
The Robotics and Mechatronics Kit “qfix”

Stefan Enderle

Neural Information Processing Department
University of Ulm, Germany

enderle@neuro.informatik.uni-ulm.de

Abstract. Robot building projects are increasingly used in schools and
universities to raise the interest of students in technical subjects. They
can especially be used to teach the three mechatronics areas at the same
time: mechanics, electronics, and software. However, it is hard to find
reusable, robust, modular and cost-effective robot development kits in
the market. Here, we present qfix , a modular construction kit for edu-
tainment robotics and mechatronics experiments which fulfills all of the
above requirements and receives strong interest from schools and univer-
sities. The outstanding advantages of this kit family are the solid alu-
minium elements, the modular controller boards, and the programming
tools which reach from an easy-to-use graphical programming environ-
ment to a powerful C++ library for the GNU compiler collection.

1 Introduction

Robot building projects are a good means to bring the interesting field of robotics
to schools, high-schools, and universities. Studying robotics the students learn
a lot about mechanics, electronics, and software engineering. Additionally, they
can be highly motivated and learn to work in a team.

Performing a lot of robot building labs with pupils and students, we found
that there is a gap between the relatively cheap toy-like kits, like LEGO Mind-
storms or Fischertechnik Robotics and the quite expensive off-the-shelf robots.
The toy kits offer a good opportunity to start building robots, but they mostly
support the control of only 2 or 3 motors and the same number of sensors. Off-
the-shelf robots (see e.g. [1,4,7]) are completely built up, so typically only the
programming of the robot can be studied.

Alternatively, there exist a number of controllers, like the 6.270 board or the
HandyBoard [3] which come without mechanical parts and so must be used in
combination with other toy kits, like RC-controlled cars, or custom-built ro-
bots. However, these boards, can control only small motors and are not very
expandable.

After building RoboCup robots from scratch [6,9,2,11] and supporting schools
developing their own RoboCupJunior robot [10], the authors gained a lot of
experience about reasonable mechanical concepts and controller architectures
for a usable robot development kit. Thus, we decided to develop the robot kit
familiy qfix and to provide it to schools and universities.

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 134–145, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The Robotics and Mechatronics Kit “qfix” 135

2 The qfix Approach: Modularity

The main concept behind qfix ist modularity in the following dimensions:
– Mechanics: The mechanical parts are aluminium parts including rods,

plates and holders for different sensors and actuators. These parts are the
building blocks for constructing mechanical and mechatronic systems, like
cars, walking robots, etc. Most parts contain threads and can easily be
screwed together, so very robust models can be build.

– Electromechanics and Electronics: There already exist many compat-
ible electromechanical and electronical parts including a variety of sensors,
actuators, and controller boards. With these components it is possible to
make the mechanical models move (by DC motors, servo-motors, stepper
motors), sense (by tactile, infrared and ultrasonic sensors), and think (by
powerful controller boards which can be programmed on the PC).

– Software: In the software area, modularity is no big deal. The qfix software
comes with the powerful free GNU C++ toolchain (WinAVR for windows,
respective libraries or RPMs for linux). Additionally, it contains an easy-to-
use C++ class library for accessing all qfix electronics components.

Since beginners, say, of an age from 12, have problems going directly into C
or C++ programming, we developed a graphical programming environment
called GRAPE in order to simplify the programming of self-built robots.
This software directly produces C++ code from the graphical description
and thus supports the beginner in learning object-oriented programming.

2.1 Mechanics

The basic building blocks of the qfix system are anodized aluminium rods with
φ6 holes along all four sides and two M6 threads on the front and back side (see
Fig. 1). Currently, there are rods from 20mm to 100mm including 45o rods.

Other basic elements are a variety of plates with holes and threads. These
plates can be bolted to the rods using a screw and a nut or only a screw exploiting
the rods’ frontal threads. Like the rods, the plates are given in different lengths
and widths, currently up to 200mm x 200mm (see Fig. 2 for an exemplary plate).

All mechanical parts use holes and threads according to DIN/ISO standards
and have a grid of 10mm.

Fig. 1. Basic elements: rods

136 S. Enderle

Fig. 2. Basic elements: plates (Here: 200x200mm with 400 threads)

Fig. 3. Wheels, axes, and gears

In Figure 3, some additional mechanical elements can be seen: wheels, cast-
erwheels, gears, and axes. They are usually used to implement dynamic models
which then can be driven by different motors as shown in the next section.

2.2 Electromechanics/Electronics

Motors: In order to make a model move, motors are needed. Typical robotics
applications often use different kinds of motors for different tasks: DC motors,
servo motors, and stepper motors. qfix supports these different categories by
providing the respective motor bearings (see Fig. 4) and electronics components
for driving motor and wheel encoders.
Sensors: When building robots, it is also necessary to make them able to gather
information about their environment. This can be done by mounting simple
switches signalling bumps into obstacles, or by adding distance measuring devices
like infrared or sonar sensors. As with motors, qfix supports numerous sensors
by providing the respective bearing (see Fig. 5) for mounting the sensor to the
model.
Controllers: Obviously, the motors and sensors must be driven by an electron-
ics component. For qfix , we developed a new, modular controller board arhitec-
ture which is both powerful and easy-to-handle. The board with the smallest
controller is the “BobbyBoard” (see Figure 6) which uses the Atmel ATmega32
controller and supports the following I/Os:

The Robotics and Mechatronics Kit “qfix” 137

Fig. 4. Exemplary motor bearing for a DC motor

Fig. 5. Exemplary sensor bearing for an IR distance sensor

Fig. 6. “BobbyBoard”: controller board with ATmega32

– 2 DC motor controllers (battery voltage, 1A)
– 4 digital inputs (0/5V)
– 4 analog inputs (0-5V)
– 8 digital outputs (battery voltage, 100mA)
– 4 LEDs
– 4 buttons
– I2C-bus for extensions

Further existing main boards are the “CAN128Board” which shows the same
I/O capabilities but uses an Atmel AT90CAN128 controller with CAN interface,
more memory and more speed. And, the “SoccerBoard” with 8 analog and 8
digital inputs, 8 digital outputs, 6 motor drivers, and optional CAN and USB
interface (see Figure 7). This board is specifically designed for the requirements

138 S. Enderle

Fig. 7. “SoccerBoard”: controller board with ATmega128

Fig. 8. “LC-display board”: expansion board with LC-display

of RoboCupJunior, where often omnidrive platforms with three driven wheels
plus a kicker and a “dribbler” are used combined with multiple sensor systems.

All controller boards are programmed (“flashed”) from the PC via a serial,
parallel or USB link and then run autonomously without the host computer.

Extension Boards: The main idea behind the qfix boards is their flexible
modular architecture: The main controller board runs the main program and
communicates with expansion boards for setting actuator values and getting
sensor data. The expansion boards themselves are responsible for controlling
the attached devices, so the main processor does not have to perform expensive
tasks, like feedback motor control, etc.

The controller boards contain an I2C-bus and optionally a CAN bus which
both allow to chain dozens of boards of the same or different kinds to a large
controller network. So, it is possible to either control more I/Os or even to
implement distributed applications with decentralized control (see e.g. [5]).

The following extension boards based on I2C-bus are currently available:

– Servo board 1: The servo-board uses a Atmel mega8 for controling 4 servo
motors independently.

– Servo board 2: This servo-board is designed for humanoid robots and can
control 24 servo motors independently. It contains a mega128 controller and
a Xilinx FPGA for fast I/O control.

– Stepper-board: The stepper-board can control 4 stepper motors indepen-
dently. Both, full and half step mode are supported.

The Robotics and Mechatronics Kit “qfix” 139

– DC-power board: The DC-power-board is capable of controlling two DC
motors with 4A each. It also contains two encoder input lines for each motor.

– LC-display board: An LC-display with 4 lines of 20 characters each (see
Figure 8).

– Relais boards: There are two relais boards: one to be connected to the
digital output of the controller board and one to be connected via the I2C-
bus.

Further expansion boards, e.g. for Polaroid sonar sensors [8] and a camera
board are currently under development.

2.3 Software

With qfix we provide the free GNU C++ toolchain including generic tools for
downloading programs to the controller boards. Additionally, we provide a C++
class library supporting all qfix boards. On Windows, the generic tools mainly
consist of the WinAVR GCC environment for Atmel controllers which includes
the extensible editor programmers notepad and powerful download tools, like
avrdude. All tools also run on Linux/Unix and Mac, so cross-platform develop-
ment is fully supported.

The easy-to-use qfix C++ class library hides the low-level hardware inter-
face from the programmer and supports the complete qfix extension board fam-
ily. The main idea is to provide a specific C++ class for each qfix module.
Therefore, the library provides the classes BobbyBoard, SoccerBoard, LCD,
SlaveBoard, StepperBoard, ServoBoard, RelaisBoard, etc. For example,
when building an application with the BobbyBoard and the LCD you use the
respective classes, like the following:

#include "qfixBobbyBoard.h" // include BobbyBoard library
#include "qfixLCD.h" // include LCD library

int main()
{
BobbyBoard board; // construct object "board"
LCD lcd; // construct object "lcd"

board.ledOn(0); // turn on LED 0
board.waitForButton(0); // wait until button 0 is pressed
board.motor(0,255); // turn on motor 0 to full speed
lcd.print("Engines running"); // print a text on the LCD

}

As can be seen from the comments of the code, two instances of two classes
are constructed: board and lcd. Their methods are called in order to let the
main board turn on a LED and a motor, wait for a button press, and output
text on the LCD.

A lot of the functionality is hidden in the constructors of both classes. When
constructing the object board for instance, the constructor initializes all I/O

140 S. Enderle

pins and starts an interrupt routine for motor PWM control. When constructing
lcd, the constructor opens an I2C-bus channel and starts communicating with
the physically connected LC-display. This mechanism works perfectly as long as
expansion boards of different types are used only.

When using multiple expansion boards of the same type, the extended con-
struction syntax can be used in order to connect the objects to the correct phys-
ical boards. Imagine you have a controller board and three identical LC-display
boards:

#include "qfixBobbyBoard.h" // include BobbyBoard library
#include "qfixLCD.h" // include LCD library

int main()
{
BobbyBoard board; // construct object "board"
LCD lcd0(0); // construct object "lcd0"
LCD lcd1(1); // construct object "lcd1"
LCD lcd2(2); // construct object "lcd2"

board.waitForButton(0); // wait until button 0 is pressed
lcd0.print("Hallo"); // print a text on LCD 0
lcd1.print("World!"); // print a text on LCD 1
lcd2.print("Engines running"); // print a text on LCD 2

}

In this example, each of the three lcdX objects is connected to the physical
LCD board with the respective ID. This ID can be hardcoded to the LCD by
flashing the LCD board, or it can be dynamically changed by calling the method
lcd.changeID(newID).

For those who want to connect multiple controller boards but do not want
to go into detail with programming the I2C-bus, we provide a class SlaveBoard
which can be used as a “remote control” for connected BobbyBoard main boards:

#include "qfixBobbyBoard.h" // include BobbyBoard library
#include "qfixSlaveBoard.h" // include SlaveBoard library

int main()
{
BobbyBoard master; // construct a master board object
SlaveBoard slave0(0); // construct a slave board object
SlaveBoard slave1(1); // construct a slave board object

master.motor(0,100); // turn on motor on master board
slave0.motor(0,100); // turn on motor on slave board 0
slave0.waitForButton(0); // wait for button on slave board 0
slave1.ledOn(0); // turn on LED on slave board 1

}

The Robotics and Mechatronics Kit “qfix” 141

3 Graphical Programming Environment GRAPE

In addition to the C++ environment, we developed a new software system
called GRAPE (which stands for GRAphical Programming Environment). With
GRAPE it is possible to program the qfix controller boards in an object oriented
way without having experience in C++.

The GRAPE application consists of three tabbed windows which are used
sequentially: In the first tab, the desired classes (e.g. BobbyBoard and LCD) are
loaded. Each class can then be instantiated by one or more objects. The object
names can be freely chosen. The second tab holds the main window for graphical
programming. Here, symbolic blocks are arranged intuitively in order to get a
flow chart with the desired program flow (see Figure 9).

Fig. 9. Graphical program in GRAPE

For each symbolic icon, a properties dialog can be opened to define the se-
mantics of the icon in a semi-graphical way: For commands, the user can select
an object from the list of instantiated objects, then chose a method from the
object’s possible methods, and then select the desired parameters from the list
of possible parameters for the chosen method. This selection defines all parts of
a typical object-oriented method call: <object>.<method>(<parameters>).

After filling all graphical blocks with their respective meaning, the flow chart
can be saved as a XML description file. This makes it possible to perform, e.g.
in an individual tool, the translation to any object-oriented (or even classically
procedural) programming language. In GRAPE, this translation is already inte-
grated and the flow chart (or internally, the XML representation) is automati-
cally translated to C++ code (see Figure 10).

With this approach, the basic concepts of a procedural programming language
can easily be learned: commands, sequences of commands, if-clauses, while loops.

142 S. Enderle

Fig. 10. Respective code in GRAPE

And, it can be studied how these concepts are translated to C++ or another
programming language. In addition to that, the users learn to use given class
libraries.

4 Experiments

In order to demonstrate the feasibility of the qfix parts and controller boards,
we developed some typical robot and mechatronic applications.

4.1 Differential Drive Robot

The first mobile robot is a car with two independently driven wheels and a
caster wheel, all mounted on a 10cm x 10cm base plate (see Fig. 11). The
BobbyBoard drives the two motors as well as three infrared distance sensors
(Sharp GP2D120) which are used for a simple collision avoidance behaviour. An
improved version also uses bumpers, a line sensor for moving along a line and an
LCD for displaying messages like “front blocked” or general status information.

4.2 Offroad Robot

Figure 12 shows an ”offroad” robot which was built in order to test the power
of the motor controllers (L293D).

For this robot the same mainboard as in the differential drive robot above
is used and drives four stronger motors, where the left and the right ones are
connected in parallel. The complete platform is much bigger (main plate of
20x20cm) than the above one and includes a boxed version of the LC-display.

The Robotics and Mechatronics Kit “qfix” 143

Fig. 11. Differential drive robot with two driven wheels and three IR distance sensors

Fig. 12. Robot arm with three DOFs

Fig. 13. Omnidrive platform with three omnidirectional wheels

4.3 Soccer Robot

As a third application, a specialized soccer robot was built in order to demon-
strate the flexibility of both mechanics and electronics components. As main
platform we used a round plate of about 21cm diameter with three omnidirec-
tional wheels (see Figure 13).

In order to control the three motors, two controller boards were connected via
the I2C-bus and communicate with each other to establish a reliable movement
coordination. Additionally, the resulting soccer robot uses a kicker device and
a so called “dribbler” to hold the ball near the robot. As sensors, infrared light
sensors are used for detecting a RoboCupJunior ball. For obstacle avoidance,

144 S. Enderle

Fig. 14. Soccer robots

infrared or ultrasonic distance sensors can be attached. The complete soccer
robot including a trendy skin or “tricot” is shown in Figure 14.

5 Conclusion

We presented qfix , a construction kit for developing autonomous mobile robots
and other mechatronics applications. qfix was mainly developed for educational
and edutainment purposes. The kit consists of solid mechanical and electro-
mechanical parts, powerful modular controller boards with several extension
boards, and a complete C++ class library for easy support of all functionality.

Since the kits are often used in the RoboCupJunior area, where the users
are only 12 or even less years old and have no programming experience, we
developed the graphical programming environment GRAPE. This tool supports
object oriented programming on a graphical level but directly generates C++
code which can be studied and edited.

The complete qfix robot kit family proves to be an appropriate tool for ro-
bot development. It is already used in educational classes and labs in schools
and at universities. Additionally, the open architecture encourages the robotics
community to help improving the kits.

Ackowledgement

This work is sponsored by KTB mechatronics GmbH, Germany (www.ktb-
mechatronics.de).

We thank Bostjan Bedenik who mainly implemented the qfix Grape software.

References

1. ActivMedia: Pioneer 1 Operation Manual. RWI, Jaffrey, NH (1996)
2. Enderle, S.: The Sparrow-99 robot. Technical report, University of Ulm, Internal

report (1999)

The Robotics and Mechatronics Kit “qfix” 145

3. HandyBoard: (1998)
http://lcs.www.media.mit.edu/groups/el/Projects/handy-board/index.html

4. K-Team.: Khepera – user manual (1999)
5. Kaiser, J.: Real-time communication on the CAN-bus for distributed applications

with decentralized control. In: 4th IFAC International Symposium on Intelligent
Components and Instruments for Control Applications, Buenos Aires, Argentina
(September 2000)

6. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E., Matsubara, H.:
RoboCup — a challenge problem for AI. AI magazine, pp. 73–85 (Spring 1997)

7. Nomadic: http://www.robots.com
8. POLAROID: Ultrasonic Ranging System. Polaroid Corporation, 784 Memorial

Drive, Cambridge, MA 02139 (1991)
9. RoboCup: http://www.robocup.org

10. RoboCupJunior: http://www.robocupjunior.org/de
11. Utz, H., Sablatnög, S., Enderle, S., Kraetzschmar, G.K., Palm, G.: Miro – Middle-

ware for mobile robot applications. IEEE Transactions on Robotics and Automa-
tion, Special issue of on Object Oriented Distributed Control Architectures, 2002
(submitted)

http://lcs.www.media.mit.edu/groups/ el/Projects/handy-board/index.html
http://www.robots.com
http://www.robocup.org
http://www.robocupjunior.org/de

	The Robotics and Mechatronics Kit “qfix”
	Introduction
	The $qfix$ Approach: Modularity
	Mechanics
	Electromechanics/Electronics
	Software

	Graphical Programming Environment GRAPE
	Experiments
	Differential Drive Robot
	Offroad Robot
	Soccer Robot

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

