
Using the Simulated Annealing Algorithm for
Multiagent Decision Making

Jiang Dawei and Wang Shiyuan

Department of Computer Science and Technology,
Southeast University, P.R.China

jiang203@jlonline.com, desiree wsy@yahoo.com.cn

Abstract. Coordination, as a key issue in fully cooperative multiagent
systems, raises a number of challenges. A crucial one among them is to
efficiently find the optimal joint action in an exponential joint action
space. Variable elimination offers a viable solution to this problem. Us-
ing their algorithm, each agent can choose an optimal individual action
resulting in the optimal behavior for the whole agents. However, the
worst-case time complexity of this algorithm grows exponentially with
the number of agents. Moreover, variable elimination can only report an
answer when the whole algorithm terminates. Therefore, it is unsuitable
in real-time systems. In this paper, we propose an anytime algorithm,
called the simulated annealing algorithm, as an approximation alterna-
tive to variable elimination. We empirically show that our algorithm can
compute nearly optimal results with a small fraction of the time that
variable elimination takes to find the solution to the same coordination
problem.

1 Introduction

A multiagent system (MAS) consists of a group of agents that interact with
each other [1,2]. Research in MAS aims to provide theories and techniques for
agents’ behavior management. In this paper, we focus on the fully cooperative
MASs in which the agents share a common goal. Examples are a team of robots
who play football against another team or a group of agents who plan to build a
house. A key aspect in such systems is Coordination: the procedure to ensure the
individual actions of the agents generate optimal joint decisions for the whole
group. RoboCup [3] provides a good platform for comparing and testing different
coordination techniques.

To solve the above problem, previous research focuses on the use of game
theoretic techniques [4], communication [5,6], social conventions or social lows
[7], learning [8,9]. However, all these approaches need to exhaust the whole joint
action space whose size grows exponentially with the number of agents. Thus,
even in very small settings, they are infeasible.

A recent work to decrease the size of the joint action space uses a coordination
graph (CG) [10,11,12]. The idea of CG is that in many situations, only a small
number of agents need to coordinate their actions while the rest of others can

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 110–121, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Using the Simulated Annealing Algorithm for Multiagent Decision Making 111

act individually. For example, in robotic soccer, only the ball owner and his sur-
rounding players need to coordinate their actions to perform a pass while others
can act individually. So the global joint payoff function, the representation of the
global joint coordination dependencies between all agents, can be decomposed
into a linear combination of local terms, each of which represents the local coor-
dination dependencies between a small subgroup of the agents. Then each agent
employs variable elimination (VE) algorithm to select an optimal individual ac-
tion. The outcome results in optimal behavior for the whole group. However, the
worst case time complexity of VE is the same with the aforementioned methods
of exhausting all possibilities [13,14]. Moreover, although VE is an exact method
which always reports the optimal joint action, it does not return any results until
the entire algorithm terminates, which is not suitable for real-time systems. In
[14], max-plus (MP) algorithm, which is analogous to the belief propagation al-
gorithm [15] for Bayesian networks, was proposed as an approximate alternative
to VE. MP can find optimal solutions for tree-structured coordination graphs
and also the near optimal solutions in graphs with cycles, but it restricts each
local payoff function involved at most two agents [14,15,16].

In this paper, we propose the simulated annealing (SA) algorithm as another
approximation to VE. In our algorithm, agents repeatedly start independent
tries. In an independent try, each agent tries to maximize the global payoff using
his own action, while the actions of the other agents stay the same. If a better
solution is found, accept it; otherwise, accept it with a certain probability.

We make the following contributions.

• The time complexity of our algorithm grows polynomially with the number
of agents.

• Our algorithm is an anytime algorithm that reports result at any time.
• Our algorithm has no restrictions on the number of agents involved in local

payoff functions.
• Experiments show that our algorithm can also find near optimal solution

within only a small fraction of the time that VE takes to find the solution
of the same coordination problem.

The paper is organized as follows. In section 2, we briefly describe the basic
concepts of multiagent coordination problem and the process of finding the op-
timal joint action by VE and CG. Then we describe our proposed algorithm in
section 3. Section 4 experimentally validate the correctness and efficiency of our
algorithm, followed by conclusion and future work in section 5.

2 Variable Elimination and Coordination Graphs

In this section, we review the variable elimination (VE) algorithm. In a multiagent
system, we have a collection of agents G = {G1, . . . , Gn}1. Each agent Gi selects
1 In this paper, we use upper case letters (e.g., X) to denote random variables, and

lower case (e.g., x) to denote their values. We also use boldface to denote vectors of
variables (e.g., X) or their values (x).

112 J. Dawei and W. Shiyuan

G1

G2 G3

G4

Fig. 1. Initial coordination graph

an individual action ai from his own action set Ai. Their joint action space thus
can be represented as A = ×iAi. The global payoff function of the agents υ (a)
maps each joint action a to a real value: υ (a) → R. The coordination problem is
to find the optimal joint action a∗ that maximizes υ (a), i.e., a∗ = argmaxaυ (a).
In a naive way, we may consider all possible joint actions and select the one that
maximizes υ (a). Unfortunately, this approach is infeasible in even the simplest
settings, for the number of joint actions grows exponentially with the number of
agents (It is called “curse of dimensionality” [13]).

This “curse of dimensionality” may be solved by exploiting the structure of the
problem to define a compact representation for the global joint payoff function
[11,12]. In this way, the global joint payoff function is decomposed into a linear
combination of a set of local payoff functions, each of which is only related
to a part of system controlled by a small number of agents. For example, in
RoboCup, only players that are close to each other have to coordinate their
actions to perform a pass or a defend, thus we can use the sum of local payoff
functions of subgroup agents to approximate the whole team’s payoff. In some
situations, this approach can get a very compact representation for coordination
dependencies among agents. Furthermore, such representation can be mapped
onto a coordination graph G = (V, E) according to the following rules [11]: each
agent is mapped to a node in V , and each coordination dependency is mapped
to an edge in E. Then the agents can use VE which is identical to variable
elimination (or bucket elimination) [17] in a Bayesian network on such CG to
determine the optimal joint action.

We show how VE works as follows. Suppose we have 4 agents with each one
having 4 different actions, then the number of joint actions is 44 = 256, and
global joint payoff function can be decomposed as:

υ(a) = υ1(a1, a2) + υ2(a2, a4) + υ3(a1, a3) (1)

Fig. 1 shows the initial corresponding coordination graph. The key idea in VE
is that, rather than enumerating all possible joint actions and summing up all
functions to do maximization, we maximize over variables once at a time. Let us
begin with optimization for agent 1. Agent 1 collects all local payoff functions
including himself, i.e., υ1 and υ3 then does maximization. Hence, we obtain:

maxaυ(a) = maxa2,a3,a4{υ2(a2, a4) + maxa1 [υ1(a1, a2) + υ3(a1, a3)]} (2)

Using the Simulated Annealing Algorithm for Multiagent Decision Making 113

After enumeration of possible action combinations of his neighbors, i.e., agent
2 and agent 3, agent 1 conditionally returns his best response and yield a new
function e1(a2, a3) = maxa1 [υ1(a1, a2) + υ3(a1, a3)] whose value at the point a2,
a3 is the value of the internal max expression in equation (2). At this time, agent
1 is eliminated from CG. The global joint payoff function is rewritten as:

maxaυ(a) = maxa2,a3,a4{υ2(a2, a4) + e1(a2, a3)} (3)

Now fewer agents remain. Next, agent 2 does the same procedure. After collecting
υ2(a2, a4) and e1(a2, a3), agent 2 produces a conditional strategy based on the
possible actions of agent 3 and agent 4, and returns his choice, i.e., e2(a3, a4) =
maxa2 [υ2(a2, a4)+e1(a2, a3)] to the system, then is eliminated. The global payoff
function only contains 2 agents now:

maxaυ(a) = maxa3,a4{e2(a3, a4)} (4)

Agent 3 begins to do optimization. Enumerating actions of agent 4, he reports
his own choice and gives a conditional payoff e3(a4) = maxa3e2(a3, a4). Fi-
nally, the only remaining agent 4 can simply choose his optimal action: a∗

4 =
argmaxa4

e3(a4).
In the second pass, all agents do the entire process in reverse elimination order.

To fulfill agent 4’s optimal action a∗
4, agent 3 must select a∗

3 = argmaxa3
e3(a∗

4).
Then agent 2 can make a decision a∗

2 = argmaxa2
e2(a∗

3, a
∗
4). Finally, agent 1 does

a∗
1 = argmaxa1

e1(a∗
2, a

∗
3) to choose his optimal action appropriately. The whole

procedure needs only 4 × 4 + 4 × 4 + 4 = 36 iterations which is much smaller
than 256 iterations of the whole joint action space.

The outcome of VE is independent of the elimination order and always gives
the optimal joint action [13]. However, the running speed of VE is depended
on the elimination order and exponential in the induced width of the coordi-
nation graph [11,17]. Finding the optimal elimination order for VE is a well
known NP-complete problem [18,19]. Thus, in some cases and especially in the
worse case, the time consumed by VE grows exponentially with the number of
agents. Furthermore, VE can not give any useful results until the termination of
the complete algorithm, therefore it is not suitable for RoboCup 2D simulation
league for the robot player has to send actions to server every 100ms. We aim
to find an alternative approache that can circumvent such limitations.

3 The Simulated Annealing Algorithm

In many real-world applications, especially in limited computing time cases such
as RoboCup, we should make tradeoff between the optimality of the actions and
running time. Thus a sub-optimal or nearly optimal solution would be sufficient.
In [14], max-plus (MP) algorithm was proposed as an approximation to VE.
MP is essentially an instance of Perl’s belief propagation (BP) algorithm [15] in
Bayesian network. It can converge to optimal joint action in tree-structured CGs
and find nearly optimal result in graphs with cycles [14,15]. However, MP limits
the number of agents in local coordination dependencies not exceeding two.

114 J. Dawei and W. Shiyuan

In this section, we describe the simulated annealing (SA) algorithm proposed
as an approximate alternative to VE without MP’s limitation. The simulated
annealing algorithm 2, inspired by statistical mechanics, is very popular for com-
binatorial optimization [20,21,22]. In this area, efficient techniques are developed
to find minimum or maximum values for a function of a number of independent
variables [22]. The simulated annealing process executes by “melting” the sys-
tem being optimized at a high effective temperature at first, and then lowering
the temperature by slow stages until the system “freezes” and no further change
occurs.

We decide to apply SA to our multiagent decision making problem, since our
problem also needs to optimize the global joint payoff function via a number
of independent action variables of the agents. The key idea in our approach is
rather similar to CG. We decompose the global joint payoff function into a sum
of local terms, and then do optimization. Given n agents (defined in section 2),
the global joint payoff function can be decomposed as follows:

υ(a) =
∑

i∈G

υi(ai) +
∑

i,j∈G

υij(ai, aj) +
∑

i,j,k∈G

υijk(ai, aj , ak) + · · · (5)

Here, υi(ai) represents the payoff that an agent contributes to the system
when acting individually, e.g., dribbling with the ball. υij(ai, aj) denotes the
payoff of a coordination action, e.g., a coordination pass between agent i and
agent j, and υijk(ai, aj, ak), depicts another coordination action involving three
agents, e.g., pass from i to j, then j to k. Coordination dependencies with more
players can be added if needed. Our decomposition is different from MP in that
there is no limitation on the number of robot players involved in local terms.
In MP algorithm, the global joint payoff function can only be decomposed into∑

i∈G υi(ai) +
∑

i,j∈G υij(ai, aj).
Now the goal is to find the optimal joint action, i.e., a∗ = argmaxaυ(a).

The pseudo-code of SA algorithm is presented in Alg.1.. The SA algorithm is
implemented in a centralized version and performed by the agents in parallel,
without assuming the availability of communication. The idea behind it is very
straightforward. In each iteration (called an independent try), the algorithm
starts with a random choice of joint action for the agents, then loop over all
agents. Each agent optimizes the global payoff function with his own action while
the actions of all the others stay the same. If the agent’s local optimization can
yield a better joint action than the initial one, we accept it, otherwise accept
the solution with a probability of ε = 1

1+e−(Δ/T) . The looping continues until
the temperature T decayed from Tmax to a predefined threshold Tmin. Then
we select a new random starting position and repeat the whole process. When
an agent should send action to the server, he returns his own action from the
optimal joint action found so far.

Basically, what the SA algorithm does is to seek the global maximum of the
global joint payoff function. The SA algorithm has some important differences
2 The simulated annealing algorithm is also called monte carlo annealing or proba-

bilistic hill-climber.

Using the Simulated Annealing Algorithm for Multiagent Decision Making 115

from VE. Firstly, SA is an anytime algorithm that can report an answer at
any time, while VE reports until the whole algorithm terminates. Secondly, in
each independent try, agent i only has to iterate his own actions instead of
all combinatorial actions of his neighbors, thus makes the algorithm tractable.
Finally, the SA is essentially a stochastic algorithm that can not guarantee to
find the optimal joint action, 3 while VE is an exact and deterministic algorithm
that always report the optimal result. As an approximation algorithm, SA is also
different from MP in that SA has no limitation on the form of decomposed local
functions while the latter has.

SA has a feature of stochastic movement from one solution to another, which
helps it jump away from local maxima and improve the answer’s quality [21,22,23].
Although SA can not guarantee the convergence to optimal joint action, we shall
see that it can find an approximately optimal solution in a rather short time.

4 Experiments

In this section, we evaluate the simulated annealing algorithm by comparing it
with other algorithms, especially with variable elimination. The experiments run
in two stages. In the first stage, we fix the number of agents and the number
of different actions per agent to test the scalability of the two algorithms when
the number of neighbors per agent grows. In the second stage, we compare the
relative payoff SA returned with the optimal payoff produced by VE.

Since multiagent system is such a large field that there is no standard problem
one can test against, it is important to generate the proper test sets. In this
paper, we use a random generator (RG) to produce all test sets. The inputs
of the random generator are values of the number of agents |G|, the number
of different actions per agent |A|, maximum number of neighbors per agent
Nrne, and the number of value rules each agent has Nrρ. We believe that these
aspects are sufficient to show the difficulty of the coordination problem. The
output of the random generator is a set of value rules, each of which is in the
form 〈 ρ : υ〉. The value rule is introduced in [11] and proved suitable for plenty
of real-world applications such as RoboCup. The global joint payoff function is
thus represented by the sum of value rules of all agents. Table 1 depicts a sample
output of the random generator (RG) with |G| = 4, |A| = 4, Nrne = 3, Nrρ = 1.

Here, the integer value of ai is an action index. In a real RoboCup 2D simula-
tion program, such an action index is finally mapped to a real predefined action
(or skill, i.e., dribbling, pass, etc.) and sent to the server. We ignore the details
of the specific applications and only focus on the performance of the decision
algorithm.

In the first experiment, we generate 120 coordination problems and assign
them to 4 test sets based on different actions of each agent. For the problem
of each test set, the settings are as follows. The number of the agents is fixed
3 Technically the SA can also find the optimal solution if the annealing process is very

very slow [22]. However this will cause the algorithm to run too long time so that it
has no practical use.

116 J. Dawei and W. Shiyuan

Algorithm 1. Pseudo-code of the simulated annealing algorithm
Define: G = {G1, . . . , Gn} the agents who want to coordinate their actions
Define: υ(a) the global joint payoff function defined by section 3
Define: a∗ the optimal joint action found so far
Define: ai the action of agent i
Define: a∗

i the optimal action of agent i found so far
Define: a−i the actions of all agents but agent i

g ← 0
t ← 0
while t < MaxTries do

a = random joint action
T ← Tmax

repeat
for each agent i in G do

a′ = argmaxai
υ(a−i ∪ ai)

Δ ← υ(a′) − υ(a)
if Δ > 0 then

a ← a′

else
a ← a′ with probability 1

1+e−(Δ/T)

end if
if υ(a) > υ(a∗) then

a∗ ← a
g ← υ(a∗)
choose a∗

i from a∗

end if
if should send action to server then

send a∗
i to server

end if
end for
T ← T · decay

until T < Tmin

t ← t + 1
end while

to |G| = 15, while each agent has Nrρ = 8 value rules with different number
of neighbors. The payoff of each value rule is generated from a uniform random
variable v ∼ U [1, 10]. The number of neighbors k in each value rule is in the
range k ∈ [1, Nrne]. Each value has a chance of

(
Nrne

k

)
/2Nrne. All the programs

are implemented in C++, and the results are generated on a 2.2GHz/512MB
IBM notebook computer.

When applying variable elimination algorithm, we accelerate the running time
by eliminating the agent with the minimum number of neighbors. When running
simulated annealing algorithm, we set MaxTries to 10, the highest temperature
Tmax = 0.3, and lowest temperature Tmin = 0.05. The temperature decay of
the algorithm is in proportion to Nrne, i.e., decay∝Nrne. So if the coordination
problem contains value rules involving large amounts of agents, we will do a

Using the Simulated Annealing Algorithm for Multiagent Decision Making 117

Table 1. Sample output of RG

〈 ρ : υ〉

〈 a1 = 3 ∧ a3 = 3 ∧ a4 = 4 : 7.19085〉
〈 a2 = 4 ∧ a3 = 4 : 4.67774〉
〈 a1 = 1 ∧ a2 = 1 ∧ a3 = 2 ∧ a4 = 2 : 4.67774〉
〈 a1 = 4 ∧ a3 = 2 ∧ a4 = 1 : 4.67774〉

0

200

400

600

800

1000

ti
m

e(
m

se
c)

1 2 3 4 5
avg. neighbors per agent

variable elimination
simulated annealing

(a) Timing comparisons for VE and
SA (4 actions per agent).

0

200

400

600

800

1000

ti
m

e(
m

se
c)

1 2 3 4 5
avg. neighbors per agent

variable elimination
simulated annealing

(b) Timing comparisons for VE and
SA (6 actions per agent).

0

200

400

600

800

1000

ti
m

e(
m

se
c)

1 2 3 4 5
avg. neighbors per agent

variable elimination
simulated annealing

(c) Timing comparisons for VE and
SA (8 actions per agent).

0

200

400

600

800

1000

ti
m

e(
m

se
c)

1 2 3 4 5
avg. neighbors per agent

variable elimination
simulated annealing

(d) Timing comparisons for VE and
SA (10 actions per agent).

Fig. 2. Average timing comparisons for both VE and SA for testing the scalability
when the number of neighbors per agent grows with 15 agents

deep search in an independent try, vice versa. The experiment repeats 10 times
to weaken the effect of hardware and operation system.

In the second experiment, we produce 6 coordination problems, each of which
has its own settings such as number of agents, different actions per agent, etc.
VE and SA are both evaluated. When applying SA, instead of starting from
a random choice for all agents, in ith independent try, we let the agent select
action according to the ith highest value rule if he is involved, otherwise select
action randomly. We also set MaxTries = 200 to ensure sufficient time to run.
Other settings are the same as in the first experiment.

118 J. Dawei and W. Shiyuan

0.4

0.5

0.6

0.7

0.8

0.9

1
p
ay

off
S
A

/
p
ay

off
V

E

0 0.2 0.4 0.6 0.8 1
time SA / time VE

(a) |G| = 14, Nrne = 2, Nrρ = 10,
|A| = 5.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
ay

off
S
A

/
p
ay

off
V

E

0 0.2 0.4 0.6 0.8 1
time SA / time VE

(b) |G| = 14, Nrne = 2, Nrρ = 10,
|A| = 10.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
ay

off
S
A

/
p
ay

off
V

E

0 0.05 0.1 0.15 0.2
time SA / time VE

(c) |G| = 12, Nrne = 4, Nrρ = 10,
|A| = 4.

0

0.2

0.4

0.6

0.8

1

p
ay

off
S
A

/
p
ay

off
V

E

0 0.02 0.04 0.06 0.08 0.1
time SA / time VE

(d) |G| = 12, Nrne = 4, Nrρ = 10,
|A| = 8.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
ay

off
S
A

/
p
ay

off
V

E

0 0.2 0.4 0.6 0.8 1
time SA / time VE (×10−2)

(e) |G| = 10, Nrne = 8, Nrρ = 10,
|A| = 4.

0

0.2

0.4

0.6

0.8

1

p
ay

off
S
A

/
p
ay

off
V

E

0 0.2 0.4 0.6 0.8 1
time SA / time VE (×10−3)

(f) |G| = 10, Nrne = 8, Nrρ = 10,
|A| = 8.

Fig. 3. Relative payoff found by SA with respect to VE

In order to give a clear image of VE and SA, we scale the payoff axis so that
the global maximum payoff is 1. The time axis is also scaled so that the time it
takes the whole VE to terminate is 1. Thus the points in the figure can be seen
as the fraction of the payoff and the running time of VE. The results of SA will
be scaled to its VE companion. Again, the experiment is also repeated 10 times
to reduce hardware and software’s side effects.

Using the Simulated Annealing Algorithm for Multiagent Decision Making 119

Fig. 2(a)–2(d) give the timing results for the four test sets in the first experi-
ment. It can be seen that the running time of the SA algorithm grows linearly as
the number of the neighbors per agent increases. The running time of VE grows
exponentially, since it must enumerate all neighbor’s possible combination ac-
tions in each iteration. Furthermore, when the average number of neighbors per
agent was more than 3.5, VE can not always compute the optimal joint action,
so these tests were removed from the test sets.

The relative payoff found by the SA with respect to VE are plotted in Fig.
3(a)–3(f). In all the plots, we see that the SA algorithm performed very well. It is
obvious that we found approximately optimal results in all problems. In loosely
connected coordination problem with few actions, i.e., Fig. 3(a), SA algorithm
can converge to the maximum payoff while only using the 60% time of variable
elimination 4. However, if the number of actions is large (Fig. 3(b)), SA can not
reach the optimal result, although it can find approximately optimal solution
(96% payoff) quickly. Further experiments show that if the joint action space
is huge (more than 15 agents, and each agent has more than 10 actions), we
should increase the acceptable probability ε accordingly to speed up the con-
vergence to optimal result. This is because in such situations, a little higher
acceptable probability can increase the chance of stochastic solution movement
for simulated annealing algorithm. This technique helps SA jump away from lo-
cal optimizations and cover the joint action space as possible as it can. But the
exact relationship between acceptable probability and the convergency speed are
still not very clear. For the medium connected problems (Fig. 3(c)–3(d)), SA can
compute the optimal policy with a little fraction of time (2%–6%) that variable
elimination needs to solve the same problem. Fig. 3(e) and Fig. 3(f) give us a
strong impression that SA can compute above 98% payoff within the time ranges
between 0.015% to 0.2% of the time variable elimination takes in the densely
connected problems. We also show that in these 2 experiments, although the SA
can find near optimal solution very quickly, it still needs to take plenty of time
to approximate the optimal result.

In our internal unpublished tests, we also compare SA with max-plus algorithm
informally. The experiment shows that when reaching the same relative payoff,
the time difference between the two algorithms is at most 5%. Although our algo-
rithm is not faster than max-plus, we believe that our approach is more appropri-
ate for complex coordination problems in which the coordination dependencies in
the value rule is often more than two. Thus, max-plus can not be applied directly.

5 Conclusion

In this paper, we have described and investigated the use of the simulated an-
nealing algorithm for cooperative action selection as an approximate alternative
to variable elimination algorithm. As above-mentioned, Variable elimination is
an exact approach that always reports the optimal joint action. It is also an
4 Note that SA does not know even the maximum payoff has been found due to its

stochastic property.

120 J. Dawei and W. Shiyuan

efficient algorithm in loosely connected coordination graphs. However, it is very
slow in densely connected coordination graphs and unable to produce results at
anytime. The simulated annealing algorithm repeats independent tries. In each
try, each agent tries to maximize the global payoff using his own choice without
influencing the actions of all other agents. Based on the result quality in each
maximization, the algorithm accepts a solution with a certain probability. We
have provided empirical evidences to show: 1) this method is almost optimal
with a small fraction of the time that VE takes to compute the policy of the
same coordination problem; 2) the running time of SA grows linearly with the
increasing of the number of neighbors per agent; 3) it is an anytime algorithm
to return result at any time. For above reasons, we believe that simulated an-
nealing is an feasible approach for action selection in large complex cooperative
autonomous systems such as RoboCup.

As for future research, we plan to implement the simulated annealing algo-
rithm in our SEU T 2D simulation team. Last year, we tried to use VE for
our player’s cooperative action selection framework, but the computational con-
straints made us only use a small set of value rules with each rule involving at
most 3 agents [24]. Applying simulated annealing algorithm, we should produce
more advanced coordination actions to involve much more agents.

Finally, we will figure out a appropriate setting of the acceptable probability,
especially the decay rate in simulated annealing algorithm. Some recent work
shows that neural network algorithm can produce a good decay rate for larger
problems [23]. We would like to try to employ such techniques in our multi-
agent decision making problem. Furthermore, we want to investigate whether
reinforcement learning algorithms can be applied to automatic learning of the
payoff instead of hand tuning.

References

1. Weiss, G. (ed.): Multiagent Systems: a Modern Approach to Distributed Artificial
Intelligence. MIT Press, Cambridge, MA, USA (1999)

2. Woolridge, M., Wooldridge, M.J.: Introduction to Multiagent Systems. John Wiley
& Sons, Inc., New York, NY, USA (2001)

3. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E.: Robocup: The ro-
bot world cup initiative. In: AGENTS ’97. Proceedings of the first international
conference on Autonomous agents, Marina del Rey, California, United States, pp.
340–347. ACM Press, New York, NY, USA (1997)

4. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge
(1999)

5. Carriero, N., Gelernter, D.: Linda in context. Communications of the ACM 32(4),
444–458 (1989)

6. Gelernter, D.: Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems 7(1), 80–112 (1985)

7. Boutilier, C.: Planning, learning and coordination in multiagent decision processes.
In: TARK ’96. Proceedings of the 6th conference on Theoretical aspects of rational-
ity and knowledge, The Netherlands, pp. 195–210. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA (1996)

Using the Simulated Annealing Algorithm for Multiagent Decision Making 121

8. Tan, M.: Multi-agent reinforcement learning: Independent vs. cooperative learning.
In: Huhns, M.N., Singh, M.P. (eds.) Readings in Agents, pp. 487–494. Morgan
Kaufmann, San Francisco, CA, USA (1997)

9. Claus, C., Boutilier, C.: The dynamics of reinforcement learning in cooperative
multiagent systems. In: AAAI/IAAI, pp. 746–752 (1998)

10. Guestrin, C., Koller, D., Parr, R.: Multiagent planning with factored MDPs. In:
14th Neural Information Processing Systems (NIPS-14) (2001)

11. Guestrin, C., Venkataraman, S., Koller, D.: Context specific multiagent coordina-
tion and planning with factored MDPs. In: The Eighteenth National Conference
on Artificial Intelligence (AAAI-2002), Edmonton, Canada, July 2002, pp. 253–259
(2002)

12. Guestrin, C., Koller, D., Parr, R., Venkataraman, S.: Efficient solution algo-
rithms for factored MDPs. Accepted in Journal of Artificial Intelligence Research
(JAIR) (2002)

13. Guestrin, C.: Planning Under Uncertainty in Complex Structured Environments.
PhD thesis, Stanford University (2003)

14. Kok, J.R., Vlassis, N.: Using the max-plus algorithm for multiagent decision mak-
ing in coordination graphs. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y.
(eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, Springer, Heidelberg (2006)

15. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1988)

16. Wainwright, M., Jaakkola, T., Willsky, A.: Tree consistency and bounds on the
performance of the max-product algorithm and its generalizations. Statistics and
Computing 14, 143–166 (2004)

17. Dechter, R.: Bucket elimination: a unifying framework for reasoning. Artificial In-
telligence 113(1-2), 41–85 (1999)

18. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a K-tree. SIAM J. Algebraic Discrete Methods 8(2), 277–284 (1987)

19. Bertelé, U., Brioschir, F.: Nonserial dynamic programming. Academic Press, Lon-
don (1972)

20. Michalewicz, Z., Fogel, D.B.: How to solve it: modern heuristics. Springer, New
York, NY, USA (2000)

21. Johnson, D.S., McGeoch, L.A.: The Traveling Salesman Problem: A Case Study
in Local Optimization (Draft of November 20, 1995) In: Aarts, E.H.L., Lenstra,
J.K. (eds.) To appear as a chapter in The book Local Search in Combinatorial
Optimization, John Wiley & Sons, Inc., New York (1995)

22. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–680 (1983)

23. Spears, W.M.: Simulated annealing for hard satisfiability problems. DIMACS Series
in Discrete Mathematics and Theoretical Science 26, 533–558 (1996)

24. Dawei, J.: SEU T 2005 team description (2D). In: Proceedings CD RoboCup 2005,
Osaka, Japan, July 2005, Springer, Heidelberg (2005)

	Using the Simulated Annealing Algorithm for Multiagent Decision Making
	Introduction
	Variable Elimination and Coordination Graphs
	The Simulated Annealing Algorithm
	Experiments
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

