with any
frame in which we see the “virtual” ball still on the air. When we compute z§,
we can compare it to 0 (points on the field have z coordinate equal to zero).
If both are different, we can compute the time T it took the ball to reach the
height 2z (relative to the field plane). Having this elapsed time, we can go “back
in time” and find the exact point where the ball was kicked.

Let vY, be the initial vertical velocity of the ball, at the moment of the kick.
Then, if v¥ is the vertical velocity in the frame we started recording data, we
know that

w

_w
vy = vy — g1

where ¢ is the downward earth acceleration, and
w w 1 2 w 1 2
2o = vy — 29T =v, T+ 29T .

Solving this quadratic equation, we find 7. With 7', we compute vy, and the
following corrections for all other parameters (the superindex f means final):

axg =zxy —v T vl =¥
vo =i — vy T vf = vy
2 =z — (T — 3gT?) vl =¥ + g7

4 Experimental Results

No robotic vision system is perfect. There is an intrinsic error in all measurements
of the ball position. This noise, which is even larger when the ball is flying
high, makes necessary to use more than three data points in order to make the
best future projection of the ball’s path. We have experimented with several
different numbers of points. The best results were obtained (for our computer
vision software) when more than 20 points were used for the ball trajectory. The
camera was running at 52.7 frames/second. The ball was in flight for around
60 frames, so that we had to use one third of the data points to get a good
reconstruction of the parabolic path, with subcentimeter accuracy.

Fig. @ shows the result of the inverse computation described in this paper.
Given the path of the ball projected on the ground, we computed parabolas
based on 20 to 30 data points from as many video frames. The ball is in flight
for around 50 frames. All parabolas are very near to each other.

Fighl shows a reconstruction computed with only ten frames, starting the
computation at different moments (between frame 10 and frame 20). The figure
is a screenshot of our vision software for the small-size league [4],[5], enriched
with this new feature.
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Fig. 5. Reconstruction of the parabolic flight (10 points on the trajectory were used,
several different start frames were selected). The color screenshot is from our our small-
size computer vision program.)
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Fig. 6. Predicted impact position computed with 5 to 14 points from the trajectory.
The predicted impact position is at the end of each parabolic path line. The isolated
points are “virtual” images of the ball, before and after impact.

Figlfl shows the predicted impact position of the ball after a chip kick, using
different numbers of data points (from 5 to 14 frames). Each prediction is the
tip of the predicted flight line. As can be seen, the spread of the prediction is
smaller than 1 cm. Such an error, after a 2m chip kick, is almost negligible.

FigIllshows how the three components of the 3D-velocity of the ball converge
to very precise values, when the number of points along the parabola is increased
from 5 to 25. Already ten points produce a very good estimate of the velocity
vector. The time needed, when using ten frames for the computation, is about
one fifth of a second.

5 Reaction Time

The parabolic flight reconstruction would be only of theoretical interest if the
goalie had not time to react. We show now that in many cases the goalie can
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Fig. 7. Convergence of the three components of the velocity vector for different number
of data points on the parabola

indeed intercept the ball. Whatever the distance from the goal line is, the ball has
to be lifted above the goalie, that is, above 0.15 m. The time the ball is in the air
in parabolic flight is given by t = 2\/2h/g. Given a minimum height of 0.15 m,
and the acceleration constant g, we obtain a minimum time of flight of ¢ = 0.35
seconds. When the ball falls (for half of the flight-time ) starting from rest at
the highest point of a parabola just high enough to fly above a robot, the final
velocity is v, = —0.175 s x g, which is around —1.7 m/s. This is also the initial
vertical velocity of the ball, when it is chip-kicked (with positive sign). Therefore,
any slower ball will not fly high enough to go above the goalie or any robot on
the field. This can be used as a fast check for a “dangerous” flying ball. Fig. B
shows how fast the “virtual” ball is accelerated by our chip kick. The maximum
apparent acceleration value is around 40 g’s. The apparent acceleration remains
positive as long as the ball is approaching the camera objective and its apparent
speed continues to increase. When the ball starts falling, it seems as if the ball
falls being accelerated by more than one g.

Now we can consider if a chip kick is stoppable. The delay from our vision
system is about 100 ms (that is the time it takes an image to be accepted
and processed)[]. Assume that we use 5 frames for predicting the parabolic
flight (first provisional estimation). At 52,7 frames per second, those 5 frames
correspond to 95 ms. The robot has just 350 — 195 = 155 ms for moving to the
approximate blocking position. If the distance is not very large, the robot could
reach the correct position. Our robots travel at around 2 m/s. They can move
31 cm in 155 ms, but only after having been accelerated. The question becomes
therefore how fast can the robots start moving from scratch.

First we would like to have a table of the flight time of the ball for different
distances on the field. Let us assume that the kick is optimal: the ball goes only
as high as it needs to go, and no higher. The ball can go forward as fast as
desired, but the real limit for the ball is to go above the goalie and below the
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Fig. 8. Apparent acceleration of a ball kicked high (virtual ball acceleration)

goal bar (positioned at 15 cm). We do the following: we position the goalie at a
distance r from the goal line. The goalie has a width of 18 cm and a height of
15 ¢cm. The ball has to go under the bar. The ball has a diameter of 4 cm (in
reality 4.3 cm, but let us simplify). We then compute the best parabolic shot
that clears the robot and enters the goal box going below the bar. The time of
flight is then plotted according to the coordinates on the field of the point where
the ball is kicked.

The results obtained with this method can be seen in Figldl As stated before,
there is a minimum time of flight of around 0.35 seconds. When the goalie is 10
cm away from the goal line, the minimum time for a chip kick over the goalie
from far away (5 meters) rises to about 0.7 seconds, double the minimal time.
However, teams cannot shoot so impressively from far away. They cannot adjust
the angle of the shoot, which is fixed, and this produces suboptimal trajectories.
Therefore, in practice, the real time of flight will be always much larger than the
lower and optimal bound computed here.

We measured the velocity of some of our robots. Due to initial inertia, our
goalie needs around 0.2 seconds to move 10 cm. An optimal shot from midfield
requires around 0.5 seconds flight time. If we collect 10 data points before moving
the robot (in 0.2 seconds), and if the vision delay is 0.1 seconds, we have 0.2
seconds left to position the goalie. If we need to move the robot less than 10 cm,
stopping a chip kick is possible. Parabolic flight prediction has been incorporated
now in our vision software. It is possible to stop all chip kicks coming from far
away. Stopping nearer chip kicks depends on the position of the robot. Chip-kicks
from anywhere near the goal area are unstoppable, if the goalie is not touching
the line.
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Flight time
of a shot

Fig. 9. Time of flight in seconds for optimally lifting the ball above the goalie and
scoring (left image). The goalie has been positioned 10 cm away from the goal line.
Lateral view of the same surface (right figure). The maximum distance is 6 meters (-
coordinate 6). The time of flight was set to zero 50 cm from the center of the goal box
(a graphic artifact arises). Chip kicks from far away require 0.7 seconds. The minimum
flight time for lifting the ball above the goalie is 0.35s.

6 Conclusions

This paper has shown that after a chip kick it is possible to reconstruct the
three-dimensional flight path of the ball using a single camera overlooking a
field. We have shown that the minimal velocity required for clearing a small-size
robot is 1.7 m/s. This criterion can be used as a trigger for starting the code
which computes three-dimensional paths. Hard flat shots can be discriminated
by just looking at the “straightness” of the ball’s path. A false alarm triggered
by a robot pushing the ball in a curved path can be handled easily since no robot
can be moving right behind a ball in parabolic flight. It can also be checked if
the path corresponds to an acceleration compatible with the gravity constant. If
not, the parabolic path can be discarded.

The method described in this paper can be used also in the mid-size league
with omnidirectional or frontal cameras. Since the computer vision software for
omnicameras produces an estimation of the position of the ball on the floor, as
if we had a camera overlooking the field, the method described here can be used
without any modification (provided the ball is visible under the horizontal plane
of the omnicam).

There are other applications for our technique, for example, for obtaining
the orientation of a camera overlooking a featureless area. If the camera is not
pointing straight down, its orientation can be computed by tracking a ball thrown
in front of the camera. The method described in this paper must be just extended
to deal with a gravitational acceleration with unknown components (g, gy, 9-)
in the tilted frame of reference of the camera. In that case, Eq. 1 transforms into

To+ tivs + S 9at? yo +tivy + égytiz)
20 + tiv. + 39517 20 + tivs + 5 gat?

(s, Bi) = <
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where (a;, ;) are the ball coordinates in the camera’s chip. This expression
provides two linear equations for each detected ball in each frame. For the nine
unknowns we need at least five points to compute the value of (g4, gy,9-), and
from this, the angle of the camera axis with the vertical.

There is also an application for stereo-vision. If two stereoscopic cameras
overlook a common field of view, and if their pose is unknown, an object thrown
in parabolic flight can be used to determine the direction of gravity relative to
each camera. The cameras do not need to be triggered simultaneously. Bringing
the reconstructed parabolic flight curves for each camera in correspondence can
then be used to calibrate the stereoscopic vision system. The numeric for such
stereoscopic calibration without camera parameters is much simpler than that
used by other groups [6], [7], and does not require matching points, nor the world
coordinates of the corresponding points in space. This result is more general than
Luong and Faugeras technique [§], and will be published elsewhere.
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