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Preface

The 10th RoboCup International Symposium was held during June 19-20, 2006
at the Fair & Convention Center in Bremen, Germany, immediately after the
2006 Soccer, Rescue and Junior Competitions. RoboCup is increasingly seen
by the robotics community as a significant approach to the evaluation of the
effectiveness of the proposed solutions to the many difficult robotics problems.

The RoboCup International symposium hosted scientific contributions in all
the areas relevant to RoboCup Competitions. The number of submissions to
the Symposium increased again and totalled 143. Each paper was reviewed by
at least three Program Committee members. The Program Committee included
researchers involved in RoboCup and other scientists from outside the RoboCup
community. Papers that received dissenting recommendations were discussed
among the reviewers, moderated by the Co-chairs. The final decisions were made
by the Co-chairs, who selected 22 submissions as full papers and 36 submissions
as posters. This means an acceptance rate of less than 16% for full papers and
less than 41% considering posters.

The symposium was run in single-track to allow coverage of all robotic-related
topics by all attendees. We had five sessions for oral presentations and two
poster sessions. We were also delighted to have two outstanding invited speak-
ers. Hod Lipson (Cornell University, USA) spoke about his work on biologically
inspired robotics in his talk “Biologically Inspired Robotics: From Evolving to
Self-Reproducing Machines.” Sebastian Thrun (Stanford University, USA) de-
scribed how his team won the DARPA Grand Challenge in his talk “Winning
the DARPA Grand Challenge.”

The Symposium Co-chairs selected a few papers as nominees for the Best
Paper Award and for the Best Student Paper Award. The RoboCup trustees made
the final decision and selected “A 3D Simulator of Multiple Legged Robots Based
on USARSIim” by M. Zaratti, M. Fratarcangeli, L. Iocchi as Best Paper and “Half
Field Offense in RoboCup Soccer: A Multiagent Reinforcement Learning Case
Study” by S. Kalyanakrishnan, Y. Liu, P. Stone as Best Student Paper.

As the quality of the symposium depends heavily on the quality of the gener-
ous Program Committee members, we wish to particularly thank them for their
work, which was very hard and concentrated in a very short time. We would
also like to thank the Local Organizing Committee, headed by Ubbo Visser, for
turning Robocup 2006 into such a memorable and enjoyable event. Last but not
least we thank Stefan Schiffer for his help in preparing these proceedings.

Congratulations to the RoboCup Competitions and the RoboCup Sympo-
sium, which celebrated their tenth anniversary this year in Bremen!

December 2006 Gerhard Lakemeyer
Elizabeth Sklar

Domenico G. Sorrenti

Tomoichi Takahashi
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Bridging the Gap Between Simulation and
Reality in Urban Search and Rescue

Stefano Carpin', Mike Lewis?, Jijun Wang?,
Steve Balakirsky?®, and Chris Scrapper®

! School of Engineering and Science
International University Bremen — Germany
2 Department of Information Sciences and Telecommunications
University of Pittsburgh — USA
3 Intelligent Systems Division
National Institute of Standards and Technology — USA

Abstract. Research efforts in urban search and rescue grew tremen-
dously in recent years. In this paper we illustrate a simulation soft-
ware that aims to be the meeting point between the communities of
researchers involved in robotics and multi-agent systems. The proposed
system allows the realistic modeling of robots, sensors and actuators,
as well as complex unstructured dynamic environments. Multiple het-
erogeneous agents can be concurrently spawned inside the environment.
We explain how different sensors and actuators have been added to the
system and show how a seamless migration of code between real and sim-
ulated robots is possible. Quantitative results supporting the validation
of simulation accuracy are also presented.

1 Introduction

Urban search and rescue (USAR) can be depicted as the research field that ex-
perienced the most vigorous development in recent years within the robotics
community. It offers a unique combination of engineering and scientific chal-
lenges in a socially relevant application domain [5]. The broad spectrum of rele-
vant topics attracts the attention of a wide group of researchers, with expertise
as diverse as advanced locomotion systems, sensor fusion, cooperative multia-
gent planning, human-robot interfaces and more. In this framework, the contest
schema adopted by the RoboCup Rescue community, with the distinction be-
tween the real robots competition and the simulation competition, captures the
two extremes of this growing community. Looking back at the past RoboCup
events, tremendous progresses in short time characterized both communities. In
2002 the real rescue robots competition was described as a competition where
teleoperated robots were mainly used because of the complexity of the problem
[3]. In the simulation competition, emphasis was instead on the inter-agent com-
munication models adopted [9]. The huge gap between these two extremes is
evident. Only two years later [6], the real robot competition saw the advent of
teams with three dimensional mapping software, intelligent perception, and the

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 1/12, 2007.
© Springer-Verlag Berlin Heidelberg 2007



2 S. Carpin et al.

first team with a fully autonomous multi-robot system. Within the simulation
competition, teams exhibited cooperative behaviors, special agent programming
languages and learning components. With these premises, it is evident that soon
a mutual migration of relevant techniques will materialize. Nevertheless, certain
logistic obstacles still prevent a seamless and profitable percolation of ideas and
knowledge. Having set the scene, in this paper we present the latest developments
of a simulation environment, called USARsim, that naturally plays the role of
an in-between research tool where multi-agent and multi-robot systems can be
studied in a artificial environment offering experimental conditions comparable
to reality. After a demo stage during Robocup 2005 in Osaka, USARsim has
been selected as the software infrastructure underlying the Virtual Robots com-
petition, that was approved as the third competition within the RoboCup rescue
simulation framework. In addition, we also offer an overview of the MOAST API,
a component based software framework that can be used to quickly prototype
control software, both in reality and on top of USARsim. Finally, we provide
results supporting a quantitative evaluation of the simulator fidelity.

2 Software Structure

The current version of USARsim is based on the UnrealEngine2 game engine re-
leased by Epic Games with Unreal Tournament 2004. The simulation is written
as a combination of levels, describing the 3-D layout of the arenas and mod-
ifications, and scripts redefining the simulations behavior. The engine to run
the simulation can be inexpensively obtained by buying the game. The Unreal
Engine provides a sophisticated graphical development environment and a va-
riety of specialized tools. The engine includes modules handling input, output
(3D rendering, 2D drawing, sound), networking and physics and dynamics. The
games level defines a 3-D environment in much the same way as VRML (virtual
reality markup language) and may use many of the same tools. The game code
handles most of the basic mechanics of simulation including simple physics. Mul-
tiplayer games use a client-server architecture in which the server maintains the
reference state of the simulation while clients perform the complex graphics com-
putations needed to display their individual views. USARsim uses this feature
to provide controllable camera views and the ability to control multiple robots.
Unreal Tournament has two types of entities, human players who run individual
copies of the game and connect to the server (typically running on the first play-
ers machine), and "bots” (short for robots), simulated players running simple
reactive programs. Gamebots, a modification to the Unreal Tournament game
that allows bots to be controlled through a normal TCP/IP socket [I], provides
a protocol for interacting with Unreal Tournament. Because the full range of bot
commands and Unreal scripts can be accessed over this connection GameBots
provides a more powerful and flexible entry into the simulation than the player
interface. The GameBot interface is ideal for simulating USAR robots because it
can both access bot commands such as Trace to simulate sensors and exert com-
plicated forms of control such as adjusting motor torques to control a simulated
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robot. One of the client options, the spectate mode, allows the clients viewpoint
(camera location and orientation from which the simulation is viewed) to be
attached to any other player including ”bots”. By combining a bot controlled by
GameBots with a spectator client we can simulate a robot with access to both
simulated sensor data through the bot and a simulated video feed through the
spectating client. By controlling the simulated robot indirectly through Game-
Bots rather than as a normal client we gain the additional advantage of being
able to simulate an autonomous robot (controlled by a program) a teleoperated
robot (controlled by user input) or any level of automation in between.

3 Robot Interfaces

An intelligent system must translate a mission command into actuator voltages.
While this may be done in a simple monolithic module, USARsim/MOAST
implements a hierarchical control structure that compartmentalizes the control
system responsibility and domain knowledge necessary to create each controller.
The knowledge and control requirements of a typical robotic platform may be de-
composed into the two broad areas of sensing and behavior generation. In turn,
behavior generation may be decomposed into mobility behaviors and mission
package behaviors. In this decomposition, mobility refers to the control aspects
of the vehicle that relate only to the vehicle’s motion (e.g. drive wheel velocities),
sensing refers to systems that acquire information from the world (e.g. cameras),
and mission packages are controllable items on the platform that are not related
to mobility (e.g. camera pan/tilt or robotic arm). It is the authors’ belief that
decomposing a system in this way allows for the creation of a generic internal
representation and control interface that is able to fully control most aspects
of robotic platforms. USARsim is designed to implement this decomposition
and provides developers with a modular interface into the low-level simulated
hardware of the robotic platform. It provides for component discovery, and inde-
pendent control of mobility, sensors, and mission packages. Coupling USARsim
to the Mobility Open Architecture Simulation and Tools (MOAST) framework
adds modularity in time by providing a set of hierarchical interfaces into these
components. Two different physical control interfaces exist into the system. The
first allows low-level control into USARsim and is based on sending ASCII text
over a TCP/IP socket. Higher-level commands and status utilize the Neutral
Message Language (NML) [8] that permits a physical interface of various types
of sockets as well as serial lines.

3.1 USARsim Socket API

During the development of the interface to USARsim many factors were taken
into account to ensure that the interface was both well-defined and standardized.
Scientific standards and conventions for units, coordinate systems, and interfaces
were used whenever possible. USARsim decouples the units of measurement used
inside Unreal by ensuring that all units meet the International System of Units
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(SI) standard conventions. SI Units are a National Institute of Standards and
Technology (NIST) developed convention that is built on the modern metric
system, and is recognized internationally. The coordinate systems for various
components must be consistent, standardized, and anchored in the global coor-
dinate system, as illustrated in Figure[ll USARsim leverages the previous efforts
of the Society of Automotive Engineers, who published a set of standards for
vehicle dynamics called SAE J670: Vehicle Dynamic Terminology. This set of
standards is recognized as the American National Standard for vehicle dynamics
and contains a comprehensive set of standards that describes vehicle dynam-
ics through illustrated pictures of coordinate systems, definitions, and formal
mathematical representations of the dynamics. Finally, the messaging protocol,
including the primitives, syntax, and the semantics must be defined for the in-
terface. Messaging protocols are used in USARsim to insure that infrequent and
vital messages are received. The primitives, syntax, and semantics define the
means in which a system may effectively communicate with USARsim, namely
to speak USARsim’s language. There are three basic components that exist
currently in USARsim: robots, sensors, and mission package. For each class of
objects there are defined class-conditional messages that enable a user to query
the component’s geography and configuration, send commands to, and receive
status back. This enables the embodied agent controlling the virtual robot to be
self-aware and maintain a closed-loop controller on actuators and sensors. The
formulation of these messages are based on an underlying representation of the
object, includes their coordinate system, composition of parts, and capabilities.
This highlights a critical aspect underlying the entire interface; the representa-
tion of the components and how to control those components. For example, take
a robotic arm, whose internal representation of an arm is visualized in Figure 21
In order for there to be a complete and closed representation of this robotic arm,
the following aspects are defined as individual class conditional messages that
are sent over the USARsim socket.
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Configuration: How to represent the components and the assembly with re-
spect to each other.

Geography: How to represent the pose of the sensor mounts and joints mount
with respect to the part, and the pose of the part with respect its parent
part.

Commands: How to represent the movements of each of the joints, either in
terms of position and orientation or velocity vectors.

Status: How to represent the current state of the robotic arm.

3.2 Simulation Interface Middleware (SIMware)

Residing between USARSim and MOAST is the SIMware layer. This layer pro-
vides a modular environment and allows for a gradient of configurations from the
purely virtual world to the real world. SIMware is designed to enable MOAST
to conect to interfaces or APIs for real or virtual vehicles. It seemlessly connect
to platforms with different messaging protocols, semantics, or different levels of
abstraction. SIMware is made up of three basic components: a core, knowledge
repository, and skins. The core of SIMware is essentially a set of state tables and
interfaces that enables SIMware to administer the transference of data between
two different interfaces. This transference is enabled through the use of knowl-
edge repositories that provide insite into the target platform’s capibilities and
abstraction. The skins are an interface specific parsing utility that utilize the
knowlege repository in order to enable the core to translate incoming and out-
going message traffic to meet the appropriate level of abstraction for the target
interface.

3.3 MOAST API

The MOAST framework connects into USARsim via SIMware and provides ad-
ditional capabilities for the system. These capabilities are encapsulated in com-
ponents that are designed based on the hierarchical 4-D/RCS Reference Model
Architecture [2]. The 4-D/RCS hierarchy is designed so that as one moves up
the hierarchy, the scope of responsibility and knowledge increases, and the reso-
lution of this knowledge and responsibility decreases. Each echelon (or level) of
the 4-D/RCS architecture performs the same general type of functions: sensory
processing (SP), world modeling (WM), value judgment (VJ), and behavior gen-
eration (BG). Sensory processing is responsible for populating the world model
with relevant facts. These facts are based on both raw sensor data, and the results
of previous SP (in the form of partial results or predictions of future results).
The world model must store this information, information about the system self,
and general world knowledge and rules. Furthermore, it must provide a means
of interpreting and accessing this data. Behavior generation computes possible
courses of action to take based on the knowledge in the WM, the systems goals,
and the results of plan simulations. Value judgment aids in the BG process by
providing a cost/benefit ratio for possible actions and world states.
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Fig. 3. Modular Decomposition of MOAST framework that provides modularity in
broad task scope and time

The regularity of the architectural structure in 4-D/RCS enables scaling to any
arbitrary size or level of complexity. Each echelon within 4-D/RCS has a charac-
teristic range and resolution in space and time. Each echelon has characteristic
tasks and plans, knowledge requirements, values, and rules for decision-making.
Every component in each echelon has a limited span of control, a limited number
of tasks to perform, a limited number of resources to manage, a limited number
of skills to master, a limited planning horizon, and a limited amount of detail
with which to cope.

This decomposition is depicted in Figure Bl Under this decomposition, the
USARsim API may be seen as fulfilling the role of the servo echelon, where
both the mobility and mission control components fall under BG. The sensors
are able to output arrays of values, world model information about the vehicle
self is delivered, and mission package and mobility control are possible. The
remainder of this section will concentrate on the functioning and interfaces of
the remaining echelons of the hierarchy.

Primitive Echelon. The primitive echelon behavior generation is in charge of
translating constant curvature arcs or position constraints for vehicle systems into
velocity profiles for individual component actuators based on vehicle kinematics.
For example, the AM Mobility BG will send a dynamically correct constant cur-
vature arc for the vehicle to traverse. This trajectory will contain both position
and velocity information for the vehicle as a whole. For a skid steered vehicle, the
Primitive Echelon BG plans individual wheel velocities based on the vehicle’s kine-
matics that will cause to vehicle to follow the commanded trajectory. During the
trajectory execution, BG will read vehicle state information from the Servo Eche-
lon WM to assure that the trajectory is being maintained and will take corrective
action if it is not. Failure to maintain the trajectory within the commanded tol-
erance will cause BG to send an error status to the AM Mobility BG.
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The Primitive Echelon SP is in charge of converting sensor reports from sen-
sor local coordinates to vehicle local coordinates. This information is read by
the world model process which performs spatial-temporal averaging to create an
occupancy map of the environment in vehicle local coordinates. This map is of
fixed size and is centered on the current vehicle location. As the vehicle moves,
distant objects fall off of the map. Future enhancements will allow for the popu-
lation of newly added map area with any information that may be stored in the
larger extents AM WM.

Autonomous Mobility Echelon. The Autonomous Mobility Echelon behav-
ior generation is in charge of translating commanded way-points for vehicle sys-
tems into dynamically feasible trajectories. For example, the Vehicle Echelon
mission controller may command a pan/tilt platform to scan between two ab-
solute coordinate angles (e.g. due north and due east) with a given period.
BG must take into account the vehicle motion and feasible pan/tilt accelera-
tion/deceleration curves in order to generate velocity profiles for the unit to
meet the commanded objectives. BG modules at this level may take advantage
of all of the world model services provided o the Primitive Echelon in addition
to the occupancy maps that have are maintained by the Primitive Echelon WM.

SP at this level extracts environmental attributes and in conjunction with WM
labels the previously generated occupancy map with these attributes. Examples
of attributes include terrain slope, and vegetation density.

Vehicle Echelon. The Vehicle Echelon behavior generation is in charge of
accepting a mission for an individual vehicle to accomplish and decomposing
this mission into commands for the vehicle subsystems. Coordinated way-points
in global coordinates are then created for the vehicle systems to follow. This
level must balance possibly conflicting objectives in order to determine these
way-points. For example, the Section Echelon mobility BG may command the
vehicle to arrive safely at a particular location by a certain time while searching
for victims of an earthquake. The Vehicle Echelon mobility BG must plan a path
that maximizes the chances of meeting the time schedule while minimizing the
chance of an accident; and the Vehicle Echelon mission BG must plan a camera
pan/tilt schedule that maximizes obstacle detection and victim detection. Both
of these planning missions may present conflicting objectives.

SP at this level works on grouping cells from the AM WM into attributed
points, lines, and polygons. These features are stored in a WM knowledge-base
that supports SQL based spatial queries.

Section (Team) Echelon and Above. The highest level that has currently
been implemented under the MOAST framework is the Section or Team Eche-
lon. This level of BG has the responsibility of taking high-level tasks and decom-
posing them into tasks for multiple vehicles. For example, the Section Echelon
mobility may plan cooperative routes for two vehicle to take in order to explore
a building. This level must take into account individual vehicle competencies
in order to create effective team arrangements. Higher echelon responsibilities
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would include such items as planning for groups of vehicles. An example of this
would be commanding Section 1 to explore the first floor of a building and Sec-
tion 2 to explore the second floor. Based on the individual teams performance,
responsibilities may have to be adjusted or reassigned.

4 Validation

The usefulness of a simulation such as USARsim as a research tool is strongly
dependent on the degree to which it has been validated and the availability of
validation data for use in choosing models and assessing the generalizability of
results. The provision of common and standard tools allows researchers to com-
pare results, share software and advances, and collaborate in ways that would be
impossible otherwise. While many of these benefits accrue simply from standard-
ization, others require a closer correspondence between simulation and reality.
While a human-robot interaction (HRI) experiment may not demand full real-
ism in the behavior of a PID controller, replicating constraints such as a narrow
field of view and invisibility of obstacles obstructing wheels may be essential to
achieving results relevant to the operation of actual robots. Researchers wishing
to port code developed in simulation to a real robot by contrast may need the
highest fidelity model of the control system attainable to get useful results. In
validating USARsim we are attempting to measure correspondences as precisely
as possible so they also may serve for lower fidelity uses and where this is not
possible identify those areas in which only low fidelity results are available.

A comparison of feature extraction for the Orange Arena using a laser range
finder (Hokuyo PB9-11) on an experimental robot and its simulation in US-
ARsim was reported already in [4]. The mapped areas along with their Hough
transforms were practically identical and adjustable parameters tuned using the
simulation did not require change when moved to the real robot. We have since
conducted validation studies investigating HRI for the Personal Explorer Rover
(PER) [7] and the Pioneer, P2/P3-DX. Some of these results for the PER were
reported in [I0]. This HRI validation testing was conducted at Carnegie Mel-
lons replica of the NIST Orange Arena using both point-to-point and teleoper-
ation control modes for the PER and teleoperation only for the pioneer P2-AT
(simulation)/P3-AT (robot). In this study driving performance was observed for
different surfaces and simple and complex courses using point-to-point or tele-
operation control modes. Participants controlled the real and simulated robots
from a personal computer located in the Usability laboratory at the School of
Information Sciences, University of Pittsburgh. For simulation trials the simu-
lation of the Orange Arena ran on an adjacent PC. For the real robotic control
trials the participants controlled robots over the Internet in a replica of the Or-
ange Arena in the basement of Newell Simon Hall at Carnegie Mellon University
(see figure Ml). Measures such as the distance from the stopping point to the
target cone were collected for both the physical arena and the simulation. A
standard interface developed for RoboCup USAR competition [7] was used un-
der all conditions. Participants in the direct control mode controlled the robots
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Fig. 4. On the left side the orange arena at CMU. On the right side the simulated arena
within USARsim. The yellow cone to be reached can be observed in both images.

using a joystick. Both robots were skid steered so forward backward movements
of the joystick led to movement while right/left movements produced changes
in yaw. In the waypoint control mode participants selected waypoints by click-
ing on locations on the video display. This input was interpreted by the control
software as specifying a direction and duration of travel. Manual adjustments in
the point-to-point condition were made using the cursor keys.

Procedure. In Stage 1 testing of the PER and Pioneer (direct control mode) we
established times, distances, and errors associated with movements over a wood
floor, paper, and lava rocks. These data were used to adjust the speed of the sim-
ulated PER and Pioneer and alter the performance of the simulated PER when
moving over scattered papers. In Stage 2 testing, PER robots were repeatedly
run along a narrow corridor with varying types of debris (wood floor, scattered
papers, lava rocks) while the sequence, timing and magnitude of commands were
recorded. Participants were assigned to maneuver the robot with either direct
teleoperation or waypoint (specified distance) modes of control. There were five
participants in each of the PER groups (real-direct, real-waypoint, simulation-
direct, simulation-waypoint) and four in the Pioneer (real-direct, simulation-
direct) groups. In the initial three exposures to each environment, participants
had to drive approximately three-meters, along an unobstructed path to an
orange traffic cone. In later trials, obstacles were added to the environments,
forcing the driver to negotiate at least three turns to reach the destination. The
distances from stopping position to the goal and task times were recorded for
both simulated and real trials. A time-stamped log of control actions and dura-
tions were collected for both real and simulated robots.

Terrain effects. The paper surface had little effect on either robots operation.
The rocky surface by contrast had a considerable impact, including a loss of trac-
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Fig. 5. Distribution of the times to complete the mission

tion and deflection of the robot. This was reflected by increases in the odometry
and number of turn commands issued by the operators even for the straight
course. A parallel spike in these metrics is recorded in the simulator data. As
expected the complex course also led to more turning even on the wood floor.
Figure Bl shows these data for the simulated and actual PER and Pioneer.

Prozimity. One metric on which the PER simulation and the physical robot
consistently differed was the proximity to the cone acquired by the operator.
Participants were given the instruction to get as close to the cone as possible
without touching it. Operators using the physical robot reliably moved the robot
to within 35cm from the cone, while the USARsim operators were usually closer
to 80cm from the cone. It is unlikely that the simulation would have elicited
more caution from the operators, so this result suggests that there could be a
systematic distortion in depth perception, situation awareness, or strategy. In
both cases the cone filled the cameras view at the end of the task. Alternatively,
the actual PER was equipped with a safeguard to prevent running into objects
while the simulated PER was not. Although this feature was not included in
the instructions participants may have discovered it in controlling the robot and
adopted a strategy of simply driving until the robot stopped. Figure [0l shows the
distribution of these stopping distances. Another issue addressable from these
data is the extent to which similarities in performance are a function of the
platforms being simulated or differences between the simulation and control of
real robots. FigureBlsuggests that both influences are present. As with our other
data there are clear differences associated with platform and control mode. Note
for instance the consistently shorter completion times shown in figure Bl for both
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Fig. 6. Distribution of the stopping distances of the PER robot from the cone

actual and simulated Pioneers. Idle times, however, were much closer between
the simulated PER and Pioneer than between the simulations and the simulated
platforms. These substantially longer pauses between actions in controlling the
real robot occurred despite matching frame rates although slight differences in
response lag may have played a factor. Despite the difference in length of pauses
completion times remain very close between the robot and the simulation. The
average number of commands were also very similar between the simulation
and the PER for control mode and environment except for straight travel over
rocks in command mode where PER participants issued more than twice as
many commands as those in the simulation or direct operation modes. A similar
pattern occurs for forward distance traveled with close performance between
simulation and PER for all conditions but straight travel over rocks, only now
it is the teleoperated simulation that is higher.

5 Conclusions

In this paper we have presented the latest developments concerning the US-
ARsim simulation environment, a natural candidate to meet the demands of
researchers involved both in simulation and with real robots. Initial valida-
tion results show an appealing correspondence between experiences gained with
USARsim and the corresponding real robots. Further benefits from USARsim
can be obtained using MOAST, a framework that aids the development of au-
tonomous robots. USARsim software and MOAST can be obtained for free
from sourceforge.net/projects/usarsim and souceforge.net/projects/moast, re-
spectively. As our library of models and validation data expands we hope to begin
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incorporating more rugged and realistic robots, tasks and environments. Accu-
rate modeling tracked robots which will be made possible by the release of Un-
realEngine3 would be a major step in this direction. The open source model
adopted for the development of these software foster the active involvement of
multiple developers and already gained quite some popularity.
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Abstract. This paper presents a flexible 3D simulator able to reproduce
the appearance and the dynamics of generic legged robots and objects
in the environment at full frame rate (30 frames per second). Such a
simulator extends and improves USARSim (Urban Search and Rescue
Simulator), a robot simulator in turn based on the game platform Un-
real Engine. This latter provides facilities for good quality rendering,
physics simulation, networking, highly versatile scripting language and a
powerful visual editor. Our simulator extends USARSim features by al-
lowing for the simulation and control of legged robots and it introduces a
multi-view functionality for multi-robot support. We successfully tested
the simulator capabilities by mimicking a virtual environment with up
to five network-controlled legged robots, like AIBO ERS-7 and QRIO.

1 Introduction

Robotic simulation is very important in developing robotics applications, both
for rapid prototyping of applications, behaviors, scenarios, and for debugging
purposes of many high-level tasks. Robot simulators have been always used in
developing complex applications, and the choice of a simulator depends on the
specific tasks we are interested in simulating. Moreover, simulators are also very
important for robotic education: in fact, they are powerful teaching tools, allow-
ing students to develop and experiment typical robotic tasks at home, without
requiring them to use a real robot.

2D simulators are widely used to evaluate the behaviors of robotic applica-
tions, they are very effective for many kinds of robots and applications, and are
easy to use and to customize. However, there are cases in which a 2D simulator
is not sufficient. For example, for mobile robots with higher mobility than wheels
(e.g., legged or snake-like robots) and in 3D environments, a 2D simulator may
be too simplistic to correctly model some behaviors.

A 3D simulator for mobile robots must also correctly simulate the dynamics
of the robots and of the objects in the environment, thus allowing for a cor-
rect evaluation of robot behaviors in the environment. The required accuracy of
dynamics simulation depends on the particular behavior we are interested in eval-
uating. Moreover, real-time simulation is important in order to correctly model
interactions among the robots and between the robots and the environment.

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 13 2007.
© Springer-Verlag Berlin Heidelberg 2007
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Since simulation accuracy is computationally demanding, it is often necessary
an approximation to obtain real-time performance.

Another important feature of a robotic simulator is easy integration of differ-
ent robotic platforms, different scenarios, different objects in the scene, as well
as support for multi-robot applications.

Finally, visual realism is not fundamental for robotic simulation, since may
be not adeguate to experiment and evaluate low-level sensor processes, such as
image processing. However, visual realism usually has a minimum impact on the
performance of the simulator (since most of the computation can be demanded
to graphics adapters of the PCs), while a simulator with visual realism can be
more attractive.

3D Robotic Simulators. There exist already several simulators that handle the
issues discussed above. As our aim is to address 3D physics simulation, let us see
how this feature is integrated in the simulators that have been used within the
RoboCup Four Legged league and in general for 3D modeling of complex robots.
There are several factors that make realistic robotics simulation hard to achieve.
In order to represent a valid tool for the robotics researcher, the simulator must
fulfill a number of requirements:

Flexibility: the simulator must allow for the simulation of different robots,
not even know a priori, as well sensors and actuators. The generic virtual
environment where the robots are placed, should be easy to model as well;

Physics Realism: to obtain plausible results, interaction among robots and be-
tween robots and the virtual environment must be carefully modeled through
the physical laws of rigid body dynamics;

Visual Realism: the appearance of the whole system must be as accurate as
possible to guarantee consistent sensor readings (e.g., images, audio);

Efficiency: simulation must be carried out in the most efficient way, hopefully
in real-time, with a visualization frame rate of 30 frames per second;

Modularity: it must be easy to add and modify the features of the environment
and of the robots, including the sensors input/output;

Effective Control: the simulator should be flexible enough to be easily inter-
faced to the same programming code that is used on the real robots.

The Asura Tearl] provides a development kit, namely the ASURA RoboCup
Software, aiming at reproducing the Four-legged League environment. Such a
development kit permits to develop strategies and sensor acquisition and process-
ing. However, it lacks in flexibility since it can simulate only the AIBO ERS-210
robot in the RoboCup framework and it does not permit dynamics simulation,
leading to a poor representation of the virtual system.

Zagal and Ruiz-del-Solar introduced UCHILSIM [7] in 2004. Such a simulator
reproduces with high fidelity the dynamics of AIBO motions and its interactions
with the objects in the game field. Physical simulation is carried out through

! Www.asura.ac.
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the open-source physical engine Open Dynamics Engind? (ODE) and objects
(e.g., robots) are defined in the VRML standard. The goal of this project was
to became a standard framework for learning complex AIBO behaviors. This
simulator was quite promising but it seems to be no longer developed.

Gazebo [3] is a multi-robot 3D simulator with graphical interface and dynam-
ics simulation (through ODE). It is able to simulate a wide range of sensors and
it comes with models of existing robots even if the simulator does not allow to
define complex objects (e.g., dummies for rescue arenas, moving people in the
scene, a ball in the soccer field). The robots and sensors can be controlled by the
Player |2] server or controllers can be written using a library provided with the
simulator. Simulated environment are described in XML and new robot/sensor
models can be created as plug-ins. Simulation of legged robots is supported but
not extensively used in the current release.

SimRobot [4] by Laue et al. simulates arbitrary user-defined robots in three-
dimensional space. To allow an extensive flexibility in building accurate models,
a variety of different generic bodies, sensors and actuators has been implemented
and specified in XML. The robot controllers are directly linked with the simu-
lator library to produce an executable file. Furthermore, the simulator follows a
user-oriented approach by including several mechanisms for visualization, direct
actuator manipulation, and interaction with the simulated world. Dynamics is
simulated through the ODE engine.

Webotd is a commercial general purpose mobile robotics simulation software.
It uses ODE to simulate dynamics and it has an extensive library of actuators,
sensors and robots like Aibo, Lego Mindstorms, Khepera, Koala and Hemisson.
While the mechanical features of the robots are well defined, the main limitation
of this simulator resides in the poor quality of the 3D graphical representation of
the virtual environments, including robots and in the lack of adequate modeling
tools.

USARSim (Urban Search and Rescue Simulatoﬁ [6/T] is a robot simulator
based on the industrial game engine Unreal Engindl. It simulates the reference
test arenas developed by National Institute of Standards and Technology (NIST)
and robots intended for the Urban Search & Rescue (USAR) tasks. Since Unreal
Engine has been deployed for the development of networked multi-player 3D
games, it solves many of the issues related to modeling, animation and render-
ing of the virtual environment. It is a complete game development framework
targeted at today’s mainstream PC, it provides tools to rapidly develop objects
and environment (Unreal Editor) and it is possible to define the behavior of the
objects through an ad-hoc script language (Unreal Script). Dynamics of rigid
bodies is transparently handled by the Karma physical engine [5]. As in Gazebo,
robot controllers use a TCP/IP interface to control the robots and so may
be programmed in any language that supports networking. The Client/Server
architecture can be advantageously used to carry out complex computations
on dedicated machines decoupling the simulation from intelligence processing.

2 Open Dynamics Engine www.ode.org.
3 www.cyberbotics.com/products/webots//.
www.unrealtechnology.com.
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However, the current version of USARSim is not able to simulate legged robots,
like AIBOs, and it has several limitations like the total number of joints allowed
for each robot, a limited support for multi-robot scenarios and an approximative
collision handling.

Discussion. From the analysis of the existing simulators it appears that a gen-
eral 3D simulator for legged robots with good dynamics simulation, multi-robot
support, realistic appearance, and easy-to-use editing tools is not currently avail-
able. USARSim is the most promising, since it already implements many required
features and it can be easily extended. Unreal Engine has a significant industrial
support and a simulator based on it will benefit from new releases of this engine
as soon as they are available, with minimum effort. Unreal Engine uses a different
physical engine (Karma) than other simulators (using ODE). To our knowledge
there are no comparative studies between these two engines and we believe the
choice of ODE is given only by its open-source code. Unfortunately, the cur-
rent version of Unreal Engine (and USARSim) makes a partial (and sometimes
incorrect) use of the Karma engine. Finally, USARSim has been chosen as the
standard simulator for a new RoboCup Rescue simulation league.

In this paper we present a 3D simulator based on USARSin] that allows for
modeling complex legged robots (such as quadrupeds and humanoid ones) and
for simulating their interaction. The performance of the system allows for simu-
lating in real-time up to five of these robots in the environment. The simulator
presented in this paper extends USARSim by introducing some important fea-
tures: 1) it allows for the simulation and control of legged robots (four-legged,
humanoids, etc.) 2) it introduces a multi-view functionality for multi-robot sup-
port. Moreover, we fixed a few problems in the use of the physical engine Karma,
that was not fully and correctly integrated in the Unreal Engine.

We successfully tested the simulator by implementing AIBO ERS-7 and QRIO
robots, controlling five of them at full frame rate (30 fps). The simulator is
actually in use for the development of our team competing in the RoboCup
Four-Legged League.

2 3D Multi-robot Simulator Architecture

In order to use a simulator for multi-robot applications, it is important to provide
an effective interface to multiple robot control programs. A typical choice (e.g.,
Gazebo [3]) is to run the simulator as a server allowing robot control programs
to act as clients. The robot control programs receive from the simulator data
emulating sensor readings and send commands for the actuators. The simulator
server manages interaction among robots and between robots and objects in
the environment, maintaining an up to date representation of the world. For
a realistic simulation, it is thus important that the simulation is asynchronous
with respect to robot control programs. Moreover, the simulator must process
data in real-time, otherwise it will feed robot control programs with unrealistic
data.

5 The simulator and demo videos are available from www.dis.uniromal.it/~spqr.
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When using a 3D simulator with realistic modeling of appearance and dynam-
ics of the environment, computational time is a main requirement and therefore
it is usually necessary to run this process on a different machine with respect to
robot control programs. Therefore, a networked client/server architecture should
be used for 3D multi-robot simulation. The server machine runs the 3D simula-
tor as a multi-client server. Other machines connected through TCP/IP act as
robot control programs.

The choice of USARSim as the basis for the simulator described in this paper
has required the implementation of another module, to overcome the problems
due to the fact that the underlying game engine is not designed to act as a multi
user server on a single machine. In fact, it is possible to use USARSim for multi-
robot applications as long as only one robot is provided with a video camera.
To simulate a multi-robot system with one camera per robot, it is necessary to
run one USARSim process (actually an Unreal client) for each robot. Moreover,
it is possible to run only one client per machine. This solution requires too
many resources for a single simulation: for example, if robot control programs
are separated from simulation we may need up to 2n machines for an n-robot
simulation. Otherwise it is possible to use a single machine switching among
robot cameras every t seconds, where ¢t depends on the simulation load on the
machine. However, also this solution is not advisable because it offers extremely
low image acquisition rates, and it is not possible to access multiple cameras
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at the same time. The solution proposed in this paper allows for using a single
machine for the simulation in presence of multiple robots with multiple cameras
without the aforementioned drawbacks.

The architecture of the multi-robot simulator we have implemented is depicted
in Figure[Il

The USARSim interface module on the clients manages all the communica-
tions with USARSim. It was created to translate or modify both outgoing com-
mands and incoming sensory data. This interface allows to adapt USARSim
to already existing controllers with minimal changes. It also allows to pre-
process sensory data if necessary (e.g., apply distortions introduced by real robot
cameras).

3 3D Multiple Legged Robot Simulator

In this section, we describe the main modifications and extensions that we im-
plemented in USARSim in order to allow the simulation of legged robots like
quadrupeds, bipeds, hexapods and so on. We conclude by presenting an exam-
ple with two different robots, Sony AIBO ERS-7 and Sony QRIO, operated by
independent controllers, coexisting and interacting in the same environment.

Oscillations of Rigid Parts. The first problem we faced was due to the oscillation
of all the rigid parts of the robots. The amplitude of the oscillations was +2mm
on X, Y and Z axis and it has been observed only when the simulation has
been run in networking mode, when server and clients were running on separate
machines. The cause was in the replication mechanism, used by Unreal Engine
to synchronize server and clients. We fixed this issue in a straightforward way
by using in the USARSim code a different data type not subject to network
optimizations.

Collision Handling. A collision primitive is an invisible volume with a simple
shape (e.g. a box, a cylinder), embedding a 3D mesh and it is used to simplify the
collision detection process with other meshes. It is also useful to define dynamic
properties like center of mass and inertia tensor. A well-defined collision handling
is crucial for a plausible physical simulation and so the correct definition of the
collision primitives.

In the original USARSim, each single part of a robot is defined by the class
KDpart where, beside other information, it is specified the shape of the robot
part and a default collision primitive. When the simulator loads a robot in the
virtual scene, the original USARSim assembles all its parts with the correspond-
ing collision primitives on the fly. The process however is prone to a sneaky
Unreal Engine bug causing the loading of the same default collision primitive
for each mesh. To bypass this bug, our approach has been to write a script, de-
rived from KDpart, for each part of the modeled robots. In this way, meshes and
collision primitives have not to be defined at run-time (with a new static-mesh
properties) but it is sufficient to specify them in the definition script of the robot.

Because this major change, our implementation lost compatibility with the
robots deployed with the original USARSim. To be able to continue to use these
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robots, we defined new scripts for each one of them, including the fine-tuning of
physical parameters like mass, center of mass, inertia tensor and friction.

Hinge Joint. Original USARSim defines one motorized joint to connect the dif-
ferent parts of the robot, the CarWheelJoint (Fig.[2]). Such a joint is provided by
Karma physics engine integrated in the Unreal Engine and allows two or three
DOFs, depending on its configuration. We did not use this joint because for our
objectives, only one DOF was needed. USARSim allows for locking the suspen-
sion DOF, leading to a one-DOF joint, however the resulting joint is not stable
enough for rigid parts, and it leads to instability of the simulation. Furthermore,
with the CarWheelJoint, it is rather difficult to obtain the relative rotation angle
among joined parts. Such angles cannot even be set precisely, since there is at
least an error of +0.5 degrees, and this error drift away (i.e. increase) over time.

| ——— steering axis (hinge) )
7 ®)
(@)

i <«———— suspension (prismatic)
o

O

7

R 5 —<— Wwheel rotation axis (hinge)

Fig. 2. CarWheelJoint [5] Fig. 3. Hinge Joint [5]

For these reasons, we modified USARSim in order to use another joint model,
the Hinge (Fig. B)), also provided by Karma engine and not suffering from the
aforementioned issues. Hinge allows one DOF, may be controlled in angle, angu-
lar velocity and torque, the maximum allowed precision is 0.0055 degrees, and it
implements a feedback mechanism providing a stable control of the angle among
joined parts.

Original USARSim allows up to 16 joints for each robot. This bound have been
increased by modifying the size of some internal structures in the simulator code.

Multiple Views Support. Unreal Engine allows only one robot camera to be
accessed at each frame. If more robots are placed in the virtual environment,
only one robot controller may be correctly feed with image data. To allow the
simulation of multiple robots, we attempted to interleave images obtained by
accessing a different camera at every frame, but this solution is not feasible since
simulation and controller modules run asynchronously. The solution provided by
the original USARSim is to use the Unreal Engine multi-player support. Each
robot runs on a different computer with its graphical client and a central server
handles the whole simulation. This solution is obviously not suitable for multi-
robot development since it requires too much hardware.

To solve this problem, we introduced a special kind of robot, namely the Mul-
tiView. MultiView collects camera locations and orientations from each camera
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Fig. 4. Each robot camera is rendered by MultiView. Those images are then collected
and splitted by ImageServer which sends them to the controllers.
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Fig. 5. Multi-Robot example

on the robots and renders each robot view in a different subview. This image
mosaic is then grabbed by ImageServer, a thread running on the same machine
where the USARSim server resides, by direct access to the Direct3D frame buffer.
The views from each robot are extracted from the mosaic and sent across the
network to the corresponding controllers (Fig. Hl). This solution allowed us to
simulate and control multiple robots using cameras by running the simulator on
a single machine. The only limitation is in the reduced resolution of the images.
Observe that this is not a problem, since simulation can not anyway be used
to validate image processing. Moreover, for robots with low-resolution cameras
(such as AIBOs), actual resolution can be obtained.

AIBO Sensors. To simulate the AIBO ERS-7 we also added 3 new sensors:
a simplistic instant acceleration sensor, a contact sensor and a more flexible
IR distant sensor than the one already defined in the original USARSim. In
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particular, our IR distant sensor permits to set the maximal bound of the error
magnitude in function of the measured distance.

MultiView and the client/server architecture allow to mix easily different ro-
bots in the same simulation. Figure [l shows an example of two different robots,
an AIBO and a QRIO humanoid robot, in the same map and handled remotely
by different controllers.

4 Run-Time Environment Management

The flexibility of Unreal Engine and Unreal Script allowed us to define the be-
havior of the virtual environment in real-time.

We define the complex behavior of the objects in the virtual environment
through events and triggers. An event is casted when an object, like a robot,
comes in contact with a trigger, that is an invisible volume that can be placed
anywhere in the map. Each event corresponds to an action like, for example,
an affine transformation applied to an object (e.g., open and close a door or a
passage), can turn on and off lights or motors. An event can activate users own
script routines, permitting endless possibilities. Events can be chained, sched-
uled, dispatched to many objects or randomly generated.

To manually control objects and robots in the simulation environment, we
defined new Unreal Tournament client console commands able, for example, to
reset the simulation, to change lighting conditions, to transfer objects and robots
from one place to another and so on.

Console commands can also be embedded into the script code defining the
behavior of the robots. For example, it would be possible for a robot to modify
the simulation laws in order to let it fly from one place to another.

5 Results

This section provides an investigation on physical behavior and the overall per-
formance of our simulator. The testing machine has an AMD Athlon XP Bur-
ton 3000+ CPU with 1Gb DDR400 RAM and the nVidia FX 5900XT graphic
adapter.

Physical Simulation. A plausible physical behavior is a primary concern if we
want to test and simulate algorithms operating on real robots. USARSim uses
Karma physics engine which is designed for video-games and not for robotics
simulation. This means that the realism of the physical simulation is always
sacrificed in order to achieve a smooth rendering frame rate (at least 30 fps).
However, the accuracy of the simulation is not severely compromised because
the approximations introduced by the Karma engine are comparable to the
measurement errors due to the real robot sensor and actuator noise. Thus, it
is not crucial to precisely quantify the approximation error, but it is important
to qualitatively estimate the behavior of the robots involved in the simulation.
Figures [0l and [ show the results of the two principal interactions that may hap-
pen on the RoboCup field: ball kicking and AIBO collisions. We experienced a
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Fig. 6. AIBO kicking the ball Fig. 7. Three AIBOs collision
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Fig. 8. AIBO creation stress test Fig. 9. 3 AIBOs collision

visually convincing behavior of the physical simulation and we can conclude that
it is adequate both for a RoboCup simulation and for more general robot-robot
and robot-environment interactions.

Performance. The first experiment, made to assess the simulator performance,
determines the maximum number of supported AIBOs at the same time in the
map using only the test bed PC. Each AIBO is created and set in walking
state to make full use of the physics engine. The graph in Fig. [8 shows that the
performance is still acceptable with five AIBOs, since the visualization frame
rate is still greater than 25 fps.

The second test stresses directly the physics engine making AIBOs to collide
with each other. When collisions occur, more than 75% of CPU time is devoted to
collision detection and response. The graph in Fig. [0 corresponds to the collision
of 3 AIBOs. It is very jagged and each performance drop corresponds to a contact
between two or more robots. This result confirms that collision handling is the
computation bottleneck.

In conclusion, the simulator can sustain at full frame rate five complex robots,
three of which can collide at the same time.
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6 Discussion

In this paper we have described the implementation of an extremely flexible
simulator for multiple legged-robots. It supports rigid-body dynamics, realistic
3D environments, client/server architecture and real-time rendering. The simu-
lator handles up to five legged robots at 30 frames per second on a middle-class
hardware. Furthermore, it is coded in Unreal Script, the scripting language of
Unreal Engine. This means that, although Unreal Engine is not open source, our
extension is open and will be shared through the community, therefore everyone
can access its script code, change its behavior, add new robots, sensors and any
other functionality that may be required employing little effort.

As stated before, the choice of using Unreal Engine solves many of the main
practical problems faced during the implementation of a robot simulator. How-
ever, such an engine has been devised primarily for games, not for robotic sim-
ulation. Thus, designers chose to sacrifice physical realism to obtain smoother
animation and they bounded the physical time step to the visualization frame
rate (i.e., the time step is equal to the frame rate), whereas the simulation and
visualization could be clearly separated.

However, the advantages of using an industrial product are in the great de-
velopment support they provide and in the availability of many effective tools
to create contents such as scenarios and objects. For example, the Unreal Editor
allows for easy creation of generic environments (Fig. [[0)), even with scripted
objects reacting to changes in the system.

Moreover, improvements to the engine will directly reflect to improvements
in the simulator with little effort, while obtaining significant advantages. For
example, we intend to upgrade the simulator to use Unreal Engine 3 as soon
as it will be available. This will dramatically enhance rendering quality, physics
simulation, script and net code.

Applications. The primary use of this simulator is to evaluate the behavior of
legged robots in a dynamic environment, such as RoboCup soccer. The advan-
tages of using this simulator are evident in multi-robot contexts. As described
above, the simulator is able to simulate in real-time up to 5 robots. We believe
that with increasing CPU power it will soon possible to simulate a 4 vs. 4 game.

We have used the simulator to evaluate different situations, such as an at-
tacker robot against three defenders and a goalie, two attacker robots against
two defenders and a goalie. A first important process is debugging and refining
plans, i.e., evaluating if the robots take the correct decisions according to the cur-
rent state of the game. Note that a 2D simulator would have some limitations in
this process: for example, partial occlusions of the ball, contacts between robots
cannot be realistic modeled in 2D. A second process is to evaluate coordination
strategies: e.g., position of the robots that are not in possess of the ball, position
of the defenders, and decisions about when and how to pass.

In order to make development more effective we have implemented a USAR-
Sim interface (as described in Section ), thus the same control code can be
run connected to the simulator or on the real robot. This allows for a fast and
effective development of many tasks by the students of our group.
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Fig. 10. Unreal Editor used to create RoboCup soccer field and a test arena

Future works. The extensions described in this paper will be integrated in the
USARSim simulator. Moreover, we are planning to make some further improve-
ments like enhancing sensor data message handling and making simpler and more
rapid the creation of new robots. A further major task will be the modification
of the Unreal Tournament deathmatch code in such a way to provide tools to
interact with the environment during the simulation run; for example, we intend
to implement tools like a game controller interface and a virtual referee placing
the robots for the RoboCup soccer setting.
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Abstract. We present a road map for a joint project of the simulation
league and the humanoid league that we call 3D2Real. This project is
concerned with the integration of these two leagues which is becoming
increasingly important as the research fields are converging. Currently,
a lot of work is duplicated across the leagues, collaboration is sparse,
and knowhow is not transfered effectively. This binds resources to solve
the same problems over and over again. To address this, we discuss the
current situation of both leagues with respect to these points and focus
on open issues that have to be fixed. In addition, we describe existing
open standards and contributions from the RoboCup community that
we plan to use for the project. As a milestone, we propose to conduct
the finals of the 3D simulation tournament on real robots by the year
2008. Finally, we propose a database of simulated parts and algorithms in
which each league can benefit and contribute with their expertise. These
contributions facilitate synergies to be used across individual leagues for
the benefit of the RoboCup project and the year 2050 goal.

1 Introduction

Looking at the stated goal of RoboCup to present a team of humanoid robots
able to win against the human soccer champion in 2050 [II2] it is apparent that
the different leagues we see in RoboCup today will have to move closer to one
another and eventually be merged. There are certain unique features in every
league that make it attractive as an environment for researchers to focus on a
set of specific problems on the way to the final goal. In the end, however, it will
be humanoid robots taking on the challenge in 2050.

To ensure steady progress, the competitions held at RoboCup are made more
complex and challenging every year. Through this evolutionary process, we al-
ready start to see some boundaries getting blurred across the leagues. The Small
Size League, for instance, is expanding the field size and is coming closer to the
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Middle Size League. In the humanoid league, we saw the first real games in 2005.
More players will be introduced, giving rise to the need of tactics in addition
to the low-level control methods which have been the traditional focus of this
league. The simulation league, on the other hand, in which researchers had con-
centrated on those high-level strategies is starting to use more realistic models
for their agents, targeting simulation of 11 vs. 11 humanoid robots within the
next few years.

One problem is that a lot of work is being repeated in the different leagues
while solutions for the same (or at least similar) issues exist in another league.
Nearly every team uses more or less advanced simulators for their robots as part
of their development tools, for instance. Designing and implementing a good
robot simulator is a difficult and time consuming task, so it makes sense to reuse
the existing work. It is obvious that the knowhow of the different leagues has
to be integrated in order to achieve synergy effects and free resources for other
challenging tasks.

First steps in direction of a league-independent soccer theory were outlined
in [3]. Some documented examples of collaborations between researchers from
different leagues can be found. In [], the authors describe the revision of a
software framework for behavior development for a humanoid robot according
to a design which had been successfully used in simulation league before. At the
same time, it was planned to integrate a model of the humanoid robot into the
simulation league 3D simulator.

Keeping the pace towards the ultimate goal, both hardware and software
complexity tend to grow fast. This tendency makes it difficult for the current
structural division of the leagues to keep developing their independent architec-
tures in an isolated way. Particularly, problems like this can already be observed
both in humanoid and simulation league teams. Development ends up covering
technical issues not directly related to the interests of a particular league.

This paper is focused on the aforementioned problems. It is very clear for
the authors of this work that in the long term there would be gradually fewer
platforms of very high complexity. This makes apparent that the current league-
oriented division of architectures would not be a feasible endeavor for current
teams. We provide a well-grounded road-map and suggest tools for helping the
gradual long-term shift from the current league-based division of architectures
into a new cooperative and modular labor division. It is our hope that efforts
in this sense will help the coordination of the work of different leagues, comple-
menting and completing each other towards the 2050 challenge.

2 Current State of the Leagues

The humanoid league (HL) underwent a profound development since it was
introduced in the RoboCup of 2002 in Fukuoka. The rules maturated in many
points and gained focus on the issues that are essential from a technical point
of view. Thus, the center of mass of all robots has to be on a certain height in
relation to the size of the feet. The competitions and challenges have changed
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in various ways. In the RoboCup 2005 regular 2-2 games have been conducted
for the first time. Like in other leagues, the organizers see a maturation process
also in the design of the robots. The typical robot of the current competition is a
small robot that uses servo motors as actuators and a simple but robust control
structure. One aim of the technical committee is to lead the development towards
important research problems. Dynamic walking and stability are currently the
most important issues, which are enforced by the technical challenge and the
rules about the shape of the robot. As a consequence, we see a significant progress
within this relatively new league. The HL also grew in the number of participants.
Between 2002 and 2004 around 10 teams participated in the HL. In 2005, there
were around 20 participants already. For the RoboCup 2006 we received 23 pre-
registration for the KidSize League and the 12 pre-registrations for the TeenSize
League.

One of the first leagues of RoboCup was the two-dimensional soccer simulation
league. The actual hardware of the simulated robots, the actuators and also the
perception are simulated on a relatively high level as opposed to the robots in
the current hardware leagues. The motivation for the high level of abstraction
was the desire to create a league where participants can concentrate mainly
on coordination and cooperation of robot teams. The rationale was that in the
(quite far) future, many “lower level” problems of the hardware leagues would
be solved, leaving cooperation among agents in a team as main challenge. In
fact, two-dimensional soccer simulation league helped to address many different
open problems of creating cooperative multiagent systems.

Because of the simplified model of 2D simulation league, a three-dimensional
physical simulation was created. The three-dimensional physical simulator used
in Soccer Simulation League addresses additional classes of problems:

— Articulated agents create the problem of coordinating several actions of the
same agent among each other, as well as with global team behavior.

— Decision making procedures have to deal with a much higher complexity of
the decision space, compared to 2D Soccer Simulation League.

At least the latter of these applies already to the current 3D simulation, where
agents are very much simplified. Methods to create soccer playing agents for a
team have to deal with a higher complexity of the environment, and hopefully
can be transferred to humanoid robotics more easily. The current development of
3D Soccer Simulation League leads to simple two-legged agents used in technical
challenges already this year (see also Fig. ).

One of the problems of making Soccer Simulation League closer to humanoid
robotics is that solely researching high level coordination and cooperation be-
comes intractable, when lower level controllers have also to be implemented by
everybody. One of the advantages of the 2D simulator however was the possibility
to research cooperation in a team quite easily. In order to keep the advantages of
the 2D simulator while adding new possibilities for the additional research prob-
lems listed above, two different levels of interfaces should be provided for users of
a Simulation League Simulator: one high-level interface granting the possibility
of researching high-level coordination only. This way, existing approaches can be
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(first half) PlayOn 1=192.24 0 RoboLogan)

Fig. 1. The current version of the 3D
simulation using spheres as agent mod-
els. Every agent has an omni-vision
camera which delivers noisy data about

(first half) BeforeKickOff t=0

Fig.2. An exemplary robot model of
Fujitsu’s HOAP-2 that could be used
in the RoboCup-2007 simulation league
competition.

the environment, a kick-effector to
shoot the ball, and an actuator simu-
lating omni-drive to move on the field.

transferred to the domain of robotic soccer easily. The lower level interface has to
provide full control over all features of the simulated robots, so that developers
can research and take care of dependencies between lower-level and higher level
control.

Currently, the development in Soccer Simulation League leads towards hu-
manoid robots, which already can be controlled by a lower level interface. How-
ever, controllers for these robots have to be developed in order to provide an
easy-to-use interface.

As a result, humanoid and simulation league have more common qualities.
This way, joint competitions of Soccer Simulation League and Humanoid League
become possible, which promotes a faster progress in both leagues.

3 Road Map

In both the HL and the SL significant changes are underway. We suggest a time
frame for the development of the joint events and propose for both leagues a
number of synchronized steps in the following subsections.

3.1 RoboCup 2007: 3D2Real Competition: Technical Challenge in
Simulation League with a Real Robot Model

We propose for 2007 an additional tournament called 3D2Real competition in
the SL. The competition consists of an obstacle run with a humanoid robot.
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The layout of the competition is going to be identical to a technical challenge
in the HL of the same year. It is planned to simulate a real existing humanoid
robot. The type of the robot is decided within the next year by the SL technical
committee in collaboration with the HL technical committee.

The SL 3D2Real competition is done in simulation first by applying the same
criteria as in the corresponding HL competition. The three best participants of
the simulation round qualify for a second round in which real robots are used.
The programs of the virtual agents therefore have to be able to run on the real
robot.

The simulation environment is going to be derived from the existing simula-
tion environment of the SL 3D league and the RoSiML [5] modeling language.
RoSiML is an XML-based modelling language successfully used for a simulator
in Sony legged league.

The robot model, as well as the physical and control parameters are planned
to be as close as possible to the real robot. A standardized interface for the
controller commands will be provided.

The first step is intended to get an overview of the problems that arise from
porting a simulated behavior into the real world. In particular we are interested
in the following questions:

— What differences exist between the real world robot and the simulated en-
vironment. How similar are they?

— What kind of tools are necessary?

— How reliable are the control parameters, and what kind of noise model is
appropriate to simulate real world fluctuations and randomness?

Results from the 3D2Real competition are intended to be integrated into the
3D SL simulator for the following year. It is also intended to automate the upload
of a behavior program to the robot.

3.2 2008: The 3D Simulation League Final Is Played on Real
Robots

In this year it is intended that the 3D SL players are simulated versions of a
real existing robot type. It is intended that the round robin is done in com-
puter simulation, whereas the finals are done in real world robots. It might be
appropriate, however, to reduce the number of players from 11 to five robots.

The robots and the playground are provided by the organizers of the RoboCup
competition 2008.

In the HL, a description of each of the participating robots in the RoSiML
language is going to become part of the qualification process. The intention is
that beginning from the year 2008 the RoSiML files of all robots participating
in the HL are published and integrated into a online repository that is avail-
able for research and development. More details on this repository are given in
section B



30

N.M. Mayer et al.

‘ | Simulation League | Humanoid League |

simlation environment

until RC 2007 | simulates a real
robot type

3D SL TC 2nd round
RC 2007 in

real robots

2007 2008 Development of CPR

RoSiML models
become part of the
HL qualification

3D finals in real robots

RC 2008 (one type)

3D SL finals with sev HL team commit to
RC 2009 | eral CPR
types of robots

Fig. 3. 3D2Real project: Overview of the roadmap towards simulation league finals in
real robots

3.3 RoboCup 2009: Games with Several Types of Robots

Based on this repository, the organizers of the 2009 SL competition select several
types of robots that can be used as models for the 2009 SL 3D competition.

4

Requirements on Humanoid Robot Systems Eligible
for the 3D2Real

A real existing humanoid robot type eligible for the 3D2Real competition should
fulfill a set of requirements and should come with a certain software environment
(see also Fig. ). We suggest the following necessary requirements:

The robot has to be compliant with the rules of the RoboCup humanoid
league. The architecture should include a small IBM PC(386-architecture).
The software environment should be published in source code, the program-
ming language is C/C++, with a preference to C++. The vision processing
comes with the robot.

The robots mechanical design has to be described in the RoSiML language.
The robot comes with a compatibility layer for ODE that consists of two
parts: The first part covers the sensor processing. Generic classes for camera,
touch sensors, attitude sensors, actuator states are to be provided by the SL
organizers. A detailed description of these sensors and their noise levels have
has to be worked in. The output of the vision processing is a list of recognized
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objects, i.e. ball, posts, goals, line crossings, and their position in a list. The
second part consists of compatibility layer for the actuator processing. ODE
type of motors are assumed at the simulation layer. An encapsulation of
the real actuators has to be provided, this may include high level motion
primitives e.g. walk, turn move camera.

The aim is that a control program coming from SL participant results in the same
robot behavior in the simulation as in the real robot, as far as this is possible. The
organizing/technical committee chooses the first robot type for the competitions
in the years 2007 and 2008 in an open and fair selection process.

5 Central Parts Repository

Traditionally, simulation league has focused on game strategy while the hu-
manoid league has a major focus on robot design and control. Simply making
more realistic simulations, or simply forcing more strategy on games of real-
robots would not be effective ways of helping the future cross-development to-
wards a common goal. This strategy vs.design and control division is not just a
casual one — it is deeply rooted in the researchers of both leagues, reflecting their
particular backgrounds and interests, and this should be respected. The Central
Parts Repository (CPR) is here proposed as a common framework for allowing
professionals in multidisciplinary fields to help each other within their different
spheres of interest and backgrounds.

The CPR is conceptualized as a database of parts and algorithms in which
each league should contribute with their expertise and at the same time enjoy
out of the box solutions for the problems that are out of their sphere of interests
(expertise of others). The database would cover a diversity of items ranging
from single robotic parts, such as servos, to entire assembled robots, including
controllers and algorithms. Special care would be needed for assuring realistic
constraints, especially in regard to physical behavior of fundamental parts and
their controllers.

The software architecture of the current 3D Soccer Simulator is a rather com-
plex piece of engineering, result of years of development by experienced experts
in computer-related fields. Developed with very powerful plug-in mechanism,
the 3D Simulator brings great flexibility for development of independent mod-
ules in a decentralized way. Moreover, the current implementation of the 3D
Soccer Simulator allows the use of a modular and convenient script language for
the geometric and functional assemble of simulated entities. The strong plug-in
architecture along with the support for RSG files provides already all the nec-
essary tools for the development of a modular CPR with little interference into
the current course of development.

6 Discussion

In our paper, we have argued for shared competitions between humanoid soccer
league and Soccer Simulation League, and presented a joint road map for both
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Fig. 4. 3D2Real project: Layout of the control architecture. The hatched boxes show
how the different leagues contribute to the complete system architecture of the 3D2Real
project. The control program for simulation system and real robot system are identical.

leagues. We suggest to establish the 3D2Real project. A part of the project is to
conduct the finals of the simulation league in real robots. It is further suggested
to establish a central part repository in which the parts of real existing robots
are described in RoSiML. The RoboCup project can benefit in several ways from
this project. In the following we outline a subset of the possible benefits:

Compare simulation and real robot. The performance of a behavior pro-
gram in the simulation can be compared with the performance of a behavior
program in a real robot. Differences may result from unrealistic assumptions
about the statistics of the sensory input.

Sensory input in real robots is very noisy, biased input. The difference between
the simulated sensory input and the sensory input that comes from a real world
humanoid robot system can be directly recorded and compared. In this way
we can get accurate statistics and can integrate the results into the simulated
sensory environment.

In this way a stepwise improvement of the 3D SL simulator is possible. In this
way it is possible to establish feedback from the reality to the simulation league.
In particular, it can be seen how applicable are the strategies that have been
developed in the SL in real robots.
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Fig. 5. Simulation league past and future: the 3D2Real project can help to program
realistic robots in the SL. (Rendering by Heni Ben Amor)

Real world humanoid robots in the SL. The simulation league is aiming to
become a more and more realistic environment with realistic robots as players
(Fig. B). The development of humanoid robots, however is dynamic. In the HL
every year different types of robots are going to appear. The 3D2Real project
gives a natural link between the two leagues. It keeps the SL automatically on
track with the most recent developments in humanoid robotics.

Standard simulation environment. In the HL the improved 3D SL simu-
lation environment can be standard tool to simulate their robots. Many teams
participating in the RoboCup soccer competition develop at some point of their
work a simulation environment in order to be able to test their behaviors. The
aim of the authors is to establish the 3D SL simulator as an easy to use standard
tool for the HL teams.

Central Parts Repository. The proposed central repository can help in several
ways to establish a fruitful interaction among the HL and between the SL and HL.
It can help the HL participants to create rapidly RoSiML files describing their hu-
manoid robot. In addition, it may be in later stages be used for SL participants to
construct hypothetical, but realistic robots that might show improvements. These
robots can be shown in a demonstration and give hints to the HL.

Merging of two leagues. We propose an example how separate leagues can
contribute to a joint project. In present day RoboCup it is a challenge to make the
knowledge of one league available for the other leagues in the RoboCup project.
The simulation league started around 10 years ago with the proposition to be
10 years ahead the real robots. The present work describes how the knowhow
of can be made available for the current real world teams and thus, 10 years of
work and development available.

Similar project in the Rescue League. Finally, we would like to note that a
similar project is underway in the rescue simulation league, which has recently
shown remarkable progress with the introduction of their simulator USARsim[6].
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Similar as in our proposal the aim of the USARsim simulator is to give a physi-
cally correct description of the enviornment (here soccer; there a desaster area)
and the robots (here biped robots; there ususally wheeled or tracked robots).
Although environment and robots are different, we see on the long time scale
some potential to benefit from synergies in the two simulators.
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Abstract. Swedish wheeled mobile robots have remarkable mobility
properties allowing them to rotate and translate at the same time. Be-
ing holonomic systems, their kinematics model results in the possibility
of designing separate and independent position and heading trajectory
tracking control laws. Nevertheless, if these control laws should be imple-
mented in the presence of unaccounted actuator saturation, the result-
ing saturated linear and angular velocity commands could interfere with
each other thus dramatically affecting the overall expected performance.
Based on Lyapunov’s direct method, a position and heading trajectory
tracking control law for Swedish wheeled robots is developed. It explic-
itly accounts for actuator saturation by using ideas from a prioritized
task based control framework.

1 Introduction

In the last few years Swedish wheeled omnidirectional mobile robots have had
a large attention among the mobile robotics research community. A Swedish
wheel differs from a common wheel in the fact that rollers are mounted on its
perimeter. If all the rollers are parallel to each other and misaligned with re-
spect to the wheel hub axis, they will provide an extra degree of mobility with
respect to a traditional perfectly rolling wheel. As reported in [I], the Swedish
(or mecanum) wheel was invented in 1973 by Bengt Ilon, an engineer working
for the Swedish company Mecanum AB. The interest in such kind of wheels is
related to the possibility of developing omnidirectional robots in the sense of
[2], i.e. robots that "have a full mobility in the plane which means that they
can move at each instant in any direction without any reorientation” [2]. No-
tice that several references make a misleading use of the term omnidirectional,
as they refer to vehicles equipped with fully steering traditional wheels. Such
systems can eventually move in any direction, as the unicycle model, but only
after reorienting their wheels appropriately and not at any given instant of time.
The need to reorient the wheels or not prior to implementing any desired lin-
ear velocity is related to the presence or not of nonholonomic constraints. As

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 35 2007.
© Springer-Verlag Berlin Heidelberg 2007
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opposed to traditional wheel car-like or differentially driven mobile robots, the
translational velocity vector of a Swedish wheeled vehicle can point in an arbi-
trary direction at any time without re-orienting the wheels. Otherwise stated,
Swedish wheeled vehicles are not affected by nonholonomic constraints: as far
as the structural properties of the kinematics model of a Swedish wheeled robot
is concerned, angular and linear velocities are independent. As a consequence
one can design separate and independent trajectory tracking guidance control
laws for position and heading. Yet if these control laws are implemented in the
presence of unaccounted actuator saturation, the resulting saturated linear and
angular velocity commands could interfere with each other and thus affect the
overall performance of the motion control schema. A novel trajectory tracking
control law is presented in this paper that explicitly accounts for actuator sat-
uration within a prioritized task approach. Heading and position tracking are
treated as independent control objectives (tasks) having different priorities: by
allocating control effort to the different tasks based upon their assigned priorities
it is possible to guarantee the independence of the heading and position control
actions in spite of actuator saturation. Overall convergence of tracking errors to
zero is theoretically guaranteed using Lyapunov methods. In a RoboCup sce-
nario priorities are an immediate consequence of the currently active behaviour
roles taken by the robot. In the defend mode, by example, we want to block a
ball as fast as possible thus maximum linear speed is called for, while during
dribbling angular velocity takes the highest priority.

After deriving and discussing the vehicle’s kinematics model in Section 2]
a kinematics (guidance control) tracking control law accounting for actuator
saturation is designed in Section[3 based on Lyapunov techniques. Experimental
validation results are reported in Section dl Final remarks and conclusions are
discussed in Section

2 Robot Kinematics Modeling

With reference to Fig. [[I a three wheel omnidrive mobile robot is considered.
All wheel main axis, i.e. hub axis, are assumed to always lie parallel to a fixed
ground plane P having unit vector k 1 P. An orthonormal body fixed frame
< B >= {ip,jp,kp} is chosen such that ip x jg = kp = k. Let by, V h =
{1,2, 3} denote the position of the h—ths wheel hub in the body fixed frame and
ny;, the unit vector of each wheel hub axis, i.e. nj, := by, /||bn||. At last for each
wheel we define the unit vector u, := nj x k. Calling v, the linear velocity of
the robots center and wk its angular velocity vector, the velocity vector vj of
the center of each omnidirectional wheel hub will be given by:

v =ve+wkxby, V h={1,23} (1)

implying:

3 3
1
VC:3<hZ_1vh —wkx};bh>. (2)
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Fig. 1. Three wheel omnidrive robot: geometrical model

Based on this equation and on the non skidding hypothesis
Vz:uh =pin Y h 3)

where p is the wheel’s radius (all wheels are assumed to have equal radius p)
and ¢p, ny, its angular velocity component along the hub axis (rolling angular
velocity), the vehicle kinematics model can be expressed through the linear and
angular velocity jacobian matrices as:

Bye=Jiwq : Jp € RS (4)

w=J,q : J, R (5)

where the superscript B in Pv, indicates that the components of vector J, ¢ are
given in the body fixed frame < B >. If the three wheels should be mounted sym-
metrically at 120° degrees from each other at a same distance b = ||by| V h =
{1,2,3} from the robot’s center, and assuming the body fixed frame < B > to
have its x axis ip aligned with n; (kp is normal to the plane P and jp such
that kg = ip X jg) as depicted in figure () it can be shown after lengthy, but
straightforward kinematics calculations, that:

p

J‘”:_Sb(l 1 1) (6)
0 V3 —V3
=t (50 ). @

Similar kinematics derivations for 3 and 4 Swedish wheeled robots are discussed,
by example, in [3] -[9]. It is important to notice that both J, and J, given in
equations (@) and () are full rank and that

JwJE =0. (8)
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Fig. 2. Schematic view of an NGC architecture. Refer to text for details.

As shown in the sequel, this last equation allows to design separate kinematics
control laws for linear and angular velocities. Interestingly the derivation of
equations (B) and (), here not reported for the sake of shortness, shows that
property (8)) is a consequence of having assumed the wheels to be symmetrically
located, namely that ), b; = 0.

3 Trajectory Tracking Control Law Design

Following a standard and most common approach for autonomous robots, the
overall control architecture is organized on three level: navigation, guidance and
control (NGC). Navigation takes care of the vehicles motion state estimation
based upon available proprioceptive and exteroceptive information. Guidance is
a closed loop control system, fed by the navigation subsystem, designed on the
kinematics model of the system that generates desired angular and linear velocity
reference signals. Within the described NGC framework, a trajectory tracking
guidance law is derived: given an inertial (global) frame < G >= (i, j, k) with
k := (i xj) L P being P the floor plane, a reference (planar) trajectory is a
differentiable curve in P

r(t) =i (rq (i) +j (rq (1)) 9)

with curvilinear abscissa

¢ dl‘d(T)
t) = d 1
0= [ | \ r (10)
and unit tangent vector
drd
tg = . 11
=" (1)

The kinematics trajectory tracking problem consists in finding a control law for
the systems input q such that the position and heading tracking errors

er(t) == ra(t) — ro(t) (12)
ee(t) = pa(t) — o(t) (13)
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converge to zero, namely such that:

Jim e,(1) = lim (ra(t) — re(t)) =0 (14)
Jim e, (t) = Jim (put) — p(t)) =0 (15)

being r.(t) the position in < G > of a reference point (e.g. the geometrical
center or the center of mass) of the robot, ¢(t) its heading, ¢q(t) the desired
reference heading, e, (t) = (rq(t) —rc(t)) the position tracking error and e, (t) =
(¢a(t) — (1)) the heading error. Notice that for nonholonomic vehicles having a
unicycle or car-like kinematics model, the reference heading 4(t) is not arbitrary,
but needs to coincide with the heading of the trajectories unit tangent vector tg.
To the contrary given any position reference trajectory rq(t), a Swedish wheeled
vehicle will be free to track any arbitrary heading ¢4(t) that does not need to
coincide with the heading of t,.

3.1 Trajectory Tracking Controller Design

In accordance with the notation previously introduced, consider equations (@
B) being v. = r.(t) and w = $(¢) the time derivatives of the robots position
r.(t) and heading ¢(t). To solve the above stated trajectory tracking problem,
consider the Lyapunov candidate function

1 1
V= QefKrer—i—QegK@e@ (16)

being K, € R?*? a symmetric positive definite (K, > 0) matrix and K, a
positive constant. The time derivative of V results in

V =el K, (ba(t) = Jud) + el Ky (2alt) — Joa) . (17)

Denoting with Jva and JI the right pseudo-inverse matrices of full rank .J;, and
J., respectively (J;, and J,, are full rank by hypothesis),

Iy =T G al) T and JL=JE (L JE) (1s)

a possible value for q making V in equation ([IT) negative definite is:

Qa(t) = Qua(t) + 4ea(t) (19)
Aualt) = J5, (Falt) + K, e,()) (20)
Apa(t) = I (alt) + Ky ep(t)) (21)
implying in closed loop
V=-—e"KKe —(Kse,)’<O0. (22)

As for standard tracking controllers, the solution in equation (I9) is a combi-
nation of feedforward terms proportional to the reference linear and angular
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velocities and a feedback term. The proposed solution guarantees global ex-
ponential stability of equilibrium e, = 0,e, = 0 of the error dynamics, thus
(robustly) solving the trajectory tracking problem. Control law ([I9) is the sum
of two contributions: the first ([20) relative to position tracking and the second
1) to heading tracking. In the light of property (®)), it should be noticed that
the two contributions do not interfere with each other, namely the contribution
of qva to the robots angular velocity and the contribution of §,q to the robots
linear velocity are both null, i.e.

Jottioa = o (I (Do ) ) (Falt) + Krep(t)) = 0 (23)

J1wpa(t) = Jiw (JE (Jo Jg)il) (a(t) + Kpep(t)) =0 (24)

due to the fact that they are proportional to Jng and Jy, JI respectively. As
discussed above, when designing vehicle kinematics guidance laws it must be
assumed that the lower level (actuator) dynamics should be much faster than
the kinematics. This requirement is reflected on design choices such as actuator
power and desired reference trajectories: the former needs to be sufficiently large
for the given inertial properties of the vehicle so that maximum vehicle acceler-
ations can be much larger than the maximum reference accelerations $4(t) and
Fq(t). As far as the ratio of maximum vehicle acceleration over maximum refer-
ence acceleration is sufficiently large the dynamic behaviour of the kinematics
guidance law will be fine. Thus, as for any other kinematics designed guidance
solution, the proposed control law should be implemented on Swedish wheeled
vehicles with sufficiently powerful actuators with respect to the maximum ref-
erence accelerations @4(t) and ¥4(t). As for actuator saturation, the situation is
slightly more complex. Given the proportional nature of the control law ([[9)), the
tracking error (either in position or heading) or the desired reference velocities
can always happen to be large enough for the actuators to saturate, namely call-
ing Gmax > 0 the maximum absolute angular velocity that the vehicles actuators
are able to generate, whatever the gains K, and K, should be, depending on
©4(t), Fa(t), er(t) or ey (t) the saturation condition]

||qd||oo < q.max (25)

may always be violated. Notice that while the feedforward signals ¢4(t) and 4(t)
can eventually always be bounded, the tracking error’s initial conditions are not
design parameters. Hence a commanded qgq with exceeding infinity-norm due to
odd initial conditions cannot be a priori excluded.

3.2 Actuator Saturation

The presence of actuator saturation has a severe impact on performance: in
particular given the additive structure of equation ([d]), saturation can affect
the decoupling between commanded angular and linear velocities. In order to

! Given q € RV*', ||q||c = max{|q1],|q2]|,---,|gn]|} is its infinity norm.
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cope with actuator saturation and to guarantee a prioritized execution of the
position and heading tracking tasks, the following modification of the proposed
control law is suggested: the sum in equation (@) should be weighted with
error and reference dependent weights such that (¢) the resulting qs command
has norm within the actuator limits, (iz) the tasks (position and heading in the
present case) are executed with a priority based time order (higher priority tasks
earlier) and (#i7) the tracking error converges to zero.
To reach these goals, consider the saturation function

0 if =0
0:Rx[0,00) — R such that o(z,¢c) =<1 if 0<|z|<c (26)
¢/|x| otherwise.

In the sequel the non negative second argument ¢ of o(x,c) will be called the
capacity of z. Notice that by definition o(x,¢) is simply a nonnegative scalar
scaling factor such that zo(z,¢) is ”clipped” to e¢sign(xz) whenever |z| should
exceed the capacity ¢ and is equal to x otherwise, i.e. x o(x,c) is simply the
saturated version of z in the range [—c, ¢]. Also notice that by its very definition

o(xz,0) =0V =z, (27)

namely if x should be assigned zero capacity, then x o(x,0) = 0 for any value of

. Assume that N

Q=) a (28)

1=1
is the actuator input being qi,qs, ..., d, n independent task inputs ordered by
decreasing priority with increasing index (q; has highest priority). Each term
on the right hand side of equation (28] and qg itself should be bounded by ¢max-
Considering that each task should be executed in a prioritized fashion, the sum
in ([28) may be replaced by a weighted sum as follows:

i =aqo (il c1) + @2o(ldle.c2) + -0 + dno(lanllo.cn) (29
where each task capacity is recursively and dynamically computed as:

¢1(t) < gmax (constant, i.e. ¢1(t) =0)
ca(t) =1 — |l o ([lalls 1)

c3(t) = ca(t) — 4zl o (G2l > c2(t))
= (30)
n(t) = en1(t) = ldn—1lloe o (ldn-1llo » cn-1(t)).
1,...,Cn can be chosen according to the state of the environment, i.e. in RoboCup

they can depend on global external game states. Notice that by construction all
the above task capacities are non negative, i.e.

¢; >0 VY jelln],
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and that

;=0 = ¢; =0 V j>1

namely if a given task is assigned zero capacity, all the lower priority tasks will
also automatically have zero capacity and all their weights in the sum 23]) will
be zero. The capacity of task ¢ can be viewed as the residual capacity after the
higher priority task ¢ — 1 has been commanded; thus, by example, co will be
zero (and also ¢; : j > 2) if the task 1 input ¢ is saturating all its capacity
c1. In words, each task will be commanded with a non null weight only if the
higher priority task have not saturated. The fact that ¢; needs not to exceed gmax
is due to the fact that task 1 alone should not saturate the actuator capacity
¢max; moreover given that ¢j;1 < ¢; V j € [1,n — 1] the condition ¢; < ¢max
guarantees that each term in the sum (29) will have infinity norm smaller or equal
to the threshold gmax- Indeed the proposed dynamic update rule for the task’s
capacities also guarantees that the total control signal (2Z9) has infinity norm
smaller or equal than ¢pa.x. In order to implement the above described schema
in the present trajectory tracking case, assume that the reference feedforward
linear and angular velocities are sufficiently small, namely that

1

ijvfd(t)Hoo <, s W (31)
1
1S a0 < o Gmax V. (32)

These conditions are necessary to guarantee that the tracking task is asymptot-
ically feasible, namely that when the position and heading tracking errors are
null the control effort of the control law ([9) is compatible with the actuator
saturation limit, i.e.

e, =0, €p = 0 =

laa®le = | 7, 2a®) + L ga®)| < [T 2a®)]|_+ 175 2a®lly < dome

oo

As a first example, assume that position tracking is assigned highest priority
with respect to heading tracking. Then define:

Q= Jf, Falt) (33)
Gz = Jf, Krer(t) (34)
ds = J, palt) (35)
Q= JL Kpeg(t). (36)
With these definitions consider the control law (Z930) with
c1(t) = qmax > 0 V 1t
that together with the feasibility condition (BII) implies

1. .
0< 2qmax S C2 S Gmax;
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i.e. the tasks 1 and 2 have always non null capacity. Moreover as by hypothesis
ld1]loco < 0.5 Gmax (equation BII)) and ¢1 = ¢max, it follows that

aro(llaiflec,c1) = V ¢

Consequently
1
Vi=, el K.e, — (37)

Vi = el Ky (ialt) = o [T 5at) + T, Ko e ()0 (|| 7, Kren)]|_e2)]) =
— T K, K, et (H K, et OO,cQ)<0

ie V7 is negative definite that proves asymptotic global Lyapunov stability of
e, = 0. Notice that g3 and g4 do not contribute to Vi as they belong to the null
space of Ji, (equation[). As far as the secondary (heading) task is concerned,
convergence can also be proven through a Lyapunov argument. The global as-
ymptotic stability of e, = 0 guarantees that

. . 1.
lim @2(¢1) =0 = limcs=c¢2 > _Gmax-
t—o00 t—o00 2

Given the feasibility condition (B2]), this means that
3¢ (313 J(||(fl3||oo,63) = q;; and ¢4 >0V t> t*.
It follows that

1
S (38)
Va(t) oy et Ko (¢a(t) = Joda) =

= el K, [pa(t) — Jo(J5 at) + TL Ky ep(t) o (| T5 Ky e (®)]] s ea))] =
z—egKiew(t)U(HJj,Kﬂpe@(t) ,ca) <0

I

namely there exists a finite time ¢* after which the time derivative of V5 is always
negative, thus proving convergence to zero of the heading error e, (t). Prior to t*
the heading error e, (t) is not guaranteed to be decreasing. Notice that §; and
g2 do not contribute to Vs as they belong to the null space of J,, (equation ).

As a second example, heading can be selected to be the highest priority task,
it is then sufficient to select q1,...,q4 as

a = JS @alt)
Qo = JJ; K, eg,(t)
as = J), ta(t)
qu = J) Kre.(t)

in equations (2930); Lyapunov stability of the heading error and asymptotic
convergence of the position error could be proven accordingly.
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4 Experimental Results

The proposed control law has been experimentally tested on the Volksbot plat-
form (www.volksbot.de) [10] developed at the Fraunhofer AiS - Autonomous in-
telligent Systems Institute of Sankt Augustin, Germany. The robot is about 8Kg
in weight and is actuated by three 90 Watts, 24 volt DC motors with a 1 : 8
gear ratio. Low level wheel speed control is achieved through a 3 channel PID
motor driver (the AiS TMC200 board) interfaced to an onboard laptop via a
regular serial RS232 line. The presented kinematics trajectory tracking control
law, i.e. the guidance loop in figure (2), is implemented on the onboard lap-
top. Motor power is supplied through NiMH batteries with 3,5 Ah capacity.
The three omnidirectional wheels have a 5cm radius, are made of lightweight
plastic and are mounted at 120° from each other. The robot is equipped with
an omnivision system made by a 30Hz, 640 x 480 pixels YUV color FireWire
camera pointing towards a 70mm diameter hyperbolic mirror. Such systems are
used for map-based Monte Carlo self-localization [11] [I3]. Details can be found
in [12].
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In order to evaluate the performance of the proposed control solution the
position and heading of the robot must be measured reliably and compared
with the desired reference values. To this extent an experimental setup has been
designed where the position of the robot was measured by a fixed laser range
finder pointing on the robot and its heading was measured by the robot itself
using its omnivision system. All collected data was suitably synchronized with
the desired references. Extensive experimental trials with several different refer-
ences have shown the effectiveness of the proposed solution: the case of a circular
reference trajectory with constant (with respect to a fixed frame) heading is re-
ported in figure (B]). The position and heading error plots with respect to time
clearly confirm the effectiveness of the priority assignment policy. The growth
of the position errors in the first few seconds of the experiment (top right plot)
are due to the robots dynamics that was neglected in the control law design.
As expected, as long as the actuators guarantee large enough accelerations with
respect to the reference accelerations, the kinematics designed control law ex-
hibits good dynamic performance, i.e. there is only a small lag with respect to
the ideal purely kinematics case.

In the motor command plots, the commanded (¢4, dashed lines) and encoder
measured wheel speeds (solid lines) are reported with respect to time. Notice that
for the sake of performance measurement accuracy, the saturation threshold was
artificially set to the value of £8.7rad/s (thick solid lines) via software in order
to achieve saturation at acceptable linear speeds.

5 Conclusions

A trajectory tracking control law for Swedish wheeled robots has been derived
that takes explicitly into account motor saturations. Motor saturation is always
present and may have a sever impact on motion control performances of mobile
robots. This is particularly relevant for omnidirectional mobile robots equipped
with Swedish wheels: these offer a lower grip with the floor with respect to tra-
ditional wheels resulting in a higher probability of exhibiting skidding and/or
sliding when high velocity commands are issued. As a consequence the possibil-
ity of commanding motor speeds always compatible with the saturation limits
is extremely important for omnidirectional mobile robots. Moreover the intro-
duction of a task based prioritization of heading and position tracking may
have a relevant impact on the behaviour control level. The selection of heading
or position tracking tasks as higher priority ones will generally depend on the
(dynamic) role assignment: by using the described lower level control solution
the highest priority tasks errors are guaranteed to converge faster to zero with-
out ever commanding motor speeds exceeding the maximum HW allowed val-
ues. Future work directions should include studies on how the behaviour system
should take advantage of a guaranteed prioritized convergence of the tracking
erTors.
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Abstract. In this paper, we apply Reinforcement Learning (RL) to a real-world
task. While complex problems have been solved by RL in simulated worlds, the
costs of obtaining enough training examples often prohibits the use of plain RL
in real-world scenarios. We propose three approaches to reduce training expenses
for real-world RL. Firstly, we replace the random exploration of the huge search
space, which plain RL uses, by guided exploration that imitates a teacher. Sec-
ondly, we use experiences not only once but store and reuse them later on when
their value is easier to assess. Finally, we utilize function approximators in order
to represent the experience in a way that balances between generalization and
discrimination. We evaluate the performance of the combined extensions of plain
RL using a humanoid robot in the RoboCup soccer domain. As we show in sim-
ulation and real-world experiments, our approach enables the robot to quickly
learn fundamental soccer skills.

1 Introduction

Reinforcement learning (RL) is an established machine learning technique. In a trial
and error based procedure, an agent acquires knowledge about the consequences of its
actions and strategies to attain a certain goal [[1]]. While RL methods have been success-
fully applied to complex problems in simulated environments [2J3], they have rarely
been used for real-world scenarios. The high costs of obtaining enough training exam-
ples for real systems often prohibits the acquisition of successful behavior by means of
plain trial and error. The central intention of our work is the reduction of training ex-
penses for RL methods so that they are applicable to real-world scenarios. In this paper,
we propose three approaches to achieve this goal:

1. Speeding-up the exploration through imitation of a teacher
2. Repeated reevaluation of past experiences
3. Application of function approximators for better generalization

Imitation allows for knowledge transfer by observation between sufficiently simi-
lar agents. Imitation learning is a well established concept in robotics [4451617U8.9]]. The
idea is that the learning agent observes the actions of an experienced agent as well as the
corresponding consequences. These observations give the learner clues about successful
strategies to reach the goal. Through the imitation of the teacher, the exploration of the
huge search space is guided to regions that are promising. The learning agent no longer

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 47-58,/2007.
(© Springer-Verlag Berlin Heidelberg 2007
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depends on random exploration but rather on meaningful indications which actions
to choose.

In addition to the guidance by other agent’s experiences, the extensive exploitation
of own experiences is crucial for learning in real-world systems. Many learning algo-
rithms rely on the online processing of experiences at execution time and discard them
immediately afterwards. Often however, the full merit of an experience can be assessed
only later in the learning process when more information is available. We reduce the
amount of training data that has to be collected by storing and reusing experiences. The
extensive use of both, own and observed experiences, provides the necessary knowledge
to choose promising actions that lead to a successful performance.

In complex domains, however, it is highly unlikely that exactly the same situation
is encountered twice. Generalization to similar situations is therefore essential. On the
other hand, generalization should not prevent discrimination between different situa-
tions. The function approximation technique presented in this paper combines the ad-
vantages of quick generalization and accurate long-term discrimination.

We present extensive experiments to evaluate the performance of a combination of
the proposed extensions to plain RL. In simulation as well as in real-world experiments
with a humanoid robot in the RoboCup soccer domain, we demonstrate how the robot
is able to quickly learn fundamental soccer skills.

This paper is organized as follows. In the following section, we briefly introduce
Q-learning, which is a popular RL algorithm. In Section [3] we describe function ap-
proximation and its application to Q-learning. In Section 4] we present our approach
to function approximation that allows for quick generalization as well as for sufficient
discrimination. Section [3] explains our use of imitation and memory to guide the ex-
ploration. Section [6] describes the robot hardware as well as the application of RL to a
specific task and Section [7] presents the experimental results obtained in simulation and
with a real robot. Finally, in Section[8] we discuss related work.

2 (Q-Learning

The framework underlying RL is that of Markov decision processes (MDPs), which de-
scribe the effects of actions in a stochastic environment and the possible rewards at the
different environmental states. The goal of the agent is to maximize the expected (dis-
counted) future reward, without knowing the MDP or the reward function in advance.

The action selection according to the current state is called the agent’s policy. RL
methods use an estimate of the expected cumulated future reward, the utility function,
to derive a policy in order to maximize the long-term reward. In our work we use an
e-greedy policy, i.e. the agent chooses a random action with probability € and the action
with the highest utility expectation otherwise.

Temporal-difference (TD) methods [10] like @-learning perform an update of the
utility estimate after each transition (s, a, "), where s is the state in which action a was
executed and s’ is the resulting state. As the cumulated future reward is not known in
advance, TD methods use an estimate of the utility of s’ to update the utility function.
In Q-learning, the utility function is called () and maintains utility values for each state-
action pair. The update rule after a transition is given by
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Qiri(s,0) = Qi(s,0) + - (reas +7- maxQu(s',a) = Quls,0)) . (1)

Here, r is the immediate reward, 0 < o < 1 is the learning rate and 0 < v < 1 is the
discount factor.

3 Function Approximation

A tabular representation of the ()-function that stores one estimation for each state-
action pair is only useful for small problems. In practice however, the number of pos-
sible states is often very large or even infinite, making it impossible to maintain a table
of all @)-values. Furthermore, the completely isolated evaluation of each state-action
pair is not appropriate since it does not happen often that exactly the same situation
is encountered twice. In practice, many situations appear similar and are discriminable
only in detail. Experiences should therefore be generalized. Function approximation is
a method that is often used for generalization.

The general notation of function approximation is that given we have input-output
pairs (z,y), we want to compute a function f that is an approximation of the unknown
function f* that produced (z, y). First, a prototype for f has to be defined, i.e. a class
of functions, that allows to express f* with a suitable parameterization. The approxi-
mation f is represented by a parameter vector 8, which can be seen as instantiation of
the function prototype.

3.1 Function Approximation Using Gradient Descent Methods

The idea of gradient descent methods is to modify the parameter vector € toward the
direction that yields the greatest error reduction for the example under consideration.
This is done by calculating the gradient of the local error term with respect to 6

011 =0;+ ;nvot (y — fil(2))?
=0, +n(y — fi(x))Ve, fi(z) . 2

Here, 7 is called the step size parameter and 0, and f; indicate the parameter vector as
well as the approximation of f* at time ¢.

In this paper, we consider the special case of linear gradient descent. We extract a set
of features from the input = and represent them as the feature vector ¢,. The number
of parameters n is equal to the number of features and the function prototype is given
by the weighted sum of the features

fla) =2 0(i)pa(i) - 3)
=1

The components of 0 are called the weights of the corresponding features. The advan-
tage of this prototype is that the gradient Vg f () corresponds to the feature vector ¢,..
However, care has to be taken that suitable features are extracted from x to provide
linear correlation between ¢, and y in the case that the correlation between x and v is
non-linear.
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3.2 (Q-Learning with Function Approximation

A training example (x,y) in RL consists of the previous state s and the executed ac-
tion a as input and the target for QQ-learning ry11 + v max, c4 Q+(s’,a’) as output.
The update rule for (-learning with linear gradient descent is then given by:

011 =0:+n(rep + ¥ max Qi(s',a") — Qu(s,a)) Ps.a - 4

The update rule contains the feature vector ¢; o, which is the function’s gradient. This
implements responsibility assignment: Those features, that have been most active in the
last decision, are most responsible for the current local error. Thus the corresponding
weights have to be adjusted most.

4 Feature Construction

A typical approach for feature construction is the use of input features that indicate
whether or not the input is inside a certain region of the state space. Such a region is
called the receptive field of the corresponding feature. We construct the features fol-
lowing the principles of coarse coding [[L1]. The essential idea is to use multiple large
receptive fields, which may overlap, so that an input can activate multiple features.
Two inputs are similar in the features that are present for both or absent for both and
they differ in the features that are present for only one of the inputs. The simultaneous
consideration of similarity and difference is one important instrument to deal with the
conflict between generalization and discrimination, which typically occurs in learning
systems. In this work, we use a variant with continuous features that have an activation
value between O (i.e. the input is outside the receptive field) and 1 (i.e. the input is in
the center of the receptive field). The activation function @ is called the feature’s shape.

In the one-dimensional case the receptive field is an interval [bg, b1]. Let ¢ = bogbl
be the center of the receptive field. Then the activation function is:

_ 2z—c] .
() = {(1) b, if € [bob1] )
else

For the transfer to n dimensions we propose the product of the activities on each di-
mension respectively:

bgz) 717((31)
0 else

b

PRGN § | (1—2"'”(“”')& Vi <n: 2 e b, o)

(6)
where z(*) and b(()z/)1 denote the input and the borders of the receptive field in the dimen-
sion 7.

The whole state space is covered completely by a group of features. We call this
group a generic feature. The dimensions are partitioned into uniform intervals with
the borders ag, . .., a., where e is the total number of intervals on this dimension (the

resolution). In one dimension each receptive field covers two adjacent intervals with its
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Fig. 1. 1-dimensional generic feature

peak exactly on their border. For each pair of intervals there is one feature plus two extra
features at the border of the domain. Fig.[Ilshows the generated features for a resolution
of e = 4. For each input value there are two active features with a total activation of 1.
Each feature contributes to the approximation according to its activation. This can be
interpreted as the feature’s responsibility for a certain input. The systematic overlapping
within a generic feature corresponds to a smooth shift of responsibility between two
adjacent features. The resulting approximation is a linear interpolation of the adjacent
weights.

5 Imitation and Memory

Imitation is an important mechanism for the transfer of knowledge and skills between
similar agents. An imitating agent can observe the behavior of an experienced agent and
thus draw conclusions about the consequences of certain actions.

In this paper, the imitating agent has full access to experiences of a teacher. These
experiences are provided as sequences of states and actions in the learning agent’s rep-
resentation along with the corresponding rewards. Our imitation approach relies on the
evaluation of these sequences according to own criteria. One possibility to do so, is
the application of the -learning algorithm with the stored sequence of actions. The
imitation effect can be increased by processing the sequences in temporally inversed
order. This is possible because the whole sequence of transitions and rewards is known
in advance.

One advantage of storing and evaluating such sequences is the fact that the same
algorithm can be applied to processing own experiences. This can be seen as a form of
episodic memory, which allows to “’revive” own experiences when their utility is easier
to access. If, e.g., the agent chooses a very good action by chance, but does not see
immediately that it was a good action or why it was good, then it can be helpful to
revive that experience later in the learning process when increased knowledge allows
for a better assessment of this observation.

The evaluation of observations in temporally inversed order is related to another
technique for faster information propagation in temporal-difference methods. Eligibility
traces [LO/12] use the last local error to update the value not only for the current state
but for the recently visited states as well. So there is no individual local error used to
update the previous states of the stored sequence. In contrast to that, we calculate a
new local error for each transition in the stored sequence. Thus, we treat each step of
the sequence as if it was the actual observation. Convergence proofs for table-based
Q-learning (e.g. [13]]) require to visit all states and to choose all actions infinitely often,
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but they do not make any assumptions about the ordering of these observations. Thus,
the guarantees on convergence remain unchanged under the appropriate conditions.

6 Task and Implementation

The proposed concepts of function approximation, imitation, and memory are evaluated
for a humanoid toy robot called RoboSapien, which has been augmented with a camera
and a Pocket PC as to allow for autonomous behavior as proposed in [14]. The task of
the agent is to dribble the ball from different positions into the empty goal. Note that
dribbling is achieved by walking against the ball. There is no explicit movement to kick
the ball. The exact task setup is taken from the scoring test defined in [[14]. In this test,
the robot stands on the most distant point of the center circle, facing the empty goal.
The ball is placed at ten different positions on the other half of the center circle in the
robot’s field of view. One advantage of the adoption of this existing scoring test is the
possibility to compare the performance to an existing hard coded behavior.

According to the given task, suitable state variables have to be chosen that contain all
relevant information for learning a good policy. Obviously, the positions of the ball and
the goal are necessary to perform the task. While the ball position can be expressed by
two variables (e.g. angle and distance), this is not sufficient for the goal position. Since
the goal has a significant width, an additional variable is required (e.g. left post angle
and right post angle instead of one angle). These five variables define the unambigu-
ous position of all relevant objects and their orientation to each other. There are many
possibilities to represent this information.

The previous paragraph implicitly assumes an egocentric representation of the in-
formation, i.e. the relative positions of the ball and the goal from the agent’s point of
view. Another possibility is the transformation to an allocentric representation, i.e. the
absolute positions of ball and robot on the field (including the robot’s orientation). Fur-
ther possibilities are e.g. egocentric Cartesian coordinates (x and y) instead of polar
coordinates (angle and distance).

In this work, we use a combination of these representations and additional variables
like the square roots of the distances to the ball and to the goal. In total we use 27 vari-
ables to represent the state space. This redundant representation allows the simulta-
neous consideration of different aspects of the situation. Each single representation is
well-suited for the detection of some properties and similarities of situations whereas
others can hardly be distinguished. The combination of several representations allows
to benefit from the advantages of each representation. The additional state variables do
not cause significant additional costs of computation since they just provide another
perspective on the same data. As our function approximation method relies on many
partitionings of the state space anyway, there is no difference (concerning the number
of features) in using two partitionings of the same representation and using one parti-
tioning of two different representations.

The action space of our robot consists of four possible actions: walk forward,
walk backward, turn right, and turn left, that are executed for 3.2s each and separated
by a short break of 0.4s. This pause is required to ensure that the actions’ effects do not
depend on previous actions but only on the current state.
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As explained above, we use (J-learning with linear gradient descent to learn the
policy. The function approximator consists of multiple generic features (see Section ()
that consider only a small subset of the available state variables each. First, a minimal
representation is chosen from the redundant state representation, i.e., five independent
variables that unambiguously describe the positions of all relevant objects and their
orientation to each other. Then a generic feature is created for all possible combinations
of two and of three dimensions out of these five. This is done for several minimal
representations resulting in a total number of 140 generic features, that only consider the
state space. These features are important to estimate the value of the current situation.
However, they do not distinguish between the different possible next actions. Hence,
another 140 features are added that additionally consider the action space.

To reduce the complexity of the search space, we exploit symmetry. This technique is
widely used in search or optimization problems [15/16]. Here, we use mirroring along
the horizontal axis of the field. The value of turning left is equivalent to the value of
turning right in the mirrored situation. Thus, it is sufficient to learn the value of turning
right. Similarly, for walking forward or backward it is sufficient to learn the value for
only one half of the state space.

7 Experimental Results

We evaluate the performance of the proposed concepts as follows. The task is described
as an episodic RL task. Each action introduces an immediate reward of -1 per time step.
The slight punishment of each action is sometimes called the costs of the actions. Each
episode has three possible outcomes with the rewards:

— Success: The Ball is inside the opponent goal, reward: +1000
— Failure: The ball is outside the field, reward: -400
— Time-out: Abortion after 300sec, no additional reward

In addition to the ten situations defined for the scoring test, we define a set of training
situations. This is to ensure that the agent regularly encounters the different regions
of the state space. The agent alternately starts in a situation from the scoring test and
in a training situation. A pair of training episode and scoring test episode is called a
trial. The performance is evaluated separately for the scoring test and for the training
situations, since we are interested in the performance on the given task, i.e. the scoring
test. The presented experimental results refer to the performance in the scoring test.

Our main performance criterion is the success rate, i.e. the number of goals divided
by the number of episodes. The success rate is averaged over the last 50 episodes. Since
we initialized the success history with 50 failed episodes, the success rate is O in the
beginning and only after the 50 episodes, the average is based on actual episodes. This
is indicated by a vertical line in the plots. With the real system, fewer episodes can be
run due to time constraints. In this case, the performance is averaged over 20 episodes.
Our second criterion is the duration of successful episodes. It allows to distinguish
the performance of policies that have a high success rate. This value is averaged over
50 successful episodes.
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Fig. 2. The effects of imitation and memory. As can be seen, by applying our proposed approach
using imitation and memory (Setup iv), the robot needs only few trials in order to come up with
a good policy.

The influence of the different parameters can be evaluated faster and more systemat-
ical in a simulated environment, compared to using the real system. We first present the
results obtained in a simulator and show the performance on the real robot afterwards.

7.1 Accelerating Learning by Using Imitation and Memory

First, we show that imitation and the reevaluation of own experiences seriously accel-
erate learning. Both approaches are evaluated separately and in combination using the
following setups:

i) Standard Q-learning with 1 = 0.2 (constant); v = 0.98; € = Oﬂ
ii) Same as i), additionally after each episode: evaluation of 36 successful episodes of
an experienced agent
iii) Same as 1), additionally after each episode: evaluation of the last 36 own episodes
iv) Same as iii), additionally: memory initialized with 36 successful episodes of an
experienced agent (that will be replaced by own experiences after each trial)

The experienced agent is a human controlled RoboSapien with a success rate of 100%.
As Fig.Dlshows, classical Q-learning does not lead to noticeable success within a rea-
sonable time. Isolated imitation as employed in Setup ii) results in a behavior with a
success rate of about 70% already after few trials. However, the robot does not improve
further. It seems that the extensive use of stored experiences leads to a biased transition
model that prohibits further progress in learning. When the robot uses a memory of
own experiences only, learning starts more slowly but leads after 200 trials to a success
rate near 100%. The combination of the two concepts imitation and memory (Setup iv)
yields an almost immediate success rate of about 90%. As can be seen, after 70 trials
the agent has learned a good policy with a stable success rate near 100%.

7.2 Influence of the Discount Factor

The parameter -y is used to discount rewards that will be gained in the future. One in-
teresting effect of this future discount is that the robot prefers solutions with shorter

! Experiments with ¢ > 0 ended up with similar results.
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Fig. 3. Duration of successful episodes. A lower value of v leads to a faster accomplishment of
the task.

sequences of actions, as can be seen in Fig. 3l This figure shows the duration of suc-
cessful episodes for different values of . The success rate (not shown in the plot) does
not differ significantly for the different values. However, the goal is reached much faster
with v = 0.97 than without discounting the future (v = 1). Thus, the discount factor
has an important influence on the policy that is going to be learned. A lower value
may be advantageous for time-sensitive tasks. On the other hand, quick solutions might
involve a higher risk of failure, so that v cannot be chosen arbitrarily small.

7.3 Results with the Real Robot

As a first approach to generate successful behavior for the real robot, we transfered the
learned policy from the simulator onto the real robot. The result was that all ten out
of ten episodes in the scoring test were completed successfully. The average duration
was 153s. Thus, the policy learned in the simulator already outperforms the hard coded
behavior by 20s [14].

In another experiment, we evaluated the learning process on the real robot. We used
the proposed concept of imitation and memory as it was described by Setup iv) above.
As can be seen in Fig.[] the success rate increases quickly up to 70% after just 30 trials.
The final performance is a success rate of 85%. Although the curve is not yet stable at
this point, the results from the simulations suggest that this performance level can be
maintained and maybe further improved.

8 Related Work

Machine learning has been widely investigated in recent works on robotics, intelligent
agents or control systems. Classical approaches are increasingly combined with psy-
chological mechanisms like imitation, curiosity, selective attention, and memory.

A well-known example for the successful application of RL techniques is the back-
gammon computer developed by Tesauro [2]]. It consist of a feed-forward neural net-
work, which is trained by playing against itself. TD-backgammon outperformed all
commercial backgammon programs available at that time. The extensive training was
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Fig. 4. Learning with the real robot. The proposed concepts of imitation and memory as well as
function approximation lead to a quick acquisition of successful behavior.

essential part of this great success. The program was trained in up to 200,000 matches
against itself.

Learning with memory can be used to overcome the hidden-state problem of non-
Markovian environments. Algorithms like U-tree [[17] or HQ-learning [18] integrate
past information into the current state. As memory is only used within an episode, this
can be seen as a form of short-term memory. Our approach does not aim at the solution
of the hidden state problem within an episode but rather at preserving experience for
later access. This corresponds to episodic memory. Our work is closely related to the
fitted Q iteration algorithm [19], where RL is applied in batch mode to a large set of
single observations. An observation is a four-tuple (s, a, s, ).

Different concepts of guided exploration have been proposed to accelerate RL meth-
ods. Reinforcement-driven information acquisition (RDIA) [20] combines knowledge
from information theory with RL to model curiosity. Experiments with table-based Q-
learning in a simulated environment show that transition probabilities can be learned
much faster than with random exploration. Another form of guided exploration is coach-
ing. The RATLE algorithm [21]] uses ()-learning with a feed-forward neural network
and allows to process external advice in form of rules. This is done by translating the
rules into neural units and inserting these new units directly into the network. In [22]
imitation is used to solve a maze problemE The learning agent has an “innate” imita-
tion behavior, which consists in following a teacher. Experiments in simulations show
that increasingly complex mazes can be solved. The results are not compared to other
approaches.

The successful application of RL methods to robotic soccer has been recently demon-
strated by the team Brainstormers Osnabriick, the 2005 World Champion in the Robo-
Cup 2D-Simulation-League. Their research focuses on the use of RL techniques for
multi-agent systems [3]]. Classical RL with feed-forward networks is used to learn ba-
sic skills that are combined to more complex behaviors [23]]. The application of RL to
real-world soccer robots is investigated in [24]. First, basic skills are learned via RL.
Then, a policy is learned as well that chooses among the basic skills according to the

2 The problem is called a maze problem in the original publication. However, it is rather a
corridor. So the problem is not finding the exit, but to follow a given path without collisions.
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current situation. Thus, a two-level hierarchy is used. The agent successfully learns
good behavior in a simulated environment. Applied to the real robot, the behavior does
not reach the performance of an explicitly programmed solution. The results are com-
pared to a robot, whose top speed has been reduced to ; of the usual top speed.

9 Conclusions

In this paper, we presented several techniques to reduce the amount of training data
for RL. The main idea was to build extensive knowledge from few experiences. This is
crucial for the application of RL methods to real-world scenarios.

We use imitation to replace the random exploration of the huge state and action space
with a guided exploration. In our approach, the agent has full access to experiences of a
teacher, which has the same state and action space and gets identical rewards. Percep-
tions, actions, and rewards of the experienced agent are stored and can be accessed and
reused later. Similarly, own experiences are stored and reevaluated later. This dramati-
cally reduces the training expenses. Classical RL methods process the current observa-
tion and discard it immediately. This way, valuable information might be lost, since it
cannot be correctly assessed at the moment of the experience. We let the agent repeat-
edly reprocess past experiences to avoid this problem.

In addition, the quick generalization of similar situations while preserving the possi-
bility to distinguish between different situations, essentially contributes to the accelera-
tion of the learning process. Coarse coding with binary features allows locally constant
function approximation. In this case, inputs that activate identical features are treated
identically. Our function approximation with continuous features is locally linear. In-
puts that activate identical features remain discriminable by the different intensities of
the activation. This way, generalization and discrimination can be better combined.

As the experimental results show, fundamental soccer skills can be learned using RL
in simulation. The approach also works with a real humanoid robot on the soccer field.
The given task is accomplished quickly and reliably. Although the training with the real
robot requires more time than the training in simulation, it stays within a reasonable
limit. We also showed that the learned behavior in the simulator can be directly used by
the real robot and yields good results.
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Abstract. When developing skills on a physical robot, it is appealing
to turn to modern machine learning methods in order to automate the
process. However, when no accurate simulator exists for the type of mo-
tion in question, all learning must occur on the physical robot itself. In
such a case, there is a high premium on quick, efficient learning (specifi-
cally, learning with low sample complexity). Recent results in learning lo-
comotion have demonstrated the feasibility of learning fast walks directly
on quadrupedal robots. This paper demonstrates that it is also possible
to learn a higher-level skill requiring more fine motor coordination, again
with all learning occurring directly on the robot. In particular, the paper
presents a learned ball-grasping skill on a commercially available Sony
Aibo robot, with no human intervention other than battery changes.
The learned skill significantly outperforms our best hand-tuned solution.
As the learned grasping skill relies on a learned walk, we characterize
our learning implementation within the layered learning formalism. To
our knowledge, the two learned layers represent the first use of layered
learning on a physical robot.

Keywords: learning and adaptive systems, sensor-motor control.

1 Introduction

In order for robots to be useful for many real-world applications, they must be
able to adapt to novel and changing environments. Ideally, a robot should be
able to respond to a change in its surroundings by adapting both its low-level
skills, such as its walking style, and the higher-level skills which depend on them.
Because hand-coding is time-consuming and often leads to brittle solutions, this
adaptation should occur as autonomously as possible. Machine learning promises
a way to generate solutions with little human interaction, so that when the
environment changes the solution can be revised with limited human effort.
Machine learning can also lead to better solutions than hand-tuning, because
humans are often biased toward exploring a small part of the space of possible
solutions, whereas machine learning explores the space in a systematic way.
Current learning methods typically need a large amount of training data to
be effective. Thus, an appealing approach to creating learning robots is to train
behaviors first in simulation before implementing them in the real world [5].

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 59 2007.
© Springer-Verlag Berlin Heidelberg 2007
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However, especially when concerned with complex perception or manipulation
tasks, we cannot assume an adequate simulator will always exist for a given
robot. With no simulator, each trial requires interaction with the physical world
in real time. In such cases, it is not possible to offset the costs of an inefficient
learning algorithm with a faster processor. The learning algorithm must make
efficient use of the information gained from each trial (i.e., it must have low
sample complexity).

For this reason, until recently, most of the locomotion approaches for quad-
rupedal robots have centered around hand-tuning a parameterized gait. How-
ever, in recent years, there has been a spate of research on efficient learning
algorithms for quadrupedal locomotion [2J4TTIT2T3IT4]. A common feature of
these approaches is that the robots time themselves walking across a known,
fixed distance, thus eliminating the need for any human supervision.

This paper demonstrates that it is possible to similarly learn a higher-level
more fine-motor skill, again with all learning occurring directly on the robot.
In particular, the paper presents a learned ball-grasping skill on a commer-
cially available Sony Aibo robot, with no human intervention other than battery
changes. We show that a learning algorithm that has proven effective for learning
walks applies directly to this new task. However, due to the different task char-
acteristics, significant changes to the training scenario are required. This paper
contributes a full specification of a training scenario that enables autonomous
learning of a ball-grasping skill. The learned skill significantly outperforms an
extensively hand-tuned solution.

As the learned grasping skill relies on a learned walk itself, we characterize our
learning implementation within the layered learning formalism. Layered learn-
ing [I7] is a hierarchical machine learning paradigm that leverages a given task
decomposition to learn complex tasks efficiently. A key feature is that the learn-
ing of each subtask directly facilitates the learning of the next-higher subtask
layer. Layered learning has been used previously to generate complex, multi-
layer behaviors in simulated environments [BI7JI7/18]. To our knowledge, our
two learned layers represent the first use of layered learning on a physical robot.

The remainder of this paper is organized as follows. Section 2] describes the
background and motivation for this work. Section [ specifies the tasks to be
learned and how the layered learning paradigm can be used to relate them, as
well as how the training scenario is set up for each task. Section M describes
the primary machine learning algorithm used in the work. Section [ details the
results of the training, and Section [6] discusses the contributions of this work, as
well as possible directions for the future.

2 Background

This section describes the robot hardware used in all experiments and intro-
duces the target task towards which it is trained (Section [Z)). It also summa-
rizes the layered learning formalism (Section 2.2)) within which we frame our
approach.
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2.1 Ball Acquisition by a Legged Robot

Acquiring an object is a prerequisite for many types of manipulations in the world
[1U8]. For example, in the case of a Sony Aibo robot playing soccer, one of our mo-
tivating testbed domains, it is much easier to design effective ways for the robot
to kick the ball if we may assume that the ball starts in a specific position relative
to the robot. Furthermore, if the robot can grasp the ball securely enough, it can
move the ball into a better position relative to the objects in the robot’s environ-
ment before executing a kick. (For example, the robot can turn with the ball until
it is pointed at the opponent’s goal.) Thus, as a representative high-level task for
learning, we consider the aim of having a robot walk up to a ball and gain control of
it. For the purposes of this paper, we define control to mean that the robot holds the
ball under its chin in a way that allows it to turn with the ball as shown in Figure[Il
As the robot platform for this research,
we use the commercially available Sony Aibo
ERS-7, a quadruped robot [15]. The ERS-7
has four legs with three degrees of freedom in
each, a head with three degrees of freedom,
and a CMOS camera in the head. It has sev-
eral pressure sensors and two infrared range
sensors, as well as position sensors in each of
its joints. The robot is able to capture frames
from the camera at a rate of 30 Hz. From
these images, our software recognizes objects
such as the orange ball based on color segmen-
tation and aggregation. This variety of sen-
; . sors allows us to rely on local sensing alone.
out knocking the ball away in the y, 4 jition, the 576 MHz 64 bit RISC proces-

process is a challenge; our learn- .
ing method allows the Aibo to do  S°T allows all necessary processing to be don.e
this more reliably without sacrific- onboard. In this work, we use a system for vi-
ing walking speed. sion processing, walking, and kicking that was
developed as part of our larger robot soccer

project [16].

Fig.1. An Aibo with control of a
ball. Achieving this position with-

2.2 Layered Learning

Layered learning is a general hierarchical machine learning paradigm that lever-
ages a given task decomposition to learn complex tasks efficiently. Though it has
been validated previously in simulation, this paper presents the first application
of layered learning on a physical robot. Specifically, the robot first learns a fast
walk, then uses that walk to approach the ball while learning to grasp it.

The main principles of layered learning are summarized in Table[Il A detailed
description of these principles is given by Stone and Veloso[I7].

We cast our learned behaviors within the formal layered learning framework as
defined in the remainder of this section [I7]. Consider the learning task of iden-
tifying a hypothesis h from among a class of hypotheses H which map a set of
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Table 1. The key principles of layered learning

1. Learning a mapping directly from inputs to outputs is not tractable.

A bottom-up, hierarchical task decomposition is given.

3. Machine learning exploits data to train and/or adapt. Learning occurs separately
at each level.

4. The output of learning in one layer feeds into the next layer.

o

state feature variables S to a set of outputs O such that, based on a set of training
examples, h is most likely (of the hypotheses in H) to represent unseen examples.

When using the layered learning paradigm, the complete learning task is decom-
posed into hierarchical subtask layers { L1, Lo, . .., L, } with each layer defined as

Li = (F’La Oian7 Mia hl)

where:

F; is the input vector of state features relevant for learning subtask L;.
F,=<F F? . >.VYj, F] €8S.

O; is the set of outputs from among which to choose for subtask L;. O,, = O.

T; is the set of training examples used for learning subtask ;. Each element of
T; consists of a correspondence between an input feature vector f € F; and
(B Oz

M; is the ML algorithm used at layer L; to select a hypothesis mapping F; — O;
based on T;.

h; is the result of running M; on T;. h; is a function from F; to O;.

Note that a layer describes more than a subtask; it also describes an approach
to solving that subtask and the resulting solution.

As stated in the Decomposition principle of layered learning, the definitions of
the layers L; are given a priori. The Interaction principle is addressed as follows.
Vi < n, h; directly affects L;11 in at least one of three ways:

— hi; is used to construct one or more features FF, ;.
— h; is used to construct elements of T;1; and/or
— h; is used to prune the output set O;41.

It is noted above in the definition of Fj that Vj, Ff € S. Since F;4q can
consist of new features constructed using h;, the more general version of the
above special case is that Vi, j, F/ € S Ufc_:ll Og.

When training a particular component, layered learning freezes the compo-
nents trained in previous layers, thereby adding additional constraints to the
learning process. It also adds guidance, by training each layer in a special envi-
ronment intended to prepare it well for the target domain.

The original implementation of the layered learning paradigm was on the full
robot soccer task in the RoboCup soccer simulator [I7]. First, a neural network
was used to learn an interception behavior. This behavior was used to train a
decision tree for pass evaluation, which was in turn used to generate the input
representation for a reinforcement learning approach to pass selection.
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A subsequent application of layered learning uses two layers, each learned via
genetic programming, for a soccer keepaway task in a simplified abstraction of
the TeamBots environment [7]. In the full TeamBots environment, four learned
layers were used, also on a keepaway task [18]. To our knowledge, there has been
no previous implementation of layered learning on a physical robot.

3 Layered Learning on a Physical Robot

The process of approaching a ball and then gaining control of it relies on the
gait that allows the robot to move toward the ball. Thus, when both the gait
and the grasping are individually learned, we have a layered learning hierarchy
consisting of two layers. This section casts the recent research on gait learning
within the layered learning formalism (L;), and then builds upon it to learn ball
grasping, a second, higher-level skill (Ls).

3.1 Learning a Gait

In recent years, several approaches to learning a gait on an Aibo have been stud-
ied. Among these approaches, most of the differences between gaits stem from the
shape of the loci through which the feet pass and the exact parameterizations of
those loci. For example, Kohl and Stone used elliptical loci to learn high-speed
walks using a policy gradient learning approach [I1], while simultaneously but
independently, Quinlan et al. were able to generate high-velocity gaits using a ge-
netic algorithm and loci of arbitrary shape [12], and Roefer created a flexible gait
implementation that allows use of a variety of different shapes of loci [14]. They
then used an evolutionary learning algorithm to optimize a novel fitness function
based on proprioception to learn a fast gait [I3]. Chernova and Veloso similarly
used an evolutionary approach with good success [2] and Lee et al. refined Kohl
and Stone’s approach to estimate gait speeds more effectively [4].

This paper builds upon the successful approach of Kohl and Stone [I1], in
which the gait is defined by a set of 12 continuous parameters specifying, among
other things, the shape of the trajectory through which each leg moves as well
as the target heights of the front and rear of the body. Thus, gait learning is
framed as a parameter optimization problem, with forward speed as the objec-
tive function. The learning is accomplished via the policy gradient algorithm
summarized in Section [l

The fitness of a policy, or set of values for the 12 parameters, is obtained by
having one or more Aibos time themselves as they walk a fixed, known distance
indicated by a pair of landmarks. To reduce the effect of noise, this evaluation
process is performed three times for each policy, and the resulting times are
averaged to get the fitness of the policy.

In the notation of layered learning, the gait layer (L;) is thus defined as:

Fy: 0
O;: values for the 12 parameters defining a gait, plus the speed of the resulting
gait;
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Ti: the set of training examples obtained by recording the time it takes to walk
back and forth across a fixed distance;
M;: the policy gradient algorithm described in Section
h1: the parameters of the fastest discovered gait, and its speed.

The walks learned using this technique perform similarly to those reported by
Stone and Kohl [I1], who report that with three robots continually walking across
the field more than 1000 total times for approximately 3 hours, they achieved
the fastest known walk on the Aibo at the time. Notably, the robots learned
without any human intervention other than battery changes approximately once
an hour, and the walk speed was nearly doubled during training.

Though our learned walk itself is a reproduction of previous results, the for-
mulation of the walking task within the framework of layered learning is novel to
this paper. Next, Section 3.2 introduces this novel learned skill in full detail and
similarly frames it within layered learning. As prescribed by layered learning,
the new skill uses the learned walk (h1) as a part of its training scenario.

3.2 Learning to Acquire the Ball

The task of learning to capture a ball under the robot’s chin is motivated by
the ongoing development of our four-legged robot soccer team [16]. The robot is
only able to kick in certain directions, so it is useful to be able to capture the
ball and turn with it before kicking. Our team adopted the following strategy
for getting the ball into this position: when the Aibo is walking to a ball with
the intent of kicking it and gets close enough, it first slows down to allow for
more precise positioning, and then it lowers its head to capture the ball under
its chin (the capturing motion).

¥

-

* o\

( /B
- 3

Fig.2. Illustration of capture

Executing the capturing motion without
knocking the ball away is a challenge: if the
head is lowered when the ball is too far away,
the head may knock the ball away; but if it
is not lowered in time, the body of the ro-
bot may bump the ball away. Furthermore,
certain aspects of the acquisition motion in-
teract, such as the perceived ball distance at
which the head should be lowered and the
amount that the robot slows down when close
angle. If the Aibo believes that the to the ball. Pa?ameters like thesg muS‘F there-
center of the ball is to the right of fore be tuned simultaneously. This entire pro-
the thick white lines, then it will —¢€ess is time-consuming to perform by hand.
continue to turn toward the ball The parameters that control the transition
rather than beginning the captur- from walking to capturing the ball, as indi-
ing motion, even if the ball dis- cated in Figure[3] are as follows:
tance is believed to be less than
capture dist.
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— slowdown dist: the ball distance (in millimeters) at which slowing down
begins;

— slowdown factor: the (multiplicative) factor, in the range [0,1], by which
the gait slows down at this point;

— capture angle: the maximum ball angle (in degrees) at which the capturing
motion may begin (see Figure [2));

— capture dist: the ball distance (in millimeters) at which the capturing mo-
tion begins (if the ball is within the specified angle);

— turn cutoff: the minimum ball angle (in degrees) at which the robot will
not move directly toward the ball at all, but instead will turn in place to
face the ball more directly. This parameter controls how straight the final
part of the robot’s approach will be.

Given this parameterization,

1: totalscore — 0 we are faced with a parameter op-
%f f°‘l" i< [11; 7{% do timization problem in five dimen-
N ocate a. . . .
4:  while ball farther than slowdown dist do sions. Because our policies can be
g: if E)all e;ngle c1"11“1(l))1rellthan turn cutoff then expressed in this way, and be-
: urn towar a. .
7: else cause our domain has the same
Sf Vga_l? to ball at maxspeed efficiency constraints as that of
. en 1 . .
10:  end while learning fast locomotion for the
11: while ball farther than capture dist and outside  Aiho. the polic radient learnin
of capture angle do ) Y
12: if ball angle more than turn cutoff then algorlthm used to learn the gailt
ﬁ: ouen toward ball (see Section M) is again a natural
: else B
15: walk to ball at maxspeed*slowdown factor choice.

%(73 ed“d }‘]f,l However, there are new
. en whille . . .
18:  lower head over ball challenges in learning ball acqui-
19: if head tilt position sensor senses ball then sition: speciﬁcally 1) deﬁning an
20: totalscore < totalscore + 1 > > ..
21: if center of field to robot’s left then appropriate reward SlgnaL and 11)
%g lkiCk to left defining an appropriate training

. else . . .
24: kick to right scenario. The policy gradient al-
%g ed“,df if gorithm relies on the magnitude
: end i .
27 turn 180° of the fitness difference between
%S S;‘l‘jczozwre  totalscore/n policies. This magnitude is read-

Fig.3. Method for evaluating policies while
learning to approach the ball. n is the number
of trials per policy; in our experiments, we used
n =12.

ily available in the learned walk-
ing scenario, because speed pro-
vides a natural and continuous
measure of fitness. But in the case
of ball acquisition, there is no
straightforward way to rate a par-
ticular policy with regard to “how

well” it captures the ball: it either does or it does not.

Therefore, we use a binary reinforcement signal: if the robot captures the ball,
it receives a reward of 1; if not, it receives a reward of 0. The Aibo can determine
autonomously whether it has captured the ball by trying to put its chin all the
way down to its chest and then taking note of the value of the position sensor in
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its head tilt joint; if the ball is indeed under its chin, the head tilt motor will stop
moving before getting to the requested position. During training, the score for
a given policy is determined by running a fixed number of trials (12) with that
policy and averaging the reinforcement signal over those trials (thus producing
a discrete reinforcement signal). In other words, a policy’s score is the number
of times it successfully captures the ball over the course of 12 trials: an integer
between 0 and 12 inclusive.

Each trial consists of the robot approaching the ball from a random location on
the standard field used in the 2004 RoboCup competition, which is surrounded
by a short wall designed to keep the ball from leaving the field. The training
procedure is summarized in pseudocode in Figure [3

One goal of the training procedure is to generate as many trials as possible
in the open field, rather than with the ball starting against the wall. The latter
trials are somewhat less informative because capturing the ball along the wall
is considerably harder; even a good policy will fail much more frequently along
the wall, which can lead to a smaller spread of scores among policies. In order to
keep the ball in the open field, if the Aibo successfully captures it, it kicks it in
whichever direction it estimates is away from the wall (lines 21-25 in Figure []).
Before starting the next trial, the Aibo turns around approximately 180° in
place in order to knock the ball away from it if it is still close (line 27), so as
to make the different trials as independent as possible. Once it has done this,
it begins the next trial by searching for the ball and then approaching it with
the parameters of the current policy (lines 3-17). Videos depicting the training
process in action are available onlind!].

In the notation of layered learning, we thus have the following definition of
the acquisition layer (Lo):

F»: {BallAngle, BallDistance} € {[—180, 180], [0, 00)}. The five thresholds that
comprise an acquisition policy (slowdown dist, etc.) relate to these two
sensor readings alone;

O: whether or not to lower the head at the current time;

Ts: evaluations of mappings from F; to O;, obtained by repeatedly trying to
grasp the ball by the process described above and summarized in Figure [3
In particular, the learned walk (hq) is used during training;

My: the policy gradient algorithm described in Section

ho: the final learned acquisition policy.

All learning is done on the Aibo itself, including all calculations necessary
to execute the learning algorithm. Interruptions caused by dead batteries are
of little consequence, since the learning algorithm we use has practically no
state: if we resume from its last base policy, we will never lose as much as
an entire iteration of the algorithm. With the algorithm parameters used in
our experiments, a battery typically lasts for the amount of time necessary to
complete two iterations, so on average a run requires about 4 battery changes.

! mttp://www.cs.utexas.edu/~AustinVilla/legged/learned-acquisition/
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4 The Policy Gradient Algorithm

The learning algorithm common to both learned layers estimates the gradient of
the policy’s value function near the current policy via efficient experimentation.
It then takes a step in the direc-
tion of the estimated gradient and
repeats the process. We use the
policy gradient algorithm presented

Table 2. Parameters for the policy gradient
algorithm in the ball acquisition learning task

Parameter Value and evaluated against alternatives

Policies per iteration () 8 for learned locomotion by Kohl and
Increment for slowdown dist (e1) 10mm  Stone [I0]. This section summarizes
Increment for slowdown factor (e2) 0.1 the algorithm in task-independent
Increment for capture angle (es)  5° terms and points out some of its ad-

Increment for capture dist (e4) 10mm vantages for the purpose of ball ac-

Increment for turn cutoff (es) 10° quisition.

Scalar step size (1) 2 Starting from a base policy {61,

..., O0n}, t—1 new policies are chosen

by selecting one of {0; —€;, 6;,0; + €;} randomly for each dimension i, where ¢; is

a fixed increment particular to dimension ¢. These ¢ policies (the base policy and

the ¢t — 1 randomly selected policies) are then evaluated for their fitness. Their

scores are used to estimate the partial derivative of fitness with respect to each
of the N dimensions, which leads to a new base policy.

The estimation of partial derivatives works as follows. For each dimension 1,
the policies are divided into three sets according to the value of parameter i: if
its value is 0; — €;, the policy is in set S_ ;; if it is 6;, the policy is in set Sp ;;
and if it is 6; + ¢;, the policy is in set Si¢ ;. Then the average score over all the
policies in each set is computed and used to build an adjustment vector A of size
N. For each i, if the average score over the set Sy ; is greater than the average
score over each of the other two sets, then A; = 0; otherwise, A; is the difference
between the average scores over set Sy.; and set S_.;. A is then normalized
and multiplied by a scalar step size 1, so that the policy is adjusted by a fixed
amount each time. The above process comprises one iteration of the algorithm.
For the parameters used in learning ball acquisition, see Table 2

5 Results

The success of layer L, at producing a significantly faster forward gait has been
demonstrated previously [I1]. In this paper, we demonstrate that, in the layered
learning paradigm we present here, Lo can build upon the gait improvement
conferred by L;. In particular, we hypothesize the ability to learn a significantly
improved ball-acquisition skill to go with the significantly improved gait.

To test this hypothesis quantitatively, we learn ball acquisition using three
gaits learned by separate runs of layer Lq. All three of these learned gaits rep-
resent significant improvements in speed over the initial hand-tuned gait. The
initial (before learning) ball acquisition policy was hand-tuned for the initial
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hand-tuned gait from which gait learning began. The ball-acquisition learning
paradigm described by layer Lo was then applied to each of these gaits, and
significantly improved acquisition policies were discovered for all three.

Figure [ shows the learning curve for one
of these gaits, which we will refer to as gait A.
For this gait, the initial ball acquisition pol-
o icy acquires the ball roughly 26% of the time,
whereas the best learned policy acquires the
o ball approximately 77% of the time. This im-
o provement was reached in 8 iterations, which
requires 768 attempted acquisitions (approx-
P — imately 3 hours). The initial policy and the
best learned policy were each subjected to
five 100-trial evaluations, resulting in five ap-
proximations of the success rate of each. Sta-

. tistical significance was then established by
curve was produced by running .
100-trial evaluations on the base applying a i-test to these success rates.
policy of each iteration. Error bars Gait A has a speed of about 315mm/sec,
(showing the 95% confidence in- Whereas the initial hand-tuned gait from
terval) are depicted for the initial ~which it was learned has a speed of about
and best learned policy; these were  245mm/sec. The gait training process also re-
obtained by running five 100-trial  quires roughly 3 hours. Therefore, with 6
evaluations on each policy. hours of training, our robot’s walking speed

increased 29% and its reliability at acquir-

ing the ball more than doubled? in comparison with the original hand-coded
solution.

Table Bl summarizes the ball acquisition policies learned for all three gaits. It
also shows the success rate of each when tested on the gait with which it was
learned. These success rates were obtained by running 100-trial evaluations of
the policy (except for gait A, where the data is the result of all 500 trials run to
establish statistical significance on the data in FigureH]). The success rate of the
initial hand-coded policy is 26% for gait A, 14% for gait B, and 14% for gait C.

Note that in all cases, the method learned not to slow down at all (slowdown
factor is 1). When slowdown factor is 1, the parameter slowdown dist has
no effect on the robot’s behavior, which is presumably why learning resulted in
such a wide range of values for this parameter.

The fact that in all cases our method learns not to slow down demonstrates
the advantage that machine learning can bestow because of its unbiased explo-
ration of the space. In hand-tuning, we believed that slowing down would make
the ball approach more reliable at the expense of speed, since the estimates
of ball distance should change less rapidly if the robot is walking more slowly.
Our system, however — which optimized only for reliability — found that slowing

essful captures out of 100 trials

Fig.4. Progress of acquisition
learning on gait A. This learning

2 The initial ball-acquisition skill had a success rate of 36% with the initial gait,
and was the result of extensive tuning involving the testing of dozens of parameter
settings over the course of several days.
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down is in fact a disadvantage: in all learning trials it actively increased the
slowdown factor parameter from its initial value of 0.8 to 1.0.

Table 3. Policy values learned for each gait, and the approximate success rate of each

Policy slowdown dist slowdown factor capture angle capture dist turn cutoff Success rate

Initial 200 0.8 15 110 90 26%/14%/14%
Best: gait A 193 1 32 155 80 7%
Best: gait B 187 1 19 155 69 84%
Best: gait C 228 1 31 129 84 52%

We originally hypothesized that different gaits would require different acqui-
sition policies. This hypothesis was supported by the fact that the initial ball
acquisition policy dropped in effectiveness from approximately 36% on the gait
for which it was hand-tuned to 14-26% on the learned gaits.

However, it turned out not to be
the case with these learned gaits
and their trained acquisition policies.
Rather, upon testing the best acqui-
sition policy learned with gait A on
Gait Natively learned Best on gait A each of the other two learned gaits,

B 84% 91% there was no significant difference in
C 52% 53% performance — if anything, the acqui-
sition policy learned on gait A per-
forms better in each case, as shown in

Table 4. Success rates of best natively
learned acquisition policy and best acqui-
sition policy learned on gait A

Table @

Nonetheless, the layered learning paradigm enabled the separation of the
learning for the walk and ball acquisition into two distinct phases. Given that
they learn most efficiently in different training environments, such a hierarchical
approach is an essential component of our successful skill learning.

6 Conclusion

This paper makes two main contributions: i) a significantly improved grasping
skill achieved via fully autonomous machine learning with all training and com-
putation executed on-board the robot, and ii) the first instantiation of layered
learning on a physical robot.

The layered learning approach to locomotion and ball acquisition learning
that we describe here is very useful in practice. Compared to manually tuning
these skills, this method saves time and can generate better policies. Indeed,
we used the described automated training paradigms for both the gait and the
acquisition in our competitive team development for the RoboCup 2004 and 2005
robot soccer competitions, reaching the semifinals (out of 8) at the regional event
and the quarterfinals (out of 24) at the international event both years [16].
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In our ongoing research, we aim to identify additional skills and behaviors that
can be learned in a similarly autonomous and efficient fashion. Several candidates
for an L3 that builds on the grasping skill learned in Lg exist. Currently, for
example, all design and tuning of kicks for our RoboCup team are done by
hand. If this process could be automated, it would likely save time and might
also lead to improved solutions. However, since most kicks begin by grasping
the ball, autonomous learning of kicks would be intractable without a good
grasping behavior. Another possible candidate for an L3 that builds on the
learned grasping skill is the tuning of walks that manipulate the ball, such as
the one used in the turning-with-ball behavior which makes grasping so crucial in
the first place (see Section [2.]). Eventually, these learned skills may feed into still
higher-level learned decision-making behaviors (where to pass or when to shoot)
based on the current learned skills. Indeed, an immediately realizable L3 related
to kicking is the modeling of hand-tuned kicks as accomplished via regression
learning by Chernova and Veloso [3]. They use these models to demonstrably
improve the robot’s decision-making when choosing form among different kicks.
Ultimately, we hope to characterize the full range of characteristics of tasks on
a mobile robot that may be improved by these methods.
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Abstract. We present half field offense, a novel subtask of RoboCup
simulated soccer, and pose it as a problem for reinforcement learning. In
this task, an offense team attempts to outplay a defense team in order to
shoot goals. Half field offense extends keepaway [I1], a simpler subtask
of RoboCup soccer in which one team must try to keep possession of the
ball within a small rectangular region, and away from the opposing team.
Both keepaway and half field offense have to cope with the usual prob-
lems of RoboCup soccer, such as a continuous state space, noisy actions,
and multiple agents, but the latter is a significantly harder multiagent
reinforcement learning problem because of sparse rewards, a larger state
space, a richer action set, and the sheer complexity of the policy to be
learned. We demonstrate that the algorithm that has been successful
for keepaway is inadequate to scale to the more complex half field of-
fense task, and present a new algorithm to address the aforementioned
problems in multiagent reinforcement learning. The main feature of our
algorithm is the use of inter-agent communication, which allows for more
frequent and reliable learning updates. We show empirical results veri-
fying that our algorithm registers significantly higher performance and
faster learning than the earlier approach. We also assess the contribution
of inter-agent communication by considering several variations of the ba-
sic learning method. This work is a step further in the ongoing challenge
to learn complete team behavior for the RoboCup simulated soccer task.

1 Introduction

RoboCup simulated soccer [2/4] has emerged as an excellent domain for re-
searchers to test ideas in machine learning. Learning in the RoboCup soccer do-
main has to overcome several challenges, such as a continuous multi-dimensional
state space, noisy sensing and actions, multiple agents (including adversaries),
and the need to act in real-time. Machine learning techniques have been used in
the past on a wide range of tasks in RoboCup soccer. For instance, the Brain-
stormers team [89] uses reinforcement learning to train both individual behav-
iors and team strategies. Several researchers have focused on specific subtasks
like goal-shooting [316].

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 72 2007.
© Springer-Verlag Berlin Heidelberg 2007
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Keepaway. is a subtask of RoboCup soccer that has recently been proposed by
Stone et al. [I1] as a testbed for reinforcement learning methods. In keepaway,
a team of keepers tries to keep possession of the ball away from the opposing
team of takers within a small rectangular region. The task is episodic, and each
episode ends when the takers gain possession, or when the ball goes outside the
region of play. The keepers seek to maximize the duration of the episode, and are
rewarded based on the time elapsed after every action. Stone et al. [I1] provide
a Sarsa-based reinforcement learning method to learn keeper behavior at a high
level of abstraction.

In this paper, we extend keepaway to a more complex task of RoboCup soc-
cer, half field offense. This task is played on one half of the soccer field,
much bigger than the typical keepaway region. There are also typically more
players on both teams. In each episode, the offense team needs to score, which
involves keeping possession of the ball, moving up the field, and shooting goals.
The defense team tries to stop it from doing so. Since the task realistically
models the offense scenario in soccer, a policy learned for half field offense
can be integrated quite naturally into full-fledged RoboCup simulated soccer
games.

Both keepaway and half field offense have to cope with the usual difficul-
ties associated with RoboCup soccer: continuous state space, noisy actions,
and multiple agents. But several factors contribute to making half field of-
fense a much harder multiagent reinforcement learning problem than keepaway.
Maintaining possession of the ball is the main objective in keepaway, but it is
only a subtask in half field offense. In order to succeed in half field offense,
the offense players not only have to keep possession, but must also learn to
pass or dribble to forge ahead towards the goal, and shoot whenever an an-
gle opens up. With a larger state space and a richer action set than keep-
away, a successful half field offense policy is therefore quite complex. A factor
that makes learning in half field offense even more difficult is that the suc-
cess of the task is evaluated simply based on whether a goal is scored or not
at the end of an episode. Since goal scoring episodes are rare initially, it be-
comes necessary that the learning algorithm make the most efficient use of such
information.

The learning method proposed for keepaway [11] only achieves limited success
on the more difficult half field offense task. We analyze this method and propose
a new method that overcomes many of its shortcomings. While reinforcement
learning is indeed constructed to accommodate delayed updates and learning
complex policies, we show that the learning process on a complex multiagent
task like half field offense can be expedited by making better design choices.
In particular, our algorithm uses inter-player communication to speed up learn-
ing and achieve better performance. We introduce the half field offense task in
Section [2] and the learning method in Section Bl Section Ml presents emprical re-
sults of the performance of our method on the half field offense task. Section
discusses related work, and we conclude in Section [6l
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2 Half Field Offense Task Description

Half field offense is an extension of the keepaway task [I1] in RoboCup simulated
soccer. In half field offense, an offense team of m players has to outsmart the
defense team of n players, including a goalie, to score a goal. Typically n > m.
The task is played over one half of the soccer field, and begins near the half field
line with the ball close to one of the offense players. The offense team tries to
maintain possession (keep the ball close enough for it to be kicked), move up the
field, and score. The defense team tries to take the ball away from the offense
team. The task is episodic, and an episode ends when one of three events occurs:
1. A goal is scored, 2. The ball
is out of bounds, or 3. A defender
gets possession of the ball (including
the goalie catching the ball). Fig. [
shows a screen-shot from a half field
offense task, where four players are
on the offense team and five players
including a goalie are on the defense
team. We denote this version of the
task 4v5 half field offense, and dis-
cuss it in Section 22

In principle, it is possible to frame
half field offense as a learning prob-
lem for either the offense team or the defense team (or both), but here we only
focus on learning by the offense team. The objective is to increase the goal-
scoring performance of the offense team, while the defense team follows a fixed
strategy. A similar approach is also adopted for keepaway [I1].

The offense team player who possesses the ball (and is hence closest to it) is
required to take one of the following actions

Fig. 1. Half field offense game in progress

— Passk. This action involves a direct kick to the teammate that is the k-
th closest to the ball, where £k = 2,3,...,m. The representation used is
indexical, since it is based on distances to the teammates, and not their
actual jersey numbers.

— Dribble. In order to encourage the offense player with possession to dribble
towards the goal, a cone is constructed with the player at its vertex and
its axis passing through the center of the goal. The player takes a small
kick within this cone in a direction that maximizes its distance to the clos-
est defense player also inside the cone. The half angle of the cone is small
(15°) when it is far away from the goal and opponents, but is progressively
increased (up to 75°) as it gets closer to the goal or opponents. Thus it is

! They are in fact high-level skills, and are better described by the term “options,”
which are themselves composed of low-level actions over extended time periods.
They nevertheless play the role of actions in the sense of reinforcement learning. We
simply refer to them as actions for simplicity. For a more detailed discussion, see

[11].
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encouraged to forge ahead towards the goal whenever possible, but has room
to move away from the defense players should they get too close.

— Shoot. By taking this action the player kicks the ball towards the goal in
the direction bisecting the widest open angle available between the goalie,
other defenders, and the goalposts.

When no offense player has possession of the ball, the one closest to the ball
seeks to reach it by dashing directly towards it (GetBall). Offense players other
than the one closest to the ball always try to to maintain a formation in order to
take the attack forward (GetOpen). More precisely, any player from the offense
team is constrained to behave as follows.

if T have possession of the ball then
Execute some action from {Pass2,...,Passm, Dribble, Shoot}
else if I am the closest offense player to the ball then
GetBall (Intercept the ball).
else
GetOpen (Move to the position prescribed by the formation, see Section [22]).

Therefore, the behavior of any offense player is fixed except when it has pos-
session of the ball. Deciding which action to take when in possession of the ball
precisely constitutes the learning problem, as is also the case in keepaway [11].
In principle, the player who has possession can benefit from a larger action set
than the one we have described, but these actions are enough to achieve quite a
high level of performance. More importantly, they allow us to focus on learning
high-level strategies.

2.1 State Representation

In RoboCup simulated soccer [2], the server provides the players sensory in-
formation at regular intervals of time. Players typically process the low-level
information thus obtained to maintain estimates of the positions and velocities
of the players and the ball. For our task, we define the state using a set of vari-
ables involving distances and angles between players, which can be derived from
information about their positions.These are listed below. The offense players are
numbered according to

their distances to the ball 0,0

. a: dist(O1, 0
using an indexical rep- N b distEOi’DS))
resentatiop. The oﬁensg D, o 'D; T o dist(04:Gi)
player with the ball is o8 o, Goa d: min dist(Oa4, D)
, oo R

always denoted O;. Its ne o e: min ang(0O2,01, D)
teammates are Os, O3, L oen - f: min dist(O1, Ddcone)

Opn. The defense play- Oa T e
ey Uy € detense p ay left g: max goa] ang(ol)

ers are also numbered

according their distances Fig.2. Sample state variables for 4v5 half field offense
to the ball; they are

Dy,Ds,...,D,. The goalie, which may be any of the D;, is additionally
denoted D,.
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— dist(01,05),1 = 2,3,...,m. The distances from O; to its teammates.

— dist(O1, Dg). The distance from O; to the goalie on the defense team.

— dist(0;,GL),i =1,2,...,m. For the offense player, the distance to the segment of
the goal line GL between the goalposts.

— min dist(O;, D),i = 1,2,...,m. For each offense player, the closest distance to any
opponent, that is, min dist(O;, D) = min;—1,... » dist(O;, Dy).

— min ang(0;,01,D),i =2,3,...,m. For offense players other than O1, the smallest
angle Z0;01D among all D, where D 1is a defense player, that Iis,
min ang(0;, 01, D) = minj—1,... »ang(O;, O1, Dj).

— min dist(O1, Dacone)- The distance from O; to the closest defender in the dribble
cone or dcone. The dribble cone is a cone with half angle 60° with its vertex at O
and axis passing through the center of the goal. Dycone is the set of defenders in
the dribble cone.

— max goal ang(O1). The maximum angle with the vertex at O1, formed by rays
connecting O; and goalposts or defense players that are in the goal cone, which is
the triangle formed by O; and the two goalposts G Pies, and G Prighs-

We adopt this set of state variables expecting them to be of direct relevance
to the actions, although they are neither independent nor complete. We ex-
pect dist(O1, GL), max goal ang(O1), and dist(O1, D) to directly affect Shoot;
min dist(O1, D) and min dist(O1, Dgcone) to affect Dribble; and the other vari-
ables to affect Passk. As in keepaway [I1], the indexical representation based
on distances is expected to help the players generalize better. We arrived at this
set of state variables through experimentation, but did not expend much time
optimizing the set. We note that the set of state variables is independent of the
number of defense players, and has a linear relation with the number of offense
players, therefore scaling to versions of the task with large numbers of players.
The 4v5 version of the task uses 17 state variables.

2.2 4v5 Half Field Offense and Benchmark Policies

4v5 half field offense (see Fig. [I]) is a version of the task involving four offense
players and five defense players, including the goalie. We use this version of
the task for all our experiments. In 4v5, the offense player wiith the ball must
choose an action from the set {Pass2, Pass3, Pass4, Dribble, Shoot}, while the
other offense players, following a fixed strategy, stay in an arc formation. The
defense players also follow a static policy. Due to space limitations, the complete
behaviors of the offense and defense players on the 4v5 task are specified on a
supplementary web sitdd. The web site also lists examples of policies (including
Random, in which actions are chosen randomly, and Handcoded, a policy we
have manually engineered) for the 4v5 task and videos of their execution.

3 Reinforcement Learning Algorithm

Since half field offense is modeled as an extension of keepaway [I1], they share
the same basic learning framework. In fact, the learning method that has been

2 http://www.cs.utexas.edu/~AustinVilla/sim/halffieldoffense/index.html
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most successful on keepaway [11] can be directly used for learning half field
offense. But while with keepaway the learning curve obtained using this method
typically levels off after just 15 hours of simulated time, we find that with half
field offense it continues to gradually rise even after 50 hours. Furthermore,
when we visualize the execution of the policy thus learnedE it is quite apparent
that it is sub-optimal. In order to ascertain whether indeed the learning can
be improved, we analyze the task and the learning method in detail. We then
proceed to introduce a new learning approach using inter-agent communication,
which significantly improves the learning rate and the resulting performance. In
this section, we explain how the reinforcement learning method is set up, the
problems faced by multiagent reinforcement learning on this task, and how we
handle them using explicit inter-agent communication.

3.1 Basic Setup

As in keepaway [I1], the reinforcement learning problem is modeled as a semi-
Markov decision process [I], where decisions are taken at unequal intervals of
time, and only by the player with the ball. Each agent uses a function approxi-
mator to represent an action-value function or @)-function that maps state and
action pairs (s,a) to real numbers, which are its current estimates of the ex-
pected long term reward of taking action a from state s. Each agent updates its
Q-function using the Sarsa learning method. The main difference between the
method from [T1] and the one we propose in Section is in how each agent
obtains the experience, and how frequently updates are made.

Rewards for the
reinforcement learning

. Table 1. Definiti f d
problem are defined in Ta- aple cnrmon of Tewards

ble Ml A positive reward Game Scenario Notation ~ Reward
of 1.0 is given for an Goal goal reward 10
action that results in a  Bai with some offense player offense reward 0
goal, while small negative Ball caught by goalie catch reward 01
rewards are given when Ball out of bounds out reward 01
the episode ends unsuc- Ball with some defense player defense reward 02

cessfully. It is conceivable

to give small positive re-

wards (say 0.01) for successful passes, but we found that a zero reward was just
as effective. Negative rewards are provided at the end of unsuccessful episodes
to encourage keeping the ball in play. The ratios between different rewards can
have a significant impact on the learning process [3]. We informally tested out
different values and found this particular assignment effective. Since the task is
episodic, we do not use discounting.

3.2 Difficulty of Multiagent Learning

In the method used for keepaway [11]], each agent learns independently. The only
points in time when it receives rewards and makes updates to its Q-function are
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when it has possession of the ball, or when the episode ends. The reward itself
is the length of the duration between when the action was taken and when
possession was regained or the episode ended. Clearly, it is easy to apply this
scheme to half field offense, using the reward structure specified in Table [l We
illustrate this method by tracing through a typical episode from half field offense
(depicted in Fig. [3)). The episode begins with O4 in possession of the ball Oa
passes the ball to Op, who takes three dribble actions before passing it to O¢.
Oc¢ then passes it back to Op, who shoots the ball into the goal. Op does not
participate in this episode. Using the learning method from [I1], O4 will receive
goal reward for its pass action (1); Op will receive offense reward for its dribble
actions (2, 3, and 4) and pass action (5), and goal reward for its shoot action
(7); while O¢ will get goal reward for its pass action (6). O4 and and O¢ will
only make their learning updates at the end of the episode, while Op will also
make intermediate updates whenever it regains possession. Op does not make
any learning update in this episode.

We find shortcomings in the method from o

[11] that we have just described. First, con-
sider another episode that differs from the
above example only in that the final Shoot
action results in the ball being caught by the
goalie instead of finding the goal. In this case
also, O4, Op, and O¢ make corresponding
updates to their Q-functions, but the reward
used for the updates is catch reward. Even
though the reason for the failure to score on
this episode is only perhaps a slightly flawed
Shoot action, the reward assigned to O4 for

o, .

Oy

O 6

4
\/3(5\
PR
1

03\

Fig.3. Example episode: The
numbers indicate the sequence of
actions

its successful pass to Op (and indeed actions
6 and 7) now becomes drastically different (negative instead of positive). This
case illustrates that it is more desirable for O 4 to update its @Q-function for the
pass to Op right after Op receives the ball, since the update then would be based
on the @-value of Op in its current state, and the reward for a successful pass.
While using the method from [I1], the update is only based on how the episode
ends. This can lead to a higher variance for updates to the Q-function, especially
since the task is stochastic. The problem is that there is a long temporal delay
between the execution of an action by a player and the corresponding learning
update; because of this delay, the assigned reward and the next resulting state
can change drastically. It is not too harmful in keepaway, since the rewards are
themselves the time elapsed between the events, and do not change based on
the next state. But in half field offense, even slight changes in the middle of an
episode can lead to very different outcomes and very different rewards.
Another evident shortcoming is the case of player Op. Since each player learns
solely based on its own experiences in the method from [I1], Op, which is not

3 We use subscripts A, B,C, D to indicate fixed players since numerical subscripts
indicate players according to how close they are to the ball.
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involved in this episode, does not update its @)-function even once during this
episode. Since the players are homogeneous, it seems conceivable that the players’
experiences can be shared. For instance, Op should be able to learn, based on
Op’s experience, that Shoot action taken from close to the goal is likely to
receive high reward. In fact, even among O4, Op, and O¢, only Op records
the information that the Shoot action resulted in a goal; O4 and O¢ are only
able to make updates to their respective Pass actions. Surely, they will also
benefit by making Op’s update for the Shoot action. Sharing experiences can
be particularly useful early in training, when successful episodes are rare. We
next describe our learning method, which uses inter-agent communication to
overcome the shortcomings described above.

3.3 Agent Communication

In the solution we propose, inter-agent communication is used to facilitate in-
formation sharing among the agents, and to enable frequent and more reliable
updates. The protocol followed is similar to one used by Tan [I2] for learning in
an artificial predator-prey domain, where agents are able to communicate their
experiences to their partners.

Since every action leads

either to some offense Table 2. Messages broadcast during the example

player getting possession episode

or the end of the episode, Number Sender State Action Reward

in our scheme, the appro-

priate reward for that ac- 1 Oa s1  Pass3 (to Op) offense reward
tion is provided as soon as 2 Op 32 Dribble  offense reward
one of these events occurs. 3 O s3 Dribble  offense reward
Thus, in our example, O 4 4 Op S4 Dribble offense reward
is given offense reward as 5 OB s5 Pass2 (to Oc¢) offense reward
soon as its pass (action 1) 6 Oc se¢ Pass2 (to Op) offense reward
to Op succeeds, instead of 7 Op  s7 Shoot goal reward

having to wait until the

end of the episode to re-

ceive goal reward. As soon as it receives offense reward, O 4 broadcasts a mes-
sage (see Table ) to its teammates, describing the state in which it was when
it took the pass action (s1), the pass action itself (Pass3), and the reward
received (offense reward). In general, every time a player takes action a in
state s and receives reward r, it broadcasts a message of the form (s,a,r) to
the team. Since a Sarsa update is completely specified by a (s,a,r,s’,a’) tu-
ple, each player records the messages received and makes an update as soon
as enough information is available for it. Thus, when Op broadcasts mes-
sage 2 (see Table [2), all the players make a Sarsa update using the tuple
(s1, Pass3, offense reward, s, Dribble.). It is quite clear that in this scheme,
the SMDP step is designed to last only until some teammate gets possession
(unless the episode ends before that), therefore keeping the updates more reli-
able. At the same time, communication permits each player to make an update



80 S. Kalyanakrishnan, Y. Liu, and P. Stone

Algorithm 1. Reinforcement Learning with Communication
Initializations;
for all episode do
s «— NULL;
repeat
// acting
if I have possession of the ball then
s «— getCurrentStateFromEnvironment ();
Choose action a using Q-function and e-greedy selection;
Execute action a;
r «— waitForRewardFromEnvironment();
broadcast(s, a, r);
else
if I am the closest offense player to the ball then
GetBall;
else
GetOpen;
// learning
if I receive message (Sm, Gm,™m) then
if s is NULL then
S, Ay T <= Sm, Gm) Tmj
else
SI’ a,; r’— Sm; @m), Tmj
Perform Sarsa update based on (s,a,r,s’,a’):
Q(s,a) — Q(s,a) +a (r +¥Q(s',a') — Q(s, a));
s,a,r «— s’ ,a’,r’;
until episode ends;

for every action that has been taken by any of the offense players during the
episode. In fact, since all the players begin with the same initial @-function and
make the same updates, we can expect that their action-value functions will
always be alike, thereby reducing an essentially distributed problem to one of
centralized control (imagine a single “virtual” agent who resides at all times
inside the player who currently has possession of the ball). However, in practice,
the message passing is not completely reliable, so a small number of updates get
missed.

Algorithm [ provides the pseudocode of the algorithm the learning players
implement. Each player stores its current action value function using a function
approximator. When in possession of the ball, it decides which action to take
based on an e-greedy action selection scheme. After executing a and receiving
a reward r, the player broadcasts the triple (s,a,r) to the team. Players not
in possession of the ball simply follow the static policy. Each player uses the
first message that is received during an episode to initialize values for the triple
(s,a,r), and on every subsequent message (s',a’,r’) makes a learning update
using the saved and received information.

We implement the inter-player communication using a “trainer,” an indepen-
dent agent that can communicate with all the players. The player broadcasting
an (s, a,r) message actually sends it to the trainer, who then sends it to all the
players. To be consistent, we assume that even to make an update corresponding
to its own action, a player first sends a message to the trainer, and makes the
update only on receiving it back from the trainer. The trainer sends a special
(s,a,r) message to the players when the end of an episode is reached, so that
they may make a final update for that episode and start afresh for the next.
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We use Sarsa(0) as our reinforcement learning algorithm, along with CMAC tile
coding for function approximation (as in [II]). The CMACs comprise 32 tilings
for each feature. Distance features have tile widths of 3m, while the tile width
for angle features is fixed at 10°. We use a = 0.125, v = 1.0, and ¢ = 0.01.

4 Experimental Results and Discussion

In this section we present performance results of our learning algorithm. The
graphs depict learning curves with the y-axis showing the fraction of successful
episodes, and the x-axis the number of training episodes. The learning curves
are smoothed using a sliding window of 1000 episodes. Each curve is an average
of at least 30 independent runs. We have performed t-tests every 5,000 episodes
comparing the values of the curves, and we report the levels of significance for
important comparisons.

To focus on learning while still perserving a high level of complexity in our
experiments with the 4v5 half field offense task, we have modified a couple
of RoboCup simulated soccer defaults. While the RoboCup default only allows
players to “see” within a 90° cone, we allow for 360° vision, which removes hidden
state, but still retains sensor noise. Also, we do not enforce the offsides rule in
our task, even though our players get offsides only occasionally. These changes
are enforced in all our experiments, in order to make meaningful comparisons
between different offense team policies.

Fig. [l(a) plots the performance of our learning algorithm. Our learning algo-
rithm using inter-agent communication achieves a long term success ratio of 32%,
while one where the agents learn independently (as in keepaway [I1]) only man-
ages to register 23%. Beyond 5000 episodes, their order is significant (p < 10~%).
Clearly, the gain from using communication is substantial. This is particularly
apparent when we compare it to the performance recorded by other static poli-
cies. Within 2000 episodes of training, our algorithm is able to learn a more
successful policy than the Handcoded policy mentioned in Section When
we visualize the execution of the learned policyE it is noticeably different from
the Handcoded, suggesting that learning is able to capture behavior that is
non-intuitive for humans to describe. Fig. d{a) also plots the performance of the
Random policy, which succeeds less than 1% of the time, thereby confirming
that extended sequences of the right actions are required to score goals. The
other curve in the graph shows the performance achieved by a set of four offense
players (numbers 6, 7, 8, and 9) from the UvA 2003 RoboCup team [5], which
won the RoboCup simulated league championship that year. The comparison
between our players and the UvA offenders is not completely fair, because they
have not been tuned specifically for the half field offense task. But the fact that
our players are able to learn a policy that performs at least twice as well as the
UvA players in this setting still gives some insight into the effectiveness of the
policy they learn.

In order to get a clearer understanding of the impact of communication, we
ran a set of experiments in which only subsets of players communicate among
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Learning Performance Levels of Communication
T

0. T T

T T
With Communication )

o o3f
@ 03} °
2 2 3-1
2 a
& 025 " T W o2s-
= Without Communication o]
L Q
B o2 g 02 2=
8 1=1-1-1
3 @ 1-1 ¢ )
2015 UVA Offense 2 015t
o o
[0 (0]

o
% 01 g o
] Handcoded I3
z <
< o5l ] 008

Random
0 5,000 10,000 15,000 20,000 25,000 30,000 0 5,000 10,000 15000 20,000 25000 30,000
Number of Episodes Number of Episodes
(a) Learning performance (b) Impact of agent cooperation
N Different Function Approximators Against UVA Defense
Comm + CMAC o

% 0.3] @ 0.3
3 Comm + RBF K
=% 2
g 0251 No Comm + CMAC lj:-l' 025
S g
g 0ok Comm + NNet PRI ] B o
[ s
3 3
o L No Comm + RBF (ﬁ
© 01| = 015

4
& 8 UvA Offense
o No Comm + NNet °
g 0.1 1 ? 0.1
3 g With Communicatioy

<

0.05[ 0.05
Without Communication
0 540‘00 10,‘000 15‘2)00 20,‘000 25‘2)00 30,000 0 5,000 10,000 15,000 20,000 25,000 30,000
Number of Episodes Number of Episodes
(c) Different function approximators (d) Against UvA defenders

Fig. 4. Experimental results

themselves, while some learn independently (as in keepaway [I1]). Fig. H(b) plots
learning curves from experiments in which all four players communicate their
updates (4), only three of them communicate while one learns independently
(3-1), all players communicate but each only with a partner (2-2), two of them
communicate while two learn independently (2-1-1), and they are all independent
(1-1-1-1). At 5,000 and 10,000 episodes of training, the order specified above
(except between 2-2 and 2-1-1) is significant with p < 1073, suggesting that
increased communication results in a faster learning rate. After 30,000 episodes
of training, the full-communication curve (4) remains ahead of all the others,
with p < 1078, It is clear, therefore, that communication does make a significant
difference to the performance. Through informal experimentation, we verified
that communication results in a faster learning rate for the keepaway task too,
though the final policy it learns does not perform significantly better than one
learned with no communication [T1].

While we use CMACs for function approximation in most of our experiments,
we ran an additional set of experiments using different function approximators
to see how this change affects the performance. The other function approxima-
tors we used are neural networks (NNets) and radial basis functions (RBFs).
They have also been in the past used for learning keepaway [10]. Fig. l{(c) plots
the performance obtained by using these function approximators both in the
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full-communication case and the no-communication case. In both cases, the or-
der CMAC > RBF > NNet is preserved beyond 10,000 episodes of training
(In keepaway the RBFs perform slightly better than the CMACs). But more
importantly, we find that for each of the function approximators, significantly
higher performance is achieved by the communication-based algorithm.

In order to verify to what extent our learning algorithm was robust to changes
in the task, we ran a variation in which the offense team plays against a set of
defense players from the UvA 2003 team [5] (players 5, 6, 2, 3, and 1). These
players offer a far more defensive strategy than ours, and position themselves
strategically to block passes between the offense players. After 30,000 episodes
of learning, our players show an 11% success rate, which almost matches the
performance achieved by the set of UvA offense players against this opposition.
In fact, the learning curve still seems to be rising at this point. The UvA of-
fense performs better than the learned policy, however with a low confidence
(p < 0.2356). Therefore our learning method is able to achieve a high level of
performance against a world-class opposition, despite having only been trained
with a limited action set. Surely, the main reason for its success is inter-agent
communication, as the no-communication algorithm only manages to achieve a
success rate of 5% in the same number of episodes.

5 Related Work

Half field offense is a natural extension of the keepaway task introduced by Stone
et al. [I1]. It is a much harder problem to learn than keepaway, and we have
shown that inter-agent communication can be effectively coupled with the algo-
rithm that has so far been successful for keepway [I1] to boost its performance
significantly. Geipel [3] and Maclin et al. [6] have in the past applied reinforce-
ment learning techniques to goal-shooting scenarios, but these have typically
involved fewer players and a smaller field than 4v5 half field offense. The Brain-
stormers RoboCup team [89] has consistently applied reinforcement learning
techniques to train different aspects of team behavior. They use reinforcement
learning to learn high-level skills called “moves” in terms of low-level actions,
and use these as primitives for learning high-level tactical behavior for attack-
ing players [9]. For function approximation, they use neural networks, inputs to
which are low-level state information. They also formulate simulated soccer as
a Multi-agent Markov Decision Process (MMDP) [§] and discuss different mod-
els of agents based on their action sets and coordination. While their focus has
been to develop a general architecture for learning team behavior, we, in this
paper, address the specific problem of learning high-level behavior by the offense
player with ball possession. For this reason, we use predefined high-level skills
like Passk and Shoot. Since we mainly use CMACs, which cannot represent
arbitrary non-linear functions, we design our state features to be at a high level
of abstraction, in order to facilitate better generalization.

Multiagent reinforcement learning with inter-agent communication has been
studied in the past. Whitehead [I3] describes a Learn-by- Watching method
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similar to ours and obtains theoretical bounds for the speedup in learning by mul-
tiple Q-learning agents. Tan [I2] empirically evaluates the effect of inter-agent
communication on a much simpler problem than ours, a predator-prey scenario
within a 10x10 discrete grid. The predators can cooperate by sharing their sen-
sations, learning episodes, and whole policies. Of these, sharing episodes in-
volves communicating extended series of state-action-reward messages between
the predators, and has a direct correspondence with the method we have em-
ployed. Again, communication is is shown to be beneficial to learning. Mataric
[7] uses reinforcement learning to train real robots on a box-pushing task. Com-
munication is mainly used to share their sensations in order to form a complete
state of the world, unlike in our algorithm, where communication directly im-
pacts updates made to the agents’ action-value functions.

6 Conclusions and Future Work

In this paper, we have introduced half field offense, a novel subtask of RoboCup
simulated soccer. It extends an earlier benchmark problem for reinforcement
learning, keepaway [I1]. Half field offense presents significant challenges as a
multiagent reinforcement learning problem. We have analyzed the learning algo-
rithm that has been most successful for keepaway [11]], and scaled it to meet the
demands of our more complex task. The main feature of our new algorithm is the
use of inter-agent communication, which allows for more frequent and reliable
learning updates. We have presented empirical results suggesting that the use
of inter-agent communication can increase the learning rate and the resulting
performance significantly.

Learning half field offense is a step further in the ongoing challenge to learn com-
plete team behavior for RoboCup simulated soccer. In this work we have only fo-
cused on learning the behavior of the offense player who has possession of the ball.
It is in principle possible to pose as learning problems the behaviors of the other
offense players, as well as the defense team. Also, high-level skills like Passk and
Shoot, which we have directly used for learning here, may themselves be learned in
terms of low-level actions like turn and kick. These are avenues for future research.

Acknowledgements

This research was supported in part by NSF CISE Research Infrastructure Grant
ETA-0303609, NSF CAREER award 11S-0237699, and DARPA grant HR0011-
04-1-0035.

References

1. Bradtke, S.J., Duff, M.O.: Reinforcement learning methods for continuous-time
Markov decision problems. In: Advances in Neural Information Processing Systems
7 (NIPS-94) (1995)



10.

11.

12.

13.

Half Field Offense in RoboCup Soccer 85

. Chen, M., Foroughi, E., Heintz, F., Huang, Z., Kapetanakis, S., Kostiadis, K.,

Kummeneje, J., Noda, 1., Obst, O., Riley, P., Steffens, T., Wang, Y., Yin, X.: Users
Manual: RoboCup Soccer Server — for Soccer Server Version 7.07 and Later. The
RoboCup Federation (August 2002)

. Geipel, M.M.: Informed and advice-taking reinforcement learning for simulated

robot soccer. Master’s thesis, Fakultat fiir Informatik, Forschungs- und Lehreinheit
Informatik IX, Technische Universitat Miinchen (2005)

. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E., Matsubara, H.:

RoboCup: A challenge problem for AI. AT Magazine 18(1), 73-85 (1997)

. Kok, J.R., Vlassis, N., Groen, F.C.A.: UvA Trilearn 2003 team description. In:

Proceedings CD RoboCup 2003 (2003)

. Maclin, R., Shavlik, J., Torrey, L., Walker, T., Wild, E.: Giving advice about

preferred actions to reinforcement learners via knowledge-based kernel regression.
In: Proceedings of the Twentieth National Conference on Artificial Intelligence
(AAAI-05) (2005)

. Matari¢, M.J.: Using communication to reduce locality in distributed multi-agent

learning. Journal of Experimental and Theoretical Artificial Intelligence 10(3), 357—
369 (1998)

. Merke, A., Riedmiller, M.: Karlsruhe Brainstormers — a reinforcement learning

approach to robotic soccer II. In: Birk, A., Coradeschi, S., Tadokoro, S. (eds.)
RoboCup 2001. LNCS (LNATI), vol. 2377, Springer, Heidelberg (2002)

. Riedmiller, M., Merke, A., Meier, D., Hoffmann, A., Sinner, A., Thate, O.,

Ehrmann, R.: Karlsruhe Brainstormers — a reinforcement learning approach to
robotic soccer. In: Stone, P., Balch, T., Kraetzschmar, G.K. (eds.) RoboCup 2000.
LNCS (LNAI), vol. 2019, Springer, Heidelberg (2001)

Stone, P., Kuhlmann, G., Taylor, M.E., Liu, Y.: Keepaway soccer: From machine
learning testbed to benchmark. In: Bredenfeld, A.; Jacoff, A., Noda, I., Takahashi,
Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, Springer, Heidelberg (2006)
Stone, P., Sutton, R.S., Kuhlmann, G.: Reinforcement learning for RoboCup-soccer
keepaway. Adaptive Behavior 13(3), 165-188 (2005)

Tan, M.: Multi-agent reinforcement learning: Independent vs. cooperative agents.
In: Proceedings of the Tenth International Conference on Machine Learning
(ICML-93), pp. 330-337 (1993)

Whitehead, S.D.: A complexity analysis of cooperative mechanisms in reinforce-
ment learning. In: Proceedings of the Ninth National Conference on Artificial In-
telligence (AAAI-91), pp. 607-613 (1991)



Autonomous Learning of Ball Trapping in the
Four-Legged Robot League

Hayato Kobayashi', Tsugutoyo OsakiZ, Eric Williams?, Akira Ishino?,
and Ayumi Shinohara?

! Department of Informatics, Kyushu University, Japan
2 Graduate School of Information Science, Tohoku University, Japan
3 Office for Information of University Evaluation, Kyushu University, Japan
{h—koba@i ,ishino.uoc@mbox.nc}.kyushu-u.ac.jp
{osaki, ayumi}@shino.ecei.tohoku.ac.jp,eaw@ucla.edu

Abstract. This paper describes an autonomous learning method used with real
robots in order to acquire ball trapping skills in the four-legged robot league.
These skills involve stopping and controlling an oncoming ball and are essential
to passing a ball to each other. We first prepare some training equipment and
then experiment with only one robot. The robot can use our method to acquire
these necessary skills on its own, much in the same way that a human practicing
against a wall can learn the proper movements and actions of soccer on his/her
own. We also experiment with two robots, and our findings suggest that robots
communicating between each other can learn more rapidly than those without
any communication.

1 Introduction

For robots to function in the real world, they need the ability to adapt to unknown
environments. These are known as learning abilities, and they are essential in taking
the next step in RoboCup. As it stands now, it is humans, not the robots themselves,
that hectically attempt to adjust programs at the competition site, especially in the real
robot leagues. But what if we look at RoboCup in a light similar to that of the World
Cup? In the World Cup, soccer players can practice and confirm certain conditions on
the field before each game. In making this comparison, should robots also be able to
adjust to new competition and environments on their own? This ability for something
to learn on its own is known as autonomous learning and is regarded as important.

In this paper, we force robots to autonomously learn the basic skills needed for pass-
ing to each other in the four-legged robot league. Passing (including receiving a passed
ball) is one of the most important skills in soccer and is actively studied in the simu-
lation league. For several years, many studies [1J2] have used the benchmark of good
passing abilities, known as “keepaway soccer”, in order to learn how a robot can best
learn passing. However, it is difficult for robots to even control the ball in the real robot
leagues. In addition, robots in the four-legged robot league have neither a wide view,
high-performance camera, nor laser range finders. As is well known, they are not made
for playing soccer. Quadrupedal locomotion alone can be a difficult enough challenge.
Therefore, they must improve upon basic skills in order to solve these difficulties, all

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 8 2007.
(© Springer-Verlag Berlin Heidelberg 2007
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before pass-work learning can begin. We believe that basic skills should be learned by
a real robot, because of the necessity of interaction with a real environment. Also, basic
skills should be autonomously learned because changes to an environment will always
consume much of people’s time and energy if the robot cannot adjust on its own.

There have been many studies conducted on the autonomous learning of quadrupedal
locomotion, which is the most basic skill for every movement. These studies began
as far back as the beginning of this research field and continue still today [3/4/516].
However, the skills used to control the ball are often coded by hand and have not been
studied as much as gait learning. There also have been several similar works related
to how robots can learn the skills needed to control the ball. Chernova and Veloso [7]
studied the learning of ball kicking skills, which is an important skill directly related
to scoring points. Zagal and Solar [8]] studied the learning of kicking skills as well, but
in a simulated environment. Although it was very interesting in the sense that robots
could not have been damaged, the simulator probably could not produce complete, real
environments. Fidelman and Stone [9] studied the learning of ball acquisition skills,
which are unique to the four-legged robot league. They presented an elegant method
for autonomously learning these unique, advanced skills. However, there has thus far
been no study that has tried to autonomously learn the stopping and controlling of an
oncoming ball, i.e. trapping the ball. In this paper, we present an autonomous learning
method for ball trapping skills. Our method will enhance the game by way of learned
pass-work in the four-legged robot league.

The remainder of this paper is organized as follows. In Section[2] we begin by spec-
ifying the actual, physical actions used in trapping the ball. Then we simplify the learn-
ing process for ball trapping down to a one-dimensional model, and finally, we illustrate
and describe our training equipment used by the robots while training in solitude. In
Section 3] we formalize a learning problem and show our autonomous learning algo-
rithm for it. In Section ] we experiment using one robot, two robots, and two robots
with communication. Finally, Section [ presents our conclusions.

2 Preliminary

2.1 Ball Trapping

Before any learning can begin, we first have to accurately create the appropriate physical
motions to be used in trapping a ball accurately before the learning process. The picture
in Fig. [[l (a) shows the robot’s pose at the end of the motion. The robot begins by
spreading out its front legs to form a wide area with which to receive the ball. Then, the
robot moves its body back a bit in order to absorb the impact caused by the collision
of the body with the ball and to reduce the rebound speed. Finally, the robot lowers its
head and neck, assuming that the ball has passed below the chin, in order to keep the
ball from bouncing off of its chest and away from its control. Since the camera of the
robot is equipped on the tip of the nose, it actually cannot watch the ball below the chin.
This series of motions is treated as single motion, so we can neither change the speed
of the motion, nor interrupt it, once it starts. It takes 300 ms (= 60 steps x 5 ms) to
perform. As opposed to grabbing or grasping the ball, this trapping motion is instead
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(a) trapping motion (b) pre-judgment motion

Fig. 1. The motion to actually trap the ball (a), and the motion to judge if it succeeded in trapping
the ball (b)

thought of as keeping the ball, similar to how a human player would keep control of the
ball under his/her foot.

The judgment of whether the trap succeeded or failed is critical for autonomous
learning. Since the ball is invisible to the robot’s camera when it’s close to the robot’s
body, we utilized the chest PSD sensor. However, the robot cannot make an accurate
judgment when the ball is not directly in front of their chest or after it takes a droopy
posture. Therefore, we utilized a “pre-judgment motion”, which takes 50 ms (= 10 steps
x 5 ms), immediately after the trapping motion is completed, as shown in Fig. [l (b).
In this motion, the robot fixes the ball between its chin and chest and then lifts its body
up slightly so that the ball will be located immediately in front of the chest PSD sensor,
assuming the ball was correctly trapped to begin with.

2.2 One-Dimensional Model of Ball Trapping

Acquiring ball trapping skills in solitude is usually difficult, because robots must be
able to search for a ball that has bounced off of them and away, then move the ball to
an initial position, and finally kick the ball again. This requires sophisticated, low-level
programs, such as an accurate, self-localization system; a strong shot that is as straight
as possible; and a locomotion which utilizes the odometer correctly. In order to avoid
additional complications, we simplify the learning process a bit more.

First, we assume that the passer and the receiver face each other when the passer passes
the ball to the receiver, as shown Fig.[2l The receiver tries to face the passer while watch-
ing the ball that the passer is holding. At the same time, the passer tries to face the receiver
while looking at the red or blue chest uniform of the receiver. This is not particularly hard
to do, and any team should be able to accomplish it. As a result, the robots will face each
other in a nearly straight line. The passer need only shoot the ball forward so that the
ball can go to the receiver’s chest. The receiver, in turn, has only to learn a technique for
trapping the oncoming ball without it bouncing away from its body.

Ideally, we would like to treat our problem, which is to learn ball trapping skills,
one-dimensionally. In actuality though, the problem cannot be fully viewed in one-
dimension, because either the robots might not precisely face each other in a straight
line, or because the ball might curve a little due to the grain of the grass. We will discuss
this problem in Section 3
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The passer is watching
the chest of the receiver.

The receiver is watching
the ball.

Fig. 2. One-dimensional model of ball trapping problem

Fig. 3. Training equipment for learning ball trapping skills

2.3 Training Equipment

The equipment we prepared for learning ball trapping skills in one-dimensional is fairly
simple. As shown in Fig.[3] the equipment has rails of width nearly equal to an AIBO’s
shoulder-width. These rails are made of thin rope or string, and their purpose is to
restrict the movement of the ball, as well as the quadrupedal locomotion of the robot, to
one-dimension. Aside from these rails, the robots use a slope placed at the edge of the
rail when learning in solitude. They kick the ball toward the slope, and they can learn
trapping skills by trying to trap the ball after it returns from having ascended the slope.

3 Learning Method

Fidelman and Stone [9] showed that the robot can learn to grasp a ball. They employed
three algorithms: hill climbing, policy gradient, and amoeba. We cannot, however, di-
rectly apply these algorithms to our own problem because the ball is moving fast in our
case. It may be necessary for us to set up an equation which incorporates the friction of
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the rolling ball and the time at which the trapping motion occurs if we want to view our
problem in a manner similar to these parametric learning algorithms. In this paper, we
apply reinforcement learning algorithms [[10]]. Since reinforcement learning requires no
background knowledge, all we need to do is give the robots the appropriate reward for
a successful trapping so that they can successfully learn these skills.

The reinforcement learning process is described as a sequence of states, actions, and
rewards

S0,A0,T1, S1,A1,72, «« 3 Si, Ay Ti41, Si+1y Qj415Ti+425 -« -y

which is a reflection of the interaction between the learner and the environment. Here,
sy € S is a state given from the environment to the learner at time ¢ (¢ > 0), and
a; € A(st) is an action taken by the learner for the state s;, where A(s;) is the set of
actions available in state s;. One time step later, the learner receives a numerical reward
r¢++1 € R, in part as a consequence of its action, and finds itself in a new state s¢4 1.

Our interval for decision making is 40 ms and is in synchronization with the frame
rate of the CCD-camera. In the sequence, we treat each 40 ms as a single time step,
ie.t=0,1,2,--- means 0 ms, 40 ms, 80 ms, - - -, respectively. In our experiments, the
states essentially consist of the information on the moving ball: relative position to the
robot, moving direction, and the speed, which are estimated by our vision system. Since
we have restricted the problem to one-dimensional movement in Section the state
can be represented by a pair of scalar variables x and dx. The variable x refers to the
distance from the robot to the ball estimated by our vision system, and dx simply refers
to the difference between the current « and the previous = of one time step before. We
limited the range of these state variables such that z is in [ 0 mm, 2000 mm ], and dx
in [ —200 mm, 200 mm ]. This is because if a value of x is greater than 2000, it will
be unreliable, and if the absolute value of dz is greater than 200, it must be invalid in
games (e.g. dx of 200 mm means 5000 mm/s).

Although the robots have to do a large variety of actions to perform fully-autonomous
learning by nature, as far as our learning method is concerned, we can focus on the fol-
lowing two macro-actions. One is trap, which initiates the trapping motions described
in Section 2.1l The robot’s motion cannot be interrupted for 350 ms until the trapping
motion finishes. The other is ready, which moves its head to watch the ball and prepar-
ing to trap. Each reward given to the robot is simply one of {+1, 0, —1}, depending on
whether it successfully traps the ball or not. The robot can make a judgment of that suc-
cess by itself using its chest PSD sensor. The reward is 1 if the ¢rap action succeeded,
meaning the ball was correctly captured between the chin and the chest after the trap
action. A reward of —1 is given either if the ¢rap action failed, or if the ball touches the
PSD sensor before the trap action is performed. Otherwise, the reward is 0. We define
the period from kicking the ball to receiving any reward other than 0 as one episode.
For example, if the current episode ends and the robot moves to a random position with
the ball, then the next episode begins when the robot kicks the ball forward.

In summary, the concrete objective for the learner is to acquire the correct timing
for when to initiate the trapping motion depending on the speed of the ball by trial
and error. Fig. @ shows the autonomous learning algorithm used in our research. It
is a combination of the episodic SMDP Sarsa()\) with the linear tile-coding function
approximation (also known as CMAC). This is one of the most popular reinforcement
learning algorithms, as seen by its use in the keepaway learner [1]].
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while still not acquiring trapping skills do

go get the ball and move to a random position with the ball;
kick the ball toward the slope;
s «— a state observed in the real environment;
forall « € A(s) do
F, < setof tiles for a, s;
Qa — Z—L‘GFQ 0(1);
end
last Action < an optimal action selected by e-greedy;
e 0
forall i € Figstaction do e(3) «— 1;
reward < 0;
while reward = 0 do
do lastAction;
if last Action = trap then
if the ball is held then reward «— 1;
else reward «— —1;
else
if collision occurs then reward < —1;
else reward < 0;
end
6 «— reward — Qla.stAction;
s «— a state observed in the real environment;
forall a € A(s) do
F, < setof tiles for a, s;
Qa — Xier, 0(1);
end
last Action < an optimal action selected by e-greedy;
6— 06 + Qla.stAction;
b — 0+ ade;
QlastAction — ZieFlastAction 9(1),
€ — \e;
if player acting in state s then
forall a € A(s) s.t. a # last Action do
forall ;: € F, do e(i) < 0;

end
forall i € Fiastaction do e(i) «— 1;
end
end
6_:— reward — QiastActions

0 — 0 +ase;

42 end

Fig. 4. Algorithm of our autonomous learning (based on keepaway learner [1])
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Here, F, is a feature set specified by tile coding with each action a. In this paper,
we use two-dimensional tiling and set the number of tilings to 32 and the number of
tiles to about 5290. We also set the tile width of = to 20 and the tile width of dx to
50. The vector @ is a primary memory vector, also known as a learning weight vector,
and @, is a Q-value, which is represented by the sum of @ for each value of F,. The
policy e-greedy selects a random action with probability €, and otherwise, it selects the
action with the maximum -value. We set ¢ = 0.01. Moreover, € is an eligibility trace,
which stores the credit that past action choices should receive for current rewards. A is
a trace-decay parameter for the eligibility trace, and we simply set A = 0.0. We set the
learning rate parameter o = 0.5 and the discount rate parameter v = 1.0.

4 Experiments

4.1 Training Using One Robot

We first experimented by using one robot along with the training equipment that was
illustrated in Section[2.3l The robot could train in solitude and learn ball trapping skills
on its own.

Fig.[5(a)|shows the trapping success rate, which is how many times the robot success-
fully trapped the ball in 10 episodes. It reached about 80% or more after 250 episodes,
which took about 60 minutes using 2 batteries. Even if robots continue to learn, the suc-
cess rate is unlikely to ever reach 100%. This is because the trapping motions, which
force the robot to move slightly backwards in order to try and reduce the bounce effect,
can hardly be expected to capture a slow, oncoming ball that stops just in front of it.

Fig.l6lshows the result of each episode by plotting a circle if it was successful, a cross
if it failed in spite of trying to trap, and a triangle if it failed because of doing nothing.
From the 1st episode to the 50th episode, the robots simply tried to trap the ball while
it was moving with various velocities and at various distances. They made the mistake
of trying to trap the ball even when it was moving away (dx > 0), because we did not
give them any background knowledge, and we only gave them two variables:  and dz.
From the 51st episode to the 100th episode, they learned that they could not trap the
ball when it was far away (z > 450) or when it was moving away (dz > 0). From the
101st episode to 150th episode, they began to learn the correct timing for a successful
trapping, and from the 151st episode to 200th episode, they almost completely learned
the correct timing.

4.2 Training Using Two Robots

In the case of training using two robots, we simply replace the slope in the training
equipment with another robot. We call the original robot the Active Learner (AL) and
the one which replaced with slope the Passive Learner (PL). AL is the same as in case
of training using one robot. On the other hand, PL differs from AL in that PL. does not
search out nor approach the ball if the trapping failed. Only AL does so. Other than this
difference, PL and AL are basically the same.

We experimented for 60 minutes by using both AL and PL that had learned in soli-
tude for 60 minutes using the training equipment. Theoretically, we would expect them
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Fig. 5. Results of three experiments

to succeed in trapping the ball after only a short time. However, by trying to trap the ball
while in obviously incorrect states, they actually failed repeatedly. The reason for this
was because the estimation of the ball’s distance to the robot-in-waiting became unreli-
able, as shown in Fig.[Zl This, in turn, was due to the other robot holding the ball below
its head before kicking it forward to its partner. Such problems can occur during the
actual games, especially in poor lighting conditions, when teammates and adversaries
are holding the ball.

Although we are of course eager to overcome this problem, we should not force a
solution that discourages the robots from holding the ball first, because ball holding
skills help them to properly judge whether or not they can successfully trap the ball. It
also serves another purpose, which is to give the robots a nicer, straighter kick. More-
over, there is no way we can absolutely keep the adversary robots from holding the ball.
Although there are several solutions (e.g. measuring the distance to the ball by using
green pixels or sending the training partner to get the ball), we simply continued to
make the robots learn without having made any changes. This was done in an attempt
to allow the robots to gain experience related to irrelevant states. In fact, it turns out
they should never try to trap the ball when z > 1000 and dz > 200. Moreover, they
should probably not try to trap the ball when = > 1000 and dx < —200.

Fig. [5(b)] shows the results of training using two robots. They began to learn that
they should probably not try to trap the ball while in irrelevant states, as this was a
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Fig.7. The left figure shows how our vision system recognizes a ball when the other robot holds
it. The ball looks to be smaller than it is, because a part of it is hidden by the partner and its
shadow, resulting in an estimated distance to the ball that is further away than it really is. The
right figure plots the estimated values of the both the distance x and the velocity dx, when the
robot kicked the ball to its partner, the partner trapped it, and then the partner kicked it back.
When the training partner was holding the ball under its head though (the center of the graph),
we can see the robot obviously miscalculated ball’s true distance.
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likely indicator that the training partner was in possession of the ball. This was learned
quite slowly though, because the AL can only learn successful trapping skills when PL
itself succeeds. If PL fails, AL’s episode is not incremented. Even if the player nearest
the ball can go get it, the problem is not resolved because then they just learn slowly in
the end, though simultaneously.

4.3 Training Using Two Robots with Communication

Training using two robots, like in the previous section, unfortunately takes a long time
to complete. In this section, we will look at accelerating their learning by allowing them
to communicate with each other.

First, we made the robots share their experiences with each other, as in [L1]. How-
ever, if they continuously communicated with each other, they could not do anything
else, because the excessive processing would interrupt the input of proper states from
the real-time environment. Therefore, we made the robots exchange their experiences,
which included what action a, they performed, the values of the state variables z; and
dxy, and the reward ry4; at time ¢, but this was done only when the};received a reward
other than 0, i.e. the end of each episode. They then updated their 6 values using the
experiences they received from their partner. As far as the learning achievements for
our research is concerned, they can successfully learn enough using this method.

We also experimented in the same manner as Section [4.2] using two robots which
can communicate with each other. Fig. shows the results of this experiment. They
could rapidly adapt to unforeseen problems and acquire practical trapping skills. Since
PL learned its skills before AL learned, it could relay to AL the helpful experience,
effectively giving AL about a 50% learned status from the beginning. These results in-
dicate that the robots with communication learned more quickly than the robots without
communication.

4.4 Discussion

The three experiments above showed that robots could efficiently learn ball trapping
skills and that the goal of pass-work by robots can be achieved in one-dimension. In
order to briefly compare those experiments, Fig. [8 presents a few graphs, where the z-
axis is the elapsed time and the y-axis is the total number of successes so far. Fig. [8(a)]
and Fig.[8(b)|shows the learning process with and without communication, respectively,
for 60 minutes after pre-learning for 60 minutes by using two robots from the beginning.
Fig. and Fig. shows the learning process with and without communication,
respectively, after pre-learning for 60 minutes in solitude.

Comparing (a) and (c) with (b) and (d) has us conclude that allowing AL and PL
to communicate with each other will lead to more rapid learning compared to no com-
munication. Comparing (a) and (b) with (c) and (d), the result is different from our
expectation. Actually, the untrained robots learned as much as or better than trained
robots for 60 minutes. The trained robots seems to be over-fitted for slow-moving balls,
because the ball was slower in the case of one robot learning than in the case of two
due to friction on the slope. However, it is still good strategy to train robots in solitude
at the beginning, because experiments that solely use two robots can make things more



96 H. Kobayashi et al.

140

5
&

53
S

8

total number of successful traping

\
|
‘
‘
\
|
|
|
|
|
|
|
|
|
‘

total number of successful traping

20 50 0 10 20 20 50 0

30 30
minutes minutes

(a) without communication after pre-learning (b) with communication after pre-learning by
by using two robots using two robots

140

8
P ® s I =
3 3 3 S &

total number of successful traping

total number of successful traping

10 20 30 20 50 0 10 20 30 20 50 0
minutes minutes

(c) without communication after pre-learning (d) with communication after pre-learning in
in solitude solitude

Fig. 8. Total numbers of successful trappings with respect to the elapsed time

complicated. In addition robots should also learn the skills for a relatively slow-moving
ball anyway.

5 Conclusions and Future Work

In this paper, we presented an autonomous learning method for use in acquiring ball
trapping skills in the four-legged robot league. Robots could learn and acquire the skills
without human intervention, except for replacing discharged batteries. They also suc-
cessfully passed and trapped a ball with another robot and learn more quickly when
exchanging experiences with each other. All movies of the earlier and later phases of
our experiments are available on-line (http://www.jollypochie.org/papers/).

We also tried finding out whether or not robots can trap the ball without the use of the
training equipment (rails for ball guidance). We rolled the ball to the robot by hand, and
the robot could successfully trap it, even if the ball moved a few centimeters away from
the center of its chest. At the same time though, the ball would often bounce off of it,
or the robot did nothing if the ball happened to veer significantly away from the center
point. In the future, we plan to extend trapping skills into two-dimensions using layered
learning [12]], e.g. we will try to introduce three actions of staying, moving to the left,
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and moving to the right into higher-level layers. Since two-dimensions are essentially
the same as one-dimension in this case, it may be possible to simply use a wide slope.
Good two-dimensional trapping skills can directly make keepers or goalies stronger. In
order to overcome the new problems associated with a better goalie on the opposing
team, robots may have to rely on learning better passing skills, as well as learning even
better ball trapping skills. A quick ball is likely to move straightforward with stability,
but robots as they are now can hardly trap a quick ball. Therefore, robots must learn
skills in shooting as well as how to move the ball with proper velocity. It would be most
effective if they learn these skills alongside trapping skills. This is a path that can lead
to achieving successful keepaway soccer [1] techniques for use in the four-legged robot
league.
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Abstract. A fast gait is an essential component of any successful team
in the RoboCup 4-legged league. However, quickly moving quadruped
robots, including those with learned gaits, often move in such a way so
as to cause unsteady camera motions which degrade the robot’s visual
capabilities. This paper presents an implementation of the policy gradi-
ent machine learning algorithm that searches for a parameterized walk
while optimizing for both speed and stability. To the best of our knowl-
edge, previous learned walks have all focused exclusively on speed. Our
method is fully implemented and tested on the Sony Aibo ERS-7 robot
platform. The resulting gait is reasonably fast and considerably more
stable compared to our previous fast gaits. We demonstrate that this
stability can significantly improve the robot’s visual object recognition.

1 Introduction

In the robot soccer domain, a fast gait is an important component of a successful
team. As a result a significant amount of recent research has been devoted to
the problem of developing fast legged locomotion for Sony Aibo ERS-7 robots,
leading to considerable improvement in gait speeds [TI2/31415].

However, learned gaits optimized solely for speed tend to produce body mo-
tions that cause the camera to shake. Such unsteady gaits lead to camera images
in which objects are rotated, translated, or blurred compared to camera images
from a steady gait. These images make it difficult for the robot to identify ob-
jects. For example a pink over yellow beacon is usually identified as a pink blob
over a yellow blob, however the pink does not appear above the yellow when the
image is rotated. Thus, unstable gaits degrade a robot’s object recognition and
localization abilities which can cause problems during a game.

This paper proposes optimizing both gait speed and stability simultaneously,
using a multi-criteria objective function. In addition, experiments are described
that explore the idea of using active head movements to compensate for uneven
body motion.

The remainder of this paper is organized as follows. Section 2] presents existing
machine learning techniques that have been applied to optimize gait parameters
for speed. Section [3] describes the parameterized Aibo gait, head motions, and
the policy gradient algorithm used to train new gaits. Section [ describes our
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© Springer-Verlag Berlin Heidelberg 2007
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training experiments in detail and compares two different methods to offset
unstable body movements. In Section [l applications of stable gaits and future
work are outlined, and Section [6] concludes.

2 Related Work

When generating quadrupedal robot gaits, the machine learning (ML) approach
offers several advantages over hand-tuning of parameters. Using learning can
reduce the amount of time required to find a fast gait and can be easily applied
to different surfaces and different robots. ML techniques also do not suffer from
the bias a human engineer might have when hand-tuning a gait. For example,
there is evidence that when walking the actual joint angles of the Aibo differ
considerably from requested joint angles, because of the force exerted by the
ground [6]. ML techniques may be less susceptible to this problem than humans
who often hand-tune gaits based on the locus of points the foot ideally moves
through, as opposed to the actual locus the foot moves through.

Applying ML techniques to directly control an Aibo by manipulating joint
angles is a difficult task. Evaluations on physical robots are noisy and take a long
time compared to evaluation in simulation. Moreover, some of the intermediate
exploratory gaits that ML algorithms generate may cause physical damage to
the robot. The Aibo also does not have sensors that can be used during training
that can provide closed loop feedback to the controller.

Nonetheless, reinforcement learning (RL) has been used to learn several sim-
ilar control problems, not limited to Aibo locomotion. RL has been used to
control a model helicopter than can hover while inverted in air [7]. Other ML
techniques have been applied to directly control simulated bipedal robots: in [§]
a central pattern generator was used for rhythm generation in the hips and knees
of a simulated bipedal robot, and a dynamics controller was used to control the
ankles of robot.

Similarly, previous work has shown that ML algorithms can excel at gen-
erating fast gaits for the Aibo by taking advantage of algorithms to optimize
parameterized gaits for desirable characteristics. The earliest attempt to use
ML algorithms to learn a gait used a genetic algorithm to optimize parameters
describing joint velocities and body positions [9].

More recent approaches attempt to learn parameters for gaits that move the
Aibo’s four feet through a locus of points. In previous work, the policy gradient
algorithm has been used, with a half-elliptical locus, to learn an Aibo gait that
is optimized for speed [2I3]. Powell’s method of multidimensional minimization
has been used to optimize a parameterized gait with a rectangular locus [4].
A genetic algorithm that used interpolation and extrapolation for the crossover
step was used to optimize a parameterized gait with a half-elliptical locus [IJ.
Odometry was used in order to evolve an omni-directional parameterized gait
using a genetic algorithm by training the robot to move forward with its target
orientation constantly changing [10]. In [5], a genetic algorithm and an acceler-
ation model of the Aibo body was used to optimize a parameterized Aibo gait.
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One of the fastest known forward Aibo gaits, which has a speed of 451 mm/s, was
learned using a genetic algorithm and an overhead camera to quickly determine
walk speeds [I1].

To the best of our knowledge, all of these approaches have optimized ex-
clusively for walk speed. This paper is based on the observation that the re-
sulting gaits are often unstable, thus degrading the robot’s visual capabilities.
We demonstrate that this problem can be solved by optimizing the gait for both
speed and stability by incorporating stability information into the objective func-
tion. This paper applies two different approaches to learning a stable walk. In
the first approach, the objective function incorporates stability information. In
the second approach, compensatory head movements are performed to counter
the unstable body motions of a fast gait.

3 Background

The Sony Aibo ERS-7 robot is a quadruped with three degrees of freedom in
each leg [12]. A controller must specify the set of twelve joint angles at each
instant in order to specify a gait. Learning a controller for a fast gait by directly
manipulating joint angles is a difficult non-linear control problem. One solution
to this problem is parameterizing a gait by specifying the loci of points that
the Aibo’s feet moves through. Doing so can constrain the search space both
to make it easier to search and to avoid gaits that can damage the robot. This
paper uses a modified version of a half-elliptical parameterized gait modeled
after that presented by Stone et al. [I3]. Four additional parameters were added
to this parameterization that govern compensatory head movements designed to
improve head stability.

3.1 Parameterized Motion

The half-elliptical locus used by the fast gait is shown in Figure [Il Each foot

moves through a half-elliptical locus with each pair of diagonally opposite legs

in phase with each other and out of phase with the other two legs (a trot gait).
The four parameters that define the half ellipse are:

1. The length of the ellipse
2. The height of the ellipse
3. The position of the ellipse on the x axis
4. The position of the ellipse on the y axis

The symmetry of the Aibo is used to reduce the number of parameters that
have to be optimized. The length of the ellipse is the same for all four legs
to ensure a straight gait. The left and right sides of the body use the same
parameters to describe the locus of the gait. The height, x position and y position
of the elliptical loci of the front and back two legs use different parameters.

In addition to the leg movements, the head was allowed to make elliptical
compensatory movements in order to cancel the effect of body motions that
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Fig. 1. The half-elliptical locus of each of the Aibo’s feet is defined by length, height
and position in the x-y plane

cause the camera to shake. Figure [2 depicts the two types of head movement
that were used, which have the overall effect of moving the head in an ellipse.
Two parameters were used to specify the head tilt angle limit and head tilt
increment at each timestep. Similarly, two parameters describe the head pan
motions. Initial values for these parameters were determined by testing just a
few sets of values. We leave it to future work to determine how big of an effect
these initial values have.
The 15 parameters that completely define the Aibo’s movements are:

— The front locus: height,  position and y position (3 parameters)

— The rear locus: height, x position and y position (3 parameters)

— Locus length (same for all loci)

— Front body height

— Rear body height

— Time taken for each foot to move through locus

— The fraction of time each foot spends on the ground

— Head tilt limit and increment (2 parameters, with a limit from —10° to 10°)
— Head pan limit and increment (2 parameters, with a limit from —10° to 10°)

3.2 Policy Gradient Algorithm

This paper uses a policy gradient algorithm modeled after that presented by
Kohl and Stone [2] to optimize the Aibo gait in the continuous 15-dimensional
parameter space. The objective function F' to be optimized is a function of the
gait speed, acceleration and stability, and is described in detail in Section [4l
The policy gradient algorithm uses an initial parameter vector m = {6y, ...,0n5}
and estimates the partial derivative of the objective function F' with respect
to each parameter. This is done by evaluating ¢t randomly generated policies
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Fig.2. The Aibo can combine pan and tilt head movements (shown as solid lines)
to move the head through an elliptical locus (shown as a dotted line). The center of
ellipse is determine by the landmark the Aibo is looking at. The locus is defined by
four variables: tilt limit, tilt increment, pan limit, and pan increment.

{R1,...R:} near m, such that each R; = {01 +61,...,0n +6n} and 6; is randomly
chosen to be either +¢;,0, or — €;, where ¢; is a small fixed value relative to 6;.

After evaluating each neighboring policy R; on the objective function F', each
dimension of every R; is grouped into one of three categories to estimate an
average gradient for each dimension:

— Avg_. y if the nth parameter of R; is 0,,—,
— Avgyo.n if the nth parameter of R; is 6,40
— Avgiep if the nth parameter of R; is 0,4,

These three averages enable the estimation of the benefit of altering the nth
parameter by +e€,,0, and —¢,. An adjustment vector A of size n is calculated
where A, €

— 01if Avgion > Avgycnand Avgion > Avg_cp
— Avgien — Avg_ p otherwise

A is normalized and then multiplied by a scalar step size = 2 to offset small
¢;. Finally A is added to 7, and the process is repeated for the next iteration.
Figure [ describes the pseudocode for the policy gradient algorithm.

4 Empirical Results

The policy gradient algorithm described above was implemented and run on the
Aibo as seen in Figure[dl In order to evaluate a particular gait parameterization,
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7w «— Initial Policy
while !done do
{Ri1, Rz, ..., R:} =t random perturbations of 7
evaluate( {R1, R2,..., Rt} )
for n=1to N do
Avgyen < average score for all R; that have
a positive perturbation in dimension n
Avgyo,n «— average score for all R; that have a zero
perturbation in dimension n
Avg_. n < average score for all R; that have a
negative perturbation in dimension n
if Avgion > Avgien and Avgion > Avg—en then
A, <0
else
Ap — AvGien — AVG—cn
end if
end for
A — |ﬁ‘ * 1)
Te—m+ A
end while

Fig. 3. During each iteration ¢ policies are sampled around 7 to estimate the gradient,
then 7 is moved by 7 in the direction that increases the objective function the greatest

the Aibo was instructed to record various data while repeatedly walking back
and forth between two landmarks.

In order to generate a gait that was both stable and fast, the learning algo-
rithm had to be given an appropriate objective function. In previous work, the
objective function was focused primarily on generating a fast gait. In this paper,
since stability is desired, the objective function was modified. Figure [l depicts
the images a robot would see with a perfectly stable gait and with an unsteady
gait. The image taken with the unstable gait is rotated and translated compared
to the image taken with a stable gaitE

In order to find a stable gait, the original objective function (which was de-
signed to optimize only for speed) was modified to include stability information.
This modified objective function consists of four components:

1. M; - The normalized time taken by the robot to walk between the two
landmarks.

2. M, - The normalized standard deviation (averaged over multiple trials) of
the Aibo’s three accelerometers

3. My - The normalized distance of the centroid of landmark from the center
of an image.

4. My - The normalized difference between the slope of landmark and the ideal
slope (90°)

! Videos of a fast gait and a stable gait from the perspective of the robot can be found
at http://www.cs.utexas.edu/~AustinVilla/7p=research/learned_walk
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Fig.4. The training environment during the gait parameter optimization experiment.
The Aibo records how long it takes to move between two beacons. It also records the
average accelerometer values, the average difference in the position of the centroid of
the beacon and the center of the image, and the average slope of the beacon in the
image.

These four components are combined to create a single objective function F*:

F=1- (WtMt + WM, + WMy + WgMg) (1)

The different components of the objective function are weighted by W, W,
Wy, and Wy, respectively, to optimize for desirable attributes. These weights
are constrained such that their sum is equal to one. For example, if stability is
more important than speed, the time taken to walk between landmarks W; can be
assigned a smaller value than the other three weights. The next section describes
experiments that compared different weightings of this objective function.

4.1 Learning a Stable Gait

The first experiment we performed was designed to determine how best to train
for stability while learning a gait. To do this, we used two different parame-
terizations for weighting the subcomponents of the objective function. The first
parameterization used W; = 0.4, W, = 0.1, Wy = 0.4 and Wy = 0.1, which
weighted speed slightly more than stability. The second parameterization used
Wy =0.3, W, = 0.3, Wy = 0.2 and Wy = 0.2, which more evenly weighted all
four components.

We used a relatively slow hand-tuned gait as a starting point for the policy
gradient algorithm, since previous work suggested that starting from a faster
gait could hinder learning [2]. This starting point was determined empirically
after trying several different starting gaits. Learning performance was somewhat
sensitive to the initial parameter settings, but we did not extensively optimize
the initial values.
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Fig. 5. Two visual clues that indicate an uneven gait. (a) shows the average displace-
ment (Mg) of the centroid of the landmark with respect to the center of the image. (b)
shows the average rotation (Mp) of the landmark. If the camera is steady the average
position difference should be zero and the average rotation should be 0°.

Table 1. Percentage reduction in the four objective function components for two dif-
ferent parameterizations without using compensatory head movements. In both cases
the gait becomes more stable while only becoming slightly slower.

Parameterization 1 Parameterization 2

M; -4.76 -4.5
M, 34.7 32.6
Mg 60 57.14
My 76.9 51.2

Figure [0 shows the progress of the policy gradient algorithm during training
without head movements for the two different objective function parameteriza-
tions. The policy gradient algorithm generates 15 exploratory policies per itera-
tion of the algorithm. In both parameterizations, the slope, distance and average
acceleration measure of the objective function decrease considerably, while the
time measure has a modest increase. This lead us to conclude that the weight
parameters are not sensitive to smaller variations. Detailed results are shown in
Table [11

4.2 Adding Compensatory Head Movements

The previous results successfully demonstrate the ability of our robots to learn
a stable gait while minimizing speed reduction. However, in that case, all of the
learning was focused on the leg motion. Since the stability objective measures
the robot’s head motion, we hypothesized that allowing the robot to make com-
pensatory head movements could effectively improve stability. To test this hy-
pothesis, similar experiments to those described above were performed, but four
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Fig.6. (a) The overall fitness and fitness subcomponents (normalized to [0,1]) for a
single run with W, = 0.3, W, = 0.3, W4 = 0.2, and Wy = 0.2 without using head
movements. The starting gait has an overall fitness of 0.72 and the final gait has an
overall fitness of 0.83. (b) A similar plot, but with the parameters Wy = 0.4, W, = 0.1,
Wa = 0.4, and Wy = 0.1. The starting gait has an overall fitness of 0.78 and the final
gait has an overall fitness of 0.83. Both speed and stability increase during learning.

additional parameters were added that governed compensatory head movements.
For these experiments, the position of the landmark in the camera image was
used to calculate the center of the ellipse that the Aibo’s head moved through,
and the tilt and pan angle limits and increments (set by the policy gradient
algorithm) were used to calculate the length and height of the ellipse.

Figure [1 shows the progress of the policy gradient algorithm during training
with head movements for two different objective function parameterizations. The
policy gradient algorithm generated 19 exploratory policies per iteration of the
algorithm. As in the experiment that learned a stable gait without head move-
ments, the gait became more stable after learning. However, the results from this
experiment were not as good as those from the previous experiment. This sug-
gests that the addition of compensatory head movements does not significantly
improve stability or speed.

Table 2] shows that gait parameters for the initial hand tuned gait, the final
learned gait using head movements, the final learned gait without using head
movements and the previously learned fast gait for comparison. The policy gradi-
ent algorithm was able to find a stable gait without much improvement in speed.
These results demonstrate there is a tradeoff between gait speed and stability.

4.3 How Useful Is Stability?

The main premise of this paper is that walk stability is an important feature
for robot gaits. In particular, we hypothesized that stable gaits would improve
the robot’s visual capabilities. The vision algorithm used for this work converts
each image received from the camera into a pixel-by-pixel color-labeled image,
then groups regions of similarly-colored pixels into bounding boxes. A variety of
heuristics such as size, tilt, and pixel density are used to convert these bounding
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Fig.7. (a) Scaled overall fitness and fitness subcomponents for a single run with

Wy = 0.3, Wo = 0.3, Wg = 0.2, and Wy = 0.2 when compensatory head movements are
enabled. The starting gait has an overall fitness of 0.57 and the final gait has an overall
fitness of 0.76. (b) A similar graph, but with the parameters W; = 0.4, W, = 0.1,
Wa = 0.4, and Wy = 0.1. The starting gait has an overall fitness of 0.60 and the final
gait has an overall fitness of 0.74. In both cases, stability and speed increase, but the
overall effect of compensatory head movements is negative.

boxes into high-level objects. If the robot is using an uneven gait, the camera will
receive many images from an unexpected perspective, which can wreak havoc on
the vision heuristics. The heuristics can always be improved, but this may take
valuable processing time away from other components of the robot. Many vision
algorithms employ such heuristics, making this a general problem for robotic
vision [T4IT5].

In order to test whether the stable gaits learned above actually help vision, we
conducted two experiments where the Aibo traversed the field while recording
the objects that it saw. The number of objects that were correctly classified
(averaged over four runs) is shown in Table Bl Using the learned stable walk,
the Aibo displayed 39% more true positives and 54% fewer false positives. These
results with statistically significant with p < 0.05.

5 Discussion and Future Work

The experiments detailed in this paper demonstrate that there is a tradeoff
between gait speed and stability. Our version of the fast gait learned according
to Stone et al. [13] achieves a speed of 340mm/s. When the objective function is
changed to include stability information, the fastest walk that is learned has a
speed of 259mm/s. Allowing the robot to make compensatory head motions to
counterbalance for the body movements, reduced the speed marginally.

Even though the stable gait is not as fast as gaits optimized for speed, it could
be used in situations where it is important not to lose sight of objects, for example
if the robot has the ball and is near the opponent’s goal, the stable gait can be used
to ensure that the robot does not lose the ball from its vision and thus has a better
chance at scoring. We leave deciding which gait to use when to future work.
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Table 2. The parameterized starting gait, learned gaits with and without head move-
ments and the learned fast gait. The policy gradient algorithm is able to find gaits that
are considerably more stable than the learned fast gait while only sacrificing a small
amount of speed. The final gait shows a small improvement in gait speed compared to
the starting gait.

Parameter Hand-tuned Gait Stable gait Stable gait Fast gait
with head movements
Front locus height 1.1 1.7 1.7 0.97
Front x position -0.05 0.08 1.17 -0.04
Front y position 0.7 0.76 -0.08 0.3
Rear locus height 1.6 -0.45 1.54 1.61
Rear x position 0 1.54 1.7 -0.11
Rear y position -0.4 0 0.66 -0.51
Locus length 0.4 0.5 0.68 0.57
Front body height 0.9 0.95 0.96 0.76
Rear body height 0.8 0.75 0.64 0.65
Time on ground 0.5 0.62 0.7 0.27
Time to move 45 45.5 43.4 56
through locus
Tilt limit n/a n/a 4.93 n/a
Tilt increment n/a n/a 0.88 n/a
Pan limit n/a n/a 4.81 n/a
Pan increment n/a n/a 1.07 n/a
Gait speed 198 mm/s 259 mm/s 237 mm/s 340 mm/s

Table 3. The ratio of objects correctly and incorrectly classified by a vision algorithm
using a learned fast gait and a learned stable gait. The stable gait leads to significantly
(p < 0.05) better visual classification accuracy.

True Positives False Positives
Fast Gait 0.33 0.052
Stable Gait 0.46 0.028

Another interesting avenue for future work is to examine how different pa-
rameterizations for the gait and the head motion affect learning. Although the
elliptical head motion described in this paper did not significantly increase head
stability, other types of head motions might do better.

6 Conclusion

This paper presented results on using the policy gradient algorithm to learn a
stable, fast gait. Experiments were performed using an objective function that
optimizes for stability in addition to using head compensatory movements. In
both cases, the policy gradient algorithm found a stable gait while sacrificing
only a small amount of speed. Videos of a comparison between gaits optimized
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for speed and gaits optimized for stability are available at:
http://www.cs.utexas.edu/~AustinVilla/?p=research/learned_walk.
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Abstract. Coordination, as a key issue in fully cooperative multiagent
systems, raises a number of challenges. A crucial one among them is to
efficiently find the optimal joint action in an exponential joint action
space. Variable elimination offers a viable solution to this problem. Us-
ing their algorithm, each agent can choose an optimal individual action
resulting in the optimal behavior for the whole agents. However, the
worst-case time complexity of this algorithm grows exponentially with
the number of agents. Moreover, variable elimination can only report an
answer when the whole algorithm terminates. Therefore, it is unsuitable
in real-time systems. In this paper, we propose an anytime algorithm,
called the simulated annealing algorithm, as an approximation alterna-
tive to variable elimination. We empirically show that our algorithm can
compute nearly optimal results with a small fraction of the time that
variable elimination takes to find the solution to the same coordination
problem.

1 Introduction

A multiagent system (MAS) consists of a group of agents that interact with
each other [II2]. Research in MAS aims to provide theories and techniques for
agents’ behavior management. In this paper, we focus on the fully cooperative
MASs in which the agents share a common goal. Examples are a team of robots
who play football against another team or a group of agents who plan to build a
house. A key aspect in such systems is Coordination: the procedure to ensure the
individual actions of the agents generate optimal joint decisions for the whole
group. RoboCup [3] provides a good platform for comparing and testing different
coordination techniques.

To solve the above problem, previous research focuses on the use of game
theoretic techniques [4], communication [Bl6], social conventions or social lows
[7], learning [89]. However, all these approaches need to exhaust the whole joint
action space whose size grows exponentially with the number of agents. Thus,
even in very small settings, they are infeasible.

A recent work to decrease the size of the joint action space uses a coordination
graph (CG) [I0/TTI2). The idea of CG is that in many situations, only a small
number of agents need to coordinate their actions while the rest of others can

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 110 2007.
© Springer-Verlag Berlin Heidelberg 2007
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act individually. For example, in robotic soccer, only the ball owner and his sur-
rounding players need to coordinate their actions to perform a pass while others
can act individually. So the global joint payoff function, the representation of the
global joint coordination dependencies between all agents, can be decomposed
into a linear combination of local terms, each of which represents the local coor-
dination dependencies between a small subgroup of the agents. Then each agent
employs variable elimination (VE) algorithm to select an optimal individual ac-
tion. The outcome results in optimal behavior for the whole group. However, the
worst case time complexity of VE is the same with the aforementioned methods
of exhausting all possibilities [I3JT4]. Moreover, although VE is an exact method
which always reports the optimal joint action, it does not return any results until
the entire algorithm terminates, which is not suitable for real-time systems. In
[14], max-plus (MP) algorithm, which is analogous to the belief propagation al-
gorithm [I5] for Bayesian networks, was proposed as an approximate alternative
to VE. MP can find optimal solutions for tree-structured coordination graphs
and also the near optimal solutions in graphs with cycles, but it restricts each
local payoff function involved at most two agents [T4/THIT6].

In this paper, we propose the simulated annealing (SA) algorithm as another
approximation to VE. In our algorithm, agents repeatedly start independent
tries. In an independent try, each agent tries to maximize the global payoff using
his own action, while the actions of the other agents stay the same. If a better
solution is found, accept it; otherwise, accept it with a certain probability.

We make the following contributions.

e The time complexity of our algorithm grows polynomially with the number
of agents.

e QOur algorithm is an anytime algorithm that reports result at any time.

e Our algorithm has no restrictions on the number of agents involved in local
payoff functions.

e Experiments show that our algorithm can also find near optimal solution
within only a small fraction of the time that VE takes to find the solution
of the same coordination problem.

The paper is organized as follows. In section Bl we briefly describe the basic
concepts of multiagent coordination problem and the process of finding the op-
timal joint action by VE and CG. Then we describe our proposed algorithm in
section 3 Section [ experimentally validate the correctness and efficiency of our
algorithm, followed by conclusion and future work in section

2 Variable Elimination and Coordination Graphs

In this section, we review the variable elimination (VE) algorithm. In a multiagent
system, we have a collection of agents G = {G1, ..., Gn. Each agent G; selects

! In this paper, we use upper case letters (e.g., X) to denote random variables, and
lower case (e.g., x) to denote their values. We also use boldface to denote vectors of
variables (e.g., X) or their values (x).
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Fig. 1. Initial coordination graph

an individual action a; from his own action set A;. Their joint action space thus
can be represented as A = x;A;. The global payoff function of the agents v (a)
maps each joint action a to a real value: v (a) — R. The coordination problem is
to find the optimal joint action a* that maximizes v (@), i.e., a* = argmax,v (a).
In a naive way, we may consider all possible joint actions and select the one that
maximizes v (a). Unfortunately, this approach is infeasible in even the simplest
settings, for the number of joint actions grows exponentially with the number of
agents (It is called “curse of dimensionality” [13]).

This “curse of dimensionality” may be solved by exploiting the structure of the
problem to define a compact representation for the global joint payoff function
[TTUT2]. In this way, the global joint payoff function is decomposed into a linear
combination of a set of local payoff functions, each of which is only related
to a part of system controlled by a small number of agents. For example, in
RoboCup, only players that are close to each other have to coordinate their
actions to perform a pass or a defend, thus we can use the sum of local payoff
functions of subgroup agents to approximate the whole team’s payoff. In some
situations, this approach can get a very compact representation for coordination
dependencies among agents. Furthermore, such representation can be mapped
onto a coordination graph G = (V, E) according to the following rules [I]: each
agent is mapped to a node in V', and each coordination dependency is mapped
to an edge in E. Then the agents can use VE which is identical to variable
elimination (or bucket elimination) [I7] in a Bayesian network on such CG to
determine the optimal joint action.

We show how VE works as follows. Suppose we have 4 agents with each one
having 4 different actions, then the number of joint actions is 4* = 256, and
global joint payoff function can be decomposed as:

v(a) = v1(a1, a2) + va(asz, aq) + vs(a, as) (1)

Fig. M shows the initial corresponding coordination graph. The key idea in VE
is that, rather than enumerating all possible joint actions and summing up all
functions to do maximization, we maximize over variables once at a time. Let us
begin with optimization for agent 1. Agent 1 collects all local payoff functions
including himself, i.e., v1 and v3 then does maximization. Hence, we obtain:

maxe (@) = MaXg, as,a, {V2(a2, aq) + maxg, [v1(a1, a2) + vs(a1, as)]} (2)
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After enumeration of possible action combinations of his neighbors, i.e., agent
2 and agent 3, agent 1 conditionally returns his best response and yield a new
function ej(ag,as) = max,, [v1(a1,az) + vs(a1,as)] whose value at the point as,
ag is the value of the internal max expression in equation (2)). At this time, agent
1 is eliminated from CG. The global joint payoff function is rewritten as:

maxqv (@) = MaxXa, ay,a,{V2(a2,a4) + e1(az,a3)} (3)

Now fewer agents remain. Next, agent 2 does the same procedure. After collecting
va(ag,aq) and eq(az,as), agent 2 produces a conditional strategy based on the
possible actions of agent 3 and agent 4, and returns his choice, i.e., e2(as,as) =
maxg, [vs(as, as)+e1(az, as)] to the system, then is eliminated. The global payoff
function only contains 2 agents now:

maxgv(a) = maxg, o, {€2(as, aq4)} (4)

Agent 3 begins to do optimization. Enumerating actions of agent 4, he reports

his own choice and gives a conditional payoff es(as) = maxg,es(as,aq). Fi-
nally, the only remaining agent 4 can simply choose his optimal action: aj =
argmax,, es(as).

In the second pass, all agents do the entire process in reverse elimination order.
To fulfill agent 4’s optimal action aj, agent 3 must select a3 = argmax,_es(a}).
Then agent 2 can make a decision a3 = argmax,,ez(a3, a;). Finally, agent 1 does
aj = argmax, e;(a3,a3) to choose his optimal action appropriately. The whole
procedure needs only 4 x 4 +4 x 4 + 4 = 36 iterations which is much smaller
than 256 iterations of the whole joint action space.

The outcome of VE is independent of the elimination order and always gives
the optimal joint action [I3]. However, the running speed of VE is depended
on the elimination order and exponential in the induced width of the coordi-
nation graph [IT/I7]. Finding the optimal elimination order for VE is a well
known NP-complete problem [I8/19]. Thus, in some cases and especially in the
worse case, the time consumed by VE grows exponentially with the number of
agents. Furthermore, VE can not give any useful results until the termination of
the complete algorithm, therefore it is not suitable for RoboCup 2D simulation
league for the robot player has to send actions to server every 100ms. We aim
to find an alternative approache that can circumvent such limitations.

3 The Simulated Annealing Algorithm

In many real-world applications, especially in limited computing time cases such
as RoboCup, we should make tradeoff between the optimality of the actions and
running time. Thus a sub-optimal or nearly optimal solution would be sufficient.
In [14], max-plus (MP) algorithm was proposed as an approximation to VE.
MP is essentially an instance of Perl’s belief propagation (BP) algorithm [I5] in
Bayesian network. It can converge to optimal joint action in tree-structured CGs
and find nearly optimal result in graphs with cycles [T4/15]. However, MP limits
the number of agents in local coordination dependencies not exceeding two.
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In this section, we describe the simulated annealing (SA) algorithm proposed
as an approximate alternative to VE without MP’s limitation. The simulated
annealing algorithm, inspired by statistical mechanics, is very popular for com-
binatorial optimization [2002T22]. In this area, efficient techniques are developed
to find minimum or maximum values for a function of a number of independent
variables [22]. The simulated annealing process executes by “melting” the sys-
tem being optimized at a high effective temperature at first, and then lowering
the temperature by slow stages until the system “freezes” and no further change
occurs.

We decide to apply SA to our multiagent decision making problem, since our
problem also needs to optimize the global joint payoff function via a number
of independent action variables of the agents. The key idea in our approach is
rather similar to CG. We decompose the global joint payoff function into a sum
of local terms, and then do optimization. Given n agents (defined in section [2),
the global joint payoff function can be decomposed as follows:

U(a) = Zvi(ai)—t- Z Uij(ai,aj)+ Z Uijk(ai7aj7ak)+"' (5)

i€G i,j€EG i,5,k€EG

Here, v;(a;) represents the payoff that an agent contributes to the system
when acting individually, e.g., dribbling with the ball. v;;(a;,a;) denotes the
payoff of a coordination action, e.g., a coordination pass between agent i and
agent j, and vk (as, aj, ax), depicts another coordination action involving three
agents, e.g., pass from i to j, then j to k. Coordination dependencies with more
players can be added if needed. Our decomposition is different from MP in that
there is no limitation on the number of robot players involved in local terms.
In MP algorithm, the global joint payoff function can only be decomposed into
>iegvilai) + Zi,jeG vij(ai, a;).

Now the goal is to find the optimal joint action, i.e., a* = argmax,v(a).
The pseudo-code of SA algorithm is presented in Alg[l]l The SA algorithm is
implemented in a centralized version and performed by the agents in parallel,
without assuming the availability of communication. The idea behind it is very
straightforward. In each iteration (called an independent try), the algorithm
starts with a random choice of joint action for the agents, then loop over all
agents. Each agent optimizes the global payoff function with his own action while
the actions of all the others stay the same. If the agent’s local optimization can
yield a better joint action than the initial one, we accept it, otherwise accept
the solution with a probability of € = | +e_1( amy - The looping continues until
the temperature T decayed from Tj,,, to a predefined threshold T,;,. Then
we select a new random starting position and repeat the whole process. When
an agent should send action to the server, he returns his own action from the
optimal joint action found so far.

Basically, what the SA algorithm does is to seek the global maximum of the
global joint payoff function. The SA algorithm has some important differences

*

2 The simulated annealing algorithm is also called monte carlo annealing or proba-
bilistic hill-climber.
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from VE. Firstly, SA is an anytime algorithm that can report an answer at
any time, while VE reports until the whole algorithm terminates. Secondly, in
each independent try, agent ¢ only has to iterate his own actions instead of
all combinatorial actions of his neighbors, thus makes the algorithm tractable.
Finally, the SA is essentially a stochastic algorithm that can not guarantee to
find the optimal joint action, B while VE is an exact and deterministic algorithm
that always report the optimal result. As an approximation algorithm, SA is also
different from MP in that SA has no limitation on the form of decomposed local
functions while the latter has.

SA has a feature of stochastic movement from one solution to another, which
helps it jump away from local maxima and improve the answer’s quality [2T22123].
Although SA can not guarantee the convergence to optimal joint action, we shall
see that it can find an approximately optimal solution in a rather short time.

4 Experiments

In this section, we evaluate the simulated annealing algorithm by comparing it
with other algorithms, especially with variable elimination. The experiments run
in two stages. In the first stage, we fix the number of agents and the number
of different actions per agent to test the scalability of the two algorithms when
the number of neighbors per agent grows. In the second stage, we compare the
relative payoff SA returned with the optimal payoff produced by VE.

Since multiagent system is such a large field that there is no standard problem
one can test against, it is important to generate the proper test sets. In this
paper, we use a random generator (RG) to produce all test sets. The inputs
of the random generator are values of the number of agents |G|, the number
of different actions per agent |A|, maximum number of neighbors per agent
Nrye, and the number of value rules each agent has Nr,. We believe that these
aspects are sufficient to show the difficulty of the coordination problem. The
output of the random generator is a set of value rules, each of which is in the
form (p : v). The value rule is introduced in [II] and proved suitable for plenty
of real-world applications such as RoboCup. The global joint payoff function is
thus represented by the sum of value rules of all agents. Table[Il depicts a sample
output of the random generator (RG) with |G| =4, |A| =4, Nrp. =3, Nr, = 1.

Here, the integer value of a; is an action index. In a real RoboCup 2D simula-
tion program, such an action index is finally mapped to a real predefined action
(or skill, i.e., dribbling, pass, etc.) and sent to the server. We ignore the details
of the specific applications and only focus on the performance of the decision
algorithm.

In the first experiment, we generate 120 coordination problems and assign
them to 4 test sets based on different actions of each agent. For the problem
of each test set, the settings are as follows. The number of the agents is fixed

3 Technically the SA can also find the optimal solution if the annealing process is very
very slow [22]. However this will cause the algorithm to run too long time so that it
has no practical use.
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Algorithm 1. Pseudo-code of the simulated annealing algorithm
Define: G = {G4,...,Gn} the agents who want to coordinate their actions
Define: v(a) the global joint payoff function defined by section [3]
Define: a* the optimal joint action found so far
Define: a; the action of agent 7
Define: a; the optimal action of agent i found so far
Define: a_; the actions of all agents but agent ¢
g0
t—20
while ¢t < MaxTries do
a = random joint action
T «+— Thax
repeat
for each agent i in G do
a’ = argmax, v(a—; Ua;)
A —v(a’) —v(a)
if A >0 then
a«—a
else
a «— a’ with probability 1+e*1< AT
end if
if v(a) > v(a”) then
a* —a
g < v(a")
choose a; from a*
end if
if should send action to server then
send a; to server
end if
end for
T «— T - decay
until 7' < Trin
t—t+1
end while

to |G| = 15, while each agent has Nr, = 8 value rules with different number
of neighbors. The payoff of each value rule is generated from a uniform random
variable v ~ U[1,10]. The number of neighbors k in each value rule is in the
range k € [I, N7,]. Each value has a chance of (V;)/2V7. All the programs
are implemented in C++, and the results are generated on a 2.2GHz/512MB
IBM notebook computer.

When applying variable elimination algorithm, we accelerate the running time
by eliminating the agent with the minimum number of neighbors. When running
simulated annealing algorithm, we set MaxTries to 10, the highest temperature
Tmaz = 0.3, and lowest temperature T;,;, = 0.05. The temperature decay of
the algorithm is in proportion to Nr, i.e., decay < Nr,.. So if the coordination
problem contains value rules involving large amounts of agents, we will do a
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Table 1. Sample output of RG

piv)

(

(a1 =3ANa3=3Aaq=4:7.19085)

(a2 =4Na3=4:4.67774)
(ar=1ANaz=1ANas=2Aas =2:4.67774)
(a1 =4Na3=2Naq4=1:4.67774)

1000 - 1000 - |
—©— variable elimination —6— variable elimination
800 F —— simulated annealing 800 - —— simulated annealing
5 600f £ 600
N3 [0} R
£ 400 ¢ £ 400
200 4 200
0 f | | | 0 | |
1 2 3 4 5 1 2 3 4 5
avg. neighbors per agent avg. neighbors per agent
(a) Timing comparisons for VE and (b) Timing comparisons for VE and
SA (4 actions per agent). SA (6 actions per agent).
1000 - 1000
—©— variable elimination —6— variable elimination
800 F —»— simulated annealing 800 —%— simulated annealing
£ 600 £ 600
2 £
£ 400 £ 400
200 200
0® | 0 | | | |
1 2 3 4 5 1 2 3 4 5
avg. neighbors per agent avg. neighbors per agent
(¢) Timing comparisons for VE and (d) Timing comparisons for VE and
SA (8 actions per agent). SA (10 actions per agent).

Fig. 2. Average timing comparisons for both VE and SA for testing the scalability
when the number of neighbors per agent grows with 15 agents

deep search in an independent try, vice versa. The experiment repeats 10 times
to weaken the effect of hardware and operation system.

In the second experiment, we produce 6 coordination problems, each of which
has its own settings such as number of agents, different actions per agent, etc.
VE and SA are both evaluated. When applying SA, instead of starting from
a random choice for all agents, in ith independent try, we let the agent select
action according to the ith highest value rule if he is involved, otherwise select
action randomly. We also set MaxTries = 200 to ensure sufficient time to run.
Other settings are the same as in the first experiment.
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Fig. 3. Relative payoff found by SA with respect to VE

In order to give a clear image of VE and SA, we scale the payoff axis so that
the global maximum payoff is 1. The time axis is also scaled so that the time it
takes the whole VE to terminate is 1. Thus the points in the figure can be seen
as the fraction of the payoff and the running time of VE. The results of SA will
be scaled to its VE companion. Again, the experiment is also repeated 10 times
to reduce hardware and software’s side effects.
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Fig. [2(a)H2(d)| give the timing results for the four test sets in the first experi-
ment. It can be seen that the running time of the SA algorithm grows linearly as

the number of the neighbors per agent increases. The running time of VE grows
exponentially, since it must enumerate all neighbor’s possible combination ac-
tions in each iteration. Furthermore, when the average number of neighbors per
agent was more than 3.5, VE can not always compute the optimal joint action,
so these tests were removed from the test sets.

The relative payoff found by the SA with respect to VE are plotted in Fig.
3(a)H3(f)] In all the plots, we see that the SA algorithm performed very well. It is
obvious that we found approximately optimal results in all problems. In loosely
connected coordination problem with few actions, i.e., Fig. SA algorithm
can converge to the maximum payoff while only using the 60% time of variable
elimination [l. However, if the number of actions is large (Fig. B(B)), SA can not
reach the optimal result, although it can find approximately optimal solution
(96% payoff) quickly. Further experiments show that if the joint action space
is huge (more than 15 agents, and each agent has more than 10 actions), we
should increase the acceptable probability e accordingly to speed up the con-
vergence to optimal result. This is because in such situations, a little higher
acceptable probability can increase the chance of stochastic solution movement
for simulated annealing algorithm. This technique helps SA jump away from lo-
cal optimizations and cover the joint action space as possible as it can. But the
exact relationship between acceptable probability and the convergency speed are
still not very clear. For the medium connected problems (Fig. [3(c)H3(d)), SA can
compute the optimal policy with a little fraction of time (2%-6%) that variable
elimination needs to solve the same problem. Fig. and Fig. give us a
strong impression that SA can compute above 98% payoff within the time ranges
between 0.015% to 0.2% of the time variable elimination takes in the densely
connected problems. We also show that in these 2 experiments, although the SA
can find near optimal solution very quickly, it still needs to take plenty of time
to approximate the optimal result.

In our internal unpublished tests, we also compare SA with max-plus algorithm
informally. The experiment shows that when reaching the same relative payoff,
the time difference between the two algorithms is at most 5%. Although our algo-
rithm is not faster than max-plus, we believe that our approach is more appropri-
ate for complex coordination problems in which the coordination dependencies in
the value rule is often more than two. Thus, max-plus can not be applied directly.

5 Conclusion

In this paper, we have described and investigated the use of the simulated an-
nealing algorithm for cooperative action selection as an approximate alternative
to variable elimination algorithm. As above-mentioned, Variable elimination is
an exact approach that always reports the optimal joint action. It is also an

4 Note that SA does not know even the maximum payoff has been found due to its
stochastic property.
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efficient algorithm in loosely connected coordination graphs. However, it is very
slow in densely connected coordination graphs and unable to produce results at
anytime. The simulated annealing algorithm repeats independent tries. In each
try, each agent tries to maximize the global payoff using his own choice without
influencing the actions of all other agents. Based on the result quality in each
maximization, the algorithm accepts a solution with a certain probability. We
have provided empirical evidences to show: 1) this method is almost optimal
with a small fraction of the time that VE takes to compute the policy of the
same coordination problem; 2) the running time of SA grows linearly with the
increasing of the number of neighbors per agent; 3) it is an anytime algorithm
to return result at any time. For above reasons, we believe that simulated an-
nealing is an feasible approach for action selection in large complex cooperative
autonomous systems such as RoboCup.

As for future research, we plan to implement the simulated annealing algo-
rithm in our SEU T 2D simulation team. Last year, we tried to use VE for
our player’s cooperative action selection framework, but the computational con-
straints made us only use a small set of value rules with each rule involving at
most 3 agents [24]. Applying simulated annealing algorithm, we should produce
more advanced coordination actions to involve much more agents.

Finally, we will figure out a appropriate setting of the acceptable probability,
especially the decay rate in simulated annealing algorithm. Some recent work
shows that neural network algorithm can produce a good decay rate for larger
problems [23]. We would like to try to employ such techniques in our multi-
agent decision making problem. Furthermore, we want to investigate whether
reinforcement learning algorithms can be applied to automatic learning of the
payoff instead of hand tuning.
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Abstract. This paper describes a framework designed to broaden the
entry-level for the use of sophisticated robots as educational platforms.
The goal is to create a low-entry, high-ceiling programming environment
that, through a graphical behavior-based interface, allows inexperienced
users to author control programs for the Sony Aibo four-legged robot. To
accomplish this end, we have extended the popular RoboLab application,
which is a simple, icon-based programming environment originally de-
signed to interface with the LEGO Mindstorms robot. Our extension is
in the form of a set of “behavior icons” that users select within RoboLab,
which are then converted to low-level commands that can be executed
directly on the Aibo. Here, we present the underlying technical aspects
of our system and demonstrate its feasibility for use in a classroom.

1 Introduction

Many teachers have an interest in introducing robots into their classrooms for
teaching a variety of subjects other than specifically robotics, from traditional
technical topics such as programming and mechanical engineering to other areas
such as mathematics and physical science, where robots are used to demonstrate
the concepts being taught. It has long been recognized that hands-on methods
have a powerful impact on student learning and retention [1213]. The growing
field of educational robotics—the use of robots as a vehicle for teaching sub-
jects other than specifically robotics [4]—has employed that approach, using the
constructionist [5] process of designing, building, programming and debugging
robots, as well as collaboration and teamwork, as powerful means of enlivening
education [2/6l7]. Even very young children have been successfully engaged in
hands-on learning experiences that expose them to some of the basic principles

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 122 2007.
© Springer-Verlag Berlin Heidelberg 2007
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of science and engineering, widening their horizons and preparing them for life
in a highly automated, technically challenging world.

For the past several years, we have been designing and helping to implement
educational robotics curriculum in inner-city primary and middle school class-
rooms, after-school programs and summer schools, undergraduate introductory
programming courses and international robotic competitions [SI9I7IT0]. To sup-
port these curricula, we have employed RoboLab [11], a widely used graphical
programming environment developed at Tufts University, for operation on the
LEGO Mindstorms Invention System robot [12]. RoboLab runs on a Mac, Win-
dows or Unix computer. The environment is highly visual and provides a good
first experience with procedural programming concepts. Entities such as motors
and sensors are represented as rectangular icons on the screen, and users drag
and drop them with the mouse onto a canvas to create “code”. The icons are
strung together using “wires”, and all programs are downloaded from RoboLab
onto the LEGO robot via a “communication tower”, connected to the computer’s
USB or serial port, that transmits the program to the robot using an infra-red
signal. A simple RoboLab program is illustrated in Figure [

r . ™|
ame = sample.vi Block Diagram

IE'|I¢D|IE’ off | 12pt Application Rfiwentar

o ut I

[ ————— 3 E RS

Fig. 1. A basic RoboLab program

If the robot has wheels and motors attached to two of its ports (labeled A and C),
this program will make the robot go forward for 2 seconds and then stop.

RoboLab’s graphical programming environment tiers the levels of program-
ming, which allow a novice to produce results quickly and acquire skills without
having to read a sophisticated text or complicated application manual. Ranging
from “Pilot” to “Inventor” levels, RoboLab is broad enough to ensure the suc-
cess of both beginners and advanced users. The initial Pilot levels are completely
graphical so even users who cannot read can be successful. The more advanced
“Inventor” levels incorporate advanced programming concepts and features to
add power, flexibility and complexity to programs.

Our experiences working with classroom teachers and young students have
raised several issues that have motivated us to pursue the development of a
behavior-based interface, which abstracts away the low-level motor and sensor
commands that often confuse inexperienced programmers or deter techno-phobic
students [13]. Our longterm goal is to create a standard middle ground that can
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act as a sort of “magic black box”, for current and future robotic platforms,
following several design criteria:

— ease of use: programmers only have to deal with high-level icons—novices
will not get discouraged with low-level text-based syntax;

— disappearing boundaries: programmers are able to test and run the same
behaviors on multiple agent platforms—running the same RoboLab program
on a LEGO robot and on an Aibo will help students understand about
abstraction and behavior-based control;

— interoperability: astandard behavior language is used for multiple platforms—
students do not need to learn different languages in order to use a variety of
robot platforms, or our simulator (currently under development [T4/15]); and

— flexibility: students from a wide range of backgrounds and teachers with a
broad range of goals can use the system effectively, accommodating different
levels, curricular needs, academic subjects and physical environments for
instruction.

Because of RoboLab’s popularity in the classroom and its icon-based pro-
gramming style, it is well suited as the front-end for our interface. We have
three underlying educational goals, each supporting different pedagogical needs:

— First, we want to produce a low-entry, high-ceiling interface to the Sony
Aibo robot [I6] (pictured in Figure [Zh) that will encourage non-traditional
computer science students to learn programming, allowing us to capitalize
on the “cuteness factor” associated with Aibo while still providing students
with a serious, first adventure in programming.

— Second, we want advanced students to gain an appreciation of the modu-
larity of both a robot’s controlling interface and its underlying hardware.
Just as Java and JavaScript are platform independent, providing a robot
programming environment that is platform independent will give students
hands-on experience with code abstraction, witnessing the same code execut-
ing on both the LEGO robot and the Aibo (and other platforms).

— Third, we want to create a motivating, hands-on environment with which to
introduce more advanced students to behavior-based concepts.

This paper is organized as follows. We begin by reviewing several different
programming interfaces designed for the Sony Aibo. Then we describe some
technical details about RoboLab and explain how our behavior-based program-
mming interface operates. Finally, we end with a brief summary and mention
directions for future work.

2 Background

OPEN-R is the programming interface designed for the Aibo, provided for free
via download from Sony’s web site [T7]. OPEN-R gives programmers the ability
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(a) Aibo ERS-TM2/B  (b) LEGO Mindstorms

Fig. 2. Robot platforms

to develop software to control the low-level hardware of the robot. Some of
the features of OPEN-R include: modularized hardware, modularized software
and networking support. Because the hardware is modularized, each module is
connected by a high-speed serial bus and can be exchanged for a new module.
Each software module in OPEN-R is either a “data object” or a “distributed
object” and is implemented in C++l. OPEN-R programs are built as a collection
of concurrently running OPEN-R objects, which have the ability to communicate
with each other via message passing. Due to the modularity of the software,
individual objects can be easily replaced and each object is separately loaded
from a Sony Memory Stick. Furthermore, OPEN-R supports Wireless LAN and
TCP/IP network protocol.

Sony’s formalism for describing the working cycle of OPEN-R objects resem-
bles layered finite state automata [18]. Each OPEN-R object can have numerous
states and must include an IDLE state. At any given point, an object can be in
only one state, and objects move from state to state using transitions. In order
to switch states, an event must activate a transition to a new state and the
pre-condition of the new state must be satisfied.

The low-level functionality of the robot can be controlled using the OPEN-R
API [I7]. With the API, programmers can experiment with image processing,
sensory feedback information and robot motion in order to develop (original)
sets of behaviors for the Aibo. However, the OPEN-R API can be quite hard to
use for novice and even intermediate programmers. As a result, several interfaces
and abstraction languages have been developed to sit on top of OPEN-R in an
attempt to hide the low-level complexity from the inexperienced end-user. These
include:

R-CODE [19],

YART (Yet Another R-CODE Tool) [20],
Tekkotsu [21], and

— URBI (Universal Robotic Body Interface) [22/23].

1 C++ objects and OPEN-R objects are not the same and should not be confused
with each other [18].
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These languages/interfaces vary in power and intricacy, and each has its own
goals and features, as described briefly below. OPEN-R is the basis upon which
R-CODE, Tekkotsu, and URBI are built. YART goes one step further, abstract-
ing R-CODE one level by providing a basic graphical user interface (GUI) to
create and manipulate R-CODE programs.

The R-CODE SDK provides a set of tools that allow users to program the
Aibo using the R-CODE scripting language, offering higher-level commands than
traditional programming languages such as C, C++ and even OPEN-R. The
benefits of R-CODE being a scripting language are its simplicity (to both learn
and use) and its lack of compilation; however, programmers have less control
than with other lower-level languages. With only a few lines of R-CODE, users
can program the Aibo to perform complex behaviors such as dancing, kicking
or walking. Because R-CODE does not require compilation, it can be written in
a plain text file on any operating system and saved directly on a memory stick
that has the R-CODE virtual machine pre-loaded on it. R-CODE commands
can be viewed as OPEN-R macros, where the degree of precision and control
depends solely on the underlying OPEN-R code. Although R-CODE is powered
by OPEN-R functions, the developer does not have access to the underlying
OPEN-R subroutines. R-CODE is best suited for performing actions and various
behavior sequences.

YART [20] is an R-CODE front-end developed by a hobbyist. It provides
a text-based GUI with simple drag-and-drop functionality and produces files
of R-CODE commands. This tool can also be used to generate customized
behaviors via pre-existing YART-compatible Aibo personalities. YART is an
easy place to start programming simple behavior patterns. However, unlike
RoboLab, YART is a text-based interface, so the objects that the user drags
with the mouse are bits of text—whereas in RoboLab, the user drags graphical
icons.

Tekkotsu [21], developed at Carnegie Mellon University by Touretzky et al., is
an application development framework for intelligent robots that is compatible
with the OPEN-R framework [I7]. It is based on an object-oriented and event-
passing architecture that utilizes some of the key features of C++, like templates
and inheritance. Although Tekkotsu was originally created for the Sony Aibo,
the current version can be compiled for multiple operating systems. Tekkotsu
simplifies robotic application development by supplying basic visual processing,
forward and inverse kinematics solvers, remote monitoring, teleoperation tools,
and wireless networking support. Tekkotsu handles low-level tasks so the devel-
oper can focus on higher-level programming. It provides primitives for sensory
processing, smooth control effectors, and event-based communication. Some of
the higher-level features include a hierarchical state machine formalism used for
control flow management and an automatically maintained world map. Addi-
tionally, Tekkotsu includes various housekeeping and utility functions and tools
to monitor various aspects of the robot’s state.

The Universal Robotics Body Interface (URBI) [22I23], developed at Ecole
Nationale Supérieure de Techniques Avancées (ENSTA), is an attempt to provide
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a standard way to control the low-level aspects of robots while providing the
high-level capabilities of traditional programming languages. URBI is based on a
client-server architecture where the server is running on the robot and is typically
accessed by the client via TCP/IP. The client can be virtually any system or any
other kind of computer, thereby adding flexibility to URBI. The URBI language
is a high-level scripting language capable of controlling the joints and accessing
the sensors, camera, speakers or other hardware on the robot. URBI has been
primarily applied to entertainment robots because they tend to provide the most
interesting interfaces and capabilities.

Each of these interfaces have informed our approach. We selected RoboLab
as the front-end for several reasons. RoboLab is already quite widely used in
classrooms worldwide. Teachers and students are comfortable with the interface
and will not feel like they need to learn yet another programming environment
in order to expand their use of robot platforms in the classroom. In addition,
schools do not need to purchase another software package; our methodology is a
free extension to RoboLab. Finally, as detailed below, RoboLab is constructed
on top of a framework designed to support a wide range of hardware devices,
thus the concept of expanding its use to interface with a range of robot devices
is a natural fit.

3 Owur Approach

This section describes the approach to our implementation, outlining the steps
required for progressing from writing programs in RoboLab to generating code
that is executed on the Aibo. Given that one of our objectives with this work is
to develop a behavior-based programming interface for controlling Aibo, we have
designed a set of generic low-level behaviors that can be graphically represented
in RoboLab. As part of this process, we analyzed the main differences between
the Aibo platform and the LEGO Mindstorms platform to ensure that our be-
haviors are suitable for both. The two platforms are physically quite different,
not only in terms of processor configuration but also in regard to the types of
sensors and effectors provided. The LEGO Mindstorms is typically constructed
as a wheeled robot, as depicted in Figure Bb (though legged structures can be
built). The kit comes with two touch sensors and a light sensor and has the
ability to support numerous other LEGO and commercial sensors. The Aibo, a
four-legged robot, comes with a variety of built-in sensors including: multiple
touch sensors, distance sensors and a camera; and it cannot support any other
sensors (without being dismantled).

With the capabilities of both platforms in mind, we defined a set of prototype
behaviors and control structures suitable for our behavior-based “palette” in
RoboLab (illustrated in Figure B]). RoboLab is implemented on top of National
Instruments’ LabVIEW [24]. Individual icons and full programs are saved as
“VIs” (virtual instruments). Each icon or program can be seen as imitating an
actual instrument [25]. We used RoboLab’s built-in feature to create “subVIs”
(VI modules or subroutines) in order to construct our customized behaviors.
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These behaviors act as macros for sets of lower-level RoboLab commands. Al-
though the ability to expand RobolLab’s current set of icons is a remarkably
powerful feature, we are constrained by the necessity to use a set of pre-defined
icons as the underlying basis for each new icon. For example, as illustrated in
Figure [ our forward behavior icon is in reality a macro for the set of icons:
motor A forward, motor C forward, and wait for (some amount of time).

The behaviors icons, shown in the palette to the
left, can be used just like any other RoboLab icon.
As with basic RoboLab function icons, wiring to-
gether a sequence of behavior icons creates a well-
formed RoboLab program. The meanings of the
first eight icons are (from top left to right): loop
while back sensors are pressed, loop while back
sensors are not pressed, branch according to state
of back sensor, move backwards, begin behavior,
loop while distance sensor is less than or equal to
parameter, loop while distance sensor is greater
than parameter, branch according to state of dis-
tance sensor. See [13] for a complete and detailed
description of the behavior icons.
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Fig. 3. Behavior Icon Palette

Macro Expansion

Begin seeseser
Distance —BM“EM )

Fig. 4. Forward behavior icon and its underlying set of basic RoboLab icons

The first step in our approach is for a user to write a program in RoboLab
and save the contents of the program to a file, in a manner that will preserve
its functionality while allowing translation to Aibo commands to occur outside
of RoboLab. The default output from RoboLab is LASM, or LEGO Assembly
Language. We use this default, saving the LASM commands in an output file
— whereas normally, users send the LASM commands directly to the LEGO
robot via the communication tower. Once the LASM file is saved, we invoke
our translation program, called 1asm2aibo, that converts the LASM commands
into Aibo commands. After examining the Aibo languages and interfaces dis-
cussed in section [2] we decided to use R-CODE to implement Aibo commands
in our system because R-CODE is easy to use and does not require compila-
tion, and because R-CODE offers a more natural mapping to RoboLab. With
R-CODE,numerous behaviors can be prototyped quickly and tested efficiently.
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Both Tekkotsu and URBI are better suited for applications that require complex
solutions and greater computational power.

A key challenge in designing lasm2aibo was to determine which LASM com-
mand(s) and what parameters are generated for each RoboLab icon. Our be-
havior icons are macros comprised of multiple low-level built-in RoboLab icons,
which complicates the translation process, as detailed below. Taking a file of
LASM commands as input, our translater recognizes tokens that match relevant
LASM commands, numbers, white space, and delineators (commas and new line
characters), and “compiles” (or translates) these into R-CODE sequences. We
designed and implemented our translator using the UNIX tools Lex [26] and
Yacc [271].

Both Lex and Yacc greatly simplify compiler writing, or translating between
two programming language representations. Lex generates the C code for build-
ing a lexical analyzer or lexer. Any given lexer takes an arbitrary input stream
and divides it into a sequence of tokens based on a set of regular expression
patterns. The Lex specification refers to the set of regular expressions that Lex
matches against the input. A deterministic finite state automaton generated by
Lex performs the recognition of the expressions. Lex allows for ambiguous spec-
ifications and will always choose the longest match at each input point. Each
time one of the patterns is matched, the lexer invokes user-specified C code to
perform some action with the matched token. Yacc is responsible for generat-
ing C code for a syntax analyzer or a parser. Yacc uses the grammar rules to
recognize syntactically valid inputs and to create a syntax tree from the corre-
sponding lexer tokens. A syntax tree imposes a hierarchical structure on tokens
by taking into account elements such as operator precedence and associativity.
When one of the rules has been recognized, then the user-provided code for this
rule (an “action”) is invoked. Yacc generates a bottom-up parser based on shift-
reduce parsing. When there is a conflict, Yacc has a set of default actions. For
a shift-reduce conflict, Yacc will shift. For reduce-reduce conflicts, Yacc will use
the earlier rule in the specification.

In our case, Yacc reads the grammar description and the token declara-
tions from lasm2aibo.y and generates a parser function yyparse() in the file
y.tab.c. Running Yacc with the -d option causes Yacc to generate definitions for
the tokens in the file y.tab.h. Lex generates a lexical analyzer function yylex ()
in the file lex.yy.c by reading the pattern descriptions from lasm2aibo.l
and including the header file y.tab.h. The lexer and parser are compiled and
linked together to form the executable lasm2aibo. From the main() function in
lasm2aibo, the yyparse() function is called, which in turn calls the yylex()
function to obtain each token.

Our Yacc parser is generated from the lasm2aibo grammar specification.
Through a series of grammar productions, the parser attempts to group se-
quences of tokens into syntactically correct statements. Associated with each
production is a set of semantic actions. Given that many of the LASM com-
mand sequences for varying groups of behaviors are the same, often behavior
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identification becomes part of the semantic analysis. For instance, all the motion
behaviors including forward, backward, right and left produce the same LASM
command output. Furthermore, there is no direct way to distinguish between
activating an LED or a motor because they are both viewed as output devices.
Only by examining the values of some of the parameters and by making cer-
tain assumptions can they be differentiated. Having to perform specific behavior
recognition during the semantic analysis is one of the limitations involved in us-
ing LASM as our source program. Ideally, each behavior should be represented
by a unique syntax, allowing for quicker and cleaner parsing.

When a behavior is recognized, the semantic actions involve calling the corre-
sponding behavior function. These pre-defined behavior functions are used to gen-
erate the equivalent behavior in R-CODE and help flag the R-CODE subroutines
that need to be included in the R-CODE source file. The final output of the trans-
lator includes the file R-CODE. R, the R-CODE program that matches the original
RoboLab program, and a behaviors.txt file used for debugging purposes to en-
sure that behaviors, sensors, and control structures are appropriately classified.
Running the lasm2aibo executable file with a LASM text file as input generates
the file R-CODE.R. This file should be placed on a R-CODE-ready memory stick in
the OPEN-R/APP/PC/AMS directory [28]. To execute the program, insert the mem-
ory into Aibo, turn on the power and watch Aibo come to life!

Throughout the process, there are multiple places where errors could occur;
this includes lexical, syntactic and semantic errors. The lasm2aibo translator
attempts to handle errors gracefully. If the error is fatal, a blank R-CODE.R
file will be generated; however, if the error is non-fatal then the translator will
continue to process the source file. In both cases, a descriptive error message
and the line number where the error occurred is displayed on the console via
standard output.

3.1 Example

A detailed example follows. First, the RoboLab behavior-based program (shown
in Figure Bh) is constructed. The resulting LASM is contained in Figure BEb.
Second, our lasm2aibo module is executed, taking the LASM file as input and
creating an R-CODE equivalent, illustrated in Figure Be. This gets written to a
Sony memory stick, which also contains the R-CODE virtual environment, and
is ready to be executed on the Aibo.

4 Summary

We have presented the design and implementation of our prototype framework
for providing a simple, graphical, behavior-based interface to the Sony Aibo
robot. Built into the popular RoboLab graphical programming environment and
connected to the Aibo via a translater, lasm2aibo, this framework represents the
proof-of-concept for a longterm project aimed at bringing educational robotics
into a broad range of classrooms. The successful implementation of the direct
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:Start
PLAY:ACTION:STAND
WAIT
WHILE:100:<:Distance
IF:1:>:Head_ON:THEN

PUSH: 2471
CALL:Play_Sound:1
PUSH:1000
CALL:Wait_For_Time:1
WAIT
ELSE
PUSH: 2260
CALL:Display_LED:1
(a) RoboLab code WAIT
ENDIF
CLR:SENSORS
PUSH: 100
CALL:Forward:1
WAIT
PUSH: 500
delt O CALL:Wait_For_Time:1
WEND
task 0 CLR:SENSORS
sent 0,3 EXIT
senm 0,4,0
sent 1,1
senm 1,1,0 * BEHAVIOR FUNCTIONS *
Label1002:
chkl 2,100,1,9,0,Label1003
chkl 2,1,0,9,1,Label1004 /
plays 2 * walk forward for a specified distance in mm
wait 2,100 /
wait 2,0 :Forward //pass a distance
jmpl Labell005 ARG:distance
Label1004: PLAY:ACTION:WALK:0:distance
pwr 2,2,2 RETURN
dir 0,2
out 2,2 /
wait 2,0 * wait for a specified amount of time
Label1005: /
pwr 1,2,100 :Wait_For_Time
dir 2,1 ARG:time
out 2,1 WAIT:time
pwr 4,2,7 RETURN
dir 2,4
out 2,4 /
wait 2,0 * plays a specified sound
wait 2,50 /
ping :Play_Sound
jmpl Label1002 ARG:sound
Label1003: PLAY :MWCID:sound
endt RETURN
plays 5 /

* plays a specified led pattern

:Display_LED
ARG:pattern
PLAY:MWCID:pattern
RETURN

(b) LASM code (c) R-CODE

Fig. 5. Example
This program will test whether the head sensor is pressed or not. If the head sensor
is released, it will play sound number 3, otherwise if the head sensor is pressed it will
display LED pattern number 2. The Aibo will then move forward 100mm and wait
half asecond. This process will repeat while the distance sensor reads a value greater
than100mm.
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translation from RoboLab to Aibo demonstrates the feasibility and viability of
the process. A user study is planned for Summer 2006.

Although our direct translation is appropriate for small-scale solutions, cur-
rent work on this project is exploring a more abstract, generalized framework
for linking RoboLab (or other graphical programming interfaces) to a variety of
robot platforms [15]. Recent press releases have revealed that the LEGO Mind-
storms will be succeeded in August 2006 by a more sophisticated platform called
NXT [29], and Sony has announced that production of Aibo halted in March
2006 [30]. Given the changing face of consumer robotics, a flexible framework
such as ours will help classrooms ease transitions from one robot platform to
another by providing teachers and students with a familiar interface and an in-
tuitive behavior-based methodology for programming, no matter what hardware
lies beneath.
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The Robotics and Mechatronics Kit “qfix”

Stefan Enderle

Neural Information Processing Department
University of Ulm, Germany
enderle@neuro.informatik.uni-ulm.de

Abstract. Robot building projects are increasingly used in schools and
universities to raise the interest of students in technical subjects. They
can especially be used to teach the three mechatronics areas at the same
time: mechanics, electronics, and software. However, it is hard to find
reusable, robust, modular and cost-effective robot development kits in
the market. Here, we present ¢fiz, a modular construction kit for edu-
tainment robotics and mechatronics experiments which fulfills all of the
above requirements and receives strong interest from schools and univer-
sities. The outstanding advantages of this kit family are the solid alu-
minium elements, the modular controller boards, and the programming
tools which reach from an easy-to-use graphical programming environ-
ment to a powerful C++ library for the GNU compiler collection.

1 Introduction

Robot building projects are a good means to bring the interesting field of robotics
to schools, high-schools, and universities. Studying robotics the students learn
a lot about mechanics, electronics, and software engineering. Additionally, they
can be highly motivated and learn to work in a team.

Performing a lot of robot building labs with pupils and students, we found
that there is a gap between the relatively cheap toy-like kits, like LEGO Mind-
storms or Fischertechnik Robotics and the quite expensive off-the-shelf robots.
The toy kits offer a good opportunity to start building robots, but they mostly
support the control of only 2 or 3 motors and the same number of sensors. Off-
the-shelf robots (see e.g. [TJ47]) are completely built up, so typically only the
programming of the robot can be studied.

Alternatively, there exist a number of controllers, like the 6.270 board or the
HandyBoard [3] which come without mechanical parts and so must be used in
combination with other toy kits, like RC-controlled cars, or custom-built ro-
bots. However, these boards, can control only small motors and are not very
expandable.

After building RoboCup robots from scratch [6J9I2I11] and supporting schools
developing their own RoboCupJunior robot [I0], the authors gained a lot of
experience about reasonable mechanical concepts and controller architectures
for a usable robot development kit. Thus, we decided to develop the robot kit
familiy ¢fiz and to provide it to schools and universities.

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAT 4434, pp. 1342007.
© Springer-Verlag Berlin Heidelberg 2007
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2 The qfix Approach: Modularity

The main concept behind gfiz ist modularity in the following dimensions:

— Mechanics: The mechanical parts are aluminium parts including rods,
plates and holders for different sensors and actuators. These parts are the
building blocks for constructing mechanical and mechatronic systems, like
cars, walking robots, etc. Most parts contain threads and can easily be
screwed together, so very robust models can be build.

— Electromechanics and Electronics: There already exist many compat-
ible electromechanical and electronical parts including a variety of sensors,
actuators, and controller boards. With these components it is possible to
make the mechanical models move (by DC motors, servo-motors, stepper
motors), sense (by tactile, infrared and ultrasonic sensors), and think (by
powerful controller boards which can be programmed on the PC).

— Software: In the software area, modularity is no big deal. The ¢fiz software
comes with the powerful free GNU C++ toolchain (WinAVR for windows,
respective libraries or RPMs for linux). Additionally, it contains an easy-to-
use C++ class library for accessing all gfiz electronics components.

Since beginners, say, of an age from 12, have problems going directly into C
or C++ programming, we developed a graphical programming environment
called GRAPE in order to simplify the programming of self-built robots.
This software directly produces C++ code from the graphical description
and thus supports the beginner in learning object-oriented programming.

2.1 Mechanics

The basic building blocks of the gfiz system are anodized aluminium rods with
@6 holes along all four sides and two M6 threads on the front and back side (see
Fig. ). Currently, there are rods from 20mm to 100mm including 45° rods.

Other basic elements are a variety of plates with holes and threads. These
plates can be bolted to the rods using a screw and a nut or only a screw exploiting
the rods’ frontal threads. Like the rods, the plates are given in different lengths
and widths, currently up to 200mm x 200mm (see Fig. 2l for an exemplary plate).

All mechanical parts use holes and threads according to DIN/ISO standards
and have a grid of 10mm.

Fig. 1. Basic elements: rods
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Fig. 2. Basic elements: plates (Here: 200x200mm with 400 threads)

Fig. 3. Wheels, axes, and gears

In Figure Bl some additional mechanical elements can be seen: wheels, cast-
erwheels, gears, and axes. They are usually used to implement dynamic models
which then can be driven by different motors as shown in the next section.

2.2 Electromechanics/Electronics

Motors: In order to make a model move, motors are needed. Typical robotics
applications often use different kinds of motors for different tasks: DC motors,
servo motors, and stepper motors. ¢fiz supports these different categories by
providing the respective motor bearings (see Fig. M) and electronics components
for driving motor and wheel encoders.

Sensors: When building robots, it is also necessary to make them able to gather
information about their environment. This can be done by mounting simple
switches signalling bumps into obstacles, or by adding distance measuring devices
like infrared or sonar sensors. As with motors, ¢fiz supports numerous sensors
by providing the respective bearing (see Fig. () for mounting the sensor to the
model.

Controllers: Obviously, the motors and sensors must be driven by an electron-
ics component. For gfiz, we developed a new, modular controller board arhitec-
ture which is both powerful and easy-to-handle. The board with the smallest
controller is the “BobbyBoard” (see Figure[d]) which uses the Atmel ATmega32
controller and supports the following I/Os:
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Fig. 4. Exemplary motor bearing for a DC motor

=

Fig. 6. “BobbyBoard”: controller board with ATmega32

— 2 DC motor controllers (battery voltage, 1A)
— 4 digital inputs (0/5V)

4 analog inputs (0-5V)

8 digital outputs (battery voltage, 100mA)

4 LEDs

— 4 buttons

— I2C-bus for extensions

Further existing main boards are the “CAN128Board” which shows the same
I/0O capabilities but uses an Atmel ATI0CAN128 controller with CAN interface,
more memory and more speed. And, the “SoccerBoard” with 8 analog and 8
digital inputs, 8 digital outputs, 6 motor drivers, and optional CAN and USB
interface (see Figure[7]). This board is specifically designed for the requirements
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Fig. 8. “LC-display board”: expansion board with LC-display

of RoboCupJunior, where often omnidrive platforms with three driven wheels

plus a kicker and a “dribbler” are used combined with multiple sensor systems.
All controller boards are programmed (“flashed”) from the PC via a serial,

parallel or USB link and then run autonomously without the host computer.

Extension Boards: The main idea behind the ¢fiz boards is their flexible
modular architecture: The main controller board runs the main program and
communicates with expansion boards for setting actuator values and getting
sensor data. The expansion boards themselves are responsible for controlling
the attached devices, so the main processor does not have to perform expensive
tasks, like feedback motor control, etc.

The controller boards contain an I2C-bus and optionally a CAN bus which
both allow to chain dozens of boards of the same or different kinds to a large
controller network. So, it is possible to either control more I/Os or even to
implement distributed applications with decentralized control (see e.g. [5]).

The following extension boards based on I?C-bus are currently available:

— Servo board 1: The servo-board uses a Atmel mega8 for controling 4 servo
motors independently.

— Servo board 2: This servo-board is designed for humanoid robots and can
control 24 servo motors independently. It contains a megal28 controller and
a Xilinx FPGA for fast I/O control.

— Stepper-board: The stepper-board can control 4 stepper motors indepen-
dently. Both, full and half step mode are supported.
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— DC-power board: The DC-power-board is capable of controlling two DC
motors with 4A each. It also contains two encoder input lines for each motor.

— LC-display board: An LC-display with 4 lines of 20 characters each (see
Figure[§)).

— Relais boards: There are two relais boards: one to be connected to the
digital output of the controller board and one to be connected via the 12C-
bus.

Further expansion boards, e.g. for Polaroid sonar sensors [8] and a camera
board are currently under development.

2.3 Software

With g¢fiz we provide the free GNU C++ toolchain including generic tools for
downloading programs to the controller boards. Additionally, we provide a C+-+
class library supporting all gfiz boards. On Windows, the generic tools mainly
consist of the WinAVR, GCC environment for Atmel controllers which includes
the extensible editor programmers notepad and powerful download tools, like
avrdude. All tools also run on Linux/Unix and Mac, so cross-platform develop-
ment is fully supported.

The easy-to-use gfit C++ class library hides the low-level hardware inter-
face from the programmer and supports the complete ¢fiz extension board fam-
ily. The main idea is to provide a specific C++ class for each ¢fiz module.
Therefore, the library provides the classes BobbyBoard, SoccerBoard, LCD,
SlaveBoard, StepperBoard, ServoBoard, RelaisBoard, etc. For example,
when building an application with the BobbyBoard and the LCD you use the
respective classes, like the following:

#include "qfixBobbyBoard.h" // include BobbyBoard library
#include "qfixLCD.h" // include LCD library

int main()

{
BobbyBoard board; // construct object "board"
LCD lcd; // construct object "lcd"
board.led0On(0); // turn on LED O
board.waitForButton(0); // wait until button O is pressed
board.motor(0,255) ; // turn on motor O to full speed

lcd.print("Engines running"); // print a text on the LCD

As can be seen from the comments of the code, two instances of two classes
are constructed: board and lcd. Their methods are called in order to let the
main board turn on a LED and a motor, wait for a button press, and output
text on the LCD.

A lot of the functionality is hidden in the constructors of both classes. When
constructing the object board for instance, the constructor initializes all 1/O
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pins and starts an interrupt routine for motor PWM control. When constructing
lcd, the constructor opens an I2C-bus channel and starts communicating with
the physically connected LC-display. This mechanism works perfectly as long as
expansion boards of different types are used only.

When using multiple expansion boards of the same type, the extended con-
struction syntax can be used in order to connect the objects to the correct phys-
ical boards. Imagine you have a controller board and three identical LC-display
boards:

#include "qfixBobbyBoard.h" // include BobbyBoard library
#include "qfixLCD.h" // include LCD library

int main()

{
BobbyBoard board; // construct object "board"
LCD 1cd0(0); // construct object "lcdO"
LCD lcd1(1); // construct object "lcdl"
LCD 1lcd2(2); // construct object "lcd2"
board.waitForButton(0); // wait until button O is pressed
1lcdO.print("Hallo"); // print a text on LCD O
lcdl.print("World!"); // print a text on LCD 1
lcd2.print("Engines running"); // print a text on LCD 2

}

In this example, each of the three 1cdX objects is connected to the physical
LCD board with the respective ID. This ID can be hardcoded to the LCD by
flashing the LCD board, or it can be dynamically changed by calling the method
lcd.changeID(newID).

For those who want to connect multiple controller boards but do not want
to go into detail with programming the I2C-bus, we provide a class SlaveBoard
which can be used as a “remote control” for connected BobbyBoard main boards:

#include "qfixBobbyBoard.h" // include BobbyBoard library
#include "qfixSlaveBoard.h" // include SlaveBoard librar
q y

int main()

{
BobbyBoard master; // construct a master board object
SlaveBoard slave0(0); // construct a slave board object
SlaveBoard slavel(1); // construct a slave board object
master.motor (0,100); // turn on motor on master board
slave0.motor(0,100); // turn on motor on slave board 0
slave0.waitForButton(0) ; // wait for button on slave board 0
slavel.ledOn(0); // turn on LED on slave board 1
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3 Graphical Programming Environment GRAPE

In addition to the C++ environment, we developed a new software system
called GRAPE (which stands for GRAphical Programming Environment). With
GRAPE it is possible to program the gfiz controller boards in an object oriented
way without having experience in C++.

The GRAPE application consists of three tabbed windows which are used
sequentially: In the first tab, the desired classes (e.g. BobbyBoard and LCD) are
loaded. Each class can then be instantiated by one or more objects. The object
names can be freely chosen. The second tab holds the main window for graphical
programming. Here, symbolic blocks are arranged intuitively in order to get a
flow chart with the desired program flow (see Figure [@)).
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e Ot | ot | i |

Command

H T

Fig. 9. Graphical program in GRAPE

For each symbolic icon, a properties dialog can be opened to define the se-
mantics of the icon in a semi-graphical way: For commands, the user can select
an object from the list of instantiated objects, then chose a method from the
object’s possible methods, and then select the desired parameters from the list
of possible parameters for the chosen method. This selection defines all parts of
a typical object-oriented method call: <object>.<method>(<parameters>).

After filling all graphical blocks with their respective meaning, the flow chart
can be saved as a XML description file. This makes it possible to perform, e.g.
in an individual tool, the translation to any object-oriented (or even classically
procedural) programming language. In GRAPE, this translation is already inte-
grated and the flow chart (or internally, the XML representation) is automati-
cally translated to C4++ code (see Figure [I0).

With this approach, the basic concepts of a procedural programming language
can easily be learned: commands, sequences of commands, if-clauses, while loops.
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#include "qfizBobbyBoard h
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Fig. 10. Respective code in GRAPE

And, it can be studied how these concepts are translated to C++ or another
programming language. In addition to that, the users learn to use given class
libraries.

4 Experiments

In order to demonstrate the feasibility of the ¢fix parts and controller boards,
we developed some typical robot and mechatronic applications.

4.1 Differential Drive Robot

The first mobile robot is a car with two independently driven wheels and a
caster wheel, all mounted on a 10cm x 10cm base plate (see Fig. [[I ). The
BobbyBoard drives the two motors as well as three infrared distance sensors
(Sharp GP2D120) which are used for a simple collision avoidance behaviour. An
improved version also uses bumpers, a line sensor for moving along a line and an
LCD for displaying messages like “front blocked” or general status information.

4.2 Offroad Robot

Figure [[2] shows an ”offroad” robot which was built in order to test the power
of the motor controllers (1L.293D).

For this robot the same mainboard as in the differential drive robot above
is used and drives four stronger motors, where the left and the right ones are
connected in parallel. The complete platform is much bigger (main plate of
20x20cm) than the above one and includes a boxed version of the LC-display.



The Robotics and Mechatronics Kit “qfix” 143

Fig. 12. Robot arm with three DOFs

Fig. 13. Omnidrive platform with three omnidirectional wheels

4.3 Soccer Robot

As a third application, a specialized soccer robot was built in order to demon-
strate the flexibility of both mechanics and electronics components. As main
platform we used a round plate of about 21cm diameter with three omnidirec-
tional wheels (see Figure [[3)).

In order to control the three motors, two controller boards were connected via
the I?C-bus and communicate with each other to establish a reliable movement
coordination. Additionally, the resulting soccer robot uses a kicker device and
a so called “dribbler” to hold the ball near the robot. As sensors, infrared light
sensors are used for detecting a RoboCupJunior ball. For obstacle avoidance,
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hl

Fig. 14. Soccer robots

infrared or ultrasonic distance sensors can be attached. The complete soccer
robot including a trendy skin or “tricot” is shown in Figure [I4]

5 Conclusion

We presented ¢fix, a construction kit for developing autonomous mobile robots
and other mechatronics applications. ¢fix was mainly developed for educational
and edutainment purposes. The kit consists of solid mechanical and electro-
mechanical parts, powerful modular controller boards with several extension
boards, and a complete C++ class library for easy support of all functionality.

Since the kits are often used in the RoboCupJunior area, where the users
are only 12 or even less years old and have no programming experience, we
developed the graphical programming environment GRAPE. This tool supports
object oriented programming on a graphical level but directly generates C++
code which can be studied and edited.

The complete gfiz robot kit family proves to be an appropriate tool for ro-
bot development. It is already used in educational classes and labs in schools
and at universities. Additionally, the open architecture encourages the robotics
community to help improving the kits.
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Abstract. Robot soccer is a challenging domain for sensor fusion and
object tracking techniques, due to its team oriented, fast-paced, dynamic
and competitive nature. Since each robot has a limited view about the
world surrounding it, the sharing of information with its teammates is
often crucial in order to be ready to react to situations which might in-
volve it in the near future. In this paper we propose a Particle Filter
based approach that addresses the problem of cooperative global sensor
fusion by explicitly modeling the uncertainty concerning the robots’ po-
sitions, the data association about the tracked object, and the loss of
information over the network.

1 Introduction

The tracking of fast moving objects has received constant attention in the context
of autonomous robots interacting with highly dynamic and potentially hostile
environments, and the robot soccer domain is particularly suitable to this pur-
pose, as a robot has to interact cooperatively and competitively with a set of
moving objects such as teammates, opponents and the ball.

1.1 The Platform

This work has been developed on the robot Sony Aibo ERS-7 [I], which is
the only allowed hardware platform on the 4-Legged RoboCup League [2]. This
limitation poses several interesting challenges for the task of object tracking, due
to the limited computational resources available (576 MHz MIPS CPU, 64MB of
RAM) and the presence of a single exteroceptive sensor, a low-power CMOS
camera with a maximum resolution of 208 x 160 pixel. Even the localization and
tracking algorithms have to consider the running time as a serious issue, and it
is highly desirable to be able to process the sensory information at the maximum
rate provided by the camera, 30Hz, since this device has a very limited field of
view (57° horizontal, 45° vertical) and consequently it has to be moved at high
angular velocities to scan the environment. This year, the problem has been
further complicated by the new rules of the league, which nearly doubled the

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAT 4434, pp. 146 2007.
© Springer-Verlag Berlin Heidelberg 2007
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field size (now is 6mx4m) and removed any border or fence which would prevent
the robots from observing unknown objects outside of the field. At last, legged
locomotion makes it impossible to accurately know the height of the camera
relative to the field, as this changes continuously as the robot walks, and the
camera is mounted on the snout of the robot, which can rotate with 3 degrees of
freedom; the uncertainty in the camera pose relative to the ground adds severe
noise levels to the measurements.

1.2 Related Work

The most significant achievement in the field of individual tracking has been
presented in [3], where the authors have used a sophisticated Rao-Blackwellised
Particle Filter to efficiently model strong non linearities in the ball motion due
to the interactions with the environment, such as bouncing on borders or be-
ing kicked by a robot. Cooperative object tracking is instead still in its infancy
in this context, as the additional problems of the uncertainty on the robots’
own positions, and the sharing of information over an unreliable network fur-
ther complicate the problem. In [4] the authors have compared several sensor
fusion techniques applied in the context of the RoboCup Middle-Size League,
including Bayesian Filtering techniques [5], simple techniques such as arithmetic
or weighted mean of percepts, and an anchoring approach. Not surprisingly, the
Kalman Filter and the Particle Filter resulted to be the top performers, with
the former as the solution of election due to its limited computational require-
ments, but it has to be noted that on this platform the uncertainty over the
robot location is very small, due to the availability of omni-directional cameras
and range sensors such as laser scanners. At last, in [6] has been proposed an Ex-
tended Kalman Filter based approach for global sensor fusion in the Four-Legged
League, which takes into account the localization problem. However, this paper
does not consider the data association problem, assuming the ball to be unique
on the field, an assumption which is not true anymore since the rule changes in
the league which have removed the protective fence from around the field.

2 Tracking the Ball with a Particle Filter

Even if the RoboCup rules allow only a single ball to be present on the field,
there are still several situations where ambiguities may arise. The camera is the
only exteroceptive sensor of this robot, and the ball is mainly recognized for
its color (orange), its spherical shape (although it is frequently incomplete due
to occlusions), and the fact that it lays on a green surface (the soccer field),
however there are situations where objects around the field, such as clothing
or shoes in the audience, can appear as valid ball candidates. Furthermore, the
official red jerseys used to distinguish one team of robots have also a rounded
shape, and due to limitations in the camera hardware, lighting, and blur, they
can appear as potential balls. For all these reasons, we feel that a Kalman Filter
based approach as described in [6] is not robust enough for our needs, as it
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does not deal very well with sensor ambiguity since it cannot deal with multi-
modal probability distributions; consequently, we have decided to use a Particle
Filter approach similar to what is described in [3], which can track multiple
ball hypotheses. To avoid adding the robot localization uncertainty to the ball
tracking own uncertainty, the ball position and velocity will be represented in a
robot-centric reference system.

2.1 Particle Filters

The Particle Filter [5] is a non-parametric implementation of the general Bayes
Filter, which is a recursive algorithm that calculates the belief or posterior bel(x;)
at time t of the state x; of a certain process, by integrating measurement obser-
vations z; and control actions u; over the belief of the state at time ¢ — 1. The
Bayes Filter is based on the Markov assumption or complete state assumption
which postulates the conditional independence of past and future data given the
current state x;. A Particle Filter represents an approximation of the posterior
bel(z;) in the form of a set of samples randomly drawn from the posterior it-
self; such a representation has the advantage, compared to closed form solutions
of the Bayes Filter such as the Kalman Filter [7], of being able to represent a
broad range of distributions and model non-linear processes, whereas parametric
representations are usually constrained to simple functions such as Gaussians.
Given a set of N samples or particles II; :== x},x?,..., 2, at time t each par-
ticle represents an hypothesis of the state of the observed system; obviously,
the higher the number of samples N, the better the approximation, however [§]
has shown how to dynamically adjust N. An estimate of p(z|us, zi_;) is called

Algorithm 1. Particle Filter

Require: particle distribution I7;_1, control action u:;, measurement observation z;
for i =1to N do
Process update: update the particle state as the result of control action w;:
xy x p(ze|us, x§_1)
Measurement update: calculate the particle importance factors wi = p(z:|z)
from the latest observation
Add <m§, w%) to the temporary set 11,
end for
Resampling: create I1; from II, by drawing the particles z¢ in a number propor-
tional to their importance w?.

Process Model, while p(z;|z?) is known as Sensor Model. In the context of robot
localization and object tracking, particle filters are often referred to as Monte
Carlo Localization [9].
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2.2 Sensor Model

Unlike other robot platforms, an important source of noise in the camera mea-
surements is the uncertainty about the camera pose relative to the robot-centered
reference system: the camera can rotate with 3 degrees of freedom, and its height
relative to the ground changes dynamically as the robot walks. Furthermore, the
on-board camera has only 3 shutter speed settings, with a minimum exposure
time of 2(1)08; as a result, images are affected by blur, which gets more noticeable
as the robot and camera speed increase. Lastly, the camera captures an image
sequentially from the top scanline to the bottom, with a frequency of 30fps, so
that a time delay exists between the top of the image and the bottom of = 3103,
which distorts the image and the percepts especially in case of a fast camera
panning motion (for a description of the problem and a possible solution see
[10]). The uncertainty about the measurement is modeled as a 2-dimensional
gaussian, with one axis oriented as the distance between the robot and the ball
(0,) and the other perpendicular to it (o ); the variances of such gaussian are
dependent on the following factors:

1. Percept confidence p.(z) € [; 1] calculated from the image processor based
on several criteria used to identify the ball, such as color, shape, sharpness
of the contour; its reciprocal is multiplied by both axes

2. Distance to the percept f,; is proportional to o,

Camera panning velocity fg; is proportional to o

4. Robot speed f,,, which affects the amount of “head bobbing”, causing mo-
tion blur and inaccuracy in the camera pose; is multiplied by both axes

©w

In order to estimate f,, fs and f,,, we used an external camera] mounted on
the ceiling above the soccer field to compare the robot’s own measurements with
the true ball position. Based on the observed data, we have modeled f, and fg
as second order polynomials, while for f,, we have chosen a piecewise linear
approximation; the results have been represented in Figure [l In case of several
objects in the image which might look like a ball, the vision system provides
a list of candidate ball hypotheses, each one with a certain percept confidence
pe(2), and they are all used to perform the measurement update of the particle
filter.

2.3 Process Model

Since the ball is tracked in a robot-centric reference system, the robot’s own mo-
tion is an apparent speed relative to the ball. At each time instant, an estimate
of the robot motion is represented by the odometry vector: o, = [of, o, w;]
where (o}, 0},) is the robot translation speed and w; is its angular velocity at
time t. In addition, we use a constant speed model, which propagates the posi-

tion of the ball 5" (¢) at time ¢ based on the speed @' () at time ¢ — 1; this because

! The average measurement error of such a vision system is below 0.5cm.
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Fig. 1. Ball measurement error functions learned from experimental data

accelerations are very difficult to measure with highly noisy sensors like this
camera. Consequently, the time-update is performed as follows2:

st cos(wiAt) —sin(w; At) At 0 si—t 0
sy | _ | sin(weAt) cos(wp At) 0 At e N 0
vl 0 0 cos(wy At) — sin(w; At) vt ol
vy 0 0 sin(wr At)  cos(wy At) vl ol

Since the constant speed model is only an approximation and the odometry
vector is noisy itself, in the time update we add to the probability distribution
a constant amount of gaussian noise (o = 0.25 empirically derived).

3 Multi-robot Tracking

As can be seen in Figure the measurement error grows very quickly with
the distance to the ball (error ~ 1m at a distance of 3.5m), making it very
difficult to track a ball which rolls in the opposite side of the field. Further, it

2 In this equation the sign of the odometry vector has to be reversed, here the negative
sign is omitted to keep compact the graphical representation.



Cooperative Visual Tracking in a Team of Autonomous Mobile Robots 151

happens very frequently that one or more robots in a team have the line of sight
to the ball completely occluded by teammates or opponents, but still they need
to know where the ball is in order to position themselves strategically on the
field. At last, it is desirable that the robots share a common estimate about the
ball position, so that they can coherently take strategical decisions such as who
should go to the ball and try to get in control of it. Thereto, merging the sensor
information of all the robots in a team can often result in a better estimate than
what would be possible for each robot alone. However, the cooperative tracking
of an object must be performed in a global coordinate system, and this severely
complicates the problem compared to local sensor fusion techniques, since the
uncertainty on the robots’ positions adds to the ball measurement errors. For
example, it happens that a robot following the ball focuses its attention for too
long on the ground, without looking at global landmarks: since field features such
as the field lines, the kick-off circle and the line crossings are symmetrical on
the field, the robot location probability distribution tends to concentrate around
symmetric modes, and consequently the localization state can jump frequently
from a peak to another. When the ball probability distribution of that robot
is transformed in global coordinates using the current robot pose, it will jump
along with it providing contradictory information to the whole team estimate
of the ball position and this is not desirable, especially if such robot is very
close to the ball and has a good view of it. For the robot localization, we have
implemented a Monte Carlo algorithm similar to what is described in [T1], with
a sample set of 100 particles.

3.1 Multi-robot Belief Merging

Since each particle in the self locator represents a candidate pose, ideally each
robot should calculate the global position of its ball probability distribution for
each particle of the self locator: with 40 particles to represent the (robot
centric) ball probability 74 (i),i € [0,40), and 100 particles for the localiza-
tion probability 7sr (), € [0,100), the final set of ball particles in the global
reference system would be 4000 particles per robot 7%(),7 € [0,4000). The
probability of each ball particle should be also multiplied by the probability of
the corresponding localization particle:

p(r(i-5)) = p(rp (i) - plmsL (i) (2)

Then such particles have to be sent to the teammates, merged with their parti-
cles, and clustered to find the expected “team ball” position. Algorithm [2] can
deal with situations where the localization distribution of some robot presents
strong ambiguities, because such ambiguities can be resolved by the information
provided by the teammates. The main problem with this approach is the huge
amount of particles that have to be computed and sent over the network: if each
particle is represented by the values [s, s, p(7%(i))] and each value is stored
in 32 bit precision, even when using broadcasts we would still use 1.5Mbit of
traffic per iteration of the algorithm just for particle data. An alternative to
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Algorithm 2. “Naive” Merging
for all ¢, j such that ¢ € [0,40), j € [0,100) do
calculate the position of 7% (¢)
calculate p(7%(i))
end for
send 7% (¢) to teammates
receive 7% (i) from teammates
cluster the joint particle set and compute the expected ball position

save on network traffic would be to send 7l (i) and 7gy,(j) and multiply the two
sets at the destination; however this would result in even greater computational
costs, and our platform is already not suitable to process particle sets of such
dimensions.

3.2 Reducing the Joint Particle Set Size

In most game situations, the particle distribution is not spread uniformly accross
the field (this normally happens only when the robot is placed on the field
for the first time) but it is concentrated in a very limited number of clusters.
This is because low probability particles are replaced with new samples in the
positions calculated from the latest observation, following the sensor-resetting
2] / Mixture Monte Carlo idea [13], so even when the robot is teleported
or “kidnapped” by the referee, a new cluster forms very quickly at the new
position of the robot. In our experiments, in a typical match over 90% of the
total probability is concentrated in at most 3 clusters, so we calculate the 3 robot
pose hypotheses with the highest probabilities to generate the ball distribution
in global coordinates. Further, to keep the running time and network traffic
low, we subsample the ball global probability distribution to obtain up to 12
“representative particles” out of the set of 120. Since each robot provides at
most 12 particles to his teammates, the global ball estimate is calculated out of
48 particles as the cluster with the highest probability. To efficiently calculate
the representative particles, the soccer field is recursively split into cells to form
a quad-tree, with a maximum depth 6 = 7:

— Basic Cell: a cell which contains one particle or none
— Composite Cell: a cell which contains 4 Basic Cells

While it might appear that 12 particles are too few to represent the belief of
a single robot about the ball position, it has to be noted that Algorithm [3 is
applied to the particle set before its normalization / resampling. As such, a small
number of particles can carry the same amount of information of a much larger
set after the normalization, because such a process replaces high probability
particles with several copies having all the same importance factor.
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Algorithm 3. Representative Particles Computation
1. The whole field is initialized as a Composite Cell
2. if a Basic Cell contains more than one particle
— transform it in a Composite Cell by subdividing it into 4 Basic Cells
— particles are inserted into each new Basic Cell depending on their position on
the field
3. apply recursively step 2 until a maximum depth § = 7 is reached
4. representative particles are generated out of the 12 cells which contain the highest
probability; if a chosen cell contains more than one particle, the representative
particle position is calculated as a weighted average of the particles there contained

3.3 Loss of Information over the Network

To keep network utilization and latency to low levels, in our system a robot
exchanges data with his teammates through UDP broadcasts [14]. However,
UDP does not guarantee that the packets will reach their destination, and
it is quite common to have network performance problems in crowded places
or at the competition sites, since 802.11 networks are now so widely popu-
lar. Since our ball tracking runs at a fairly high rate (the same as the vision
system, 30Hz), it is not so unlikely that for a frame or two no particle is re-
ceived from a certain teammate. In such unfortunate case, it is wiser to use
older information from the corresponding robot instead of immediately discard-
ing all the particles of the previous iteration, since in such a short interval
of time (up to 100ms) the ball state cannot change too much. Therefore the
current implementation of our ball tracker stores the particles received from
all teammates. If in the new frame, at least one particle is received from a
certain robot, all its old particles are discarded and substituted by the new
ones. Otherwise, the old particles can be used, but random noise has to be
added to reflect the increased uncertainty due to the unmodeled ball motion,
and their reliability has to be lowered. That is achieved by replacing all old
particles with two new ones, each new particle carrying half of the original
probability. If this results in more than 12 particles for that particular ro-
bot, only the 12 particles with the highest validities are retained. Afterwards
all particles are spread by the addition to their position of gaussian noise, to
represent a probabilistic search around their original position, since the di-
rection of movement of the ball is unknown. The standard deviation of such
noise is a function of the number of frames where no particles were received
from the teammate. Finally, the validity of these particles is decreased by a
factor which is also a function of their age. In our tests, this approach has
worked better than propagating the old state by using the speed, because the
speed estimation is very noisy in itself, the ball motion is often non-linear,
and the constant-speed model is a valid approximation only for very short
periods of time.
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Fig. 2. Visualization of Algorithm [Bl with an example

4 Experiments and Results

Finding a suitable reference system to compare against our proposed approach
has not been an easy task, as global sensor fusion is still in its infancy on our
development platform, and results from other leagues such as [4] cannot be
directly compared, due to the vast difference of computational resources and
sensor capabilities. A good candidate for our comparison has been found in [I5],
since this approach is adopted by 5 different teams on this hardware platform
and its source code is publicly available.

4.1 Reference System

The approach described makes use of a Kalman Filter [7] to track the ball
position and velocity in a robot-centric reference system. The robots in the
team exchange their localization and local ball estimates, and the global team
ball is calculated from the information provided by the robot with the highest
confidence in its own localization.
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4.2 Experimental Results

Our experiments have been performed by running in parallel on the same robots
the reference system and our new solution, processing exactly the same data.
The results of both systems are compared with the ground truth obtained from
a ceiling camera global vision system as described in Section In all of the
following scenarios, the environment surrounding the soccer field is unstructured
and unknown, and the robots might incorrectly identify false landmarks and false
balls in it.

Scenario 1. In our first test scenario, 4 robots are placed on the field, without
opponents or obstacles which might occlude their sight. Their vision systems are
perfectly calibrated for the lighting conditions, and all the robots move freely
on the field. The “observing robot” can never see the ball; the other 3 can,
but they also have to periodically distract their attention from it in order to
localize themselves. This test represents a “best case” scenario to evaluate the
performance in a condition where the sensor information is relatively accurate
and reliable. The results are shown in Figure

Scenario 2. In this scenario, the conditions are similar to the first test, but one
of the robots which can see the ball has a problem in its vision system, so that it
consistently detects “ghost balls” inside the yellow goal. Such a problem is not
infrequent during the competitions, and can severely penalize the performance
of the whole team. The results are shown in Figure

Scenario 3. This scenario is based on a real game situation. All robots are free to
move and look at the ball, but the presence of opponents can occlude their sight
to the ball and to the landmarks. Even worse, the opponents struggle against the
observing team for getting control over the ball, compromising the localization
state of the robots, as such collisions cannot be detected since the robots do not
have any range or contact sensors. The results are shown in Figure

Scenario 4. This test is similar to the previous scenario, but the frequency and
entity of the collisions is greater. The results are shown in Figure

4.3 Performance

Our goal was to be able to process all the sensory information at the native
camera frame rate of 30Hz, this because of the limited field of view of the camera,
which forces the robot to look around continuously at high angular velocities.
The tracking system composed of the individual robot-centric tracker and the
global tracker requires about &~ 1ms to execute, being on par in terms of run-time
with Kalman Filter based approaches, and many times faster than other Particle
Filter based implementations. On average, each robot broadcasts 5 particles per
frame, 12 bytes per particle, 30 times per second, for a total network traffic
(team of 4 robots) of ~ 56Kbit/s, while in the worst case, this value reaches
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Fig. 3. Test scenarios

135Kbit/s; this is compatible with the competition constraints, which limit to
512Kbit/s the total bandwidth available to a team that has to be used also
for other communication tasks such as role assignments and strategical data
exchange.

5 Conclusion

It has been presented a Particle Filter based approach that tackles the problem
of global sensor fusion in presence of high uncertainty concerning the robot posi-
tions, the data association about the tracked object, and the loss of information
over the network. The system meets all the performance constraints set by the
platform, and is competitive in terms of running time with simpler approaches
which do not deal with all the aforementioned problems. In the future, we plan
to investigate the possibility to make use of the speed information in the global
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tracker, by building a better sensor model with the help of our ceiling camera
application and machine-learning techniques.
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