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Preface

The 10th RoboCup International Symposium was held during June 19–20, 2006
at the Fair & Convention Center in Bremen, Germany, immediately after the
2006 Soccer, Rescue and Junior Competitions. RoboCup is increasingly seen
by the robotics community as a significant approach to the evaluation of the
effectiveness of the proposed solutions to the many difficult robotics problems.

The RoboCup International symposium hosted scientific contributions in all
the areas relevant to RoboCup Competitions. The number of submissions to
the Symposium increased again and totalled 143. Each paper was reviewed by
at least three Program Committee members. The Program Committee included
researchers involved in RoboCup and other scientists from outside the RoboCup
community. Papers that received dissenting recommendations were discussed
among the reviewers, moderated by the Co-chairs. The final decisions were made
by the Co-chairs, who selected 22 submissions as full papers and 36 submissions
as posters. This means an acceptance rate of less than 16% for full papers and
less than 41% considering posters.

The symposium was run in single-track to allow coverage of all robotic-related
topics by all attendees. We had five sessions for oral presentations and two
poster sessions. We were also delighted to have two outstanding invited speak-
ers. Hod Lipson (Cornell University, USA) spoke about his work on biologically
inspired robotics in his talk “Biologically Inspired Robotics: From Evolving to
Self-Reproducing Machines.” Sebastian Thrun (Stanford University, USA) de-
scribed how his team won the DARPA Grand Challenge in his talk “Winning
the DARPA Grand Challenge.”

The Symposium Co-chairs selected a few papers as nominees for the Best
Paper Award and for the Best Student Paper Award. The RoboCup trustees made
the final decision and selected “A 3D Simulator of Multiple Legged Robots Based
on USARSim” by M. Zaratti, M. Fratarcangeli, L. Iocchi as Best Paper and “Half
Field Offense in RoboCup Soccer: A Multiagent Reinforcement Learning Case
Study” by S. Kalyanakrishnan, Y. Liu, P. Stone as Best Student Paper.

As the quality of the symposium depends heavily on the quality of the gener-
ous Program Committee members, we wish to particularly thank them for their
work, which was very hard and concentrated in a very short time. We would
also like to thank the Local Organizing Committee, headed by Ubbo Visser, for
turning Robocup 2006 into such a memorable and enjoyable event. Last but not
least we thank Stefan Schiffer for his help in preparing these proceedings.

Congratulations to the RoboCup Competitions and the RoboCup Sympo-
sium, which celebrated their tenth anniversary this year in Bremen!

December 2006 Gerhard Lakemeyer
Elizabeth Sklar

Domenico G. Sorrenti
Tomoichi Takahashi
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Bridging the Gap Between Simulation and

Reality in Urban Search and Rescue

Stefano Carpin1, Mike Lewis2, Jijun Wang2,
Steve Balakirsky3, and Chris Scrapper3

1 School of Engineering and Science
International University Bremen – Germany

2 Department of Information Sciences and Telecommunications
University of Pittsburgh – USA
3 Intelligent Systems Division

National Institute of Standards and Technology – USA

Abstract. Research efforts in urban search and rescue grew tremen-
dously in recent years. In this paper we illustrate a simulation soft-
ware that aims to be the meeting point between the communities of
researchers involved in robotics and multi-agent systems. The proposed
system allows the realistic modeling of robots, sensors and actuators,
as well as complex unstructured dynamic environments. Multiple het-
erogeneous agents can be concurrently spawned inside the environment.
We explain how different sensors and actuators have been added to the
system and show how a seamless migration of code between real and sim-
ulated robots is possible. Quantitative results supporting the validation
of simulation accuracy are also presented.

1 Introduction

Urban search and rescue (USAR) can be depicted as the research field that ex-
perienced the most vigorous development in recent years within the robotics
community. It offers a unique combination of engineering and scientific chal-
lenges in a socially relevant application domain [5]. The broad spectrum of rele-
vant topics attracts the attention of a wide group of researchers, with expertise
as diverse as advanced locomotion systems, sensor fusion, cooperative multia-
gent planning, human-robot interfaces and more. In this framework, the contest
schema adopted by the RoboCup Rescue community, with the distinction be-
tween the real robots competition and the simulation competition, captures the
two extremes of this growing community. Looking back at the past RoboCup
events, tremendous progresses in short time characterized both communities. In
2002 the real rescue robots competition was described as a competition where
teleoperated robots were mainly used because of the complexity of the problem
[3]. In the simulation competition, emphasis was instead on the inter-agent com-
munication models adopted [9]. The huge gap between these two extremes is
evident. Only two years later [6], the real robot competition saw the advent of
teams with three dimensional mapping software, intelligent perception, and the

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 1–12, 2007.
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2 S. Carpin et al.

first team with a fully autonomous multi-robot system. Within the simulation
competition, teams exhibited cooperative behaviors, special agent programming
languages and learning components. With these premises, it is evident that soon
a mutual migration of relevant techniques will materialize. Nevertheless, certain
logistic obstacles still prevent a seamless and profitable percolation of ideas and
knowledge. Having set the scene, in this paper we present the latest developments
of a simulation environment, called USARsim, that naturally plays the role of
an in-between research tool where multi-agent and multi-robot systems can be
studied in a artificial environment offering experimental conditions comparable
to reality. After a demo stage during Robocup 2005 in Osaka, USARsim has
been selected as the software infrastructure underlying the Virtual Robots com-
petition, that was approved as the third competition within the RoboCup rescue
simulation framework. In addition, we also offer an overview of the MOAST API,
a component based software framework that can be used to quickly prototype
control software, both in reality and on top of USARsim. Finally, we provide
results supporting a quantitative evaluation of the simulator fidelity.

2 Software Structure

The current version of USARsim is based on the UnrealEngine2 game engine re-
leased by Epic Games with Unreal Tournament 2004. The simulation is written
as a combination of levels, describing the 3-D layout of the arenas and mod-
ifications, and scripts redefining the simulations behavior. The engine to run
the simulation can be inexpensively obtained by buying the game. The Unreal
Engine provides a sophisticated graphical development environment and a va-
riety of specialized tools. The engine includes modules handling input, output
(3D rendering, 2D drawing, sound), networking and physics and dynamics. The
games level defines a 3-D environment in much the same way as VRML (virtual
reality markup language) and may use many of the same tools. The game code
handles most of the basic mechanics of simulation including simple physics. Mul-
tiplayer games use a client-server architecture in which the server maintains the
reference state of the simulation while clients perform the complex graphics com-
putations needed to display their individual views. USARsim uses this feature
to provide controllable camera views and the ability to control multiple robots.
Unreal Tournament has two types of entities, human players who run individual
copies of the game and connect to the server (typically running on the first play-
ers machine), and ”bots” (short for robots), simulated players running simple
reactive programs. Gamebots, a modification to the Unreal Tournament game
that allows bots to be controlled through a normal TCP/IP socket [1], provides
a protocol for interacting with Unreal Tournament. Because the full range of bot
commands and Unreal scripts can be accessed over this connection GameBots
provides a more powerful and flexible entry into the simulation than the player
interface. The GameBot interface is ideal for simulating USAR robots because it
can both access bot commands such as Trace to simulate sensors and exert com-
plicated forms of control such as adjusting motor torques to control a simulated
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robot. One of the client options, the spectate mode, allows the clients viewpoint
(camera location and orientation from which the simulation is viewed) to be
attached to any other player including ”bots”. By combining a bot controlled by
GameBots with a spectator client we can simulate a robot with access to both
simulated sensor data through the bot and a simulated video feed through the
spectating client. By controlling the simulated robot indirectly through Game-
Bots rather than as a normal client we gain the additional advantage of being
able to simulate an autonomous robot (controlled by a program) a teleoperated
robot (controlled by user input) or any level of automation in between.

3 Robot Interfaces

An intelligent system must translate a mission command into actuator voltages.
While this may be done in a simple monolithic module, USARsim/MOAST
implements a hierarchical control structure that compartmentalizes the control
system responsibility and domain knowledge necessary to create each controller.
The knowledge and control requirements of a typical robotic platform may be de-
composed into the two broad areas of sensing and behavior generation. In turn,
behavior generation may be decomposed into mobility behaviors and mission
package behaviors. In this decomposition, mobility refers to the control aspects
of the vehicle that relate only to the vehicle’s motion (e.g. drive wheel velocities),
sensing refers to systems that acquire information from the world (e.g. cameras),
and mission packages are controllable items on the platform that are not related
to mobility (e.g. camera pan/tilt or robotic arm). It is the authors’ belief that
decomposing a system in this way allows for the creation of a generic internal
representation and control interface that is able to fully control most aspects
of robotic platforms. USARsim is designed to implement this decomposition
and provides developers with a modular interface into the low-level simulated
hardware of the robotic platform. It provides for component discovery, and inde-
pendent control of mobility, sensors, and mission packages. Coupling USARsim
to the Mobility Open Architecture Simulation and Tools (MOAST) framework
adds modularity in time by providing a set of hierarchical interfaces into these
components. Two different physical control interfaces exist into the system. The
first allows low-level control into USARsim and is based on sending ASCII text
over a TCP/IP socket. Higher-level commands and status utilize the Neutral
Message Language (NML) [8] that permits a physical interface of various types
of sockets as well as serial lines.

3.1 USARsim Socket API

During the development of the interface to USARsim many factors were taken
into account to ensure that the interface was both well-defined and standardized.
Scientific standards and conventions for units, coordinate systems, and interfaces
were used whenever possible. USARsim decouples the units of measurement used
inside Unreal by ensuring that all units meet the International System of Units
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Fig. 1. Depiction of the Mission
Package and the Sensor and
their corresponding coordinate
systems

Fig. 2. Internal Representation of an Robotic
Arm

(SI) standard conventions. SI Units are a National Institute of Standards and
Technology (NIST) developed convention that is built on the modern metric
system, and is recognized internationally. The coordinate systems for various
components must be consistent, standardized, and anchored in the global coor-
dinate system, as illustrated in Figure 1. USARsim leverages the previous efforts
of the Society of Automotive Engineers, who published a set of standards for
vehicle dynamics called SAE J670: Vehicle Dynamic Terminology. This set of
standards is recognized as the American National Standard for vehicle dynamics
and contains a comprehensive set of standards that describes vehicle dynam-
ics through illustrated pictures of coordinate systems, definitions, and formal
mathematical representations of the dynamics. Finally, the messaging protocol,
including the primitives, syntax, and the semantics must be defined for the in-
terface. Messaging protocols are used in USARsim to insure that infrequent and
vital messages are received. The primitives, syntax, and semantics define the
means in which a system may effectively communicate with USARsim, namely
to speak USARsim’s language. There are three basic components that exist
currently in USARsim: robots, sensors, and mission package. For each class of
objects there are defined class-conditional messages that enable a user to query
the component’s geography and configuration, send commands to, and receive
status back. This enables the embodied agent controlling the virtual robot to be
self-aware and maintain a closed-loop controller on actuators and sensors. The
formulation of these messages are based on an underlying representation of the
object, includes their coordinate system, composition of parts, and capabilities.
This highlights a critical aspect underlying the entire interface; the representa-
tion of the components and how to control those components. For example, take
a robotic arm, whose internal representation of an arm is visualized in Figure 2.
In order for there to be a complete and closed representation of this robotic arm,
the following aspects are defined as individual class conditional messages that
are sent over the USARsim socket.
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Configuration: How to represent the components and the assembly with re-
spect to each other.

Geography: How to represent the pose of the sensor mounts and joints mount
with respect to the part, and the pose of the part with respect its parent
part.

Commands: How to represent the movements of each of the joints, either in
terms of position and orientation or velocity vectors.

Status: How to represent the current state of the robotic arm.

3.2 Simulation Interface Middleware (SIMware)

Residing between USARSim and MOAST is the SIMware layer. This layer pro-
vides a modular environment and allows for a gradient of configurations from the
purely virtual world to the real world. SIMware is designed to enable MOAST
to conect to interfaces or APIs for real or virtual vehicles. It seemlessly connect
to platforms with different messaging protocols, semantics, or different levels of
abstraction. SIMware is made up of three basic components: a core, knowledge
repository, and skins. The core of SIMware is essentially a set of state tables and
interfaces that enables SIMware to administer the transference of data between
two different interfaces. This transference is enabled through the use of knowl-
edge repositories that provide insite into the target platform’s capibilities and
abstraction. The skins are an interface specific parsing utility that utilize the
knowlege repository in order to enable the core to translate incoming and out-
going message traffic to meet the appropriate level of abstraction for the target
interface.

3.3 MOAST API

The MOAST framework connects into USARsim via SIMware and provides ad-
ditional capabilities for the system. These capabilities are encapsulated in com-
ponents that are designed based on the hierarchical 4-D/RCS Reference Model
Architecture [2]. The 4-D/RCS hierarchy is designed so that as one moves up
the hierarchy, the scope of responsibility and knowledge increases, and the reso-
lution of this knowledge and responsibility decreases. Each echelon (or level) of
the 4-D/RCS architecture performs the same general type of functions: sensory
processing (SP), world modeling (WM), value judgment (VJ), and behavior gen-
eration (BG). Sensory processing is responsible for populating the world model
with relevant facts. These facts are based on both raw sensor data, and the results
of previous SP (in the form of partial results or predictions of future results).
The world model must store this information, information about the system self,
and general world knowledge and rules. Furthermore, it must provide a means
of interpreting and accessing this data. Behavior generation computes possible
courses of action to take based on the knowledge in the WM, the systems goals,
and the results of plan simulations. Value judgment aids in the BG process by
providing a cost/benefit ratio for possible actions and world states.
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Fig. 3. Modular Decomposition of MOAST framework that provides modularity in
broad task scope and time

The regularity of the architectural structure in 4-D/RCS enables scaling to any
arbitrary size or level of complexity. Each echelon within 4-D/RCS has a charac-
teristic range and resolution in space and time. Each echelon has characteristic
tasks and plans, knowledge requirements, values, and rules for decision-making.
Every component in each echelon has a limited span of control, a limited number
of tasks to perform, a limited number of resources to manage, a limited number
of skills to master, a limited planning horizon, and a limited amount of detail
with which to cope.

This decomposition is depicted in Figure 3. Under this decomposition, the
USARsim API may be seen as fulfilling the role of the servo echelon, where
both the mobility and mission control components fall under BG. The sensors
are able to output arrays of values, world model information about the vehicle
self is delivered, and mission package and mobility control are possible. The
remainder of this section will concentrate on the functioning and interfaces of
the remaining echelons of the hierarchy.

Primitive Echelon. The primitive echelon behavior generation is in charge of
translating constant curvature arcs or position constraints for vehicle systems into
velocity profiles for individual component actuators based on vehicle kinematics.
For example, the AM Mobility BG will send a dynamically correct constant cur-
vature arc for the vehicle to traverse. This trajectory will contain both position
and velocity information for the vehicle as a whole. For a skid steered vehicle, the
Primitive Echelon BG plans individual wheel velocities based on the vehicle’s kine-
matics that will cause to vehicle to follow the commanded trajectory. During the
trajectory execution, BG will read vehicle state information from the Servo Eche-
lon WM to assure that the trajectory is being maintained and will take corrective
action if it is not. Failure to maintain the trajectory within the commanded tol-
erance will cause BG to send an error status to the AM Mobility BG.
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The Primitive Echelon SP is in charge of converting sensor reports from sen-
sor local coordinates to vehicle local coordinates. This information is read by
the world model process which performs spatial-temporal averaging to create an
occupancy map of the environment in vehicle local coordinates. This map is of
fixed size and is centered on the current vehicle location. As the vehicle moves,
distant objects fall off of the map. Future enhancements will allow for the popu-
lation of newly added map area with any information that may be stored in the
larger extents AM WM.

Autonomous Mobility Echelon. The Autonomous Mobility Echelon behav-
ior generation is in charge of translating commanded way-points for vehicle sys-
tems into dynamically feasible trajectories. For example, the Vehicle Echelon
mission controller may command a pan/tilt platform to scan between two ab-
solute coordinate angles (e.g. due north and due east) with a given period.
BG must take into account the vehicle motion and feasible pan/tilt accelera-
tion/deceleration curves in order to generate velocity profiles for the unit to
meet the commanded objectives. BG modules at this level may take advantage
of all of the world model services provided o the Primitive Echelon in addition
to the occupancy maps that have are maintained by the Primitive Echelon WM.

SP at this level extracts environmental attributes and in conjunction with WM
labels the previously generated occupancy map with these attributes. Examples
of attributes include terrain slope, and vegetation density.

Vehicle Echelon. The Vehicle Echelon behavior generation is in charge of
accepting a mission for an individual vehicle to accomplish and decomposing
this mission into commands for the vehicle subsystems. Coordinated way-points
in global coordinates are then created for the vehicle systems to follow. This
level must balance possibly conflicting objectives in order to determine these
way-points. For example, the Section Echelon mobility BG may command the
vehicle to arrive safely at a particular location by a certain time while searching
for victims of an earthquake. The Vehicle Echelon mobility BG must plan a path
that maximizes the chances of meeting the time schedule while minimizing the
chance of an accident; and the Vehicle Echelon mission BG must plan a camera
pan/tilt schedule that maximizes obstacle detection and victim detection. Both
of these planning missions may present conflicting objectives.

SP at this level works on grouping cells from the AM WM into attributed
points, lines, and polygons. These features are stored in a WM knowledge-base
that supports SQL based spatial queries.

Section (Team) Echelon and Above. The highest level that has currently
been implemented under the MOAST framework is the Section or Team Eche-
lon. This level of BG has the responsibility of taking high-level tasks and decom-
posing them into tasks for multiple vehicles. For example, the Section Echelon
mobility may plan cooperative routes for two vehicle to take in order to explore
a building. This level must take into account individual vehicle competencies
in order to create effective team arrangements. Higher echelon responsibilities
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would include such items as planning for groups of vehicles. An example of this
would be commanding Section 1 to explore the first floor of a building and Sec-
tion 2 to explore the second floor. Based on the individual teams performance,
responsibilities may have to be adjusted or reassigned.

4 Validation

The usefulness of a simulation such as USARsim as a research tool is strongly
dependent on the degree to which it has been validated and the availability of
validation data for use in choosing models and assessing the generalizability of
results. The provision of common and standard tools allows researchers to com-
pare results, share software and advances, and collaborate in ways that would be
impossible otherwise. While many of these benefits accrue simply from standard-
ization, others require a closer correspondence between simulation and reality.
While a human-robot interaction (HRI) experiment may not demand full real-
ism in the behavior of a PID controller, replicating constraints such as a narrow
field of view and invisibility of obstacles obstructing wheels may be essential to
achieving results relevant to the operation of actual robots. Researchers wishing
to port code developed in simulation to a real robot by contrast may need the
highest fidelity model of the control system attainable to get useful results. In
validating USARsim we are attempting to measure correspondences as precisely
as possible so they also may serve for lower fidelity uses and where this is not
possible identify those areas in which only low fidelity results are available.

A comparison of feature extraction for the Orange Arena using a laser range
finder (Hokuyo PB9-11) on an experimental robot and its simulation in US-
ARsim was reported already in [4]. The mapped areas along with their Hough
transforms were practically identical and adjustable parameters tuned using the
simulation did not require change when moved to the real robot. We have since
conducted validation studies investigating HRI for the Personal Explorer Rover
(PER) [7] and the Pioneer, P2/P3-DX. Some of these results for the PER were
reported in [10]. This HRI validation testing was conducted at Carnegie Mel-
lons replica of the NIST Orange Arena using both point-to-point and teleoper-
ation control modes for the PER and teleoperation only for the pioneer P2-AT
(simulation)/P3-AT (robot). In this study driving performance was observed for
different surfaces and simple and complex courses using point-to-point or tele-
operation control modes. Participants controlled the real and simulated robots
from a personal computer located in the Usability laboratory at the School of
Information Sciences, University of Pittsburgh. For simulation trials the simu-
lation of the Orange Arena ran on an adjacent PC. For the real robotic control
trials the participants controlled robots over the Internet in a replica of the Or-
ange Arena in the basement of Newell Simon Hall at Carnegie Mellon University
(see figure 4). Measures such as the distance from the stopping point to the
target cone were collected for both the physical arena and the simulation. A
standard interface developed for RoboCup USAR competition [7] was used un-
der all conditions. Participants in the direct control mode controlled the robots
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Fig. 4. On the left side the orange arena at CMU. On the right side the simulated arena
within USARsim. The yellow cone to be reached can be observed in both images.

using a joystick. Both robots were skid steered so forward backward movements
of the joystick led to movement while right/left movements produced changes
in yaw. In the waypoint control mode participants selected waypoints by click-
ing on locations on the video display. This input was interpreted by the control
software as specifying a direction and duration of travel. Manual adjustments in
the point-to-point condition were made using the cursor keys.

Procedure. In Stage 1 testing of the PER and Pioneer (direct control mode) we
established times, distances, and errors associated with movements over a wood
floor, paper, and lava rocks. These data were used to adjust the speed of the sim-
ulated PER and Pioneer and alter the performance of the simulated PER when
moving over scattered papers. In Stage 2 testing, PER robots were repeatedly
run along a narrow corridor with varying types of debris (wood floor, scattered
papers, lava rocks) while the sequence, timing and magnitude of commands were
recorded. Participants were assigned to maneuver the robot with either direct
teleoperation or waypoint (specified distance) modes of control. There were five
participants in each of the PER groups (real-direct, real-waypoint, simulation-
direct, simulation-waypoint) and four in the Pioneer (real-direct, simulation-
direct) groups. In the initial three exposures to each environment, participants
had to drive approximately three-meters, along an unobstructed path to an
orange traffic cone. In later trials, obstacles were added to the environments,
forcing the driver to negotiate at least three turns to reach the destination. The
distances from stopping position to the goal and task times were recorded for
both simulated and real trials. A time-stamped log of control actions and dura-
tions were collected for both real and simulated robots.

Terrain effects. The paper surface had little effect on either robots operation.
The rocky surface by contrast had a considerable impact, including a loss of trac-
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Fig. 5. Distribution of the times to complete the mission

tion and deflection of the robot. This was reflected by increases in the odometry
and number of turn commands issued by the operators even for the straight
course. A parallel spike in these metrics is recorded in the simulator data. As
expected the complex course also led to more turning even on the wood floor.

Figure 5 shows these data for the simulated and actual PER and Pioneer.

Proximity. One metric on which the PER simulation and the physical robot
consistently differed was the proximity to the cone acquired by the operator.
Participants were given the instruction to get as close to the cone as possible
without touching it. Operators using the physical robot reliably moved the robot
to within 35cm from the cone, while the USARsim operators were usually closer
to 80cm from the cone. It is unlikely that the simulation would have elicited
more caution from the operators, so this result suggests that there could be a
systematic distortion in depth perception, situation awareness, or strategy. In
both cases the cone filled the cameras view at the end of the task. Alternatively,
the actual PER was equipped with a safeguard to prevent running into objects
while the simulated PER was not. Although this feature was not included in
the instructions participants may have discovered it in controlling the robot and
adopted a strategy of simply driving until the robot stopped. Figure 6 shows the
distribution of these stopping distances. Another issue addressable from these
data is the extent to which similarities in performance are a function of the
platforms being simulated or differences between the simulation and control of
real robots. Figure 5 suggests that both influences are present. As with our other
data there are clear differences associated with platform and control mode. Note
for instance the consistently shorter completion times shown in figure 5 for both



Bridging the Gap Between Simulation and Reality in USAR 11

Fig. 6. Distribution of the stopping distances of the PER robot from the cone

actual and simulated Pioneers. Idle times, however, were much closer between
the simulated PER and Pioneer than between the simulations and the simulated
platforms. These substantially longer pauses between actions in controlling the
real robot occurred despite matching frame rates although slight differences in
response lag may have played a factor. Despite the difference in length of pauses
completion times remain very close between the robot and the simulation. The
average number of commands were also very similar between the simulation
and the PER for control mode and environment except for straight travel over
rocks in command mode where PER participants issued more than twice as
many commands as those in the simulation or direct operation modes. A similar
pattern occurs for forward distance traveled with close performance between
simulation and PER for all conditions but straight travel over rocks, only now
it is the teleoperated simulation that is higher.

5 Conclusions

In this paper we have presented the latest developments concerning the US-
ARsim simulation environment, a natural candidate to meet the demands of
researchers involved both in simulation and with real robots. Initial valida-
tion results show an appealing correspondence between experiences gained with
USARsim and the corresponding real robots. Further benefits from USARsim
can be obtained using MOAST, a framework that aids the development of au-
tonomous robots. USARsim software and MOAST can be obtained for free
from sourceforge.net/projects/usarsim and souceforge.net/projects/moast, re-
spectively. As our library of models and validation data expands we hope to begin
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incorporating more rugged and realistic robots, tasks and environments. Accu-
rate modeling tracked robots which will be made possible by the release of Un-
realEngine3 would be a major step in this direction. The open source model
adopted for the development of these software foster the active involvement of
multiple developers and already gained quite some popularity.

References

1. Kaminka, G., Veloso, M., Schaffer, S., Sollitto, C., Adobbati, R., Marshall, A.,
Scholer, A., Tejada, S.: GameBots: A flexible test bed for multiagent team research.
Comm. of the Association for Computing Machinery 45(1), 43–45 (2002)

2. Albus, J.: 4-D/RCS Reference Model Architecture for Unmanned Ground Vehicles.
In: Proc. IEEE Int. Conf. on Robotics and Automation, pp. 3260–3265 (2000)

3. Asada, M., Kaminka, G.A.: An overview of RoboCup 2002 Fukuoka/Busan. In:
Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS (LNAI),
vol. 2752, pp. 1–7. Springer, Heidelberg (2003)

4. Carpin, S., Wang, J., Lewis, M., Birk, A., Jacoff, A.: High fidelity tools for rescue
robotics: Results and perspectives. In: Robocup 2005 Symposium (2005)

5. Kitano, H., Tadokoro, S.: Robocup rescue: a grand challenge for multiagent and
intelligent systems. AI Magazine (1), 39–52 (2001)
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Abstract. This paper presents a flexible 3D simulator able to reproduce
the appearance and the dynamics of generic legged robots and objects
in the environment at full frame rate (30 frames per second). Such a
simulator extends and improves USARSim (Urban Search and Rescue
Simulator), a robot simulator in turn based on the game platform Un-
real Engine. This latter provides facilities for good quality rendering,
physics simulation, networking, highly versatile scripting language and a
powerful visual editor. Our simulator extends USARSim features by al-
lowing for the simulation and control of legged robots and it introduces a
multi-view functionality for multi-robot support. We successfully tested
the simulator capabilities by mimicking a virtual environment with up
to five network-controlled legged robots, like AIBO ERS-7 and QRIO.

1 Introduction

Robotic simulation is very important in developing robotics applications, both
for rapid prototyping of applications, behaviors, scenarios, and for debugging
purposes of many high-level tasks. Robot simulators have been always used in
developing complex applications, and the choice of a simulator depends on the
specific tasks we are interested in simulating. Moreover, simulators are also very
important for robotic education: in fact, they are powerful teaching tools, allow-
ing students to develop and experiment typical robotic tasks at home, without
requiring them to use a real robot.

2D simulators are widely used to evaluate the behaviors of robotic applica-
tions, they are very effective for many kinds of robots and applications, and are
easy to use and to customize. However, there are cases in which a 2D simulator
is not sufficient. For example, for mobile robots with higher mobility than wheels
(e.g., legged or snake-like robots) and in 3D environments, a 2D simulator may
be too simplistic to correctly model some behaviors.

A 3D simulator for mobile robots must also correctly simulate the dynamics
of the robots and of the objects in the environment, thus allowing for a cor-
rect evaluation of robot behaviors in the environment. The required accuracy of
dynamics simulation depends on the particular behavior we are interested in eval-
uating. Moreover, real-time simulation is important in order to correctly model
interactions among the robots and between the robots and the environment.

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 13–24, 2007.
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Since simulation accuracy is computationally demanding, it is often necessary
an approximation to obtain real-time performance.

Another important feature of a robotic simulator is easy integration of differ-
ent robotic platforms, different scenarios, different objects in the scene, as well
as support for multi-robot applications.

Finally, visual realism is not fundamental for robotic simulation, since may
be not adeguate to experiment and evaluate low-level sensor processes, such as
image processing. However, visual realism usually has a minimum impact on the
performance of the simulator (since most of the computation can be demanded
to graphics adapters of the PCs), while a simulator with visual realism can be
more attractive.

3D Robotic Simulators. There exist already several simulators that handle the
issues discussed above. As our aim is to address 3D physics simulation, let us see
how this feature is integrated in the simulators that have been used within the
RoboCup Four Legged league and in general for 3D modeling of complex robots.
There are several factors that make realistic robotics simulation hard to achieve.
In order to represent a valid tool for the robotics researcher, the simulator must
fulfill a number of requirements:

Flexibility: the simulator must allow for the simulation of different robots,
not even know a priori, as well sensors and actuators. The generic virtual
environment where the robots are placed, should be easy to model as well;

Physics Realism: to obtain plausible results, interaction among robots and be-
tween robots and the virtual environment must be carefully modeled through
the physical laws of rigid body dynamics;

Visual Realism: the appearance of the whole system must be as accurate as
possible to guarantee consistent sensor readings (e.g., images, audio);

Efficiency: simulation must be carried out in the most efficient way, hopefully
in real-time, with a visualization frame rate of 30 frames per second;

Modularity: it must be easy to add and modify the features of the environment
and of the robots, including the sensors input/output;

Effective Control: the simulator should be flexible enough to be easily inter-
faced to the same programming code that is used on the real robots.

The Asura Team1 provides a development kit, namely the ASURA RoboCup
Software, aiming at reproducing the Four-legged League environment. Such a
development kit permits to develop strategies and sensor acquisition and process-
ing. However, it lacks in flexibility since it can simulate only the AIBO ERS-210
robot in the RoboCup framework and it does not permit dynamics simulation,
leading to a poor representation of the virtual system.

Zagal and Ruiz-del-Solar introduced UCHILSIM [7] in 2004. Such a simulator
reproduces with high fidelity the dynamics of AIBO motions and its interactions
with the objects in the game field. Physical simulation is carried out through

1 www.asura.ac.
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the open-source physical engine Open Dynamics Engine2 (ODE) and objects
(e.g., robots) are defined in the VRML standard. The goal of this project was
to became a standard framework for learning complex AIBO behaviors. This
simulator was quite promising but it seems to be no longer developed.

Gazebo [3] is a multi-robot 3D simulator with graphical interface and dynam-
ics simulation (through ODE). It is able to simulate a wide range of sensors and
it comes with models of existing robots even if the simulator does not allow to
define complex objects (e.g., dummies for rescue arenas, moving people in the
scene, a ball in the soccer field). The robots and sensors can be controlled by the
Player [2] server or controllers can be written using a library provided with the
simulator. Simulated environment are described in XML and new robot/sensor
models can be created as plug-ins. Simulation of legged robots is supported but
not extensively used in the current release.

SimRobot [4] by Laue et al. simulates arbitrary user-defined robots in three-
dimensional space. To allow an extensive flexibility in building accurate models,
a variety of different generic bodies, sensors and actuators has been implemented
and specified in XML. The robot controllers are directly linked with the simu-
lator library to produce an executable file. Furthermore, the simulator follows a
user-oriented approach by including several mechanisms for visualization, direct
actuator manipulation, and interaction with the simulated world. Dynamics is
simulated through the ODE engine.

Webots3 is a commercial general purpose mobile robotics simulation software.
It uses ODE to simulate dynamics and it has an extensive library of actuators,
sensors and robots like Aibo, Lego Mindstorms, Khepera, Koala and Hemisson.
While the mechanical features of the robots are well defined, the main limitation
of this simulator resides in the poor quality of the 3D graphical representation of
the virtual environments, including robots and in the lack of adequate modeling
tools.

USARSim (Urban Search and Rescue Simulator) [6,1] is a robot simulator
based on the industrial game engine Unreal Engine4. It simulates the reference
test arenas developed by National Institute of Standards and Technology (NIST)
and robots intended for the Urban Search & Rescue (USAR) tasks. Since Unreal
Engine has been deployed for the development of networked multi-player 3D
games, it solves many of the issues related to modeling, animation and render-
ing of the virtual environment. It is a complete game development framework
targeted at today’s mainstream PC, it provides tools to rapidly develop objects
and environment (Unreal Editor) and it is possible to define the behavior of the
objects through an ad-hoc script language (Unreal Script). Dynamics of rigid
bodies is transparently handled by the Karma physical engine [5]. As in Gazebo,
robot controllers use a TCP/IP interface to control the robots and so may
be programmed in any language that supports networking. The Client/Server
architecture can be advantageously used to carry out complex computations
on dedicated machines decoupling the simulation from intelligence processing.

2 Open Dynamics Engine www.ode.org.
3 www.cyberbotics.com/products/webots/.
4 www.unrealtechnology.com.
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However, the current version of USARSim is not able to simulate legged robots,
like AIBOs, and it has several limitations like the total number of joints allowed
for each robot, a limited support for multi-robot scenarios and an approximative
collision handling.

Discussion. From the analysis of the existing simulators it appears that a gen-
eral 3D simulator for legged robots with good dynamics simulation, multi-robot
support, realistic appearance, and easy-to-use editing tools is not currently avail-
able. USARSim is the most promising, since it already implements many required
features and it can be easily extended. Unreal Engine has a significant industrial
support and a simulator based on it will benefit from new releases of this engine
as soon as they are available, with minimum effort. Unreal Engine uses a different
physical engine (Karma) than other simulators (using ODE). To our knowledge
there are no comparative studies between these two engines and we believe the
choice of ODE is given only by its open-source code. Unfortunately, the cur-
rent version of Unreal Engine (and USARSim) makes a partial (and sometimes
incorrect) use of the Karma engine. Finally, USARSim has been chosen as the
standard simulator for a new RoboCup Rescue simulation league.

In this paper we present a 3D simulator based on USARSim5 that allows for
modeling complex legged robots (such as quadrupeds and humanoid ones) and
for simulating their interaction. The performance of the system allows for simu-
lating in real-time up to five of these robots in the environment. The simulator
presented in this paper extends USARSim by introducing some important fea-
tures: 1) it allows for the simulation and control of legged robots (four-legged,
humanoids, etc.) 2) it introduces a multi-view functionality for multi-robot sup-
port. Moreover, we fixed a few problems in the use of the physical engine Karma,
that was not fully and correctly integrated in the Unreal Engine.

We successfully tested the simulator by implementing AIBO ERS-7 and QRIO
robots, controlling five of them at full frame rate (30 fps). The simulator is
actually in use for the development of our team competing in the RoboCup
Four-Legged League.

2 3D Multi-robot Simulator Architecture

In order to use a simulator for multi-robot applications, it is important to provide
an effective interface to multiple robot control programs. A typical choice (e.g.,
Gazebo [3]) is to run the simulator as a server allowing robot control programs
to act as clients. The robot control programs receive from the simulator data
emulating sensor readings and send commands for the actuators. The simulator
server manages interaction among robots and between robots and objects in
the environment, maintaining an up to date representation of the world. For
a realistic simulation, it is thus important that the simulation is asynchronous
with respect to robot control programs. Moreover, the simulator must process
data in real-time, otherwise it will feed robot control programs with unrealistic
data.
5 The simulator and demo videos are available from www.dis.uniroma1.it/∼spqr.
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Fig. 1. Multi-Robot architecture

When using a 3D simulator with realistic modeling of appearance and dynam-
ics of the environment, computational time is a main requirement and therefore
it is usually necessary to run this process on a different machine with respect to
robot control programs. Therefore, a networked client/server architecture should
be used for 3D multi-robot simulation. The server machine runs the 3D simula-
tor as a multi-client server. Other machines connected through TCP/IP act as
robot control programs.

The choice of USARSim as the basis for the simulator described in this paper
has required the implementation of another module, to overcome the problems
due to the fact that the underlying game engine is not designed to act as a multi
user server on a single machine. In fact, it is possible to use USARSim for multi-
robot applications as long as only one robot is provided with a video camera.
To simulate a multi-robot system with one camera per robot, it is necessary to
run one USARSim process (actually an Unreal client) for each robot. Moreover,
it is possible to run only one client per machine. This solution requires too
many resources for a single simulation: for example, if robot control programs
are separated from simulation we may need up to 2 n machines for an n-robot
simulation. Otherwise it is possible to use a single machine switching among
robot cameras every t seconds, where t depends on the simulation load on the
machine. However, also this solution is not advisable because it offers extremely
low image acquisition rates, and it is not possible to access multiple cameras
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at the same time. The solution proposed in this paper allows for using a single
machine for the simulation in presence of multiple robots with multiple cameras
without the aforementioned drawbacks.

The architecture of the multi-robot simulator we have implemented is depicted
in Figure 1.

The USARSim interface module on the clients manages all the communica-
tions with USARSim. It was created to translate or modify both outgoing com-
mands and incoming sensory data. This interface allows to adapt USARSim
to already existing controllers with minimal changes. It also allows to pre-
process sensory data if necessary (e.g., apply distortions introduced by real robot
cameras).

3 3D Multiple Legged Robot Simulator

In this section, we describe the main modifications and extensions that we im-
plemented in USARSim in order to allow the simulation of legged robots like
quadrupeds, bipeds, hexapods and so on. We conclude by presenting an exam-
ple with two different robots, Sony AIBO ERS-7 and Sony QRIO, operated by
independent controllers, coexisting and interacting in the same environment.

Oscillations of Rigid Parts. The first problem we faced was due to the oscillation
of all the rigid parts of the robots. The amplitude of the oscillations was ±2mm
on X, Y and Z axis and it has been observed only when the simulation has
been run in networking mode, when server and clients were running on separate
machines. The cause was in the replication mechanism, used by Unreal Engine
to synchronize server and clients. We fixed this issue in a straightforward way
by using in the USARSim code a different data type not subject to network
optimizations.

Collision Handling. A collision primitive is an invisible volume with a simple
shape (e.g. a box, a cylinder), embedding a 3D mesh and it is used to simplify the
collision detection process with other meshes. It is also useful to define dynamic
properties like center of mass and inertia tensor. A well-defined collision handling
is crucial for a plausible physical simulation and so the correct definition of the
collision primitives.

In the original USARSim, each single part of a robot is defined by the class
KDpart where, beside other information, it is specified the shape of the robot
part and a default collision primitive. When the simulator loads a robot in the
virtual scene, the original USARSim assembles all its parts with the correspond-
ing collision primitives on the fly. The process however is prone to a sneaky
Unreal Engine bug causing the loading of the same default collision primitive
for each mesh. To bypass this bug, our approach has been to write a script, de-
rived from KDpart, for each part of the modeled robots. In this way, meshes and
collision primitives have not to be defined at run-time (with a new static-mesh
properties) but it is sufficient to specify them in the definition script of the robot.

Because this major change, our implementation lost compatibility with the
robots deployed with the original USARSim. To be able to continue to use these
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robots, we defined new scripts for each one of them, including the fine-tuning of
physical parameters like mass, center of mass, inertia tensor and friction.

Hinge Joint. Original USARSim defines one motorized joint to connect the dif-
ferent parts of the robot, the CarWheelJoint (Fig. 2). Such a joint is provided by
Karma physics engine integrated in the Unreal Engine and allows two or three
DOFs, depending on its configuration. We did not use this joint because for our
objectives, only one DOF was needed. USARSim allows for locking the suspen-
sion DOF, leading to a one-DOF joint, however the resulting joint is not stable
enough for rigid parts, and it leads to instability of the simulation. Furthermore,
with the CarWheelJoint, it is rather difficult to obtain the relative rotation angle
among joined parts. Such angles cannot even be set precisely, since there is at
least an error of ±0.5 degrees, and this error drift away (i.e. increase) over time.

steering axis (hinge)

suspension (prismatic)

wheel rotation axis (hinge)

Fig. 2. CarWheelJoint [5] Fig. 3. Hinge Joint [5]

For these reasons, we modified USARSim in order to use another joint model,
the Hinge (Fig. 3), also provided by Karma engine and not suffering from the
aforementioned issues. Hinge allows one DOF, may be controlled in angle, angu-
lar velocity and torque, the maximum allowed precision is 0.0055 degrees, and it
implements a feedback mechanism providing a stable control of the angle among
joined parts.

Original USARSim allows up to 16 joints for each robot. This bound have been
increased by modifying the size of some internal structures in the simulator code.

Multiple Views Support. Unreal Engine allows only one robot camera to be
accessed at each frame. If more robots are placed in the virtual environment,
only one robot controller may be correctly feed with image data. To allow the
simulation of multiple robots, we attempted to interleave images obtained by
accessing a different camera at every frame, but this solution is not feasible since
simulation and controller modules run asynchronously. The solution provided by
the original USARSim is to use the Unreal Engine multi-player support. Each
robot runs on a different computer with its graphical client and a central server
handles the whole simulation. This solution is obviously not suitable for multi-
robot development since it requires too much hardware.

To solve this problem, we introduced a special kind of robot, namely the Mul-
tiView. MultiView collects camera locations and orientations from each camera
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Fig. 5. Multi-Robot example

on the robots and renders each robot view in a different subview. This image
mosaic is then grabbed by ImageServer, a thread running on the same machine
where the USARSim server resides, by direct access to the Direct3D frame buffer.
The views from each robot are extracted from the mosaic and sent across the
network to the corresponding controllers (Fig. 4). This solution allowed us to
simulate and control multiple robots using cameras by running the simulator on
a single machine. The only limitation is in the reduced resolution of the images.
Observe that this is not a problem, since simulation can not anyway be used
to validate image processing. Moreover, for robots with low-resolution cameras
(such as AIBOs), actual resolution can be obtained.

AIBO Sensors. To simulate the AIBO ERS-7 we also added 3 new sensors:
a simplistic instant acceleration sensor, a contact sensor and a more flexible
IR distant sensor than the one already defined in the original USARSim. In
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particular, our IR distant sensor permits to set the maximal bound of the error
magnitude in function of the measured distance.

MultiView and the client/server architecture allow to mix easily different ro-
bots in the same simulation. Figure 5 shows an example of two different robots,
an AIBO and a QRIO humanoid robot, in the same map and handled remotely
by different controllers.

4 Run-Time Environment Management

The flexibility of Unreal Engine and Unreal Script allowed us to define the be-
havior of the virtual environment in real-time.

We define the complex behavior of the objects in the virtual environment
through events and triggers. An event is casted when an object, like a robot,
comes in contact with a trigger, that is an invisible volume that can be placed
anywhere in the map. Each event corresponds to an action like, for example,
an affine transformation applied to an object (e.g., open and close a door or a
passage), can turn on and off lights or motors. An event can activate users own
script routines, permitting endless possibilities. Events can be chained, sched-
uled, dispatched to many objects or randomly generated.

To manually control objects and robots in the simulation environment, we
defined new Unreal Tournament client console commands able, for example, to
reset the simulation, to change lighting conditions, to transfer objects and robots
from one place to another and so on.

Console commands can also be embedded into the script code defining the
behavior of the robots. For example, it would be possible for a robot to modify
the simulation laws in order to let it fly from one place to another.

5 Results

This section provides an investigation on physical behavior and the overall per-
formance of our simulator. The testing machine has an AMD Athlon XP Bur-
ton 3000+ CPU with 1Gb DDR400 RAM and the nVidia FX 5900XT graphic
adapter.

Physical Simulation. A plausible physical behavior is a primary concern if we
want to test and simulate algorithms operating on real robots. USARSim uses
Karma physics engine which is designed for video-games and not for robotics
simulation. This means that the realism of the physical simulation is always
sacrificed in order to achieve a smooth rendering frame rate (at least 30 fps).
However, the accuracy of the simulation is not severely compromised because
the approximations introduced by the Karma engine are comparable to the
measurement errors due to the real robot sensor and actuator noise. Thus, it
is not crucial to precisely quantify the approximation error, but it is important
to qualitatively estimate the behavior of the robots involved in the simulation.
Figures 6 and 7 show the results of the two principal interactions that may hap-
pen on the RoboCup field: ball kicking and AIBO collisions. We experienced a
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Fig. 6. AIBO kicking the ball Fig. 7. Three AIBOs collision

0

10

20

30

40

50

60

70

80

90

100

5 15 25 35 45 55 65 75 85

Time [s]

R
en

de
rin

g 
tim

e 
[m

s]

0

1

2

3

4

5

6

7

8

N
um

be
r o

f A
IB

O
s

1

2

3

4

5

6

7

Fig. 8. AIBO creation stress test
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visually convincing behavior of the physical simulation and we can conclude that
it is adequate both for a RoboCup simulation and for more general robot-robot
and robot-environment interactions.

Performance. The first experiment, made to assess the simulator performance,
determines the maximum number of supported AIBOs at the same time in the
map using only the test bed PC. Each AIBO is created and set in walking
state to make full use of the physics engine. The graph in Fig. 8 shows that the
performance is still acceptable with five AIBOs, since the visualization frame
rate is still greater than 25 fps.

The second test stresses directly the physics engine making AIBOs to collide
with each other. When collisions occur, more than 75% of CPU time is devoted to
collision detection and response. The graph in Fig. 9 corresponds to the collision
of 3 AIBOs. It is very jagged and each performance drop corresponds to a contact
between two or more robots. This result confirms that collision handling is the
computation bottleneck.

In conclusion, the simulator can sustain at full frame rate five complex robots,
three of which can collide at the same time.
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6 Discussion

In this paper we have described the implementation of an extremely flexible
simulator for multiple legged-robots. It supports rigid-body dynamics, realistic
3D environments, client/server architecture and real-time rendering. The simu-
lator handles up to five legged robots at 30 frames per second on a middle-class
hardware. Furthermore, it is coded in Unreal Script, the scripting language of
Unreal Engine. This means that, although Unreal Engine is not open source, our
extension is open and will be shared through the community, therefore everyone
can access its script code, change its behavior, add new robots, sensors and any
other functionality that may be required employing little effort.

As stated before, the choice of using Unreal Engine solves many of the main
practical problems faced during the implementation of a robot simulator. How-
ever, such an engine has been devised primarily for games, not for robotic sim-
ulation. Thus, designers chose to sacrifice physical realism to obtain smoother
animation and they bounded the physical time step to the visualization frame
rate (i.e., the time step is equal to the frame rate), whereas the simulation and
visualization could be clearly separated.

However, the advantages of using an industrial product are in the great de-
velopment support they provide and in the availability of many effective tools
to create contents such as scenarios and objects. For example, the Unreal Editor
allows for easy creation of generic environments (Fig. 10), even with scripted
objects reacting to changes in the system.

Moreover, improvements to the engine will directly reflect to improvements
in the simulator with little effort, while obtaining significant advantages. For
example, we intend to upgrade the simulator to use Unreal Engine 3 as soon
as it will be available. This will dramatically enhance rendering quality, physics
simulation, script and net code.

Applications. The primary use of this simulator is to evaluate the behavior of
legged robots in a dynamic environment, such as RoboCup soccer. The advan-
tages of using this simulator are evident in multi-robot contexts. As described
above, the simulator is able to simulate in real-time up to 5 robots. We believe
that with increasing CPU power it will soon possible to simulate a 4 vs. 4 game.

We have used the simulator to evaluate different situations, such as an at-
tacker robot against three defenders and a goalie, two attacker robots against
two defenders and a goalie. A first important process is debugging and refining
plans, i.e., evaluating if the robots take the correct decisions according to the cur-
rent state of the game. Note that a 2D simulator would have some limitations in
this process: for example, partial occlusions of the ball, contacts between robots
cannot be realistic modeled in 2D. A second process is to evaluate coordination
strategies: e.g., position of the robots that are not in possess of the ball, position
of the defenders, and decisions about when and how to pass.

In order to make development more effective we have implemented a USAR-
Sim interface (as described in Section 2), thus the same control code can be
run connected to the simulator or on the real robot. This allows for a fast and
effective development of many tasks by the students of our group.
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Fig. 10. Unreal Editor used to create RoboCup soccer field and a test arena

Future works. The extensions described in this paper will be integrated in the
USARSim simulator. Moreover, we are planning to make some further improve-
ments like enhancing sensor data message handling and making simpler and more
rapid the creation of new robots. A further major task will be the modification
of the Unreal Tournament deathmatch code in such a way to provide tools to
interact with the environment during the simulation run; for example, we intend
to implement tools like a game controller interface and a virtual referee placing
the robots for the RoboCup soccer setting.
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Abstract. We present a road map for a joint project of the simulation
league and the humanoid league that we call 3D2Real. This project is
concerned with the integration of these two leagues which is becoming
increasingly important as the research fields are converging. Currently,
a lot of work is duplicated across the leagues, collaboration is sparse,
and knowhow is not transfered effectively. This binds resources to solve
the same problems over and over again. To address this, we discuss the
current situation of both leagues with respect to these points and focus
on open issues that have to be fixed. In addition, we describe existing
open standards and contributions from the RoboCup community that
we plan to use for the project. As a milestone, we propose to conduct
the finals of the 3D simulation tournament on real robots by the year
2008. Finally, we propose a database of simulated parts and algorithms in
which each league can benefit and contribute with their expertise. These
contributions facilitate synergies to be used across individual leagues for
the benefit of the RoboCup project and the year 2050 goal.

1 Introduction

Looking at the stated goal of RoboCup to present a team of humanoid robots
able to win against the human soccer champion in 2050 [1,2] it is apparent that
the different leagues we see in RoboCup today will have to move closer to one
another and eventually be merged. There are certain unique features in every
league that make it attractive as an environment for researchers to focus on a
set of specific problems on the way to the final goal. In the end, however, it will
be humanoid robots taking on the challenge in 2050.

To ensure steady progress, the competitions held at RoboCup are made more
complex and challenging every year. Through this evolutionary process, we al-
ready start to see some boundaries getting blurred across the leagues. The Small
Size League, for instance, is expanding the field size and is coming closer to the
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Middle Size League. In the humanoid league, we saw the first real games in 2005.
More players will be introduced, giving rise to the need of tactics in addition
to the low-level control methods which have been the traditional focus of this
league. The simulation league, on the other hand, in which researchers had con-
centrated on those high-level strategies is starting to use more realistic models
for their agents, targeting simulation of 11 vs. 11 humanoid robots within the
next few years.

One problem is that a lot of work is being repeated in the different leagues
while solutions for the same (or at least similar) issues exist in another league.
Nearly every team uses more or less advanced simulators for their robots as part
of their development tools, for instance. Designing and implementing a good
robot simulator is a difficult and time consuming task, so it makes sense to reuse
the existing work. It is obvious that the knowhow of the different leagues has
to be integrated in order to achieve synergy effects and free resources for other
challenging tasks.

First steps in direction of a league-independent soccer theory were outlined
in [3]. Some documented examples of collaborations between researchers from
different leagues can be found. In [4], the authors describe the revision of a
software framework for behavior development for a humanoid robot according
to a design which had been successfully used in simulation league before. At the
same time, it was planned to integrate a model of the humanoid robot into the
simulation league 3D simulator.

Keeping the pace towards the ultimate goal, both hardware and software
complexity tend to grow fast. This tendency makes it difficult for the current
structural division of the leagues to keep developing their independent architec-
tures in an isolated way. Particularly, problems like this can already be observed
both in humanoid and simulation league teams. Development ends up covering
technical issues not directly related to the interests of a particular league.

This paper is focused on the aforementioned problems. It is very clear for
the authors of this work that in the long term there would be gradually fewer
platforms of very high complexity. This makes apparent that the current league-
oriented division of architectures would not be a feasible endeavor for current
teams. We provide a well-grounded road-map and suggest tools for helping the
gradual long-term shift from the current league-based division of architectures
into a new cooperative and modular labor division. It is our hope that efforts
in this sense will help the coordination of the work of different leagues, comple-
menting and completing each other towards the 2050 challenge.

2 Current State of the Leagues

The humanoid league (HL) underwent a profound development since it was
introduced in the RoboCup of 2002 in Fukuoka. The rules maturated in many
points and gained focus on the issues that are essential from a technical point
of view. Thus, the center of mass of all robots has to be on a certain height in
relation to the size of the feet. The competitions and challenges have changed
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in various ways. In the RoboCup 2005 regular 2-2 games have been conducted
for the first time. Like in other leagues, the organizers see a maturation process
also in the design of the robots. The typical robot of the current competition is a
small robot that uses servo motors as actuators and a simple but robust control
structure. One aim of the technical committee is to lead the development towards
important research problems. Dynamic walking and stability are currently the
most important issues, which are enforced by the technical challenge and the
rules about the shape of the robot. As a consequence, we see a significant progress
within this relatively new league. The HL also grew in the number of participants.
Between 2002 and 2004 around 10 teams participated in the HL. In 2005, there
were around 20 participants already. For the RoboCup 2006 we received 23 pre-
registration for the KidSize League and the 12 pre-registrations for the TeenSize
League.

One of the first leagues of RoboCup was the two-dimensional soccer simulation
league. The actual hardware of the simulated robots, the actuators and also the
perception are simulated on a relatively high level as opposed to the robots in
the current hardware leagues. The motivation for the high level of abstraction
was the desire to create a league where participants can concentrate mainly
on coordination and cooperation of robot teams. The rationale was that in the
(quite far) future, many “lower level” problems of the hardware leagues would
be solved, leaving cooperation among agents in a team as main challenge. In
fact, two-dimensional soccer simulation league helped to address many different
open problems of creating cooperative multiagent systems.

Because of the simplified model of 2D simulation league, a three-dimensional
physical simulation was created. The three-dimensional physical simulator used
in Soccer Simulation League addresses additional classes of problems:

– Articulated agents create the problem of coordinating several actions of the
same agent among each other, as well as with global team behavior.

– Decision making procedures have to deal with a much higher complexity of
the decision space, compared to 2D Soccer Simulation League.

At least the latter of these applies already to the current 3D simulation, where
agents are very much simplified. Methods to create soccer playing agents for a
team have to deal with a higher complexity of the environment, and hopefully
can be transferred to humanoid robotics more easily. The current development of
3D Soccer Simulation League leads to simple two-legged agents used in technical
challenges already this year (see also Fig. 2).

One of the problems of making Soccer Simulation League closer to humanoid
robotics is that solely researching high level coordination and cooperation be-
comes intractable, when lower level controllers have also to be implemented by
everybody. One of the advantages of the 2D simulator however was the possibility
to research cooperation in a team quite easily. In order to keep the advantages of
the 2D simulator while adding new possibilities for the additional research prob-
lems listed above, two different levels of interfaces should be provided for users of
a Simulation League Simulator: one high-level interface granting the possibility
of researching high-level coordination only. This way, existing approaches can be
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Fig. 1. The current version of the 3D
simulation using spheres as agent mod-
els. Every agent has an omni-vision
camera which delivers noisy data about
the environment, a kick-effector to
shoot the ball, and an actuator simu-
lating omni-drive to move on the field.

Fig. 2. An exemplary robot model of
Fujitsu’s HOAP-2 that could be used
in the RoboCup-2007 simulation league
competition.

transferred to the domain of robotic soccer easily. The lower level interface has to
provide full control over all features of the simulated robots, so that developers
can research and take care of dependencies between lower-level and higher level
control.

Currently, the development in Soccer Simulation League leads towards hu-
manoid robots, which already can be controlled by a lower level interface. How-
ever, controllers for these robots have to be developed in order to provide an
easy-to-use interface.

As a result, humanoid and simulation league have more common qualities.
This way, joint competitions of Soccer Simulation League and Humanoid League
become possible, which promotes a faster progress in both leagues.

3 Road Map

In both the HL and the SL significant changes are underway. We suggest a time
frame for the development of the joint events and propose for both leagues a
number of synchronized steps in the following subsections.

3.1 RoboCup 2007: 3D2Real Competition: Technical Challenge in
Simulation League with a Real Robot Model

We propose for 2007 an additional tournament called 3D2Real competition in
the SL. The competition consists of an obstacle run with a humanoid robot.



3D2Real: Simulation League Finals in Real Robots 29

The layout of the competition is going to be identical to a technical challenge
in the HL of the same year. It is planned to simulate a real existing humanoid
robot. The type of the robot is decided within the next year by the SL technical
committee in collaboration with the HL technical committee.

The SL 3D2Real competition is done in simulation first by applying the same
criteria as in the corresponding HL competition. The three best participants of
the simulation round qualify for a second round in which real robots are used.
The programs of the virtual agents therefore have to be able to run on the real
robot.

The simulation environment is going to be derived from the existing simula-
tion environment of the SL 3D league and the RoSiML [5] modeling language.
RoSiML is an XML-based modelling language successfully used for a simulator
in Sony legged league.

The robot model, as well as the physical and control parameters are planned
to be as close as possible to the real robot. A standardized interface for the
controller commands will be provided.

The first step is intended to get an overview of the problems that arise from
porting a simulated behavior into the real world. In particular we are interested
in the following questions:

– What differences exist between the real world robot and the simulated en-
vironment. How similar are they?

– What kind of tools are necessary?
– How reliable are the control parameters, and what kind of noise model is

appropriate to simulate real world fluctuations and randomness?

Results from the 3D2Real competition are intended to be integrated into the
3D SL simulator for the following year. It is also intended to automate the upload
of a behavior program to the robot.

3.2 2008: The 3D Simulation League Final Is Played on Real
Robots

In this year it is intended that the 3D SL players are simulated versions of a
real existing robot type. It is intended that the round robin is done in com-
puter simulation, whereas the finals are done in real world robots. It might be
appropriate, however, to reduce the number of players from 11 to five robots.

The robots and the playground are provided by the organizers of the RoboCup
competition 2008.

In the HL, a description of each of the participating robots in the RoSiML
language is going to become part of the qualification process. The intention is
that beginning from the year 2008 the RoSiML files of all robots participating
in the HL are published and integrated into a online repository that is avail-
able for research and development. More details on this repository are given in
section 5.
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Fig. 3. 3D2Real project: Overview of the roadmap towards simulation league finals in
real robots

3.3 RoboCup 2009: Games with Several Types of Robots

Based on this repository, the organizers of the 2009 SL competition select several
types of robots that can be used as models for the 2009 SL 3D competition.

4 Requirements on Humanoid Robot Systems Eligible
for the 3D2Real

A real existing humanoid robot type eligible for the 3D2Real competition should
fulfill a set of requirements and should come with a certain software environment
(see also Fig. 4). We suggest the following necessary requirements:

– The robot has to be compliant with the rules of the RoboCup humanoid
league. The architecture should include a small IBM PC(386-architecture).

– The software environment should be published in source code, the program-
ming language is C/C++, with a preference to C++. The vision processing
comes with the robot.

– The robots mechanical design has to be described in the RoSiML language.
– The robot comes with a compatibility layer for ODE that consists of two

parts: The first part covers the sensor processing. Generic classes for camera,
touch sensors, attitude sensors, actuator states are to be provided by the SL
organizers. A detailed description of these sensors and their noise levels have
has to be worked in. The output of the vision processing is a list of recognized



3D2Real: Simulation League Finals in Real Robots 31

objects, i.e. ball, posts, goals, line crossings, and their position in a list. The
second part consists of compatibility layer for the actuator processing. ODE
type of motors are assumed at the simulation layer. An encapsulation of
the real actuators has to be provided, this may include high level motion
primitives e.g. walk, turn move camera.

The aim is that a control program coming from SL participant results in the same
robot behavior in the simulation as in the real robot, as far as this is possible. The
organizing/technical committee chooses the first robot type for the competitions
in the years 2007 and 2008 in an open and fair selection process.

5 Central Parts Repository

Traditionally, simulation league has focused on game strategy while the hu-
manoid league has a major focus on robot design and control. Simply making
more realistic simulations, or simply forcing more strategy on games of real-
robots would not be effective ways of helping the future cross-development to-
wards a common goal. This strategy vs.design and control division is not just a
casual one – it is deeply rooted in the researchers of both leagues, reflecting their
particular backgrounds and interests, and this should be respected. The Central
Parts Repository (CPR) is here proposed as a common framework for allowing
professionals in multidisciplinary fields to help each other within their different
spheres of interest and backgrounds.

The CPR is conceptualized as a database of parts and algorithms in which
each league should contribute with their expertise and at the same time enjoy
out of the box solutions for the problems that are out of their sphere of interests
(expertise of others). The database would cover a diversity of items ranging
from single robotic parts, such as servos, to entire assembled robots, including
controllers and algorithms. Special care would be needed for assuring realistic
constraints, especially in regard to physical behavior of fundamental parts and
their controllers.

The software architecture of the current 3D Soccer Simulator is a rather com-
plex piece of engineering, result of years of development by experienced experts
in computer-related fields. Developed with very powerful plug-in mechanism,
the 3D Simulator brings great flexibility for development of independent mod-
ules in a decentralized way. Moreover, the current implementation of the 3D
Soccer Simulator allows the use of a modular and convenient script language for
the geometric and functional assemble of simulated entities. The strong plug-in
architecture along with the support for RSG files provides already all the nec-
essary tools for the development of a modular CPR with little interference into
the current course of development.

6 Discussion

In our paper, we have argued for shared competitions between humanoid soccer
league and Soccer Simulation League, and presented a joint road map for both
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Fig. 4. 3D2Real project: Layout of the control architecture. The hatched boxes show
how the different leagues contribute to the complete system architecture of the 3D2Real
project. The control program for simulation system and real robot system are identical.

leagues. We suggest to establish the 3D2Real project. A part of the project is to
conduct the finals of the simulation league in real robots. It is further suggested
to establish a central part repository in which the parts of real existing robots
are described in RoSiML. The RoboCup project can benefit in several ways from
this project. In the following we outline a subset of the possible benefits:

Compare simulation and real robot. The performance of a behavior pro-
gram in the simulation can be compared with the performance of a behavior
program in a real robot. Differences may result from unrealistic assumptions
about the statistics of the sensory input.

Sensory input in real robots is very noisy, biased input. The difference between
the simulated sensory input and the sensory input that comes from a real world
humanoid robot system can be directly recorded and compared. In this way
we can get accurate statistics and can integrate the results into the simulated
sensory environment.

In this way a stepwise improvement of the 3D SL simulator is possible. In this
way it is possible to establish feedback from the reality to the simulation league.
In particular, it can be seen how applicable are the strategies that have been
developed in the SL in real robots.
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Fig. 5. Simulation league past and future: the 3D2Real project can help to program
realistic robots in the SL. (Rendering by Heni Ben Amor)

Real world humanoid robots in the SL. The simulation league is aiming to
become a more and more realistic environment with realistic robots as players
(Fig. 5). The development of humanoid robots, however is dynamic. In the HL
every year different types of robots are going to appear. The 3D2Real project
gives a natural link between the two leagues. It keeps the SL automatically on
track with the most recent developments in humanoid robotics.

Standard simulation environment. In the HL the improved 3D SL simu-
lation environment can be standard tool to simulate their robots. Many teams
participating in the RoboCup soccer competition develop at some point of their
work a simulation environment in order to be able to test their behaviors. The
aim of the authors is to establish the 3D SL simulator as an easy to use standard
tool for the HL teams.

Central Parts Repository. The proposed central repository can help in several
ways to establish a fruitful interaction among the HL and between the SL and HL.
It can help the HL participants to create rapidly RoSiML files describing their hu-
manoid robot. In addition, it may be in later stages be used for SL participants to
construct hypothetical, but realistic robots that might show improvements. These
robots can be shown in a demonstration and give hints to the HL.

Merging of two leagues. We propose an example how separate leagues can
contribute to a joint project. In present day RoboCup it is a challenge to make the
knowledge of one league available for the other leagues in the RoboCup project.
The simulation league started around 10 years ago with the proposition to be
10 years ahead the real robots. The present work describes how the knowhow
of can be made available for the current real world teams and thus, 10 years of
work and development available.

Similar project in the Rescue League. Finally, we would like to note that a
similar project is underway in the rescue simulation league, which has recently
shown remarkable progress with the introduction of their simulator USARsim[6].
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Similar as in our proposal the aim of the USARsim simulator is to give a physi-
cally correct description of the enviornment (here soccer; there a desaster area)
and the robots (here biped robots; there ususally wheeled or tracked robots).
Although environment and robots are different, we see on the long time scale
some potential to benefit from synergies in the two simulators.
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Abstract. Swedish wheeled mobile robots have remarkable mobility
properties allowing them to rotate and translate at the same time. Be-
ing holonomic systems, their kinematics model results in the possibility
of designing separate and independent position and heading trajectory
tracking control laws. Nevertheless, if these control laws should be imple-
mented in the presence of unaccounted actuator saturation, the result-
ing saturated linear and angular velocity commands could interfere with
each other thus dramatically affecting the overall expected performance.
Based on Lyapunov’s direct method, a position and heading trajectory
tracking control law for Swedish wheeled robots is developed. It explic-
itly accounts for actuator saturation by using ideas from a prioritized
task based control framework.

1 Introduction

In the last few years Swedish wheeled omnidirectional mobile robots have had
a large attention among the mobile robotics research community. A Swedish
wheel differs from a common wheel in the fact that rollers are mounted on its
perimeter. If all the rollers are parallel to each other and misaligned with re-
spect to the wheel hub axis, they will provide an extra degree of mobility with
respect to a traditional perfectly rolling wheel. As reported in [1], the Swedish
(or mecanum) wheel was invented in 1973 by Bengt Ilon, an engineer working
for the Swedish company Mecanum AB. The interest in such kind of wheels is
related to the possibility of developing omnidirectional robots in the sense of
[2], i.e. robots that ”have a full mobility in the plane which means that they
can move at each instant in any direction without any reorientation” [2]. No-
tice that several references make a misleading use of the term omnidirectional,
as they refer to vehicles equipped with fully steering traditional wheels. Such
systems can eventually move in any direction, as the unicycle model, but only
after reorienting their wheels appropriately and not at any given instant of time.
The need to reorient the wheels or not prior to implementing any desired lin-
ear velocity is related to the presence or not of nonholonomic constraints. As

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 35–46, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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opposed to traditional wheel car-like or differentially driven mobile robots, the
translational velocity vector of a Swedish wheeled vehicle can point in an arbi-
trary direction at any time without re-orienting the wheels. Otherwise stated,
Swedish wheeled vehicles are not affected by nonholonomic constraints: as far
as the structural properties of the kinematics model of a Swedish wheeled robot
is concerned, angular and linear velocities are independent. As a consequence
one can design separate and independent trajectory tracking guidance control
laws for position and heading. Yet if these control laws are implemented in the
presence of unaccounted actuator saturation, the resulting saturated linear and
angular velocity commands could interfere with each other and thus affect the
overall performance of the motion control schema. A novel trajectory tracking
control law is presented in this paper that explicitly accounts for actuator sat-
uration within a prioritized task approach. Heading and position tracking are
treated as independent control objectives (tasks) having different priorities: by
allocating control effort to the different tasks based upon their assigned priorities
it is possible to guarantee the independence of the heading and position control
actions in spite of actuator saturation. Overall convergence of tracking errors to
zero is theoretically guaranteed using Lyapunov methods. In a RoboCup sce-
nario priorities are an immediate consequence of the currently active behaviour
roles taken by the robot. In the defend mode, by example, we want to block a
ball as fast as possible thus maximum linear speed is called for, while during
dribbling angular velocity takes the highest priority.

After deriving and discussing the vehicle’s kinematics model in Section 2,
a kinematics (guidance control) tracking control law accounting for actuator
saturation is designed in Section 3 based on Lyapunov techniques. Experimental
validation results are reported in Section 4. Final remarks and conclusions are
discussed in Section 5.

2 Robot Kinematics Modeling

With reference to Fig. 1, a three wheel omnidrive mobile robot is considered.
All wheel main axis, i.e. hub axis, are assumed to always lie parallel to a fixed
ground plane P having unit vector k ⊥ P . An orthonormal body fixed frame
< B >= {iB, jB,kB} is chosen such that iB × jB = kB = k. Let bh ∀ h =
{1, 2, 3} denote the position of the h−ths wheel hub in the body fixed frame and
nh the unit vector of each wheel hub axis, i.e. nh := bh/‖bh‖. At last for each
wheel we define the unit vector uh := nh × k. Calling vc the linear velocity of
the robots center and ω k its angular velocity vector, the velocity vector vh of
the center of each omnidirectional wheel hub will be given by:

vh = vc + ω k× bh ∀ h = {1, 2, 3} (1)

implying:

vc =
1
3

(
3∑

h=1

vh − ω k×
3∑

h=1

bh

)
. (2)
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Fig. 1. Three wheel omnidrive robot: geometrical model

Based on this equation and on the non skidding hypothesis

vT
h uh = ρ q̇h ∀ h (3)

where ρ is the wheel’s radius (all wheels are assumed to have equal radius ρ)
and q̇h nh its angular velocity component along the hub axis (rolling angular
velocity), the vehicle kinematics model can be expressed through the linear and
angular velocity jacobian matrices as:

Bvc = Jlv q̇ : Jlv ∈ R2×3 (4)
ω = Jω q̇ : Jω ∈ R1×3. (5)

where the superscript B in Bvc indicates that the components of vector Jlv q̇ are
given in the body fixed frame < B >. If the three wheels should be mounted sym-
metrically at 120o degrees from each other at a same distance b = ‖bh‖ ∀ h =
{1, 2, 3} from the robot’s center, and assuming the body fixed frame < B > to
have its x axis iB aligned with n1 (kB is normal to the plane P and jB such
that kB = iB × jB) as depicted in figure (1) it can be shown after lengthy, but
straightforward kinematics calculations, that:

Jω = − ρ

3 b
(1 1 1) (6)

Jlv =
ρ

3

(
0

√
3 −

√
3

−2 1 1

)
. (7)

Similar kinematics derivations for 3 and 4 Swedish wheeled robots are discussed,
by example, in [3] -[9]. It is important to notice that both Jω and Jlv given in
equations (6) and (7) are full rank and that

Jlv JT
ω = 0. (8)
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High
level

Guid. Ctrl. Act. Rob.
Dyn.

Rob.
Kin.

velocity

current

pose

+

-

+

-

torque
desired
pose

desired
velocity volt velocity

Navigation

Fig. 2. Schematic view of an NGC architecture. Refer to text for details.

As shown in the sequel, this last equation allows to design separate kinematics
control laws for linear and angular velocities. Interestingly the derivation of
equations (6) and (7), here not reported for the sake of shortness, shows that
property (8) is a consequence of having assumed the wheels to be symmetrically
located, namely that

∑
i bi = 0.

3 Trajectory Tracking Control Law Design

Following a standard and most common approach for autonomous robots, the
overall control architecture is organized on three level: navigation, guidance and
control (NGC). Navigation takes care of the vehicles motion state estimation
based upon available proprioceptive and exteroceptive information. Guidance is
a closed loop control system, fed by the navigation subsystem, designed on the
kinematics model of the system that generates desired angular and linear velocity
reference signals. Within the described NGC framework, a trajectory tracking
guidance law is derived: given an inertial (global) frame < G >= (i, j,k) with
k := (i × j) ⊥ P being P the floor plane, a reference (planar) trajectory is a
differentiable curve in P

rd(t) = i
(
rT

d (t)i
)

+ j
(
rT

d (t)j
)

(9)

with curvilinear abscissa

s(t) :=
∫ t

t0

∥∥∥∥d rd(τ)
dτ

∥∥∥∥ dτ (10)

and unit tangent vector

td =
d rd

ds
. (11)

The kinematics trajectory tracking problem consists in finding a control law for
the systems input q̇ such that the position and heading tracking errors

er(t) := rd(t)− rc(t) (12)
eϕ(t) := ϕd(t)− ϕ(t) (13)
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converge to zero, namely such that:

lim
t→∞ er(t) = lim

t→∞ (rd(t)− rc(t)) = 0 (14)

lim
t→∞ eϕ(t) = lim

t→∞ (ϕd(t)− ϕ(t)) = 0 (15)

being rc(t) the position in < G > of a reference point (e.g. the geometrical
center or the center of mass) of the robot, ϕ(t) its heading, ϕd(t) the desired
reference heading, er(t) = (rd(t)− rc(t)) the position tracking error and eϕ(t) =
(ϕd(t)−ϕ(t)) the heading error. Notice that for nonholonomic vehicles having a
unicycle or car-like kinematics model, the reference heading ϕd(t) is not arbitrary,
but needs to coincide with the heading of the trajectories unit tangent vector td.
To the contrary given any position reference trajectory rd(t), a Swedish wheeled
vehicle will be free to track any arbitrary heading ϕd(t) that does not need to
coincide with the heading of td.

3.1 Trajectory Tracking Controller Design

In accordance with the notation previously introduced, consider equations (4-
5) being vc = ṙc(t) and ω = ϕ̇(t) the time derivatives of the robots position
rc(t) and heading ϕ(t). To solve the above stated trajectory tracking problem,
consider the Lyapunov candidate function

V =
1
2
eT

r Kr er +
1
2
eT

ϕ Kϕ eϕ (16)

being Kr ∈ R2×2 a symmetric positive definite (Kr > 0) matrix and Kϕ a
positive constant. The time derivative of V results in

V̇ = eT
r Kr (ṙd(t)− Jlvq̇) + eT

ϕ Kϕ (ϕ̇d(t)− Jωq̇) . (17)

Denoting with J†
lv and J†

ω the right pseudo-inverse matrices of full rank Jlv and
Jω respectively (Jlv and Jω are full rank by hypothesis),

J†
lv = JT

lv

(
Jlv JT

lv

)−1
and J†

ω = JT
ω

(
Jω JT

ω

)−1
(18)

a possible value for q̇ making V̇ in equation (17) negative definite is:

q̇d(t) = q̇lvd(t) + q̇ϕd(t) (19)

q̇lvd(t) = J†
lv ( ṙd(t) + Kr er(t) ) (20)

q̇ϕd(t) = J†
ω ( ϕ̇d(t) + Kϕ eϕ(t) ) (21)

implying in closed loop

V̇ = −eT
r Kr Kr er − (Kϕ eϕ)2 < 0. (22)

As for standard tracking controllers, the solution in equation (19) is a combi-
nation of feedforward terms proportional to the reference linear and angular
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velocities and a feedback term. The proposed solution guarantees global ex-
ponential stability of equilibrium er = 0, eϕ = 0 of the error dynamics, thus
(robustly) solving the trajectory tracking problem. Control law (19) is the sum
of two contributions: the first (20) relative to position tracking and the second
(21) to heading tracking. In the light of property (8), it should be noticed that
the two contributions do not interfere with each other, namely the contribution
of q̇lvd to the robots angular velocity and the contribution of q̇ϕd to the robots
linear velocity are both null, i.e.

Jωq̇lvd = Jω

(
JT

lv

(
Jlv JT

lv

)−1
)

( ṙd(t) + Kr er(t) ) = 0 (23)

Jlvq̇ϕd(t) = Jlv

(
JT

ω

(
Jω JT

ω

)−1
)

( ϕ̇d(t) + Kϕ eϕ(t) ) = 0 (24)

due to the fact that they are proportional to JωJT
lv and JlvJT

ω respectively. As
discussed above, when designing vehicle kinematics guidance laws it must be
assumed that the lower level (actuator) dynamics should be much faster than
the kinematics. This requirement is reflected on design choices such as actuator
power and desired reference trajectories: the former needs to be sufficiently large
for the given inertial properties of the vehicle so that maximum vehicle acceler-
ations can be much larger than the maximum reference accelerations ϕ̈d(t) and
r̈d(t). As far as the ratio of maximum vehicle acceleration over maximum refer-
ence acceleration is sufficiently large the dynamic behaviour of the kinematics
guidance law will be fine. Thus, as for any other kinematics designed guidance
solution, the proposed control law should be implemented on Swedish wheeled
vehicles with sufficiently powerful actuators with respect to the maximum ref-
erence accelerations ϕ̈d(t) and r̈d(t). As for actuator saturation, the situation is
slightly more complex. Given the proportional nature of the control law (19), the
tracking error (either in position or heading) or the desired reference velocities
can always happen to be large enough for the actuators to saturate, namely call-
ing q̇max > 0 the maximum absolute angular velocity that the vehicles actuators
are able to generate, whatever the gains Kr and Kϕ should be, depending on
ϕ̇d(t), ṙd(t), er(t) or eϕ(t) the saturation condition1

‖q̇d‖∞ ≤ q̇max (25)

may always be violated. Notice that while the feedforward signals ϕ̇d(t) and ṙd(t)
can eventually always be bounded, the tracking error’s initial conditions are not
design parameters. Hence a commanded q̇d with exceeding infinity-norm due to
odd initial conditions cannot be a priori excluded.

3.2 Actuator Saturation

The presence of actuator saturation has a severe impact on performance: in
particular given the additive structure of equation (19), saturation can affect
the decoupling between commanded angular and linear velocities. In order to
1 Given q ∈ RN×1, ‖q‖∞ = max{|q1|, |q2|, . . . , |qN |} is its infinity norm.
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cope with actuator saturation and to guarantee a prioritized execution of the
position and heading tracking tasks, the following modification of the proposed
control law is suggested: the sum in equation (19) should be weighted with
error and reference dependent weights such that (i) the resulting q̇d command
has norm within the actuator limits, (ii) the tasks (position and heading in the
present case) are executed with a priority based time order (higher priority tasks
earlier) and (iii) the tracking error converges to zero.

To reach these goals, consider the saturation function

σ : R× [0,∞) −→ R such that σ(x, c) =

⎧⎨
⎩

0 if x = 0
1 if 0 < |x| < c
c/|x| otherwise.

(26)

In the sequel the non negative second argument c of σ(x, c) will be called the
capacity of x. Notice that by definition σ(x, c) is simply a nonnegative scalar
scaling factor such that xσ(x, c) is ”clipped” to c sign(x) whenever |x| should
exceed the capacity c and is equal to x otherwise, i.e. xσ(x, c) is simply the
saturated version of x in the range [−c, c]. Also notice that by its very definition

σ(x, 0) = 0 ∀ x, (27)

namely if x should be assigned zero capacity, then xσ(x, 0) = 0 for any value of
x. Assume that

q̇d =
n∑

l=1

q̇l (28)

is the actuator input being q̇1, q̇2, . . . , q̇n n independent task inputs ordered by
decreasing priority with increasing index (q̇1 has highest priority). Each term
on the right hand side of equation (28) and q̇d itself should be bounded by q̇max.
Considering that each task should be executed in a prioritized fashion, the sum
in (28) may be replaced by a weighted sum as follows:

q̇d = q̇1 σ (‖q̇1‖∞ , c1) + q̇2 σ (‖q̇2‖∞ , c2) + . . . + q̇n σ (‖q̇n‖∞ , cn) (29)

where each task capacity is recursively and dynamically computed as:

c1(t) ≤ q̇max (constant, i.e. ċ1(t) = 0)
c2(t) = c1 − ‖q̇1‖∞ σ (‖q̇1‖∞ , c1)
c3(t) = c2(t)− ‖q̇2‖∞ σ (‖q̇2‖∞ , c2(t))

... =
... (30)

cn(t) = cn−1(t)− ‖q̇n−1‖∞ σ (‖q̇n−1‖∞ , cn−1(t)) .

c1, . . . , cn can be chosen according to the state of the environment, i.e. in RoboCup
they can depend on global external game states. Notice that by construction all
the above task capacities are non negative, i.e.

cj ≥ 0 ∀ j ∈ [1, n],
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and that
cj ≤ cj−1 ∀ j ∈ [2, n]

ci = 0 =⇒ cj = 0 ∀ j > i

namely if a given task is assigned zero capacity, all the lower priority tasks will
also automatically have zero capacity and all their weights in the sum (29) will
be zero. The capacity of task i can be viewed as the residual capacity after the
higher priority task i − 1 has been commanded; thus, by example, c2 will be
zero (and also cj : j > 2) if the task 1 input q̇1 is saturating all its capacity
c1. In words, each task will be commanded with a non null weight only if the
higher priority task have not saturated. The fact that c1 needs not to exceed q̇max

is due to the fact that task 1 alone should not saturate the actuator capacity
q̇max; moreover given that cj+1 ≤ cj ∀ j ∈ [1, n − 1] the condition c1 ≤ q̇max

guarantees that each term in the sum (29) will have infinity norm smaller or equal
to the threshold q̇max. Indeed the proposed dynamic update rule for the task’s
capacities also guarantees that the total control signal (29) has infinity norm
smaller or equal than q̇max. In order to implement the above described schema
in the present trajectory tracking case, assume that the reference feedforward
linear and angular velocities are sufficiently small, namely that∥∥∥J†

lv ṙd(t)
∥∥∥
∞

<
1
2

q̇max ∀ t (31)

∥∥J†
ω ϕ̇d(t)

∥∥
∞ <

1
2

q̇max ∀ t. (32)

These conditions are necessary to guarantee that the tracking task is asymptot-
ically feasible, namely that when the position and heading tracking errors are
null the control effort of the control law (19) is compatible with the actuator
saturation limit, i.e.

er = 0, eϕ = 0 =⇒

‖q̇d(t)‖∞ =
∥∥∥J†

lv ṙd(t) + J†
ω ϕ̇d(t)

∥∥∥
∞

≤
∥∥∥J†

lv ṙd(t)
∥∥∥
∞

+
∥∥J†

ω ϕ̇d(t)
∥∥
∞ < q̇max.

As a first example, assume that position tracking is assigned highest priority
with respect to heading tracking. Then define:

q̇1 := J†
lv ṙd(t) (33)

q̇2 := J†
lv Kr er(t) (34)

q̇3 := J†
ω ϕ̇d(t) (35)

q̇4 := J†
ω Kϕ eϕ(t). (36)

With these definitions consider the control law (29-30) with

c1(t) = q̇max > 0 ∀ t

that together with the feasibility condition (31) implies

0 <
1
2

q̇max ≤ c2 ≤ q̇max,
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i.e. the tasks 1 and 2 have always non null capacity. Moreover as by hypothesis
‖q̇1‖∞ < 0.5 q̇max (equation (31)) and c1 = q̇max, it follows that

q̇1 σ(‖q̇1‖∞, c1) = q̇1 ∀ t.

Consequently

V1 =
1
2
eT

r Kr er =⇒ (37)

V̇1 = eT
r Kr

(
ṙd(t)− Jlv

[
J†

lv ṙd(t) + J†
lv Kr er(t)σ

(∥∥∥J†
lv Kr er(t)

∥∥∥
∞

, c2

)])
=

= −eT
r Kr Kr er(t) σ

(∥∥∥J†
lv Kr er(t)

∥∥∥
∞

, c2

)
< 0

i.e. V̇1 is negative definite that proves asymptotic global Lyapunov stability of
er = 0. Notice that q̇3 and q̇4 do not contribute to V̇1 as they belong to the null
space of Jlv (equation 8). As far as the secondary (heading) task is concerned,
convergence can also be proven through a Lyapunov argument. The global as-
ymptotic stability of er = 0 guarantees that

lim
t→∞ q̇2(t) = 0 =⇒ lim

t→∞ c3 = c2 ≥ 1
2
q̇max.

Given the feasibility condition (32), this means that

∃ t∗ : q̇3 σ(‖q̇3‖∞, c3) = q̇3 and c4 > 0 ∀ t ≥ t∗.

It follows that

V2 =
1
2
eT

ϕ Kϕ eϕ =⇒ (38)

V̇2(t)
∣∣∣
t≥t∗

= eT
ϕ Kϕ (ϕ̇d(t)− Jωq̇d) =

= eT
ϕ Kϕ

[
ϕ̇d(t)− Jω(J†

ω ϕ̇d(t) + J†
ω Kϕ eϕ(t)σ

(∥∥J†
ω Kϕ eϕ(t)

∥∥
∞ , c4

)
)
]

=

= −eT
ϕ K2

ϕ eϕ(t)σ
(∥∥J†

ω Kϕ eϕ(t)
∥∥
∞ , c4

)
< 0

namely there exists a finite time t∗ after which the time derivative of V2 is always
negative, thus proving convergence to zero of the heading error eϕ(t). Prior to t∗

the heading error eϕ(t) is not guaranteed to be decreasing. Notice that q̇1 and
q̇2 do not contribute to V̇2 as they belong to the null space of Jω (equation 8).

As a second example, heading can be selected to be the highest priority task,
it is then sufficient to select q̇1, . . . , q̇4 as

q̇1 := J†
ω ϕ̇d(t) (39)

q̇2 := J†
ω Kϕ eϕ(t) (40)

q̇3 := J†
lv ṙd(t) (41)

q̇4 := J†
lv Kr er(t) (42)

in equations (29-30); Lyapunov stability of the heading error and asymptotic
convergence of the position error could be proven accordingly.
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4 Experimental Results

The proposed control law has been experimentally tested on the Volksbot plat-
form (www.volksbot.de) [10] developed at the Fraunhofer AiS - Autonomous in-
telligent Systems Institute of Sankt Augustin, Germany. The robot is about 8Kg
in weight and is actuated by three 90 Watts, 24 volt DC motors with a 1 : 8
gear ratio. Low level wheel speed control is achieved through a 3 channel PID
motor driver (the AiS TMC200 board) interfaced to an onboard laptop via a
regular serial RS232 line. The presented kinematics trajectory tracking control
law, i.e. the guidance loop in figure (2), is implemented on the onboard lap-
top. Motor power is supplied through NiMH batteries with 3, 5 Ah capacity.
The three omnidirectional wheels have a 5cm radius, are made of lightweight
plastic and are mounted at 120o from each other. The robot is equipped with
an omnivision system made by a 30Hz, 640 × 480 pixels YUV color FireWire
camera pointing towards a 70mm diameter hyperbolic mirror. Such systems are
used for map-based Monte Carlo self-localization [11] [13]. Details can be found
in [12].
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Fig. 3. Experimental results. HP stands for High Priority. Refer to text for details.
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In order to evaluate the performance of the proposed control solution the
position and heading of the robot must be measured reliably and compared
with the desired reference values. To this extent an experimental setup has been
designed where the position of the robot was measured by a fixed laser range
finder pointing on the robot and its heading was measured by the robot itself
using its omnivision system. All collected data was suitably synchronized with
the desired references. Extensive experimental trials with several different refer-
ences have shown the effectiveness of the proposed solution: the case of a circular
reference trajectory with constant (with respect to a fixed frame) heading is re-
ported in figure (3). The position and heading error plots with respect to time
clearly confirm the effectiveness of the priority assignment policy. The growth
of the position errors in the first few seconds of the experiment (top right plot)
are due to the robots dynamics that was neglected in the control law design.
As expected, as long as the actuators guarantee large enough accelerations with
respect to the reference accelerations, the kinematics designed control law ex-
hibits good dynamic performance, i.e. there is only a small lag with respect to
the ideal purely kinematics case.

In the motor command plots, the commanded (q̇d, dashed lines) and encoder
measured wheel speeds (solid lines) are reported with respect to time. Notice that
for the sake of performance measurement accuracy, the saturation threshold was
artificially set to the value of ±8.7rad/s (thick solid lines) via software in order
to achieve saturation at acceptable linear speeds.

5 Conclusions

A trajectory tracking control law for Swedish wheeled robots has been derived
that takes explicitly into account motor saturations. Motor saturation is always
present and may have a sever impact on motion control performances of mobile
robots. This is particularly relevant for omnidirectional mobile robots equipped
with Swedish wheels: these offer a lower grip with the floor with respect to tra-
ditional wheels resulting in a higher probability of exhibiting skidding and/or
sliding when high velocity commands are issued. As a consequence the possibil-
ity of commanding motor speeds always compatible with the saturation limits
is extremely important for omnidirectional mobile robots. Moreover the intro-
duction of a task based prioritization of heading and position tracking may
have a relevant impact on the behaviour control level. The selection of heading
or position tracking tasks as higher priority ones will generally depend on the
(dynamic) role assignment: by using the described lower level control solution
the highest priority tasks errors are guaranteed to converge faster to zero with-
out ever commanding motor speeds exceeding the maximum HW allowed val-
ues. Future work directions should include studies on how the behaviour system
should take advantage of a guaranteed prioritized convergence of the tracking
errors.
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Abstract. In this paper, we apply Reinforcement Learning (RL) to a real-world
task. While complex problems have been solved by RL in simulated worlds, the
costs of obtaining enough training examples often prohibits the use of plain RL
in real-world scenarios. We propose three approaches to reduce training expenses
for real-world RL. Firstly, we replace the random exploration of the huge search
space, which plain RL uses, by guided exploration that imitates a teacher. Sec-
ondly, we use experiences not only once but store and reuse them later on when
their value is easier to assess. Finally, we utilize function approximators in order
to represent the experience in a way that balances between generalization and
discrimination. We evaluate the performance of the combined extensions of plain
RL using a humanoid robot in the RoboCup soccer domain. As we show in sim-
ulation and real-world experiments, our approach enables the robot to quickly
learn fundamental soccer skills.

1 Introduction

Reinforcement learning (RL) is an established machine learning technique. In a trial
and error based procedure, an agent acquires knowledge about the consequences of its
actions and strategies to attain a certain goal [1]. While RL methods have been success-
fully applied to complex problems in simulated environments [2,3], they have rarely
been used for real-world scenarios. The high costs of obtaining enough training exam-
ples for real systems often prohibits the acquisition of successful behavior by means of
plain trial and error. The central intention of our work is the reduction of training ex-
penses for RL methods so that they are applicable to real-world scenarios. In this paper,
we propose three approaches to achieve this goal:

1. Speeding-up the exploration through imitation of a teacher
2. Repeated reevaluation of past experiences
3. Application of function approximators for better generalization

Imitation allows for knowledge transfer by observation between sufficiently simi-
lar agents. Imitation learning is a well established concept in robotics [4,5,6,7,8,9]. The
idea is that the learning agent observes the actions of an experienced agent as well as the
corresponding consequences. These observations give the learner clues about successful
strategies to reach the goal. Through the imitation of the teacher, the exploration of the
huge search space is guided to regions that are promising. The learning agent no longer

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 47–58, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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depends on random exploration but rather on meaningful indications which actions
to choose.

In addition to the guidance by other agent’s experiences, the extensive exploitation
of own experiences is crucial for learning in real-world systems. Many learning algo-
rithms rely on the online processing of experiences at execution time and discard them
immediately afterwards. Often however, the full merit of an experience can be assessed
only later in the learning process when more information is available. We reduce the
amount of training data that has to be collected by storing and reusing experiences. The
extensive use of both, own and observed experiences, provides the necessary knowledge
to choose promising actions that lead to a successful performance.

In complex domains, however, it is highly unlikely that exactly the same situation
is encountered twice. Generalization to similar situations is therefore essential. On the
other hand, generalization should not prevent discrimination between different situa-
tions. The function approximation technique presented in this paper combines the ad-
vantages of quick generalization and accurate long-term discrimination.

We present extensive experiments to evaluate the performance of a combination of
the proposed extensions to plain RL. In simulation as well as in real-world experiments
with a humanoid robot in the RoboCup soccer domain, we demonstrate how the robot
is able to quickly learn fundamental soccer skills.

This paper is organized as follows. In the following section, we briefly introduce
Q-learning, which is a popular RL algorithm. In Section 3, we describe function ap-
proximation and its application to Q-learning. In Section 4, we present our approach
to function approximation that allows for quick generalization as well as for sufficient
discrimination. Section 5 explains our use of imitation and memory to guide the ex-
ploration. Section 6 describes the robot hardware as well as the application of RL to a
specific task and Section 7 presents the experimental results obtained in simulation and
with a real robot. Finally, in Section 8 we discuss related work.

2 Q-Learning

The framework underlying RL is that of Markov decision processes (MDPs), which de-
scribe the effects of actions in a stochastic environment and the possible rewards at the
different environmental states. The goal of the agent is to maximize the expected (dis-
counted) future reward, without knowing the MDP or the reward function in advance.

The action selection according to the current state is called the agent’s policy. RL
methods use an estimate of the expected cumulated future reward, the utility function,
to derive a policy in order to maximize the long-term reward. In our work we use an
ε-greedy policy, i.e. the agent chooses a random action with probability ε and the action
with the highest utility expectation otherwise.

Temporal-difference (TD) methods [10] like Q-learning perform an update of the
utility estimate after each transition (s, a, s′), where s is the state in which action a was
executed and s′ is the resulting state. As the cumulated future reward is not known in
advance, TD methods use an estimate of the utility of s′ to update the utility function.
In Q-learning, the utility function is called Q and maintains utility values for each state-
action pair. The update rule after a transition is given by
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Qt+1(s, a) = Qt(s, a) + α ·
(
rt+1 + γ ·max

a′∈A
Qt(s′, a′)−Qt(s, a)

)
. (1)

Here, r is the immediate reward, 0 < α ≤ 1 is the learning rate and 0 < γ ≤ 1 is the
discount factor.

3 Function Approximation

A tabular representation of the Q-function that stores one estimation for each state-
action pair is only useful for small problems. In practice however, the number of pos-
sible states is often very large or even infinite, making it impossible to maintain a table
of all Q-values. Furthermore, the completely isolated evaluation of each state-action
pair is not appropriate since it does not happen often that exactly the same situation
is encountered twice. In practice, many situations appear similar and are discriminable
only in detail. Experiences should therefore be generalized. Function approximation is
a method that is often used for generalization.

The general notation of function approximation is that given we have input-output
pairs (x, y), we want to compute a function f that is an approximation of the unknown
function f∗ that produced (x, y). First, a prototype for f has to be defined, i.e. a class
of functions, that allows to express f∗ with a suitable parameterization. The approxi-
mation f is represented by a parameter vector θ, which can be seen as instantiation of
the function prototype.

3.1 Function Approximation Using Gradient Descent Methods

The idea of gradient descent methods is to modify the parameter vector θ toward the
direction that yields the greatest error reduction for the example under consideration.
This is done by calculating the gradient of the local error term with respect to θ

θt+1 = θt +
1
2
η∇θt

(y − ft(x))2

= θt + η(y − ft(x))∇θtft(x) . (2)

Here, η is called the step size parameter and θt and ft indicate the parameter vector as
well as the approximation of f∗ at time t.

In this paper, we consider the special case of linear gradient descent. We extract a set
of features from the input x and represent them as the feature vector φx. The number
of parameters n is equal to the number of features and the function prototype is given
by the weighted sum of the features

f(x) =
n∑

i=1

θ(i)φx(i) . (3)

The components of θ are called the weights of the corresponding features. The advan-
tage of this prototype is that the gradient∇θf(x) corresponds to the feature vector φx.
However, care has to be taken that suitable features are extracted from x to provide
linear correlation between φx and y in the case that the correlation between x and y is
non-linear.
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3.2 Q-Learning with Function Approximation

A training example (x, y) in RL consists of the previous state s and the executed ac-
tion a as input and the target for Q-learning rt+1 + γ maxa′∈A Qt(s′, a′) as output.
The update rule for Q-learning with linear gradient descent is then given by:

θt+1 = θt + η(rt+1 + γ max
a′∈A

Qt(s′, a′)−Qt(s, a))φs,a . (4)

The update rule contains the feature vector φs,a, which is the function’s gradient. This
implements responsibility assignment: Those features, that have been most active in the
last decision, are most responsible for the current local error. Thus the corresponding
weights have to be adjusted most.

4 Feature Construction

A typical approach for feature construction is the use of input features that indicate
whether or not the input is inside a certain region of the state space. Such a region is
called the receptive field of the corresponding feature. We construct the features fol-
lowing the principles of coarse coding [11]. The essential idea is to use multiple large
receptive fields, which may overlap, so that an input can activate multiple features.
Two inputs are similar in the features that are present for both or absent for both and
they differ in the features that are present for only one of the inputs. The simultaneous
consideration of similarity and difference is one important instrument to deal with the
conflict between generalization and discrimination, which typically occurs in learning
systems. In this work, we use a variant with continuous features that have an activation
value between 0 (i.e. the input is outside the receptive field) and 1 (i.e. the input is in
the center of the receptive field). The activation function Φ is called the feature’s shape.

In the one-dimensional case the receptive field is an interval [b0, b1]. Let c = b0+b1
2

be the center of the receptive field. Then the activation function is:

Φ(x) =
{

1− 2|x−c|
b1−b0

if x ∈ [b0, b1]
0 else

. (5)

For the transfer to n dimensions we propose the product of the activities on each di-
mension respectively:

Φ(x(1), . . . , x(n)) =

⎧⎨
⎩
∏n

i=1

(
1− 2|x(i)−c(i)|

b
(i)
1 −b

(i)
0

)
if ∀i ≤ n : x(i) ∈ [b(i)

0 , b
(i)
1 ]

0 else
,

(6)
where x(i) and b

(i)
0/1 denote the input and the borders of the receptive field in the dimen-

sion i.
The whole state space is covered completely by a group of features. We call this

group a generic feature. The dimensions are partitioned into uniform intervals with
the borders a0, . . . , ae, where e is the total number of intervals on this dimension (the
resolution). In one dimension each receptive field covers two adjacent intervals with its
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Fig. 1. 1-dimensional generic feature

peak exactly on their border. For each pair of intervals there is one feature plus two extra
features at the border of the domain. Fig. 1 shows the generated features for a resolution
of e = 4. For each input value there are two active features with a total activation of 1.
Each feature contributes to the approximation according to its activation. This can be
interpreted as the feature’s responsibility for a certain input. The systematic overlapping
within a generic feature corresponds to a smooth shift of responsibility between two
adjacent features. The resulting approximation is a linear interpolation of the adjacent
weights.

5 Imitation and Memory

Imitation is an important mechanism for the transfer of knowledge and skills between
similar agents. An imitating agent can observe the behavior of an experienced agent and
thus draw conclusions about the consequences of certain actions.

In this paper, the imitating agent has full access to experiences of a teacher. These
experiences are provided as sequences of states and actions in the learning agent’s rep-
resentation along with the corresponding rewards. Our imitation approach relies on the
evaluation of these sequences according to own criteria. One possibility to do so, is
the application of the Q-learning algorithm with the stored sequence of actions. The
imitation effect can be increased by processing the sequences in temporally inversed
order. This is possible because the whole sequence of transitions and rewards is known
in advance.

One advantage of storing and evaluating such sequences is the fact that the same
algorithm can be applied to processing own experiences. This can be seen as a form of
episodic memory, which allows to ”revive” own experiences when their utility is easier
to access. If, e.g., the agent chooses a very good action by chance, but does not see
immediately that it was a good action or why it was good, then it can be helpful to
revive that experience later in the learning process when increased knowledge allows
for a better assessment of this observation.

The evaluation of observations in temporally inversed order is related to another
technique for faster information propagation in temporal-difference methods. Eligibility
traces [10,12] use the last local error to update the value not only for the current state
but for the recently visited states as well. So there is no individual local error used to
update the previous states of the stored sequence. In contrast to that, we calculate a
new local error for each transition in the stored sequence. Thus, we treat each step of
the sequence as if it was the actual observation. Convergence proofs for table-based
Q-learning (e.g. [13]) require to visit all states and to choose all actions infinitely often,
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but they do not make any assumptions about the ordering of these observations. Thus,
the guarantees on convergence remain unchanged under the appropriate conditions.

6 Task and Implementation

The proposed concepts of function approximation, imitation, and memory are evaluated
for a humanoid toy robot called RoboSapien, which has been augmented with a camera
and a Pocket PC as to allow for autonomous behavior as proposed in [14]. The task of
the agent is to dribble the ball from different positions into the empty goal. Note that
dribbling is achieved by walking against the ball. There is no explicit movement to kick
the ball. The exact task setup is taken from the scoring test defined in [14]. In this test,
the robot stands on the most distant point of the center circle, facing the empty goal.
The ball is placed at ten different positions on the other half of the center circle in the
robot’s field of view. One advantage of the adoption of this existing scoring test is the
possibility to compare the performance to an existing hard coded behavior.

According to the given task, suitable state variables have to be chosen that contain all
relevant information for learning a good policy. Obviously, the positions of the ball and
the goal are necessary to perform the task. While the ball position can be expressed by
two variables (e.g. angle and distance), this is not sufficient for the goal position. Since
the goal has a significant width, an additional variable is required (e.g. left post angle
and right post angle instead of one angle). These five variables define the unambigu-
ous position of all relevant objects and their orientation to each other. There are many
possibilities to represent this information.

The previous paragraph implicitly assumes an egocentric representation of the in-
formation, i.e. the relative positions of the ball and the goal from the agent’s point of
view. Another possibility is the transformation to an allocentric representation, i.e. the
absolute positions of ball and robot on the field (including the robot’s orientation). Fur-
ther possibilities are e.g. egocentric Cartesian coordinates (x and y) instead of polar
coordinates (angle and distance).

In this work, we use a combination of these representations and additional variables
like the square roots of the distances to the ball and to the goal. In total we use 27 vari-
ables to represent the state space. This redundant representation allows the simulta-
neous consideration of different aspects of the situation. Each single representation is
well-suited for the detection of some properties and similarities of situations whereas
others can hardly be distinguished. The combination of several representations allows
to benefit from the advantages of each representation. The additional state variables do
not cause significant additional costs of computation since they just provide another
perspective on the same data. As our function approximation method relies on many
partitionings of the state space anyway, there is no difference (concerning the number
of features) in using two partitionings of the same representation and using one parti-
tioning of two different representations.

The action space of our robot consists of four possible actions: walk forward,
walk backward, turn right, and turn left, that are executed for 3.2s each and separated
by a short break of 0.4s. This pause is required to ensure that the actions’ effects do not
depend on previous actions but only on the current state.
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As explained above, we use Q-learning with linear gradient descent to learn the
policy. The function approximator consists of multiple generic features (see Section 4)
that consider only a small subset of the available state variables each. First, a minimal
representation is chosen from the redundant state representation, i.e., five independent
variables that unambiguously describe the positions of all relevant objects and their
orientation to each other. Then a generic feature is created for all possible combinations
of two and of three dimensions out of these five. This is done for several minimal
representations resulting in a total number of 140 generic features, that only consider the
state space. These features are important to estimate the value of the current situation.
However, they do not distinguish between the different possible next actions. Hence,
another 140 features are added that additionally consider the action space.

To reduce the complexity of the search space, we exploit symmetry. This technique is
widely used in search or optimization problems [15,16]. Here, we use mirroring along
the horizontal axis of the field. The value of turning left is equivalent to the value of
turning right in the mirrored situation. Thus, it is sufficient to learn the value of turning
right. Similarly, for walking forward or backward it is sufficient to learn the value for
only one half of the state space.

7 Experimental Results

We evaluate the performance of the proposed concepts as follows. The task is described
as an episodic RL task. Each action introduces an immediate reward of -1 per time step.
The slight punishment of each action is sometimes called the costs of the actions. Each
episode has three possible outcomes with the rewards:

– Success: The Ball is inside the opponent goal, reward: +1000
– Failure: The ball is outside the field, reward: -400
– Time-out: Abortion after 300sec, no additional reward

In addition to the ten situations defined for the scoring test, we define a set of training
situations. This is to ensure that the agent regularly encounters the different regions
of the state space. The agent alternately starts in a situation from the scoring test and
in a training situation. A pair of training episode and scoring test episode is called a
trial. The performance is evaluated separately for the scoring test and for the training
situations, since we are interested in the performance on the given task, i.e. the scoring
test. The presented experimental results refer to the performance in the scoring test.

Our main performance criterion is the success rate, i.e. the number of goals divided
by the number of episodes. The success rate is averaged over the last 50 episodes. Since
we initialized the success history with 50 failed episodes, the success rate is 0 in the
beginning and only after the 50 episodes, the average is based on actual episodes. This
is indicated by a vertical line in the plots. With the real system, fewer episodes can be
run due to time constraints. In this case, the performance is averaged over 20 episodes.
Our second criterion is the duration of successful episodes. It allows to distinguish
the performance of policies that have a high success rate. This value is averaged over
50 successful episodes.
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Fig. 2. The effects of imitation and memory. As can be seen, by applying our proposed approach
using imitation and memory (Setup iv), the robot needs only few trials in order to come up with
a good policy.

The influence of the different parameters can be evaluated faster and more systemat-
ical in a simulated environment, compared to using the real system. We first present the
results obtained in a simulator and show the performance on the real robot afterwards.

7.1 Accelerating Learning by Using Imitation and Memory

First, we show that imitation and the reevaluation of own experiences seriously accel-
erate learning. Both approaches are evaluated separately and in combination using the
following setups:

i) Standard Q-learning with η = 0.2 (constant); γ = 0.98; ε = 0;1

ii) Same as i), additionally after each episode: evaluation of 36 successful episodes of
an experienced agent

iii) Same as i), additionally after each episode: evaluation of the last 36 own episodes
iv) Same as iii), additionally: memory initialized with 36 successful episodes of an

experienced agent (that will be replaced by own experiences after each trial)

The experienced agent is a human controlled RoboSapien with a success rate of 100%.
As Fig. 2 shows, classical Q-learning does not lead to noticeable success within a rea-
sonable time. Isolated imitation as employed in Setup ii) results in a behavior with a
success rate of about 70% already after few trials. However, the robot does not improve
further. It seems that the extensive use of stored experiences leads to a biased transition
model that prohibits further progress in learning. When the robot uses a memory of
own experiences only, learning starts more slowly but leads after 200 trials to a success
rate near 100%. The combination of the two concepts imitation and memory (Setup iv)
yields an almost immediate success rate of about 90%. As can be seen, after 70 trials
the agent has learned a good policy with a stable success rate near 100%.

7.2 Influence of the Discount Factor

The parameter γ is used to discount rewards that will be gained in the future. One in-
teresting effect of this future discount is that the robot prefers solutions with shorter

1 Experiments with ε > 0 ended up with similar results.
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Fig. 3. Duration of successful episodes. A lower value of γ leads to a faster accomplishment of
the task.

sequences of actions, as can be seen in Fig. 3. This figure shows the duration of suc-
cessful episodes for different values of γ. The success rate (not shown in the plot) does
not differ significantly for the different values. However, the goal is reached much faster
with γ = 0.97 than without discounting the future (γ = 1). Thus, the discount factor
has an important influence on the policy that is going to be learned. A lower value
may be advantageous for time-sensitive tasks. On the other hand, quick solutions might
involve a higher risk of failure, so that γ cannot be chosen arbitrarily small.

7.3 Results with the Real Robot

As a first approach to generate successful behavior for the real robot, we transfered the
learned policy from the simulator onto the real robot. The result was that all ten out
of ten episodes in the scoring test were completed successfully. The average duration
was 153s. Thus, the policy learned in the simulator already outperforms the hard coded
behavior by 20s [14].

In another experiment, we evaluated the learning process on the real robot. We used
the proposed concept of imitation and memory as it was described by Setup iv) above.
As can be seen in Fig. 4, the success rate increases quickly up to 70% after just 30 trials.
The final performance is a success rate of 85%. Although the curve is not yet stable at
this point, the results from the simulations suggest that this performance level can be
maintained and maybe further improved.

8 Related Work

Machine learning has been widely investigated in recent works on robotics, intelligent
agents or control systems. Classical approaches are increasingly combined with psy-
chological mechanisms like imitation, curiosity, selective attention, and memory.

A well-known example for the successful application of RL techniques is the back-
gammon computer developed by Tesauro [2]. It consist of a feed-forward neural net-
work, which is trained by playing against itself. TD-backgammon outperformed all
commercial backgammon programs available at that time. The extensive training was
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Fig. 4. Learning with the real robot. The proposed concepts of imitation and memory as well as
function approximation lead to a quick acquisition of successful behavior.

essential part of this great success. The program was trained in up to 200,000 matches
against itself.

Learning with memory can be used to overcome the hidden-state problem of non-
Markovian environments. Algorithms like U-tree [17] or HQ-learning [18] integrate
past information into the current state. As memory is only used within an episode, this
can be seen as a form of short-term memory. Our approach does not aim at the solution
of the hidden state problem within an episode but rather at preserving experience for
later access. This corresponds to episodic memory. Our work is closely related to the
fitted Q iteration algorithm [19], where RL is applied in batch mode to a large set of
single observations. An observation is a four-tuple (s, a, s′, r).

Different concepts of guided exploration have been proposed to accelerate RL meth-
ods. Reinforcement-driven information acquisition (RDIA) [20] combines knowledge
from information theory with RL to model curiosity. Experiments with table-based Q-
learning in a simulated environment show that transition probabilities can be learned
much faster than with random exploration. Another form of guided exploration is coach-
ing. The RATLE algorithm [21] uses Q-learning with a feed-forward neural network
and allows to process external advice in form of rules. This is done by translating the
rules into neural units and inserting these new units directly into the network. In [22]
imitation is used to solve a maze problem.2 The learning agent has an ”innate” imita-
tion behavior, which consists in following a teacher. Experiments in simulations show
that increasingly complex mazes can be solved. The results are not compared to other
approaches.

The successful application of RL methods to robotic soccer has been recently demon-
strated by the team Brainstormers Osnabrück, the 2005 World Champion in the Robo-
Cup 2D-Simulation-League. Their research focuses on the use of RL techniques for
multi-agent systems [3]. Classical RL with feed-forward networks is used to learn ba-
sic skills that are combined to more complex behaviors [23]. The application of RL to
real-world soccer robots is investigated in [24]. First, basic skills are learned via RL.
Then, a policy is learned as well that chooses among the basic skills according to the

2 The problem is called a maze problem in the original publication. However, it is rather a
corridor. So the problem is not finding the exit, but to follow a given path without collisions.
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current situation. Thus, a two-level hierarchy is used. The agent successfully learns
good behavior in a simulated environment. Applied to the real robot, the behavior does
not reach the performance of an explicitly programmed solution. The results are com-
pared to a robot, whose top speed has been reduced to 1

3 of the usual top speed.

9 Conclusions

In this paper, we presented several techniques to reduce the amount of training data
for RL. The main idea was to build extensive knowledge from few experiences. This is
crucial for the application of RL methods to real-world scenarios.

We use imitation to replace the random exploration of the huge state and action space
with a guided exploration. In our approach, the agent has full access to experiences of a
teacher, which has the same state and action space and gets identical rewards. Percep-
tions, actions, and rewards of the experienced agent are stored and can be accessed and
reused later. Similarly, own experiences are stored and reevaluated later. This dramati-
cally reduces the training expenses. Classical RL methods process the current observa-
tion and discard it immediately. This way, valuable information might be lost, since it
cannot be correctly assessed at the moment of the experience. We let the agent repeat-
edly reprocess past experiences to avoid this problem.

In addition, the quick generalization of similar situations while preserving the possi-
bility to distinguish between different situations, essentially contributes to the accelera-
tion of the learning process. Coarse coding with binary features allows locally constant
function approximation. In this case, inputs that activate identical features are treated
identically. Our function approximation with continuous features is locally linear. In-
puts that activate identical features remain discriminable by the different intensities of
the activation. This way, generalization and discrimination can be better combined.

As the experimental results show, fundamental soccer skills can be learned using RL
in simulation. The approach also works with a real humanoid robot on the soccer field.
The given task is accomplished quickly and reliably. Although the training with the real
robot requires more time than the training in simulation, it stays within a reasonable
limit. We also showed that the learned behavior in the simulator can be directly used by
the real robot and yields good results.
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Abstract. When developing skills on a physical robot, it is appealing
to turn to modern machine learning methods in order to automate the
process. However, when no accurate simulator exists for the type of mo-
tion in question, all learning must occur on the physical robot itself. In
such a case, there is a high premium on quick, efficient learning (specifi-
cally, learning with low sample complexity). Recent results in learning lo-
comotion have demonstrated the feasibility of learning fast walks directly
on quadrupedal robots. This paper demonstrates that it is also possible
to learn a higher-level skill requiring more fine motor coordination, again
with all learning occurring directly on the robot. In particular, the paper
presents a learned ball-grasping skill on a commercially available Sony
Aibo robot, with no human intervention other than battery changes.
The learned skill significantly outperforms our best hand-tuned solution.
As the learned grasping skill relies on a learned walk, we characterize
our learning implementation within the layered learning formalism. To
our knowledge, the two learned layers represent the first use of layered
learning on a physical robot.

Keywords: learning and adaptive systems, sensor-motor control.

1 Introduction

In order for robots to be useful for many real-world applications, they must be
able to adapt to novel and changing environments. Ideally, a robot should be
able to respond to a change in its surroundings by adapting both its low-level
skills, such as its walking style, and the higher-level skills which depend on them.
Because hand-coding is time-consuming and often leads to brittle solutions, this
adaptation should occur as autonomously as possible. Machine learning promises
a way to generate solutions with little human interaction, so that when the
environment changes the solution can be revised with limited human effort.
Machine learning can also lead to better solutions than hand-tuning, because
humans are often biased toward exploring a small part of the space of possible
solutions, whereas machine learning explores the space in a systematic way.

Current learning methods typically need a large amount of training data to
be effective. Thus, an appealing approach to creating learning robots is to train
behaviors first in simulation before implementing them in the real world [5].

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 59–71, 2007.
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However, especially when concerned with complex perception or manipulation
tasks, we cannot assume an adequate simulator will always exist for a given
robot. With no simulator, each trial requires interaction with the physical world
in real time. In such cases, it is not possible to offset the costs of an inefficient
learning algorithm with a faster processor. The learning algorithm must make
efficient use of the information gained from each trial (i.e., it must have low
sample complexity).

For this reason, until recently, most of the locomotion approaches for quad-
rupedal robots have centered around hand-tuning a parameterized gait. How-
ever, in recent years, there has been a spate of research on efficient learning
algorithms for quadrupedal locomotion [2,4,9,11,12,13,14]. A common feature of
these approaches is that the robots time themselves walking across a known,
fixed distance, thus eliminating the need for any human supervision.

This paper demonstrates that it is possible to similarly learn a higher-level
more fine-motor skill, again with all learning occurring directly on the robot.
In particular, the paper presents a learned ball-grasping skill on a commer-
cially available Sony Aibo robot, with no human intervention other than battery
changes. We show that a learning algorithm that has proven effective for learning
walks applies directly to this new task. However, due to the different task char-
acteristics, significant changes to the training scenario are required. This paper
contributes a full specification of a training scenario that enables autonomous
learning of a ball-grasping skill. The learned skill significantly outperforms an
extensively hand-tuned solution.

As the learned grasping skill relies on a learned walk itself, we characterize our
learning implementation within the layered learning formalism. Layered learn-
ing [17] is a hierarchical machine learning paradigm that leverages a given task
decomposition to learn complex tasks efficiently. A key feature is that the learn-
ing of each subtask directly facilitates the learning of the next-higher subtask
layer. Layered learning has been used previously to generate complex, multi-
layer behaviors in simulated environments [6,7,17,18]. To our knowledge, our
two learned layers represent the first use of layered learning on a physical robot.

The remainder of this paper is organized as follows. Section 2 describes the
background and motivation for this work. Section 3 specifies the tasks to be
learned and how the layered learning paradigm can be used to relate them, as
well as how the training scenario is set up for each task. Section 4 describes
the primary machine learning algorithm used in the work. Section 5 details the
results of the training, and Section 6 discusses the contributions of this work, as
well as possible directions for the future.

2 Background

This section describes the robot hardware used in all experiments and intro-
duces the target task towards which it is trained (Section 2.1). It also summa-
rizes the layered learning formalism (Section 2.2) within which we frame our
approach.
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2.1 Ball Acquisition by a Legged Robot

Acquiring an object is a prerequisite for many types of manipulations in the world
[1,8]. For example, in the case of a Sony Aibo robot playing soccer, one of our mo-
tivating testbed domains, it is much easier to design effective ways for the robot
to kick the ball if we may assume that the ball starts in a specific position relative
to the robot. Furthermore, if the robot can grasp the ball securely enough, it can
move the ball into a better position relative to the objects in the robot’s environ-
ment before executing a kick. (For example, the robot can turn with the ball until
it is pointed at the opponent’s goal.) Thus, as a representative high-level task for
learning, we consider the aim of having a robot walk up to a ball and gain control of
it. For the purposes of this paper, we define control to mean that the robot holds the
ball under its chin in a way that allows it to turn with the ball as shown in Figure 1.

As the robot platform for this research,

Fig. 1. An Aibo with control of a
ball. Achieving this position with-
out knocking the ball away in the
process is a challenge; our learn-
ing method allows the Aibo to do
this more reliably without sacrific-
ing walking speed.

we use the commercially available Sony Aibo
ERS-7, a quadruped robot [15]. The ERS-7
has four legs with three degrees of freedom in
each, a head with three degrees of freedom,
and a CMOS camera in the head. It has sev-
eral pressure sensors and two infrared range
sensors, as well as position sensors in each of
its joints. The robot is able to capture frames
from the camera at a rate of 30 Hz. From
these images, our software recognizes objects
such as the orange ball based on color segmen-
tation and aggregation. This variety of sen-
sors allows us to rely on local sensing alone.
In addition, the 576 MHz 64 bit RISC proces-
sor allows all necessary processing to be done
onboard. In this work, we use a system for vi-
sion processing, walking, and kicking that was
developed as part of our larger robot soccer
project [16].

2.2 Layered Learning

Layered learning is a general hierarchical machine learning paradigm that lever-
ages a given task decomposition to learn complex tasks efficiently. Though it has
been validated previously in simulation, this paper presents the first application
of layered learning on a physical robot. Specifically, the robot first learns a fast
walk, then uses that walk to approach the ball while learning to grasp it.

The main principles of layered learning are summarized in Table 1. A detailed
description of these principles is given by Stone and Veloso[17].

We cast our learned behaviors within the formal layered learning framework as
defined in the remainder of this section [17]. Consider the learning task of iden-
tifying a hypothesis h from among a class of hypotheses H which map a set of
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Table 1. The key principles of layered learning

1. Learning a mapping directly from inputs to outputs is not tractable.
2. A bottom-up, hierarchical task decomposition is given.
3. Machine learning exploits data to train and/or adapt. Learning occurs separately

at each level.
4. The output of learning in one layer feeds into the next layer.

state feature variables S to a set of outputs O such that, based on a set of training
examples, h is most likely (of the hypotheses in H) to represent unseen examples.

When using the layered learning paradigm, the complete learning task is decom-
posed into hierarchical subtask layers {L1, L2, . . . , Ln} with each layer defined as

Li = (Fi, Oi, Ti, Mi, hi)

where:
Fi is the input vector of state features relevant for learning subtask Li.

Fi = <F 1
i , F 2

i , . . .>. ∀j, F j
1 ∈ S.

Oi is the set of outputs from among which to choose for subtask Li. On = O.
Ti is the set of training examples used for learning subtask Li. Each element of

Ti consists of a correspondence between an input feature vector f ∈ Fi and
o ∈ Oi.

Mi is the ML algorithm used at layer Li to select a hypothesis mapping Fi �→ Oi

based on Ti.
hi is the result of running Mi on Ti. hi is a function from Fi to Oi.

Note that a layer describes more than a subtask; it also describes an approach
to solving that subtask and the resulting solution.

As stated in the Decomposition principle of layered learning, the definitions of
the layers Li are given a priori. The Interaction principle is addressed as follows.
∀i < n, hi directly affects Li+1 in at least one of three ways:

– hi is used to construct one or more features F k
i+1.

– hi is used to construct elements of Ti+1; and/or
– hi is used to prune the output set Oi+1.

It is noted above in the definition of Fi that ∀j, F j
1 ∈ S. Since Fi+1 can

consist of new features constructed using hi, the more general version of the
above special case is that ∀i, j, F j

i ∈ S ∪i−1
k=1 Ok.

When training a particular component, layered learning freezes the compo-
nents trained in previous layers, thereby adding additional constraints to the
learning process. It also adds guidance, by training each layer in a special envi-
ronment intended to prepare it well for the target domain.

The original implementation of the layered learning paradigm was on the full
robot soccer task in the RoboCup soccer simulator [17]. First, a neural network
was used to learn an interception behavior. This behavior was used to train a
decision tree for pass evaluation, which was in turn used to generate the input
representation for a reinforcement learning approach to pass selection.
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A subsequent application of layered learning uses two layers, each learned via
genetic programming, for a soccer keepaway task in a simplified abstraction of
the TeamBots environment [7]. In the full TeamBots environment, four learned
layers were used, also on a keepaway task [18]. To our knowledge, there has been
no previous implementation of layered learning on a physical robot.

3 Layered Learning on a Physical Robot

The process of approaching a ball and then gaining control of it relies on the
gait that allows the robot to move toward the ball. Thus, when both the gait
and the grasping are individually learned, we have a layered learning hierarchy
consisting of two layers. This section casts the recent research on gait learning
within the layered learning formalism (L1), and then builds upon it to learn ball
grasping, a second, higher-level skill (L2).

3.1 Learning a Gait

In recent years, several approaches to learning a gait on an Aibo have been stud-
ied. Among these approaches, most of the differences between gaits stem from the
shape of the loci through which the feet pass and the exact parameterizations of
those loci. For example, Kohl and Stone used elliptical loci to learn high-speed
walks using a policy gradient learning approach [11], while simultaneously but
independently, Quinlan et al. were able to generate high-velocity gaits using a ge-
netic algorithm and loci of arbitrary shape [12], and Roefer created a flexible gait
implementation that allows use of a variety of different shapes of loci [14]. They
then used an evolutionary learning algorithm to optimize a novel fitness function
based on proprioception to learn a fast gait [13]. Chernova and Veloso similarly
used an evolutionary approach with good success [2] and Lee et al. refined Kohl
and Stone’s approach to estimate gait speeds more effectively [4].

This paper builds upon the successful approach of Kohl and Stone [11], in
which the gait is defined by a set of 12 continuous parameters specifying, among
other things, the shape of the trajectory through which each leg moves as well
as the target heights of the front and rear of the body. Thus, gait learning is
framed as a parameter optimization problem, with forward speed as the objec-
tive function. The learning is accomplished via the policy gradient algorithm
summarized in Section 4.

The fitness of a policy, or set of values for the 12 parameters, is obtained by
having one or more Aibos time themselves as they walk a fixed, known distance
indicated by a pair of landmarks. To reduce the effect of noise, this evaluation
process is performed three times for each policy, and the resulting times are
averaged to get the fitness of the policy.

In the notation of layered learning, the gait layer (L1) is thus defined as:

F1: ∅;
O1: values for the 12 parameters defining a gait, plus the speed of the resulting

gait;
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T1: the set of training examples obtained by recording the time it takes to walk
back and forth across a fixed distance;

M1: the policy gradient algorithm described in Section 4;
h1: the parameters of the fastest discovered gait, and its speed.

The walks learned using this technique perform similarly to those reported by
Stone and Kohl [11], who report that with three robots continually walking across
the field more than 1000 total times for approximately 3 hours, they achieved
the fastest known walk on the Aibo at the time. Notably, the robots learned
without any human intervention other than battery changes approximately once
an hour, and the walk speed was nearly doubled during training.

Though our learned walk itself is a reproduction of previous results, the for-
mulation of the walking task within the framework of layered learning is novel to
this paper. Next, Section 3.2 introduces this novel learned skill in full detail and
similarly frames it within layered learning. As prescribed by layered learning,
the new skill uses the learned walk (h1) as a part of its training scenario.

3.2 Learning to Acquire the Ball

The task of learning to capture a ball under the robot’s chin is motivated by
the ongoing development of our four-legged robot soccer team [16]. The robot is
only able to kick in certain directions, so it is useful to be able to capture the
ball and turn with it before kicking. Our team adopted the following strategy
for getting the ball into this position: when the Aibo is walking to a ball with
the intent of kicking it and gets close enough, it first slows down to allow for
more precise positioning, and then it lowers its head to capture the ball under
its chin (the capturing motion).

Executing the capturing motion without

Fig. 2. Illustration of capture
angle. If the Aibo believes that the
center of the ball is to the right of
the thick white lines, then it will
continue to turn toward the ball
rather than beginning the captur-
ing motion, even if the ball dis-
tance is believed to be less than
capture dist.

knocking the ball away is a challenge: if the
head is lowered when the ball is too far away,
the head may knock the ball away; but if it
is not lowered in time, the body of the ro-
bot may bump the ball away. Furthermore,
certain aspects of the acquisition motion in-
teract, such as the perceived ball distance at
which the head should be lowered and the
amount that the robot slows down when close
to the ball. Parameters like these must there-
fore be tuned simultaneously. This entire pro-
cess is time-consuming to perform by hand.

The parameters that control the transition
from walking to capturing the ball, as indi-
cated in Figure 3, are as follows:
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– slowdown dist: the ball distance (in millimeters) at which slowing down
begins;

– slowdown factor: the (multiplicative) factor, in the range [0,1], by which
the gait slows down at this point;

– capture angle: the maximum ball angle (in degrees) at which the capturing
motion may begin (see Figure 2);

– capture dist: the ball distance (in millimeters) at which the capturing mo-
tion begins (if the ball is within the specified angle);

– turn cutoff: the minimum ball angle (in degrees) at which the robot will
not move directly toward the ball at all, but instead will turn in place to
face the ball more directly. This parameter controls how straight the final
part of the robot’s approach will be.

Given this parameterization,
1: totalscore ← 0
2: for j ∈ [1, n] do
3: locate ball
4: while ball farther than slowdown dist do
5: if ball angle more than turn cutoff then
6: turn toward ball
7: else
8: walk to ball at maxspeed
9: end if

10: end while
11: while ball farther than capture dist and outside

of capture angle do
12: if ball angle more than turn cutoff then
13: turn toward ball
14: else
15: walk to ball at maxspeed*slowdown factor
16: end if
17: end while
18: lower head over ball
19: if head tilt position sensor senses ball then
20: totalscore ← totalscore + 1
21: if center of field to robot’s left then
22: kick to left
23: else
24: kick to right
25: end if
26: end if
27: turn 180◦

28: end for
29: policy score ← totalscore/n

Fig. 3. Method for evaluating policies while
learning to approach the ball. n is the number
of trials per policy; in our experiments, we used
n = 12.

we are faced with a parameter op-
timization problem in five dimen-
sions. Because our policies can be
expressed in this way, and be-
cause our domain has the same
efficiency constraints as that of
learning fast locomotion for the
Aibo, the policy gradient learning
algorithm used to learn the gait
(see Section 4) is again a natural
choice.

However, there are new
challenges in learning ball acqui-
sition; specifically, i) defining an
appropriate reward signal, and ii)
defining an appropriate training
scenario. The policy gradient al-
gorithm relies on the magnitude
of the fitness difference between
policies. This magnitude is read-
ily available in the learned walk-
ing scenario, because speed pro-
vides a natural and continuous
measure of fitness. But in the case
of ball acquisition, there is no
straightforward way to rate a par-
ticular policy with regard to “how

well” it captures the ball: it either does or it does not.
Therefore, we use a binary reinforcement signal: if the robot captures the ball,

it receives a reward of 1; if not, it receives a reward of 0. The Aibo can determine
autonomously whether it has captured the ball by trying to put its chin all the
way down to its chest and then taking note of the value of the position sensor in
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its head tilt joint; if the ball is indeed under its chin, the head tilt motor will stop
moving before getting to the requested position. During training, the score for
a given policy is determined by running a fixed number of trials (12) with that
policy and averaging the reinforcement signal over those trials (thus producing
a discrete reinforcement signal). In other words, a policy’s score is the number
of times it successfully captures the ball over the course of 12 trials: an integer
between 0 and 12 inclusive.

Each trial consists of the robot approaching the ball from a random location on
the standard field used in the 2004 RoboCup competition, which is surrounded
by a short wall designed to keep the ball from leaving the field. The training
procedure is summarized in pseudocode in Figure 3.

One goal of the training procedure is to generate as many trials as possible
in the open field, rather than with the ball starting against the wall. The latter
trials are somewhat less informative because capturing the ball along the wall
is considerably harder; even a good policy will fail much more frequently along
the wall, which can lead to a smaller spread of scores among policies. In order to
keep the ball in the open field, if the Aibo successfully captures it, it kicks it in
whichever direction it estimates is away from the wall (lines 21–25 in Figure 3).
Before starting the next trial, the Aibo turns around approximately 180◦ in
place in order to knock the ball away from it if it is still close (line 27), so as
to make the different trials as independent as possible. Once it has done this,
it begins the next trial by searching for the ball and then approaching it with
the parameters of the current policy (lines 3–17). Videos depicting the training
process in action are available online1.

In the notation of layered learning, we thus have the following definition of
the acquisition layer (L2):

F2: {BallAngle, BallDistance} ∈ {[−180, 180], [0,∞)}. The five thresholds that
comprise an acquisition policy (slowdown dist, etc.) relate to these two
sensor readings alone;

O2: whether or not to lower the head at the current time;
T2: evaluations of mappings from Fi to Oi, obtained by repeatedly trying to

grasp the ball by the process described above and summarized in Figure 3.
In particular, the learned walk (h1) is used during training;

M2: the policy gradient algorithm described in Section 4;
h2: the final learned acquisition policy.

All learning is done on the Aibo itself, including all calculations necessary
to execute the learning algorithm. Interruptions caused by dead batteries are
of little consequence, since the learning algorithm we use has practically no
state: if we resume from its last base policy, we will never lose as much as
an entire iteration of the algorithm. With the algorithm parameters used in
our experiments, a battery typically lasts for the amount of time necessary to
complete two iterations, so on average a run requires about 4 battery changes.

1 http://www.cs.utexas.edu/~AustinVilla/legged/learned-acquisition/

http://www.cs.utexas.edu/~AustinVilla/legged/learned-acquisition/
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4 The Policy Gradient Algorithm

The learning algorithm common to both learned layers estimates the gradient of
the policy’s value function near the current policy via efficient experimentation.

Table 2. Parameters for the policy gradient
algorithm in the ball acquisition learning task

Parameter Value
Policies per iteration (t) 8

Increment for slowdown dist (ε1) 10mm
Increment for slowdown factor (ε2) 0.1
Increment for capture angle (ε3) 5◦

Increment for capture dist (ε4) 10mm
Increment for turn cutoff (ε5) 10◦

Scalar step size (η) 2

It then takes a step in the direc-
tion of the estimated gradient and
repeats the process. We use the
policy gradient algorithm presented
and evaluated against alternatives
for learned locomotion by Kohl and
Stone [10]. This section summarizes
the algorithm in task-independent
terms and points out some of its ad-
vantages for the purpose of ball ac-
quisition.

Starting from a base policy {θ1,
..., θN}, t−1 new policies are chosen

by selecting one of {θi− εi, θi, θi + εi} randomly for each dimension i, where εi is
a fixed increment particular to dimension i. These t policies (the base policy and
the t − 1 randomly selected policies) are then evaluated for their fitness. Their
scores are used to estimate the partial derivative of fitness with respect to each
of the N dimensions, which leads to a new base policy.

The estimation of partial derivatives works as follows. For each dimension i,
the policies are divided into three sets according to the value of parameter i: if
its value is θi − εi, the policy is in set S−ε,i; if it is θi, the policy is in set S0,i;
and if it is θi + εi, the policy is in set S+ε,i. Then the average score over all the
policies in each set is computed and used to build an adjustment vector A of size
N . For each i, if the average score over the set S0,i is greater than the average
score over each of the other two sets, then Ai = 0; otherwise, Ai is the difference
between the average scores over set S+ε,i and set S−ε,i. A is then normalized
and multiplied by a scalar step size η, so that the policy is adjusted by a fixed
amount each time. The above process comprises one iteration of the algorithm.
For the parameters used in learning ball acquisition, see Table 2.

5 Results

The success of layer L1 at producing a significantly faster forward gait has been
demonstrated previously [11]. In this paper, we demonstrate that, in the layered
learning paradigm we present here, L2 can build upon the gait improvement
conferred by L1. In particular, we hypothesize the ability to learn a significantly
improved ball-acquisition skill to go with the significantly improved gait.

To test this hypothesis quantitatively, we learn ball acquisition using three
gaits learned by separate runs of layer L1. All three of these learned gaits rep-
resent significant improvements in speed over the initial hand-tuned gait. The
initial (before learning) ball acquisition policy was hand-tuned for the initial
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hand-tuned gait from which gait learning began. The ball-acquisition learning
paradigm described by layer L2 was then applied to each of these gaits, and
significantly improved acquisition policies were discovered for all three.

Figure 4 shows the learning curve for one
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Fig. 4. Progress of acquisition
learning on gait A. This learning
curve was produced by running
100-trial evaluations on the base
policy of each iteration. Error bars
(showing the 95% confidence in-
terval) are depicted for the initial
and best learned policy; these were
obtained by running five 100-trial
evaluations on each policy.

of these gaits, which we will refer to as gait A.
For this gait, the initial ball acquisition pol-
icy acquires the ball roughly 26% of the time,
whereas the best learned policy acquires the
ball approximately 77% of the time. This im-
provement was reached in 8 iterations, which
requires 768 attempted acquisitions (approx-
imately 3 hours). The initial policy and the
best learned policy were each subjected to
five 100-trial evaluations, resulting in five ap-
proximations of the success rate of each. Sta-
tistical significance was then established by
applying a t-test to these success rates.

Gait A has a speed of about 315mm/sec,
whereas the initial hand-tuned gait from
which it was learned has a speed of about
245mm/sec. The gait training process also re-
quires roughly 3 hours. Therefore, with 6
hours of training, our robot’s walking speed
increased 29% and its reliability at acquir-

ing the ball more than doubled2 in comparison with the original hand-coded
solution.

Table 3 summarizes the ball acquisition policies learned for all three gaits. It
also shows the success rate of each when tested on the gait with which it was
learned. These success rates were obtained by running 100-trial evaluations of
the policy (except for gait A, where the data is the result of all 500 trials run to
establish statistical significance on the data in Figure 4). The success rate of the
initial hand-coded policy is 26% for gait A, 14% for gait B, and 14% for gait C.

Note that in all cases, the method learned not to slow down at all (slowdown
factor is 1). When slowdown factor is 1, the parameter slowdown dist has
no effect on the robot’s behavior, which is presumably why learning resulted in
such a wide range of values for this parameter.

The fact that in all cases our method learns not to slow down demonstrates
the advantage that machine learning can bestow because of its unbiased explo-
ration of the space. In hand-tuning, we believed that slowing down would make
the ball approach more reliable at the expense of speed, since the estimates
of ball distance should change less rapidly if the robot is walking more slowly.
Our system, however – which optimized only for reliability – found that slowing

2 The initial ball-acquisition skill had a success rate of 36% with the initial gait,
and was the result of extensive tuning involving the testing of dozens of parameter
settings over the course of several days.
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down is in fact a disadvantage: in all learning trials it actively increased the
slowdown factor parameter from its initial value of 0.8 to 1.0.

Table 3. Policy values learned for each gait, and the approximate success rate of each

Policy slowdown dist slowdown factor capture angle capture dist turn cutoff Success rate

Initial 200 0.8 15 110 90 26%/14%/14%

Best: gait A 193 1 32 155 80 77%

Best: gait B 187 1 19 155 69 84%

Best: gait C 228 1 31 129 84 52%

We originally hypothesized that different gaits would require different acqui-
sition policies. This hypothesis was supported by the fact that the initial ball
acquisition policy dropped in effectiveness from approximately 36% on the gait
for which it was hand-tuned to 14–26% on the learned gaits.

Table 4. Success rates of best natively
learned acquisition policy and best acqui-
sition policy learned on gait A

Gait Natively learned Best on gait A
B 84% 91%
C 52% 53%

However, it turned out not to be
the case with these learned gaits
and their trained acquisition policies.
Rather, upon testing the best acqui-
sition policy learned with gait A on
each of the other two learned gaits,
there was no significant difference in
performance — if anything, the acqui-
sition policy learned on gait A per-
forms better in each case, as shown in

Table 4.
Nonetheless, the layered learning paradigm enabled the separation of the

learning for the walk and ball acquisition into two distinct phases. Given that
they learn most efficiently in different training environments, such a hierarchical
approach is an essential component of our successful skill learning.

6 Conclusion

This paper makes two main contributions: i) a significantly improved grasping
skill achieved via fully autonomous machine learning with all training and com-
putation executed on-board the robot, and ii) the first instantiation of layered
learning on a physical robot.

The layered learning approach to locomotion and ball acquisition learning
that we describe here is very useful in practice. Compared to manually tuning
these skills, this method saves time and can generate better policies. Indeed,
we used the described automated training paradigms for both the gait and the
acquisition in our competitive team development for the RoboCup 2004 and 2005
robot soccer competitions, reaching the semifinals (out of 8) at the regional event
and the quarterfinals (out of 24) at the international event both years [16].
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In our ongoing research, we aim to identify additional skills and behaviors that
can be learned in a similarly autonomous and efficient fashion. Several candidates
for an L3 that builds on the grasping skill learned in L2 exist. Currently, for
example, all design and tuning of kicks for our RoboCup team are done by
hand. If this process could be automated, it would likely save time and might
also lead to improved solutions. However, since most kicks begin by grasping
the ball, autonomous learning of kicks would be intractable without a good
grasping behavior. Another possible candidate for an L3 that builds on the
learned grasping skill is the tuning of walks that manipulate the ball, such as
the one used in the turning-with-ball behavior which makes grasping so crucial in
the first place (see Section 2.1). Eventually, these learned skills may feed into still
higher-level learned decision-making behaviors (where to pass or when to shoot)
based on the current learned skills. Indeed, an immediately realizable L3 related
to kicking is the modeling of hand-tuned kicks as accomplished via regression
learning by Chernova and Veloso [3]. They use these models to demonstrably
improve the robot’s decision-making when choosing form among different kicks.
Ultimately, we hope to characterize the full range of characteristics of tasks on
a mobile robot that may be improved by these methods.
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Abstract. We present half field offense, a novel subtask of RoboCup
simulated soccer, and pose it as a problem for reinforcement learning. In
this task, an offense team attempts to outplay a defense team in order to
shoot goals. Half field offense extends keepaway [11], a simpler subtask
of RoboCup soccer in which one team must try to keep possession of the
ball within a small rectangular region, and away from the opposing team.
Both keepaway and half field offense have to cope with the usual prob-
lems of RoboCup soccer, such as a continuous state space, noisy actions,
and multiple agents, but the latter is a significantly harder multiagent
reinforcement learning problem because of sparse rewards, a larger state
space, a richer action set, and the sheer complexity of the policy to be
learned. We demonstrate that the algorithm that has been successful
for keepaway is inadequate to scale to the more complex half field of-
fense task, and present a new algorithm to address the aforementioned
problems in multiagent reinforcement learning. The main feature of our
algorithm is the use of inter-agent communication, which allows for more
frequent and reliable learning updates. We show empirical results veri-
fying that our algorithm registers significantly higher performance and
faster learning than the earlier approach. We also assess the contribution
of inter-agent communication by considering several variations of the ba-
sic learning method. This work is a step further in the ongoing challenge
to learn complete team behavior for the RoboCup simulated soccer task.

1 Introduction

RoboCup simulated soccer [2,4] has emerged as an excellent domain for re-
searchers to test ideas in machine learning. Learning in the RoboCup soccer do-
main has to overcome several challenges, such as a continuous multi-dimensional
state space, noisy sensing and actions, multiple agents (including adversaries),
and the need to act in real-time. Machine learning techniques have been used in
the past on a wide range of tasks in RoboCup soccer. For instance, the Brain-
stormers team [8,9] uses reinforcement learning to train both individual behav-
iors and team strategies. Several researchers have focused on specific subtasks
like goal-shooting [3,6].

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 72–85, 2007.
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Keepaway. is a subtask of RoboCup soccer that has recently been proposed by
Stone et al. [11] as a testbed for reinforcement learning methods. In keepaway,
a team of keepers tries to keep possession of the ball away from the opposing
team of takers within a small rectangular region. The task is episodic, and each
episode ends when the takers gain possession, or when the ball goes outside the
region of play. The keepers seek to maximize the duration of the episode, and are
rewarded based on the time elapsed after every action. Stone et al. [11] provide
a Sarsa-based reinforcement learning method to learn keeper behavior at a high
level of abstraction.

In this paper, we extend keepaway to a more complex task of RoboCup soc-
cer, half field offense. This task is played on one half of the soccer field,
much bigger than the typical keepaway region. There are also typically more
players on both teams. In each episode, the offense team needs to score, which
involves keeping possession of the ball, moving up the field, and shooting goals.
The defense team tries to stop it from doing so. Since the task realistically
models the offense scenario in soccer, a policy learned for half field offense
can be integrated quite naturally into full-fledged RoboCup simulated soccer
games.

Both keepaway and half field offense have to cope with the usual difficul-
ties associated with RoboCup soccer: continuous state space, noisy actions,
and multiple agents. But several factors contribute to making half field of-
fense a much harder multiagent reinforcement learning problem than keepaway.
Maintaining possession of the ball is the main objective in keepaway, but it is
only a subtask in half field offense. In order to succeed in half field offense,
the offense players not only have to keep possession, but must also learn to
pass or dribble to forge ahead towards the goal, and shoot whenever an an-
gle opens up. With a larger state space and a richer action set than keep-
away, a successful half field offense policy is therefore quite complex. A factor
that makes learning in half field offense even more difficult is that the suc-
cess of the task is evaluated simply based on whether a goal is scored or not
at the end of an episode. Since goal scoring episodes are rare initially, it be-
comes necessary that the learning algorithm make the most efficient use of such
information.

The learning method proposed for keepaway [11] only achieves limited success
on the more difficult half field offense task. We analyze this method and propose
a new method that overcomes many of its shortcomings. While reinforcement
learning is indeed constructed to accommodate delayed updates and learning
complex policies, we show that the learning process on a complex multiagent
task like half field offense can be expedited by making better design choices.
In particular, our algorithm uses inter-player communication to speed up learn-
ing and achieve better performance. We introduce the half field offense task in
Section 2 and the learning method in Section 3. Section 4 presents emprical re-
sults of the performance of our method on the half field offense task. Section 5
discusses related work, and we conclude in Section 6.
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2 Half Field Offense Task Description

Half field offense is an extension of the keepaway task [11] in RoboCup simulated
soccer. In half field offense, an offense team of m players has to outsmart the
defense team of n players, including a goalie, to score a goal. Typically n ≥ m.
The task is played over one half of the soccer field, and begins near the half field
line with the ball close to one of the offense players. The offense team tries to
maintain possession (keep the ball close enough for it to be kicked), move up the
field, and score. The defense team tries to take the ball away from the offense
team. The task is episodic, and an episode ends when one of three events occurs:

: Defense Player
: Ball

: Offense PlayerO
D
B

D

D

O

O

B O

D

O

D

D

Fig. 1. Half field offense game in progress

1. A goal is scored, 2. The ball
is out of bounds, or 3. A defender
gets possession of the ball (including
the goalie catching the ball). Fig. 1
shows a screen-shot from a half field
offense task, where four players are
on the offense team and five players
including a goalie are on the defense
team. We denote this version of the
task 4v5 half field offense, and dis-
cuss it in Section 2.2.

In principle, it is possible to frame
half field offense as a learning prob-
lem for either the offense team or the defense team (or both), but here we only
focus on learning by the offense team. The objective is to increase the goal-
scoring performance of the offense team, while the defense team follows a fixed
strategy. A similar approach is also adopted for keepaway [11].

The offense team player who possesses the ball (and is hence closest to it) is
required to take one of the following actions:1

– Passk. This action involves a direct kick to the teammate that is the k-
th closest to the ball, where k = 2, 3, . . . , m. The representation used is
indexical, since it is based on distances to the teammates, and not their
actual jersey numbers.

– Dribble. In order to encourage the offense player with possession to dribble
towards the goal, a cone is constructed with the player at its vertex and
its axis passing through the center of the goal. The player takes a small
kick within this cone in a direction that maximizes its distance to the clos-
est defense player also inside the cone. The half angle of the cone is small
(15◦) when it is far away from the goal and opponents, but is progressively
increased (up to 75◦) as it gets closer to the goal or opponents. Thus it is

1 They are in fact high-level skills, and are better described by the term “options,”
which are themselves composed of low-level actions over extended time periods.
They nevertheless play the role of actions in the sense of reinforcement learning. We
simply refer to them as actions for simplicity. For a more detailed discussion, see
[11].
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encouraged to forge ahead towards the goal whenever possible, but has room
to move away from the defense players should they get too close.

– Shoot. By taking this action the player kicks the ball towards the goal in
the direction bisecting the widest open angle available between the goalie,
other defenders, and the goalposts.

When no offense player has possession of the ball, the one closest to the ball
seeks to reach it by dashing directly towards it (GetBall). Offense players other
than the one closest to the ball always try to to maintain a formation in order to
take the attack forward (GetOpen). More precisely, any player from the offense
team is constrained to behave as follows.

if I have possession of the ball then
Execute some action from {Pass2, . . . ,Passm,Dribble,Shoot}

else if I am the closest offense player to the ball then
GetBall (Intercept the ball).

else
GetOpen (Move to the position prescribed by the formation, see Section 2.2).

Therefore, the behavior of any offense player is fixed except when it has pos-
session of the ball. Deciding which action to take when in possession of the ball
precisely constitutes the learning problem, as is also the case in keepaway [11].
In principle, the player who has possession can benefit from a larger action set
than the one we have described, but these actions are enough to achieve quite a
high level of performance. More importantly, they allow us to focus on learning
high-level strategies.

2.1 State Representation

In RoboCup simulated soccer [2], the server provides the players sensory in-
formation at regular intervals of time. Players typically process the low-level
information thus obtained to maintain estimates of the positions and velocities
of the players and the ball. For our task, we define the state using a set of vari-
ables involving distances and angles between players, which can be derived from
information about their positions.These are listed below. The offense players are
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Fig. 2. Sample state variables for 4v5 half field offense

numbered according to
their distances to the ball
using an indexical rep-
resentation. The offense
player with the ball is
always denoted O1. Its
teammates are O2, O3,
. . . , Om. The defense play-
ers are also numbered
according their distances
to the ball; they are
D1, D2, . . . , Dn. The goalie, which may be any of the Di, is additionally
denoted Dg.
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– dist(O1, Oi), i = 2, 3, . . . , m. The distances from O1 to its teammates.
– dist(O1, Dg). The distance from O1 to the goalie on the defense team.
– dist(Oi, GL), i = 1, 2, . . . , m. For the offense player, the distance to the segment of

the goal line GL between the goalposts.
– min dist(Oi, D), i = 1, 2, . . . , m. For each offense player, the closest distance to any

opponent, that is, min dist(Oi, D) = minj=1,...,n dist(Oi, Dj).
– min ang(Oi, O1, D), i = 2, 3, . . . , m. For offense players other than O1, the smallest

angle ∠OiO1D among all D, where D is a defense player, that is,
min ang(Oi, O1, D) = minj=1,...,n ang(Oi, O1, Dj).

– min dist(O1, Ddcone). The distance from O1 to the closest defender in the dribble
cone or dcone. The dribble cone is a cone with half angle 60◦ with its vertex at O1

and axis passing through the center of the goal. Ddcone is the set of defenders in
the dribble cone.

– max goal ang(O1). The maximum angle with the vertex at O1, formed by rays
connecting O1 and goalposts or defense players that are in the goal cone, which is
the triangle formed by O1 and the two goalposts GPleft and GPright.

We adopt this set of state variables expecting them to be of direct relevance
to the actions, although they are neither independent nor complete. We ex-
pect dist(O1, GL), max goal ang(O1), and dist(O1, Dg) to directly affect Shoot;
min dist(O1, D) and min dist(O1, Ddcone) to affect Dribble; and the other vari-
ables to affect Passk. As in keepaway [11], the indexical representation based
on distances is expected to help the players generalize better. We arrived at this
set of state variables through experimentation, but did not expend much time
optimizing the set. We note that the set of state variables is independent of the
number of defense players, and has a linear relation with the number of offense
players, therefore scaling to versions of the task with large numbers of players.
The 4v5 version of the task uses 17 state variables.

2.2 4v5 Half Field Offense and Benchmark Policies

4v5 half field offense (see Fig. 1) is a version of the task involving four offense
players and five defense players, including the goalie. We use this version of
the task for all our experiments. In 4v5, the offense player wiith the ball must
choose an action from the set {Pass2,Pass3,Pass4,Dribble,Shoot}, while the
other offense players, following a fixed strategy, stay in an arc formation. The
defense players also follow a static policy. Due to space limitations, the complete
behaviors of the offense and defense players on the 4v5 task are specified on a
supplementary web site2. The web site also lists examples of policies (including
Random, in which actions are chosen randomly, and Handcoded, a policy we
have manually engineered) for the 4v5 task and videos of their execution.

3 Reinforcement Learning Algorithm

Since half field offense is modeled as an extension of keepaway [11], they share
the same basic learning framework. In fact, the learning method that has been
2 http://www.cs.utexas.edu/~AustinVilla/sim/halffieldoffense/index.html

http://www.cs.utexas.edu/~AustinVilla/sim/halffieldoffense/index.html
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most successful on keepaway [11] can be directly used for learning half field
offense. But while with keepaway the learning curve obtained using this method
typically levels off after just 15 hours of simulated time, we find that with half
field offense it continues to gradually rise even after 50 hours. Furthermore,
when we visualize the execution of the policy thus learned,2 it is quite apparent
that it is sub-optimal. In order to ascertain whether indeed the learning can
be improved, we analyze the task and the learning method in detail. We then
proceed to introduce a new learning approach using inter-agent communication,
which significantly improves the learning rate and the resulting performance. In
this section, we explain how the reinforcement learning method is set up, the
problems faced by multiagent reinforcement learning on this task, and how we
handle them using explicit inter-agent communication.

3.1 Basic Setup

As in keepaway [11], the reinforcement learning problem is modeled as a semi-
Markov decision process [1], where decisions are taken at unequal intervals of
time, and only by the player with the ball. Each agent uses a function approxi-
mator to represent an action-value function or Q-function that maps state and
action pairs (s, a) to real numbers, which are its current estimates of the ex-
pected long term reward of taking action a from state s. Each agent updates its
Q-function using the Sarsa learning method. The main difference between the
method from [11] and the one we propose in Section 3.3 is in how each agent
obtains the experience, and how frequently updates are made.

Table 1. Definition of rewards

Rewards for the
reinforcement learning
problem are defined in Ta-
ble 1. A positive reward
of 1.0 is given for an
action that results in a
goal, while small negative
rewards are given when
the episode ends unsuc-
cessfully. It is conceivable
to give small positive re-
wards (say 0.01) for successful passes, but we found that a zero reward was just
as effective. Negative rewards are provided at the end of unsuccessful episodes
to encourage keeping the ball in play. The ratios between different rewards can
have a significant impact on the learning process [3]. We informally tested out
different values and found this particular assignment effective. Since the task is
episodic, we do not use discounting.

3.2 Difficulty of Multiagent Learning

In the method used for keepaway [11], each agent learns independently. The only
points in time when it receives rewards and makes updates to its Q-function are
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when it has possession of the ball, or when the episode ends. The reward itself
is the length of the duration between when the action was taken and when
possession was regained or the episode ended. Clearly, it is easy to apply this
scheme to half field offense, using the reward structure specified in Table 1. We
illustrate this method by tracing through a typical episode from half field offense
(depicted in Fig. 3). The episode begins with OA in possession of the ball.3 OA

passes the ball to OB, who takes three dribble actions before passing it to OC .
OC then passes it back to OB, who shoots the ball into the goal. OD does not
participate in this episode. Using the learning method from [11], OA will receive
goal reward for its pass action (1); OB will receive offense reward for its dribble
actions (2, 3, and 4) and pass action (5), and goal reward for its shoot action
(7); while OC will get goal reward for its pass action (6). OA and and OC will
only make their learning updates at the end of the episode, while OB will also
make intermediate updates whenever it regains possession. OD does not make
any learning update in this episode.

We find shortcomings in the method from
D

1
2

3
4 5

6

7

O

O
O C

A

BO

Fig. 3. Example episode: The
numbers indicate the sequence of
actions

[11] that we have just described. First, con-
sider another episode that differs from the
above example only in that the final Shoot
action results in the ball being caught by the
goalie instead of finding the goal. In this case
also, OA, OB, and OC make corresponding
updates to their Q-functions, but the reward
used for the updates is catch reward. Even
though the reason for the failure to score on
this episode is only perhaps a slightly flawed
Shoot action, the reward assigned to OA for
its successful pass to OB (and indeed actions
6 and 7) now becomes drastically different (negative instead of positive). This
case illustrates that it is more desirable for OA to update its Q-function for the
pass to OB right after OB receives the ball, since the update then would be based
on the Q-value of OB in its current state, and the reward for a successful pass.
While using the method from [11], the update is only based on how the episode
ends. This can lead to a higher variance for updates to the Q-function, especially
since the task is stochastic. The problem is that there is a long temporal delay
between the execution of an action by a player and the corresponding learning
update; because of this delay, the assigned reward and the next resulting state
can change drastically. It is not too harmful in keepaway, since the rewards are
themselves the time elapsed between the events, and do not change based on
the next state. But in half field offense, even slight changes in the middle of an
episode can lead to very different outcomes and very different rewards.

Another evident shortcoming is the case of player OD. Since each player learns
solely based on its own experiences in the method from [11], OD, which is not

3 We use subscripts A, B, C, D to indicate fixed players since numerical subscripts
indicate players according to how close they are to the ball.
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involved in this episode, does not update its Q-function even once during this
episode. Since the players are homogeneous, it seems conceivable that the players’
experiences can be shared. For instance, OD should be able to learn, based on
OB’s experience, that Shoot action taken from close to the goal is likely to
receive high reward. In fact, even among OA, OB, and OC , only OB records
the information that the Shoot action resulted in a goal; OA and OC are only
able to make updates to their respective Pass actions. Surely, they will also
benefit by making OB’s update for the Shoot action. Sharing experiences can
be particularly useful early in training, when successful episodes are rare. We
next describe our learning method, which uses inter-agent communication to
overcome the shortcomings described above.

3.3 Agent Communication

In the solution we propose, inter-agent communication is used to facilitate in-
formation sharing among the agents, and to enable frequent and more reliable
updates. The protocol followed is similar to one used by Tan [12] for learning in
an artificial predator-prey domain, where agents are able to communicate their
experiences to their partners.

Table 2. Messages broadcast during the example
episode

Since every action leads
either to some offense
player getting possession
or the end of the episode,
in our scheme, the appro-
priate reward for that ac-
tion is provided as soon as
one of these events occurs.
Thus, in our example, OA

is given offense reward as
soon as its pass (action 1)
to OB succeeds, instead of
having to wait until the
end of the episode to re-
ceive goal reward. As soon as it receives offense reward, OA broadcasts a mes-
sage (see Table 2) to its teammates, describing the state in which it was when
it took the pass action (s1), the pass action itself (Pass3), and the reward
received (offense reward). In general, every time a player takes action a in
state s and receives reward r, it broadcasts a message of the form (s, a, r) to
the team. Since a Sarsa update is completely specified by a (s, a, r, s′, a′) tu-
ple, each player records the messages received and makes an update as soon
as enough information is available for it. Thus, when OB broadcasts mes-
sage 2 (see Table 2), all the players make a Sarsa update using the tuple
(s1,Pass3, offense reward, s2,Dribble.). It is quite clear that in this scheme,
the SMDP step is designed to last only until some teammate gets possession
(unless the episode ends before that), therefore keeping the updates more reli-
able. At the same time, communication permits each player to make an update
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Algorithm 1. Reinforcement Learning with Communication
Initializations;
for all episode do

s ← NULL;
repeat

// acting
if I have possession of the ball then

s ← getCurrentStateFromEnvironment();
Choose action a using Q-function and ε-greedy selection;
Execute action a;
r ← waitForRewardFromEnvironment();
broadcast(s, a, r);

else
if I am the closest offense player to the ball then

GetBall;
else

GetOpen;
// learning
if I receive message (sm, am, rm) then

if s is NULL then
s, a, r ← sm, am, rm;

else
s′, a′, r′ ← sm, am, rm;
Perform Sarsa update based on (s, a, r, s′, a′):

Q(s, a) ← Q(s, a) + α
�
r + γQ(s′, a′) − Q(s, a)

�
;

s, a, r ← s′, a′, r′;
until episode ends;

for every action that has been taken by any of the offense players during the
episode. In fact, since all the players begin with the same initial Q-function and
make the same updates, we can expect that their action-value functions will
always be alike, thereby reducing an essentially distributed problem to one of
centralized control (imagine a single “virtual” agent who resides at all times
inside the player who currently has possession of the ball). However, in practice,
the message passing is not completely reliable, so a small number of updates get
missed.

Algorithm 1 provides the pseudocode of the algorithm the learning players
implement. Each player stores its current action value function using a function
approximator. When in possession of the ball, it decides which action to take
based on an ε-greedy action selection scheme. After executing a and receiving
a reward r, the player broadcasts the triple (s, a, r) to the team. Players not
in possession of the ball simply follow the static policy. Each player uses the
first message that is received during an episode to initialize values for the triple
(s, a, r), and on every subsequent message (s′, a′, r′) makes a learning update
using the saved and received information.

We implement the inter-player communication using a “trainer,” an indepen-
dent agent that can communicate with all the players. The player broadcasting
an (s, a, r) message actually sends it to the trainer, who then sends it to all the
players. To be consistent, we assume that even to make an update corresponding
to its own action, a player first sends a message to the trainer, and makes the
update only on receiving it back from the trainer. The trainer sends a special
(s, a, r) message to the players when the end of an episode is reached, so that
they may make a final update for that episode and start afresh for the next.
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We use Sarsa(0) as our reinforcement learning algorithm, along with CMAC tile
coding for function approximation (as in [11]). The CMACs comprise 32 tilings
for each feature. Distance features have tile widths of 3m, while the tile width
for angle features is fixed at 10◦. We use α = 0.125, γ = 1.0, and ε = 0.01.

4 Experimental Results and Discussion

In this section we present performance results of our learning algorithm. The
graphs depict learning curves with the y-axis showing the fraction of successful
episodes, and the x-axis the number of training episodes. The learning curves
are smoothed using a sliding window of 1000 episodes. Each curve is an average
of at least 30 independent runs. We have performed t-tests every 5, 000 episodes
comparing the values of the curves, and we report the levels of significance for
important comparisons.

To focus on learning while still perserving a high level of complexity in our
experiments with the 4v5 half field offense task, we have modified a couple
of RoboCup simulated soccer defaults. While the RoboCup default only allows
players to “see” within a 90◦ cone, we allow for 360◦ vision, which removes hidden
state, but still retains sensor noise. Also, we do not enforce the offsides rule in
our task, even though our players get offsides only occasionally. These changes
are enforced in all our experiments, in order to make meaningful comparisons
between different offense team policies.

Fig. 4(a) plots the performance of our learning algorithm. Our learning algo-
rithm using inter-agent communication achieves a long term success ratio of 32%,
while one where the agents learn independently (as in keepaway [11]) only man-
ages to register 23%. Beyond 5000 episodes, their order is significant (p < 10−8).
Clearly, the gain from using communication is substantial. This is particularly
apparent when we compare it to the performance recorded by other static poli-
cies. Within 2000 episodes of training, our algorithm is able to learn a more
successful policy than the Handcoded policy mentioned in Section 2.2. When
we visualize the execution of the learned policy,2 it is noticeably different from
the Handcoded, suggesting that learning is able to capture behavior that is
non-intuitive for humans to describe. Fig. 4(a) also plots the performance of the
Random policy, which succeeds less than 1% of the time, thereby confirming
that extended sequences of the right actions are required to score goals. The
other curve in the graph shows the performance achieved by a set of four offense
players (numbers 6, 7, 8, and 9) from the UvA 2003 RoboCup team [5], which
won the RoboCup simulated league championship that year. The comparison
between our players and the UvA offenders is not completely fair, because they
have not been tuned specifically for the half field offense task. But the fact that
our players are able to learn a policy that performs at least twice as well as the
UvA players in this setting still gives some insight into the effectiveness of the
policy they learn.

In order to get a clearer understanding of the impact of communication, we
ran a set of experiments in which only subsets of players communicate among
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Fig. 4. Experimental results

themselves, while some learn independently (as in keepaway [11]). Fig. 4(b) plots
learning curves from experiments in which all four players communicate their
updates (4), only three of them communicate while one learns independently
(3-1), all players communicate but each only with a partner (2-2), two of them
communicate while two learn independently (2-1-1), and they are all independent
(1-1-1-1). At 5, 000 and 10, 000 episodes of training, the order specified above
(except between 2-2 and 2-1-1) is significant with p < 10−3, suggesting that
increased communication results in a faster learning rate. After 30, 000 episodes
of training, the full-communication curve (4) remains ahead of all the others,
with p < 10−8. It is clear, therefore, that communication does make a significant
difference to the performance. Through informal experimentation, we verified
that communication results in a faster learning rate for the keepaway task too,
though the final policy it learns does not perform significantly better than one
learned with no communication [11].

While we use CMACs for function approximation in most of our experiments,
we ran an additional set of experiments using different function approximators
to see how this change affects the performance. The other function approxima-
tors we used are neural networks (NNets) and radial basis functions (RBFs).
They have also been in the past used for learning keepaway [10]. Fig. 4(c) plots
the performance obtained by using these function approximators both in the
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full-communication case and the no-communication case. In both cases, the or-
der CMAC > RBF > NNet is preserved beyond 10, 000 episodes of training
(In keepaway the RBFs perform slightly better than the CMACs). But more
importantly, we find that for each of the function approximators, significantly
higher performance is achieved by the communication-based algorithm.

In order to verify to what extent our learning algorithm was robust to changes
in the task, we ran a variation in which the offense team plays against a set of
defense players from the UvA 2003 team [5] (players 5, 6, 2, 3, and 1). These
players offer a far more defensive strategy than ours, and position themselves
strategically to block passes between the offense players. After 30, 000 episodes
of learning, our players show an 11% success rate, which almost matches the
performance achieved by the set of UvA offense players against this opposition.
In fact, the learning curve still seems to be rising at this point. The UvA of-
fense performs better than the learned policy, however with a low confidence
(p < 0.2356). Therefore our learning method is able to achieve a high level of
performance against a world-class opposition, despite having only been trained
with a limited action set. Surely, the main reason for its success is inter-agent
communication, as the no-communication algorithm only manages to achieve a
success rate of 5% in the same number of episodes.

5 Related Work

Half field offense is a natural extension of the keepaway task introduced by Stone
et al. [11]. It is a much harder problem to learn than keepaway, and we have
shown that inter-agent communication can be effectively coupled with the algo-
rithm that has so far been successful for keepway [11] to boost its performance
significantly. Geipel [3] and Maclin et al. [6] have in the past applied reinforce-
ment learning techniques to goal-shooting scenarios, but these have typically
involved fewer players and a smaller field than 4v5 half field offense. The Brain-
stormers RoboCup team [8,9] has consistently applied reinforcement learning
techniques to train different aspects of team behavior. They use reinforcement
learning to learn high-level skills called “moves” in terms of low-level actions,
and use these as primitives for learning high-level tactical behavior for attack-
ing players [9]. For function approximation, they use neural networks, inputs to
which are low-level state information. They also formulate simulated soccer as
a Multi-agent Markov Decision Process (MMDP) [8] and discuss different mod-
els of agents based on their action sets and coordination. While their focus has
been to develop a general architecture for learning team behavior, we, in this
paper, address the specific problem of learning high-level behavior by the offense
player with ball possession. For this reason, we use predefined high-level skills
like Passk and Shoot. Since we mainly use CMACs, which cannot represent
arbitrary non-linear functions, we design our state features to be at a high level
of abstraction, in order to facilitate better generalization.

Multiagent reinforcement learning with inter-agent communication has been
studied in the past. Whitehead [13] describes a Learn-by-Watching method
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similar to ours and obtains theoretical bounds for the speedup in learning by mul-
tiple Q-learning agents. Tan [12] empirically evaluates the effect of inter-agent
communication on a much simpler problem than ours, a predator-prey scenario
within a 10x10 discrete grid. The predators can cooperate by sharing their sen-
sations, learning episodes, and whole policies. Of these, sharing episodes in-
volves communicating extended series of state-action-reward messages between
the predators, and has a direct correspondence with the method we have em-
ployed. Again, communication is is shown to be beneficial to learning. Mataric
[7] uses reinforcement learning to train real robots on a box-pushing task. Com-
munication is mainly used to share their sensations in order to form a complete
state of the world, unlike in our algorithm, where communication directly im-
pacts updates made to the agents’ action-value functions.

6 Conclusions and Future Work

In this paper, we have introduced half field offense, a novel subtask of RoboCup
simulated soccer. It extends an earlier benchmark problem for reinforcement
learning, keepaway [11]. Half field offense presents significant challenges as a
multiagent reinforcement learning problem. We have analyzed the learning algo-
rithm that has been most successful for keepaway [11], and scaled it to meet the
demands of our more complex task. The main feature of our new algorithm is the
use of inter-agent communication, which allows for more frequent and reliable
learning updates. We have presented empirical results suggesting that the use
of inter-agent communication can increase the learning rate and the resulting
performance significantly.

Learning half field offense is a step further in the ongoing challenge to learn com-
plete team behavior for RoboCup simulated soccer. In this work we have only fo-
cused on learning the behavior of the offense player who has possession of the ball.
It is in principle possible to pose as learning problems the behaviors of the other
offense players, as well as the defense team. Also, high-level skills like Passk and
Shoot, which we have directly used for learning here, may themselves be learned in
terms of low-level actions like turn and kick. These are avenues for future research.
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Abstract. This paper describes an autonomous learning method used with real
robots in order to acquire ball trapping skills in the four-legged robot league.
These skills involve stopping and controlling an oncoming ball and are essential
to passing a ball to each other. We first prepare some training equipment and
then experiment with only one robot. The robot can use our method to acquire
these necessary skills on its own, much in the same way that a human practicing
against a wall can learn the proper movements and actions of soccer on his/her
own. We also experiment with two robots, and our findings suggest that robots
communicating between each other can learn more rapidly than those without
any communication.

1 Introduction

For robots to function in the real world, they need the ability to adapt to unknown
environments. These are known as learning abilities, and they are essential in taking
the next step in RoboCup. As it stands now, it is humans, not the robots themselves,
that hectically attempt to adjust programs at the competition site, especially in the real
robot leagues. But what if we look at RoboCup in a light similar to that of the World
Cup? In the World Cup, soccer players can practice and confirm certain conditions on
the field before each game. In making this comparison, should robots also be able to
adjust to new competition and environments on their own? This ability for something
to learn on its own is known as autonomous learning and is regarded as important.

In this paper, we force robots to autonomously learn the basic skills needed for pass-
ing to each other in the four-legged robot league. Passing (including receiving a passed
ball) is one of the most important skills in soccer and is actively studied in the simu-
lation league. For several years, many studies [1,2] have used the benchmark of good
passing abilities, known as “keepaway soccer”, in order to learn how a robot can best
learn passing. However, it is difficult for robots to even control the ball in the real robot
leagues. In addition, robots in the four-legged robot league have neither a wide view,
high-performance camera, nor laser range finders. As is well known, they are not made
for playing soccer. Quadrupedal locomotion alone can be a difficult enough challenge.
Therefore, they must improve upon basic skills in order to solve these difficulties, all

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 86–97, 2007.
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before pass-work learning can begin. We believe that basic skills should be learned by
a real robot, because of the necessity of interaction with a real environment. Also, basic
skills should be autonomously learned because changes to an environment will always
consume much of people’s time and energy if the robot cannot adjust on its own.

There have been many studies conducted on the autonomous learning of quadrupedal
locomotion, which is the most basic skill for every movement. These studies began
as far back as the beginning of this research field and continue still today [3,4,5,6].
However, the skills used to control the ball are often coded by hand and have not been
studied as much as gait learning. There also have been several similar works related
to how robots can learn the skills needed to control the ball. Chernova and Veloso [7]
studied the learning of ball kicking skills, which is an important skill directly related
to scoring points. Zagal and Solar [8] studied the learning of kicking skills as well, but
in a simulated environment. Although it was very interesting in the sense that robots
could not have been damaged, the simulator probably could not produce complete, real
environments. Fidelman and Stone [9] studied the learning of ball acquisition skills,
which are unique to the four-legged robot league. They presented an elegant method
for autonomously learning these unique, advanced skills. However, there has thus far
been no study that has tried to autonomously learn the stopping and controlling of an
oncoming ball, i.e. trapping the ball. In this paper, we present an autonomous learning
method for ball trapping skills. Our method will enhance the game by way of learned
pass-work in the four-legged robot league.

The remainder of this paper is organized as follows. In Section 2, we begin by spec-
ifying the actual, physical actions used in trapping the ball. Then we simplify the learn-
ing process for ball trapping down to a one-dimensional model, and finally, we illustrate
and describe our training equipment used by the robots while training in solitude. In
Section 3, we formalize a learning problem and show our autonomous learning algo-
rithm for it. In Section 4, we experiment using one robot, two robots, and two robots
with communication. Finally, Section 5 presents our conclusions.

2 Preliminary

2.1 Ball Trapping

Before any learning can begin, we first have to accurately create the appropriate physical
motions to be used in trapping a ball accurately before the learning process. The picture
in Fig. 1 (a) shows the robot’s pose at the end of the motion. The robot begins by
spreading out its front legs to form a wide area with which to receive the ball. Then, the
robot moves its body back a bit in order to absorb the impact caused by the collision
of the body with the ball and to reduce the rebound speed. Finally, the robot lowers its
head and neck, assuming that the ball has passed below the chin, in order to keep the
ball from bouncing off of its chest and away from its control. Since the camera of the
robot is equipped on the tip of the nose, it actually cannot watch the ball below the chin.
This series of motions is treated as single motion, so we can neither change the speed
of the motion, nor interrupt it, once it starts. It takes 300 ms (= 60 steps × 5 ms) to
perform. As opposed to grabbing or grasping the ball, this trapping motion is instead
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(a) trapping motion (b) pre-judgment motion

Fig. 1. The motion to actually trap the ball (a), and the motion to judge if it succeeded in trapping
the ball (b)

thought of as keeping the ball, similar to how a human player would keep control of the
ball under his/her foot.

The judgment of whether the trap succeeded or failed is critical for autonomous
learning. Since the ball is invisible to the robot’s camera when it’s close to the robot’s
body, we utilized the chest PSD sensor. However, the robot cannot make an accurate
judgment when the ball is not directly in front of their chest or after it takes a droopy
posture. Therefore, we utilized a “pre-judgment motion”, which takes 50 ms (= 10 steps
× 5 ms), immediately after the trapping motion is completed, as shown in Fig. 1 (b).
In this motion, the robot fixes the ball between its chin and chest and then lifts its body
up slightly so that the ball will be located immediately in front of the chest PSD sensor,
assuming the ball was correctly trapped to begin with.

2.2 One-Dimensional Model of Ball Trapping

Acquiring ball trapping skills in solitude is usually difficult, because robots must be
able to search for a ball that has bounced off of them and away, then move the ball to
an initial position, and finally kick the ball again. This requires sophisticated, low-level
programs, such as an accurate, self-localization system; a strong shot that is as straight
as possible; and a locomotion which utilizes the odometer correctly. In order to avoid
additional complications, we simplify the learning process a bit more.

First, we assume that the passer and the receiver face each other when the passer passes
the ball to the receiver, as shown Fig. 2. The receiver tries to face the passer while watch-
ing the ball that the passer is holding. At the same time, the passer tries to face the receiver
while looking at the red or blue chest uniform of the receiver. This is not particularly hard
to do, and any team should be able to accomplish it. As a result, the robots will face each
other in a nearly straight line. The passer need only shoot the ball forward so that the
ball can go to the receiver’s chest. The receiver, in turn, has only to learn a technique for
trapping the oncoming ball without it bouncing away from its body.

Ideally, we would like to treat our problem, which is to learn ball trapping skills,
one-dimensionally. In actuality though, the problem cannot be fully viewed in one-
dimension, because either the robots might not precisely face each other in a straight
line, or because the ball might curve a little due to the grain of the grass. We will discuss
this problem in Section 5.
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Fig. 2. One-dimensional model of ball trapping problem

Fig. 3. Training equipment for learning ball trapping skills

2.3 Training Equipment

The equipment we prepared for learning ball trapping skills in one-dimensional is fairly
simple. As shown in Fig. 3, the equipment has rails of width nearly equal to an AIBO’s
shoulder-width. These rails are made of thin rope or string, and their purpose is to
restrict the movement of the ball, as well as the quadrupedal locomotion of the robot, to
one-dimension. Aside from these rails, the robots use a slope placed at the edge of the
rail when learning in solitude. They kick the ball toward the slope, and they can learn
trapping skills by trying to trap the ball after it returns from having ascended the slope.

3 Learning Method

Fidelman and Stone [9] showed that the robot can learn to grasp a ball. They employed
three algorithms: hill climbing, policy gradient, and amoeba. We cannot, however, di-
rectly apply these algorithms to our own problem because the ball is moving fast in our
case. It may be necessary for us to set up an equation which incorporates the friction of
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the rolling ball and the time at which the trapping motion occurs if we want to view our
problem in a manner similar to these parametric learning algorithms. In this paper, we
apply reinforcement learning algorithms [10]. Since reinforcement learning requires no
background knowledge, all we need to do is give the robots the appropriate reward for
a successful trapping so that they can successfully learn these skills.

The reinforcement learning process is described as a sequence of states, actions, and
rewards

s0, a0, r1, s1, a1, r2, . . . , si, ai, ri+1, si+1, ai+1, ri+2, . . . ,

which is a reflection of the interaction between the learner and the environment. Here,
st ∈ S is a state given from the environment to the learner at time t (t ≥ 0), and
at ∈ A(st) is an action taken by the learner for the state st, where A(st) is the set of
actions available in state st. One time step later, the learner receives a numerical reward
rt+1 ∈ R, in part as a consequence of its action, and finds itself in a new state st+1.

Our interval for decision making is 40 ms and is in synchronization with the frame
rate of the CCD-camera. In the sequence, we treat each 40 ms as a single time step,
i.e. t = 0, 1, 2, · · ·means 0 ms, 40 ms, 80 ms, · · ·, respectively. In our experiments, the
states essentially consist of the information on the moving ball: relative position to the
robot, moving direction, and the speed, which are estimated by our vision system. Since
we have restricted the problem to one-dimensional movement in Section 2.2, the state
can be represented by a pair of scalar variables x and dx. The variable x refers to the
distance from the robot to the ball estimated by our vision system, and dx simply refers
to the difference between the current x and the previous x of one time step before. We
limited the range of these state variables such that x is in [ 0 mm, 2000 mm ], and dx
in [ −200 mm, 200 mm ]. This is because if a value of x is greater than 2000, it will
be unreliable, and if the absolute value of dx is greater than 200, it must be invalid in
games (e.g. dx of 200 mm means 5000 mm/s).

Although the robots have to do a large variety of actions to perform fully-autonomous
learning by nature, as far as our learning method is concerned, we can focus on the fol-
lowing two macro-actions. One is trap, which initiates the trapping motions described
in Section 2.1. The robot’s motion cannot be interrupted for 350 ms until the trapping
motion finishes. The other is ready , which moves its head to watch the ball and prepar-
ing to trap. Each reward given to the robot is simply one of {+1, 0,−1}, depending on
whether it successfully traps the ball or not. The robot can make a judgment of that suc-
cess by itself using its chest PSD sensor. The reward is 1 if the trap action succeeded,
meaning the ball was correctly captured between the chin and the chest after the trap
action. A reward of −1 is given either if the trap action failed, or if the ball touches the
PSD sensor before the trap action is performed. Otherwise, the reward is 0. We define
the period from kicking the ball to receiving any reward other than 0 as one episode.
For example, if the current episode ends and the robot moves to a random position with
the ball, then the next episode begins when the robot kicks the ball forward.

In summary, the concrete objective for the learner is to acquire the correct timing
for when to initiate the trapping motion depending on the speed of the ball by trial
and error. Fig. 4 shows the autonomous learning algorithm used in our research. It
is a combination of the episodic SMDP Sarsa(λ) with the linear tile-coding function
approximation (also known as CMAC). This is one of the most popular reinforcement
learning algorithms, as seen by its use in the keepaway learner [1].
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while still not acquiring trapping skills do1

go get the ball and move to a random position with the ball;2

kick the ball toward the slope;3

s ← a state observed in the real environment;4

forall a ∈ A(s) do5

Fa ← set of tiles for a, s;6

Qa ←
�

i∈Fa
θ(i);7

end8

lastAction ← an optimal action selected by ε-greedy;9
−→e ← 0;10

forall i ∈ FlastAction do e(i) ← 1;11

reward ← 0;12

while reward = 0 do13

do lastAction;14

if lastAction = trap then15

if the ball is held then reward ← 1;16

else reward ← −1;17

else18

if collision occurs then reward ← −1;19

else reward ← 0;20

end21

δ ← reward − QlastAction;22

s ← a state observed in the real environment;23

forall a ∈ A(s) do24

Fa ← set of tiles for a, s;25

Qa ←
�

i∈Fa
θ(i);26

end27

lastAction ← an optimal action selected by ε-greedy;28

δ ← δ + QlastAction;29
−→
θ ← −→

θ + αδ−→e ;30

QlastAction ←
�

i∈FlastAction
θ(i);31

−→e ← λ−→e ;32

if player acting in state s then33

forall a ∈ A(s) s.t. a �= lastAction do34

forall i ∈ Fa do e(i) ← 0;35

end36

forall i ∈ FlastAction do e(i) ← 1;37

end38

end39

δ ← reward − QlastAction;40
−→
θ ← −→

θ + αδ−→e ;41

end42

Fig. 4. Algorithm of our autonomous learning (based on keepaway learner [1])
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Here, Fa is a feature set specified by tile coding with each action a. In this paper,
we use two-dimensional tiling and set the number of tilings to 32 and the number of
tiles to about 5000. We also set the tile width of x to 20 and the tile width of dx to
50. The vector

−→
θ is a primary memory vector, also known as a learning weight vector,

and Qa is a Q-value, which is represented by the sum of
−→
θ for each value of Fa. The

policy ε-greedy selects a random action with probability ε, and otherwise, it selects the
action with the maximum Q-value. We set ε = 0.01. Moreover,−→e is an eligibility trace,
which stores the credit that past action choices should receive for current rewards. λ is
a trace-decay parameter for the eligibility trace, and we simply set λ = 0.0. We set the
learning rate parameter α = 0.5 and the discount rate parameter γ = 1.0.

4 Experiments

4.1 Training Using One Robot

We first experimented by using one robot along with the training equipment that was
illustrated in Section 2.3. The robot could train in solitude and learn ball trapping skills
on its own.

Fig. 5(a) shows the trapping success rate, which is how many times the robot success-
fully trapped the ball in 10 episodes. It reached about 80% or more after 250 episodes,
which took about 60 minutes using 2 batteries. Even if robots continue to learn, the suc-
cess rate is unlikely to ever reach 100%. This is because the trapping motions, which
force the robot to move slightly backwards in order to try and reduce the bounce effect,
can hardly be expected to capture a slow, oncoming ball that stops just in front of it.

Fig. 6 shows the result of each episode by plotting a circle if it was successful, a cross
if it failed in spite of trying to trap, and a triangle if it failed because of doing nothing.
From the 1st episode to the 50th episode, the robots simply tried to trap the ball while
it was moving with various velocities and at various distances. They made the mistake
of trying to trap the ball even when it was moving away (dx > 0), because we did not
give them any background knowledge, and we only gave them two variables: x and dx.
From the 51st episode to the 100th episode, they learned that they could not trap the
ball when it was far away (x > 450) or when it was moving away (dx > 0). From the
101st episode to 150th episode, they began to learn the correct timing for a successful
trapping, and from the 151st episode to 200th episode, they almost completely learned
the correct timing.

4.2 Training Using Two Robots

In the case of training using two robots, we simply replace the slope in the training
equipment with another robot. We call the original robot the Active Learner (AL) and
the one which replaced with slope the Passive Learner (PL). AL is the same as in case
of training using one robot. On the other hand, PL differs from AL in that PL does not
search out nor approach the ball if the trapping failed. Only AL does so. Other than this
difference, PL and AL are basically the same.

We experimented for 60 minutes by using both AL and PL that had learned in soli-
tude for 60 minutes using the training equipment. Theoretically, we would expect them
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(c) two robots with communication

Fig. 5. Results of three experiments

to succeed in trapping the ball after only a short time. However, by trying to trap the ball
while in obviously incorrect states, they actually failed repeatedly. The reason for this
was because the estimation of the ball’s distance to the robot-in-waiting became unreli-
able, as shown in Fig. 7. This, in turn, was due to the other robot holding the ball below
its head before kicking it forward to its partner. Such problems can occur during the
actual games, especially in poor lighting conditions, when teammates and adversaries
are holding the ball.

Although we are of course eager to overcome this problem, we should not force a
solution that discourages the robots from holding the ball first, because ball holding
skills help them to properly judge whether or not they can successfully trap the ball. It
also serves another purpose, which is to give the robots a nicer, straighter kick. More-
over, there is no way we can absolutely keep the adversary robots from holding the ball.
Although there are several solutions (e.g. measuring the distance to the ball by using
green pixels or sending the training partner to get the ball), we simply continued to
make the robots learn without having made any changes. This was done in an attempt
to allow the robots to gain experience related to irrelevant states. In fact, it turns out
they should never try to trap the ball when x ≥ 1000 and dx ≥ 200. Moreover, they
should probably not try to trap the ball when x ≥ 1000 and dx ≤ −200.

Fig. 5(b) shows the results of training using two robots. They began to learn that
they should probably not try to trap the ball while in irrelevant states, as this was a



94 H. Kobayashi et al.

0 500 1000 1500 2000
x

-200

-150

-100

-50

0

50

100

150

200

d
x

failure
success
collision

(a) Episodes 1–50

0 500 1000 1500 2000
x

-200

-150

-100

-50

0

50

100

150

200

d
x

failure
success
collision

(b) Episodes 51–100

0 500 1000 1500 2000
x

-200

-150

-100

-50

0

50

100

150

200

d
x

failure
success
collision

(c) Episodes 101–150

0 500 1000 1500 2000
x

-200

-150

-100

-50

0

50

100

150

200

d
x

failure
success
collision

(d) Episodes 151–200

Fig. 6. Learning process from 1st episode to 200th episode. A circle indicates successful trapping,
a cross indicates failed trapping, and a triangle indicates collision with the ball.
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Fig. 7. The left figure shows how our vision system recognizes a ball when the other robot holds
it. The ball looks to be smaller than it is, because a part of it is hidden by the partner and its
shadow, resulting in an estimated distance to the ball that is further away than it really is. The
right figure plots the estimated values of the both the distance x and the velocity dx, when the
robot kicked the ball to its partner, the partner trapped it, and then the partner kicked it back.
When the training partner was holding the ball under its head though (the center of the graph),
we can see the robot obviously miscalculated ball’s true distance.
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likely indicator that the training partner was in possession of the ball. This was learned
quite slowly though, because the AL can only learn successful trapping skills when PL
itself succeeds. If PL fails, AL’s episode is not incremented. Even if the player nearest
the ball can go get it, the problem is not resolved because then they just learn slowly in
the end, though simultaneously.

4.3 Training Using Two Robots with Communication

Training using two robots, like in the previous section, unfortunately takes a long time
to complete. In this section, we will look at accelerating their learning by allowing them
to communicate with each other.

First, we made the robots share their experiences with each other, as in [11]. How-
ever, if they continuously communicated with each other, they could not do anything
else, because the excessive processing would interrupt the input of proper states from
the real-time environment. Therefore, we made the robots exchange their experiences,
which included what action at they performed, the values of the state variables xt and
dxt, and the reward rt+1 at time t, but this was done only when they received a reward
other than 0, i.e. the end of each episode. They then updated their

−→
θ values using the

experiences they received from their partner. As far as the learning achievements for
our research is concerned, they can successfully learn enough using this method.

We also experimented in the same manner as Section 4.2 using two robots which
can communicate with each other. Fig. 5(c) shows the results of this experiment. They
could rapidly adapt to unforeseen problems and acquire practical trapping skills. Since
PL learned its skills before AL learned, it could relay to AL the helpful experience,
effectively giving AL about a 50% learned status from the beginning. These results in-
dicate that the robots with communication learned more quickly than the robots without
communication.

4.4 Discussion

The three experiments above showed that robots could efficiently learn ball trapping
skills and that the goal of pass-work by robots can be achieved in one-dimension. In
order to briefly compare those experiments, Fig. 8 presents a few graphs, where the x-
axis is the elapsed time and the y-axis is the total number of successes so far. Fig. 8(a)
and Fig. 8(b) shows the learning process with and without communication, respectively,
for 60 minutes after pre-learning for 60 minutes by using two robots from the beginning.
Fig. 8(c) and Fig. 8(d) shows the learning process with and without communication,
respectively, after pre-learning for 60 minutes in solitude.

Comparing (a) and (c) with (b) and (d) has us conclude that allowing AL and PL
to communicate with each other will lead to more rapid learning compared to no com-
munication. Comparing (a) and (b) with (c) and (d), the result is different from our
expectation. Actually, the untrained robots learned as much as or better than trained
robots for 60 minutes. The trained robots seems to be over-fitted for slow-moving balls,
because the ball was slower in the case of one robot learning than in the case of two
due to friction on the slope. However, it is still good strategy to train robots in solitude
at the beginning, because experiments that solely use two robots can make things more
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Fig. 8. Total numbers of successful trappings with respect to the elapsed time

complicated. In addition robots should also learn the skills for a relatively slow-moving
ball anyway.

5 Conclusions and Future Work

In this paper, we presented an autonomous learning method for use in acquiring ball
trapping skills in the four-legged robot league. Robots could learn and acquire the skills
without human intervention, except for replacing discharged batteries. They also suc-
cessfully passed and trapped a ball with another robot and learn more quickly when
exchanging experiences with each other. All movies of the earlier and later phases of
our experiments are available on-line (http://www.jollypochie.org/papers/).

We also tried finding out whether or not robots can trap the ball without the use of the
training equipment (rails for ball guidance). We rolled the ball to the robot by hand, and
the robot could successfully trap it, even if the ball moved a few centimeters away from
the center of its chest. At the same time though, the ball would often bounce off of it,
or the robot did nothing if the ball happened to veer significantly away from the center
point. In the future, we plan to extend trapping skills into two-dimensions using layered
learning [12], e.g. we will try to introduce three actions of staying, moving to the left,



Autonomous Learning of Ball Trapping in the Four-Legged Robot League 97

and moving to the right into higher-level layers. Since two-dimensions are essentially
the same as one-dimension in this case, it may be possible to simply use a wide slope.
Good two-dimensional trapping skills can directly make keepers or goalies stronger. In
order to overcome the new problems associated with a better goalie on the opposing
team, robots may have to rely on learning better passing skills, as well as learning even
better ball trapping skills. A quick ball is likely to move straightforward with stability,
but robots as they are now can hardly trap a quick ball. Therefore, robots must learn
skills in shooting as well as how to move the ball with proper velocity. It would be most
effective if they learn these skills alongside trapping skills. This is a path that can lead
to achieving successful keepaway soccer [1] techniques for use in the four-legged robot
league.
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Abstract. A fast gait is an essential component of any successful team
in the RoboCup 4-legged league. However, quickly moving quadruped
robots, including those with learned gaits, often move in such a way so
as to cause unsteady camera motions which degrade the robot’s visual
capabilities. This paper presents an implementation of the policy gradi-
ent machine learning algorithm that searches for a parameterized walk
while optimizing for both speed and stability. To the best of our knowl-
edge, previous learned walks have all focused exclusively on speed. Our
method is fully implemented and tested on the Sony Aibo ERS-7 robot
platform. The resulting gait is reasonably fast and considerably more
stable compared to our previous fast gaits. We demonstrate that this
stability can significantly improve the robot’s visual object recognition.

1 Introduction

In the robot soccer domain, a fast gait is an important component of a successful
team. As a result a significant amount of recent research has been devoted to
the problem of developing fast legged locomotion for Sony Aibo ERS-7 robots,
leading to considerable improvement in gait speeds [1,2,3,4,5].

However, learned gaits optimized solely for speed tend to produce body mo-
tions that cause the camera to shake. Such unsteady gaits lead to camera images
in which objects are rotated, translated, or blurred compared to camera images
from a steady gait. These images make it difficult for the robot to identify ob-
jects. For example a pink over yellow beacon is usually identified as a pink blob
over a yellow blob, however the pink does not appear above the yellow when the
image is rotated. Thus, unstable gaits degrade a robot’s object recognition and
localization abilities which can cause problems during a game.

This paper proposes optimizing both gait speed and stability simultaneously,
using a multi-criteria objective function. In addition, experiments are described
that explore the idea of using active head movements to compensate for uneven
body motion.

The remainder of this paper is organized as follows. Section 2 presents existing
machine learning techniques that have been applied to optimize gait parameters
for speed. Section 3 describes the parameterized Aibo gait, head motions, and
the policy gradient algorithm used to train new gaits. Section 4 describes our
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training experiments in detail and compares two different methods to offset
unstable body movements. In Section 5, applications of stable gaits and future
work are outlined, and Section 6 concludes.

2 Related Work

When generating quadrupedal robot gaits, the machine learning (ML) approach
offers several advantages over hand-tuning of parameters. Using learning can
reduce the amount of time required to find a fast gait and can be easily applied
to different surfaces and different robots. ML techniques also do not suffer from
the bias a human engineer might have when hand-tuning a gait. For example,
there is evidence that when walking the actual joint angles of the Aibo differ
considerably from requested joint angles, because of the force exerted by the
ground [6]. ML techniques may be less susceptible to this problem than humans
who often hand-tune gaits based on the locus of points the foot ideally moves
through, as opposed to the actual locus the foot moves through.

Applying ML techniques to directly control an Aibo by manipulating joint
angles is a difficult task. Evaluations on physical robots are noisy and take a long
time compared to evaluation in simulation. Moreover, some of the intermediate
exploratory gaits that ML algorithms generate may cause physical damage to
the robot. The Aibo also does not have sensors that can be used during training
that can provide closed loop feedback to the controller.

Nonetheless, reinforcement learning (RL) has been used to learn several sim-
ilar control problems, not limited to Aibo locomotion. RL has been used to
control a model helicopter than can hover while inverted in air [7]. Other ML
techniques have been applied to directly control simulated bipedal robots: in [8]
a central pattern generator was used for rhythm generation in the hips and knees
of a simulated bipedal robot, and a dynamics controller was used to control the
ankles of robot.

Similarly, previous work has shown that ML algorithms can excel at gen-
erating fast gaits for the Aibo by taking advantage of algorithms to optimize
parameterized gaits for desirable characteristics. The earliest attempt to use
ML algorithms to learn a gait used a genetic algorithm to optimize parameters
describing joint velocities and body positions [9].

More recent approaches attempt to learn parameters for gaits that move the
Aibo’s four feet through a locus of points. In previous work, the policy gradient
algorithm has been used, with a half-elliptical locus, to learn an Aibo gait that
is optimized for speed [2,3]. Powell’s method of multidimensional minimization
has been used to optimize a parameterized gait with a rectangular locus [4].
A genetic algorithm that used interpolation and extrapolation for the crossover
step was used to optimize a parameterized gait with a half-elliptical locus [1].
Odometry was used in order to evolve an omni-directional parameterized gait
using a genetic algorithm by training the robot to move forward with its target
orientation constantly changing [10]. In [5], a genetic algorithm and an acceler-
ation model of the Aibo body was used to optimize a parameterized Aibo gait.
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One of the fastest known forward Aibo gaits, which has a speed of 451 mm/s, was
learned using a genetic algorithm and an overhead camera to quickly determine
walk speeds [11].

To the best of our knowledge, all of these approaches have optimized ex-
clusively for walk speed. This paper is based on the observation that the re-
sulting gaits are often unstable, thus degrading the robot’s visual capabilities.
We demonstrate that this problem can be solved by optimizing the gait for both
speed and stability by incorporating stability information into the objective func-
tion. This paper applies two different approaches to learning a stable walk. In
the first approach, the objective function incorporates stability information. In
the second approach, compensatory head movements are performed to counter
the unstable body motions of a fast gait.

3 Background

The Sony Aibo ERS-7 robot is a quadruped with three degrees of freedom in
each leg [12]. A controller must specify the set of twelve joint angles at each
instant in order to specify a gait. Learning a controller for a fast gait by directly
manipulating joint angles is a difficult non-linear control problem. One solution
to this problem is parameterizing a gait by specifying the loci of points that
the Aibo’s feet moves through. Doing so can constrain the search space both
to make it easier to search and to avoid gaits that can damage the robot. This
paper uses a modified version of a half-elliptical parameterized gait modeled
after that presented by Stone et al. [13]. Four additional parameters were added
to this parameterization that govern compensatory head movements designed to
improve head stability.

3.1 Parameterized Motion

The half-elliptical locus used by the fast gait is shown in Figure 1. Each foot
moves through a half-elliptical locus with each pair of diagonally opposite legs
in phase with each other and out of phase with the other two legs (a trot gait).

The four parameters that define the half ellipse are:

1. The length of the ellipse
2. The height of the ellipse
3. The position of the ellipse on the x axis
4. The position of the ellipse on the y axis

The symmetry of the Aibo is used to reduce the number of parameters that
have to be optimized. The length of the ellipse is the same for all four legs
to ensure a straight gait. The left and right sides of the body use the same
parameters to describe the locus of the gait. The height, x position and y position
of the elliptical loci of the front and back two legs use different parameters.

In addition to the leg movements, the head was allowed to make elliptical
compensatory movements in order to cancel the effect of body motions that
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Fig. 1. The half-elliptical locus of each of the Aibo’s feet is defined by length, height
and position in the x-y plane

cause the camera to shake. Figure 2 depicts the two types of head movement
that were used, which have the overall effect of moving the head in an ellipse.
Two parameters were used to specify the head tilt angle limit and head tilt
increment at each timestep. Similarly, two parameters describe the head pan
motions. Initial values for these parameters were determined by testing just a
few sets of values. We leave it to future work to determine how big of an effect
these initial values have.

The 15 parameters that completely define the Aibo’s movements are:

– The front locus: height, x position and y position (3 parameters)
– The rear locus: height, x position and y position (3 parameters)
– Locus length (same for all loci)
– Front body height
– Rear body height
– Time taken for each foot to move through locus
– The fraction of time each foot spends on the ground
– Head tilt limit and increment (2 parameters, with a limit from −10o to 10o)
– Head pan limit and increment (2 parameters, with a limit from −10o to 10o)

3.2 Policy Gradient Algorithm

This paper uses a policy gradient algorithm modeled after that presented by
Kohl and Stone [2] to optimize the Aibo gait in the continuous 15-dimensional
parameter space. The objective function F to be optimized is a function of the
gait speed, acceleration and stability, and is described in detail in Section 4.

The policy gradient algorithm uses an initial parameter vector π = {θ1, ..., θN}
and estimates the partial derivative of the objective function F with respect
to each parameter. This is done by evaluating t randomly generated policies
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Fig. 2. The Aibo can combine pan and tilt head movements (shown as solid lines)
to move the head through an elliptical locus (shown as a dotted line). The center of
ellipse is determine by the landmark the Aibo is looking at. The locus is defined by
four variables: tilt limit, tilt increment, pan limit, and pan increment.

{R1, ...Rt} near π, such that each Ri = {θ1 + δ1, ..., θN + δN} and δj is randomly
chosen to be either +εj , 0, or − εj, where εj is a small fixed value relative to θj .

After evaluating each neighboring policy Ri on the objective function F , each
dimension of every Ri is grouped into one of three categories to estimate an
average gradient for each dimension:

– Avg−ε,n if the nth parameter of Ri is θn−εn

– Avg+0,n if the nth parameter of Ri is θn+0

– Avg+ε,n if the nth parameter of Ri is θn+εn

These three averages enable the estimation of the benefit of altering the nth
parameter by +εn, 0, and −εn. An adjustment vector A of size n is calculated
where An ∈

– 0 if Avg+0,n > Avg+ε,nand Avg+0,n > Avg−ε,n

– Avg+ε,n −Avg−ε,n otherwise

A is normalized and then multiplied by a scalar step size η = 2 to offset small
εj . Finally A is added to π, and the process is repeated for the next iteration.
Figure 3 describes the pseudocode for the policy gradient algorithm.

4 Empirical Results

The policy gradient algorithm described above was implemented and run on the
Aibo as seen in Figure 4. In order to evaluate a particular gait parameterization,
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π ← InitialPolicy
while !done do

{R1, R2, . . . , Rt} = t random perturbations of π
evaluate( {R1, R2, . . . , Rt} )
for n = 1 to N do

Avg+ε,n ← average score for all Ri that have
a positive perturbation in dimension n

Avg+0,n ← average score for all Ri that have a zero
perturbation in dimension n

Avg−ε,n ← average score for all Ri that have a
negative perturbation in dimension n

if Avg+0,n > Avg+ε,n and Avg+0,n > Avg−ε,n then
An ← 0

else
An ← Avg+ε,n − Avg−ε,n

end if
end for
A ← A

|A| ∗ η
π ← π + A

end while

Fig. 3. During each iteration t policies are sampled around π to estimate the gradient,
then π is moved by η in the direction that increases the objective function the greatest

the Aibo was instructed to record various data while repeatedly walking back
and forth between two landmarks.

In order to generate a gait that was both stable and fast, the learning algo-
rithm had to be given an appropriate objective function. In previous work, the
objective function was focused primarily on generating a fast gait. In this paper,
since stability is desired, the objective function was modified. Figure 5 depicts
the images a robot would see with a perfectly stable gait and with an unsteady
gait. The image taken with the unstable gait is rotated and translated compared
to the image taken with a stable gait.1

In order to find a stable gait, the original objective function (which was de-
signed to optimize only for speed) was modified to include stability information.
This modified objective function consists of four components:

1. Mt - The normalized time taken by the robot to walk between the two
landmarks.

2. Ma - The normalized standard deviation (averaged over multiple trials) of
the Aibo’s three accelerometers

3. Md - The normalized distance of the centroid of landmark from the center
of an image.

4. Mθ - The normalized difference between the slope of landmark and the ideal
slope (90o)

1 Videos of a fast gait and a stable gait from the perspective of the robot can be found
at http://www.cs.utexas.edu/~AustinVilla/?p=research/learned_walk

http://www.cs.utexas.edu/~AustinVilla/?p=research/learned_walk
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Fig. 4. The training environment during the gait parameter optimization experiment.
The Aibo records how long it takes to move between two beacons. It also records the
average accelerometer values, the average difference in the position of the centroid of
the beacon and the center of the image, and the average slope of the beacon in the
image.

These four components are combined to create a single objective function F :

F = 1− (WtMt + WaMa + WdMd + WθMθ) (1)

The different components of the objective function are weighted by Wt, Wa,
Wd, and Wθ, respectively, to optimize for desirable attributes. These weights
are constrained such that their sum is equal to one. For example, if stability is
more important than speed, the time taken to walk between landmarks Wt can be
assigned a smaller value than the other three weights. The next section describes
experiments that compared different weightings of this objective function.

4.1 Learning a Stable Gait

The first experiment we performed was designed to determine how best to train
for stability while learning a gait. To do this, we used two different parame-
terizations for weighting the subcomponents of the objective function. The first
parameterization used Wt = 0.4, Wa = 0.1, Wd = 0.4 and Wθ = 0.1, which
weighted speed slightly more than stability. The second parameterization used
Wt = 0.3, Wa = 0.3, Wd = 0.2 and Wθ = 0.2, which more evenly weighted all
four components.

We used a relatively slow hand-tuned gait as a starting point for the policy
gradient algorithm, since previous work suggested that starting from a faster
gait could hinder learning [2]. This starting point was determined empirically
after trying several different starting gaits. Learning performance was somewhat
sensitive to the initial parameter settings, but we did not extensively optimize
the initial values.
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(a) (b)

Fig. 5. Two visual clues that indicate an uneven gait. (a) shows the average displace-
ment (Md) of the centroid of the landmark with respect to the center of the image. (b)
shows the average rotation (Mθ) of the landmark. If the camera is steady the average
position difference should be zero and the average rotation should be 0o.

Table 1. Percentage reduction in the four objective function components for two dif-
ferent parameterizations without using compensatory head movements. In both cases
the gait becomes more stable while only becoming slightly slower.

Parameterization 1 Parameterization 2

Mt -4.76 -4.5
Ma 34.7 32.6
Md 60 57.14
Mθ 76.9 51.2

Figure 6 shows the progress of the policy gradient algorithm during training
without head movements for the two different objective function parameteriza-
tions. The policy gradient algorithm generates 15 exploratory policies per itera-
tion of the algorithm. In both parameterizations, the slope, distance and average
acceleration measure of the objective function decrease considerably, while the
time measure has a modest increase. This lead us to conclude that the weight
parameters are not sensitive to smaller variations. Detailed results are shown in
Table 1.

4.2 Adding Compensatory Head Movements

The previous results successfully demonstrate the ability of our robots to learn
a stable gait while minimizing speed reduction. However, in that case, all of the
learning was focused on the leg motion. Since the stability objective measures
the robot’s head motion, we hypothesized that allowing the robot to make com-
pensatory head movements could effectively improve stability. To test this hy-
pothesis, similar experiments to those described above were performed, but four
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(a) (b)

Fig. 6. (a) The overall fitness and fitness subcomponents (normalized to [0, 1]) for a
single run with Wt = 0.3, Wa = 0.3, Wd = 0.2, and Wθ = 0.2 without using head
movements. The starting gait has an overall fitness of 0.72 and the final gait has an
overall fitness of 0.83. (b) A similar plot, but with the parameters Wt = 0.4, Wa = 0.1,
Wd = 0.4, and Wθ = 0.1. The starting gait has an overall fitness of 0.78 and the final
gait has an overall fitness of 0.83. Both speed and stability increase during learning.

additional parameters were added that governed compensatory head movements.
For these experiments, the position of the landmark in the camera image was
used to calculate the center of the ellipse that the Aibo’s head moved through,
and the tilt and pan angle limits and increments (set by the policy gradient
algorithm) were used to calculate the length and height of the ellipse.

Figure 7 shows the progress of the policy gradient algorithm during training
with head movements for two different objective function parameterizations. The
policy gradient algorithm generated 19 exploratory policies per iteration of the
algorithm. As in the experiment that learned a stable gait without head move-
ments, the gait became more stable after learning. However, the results from this
experiment were not as good as those from the previous experiment. This sug-
gests that the addition of compensatory head movements does not significantly
improve stability or speed.

Table 2 shows that gait parameters for the initial hand tuned gait, the final
learned gait using head movements, the final learned gait without using head
movements and the previously learned fast gait for comparison. The policy gradi-
ent algorithm was able to find a stable gait without much improvement in speed.
These results demonstrate there is a tradeoff between gait speed and stability.

4.3 How Useful Is Stability?

The main premise of this paper is that walk stability is an important feature
for robot gaits. In particular, we hypothesized that stable gaits would improve
the robot’s visual capabilities. The vision algorithm used for this work converts
each image received from the camera into a pixel-by-pixel color-labeled image,
then groups regions of similarly-colored pixels into bounding boxes. A variety of
heuristics such as size, tilt, and pixel density are used to convert these bounding
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(a) (b)

Fig. 7. (a) Scaled overall fitness and fitness subcomponents for a single run with
Wt = 0.3, Wa = 0.3, Wd = 0.2, and Wθ = 0.2 when compensatory head movements are
enabled. The starting gait has an overall fitness of 0.57 and the final gait has an overall
fitness of 0.76. (b) A similar graph, but with the parameters Wt = 0.4, Wa = 0.1,
Wd = 0.4, and Wθ = 0.1. The starting gait has an overall fitness of 0.60 and the final
gait has an overall fitness of 0.74. In both cases, stability and speed increase, but the
overall effect of compensatory head movements is negative.

boxes into high-level objects. If the robot is using an uneven gait, the camera will
receive many images from an unexpected perspective, which can wreak havoc on
the vision heuristics. The heuristics can always be improved, but this may take
valuable processing time away from other components of the robot. Many vision
algorithms employ such heuristics, making this a general problem for robotic
vision [14,15].

In order to test whether the stable gaits learned above actually help vision, we
conducted two experiments where the Aibo traversed the field while recording
the objects that it saw. The number of objects that were correctly classified
(averaged over four runs) is shown in Table 3. Using the learned stable walk,
the Aibo displayed 39% more true positives and 54% fewer false positives. These
results with statistically significant with p < 0.05.

5 Discussion and Future Work

The experiments detailed in this paper demonstrate that there is a tradeoff
between gait speed and stability. Our version of the fast gait learned according
to Stone et al. [13] achieves a speed of 340mm/s. When the objective function is
changed to include stability information, the fastest walk that is learned has a
speed of 259mm/s. Allowing the robot to make compensatory head motions to
counterbalance for the body movements, reduced the speed marginally.

Even though the stable gait is not as fast as gaits optimized for speed, it could
be used in situations where it is important not to lose sight of objects, for example
if the robot has the ball and is near the opponent’s goal, the stable gait can be used
to ensure that the robot does not lose the ball from its vision and thus has a better
chance at scoring. We leave deciding which gait to use when to future work.
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Table 2. The parameterized starting gait, learned gaits with and without head move-
ments and the learned fast gait. The policy gradient algorithm is able to find gaits that
are considerably more stable than the learned fast gait while only sacrificing a small
amount of speed. The final gait shows a small improvement in gait speed compared to
the starting gait.

Parameter Hand-tuned Gait Stable gait Stable gait Fast gait
with head movements

Front locus height 1.1 1.7 1.7 0.97
Front x position -0.05 0.08 1.17 -0.04
Front y position 0.7 0.76 -0.08 0.3
Rear locus height 1.6 -0.45 1.54 1.61
Rear x position 0 1.54 1.7 -0.11
Rear y position -0.4 0 0.66 -0.51
Locus length 0.4 0.5 0.68 0.57

Front body height 0.9 0.95 0.96 0.76
Rear body height 0.8 0.75 0.64 0.65
Time on ground 0.5 0.62 0.7 0.27
Time to move 45 45.5 43.4 56
through locus

Tilt limit n/a n/a 4.93 n/a
Tilt increment n/a n/a 0.88 n/a

Pan limit n/a n/a 4.81 n/a
Pan increment n/a n/a 1.07 n/a

Gait speed 198 mm/s 259 mm/s 237 mm/s 340 mm/s

Table 3. The ratio of objects correctly and incorrectly classified by a vision algorithm
using a learned fast gait and a learned stable gait. The stable gait leads to significantly
(p < 0.05) better visual classification accuracy.

True Positives False Positives

Fast Gait 0.33 0.052
Stable Gait 0.46 0.028

Another interesting avenue for future work is to examine how different pa-
rameterizations for the gait and the head motion affect learning. Although the
elliptical head motion described in this paper did not significantly increase head
stability, other types of head motions might do better.

6 Conclusion

This paper presented results on using the policy gradient algorithm to learn a
stable, fast gait. Experiments were performed using an objective function that
optimizes for stability in addition to using head compensatory movements. In
both cases, the policy gradient algorithm found a stable gait while sacrificing
only a small amount of speed. Videos of a comparison between gaits optimized
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for speed and gaits optimized for stability are available at:
http://www.cs.utexas.edu/~AustinVilla/?p=research/learned_walk.
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Abstract. Coordination, as a key issue in fully cooperative multiagent
systems, raises a number of challenges. A crucial one among them is to
efficiently find the optimal joint action in an exponential joint action
space. Variable elimination offers a viable solution to this problem. Us-
ing their algorithm, each agent can choose an optimal individual action
resulting in the optimal behavior for the whole agents. However, the
worst-case time complexity of this algorithm grows exponentially with
the number of agents. Moreover, variable elimination can only report an
answer when the whole algorithm terminates. Therefore, it is unsuitable
in real-time systems. In this paper, we propose an anytime algorithm,
called the simulated annealing algorithm, as an approximation alterna-
tive to variable elimination. We empirically show that our algorithm can
compute nearly optimal results with a small fraction of the time that
variable elimination takes to find the solution to the same coordination
problem.

1 Introduction

A multiagent system (MAS) consists of a group of agents that interact with
each other [1,2]. Research in MAS aims to provide theories and techniques for
agents’ behavior management. In this paper, we focus on the fully cooperative
MASs in which the agents share a common goal. Examples are a team of robots
who play football against another team or a group of agents who plan to build a
house. A key aspect in such systems is Coordination: the procedure to ensure the
individual actions of the agents generate optimal joint decisions for the whole
group. RoboCup [3] provides a good platform for comparing and testing different
coordination techniques.

To solve the above problem, previous research focuses on the use of game
theoretic techniques [4], communication [5,6], social conventions or social lows
[7], learning [8,9]. However, all these approaches need to exhaust the whole joint
action space whose size grows exponentially with the number of agents. Thus,
even in very small settings, they are infeasible.

A recent work to decrease the size of the joint action space uses a coordination
graph (CG) [10,11,12]. The idea of CG is that in many situations, only a small
number of agents need to coordinate their actions while the rest of others can
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act individually. For example, in robotic soccer, only the ball owner and his sur-
rounding players need to coordinate their actions to perform a pass while others
can act individually. So the global joint payoff function, the representation of the
global joint coordination dependencies between all agents, can be decomposed
into a linear combination of local terms, each of which represents the local coor-
dination dependencies between a small subgroup of the agents. Then each agent
employs variable elimination (VE) algorithm to select an optimal individual ac-
tion. The outcome results in optimal behavior for the whole group. However, the
worst case time complexity of VE is the same with the aforementioned methods
of exhausting all possibilities [13,14]. Moreover, although VE is an exact method
which always reports the optimal joint action, it does not return any results until
the entire algorithm terminates, which is not suitable for real-time systems. In
[14], max-plus (MP) algorithm, which is analogous to the belief propagation al-
gorithm [15] for Bayesian networks, was proposed as an approximate alternative
to VE. MP can find optimal solutions for tree-structured coordination graphs
and also the near optimal solutions in graphs with cycles, but it restricts each
local payoff function involved at most two agents [14,15,16].

In this paper, we propose the simulated annealing (SA) algorithm as another
approximation to VE. In our algorithm, agents repeatedly start independent
tries. In an independent try, each agent tries to maximize the global payoff using
his own action, while the actions of the other agents stay the same. If a better
solution is found, accept it; otherwise, accept it with a certain probability.

We make the following contributions.

• The time complexity of our algorithm grows polynomially with the number
of agents.

• Our algorithm is an anytime algorithm that reports result at any time.
• Our algorithm has no restrictions on the number of agents involved in local

payoff functions.
• Experiments show that our algorithm can also find near optimal solution

within only a small fraction of the time that VE takes to find the solution
of the same coordination problem.

The paper is organized as follows. In section 2, we briefly describe the basic
concepts of multiagent coordination problem and the process of finding the op-
timal joint action by VE and CG. Then we describe our proposed algorithm in
section 3. Section 4 experimentally validate the correctness and efficiency of our
algorithm, followed by conclusion and future work in section 5.

2 Variable Elimination and Coordination Graphs

In this section, we review the variable elimination (VE) algorithm. In a multiagent
system, we have a collection of agents G = {G1, . . . , Gn}1. Each agent Gi selects
1 In this paper, we use upper case letters (e.g., X) to denote random variables, and

lower case (e.g., x) to denote their values. We also use boldface to denote vectors of
variables (e.g., X) or their values (x).
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G1

G2 G3

G4

Fig. 1. Initial coordination graph

an individual action ai from his own action set Ai. Their joint action space thus
can be represented as A = ×iAi. The global payoff function of the agents υ (a)
maps each joint action a to a real value: υ (a) → R. The coordination problem is
to find the optimal joint action a∗ that maximizes υ (a), i.e., a∗ = argmaxaυ (a).
In a naive way, we may consider all possible joint actions and select the one that
maximizes υ (a). Unfortunately, this approach is infeasible in even the simplest
settings, for the number of joint actions grows exponentially with the number of
agents (It is called “curse of dimensionality” [13]).

This “curse of dimensionality” may be solved by exploiting the structure of the
problem to define a compact representation for the global joint payoff function
[11,12]. In this way, the global joint payoff function is decomposed into a linear
combination of a set of local payoff functions, each of which is only related
to a part of system controlled by a small number of agents. For example, in
RoboCup, only players that are close to each other have to coordinate their
actions to perform a pass or a defend, thus we can use the sum of local payoff
functions of subgroup agents to approximate the whole team’s payoff. In some
situations, this approach can get a very compact representation for coordination
dependencies among agents. Furthermore, such representation can be mapped
onto a coordination graph G = (V, E) according to the following rules [11]: each
agent is mapped to a node in V , and each coordination dependency is mapped
to an edge in E. Then the agents can use VE which is identical to variable
elimination (or bucket elimination) [17] in a Bayesian network on such CG to
determine the optimal joint action.

We show how VE works as follows. Suppose we have 4 agents with each one
having 4 different actions, then the number of joint actions is 44 = 256, and
global joint payoff function can be decomposed as:

υ(a) = υ1(a1, a2) + υ2(a2, a4) + υ3(a1, a3) (1)

Fig. 1 shows the initial corresponding coordination graph. The key idea in VE
is that, rather than enumerating all possible joint actions and summing up all
functions to do maximization, we maximize over variables once at a time. Let us
begin with optimization for agent 1. Agent 1 collects all local payoff functions
including himself, i.e., υ1 and υ3 then does maximization. Hence, we obtain:

maxaυ(a) = maxa2,a3,a4{υ2(a2, a4) + maxa1 [υ1(a1, a2) + υ3(a1, a3)]} (2)
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After enumeration of possible action combinations of his neighbors, i.e., agent
2 and agent 3, agent 1 conditionally returns his best response and yield a new
function e1(a2, a3) = maxa1 [υ1(a1, a2) + υ3(a1, a3)] whose value at the point a2,
a3 is the value of the internal max expression in equation (2). At this time, agent
1 is eliminated from CG. The global joint payoff function is rewritten as:

maxaυ(a) = maxa2,a3,a4{υ2(a2, a4) + e1(a2, a3)} (3)

Now fewer agents remain. Next, agent 2 does the same procedure. After collecting
υ2(a2, a4) and e1(a2, a3), agent 2 produces a conditional strategy based on the
possible actions of agent 3 and agent 4, and returns his choice, i.e., e2(a3, a4) =
maxa2 [υ2(a2, a4)+e1(a2, a3)] to the system, then is eliminated. The global payoff
function only contains 2 agents now:

maxaυ(a) = maxa3,a4{e2(a3, a4)} (4)

Agent 3 begins to do optimization. Enumerating actions of agent 4, he reports
his own choice and gives a conditional payoff e3(a4) = maxa3e2(a3, a4). Fi-
nally, the only remaining agent 4 can simply choose his optimal action: a∗

4 =
argmaxa4

e3(a4).
In the second pass, all agents do the entire process in reverse elimination order.

To fulfill agent 4’s optimal action a∗
4, agent 3 must select a∗

3 = argmaxa3
e3(a∗

4).
Then agent 2 can make a decision a∗

2 = argmaxa2
e2(a∗

3, a
∗
4). Finally, agent 1 does

a∗
1 = argmaxa1

e1(a∗
2, a

∗
3) to choose his optimal action appropriately. The whole

procedure needs only 4 × 4 + 4 × 4 + 4 = 36 iterations which is much smaller
than 256 iterations of the whole joint action space.

The outcome of VE is independent of the elimination order and always gives
the optimal joint action [13]. However, the running speed of VE is depended
on the elimination order and exponential in the induced width of the coordi-
nation graph [11,17]. Finding the optimal elimination order for VE is a well
known NP-complete problem [18,19]. Thus, in some cases and especially in the
worse case, the time consumed by VE grows exponentially with the number of
agents. Furthermore, VE can not give any useful results until the termination of
the complete algorithm, therefore it is not suitable for RoboCup 2D simulation
league for the robot player has to send actions to server every 100ms. We aim
to find an alternative approache that can circumvent such limitations.

3 The Simulated Annealing Algorithm

In many real-world applications, especially in limited computing time cases such
as RoboCup, we should make tradeoff between the optimality of the actions and
running time. Thus a sub-optimal or nearly optimal solution would be sufficient.
In [14], max-plus (MP) algorithm was proposed as an approximation to VE.
MP is essentially an instance of Perl’s belief propagation (BP) algorithm [15] in
Bayesian network. It can converge to optimal joint action in tree-structured CGs
and find nearly optimal result in graphs with cycles [14,15]. However, MP limits
the number of agents in local coordination dependencies not exceeding two.
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In this section, we describe the simulated annealing (SA) algorithm proposed
as an approximate alternative to VE without MP’s limitation. The simulated
annealing algorithm 2, inspired by statistical mechanics, is very popular for com-
binatorial optimization [20,21,22]. In this area, efficient techniques are developed
to find minimum or maximum values for a function of a number of independent
variables [22]. The simulated annealing process executes by “melting” the sys-
tem being optimized at a high effective temperature at first, and then lowering
the temperature by slow stages until the system “freezes” and no further change
occurs.

We decide to apply SA to our multiagent decision making problem, since our
problem also needs to optimize the global joint payoff function via a number
of independent action variables of the agents. The key idea in our approach is
rather similar to CG. We decompose the global joint payoff function into a sum
of local terms, and then do optimization. Given n agents (defined in section 2),
the global joint payoff function can be decomposed as follows:

υ(a) =
∑
i∈G

υi(ai) +
∑

i,j∈G

υij(ai, aj) +
∑

i,j,k∈G

υijk(ai, aj , ak) + · · · (5)

Here, υi(ai) represents the payoff that an agent contributes to the system
when acting individually, e.g., dribbling with the ball. υij(ai, aj) denotes the
payoff of a coordination action, e.g., a coordination pass between agent i and
agent j, and υijk(ai, aj, ak), depicts another coordination action involving three
agents, e.g., pass from i to j, then j to k. Coordination dependencies with more
players can be added if needed. Our decomposition is different from MP in that
there is no limitation on the number of robot players involved in local terms.
In MP algorithm, the global joint payoff function can only be decomposed into∑

i∈G υi(ai) +
∑

i,j∈G υij(ai, aj).
Now the goal is to find the optimal joint action, i.e., a∗ = argmaxaυ(a).

The pseudo-code of SA algorithm is presented in Alg.1.. The SA algorithm is
implemented in a centralized version and performed by the agents in parallel,
without assuming the availability of communication. The idea behind it is very
straightforward. In each iteration (called an independent try), the algorithm
starts with a random choice of joint action for the agents, then loop over all
agents. Each agent optimizes the global payoff function with his own action while
the actions of all the others stay the same. If the agent’s local optimization can
yield a better joint action than the initial one, we accept it, otherwise accept
the solution with a probability of ε = 1

1+e−(Δ/T ) . The looping continues until
the temperature T decayed from Tmax to a predefined threshold Tmin. Then
we select a new random starting position and repeat the whole process. When
an agent should send action to the server, he returns his own action from the
optimal joint action found so far.

Basically, what the SA algorithm does is to seek the global maximum of the
global joint payoff function. The SA algorithm has some important differences
2 The simulated annealing algorithm is also called monte carlo annealing or proba-

bilistic hill-climber.
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from VE. Firstly, SA is an anytime algorithm that can report an answer at
any time, while VE reports until the whole algorithm terminates. Secondly, in
each independent try, agent i only has to iterate his own actions instead of
all combinatorial actions of his neighbors, thus makes the algorithm tractable.
Finally, the SA is essentially a stochastic algorithm that can not guarantee to
find the optimal joint action, 3 while VE is an exact and deterministic algorithm
that always report the optimal result. As an approximation algorithm, SA is also
different from MP in that SA has no limitation on the form of decomposed local
functions while the latter has.

SA has a feature of stochastic movement from one solution to another, which
helps it jump away from local maxima and improve the answer’s quality [21,22,23].
Although SA can not guarantee the convergence to optimal joint action, we shall
see that it can find an approximately optimal solution in a rather short time.

4 Experiments

In this section, we evaluate the simulated annealing algorithm by comparing it
with other algorithms, especially with variable elimination. The experiments run
in two stages. In the first stage, we fix the number of agents and the number
of different actions per agent to test the scalability of the two algorithms when
the number of neighbors per agent grows. In the second stage, we compare the
relative payoff SA returned with the optimal payoff produced by VE.

Since multiagent system is such a large field that there is no standard problem
one can test against, it is important to generate the proper test sets. In this
paper, we use a random generator (RG) to produce all test sets. The inputs
of the random generator are values of the number of agents |G|, the number
of different actions per agent |A|, maximum number of neighbors per agent
Nrne, and the number of value rules each agent has Nrρ. We believe that these
aspects are sufficient to show the difficulty of the coordination problem. The
output of the random generator is a set of value rules, each of which is in the
form 〈 ρ : υ〉. The value rule is introduced in [11] and proved suitable for plenty
of real-world applications such as RoboCup. The global joint payoff function is
thus represented by the sum of value rules of all agents. Table 1 depicts a sample
output of the random generator (RG) with |G| = 4, |A| = 4, Nrne = 3, Nrρ = 1.

Here, the integer value of ai is an action index. In a real RoboCup 2D simula-
tion program, such an action index is finally mapped to a real predefined action
(or skill, i.e., dribbling, pass, etc.) and sent to the server. We ignore the details
of the specific applications and only focus on the performance of the decision
algorithm.

In the first experiment, we generate 120 coordination problems and assign
them to 4 test sets based on different actions of each agent. For the problem
of each test set, the settings are as follows. The number of the agents is fixed
3 Technically the SA can also find the optimal solution if the annealing process is very

very slow [22]. However this will cause the algorithm to run too long time so that it
has no practical use.
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Algorithm 1. Pseudo-code of the simulated annealing algorithm
Define: G = {G1, . . . , Gn} the agents who want to coordinate their actions
Define: υ(a) the global joint payoff function defined by section 3
Define: a∗ the optimal joint action found so far
Define: ai the action of agent i
Define: a∗

i the optimal action of agent i found so far
Define: a−i the actions of all agents but agent i

g ← 0
t ← 0
while t < MaxTries do

a = random joint action
T ← Tmax

repeat
for each agent i in G do

a′ = argmaxai
υ(a−i ∪ ai)

Δ ← υ(a′) − υ(a)
if Δ > 0 then

a ← a′

else
a ← a′ with probability 1

1+e−(Δ/T)

end if
if υ(a) > υ(a∗) then

a∗ ← a
g ← υ(a∗)
choose a∗

i from a∗

end if
if should send action to server then

send a∗
i to server

end if
end for
T ← T · decay

until T < Tmin

t ← t + 1
end while

to |G| = 15, while each agent has Nrρ = 8 value rules with different number
of neighbors. The payoff of each value rule is generated from a uniform random
variable v ∼ U [1, 10]. The number of neighbors k in each value rule is in the
range k ∈ [1, Nrne]. Each value has a chance of

(
Nrne

k

)
/2Nrne. All the programs

are implemented in C++, and the results are generated on a 2.2GHz/512MB
IBM notebook computer.

When applying variable elimination algorithm, we accelerate the running time
by eliminating the agent with the minimum number of neighbors. When running
simulated annealing algorithm, we set MaxTries to 10, the highest temperature
Tmax = 0.3, and lowest temperature Tmin = 0.05. The temperature decay of
the algorithm is in proportion to Nrne, i.e., decay∝Nrne. So if the coordination
problem contains value rules involving large amounts of agents, we will do a



Using the Simulated Annealing Algorithm for Multiagent Decision Making 117

Table 1. Sample output of RG

〈 ρ : υ〉

〈 a1 = 3 ∧ a3 = 3 ∧ a4 = 4 : 7.19085〉
〈 a2 = 4 ∧ a3 = 4 : 4.67774〉
〈 a1 = 1 ∧ a2 = 1 ∧ a3 = 2 ∧ a4 = 2 : 4.67774〉
〈 a1 = 4 ∧ a3 = 2 ∧ a4 = 1 : 4.67774〉
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(d) Timing comparisons for VE and
SA (10 actions per agent).

Fig. 2. Average timing comparisons for both VE and SA for testing the scalability
when the number of neighbors per agent grows with 15 agents

deep search in an independent try, vice versa. The experiment repeats 10 times
to weaken the effect of hardware and operation system.

In the second experiment, we produce 6 coordination problems, each of which
has its own settings such as number of agents, different actions per agent, etc.
VE and SA are both evaluated. When applying SA, instead of starting from
a random choice for all agents, in ith independent try, we let the agent select
action according to the ith highest value rule if he is involved, otherwise select
action randomly. We also set MaxTries = 200 to ensure sufficient time to run.
Other settings are the same as in the first experiment.
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Fig. 3. Relative payoff found by SA with respect to VE

In order to give a clear image of VE and SA, we scale the payoff axis so that
the global maximum payoff is 1. The time axis is also scaled so that the time it
takes the whole VE to terminate is 1. Thus the points in the figure can be seen
as the fraction of the payoff and the running time of VE. The results of SA will
be scaled to its VE companion. Again, the experiment is also repeated 10 times
to reduce hardware and software’s side effects.
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Fig. 2(a)–2(d) give the timing results for the four test sets in the first experi-
ment. It can be seen that the running time of the SA algorithm grows linearly as
the number of the neighbors per agent increases. The running time of VE grows
exponentially, since it must enumerate all neighbor’s possible combination ac-
tions in each iteration. Furthermore, when the average number of neighbors per
agent was more than 3.5, VE can not always compute the optimal joint action,
so these tests were removed from the test sets.

The relative payoff found by the SA with respect to VE are plotted in Fig.
3(a)–3(f). In all the plots, we see that the SA algorithm performed very well. It is
obvious that we found approximately optimal results in all problems. In loosely
connected coordination problem with few actions, i.e., Fig. 3(a), SA algorithm
can converge to the maximum payoff while only using the 60% time of variable
elimination 4. However, if the number of actions is large (Fig. 3(b)), SA can not
reach the optimal result, although it can find approximately optimal solution
(96% payoff) quickly. Further experiments show that if the joint action space
is huge (more than 15 agents, and each agent has more than 10 actions), we
should increase the acceptable probability ε accordingly to speed up the con-
vergence to optimal result. This is because in such situations, a little higher
acceptable probability can increase the chance of stochastic solution movement
for simulated annealing algorithm. This technique helps SA jump away from lo-
cal optimizations and cover the joint action space as possible as it can. But the
exact relationship between acceptable probability and the convergency speed are
still not very clear. For the medium connected problems (Fig. 3(c)–3(d)), SA can
compute the optimal policy with a little fraction of time (2%–6%) that variable
elimination needs to solve the same problem. Fig. 3(e) and Fig. 3(f) give us a
strong impression that SA can compute above 98% payoff within the time ranges
between 0.015% to 0.2% of the time variable elimination takes in the densely
connected problems. We also show that in these 2 experiments, although the SA
can find near optimal solution very quickly, it still needs to take plenty of time
to approximate the optimal result.

In our internal unpublished tests, we also compare SA with max-plus algorithm
informally. The experiment shows that when reaching the same relative payoff,
the time difference between the two algorithms is at most 5%. Although our algo-
rithm is not faster than max-plus, we believe that our approach is more appropri-
ate for complex coordination problems in which the coordination dependencies in
the value rule is often more than two. Thus, max-plus can not be applied directly.

5 Conclusion

In this paper, we have described and investigated the use of the simulated an-
nealing algorithm for cooperative action selection as an approximate alternative
to variable elimination algorithm. As above-mentioned, Variable elimination is
an exact approach that always reports the optimal joint action. It is also an
4 Note that SA does not know even the maximum payoff has been found due to its

stochastic property.
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efficient algorithm in loosely connected coordination graphs. However, it is very
slow in densely connected coordination graphs and unable to produce results at
anytime. The simulated annealing algorithm repeats independent tries. In each
try, each agent tries to maximize the global payoff using his own choice without
influencing the actions of all other agents. Based on the result quality in each
maximization, the algorithm accepts a solution with a certain probability. We
have provided empirical evidences to show: 1) this method is almost optimal
with a small fraction of the time that VE takes to compute the policy of the
same coordination problem; 2) the running time of SA grows linearly with the
increasing of the number of neighbors per agent; 3) it is an anytime algorithm
to return result at any time. For above reasons, we believe that simulated an-
nealing is an feasible approach for action selection in large complex cooperative
autonomous systems such as RoboCup.

As for future research, we plan to implement the simulated annealing algo-
rithm in our SEU T 2D simulation team. Last year, we tried to use VE for
our player’s cooperative action selection framework, but the computational con-
straints made us only use a small set of value rules with each rule involving at
most 3 agents [24]. Applying simulated annealing algorithm, we should produce
more advanced coordination actions to involve much more agents.

Finally, we will figure out a appropriate setting of the acceptable probability,
especially the decay rate in simulated annealing algorithm. Some recent work
shows that neural network algorithm can produce a good decay rate for larger
problems [23]. We would like to try to employ such techniques in our multi-
agent decision making problem. Furthermore, we want to investigate whether
reinforcement learning algorithms can be applied to automatic learning of the
payoff instead of hand tuning.
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Abstract. This paper describes a framework designed to broaden the
entry-level for the use of sophisticated robots as educational platforms.
The goal is to create a low-entry, high-ceiling programming environment
that, through a graphical behavior-based interface, allows inexperienced
users to author control programs for the Sony Aibo four-legged robot. To
accomplish this end, we have extended the popular RoboLab application,
which is a simple, icon-based programming environment originally de-
signed to interface with the LEGO Mindstorms robot. Our extension is
in the form of a set of “behavior icons” that users select within RoboLab,
which are then converted to low-level commands that can be executed
directly on the Aibo. Here, we present the underlying technical aspects
of our system and demonstrate its feasibility for use in a classroom.

1 Introduction

Many teachers have an interest in introducing robots into their classrooms for
teaching a variety of subjects other than specifically robotics, from traditional
technical topics such as programming and mechanical engineering to other areas
such as mathematics and physical science, where robots are used to demonstrate
the concepts being taught. It has long been recognized that hands-on methods
have a powerful impact on student learning and retention [1,2,3]. The growing
field of educational robotics—the use of robots as a vehicle for teaching sub-
jects other than specifically robotics [4]—has employed that approach, using the
constructionist [5] process of designing, building, programming and debugging
robots, as well as collaboration and teamwork, as powerful means of enlivening
education [2,6,7]. Even very young children have been successfully engaged in
hands-on learning experiences that expose them to some of the basic principles
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of science and engineering, widening their horizons and preparing them for life
in a highly automated, technically challenging world.

For the past several years, we have been designing and helping to implement
educational robotics curriculum in inner-city primary and middle school class-
rooms, after-school programs and summer schools, undergraduate introductory
programming courses and international robotic competitions [8,9,7,10]. To sup-
port these curricula, we have employed RoboLab [11], a widely used graphical
programming environment developed at Tufts University, for operation on the
LEGO Mindstorms Invention System robot [12]. RoboLab runs on a Mac, Win-
dows or Unix computer. The environment is highly visual and provides a good
first experience with procedural programming concepts. Entities such as motors
and sensors are represented as rectangular icons on the screen, and users drag
and drop them with the mouse onto a canvas to create “code”. The icons are
strung together using “wires”, and all programs are downloaded from RoboLab
onto the LEGO robot via a “communication tower”, connected to the computer’s
USB or serial port, that transmits the program to the robot using an infra-red
signal. A simple RoboLab program is illustrated in Figure 1.

Fig. 1. A basic RoboLab program

If the robot has wheels and motors attached to two of its ports (labeled A and C),
this program will make the robot go forward for 2 seconds and then stop.

RoboLab’s graphical programming environment tiers the levels of program-
ming, which allow a novice to produce results quickly and acquire skills without
having to read a sophisticated text or complicated application manual. Ranging
from “Pilot” to “Inventor” levels, RoboLab is broad enough to ensure the suc-
cess of both beginners and advanced users. The initial Pilot levels are completely
graphical so even users who cannot read can be successful. The more advanced
“Inventor” levels incorporate advanced programming concepts and features to
add power, flexibility and complexity to programs.

Our experiences working with classroom teachers and young students have
raised several issues that have motivated us to pursue the development of a
behavior-based interface, which abstracts away the low-level motor and sensor
commands that often confuse inexperienced programmers or deter techno-phobic
students [13]. Our longterm goal is to create a standard middle ground that can
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act as a sort of “magic black box”, for current and future robotic platforms,
following several design criteria:

– ease of use: programmers only have to deal with high-level icons—novices
will not get discouraged with low-level text-based syntax;

– disappearing boundaries: programmers are able to test and run the same
behaviors on multiple agent platforms—running the same RoboLab program
on a LEGO robot and on an Aibo will help students understand about
abstraction and behavior-based control;

– interoperability: a standard behavior language is used for multiple platforms—
students do not need to learn different languages in order to use a variety of
robot platforms, or our simulator (currently under development [14,15]); and

– flexibility: students from a wide range of backgrounds and teachers with a
broad range of goals can use the system effectively, accommodating different
levels, curricular needs, academic subjects and physical environments for
instruction.

Because of RoboLab’s popularity in the classroom and its icon-based pro-
gramming style, it is well suited as the front-end for our interface. We have
three underlying educational goals, each supporting different pedagogical needs:

– First, we want to produce a low-entry, high-ceiling interface to the Sony
Aibo robot [16] (pictured in Figure 2a) that will encourage non-traditional
computer science students to learn programming, allowing us to capitalize
on the “cuteness factor” associated with Aibo while still providing students
with a serious, first adventure in programming.

– Second, we want advanced students to gain an appreciation of the modu-
larity of both a robot’s controlling interface and its underlying hardware.
Just as Java and JavaScript are platform independent, providing a robot
programming environment that is platform independent will give students
hands-on experience with code abstraction, witnessing the same code execut-
ing on both the LEGO robot and the Aibo (and other platforms).

– Third, we want to create a motivating, hands-on environment with which to
introduce more advanced students to behavior-based concepts.

This paper is organized as follows. We begin by reviewing several different
programming interfaces designed for the Sony Aibo. Then we describe some
technical details about RoboLab and explain how our behavior-based program-
mming interface operates. Finally, we end with a brief summary and mention
directions for future work.

2 Background

OPEN-R is the programming interface designed for the Aibo, provided for free
via download from Sony’s web site [17]. OPEN-R gives programmers the ability
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(a) Aibo ERS-7M2/B (b) LEGO Mindstorms

Fig. 2. Robot platforms

to develop software to control the low-level hardware of the robot. Some of
the features of OPEN-R include: modularized hardware, modularized software
and networking support. Because the hardware is modularized, each module is
connected by a high-speed serial bus and can be exchanged for a new module.
Each software module in OPEN-R is either a “data object” or a “distributed
object” and is implemented in C++1. OPEN-R programs are built as a collection
of concurrently running OPEN-R objects, which have the ability to communicate
with each other via message passing. Due to the modularity of the software,
individual objects can be easily replaced and each object is separately loaded
from a Sony Memory Stick. Furthermore, OPEN-R supports Wireless LAN and
TCP/IP network protocol.

Sony’s formalism for describing the working cycle of OPEN-R objects resem-
bles layered finite state automata [18]. Each OPEN-R object can have numerous
states and must include an IDLE state. At any given point, an object can be in
only one state, and objects move from state to state using transitions. In order
to switch states, an event must activate a transition to a new state and the
pre-condition of the new state must be satisfied.

The low-level functionality of the robot can be controlled using the OPEN-R
API [17]. With the API, programmers can experiment with image processing,
sensory feedback information and robot motion in order to develop (original)
sets of behaviors for the Aibo. However, the OPEN-R API can be quite hard to
use for novice and even intermediate programmers. As a result, several interfaces
and abstraction languages have been developed to sit on top of OPEN-R in an
attempt to hide the low-level complexity from the inexperienced end-user. These
include:

– R-CODE [19],
– YART (Yet Another R-CODE Tool) [20],
– Tekkotsu [21], and
– URBI (Universal Robotic Body Interface) [22,23].

1 C++ objects and OPEN-R objects are not the same and should not be confused
with each other [18].
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These languages/interfaces vary in power and intricacy, and each has its own
goals and features, as described briefly below. OPEN-R is the basis upon which
R-CODE, Tekkotsu, and URBI are built. YART goes one step further, abstract-
ing R-CODE one level by providing a basic graphical user interface (GUI) to
create and manipulate R-CODE programs.

The R-CODE SDK provides a set of tools that allow users to program the
Aibo using the R-CODE scripting language, offering higher-level commands than
traditional programming languages such as C, C++ and even OPEN-R. The
benefits of R-CODE being a scripting language are its simplicity (to both learn
and use) and its lack of compilation; however, programmers have less control
than with other lower-level languages. With only a few lines of R-CODE, users
can program the Aibo to perform complex behaviors such as dancing, kicking
or walking. Because R-CODE does not require compilation, it can be written in
a plain text file on any operating system and saved directly on a memory stick
that has the R-CODE virtual machine pre-loaded on it. R-CODE commands
can be viewed as OPEN-R macros, where the degree of precision and control
depends solely on the underlying OPEN-R code. Although R-CODE is powered
by OPEN-R functions, the developer does not have access to the underlying
OPEN-R subroutines. R-CODE is best suited for performing actions and various
behavior sequences.

YART [20] is an R-CODE front-end developed by a hobbyist. It provides
a text-based GUI with simple drag-and-drop functionality and produces files
of R-CODE commands. This tool can also be used to generate customized
behaviors via pre-existing YART-compatible Aibo personalities. YART is an
easy place to start programming simple behavior patterns. However, unlike
RoboLab, YART is a text-based interface, so the objects that the user drags
with the mouse are bits of text—whereas in RoboLab, the user drags graphical
icons.

Tekkotsu [21], developed at Carnegie Mellon University by Touretzky et al., is
an application development framework for intelligent robots that is compatible
with the OPEN-R framework [17]. It is based on an object-oriented and event-
passing architecture that utilizes some of the key features of C++, like templates
and inheritance. Although Tekkotsu was originally created for the Sony Aibo,
the current version can be compiled for multiple operating systems. Tekkotsu
simplifies robotic application development by supplying basic visual processing,
forward and inverse kinematics solvers, remote monitoring, teleoperation tools,
and wireless networking support. Tekkotsu handles low-level tasks so the devel-
oper can focus on higher-level programming. It provides primitives for sensory
processing, smooth control effectors, and event-based communication. Some of
the higher-level features include a hierarchical state machine formalism used for
control flow management and an automatically maintained world map. Addi-
tionally, Tekkotsu includes various housekeeping and utility functions and tools
to monitor various aspects of the robot’s state.

The Universal Robotics Body Interface (URBI) [22,23], developed at École
Nationale Supérieure de Techniques Avancées (ENSTA), is an attempt to provide
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a standard way to control the low-level aspects of robots while providing the
high-level capabilities of traditional programming languages. URBI is based on a
client-server architecture where the server is running on the robot and is typically
accessed by the client via TCP/IP. The client can be virtually any system or any
other kind of computer, thereby adding flexibility to URBI. The URBI language
is a high-level scripting language capable of controlling the joints and accessing
the sensors, camera, speakers or other hardware on the robot. URBI has been
primarily applied to entertainment robots because they tend to provide the most
interesting interfaces and capabilities.

Each of these interfaces have informed our approach. We selected RoboLab
as the front-end for several reasons. RoboLab is already quite widely used in
classrooms worldwide. Teachers and students are comfortable with the interface
and will not feel like they need to learn yet another programming environment
in order to expand their use of robot platforms in the classroom. In addition,
schools do not need to purchase another software package; our methodology is a
free extension to RoboLab. Finally, as detailed below, RoboLab is constructed
on top of a framework designed to support a wide range of hardware devices,
thus the concept of expanding its use to interface with a range of robot devices
is a natural fit.

3 Our Approach

This section describes the approach to our implementation, outlining the steps
required for progressing from writing programs in RoboLab to generating code
that is executed on the Aibo. Given that one of our objectives with this work is
to develop a behavior-based programming interface for controlling Aibo, we have
designed a set of generic low-level behaviors that can be graphically represented
in RoboLab. As part of this process, we analyzed the main differences between
the Aibo platform and the LEGO Mindstorms platform to ensure that our be-
haviors are suitable for both. The two platforms are physically quite different,
not only in terms of processor configuration but also in regard to the types of
sensors and effectors provided. The LEGO Mindstorms is typically constructed
as a wheeled robot, as depicted in Figure 2b (though legged structures can be
built). The kit comes with two touch sensors and a light sensor and has the
ability to support numerous other LEGO and commercial sensors. The Aibo, a
four-legged robot, comes with a variety of built-in sensors including: multiple
touch sensors, distance sensors and a camera; and it cannot support any other
sensors (without being dismantled).

With the capabilities of both platforms in mind, we defined a set of prototype
behaviors and control structures suitable for our behavior-based “palette” in
RoboLab (illustrated in Figure 3). RoboLab is implemented on top of National
Instruments’ LabVIEW [24]. Individual icons and full programs are saved as
“VIs” (virtual instruments). Each icon or program can be seen as imitating an
actual instrument [25]. We used RoboLab’s built-in feature to create “subVIs”
(VI modules or subroutines) in order to construct our customized behaviors.



128 R. Goldman, M.Q. Azhar, and E. Sklar

These behaviors act as macros for sets of lower-level RoboLab commands. Al-
though the ability to expand RoboLab’s current set of icons is a remarkably
powerful feature, we are constrained by the necessity to use a set of pre-defined
icons as the underlying basis for each new icon. For example, as illustrated in
Figure 4, our forward behavior icon is in reality a macro for the set of icons:
motor A forward, motor C forward, and wait for (some amount of time).

The behaviors icons, shown in the palette to the
left, can be used just like any other RoboLab icon.
As with basic RoboLab function icons, wiring to-
gether a sequence of behavior icons creates a well-
formed RoboLab program. The meanings of the
first eight icons are (from top left to right): loop
while back sensors are pressed, loop while back
sensors are not pressed, branch according to state
of back sensor, move backwards, begin behavior,
loop while distance sensor is less than or equal to
parameter, loop while distance sensor is greater
than parameter, branch according to state of dis-
tance sensor. See [13] for a complete and detailed
description of the behavior icons.

Fig. 3. Behavior Icon Palette

Fig. 4. Forward behavior icon and its underlying set of basic RoboLab icons

The first step in our approach is for a user to write a program in RoboLab
and save the contents of the program to a file, in a manner that will preserve
its functionality while allowing translation to Aibo commands to occur outside
of RoboLab. The default output from RoboLab is LASM, or LEGO Assembly
Language. We use this default, saving the LASM commands in an output file
— whereas normally, users send the LASM commands directly to the LEGO
robot via the communication tower. Once the LASM file is saved, we invoke
our translation program, called lasm2aibo, that converts the LASM commands
into Aibo commands. After examining the Aibo languages and interfaces dis-
cussed in section 2, we decided to use R-CODE to implement Aibo commands
in our system because R-CODE is easy to use and does not require compila-
tion, and because R-CODE offers a more natural mapping to RoboLab. With
R-CODE,numerous behaviors can be prototyped quickly and tested efficiently.
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Both Tekkotsu and URBI are better suited for applications that require complex
solutions and greater computational power.

A key challenge in designing lasm2aibo was to determine which LASM com-
mand(s) and what parameters are generated for each RoboLab icon. Our be-
havior icons are macros comprised of multiple low-level built-in RoboLab icons,
which complicates the translation process, as detailed below. Taking a file of
LASM commands as input, our translater recognizes tokens that match relevant
LASM commands, numbers, white space, and delineators (commas and new line
characters), and “compiles” (or translates) these into R-CODE sequences. We
designed and implemented our translator using the UNIX tools Lex [26] and
Yacc [27].

Both Lex and Yacc greatly simplify compiler writing, or translating between
two programming language representations. Lex generates the C code for build-
ing a lexical analyzer or lexer. Any given lexer takes an arbitrary input stream
and divides it into a sequence of tokens based on a set of regular expression
patterns. The Lex specification refers to the set of regular expressions that Lex
matches against the input. A deterministic finite state automaton generated by
Lex performs the recognition of the expressions. Lex allows for ambiguous spec-
ifications and will always choose the longest match at each input point. Each
time one of the patterns is matched, the lexer invokes user-specified C code to
perform some action with the matched token. Yacc is responsible for generat-
ing C code for a syntax analyzer or a parser. Yacc uses the grammar rules to
recognize syntactically valid inputs and to create a syntax tree from the corre-
sponding lexer tokens. A syntax tree imposes a hierarchical structure on tokens
by taking into account elements such as operator precedence and associativity.
When one of the rules has been recognized, then the user-provided code for this
rule (an “action”) is invoked. Yacc generates a bottom-up parser based on shift-
reduce parsing. When there is a conflict, Yacc has a set of default actions. For
a shift-reduce conflict, Yacc will shift. For reduce-reduce conflicts, Yacc will use
the earlier rule in the specification.

In our case, Yacc reads the grammar description and the token declara-
tions from lasm2aibo.y and generates a parser function yyparse() in the file
y.tab.c. Running Yacc with the -d option causes Yacc to generate definitions for
the tokens in the file y.tab.h. Lex generates a lexical analyzer function yylex()
in the file lex.yy.c by reading the pattern descriptions from lasm2aibo.l
and including the header file y.tab.h. The lexer and parser are compiled and
linked together to form the executable lasm2aibo. From the main() function in
lasm2aibo, the yyparse() function is called, which in turn calls the yylex()
function to obtain each token.

Our Yacc parser is generated from the lasm2aibo grammar specification.
Through a series of grammar productions, the parser attempts to group se-
quences of tokens into syntactically correct statements. Associated with each
production is a set of semantic actions. Given that many of the LASM com-
mand sequences for varying groups of behaviors are the same, often behavior
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identification becomes part of the semantic analysis. For instance, all the motion
behaviors including forward, backward, right and left produce the same LASM
command output. Furthermore, there is no direct way to distinguish between
activating an LED or a motor because they are both viewed as output devices.
Only by examining the values of some of the parameters and by making cer-
tain assumptions can they be differentiated. Having to perform specific behavior
recognition during the semantic analysis is one of the limitations involved in us-
ing LASM as our source program. Ideally, each behavior should be represented
by a unique syntax, allowing for quicker and cleaner parsing.

When a behavior is recognized, the semantic actions involve calling the corre-
sponding behavior function. These pre-defined behavior functions are used to gen-
erate the equivalent behavior in R-CODE and help flag the R-CODE subroutines
that need to be included in the R-CODE source file. The final output of the trans-
lator includes the file R-CODE.R, the R-CODE program that matches the original
RoboLab program, and a behaviors.txt file used for debugging purposes to en-
sure that behaviors, sensors, and control structures are appropriately classified.
Running the lasm2aibo executable file with a LASM text file as input generates
the file R-CODE.R. This file should be placed on a R-CODE-ready memory stick in
the OPEN-R/APP/PC/AMS directory [28]. To execute the program, insert the mem-
ory into Aibo, turn on the power and watch Aibo come to life!

Throughout the process, there are multiple places where errors could occur;
this includes lexical, syntactic and semantic errors. The lasm2aibo translator
attempts to handle errors gracefully. If the error is fatal, a blank R-CODE.R
file will be generated; however, if the error is non-fatal then the translator will
continue to process the source file. In both cases, a descriptive error message
and the line number where the error occurred is displayed on the console via
standard output.

3.1 Example

A detailed example follows. First, the RoboLab behavior-based program (shown
in Figure 5a) is constructed. The resulting LASM is contained in Figure 5b.
Second, our lasm2aibo module is executed, taking the LASM file as input and
creating an R-CODE equivalent, illustrated in Figure 5c. This gets written to a
Sony memory stick, which also contains the R-CODE virtual environment, and
is ready to be executed on the Aibo.

4 Summary

We have presented the design and implementation of our prototype framework
for providing a simple, graphical, behavior-based interface to the Sony Aibo
robot. Built into the popular RoboLab graphical programming environment and
connected to the Aibo via a translater, lasm2aibo, this framework represents the
proof-of-concept for a longterm project aimed at bringing educational robotics
into a broad range of classrooms. The successful implementation of the direct
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(a) RoboLab code

delt 0

task 0
sent 0,3
senm 0,4,0
sent 1,1
senm 1,1,0
Label1002:
chkl 2,100,1,9,0,Label1003
chkl 2,1,0,9,1,Label1004
plays 2
wait 2,100
wait 2,0
jmpl Label1005
Label1004:
pwr 2,2,2
dir 0,2
out 2,2
wait 2,0
Label1005:
pwr 1,2,100
dir 2,1
out 2,1
pwr 4,2,7
dir 2,4
out 2,4
wait 2,0
wait 2,50
ping
jmpl Label1002
Label1003:
endt

plays 5

:Start
PLAY:ACTION:STAND
WAIT
WHILE:100:<:Distance
IF:1:>:Head_ON:THEN
PUSH:2471
CALL:Play_Sound:1
PUSH:1000
CALL:Wait_For_Time:1
WAIT
ELSE
PUSH:2260
CALL:Display_LED:1
WAIT
ENDIF
CLR:SENSORS
PUSH:100
CALL:Forward:1
WAIT
PUSH:500
CALL:Wait_For_Time:1
WEND
CLR:SENSORS
EXIT

***************************************************
* BEHAVIOR FUNCTIONS *
***************************************************

/***********************************************
* walk forward for a specified distance in mm
***********************************************/
:Forward //pass a distance
ARG:distance
PLAY:ACTION:WALK:0:distance
RETURN

/***********************************************
* wait for a specified amount of time
***********************************************/
:Wait_For_Time
ARG:time
WAIT:time
RETURN

/***********************************************
* plays a specified sound
***********************************************/
:Play_Sound
ARG:sound
PLAY:MWCID:sound
RETURN

/***********************************************
* plays a specified led pattern
***********************************************/
:Display_LED
ARG:pattern
PLAY:MWCID:pattern
RETURN

(b) LASM code (c) R-CODE

Fig. 5. Example

This program will test whether the head sensor is pressed or not. If the head sensor
is released, it will play sound number 3, otherwise if the head sensor is pressed it will
display LED pattern number 2. The Aibo will then move forward 100mm and wait
half asecond. This process will repeat while the distance sensor reads a value greater
than100mm.
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translation from RoboLab to Aibo demonstrates the feasibility and viability of
the process. A user study is planned for Summer 2006.

Although our direct translation is appropriate for small-scale solutions, cur-
rent work on this project is exploring a more abstract, generalized framework
for linking RoboLab (or other graphical programming interfaces) to a variety of
robot platforms [15]. Recent press releases have revealed that the LEGO Mind-
storms will be succeeded in August 2006 by a more sophisticated platform called
NXT [29], and Sony has announced that production of Aibo halted in March
2006 [30]. Given the changing face of consumer robotics, a flexible framework
such as ours will help classrooms ease transitions from one robot platform to
another by providing teachers and students with a familiar interface and an in-
tuitive behavior-based methodology for programming, no matter what hardware
lies beneath.
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Abstract. Robot building projects are increasingly used in schools and
universities to raise the interest of students in technical subjects. They
can especially be used to teach the three mechatronics areas at the same
time: mechanics, electronics, and software. However, it is hard to find
reusable, robust, modular and cost-effective robot development kits in
the market. Here, we present qfix , a modular construction kit for edu-
tainment robotics and mechatronics experiments which fulfills all of the
above requirements and receives strong interest from schools and univer-
sities. The outstanding advantages of this kit family are the solid alu-
minium elements, the modular controller boards, and the programming
tools which reach from an easy-to-use graphical programming environ-
ment to a powerful C++ library for the GNU compiler collection.

1 Introduction

Robot building projects are a good means to bring the interesting field of robotics
to schools, high-schools, and universities. Studying robotics the students learn
a lot about mechanics, electronics, and software engineering. Additionally, they
can be highly motivated and learn to work in a team.

Performing a lot of robot building labs with pupils and students, we found
that there is a gap between the relatively cheap toy-like kits, like LEGO Mind-
storms or Fischertechnik Robotics and the quite expensive off-the-shelf robots.
The toy kits offer a good opportunity to start building robots, but they mostly
support the control of only 2 or 3 motors and the same number of sensors. Off-
the-shelf robots (see e.g. [1,4,7]) are completely built up, so typically only the
programming of the robot can be studied.

Alternatively, there exist a number of controllers, like the 6.270 board or the
HandyBoard [3] which come without mechanical parts and so must be used in
combination with other toy kits, like RC-controlled cars, or custom-built ro-
bots. However, these boards, can control only small motors and are not very
expandable.

After building RoboCup robots from scratch [6,9,2,11] and supporting schools
developing their own RoboCupJunior robot [10], the authors gained a lot of
experience about reasonable mechanical concepts and controller architectures
for a usable robot development kit. Thus, we decided to develop the robot kit
familiy qfix and to provide it to schools and universities.

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 134–145, 2007.
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2 The qfix Approach: Modularity

The main concept behind qfix ist modularity in the following dimensions:
– Mechanics: The mechanical parts are aluminium parts including rods,

plates and holders for different sensors and actuators. These parts are the
building blocks for constructing mechanical and mechatronic systems, like
cars, walking robots, etc. Most parts contain threads and can easily be
screwed together, so very robust models can be build.

– Electromechanics and Electronics: There already exist many compat-
ible electromechanical and electronical parts including a variety of sensors,
actuators, and controller boards. With these components it is possible to
make the mechanical models move (by DC motors, servo-motors, stepper
motors), sense (by tactile, infrared and ultrasonic sensors), and think (by
powerful controller boards which can be programmed on the PC).

– Software: In the software area, modularity is no big deal. The qfix software
comes with the powerful free GNU C++ toolchain (WinAVR for windows,
respective libraries or RPMs for linux). Additionally, it contains an easy-to-
use C++ class library for accessing all qfix electronics components.

Since beginners, say, of an age from 12, have problems going directly into C
or C++ programming, we developed a graphical programming environment
called GRAPE in order to simplify the programming of self-built robots.
This software directly produces C++ code from the graphical description
and thus supports the beginner in learning object-oriented programming.

2.1 Mechanics

The basic building blocks of the qfix system are anodized aluminium rods with
φ6 holes along all four sides and two M6 threads on the front and back side (see
Fig. 1). Currently, there are rods from 20mm to 100mm including 45o rods.

Other basic elements are a variety of plates with holes and threads. These
plates can be bolted to the rods using a screw and a nut or only a screw exploiting
the rods’ frontal threads. Like the rods, the plates are given in different lengths
and widths, currently up to 200mm x 200mm (see Fig. 2 for an exemplary plate).

All mechanical parts use holes and threads according to DIN/ISO standards
and have a grid of 10mm.

Fig. 1. Basic elements: rods
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Fig. 2. Basic elements: plates (Here: 200x200mm with 400 threads)

Fig. 3. Wheels, axes, and gears

In Figure 3, some additional mechanical elements can be seen: wheels, cast-
erwheels, gears, and axes. They are usually used to implement dynamic models
which then can be driven by different motors as shown in the next section.

2.2 Electromechanics/Electronics

Motors: In order to make a model move, motors are needed. Typical robotics
applications often use different kinds of motors for different tasks: DC motors,
servo motors, and stepper motors. qfix supports these different categories by
providing the respective motor bearings (see Fig. 4) and electronics components
for driving motor and wheel encoders.
Sensors: When building robots, it is also necessary to make them able to gather
information about their environment. This can be done by mounting simple
switches signalling bumps into obstacles, or by adding distance measuring devices
like infrared or sonar sensors. As with motors, qfix supports numerous sensors
by providing the respective bearing (see Fig. 5) for mounting the sensor to the
model.
Controllers: Obviously, the motors and sensors must be driven by an electron-
ics component. For qfix , we developed a new, modular controller board arhitec-
ture which is both powerful and easy-to-handle. The board with the smallest
controller is the “BobbyBoard” (see Figure 6) which uses the Atmel ATmega32
controller and supports the following I/Os:
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Fig. 4. Exemplary motor bearing for a DC motor

Fig. 5. Exemplary sensor bearing for an IR distance sensor

Fig. 6. “BobbyBoard”: controller board with ATmega32

– 2 DC motor controllers (battery voltage, 1A)
– 4 digital inputs (0/5V)
– 4 analog inputs (0-5V)
– 8 digital outputs (battery voltage, 100mA)
– 4 LEDs
– 4 buttons
– I2C-bus for extensions

Further existing main boards are the “CAN128Board” which shows the same
I/O capabilities but uses an Atmel AT90CAN128 controller with CAN interface,
more memory and more speed. And, the “SoccerBoard” with 8 analog and 8
digital inputs, 8 digital outputs, 6 motor drivers, and optional CAN and USB
interface (see Figure 7). This board is specifically designed for the requirements
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Fig. 7. “SoccerBoard”: controller board with ATmega128

Fig. 8. “LC-display board”: expansion board with LC-display

of RoboCupJunior, where often omnidrive platforms with three driven wheels
plus a kicker and a “dribbler” are used combined with multiple sensor systems.

All controller boards are programmed (“flashed”) from the PC via a serial,
parallel or USB link and then run autonomously without the host computer.

Extension Boards: The main idea behind the qfix boards is their flexible
modular architecture: The main controller board runs the main program and
communicates with expansion boards for setting actuator values and getting
sensor data. The expansion boards themselves are responsible for controlling
the attached devices, so the main processor does not have to perform expensive
tasks, like feedback motor control, etc.

The controller boards contain an I2C-bus and optionally a CAN bus which
both allow to chain dozens of boards of the same or different kinds to a large
controller network. So, it is possible to either control more I/Os or even to
implement distributed applications with decentralized control (see e.g. [5]).

The following extension boards based on I2C-bus are currently available:

– Servo board 1: The servo-board uses a Atmel mega8 for controling 4 servo
motors independently.

– Servo board 2: This servo-board is designed for humanoid robots and can
control 24 servo motors independently. It contains a mega128 controller and
a Xilinx FPGA for fast I/O control.

– Stepper-board: The stepper-board can control 4 stepper motors indepen-
dently. Both, full and half step mode are supported.
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– DC-power board: The DC-power-board is capable of controlling two DC
motors with 4A each. It also contains two encoder input lines for each motor.

– LC-display board: An LC-display with 4 lines of 20 characters each (see
Figure 8).

– Relais boards: There are two relais boards: one to be connected to the
digital output of the controller board and one to be connected via the I2C-
bus.

Further expansion boards, e.g. for Polaroid sonar sensors [8] and a camera
board are currently under development.

2.3 Software

With qfix we provide the free GNU C++ toolchain including generic tools for
downloading programs to the controller boards. Additionally, we provide a C++
class library supporting all qfix boards. On Windows, the generic tools mainly
consist of the WinAVR GCC environment for Atmel controllers which includes
the extensible editor programmers notepad and powerful download tools, like
avrdude. All tools also run on Linux/Unix and Mac, so cross-platform develop-
ment is fully supported.

The easy-to-use qfix C++ class library hides the low-level hardware inter-
face from the programmer and supports the complete qfix extension board fam-
ily. The main idea is to provide a specific C++ class for each qfix module.
Therefore, the library provides the classes BobbyBoard, SoccerBoard, LCD,
SlaveBoard, StepperBoard, ServoBoard, RelaisBoard, etc. For example,
when building an application with the BobbyBoard and the LCD you use the
respective classes, like the following:

#include "qfixBobbyBoard.h" // include BobbyBoard library
#include "qfixLCD.h" // include LCD library

int main()
{
BobbyBoard board; // construct object "board"
LCD lcd; // construct object "lcd"

board.ledOn(0); // turn on LED 0
board.waitForButton(0); // wait until button 0 is pressed
board.motor(0,255); // turn on motor 0 to full speed
lcd.print("Engines running"); // print a text on the LCD

}

As can be seen from the comments of the code, two instances of two classes
are constructed: board and lcd. Their methods are called in order to let the
main board turn on a LED and a motor, wait for a button press, and output
text on the LCD.

A lot of the functionality is hidden in the constructors of both classes. When
constructing the object board for instance, the constructor initializes all I/O



140 S. Enderle

pins and starts an interrupt routine for motor PWM control. When constructing
lcd, the constructor opens an I2C-bus channel and starts communicating with
the physically connected LC-display. This mechanism works perfectly as long as
expansion boards of different types are used only.

When using multiple expansion boards of the same type, the extended con-
struction syntax can be used in order to connect the objects to the correct phys-
ical boards. Imagine you have a controller board and three identical LC-display
boards:

#include "qfixBobbyBoard.h" // include BobbyBoard library
#include "qfixLCD.h" // include LCD library

int main()
{
BobbyBoard board; // construct object "board"
LCD lcd0(0); // construct object "lcd0"
LCD lcd1(1); // construct object "lcd1"
LCD lcd2(2); // construct object "lcd2"

board.waitForButton(0); // wait until button 0 is pressed
lcd0.print("Hallo"); // print a text on LCD 0
lcd1.print("World!"); // print a text on LCD 1
lcd2.print("Engines running"); // print a text on LCD 2

}

In this example, each of the three lcdX objects is connected to the physical
LCD board with the respective ID. This ID can be hardcoded to the LCD by
flashing the LCD board, or it can be dynamically changed by calling the method
lcd.changeID(newID).

For those who want to connect multiple controller boards but do not want
to go into detail with programming the I2C-bus, we provide a class SlaveBoard
which can be used as a “remote control” for connected BobbyBoard main boards:

#include "qfixBobbyBoard.h" // include BobbyBoard library
#include "qfixSlaveBoard.h" // include SlaveBoard library

int main()
{
BobbyBoard master; // construct a master board object
SlaveBoard slave0(0); // construct a slave board object
SlaveBoard slave1(1); // construct a slave board object

master.motor(0,100); // turn on motor on master board
slave0.motor(0,100); // turn on motor on slave board 0
slave0.waitForButton(0); // wait for button on slave board 0
slave1.ledOn(0); // turn on LED on slave board 1

}
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3 Graphical Programming Environment GRAPE

In addition to the C++ environment, we developed a new software system
called GRAPE (which stands for GRAphical Programming Environment). With
GRAPE it is possible to program the qfix controller boards in an object oriented
way without having experience in C++.

The GRAPE application consists of three tabbed windows which are used
sequentially: In the first tab, the desired classes (e.g. BobbyBoard and LCD) are
loaded. Each class can then be instantiated by one or more objects. The object
names can be freely chosen. The second tab holds the main window for graphical
programming. Here, symbolic blocks are arranged intuitively in order to get a
flow chart with the desired program flow (see Figure 9).

Fig. 9. Graphical program in GRAPE

For each symbolic icon, a properties dialog can be opened to define the se-
mantics of the icon in a semi-graphical way: For commands, the user can select
an object from the list of instantiated objects, then chose a method from the
object’s possible methods, and then select the desired parameters from the list
of possible parameters for the chosen method. This selection defines all parts of
a typical object-oriented method call: <object>.<method>(<parameters>).

After filling all graphical blocks with their respective meaning, the flow chart
can be saved as a XML description file. This makes it possible to perform, e.g.
in an individual tool, the translation to any object-oriented (or even classically
procedural) programming language. In GRAPE, this translation is already inte-
grated and the flow chart (or internally, the XML representation) is automati-
cally translated to C++ code (see Figure 10).

With this approach, the basic concepts of a procedural programming language
can easily be learned: commands, sequences of commands, if-clauses, while loops.
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Fig. 10. Respective code in GRAPE

And, it can be studied how these concepts are translated to C++ or another
programming language. In addition to that, the users learn to use given class
libraries.

4 Experiments

In order to demonstrate the feasibility of the qfix parts and controller boards,
we developed some typical robot and mechatronic applications.

4.1 Differential Drive Robot

The first mobile robot is a car with two independently driven wheels and a
caster wheel, all mounted on a 10cm x 10cm base plate (see Fig. 11 ). The
BobbyBoard drives the two motors as well as three infrared distance sensors
(Sharp GP2D120) which are used for a simple collision avoidance behaviour. An
improved version also uses bumpers, a line sensor for moving along a line and an
LCD for displaying messages like “front blocked” or general status information.

4.2 Offroad Robot

Figure 12 shows an ”offroad” robot which was built in order to test the power
of the motor controllers (L293D).

For this robot the same mainboard as in the differential drive robot above
is used and drives four stronger motors, where the left and the right ones are
connected in parallel. The complete platform is much bigger (main plate of
20x20cm) than the above one and includes a boxed version of the LC-display.
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Fig. 11. Differential drive robot with two driven wheels and three IR distance sensors

Fig. 12. Robot arm with three DOFs

Fig. 13. Omnidrive platform with three omnidirectional wheels

4.3 Soccer Robot

As a third application, a specialized soccer robot was built in order to demon-
strate the flexibility of both mechanics and electronics components. As main
platform we used a round plate of about 21cm diameter with three omnidirec-
tional wheels (see Figure 13).

In order to control the three motors, two controller boards were connected via
the I2C-bus and communicate with each other to establish a reliable movement
coordination. Additionally, the resulting soccer robot uses a kicker device and
a so called “dribbler” to hold the ball near the robot. As sensors, infrared light
sensors are used for detecting a RoboCupJunior ball. For obstacle avoidance,
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Fig. 14. Soccer robots

infrared or ultrasonic distance sensors can be attached. The complete soccer
robot including a trendy skin or “tricot” is shown in Figure 14.

5 Conclusion

We presented qfix , a construction kit for developing autonomous mobile robots
and other mechatronics applications. qfix was mainly developed for educational
and edutainment purposes. The kit consists of solid mechanical and electro-
mechanical parts, powerful modular controller boards with several extension
boards, and a complete C++ class library for easy support of all functionality.

Since the kits are often used in the RoboCupJunior area, where the users
are only 12 or even less years old and have no programming experience, we
developed the graphical programming environment GRAPE. This tool supports
object oriented programming on a graphical level but directly generates C++
code which can be studied and edited.

The complete qfix robot kit family proves to be an appropriate tool for ro-
bot development. It is already used in educational classes and labs in schools
and at universities. Additionally, the open architecture encourages the robotics
community to help improving the kits.
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Abstract. Robot soccer is a challenging domain for sensor fusion and
object tracking techniques, due to its team oriented, fast-paced, dynamic
and competitive nature. Since each robot has a limited view about the
world surrounding it, the sharing of information with its teammates is
often crucial in order to be ready to react to situations which might in-
volve it in the near future. In this paper we propose a Particle Filter
based approach that addresses the problem of cooperative global sensor
fusion by explicitly modeling the uncertainty concerning the robots’ po-
sitions, the data association about the tracked object, and the loss of
information over the network.

1 Introduction

The tracking of fast moving objects has received constant attention in the context
of autonomous robots interacting with highly dynamic and potentially hostile
environments, and the robot soccer domain is particularly suitable to this pur-
pose, as a robot has to interact cooperatively and competitively with a set of
moving objects such as teammates, opponents and the ball.

1.1 The Platform

This work has been developed on the robot Sony Aibo ERS-7 [1], which is
the only allowed hardware platform on the 4-Legged RoboCup League [2]. This
limitation poses several interesting challenges for the task of object tracking, due
to the limited computational resources available (576MHz MIPS CPU, 64MB of
RAM) and the presence of a single exteroceptive sensor, a low-power CMOS
camera with a maximum resolution of 208×160 pixel. Even the localization and
tracking algorithms have to consider the running time as a serious issue, and it
is highly desirable to be able to process the sensory information at the maximum
rate provided by the camera, 30Hz, since this device has a very limited field of
view (57° horizontal, 45° vertical) and consequently it has to be moved at high
angular velocities to scan the environment. This year, the problem has been
further complicated by the new rules of the league, which nearly doubled the

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 146–157, 2007.
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field size (now is 6m×4m) and removed any border or fence which would prevent
the robots from observing unknown objects outside of the field. At last, legged
locomotion makes it impossible to accurately know the height of the camera
relative to the field, as this changes continuously as the robot walks, and the
camera is mounted on the snout of the robot, which can rotate with 3 degrees of
freedom; the uncertainty in the camera pose relative to the ground adds severe
noise levels to the measurements.

1.2 Related Work

The most significant achievement in the field of individual tracking has been
presented in [3], where the authors have used a sophisticated Rao-Blackwellised
Particle Filter to efficiently model strong non linearities in the ball motion due
to the interactions with the environment, such as bouncing on borders or be-
ing kicked by a robot. Cooperative object tracking is instead still in its infancy
in this context, as the additional problems of the uncertainty on the robots’
own positions, and the sharing of information over an unreliable network fur-
ther complicate the problem. In [4] the authors have compared several sensor
fusion techniques applied in the context of the RoboCup Middle-Size League,
including Bayesian Filtering techniques [5], simple techniques such as arithmetic
or weighted mean of percepts, and an anchoring approach. Not surprisingly, the
Kalman Filter and the Particle Filter resulted to be the top performers, with
the former as the solution of election due to its limited computational require-
ments, but it has to be noted that on this platform the uncertainty over the
robot location is very small, due to the availability of omni-directional cameras
and range sensors such as laser scanners. At last, in [6] has been proposed an Ex-
tended Kalman Filter based approach for global sensor fusion in the Four-Legged
League, which takes into account the localization problem. However, this paper
does not consider the data association problem, assuming the ball to be unique
on the field, an assumption which is not true anymore since the rule changes in
the league which have removed the protective fence from around the field.

2 Tracking the Ball with a Particle Filter

Even if the RoboCup rules allow only a single ball to be present on the field,
there are still several situations where ambiguities may arise. The camera is the
only exteroceptive sensor of this robot, and the ball is mainly recognized for
its color (orange), its spherical shape (although it is frequently incomplete due
to occlusions), and the fact that it lays on a green surface (the soccer field),
however there are situations where objects around the field, such as clothing
or shoes in the audience, can appear as valid ball candidates. Furthermore, the
official red jerseys used to distinguish one team of robots have also a rounded
shape, and due to limitations in the camera hardware, lighting, and blur, they
can appear as potential balls. For all these reasons, we feel that a Kalman Filter
based approach as described in [6] is not robust enough for our needs, as it
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does not deal very well with sensor ambiguity since it cannot deal with multi-
modal probability distributions; consequently, we have decided to use a Particle
Filter approach similar to what is described in [3], which can track multiple
ball hypotheses. To avoid adding the robot localization uncertainty to the ball
tracking own uncertainty, the ball position and velocity will be represented in a
robot-centric reference system.

2.1 Particle Filters

The Particle Filter [5] is a non-parametric implementation of the general Bayes
Filter, which is a recursive algorithm that calculates the belief or posterior bel(xt)
at time t of the state xt of a certain process, by integrating measurement obser-
vations zt and control actions ut over the belief of the state at time t − 1. The
Bayes Filter is based on the Markov assumption or complete state assumption
which postulates the conditional independence of past and future data given the
current state xt. A Particle Filter represents an approximation of the posterior
bel(xt) in the form of a set of samples randomly drawn from the posterior it-
self; such a representation has the advantage, compared to closed form solutions
of the Bayes Filter such as the Kalman Filter [7], of being able to represent a
broad range of distributions and model non-linear processes, whereas parametric
representations are usually constrained to simple functions such as Gaussians.
Given a set of N samples or particles Πt := x1

t , x
2
t , . . . , x

N
t , at time t each par-

ticle represents an hypothesis of the state of the observed system; obviously,
the higher the number of samples N , the better the approximation, however [8]
has shown how to dynamically adjust N . An estimate of p(xt|ut, x

i
t−1) is called

Algorithm 1. Particle Filter

Require: particle distribution Πt−1, control action ut, measurement observation zt

for i = 1 to N do
Process update: update the particle state as the result of control action ut:
xi

t ∝ p(xt|ut, x
i
t−1)

Measurement update: calculate the particle importance factors wi
t = p(zt|xi

t)
from the latest observation
Add

�
xi

t, w
i
t

�
to the temporary set Πt

end for
Resampling: create Πt from Πt by drawing the particles xi

t in a number propor-
tional to their importance wi

t.

Process Model, while p(zt|xi
t) is known as Sensor Model. In the context of robot

localization and object tracking, particle filters are often referred to as Monte
Carlo Localization [9].



Cooperative Visual Tracking in a Team of Autonomous Mobile Robots 149

2.2 Sensor Model

Unlike other robot platforms, an important source of noise in the camera mea-
surements is the uncertainty about the camera pose relative to the robot-centered
reference system: the camera can rotate with 3 degrees of freedom, and its height
relative to the ground changes dynamically as the robot walks. Furthermore, the
on-board camera has only 3 shutter speed settings, with a minimum exposure
time of 1

200s; as a result, images are affected by blur, which gets more noticeable
as the robot and camera speed increase. Lastly, the camera captures an image
sequentially from the top scanline to the bottom, with a frequency of 30fps, so
that a time delay exists between the top of the image and the bottom of ≈ 1

30s,
which distorts the image and the percepts especially in case of a fast camera
panning motion (for a description of the problem and a possible solution see
[10]). The uncertainty about the measurement is modeled as a 2-dimensional
gaussian, with one axis oriented as the distance between the robot and the ball
(σρ) and the other perpendicular to it (σ⊥); the variances of such gaussian are
dependent on the following factors:

1. Percept confidence pc(z) ∈ [ 15 , 1] calculated from the image processor based
on several criteria used to identify the ball, such as color, shape, sharpness
of the contour; its reciprocal is multiplied by both axes

2. Distance to the percept fρ; is proportional to σρ

3. Camera panning velocity fα̇; is proportional to σ⊥
4. Robot speed fvR , which affects the amount of “head bobbing”, causing mo-

tion blur and inaccuracy in the camera pose; is multiplied by both axes

In order to estimate fρ, fα̇ and fvR , we used an external camera1 mounted on
the ceiling above the soccer field to compare the robot’s own measurements with
the true ball position. Based on the observed data, we have modeled fρ and fα̇

as second order polynomials, while for fvR we have chosen a piecewise linear
approximation; the results have been represented in Figure 1. In case of several
objects in the image which might look like a ball, the vision system provides
a list of candidate ball hypotheses, each one with a certain percept confidence
pc(z), and they are all used to perform the measurement update of the particle
filter.

2.3 Process Model

Since the ball is tracked in a robot-centric reference system, the robot’s own mo-
tion is an apparent speed relative to the ball. At each time instant, an estimate
of the robot motion is represented by the odometry vector: ot =

[
ot

vx ot
vy ωt

]
where (ot

vx, ot
vy) is the robot translation speed and ωt is its angular velocity at

time t. In addition, we use a constant speed model, which propagates the posi-
tion of the ball −→s (t) at time t based on the speed −→v (t) at time t−1; this because

1 The average measurement error of such a vision system is below 0.5cm.
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(a) Distance Error (b) Panning Velocity Error

(c) Robot Speed Error

Fig. 1. Ball measurement error functions learned from experimental data

accelerations are very difficult to measure with highly noisy sensors like this
camera. Consequently, the time-update is performed as follows2:
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⎥⎥⎦
(1)

Since the constant speed model is only an approximation and the odometry
vector is noisy itself, in the time update we add to the probability distribution
a constant amount of gaussian noise (σ = 0.25 empirically derived).

3 Multi-robot Tracking

As can be seen in Figure 1(a), the measurement error grows very quickly with
the distance to the ball (error ≈ 1m at a distance of 3.5m), making it very
difficult to track a ball which rolls in the opposite side of the field. Further, it
2 In this equation the sign of the odometry vector has to be reversed, here the negative

sign is omitted to keep compact the graphical representation.
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happens very frequently that one or more robots in a team have the line of sight
to the ball completely occluded by teammates or opponents, but still they need
to know where the ball is in order to position themselves strategically on the
field. At last, it is desirable that the robots share a common estimate about the
ball position, so that they can coherently take strategical decisions such as who
should go to the ball and try to get in control of it. Thereto, merging the sensor
information of all the robots in a team can often result in a better estimate than
what would be possible for each robot alone. However, the cooperative tracking
of an object must be performed in a global coordinate system, and this severely
complicates the problem compared to local sensor fusion techniques, since the
uncertainty on the robots’ positions adds to the ball measurement errors. For
example, it happens that a robot following the ball focuses its attention for too
long on the ground, without looking at global landmarks: since field features such
as the field lines, the kick-off circle and the line crossings are symmetrical on
the field, the robot location probability distribution tends to concentrate around
symmetric modes, and consequently the localization state can jump frequently
from a peak to another. When the ball probability distribution of that robot
is transformed in global coordinates using the current robot pose, it will jump
along with it providing contradictory information to the whole team estimate
of the ball position and this is not desirable, especially if such robot is very
close to the ball and has a good view of it. For the robot localization, we have
implemented a Monte Carlo algorithm similar to what is described in [11], with
a sample set of 100 particles.

3.1 Multi-robot Belief Merging

Since each particle in the self locator represents a candidate pose, ideally each
robot should calculate the global position of its ball probability distribution for
each particle of the self locator: with 40 particles to represent the (robot
centric) ball probability πl

B(i), i ∈ [0, 40), and 100 particles for the localiza-
tion probability πSL(i), i ∈ [0, 100), the final set of ball particles in the global
reference system would be 4000 particles per robot πg

B(i), i ∈ [0, 4000). The
probability of each ball particle should be also multiplied by the probability of
the corresponding localization particle:

p(πg
B(i · j)) = p(πl

B(i)) · p(πSL(j)) (2)

Then such particles have to be sent to the teammates, merged with their parti-
cles, and clustered to find the expected “team ball” position. Algorithm 2 can
deal with situations where the localization distribution of some robot presents
strong ambiguities, because such ambiguities can be resolved by the information
provided by the teammates. The main problem with this approach is the huge
amount of particles that have to be computed and sent over the network: if each
particle is represented by the values

[
sx sy p(πg

B(i))
]

and each value is stored
in 32 bit precision, even when using broadcasts we would still use 1.5Mbit of
traffic per iteration of the algorithm just for particle data. An alternative to
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Algorithm 2. “Naive” Merging
for all i, j such that i ∈ [0, 40), j ∈ [0, 100) do

calculate the position of πg
B(i)

calculate p(πg
B(i))

end for
send πg

B(i) to teammates
receive πg

B(i) from teammates
cluster the joint particle set and compute the expected ball position

save on network traffic would be to send πl
B(i) and πSL(j) and multiply the two

sets at the destination; however this would result in even greater computational
costs, and our platform is already not suitable to process particle sets of such
dimensions.

3.2 Reducing the Joint Particle Set Size

In most game situations, the particle distribution is not spread uniformly accross
the field (this normally happens only when the robot is placed on the field
for the first time) but it is concentrated in a very limited number of clusters.
This is because low probability particles are replaced with new samples in the
positions calculated from the latest observation, following the sensor-resetting
[12] / Mixture Monte Carlo idea [13], so even when the robot is teleported
or “kidnapped” by the referee, a new cluster forms very quickly at the new
position of the robot. In our experiments, in a typical match over 90% of the
total probability is concentrated in at most 3 clusters, so we calculate the 3 robot
pose hypotheses with the highest probabilities to generate the ball distribution
in global coordinates. Further, to keep the running time and network traffic
low, we subsample the ball global probability distribution to obtain up to 12
“representative particles” out of the set of 120. Since each robot provides at
most 12 particles to his teammates, the global ball estimate is calculated out of
48 particles as the cluster with the highest probability. To efficiently calculate
the representative particles, the soccer field is recursively split into cells to form
a quad-tree, with a maximum depth δ = 7:

– Basic Cell : a cell which contains one particle or none
– Composite Cell : a cell which contains 4 Basic Cells

While it might appear that 12 particles are too few to represent the belief of
a single robot about the ball position, it has to be noted that Algorithm 3 is
applied to the particle set before its normalization / resampling. As such, a small
number of particles can carry the same amount of information of a much larger
set after the normalization, because such a process replaces high probability
particles with several copies having all the same importance factor.
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Algorithm 3. Representative Particles Computation
1. The whole field is initialized as a Composite Cell
2. if a Basic Cell contains more than one particle

– transform it in a Composite Cell by subdividing it into 4 Basic Cells
– particles are inserted into each new Basic Cell depending on their position on

the field
3. apply recursively step 2 until a maximum depth δ = 7 is reached
4. representative particles are generated out of the 12 cells which contain the highest

probability; if a chosen cell contains more than one particle, the representative
particle position is calculated as a weighted average of the particles there contained

3.3 Loss of Information over the Network

To keep network utilization and latency to low levels, in our system a robot
exchanges data with his teammates through UDP broadcasts [14]. However,
UDP does not guarantee that the packets will reach their destination, and
it is quite common to have network performance problems in crowded places
or at the competition sites, since 802.11 networks are now so widely popu-
lar. Since our ball tracking runs at a fairly high rate (the same as the vision
system, 30Hz), it is not so unlikely that for a frame or two no particle is re-
ceived from a certain teammate. In such unfortunate case, it is wiser to use
older information from the corresponding robot instead of immediately discard-
ing all the particles of the previous iteration, since in such a short interval
of time (up to 100ms) the ball state cannot change too much. Therefore the
current implementation of our ball tracker stores the particles received from
all teammates. If in the new frame, at least one particle is received from a
certain robot, all its old particles are discarded and substituted by the new
ones. Otherwise, the old particles can be used, but random noise has to be
added to reflect the increased uncertainty due to the unmodeled ball motion,
and their reliability has to be lowered. That is achieved by replacing all old
particles with two new ones, each new particle carrying half of the original
probability. If this results in more than 12 particles for that particular ro-
bot, only the 12 particles with the highest validities are retained. Afterwards
all particles are spread by the addition to their position of gaussian noise, to
represent a probabilistic search around their original position, since the di-
rection of movement of the ball is unknown. The standard deviation of such
noise is a function of the number of frames where no particles were received
from the teammate. Finally, the validity of these particles is decreased by a
factor which is also a function of their age. In our tests, this approach has
worked better than propagating the old state by using the speed, because the
speed estimation is very noisy in itself, the ball motion is often non-linear,
and the constant-speed model is a valid approximation only for very short
periods of time.
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Particle Cell Representative Particle

(a) Initial step: the field is divided into
four cells.

(b) Second step: all cells are subdivided.

(c) Third step: cells which are empty
or contain only a single particle are not
further subdivided. The other are again
subdivided.

(d) Last step: in the 12 cells containing
the highest probability, a representative
particle is calculated.

Fig. 2. Visualization of Algorithm 3 with an example

4 Experiments and Results

Finding a suitable reference system to compare against our proposed approach
has not been an easy task, as global sensor fusion is still in its infancy on our
development platform, and results from other leagues such as [4] cannot be
directly compared, due to the vast difference of computational resources and
sensor capabilities. A good candidate for our comparison has been found in [15],
since this approach is adopted by 5 different teams on this hardware platform
and its source code is publicly available.

4.1 Reference System

The approach described makes use of a Kalman Filter [7] to track the ball
position and velocity in a robot-centric reference system. The robots in the
team exchange their localization and local ball estimates, and the global team
ball is calculated from the information provided by the robot with the highest
confidence in its own localization.
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4.2 Experimental Results

Our experiments have been performed by running in parallel on the same robots
the reference system and our new solution, processing exactly the same data.
The results of both systems are compared with the ground truth obtained from
a ceiling camera global vision system as described in Section 2.2. In all of the
following scenarios, the environment surrounding the soccer field is unstructured
and unknown, and the robots might incorrectly identify false landmarks and false
balls in it.

Scenario 1. In our first test scenario, 4 robots are placed on the field, without
opponents or obstacles which might occlude their sight. Their vision systems are
perfectly calibrated for the lighting conditions, and all the robots move freely
on the field. The “observing robot” can never see the ball; the other 3 can,
but they also have to periodically distract their attention from it in order to
localize themselves. This test represents a “best case” scenario to evaluate the
performance in a condition where the sensor information is relatively accurate
and reliable. The results are shown in Figure 3(a).

Scenario 2. In this scenario, the conditions are similar to the first test, but one
of the robots which can see the ball has a problem in its vision system, so that it
consistently detects “ghost balls” inside the yellow goal. Such a problem is not
infrequent during the competitions, and can severely penalize the performance
of the whole team. The results are shown in Figure 3(b).

Scenario 3. This scenario is based on a real game situation. All robots are free to
move and look at the ball, but the presence of opponents can occlude their sight
to the ball and to the landmarks. Even worse, the opponents struggle against the
observing team for getting control over the ball, compromising the localization
state of the robots, as such collisions cannot be detected since the robots do not
have any range or contact sensors. The results are shown in Figure 3(c).

Scenario 4. This test is similar to the previous scenario, but the frequency and
entity of the collisions is greater. The results are shown in Figure 3(d).

4.3 Performance

Our goal was to be able to process all the sensory information at the native
camera frame rate of 30Hz, this because of the limited field of view of the camera,
which forces the robot to look around continuously at high angular velocities.
The tracking system composed of the individual robot-centric tracker and the
global tracker requires about ≈ 1ms to execute, being on par in terms of run-time
with Kalman Filter based approaches, and many times faster than other Particle
Filter based implementations. On average, each robot broadcasts 5 particles per
frame, 12 bytes per particle, 30 times per second, for a total network traffic
(team of 4 robots) of ≈ 56Kbit/s, while in the worst case, this value reaches
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(a) Scenario 1: the x axis of the graph
represents the temporal axis, where 30
frames = 1s. The old system performs
particularly poorly after frame 70

(b) Scenario 2: the old system cannot
cope with the ghost balls, and is consis-
tently outperformed

(c) Scenario 3: in the beginning of the
test there is a strong collision. The new
system performs constantly better.

(d) Scenario 4: several collisions, around
frame 150 the new system is 3 times more
accurate than the reference

Fig. 3. Test scenarios

135Kbit/s; this is compatible with the competition constraints, which limit to
512Kbit/s the total bandwidth available to a team that has to be used also
for other communication tasks such as role assignments and strategical data
exchange.

5 Conclusion

It has been presented a Particle Filter based approach that tackles the problem
of global sensor fusion in presence of high uncertainty concerning the robot posi-
tions, the data association about the tracked object, and the loss of information
over the network. The system meets all the performance constraints set by the
platform, and is competitive in terms of running time with simpler approaches
which do not deal with all the aforementioned problems. In the future, we plan
to investigate the possibility to make use of the speed information in the global
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tracker, by building a better sensor model with the help of our ceiling camera
application and machine-learning techniques.
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Abstract. Autonomous robots can use a variety of sensors, such as
sonar, laser range finders, and bump sensors, to sense their environ-
ments. Visual information from an onboard camera can provide particu-
larly rich sensor data. However, processing all the pixels in every image,
even with simple operations, can be computationally taxing for robots
equipped with cameras of reasonable resolution and frame rate. This pa-
per presents a novel method for a legged robot equipped with a camera
to use selective visual attention to efficiently recognize objects in its en-
vironment. The resulting attention-based approach is fully implemented
and validated on an Aibo ERS-7. It effectively processes incoming images
50 times faster than a baseline approach, with no significant difference
in the efficacy of its object detection.

1 Introduction

Processing a stream of visual images is an important but time-consuming task.
One technique that has been used to speed up vision processing is that of selective
visual attention [1]. This technique is based on the idea that not all areas in a
given visual scene are relevant to the task at hand. Therefore by restricting
one’s attention to the relevant parts of the scene, the agent can greatly increase
its visual processing speed. This intuition is corroborated by work in cognitive
science confirming that human vision processing takes advantage of selective
attention. For example, Sprague et al. [2] present a model of visual attention
and compare it to human eye-tracking data.

In robotic vision, selective attention can take two main forms. One is gaze
direction, in which a robot moves its camera so that its field of view is faced
towards the important information [3,4,5]. That approach is analogous to human
eye saccading, but does not address the question of how to process each image,
an often time-consuming process.

The other main approach to selective attention, which is taken in this paper,
involves only processing the areas of the image that are likely to have relevant
features. Because of the large amount of data in every image, processing each
image in its entirety is difficult to do at frame rate, and where it is possible, it
severely limits the amount of time the robot can spend processing the interesting
areas of the image. By restricting its attention to the parts of the image that

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 158–170, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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are most likely to contain the important information, the robot can dramatically
speed up its image processing. This approach raises the challenge of identifying
the useful areas of the image.

One common way to find the useful areas of the image is to first compute a
saliency map [6], which represents the conspicuity at each point in the image. The
most salient regions of the image can then be processed in detail. This approach
has been applied to tasks such as face and handwritten digit recognition [7] and
recognizing an object in a cluttered visual field [8]. Unfortunately, constructing
the saliency map still requires processing the entire image, a time-consuming
task in the context of trying to process a video stream at frame rate.

Another method for focusing attention on the important parts of the image
is feature tracking [9,10]. For example, Shi and Tomasi [9] present a method for
identifying the optimal features in the image for tracking, i.e. the ones that are
most likely to correspond to points in the real world. In feature tracking, a specific
area of the image is analyzed between two consecutive images to characterize
the movement of the feature. This method requires that corresponding points
in consecutive images be close to each other, so that the tracking mechanism
can properly identify the differences between consecutive frames as movement.
However, there are sometimes cases in which objects in the field of view can move
across a large portion of the image between consecutive frames. For example, in
the case of a legged robot, the jerky motion caused by walking can lead to very
sharp motion in the image. In these cases, feature tracking is not applicable.

This paper considers the situation of an autonomous legged robot equipped
with a camera that moves within an environment with fixed landmarks. The
robot’s goal is to visually detect the landmarks as efficiently as possible. In this
context, we present a novel technique for applying selective visual attention to
the task of object detection. Like feature tracking, the technique is based on the
idea that the robot can use prior information to predict the expected location in
the image of each object. However, unlike previous work, it does not assume that
an object’s expected location in one frame is necessarily close to its location in
the previous frame. The robot uses the objects’ expected locations to direct its
visual search towards the most likely areas of the image, enabling it to perform
object detection very efficiently, despite the sharp motion caused by walking.

This approach presents three main challenges. First, predicting the location of
an object in the image requires having an accurate estimate of the camera’s pose,
its position and orientation in space. On a legged robot, meeting this requirement
is particularly challenging because as the robot walks, its body, and thus also
its camera, rock quickly from side to side. Second, when preliminary analysis
suggests that the object is not present at the expected location, the robot must
have a strategy for continuing its search of the image for the target object. Third,
the fact that most of the image is not processed at all presents a new challenge
for object recognition: When processing a few pixels suggests the presence of
an object, the robot must decide which pixels to process next to complete the
object detection.
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Although each image on our test platform contains over 33000 pixels, our
technique allows the robot to examine fewer than 1200 of them on average as it
identifies landmarks. This reduced processing enables the robot to process images
50 times faster than a baseline approach. Nonetheless, there is no significant
drop in the success rate of object detection. The technique is implemented and
validated on a popular mobile robot platform, the Sony Aibo ERS-7.

The remainder of this paper is organized as follows. The following section
presents an overview of our technique. Sections 3-5 present solutions to the three
challenges raised by this approach. Section 6 presents experimental results and
Section 7 concludes and discusses future work.

2 Overview

In this paper we consider the task of a vision-based autonomous robot operating
in a known environment. The robot has access to a series of images that are
generated by a camera located on board the moving robot, which arrive at
video frame rate. We assume that there is a fixed set of objects relevant to the
robot’s decision making (e.g., landmarks). The goal of the robot’s vision module
is to identify these objects when they are present in the image. The robot also
maintains an estimate of its own pose in the environment over time, based on
its visual observations and its odometry estimate. One popular approach to this
self-localization problem, which we use in the experiments reported in this paper,
is Monte-Carlo localization, or particle filtering [11,12].

At each time step, the robot estimates its camera’s pose. The details of how
this is accomplished while the robot is walking are presented in Section 3. Then,
given the camera’s pose, the robot can loop through the fixed objects in the
environment and, for each one, predict whether or not and where it is expected
to appear in the robot’s field of view. This prediction is achieved by projecting
the object location onto the image plane (correcting for distortion if necessary).

For each object, if it is expected to be behind the image plane and therefore
invisible to the robot, it is discarded. Similarly, if the object’s projection onto the
image plane is outside the field of view of the camera, it is discarded. Otherwise,
the resulting image location is considered the object’s expected location in the
captured visual frame. If the expected location is examined and the object is not
found, then the robot continues to search for it throughout the remainder of the
image. This process is described in Section 4. Notably, a key challenge compared
to previous approaches is that an object’s location in the image plane may not
be close to its location in the previous frame.

When preliminary analysis of an image location suggests that the object is
present there, the robot must analyze that region of the image in detail. The
goal of this processing is to accurately and efficiently determine whether or not
the object is present in that location, and if so, how large it is in the image plane.
A solution to this problem in our test-bed domain is presented in Section 5.

Finally, once the objects in the image have been identified, they can be used
as landmarks for the purposes of localization. This process consists of converting
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the size and location of objects in the image into the corresponding distances
and angles from the robot.

The entire method is summarized in Algorithm 1. The variable Obj loops
through all of the environmental landmarks. Each one is projected onto the
image plane if possible, initializing TestLocation to be the expected location
of the object. This location is advanced by the routine SeededSearch, specified
in Section 4. If the object is found, it is then used to inform localization. The
underlined procedures in the algorithm will be described in the following sections.

Algorithm 1. Algorithm Summary
ComputeCameraPose
for all (objects Obj in the environment) do

transform location of Obj into camera reference frame
if (Obj is in front of the image plane) then

project Obj onto ExpectedLocation in image plane
if (Obj is in the camera’s field of view) then

TestLocation ← ExpectedLocation
repeat

Examine TestLocation for match with Obj
advance TestLocation according to SeededSearch

until (Obj is found) OR (entire image searched)
if (Obj is found) then

determine extent of Obj in the image
project Obj back into global reference frame
compute distance and angle from Obj
incorporate information in localization

end if
end if

end if

end for

3 Computing the Camera Pose

In order to accurately predict the location of the objects in the image, the robot
needs to have an accurate estimate of its camera’s pose. On a legged robot, this
is particularly difficult because of the jagged motion caused by walking. The
details of the method for finding the camera pose are necessarily dependent on
the configuration and sensors of the specific robot being used. Nevertheless, the
principles used here can be extended to apply to any robotic platform.

The experiments reported in this paper were performed on a Sony Aibo ERS-7.1

The robot is roughly 280mm tall and 320mm long. It has 20 degrees of freedom:
three in each of four legs, three in the neck, and five more in its ears, mouth, and
tail. At the tip of its nose there is a CMOS color camera that captures images at
30 frames per second in YCbCr format. The images are 208 × 160 pixels giving
the robot a field of view of 56.9◦ horizontally and 45.2◦ vertically. The robot’s
processing is performed entirely on-board on a 576 MHz processor.

Preliminary experiments have shown that an object’s location in the robot’s
field of view can change by as much as 80 pixels between two consecutive video
frames. This distance is a large fraction of the 208-pixel width of the image. The
1 http://www.aibo.com
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fact that a fixed point in the robot’s view can move so far in one thirtieth of a
second demonstrates the instability of the camera’s pose. A video depicting the
world from the robot’s point of view is available online.2

The camera’s pose can be estimated from the robot’s joint angles and ac-
celerometer values. This computation occurs in three phases. First, the height of
the robot’s body is estimated based on the back legs’ joint angles. Second, the
body’s tilt and roll are estimated based on the accelerometer values. Finally, the
head and neck angles are used to complete the computation.

Ideally, the pose of the camera with respect to the ground plane could be
computed by multiplying a series of homogeneous transformation matrices based
only on the robot’s joint configuration and angles [13]:

T cam
foot = T hip

foot · T
body
hip · T neck

body · T cam
neck (1)

where T A
B represents the transformation from coordinate system A to coordinate

system B. However, as the robot walks, the coordinate system of any given foot
is not constrained to be either parallel to the ground or in contact with the
ground. To compensate for this problem, we separately estimate the height of
one of the rear hips and use the robot’s internal accelerometers to estimate the
body’s tilt and roll. The resulting equation is

T cam
ground = T hip

ground · T
body
hip · T neck

body · T cam
neck (2)

In this equation, the hip coordinate frame is parallel to the ground. Then
T hip

ground is only a vertical translation, whose magnitude is determined by the
rear legs’ joint angles (based on the assumption that the more outstretched leg
is the one touching the ground). The body coordinate frame is attached to the
robot’s body, so that the transformation T body

hip must account for the body’s tilt
and roll. These quantities are estimated by using the robot’s accelerometers. The
three accelerometers report the component of gravity (combined with the body’s
acceleration) in the direction of each of the three cardinal axes in the body’s
reference frame. By taking the average of a rolling window of accelerometer
values for each direction, the robot is able to filter out the effects of noise and
acceleration and isolate the body’s tilt and roll. The final transforms from the
body to the neck and camera are done via standard DH-transforms, as described
by Schilling [13]. The full details of our implementation are presented in our
technical report [14].

Once the camera pose has been determined, it can be combined with the ro-
bot’s prior body pose estimate in its environment to compute expected locations
for objects in the robot’s field of view. These locations can then be used to seed
the visual search for those objects.

4 Seeded Visual Search

After the camera pose has been used to compute an object’s expected location in
the image, the robot must search for the object, as per Algorithm 1. This section
2 http://www.cs.utexas.edu/~AustinVilla/?p=research/selective-vision/

http://www.cs.utexas.edu/~AustinVilla/?p=research/selective-vision/
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describes our solution to the seeded visual search problem. That is, given that
the robot has an expected location for an object in the image, how can the robot
best take advantage of this knowledge to find the object as quickly as possible?
We assume that, for each object, the robot has an object decision mechanism
that can start at any pixel and eventually determine whether or not that pixel is
part of the object in question. Ideally, the mechanism should usually reject pixels
that are not part of the object after only some quick preliminary processing. For
example, in a color-coded domain, the object decision mechanism can segment
the pixel in question into a color category, and only for pixels that are the
correct color, examine the surrounding region in more detail. In other settings
the preliminary processing may require examining multiple pixels. The object
decision mechanisms we use in our test-bed domain are described in Section 5.

Once the robot has identified an expected location for a given object, it first
applies the object decision mechanism starting at the expected location. If the
mechanism fails to find the object in its first application, the robot continues by
applying the decision mechanism repeatedly, starting at a different pixel each
time. If the mechanism starts at a pixel and successfully identifies the target ob-
ject, the search can terminate. Otherwise, the searching process should continue
starting the decision mechanism at different points, gradually moving outwards
from the original expected location. In the worst case, the search could expand
to cover the entire image. But in practice this rarely happens as will be demon-
strated in Section 6.

Fig. 1. The circles represent the
locations in the image that are an-
alyzed, starting from the expected
object center. The distance be-
tween adjacent circles depends on
the size of the target object.

To accomplish this goal, we use a series of
starting points that follows a square spiraling
pattern that expands outwards. The pattern
used is depicted in Figure 1, and the points
examined are all on a square lattice. The dis-
tance between lattice points depends on the
minimum possible size of the target object.
This property allows the robot to process as
little of the image as possible while still ensur-
ing that if the object is in the image it will
be found. The spiral expands until either the
target object is found or the entire image is
filled. Because the image is filled in the worst
case, the method is able to recover from a com-
pletely incorrect prior localization estimate.

5 Object Detection

The previous section describes how to process the image in a manner that enables
the target object to be found quickly, given an object decision mechanism. This
section presents our object decision mechanism, completing the description of
the attention-based approach to object detection presented in this paper. First,
however, it is necessary to specify the types of objects that are detected in the
experiments reported in this paper.
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The Aibo’s environment used in this paper is a legged-league field measuring
4.4 meters by 2.9 meters. It has one blue goal, one yellow goal, and four visually
distinct cylindrical beacons each with two colors: one is pink, and the other is
blue or yellow. The robot is faced with the task of accurately identifying the
goal and beacons that appear in the image.

Since the RoboCup field is color-coded, the object decision mechanism dis-
cussed in Section 4 analyzes pixels in the image by segmenting them and observ-
ing whether or not they are the color corresponding to the desired object: blue
or yellow for a goal, or pink for a beacon. Color segmentation is carried out via a
color table, a three-dimensional array with a color label for each possible combi-
nation of Y, Cb, and Cr values. The color table is created off-line, by manually
labeling a large suite of training data and using a Nearest Neighbor learning al-
gorithm to learn the best label for each YCbCr combination. The full details of
our color segmenting algorithm are presented in our technical report [14]. After
segmentation, a goal appears to the robot as a blue or yellow rectangle and a
beacon appears as a pink square above or below a blue or yellow square of the
same size. Whether the pink is above or below, and whether the other color is
blue or yellow, uniquely determine which of the four beacons it is.

For each object, a single point is projected onto the image plane, as specified
in Section 3, to yield an expected location. For goals, the center of the rectangle
is used, while for beacons the center of the pink square is used. After the pink
square is identified, the rest of the the beacon can be found easily.

As discussed in Section 4, an object decision mechanism is needed that exam-
ines the image starting at a given pixel and decides whether or not that pixel is
part of the target object. The mechanism begins by segmenting the given pixel.
If it is not the color corresponding to the target object, the mechanism rejects
the pixel. Otherwise, the point is expanded into a maximal approximate rectan-
gle of pixels all the same color. Since it starts with only one pixel segmented, it
segments further pixels as they are needed.

To expand a point into a rectangle of a given color, we first expand the point
into a line, by expanding to the right and then to the left. Expanding to the right
consists of segmenting consecutive pixels, each one to the right of the previous
one. This process continues until a sufficiently long string of consecutive pixels
are all not the given color, marking the right end of the line. The threshold used
for consecutive wrong-colored pixels, denoted as ConsecThresh, is three.

The pixel is expanded to the right and left, and then the process is repeated
on the pixel directly above. This process continues upward until a pixel is found
that cannot expand in either direction, which we consider to signify the top of the
rectangle. Similarly the robot proceeds downward from the root pixel until the
bottom of the rectangle is found. The rightmost right edge of an expansion line,
and the leftmost left edge, are taken to be the left and right edges of the rectangle.
Pseudocode for this point expansion routine is given in Algorithm 2. BaseX and
BaseY are the image coordinates of the starting point for the expansion routine.
The returned values represent the boundary coordinates of the rectangle.
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Once a rectangle of the appropriate color has been found, the object decision
mechanism decides whether or not the target object has been found, as opposed
to some spurious pixels of the target color. For goals, the blue or yellow rectangle
found is assumed to be the goal, as long as it is sufficiently large. For beacons,
depending on the beacon’s identity, the robot expects a blue or yellow square,
either directly above or below the pink square that has been found. The location
of the expected square center is based on the size and location of the pink square
that has already been found. This new center is expanded into a blue or yellow
rectangle in accordance with Algorithm 2. If this operation is successful and
the resulting combined beacon rectangle is sufficiently large, the object decision
mechanism registers a success. The resulting goal and beacon rectangles are the
output of the vision processing.

Algorithm 2. Color Expanding Routine
Given: ConsecThresh, ColorTable, DesiredColor
Given: BaseX, BaseY
Given: ColorTable[Pixel[BaseX, BaseY ]] = DesiredColor
x ← BaseX, y ← BaseY
repeat

y goes up, then down, from BaseY, one pixel at a time
repeat

x goes right, then left, from BaseX, one pixel at a time
Compare ColorTable[Pixel[x,y]] to DesiredColor
if equal then

ConsecutiveMisses ← 0
else

ConsecutiveMisses ← ConsecutiveMisses +1
end if

until on each side, ConsecutiveMisses reaches ConsecThresh OR x reaches image edge
until on top and bottom, y reaches a row where no DesiredColor is found or the image edge
MinX, MaxX, MinY , MaxY ← lowest and highest values of x and y, respectively to segment
to DesiredColor

Return: MinX, MaxX, MinY , MaxY

Although the description in this section of the object detection mechanism is
specific to our test-bed environment, the overall algorithm (presented in
Section 2) does not depend on the details of the object detection mechanism.
As long as the robot is equipped with a local method for determining whether a
pixel or set of pixels depict an object of interest, that object decision mechanism
can be plugged into Algorithm 1.

6 Experimental Validation

The goal of the method presented in this paper is to obtain a high object-detection
accuracy without much computational complexity. As such, the mark of success is
to perform roughly as well at object detection as a state-of-the-art approach that
processes the entire image. In this section, we evaluate the technique presented in
this paper by comparing it to a common baseline approach [14,15,16]. Section 6.1
describes our implementation of this baseline approach, and Section 6.2 presents
experiments comparing the two methods.
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6.1 Baseline Method

Our group has previously solved the problem of object detection on the Aibo
ERS-7 on the RoboCup field using the baseline method mentioned above. How-
ever, this solution involves processing all of the pixels in every image, and despite
the fact that we have optimized it aggressively, it consumes almost all of the
robot’s available processing time. The methods used are summarized in this sec-
tion, while the full details of this baseline approach can be found in our technical
report [14]. The robot executes the following three steps.

1. Color Segmentation: Classify every image pixel as one of a small set of dis-
tinct colors.

2. Region Merging: Collect adjacent pixels of the same color into monochro-
matic regions.

3. Object Detection: Identify the monochromatic regions that correspond to
specific objects in the environment.

During the robot’s image processing, it loops through every pixel in each
image, classifying it according to the color table. Note that each image measures
208× 160 pixels, for over 33000 pixels total.

As each pixel is segmented, it is also incorporated into a run-length encoding
of the image. That is, each maximal horizontal string of consecutive pixels that
are the same color is stored as a run-length. These run-lengths comprise a highly
compressed version of the segmented image. Next, vertically adjacent run-lengths
of the same color are combined into a bounding box, a rectangular structure
consisting of the rectangle’s coordinates and the color inside. The robot continues
to merge bounding boxes that are adjacent and of the same color. Heuristics are
used to determine if some adjacent boxes should not be merged, and also if some
boxes should be deleted because they contain a density of the desired color that
is too low. These bounding boxes are the input to object detection.

The robot first attempts to detect goals in the image, because they are gen-
erally the largest objects found. Thus the blue and yellow bounding boxes are
sorted from largest to smallest, and tested for being the goal in that order. The
goal tests consist of heuristics to ensure that the bounding box in question is
close enough to the right height to width ratio, and that there is a high enough
density of the desired color inside the bounding box for a goal, as well as other
heuristics. To find the beacons, the robot finds bounding boxes of pink and blue
or yellow that satisfy appropriate beacon heuristics, and then combines them
into beacon bounding boxes, labeled by which beacon is inside. The resulting
goal and beacon bounding boxes are the output of the vision process.

Once goals and beacons have been identified in the image, the robot uses
them to update its localization estimate. This update takes place in two stages:
translating the bounding box information into object distances and angles and
incorporating these distances and angles into the robot’s pose estimate.

The robot first computes its distance and horizontal angle to any objects
it has identified. We have found it to be more effective to use the left and
right edges of each goal instead of goal centers as landmarks for localization.
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To compute its distances and angles to the landmarks in the image, the robot
takes into account the camera pose and the location and size of the object in
the image. The distances and angles yielded by this process are often quite
noisy, and it is rare to see enough objects in one frame to triangulate one’s pose
uniquely. To alleviate these factors, the robot maintains an estimate of its pose
through particle filtering [11,12], which gathers the robot’s visual information
and odometry into a coherent pose estimate over time.

The details in this section summarize our own baseline implementation for
object detection that has been used successfully for a couple of years. Though
there are many other object detection implementations within this domain that
differ in their details [15,16,17], none of the approaches that we know of on the
legged robot process the image based on the projected locations of objects.

6.2 Results

The baseline and attention-based methods were evaluated and compared based
on their rate of success identifying landmarks in the image. In order to measure
these success rates, we had the robot save a series of representative images to
its memory stick with the identified landmarks marked. Then the images were
viewed on a monitor and the objects were labeled manually.
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Fig. 2. The points on the field vis-
ited by the Aibo

In order to generate a series of representa-
tive images, the robot walked to a sequence
of fixed poses on the field while continually
moving its head from side to side, stopping
at each pose for 15 seconds. The points and
their order are shown in Figure 2. They were
specifically chosen to represent a wide range
of difficulty for object detection. Every ten
seconds, the robot saved an image for eval-
uation. This ensured that a representative
and varied sample of images was used for the evaluation.

Both methods were evaluated for ten trials. In each trial, the robot walked
between the poses until it had taken 50 images total. The robot’s rate of success
within each trial was recorded. This rate is defined as the number of correctly
identified landmarks (goal edges and beacons) divided by the number of land-
marks identified by the manual labeling. This quantity represents the fraction of
the objects that were actually in the image that the object detection successfully
identified. We also counted the number of false positives: instances in which the
robot reported a landmark that was not actually there. The false positive rate
was extremely low for both methods. There were none at all recorded with the
baseline method and two with the attention-based method over all ten trials.
Compared to the total number of objects in the images captured while testing
the attention-based method, 597, these errors represent a false positive rate of
only 0.34 percent.

Furthermore, we recorded the amount of time taken to process each image.
That is, for each image frame the robot receives, the amount of time taken to
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Table 1. Comparison of the baseline and new, prediction-based methods

Method Baseline New Method
Avg Detection Rate 77.54 ± 7.32 74.33 ± 10.63
Avg Pixel Count 33280 1138
Avg Time/Frame 35.049 ms 0.695 ms

identify the vision objects in the image is recorded. These times do not include
the time taken for particle filtering, nor for behavior and motion processing,
which also occur in real time on-board the robot. The vision processing times
are averaged over the full extent of all ten trials. We also measured the average
number of pixels examined by the attention-based method on a typical run. This
is compared to the number of pixels examined by the baseline method, which is
the total number of pixels in the image. The average processing times, accuracies,
and numbers of pixels processed attained by the baseline method and the new
method are shown in Table 1.

The prediction-based method took an average of 0.695 ms to process each
image, compared to the baseline method taking 35.049 ms on average. This rep-
resents a speed up of a factor of 50.4. To process at frame rate, there is 33
ms of computation time available per frame. Using the baseline method, vision
processing takes 35 ms of computation, so that there is no time for additional
processing while continuing to operate at roughly 30 Hz. In fact, even with min-
imal computation performed for localization and decision-making, the baseline
process leads to an ability to process at only 24 Hz. Thus the robot completely
ignores information from 20% of the available frames. In contrast, when using
our method, the vision processing of stationary objects takes only 0.7 ms, leav-
ing more than enough time to perform localization and decision-making while
operating at 30Hz, and in fact freeing up much additional processing time. This
time could potentially be used for precise tracking of mobile objects, as well
as enabling the exploration of completely new approaches that would not have
been tractable previously, perhaps such as detailed behavior planning or team-
mate/opponent modeling.

At the same time, the new method achieved a very similar quality of vision
accuracy to the baseline method. Over the ten trials, the attention-based method
attained an average detection rate of 77.54 ± 7.32 percent, while the baseline
method attained an average rate of 74.33 ± 10.63. Based on the variances in
these measurements, the difference in their means is statistically insignificant
(p > 0.4 in a two-tailed t-test). These tests demonstrate that the attention-
based method sped up the robot’s vision processing by a factor of 50, without
any significant effect on the success rate of object detection.

7 Conclusion and Future Work

This paper presents a technique for a legged robot equipped with a camera to
use visual selective attention to efficiently recognize objects in its environment.
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Given the inapplicability to this domain of previous techniques, a novel approach
is presented based on taking into account the robot’s prior knowledge about its
camera’s pose. This approach presents three general challenges, which are par-
ticularly difficult in the context of a legged robot. The paper presents solutions
to each of those challenges in that context.

When these solutions are combined, the resulting technique enables a legged
robot to process its visual data stream very efficiently. We have fully implemented
and validated this technique on an Aibo ERS-7. This attention-based approach
effectively processes incoming images 50 times faster than a baseline approach,
with no significant difference in the efficacy of its object detection.

This work has a number of interesting possibilities for future extensions. One
enhancement would be to extend the method so that it could also find mobile
objects. Achieving this goal would require having the ability to predict the ob-
jects’ locations in advance. Such an ability could derive from a predictive model
of the objects’ locations based on their velocities, communication with other
robots, or a combination thereof. Another possibility for future work would be
for the robot to draw cues from objects that have already been processed in a
given image to decide which regions of the same image will be most likely to
contain other objects. Furthermore, these methods could be extended so that
they influence gaze direction as well as the focus of attention within each image.
Finally, this technique is designed to be generally applicable and can therefore
be applied in different domains to ascertain the range of possible environments
and types of objects with which it can be effective.

Using the camera’s pose to speed up vision is an example of enhancing vision
processing by incorporating high-level information. This general idea is promis-
ing, based on the notion that in order to effectively perceive its environment, an
agent should take advantage of as much prior knowledge as possible about that
environment. This work represents progress towards the long-term goal of en-
abling autonomous agents to make effective use of their knowledge of the world
in their perceptual processing.
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Abstract. This paper presents a robust object tracking method using
a sparse shape-based object model. Our approach consists of three in-
gredients namely shapes, a motion model and a sparse (non-binary) sub-
sampling of colours in background and foreground parts based on the
shape assumption. The tracking itself is inspired by the idea of having
a short-term and a long-term memory. A lost object is ”missed” by the
long-term memory when it is no longer recognized by the short-term
memory. Moreover, the long-term memory allows to re-detect vanished
objects and using their new position as a new initial position for ob-
ject tracking. The short-term memory is implemented with a new Monte
Carlo variant which provides a heuristic to cope with the loss-of-diversity
problem. It enables simultaneous tracking of multiple (visually) identical
objects. The long-term memory is implemented with a Bayesian Multiple
Hypothesis filter. We demonstrate the robustness of our approach with
respect to object occlusions and non-Gaussian/non-linear movements of
the tracked object. We also show that tracking can be significantly im-
proved by using compensating ego-motion. Our approach is very scalable
since one can tune the parameters for a trade-off between precision and
computational time.

1 Introduction

The ability of knowing ”where is what?” seems to be easy for humans while
it is a cognitive challenge for a machine. The knowledge about object tracks
(e.g., position, movement) is one of the key capabilities for a high level behaviour.
In a typical RoboCup MSL scenario this means that we want to detect and
track static and dynamic objects, e.g. a ball, goals, corner-posts, other robots
or humans. Additionally we must cope with the object dynamics and a rapidly
changing environment.

We can distinguish two major components in a typical visual tracker: (1) Tar-
get Representation and Localisation and (2) Filtering and Data Association. (1)
is mostly a bottom-up process which has to cope with changes in the appear-
ance of the target, like for example Mean-Shift [5,3], Particle filtering [10,11] or
iterative error-minimising [8] approaches. Those kinds of approaches typically
keep the position of the object of interest in an image sequence. (2) is mostly
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a top-down process dealing with the dynamics of the tracked object, e.g. like
Probabilistic Data Association filters (PDAF) [1], Sample-Based Joint Proba-
bilistic Data Association Filters (SJPDAF) [15] or Multiple Hypothesis Track-
ing (MHT) [14,6] approaches. Those kind of filters are typically dealing with an
abstract (anonymous) observation and solve the tracking and data association
problem [1].

Solely bottom-up approaches [5,3,10,11,8] provide a limited robustness with
respect to high dynamics (e.g. a bouncing ball), occlusions, visually hidden or
disappearing gone objects. Usually, it assumes that the initial position of the
object of interest is known a-priori and no visually identical objects appear in
the scene. In fact, this assumption does not hold true for a typical RoboCup sce-
nario where we have two goals and multiple players on the field. Recovering lost
objects and tracking of multiple objects are typically the domains of top-down
approaches using (primitive) classifiers. The idea of using a binary homogeneity
criterion (e.g. binary colour segmentation) as the primitive classifier is still pop-
ular within the RoboCup community [9], though it is bound to the RoboCup
soccer domain and not directly applicable to real world applications.

(a) (b)

Fig. 1. Contours of the detected and tracked objects and the projected believe pose of
the robot. The tracker has no knowledge about the initial object poses.

Our new probabilistic approach is a hybrid solution of both concepts using
a Bayesian dynamic state space formulation, see [7] for theoretical issues. Note
that we are not interested in solving the data association problem. Basically
our approach is inspired by the idea of a short-term and a long-term memory.
The objective of the short term-memory is to track objects through image se-
quences. An observation is immediately lost if the object is no longer detected in
the image. The objective of the long-term memory is to maintain tracks of the
recognised object coming from the short-term memory. Its role is to re-detect
an object if it is no longer detected by the short-term memory. The compo-
nent gives a feedback to the short term memory in case of a ”missing” object.
Technically the long-term memory is implemented using a Bayesian Multiple
Hypothesis Tracker. The short-term memory is implemented by using a new ex-
tended method of Bayesian Monte Carlo filters, namely the extended Particle
Filter method. This extension allows obtaining multiple independent states es-
timation. We show that our tracking approach is more robust for fast moving
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objects than exclusively used (standard) approaches. We also show that ego mo-
tion compensation can improve the performance and robustness of the tracker
considerably. In order to be applicable to the RoboCup domain we assume all
motions of robots and objects are non-Gaussian/non-linear. Furthermore we as-
sume that any initial position of the object of interest is a-priori unknown and
that visibility is not known. Finally we assume that multiple visually identical
objects can appear in the image.

The current implementation of our approach was tested extensively for
coloured objects in various RoboCup soccer competitions as well as on real-
world soccer playgrounds. Furthermore our method was successfully applied to
other tasks like mobile vehicle surveillance and multi-target tracking of real-
world objects in cluttered scenes.

The paper is organised as follows. Section 2 introduces the probabilistic ob-
ject model used by the short-term memory. In section 3 a practical approach is
presented. Experimental results are shown in Section 4. Finally we discuss the
results and the approach in Section 5.

2 Object Model

The pose of a tracked object is defined as Φ(x y θ λ ẋ ẏ) where x, y is the posi-
tion, θ is the relative orientation, λ is a scale factor of the observed object in the
image and ẋ, ẏ denotes the relative motion of the object of interest in one frame
to the subsequent frame. Let q be an a-priori known target model of the object of
interest. Let Contour(Φ) be a function that is generated by a 3D projection of
a known 3D shape of the object a contour model for all Φ. Our implementation

Object Contour

(a) inner and outer force

Object Region

Object Background

(b) areas

Fig. 2. Principle of our tracking approach

defines this function for ball, goals, corner-posts and obstacles. The main idea of
our approach is to keep the believed contour of an object of interest as close as
possible to its background, instead of keeping it only close to the object’s contour
alone. This is illustrated in fig. 2(a), the arrows head for the two virtual forces
that ”push” the contour of the object to its correct position. The outer arrows
indicate forces that maximise the likelihood of the statistics of the beliefs of the
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objects. The inner arrows indicate forces, which result from the function that
maximises the ratio of the ability to distinguish between object and background.
This method prevents contours from collapsing because of low-contrast objects,
like e.g. a white ball.

In practice, tracking of the exact contour of the object is difficult due to
motion blur. Thus we track the region that is close to the object and its back-
ground region as shown in fig. 2(b). The real contour lies in the middle of both
regions. We choose the m− bin histogram for the feature space representation of
the object region and the background region. Using histograms is not an optimal
non-parametric density estimate method [5] but it suffices for our purposes. Both
histograms are generated by function h(xi), which assigns the colour at location
xi to the corresponding histogram bin. In our experiments we use an illumina-
tion invariant colour space r′g′I that was introduced in [12]. The conversion of
RGB values is given by (r′, g′, I) = ( r

g , g
b , r+g+b

3 ). Our experimental setup uses
a 12× 12 × 4 bin histogram. The usage of a 4 bin illumination per 12× 12 bin
colour information provides a smaller sensitivity to illumination changes. Our
experiments have shown that this also works by using only 16 × 16 colour bins
without illumination information. However, in this case it becomes impossible to
distinguish black from white objects. The colour distribution pΦ = y

(u)
u u=1...m

with the pose Φ is calculated as

p
(u)
Φ = f

l∑
i=1

δ[h(xi)− u] (1)

where l is the number of pixels in the area, δ is the Kronecker delta function and f

is a normalisation constant ensuring
∑m

u=1 p
(u)
Φ = 1. The probability distribution

functions of both histograms are calculated separately. For the sake of simplicity
we assume that all corresponding objects and background areas are known a-
priori for all Φ. Note that both histogram bins are not binary e.g. we do not
apply traditional segmentation. Next we need a similarity measure of pobject(u)
and qobject(u) to enable tracking and target localisation. The bin-likelihood is
calculated using the Bhattacharyya metric [5,13]:

ρ[p, q] =
m∑

u=1

√
pobj(u) · qobj(u) (2)

In theory a perfect match will result in ρ[p, q] = 1. A non perfect match will
result in a value between zero and one. To avoid certain observations, like for
example a ”white ball” on a ”white wall”, we can assume that the object is
always distinguishable from the background. We extend (2) to

ρ[p, q] =

⌊⌊ m∑
u=1

√
pobj(u) · qobj(u)−

√
pbck(u) · qobj(u)

⌋
− ϑ

⌋
(3)

The background is extracted bin-wise instead of subtracting the summed like-
lihood. This leads to a higher stability in case of the background being alike to
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the object scheme. In general, probabilistic frameworks output the ”most be-
lieved” state, for example they will yield the ”best fit”. In practice this becomes
often a problem when the object of interest is not visible in the image, e.g. due
to partial or full occlusion, or when it is no longer in the image. In this case the
next most believed state output will be considered as a false positive. In order to
overcome that problem we apply thresholding using a lower limit ϑ ∈ R. Also,
in the probabilistic framework of [10] a lower limit was used to detect the loss
of an object.

Tracking whole regions yields relatively expensive computations, e.g. when
we apply sequential Monte Carlo filters. Hence, we apply an approximation that
uses structured sample points [8] near the contour, where the sample points can
be considered as both, object and background. Using this technique allows us to
have an adjustable trade-off between runtime and precision.

3 Probabilistic Object Tracking

In this section we consider the two co-operating memories of our approach.
First we give a brief introduction to Particle Filters and the related loss of
diversity problem in particle filtering. Next we explain the technical details of
both memory models.

3.1 Particle Filters

Particle Filtering [10] or Monte Carlo [7] (MC) was developed to track objects
in clutter. It is a Bayesian probabilistic method. The position of an object is
represented by using a set of n weighted particles. Each particle contains a
”believed” position with an assigned probability π. The pose of the object is
estimated by using the observations as a function of the likelihood of believed
poses/states while the particle filter attempts to maximise the likelihood of the
beliefs. The usual MC algorithm works recursively in four different stages: (1)
first the prediction stage of the motion model that is used to integrate the actions
u to all particles e.g. the particles are simply moved. In the following stage (2)
the observations are used to update the weight π of the particles. As next (3)
the weight of all particles are normalised to one. Finally (4) the particles are
re-sampled to get the posterior distribution. Technically, re-sampling discards
particles with low weights and moves their weights to specific (random) particles
with higher weights. In our implementation we move to the position of a new
”offspring” particle with respect to the weight of the parent particle. For example
a low weight of the parent particle will result in a high transformation.

3.2 Extended Particle Filtering (ePF)

Particle filters approximate probability density functions using a discrete set of
n particles. Filters like the Bootstrap algorithm typically approximate the
density by maximising the probability of particles by re-sampling particles with



176 S. Olufs et al.

1: procedure extendParticleFilter

2: // ...

3: NormaliseImportanceWeights(π̃
(0)
t , ..., π̃

(n)
t )

4: // Selection & Resampling step (Bayes Prediction Step)
5: // generate m clusters from all particles
6: c(j)

j=1...m ← ObtainClusters(x̃
(i)
0...t)

7: // calculate the weight of the clusters
8: �(j)

j=1...m ← NormaliseClusterWeights(�′(j)
j=1...m)

9: for l ← 1 to m do
10: N ′(l)

t ← SelectCluster(c(l))
11: d ← Num(c(l)) // Apply traditional resampling for each cluster..
12: end for
13: // ...
14: end procedure

Fig. 3. Extended Particle Filter, see [7] for the original algorithm

a ”high” probability. The terms ”high” and ”low” are relative in the theory of
probability density functions: The weights of all particles are usually normalised
such that the overall sum is one. This means that particles with a ”high” prob-
ability are considered more important than those with a relatively low proba-
bility. For example ”high” ranked particles can generate more offspring in the
re-sampling step.

The discrete approximation can lead to unwanted side effects caused by the dis-
crete set of particles. For example, it can be the case when we apply particle filters
to semi-bimodal distributions (one short dominant peak and a wide little peak):
This can result in relatively many particles with a low probability and relatively
few particles with a high probability. According to the probability function it can
happen that low weighted particles gain a lot of attention of the filter compared
to the few particles with a high probability, like e.g. the ’particle clinging ’ effect
when the system needs several time-steps to converge. With visual object track-
ing we face the problem that we have several areas with very low probabilities, e.g.
if the background has a minimal similarity of the object. This is exactly the case
with our object model (section 2). It is a relatively liberal model ensuring that
lost objects are re-detected in short time. In the case of a lost object the particles
are distributed randomly. Indeed the usage of a strict probability can reduce the
required time to converge, however it has a high impact on the robustness of the
system. In eq. (3) we introduced a lower limit to reduce the chance of this effect
to occur. In literature this problem is sometimes referred as the ”loss of diversity”
(in particle filters) problem. In practise the probability density is unknown; hence
we have to expect ”particle clinging ”. The ”particle clinging ” effect is also no-
ticeable in the case of Monte Carlo localisation. With bi-modal distributions we
face the problem that all particles will always converge to the highest probability
[15] and may lose the object.

The main reason for the particle clinging effect is that we consider the particles
piece-wise during the re-sampling step. We introduce a new extended Particle
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filtering (ePF) method. It is based on the idea that we consider groups of particles
(clusters) during re-sampling. This means that we treat clusters like ordinary
particles. For example we assign each cluster a count of offspring particles. Each
cluster generates its own offspring while we use the same method as in traditional
methods, e.g. the traditional re-sampling step is applied to each cluster. We use
an implementation based on the mean shift metric [2, pp 790]. This method
builds clusters of the state space using a weighted kernel function and a kernel
size. In contrast to the popular k-means clustering method the number of clusters
is determined by the algorithm itself. Using the clusters we are able to obtain
multiple states from one particle set by applying the MC estimation methods
separately on each cluster. In practice 80% of the entire time only one cluster
appears. In the worst case this extended method performs equally to the non-
extended method.

3.3 Short-Term Memory

The short term memory deals with frame-to-frame changes of Φt in image se-
quences using the extended particle filters. We assume that the tracked object
undergo translation or rotation in the image of the camera. Additionally we as-
sume that only the object size changes while the shape remains unchanged. A
straightforward model of such motion applied to the state is Φt−1 to obtain Φt

using:

Φt = Φt−1 + Δmov (4)

To simplify matters we assume that the process noise is contained within Δmov.
Based on the idea of the Mass Inertia Model we use the particle filtering method
to estimate the translative motion. The relative motion is expressed by ẋ and ẏ
through the translation:

Φxt = Φxt−1 + Φẋt−1 Φyt = Φyt−1 + Φẏ t−1 (5)

The theory of particle filters states that particles with a ”good” proposal will
survive in the sample set and populate in the resample set. The parameters ẋ, ẏ
are propagated in the resample step of the filtering process according to their
prior weights. A ”good” proposal will generate more but concentrated particles,
while a ”bad” proposal will generate fewer but highly varied particles. In theory
the set will convert to ”good” values after a few (> 3) iterations. So we obtain

Φt = Φt−1 +

⎛
⎜⎜⎜⎜⎜⎜⎝

Φẋt−1
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⎛
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1
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0
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⎞
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T

+ ΔNoise (6)

where ρmove, ρω is the expected (maximum) relative movement and orientation
change made in one time step, respectively. rnd() : [-1:1] ∈ R is a non Gaussian
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and non linear random function. π′ represents the normalised weight ranging
from [0 : 1] ∈ R. Note that the (usual) π is normalised such that the sum of all
π is one. To prevent a local minima we use 1.1 instead of 1.0 as normalisation
value and we add uniform distributed noise ΔNoise to the particles. Note that
initially all parameters in Φt are set to zero.

3.4 Long-Term Memory

Although our particle filter is an efficient and robust visual object tracker, it
only provides limited robustness to occlusions. In such a case the particle filter
will converge to a uniform distribution of its particles. In order to keep objects
for a ”longer time” we use a well-tuned ”Multiple Hypothesis Tracking”(MHT)
filter. We apply a MHT algorithm that assigns an ID to the observed tracks of
the particle filter. The original implementation given in [14], later extended in
[6], provides already a full framework to suffice our needs. It is able to cope with
missing measurements and predicts the motion of a-priori known unobserved
objects. In our experimental setup, an unobserved object is ”forgotten” after
2 seconds. Note that the original implementation is bound to linear/Gaussian
systems.

We use a straightforward technique to give a feedback to the short-term mem-
ory: We add b additional particles to the particle filter using the positions of the
predicted hypothesis of missing objects. The position of additional particles (per
hypothesis) depends on its ”age”, e.g. the count of iterations until the last up-
date step to a found observation. An older ”age” will result in a larger spread
of the additional particles. Note that the MHT filter is used only as a ”long
term memory” e.g. its only feeding ”hints” to the short-term memory. The es-
timation of the believed state is done in the short-term memory, e.g. the most
dominant observation is output. In the case of visually gone objects these ”hints”
are ignored by the particle filtering.

3.5 Ego-Motion Compensation

The main idea of ego-motion compensation is to apply the inverse motion of
the robot to the tracker. In our experimental setup we use the self-localisation
of the robot system. We use a simple heuristic to apply the Ego-Motion Com-
pensation to the two tracker sensors: First we calculate the relative movement
of the robot by using the difference of the current and previous poses, like e.g.
the pose obtained from the current and previous iteration. We use the robot’s
pose probability as weight factor for the observed motion, which prevents ”ar-
tificial motion” caused by non explicit poses, like for example during the global
localisation. The weighted deltas are applied to the particles and the MHT hy-
pothesis by shifting them. Note that the particles are only rotated. We do not
shift the particles translatively because it can lead to unwanted behaviours. The
MHT hypotheses are shifted translatively and rotatory according to their deltas.
The motion models of both trackers remain untouched since we assume that the
object itself moves (approaching the robot).
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4 Experimental Results

In this section we will evaluate our approach and compare it to standard tracking
methods like the Mean Shift tracker proposed by [5] and the Colour-Based prob-
abilistic tracking proposed by [7,13]. The Colour-Based probabilisticapproach is
closely related to ours while Mean Shift differs from it. The Mean Shift is usually
used in combination with a Kalman filter.

4.1 Test Environment

We use test sequences from the RoboCup Middle Size context to measure the
performance. Our robot is equipped with an omni-directional camera system
(omni-vision) which is the only sensor of the system. These kind of camera
systems lead to the effect that ego-motion is more intense in the image as in
ordinary pan and tilt setups.

Start

(a) Tour A

Start

(b) Tour B

Start

(c) Tour C

Start

(d) Tour D

Fig. 4. Sample Tours used for Evaluation, the unit of the values are frames

First, tour ”A” tests the object tracking performance over a large range which
is a typical situation in a RoboCup tournament: The ball can be far away from its
observer while it is possible that the object moves rapidly towards the observer
within short time. In tour ”B” we assess the ’trackers’ performance in case of
highly dynamic object movements. The ball is pushed to the centre of the field
and shot (very fast) towards the yellow goal. The shots are repeated three times
and the ball bounces back. The objective of tour ”C” is to test the stability w.r.t.
ego motion which represents a typical behaviour of a RoboCup robot in the role
of a striker. Tour ”D” tests the stability of the trackers w.r.t. a background highly
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Table 1. Accuracy of the trackers, the unit of all values is pixel

Mean Shift Mean Shift + KL MC Tracker our approach
Tour Avr. Max Avr. Max Avr. Max Avr. Max

Tour A 21.125 168.848 5.510 48.664 40.253 348.319 4.651 62.047
Tour B 109.807 291.239 74.895 223.243 42.254 290.805 4.883 115.242
Tour C 153.664 350.957 168.434 513.469 26.951 238.484 9.273 221.215
Tour D 87.963 310.499 7.950 64.315 21.350 215.758 5.438 63.523

similar to the object of interest. Note that we use an ordinary white soccer ball
which contrasts the RoboCup rule-set (2006).

4.2 Results

We use the following settings to parameterise our tracker: 200 particles for the
extended Particle Filter module, 50 ”hint” particles for the MHT module and 50
random particles. During the test runs the ego-motion compensation is not used.
For the other contestant we use values that were proposed by [5,11]: an ellipsoid
area is used for the Mean Shift and MC. We measure the Euclidean error e1 of
the believed pose of the tracker with respect to the ground truth position. In
tours with high dynamics the MC tracker performance is better than the Mean
Shift tracker. Results are vice versa in tours with low dynamics. One reason for
this is the incapability of a Kalman filter to adapt to non-linear/non-Gaussian
dynamics. In tour C the Kalman filter degrades even the performance of the Mean
Shift tracker. Altogether we see that our approach shows the lowest average error
of all contestants.

4.3 Benchmarking

First we analyse the influences of the number of particles on the performance of
different configurations of the tracker, see fig. 5(a). ”MC” denotes a tracker using
traditional Monte Carlo filtering. All configurations converge while the number
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of particles increases. The MC tracker performs better than the MHT tracker.
In cased where MHT loses the object, all particles are set randomly to recover
the position of the object. That’s why MHT converges with an increasing num-
ber of particles. The extended Particle Filter method performs better than the
traditional Monte Carlo. In fact the combination of MHT, random particles and
extended Particle Filter shows the best results. The main reason for the improve-
ment is that the MHT filters adapt better to ”long term” motion (of the robot and
objects) such as the extended Particle Filter, while the MHT filter fails to adapt
to ”short term” motion (e.g. if the ball is shot or is bounces back). It is also shown
in [16] that random particles can improve the performance of particle filters. Next
we consider the influence of the ego motion compensation on the accuracy of the
hybrid tracker. Figure 5(b) shows the cumulative error of tour C using different
configurations. Similar to fig. 5(a) an extended Particle Filter can be improved
using additional particles resulting from the MHT ”long term” memory. We see
that Ego motion compensation significantly improves the performance. Turnings
of the robot have only a slight influence on the performance.

5 Discussion

We showed that our new tracking technique can robustly track objects with
high and low dynamics. Moreover we showed that the usage of our extended
Particle Filter yields better performance compared to traditional Monte Carlo
Filters. It allows us to obtain multiple (disjoint) independent states. The major
drawback of our implementation is that we have to assume a kernel size for the
object in the state space. The usage of too high or too low values can lead to
multiple observations of the same object which degrades the performance to the
level of traditional Monte Carlo filters. [4] proposed a parameter-free version
of the Mean shift algorithm by analysing the density of the state space. We
cannot apply this method because we use too few particles (≈ 1000 particles are
needed). One advantage of our approach is that it only requires a minimum of
initial knowledge about an object’s motion dynamics since we assume that an
object can move in any direction.

Furthermore we faced the problem of the dynamic scale adoption. In our ap-
proach we propagate these parameters using particles, where [5] applies a heuristic
by using the best match probing the scales λ, λ0.9, λ1.1 in every iteration. Both
solutions are sub-optimal and can lead to inaccuracy in case of poor illuminated
environments. In fact the inaccuracy is caused by the false size adaptation which
leads to a ”shift” of the position of the believed track. See [5,13] for more details.
In our approach we observed two bottlenecks: (1) the generation and evaluation
of the colour scheme candidates and (2) the generation of the sample points of
the approximated shape model. The computational time on the evaluation of the
colour scheme highly depends on the number of used bins of the sensor model.

The Mean Shift is the fastest method of all tested trackers. This explains why
it became popular in the visual tracking community. Theoretically the runtime
of our approach and the MC tracker is identical. Practically m of our approach
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Table 2. Computational complexity

Mean Shift MC Tracker our Approach

Complexity O(m log m) O(nm log m) O(nm log m)
Average Runtime < 1ms ≈ 20ms Ball:≈ 6ms, Goal ≈ 11ms
typical n - 150 300
typical m 30x30 30x30 16x8

is much smaller than MC due to the fact that we use sample pixels instead of
the pixel areas. The runtime was measured on a 1.1GHz PentiumM notebook.
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Raúl Rojas, Mark Simon, and Oliver Tenchio

Institut für Informatik
Freie Universität Berlin

Takustr. 9, 14195 Berlin, Germany

Abstract. This paper shows that it is possible to retrieve all parame-
ters of the parabolic flight trajectory of an object from a time stamped
sequence of images captured by a single camera looking at the scene.
Surprisingly, it is not necessary to use two cameras (stereo vision) in
order to determine the coordinates of the moving object with respect
to the floor. The technique described in this paper can thus be used
to determine the three-dimensional trajectory of a ball kicked by a ro-
bot. The whole calculation can be done, at the limit, with just three
measurements of the ball position captured in three consecutive frames.
Therefore, this technique can be used to forecast the future motion of
the ball a few milliseconds after the kick has taken place. The compu-
tation is fast and allows a robot goalie to move to the correct blocking
position. Interestingly, this technique can also be used to self-calibrate
stereo cameras.

1 Introduction

The years 2004/2005 constitute a turning point in the small-size RoboCup
league. Several of the competing teams used chip kickers to lift the ball above
15 cm high robots placed at a distance of 30 to 50 cm from the kicking robot.
Unfortunately for the defending team, it is very difficult to position the goalie
when such a kick occurs. The projection of the parabolic flight of the ball on
the video images looks like a curve. It is not immediately clear, whether the
ball is flying high or is just rolling along a curved trajectory. Fig. 1 shows the
apparent trajectory of a ball kicked high from a corner to the opposite corner of
the field. Fig.1 is the combined result of observing the field with two cameras.
In this paper, we discuss only the mathematics for a single camera overlooking
the field. Generalizing to several cameras whose fields of view do not overlap is
straightforward.

It would be very useful for a defending team to be able to determine the
parameters of the parabolic ball trajectory (that is, the direction of the kick
and its height) immediately after the kick occurs. As we show, any three points
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Fig. 1. Chip kick as seen with two global cameras in a small-size field (the kick starts
in the lower right). The axis dimensions are given in meters. The cameras are located
at the coordinates (1.5, 0) and (−1.5, 0). Their fields of view overlap only slightly in
the middle of the field.

measured at any time in the apparent trajectory of the ball can be used to recon-
struct the three-dimensional parabolic path. We do not need to apply methods
from stereoscopic vision [1], [2].

Kim et al. [3] have studied a related problem: the reconstruction of the par-
abolic flight of a ball from a video of a soccer game. However, their method is
based on using the two extremes of the parabola (when the ball touches the
ground, at the start and at the end of the ballistic motion), and is not suitable
for predicting future parabolic motion using a minimal number of points just
after a kick. A variation of their method, in which they adjust a quadratic func-
tion to many alternative planes of motion, searching among them for an optimal
fit, is too cumbersome and inefficient. The method described here, by contrast,
is direct, does not require any search driven computation, and can be used for
forecasting future motion using only three video frames just after the kick.

2 Projective Transformation and Reconstructed Path

We adopt the following conventions. The origin of world coordinates is on the
floor. The camera is situated above the field. Figure 2 shows how the two co-
ordinate systems (field and camera) are related. Without any corrective com-
putation, the flying ball is interpreted as a “virtual ball” rolling on the ground
along a curved path. In the general case, the three axis of the camera’s system of
coordinates are rotated relative to the field’s coordinate axis. Let us denote by R
the rotation matrix needed for transforming from world to camera coordinates,
and by � the translation vector from the origin of the world system to the cam-
era coordinate system. Therefore, a point with world coordinates p = (x, y, z)T

has coordinates q = R(p − �) in the camera’s coordinate system. The inverse
transformation, from camera to world coordinates, is therefore p = R−1q + �.
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Fig. 2. Coordinate systems of the field and camera

Our computer vision system is self-calibrating. Just by selecting four points
on the field, whose world coordinates are known, such as the corners of the
field itself, the software computes automatically the rotation matrix R and the
translation vector � mentioned above (by solving a system of linear equations,
see [2], [5]). Given the position of an object in a pixel of the imaging chip, the
computer vision can then determine its position in world coordinates on the
field.

In what follows, we assume that the successive projections of the ball on the
field, with world coordinates pi = (xi, yi, 0), for i = 1 . . . , have been transformed
to the camera coordinate system using the transformation R(pi − �). This is a
straightforward step since the matrix R and the vector � are known from the
initial calibration step. This also means that the camera can have any angle and
displacement in relation to the world coordinates, and that the method described
next is completely general.

We assume also, for the sake of the computation, and without losing generality,
that the camera imaging chip is at a unit distance from the pinhole. The point
where parabolic flight starts to be measured has camera coordinates (x0, y0, z0).
The velocity of the ball, after the kick, is given by the vector v = (vx, vy, vz).
The parabolic flight of the ball is then described by the following parameterized
path, in the camera’s coordinate system:

(x, y, z) =
(

x0 + vxt +
1
2
gxt2, y0 + vyt +

1
2
gyt

2, z0 + vzt +
1
2
gzt

2

)

where t is the time elapsed, starting with the first data point (t = 0 for that
point), and (gx, gy, gz) are the components of the earth’s acceleration in the
camera’s coordinate system (which can be tilted with respect to the vertical).1

1 Gravitational acceleration varies with the latitude, because the earth is not perfectly
spherical. The Geodetic Reference formula of 1967, used by geographers, is given by
g = −9.7803185(1 + 0.005278895sin2φ − 0.000023462sin4φ) m/s. Surface features of
the earth are not considered in the formula.
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Fig. 3. Apparent velocity of the “virtual” ball from frame to frame in m/s

The components of the earth’s acceleration with respect to the camera system
can be computed using the rotation matrix R:

(gx, gy, gz)T = R(0, 0,−9.8)T

Let us assume that the kick is never so high as to reach the camera plane (that
is, z �= 0). The projection of the position of the ball in the image plane of the
camera (at a unit distance from the pinhole) is then(

x0 + vxt + 1
2gxt2

z0 + vzt + 1
2gzt2

,
y0 + vyt + 1

2gyt
2

z0 + vzt + 1
2gzt2

)

Assume now that m points in m images are given, where the “virtual” ball
has been detected at times t1, t2, . . . , tm (setting t1 = 0). Let us denote the
coordinates of the m points on the ground with respect to the camera system by
(x′

1, y′
1, z

′
1), . . . , (x

′
m, y′

m, z′m). Then, since “virtual ball” and real ball have the
same projection on the camera chip, we have in general:

(
x′

i

z′i
,

y′
i

z′i
) =

(
x0 + vx ti + 1

2gxt2i
z0 + vzti + 1

2gzt2i
,
y0 + vy ti + 1

2gyt2i
z0 + vzti + 1

2gzt2i

)
Eq.1

We start processing the video sequence only when the ball is moving (which is
easy to check). We denote by αi the ratio x′

i/z′i and by βi the ratio y′
i/z′i. From

the expression above (and for the i-th point) we can derive two linear equations:

z0αi + vzαiti − x0 − vxti + 0 · y0 + 0 · vyti = −1
2
gzαit

2
i +

1
2
gxt2i

and
z0βi + vzβiti + 0 · x0 + 0 · vxti − y0 − vyti = −1

2
gzβit

2
i +

1
2
gyt

2
i

We have two linear equations for six variables. Therefore, three points on the
parabolic flight path provide enough equations (six) which can be used to solve
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Fig. 4. Reconstruction of the parabolic flight (20 to 30 points on the trajectory were
used)

the system. If we use more than 3 points, let us say m, then the general form of
the system of equations we obtain is

D(z0, vz, x0, vx, y0, vy)T = d

where D (for data) is a 2m× 6 matrix and d is a 2m-dimensional vector. Using
the pseudoinverse D+ of D we find the solution

(z0, vz, x0, vx, y0, vy)T = D+d

where D+ = (DT D)−1DT . The pseudoinverse allows us to use as many points
for the calculation as we have already measured, because we are interested in
producing an estimate of the flight trajectory of the ball as soon as possible, but
also as precise as possible.

The computed initial position of the ball (x0, y0, z0) and the velocity vector
(vx, vy, vz) must be transformed now from the camera’s to the world’s frame of
reference. That is, we compute

(xw
0 , yw

0 , zw
0 )T = RT(x0, y0, z0)T + �

and
(vw

x , vw
y , vw

z )T = RT(vx, vy, vz)T

where the superindex w means “world coordinates”. Since R is a rotation matrix,
its inverse is the transpose of R.

A word of caution: since we start the clock ti when we get hold of the first
data frame, it is necessary to start the calculation only when the ball is really
moving fast on the field (a ball being pushed by a robot is usually not so fast).
Fig. 3 shows the velocity of the ball on the ground, as computed from a series
of frames of a real game. The moment after the ball has been kicked (frame
10) is readily identifiable. Therefore, it is easy to avoid performing erroneous
calculations for a ball which has not been kicked (more about this below).



188 R. Rojas, M. Simon, and O. Tenchio

3 Resetting the Clock

We assumed in the previous sections that the clock starts running with the first
available data point (after we detect that the ball was kicked). If we miss the
exact frame in which the ball was kicked, we can start the clock later with any
frame in which we see the “virtual” ball still on the air. When we compute zw

0 ,
we can compare it to 0 (points on the field have z coordinate equal to zero).
If both are different, we can compute the time T it took the ball to reach the
height zw

0 (relative to the field plane). Having this elapsed time, we can go “back
in time” and find the exact point where the ball was kicked.

Let vw
z0 be the initial vertical velocity of the ball, at the moment of the kick.

Then, if vw
z is the vertical velocity in the frame we started recording data, we

know that
vw

z = vw
z0 − gT

where g is the downward earth acceleration, and

zw
0 = vw

z0T − 1
2
gT 2 = vw

z T +
1
2
gT 2.

Solving this quadratic equation, we find T . With T , we compute vw
z0 and the

following corrections for all other parameters (the superindex f means final):

xf
0 = xw

0 − vw
x T vf

x = vw
x

yf
0 = yw

0 − vw
y T vf

y = vw
y

zf
0 = zw

0 − (vw
z T − 1

2gT 2) vf
z = vw

z + gT

4 Experimental Results

No robotic vision system is perfect. There is an intrinsic error in all measurements
of the ball position. This noise, which is even larger when the ball is flying
high, makes necessary to use more than three data points in order to make the
best future projection of the ball’s path. We have experimented with several
different numbers of points. The best results were obtained (for our computer
vision software) when more than 20 points were used for the ball trajectory. The
camera was running at 52.7 frames/second. The ball was in flight for around
60 frames, so that we had to use one third of the data points to get a good
reconstruction of the parabolic path, with subcentimeter accuracy.

Fig. 4 shows the result of the inverse computation described in this paper.
Given the path of the ball projected on the ground, we computed parabolas
based on 20 to 30 data points from as many video frames. The ball is in flight
for around 50 frames. All parabolas are very near to each other.

Fig.5 shows a reconstruction computed with only ten frames, starting the
computation at different moments (between frame 10 and frame 20). The figure
is a screenshot of our vision software for the small-size league [4],[5], enriched
with this new feature.
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Fig. 5. Reconstruction of the parabolic flight (10 points on the trajectory were used,
several different start frames were selected). The color screenshot is from our our small-
size computer vision program.)

Fig. 6. Predicted impact position computed with 5 to 14 points from the trajectory.
The predicted impact position is at the end of each parabolic path line. The isolated
points are “virtual” images of the ball, before and after impact.

Fig.6 shows the predicted impact position of the ball after a chip kick, using
different numbers of data points (from 5 to 14 frames). Each prediction is the
tip of the predicted flight line. As can be seen, the spread of the prediction is
smaller than 1 cm. Such an error, after a 2m chip kick, is almost negligible.

Fig.7 shows how the three components of the 3D-velocity of the ball converge
to very precise values, when the number of points along the parabola is increased
from 5 to 25. Already ten points produce a very good estimate of the velocity
vector. The time needed, when using ten frames for the computation, is about
one fifth of a second.

5 Reaction Time

The parabolic flight reconstruction would be only of theoretical interest if the
goalie had not time to react. We show now that in many cases the goalie can
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Fig. 7. Convergence of the three components of the velocity vector for different number
of data points on the parabola

indeed intercept the ball. Whatever the distance from the goal line is, the ball has
to be lifted above the goalie, that is, above 0.15 m. The time the ball is in the air
in parabolic flight is given by t = 2

√
2h/g. Given a minimum height of 0.15 m,

and the acceleration constant g, we obtain a minimum time of flight of t = 0.35
seconds. When the ball falls (for half of the flight-time ) starting from rest at
the highest point of a parabola just high enough to fly above a robot, the final
velocity is vz = −0.175 s× g, which is around −1.7 m/s. This is also the initial
vertical velocity of the ball, when it is chip-kicked (with positive sign). Therefore,
any slower ball will not fly high enough to go above the goalie or any robot on
the field. This can be used as a fast check for a “dangerous” flying ball. Fig. 8
shows how fast the “virtual” ball is accelerated by our chip kick. The maximum
apparent acceleration value is around 40 g’s. The apparent acceleration remains
positive as long as the ball is approaching the camera objective and its apparent
speed continues to increase. When the ball starts falling, it seems as if the ball
falls being accelerated by more than one g.

Now we can consider if a chip kick is stoppable. The delay from our vision
system is about 100 ms (that is the time it takes an image to be accepted
and processed)[4]. Assume that we use 5 frames for predicting the parabolic
flight (first provisional estimation). At 52,7 frames per second, those 5 frames
correspond to 95 ms. The robot has just 350− 195 = 155 ms for moving to the
approximate blocking position. If the distance is not very large, the robot could
reach the correct position. Our robots travel at around 2 m/s. They can move
31 cm in 155 ms, but only after having been accelerated. The question becomes
therefore how fast can the robots start moving from scratch.

First we would like to have a table of the flight time of the ball for different
distances on the field. Let us assume that the kick is optimal: the ball goes only
as high as it needs to go, and no higher. The ball can go forward as fast as
desired, but the real limit for the ball is to go above the goalie and below the
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Fig. 8. Apparent acceleration of a ball kicked high (virtual ball acceleration)

goal bar (positioned at 15 cm). We do the following: we position the goalie at a
distance r from the goal line. The goalie has a width of 18 cm and a height of
15 cm. The ball has to go under the bar. The ball has a diameter of 4 cm (in
reality 4.3 cm, but let us simplify). We then compute the best parabolic shot
that clears the robot and enters the goal box going below the bar. The time of
flight is then plotted according to the coordinates on the field of the point where
the ball is kicked.

The results obtained with this method can be seen in Fig.9. As stated before,
there is a minimum time of flight of around 0.35 seconds. When the goalie is 10
cm away from the goal line, the minimum time for a chip kick over the goalie
from far away (5 meters) rises to about 0.7 seconds, double the minimal time.
However, teams cannot shoot so impressively from far away. They cannot adjust
the angle of the shoot, which is fixed, and this produces suboptimal trajectories.
Therefore, in practice, the real time of flight will be always much larger than the
lower and optimal bound computed here.

We measured the velocity of some of our robots. Due to initial inertia, our
goalie needs around 0.2 seconds to move 10 cm. An optimal shot from midfield
requires around 0.5 seconds flight time. If we collect 10 data points before moving
the robot (in 0.2 seconds), and if the vision delay is 0.1 seconds, we have 0.2
seconds left to position the goalie. If we need to move the robot less than 10 cm,
stopping a chip kick is possible. Parabolic flight prediction has been incorporated
now in our vision software. It is possible to stop all chip kicks coming from far
away. Stopping nearer chip kicks depends on the position of the robot. Chip-kicks
from anywhere near the goal area are unstoppable, if the goalie is not touching
the line.
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Fig. 9. Time of flight in seconds for optimally lifting the ball above the goalie and
scoring (left image). The goalie has been positioned 10 cm away from the goal line.
Lateral view of the same surface (right figure). The maximum distance is 6 meters (x-
coordinate 6). The time of flight was set to zero 50 cm from the center of the goal box
(a graphic artifact arises). Chip kicks from far away require 0.7 seconds. The minimum
flight time for lifting the ball above the goalie is 0.35s.

6 Conclusions

This paper has shown that after a chip kick it is possible to reconstruct the
three-dimensional flight path of the ball using a single camera overlooking a
field. We have shown that the minimal velocity required for clearing a small-size
robot is 1.7 m/s. This criterion can be used as a trigger for starting the code
which computes three-dimensional paths. Hard flat shots can be discriminated
by just looking at the “straightness” of the ball’s path. A false alarm triggered
by a robot pushing the ball in a curved path can be handled easily since no robot
can be moving right behind a ball in parabolic flight. It can also be checked if
the path corresponds to an acceleration compatible with the gravity constant. If
not, the parabolic path can be discarded.

The method described in this paper can be used also in the mid-size league
with omnidirectional or frontal cameras. Since the computer vision software for
omnicameras produces an estimation of the position of the ball on the floor, as
if we had a camera overlooking the field, the method described here can be used
without any modification (provided the ball is visible under the horizontal plane
of the omnicam).

There are other applications for our technique, for example, for obtaining
the orientation of a camera overlooking a featureless area. If the camera is not
pointing straight down, its orientation can be computed by tracking a ball thrown
in front of the camera. The method described in this paper must be just extended
to deal with a gravitational acceleration with unknown components (gx, gy, gz)
in the tilted frame of reference of the camera. In that case, Eq. 1 transforms into

(αi, βi) =
(

x0 + ti vx + 1
2gxt2i

z0 + tivz + 1
2gzt2i

,
y0 + ti vy + 1

2gyt
2
i

z0 + tivz + 1
2gzt2i

)



Parabolic Flight Reconstruction from Multiple Images from a Single Camera 193

where (αi, βi) are the ball coordinates in the camera’s chip. This expression
provides two linear equations for each detected ball in each frame. For the nine
unknowns we need at least five points to compute the value of (gx, gy, gz), and
from this, the angle of the camera axis with the vertical.

There is also an application for stereo-vision. If two stereoscopic cameras
overlook a common field of view, and if their pose is unknown, an object thrown
in parabolic flight can be used to determine the direction of gravity relative to
each camera. The cameras do not need to be triggered simultaneously. Bringing
the reconstructed parabolic flight curves for each camera in correspondence can
then be used to calibrate the stereoscopic vision system. The numeric for such
stereoscopic calibration without camera parameters is much simpler than that
used by other groups [6], [7], and does not require matching points, nor the world
coordinates of the corresponding points in space. This result is more general than
Luong and Faugeras technique [8], and will be published elsewhere.
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Abstract. A method is proposed for calibrating Catadioptric Omni-
directional Vision Systems. This method, similarly to classic camera cal-
ibration, makes use of a set of fiducial points to find the parameters of
the geometric image formation model. The method makes no particu-
lar assumption regarding the shape of the mirror or its position with
respect to the camera. Given the camera intrinsic parameters and the
mirror profile, the mirror pose is computed using the projection of the
mirror border and, eventually, the extrinsic parameters are computed by
minimizing distance between fiducial points and back-projected images.

1 Introduction

A catadioptric imaging system is built combining reflective (catoptric) and re-
fractive (dioptric) elements. They allowed building omni-directional sensors [1]
at an affordable price, which made catadioptric systems become of widespread
use also in fields like video-surveillance and teleconferencing; in contrast omni-
directional dioptric-based systems usually cost much more.

The choice of a specific mirror shape is based mainly on required resolution,
manufacturing cost, assembly cost and geometric properties. With respect to
these properties, mirror shapes can be classified in two categories: Single View-
point (SVP, also called central) imaging systems, and Non-SVP (non-central)
imaging systems [2]. In SVP mirror systems, the lines of those incoming rays,
which are reflected to the image plane, intersect at a single point, called Effective
Viewpoint (see Fig. 1). It has been proved that the only useful mirror shapes
with this property are hyperboloid mirrors (coupled with a perspective camera)
and paraboloid mirrors (coupled with an orthographic camera). The uniqueness
of the viewpoint allows a mapping of every scene point on the image plane,
similarly to what happens with perspective cameras. The result of the catadiop-
tric projection is equivalent to a panoramic image taken with a camera rotating
around its viewpoint, and the resulting catadioptric image can be rectified to
obtain an omni-directional undistorted perspective image called panorama [3,4].
On the other hand, SVP imaging systems suffer from a number of problems.
Firstly, the SVP constraint leaves little room for changing other optical para-
meters that could be useful to tune because the relative pose of the mirror and
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(a) central sensor (b) non-central sensor

Fig. 1. Comparison between a central catadioptric system (featuring an hyperbolic
mirror) and a non-central one. Note that in a all rays intersect at the hyperboloid
focus, while in b there is no unique intersection for the rays.

the camera are strictly bound. Due to the curved vertical section of the mirrors,
spatial resolution is badly distributed: typically the ground and the camera fill
the central part of the omni-directional image, leaving little room, on the periph-
eral part of the image, for the (interesting) surrounding environment. Regarding
assembly costs, cameras based on hyperboloid and paraboloid mirrors are more
expensive needing very accurate assembly, for the viewpoint to be unique.

The work on non-SVP sensors aimed at overcoming these limitations. Early
non-SVP systems were based on a spheric mirror [5] or on a conical mirror [1]
due to the low cost of such mirrors and the mathematical simplicity of the pro-
jection. In general, however, non-SVP systems pose no constraints on mirror
shape and position. Catadioptric images taken with such devices cannot be rec-
tified though, i.e., there is no function that takes a non-SVP omni-directional
image and unwraps it into a perspective image. The freedom in the mirror shape,
however, can be exploited for designing optimal mirrors for each specific appli-
cation. Examples include single-camera stereo-vision [6], multi-part mirrors [7]
and many kind of non-distorting mirrors [8].

This paper contribution is an algorithm to calibrate non-SVP systems using
the projection of the mirror border and a set of points whose scene and image
coordinates are known. By calibration we mean to estimate the mirror pose (with
respect to the camera), as well as the camera pose (with respect to a world
reference frame). We will be assuming that the camera intrinsics are known.
We will therefore call intrinsic parameters of the catadioptric system the mirror
pose; extrinsic parameters of the catadioptric system the camera pose in the
world reference frame. By knowing the calibration parameters it will be possible
to map every pixel onto its interpretation line. These lines can then be exploited
for metrology. The assumption we make is that the mirror shape is known.

Most of the scientific literature regarding catadioptric system calibration deals
with SVP systems, probably because of their availability off-the-shelf. Since SVP
systems assume that the mirror pose is known, their calibration consists of find-
ing 1) the intrinsic parameters of the mirror-and-camera pair (seen as a single
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indivisible object) and 2) the extrinsic parameters, similarly to what happens
with traditional cameras. There are even some ready-to-use calibration tools
available on the Internet, e.g. [9], [10], [3].

The calibration of non-SVP systems, on the other hand, is a surprisingly un-
studied problem. The only exception is the particular case of non-SVP systems
featuring a conic mirror, like the COPIS [1]. In this case, if the cone axis matches
the camera optical axis, it can be proved that there is one viewpoint for each
direction the optical rays come from. The set of these viewpoints, sometimes
referred to as view-circle, allows the conic projection to be described through
relatively simple equations; it also allows to calibrate the camera intrinsic para-
meters together with the rest of the catadioptric system, like one would do with
a SVP system. In our experiments, for the sake of ease, we used a conic mirror,
but this will not necessarily be coaxial to the camera. In fact, the algorithm we
develope (see Sect. 2.2) is equally fit to any mirror shape.

Strelow’s method [11] for calibrating generic catadioptric systems separates
the perspective projection from the catadioptric part and deals only with the
latter. The mirror can be of any shape as long as the surface equation is known.
The method consists of calculating the mirror position w.r.t. the camera (i.e.,
the catadioptric system intrinsic parameters) using the image of one or more
targets whose three-dimensional coordinates (w.r.t. the camera) are known, and
then minimizing the difference between the observed position on the image and
their respective predicted back-projections, where these depend on the roto-
translation describing the mirror pose. This requires solving a non-linear system
of equations. This method obtains a precision of about 1%, but it suffers from two
problems. Firstly, the calibration points coordinates must be known w.r.t. the
camera reference frame, i.e., the camera extrinsic parameters must be known
before the calibration. The second problem is tied to the intrinsic complexity
of a non-SVP projection model. In order to back-project a scene point onto the
image one has to find the line, exiting from the scene point, which, once reflected
by the mirror, passes through the camera pin-hole. To minimize the distance
between image points and back-projected scene points this method requires for
each minimization iteration, and for each point, to numerically resolve a non
linear system.

2 Our Method

In the first place, we shall start by looking at the geometric model adopted to
describe catadioptric imaging systems; we shall then examine the two phases
of our method: mirror localization and extrinsic parameters computation. In
Fig. 2 we see a schematic drawing of a typical catadioptric system. The cube
in the middle, indicated with C, represents the camera (camera reference frame
xCyCzC). Note that this reference frame has a precise physical meaning, as its
origin is the center of projection. It is not defined arbitrarily, but depends on the
camera intrinsic parameters. In front of the camera there is a solid of revolution
(SOR) mirror. Solids of revolution feature an axis of symmetry and a profile. We



On the Calibration of Non Single Viewpoint Catadioptric Sensors 197

Fig. 2. Geometric model of a catadioptric imaging system

can define a reference frame local to the mirror whose z-axis corresponds to the
SOR axis and whose origin lies in the center of the mirror base (mirror reference
frame xMyMzM ). The mirror is in a generic position with respect to the camera:
its axis is not parallel to the optical axis and it does not pass through the pinhole.
The unknown roto-translation from the camera reference frame to the mirror is
TC→M : we will see how to compute it in Sect. 2.1. In Fig. 2 we see a third
reference frame, xW yW zW , called world reference frame; all distances measured
by the user are defined in this frame. Its z-axis is vertical upward and the origin
is usually located in a easily recognizable point. In Sect. 2.2 we will see how to
compute the roto-translation TW→C and, as a consequence, the roto-translation
TW→M . In analogy with the terminology of traditional camera calibration, we
will call the coefficients of TW→C extrinsic parameters of the catadioptric system.
Because all rigid transformations are invertible, we will refer to the inverse of
the above mentioned roto-translations, i.e., TM→C , TM→W e TW→C , whenever
this would help readability.

2.1 Mirror Localization

The method exposed here is based on the analysis of the conic on the image
plane corresponding to the projection of a circle. The perspective projection of
a circle is an ellipse. The mirror pose can be estimated by this circle-to-ellipse
correspondence. The idea of using the projected ellipse to estimate the circle
pose is not new and it has found various applications (e.g. [12]); an introduction
to this problem can be found in [13]. From the observed perspective projection of
a circle with known radius, the circle support plane and the position of its center
can be inferred analytically. Let the real, symmetric, non-zero matrix Q be the
ellipse corresponding to the projection of a circle of radius r in the normalized
camera reference frame (i.e., where the camera pinhole is in the origin and the
image plane has equation z = 1). Because the matrix representation of quadrics is
unique, up to an arbitrary scale factor, we choose a scale κ such that detκQ = 1.
From matrix theory, we know κ = 3

√
− 1

detQ . In the rest of this section, Q will
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refer to the normalized matrix. Let λ1, λ2 e λ3 be the eigenvalues of Q, where
λ3 < 0 < λ1 ≤ λ2, and let û1, û2 and û3 be the (orthonormal) eigenvectors
corresponding to λ1, λ2 and λ3 respectively. The normal n̂ to the circle support
plane is given by:

n̂ = û2 sin θ + û3 cos θ (1)

where sin θ =
√

λ2−λ1
λ2−λ3

, cos θ =
√

λ1−λ3
λ2−λ3

. The distance of the support plane from
the pinhole is

d = λ
3
2
1 r . (2)

To compute the position of the circle centre one only needs to multiply the
inverse of the ellipse with the normal to the support plane:

c = Q−1 · n̂ . (3)

Note that the sign of eigenvectors û1,2,3 are arbitrary. Since both n̂ and −n̂
represent the same plane orientation, from (1) we deduce that

1. If λ1 = λ2, then n̂ =
√

λ1−λ3
λ2−λ3

û3, therefore there exists only one solution
regardless of the sign of û3.

2. If λ1 �= λ2, then there exist two interpretations.

In the second case, both interpretations are physically plausible, but of course
only one is real. Unfortunately, a single image is not enough to solve this ambigu-
ity, therefore an implementation of this algorithm will need more information in
order to choose one of the two solutions. We will bring both hypothesis foreward
up to the solution of the extrinsic parameters step. Only at that point we will
have the ambiguity solved, by choosing the solution that gives the best estimate
(with the smallest residual). In other applications, where two concentric circles
are used, the solution can be directly disambiguated [14]; this could be useful
for multi-part mirrors, like the one in [7].

2.2 Calibration of the Extrinsic Parameters

The extrinsic parameters are the coefficients of the transformation TC→W that
converts a point coordinates from the camera reference frame xCyCzC to the
world reference frame xW yW zW . To compute these parameters we take a set of
N calibration points or fiducial points whose scene coordinates (w.r.t. the world
reference frame) and image coordinates are known. If we know the camera intrin-
sic parameters we can use the fiducial points image coordinates to compute their
interpretation lines, with respect to the camera system. If we know the pose of
the mirror, with respect to the camera system, we can compute the reflected in-
terpretation lines. We also know that these lines come from their corresponding
scene points. We know the reflected interpretation lines with respect to the cam-
era system, while the fiducial points scene coordinates are known with respect
to the world system, but we do not know the transformation between the two. We
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first see how to compute the reflection onto a surface of revolution, then we use
the reflected interpretation lines for the estimation of the extrinsic parameters.

Reflection of the Interpretation Lines. If the mirror profile can be repre-
sented by a second degree equation, then the mirror shape is a quadric
(a cone, a paraboloid or a hyperboloid) and the reflected line can be deter-
mined analytically. The same holds if the profile is a spline1 of second degree
or less, as long as the reflection is computed for each segment of the spline. On
the other hand, when the profile is described by a third degree equation, the
mirror shape is represented by a sixth degree equation that cannot be solved
analytically [15]. In this work, without loss of generality, we implemented the
reflection for quadric-shaped mirrors and we only applied it to conic mirrors. As
explained in the following section, the same theory can be applied to mirrors of
any shape using a local spline approximation of the profile.

Let Q ∈ �4×4 be a symmetric, non-zero matrix representing the quadric. The
locus of points belonging to the quadric surface is given by F = xTQx = 0 where
x = [x, y, z, 1]T. Given a point p = [px, py, pz]

T and a direction d̂ = [dz , dy, dz]
T,

(||d̂|| = 1), let x(t) = p + d̂ · t be the parametric equation of the line passing
through p with direction d̂, whose intersection with the quadric we want to
compute. By substituting the line into the quadric, grouping and rewriting as a
function of t we obtain A · t2 +B · t+C = 0 which is a second degree polynomial
in t. We solve it to find t1, t2 and substitute them into the line to find the
intersection points P 1, P 2 of the line with the quadric. Only one of the two
intersections has a physical meaning, while the other is a point either behind
the camera or outside the mirror or also occluded by the mirror itself (Fig. 4a).
Once the intersection point P i is known, we compute the normal to the quadric
in P i as

n̂i =
[

∂F
∂xi

∣∣∣
P i

∂F
∂yi

∣∣∣
P i

∂F
∂zi

∣∣∣
P i

]T

, (4)

and then we apply the law of reflection to the line d̂: r̂ = 2
(
n̂Td̂

)T

n̂− d̂ (Fig. 3).

Reflection on Mirrors of any Shape. In genral, mirrors are defined by the
points of their profile, which can therefore approximated by a linear spline. This
means that the mirror surface is a stack of conic trunks. To intersect a line with
a conic trunk, one must first intersect the line with the full cone, and then check
whether this intersection falls within the trunk. As we have a stack of trunks,
the intersection must be computed separately for each trunk. Typically, only one
intersection will survive the interval test; if more than one does, the one closest
to the origin of the ray is chosen. In Fig. 4 ray r intersects all cones (m1..3), but
only the one with m2 falls within the validity interval of the trunk.
1 A spline is a curved line formed by two or more vertices, or control points, and a

mathematical formula describing the curve(s) between them; if this formula is an
n-th degree polynomial, then we get an n-th degree spline.
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(a) Intersection of incoming
ray with the mirror surface

(b) Reflection of a ray on a
curved surface

Fig. 3. The reflection model for the interpretation lines

Computing the Roto-translation. The reflected interpretation lines pass
through their corresponding scene points, i.e., the distance between a line and
its point is zero. We look for the roto-translation TC→W that zeroes the distances
between the fiducials and their reflected interpretation lines. Actually, because of
noise, the lines will only pass close to the fiducials, i.e., we can only find a roto-
translation M that minimizes the sum of the squares of the fiducial distances
to their interpretation lines. If we call pi and qi(t), (i = 1...N), respectively the
fiducials and the parametric equations of the reflected interpretation lines. We
look for a M that minimizes

J =
N∑

i=1

‖pi −Mqi(ti)‖ (5)

where ti is the value of the parameter t that minimize the distances between
the lines qi (t) and the fiducials pi, for a given M . M is computed by solving a
nonlinear system of equations. The non-linearity comes from the orthonormality
constraint on the rotational part of M .

Fig. 4. Intersection of a line with a mirror profile approximated by a linear spline
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3 Experimental Results

In order to test the correctness of the algorithm we tried it on synthetic images,
so as to compare the results computed by our method against a ground truth.
We performed the intrinsic and extrinsic calibrations separately, to avoid errors
in the first phase to corrupt the results in the second phase. At the end of this
section, we provide a complete calibration for a COPIS system.

3.1 Intrinsic Parameters

For space limits we present only two tests, using the same conic mirror, tilted
by θ = 0◦, 10◦ respectively. For each test we present the expected value (ground
truth, GT) and the values obtained for the mirror position (c, c1, c2 respec-
tively), for the projection of the mirror centre (p, p1, p2, in pixels) and for the
normal to the support plane (n̂, n̂1 and n̂2, where n̂ = [sin θ, 0, cos θ]T). We also
computed the angles φ, φ1, φ2 respectively formed by n̂, n̂1 and n̂2 with the
z-axis of the camera reference frame. We present the differences Δ1 = φ − φ1

and Δ2 = φ − φ2 (expressed in degrees) between the expected angles and the
computed ones. This difference is a good estimate for the mirror orientation
error.

1. θ = 0◦

ĉ=
[
0 0 100

]T
, c1 =

[
0.066 −0.146 100.003

]T
c2 =

[
0.01 −0.312 100.003

]T
p =

[
319.5 239.5

]T
, p1 =

[
319.681 240.703

]T
, p2 =

[
319.521 238.499

]T
n̂ =

[
0 0 1

]T
, n̂1 =

[
0.001 0.010 0.999

]T
, n̂2 =

[
0.000 −0.008 0.999

]T
Δ1 = 0.632, Δ2 = 0.547

1. θ = 5◦

ĉ =
[
0 0 100

]T
, c1 =

[
3.492 0.097 100.22

]T
c2 =

[
0.174 0.069 100.281

]T
p =

[
319.5 239.5

]T
, p1 =

[
303.092 239.389

]T
, p2 =

[
319.169 239.66

]T
n̂=

[
0.087 0 0.996

]T
, n̂1 =

[
0.048 0.000 0.998

]T
, n̂2 =

[
0.085 0.001 0.996

]T
Δ1 = 2.222, Δ2 = 0.127

2. θ = 10◦

ĉ =
[
0 0 100

]T
, c1 =

[
7.003 0.092 100.029

]T
c2 =

[
0.102 0.074 100.274

]T
p =

[
319.5 239.5

]T
, p1 =

[
285.694 238.972

]T
, p2 =

[
319.51 239.645

]T
n̂=

[
0.173 0 0.984

]T
, n̂1 =

[
0.105 0.000 0.994

]T
, n̂2 =

[
0.175 0.001 0.984

]T
Δ1 = 3.997, Δ2 = 0.067
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(a) GT image (b) Estimate (c) Diff. image

(d) Estimate (e) Reconstr. image (f) Diff. image

(g) GT image (h) Estimate (i) Diff. image

Fig. 5. Mirror not tilted (a,b,c); tilted 5◦ (d,e,f); tilted 10◦ (g,h,i)

Note how an increase in the mirror tilt improves the precision in the (correct)
pose estimate and increases also the difference between the two solutions.

3.2 Extrinsic Parameters

We generated a set of images where the world reference frame matched the
camera reference frame, in order to have a trivial ground truth. We then applied
the calibration algorithm keeping the fiducials set fixed but varying the initial
estimate. This test allowed us to verify when, and how quickly, the algorithm
converged. As a measure of the quality of the result we used (5), normalized
with respect to the number N of fiducials (ξN ). For each test, we present the
initial estimate for rotation angle θ̃ (in degrees, around the world z-axis), the
initial estimate for translation T̃ , the goodness of the initial estimate ξ̃N (before
a solution is computed) and the goodness of the calibration ξN (after a solution
is computed), and the number n of iterations performed by the algorithm. The
results are reported in Tab. 1.
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3.3 Calibration of a Real COPIS System

Before the catadioptric calibration can begin, the intrinsic parameters of the
camera must be known. We used camcal [16] to calibrate our 8mm Sony XC711,
which yielded the following intrinsic parameters matrix:

K =

⎡
⎣−626.438 0 317.218

0 −604.007 231.424
0 0 1

⎤
⎦ .

The mirror base is well visible and, once the ellipse equation is extracted, the
following values are found for the normal n̂1,2, the centre position c1,2, and its
projection p1,2:

n̂1 =
[
0.133 0.0059 0.991

]T
, n̂2 =

[
−0.0072 −0.0265 0.999

]T
c1 =

[
6.388 −1.603 123.501

]T
, c2 =

[
9.216 −0.951 123.329

]T
p1 =

[
284.815 239.268

]T
, p2 =

[
270.028 235.754

]T
Because the two solutions are so similar, we cannot solve the ambiguity yet

and so we estimate the extrinsic parameters for both. We will eventually choose
the solution with the smallest residual. The next step is the collection of fiducial
points. We are currently developing a new version of the tool, whose calibration
pattern is a checkerboard to ease fiducials collection. That not available, we
choose 40 among the most visible dots of the grid pattern (the ones in red in
Fig. 6a). Having collected the fiducials, an initial estimate is needed to compute
the extrinsic parameters. This initial estimate consists of a rotation matrix R̃ and
a translation vector T̃ . The latter can be measured by hand, while the rotation
may be input as the angle θ̃ around the world z-axis, assuming that the camera
is approximately pointed vertically upward. In this case, the initial estimate was

R̃ = I, T̃ =
[
−1105 −780 −20

]T
which yielded the following residuals (for the two possible mirror poses): ξ̃N1 =
80924, ξ̃N2 = 2306.78. After the extrinsic parameters are computed, we get the
following results (the subscripts indicate either the first or the second pose):

R1 = I, T1 =
[
−1105 −780 −20

]T
, ξN1 = 80924

Table 1. Convergence speed and quality of the results w.r.t. the initial estimate

θ̃ 0 0 0 0 0 0 1 2 10 1 1

T̃

�
�

0
0
0

�
�
�
�

0
0
1

�
�
�
�

0
0
2

�
�

�
�

0
0
10

�
�

�
�

10
0
0

�
�
�
�

10
10
10

�
�

�
�

0
0
0

�
�

�
�

0
0
0

�
�

�
�

0
0
0

�
�

�
�

0
0
10

�
�

�
�

10
10
10

�
�

ξ̃N 0 1.232 4.926 123.143 33.222 470.88 48.321 1753.97 5109.54 205.589 808.635
ξN 0 0 0 0 0 0 0 0 112.241 0 0
n 1 7 14 68 35 116 82 161 490 107 225
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(a) Calibration pattern

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

line 1

(b) Convergence speed

Fig. 6. Calibration of a COPIS system

R2 =

⎡
⎣ 0.999 0.019 −0.02
−0.019 0.999 −0.021
0.019 0.022 0.999

⎤
⎦ , T2 =

⎡
⎣−1106.29
−760.09
−87.88

⎤
⎦ , ξN2 = 699.438 .

Note how the residual of option 1 is much greater than the residual of option 2.
Also note that a solution could not be computed for option 1. This means that
the correct mirror position is option 2. The convergence graph can be seen in
Fig. 6b. Using these 40 fiducials, an AMD 2400+ can compute approximately
100 iterations per second.

A comparison with our method is unfortunately unfeasable. The only other
tool that matches ours in flexibility is Strelow’s [11], but it is based on a different
setup and no software is available for download. All other tools are not generic
w.r.t. mirror shape or pose.

4 Conclusions

We described a mathematical model for catadioptric image formation which is
generic with respect to mirror shape and pose and to the camera optics. Then,
we introduced a calibration method that allows to estimate the model para-
meters. The experimental session proves the method to be valid and gives a
quantitative measure of the precision The main flaw of decomposing the cali-
bration process in mirror localization and extrinsic parameters estimate is that
an error in the first phase propagates to the second phase. A way to overcome
this problem is to add a third phase where a global post-optimization is per-
formed. This phase consists of solving a non-linear system where all parameters
(both intrinsic and extrinsic) are unknown, and where the results of the pre-
vious two phases are used as an initial estimate; this is what we are currently
developing.
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Abstract. The aim of this paper is to propose an automated refereeing and 
analysis tool for robot soccer. This computer vision based tool can be applied 
for diverse tasks such as: (i) automated game refereeing, (ii) computer-based 
analysis of the game, and derivation of game statistics, (iii) automated 
annotations and semantic descriptions of the game, which could be used for the 
automatic generation of training data for learning complex high-level behaviors, 
and (iv) automatic acquisition of real game data to be used in robot soccer 
simulators. The most attractive application of the tool is automated refereeing. 
In this case, the refereeing system is built using a processing unit (standard PC) 
and some static and/or moving video cameras. The system can interact with the 
robot players and with the game controller using wireless data communication, 
and with the human spectators and human second referees by speech synthesis 
mechanisms or using visual displays. We present a refereeing and analysis 
system for the RoboCup Four-Legged League. This system is composed by 
three modules: object perception, tracking, and action analysis. The camera 
placement issue is solved by human controlled camera’s placement and 
movement. Some preliminary experimental results of this system are presented. 

1   Introduction 

One of the RoboCup main goals is allowing robots play soccer as humans do. One 
interesting extension of this idea is having automated refereeing in the soccer games. 
The long-term goal could be developing robot referees, but an interesting intermediate 
step, to be developed in the next few years, is building automated refereeing using 
static and/or moving video cameras. Such a refereeing system can interact with the 
robot players and with the game controller using wireless data communication, and 
with the human spectators and human second referees by speech synthesis 
mechanisms or using visual displays. 

Video-based refereeing employs computer vision methods that allow automating 
tasks like tracking, refereeing (taking refereeing decisions), annotation, indexing and 
generation of semantic descriptions. Therefore, an automated soccer referee is an 
analysis tool that can also be employed for performing a computer-based analysis of 
the game, an automated summary of the game, or for obtaining game statistics (% of 
the time that the ball is in each half of the field, % of ball possession of each team, 
number of goals of each team player, number of direct kicks to the goal by each team, 
                                                           
∗ This research was partially supported by FONDECYT (Chile) under Project Number 1061158. 
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number of faults of each team and each team player as ball holding, illegal defender, 
etc.). This statistical analysis can be also carried out offline, that means that the tool 
can be employed for analyzing game videos obtained using different recording 
systems. 

Moreover, the same analysis tool can be used for obtaining annotations and 
semantic descriptions of the game, which could be used for the automatic generation 
of training data for learning complex high-level behaviors, as for example robot 
passing or team strategy planning. Furthermore, taking into account the availability of 
realistic simulators in some of the RoboCup soccer leagues (e.g., SimRobot [1] and 
UCHILSIM [2] in the Four-Legged league), the obtained annotations and semantic 
descriptions of the game can be used for the acquisition of real game data to be used 
in simulations. In this way, a robot controller can be adapted in a simulation of a real 
game situation, previously acquired by the automated analysis tool. 

In this context, the aim of this paper is to propose such an automated refereeing 
and analysis system for the RoboCup Four-Legged League. To the best of our 
knowledge a similar system has not been proposed in the literature. 

This paper is organized as follows. In section 2 some related work is presented. 
The here-proposed refereeing and analysis system is presented in section 3. In section 
4 some experimental results of the application of this system are presented. Finally, in 
section 5 some conclusions of this work are given. 

2   Related Work 

Computer vision based analysis of sport videos has been addressed by many authors 
(e.g. [3]-[23]), and nowadays is a hot topic within the multimedia video analysis 
community. There are also successful video analysis programs that are being used by 
TV sport channels (e.g. Hawkeye [24] and Questec [25]). Applications have been 
developed in almost all massive sports such as tennis ([13][14][16][20]), soccer 
([4][6][7][17][18][22][23]), baseball ([10][15]), basketball ([12]), and American 
football ([11]). However, to the best of our knowledge the automatic analysis of robot 
sports, as for example robot soccer, has not been addressed in the literature. 

The major research issues for the automatic analysis of human sports include (see a 
survey in [20]): ball and players tracking, landmarks detection (goal mouth, oval, side 
lines, corners, etc.), tactic analysis for providing training assistance, highlight 
extraction (ace events in tennis, score events in soccer and basketball, etc.), video 
summarization (automatic generation of game summaries), content insertion (e.g. 
commercial banner replacement in the field), and computer-assisted refereeing (e.g. 
offside detection). Some of these research issues are still open as for example fully 
autonomous tactic analysis, soccer offside detection considering player’s intention, or 
video summarization; current solutions are semi-automatic and provide assistance to 
human referees or video operators.  

We believe that many of the accumulated knowledge in the automatic analysis of 
human sports can be employed for the automatic analysis of robot sports. Probably 
the main obvious difference being that in the robot sport case, robot players need to 
be detected and identified. The main problem for identifying robots is the fact that all 
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players look the same. However, the robots can be individualized using the team 
uniform color [26], the player’s number [28], or both.  

The here-proposed automated refereeing and analysis system for the RoboCup 
Four-Legged league makes use of the accumulated knowledge in automatic analysis 
of human sports, and the image analysis tools developed in the Four-Legged league in 
the last years. 

3   Proposed Automated Refereeing and Analysis System 

3.1   General Description 
 

The block diagram of the proposed refereeing and analysis system is shown in figure 1. 
The system is composed by three main subsystems Object Perception, Tracking, and 
Motion & Action Analysis, and makes use of two databases Game Rules (input) and 
Game Statistics (output).  

Object
Perception

Tracking
Motion &

Action Analysis

Game
Rules

Game
Statistics

Video
Images

Referee
Decisions

 

Fig. 1. Block diagram of the refereeing and analysis tool 

The Object Perception module has three main functions: object detection, object 
identification, and camera self-localization. First, all the objects of interest for the 
soccer game (field carpet, field and goal lines, goals, beacons, robot players, ball) are 
detected using color segmentation and some simple rules. No external objects, as for 
example, spectators or human referee’s legs are detected. The detection operation 
allows also the identification of goals, beacons and the ball, because each of them has 
a defined form and color composition (see current definitions in [30]). The 
identification of field and goal lines is performed using the relative distance from  
the detected lines to the already identified beacons and goals The identification of the 
robot players is much more difficult, and is performed using local image descriptors 
as proposed in [28]. Real-time robot identification is achieved thanks to the 
computation of the local descriptors only in the detected robot regions, and because of 
this identification is carried out only at the beginning of each robot tracking sequence 
(see the feedback connection from Tracking to Object Perception in figure 1). The 
camera self-localization is computed using the pose of the landmarks (goals and 
beacons) and the lines, and the internal parameters of the camera. 
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The Tracking module is in charge of tracking the moving objects, i.e. the ball and 
the robot players. The implemented tracking system is built using the mean shift 
algorithm [29], applied over the original image (not the segmented one). The seeds of 
the tracking process are the detected ball and robot players. As in [31], a Kalman 
Filter is employed for maintaining an actualized feature model for mean shift. In 
addition, a fast and robust line’s tracking system was implemented. Using this system 
it is not necessary the detection of the lines in each frame. 

The Motion & Action Analysis module is in charge of analyzing the game 
dynamics and the actions performed by the players (e.g., kicking or passing), and 
detecting game relevant events (goal, ball out of the field, illegal defender, etc.). This 
analysis is carried out using information about static and moving detected objects, and 
the game rules, which are retrieved from the Game Rules database. The outputs of the 
Motion & Action Analysis module are refereeing decisions (e.g. goal was scored by 
team A), and game statistics (e.g. player 2 from team A score a goal) that are stored in 
the corresponding database. 

3.2   Object Perception 

(i) Beacons, Goals, Carpet and Ball Detection and Identification. Landmarks 
(beacons and goals), the field carpet and the ball are perceived using a standard color-
based vision method that consists of three main stages: color classification 
(segmentation), blob formation and object detection. Color classification and blob 
formation are relatively common principles amongst RoboCup teams and standard 
solutions for these tasks already exist (for further information read for example [27]). 
In the RoboCup Four-Legged league all game objects has a distinctive form and a 
distinctive color composition, therefore they can be detected (identified) in the color 
space using simple rules (e.g. [26]). For instance, the ball is spherical and orange, and 
there is no other orange object in the field. Usually, false detections are filtered out 
using some geometrical considerations (e.g. to be near the image horizon). See [26] 
for details. 
 

(ii) Robots Detection and Identification. Sony legged robots are non-rigid objects, and 
therefore their form is difficult to describe. However, they can be detected in the color 
segmented images using some simple heuristics, and the facts that (a) robots are over 
the field carpet, and (b) robots have a different color composition than the other field 
objects (landmarks and ball). Therefore, after detecting all other field objects, non-
green patches over the field carpet are robot candidates. The color composition of 
these patches is checked. Robots are white (ERS7), while their uniforms are blue or 
red. Hence, each robot candidate patch should include two of these colors in a given 
amount to be considered a robot. This color information can also be used to classify 
the robot in one of two classes: blue team robot or red team robot. Certainly, other 
colors can also be present in the candidate patches, but in a much smaller amount 
(black because of the shadows, or other colors because of a wrong segmentation). 
After the robots’ detection and team classification, the remaining task is the robot 
identification, that is, to know the robot identity or number. This identification is 
performed by calculating local descriptors (SIFT features [32]) in the candidate patch, 
and by comparing those descriptors against descriptors of robots’ templates, already 
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stored in a robot model database. For performing this task we use the same 
methodology proposed in [28]. It is important to remember that all robots and also the 
ball are tracked in the Tracking module. Therefore, during the time that the robots 
(and the ball) are tracked (several frames) they do not need to be detected and 
identified again. 
 

(iii) Lines Detection and Identification. Images can be analyzed very quickly using a 
grid of vertical and horizontal scan virtual rays; lines perpendicular to these scan rays 
can be found easily, generating line keypoints, which can be used to achieve line 
detection. There are two ways for generating these line keypoints: (a) by detecting 
differences in the intensity channel along the scan line, and selecting those that 
exceeds a given threshold, or (b) by making a convolution between the scan line and a 
set of edge detection filters (e.g. [−1;+2;−1]) of different sizes (fast implementation 
using differences between pixel’s values), and selecting those points where the 
filtering operation exceeds a given threshold and that correspond to a local maximum 
over the line and over the neighboring scales. We choose the second option because is 
more robust against motion blur, and line scale and orientation changes in the image. 
Candidate line keypoints that do not have green (carpet) pixels around are filtered out. 
Then, the remaining candidate line keypoints are summarized using a Hough 
Transform, which allows the determination of the lines’ parameters. A last test for 
accepting the candidate lines consist on generating three parallel scan lines, where the 
middle scan line corresponds to the detected line. If the mean intensity value of the 
central scan line is much larger than the intensity value of the lateral scan lines, the 
line candidate is accepted. After line detection, the line classification is performed 
using the relative distance from the detected lines to the already detected beacons and 
goals, and some simple rules. For example, the yellow goal line is the nearest parallel 
line to the yellow goal. 
 

(iv) Camera Self-Localization. This feature is not required in all applications, but in 
cases where it is desired to obtain an exact description of the game (e.g., automatic 
generation of training data for learning complex behaviors or real game data to be 
used in simulations). The camera self-localization is implemented using the standard 
procedures employed in the Four-Legged league, which makes use of the landmarks 
information, lines information, and intrinsic parameters of the camera (see for 
example [26]). 

3.3   Tracking 

The Tracking module is in charge of tracking all moving objects: the ball and all 
visible robot players (up to 8). The implemented tracking system is performed using 
the mean shift algorithm [29] applied over the original image (not the segmented 
one). We use RGB color histograms as feature vectors (model) for mean shift, with 
each channel quantized to 32 bins. The feature vector is weighted using an 
Epanechnikov kernel (see [29]). For each detected and identified moving object a 
certain mean shift model is initialized. 

As in [31], a Kalman Filter is employed for maintaining an actualized feature 
model for mean shift. The state vector of the Kalman filter is the weighted feature 
vector (RGB histogram) of the object under tracking. Thus, in each tracking process a 
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Kalman filter estimates the state of the corresponding mean shift model. This allows 
that longer tracking episodes can be maintained. Each time that the tracking of a 
moving object is lost, the corresponding object is detected and identified again. 

Considering that the camera can also be mobile, it is important to track the lines. 
The lines have a second-order dynamic model whose state corresponds to the line 
inclination and position, which permits future line position prediction. The lines are 
tracked in a simple and robust way by generating small lateral scan lines that are 
perpendicular to each line prediction. Then for each line, the maximum intensity 
value in each lateral scan line is determined. Maxima points that are positioned over 
one of the two extremes of the lateral scan line are discarded. The remaining maxima 
points for each line are clustered into line segments. Line segments with less than 8 
maxima points or with no overlap (over the line axis) with the previous line detection 
are discarded. Then, a least-square analysis of the surviving maxima gives the new 
line position estimation. If no line segment has more than 8 maxima points, the sizes 
(scale) of the perpendicular scan lines are enlarged and the process is repeated. If the 
scan lines are larger than a threshold (12 pixels in our implementation), the line 
tracking process fails and the line model is destroyed. 

Using the described tracking processes, we are able to track in real time (30 fps) all 
game moving objects and the lines. 

3.4   Motion and Action Analysis 

This module is in charge of analyzing the game dynamics, determining the actions 
performed by the players, and the game relevant events. This analysis is carried out 
using the information of the static and moving detected objects, and the game rules 
(defined in [30]). 

Most of the game situations can be analyzed using information about the position 
in the field of the ball and the robot players, the exact localization of the field lines 
and goal lines, and the identity of the last robot that touches the ball. For instance, for 
detecting a goal event, a ball crossing one of the two goal lines should be detected. 
The identity of the scoring robot is the identity of the last robot that touches the ball. 
Thus, using simple rules the following situations (definitions taken from [30]), can be 
analyzed: 

- Goal: “A goal is achieved when the entire ball (not only the center of the ball) 
goes over the field-side edge of the goal line, i. e. the ball is completely inside the 
goal area”. 

- Robots kickoff positioning: “In the ready state, the robots should walk to their 
legal kick-off positions. These positions are always located inside their own side 
of the field. Only two field players of the attacking team can walk to positions 
between the centerline and the middle of their side. They may put their leg(s) on 
the center circle line, but no leg may be inside the circle line. The other field 
players (one of attacking team, three of defending team) have to be located 
behind the middle of their side (none of their legs are allowed to be in front of the 
line connecting the centers of beacons), and must have at least two feet outside 
the penalty area. In contrast, the goal keeper must have at least two feet inside the 
penalty area”, and “The robots have a maximum of 30 seconds to reach their 
positions”. 
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- Ball leaving the field: “A ball is considered to have left the field when there is no 
part of the ball over the green field inside the boundary line”. 

- Global Game Stuck: “No robot touches the ball for 30 seconds”. 
- Robot leaving the field: “A robot that leaves the 4mx6m carpeted area will be 

removed for 30 seconds as per the Standard removal penalty”. 
- Illegal defense: “The vertical projection of the goalie to the goal line should not 

occupy more than 50 percent of the length of the goal mouth”. 

Moreover, in the case of the Goal, Ball leaving the field and Robot leaving the field 
situations, the identity of the protagonist robot (the scoring robot, the robot leaving 
the field or the robot that through out the ball) is determined (SIFT descriptors). 

However, there are some other situations that are much harder to analyze, because 
it is required either to judge the intention of the players (e.g. robot obstruction) or to 
solve visual occlusions that difficult the determination of the relative position of the 
robot legs or the ball (e.g. ball holding). We are currently working towards a robust 
detection of these harder situations (see list bellow). For instance, using SIFT 
descriptors for determining which robots are looking to the ball (a similar idea was 
implemented in [28]), allows solving the Robot obstruction situation. The list of non-
completely solved situations is (definitions taken from [30]): 

- Ball Holding: “A robot which does not leave enough open space around the ball 
will be penalized as ‘Ball Holding’ if that situation continues more than 3 
seconds or if the robot moves the ball over 50cm while continuing to hold the 
ball”. 

- Goalie Pushing: “When the goalie is in its own penalty area (2 feet on or inside 
line), no attacker may be in contact with the goalie for more than 3 seconds or be 
pushing the goalie indirectly through the ball for more than 3 seconds.” 

- Field Player Pushing: “Any robot pushing another robot for more than 3 seconds 
will be removed from play for 30 seconds as per the standard removal penalty“, 
and “The closest robot (including the goal keeper) to the ball on each team, if it is 
within 2 dog-lengths of the ball, cannot be called for pushing” 

- Illegal defender: “Having three legs inside the penalty area is the definition of 
being in the penalty area and that situation is not allowed for defending field 
players”, but “This rule will be applied even if the goalie is outside of the penalty 
area, but not if an operational defender is pushed into the penalty area by an 
opponent.” 

- Robot obstruction: “When a robot that is not heading for the ball is actively, and 
intentionally, blocking the way to the ball for a robot of the other team, this is an 
obstruction” 

Summarizing, for refereeing purposed we can automatically detect the following 
situations: correct Robots kickoff positioning, Goal event, Ball leaving the field, Robot 
leaving the field, Global Game Stuck, and Illegal defense. The game statistics that can 
be computed in our current implementation are: % of the time that the ball is in each 
half of the field, number of goals of each team and team player, number of direct 
kicks to the goal by each team and each team player, number of times that each team 
and each team player sent the ball out of the field, number of illegal defense events of 
each goalie, number of times that each team player leaves the field, number of global 
game stuck events, and time required for automatic kickoff positioning by each team. 
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4   Experimental Results 

Experiments were carried out with the objective of characterizing the proposed 
system. Quantitative results are presented for the tracking of objects (lines, players 
and ball). Qualitative results are presented for the some events detection. 

4.1   Object Tracking 

Line tracking. For characterizing the line tracking subsystem, 19 video sequences 
were analyzed (30 fps, around 14.5 seconds each one, all together 8,313 frames). 
Lines to be tracked are initialized and the tracked. During the video analysis most of 
the lines are correctly tracked (see table 1). However, in some cases lines cannot be 
tracked, generally due to strong camera movements, and the line’s model is destroyed. 
In other cases the tracking of some lines became confuse and other object (generally 
other lines) starts to be tracked. All these cases, including the situation when lines get 
out of the image as the camera moves are summarized in table 1. 
 

Player tracking. For characterizing the player tracking subsystem, the same 19 video 
sequences used for line tracking analysis were employed. During the video analysis 
most of the players are correctly tracked (see table 1). However, in some cases players 
cannot be tracked, generally due to strong camera movements, and the player’s model 
is destroyed. In other cases the tracking of some players became confuse and other 
object (generally other players) starts to be tracked. All these cases, including the 
situation when players move out of the image as the camera moves are summarized in 
table 1. 

 
Ball tracking. Ball tracking is done using two sources of information: the mean shift 
information and (very fast) ball detection subsystem. These both information sources 
are fused using a Kalman. The same 19 video sequences were used for the ball 
tracking analysis In all the analyzed frames, the ball tracking has no lost tracking or 
incorrect tracking problems. 

Table 1. Tracking statistics 

 Line Object Player Object 
Total number of analyzed frames 8313 8313 
Total number of initialized objects 83 38 
Total number of objects which get out of the image 26 13 
Total number of objects with lost tracking 9 3 
Total number of objects with incorrect tracking 2 2 

4.2   Event Detection 

The event detection capabilities of the proposed system are still not well characterized, 
we just have qualitative results, which are very promissory. In figures 2 and 3 we show 
two exemplar video sequences where it can be seen the detections of a Goal event and 
a Ball leaving the field event, respectively. In these sequences the ball tracking window 
is shown in blue, while the players’ tracking windows are shown in red. Every time a 
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Frame 4 

 
Frame 14 

 
Frame 27 

 
Frame 50 

 
Frame 91 

 
Frame 110 

 
Frame 115 

 
Frame 120 

 
Fig. 2. Selected frames from a robot scoring sequence. Robot/ball tracking window in red/blue. 
The goal detection event (frame 115) is shown by a red window out of the ball blue window.  
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Frame 2 

 
Frame 16 

 
Frame 39 

 
Frame 52 

 
Frame 69 

 
Frame 152 

 
Frame 172 

 
Frame 197 

 

Fig. 3. Selected frames from a ball leaving the field sequence. Robot/ball tracking window in 
red/blue. The ball out of the field is marked by a red window out of the blue one (frame 197). 
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ball event occurs, a red window is displayed out of the ball’s blue window. In the 
sequences are also shown the detected and identified lines; in figure 2, the yellow goal 
line in yellow and the field lines in white, and in figure 3 the field lines in white. It can 
also be seen the small lateral lines (perpendicular to each goal and field line) used for 
line tracking. Finally, the detected and identified landmarks are also indicated with 
boxes (yellow goal in figure 2 and pink-cyan beacon in figure 3). 

5   Conclusions 

In this paper was proposed an automated refereeing and analysis system for robot 
soccer. Although this system is originally developed for the Four-Legged league, it 
can be extended to other robot soccer contexts.  

Currently, the developed system can detect and identify all Four-Legged defined 
field objects, and perform the tracking of the moving objects in real-time. However, 
not all defined situations can be robustly detected, mainly because the detection of 
some complex situations requires either to judge the intention of the players or to 
solve visual occlusions. In this sense the proposed system is still under development, 
but we think that the preliminary results show its potential. 

We believe that developing a robust automated referee could be a joint initiative of 
the whole Four-Legged league. Using the framework here-proposed, other teams 
could develop and test their own analysis module. Moreover, in a near future the 
proposed automated referee could be integrated with the game controller. This could 
allow the automation of the game controlling process. 

Another pending issue is the placement of the referee camera. We propose that this 
issue can be solved by using a cameraman who should continuously move the camera 
and focus it towards the game significant situations. In this way the whole game 
analysis and decision process could be automated, and humans will only need to 
move the referee camera o cameras, and to manipulate the robots in some specific 
situations (manual placement, robot pick-up, and removal of a penalized robot from 
the field of play). This is a necessary intermediate step towards having robot referees 
in a future. 
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Abstract. For a robot in a dynamic environment, the ability to detect
motion is crucial. Motion often indicates areas of the robot’s surround-
ings that are changing, contain another agent, or are otherwise worthy of
attention. Although legs are arguably the most versatile means of loco-
motion for a robot, and thus the best suited to an unknown or changing
domain, existing methods for motion detection either require that the
robot have wheels or that its walking be extremely slow and tightly
constrained. This paper presents a method for detecting motion from
a quadruped robot walking at its top speed. The method is based on
a neural network that learns to predict optic flow caused by its walk,
thus allowing environment motion to be detected as anomalies in the
flow. The system is demonstrated to be capable of detecting motion in
the robot’s surroundings, forming a foundation for intelligently directed
behavior in complex, changing environments.

Keywords: robot vision, image processing.

1 Introduction

The ability to detect motion is important to a robot in a novel or changing envi-
ronment. Motion can potentially be a very significant clue about which parts of
the environment are interesting or dangerous. For example, consider a consumer
robot in the home, such as the commercially available Sony Aibo[1]. Motion can
give it clues to where humans are located in its environment, which will help
it interact with them more effectively. It can also be used to direct the robot’s
attention to potential danger, such as a stack of books sliding off of a desk or
the family dog preparing to pounce on it. As another example, consider a sur-
veillance robot [2]. Modern surveillance systems are primarily based on motion
detection. If a robot must stop its own motion in order to detect motion in its
surroundings, much of the advantage of using a robot instead of a simpler system
(such as a set of stationary cameras) is lost.

If a robot is to be able to deal with truly novel environments, it is also an
advantage for the robot to have legs rather than wheels. Legs allow traversal of
highly uneven surfaces. A legged robot can step over obstacles or climb stairs,
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whereas analogous feats are often impossible for a wheeled robot. However, the
motion of a legged robot is not as smooth as that of a wheeled robot. This charac-
teristic introduces additional challenges for detecting motion in the environment
while the robot itself is moving.

The main contribution of this paper is a method for detecting motion from
a quadruped robot while it is walking at its maximum speed (approximately
35cm/sec). The overall architecture is inspired by that of Lewis [3], but our
method differs in several important ways: preprocessing of optic flow has been
eliminated, a substantial postprocessing step has been added to the output of
the neural network, and the details of most of the architecture’s components
have been redesigned. These innovations make our method effective in a less
constrained environment than Lewis’s method requires, and also allow use of a
significantly faster-moving robot.

The paper is organized as follows. Section 2 gives a background on optic flow
and describes related work that uses optic flow for navigation and obstacle de-
tection on mobile robots. Section 3 introduces the method for detecting external
motion. Section 4 describes the setup of the system used in the experiments, as
well as the details of the experiments themselves. Section 5 presents the results
of these experiments, and Section 6 discusses these results as well as possible
directions for the future.

2 Background and Related Work

2.1 Optic Flow

Optic flow is a way of describing the apparent motion between two images of
the same scene taken in quick succession. It is typically expressed as a vector
field, with a two-dimensional vector for each pixel in the first image, representing
vertical and horizontal displacement. These vectors give a complete description
of where each pixel in the first image appears to have moved in the second image.

The apparent motion in two dimensions depends on the actual motion in three
dimensions in a complex manner. Sometimes it is difficult to determine whether
the motion is the result of the camera moving or objects in the scene moving.
In other cases, it is clear that an object is moving and not the camera, but the
actual direction of the object’s motion cannot be determined because only part
of the object is visible (this effect is known as the aperture problem).

For an intuitive understanding of some of these issues, consider a passenger
looking out the right-hand side window of a car at an adjacent vehicle while s/he
is waiting for a stoplight to turn green. Without prior knowledge, the scenes s/he
perceives if the car appears to move to the left could be interpreted in a number
of ways – the other car might be moving forward and the passenger’s car might
still be stationary, or the other car might be stopped and the passenger might
be moving backward, or both cars might be moving forward or backward at
different rates. Thus, while the optic flow field contains a wealth of knowledge,
interpretation can be difficult.
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Optic flow is formulated in terms of instantaneous (in space and time) image
intensity gradients. The key formula defining the optic flow between two images
in a sequence is

It+dt(x + u(x, y), y + v(x, y)) = It(x, y), (1)

where It(x, y) is the image intensity at each pixel at time t, It+dt(x, y) is the
image intensity at time (t + dt), u(x, y) is the horizontal flow at each pixel, and
v(x, y) is the vertical flow at each pixel. Thus the horizontal and vertical optic
flows generate a “mapping” between corresponding pixels in the two images.

A perfect solution to the optic flow formula is rarely available because of
effects such as noise and occlusion. Instead of trying to compute a total solution,
most approaches attempt to minimize the error in equation (1) summed over all
pixels in the image. Computation of optic flow is an underconstrained problem;
therefore, in addition to minimizing the error in the pixel matching between
images, a smoothness constraint is typically included. This constraint is justified
because for images of real-world objects (which are, in general, smooth and
connected) the optic flow field is likely to be smooth at almost every pixel. The
objective function for optimization then becomes∑

(x,y)

E2(x, y) =
∑

(x,y)

{
(Ixu + Iyv + It)2 + λ(u2

x + u2
y + v2

x + v2
y)
}

,

with
fx =

∂f

∂x
, fy =

∂f

∂y
, ft =

∂f

∂t

where f ∈ {I, u, v}. The correctness and smoothness components to the opti-
mization are clearly visible as the first and second group of terms in the objective
function, respectively. As the optic flow field generates a more accurate matching
between pixel intensities in the two images, the first group of terms will decrease
towards zero. As the field becomes smoother (showing less variation between ad-
jacent pixels), the second group of terms will decrease towards zero. The relative
importance of these terms is regulated by the parameter λ. Because formulation
of the optic flow field is based on local gradient information, its computation is
often more accurate when images are only incrementally different.

Optic flow is often computed via iterative relaxation, by one variation or an-
other of an approach developed by Horn and Schunk in the 1980s [4]. In this ap-
proach, the proposed solution is initialized, and on each iteration, the solution is
refined by propagating information from each pixel to its local neighbors through
a local averaging of the optic flow field. This process is guided by the equations

uk(i, j) = ūk−1(i, j) − Ix(i, j)
P (i, j)
D(i, j)

,

vk(i, j) = v̄k−1(i, j) − Iy(i, j)
P (i, j)
D(i, j)

,

P = Ixū + Iy v̄,
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D = λ2 + I2
x + I2

y .

In these equations, uk(i, j) and vk(i, j) are the kth iteration’s estimates of the
horizontal and vertical flow at pixel (i, j), and f̄(x, y) is the local average of
function f(·) near pixel (x, y). Iteration continues until a convergence condition
is reached or a maximum number of iterations, kmax, have occurred. Although
many alternatives have been studied, this 25-year-old approach continues to be
one of the most common and effective methods of optic flow computation.

2.2 Optic Flow in Navigation

Optic flow is useful in navigation and obstacle detection, and several groups have
used it for these purposes in robots [5, 6]. In general, the robots are wheeled (or
airborne) instead of legged, which means that their typical motion is smoother.
This regularity of motion makes normal optic flow easier to characterize, so
abnormalities such as the ones caused by obstacles can readily be detected.

A method for detecting obstacles in the walking path of a bipedal robot using
optic flow information was recently developed by Lewis [3]. In this method, a
neural network uses the robot’s joint angles and gait phase to predict optic flow
events. This prediction is compared to observed optic flow events, and any sig-
nificant difference between the two indicates that an obstacle has been detected.

The success of Lewis’s approach indicates that optic flow can be a source of
useful information even on legged robots. It also suggests that neural networks
are a promising tool for overcoming the difficulty of characterizing normal optic
flow on legged robots, as discussed above. However, Lewis’s experiments take
place in a highly constrained environment. The robot is tethered so that it walks
in a circle, and its camera is fixed at a slight downward angle so that it is always
focusing on the ground slightly in front of it, which is the same at all points
around the circle (with the exception of the obstacles it must detect during the
testing phase). It also walks very slowly (2cm/sec).

In order to be generally useful, a motion detection method for a legged robot
should be free of these constraints. If the robot cannot move freely through non-
uniform environments and still detect motion, there is little benefit to using a
legged robot at all – a wheeled robot or even a stationary camera could probably
do the same task more reliably. In addition, a robot should ideally not have to
slow down its own movements in order to accommodate the motion detection
algorithm.

The method presented in this paper is effective on a freely moving robot
walking at its top speed (35cm/sec). It also differs from Lewis’s approach in
that it operates on the raw optic flow field rather than on preprocessed data
(optic flow “events”), and a substantial postprocessing step has been added as
part of comparing the neural network’s prediction to the actual observed optic
flow. It is not clear to what extent the predictor neural network differs from that
of Lewis, because details of his architecture are not available.
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3 Motion Detection Method

The proposed method is depicted in Figure 1. First, the optic flow in the image
is calculated. The resulting vector field is then given as input to a neural network
along with information about the current position in the robot’s walk cycle and
readings from its three accelerometers. This neural network outputs a prediction
of the optic flow to be seen in the next image. When the robot receives this next
image, the optic flow is calculated and compared with the network’s prediction. A
postprocessing algorithm then looks for discontinuities in the difference between
the calculated and predicted optic flow to determine where in the image the
externally moving objects are likely to be found.

3.1 Optic Flow

Training and testing sequences of optic flow were obtained from the Aibo and
transferred to a set of image files on a desktop PC’s hard disk. Image sequences

Image t Image t+1

Optic flow
calculation

neural net
Predictor

Difference and
postprocessing

Z −1

Accelerometer and
walk phase data

tflow t+1predicted flow

Motion

Fig. 1. An overview of the method for detecting moving objects in the robot’s envi-
ronment. (Z−1 is a one-step delay operator.) Optic flow, accelerometer readings, and
information about the current phase of the robot’s walk are given as inputs to a neural
network, which then predicts the optic flow to be observed at the next timestep. The
difference between the prediction and the observed optic flow is then used to detect
any locations in the image that contain moving objects.
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Hidden layer

Previous hidden layer

(copy)

Input layer (actual optic flow at time , walk phase and accelerometer info)t

Output layer (predicted optic flow at time )t+1

Fig. 2. The simple recurrent network used to predict the optic flow. All projections are
full and feed-forward, except for the projection from the hidden layer to the previous
hidden layer. This projection is a direct copy of the hidden layer activations into the
previous hidden layer. In this way, some context is kept in the network, allowing it to
retain information from previous inputs.

were then loaded off the disk, the optic flow calculations were run, and the result-
ing flow fields were stored back to the disk for later use in training or comparison
against predicted flow. Although in principle these calculations could be done in
real time on the Aibo, offline experiments test the method more efficiently.

The optic flow fields were computed by a Matlab implementation of Horn &
Schunk’s iterative relaxation algorithm described in Section 2.1. Identical para-
meters, λ = 1.0 and kmax = 1000, were used to compute all training and testing
data. These parameter choices resulted in very smooth fields. While generally
smooth fields might be expected given the Aibo’s known motion characteristics
and environment, additional work will have to be performed in the future to
understand whether using parameters that generate more rapidly-varying optic
flow fields could allow more accurate motion discrimination.

3.2 Predictor Neural Network

The predictor neural network, shown in Figure 1, accepts three types of infor-
mation as input. The first is an optic flow field. The second is a single number
indicating the robot’s position in the walk cycle at the time of the second image
(of the two images used to calculate the optic flow field). The third is a set of ac-
celerometer data corresponding to the same image. In the experiments described
in this paper, a simple recurrent network architecture [7] was used 1 (Figure 2).

The network is trained on sequences of optic flow fields, which are generated
from sequences of robot camera images in which there is no external motion.
Thus, the network is effectively learning to produce what the next optic flow

1 Informal experimentation indicated that a simple recurrent network performs better
than a three layer feed-forward network. However, such a non-recurrent network is
also capable of some success at this task.
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field should look like if there is no external motion, given the last optic flow field
observed and information about the robot’s acceleration and position in the walk
cycle. By comparing this prediction to the actual optic flow observed at the next
timestep, it is possible to see which parts of the image exhibit unpredictable
motion, indicating where objects moving relative to the world can be found in
the image.

3.3 Postprocessing

Consider the vector field resulting from taking the (vector) difference of the pre-
dicted and actual optic flow fields. Taking the magnitude of each of the elements
of this vector field results in a matrix of the same size, called the difference field.

The discontinuous motion of the robot’s camera and the noisy nature of real-
world sensor data make the optic flow prediction task quite difficult. Although
the neural network typically does a reasonable job of predicting optic flow for
image sequences containing no external motion, its prediction is occasionally
entirely wrong. Therefore, the naive approach – simply taking the size of the
difference field at each point to be the likelihood of external motion at that
point – will not suffice.

However, these magnitudes do contain useful information. Because the neural
network is trained with images from an environment in which nothing other than
the robot itself is moving, all of its targets during training were optic flow fields
with coherent motion. So, assuming the images contain no external motion, even
when the network makes a wrong prediction that prediction will be more or less
“equally wrong” at all points. If there is external motion in the scene, however,
there will often be sharp discontinuities in the difference field, which can be
discovered by running an edge detection algorithm on each difference field.

The edge detection used in the postprocessing step is rather unconventional.
Many edge detection algorithms are designed to find the best edges in an image,
even if that image has only poor candidates for edges. However, if there are
no sharp edges in the difference field at some timestep, there is probably no
motion in the image. Therefore, in this case the postprocessing algorithm should
not find any edges. To this end, first a binary version of the difference field is
obtained by finding its maximum element and replacing every element extremely
far away from this maximum2 with a zero, and replacing the rest with ones.
Then a conventional edge detection algorithm (such as the Laplacian of Gaussian
method) is run over this binary difference field.

4 Experimental Procedure

The images used in the experiments discussed here were acquired by a Sony Aibo
ERS-7 walking across a standard 2004 RoboCup legged league field [8]. The Aibo
2 In practice, to be “extremely far away from the maximum,” an element must be

very close to zero and the maximum over the difference field must be large. This
constraint enforces that all edges found in the next step will correspond to very
sharp edges in the original difference field.
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Fig. 3. A typical trajectory used in our experiments

has three degrees of freedom in each of its four legs as well as its head. It has a
CMOS camera in the head, from which it is possible to capture approximately
25 images per second3. The robot always starts close to the center of the yellow
goal facing outward toward the field center (although not always in the exact
same location) and then walks most of the way across the field4 using the fastest
available forward walk (approximately 35cm/sec)[9]. Due to the Aibo’s slight
left-right weight asymmetry, the forward walk curves slightly to the right over
long distances. Thus a typical trajectory looks like the one depicted in Figure 3.

The resolution of the Aibo images was first reduced by a factor of 6 in both
the horizontal and vertical directions by averaging 3-by-3-pixel blocks of half-
resolution Aibo images. Images were converted from full color to grayscale before
the optic flow computation, but no other image preprocessing (histogram equal-
ization, deblurring, etc.) was performed.

The resulting images and flow fields consisted of 35 columns by 27 rows. This
lowered image resolution allowed a simpler neural network to be trained and
decreased the runtime of optic flow computations. Exact runtime performance
was not recorded, but computing the optic flow field for one frame pair required
approximately 1s of CPU time on a 1.8GHz desktop machine. Real-time perfor-
mance will require that the current implementation be optimized for speed and
translated from Matlab to a language more suitable for embedded operation on
the Aibo.

As discussed in Section 3.2, a simple recurrent architecture was used for the
predictor neural network. This network had a 200-unit hidden layer. It was
trained with backpropagation (using momentum) on data from six runs of the
robot on an empty field, where each run consisted of approximately 150 sequen-
tial images. Training of this network took approximately 1050 epochs.

3 The hardware is capable of capturing 30 frames per second, but software overhead
reduces this number somewhat.

4 The length of these trajectories is constrained by the amount of memory available
on the Aibo.
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5 Results

As was discussed in Section 1, motion detection on a robot is most useful for alert-
ing the robot to potential anomalies in its environment, particularly those that
suggest there are changes taking place. Thus, robots will typically want to react
immediately as soon as any motion is detected; the value of such information
decays very rapidly. However, this means false positive motion detections are
particularly dangerous – each one is likely to distract the robot from its primary
task unnecessarily. Thus, before incorporating this technology into any robotic
system, it is important not only to demonstrate that it can provide useful infor-
mation about motion, but also that it can do so while keeping false positives to
a minimum.

The results shown here reflect these priorities. The parameters of the post-
processing algorithm were set to make the system maximally resistant to false
positives. Then, to judge the classification accuracy of the system, it was applied
to four sets of images from trajectories of the sort shown in Figure 3. Two of
these runs contained one moving robot, one contained three moving robots, and
one contained no external motion. Each image in the four sets was divided into
9 sectors (Figure 4), and each sector was labeled by hand as containing motion
or not. If less than 1/4 of the sector contained a moving object, the sector was
labeled as not containing motion. This ground truth was compared to the motion
detected by the system.

The system correctly labeled a significant portion of the image sectors contain-
ing motion, despite the postprocessing parameter values that virtually eliminated

Fig. 4. An example image showing division into sectors, for use in the quantitative
evaluation of the motion detection method. Though both robots and the ball in this
image are moving, the middle sector would not be labeled as containing motion, because
less than 1/4 of it contains moving objects.
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Fig. 5. Classification accuracy for image sectors not containing motion. The x-axis
corresponds to the number of edge pixels in a sector required for motion to be detected
in that sector, and the y-axis is the fraction of total image sectors not containing
motion that were correctly labeled as not containing motion. As more edge pixels are
required for a sector to be labeled as containing motion, accuracy in labeling non-
moving sectors increases (i.e., false positives decrease), though there is a tradeoff with
accuracy in labeling moving sectors (see Figure 6). Note, however, that even when this
threshold is set to 1, accuracy is greater than 95% for all testsets.

false positive motion detections (see Figures 5 and 6). Note that if these parame-
ters are set to less extreme values, classification accuracy of sectors containing
motion can be improved, so in this sense Figure 6 reflects the “worst-case” re-
sult for motion detection. However, the current settings have the considerable
advantage that image sectors labeled as containing motion are virtually certain
to actually contain motion.

The typical qualitative behavior of the system is shown in Figures 7 and 8.
Figure 7 contains four sequential frames from one test run of the system. The
robot in the foreground is moving at full speed; all other parts of the image are
stationary relative to the world. For comparison, Figure 8 shows typical errors
from a testing run with no external motion. In this testing run, over 95% of the
sectors were correctly labeled as containing no motion (see Figure 5).

6 Discussion and Future Work

Based on informal observations, the system appears to detect motion more re-
liably when the moving object is closer to the robot and moving more rapidly.
Because the robot’s own motion is so rapid, it is understandable that slow-
moving objects would be hard to detect. Near motion will appear more rapid in
two dimensions; also, because of the downsampling, a moving object sufficiently
far away will appear as a single pixel whose color is changing slightly.
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Fig. 6. Classification accuracy for image sectors containing motion. The system can
detect a significant fraction of the motion in the robot’s environment while maintaining
the extremely low false positive rate shown in Figure 5. The x-axis corresponds to the
number of edge pixels in a sector required for motion to be detected in that sector. As
more edge pixels are required, fewer sectors containing motion are correctly labeled,
leading to a tradeoff between accuracy in motion detection and elimination of false
positives (Figure 5).

Fig. 7. Four sequential frames from a test run. The robot in the images is moving to
the left at full speed. Overlaid black squares on the image indicate the discontinuities
found by the postprocessing algorithm; when enough of these squares appear in a sector
of the image, the system concludes that this sector contains motion.

Fig. 8. Some typical errors on a field with no motion. The overlaid squares only indicate
discontinuities, and enough of these squares must appear in the same sector for motion
to be detected there. In the run from which these images were taken, in which there
was no motion on the field, 83% of the frames contained no discontinuities of this type,
and over 95% of the image sectors were correctly labeled as containing no motion.
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This observation suggests an important direction for future work: extension
of the system to work with larger images. Although the predictor neural network
will have to be larger, it should not make training intractable: training time for
the current network only requires a few hours of CPU time. Moreover, optic flow
calculation over a half-resolution image (as opposed to the 1/6 resolution images
currently used) has already been verified to be tractable.

Another important direction for future work is to implement the system to
run in real time on an Aibo robot. This extension is plausible given the size of the
images. The Aibo has a 576 MHz 64 bit RISC processor that allows for significant
amounts of onboard computation. Although the computation required to process
the images would reduce the rate at which images can be captured, a slower gait
could compensate for any challenges posed to the optic flow algorithm by the
increased time between images.

7 Conclusion

A method was presented for detecting external motion from a quadruped robot
while it is walking freely and quickly. The system is resistant to false positives
and is sufficiently accurate on real-world sensor data, and it is able to process this
data with a speed that suggests that future onboard implementation is possible.
Thus, it provides a way for a legged robot to sense motion in its environment,
allowing it to direct its attention more intelligently, and ultimately making it
more able to negotiate novel or changing environments.
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Abstract. Symbolic reasoning has rarely been applied to filter sensor
information; and for data fusion, probabilistic models are favoured over
reasoning with logic models. However, we show that in the fast dynamic
environment of robotic soccer, Plausible Logic can be used effectively to
deploy non-monotonic reasoning. We show this is also possible within
the frame rate of vision in the (not so powerful) hardware of the AIBO
ERS-7 used in the legged league. The non-monotonic reasoning with
Plausible Logic not only has algorithmic completion guarantees but we
show that it effectively filters the visual input for improved robot local-
isation. Moreover, we show that reasoning using Plausible Logic is not
restricted to the traditional value domain of discerning about objects
in one frame. We present a model to draw conclusions over consecutive
frames and illustrate that adding temporal rules can further enhance the
reliability of localisation.

1 Introduction

Despite a large body of research into symbolic reasoning in Artificial Intelligence,
symbolic reasoning has rarely been applied to filter sensor information. For data
fusion, probabilistic models are favoured over reasoning with logic models. For
example, for combining information from several sources, their reliability is mod-
elled using probabilities and “reasoning with uncertainty” is performed using
general models that include applications to sensor fusion [8, and references].

However, reasoning has always been regarded as a fundamental capability of
intelligent systems. Progress in reasoning is remarkable [9,11] and has become
a classical aspect of intelligent systems technology (for example, 4 chapters are
dedicated to uncertain knowledge and reasoning in [14], at present the most
widely accepted textbook in Artificial Intelligence and 57th most cited com-
puter science publication ever). Moreover, many examples of reasoning relate
to robotic situations, as is the long-lived example of the blocks world where in
order to stack objects a robot that can hold only one object must reason about
which other objects to remove from above the object it needs to transport. Even
in the context of agent systems [16], the agent is expected to do some reason-
ing after sensing the environment in order to select what action to carry out
next. However, in realistic robotic environments, the domain is dynamic1 and
1 The environment is dynamic if it will evolve in the time gap between the sensors

collecting information and the agent performing an action [16].

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 232–244, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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non-deterministic2. Robotic soccer is also inaccessible3 and the agent needs to
work in teams against teams of adversaries. While the robot may carry with it
stable domain knowledge regarding the field and settings of RoboCup, some of
the conclusions of its reasoning regarding a particular situation may need to be
withdrawn in light of new evidence. This capacity to retract previous derivations
is called non-monotonic reasoning (and we differentiate it from belief revision as
we are not to update the domain knowledge).

Non-monotonic reasoning has long been considered too complex for real-time
settings. Visual robot localisation in the 4-legged league places particular strin-
gent demands. Video camera systems typically operate at a rate of 30 frames per
second, which allows only about 30 ms to perform full image recognition, feature
extraction, and consistency verification. Moreover, poor lighting conditions can
make colour calibration extremely difficult. More often than not, vision systems
make errors in object recognition (in particular, they may occasionally miss the
landmarks for localisation or report non-existent objects as visible).

Dynamic, inaccessible and non-deterministic environments have prompted the
use of reactive architectures and/or hybrid systems. The influential works by
Brooks [4] have also lessened the interest in using symbolic/logic approaches.
We argue here that a computable non-monotonic logic has a role to play in mak-
ing sense of inputs and filtering sightings for localisation. Moreover, we present
a method that uses time as an important factor when reasoning about the con-
sistency of the perceived world. In this work we propose to use a combination
of both the time and the value domain in a robot localisation system to make
more solid decisions about consistent and inconsistent objects. We show how the
incremental extensibility property of Plausible Logic can be used to increase the
robustness against temporary inconsistencies. Section 2 examines the state of
the art in robot localisation. Section 3 explains our approach and shows the rule
based system we propose. Section 4 contains an experimental evaluation of our
system. Section 5 concludes with a discussion on the impact of our findings.

2 Background and Related Work

Localisation based on a camera presents data quality issues over other positional
sensors. In the 4-legged league, localisation is based on only one camera with
restricted field of vision mounted on a head with fast movement. Such hardware
(and the vision software) produces errors due to many causes.

For real-time localisation of robots, Kalman Filters (KF) pose some problems.
Alternative techniques have since emerged to address these problems in robot
localisation. These techniques use grid-based hidden Markov Models (MM) and
Monte Carlo Localisation (MCL) [6,7,15]. Bayes’ theorem is used in all three
approaches [7,15] to integrate into the current belief about one’s position in the
world Prob(xt) (1) the data ot from a sensor, (2) the prediction x′

t+1 by a motion

2 An environment is non-deterministic if an action may not have the expected out-
come [16], like a skid because the surface is smoother than anticipated.

3 Information about the entire environment may not be possible to collect [16].
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model, and (3) a previous pose belief Prob(xt−1). Conditional probabilities are
used to represent prior and posterior knowledge about the state of the world.
Every observation ot and action at is then used to update the positional belief.

MCL has been shown to be superior to the Extended KF [7] and to MM [7].
They seem the most effective method for the 4-legged league [13]. This paper
does not argue for the elimination of these techniques. However, these approaches
have problems with inconsistencies. MCL is slow to converge relative to the ac-
curacy of the sensors, and until recently little theoretical foundation existed for
some of its fixes [15]. Because of these drawbacks, it is important that the ob-
servations from sensors be reliable (otherwise, convergence is too slow or the
artifacts to handle the kidnap problem introduce other high modes in the rep-
resentation of the distribution). For example, in soccer, the two goals are at
opposite sides of the field. With a single, forward-looking camera, it is impos-
sible to see both goals. The question is what to do if vision does report both
goals at the same time. The challenge is to estimate Prob(visible scene|pos),
where the visible scene is formed of a description of all visible objects, and
where pos is a vector for the current belief. To avoid the daunting task of build-
ing a table for the values Prob(visible scene|pos) at all scenes and positions
one would like to at least decompose this into separate probabilities (as per ob-
jects in the scene). In the simple case of two visible objects, one would like to
treat the objects as independent and weight the current belief in proportion to
the product Prob(See front goal|pos) · Prob(See back goal|pos) (for example
when seeing both goals). The difficulty becomes defining Prob(X is visible|pos)
for each land mark X taking into account that pos has significant noise re-
garding the orientation and pan of the head of the Sony AIBO. Therefore,
Prob(X is visible|pos) is unlikely to be set to zero in any case. As a result,
the MM and MCL approaches create at least a new mode in the distribution
modelling the location and KF suffers an enlargement of the covariance matrix.

Domain knowledge says that seeing both goals is impossible. Thus, for all pos-
tures pos, Prob(See front goal ∩ See back goal|pos) = 0 is usually adopted.
This leads back to a large sets of special cases and the impossibility of decompos-
ing Prob(visible scene|pos) into simpler functions. We conjecture that all teams
at RoboCup have incomplete systems to deal with these special cases (but survive
reasonably well because many cases are uncommon and the frame rate allows
the robot to recuperate from these pathological cases4). The handling of incon-
sistencies within the localisation module becomes a series of logical checks. The
code which filters observations that are considered inconsistent soon becomes a
large piece of software that is hard to verify for correctness or completeness.

Our first thesis is that such a filter of inconsistent observations is better han-
dled by some logic. The second thesis is that such a logic should not only be
capable of ruling out observations, but allow reasoning about them to provide
informative inputs for localisation. This treatment of cases could potentially be

4 However, from the perspective of software quality and reliability for robots around
humans, the system must be capable of acting properly if it faces seeing all 6 land-
marks in one frame.
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treated by a classifier system (a la machine learning). Namely, learning or mak-
ing explicit a function P that maps a visible scene and a pose pos into a suitable
value Prob(visible scene|pos). The impossibility of a comprehensive training set
rules out using a decision tree, a decision list, an artificial neural network, or
even support vector machines to learn P .

Moreover, the design implicit in existing approaches deals only with the con-
sistency problem in the value domain. That is, because of the large number of
special cases, the system can not take advantage of other information for lo-
calisation, most notably time. For example, if vision reports both goals in one
frame, the usual rule of thumb is to discard both observations (even if in the
previous frame and the next frame show only one goal and the 3 consecutive
frames have the front goal in common). We will show here how reasoning with
Plausible Logic (PL) [3,12] about the previous frame can even take advantage
of this. KF, MCL, and the MM approaches deal with this situation over time,
but for those 3 frames they loose height in the peaks of their distributions.

3 Using a Model of Time to Improve Consistency

Plausible Logic. Non-monotonic reasoning allows to draw conclusions from
a collection of facts and beliefs, but also withdraws those inferences in light of
new evidence that challenges previous inferences. Plausible Logic [2] is a formal-
ism for non-monotonic reasoning [1] that is implementable. Currently, the only
available implementation, DPL, is in Haskell. Moreover, with respect to other
non-monotonic logics, Plausible Logic (PL) is capable of identifying proofs that
demand an infinite loop and as a result it can halt. One additional characteristic
of PL is that it has several algorithms to establish a conclusion, each of them
weighing differently the evidence in favour and against a proposition and allowing
a conservative or risky approach to accepting the proposition. This is because
PL differentiates between propositions derived using only factual information
from those derived using plausible information. This is achieved because there
are several proof algorithms each resulting in a certain degree of confidence on
the validity of the proposition. PL reduces to classical propositional logic if only
factual information is used. However, when determining the provability5 of a for-
mula, the algorithms in PL can deliver three values (that is, it is a three-valued
logic). The proof algorithms terminate assigning the value +1 to the formulas
that have been proved. It assigns the value 0 when the formula cannot be proved
and attempting so will cause infinite recursive looping. It assigns the value −1
when the formula is not provable and does not generate a loop. Because PL uses
different algorithms, it can handle a closed world assumption (where not telling
a fact implies the fact is false) as well as the open world assumption by which
not being told means nobody knows. The β algorithm for PL uses the closed
world assumption while the π algorithm uses the open world assumption.

The information that constitutes a PL program is encoded in three types
of rules. The first type are strict rules of the form A → l and the semantics
5 Provability here means determining if the formula can be verified/proved.
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{} → quail(Quin) /* Quin is a quail */

quail(x) → bird(x) /* Quails are birds */

R1 : bird(x) ⇒ fly(x) /* Birds usually fly */ (a)

{} → quail(Quin) /* Quin is a quail */

quail(x) → bird(x) /* Quails are birds */

R2 : quail(x) ⇒ ¬fly(x) /* Quails usually do not fly */ (b)

Fig. 1. Two knowledge bases. Are they inconsistent?

is that if all literals in A are proved, then we can conclude l (that is, this is
ordinary implication). An example of a strict rule is human(x) → mammal(x) to
represent that Humans are mammals. The second type of rule are plausible rules
of the form A ⇒ l and the semantics is that when there is no evidence against l,
then A is sufficient evidence for concluding l. An example of a plausible rule is
bird(x) ⇒ fly(x) and we use this to represent that Birds usually fly. The third
type of rules are defeater rules of the form A ⇀ ¬l with the intended meaning
that if we cannot disprove A, then it is too risky to accept l. An example is
{sick(x), bird(x)} ⇀ ¬fly(x) to encode that Sick birds might not fly. Plausible
rules allow derivations although we may not be absolutely sure. Defeater rules
prevent conclusions which would otherwise be too risky. This may happen in a
long chain of conclusions from plausible rules.

PL provides a priority relation R1 > R2 between rules that represents that
R1 should be used over R2. Later, we demonstrate the expressive power of this
aspect; however, consider the example of the knowledge base in Fig. 1 (a)from
which one would conclude that Quin usually flies. But, if one considers Fig. 1 (b),
the correct conclusion is then that Quin usually does not fly. But what if both
knowledge bases are correct; that is, both rules R1 and R2 are valid. We perhaps
can say that R2 is more informative as it is more specific and we add R2 > R1 to
a knowledge base representing the beliefs of a robot who knows both. PL reaches
the proper conclusion that Quin usually does not fly while if it finds another bird
that is not a quail, the robot would accept that it flies.

Another example of the power of hierarchies between rules can be seen in
the 3 Laws of Robotics. In fact, humans describe situations commonly in this
way. That is, a human expert will usually define a general rule, and present
the next rule as a refinement. Rules further down continue to polish the de-
scription. This style of development is not only natural, but allows incremental
refinement. Indeed, the knowledge elicitation mechanism known as Ripple Down
Rules [5] extracts knowledge from humans experts by refining a previous model
by identifying the rule that needs to be expanded by detailing it more.

Temporal Model. We illustrate our approach with one simple model. A purely
spatial DPL model for 0, 1, or 2 landmarks within one frame has already been
shown to be feasible and also it has been extended to 3 and even 4 landmarks [10].
Moreover, the properties of PL make it possible to incrementally construct more
complex world models by basing them on proven simpler models [10]. Thus,
we base the temporal model on the same domain knowledge as the spatial
model [10]. Fig. 2 shows the facts of the model for the 2005 4-legged league



Using Temporal Consistency to Improve Robot Localisation 237

Fig. 2. The facts about the 4-legged soccer field

field6. Colour coding allows the identification of landmarks as Front Goal (FG),
Back Goal (BG), Left Post (LP), Right Post (RP), Right Back Post (RBP)
and Left Back Post (LBP). However, in a temporal model, the objects may have
been visible in the previous frame or in the current frame and vision now reports
sightings with respect to a frame (ie the predicate is now See(x, f)).
type Frame = {PF, CF}. type See(x <- Landmark, f <- Frame).
type SeeLtoR(x <- Landmark, y <- Landmark - {x}, f <- Frame).

Sightings may be transient (did not last across consecutive frames) or persis-
tent (the object is in both frames).
type Tra(x <- Landmark). R1: {} => ~See(x,f). R2: {} => ~Tra(x).
R3: {See(x, PF), ~See(x, CF)} => Tra(x). R3: {~See(x, PF), See(x, CF)} => Tra(x). R3 > R2.
type Per(x <- Landmark). R4: {} => ~Per(x). R5: {See(x, PF), See(x, CF)} => Per(x). R5 > R4.

Nothing is consistent unless we get at least a transient or a persistent sighting.
type Cs(x <- Landmark). R6: {} => ~Cs(x).
R7: {Tra(x)} => Cs(x). R7 > R6. R8: {Per(x)} => Cs(x). R8 > R6.

Seeing two opposite landmarks is grounds for inconsistency (even persistently
or transiently).
R9: {Opp(x, y), Per(x), Per(y)} => ~Cs(x). R9 > R7. R9 > R8.
R10: {Opp(x, y), Tra(x), Per(y)} => ~Cs(x).
R11: {Opp(x, y), Tra(x), Tra(y)} => ~Cs(x). R10,R11 > R7.

What it means for two objects to be in a transient left-to-right order? This
happens if vision sees the objects in the previous frame in that order but does
not see them in the current frame in such order, or they are seen in the current
frame in that order but they were not seen in the previous frame in such order.
type TraLtoR(x <- Landmark, y <- Landmark - {x}). R14: {} => ~TraLtoR(x, y).
R15: {SeeLtoR(x, PF, y, PF), ~SeeLtoR(x, CF, y, CF)} => TraLtoR(x, y).
R15: {~SeeLtoR(x, PF, y, PF), SeeLtoR(x, CF, y, CF)} => TraLtoR(x, y). R15 > R14.

However, objects are persistently seen in a left-to-right order if the sighting
of that relationship happened in the previous and current frame.
type PerLtoR(x <- Landmark, y <- Landmark - {x}). R16: {} => ~PerLtoR(x, y).
R17: {SeeLtoR(x, PF, y, PF), SeeLtoR(x, CF, y, CF)} => PerLtoR(x, y). R17 > R16.

Finally, seeing landmarks out of order is grounds for inconsistency. But we
only overwrite those rules that may have suggested consistency.
R18: {LR(x, y), Per(x), Per(y), PerLtoR(y, x)} => ~Cs(x).
R18: {LR(x, y), Per(x), Per(y), PerLtoR(y, x)} => ~Cs(y). R18 > R8.
R19: {LR(x, y), Tra(x), Per(y), TraLtoR(y, x)} => ~Cs(x).
R19: {LR(x, y), Per(x), Tra(y), TraLtoR(y, x)} => ~Cs(y). R19 > R7.
R20: {LR(x, y), Tra(x), Tra(y), TraLtoR(y, x)} => ~Cs(x).
R20: {LR(x, y), Tra(x), Tra(y), TraLtoR(y, x)} => ~Cs(y). R20 > R7.

6 Previous versions of the field are very similar.
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4 Implementation and Evaluation

Running PL off-line but evaluating on-line. For the 2005 RoboCup, it
seemed rather difficult to re-implement DPL in C++ for the Sony AIBO. How-
ever, DPL not only provides the algorithms for obtaining proofs but provides an
interface for presenting facts, and describing a theory [10]. With the interface,
we could indicate which predicates are inputs and for what output predicates we
needed proofs. The system summarises the proof results as a logic expression for
each output predicate in terms of the relevant inputs. We then could request the
logic expressions to be simplified (optimised by reducing the number of terms).

The model is executed in DPL (outside the robot) and as a result we obtain
a header file in C++ with expressions for the requested outputs [10]. The robot
executes a template method (named Run()) where all the C++ expressions (one
for each landmark) are evaluated after each frame. PL is used on the Sony AIBO
through a C++ template method. The template method is executed every time
a new frame arrives and the vision module analyses an image.

void Consistency::Run()
{INIT_ALL_FALSE(); UPDATE_ALL(); CHECK_NEW_LANDMARKS(); PLACE_CS_ALL(); COPY_ALL_BOOL(); }

These procedures are defined by computer generated glue code macros. The
INIT ALL FALSE() macro creates the definitions of C++ Boolean variables for
all landmarks and sets all Booleans that identify if a landmark is visible in the
current frame to false. UPDATE ALL() queries the reports of the vision module for
the current frame. CHECK NEW LANDMARKS()makes sure that sightings are for the
current frame and previous sighting also have the correct fame number relative to
the current frame. PLACE CS ALL()will evaluate the output expressions for which
we requested outputs and if a landmark evaluates to true, it will forward the
sighting to the localisation module (or any other module that may benefit from it,
like the action to kick when the front goal is visible). PLACE CS ALL() will have as
many if statements as outputs requested. The expression of the if statement is
defined in the pre-computed simplified proofs. For example, testing (evaluating)
the Cs FG macro, correspond to asking if we have a consistent sighting of the front
goal. Finally COPY ALL BOOL() shifts the current Boolean values to the Boolean
variables corresponding to previous frames (so the previous frame values are
correctly set for the next execution of the template method Run()).

If the front goal was not seen in this frame, then INIT ALL FALSE()would have
set the variable to false and UPDATE ALL() would not have changed FG’s value,
so no landmark sighting is forwarded to localisation. However, if the front goal
was visible UPDATE ALL() would have (1) set FG to true (previously initialised
to false in INIT ALL FALSE()) and (2) provided a pointer to such an object so
other attributes about the landmark can be evaluated (like its size or if it is
to the left or right of another landmark). The if statement in PLACE CS ALL()
would fire, resulting in localisation receiving the sighting information about the
front goal if the model determines it is consistent with other objects sighted in
this and other previous frames.
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Simulator. The evaluation of temporal properties is particularly hard in an en-
vironment where sighting errors only occur sporadically at a frame rate higher
than 25Hz. Thus, first we implemented a simulator that allows reproducible sce-
narios of what vision might report to the localisation system and used it to
validate the correctness of the PL expressions resulting from the off-line execu-
tion. To minimise the risk of testing different algorithms in the simulator and
the robot, we used the same C++ code that was generated from the PL rules in
both the simulator and the robot. In order to provide a way to consistently set
and evaluate a scene, the simulator wraps the C++ expressions in a graphical
user interface (GUI) (refer to Fig. 3).

(a) (b) (c) (d)

Fig. 3. (a) The simulator showing one particular object (RP) as visible in the current
frame. (b) Two consistent objects in the current frame. (c) Three inconsistent sightings
in the current frame. (d) The persistent back goal (BG) wins over the temporary
sightings of the right post (RP) and the front goal (FG).

The user of the simulator can place landmarks on rows, and the succession of
rows represents the order in which these objects are seen (with top to bottom
representing left to right in the field of vision). The first column shows the name
of the landmark. The next two columns allow the user to select what the visibility
state is for the previous (Pre) and current (See?) frames. The rightmost column
shows the output of the consistency module (Cs) after performing its reasoning
about the state of the world. Furthermore, the GUI allows the dragging and
dropping of objects to change the order, as well as addition (Add) and deletion
(Delete) of landmarks.

Fig. 3 (b) shows two consistent sightings. Even though the two landmarks
RP and BG were not visible in the previous frame, they are consistent with
each other, allowing them to be forwarded on to the localisation module. In fact,
this is the same result that a traditional value domain reasoning system would
obtain. This is also true for Fig. 3 (c) where we can see three objects that are
inconsistent with each other. Since all the objects only occur within one single
frame, the only conclusion that can be drawn is that nothing is consistent in that
scene. Once information varies over time, a richer belief about the environment
can be formed. Fig. 3 (d) shows the same scenario as Fig. 3 (c), but this time the
temporal properties of the visible objects vary. The back goal that was visible
in the previous frame as well as the current frame is given precedence over the
right post and the front goal that were only visible in a single frame.

Temporal test can be combined as in Fig. 4 (a). Objects that are consistent
in either space or both space and time are ruled as being consistent in the world
view of the system. Only inconsistencies that persist over both space and time
will force the system to conclude that nothing is consistent (Fig. 4 (b)).
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Evaluation on the robot. We have analysed the effectiveness of the approach
in an Sony AIBO ERS-7 in the lab and in the actual RoboCup 2005 com-
petition. In particular, evaluating the CPU costs on board is important since
the file roboconsistency.h can be quite large. For the Spatial Model [10],
this file has 4700 tokens for the 6 expressions that determine the consistency
of the landmarks. For the Temporal Model (with 3 outputs) this file has
1,336 tokens. The Complete Model for 3 [10], has 12,530 tokens. However,
these expressions are in conjunctive normal form and the terms are literals of
Boolean variables. The C++ compiler can optimise their evaluation, and in fact
we profiled the execution times on the AIBO. Evaluating all 6 expressions in the
Spatial Model required only 60±1 microseconds

Fig. 4. (a) The two persistent
landmarks (RP and BG)are
consistent with each other,
but inconsistent with the front
goal (FG). (b) Nothing is con-
sistent in this view.

(this is with a 99% confidence interval), and eval-
uating all 6 expressions in the Complete Model
for 3 required only 110±3 microseconds (also 99%
confidence interval). For the Temporal Model,
we evaluated 3 expressions and this required 41±1
microseconds (this is also a 99% confidence inter-
val). However, in all three models the constant
overhead of initialising the Boolean values and re-
trieving the pointers from the vision module was
30± 1 microseconds. This means that the evalua-
tion of the large expressions is comparable to the
initialisation of a few Boolean variables and in fact
orders of magnitude faster than the processing of
a frame by the vision module or the processing of a localisation update (the revi-
sion of the position belief because of sensor inputs and action) in the localisation
module.

Although all cases were tested, we illustrate only when both goals were re-
ported by vision on the same frame. We evaluated during games (with a log on
the robot’s memory stick) and also in the lab with a log on a telnet connection
that displays the ID of the objects reported by vision and the outcomes of the
non-monotonic reasoning. Fig. 5(a)-5(c) shows images at the venue in Osaka
where the consistency module filtered phantom objects for localisation. We have
enlarged the captured image on board, then the blobs of the colour as the sec-
ond largest and the objects reported by vision appear on three screens on the
bottom right corner. The left most of these bottom images displays the sightings
for goals. Fig. 5(a) shows that phantom sightings occur even with the regular
colour-coded objects in the field. The ball has enough yellow pixels to be con-
fused for a yellow goal against a blue goal. Fig. 5(b) shows that the blue match
score and timer appears as a goal on a frame with the yellow goal. While our
vision system has an analysis for filtering objects above the field of vision, the
fact that the Sony AIBO has a head with three degrees of freedom and has legs
that during pursuit of the ball make positions and angles of vision that cannot
always rule this case out. Fig. 5(c) shows another case where natural lighting and
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(a) The ball has enough yellow pixels to
be confused for a yellow goal against a
blue goal

(b) The blue timer appears as a goal
with the yellow goal

(c) A window of the field is confused for
a blue goal against a yellow goal

(d) The lab setting allows sequences of
frames where two goals are reported by
vision

(e) The blue goal can be (dis) covered
quickly

(f) The yellow goal can be (dis) covered
quickly

Fig. 5. RoboCup 2005 examples and lab examples

off the field objects result in phantom sightings. In this case, a window registered
enough blue pixels to be reported as a blue goal together with the yellow goal.

Fig. 5(d)-5(f) shows a lab setting where we can rapidly produce opposite goals
in a frame and immediately after block one goal, or the other. In the log, we
found sequences where the robot is seeing only the front goal and reports it as
consistent. When the back goal appears as well, for that first frame, the front



242 D. Billington et al.

goal remains consistent and the back goal is labeled inconsistent (note that in
the discussion of the KF, MM, and MCL localisers we indicated that the frame
with both goals becomes not usable). If the back goal persists with the front
goal for one more frame, then both goals are now labeled inconsistent (note that
the model can easily be adjusted if a different effect is desired besides having
two consecutive frames with both goals to rule them out). If the front goal drops
out, then the back goal in the previous frame and the back goal in the current
frame both become consistent. We have no space here to discuss more examples
of the versatility of the modelling here, but using the RP also helps since the
blue goal is in the right left-to-right order with respect to the post.

5 Discussion and Conclusions

We have experimented with modelling the RoboCup field for the 4-legged league
without PL [10]. This results in large models that grow exponentially as more
landmarks are introduced and, where little can be inferred. An attempt with
other logics also results in very large models [10]. The challenge is then to con-
sider what the always imperfect vision module may report. That is, in a single
frame, the analysis of an image may actually perceive two blobs of yellow colour
and one of blue that are rectangular enough for all of them to be considered as
goals. Again, any software/logic that rules out two rectangular blobs of yellow,
perhaps on the basis that one is larger than the other, or one is above the field
of vision, or one is next to green, is performing some reasoning based on domain
knowledge. And what we are arguing here is that if all those ways of ruling out
sightings of landmarks are not concentrated in a single module represented in
logic, then the software is very likely to have such rules in several modules, result-
ing in high coupling of several modules, and more seriously, in incomplete and
inconsistent modelling of the reasons why some sightings are ruled out before
they are used for localisation. As the robots move to more realistic environments
more reasoning is needed (now the new field does not have a barrier of white
around it, there are more phantom objects in the audience 7).

We have no space here to discuss what other logics produce as the rules for
when vision reports two objects which are landmarks that have a third land-
mark in between. What are the cases for when we have two objects which are
landmarks that have a third landmark to the side. Then, we have to progress to
when vision reports exactly 3 landmarks. Seeing exactly 4 landmarks results in
120 rules and so on. The point we are making is that even from the software en-
gineering, software verification and validation point of view, we need a complete
and correct logic theory of the consistency of the vision reports.

Because of this large number of cases, the knowledge elicitation approach (at-
tempting to make P explicit with something like Ripple Down Rules) will also
constitute a large model of deeply nested if-then-else rules. Since the hierar-
chy is basically a tree, there is the potential of replicating some subtrees. But
more seriously, Ripple Down Rules would be a binary valued logic incapable of
7 See Fig. 5 for examples of this in the RoboCup-05 setting.
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reaching more generic conclusions and reasoning capabilities as PL(for example,
switching between the closed world assumption and the open world assumption).
Although the Spatial Model and the Temporal Model have relations for only
two objects in the same frame, they correctly derive conclusions for most cases
with three objects in a frame. In particular, these two models can correctly rule
out the inconsistent object when the left post is correct, but the goal and right
post are inverted. A case they miss is when the left post and the goal are in cor-
rect order, but the right post appears leftmost. This again reflects the power of
modelling with PL as opposed to modelling without it. The PL is analysing the
pairs within the triplet in sight. And while two of the pairs are consistent (those
involving the left post), the pair involving the goal and the right post indicates
both of these are inconsistent. The Complete Model for 3 objects gets this
case correct and again resolves correctly almost all sightings of 4 objects.

We included reasoning in a hybrid architecture (symbolic and reactive) for
useful tasks within the time bounds of a dynamic environment like robotic soccer.
The next step is to implement PL in C++ so that it can run on board the Sony
AIBO. In this way, the robot will not be required to carry on board proofs of all
possible outputs of interest, but just execute reasoning as needed.
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Abstract. An essential capability of a soccer playing robot is to robustly and
accurately estimate its pose on the field. Tracking the pose of a humanoid robot
is, however, a complex problem. The main difficulties are that the robot has only
a constrained field of view, which is additionally often affected by occlusions,
that the roll angle of the camera changes continously and can only be roughly
estimated, and that dead reckoning provides only noisy estimates. In this paper,
we present a technique that uses field lines, the center circle, corner poles, and
goals extracted out of the images of a low-cost wide-angle camera as well as
motion commands and a compass to localize a humanoid robot on the soccer
field. We present a new approach to robustly extract lines using detectors for ori-
ented line pints and the Hough transform. Since we first estimate the orientation,
the individual line points are localized well in the Hough domain. In addition,
while matching observed lines and model lines, we do not only consider their
Hough parameters. Our similarity measure also takes into account the positions
and lengths of the lines. In this way, we obtain a much more reliable estimate
how well two lines fit. We apply Monte-Carlo localization to estimate the pose
of the robot. The observation model used to evaluate the individual particles con-
siders the differences of expected and measured distances and angles of the other
landmarks. As we demonstrate in real-world experiments, our technique is able to
robustly and accurately track the position of a humanoid robot on a soccer field.
We also present experiments to evaluate the utility of using the different cues for
pose estimation.

1 Introduction

The knowledge about the poses of the robots during a soccer game is one of the pre-
requisite features for successful team play. Many approaches to localization on the
RoboCup field or less structured environments have already been presented. Several
approaches exist that use distance information provided by a proximity sensor, like a
laser scanner [1], or images of an omnidirectional camera [2,3,4,5] for localizing a robot
in the RoboCup environment. However, for some types of robots such sensors do not
seem to be appropriate since they do not agree with their design principle. Humanoid
robots, for example, which are constructed to resemble a human, are typically only
equipped with directed cameras.

In this paper, we present an approach to vision-based localization of a humanoid
robot that uses a single wide-angle camera. Many problems exist that make localization

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 245–257, 2007.
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for humanoid robots a complex problem. The robot can only observe a constrained part
of the soccer field due to the directed camera and due to occlusions caused by moving
objects. The camera images are distorted and often blurred because of camera motion.
Furthermore, the roll angle of the camera changes continously and can usually only
be roughly estimated. The camera perspective, however, has a significant impact on
the measured distances and angles to landmarks. Finally, compared to a wheeled robot
equipped with odometry sensors, we get a very noisy estimate by dead reckoning, i.e. ,
the prediction of the robot’s pose based on executed motion commands.

We apply the well-known Monte-Carlo localization (MCL) technique [6] to estimate
the robot’s pose (x, y, φ), where (x, y) denotes the position on the field and φ is the
orientation of the robot. MCL uses a set of random samples, also called particles, to
represent the belief of the robot about its pose. We extract environment-specific land-
marks out of the camera images. Features we use for localization are the field lines, the
center circle, the corner poles, and the goals. Additionally, we consider compass data
as well as the motion commands sent to the robot.

We present a new technique to robustly extract lines out of images. In contrast to
previous approaches that find line transitions on scan lines in the image [2,7], simply
detect edges based on certain color changes [3,8,4], or using classical kernels that detect
edge gradients in greyscale images [9], we extract line segments out of an image by
applying four different detectors that find oriented line points. The detectors guarantee
that green is detected on both sides of a line. Since the detectors provide a reliable
estimate of the orientations of the individual line points, they are localized well in the
Hough domain and we can direct the search towards lines that match these orientations.
Before applying the Hough transform to find lines in the two main orientations, we
locate the center circle.

For a discrete set of possible poses of the robot, we compute the largest lines that
are expected to be visible from that pose. During localization, these lines are then
compared to the largest currently observed lines. To get a much more reliable esti-
mate how well two lines fit, we do not only compare their Hough parameters. We also
take into account a measure that estimates the positions and lengths of the lines. In
the observation model of the particle filter, we additionally consider the differences
between measured and expected distances and angles of the other landmarks as well
as the compass data. As we demonstrate in practical experiments with a humanoid
robot in the RoboCup environment, our technique is able to robustly and accurately
track the pose of the robot. In order to assess the benefit of using the different types
of features, we present experiments illustrating their influence on the localization
result.

This paper is organized as follows. After discussing related work in the following
section, we introduce our robot and the RoboCup environment. In Section 4 we describe
the Monte-Carlo localization technique that is applied to estimate the robot’s pose. In
Section 5 we explain how to extract lines out of the images provided by our camera.
Afterwards, we present the observation model used for MCL in Section 6. Finally, in
Section 7, we show experimental results illustrating the robustness of our approach to
estimate the robot’s pose.



Multi-cue Localization for Soccer Playing Humanoid Robots 247

2 Related Work

Many systems that perform vision-based localization in the RoboCup domain have al-
ready been presented. None of them can directly be applied for localization using our
humanoid robot as we will point out in the following.

Several localization systems make use of the field lines. De Jong et al. [8] identify
edges and divide the image in subimages afterwards. They apply the Hough transform
in each subimage assuming that the line segments (even the ones corresponding to the
center circle) are mostly straight. They propose to estimate the position of the robot by
considering the distance from the observed line segments to the closest expected lines
for poses in a local area around its last pose. However, no pose tracking experiments are
presented. Furthermore, it remains unclear how to choose an appropriate discretization
of the image. Iocchi and Nardi [10] apply an extended Kalman filter for localization
with a perspective camera. They match observed and model lines in the Hough domain.
One assumption for this method to work is that odometry data yields a good estimate
of the robot’s pose. This cannot be guaranteed in our case. Furthermore, we have to
deal with the problem of changing camera perspectives during walking. Marques and
Lima [4] apply a similar approach of line matching in the Hough domain. They search
color transitions on circles in omnidirectional images. Röfer et al. [7] distinguish be-
tween four different types of lines. In each image, they search for line transitions corre-
sponding to these types and randomly draw three transitions for each. During MCL, the
measured angles to the drawn points are then compared to the expected angles of the
closest points of each type. Furthermore, they take into account other landmarks like
goals and poles. Due to the unpredictable roll angle of the camera, it is in our case not
enough to consider only a few points on the lines for localization. We have to use as
much information about the lines as we can extract.

Lauer et al. [2] use line transitions extracted out of omnidirectional images and apply
gradient decent to minimize an error term in order to locally find the best match between
the lines in the current image and the field lines. It is not clear yet how this method
performs under real conditions, especially in case of sensor noise. Schulenburg et al. [3]
apply a Kalman filter and combine omnivision with laser data for localization. They
search for color transitions in the omnidirectional image and find lines in the Cartesian
space. Their approach associates each point to a unique line. In order to avoid the data
association problem and in order to be able to deal with noisy data, we search for lines
in the Hough domain. The approach presented by von Hundelshausen and Rojas [5]
uses a technique to track the green regions and search for transitions on the boundaries
of these tracked regions. Tracking regions is much easier in omnidirectional images
since, due to occlusions during a dynamic soccer game, usually the small field of view
changes rapidly when using a directed camera only.

Enderle et al. [11] rely only on particular landmarks during MCL and do not take into
account the field lines. This approach may have problems in case of frequent occlusions
as they typically occur during a soccer game. Note that Hoffmann et al. [12] propose
to utilize negative information during localization. In case the robot did not detect a
certain landmark, this information could be used to exclude some states. The idea has
so far only been tested in simple setups and not during a soccer game where occlusions
are likely to cause problems.
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3 The Design of Our Robot and Environmental Setup

The left image of Figure 1 depicts one of our robots, which we used to carry out the ex-
periments presented in this paper. The height of the robot is 60cm and it has 19 degrees
of freedom, which are driven by servo motors. We use a Pocket PC, which is located
in the chest, to control the robot. The Pocket PC is equipped with a 520MHz proces-
sor and 128MB RAM. The robot uses a compact flash color camera with a wide-angle
lens to get information about the environment. The lens is located approximately at the
position of the larynx. The large field of view (150◦ horizontally and 112◦ vertically)
allows the robot to see at the same time the ball at its feet and objects above the horizon
(see right image of Figure 1). The camera delivers images at a rate of up to 5fps with
a resolution of 320 × 240 pixels. Additionally, the robot is equipped with a compass,
which is located in its head, to facilitate localization.

Fig. 1. The left image shows one of our humanoid robots. The robot is controlled by a Pocket PC
and uses the images of a low-cost wide-angle camera for perceiving the relevant information
about the environment. An image captured from the robot’s perspective while it was walking can
be seen on the right.

The KidSize soccer field in the Humanoid League has a size of 4.5m × 3m. Objects
that can be used for localization are the two goals (colored blue and yellow), the field
lines, the center circle, and four corner poles.

4 Monte Carlo Localization

To estimate the pose xt of the robot at time t, we apply the well-known Monte-Carlo
localization (MCL) technique [6], which is a variant of Markov localization. MCL re-
cursively estimates the posterior about the robot’s pose:

p(xt | z1:t, u0:t−1)

= η · p(zt | xt) ·
∫

xt−1

p(xt | xt−1, ut−1) · p(xt−1 | z1:t−1, u0:t−2) dxt−1 (1)
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Here, η is a normalization constant resulting from Bayes’ rule, u0:t−1 denotes the se-
quence of all motion commands executed by the robot up to time t − 1, and z1:t is the
sequence of all observations. The term p(xt | xt−1, ut−1) is called motion model and
denotes the probability that the robot ends up in state xt given it executes the motion
command ut−1 in state xt−1. The observation model p(zt | xt) denotes the likelihood
of making the observation zt given the robot’s current pose is xt.

MCL uses a set of random samples to represent the belief of the robot about its state
at time t. Each sample consists of the state vector x

(i)
t and a weighting factor ω

(i)
t that is

proportional to the likelihood that the robot is in the corresponding state. The update of
the belief is carried out according to the sampling importance resampling particle filter.
First, the particle states are predicted according to the motion model. For each particle,
a new pose is drawn given the executed motion command since the previous update.
In the second step, new individual importance weights are assigned to the particles.
Particle i is weighted according to the likelihood p(zt | x(i)

t ). Finally, a new particle set
is created by sampling from the old set according to the particle weights. Each particle
survives with a probability proportional to its importance weight. This step is also called
resampling.

In order to allow for global localization, e.g., in case of the “kidnapped robot prob-
lem”, a small amount of the particles is replaced by particles with randomly drawn
poses.

5 Finding Lines Using Detectors for Oriented Line Segments and
the Hough Transform

In this section, we introduce our approach to robustly locate lines in the images of
the wide-angle camera. Figure 2 illustrates the whole process of finding individual line
points, extracting line segments, determining their position in egocentric coordinates
and their transformation into the Hough space. The details are described below.

5.1 Extracting Oriented Line Segments

To reduce the influence of different lighting conditions, we color-classify pixels in the
YUV color space using the pie-slice method [13]. In a multistage process, insignificant
colored pixels are discarded so that only the colors of the relevant features remain. To
find lines, we are only interested in the pixels that are classified as white or green.

Line points can be detected by processing the color-classified image as follows. We
apply elongated Gaussian kernels to determine the likelihood of pixels being part of a
line. In short, we search for elongated white regions that have green neighbors on two
opposite sides. By taking into account the relative difference of the sum of the like-
lihoods of green and white pixels within a neighborhood, we estimate the likelihood
that a pixel corresponds to a line point. We use Gaussian kernels of two different sizes
to search for closer line points, which contain more white pixels and which are in the
lower part of the image, and for line points that are farer away. In order to estimate the
orientation of a line point, we consider four different orientations and apply individual
kernels (see Figure 3) to compute the individual likelihoods. For each line point with a



250 H. Strasdat, M. Bennewitz, and S. Behnke

(a) (b)

(c) (d)

Fig. 2. Illustration of the extraction of lines: The robot’s current field of view can be seen in
image (a). The four small images (b) show responses of four oriented line detectors. Image (c)
depicts the extracted line segments projected into the egocentric space. The center circle is de-
tected and removed. Image (d) shows the representation of the line segments in the Hough space,
where the major orientation αmax is estimated and the main lines are detected.

likelihood above a threshold, we store the orientation that yielded the maximum likeli-
hood as well as the best neighbor orientation. Figure 2 (b) illustrates the responses of
the line detectors for the example image shown in Figure 2 (a).

After identifying the line points in the image, we project them onto the soccer field
(see Figure 2 (c)). To get the metric egocentric coordinate on the soccer field corre-
sponding to an image coordinate, we first eliminate the radial distortion in the image
and apply an affine transformation afterwards. The parameters of the projective trans-
formation can be calculated from four pairs of points on the field and the corresponding
points in the camera image. Here, we assume a fixed viewing angle of the camera onto
the field. Note that after the undistortion process and the projection, the line segments
have a rather high distance to each other.

In addition to the coordinates of the line points, the corresponding two orientations
are also transformed from the image space into the metric egocentric space. We esti-
mate the actual orientation of a line point by computing the weighted mean of these
transformed orientations using their likelihoods. Thus, we have a set of weighted line
points that are described by their positions and their orientations relative to the robot.
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Fig. 3. The four kernels used for the detection of oriented line segments in two different sizes

To improve robustness, we do not transform individual line points into the Hough
space (see next section). Instead, we merge line points that are close in the image space
and have similar orientations to one longer line segment. This way, we can deal with
false detections caused by noisy observations.

5.2 The Hough Transform for Line Extraction

The Hough transform is a robust method to find lines fitting a set of 2D points [14]. It
relies on a transformation from the Cartesian plane in the Hough domain. The following
curve in the Hough domain is associated with a point (x, y) in the Cartesian plane:

ρ = x · cos(θ) + y · sin(θ) (2)

Here, ρ is the perpendicular distance from the origin and θ is the angle with the normal.
This curve describes all the lines that go through (x, y), since each point in the Hough
space corresponds to a line in the 2D Cartesian space.

By discretizing the Hough space into cells h(θi, ρj), one can search for local max-
ima. These local maxima in the Hough domain correspond to the best fitting lines for
the input points. The Hough transform has the advantage that it is quite robust to sensor
noise, since outliers do not affect the local maxima. Furthermore, since distances of
points on the lines are not considered, it can deal with occlusions.

Before we apply the Hough transform to find the best fitting lines for the extracted
oriented segments, we locate the center circle. Whenever large parts of the circle are
visible in the image, this can impair the line detection. Parts of the circle can be mis-
classified as short lines and the circle can potentially affect the estimation of the main
orientations. To avoid these problems, we first identify the center circle following the
approach presented by de Jong et al. [8]. We consider the individual line segments and
vote for the positions at a distance of the radius of the center circle, orthogonal to the
orientation of the segment. By determining the largest cluster of points and identifying
the segments that voted for it, we find the segments corresponding to the center circle.
To avoid false positive detections, we only interpret a cluster as the center circle if the
line segments that voted for it have a large range of orientations. The corresponding
segments are eliminated, i.e. they are not transformed into the Hough space. Addition-
ally, the knowledge about the position of the center circle is used in the observation
model of the particle filter (see next section).
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In the standard Hough transform, each line segment (x, y) votes for all bins h(θ, ρ)
which fulfill Eq. (2). Since we have already estimated the orientation of the line seg-
ments, we only have to vote for a small subset of bins, which reduces the computational
costs. In particular, we accumulate its likelihood in the bins h(θ± ε, ρ) that correspond
to the estimated orientation θ of a segment. Here, ε indicates that we consider a local
neighborhood of θ whose bins are also incremented. In this way, we direct the search
towards lines that fit the preestimated orientations. In our current implementation, we
use a discretization of 2.5◦ and 6cm for the Hough space.

In general, to locate lines in the Hough space one has to search the entire space for
local maxima. In the RoboCup domain, we only have two possible orthogonal orien-
tations for the field lines. This allows us to use a robust method for finding lines that
additionally reduces the computational costs: We can determine the two main orienta-
tions by adding the bins corresponding to α and α + π

2 , with α ∈ [0; π
2 [ and finding the

maximum:

αmax = argmax
α=θi mod π

2

∑
ρj

h(θi, ρj) (3)

Finally, we search for maxima in the bins of αmax and αmax + π
2 , respectively. In this

manner, we extract from the Hough space four field lines, two for each main orientation,
that are used in the observation model of the particle filter (see next section). Figure 2 (d)
illustrates the representation of the segments in the Hough space (the darker the bins the
higher the values) as well as the main orientation αmax.

6 Observation Model

In this section, we describe how to integrate the observations made by the robot in order
to update the weights of the particles.

6.1 Corner Poles and Goals

The corner poles and goals can be detected by processing the color classified image.
Using constraints about the number of pixels of certain colors in neighborhoods, these
landmarks can be found quite robustly. The egocentric coordinates of the landmark’s
lower borders are obtained using the projective transformation. For each such landmark,
we estimate the distance and angle to the individual particle poses. To compute the
likelihood of a landmark observation, we evaluate the differences between expected
and measured distances and angles of landmarks

plandmark = exp
(
− ‖de − do‖

2 · σ2
1

)
· exp

(
− ‖βe − βo‖

2 · σ2
2

)
, (4)

where σ1 and σ2 are the variances of the Gaussians, de and do are the expected and
measured (observed) distance to the landmark, and βe and βo are the expected and
measured angle of the landmark.



Multi-cue Localization for Soccer Playing Humanoid Robots 253

6.2 Center Circle and Lines

If the center circle can be detected, the position of its center is estimated as explained
in Section 5.2. To compute the likelihood of this observation, we also evaluate the dif-
ference between the expected and the observed position

pcircle = exp
(
− ‖ce − co‖

2 · σ2
3

)
. (5)

Here, ce denotes the expected and co the measured position of the center circle, and σ3

is the variance of the Gaussian evaluating the distance.
Line matching is a bit more complicated. First, it should be noted that transforming

line segments into the Hough space has a serious shortcome. Hough parameters describe
straight lines without starting and endpoints. Thus, significant information gets lost
when line segments are transformed into the Hough space. To overcome this drawback,
we additionally compute the value us that corresponds to the mean position of the line
segments s on the straight line l as well as its standard deviation σ(u).

In particular, we compute for each single line segment s belonging to l a value

us = x · sin(θ)− y · cos(θ), (6)

where (x, y) is the the position of s in the Cartesian space and θ is the angular Hough
parameter of l. The value us indicates, in the egocentric space, the displacement of s
along l from the perpendicular of l that goes through the origin. Then, we determine
for l the mean ū and the standard derivation σ(u) of the us values of its segments. A
low value of σ(u) corresponds to a short line. On the other hand, a long line results in
a high value of σ(u). Furthermore, ū is an indication for the position of the line. These
correlations in the Cartesian space are lost when applying the plain Hough transform.
In order to more reliable estimate how well two lines fit, we do not only compare their
Hough parameters but also their ū and σ(u) values. This is especially important in case
the actual role angle of the camera is different from the predicted angle.

In the observation model, we do not take into account all observed lines. Instead, we
only consider the largest ones. For a discrete set of possible poses on the soccer field,
we precompute the six largest field lines (according to the number of line points) that
are expected to be visible from that pose as well as their parameters θ, ρ, ū, and σ(u).
From the lines extracted out of the current image, we determine for each of the two
main orientations two lines by finding local maxima in the Hough space. We assign
each of these observed lines to one of the four largest lines that are expected to be
visible from the particle pose. Here, we follow a nearest neighbor approach and use the
Hough parameters for comparison.

To compute the likelihood of line observations, we evaluate the differences between
expected and measured Hough coordinates h = (θ, ρ) of matched lines, as well as the
differences between the expected and measured ū and σ(u). Note that we only consider
the lines corresponding to the nearest neighbor matchings m

plines =
∏
m

exp
(
− ‖hm

e − hm
o ‖

2 · σ2
4

− ‖ūm
e − ūm

o ‖
2 · σ2

5

− ‖σ(u)m
e − σ(u)m

o ‖
2 · σ2

6

)
. (7)
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(a) (b) (c) (d)

Fig. 4. Likelihood of positions given the observed line using (a) the Hough parameters only,
(b) the ū value, (c) the σ(u) value and (d) all four parameters (the darker the more likely)

Here again, the σ’s are the variances of the Gaussians, e and o denote the expected and
measured values. Figure 4 shows the likelihood of positions given the line observation
from the indicated pose.

6.3 Compass

To eliminate ambiguities, which can be caused by the symmetric field lines, the robot
can additionally use its compass. Compass data is evaluated with an analogous function
that is based on the difference between measured and expected values to yield the like-
lihood pcom. Since the compass data is not that precise, we use a Gaussian with a rather
high variance to evaluate the difference.

6.4 Integration of All Observations

Finally, we can define for a particle with the pose x
(i)
t the likelihood of making the

observation zt = {landmarks , circle, lines , compass} as the product of the individual
likelihoods

p(zt | x(i)
t ) =

∏
landmarks

plandmark · pcircle · plines · pcom. (8)

Note that we use a confidence value cj for all individual observations oj . cj indicates
how sure we are that oj was correctly observed. We ensure that no observation has a
likelihood pj smaller than (1− cj):

pj = (1− cj) + cj · pj . (9)

7 Experimental Results

In order to evaluate our approach to estimate the pose of a humanoid robot on the
RoboCup soccer field, we carried out an experiment in which the robot was controlled
via joystick to six different poses that were marked with tape on the field. We take these
marked positions as “ground truth”. Therefore, part of the errors in the localization
results is due to the problem of joysticking the robot exactly onto the marked positions.

Since the robot does not possess any odometry sensors, we perform dead reckoning
to estimate the pose of the robot based on motion commands sent to the robot’s base.
The control input consists of the robot’s current gait vector that controls the lateral,
sagittal, and the rotational speed of omnidirectional walking. The estimated velocities
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are integrated over time to determine the relative movement. However, due to slippage
on the ground the dead reckoning estimate is highly unreliable. We use therefore a rather
high noise in the motion model of the particle filter.

Figure 5 shows the true pose of the robot as well as the estimates at the six marked
poses using the different cues. It should be noted that in the beginning, the robot globally
localized itself on the field. We determined the position of the robot by clustering the
particles and computing the weighted mean of the particles of the maximum cluster.
In the figure, we only illustrate the pose estimate based on all available cues and the
pose estimate resulting when ignoring the lines. As can bee seen, we obtain a much
more robust and accurate estimate by considering the lines in the observation model.
For example, shortly before the robot reaches position 6 it has a false positive detection
of a landmark in the laboratory environment. This results in a false pose estimate when
the lines are not used for localization. The average error in the x/y-position was 20cm
and the average error in the orientation of the robot was 5◦ when the lines were used for
localization. The analogous values were 66cm and 11◦ in the case that the lines were
not used. We also performed experiments in which we ignored the corner poles or the
compass. We observed that the lines are the most relevant feature.

Fig. 5. Result of a localization experiment with our humanoid robot. The black (filled) circles
correspond to the true pose, the red (gray) filled circles to the localization result using all cues,
and the green (unfilled) circles to the estimate based on all cues except the lines. As can be seen,
by considering all available cues the localization works robustly and accurately.

8 Conclusions

In this paper, we presented a robust approach to accurately localize a humanoid robot
on the soccer field. This is a challenging task since data from an omnivision camera or
a distance sensor is not available. The image of the perspective camera covers only a
constrained part of the environment and, additionally, the roll angle of the camera can
only be roughly estimated. However, it has a high influence on the measured positions
of objects. A further problem is that the robot lacks odometry sensors and that dead
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reckoning provides extremely noisy pose estimates. For reliable localization, we use the
the field lines, the center circle, the corner poles, the goals as well as compass data. We
developed a new method to robustly extract lines out of noisy images. The main idea is
that we apply robust detectors for oriented line points in the image and aggregate them
locally to oriented line segments. In the Hough domain, we then can direct the search
towards lines that fit these orientations. While comparing an observed line to a model
line during localization, we do not only consider their Hough parameters but also an
estimate of their positions and lengths. As we demonstrated using a humanoid robot on
the soccer field, our system provides a robust and accurate pose estimate.
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Abstract. This paper explores how robot localization can be improved
and made more reactive by using an adaptive motion model based on
proprioception. The motion model of mobile robots is commonly assumed
to be constant or a function of the robot speed. We extend this model by
explicitly modeling possible states of locomotion caused by interactions
of the robot with its environment, such as collisions. The motion model
thus behaves according to which state the robot is in. State transitions
are based on proprioception, which in our case describes how well the
robot’s limbs are able to follow their respective motor commands. The
extended, adaptive motion model yields a better, more reactive model
of the current robot belief, which is shown in experiments. The improve-
ment is due to the fact that the motion noise no longer has to subsume
any possible outcome of actions including failure. In contrast, a clear dis-
tinction between failure and normal, desired operation is possible, which
is reflected in the motion model.

1 Introduction

Due to the dynamic nature of the RoboCup environment, collisions with other
robots occur frequently. Collisions are particularly bad for the Sony Aibo (or
for that matter: any legged robot), as two robots easily get one another’s legs
entangled, making directed locomotion impossible. On the one hand, this leads to
impaired mobility, which the robot needs to recover from as quickly as possible.
On the other hand, collisions leave the robot badly localized since its actions did
not have the expected result.

Detecting collisions is difficult in the Sony Aibo as it does not have any ded-
icated touch sensors on its shell. Even with the Aibo’s touch sensors in its paws
it is difficult to detect if the robot’s leg touches the ground. To cope with this
lack of dedicated sensory input and to provide a degree of proprioception, the
movement of the robot’s legs are examined [10,5]. The robot’s legs (and to some
extent its head) are the parts of the robot that come into contact with other
robots or the environment when collisions occur. It was found that not only the
overall movement of the robot but the movement of individual limbs is impaired
during a collision. Monitoring the deviation of intended motions (control) to
actual motion of limbs (servo readings), collisions can be detected [5].

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 258–269, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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To understand the effect of collisions on localization, one has to consider the
motion update of the Bayes filter employed [12]:

bel−(xt) ←−
∫

p(xt|xt−1, ut−1)bel(xt−1)dxt−1 (1)

bel(xt) ←− ηp(zt|xt)bel−(xt) (2)

In the motion update (Eqn. 2), the (prior) localization belief bel− is updated
using knowledge about the action currently performed by the robot, i.e., p(zt|xt).
For a moving robot, this intended action is given by the motor commands and
the expected outcome. This probabilistic motion model is commonly obtained by
having the robot move about in its environment and measuring the deviation
between desired and actual motion. Collisions are usually not included explicitly
in the motion model as they are difficult to detect and the effect on the outcome
of motions is hard to model. Particle filters offer a certain robustness with respect
to errors caused by such un-modeled phenomena by means of random search. In
these cases, the motion error is generally assumed to be larger than the actual
error observed during calibration to account for unforeseen events. This generally
requires a large particle count and reduces the accuracy of the localization:
neither does the particle distribution reflect the uncertainty brought about by
collisions, nor does it properly reflect the relative certainty when the robot is
moving freely.

In contrast, we will show how collision detection can be used to create an
adaptive motion model by explicitly modeling different states of robot mobility.
This establishes a dynamic level of trust in odometry. The amount and shape of
noise associated with locomotion is modeled according to the state of mobility of
the robot. The resulting belief representation better resembles the current state
of the robot which allows it to recover more quickly from collisions as particles
are more spread out. It also allows the robot to monitor the belief entropy and
thus determine if it can go on with its task or if it is better to stop and re-localize
before proceeding.

The importance of better modeling arises in part from the low particle count
used due to limited computational resources. With high particle counts, areas of
low probability are still represented by a small number of particles. If something
unexpected happens, such particle filters can recover quickly as unlikely areas
are not completely deserted. As the particle count is lowered, however, particle
filters become more susceptible to errors caused by un-modeled events as unlikely
regions of the state space may not be represented at all. Spreading out the
particle distribution when disturbances occur helps cope with such events and
yield quicker convergence when sensor data is acquired.

Related Work. Legged robots are generally believed to be able to deal with a
wider range of environments and surfaces than wheeled robots. The many designs
of legged robots vary mainly in the number of legs, ranging from insectoid or
arachnoid with 6, 8 or more legs[2],4-legged, such as the Sony Aibo used in our
research [4,7], to humanoid with 2 legs (biped) [1,9].



260 J. Hoffmann

Apart from the current action failing, collisions (and subsequently being stuck)
have severe impact on the robot’s localization as odometry is used in the localiza-
tion process [3,11]. As stated before, the Sony Aibo lacks dedicated sensors that
would allow the robot to detect touching objects and collisions. This leaves two
sensors to achieve proprioception and thus collision detection, the accelerometer
and the directional sensors of the robot’s servos:

We found the accelerometer data of the Aibo to be very noisy and used it only
in situations where low pass filtering could be applied. One such application
is to have the robot’s head look parallel to the ground. The most important
application, though, is to figure out if the robot has fallen over and then trigger
a recovery action. In very static, well controlled environment, the accelerometer
signal can be also be classified to differentiate between surfaces that the robot
is walking on [13].

The Aibo uses servo motors in its leg joints. A servo is an electrical motor with
an integrated position feedback device and controller. The position/directionmea-
surements of these servos can be used to achieve proprioception. Quinlan et al. [10]
show how this can be used to effectively monitor the traction of the robot, namely
by comparing the current servo direction measurements of the leg joints to ref-
erence values gathered in a prior calibration run. It relies solely on the direction
measurements and does not take into account the control commands. In contrast,
our work uses the approach presented by [5], which is based on the assumption
that there is, in fact, a similarity between intended and actual motion and the
variance of the sensor signal is bounded for the entire period of the motion. Under
these assumptions, training can be greatly simplified as the number of parameters
required to describe unhindered motion can be reduced by orders of magnitude.
The reference value is proportional to the control signal, which is calculated by the
walking engine as the inverse kinematic calculation is performed [4].

While improving the sensing model has been the focus of many papers (see
bibliographical remarks in [12]), modeling the motion has received little attention
and quite crude models prevail in the context of robot localization [11]. In [8],
the motion of the ball is modeled in detail, taking into account interactions with
its environment using a Bayes net. Our approach takes this idea and applies is to
model robot motion, using proprioception as evidence for what state the robot
might find itself in.

Outline. We will first summarize the concept of probabilistic motion modeling
and describe the motion model used for the Sony Aibo and how this model can
be enhanced. We then illustrate the benefits of adaptive motion modeling in
several experiments.

2 Probabilistic Motion Model

The motion model is a probabilistic model of the outcome of control action ut

performed by the robot. It is given by the conditional probability density

p(st|ut, st−1). (3)
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It describes the motion update of the Bayes filter in Equations 1 and 2. There
are two types of approaches to modeling the motion of the robot: one is called ve-
locity motion modeling whereas the other is based on odometry [12]. In wheeled
robots, an odometer is used to count the number of turns of the wheels as the
robot moves. Given the diameter of the wheels, the distance traveled can be
calculated. In contrast, the velocity motion model is based on the predicted out-
come of control actions. Both velocity- and odometry-based motion modeling
suffer from drift and slippage. However, the odometer constantly measures the
turns of the wheels whereas discrepancies of actual motion and model are not
compensated in the velocity motion model. As the Aibo has no wheels and de-
ducing the distance traveled from the leg’s movement is very difficult, we use a
velocity-based motion model.

Motion Model of the Sony Aibo. Although the Aibo uses legs for locomo-
tion and does not have an odometer, the term odometry is commonly used to
describe how far the robot has traveled given a sequence of control command.
A control command is also called a motion request and consists of desired robot
speeds m = (ẋ, ẏ, θ̇ = ω)T with angular velocity ω. Given the motion request,
the distance traveled of the robot can be calculated [11,12]. The true distance
traveled, however, is never exactly the same in two subsequent runs. Odometry
is subject to cumulative errors (drift) and by itself does not account for slipping,
sliding, or skidding. We model the odometry error as a normally distributed ran-
dom variable of finite variance, resulting in the effective speed meff and effective
locomotion (distance traveled) Δr:

meff = m + ε (ẋ, ẏ, ω) =

⎛
⎝ ẋ

ẏ
ω

⎞
⎠ +

⎛
⎝ εẋ(ẋ, ẏ, ω)

εẏ(ẋ, ẏ, ω)
εω(ẋ, ẏ, ω)

⎞
⎠ (4)

Δr = Δt ·m (5)

Δreff = Δt ·meff (6)

The true velocity of the robot equals the command velocity plus an additive
error ε of zero mean. Note that ε is a function of all three control inputs, i.e.,
drift may cause the robot to turn although ω = 0. In a simple model, the noise
is assumed gaussian and the standard deviation σi of the probability density
function (PDF) of εi is assumed linearly proportional to the weighted sum of
the control inputs, requiring a total of 9 parameters to describe the odometry
error:

σi(ẋ, ẏ, ω) = αi,1 ẋ + αi,2 ẏ + αi,3 ω (7)

When a particle filter is employed, this means for each particle, an error is sam-
pled from the error PDF associated with ε. This error is added to the motion re-
quest m+ε = m′, which is in turn used to calculate the new robot pose at time t.
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In the actual Monte Carlo Localization (MCL) implementation used by the
GermanTeam, each particle’s pose is updated using the motion request m. The
odometry error Δt ·ε is only added after this update. Furthermore, the standard
deviation in Equation 7 is approximated in the following fashion:

σi(ẋ, ẏ, ω) ≈ σi(|v|, ω) (8)

with
|v| =

√
ẋ2 + ẏ2, (9)

assuming that the effect of the translational error is the same in dimensions x
and y. The robot pose of a sample is thus updated by:

rt ← rt−1 + Δr + Δt

⎛
⎝ β1|v| rand(−1, 1)

β2|v| rand(−1, 1)
(β3|v|+ β4ω) rand(−1, 1)

⎞
⎠ (10)

Where β1, ..., β4 are parameters describing the error model and rand(−1, 1) is a
function that returns a random number in the range [−1, 1] (uniform distribution
is used for computational speed). The values of parameters β′

i = Δt · βi =
8ms · βi used in the implementation are: β′

1 = 0.1ms, β′
2 = 0.02ms, β′

3 =
0.002(rad/m)ms, β′

4 = 0.2ms.

3 Adaptive Motion Model

Some preliminary work on integrating information about collisions into the mo-
tion model was presented in [6]. We extend this naive approach by more ac-
curately modeling collisions and slip. The underlying idea is to separate the
components of the error brought about by the inherent odometry error εodo and
the error caused by slippage and collisions εcol. This allows to lower the noise
added per step when the robot is thought to move freely (accurate odometry)
and to only add large amounts of noise (uncertainty) if collisions are detected.
The effective speed meff of the robot is thus modeled as:

meff = m + εodo + εcol (11)

The robot pose is thus given as (cf. Equation 10):

rt = rt−1 + Δr + εodoΔt + εcolΔt (12)
= rt−1 + Δr + ε′

odo + ε′
col (13)

This separation improves localization accuracy when the robot moves about
freely while at the same time enabling it to more quickly recognize collision
events. The development was helped by the advent of means to better calibrate
the walking engine [4], making odometry much more precise as long as movement
is unhindered.
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free 
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slippage

stopped pushed

external
hinderance

Fig. 1. Bayes net describing the mobility of the robot motion. State transitions happen
when collisions occur; transition probabilities not shown.

3.1 Modeling States of Mobility

We will show how the state of mobility of the robot can be modeled. This is done
much like the state of the ball is modeled in [8]. The Bayes net in Fig. 1 models
the things that can happen to the robot with regards to its ability to move.
State transitions away from the “free” state are triggered by collision events.
The possible states and their effect on the robot’s position and orientation are:

Free motion. The robot moves freely, no internal or external disturbances oc-
cur, locomotion error is determined by the odometry error only.

Slippage. This state subsumes motion disturbances like slipping and skidding
that occur without external disturbance and that are often caused by abrupt
changes of the motion request.

The effective translational speed of the robot is reduced and the robot
orientation is subject to error:

v′ = v rand(β1, 1.0) (14)
ω′ = ω + β2 rand(−1.0, +1.0) (15)

with 0 ≤ β1 < 1 and angle β2.

External hindrance. The robot’s motion cannot be executed as intended, e.g.,
because it is running into a wall. The effective motion is smaller than the
motion request.
Effective translational speed and angular velocity are reduced:

v′ = v rand(β3, 1.0) (16)
ω′ = ω rand(β4, 1.0) (17)

with 0 ≤ β3 < 1 and 0 ≤ β4 < 1.



264 J. Hoffmann

Pushed. The robot is being pushed by another robot; a force acts upon it
resulting in the robot being turned and displaced.

α = rand(−π, +π) (18)
d = β5 rand(0, 1) (19)
x′ = x + d cos(α) (20)
y′ = y + d sin(α) (21)
θ′ = θ + β6 rand(−1.0, +1.0) (22)

with displacement error β5 and angle β6.

Stopped. The robot runs into an obstacle and is stopped dead in its track.
The translational speed of the robot becomes zero. However, it is often

observed that robots turns when being stuck:

v′ = 0 (23)
ω′ = β7 rand(−1.0, +1.0) (24)

with angle β7.

Variables used: translational speed of the robot |v| =
√

ẋ2 + ẏ2, robot orienta-
tion θ, angular velocity ω = θ̇, model parameters βi, and rand(a, b) is a function
that returns a random value in the interval [a, b].

When the robot is in the “stopped” state, it remains in this state for some
time until it has freed itself by a recovery action or the entanglement with
another robot has somehow been resolved. Characteristically, when the robot is
stopped, it will continuously bump into the obstacle, unable to free itself for a
few moments. Only when it has freed itself will it no longer detect (frequent)
collisions. It therefore remains in the stopped state as long as collisions are
detected at high frequency.

When collisions occur, we observed that the robot tends to turn towards the
cause of the collision, usually making matters worse. The motion of the robot’s
legs on the side where the collision occurs is hindered, slowing them down; this
results in a difference in the forward component of the motion of the left and
right legs, causing the robot to turn like a differential drive vehicle would. The
maximum turning speed caused by the difference in speeds is given by ω = vleft/w
(w = lateral distance between the robot’s feet). The collision percept zc contains
information about the location of a collision. The angular velocity of the robot
thus is changed in Equation 24 in the following fashion:

ω′ =
v

w
c(zc) βi rand(0, +1.0) (25)

with:

c(zc) =

⎧⎪⎨
⎪⎩

+1 if collision left
−1 if collision right
0 if collision left and right

(26)



Proprioceptive Motion Modeling for Monte Carlo Localization 265

This enables us to model a robot running into a wall, turning towards it until
finally facing it. When facing it, collisions will be detected both left and right,
marking the end of the turning motion.

4 Experimental Results

In the following experiments, a robot moves forward at constant speed and expe-
riences one or more collisions. The belief represented by the particle distribution
is generated without external perception, i.e., it is solely based on odometry,
odometry error, and proprioception-based collision error. This is done to em-
phasize the effect of the proposed motion model. In an actual application where
vision percepts are constantly integrated into the robot’s belief, the adaptive
motion model makes sure that the particle distribution is spread out enough to
model the belief’s uncertainty and to allow quicker re-localization after collision
events.

The parameters used in our experiments were hand-tuned; automating the
process of tuning poses a challenging machine learning task and remains future
work.

4.1 No Collision

Fig. 2 a) shows the particle distributions of a robot moving forward without
experiencing any collisions. Snapshots of the particle distribution are shown in
two second intervals. The robot moves at a speed of 200mm/s and it thus takes
the robot ten seconds to cross the distance of two meters as indicated. In this
illustration and in the following ones, the particle distributions are made up of
100 particles. The initial particle distribution has a standard deviation of zero,
i.e., all particles represent the same robot pose r0 = (x0, y0, θ0).

The figure contrasts the particle distribution using the standard GermanTeam
motion model and the distribution using the adaptive motion model. The latter
adapts to the situation of moving freely by using a lower odometry error resulting
in a more confined, low entropy distribution. Since the standard motion model is
a function only of the robot speed, a trade off between accuracy and robustness is
made: the particle distribution needs to spread out as collisions and hindrances
may occur but at the same time the noise added needs to be limited for the
distribution to remain stable and to not diverge too much. The standard model
therefore has a higher entropy than the adaptive motion model.

4.2 Single Brief Collision

In the first collision experiment, illustrated in Fig. 2 b), a robot moves forward at
|v| = 200mm/s, runs into another robot for about 2s and then continues to walk
forward. The particle distribution of the robot integrating collision information
is of typical sickle shape caused by angular disturbances; it is also more spread
out after the collision and accounts for the various potential turning motions
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Fig. 2. a) Particle distribution representing a robot moving forward at constant speed
experiencing no collisions. The top distribution uses the basic motion model used by
the GermanTeam, the bottom distribution uses the adaptive motion model. Since the
adaptive model “knows” that the robot is moving freely, the error of dead reckoning is
smaller.
b) Robot running into an obstacle and turning in the process; it then continues to move
freely. Note how the particle distribution has become much more spread out compared
to the unhindered movement.

experienced by the robot. Information about the side on which the collision
occurred is integrated and results in a non-symmetric PDF. Not taking into
account collisions and only using odometry, the robot believes to have traveled
in a straight line and also to have traveled further than it actually has.

As intended, the uncertainty associated with the belief increases after the col-
lision. Fig. 3 (bottom) shows the relative “sum of squared deviations”[5] during
the run, indicating when collisions are detected. Entropy is used to describe the
uncertainty associated with the particle distribution [12]:

Hp(s) = −
∑

p(si) log2 p(si) (27)

The entropy is divided into orientation and position entropy. As an artifact
of the way that entropy is calculated (grid based), the values of Hp(s) start at
zero and remain zero in early stages of each run. This is because at the very
beginning, all particles fall within the center cell, resulting in H = 1 log2 1 = 0.

Before the collision, the entropy of the adaptive motion model is lower than
that of the standard motion model. When the collision occurs, the amount of
motion noise is increased, which can be noticed in both the position and the ori-
entation entropy. After the collision, the position entropy of the adaptive model
continues to rise caused by particles diverging due to the angular uncertainty in
conjunction with the robot moving forward.
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Fig. 3. Impact of collision on the entropy of the particle distribution. Values of Srel

greater than 1 are interpreted as collisions. The marked curves (�) represent the entropy
of the particle distribution using the adaptive motion model. Without using collision
information, the entropy continuously rises over time. Incorporating collision informa-
tion, the entropy is lower before the collision and increases drastically as collisions are
detected.

4.3 Two Subsequent Collisions

In this experiment, the robot moves forward but experiences two collisions in
brief succession, one on its left and one on its right (Fig. 4). The two collisions
somewhat compensate each other in terms of resulting robot orientation. How-
ever, the robot is slowed down by the collisions and the total distance traveled
is reduced compared to the robot moving freely.

The particle distribution is spread out quite a bit, accounting for the two
collisions and their probable outcomes. The impact on the particle distribution
of the second collision is not as prominent as the distribution is already quite
disturbed. Note that the distribution already is a little patchy in some areas, i.e.,
not all areas of the PDF are equally well described by the particle distribution
due to the small number of particles employed.
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Fig. 4. Robot experiencing two collisions in brief succession. Note that the distance
the robot has actually traveled is much shorter than the distance calculated using only
odometry.

5 Conclusion

We were able to show how motion of a mobile robot can be modeled more closely
to improve Monte Carlo Localization (MCL). The basic velocity-based motion
model of a legged robot is enhanced by modeling various states describing the
robot’s ability to move and perform actions. As evidence for state transitions,
proprioception is used, e.g., to detect if the robot has run into an obstacle.
Whereas the simple velocity-based motion model tries to model all these states
in a single PDF, the adaptive model offers a much more accurate description of
robot motion and thus offers several advantages over the simple model: a) the
particle count used in MCL can be lowered as the particle distribution better
describes the belief PDF; b) when the robot is moving freely, the particle distri-
bution remains relatively confined as it does not need to spread out to accom-
modate for potential action failures; c) when the robot does run into something,
the error caused by this is more quickly reflected in the particle distribution.

The resulting particle distribution describing the robot’s belief is more reac-
tive and more accurately describes the situation that the robot is in. This has
interesting applications to robot control and active vision when the current belief
uncertainty is taken into account for control.
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5. Hoffmann, J., Göhring, D.: Sensor-actuator-comparison as a basis for collision de-
tection for a quadruped robot. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-
Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276, Springer, Heidelberg
(2005)
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Lötzsch, M., Nistico, W., Spranger, M.: GermanTeam 2004: The German national
RoboCup team. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.)
RoboCup 2004. LNCS (LNAI), vol. 3276, Springer, Heidelberg (2005)

12. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge,
MA, USA (2005)

13. Vail, D., Veloso, M.: Learning from accelerometer data on a legged robot. In: Proc.
of the 5th IFAC Symp. on Intelligent Autonomous Vehicles (IAV-2004) (2004)



Autonomous Planned Color Learning on a

Legged Robot

Mohan Sridharan1 and Peter Stone2

1 Electrical and Computer Engineering
smohan@ece.utexas.edu

2 Department of Computer Sciences,
The University of Texas at Austin

pstone@cs.utexas.edu

Abstract. Our research focuses on automating the color-learning process
on-boarda leggedrobotwith limitedcomputational andmemory resources.
A key defining feature of our approach is that instead of using explicitly la-
beled trainingdata it trains autonomously and incrementally, therebymak-
ing it robust to re-colorings in the environment. Prior results demonstrated
the ability of the robot to learn a color map when given an executable mo-
tion sequence designed to present it with good color-learning opportunities
based on the known structure of its environment. This paper extends these
results by demonstrating that the robot can plan its own such motion se-
quence and perform just as well at color-learning. The knowledge acquired
at each stage of the learning process is used as a bootstrap mechanism to
aid the robot in planning its motion during subsequent stages.

Keywords: Robot Vision, Color Learning.

1 Introduction

The first step for most teams, upon arrival at RoboCup, in any of the real
robot leagues, is color calibration: mapping raw camera pixels to color labels
such as white or pink. Due to differences in lighting conditions and object colors
between the teams’ labs and the competition venue, pre-trained vision modules
are unlikely to work “out of the box.” Also, the time required for color calibration
(more than an hour in the legged league) leads to multiple days of setup time
before each competition, a costly proposition from the perspective of reserving
the venue. But both soccer-playing and rescue robots must eventually be able
to operate in natural, changing lighting conditions, as soon as possible after
arriving on site. One way to dramatically reduce this time is to enable the robot
to autonomously learn the desired colors from the environment.

The most common approach to color calibration is manual labeling of a small
subset of the color space, which is used to label the values of nearby pixels and
produce the color map. Instead, we specify the properties of objects in the robot’s
environment (locations, color labels, and sizes), but no information on the pixel
values corresponding to the colors is given. The known locations and structure
(color labels and sizes) of objects are used to seed the color-learning process and
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plan the corresponding motion sequence. When illumination conditions change,
assigning pixel-label biases could require human supervision each time, or fail
altogether. Our method does not suffer from this problem since no information
is needed regarding the pixel values that correspond to each color.

The problem of color segmentation takes as input the color-coded model of
the world with a representation of the size, shape, position and color labels
of objects of interest. A stream of input images are provided and the robot’s
initial position (and its joint angles over time) are known. The desired output
is a Color Map that assigns a color label to each point in the color space. But
the process is constrained to work within the limited memory and processing
resources of the robot and it should be able to cope with the rapid motion of the
limited-field-of-view camera, with the associated noise and image distortions.

Building on our previous work [9], where the robot learnt colors by moving
through a pre-defined motion sequence that was generated manually, here we
enable the robot to autonomously plan its motion sequence for any given config-
uration of objects, based on environmental knowledge and heuristic constraints
on its motion sequence. Further, it simultaneously learns colors and localizes,
and incrementally performs better at both these tasks.

2 Background Information

The SONY Aibo, ERS-7, is a four legged robot whose primary sensor is a CMOS
camera with a field-of-view of 56.9o (hor) and 45.2o (ver), providing the robot
with a limited view of its environment. The images have a resolution of 208×160
pixels and are captured in the YCbCr format at 30Hz. The robot has 20 degrees-
of-freedom (dof). It also has noisy touch sensors, IR sensors, and a wireless
LAN card for inter-robot communication. The camera jerks around a lot due to
the legged locomotion, and images possess common defects such as noise and
distortion. Figure 1 shows the robot and the 4.4m× 2.9m playing field.

On the robot, visual processing typically

Fig. 1. An Image of the Aibo and the
field

occurs in two stages: color segmentation
and object recognition (see [6]). Color seg-
mentation is a well-researched field in com-
puter vision with several good algorithms
[4,10]. But these involve computation that
is infeasible to perform on autonomous
robots with computational and memory
constraints. In the RoboCup domain, the
methods applied range from the baseline
approach of creating mappings from the
YCbCr values to the color labels [2], to the
use of decision trees [11] and axis-parallel
rectangles in the color space [3]. All of them
involve an elaborate training process where the color map is generated by hand-
labeling several (≈ 25) images over a period of at least an hour.
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The color map is used to segment the image and construct connected constant-
colored regions, which are used to detect useful objects (e.g. markers). The robot
uses the markers to localize itself on the field and coordinates with its teammates
to score goals on the opponent. All processing, for vision, localization, locomo-
tion, and action-selection, is performed on board the robots, using a 576MHz
processor. Though games are currently played under constant and reasonably
uniform lighting conditions, a change in illumination over several days often
forces teams to re-calibrate the vision system. Also, the overall goal of even-
tually playing against humans in natural lighting puts added emphasis on the
ability to learn the color map in a very short period of time.

Attempts to automatically learn the color map on the Aibos have rarely been
successful. In one approach, edges are detected and closed figures are constructed
to find image regions corresponding to known environmental features [1]; color
information from these regions is used to build the color classifiers. This is time
consuming even with the use of offline processing and requires human super-
vision. In [7], a color map is learnt using three layers of color maps, with in-
creasing precision levels. This is still not as accurate as the hand-labeled one
and additional constraints are required to disambiguate the colors. Schulz and
Fox [8] present another example where colors are estimated using a hierarchical
Bayesian model with Gaussian priors.

Our approach does not need color priors. It enables the robot to autonomously
plan its motion to learn the color map, using the knowledge of location and
structure of the objects, in less than five minutes. It involves very little storage
and the resultant color map is comparable in segmentation accuracy to the hand-
labeled one that take more than an hour of human effort. Note that we provide a
world model instead of a color map and/or the motion component. This removes
the manual-intensive component and enables the robot to function in different
environmental settings.

3 Problem Specification

As described in [9], to recognize objects and operate in a color-coded world,
a robot typically needs to recognize a certain discrete number (N) of colors
(ω ∈ [0, N − 1]). A complete mapping identifies a color label for each possible
point in the color space:

∀p, q, r ∈ [0, 255], {C1,p, C2,q, C3,r} �→ ω|ω∈[0,N−1] (1)

where C1, C2, C3 are the three color channels (e.g. YCbCr), with the correspond-
ing values ranging from 0− 255.

We represent each color by a three-dimensional (3D) Gaussian model with
mutually independent color channels, i.e. no correlation among the values along
the three color channels. Though more expressive color representations, such as
histograms, have been used extensively in the literature, and the independence
assumption does not hold perfectly in practice, we determined, using empirical
data and the statistical technique of bootstrapping [5], that a 3D Gaussian model
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with independent channels closely approximates reality. In addition to simplify-
ing calculations the Gaussian has the advantage that the mean and variance are
the only statistics that need to be stored for each color. This makes the learning
process feasible to execute on mobile robots with constrained processing power.

Under the three-dimensional Gaussian model with independent channels, the
apriori probability density functions (color ω ∈ [0, N − 1]) are given by:

p(c1, c2, c3|ω) ∼ 1√
2π

∏3
i=1 σCi

· exp−1
2

3∑
i=1

(
ci − μCi

σCi

)2

(2)

where, ci ∈ [Cimin = 0, Cimax = 255] represents the value at a pixel along a color
channel Ci while μCi and σCi represent the corresponding means and variances.

Assuming equal priors, the aposteriori probabilities for each color are:

p(ω|c1, c2, c3) ∝ p(c1, c2, c3|ω) (3)

For each pixel, the color label corresponds to the color that has the maximum
aposteriori probability.

4 Autonomous Color Learning

Our learning algorithm is summarized in Algorithm 1 and specific details are
described below. The basic color learning component (lines 9−14) was described
in [9] while the rest of the algorithm deals with the motion sequence planning.

The robot starts off at a known position in its world model and the locations of
various color coded objects are known. The robot has no initial color information
(means and variances of all colors are zero) but it has the list of colors to be
learnt (Colors[]). It also has an array of structures (Regions[][]) — a list for
each color. Each structure corresponds to an object of a particular color and
stores a set of properties for that region, such as its size (length and width) and
its three-dimensional location (x,y,z) in the world model. Both the starting pose
of the robot and the object locations can both be varied between trials, which
causes the robot to also modify the list of candidate regions for each color.

Given the robot’s limited field of view, it is essential to adjust its pose to
focus on objects with the colors of interest. This can be extremely challenging
in the initial stages due to the inherent inaccuracy of the motion model (due
to slippage) and the initial lack of visual information. Geometric constraints
on the position of the objects are essential to resolve conflicts. These heuristic
constraints depend on the robot and the problem domain. In our case, they are:

• No two objects should occupy the same position in the world model — there
should be a minimum distance (600mm) between two objects.

• No two objects of the same dimensions can be within 90o of each other (with
respect to the corresponding robot position) if they each consist of only one
unknown color.
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Algorithm 1. Planned Autonomous Color Learning
Require: Known initial pose (but can be varied across trials).
Require: Color-coded model of the robot’s world - objects at known positions that

can change between trials.
Require: Empty Color Map; List of colors to be learnt - Colors[].
Require: Arrays of colored regions, rectangular shapes in 3D space; Regions[][]. A

list for each color, consisting of the properties (size, shape) of the regions of that
color.

Require: Ability to navigate (approximately) to a target pose (x, y, θ).
1: i = 0, N = MaxColors
2: T imest = CurrT ime, T ime[] — the maximum time allowed to learn each color.
3: while i < N do
4: Color = BestColorToLearn( i );
5: TargetPose = BestTargetPose( Color );
6: Motion = RequiredMotion( TargetPose )
7: Perform Motion {Monitored using visual input and localization}
8: if TargetRegionFound( Color ) then
9: LearnGaussParams( Color )

10: Learn Mean and Variance of color from candidate image pixels
11: UpdateColorMap()
12: if !Valid( Color ) then
13: RemoveFromMap( Color )
14: end if
15: else
16: Rotate at target position.
17: end if
18: if CurrT ime − T imest ≥ T ime[Color] or RotationAngle ≥ Angth then
19: i = i + 1
20: T imest = CurrT ime
21: end if
22: end while
23: Write out the color statistics and the Color Map.

The order in which the colors are to be learnt is computed dynamically and
greedily (BestColorToLearn() — line 4); it chooses the best color one at a time
without actually planning ahead for where it will be after learning that color.
This is based on:

1. The amount of motion (distance) that is required to place the robot in a
location suitable to learn the color.

2. The existence of a region that can be used to learn that color without
requiring the knowledge of any other (as of yet) unknown color.

The goal is to learn colors with minimal motion, so as to increase the chances of
being well-localized. Once a color order is chosen, for the first color in the list,
(Color), the robot determines the best candidate region to learn that color from.
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Once the candidate is determined, the robot calculates the pose that would be
best suited to recognize this candidate region – BestTargetPose() (line 5).

The robot then determines (RequiredMotion() — line 6) and executes the
motion sequence to place it in the target position. The motion to the target
position is monitored (visual feedback) using the current knowledge of colors
to recognize objects and localize to the correct location. Once it gets close to
the target location, the robot searches for candidate regions that satisfy the
heuristic constraints of size and shape for the region that it is looking for. The
actual world-model definitions in the structure Regions[Color][best-candidate-
region] are dynamically modified by the robot, based on its pose and standard
geometric principles, to arrive at suitable constraints.

The robot stops when either the candidate region is found or the target posi-
tion is reached. If the candidate region is not found (TargetRegionFound(), line
8, is false), it is attributed to slippage and the robot turns in place, searching
for the candidate region. The world model and heuristic constraints resolve any
conflicts that arise. Once such a region is found, the robot stops, with the re-
gion at the center of its visual field. Then the robot proceeds to learns the color
(LearnGaussParams() - line 9). Each pixel in candidate region is accepted as a
member of the color class being learnt if it is sufficiently distant from the means
of the other known color classes. The mean and variance of the accepted pixels
define the color’s 3D Gaussian. The learnt Gaussians are used to generate the
128× 128× 128 color map (UpdateColorMap() - line 11) around once every five
seconds. The updated color map, in addition to being used to segment subse-
quent images and validate the color parameters currently learnt (lines 12-14),
helps the robot localize itself and move to suitable locations to learn the other
colors. The learning algorithm bootstraps, with the knowledge available at any
given instant being exploited to plan and execute the subsequent tasks efficiently.

If the robot has rotated in place for more than a threshold angle (Angth)
and/or it has spent more than a threshold amount of time learning a particular
color (T ime[Color]), the robot transitions to the next color in the list. The
process continues until the robot has attempted to learn all the colors.

Note that instead of providing a color map and/or the motion sequence each
time the environment or the illumination conditions change, we just provide the
positions of various objects in the robot’s world and have it plan its motion
sequence autonomously. This significantly reduces the amount of manual input
required in our color learning approach [9]) while still learning colors much faster
than the baseline approach of hand-labeling several images.

5 Experimental Results

Our previous work [9] demonstrated the ability of the robot to learn the colors
when provided with an appropriate action sequence. Here, we show that the
robot can succeed at this task while planning its owb action sequence.

To localize, the robot has to learn five colors - white, green, yellow, blue, pink,
and we measure both its segmentation accuracy and localization accuracy (the
robot uses this color map to move to a few positions on the field).
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Table 1. Successful Planning and Localization Accu-
racy

Config Success (%) Localization Error
X (cm) Y (cm) θ (deg)

Worst 70 17 20 20
Best 100 3 5 0
avg 90.0± 10.7 8.6± 3.7 13.1± 5.3 9.0± 7.7

One challenge in exper-
imental methodology was
to measure the robot’s
planning capabilities in
qualitatively difficult setups
(configurations of the ob-
jects and robot initial
position). We asked seven
graduate students with ex-
perience working with the robots to pick a few test configurations which they
thought would challenge the algorithm. For each configuration, we let the ro-
bot execute its color learning algorithm and measured the number of successful
learning attempts: an attempt is deemed a success if all five colors are learnt.

In Table 1 we tabulate the performance of the robot in its planning task
over these configurations. It also shows the localization accuracy of the robot
using the learnt color map. The results in the table indicate the performance
of the robot over 15 configurations, with 10 trials for each configuration. The
robot is able to plan its color learning task and execute it successfully in most
of the configurations (that were designed to be adversarial) and the localization
accuracy is comparable to that obtained with the hand-labeled color map (≈
6cm, 8cm, 4deg in X , Y , and θ).

One configuration where the robot performs worst is shown in Figure 2.
Here, the robot is forced to move a large distance to obtain its first color-
learning opportunity (from position 1 to position 2). This motion sometimes
leads the robot into positions that are quite far away from its target location
(position 2) and it is then unable to find any candidate image region that satisfies
the constraints for the yellow goal. Currently, failure in this initial stage strands
the robot without any method for recovery: a suitable recovery mechanism using
additional geometric constraints is an important area for future work. Note that
the 30% failure rate in this case is entirely due to the unreliability of the robot’s
motion model: the color-learning plan generated by the robot is quite reasonable.
To test the segmentation accuracy of the
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Fig. 2. Sample Configuration where
robot performs worst

learnt color map, we generated a color map
by hand-labeling images [6]. We refer to this
color map as HLabel. We compared the la-
beling provided by the two color maps (HLa-
bel and Learnt) with the that provided by
a human observer, the Ground Truth
(GTruth). Only the colors of the objects on
the field and/or below the horizon matter
because other regions are automatically re-
jected in the object recognition phase. Also,
the correct classification result is unknown
for several background pixels in the image. So, the observer only labeled pixels
that appear on or around the field and they were compared with the classification
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provided by the two color maps. On average, ≈ 6000 of the 33280 pixels in
each image get labeled by the observer. The average classification accuracies
for HLabel and Learnt, when compared with GTruth, are 99% and 96.7% re-
spectively. We then tested the algorithm under different illumination condi-
tions in addition to testing the algorithm’s independence to color labels (la-
beling all pink objects as blue and vice versa does not pose any problems).
This confirms our hypothesis that a repainting of the environment in any way,
from just changing color shades, to scrambling colors entirely, does not dis-
rupt our approach. Sample results for these experiments are available on-line:
www.cs.utexas.edu/users/AustinVilla/?p=research/auto vis.

6 Conclusions and Future Work

We have presented an approach that automatically plans a motion sequence to
learn the desired colors on-board a legged robot with limited computational and
storage resources. The corresponding segmentation and localization accuracies
comparable to that obtained by the previous approach of having the robot learn
the color map by executing a prespecified motion sequence [9]. The robot is able
to plan its motion sequence dynamically in different world configurations based
on heuristic constraints. The planned color learning can be repeated under dif-
ferent illumination conditions and object configurations, exploiting the inherent
structure in the environment.

Our approach may apply to much more general environments, such as robots
in homes or industrial settings. All that’s needed is an environmental model, with
the locations of distinctive features labeled. A major premise of this research is
that generating such a model is significantly easier for a human than labeling
pixels or generating a good motion path for color learning. This is reasonable,
for example, whenever the configuration of objects in the world changes less
frequently than the lighting conditions.

Currently, the color map is learnt from a known starting position without any
prior knowledge of colors. We are working on learning colors from an unknown
starting position on the field. Ultimately, we aim to develop efficient algorithms
for a mobile robot to function autonomously under completely uncontrolled nat-
ural lighting conditions.
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Abstract. In this paper we present a novel approach to estimating the
position of objects tracked by a team of mobile robots. Modeling of
moving objects is commonly done in a robo-centric coordinate frame
because this information is sufficient for most low level robot control
and it is independent of the quality of the current robot localization. For
multiple robots to cooperate and share information, though, they need
to agree on a global, allocentric frame of reference. When transforming
the egocentric object model into a global one, it inherits the localization
error of the robot in addition to the error associated with the egocentric
model.

We propose using the relation of objects detected in camera images
to other objects in the same camera image as a basis for estimating
the position of the object in a global coordinate system. The spacial
relation of objects with respect to stationary objects (e.g., landmarks)
offers several advantages: a) Errors in feature detection are correlated and
not assumed independent. Furthermore, the error of relative positions
of objects within a single camera frame is comparably small. b) The
information is independent of robot localization and odometry. c) As
a consequence of the above, it provides a highly efficient method for
communicating information about a tracked object and communication
can be asynchronous.

We present experimental evidence that shows how two robots are able
to infer the position of an object within a global frame of reference, even
though they are not localized themselves.

1 Introduction

For a mobile robot to perform a task, it is important to model its environment,
its own position within the environment, and the position of other robots and
moving objects. In RoboCup, the most important object to track is, naturally,
the ball. The task of estimating the position of an object is made more difficult
by the fact that the environment is only partially observable to the robot.

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 279–286, 2007.
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In hybrid architectures [1], basic behaviors or skills, such as following a ball,
are often based directly on sensor data, e.g., the ball percept. Maintaining an
object model becomes important if sensing resources are limited and a short
term memory is required to provide an estimate of the object’s location in the
absence of sensor readings.

Robots often use an egocentric model of objects relevant to the task at hand,
thus making the robot more robust against global localization errors. A global
model is used for communicating information to other robots [8], to commonly
model a ball by many agents with Kalman filtering [2] or to model object-
environment interactions [5]. In all cases, the global model inherits the localiza-
tion error of the observer.

We address this problem by modeling objects in allocentric coordinates from
the start. To achieve this, the sensing process needs to be examined more closely.
In a typical camera image of a RoboCup environment, the image processing
could, for example, extract the following percepts: ball, opponent player, and goal.
Percepts are commonly considered to be independent of each other to simplify
computation, even if they are used for the same purpose, such as localization [7].

When modeling objects in relative coordinates, using only the respective per-
cept is often sufficient. However, information that could help localize the object
within the environment is not utilized. That is, if the ball was detected in the
image right next to a goal, this helpful information is not used to estimate its
position in global coordinates.

We show how using the object relations derived from percepts that were ex-
tracted from the same image yields several advantages:

Sensing errors. As the object of interest and the reference object are detected
in the same image, the sensing error caused by joint slackness, robot motion,
etc. becomes irrelevant as only the relation of the objects within the camera
image matters.

Global localization. The object can be localized directly within the environ-
ment, independent of the quality of current robot localization.

Communication. Using object relations offers an efficient way of communicat-
ing sensing information, which can then be used by other robots to update
their belief by sensor fusion.

Outline. We will show how relations between objects in camera images can be
used for estimating the object’s position within a given map. We will present ex-
perimental results using a Monte-Carlo Particle Filter to track the ball. Further-
more, we will show how communication between agents can be used to combine
incomplete knowledge from individual agents about object positions, allowing
the robot to infer the object’s position from this combined data.

Our experiments were conducted on the color coded field of the Sony Four
Legged League using the Sony Aibo ERS-7.
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a) b)

c) d)

Fig. 1. Single percept: a, b) When a flag or a goal is seen, the robot can calculate its
distance to it, but not its exact position, a circle remains for all possible robot positions.
Two percepts in one image c, d) a flag/goal and a ball let the robot determine the
ball’s position relative to the flag/goal; all possible positions of the ball relative to the
flag/goal form a circle/spiral arc.

2 Object Relation Information

In a RoboCup game, the robots permanently scan their environment for land-
marks as there are flags, goals, and the ball. The following section presents the
information gained by each perception.

2.1 Information Gained by a Single Percept

If the robot sees a two colored flag, it actually perceives the left and the right
border of this flag and thus the angle between those two borders. Because the
original size of landmarks is known, the robot is able to calculate its own distance
to the flag and its respective bearing (Fig. 1 a). In the given approach we don’t
need that sensor data for self localization, but for calculating the distance from
other objects as the ball to the flag.

If a goal is detected, the robot can measure the angle between the left and the
right goal-post. For a given goal-post angle the robot can calculate its distance
and angle to a hypothetical circle center (Fig. 1 b).

If a ball is perceived, the distance to the ball and its direction relative to
the robot can be calculated. Lines or line crossings can also be used as reference
marks, but the sensor model for lines is more complex than for a goal or a flag as
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there are many equally looking line segments on the field. For simplicity reasons
we didn’t use line information in the given approach.

2.2 Information Gained by Two Percepts Within the Same Image

If the localization object is visible together with another landmark, e.g., a flag or
a goal, the robot does not only get information about distances to both objects
but also information about the angle between them. With the law of the cosine
the distance from the ball to a flag can be calculated (Fig. 1 c).

When a goal and a ball were seen, a similar determination of the position can
be done for the ball, but the set of possible solutions leads to a spiral curve (Fig. 1
d). But one landmark and one ball alone are not sufficient to exactly determine
the ball’s position. One possibility to overcome this limitation would be to scan
for other landmarks and take this information into account, but this could be
time consuming. Another approach would be to let the robots communicate and
interchange the necessary information for an accurate object localization. This
has two advantages:

1. Apart from communication time which takes about two or three tenth of a
second, information transfer between robots is cheap in resources, as only
few data needs to be transferred.

2. Many robots can gather more information than a single robot, because many
robots can see more than one robot.

Now we want to describe a possible implementation of this approach. As the
sensor data of our Aibo ERS-7 robot are not very accurate, we have to cope with
a lot of sensor noise. Furthermore, the probabilistic distribution is not always
unimodal, e.g., in cases where the observations lead to more than one solution
for possible ball positions. This is why a simple Kalman filter would not be
sufficient [5]. We chose an implementation using a Monte-Carlo Particle Filter
because of its ability to model multimodal distributions and its robustness to
sensor noise. Other approaches as Multi Hypothesis Tracking or Grid Based
algorithms might work also [4].

3 Monte-Carlo Filter for Multi Agent Object Localization

Markov localization methods, in particular Monte-Carlo Localization (MCL),
have proven their power in numerous robot navigation tasks, e.g., in office envi-
ronments [3], in the museum tour guide Minerva [9] and in the highly dynamic
RoboCup environment [6]. MCL is widely used in RoboCup for object and self
localization [7] because of its ability to model arbitrary distributions and its
robustness towards noisy input data. It uses Bayes law and Markov assumption
to estimate an object’s position. The probability distribution is represented by
a set of samples, called particle set. Each particle represents a pose hypothesis.
The current belief of the object’s position is modeled by the particle density,
i.e., by knowing the particle distribution the robot can approximate its belief
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about the object state. The ball position is modeled relative to the field, which
makes it independent from robot motions. The a-priori belief is updated by sen-
sor data zt, therefore called update step. Our update information is information
about object relations as described in section 2. Therefore a sensor model is
needed, telling the filter how accurate the sensor data are. The localization is
being ititialized with Bel(s0) at t = t0. The particles from the particle set are
distributed arbitrarily across the field. Every ball position is equally uncertain.
If sensor data is gained, the particle set will be updated and after a few steps
converge to a certain area.

3.1 Monte-Carlo Localization, Implementation

Our hypotheses space has two dimensions for the position q on the field. Each
particle si can be described as a state vector −→s i

−→s i =
(

qi
x

qi
y

)
(1)

and its likelihood pi.
The likelihood of a particle pi can be seen as the product of all likelihoods of all

gathered evidences [7], which means in our case that for all landmark-ball pairs
a likelihood is being calculated. From every given sensor data, e.g., a landmark
l and a ball (with its distances and angles relative to the robot) we calculate
the resulting possible ball positions relative to the landmark l, as described in
section 2.2. The resulting arc will be denoted as ξl. We showed in 2.2 that ξl

has a circular form, when l is a flag and a spiral form, when l is a goal. The
shortest distance δl from each particle −→s i to ξl is our argument for a Gaussian
likelihood function N (δ, μ, σ), where μ = 0 and with a standard deviation σ,
which is determined as described in the next section. In fact, the sensor model
is more complex than a Gaussian, but assuming it to be Gaussian showed to be
a good approximation. The likelihood is being calculated for all seen landmarks
l and then multiplied:

pi =
∏
l∈L′

N (δl, 0, σ) (2)

In cases without new evidence all particles get the same likelihood. After
likelihood calculation, particles are resampled.

Multi Agent Modeling. To incorporate the information from other robots, percept
relations are communicated to other robots. The receiving robot uses the commu-
nicated percepts for likelihood calculation of each particle the same way as if it
was its own sensor data. This is advantageous compared to other approaches:

– Some approaches communicate the particle distributions. But when, as in our
examples, two robots only know the arcs or the circular function on which
the ball could be found, this would increase position entropy rather than
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Table 1. Object distance and angle standard deviations

Object Standard Deviation σ

Distance in mm σDst in mm σAng in Rad

Ball 1500 170 0.015

Flag 2000 273 0.019

Goal 2000 25 0.021

Flag- Ball-Diff. 500 196 0.008

Goal- Ball-Diff. 500 175 0.0054

decreasing it. Communicating whole particle sets can also be very expensive
in resources.

– By communicating percept relations rather than particles, every robot can
incorporate the communicated sensor data to calculate the likelihood of its
particle set.

Because of this, we decided to let every robot communicate every percept relation
(e.g., flag, ball) it has gathered to other robots.

Sensor Model. For the sensor model, we measured the standard deviation σl

by letting a robot take multiple images of certain scenes: a ball, a flag, a goal
and combinations of it. The standard deviation of distance differences and re-
spectively angle differences of objects in the image relative to each other were
measured as well. The robot was walking the whole time on the spot to get more
realistic, noisy images. The experiment results are shown in table 1.

It can be seen that the standard deviation for the distance from the ball to
the flag (or goal) is smaller than the sum of the distance errors given a ball and
a flag (or goal). The same can be said for the angle standard deviation. This
gives evidence that the sensor error for percepts in the same image is correlated,
due to walking motions and head swings.

4 Experimental Results

The Aibo ERS-7 robot serves as a test platform for our work. In our experiment,
two robots try to localize and to model the ball in an egocentric model. As a result
each robot maintains a particle distribution for possible ball positions, resulting
from self localization belief and the locally modeled ball positions. In the next step
the two robots communicate their particle distribution to each other (or a part of
it). After communication each robot creates a new particle cloud as a combination
of its own belief (the own particle distribution) and the communicated belief (com-
municated particle distribution). We want to check how this algorithm performs
in contrast to our presented algorithm in situations, where self localization is not
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a) b)

Fig. 2. Experiment with two flags: a) no percept relations communicated, the robots
are self localizing (arrows show SL-particles of the upper robot schematically), the ball
positions (cloud of dots) are modeled egocentric, transformed into global coordinates,
then communicated to the other robot and merged with its ball particle distribution.
b) No self localization needed, percept relations used as described, two robots commu-
nicating object relations for calculating the particle distribution; the small circle at the
center line marks the real ball position in the given experiment.

possible, e.g., when every robot can only see one landmark and the ball. We placed
both robots in front of a different landmarks with partially overlapping fields of
view, such that both robots could see the ball (Fig. 2).

One can see from the experiments that there is almost no convergence to a
confined area for the case in which the two robots are communicating their par-
ticle distributions to each other. In case of percept communication, the particle
distribution converges nicely to a confined area.

5 Conclusion

Object relations in robot images can be used to localize objects in global co-
ordinates. Without having to be localized at all, it can accurately estimate the
position of an object within a map of its environment using nothing but object
relations. Furthermore, we were able to show how the process of object local-
ization can be sped up by communicating object relations to other robots. Two
non-localized robots are thus able to both localize an object using their sensory
input in conjunction with communicated object relations.

Future Work. Future work will investigate the use of other landmarks (e.g.,
field lines) for object localization. An active vision control is currently being
developed to gain more images containing object relations, e.g., looking at the
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ball and landmarks at once if possible. Furthermore, we will investigate how data
about commonly modeled objects in field coordinates, e.g., the ball can be used
for self localization.
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Abstract. Color segmentation is typically the first step of vision process-
ing for a robot operating in a color-coded environment, such as RoboCup
soccer, and many object recognition modules rely on that.

Although many approaches to color segmentation have been proposed,
in the official games of the RoboCup Four Legged League manual cali-
bration is still preferred by most of the teams. In this paper we present
a method for color segmentation that is based on an adaptive trans-
formation of the color distribution of the image: the transformation is
dynamically computed depending on the current image (i.e., it adapts to
condition changes) and then it is used for color segmentation with static
thresholds. The method requires the setting of only a few parameters and
has been proved to be very robust to noise and light variations, allowing
for setting parameters only once when arriving at a competition site.

The approach has been implemented on AIBO robots, extensively
tested in our laboratory, and successfully experimented in the some of
the games of the Four Legged League in RoboCup 2005.

1 Introduction

RoboCup soccer is a color-coded environment, where colors are used to define
principal objects needed for the robots to perform their robot tasks. Recog-
nition and positioning of colored beacons and goals in the field are used for
self-localization and reactive behaviors, while the recognition of the orange ball
feeds behaviors and coordination tasks.

Consequently, color segmentation is typically the first step of the vision sys-
tem of a robot playing RoboCup soccer. Since good color segmentation allows
for easy implementation of object recognition and localization, most of the robot
vision systems are based on fast and accurate implementation of such process.
Conversely, it is also possible to recognize and locate objects from a rough seg-
mentation (e.g., [3]), applying more sophisticated recognition techniques (e.g.,
region growing) at a later stage. However, this second approach may be less
reliable or require more computational resources.

Many approaches to color segmentation have been proposed in the RoboCup
soccer scenario. Some of these approaches can be implemented in real-time only
on robots with adequate computational resources (e.g., Middle-size robots [1]).

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 287–295, 2007.
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An effective implementation of on-line color segmentation on AIBO robots has
been reported in [2]. The paper presents an adaptive non-parametric method
that computes color classes by representing them as cuboids in the YUV color
space with different precision layers. Experimental results of this approach show
good computational performance (about 5 fps). However, manual calibration is
still preferred during the games [4], since it provides for fast and accurate results,
accepting the drawback of time consuming manual setting that is often repeated
several time (e.g., just before each game) and for each robot (since color cameras
have different response on different robots).

In this paper we present an approach to color segmentation that has been
implemented on AIBO robots and used for RoboCup soccer in the Four Legged
League. The method performs an adaptive transformation of the color distribu-
tion of the image, that is dynamically computed during robot task and used for
segmentation. The approach integrates the following advantages: 1) it computes
a dynamic transformation providing for robustness to noise and adaptivity to
variable light conditions; 2) it uses static thresholds for fast segmentation; 3)
it does not require time consuming manual calibration (only a few parameters
must be set when arriving in a new location).

An effective implementation can be obtained by computing the transformation
function periodically, for example every 25 frames (about 1 second), and when
the robot is not in a critical phase of the game (e.g., about to approach the
ball). In such steps results of color classification are stored in a lookup table
(or color table), that is used for classification of the subsequent frames. In this
way we reach the maximum performance of the image processing module (20-24
fps) for most of the frames (when such transformation is not computed), and
periodically a lower performance (currently, slightly less than 100 ms) when this
transformation is computed.

Experimental results show the effectiveness of the proposed method: a large
data set of labeled images has been used to evaluate the approach in different
locations and conditions. Furthermore, we have experimented the method during
some of the games in RoboCup 2005. In that case we have set parameters once
when we arrived at the competition site and then we used these parameters for
some of the games and for the variable light challenge (with the very same code
and settings), noticing no difference in the overall behavior of the team with
respect to matches in which we have used manual calibration.

2 Color Distribution Transformation

The approach to color segmentation proposed in this paper is based on an adap-
tive transformation of the color distribution of an image and subsequent static
thresholding. The aim of this approach is to integrate the robustness to noise
and light changes typical of dynamic methods with efficiency of static ones.

Let us denote an image as I, and each pixel of an image as i ∈ I. A color
space C is a color representation of an image as captured by a color camera (e.g.,
RGB, YUV, HSV). We will use the notation c(i) to represent the color of pixel
i in a given color space.
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Color classes can be seen as a partition of the color space C, CC = {C1, ..., Cn},
such that Ck ⊂ C and k1 �= k2 ⇒ Ck1 ∩ Ck2 = ∅. It is convenient to consider a
complete coverage for the color classes, i.e. C = ∪k=1..n Ck, possibly defining a
special color class including undefined (or uninteresting) colors. We also define
the color distribution of an image I in the color space C by DI(γ) as the number
of pixels with color γ ∈ C.

For a formal definition of our method we define a transformation function
τ : C → C, and we call τ -distribution the new color distribution obtained by ap-
plying the function τ to the color distribution of an image, and τ -transformation
the operation of computing the τ -distribution of an image. Having τ , color clas-
sification is obtained by assigning to each pixel in the image one class within the
predefined set of color classes

fτ,CC(i) = k such that τ(c(i)) ∈ Ck (1)

The objective of the transformation τ(·) is to modify the color distribution
of an image in such a way that the subsequent use of fixed thresholds can be
effective for color segmentation, i.e., both robust to noise and light variations
and efficient. In particular, we would like that the new color distribution do
not vary too much in presence of light variations, specially in proximity of the
thresholds. To obtain an adaptive method, τ is periodically computed from the
current images the robot acquires.

In this paper we refer to the color component H of the color space HSV,
because it is a mono-dimensional space that allows for distinguishing most of
the colors of interest in RoboCup. The transformation τ(·) is computed by the
following algorithm, where the color space H if discretized to 360 integer values
(i.e., H = [0, 360)).

Algorithm 1. Color distribution transformation
Input: Image I, window size δ
Output: Function τ (h), h ∈ H (explicit representation though a vector τ [0 : 359])

for each γ ∈ [0 : 359] set τ (γ) = γ
compute color distribution DI(γ)
for γ = δ/2 to 360 − δ/2 do

τ [γ] = argmaxλ∈[γ−δ/2,γ+δ/2){DI(λ)}
end for
while τ [γ] �= γ ∧ τ [γ] �= τ [τ [γ]] do

τ [γ] = τ [τ [γ]]
end while

The function τ is first initialized to the identity function, i.e. τ(γ) = γ, then
two steps are performed: the first step assigns to τ [γ] the value γ∗ ∈ [γ−δ/2, γ+
δ/2] for which DI(γ∗) is maximum in such interval; the second step performs a
transitive closure of the τ function. The value δ is used to limit the interval in
which the maximum value is searched. This value is set in such a way to process
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a significant interval of values in the color space: smaller values of δ may fail to
accumulate colors over a single component (thus producing more peaks), larger
values may collapse different colors in a single peak. By empirical tests, we have
determined that a value around 10 provides good results in our implementation.

An example is shown in Figure 1. Figure 1b) shows the original distribution
(lighter color), the τ -distribution (darker color) in the H color space and three
values for the orange-yellow threshold (vertical lines), respectively 51, 57, and
64. The transformation τ is instead given in Figure 1c). The images in Figure 1d)
are the results of segmentation with such different values for the orange-yellow
threshold, by using τ -distribution (left side) and original distribution (right side).
It is possible to see that the segmentation obtained with τ -distribution is more
robust since it essentially returns the same correct segmentation for all the values
of the threshold, while the segmentation obtained with the original distribution
produces some bad classification (orange is classified as yellow when the thresh-
old is lower, yellow is classified as orange when the threshold is higher). This
example shows that segmentation on the τ -distribution is more robust. In fact,
any value for the orange-yellow threshold between 51 and 64 are good.

The approach presented in this section can also be extended to automatically
generate a color table from a set of images, for example by selecting for each
value in the color space the color class that has been chosen more often during
the sequence. This is useful for off-line automatic calibration or for generation
of a first color table to be manually refined.

3 Experiments

In order to evaluate the approach presented here we have performed several
experiments. In this section we first discuss about performance metrics of color
segmentation algorithms, and then present the results of our experiments.

Performance metrics. Defining performance metrics for color segmentation can
be relatively easy. For example, we may manually label a set of images by cor-
rectly classifying each pixel and then compute classification rate of a segmen-
tation method as the number of correctly classified pixels. Manual labeling can
be performed only on a subset of pixels relative to important objects in the
scene (see for example [5]). This is a good metric for evaluating color segmenta-
tion methods, but it requires a lot of time to generate the ground truth (since
several pixels on each image must be manually classified). Moreover, typically
object recognition processes that follow the segmentation phase are somewhat
robust to small errors in classification, making this measure perhaps too much
demanding. In fact, to our knowledge it does not exist a large data set of images
labeled in this way, that can be used as a standard benchmark for segmentation
algorithms (the one reported in [5] is limited to only a few dozens of images).

In this paper we propose an alternative metric for evaluation of a segmentation
algorithm. This metric can be considered as an approximation of the above one,
with the advantage of being much easier to be used to produce ground truth,
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Fig. 1. a) Original image; b) Color distributions; c) A portion of τ (·) function for image
a); d) Color segmentation
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thus allowing for easily generating larger data sets to be used for comparing
different methods.

Instead of labeling each pixel on an image, we define a 4-sided polygon around
any object that must be recognized in the environment. For the RoboCup soccer
environment we chose to consider ball, goals and beacons. When objects are
partially occluded or in case of non-polygonal shapes (e.g., a goal seen closely),
we anyway define the best fitting 4-sided polygon around the object. The ball is
instead modeled with an ellipse.

From a labeled image and the result of color segmentation on that image, we
can measure the percentage of correctly classified pixels within such polygons.
Let us denote with ηo(It) the percentage of correctly classified pixels of object
o at frame It. We want to measure the performance of the method over all the
frames, i.e. over the entire data set {It}. A simple choice would be to compute
average and standard deviation of this value over t. However, by plotting typical
responses of ηo(It) over t we see that the outcome is usually multi-modal, thus
average and standard deviation seem not to be a good measure for the over-
all sequence. We found, for example, that in presence of motion blurring the
percentage ηo(It) for the beacons may be very low. In order to summarize the
behavior of the system over time, we propose to compute a distribution over ηo,
counting how many times the pixels within the object o are correctly classified
with a percentage rate of at least ηo. More specifically, we want to define Vo(λ)
as the percentage of times in which at least a percentage λ of pixels within
the object o have been correctly classified. For example, Vball(0.5) expresses the
percentage of frames in which at least half of the pixels of the ball have been
correctly classified. Vo(λ) (λ ∈ [0, 1]) is thus defined as

Vo(λ) =
|{It|ηo(It) ≥ λ}|

|{It|It contains object o}|

This value can be directly related to the capabilities of an object recognition
module. For instance, we have empirically determined that current implementa-
tion of our object recognition module allows for correct recognition of objects if
at least about 60 % of the pixels are correctly classified.

To evaluate the rate of false positives we have computed the ratio between
the number of pixels classified with colors belonging to the objects (i.e., orange,
yellow, sky blue and pink) that are outside of the polygons of the objects provided
by the groud truth and the total number of pixels in the image.

Experimental evaluation. Evaluation of the proposed method has been per-
formed by computing the functions Vball(λ), Vgoal(λ), and Vbeacon(λ) over a
number of different data sets, comparing the results of the approach presented
in this paper and segmentation obtained by manual definition of a color table.
The data sets include at 208x160 pixels resolution and other internal information



Robust Color Segmentation 293

Fig. 2. First data set: Vball(λ), Vgoal(λ), Vbeacon(λ)

Fig. 3. Second data set: Vball(λ), Vgoal(λ), Vbeacon(λ)

Fig. 4. Osaka data set: Vball(λ), Vgoal(λ), Vbeacon(λ)

about the robot, they have been been taken from different locations (including
Paderborn 2005, Osaka 2005 and our lab) and manually labeled as described
above1. The first two data sets (containing 395 and 593 frames) used in the ex-
periments reported here are taken from two different locations of our laboratory,
using the same elements for the field and the same kind of illumination devices,
but in different external light conditions. The third data set (193 frames) has
been taken during RoboCup 2005 in Osaka.

For the first data set we have manually created a color table for static seg-
mentation and tuned the parameters of the method proposed in this paper. We
then use the same configuration for all the three data sets. For each data set,

1 The data sets have been used also for evaluating object recognition and localization
tasks and are available from http://www.dis.uniroma1.it/∼spqr.
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Table 1. False positives average and maximum rates

Data Set
Our method

avg/max
Static segmentation

avg/max
1 0.006 / 0.044 0.010 / 0.057
2 0.013 / 0.062 0.033 / 0.094
3 0.070 / 0.242 0.065 / 0.225

we have thus evaluated the functions Vo(λ) for each object (ball, goal, beacon)
and the false positive error rates, obtained with the method presented here and
with static segmentation.

The results are reported in Figures 2, 3, 4, where red (darker) plot indicates
our method, while the green (lighter) plot is the result of static segmentation, and
in Table 1. As expected, static segmentation outperforms the dynamic method
presented here in the first data sets, where it has been calibrated. However, the
graphs also show that our method is very competitive. Also the rate of false
positives are similar. In the second data set, that is similar to the first one but
in different external conditions, we still have comparable results. However, while
there is not a clear distinction in the functions Vo(λ) (see Fig. 3), the false
positive error rates are larger when using static segmentation. In the third data
set, that is quite different from the first one, instead there is a clear difference
in the performance (see Fig. 4). Our method provides for higher robustness to
different lighting conditions, and to different environments.

These experiments show that the method proposed here is competitive with
static segmentation obtained by manual calibration and robust to different light
conditions and different environments.

4 Conclusions

In this paper we presented a dynamic color segmentation approach based on
adaptive transformation of the color distribution of an image, that is suitable
for implementation on robots with low computational resources and effective in
presence of noise and illumination changes. The approach has been successfully
implemented on AIBOs and extensively experimented in laboratory as well as
during official RoboCup games. A new evaluation approach has been proposed
and a large data set of labeled images have been created to evaluate and compare
different methods.

The present method requires setting only a few parameters usually once ar-
rived at a new location, and then it is robust to different light conditions over a
typical competition period. As future work we intend to exploit machine learn-
ing techniques for learning the few parameters the method require for realizing
a complete non-parametric method.
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Abstract. This paper focuses on the problem of tracking and predicting
the location and velocity of a rolling ball in the RoboCup environment,
when the ball is pushed consecutively by a middle-size omnidirectional
robot to follow a given path around obstacles. A robust algorithm based
on the H∞ filter is presented to accurately estimate the ball’s real-time
location and velocity. The performance of this tracking strategy was also
evaluated by real-world experiments and comparisons with the Kalman
filter.

1 Introduction

In many mobile robots applications, the robots are required not only to adapt
themselves to the external situation, but also have the ability to interact with the
environment. Estimating and predicting the motions of moving objects are the
foundation for the interaction tasks. For example, when robots play the football,
it is very important to detect and predict the ball’s position and velocity, so that
the robot can catch the ball, push it through obstacles, and shoot it in the goal.
In this paper we focus on tracking and predicting the location and velocity of
a rolling ball in the RoboCup domain with a middle-size omnidirectional robot,
under the condition that the ball is consecutively pushed by the robot.

Kalman filters ([1], [2], [3], [9]) have been used in many ball tracking problems.
They provide efficient and convenient minimum-mean-square-error solutions for
the state estimation problem, considering that both the process and the measure-
ment noises of the target system are assumed as Gaussian with known statistical
properties ([8]). Besides that, multiple model filters based on Kalman filters re-
veal much better performance than the single model filter in some applications.
As one of the multiple model filters, the interacting multiple model (IMM) al-
gorithm, used for the object tracking in the RoboCup ([5]), utilizes a Kalman
filter for each mode of the target movement. However, in practical situations,
the uncertainties of the target system and the measurements normally do not
satisfy the Gaussian assumption, and the noise statistics is usually not available.

To avoid thinking about these uncertainties, a method to build a predictive
model of the ball’s movement is used in the estimation of the ball’s position and
velocity ([7]). It models a free rolling ball’s movement as the linear movement
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and estimates the model parameters using ridge regression. By comparing the
observed and predicted ball’s positions, the method can also recognize the change
points of the ball’s movement. Due to the requirement of a buffer to store the
observations of the ball’s movement and the estimation of model parameters,
the memory occupancy and computational complexity of this method are highly
increased.

In this paper, we present a robust algorithm based on the H∞ filter for an
omnidirectional robot to track a rolling ball in the RoboCup domain. The H∞
filter does not require priori knowledge of the noise statistics, only assuming
that the noise signals have finite energy. Unlike the Kalman filter providing the
minimum variance of the estimation error, the H∞ filter provides the minimal
effect of the worst noise on the estimation error. Experiments with a real om-
nidirectional robot show that this approach is efficient and yields highly robust
estimations of the ball’s location and velocity.

2 Problem Formulation

The ball tracking problems in the RoboCup domain are challenged by the in-
teractions between the robots and the ball. These frequent interactions usually
result in a highly non-linear movement of the ball, and it is very difficult to
precisely estimate the uncertainty distribution of the interactions. Moreover, the
measurement accuracy of the ball’s position is also limited by the sensors and
the corresponding signal processing algorithms. This paper focuses on tracking
a rolling ball when it is consecutively pushed by an omnidirectional robot to
follow a given path. Considering the uncertainty of the interactions between the
robot and the ball, we utilize a new approach based on the H∞ filter to estimate
the ball’s location and velocity.

The discrete representation of the ball’s dynamics is described by the following
equations:

ṗk+1 = ṗk + p̈kT (1)

pk+1 = pk + ṗkT +
1
2
p̈kT 2 , (2)

where p is the position of the ball, ṗ and p̈ are respectively the velocity and
acceleration of the ball. T is the sampling interval and k is the index of the
sampling interval. We define a state vector consisting of the position and velocity
as xk = [pk, ṗk]T . Knowing the measurement value is the ball’s position, we build
the system model of the ball as follows:

xk+1 =
[
1 T
0 1

]
xk +

[
T 2/2

T

]
uk (3)

yk =
[
1 0

]
xk , (4)

where u denotes the system input and is equal to the acceleration p̈ which is
completely determined by the friction of the ground and the pushing operation
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from the robot. But in the practical situation, the previous equation (3) can
not give the precise state values because of the noise due to the rugged carpet
ground and other unfortunate realities, and the precise output values can not be
obtained from the equation (4), since measurement noise decreases the reliability
of the measurement data. So a more precise mode is given as

xk+1 =
[

1 T
0 1

]
xk +

[
T 2/2

T

]
uk + wk (5)

yk =
[
1 0

]
xk + vk , (6)

where w is called process noise and v is called measurement noise.
As we do not know exactly the friction of the ground, the moment when

the robot collides the ball, and the corresponding effect of the collision on the
ball’s movement, the system input u is not available. But we can consider u
as additional process noise and unify u with the process noise w. Then a more
realistic system model is

xk+1 =
[
1 T
0 1

]
xk +

[
T 2/2

T

]
wk (7)

yk =
[
1 0

]
xk + vk . (8)

3 Robust H∞ Filtering

As mentioned earlier, the Kalman filter requires the priori knowledge of statis-
tical properties of the system and measurement noises, which are really hard to
obtain practically. The ball filter with predictive model, described in [7], could
bring a higher computational cost and memory occupancy, so this filter is not
very efficient for the fast tracking problem. As a robust filter strategy, the mini-
max H∞ strategy has the same efficient computation as that of the Kalman
filter, and does not depend on the known noise statistics, but on the assumption
of a finite disturbance energy. Consider the following linear system:

xk+1 = Akxk + Bkwk (9)

yk = Ckxk + vk , (10)

where xk ∈ �n, wk ∈ �m, yk ∈ �p, vk ∈ �p. Ak, Bk and Ck are matrices with
appropriate dimension, (Ak, Bk) is controllable and (Ck, Ak) is detectable. Unlike
the Kalman filter, which is interested in the estimation of the system state xk,
the H∞ filter concerns the linear combination of xk

zk = Lkxk . (11)

The output matrix Lk is selected by the user according to the different applica-
tions. In our problem, we care about the ball’s location and velocity, which just
constitute the system state, so here Lk is specified as an identity matrix. The
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H∞ filter computes the estimated state ẑk based on the measurement Yk , where
Yk = {yk, 0 ≤ k ≤ N − 1} , and evaluates the estimation error by a performance
measure, which can be regarded as an energy gain:

J =

N−1∑
k=0

‖zk − ẑk‖2Qk

‖x0 − x̂0‖2
p−1
0

+
N−1∑
k=0

(
‖wk‖2W −1

k
+ ‖vk‖2

V −1
k

) (12)

where N is the size of the measurement history, Qk, p0, Wk, Vk are the weight-
ing matrices for the estimation error, the initial conditions, the process noise
and the measurement noise. Moreover, Qk ≥ 0, p−1

0 > 0, Wk > 0, Vk > 0 and
((x0 − x̂0) , wk, vk) �= 0 . The notation ‖xk‖2

Qk
is defined as ‖xk‖2Qk

= xT
k Qkxk.

The denominator of J can be considered as the energy of the unknown dis-
turbances, and the numerator is the energy of the estimation error. The H∞
filter aims to provide an uniformly small estimation error ek = zk − ẑk for any
wk, vk ∈ l2 and x0 ∈ Rn , such that the energy gain J is bounded by a prescribed
value:

supJ < 1/γ (13)

where sup denotes the supremum and 1/γ is the noise attenuation level. This
condition keeps the robustness of the H∞ filter, because the estimation energy
gain is limited by 1/γ no matter what the bounded energy disturbances are.

To solve this optimal estimation ẑ due to the bounded energy gain J , the H∞
filter can be interpreted as a minimax problem ([10])

min
ẑk

max
(wk,vk,x0)

J = − 1
2γ

‖x0 − x̂0‖2p−1
0

+

1
2

N−1∑
k=0

[
‖zk − ẑk‖2Qk

− 1
γ

(
‖wk‖2

W −1
k

+ ‖vk‖2V −1
k

)]
(14)

where the estimation value ẑk plays against the bounded energy disturbances wk

and vk. Many strategies have been proposed for solving this minimax problem
([4]). We adopt a linear quadratic game approach ([10]), which does not require
checking the positive definiteness and inertia of the Riccati difference equations
for every step, but is implemented through recursive updating the filter gain Hk,
the solution Pk of the Riccati difference equation, and the state estimation x̂k .
The updating equations are given as follows:

Q̄k = LT
k QkLk (15)

Sk =
(
I − γQ̄kPk + CT

k V −1
k CkPk

)−1
(16)

Pk+1 = AkPkSkAT
k + BkWkBT

k (17)

Hk = AkPkSkCT
k V −1

k (18)

x̂k+1 = Akx̂k + Hk (yk − Ckx̂k) , (19)

where P0 = p0 and Pk > 0 . I is the identity matrix.
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Fig. 1. The omnidirectional robot equipped
with a digital color camera and a hyperbolic
mirror on the top

Fig. 2. Coordinate systems: [Xw , Yw] is
the world coordinate system, [Xm, Ym]
is the robot coordinate system

Apparently, these recursive equations have a similar form as the classic
Kalman filter. Although we need not to know the statistics of noises wk and
vk in the H∞ filter, we should tune the weight matrices Qk, p0, Wk, Vk carefully,
because these values determine the estimation error in the performance criterion
(14). The weight matrices Wk, Vk can be chosen according to the experience
about the noise. For example, if we know that the noises w is smaller than v,
Wk should be smaller than Vk. p0 is based on the initial estimation error. If we
are highly confident about our initial estimation Ẑ0, p0 should be small. Sim-
ilarly, if we care more about the precise estimations of some elements in the
state, or some elements having bigger magnitude in their physical definition, the
corresponding elements in the matrix Qk can be set larger than others. As the
performance criterion, γ can not be very large, because otherwise some eigen-
values of the matrix P may have magnitudes more than one. These eigenvalues
prevent a proper derivation of the H∞ filter equations, so that the H∞ filter
problem has no solution.

4 Experiments

The ball’s observation values come from our omnidirectional view system and
object detection process. Our omniderectional view system consists of a AVT
Marlin F-046C color camera with a resolution of 780×580, which outputs signals
up 50 times per second. In order to achieve a complete surrounding map of the
robot, the camera is assembled pointing up towards a hyperbolic mirror which
is mounted on the top of our omnidirectional robot, as shown in Fig.1. After
obtaining the image from the camera, the other two processes, color calibration
and distance calibration, map the colors to different classes based on the colors
of objects and landmarks in the RoboCup domain, and the pixels in the image to
the real world coordinates, respectively. At last, a fast object detection algorithm
is used to get the ball’s real world position, as described in [6].

While the camera image from the robot always displays the ball’s relative posi-
tion to the robot’s position and orientation, the ball’s relative position and
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velocity with respect to the robot coordinate system can be estimated directly
by using the ball’s observation values. When the ball’s absolute position and ve-
locity is required, the ball’s observation values can be transformed into the world
coordinate system, which is fixed in the robot playing field, by utilizing the robot’s
observation values. To prove the feasibility and the robustness of the H∞ filter in
estimating the ball’s position and velocity with noisy observation values, we use
the robot’s odometer-based observation values in the experiments. The world co-
ordinate system and the robot coordinate system are described in Fig.2.

All experiments were made in our robot laboratory having a half-field of the
RoboCup-Middle size league. The H∞ filter described in section 3 has been
applied to tracking a rolling ball in the RoboCup domain, when the ball is
pushed by a mobile robot to follow a linear path and a sinusoidal path with the
constant desired translation velocity 0.3m/s and 0.5m/s respectively. The ball
did not slide away from the robot during the whole pushing process because of
the consecutive collisions with the robot. At every sampling time, the H∞ filter
estimated the ball’s absolute position and velocity with respect to the world
coordinate system, and the ball’s relative position and velocity with respect to
the robot coordinate frame. The noise attenuation level and weight matrices for
estimating the x and y components were chosen as follows:

γx = 2.0, P x
0 =

[
30 0.004
30 2

]
, Qx

k =
[
0.01 0
0 0.01

]
, W x

k = 1, V x
k = 10 ;

γy = 1.5, P y
0 =

[
10 0.05
30 0.8

]
, Qy

k =
[
0.1 0
0 0.1

]
, W y

k = 10, V y
k = 1 .

To evaluate the performance of the H∞ filter, a Kalman filter with assumed
noise variance was also used to estimated the ball’s position and velocity with
the same observation values. The initial estimate error covariance matrices Po

and the probability distributions of process noise and measurement noise are
chosen as follows:

px
0 =

[
0.01 0.0001
0.003 0.005

]
, p(wx) ∼ N(0, 0.01), p(vx) ∼ N(0, 0.0001) ;

py
0 =

[
0.01 0.0001
0.01 0.005

]
, p(wy) ∼ N(0, 1), p(vy) ∼ N(0, 0.0001) .

From the results shown in figures 3-8, we can see the H∞ filter eliminated the
high frequency components of the measurement and estimated the ball’s position
values sufficiently. Figures 5-8 show that the estimated positions from the H∞
filter are slightly better than those from the Kalman filter. Figures 9-10 illustrate
that the ball’s velocity is effectively estimated and the H∞ filter is better than
the Kalman filter, while the estimated x-velocities from the H∞ filter approach
to the ideal robot’s x-velocity 0.3m/s with less time and are more smooth than
those from the Kalman filter.
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Fig. 3. Absolute positions of robot and
ball along the linear path
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Fig. 5. Relative x-positions of ball
along the linear path
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Fig. 6. Relative y-positions of ball
along the linear path
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Fig. 7. Relative x-positions of ball
along the sinusoidal path
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Fig. 8. Relative y-positions of ball
along the sinusoidal path
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Fig. 9. Absolute x-velocities of ball
along the linear path
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Fig. 10. Absolute y-velocities of ball
along the linear path
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5 Conclusion

In this paper we introduce a robust H∞ filter, which does not require a priori
knowledge about the statistical properties of the system and measurement noise,
but only depends on the assumption of finite noise power. The recursive equa-
tions of the H∞ filter are very similar to those of the Kalman filter, so the H∞
has relatively low computation cost in the implementation and adapts to the
real time estimation problem. With the real-world experiments, where the ball
was following the given paths pushed consecutively by an omnidirectional robot,
the performance of the H∞ filter was evaluated by comparing the estimation
values with those from the Kalman filter. The results of the estimated ball’s po-
sition and velocity show that the H∞ filter eliminates the high frequency noise
components of the measurements and estimates the ball’s position and velocity
robustly in the pushing process. Moreover, the H∞ filter in this application is
shown to be superior to a Kalman filter, which requires manual tuning of the
noise parameters.
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Abstract. We are looking for a generic solution for the optimized ball passing 
problem in the robotic soccer which is applicable to many digital simulated 
sports games with ball. In doing so, we show that previously published ball 
passing methods do not properly address the necessary balance between the an-
ticipated rewards, costs, and risks.  The multi-criteria nature of this optimization 
problem requires using the Pareto optimality approach.  We propose a scalable 
and robust solution for decision making, as its quality degrades in a graceful 
way once the real time constrains are kicking in.  

1   Introduction 

1.1   Ball Passing Algorithms: State of the Art  

Passing the ball to a teammate is a critically important player skill in many sports 
games with ball. Early RoboCup scholars have developed two reasonably good algo-
rithms for the simulated soccer [1, 2]. In both the soccer agent chooses values of the 
direction of the kick and its force. In [1] the anticipated outcome of passing ball is 
evaluated with two heuristic indicators: (1) the tactical value of the end point and (2) 
the likelihood of that the receiving teammate will intercept the ball. This algorithm is 
searching for both direct and leading passes including passes to self. The tactical 
value is the only criterion for selecting the best option; the likelihood of success is 
used as a constraint.  Although this method has proved to be rather good, it neglects 
risks such as the possible proximity of other opponents to the anticipated interception 
point. One more shortcoming is the requirement that the ball should be always inter-
cepted by the receiver in the minimal time. Indeed, this may result in lost opportuni-
ties in executing leading passes when the ball is sent to the point of the field still 
reachable by the teammate and having better tactical value.  

The algorithm implemented in [2] appears to be more sophisticated, as it is taking 
into account the opponent player congestion in the vicinity of the ball destination.  
Also are considered ball travel distance, opponent goal scoring opportunity if the pass 
is successful, and the possible outcomes if the ball would not be intercepted as in-
tended. The decision is made by deliberating on 5 options for each receiving  
teammate: direct pass, leading pass, pass to the expected location of the teammate, 
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pass to a point near teammate having low congestion, and pass along a low congestion 
line. Each alternative is evaluated using 9 performance indicators. With the purpose 
of making a choice, these indicators are analyzed using a decision tree.   

Even more advanced ball passing algorithm with player collaborating using aural 
messages was recently reported in a short paper [3]. As this algorithm is all based on a 
decision tree, it is possible that some indeed good ball passing options could be over-
looked. This is a general shortcoming of decision trees; in what follows, we discuss 
this in more detail.   

1.2   Unresolved Issues and Research Objectives  

In this paper, we address three issues.  

1. No benchmark. The existing algorithms are collections of sophisticated heuris-
tics; it is still unknown to what extent they could be improved and what the bench-
mark solution is.   

2. Smoothly balancing rewards and risk. We believe that implementing a continu-
ous spectrum of risk-taking vs. risk aversive strategies by the soccer agent is highly 
desirable.  However, in the existing methods this balancing does not render itself as a 
controlled feature.  

3. Avoiding possible conflicts with the real-time constraints. Reduction of required 
computations in existing algorithms can normally be done by removing some 
branches in the decision tree. That may result in abrupt loss in the quality of  
decisions.   

We resolve these issues using the multi-criteria decision analysis (MCDA). In do-
ing so, we are pursuing the following objectives.  

• Developing a theoretical framework for a totally optimal ball passing algorithm 
that could serve as a benchmark. We want this solution to be generic and thus reus-
able. This intention is standing in a concert with other RoboCup scholars looking for 
generic solutions [4].  
• Fully identifying rewards, risks, and costs involved in passing the ball and dem-
onstrating how they could be balanced in the proposed framework. We wish to offer a 
way to implementing a continuous spectrum of risk-taking and risk-aversive attitudes 
by the soccer player.  
• Addressing the real-time constraints. We want to propose a truly scalable solution 
with just one parameter which determines the amount of the required computations. 
We also want to design a robust ball passing algorithm that would be resulting only in 
a gradual loss of the decision quality if we are forced to bypass some computations.  

2   Rewards, Risks, and Costs in Ball Passing  

Prior to developing the optimal decision making algorithm, we identify the presuma-
bly complete list performance criteria that govern the decision to pass the ball.  

In doing so, we slightly modify the ball passing problem formulation as compared 
to [1, 2]. In our case, player with the ball considers all possible points (x, y) in the 
field and must decide to which point he should send the ball now and determine the 
ball speed in the end point.  This end speed affects the probability of the successful 
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interception by the receiving teammate; it also determines the ball travel time and thus 
the incurred risk.  The decision is made by comparing performance indicators calcu-
lated for different ball passing options.  

Once the passing player has made his choice of the point and of the ball end speed, 
he is able to determine the kicking force and direction, which are the actual decision 
variables. If the required kicking force exceeds the available limit, the point is just 
removed from the consideration. Likewise, points are eliminated if the perceived risks 
are prohibitively high.  

Each remaining potential destination point for pass is assigned a vector criterion 
having continuous values of its m components, which are the performance indicators.  
So there is a two-dimensional decision space (kicking_force, direction) and an  
m-dimensional criterion space. For the analysis, we make two modifications. First, we 
replace the decision space by a three-dimensional one (x, y, end_speed) with only two 
coordinates being independent; this space is much easier to visualize.  Second, in 
order to make our algorithm scalable when the real-time constraints are present, we 
replace the continuous decision space by a discrete one.  

We split the decision criteria in three categories: (1) gains, (2) risks, and (3) costs.   

Gains. We see two gains, or rewards, from passing the ball; we wish to maximize 
both.  

Both are similar to the indicators used in [1] and [3], which served their purpose 
very well. The first is the tactical value of the point (x, y) where the ball will be sent 
to. This function encourages sending the ball close to the opponent goal and discour-
ages destinations near own goal.  The second reflects the chance to score the opponent 
goal from the ball destination. Its value depends on the anticipated number of oppo-
nent players between the opponent goal and the destination point (x, y) of the pass.   

Risks. As proposed in [1], the risks involved in ball passing all are defined as soft 
constraints. We further improve this idea by dropping the requirement that the receiv-
ing player is intercepting the ball in minimal time. Rather, we assume that he must be 
chasing the ball if necessary.  Hence we have more risk factors than our predecessors.  

1. Opponent may reach (x,y) before the teammate. The risk function r1(x,y) is the 
time difference between the arrivals of the fastest teammate and the fastest opponent 
to this point.  
2. Ball can be intercepted by the opponent on its way to (x,y). The risk function 
r2(x,y) is the time difference between the intended arrival time of the ball in (x,y) and 
the earliest time when it can be stolen by the opponent.  
3. Teammate may be too late in point (x,y) after the ball rolls by. So the risk function 
r3(x,y) is the time difference between the arrivals of the teammate and the ball. How-
ever, this risk increases if the ball is moving in (x,y) too fast which is making it  
difficult to intercept.   
4. Too many opponents may get close by. The risk function r4(x,y) is the time differ-
ence between the arrivals of the ball and the second fastest opponent in (x,y).  
5. If the teammate fails to intercept the ball, it may cross the field boundary.  The 
risk function r5(x,y) is minus the time remained until the ball crosses this line after 
bypassing (x, y).  
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6. The receiving player may have too low stamina to chase the ball. The risk function 
r6(x,y) is time when the receiving teammate reported low stamina less current time.   
7. Ball may not reach the destination point at all, as (x, y) is too far away for given 
initial ball speed. As the ball movement is distorted by noise, the actual maximal ball 
traveling distance may differ from the calculated theoretical one, Dmax.  A soft con-
straint r7(x,y) is used to reflect this risk.  

We want to minimize each of these seven risk factors. For convenience, they could 
be scaled so that they all are taking values in, say (0, 10).  

Costs. The cost factor is the time required for obtaining the anticipated rewards, 
which we want to minimize. Taking this in consideration makes sense because the 
precision of the situation prediction substantially decreases with the forecast time. 
This criterion would be discouraging too long passes if, given all the rest conditions 
equal, shorter ones exist.  

Concept demonstration. With the sole purpose of the concept demonstration used 
throughout this paper, we have designed an example with three simplifications. (1) 
Decision space is further reduced to determining the pass direction only; end speed in 
the destination point is a fixed parameter of the algorithm. (2) Only the tactical value 
of the end point is used as the reward. (3) Risk and costs merged in just one parameter 
by applying heuristic rules.  

This allowed using two-dimensional displays for the visualization. The full-scale 
algorithm is treating all criteria separately. 

  
(a) applied risk factors 2 and 7 only (b) all seven risk factors applied 

Fig. 1. Screenshots of the software tool for analyzing the soccer player tactics. Of the original 
3600 points, most have been eliminated because the anticipated risk is inappropriately high.  
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Fig.1 shows a grid of 3600 points considered as candidates for passing the ball by 
player 11 from the right-hand team. Most are eliminated because the risk is too high. 
These points are shown in light gray; the darker points are the remaining alternatives. 
Player 11 must select the best one based on the vector of performance indicators 
available for each point.  

We wish this decision to be optimal in some sense. This sense is the Pareto  
optimality.  

3   Applying the Pareto Optimality Principle to Ball Passing  

Pareto optimality, first originated in economics, is now a standard principle for solv-
ing vector optimization problems with conflicting criteria [5].  In what follows, we 
will replace the reward function with the negation thereof; thus we want all our crite-
ria to be minimized simultaneously. In the general case, though, simultaneous mini-
mization cannot be achieved.  The Pareto optimality principle only offers a method 
for substantially reducing the set of decision alternatives by identifying among them 
the set of so-called non-dominated alternatives; altogether they are making the Pareto 
set, or the Pareto frontier.  

By definition, the criteria vector vi = {vi1,…,vim} is dominated by vector vj = 
{vj1,…,vjm} if the following condition holds: 

}{ jkik vvk >∀ . (1) 

This means that vj is located inside the cone in Rn with the vertex vi, the sides of 
this cone being parallel to the coordinate subspaces Rn-1. By definition, the Pareto set 
is the subset of non-dominated alternatives, i.e. whose cones do not contain other 
alternatives. The Pareto set is not necessarily convex, nor is it in the general case even 
connected. The computational complexity of determining the Pareto subset in the 
finite set with N elements is O(N2).   

The meaning of a non-dominated alternative vj is that outside the Pareto set there is 
no another alternative that outperforms vj simultaneously by all criteria; at least one 
criterion value is worse, anyway.  From this follows that the optimal decision should 
be sought within the Pareto set; all the rest alternatives could be eliminated as they are 
all inferior.  

In Section 4, we will be also using a weakened version of the dominance relation, 
which is called ε-domination [5, 6]. The set of non-ε-dominated points is referred to 
as ε-Pareto set. Elements lying outside this set are having at least one criterion that is 
worse by more than ε. 

Noteworthy that, eliminating ball passing alternatives before identifying the Pareto 
set, as it has been done in the existing algorithms, may result that some of the Pareto 
optimal points would be apparently removed without even evaluating thereof. This is 
exactly what may happen in decision trees. Unless the decision conditions are de-
signed so carefully that any eliminations do not affect the Pareto set, there is no  
guarantee that the decision tree yields optimal solution to the problem in all cases. 
However, the trouble is in that such a decision tree is difficult to design, and for each 
new applied problem this must be done over and over again. On the other hand, the 
Pareto optimality principle offers a general solution.  
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Fig. 2. Situation in Fig.1(b) with the points 
making the Pareto set shown in white 

Fig. 3. The ball passing alternatives in the 
criterion space. Points in the Pareto set shown 
in white. 

The Pareto set of the alternatives that player 11 in Fig.1(b) should be indeed choos-
ing from is shown in Fig 2.  This example suggests that either the leading pass to 
teammate 9 should be executed (five slightly different options), or player 11 should 
leave the ball for himself, i.e. execute so-called fast dribbling (two options). Passes to 
teammate 10 are not in the Pareto set. Note that some points near player 9 cannot be 
reached in minimal time; yet they are better for scoring the goal. Fig. 3 shows the 
situation as it occurs in the criterion space.   

The MCDA theory leaves the final choice of the single alternative from the Pareto 
set up to the decision maker. In our case, however, it is the algorithm developer who 
must formalize the player preferences which could be used for searching the Pareto 
set. This search is exactly about balancing the rewards, risks, and costs; in what fol-
lows, we explain this idea.   

A naïve approach suggests merging all criteria in just one and applying commonly 
known single-criterion optimization techniques. For example, one can use the utility 
function U of the decision variables (x,y), which is the weighted sum of risk Risk and 
gain Gain: 

),()1(),(),( yxRiskwyxwGainyxU −+−= , (2) 

where w is the positive weight, 0≤w≤ 1; it reflects the importance of Gain for the 
decision maker, as compared to Risk whose weight is thus 1-w. (Note the minus sign 
before Gain). 

To find the solution, function (2) must be minimized. Equation U(x,y) = c, where c 
is some constant, in the criterion space represents the slant strait line shown in Fig.3.  
Search for the optimal solution in this case would be moving this line towards the 
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origin by decrementing c until the line (shown in the dashed style) intersects with just 
one decision alternative B. Presumably, this would be the optimal, balanced solution 
sought.  

Unfortunately, this simple approach does work only when the Pareto set is convex 
[6]. If non-convexity is in place, some elements of the Pareto set would be never ren-
dered as the solutions to the optimization problem, no matter what values the decision 
maker assigns to w.  However, this is counter intuitive, as each point in the Pareto set 
is the best option for some combination of the decision maker preferences. In our 
example we can scan all possible preferences by varying the weight w in the range 
0≤w≤ 1. Note that, as β =tan(w), this parameter determines the angle β of the line 
U(x,y) = c (in Fig.3, w=0.335). For all possible weights, this would render only three 
points, A, B, and G of total seven available in the Pareto set (marked with black cir-
cles). The rest four would be never returned as solutions. This just illustrates the fact 
that with the multi-modal criteria functions which we are dealing with in the robotic 
soccer, a different way to finding the balanced optimal solution should be taken.  

4   Searching the Optimal Ball Passing Decision in the Pareto Set  

The different way is applying more sophisticated methods for searching the Pareto set 
that can work with non-convex problems. As there is a plethora of such methods, we 
will demonstrate just one, developed by the author of this paper. The method is called 
‘the randomized sequential elimination of the poorest alternatives’. Because it does 
not rely on any information about the criteria functions, it is applicable to any MCDA 
problem with a finite Pareto set. This nicety, comes at rather low cost: with the total 
of K elements in the Pareto set, the computational complexity of this algorithm is 
O(K2).  (Note that K<<N, where N is the number of points in the set of the alternatives 
before any eliminations.)  

The key assumption is that each criterion has its relative non-negative weight 
w1,…,wn whose sum is 1.  They are reflecting the preferences of the developer of the 
decision making algorithm. In what follows, the set of weights is regarded as a prob-
ability distribution.  

The algorithm has K-1 iterations, eliminating at a time one element from the Pareto 
having the worst value of j-th criterion.  The criterion index j is randomly selected 
with probability wj. Therefore, more important criteria tend to be chosen more fre-
quently than the less important ones.  The process ends when only one element  
remains in the working copy of the Pareto set. This is the approximation of the bal-
anced, optimal solution to the problem. With K increasing, this approximation con-
verges to the precise optimum.  

The scarce discrete subset of the real infinite Pareto set like shown in Fig.3 yields 
too rough approximation. (Note this is what has remained from the original 3600 
points.) Because further increasing the total number of points is not an option, we are 
using the ε-dominance relation instead of the strict one. This concession can be justi-
fied by that the criteria values are calculated with some errors, anyway. As we can 
guesstimate the standard deviation of these errors, we can choose ε of the same order 
of magnitude.  As the ε-Pareto set will include near-optimal alternatives, it will be 
much denser. The application of the random elimination in this case would result in 
much smaller volatility of the solution.  
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Fig.4 and 5 give the idea of what happens to the situation in Fig.2 and 3 once ε-
dominance is applied; the player indeed gets much more options to chose from. The 
cost for this is a slight deviation from the strict Pareto optimality and a longer, yet not 
prohibitive, computation time. The benefit is the better robustness of the solution 
search algorithm.  

Assigning weights to the criteria in the proposed framework has a transparent 
meaning.  Unlike using weights to sum up criteria similar to (2), in our method there 
is no way for that a higher value of one criterion apparently compensates for the in-
sufficient value of the other. So the proposed technique allows easily modeling the 
continuous spectrum of risk taking and risk aversive attitudes of the decision makers. 
This is made possible by changing weights.  

So far we have been using the example with the weight of Gain 0.335, i.e. Risk had 
about twice as much higher weight. This results in the risk-aversive decision shown in 
Fig. 4 and 5. Player 11 prefers to pass the ball to teammate 10 rather than taking the 
chance of sending the ball to teammate 9 whose position is much better.  By changing 
the weight in favor of risk taking, it is indeed possible to persuade the player to pass 
the ball to player 9 (see Fig. 6, 7).  

 

 

Fig. 4. Situation with the ε-Pareto set. Risky 
passes are avoided. 

Fig. 5. The ball passing alternatives in the 
criterion space. The Gain weight is 0.335. 

5   Addressing the Real-Time Constraints   

As described so far, the optimal ball passing decision making algorithm in terms of com-
putations appears to be even more demanding than the algorithms proposed in[1, 2, and 3].   
In the first experiments in 2003 with our simulated soccer team SFUnleashed we have 
indeed found that the quality of decisions made by players while passing the ball non-
monotonically depended on the total number of points N. Starting with small number of 



312 V. Kyrylov 

point, quality was noticeably increasing with N. Then, with greater N, we observed signifi-
cantly decreased performance. Indeed, with large N the player process could not complete 
all required computations during one simulation cycle.    

As it should be expected for a real-time system like robotic soccer, attempts to util-
ize all the player potential by using sophisticated optimization may be counterproduc-
tive because of the prohibitive computation time. Still we decided to find a way out so 
that the real-time constraints were not so restrictive. Our solution comprises two ways 
for the time reduction.  

The first way is further reducing the number of alternatives that wittingly are not in 
the Pareto set; this can be done by replacing the equidistant grid (Fig.1-5) with ran-
domly scattered points in the vicinity of each teammate (Fig.6, 7).  

The second way is automatically adjusting the number of generated points N dur-
ing run time with respect to the actually available time in the simulation cycle. As we 
know that the complexity of the whole method is O(N2), it is always possible to esti-
mate affordable N in advance in the current simulation cycle and thus to prevent real-
time constraints from kicking in. Reducing N would result in only gradually increase 
of the random deviations from the theoretically optimal solutions, without any abrupt 
losses in the quality of decisions on the average. This behavior is quite different from 
that of the algorithms based on decision trees whose real-time scalability is very lim-
ited. Thus the proposed algorithm is robust by design and is indeed scalable with 
respect to tightened or relaxed real-time constraints.   

 

 

Fig. 6. Situation with 400 points randomly 
generated about the teammates  

Fig. 7. The ball passing alternatives in the 
criterion space. The Gain weight is 0.614.  

The full-blown algorithm is just a straightforward generalization of the simplified 
method illustrated in the above examples. The only difference is that instead of the 
two criteria function we are using all ten. The algorithms for computing these criteria 
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have been described in Section 2; some of them are similar to that can be found in the 
RoboCup literature.  

With the exception of particular performance criteria, the proposed optimal deci-
sion making framework is general enough to be applicable to a wide range of digital 
sports games with ball including all RoboCup leagues. 
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Abstract. This paper presents an efficient way to learn fast omnidirec-
tional quadrupedal walking gaits. We show that the common approaches
to control the legs can be further improved by allowing more degrees
of freedom in the trajectory generation for the legs. To achieve good
omnidirectional movements, we suggest to use different parameters for
different walk requests and interpolate between them. The approach has
been implemented for the Sony Aibo and used by the GermanTeam in
the Four-Legged-League in 2005. A standard learning strategy has been
adopted, so that the optimization process of a parameter set can be
done within one hour, without human intervention. The resulting walk
achieved remarkable speeds, both in pure forward walking and in omni-
directional movements.

1 Introduction

Legged robots are advantageous over wheeled robots when the terrain, in which
the robot operates, is jagged or uneven. On the other hand, to control the legs of
a robot is a highly complex and challenging task because of the many degrees of
freedom in moving a leg and the required properties like stability and achievable
speed of the walk.

Our research is based on quadruped walking robots, namely the Sony Aibos. In
robot soccer the speed and maneuverability of the robots play an important role.
Being faster than the opponent gives a team an invaluable advantage because it
will in general be faster at the ball and can control it first.

This paper is structured as follows. Before explaining the commonly used ap-
proaches to walk, we will briefly introduce the properties of the Sony Aibo ERS-7
robot. Then, in Sect. 2 we will suggest some improvements for the established
and commonly used walking model and will subsequently propose in Sect. 3
a learning strategy which can cope with the problem to find optimal walking
parameters in the resulting higher dimensional search space. Section 4 reports
on the achieved results of both the extended walking model and the experiences
made with the learning approach. Section 5 will finally conclude the paper.

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 314–321, 2007.
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1.1 The Experiment Platform

As a robot platform for the presented research, we used the commercially avail-
able Sony Aibo ERS-7. The Sony Aibo is a quadruped robot which comes
equipped with a CMOS-camera as the most important sensor. Its legs have
each 3 degrees of freedom, i.e. a hip abduction, a hip flexion and a knee flexion
joint. The Sony Aibo is a truly autonomous robot since all the computation
can be done on the on board MIPS IV processor with 576 MHz. For wireless
communication the robot is equipped with a WLAN 802.11 compliant ethernet
card.

All coordinates mentioned in this text are in the robots’ coordinate system
and are aligned as follows: the x-axis points to the forward direction, the y-axis
points to the left side of the robot and the z-axis points up.

1.2 Related Work

Since the release of the first Sony Aibo model, a lot of research has been made
on the walking style of this robot. In 2001 the so called wheel model has been
introduced[1], which allows omnidirectional locomotion of the robot by treating
the legs as wheels. Any kind of instantaneous movement of a robot can be de-
scribed by a rotation about a certain point, the so-called instantaneous center
of rotation (ICR). For walking straight forward without a rotational component,
the ICR is located at infinity. The wheel model assumes that the steps of each
foot perform a tangential movement on the circle around the ICR. The speed of
the step can be calculated in the same way as for a wheel of a differential drive
robot.

(a) Forward (b) Diagonal (c) Rotation

Fig. 1. The rotation of the leg locus for different walk requests

Like in a trot gait, the two diagonal opposite legs are always moved at the
same time, e.g., two legs are always in the air while the other two legs remain
in contact with the ground. Due to the duty factor of 0.5 of this walk, it is only
dynamically stable, but it has turned out to be stable enough, even in a robot
soccer match with a lot of pushing of other robots.

Further, the wheel model assumes, that the feet of the robot move on a certain
locus. The according joint angles needed to control the feet on these loci are
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calculated by means of inverse kinematics. Figure 1 shows the rotation of these
loci about the z-axis for different walk requests. The locus for the feet to move
on, is described by several parameters[2,3,4]. In 2004 the team from UT Austin
Villa used 17 parameters [5], the German Team 14 parameters [4] and the team
from the University of Pennsylvania used 19 parameters[6] to define the walk.

Several approaches have been made to achieve faster walks with different loci,
the most commonly used ones are rectangular, half-elliptical and trapezoidal loci.
To optimize the parameters which describe the form of the loci, many learning
approaches have been used[7,8].

These approaches have in common that only a single parameter set has been
used for walking, and such set has only been tuned for fast forward walking.
But a parameter set for fast forward walking is not automatically useful for fast
backwards or sidewards walking.

2 Enhancements to the Walking Model

All known walking engines for the Sony Aibo make only use of static inverse
kinematics. This means that the calculation of the desired joint angles to reach
a specified position with the foot is only based on geometry and does not take
into account physical properties like friction, moments of inertia or forces. While
in industrial robotics very complex dynamic models are considered to calculate
a trajectory[9], in mobile legged robotics this is not feasible due to the lack of
computational power and adequate dynamic models.

2.1 Controlled and Real Walking Trajectories

The dashed paths in Fig. 2 show the controlled loci in the xz-plane for forward
walking for the fore and hind legs; the loci in Fig. 2(a) and Fig. 2(b) are controlled
on a rectangular path while the loci in Fig. 2(c) and 2(d) are controlled on a half-
elliptical path. All other parameters like timing, step lengths etc. do not differ
between the rectangular and half-elliptical loci of the same foot. The according
real trajectories for the controlled trajectories are presented as solid curves in
the Figures 2(a) – 2(d). Especially the locus of the front feet differs remarkably
between the rectangular (Fig. 2(a)) and the half-elliptical control (Fig. 2(c)).
A reason for this might be a slightly different angle of the robots’ body while
walking or the slipping of the feet on the ground. After having a look on the real
trajectory of the feet in the yz-plane, we found out that especially the paths of
the fast walks are bent while we would expect them to be a straight line.

2.2 Parameters Defining the Gait

Due to the observations on the real loci and the fact that especially fast walks
differed the most from the controlled loci, we reasoned that more flexibility in
the control of the feet could give better results in terms of faster walks. We
decided to introduce three dimensional polygons instead of the common “flat”
two dimensional shapes.
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(a) Fore leg
rectangular

(b) Fore leg
half-elliptical

(c) Hind leg
rectangular

(d) Hind leg
half-elliptical

Fig. 2. The controlled locus (dashed) and real locus (solid) of the fore and hind legs
for different trajectories

As mentioned in Sect. 1.2, the most common walking approaches use compar-
atively few parameters to describe the walk; this because hand tuning of walks
is not feasible and the time to optimize the parameters with learning approaches
also profits from a smaller search space due to the long time to evaluate the
resulting speed of a parameter set.

However, we decided to use 3 dimensional polygons with n vertices P1, . . . , Pn.
Additionally n timing parameters are needed to specify the amount of time
needed for the foot to travel from vertex Pi to Pi+1, for 1 ≤ i < n, and from
Pn to P1. Further we restricted the walking gait to a trot gait, i.e. two diagonal
opposite legs are at the same time in the air, while the other pair remains on the
ground. The amount of overall parameters for a single leg is 3n + n. Therefore,
the number of parameters describing the walk for a 4 legged robot results to 16n.
With the reasonable constraint, that the pair of fore and the pair of hind legs
are moving on mirror-symmetrical loci (but countercyclical in time), the number
of parameters is reduced to 8n.

To be able to find an optimum in the large search space, both a determined
learning strategy and a fast and reliable measurement of the robots’ speed is
advantageous.

2.3 Different Parameter Sets for an Omnidirectional Walk

The ability to reach a desired point in any orientation is called omnidirectionality.
In robot soccer, this ability gives the robots the advantage to be able to move
quickly in any direction without having to rotate in advance, also it makes the
control of the robot on the field much easier. The wheel model described in Sect.
1.2 allows omnidirectional movement by rotating the foot trajectories about the
z-axis and scaling the legs’ speed according to the radius of the circle around
the ICR. Unfortunately a parameter set resulting in a fast forward speed (for
example) is not necessarily useful for walking sideways or rotating. The fastest
walk which was published on the Aibo ERS-210 in [8] was only useful for straight
forward walking with only very small rotational components. Due to this fact the
GermanTeam has used this parameter set in 2004 only for straight sprints to the
ball[4], while in the “normal” game play they switched back to an omnidirectional
parameter set.

Since “hard” switching of parameters while walking normally causes stumbling
of the robot which can make him fall over or rotate unintentionally, we decided
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to implement a “soft” interpolation between parameter sets. In this case, we can
use optimized parameters for certain walk requests without having the negative
effects of stumbling or unwanted directional changes when changing the walk
request. A detailed description of the interpolation is given in [10].

3 Parameter Optimization

As described in Sect. 2.2, the gait depends on a set of parameters x := (x1, x2, . . .)
with xi ∈ R. The parameters consist of 3 coordinates per vertex for the n vertices
of the polygon and the n timing parameters per leg. The major goal for each para-
meter set is to reach the highest possible robot speed in the desired direction, i.e. to
optimize the speed v of the robot with respect to the parameters x := (x1, x2, . . .).
Since the speed depends on the parameter set, the maximum speed vk is a function
of the parameter set xk, i.e. vk := F (xk).

3.1 The Learning Strategy

For this challenging optimization process, we used the biologically inspired state-
of-the-art (μ/ρ +, λ) evolution strategy with self-adaption[11]. The evolution
strategy operates on populations of individuals a and is based on the para-
digm survival of the fittest. A parent population P(t)

p is creating an offspring
population P(t)

o by making use of the operators replication, mutation and re-
combination. Due to the mutation and recombination operators the offspring
individuals “differ” from their parents, e.g. they have different properties. The
selection then decides which individuals will form the new parent generation
P(t+1)

p , all other individuals will die out. When the selection operation is based
on the mentioned paradigm survival of the fittest, in the course of the evolution
process the properties of the parent generation will be optimized with respect
to the fitness criteria of the selection operator. For more information about the
chosen strategy please refer to [10].

3.2 Learning to Walk

As explained in Sect. 2.2, one requirement for the evolution in this high dimen-
sional search space, is to be able to measure the speed of the robot quickly and
precisely without constraining the robots’ walk, like e.g. in [8]. For this reason,
we developed a ceiling camera system which is mounted above the robot soccer
field. The camera is attached to a server which is processing the camera images
with a frame rate of 25 Hz. After detecting the robot in the image, the server
broadcasts the position of the detected robot into the wireless network.

To let the walk evolution be as autonomous as possible, we developed a be-
havior which lets the robot walk on the field, always in the observation range
of the ceiling cam. To determine the fitness Fk of an individual ak, we let the
robot walk with the appropriate parameter set xk and measure the speed. To
keep the measurement error small, we allow 2 seconds walking, before starting
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to measure the speed to be sure, not to take acceleration effects into account.
After this “warm up” phase, we take the starting position and after another 2
seconds the achieved position of the robot. By dividing the difference between
the two taken points by 2, we get the average speed of the last 2 seconds’ walk.

4 Results

4.1 Adaption of the Evolution Strategy

The evolution strategy described in Sect. 3.1 offers a lot of parameters to influ-
ence its behavior. In our first learning approaches, we used 8 vertices for each
polygon and tried different values for the population sizes. In none of the tests,
the speed started to converge and the fastest walk found for straight forward
walking achieved only 33 cm/s which was still slower than most of the RoboCup
teams were walking on the world championship in 2004.

In the next approach, we decided to reduce the search space by allowing only
4 vertices per polygon, i.e. reducing the search space to 32 dimensions. With
this configuration, after a few generations a consistent speed improvement and
a convergence of the speed was observable. As long as the population size μ and
λ was big enough, the size did not have a big effect on the convergence speed;
we chose μ = 6 and λ = 24. This population size was big enough to explore the
search space, so that the chance to get stuck in a local optimum was minimized.
With these settings the speed converged already after 30 to 40 generations. The
curve in Fig. 3 shows the run of the fitness of all offspring individuals during
the evolution process to optimize the walking parameters for forward walking.
The individuals in the first parent generation were all equal and hand generated.
They all resulted in a forward speed of 280 mm/s. The fastest walk has been
found after only 29 generations after less than one hour of training.

4.2 Achieved Speeds

The found parameter sets for all walking directions result in a faster speed than
the walks presented on the RoboCup 2004. The maximum reached speeds are
shown in Fig. 4.

A special parameter set has been found during the evolution, where we wanted
to see, if the walking of the Aibo on the “elbows”, like all of the RoboCup teams
do, is really the most beneficial walk. For this experiment, we created parameter
sets for the initial population, which let the Aibo walk with stretched legs, like
a real dog. The resulting walk with these very uncommon starting parameters
achieved a speed of 510 mm/s, which is certainly by far the fastest forward
walk ever found on a Sony Aibo. But besides its fast speed, the walk had some
unfortunate properties like unstableness and a lot of vibrations. These vibrations
during the walk result in blurred camera images, thus we only used this walk
when we wanted to sprint over a longer distance. The unwanted accelerations
of the robot body which result in a shaking of the camera while walking of the
510 mm/s walk, our so called boost, are shown in Fig. 5 in comparison with the
very few unwanted accelerations of the normal walk.
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Fig. 3. The fitness of all offspring individuals during an evolution run
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Fig. 4. Achieved speeds in mm/s, respectively ◦/s for different walk requests
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Fig. 5. Accelerations during walking straight forward for a normal walk and the
“boost” walk

5 Conclusion

In this paper, we presented meaningful enhancements to existing and commonly
used walking models for the Sony Aibo. Due to the fact that the enhanced
model has more degrees of freedom to define a walk, a learning approach with
external measurement of the fitness has been suggested. The learned walks with
the described approach were in all directions more than 25% faster than existing
walks, e.g. the walk of the German Team from 2004. The here described walk
was also one of the reasons why the GermanTeam has won the RoboCup and
was one of the fastest teams on the RoboCup championship 2005 in Japan.
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Abstract. Recently, efficient self-localization methods have been devel-
oped, among which probabilistic Monte-Carlo localization (MCL) is one
of the most popular. However, standard MCL algorithms need at least
100 samples to compute an acceptable position estimation. This paper
presents a novel approach to MCL that uses an adaptive number of
samples that drops down to a single sample if the pose estimation is
sufficiently accurate. Experiments show that the method remains in this
efficient single sample tracking mode for more than 90% of the cycles.

1 Introduction

Self-localization has been a major research task in mobile robotics for several
years. Especially in the Middle-Size-League of RoboCup where robots are ex-
pected to carry out cooperative tasks, it is crucial to know the robot’s position
in a common global coordinate system. Many different approaches to the lo-
calization task in RoboCup environments have been investigated over the last
years. Nearly all of these methods are based on the relative distance and angle
of features to the robot in two-dimensional field coordinates.

When walls still surrounded the RoboCup field, some teams used line segments
extracted from the distance data of a laser range finder for a very fast localization
([4]). Today, the idea of extracting lines from distance data found its way into
several other approaches, now using distances to field markings generated by
camera systems. Iocchi et al. [6] as well as Marques et al. [7], and Jong et al. [1]
presented algorithms where the lines are extracted using the Hough Transform.
Instead of matching the lines to a model, Utz et al. [11] computed a distance
to the model lines at given positions, to exploit the advantages of Monte-Carlo
localization (MCL) [3]. Although it is obvious to extract lines as landmarks
in a mostly polygonal environment like RoboCup, algorithms were developed,
that were able to handle the raw distance data from the sensors. Probabilistic
approaches like Markov localization use sensor data to assess given position
estimates. As this is much easier than generating a position hypothesis through
feature extraction and model matching, all algorithms based on raw distance
data used Markov localization or more precise MCL, which became one of the
most popular localization methods. Enderle et al. [2] presented an approach
using the distance to walls extracted from camera images, while Hundelshausen

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 322–329, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



A Novel Approach to Efficient Monte-Carlo Localization in RoboCup 323

et al. [12], Röfer et al. [9,10] and Menegatti et al. [8] used the distance to the
field markings. These algorithms mainly differ in the efficiency of the assessment
of position estimates and the number of samples needed for the localization.

The self-localization algorithm presented in this paper is based on line points
of the field’s line markings. The fitness evaluation of different position estimates
is based on a two-dimensional look-up table containing the distance to the next
marking line for every position on the field [12,9,10]. To maintain a high accuracy
a local search is used to iteratively improve the position estimation, as presented
by Hundelshausen et al. [12]. In contrast to Hundelshausen et al., however, who
use their ideas only for dead-reckoning after an initial global localization, we
combine the advantages of MCL with the iterative improvement of the position
estimation. This algorithm uses an adaptive number of samples that is reduced
to a single sample, if the position estimation of the previous cycle was sufficiently
accurate. Experiments show that our algorithm remains in this efficient single
sample tracking mode for more than 90% of the cycles. Nevertheless, it is still
able to cope with the kidnapped robot problem.

The remainder of this paper is organized as follows: Section 2 is a detailed
description of the proposed algorithm. Results concerning efficiency and accuracy
of the algorithm are presented in section 3 and section 4 concludes the paper
with an outlook on the future work.

2 Improved Monte-Carlo Localization

The major steps of the proposed algorithm are shown in Fig. 1 compared to a
typical Monte-Carlo localization algorithm.

2.1 Initialization

When the algorithm starts the maximum number of samples Nmax is generated
and randomly distributed over the state space, which in RoboCup consists of
the whole playable area of the field. If there is previous knowledge of the robot’s
pose, this knowledge can be represented by a different non-random initialization.

2.2 Application of the Motion Model

In the motion model the odometry information from the robot is incorporated.
First, the samples of the set S are translated and rotated according to the
observed motion a. Then a random gaussian noise is added proportional to the
motion. In the tracking mode, i.e. only a single sample is used, this step only
consists of translating and rotating the pose of the single sample.

2.3 Evaluation of the Sensor Model

The proposed algorithm uses the marking lines on a RoboCup soccer field as
features for the self-localization. Several pixels in an omnidirectional camera
image are identified as marking line points as shown by Heinemann et al. [5].
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Fig. 1. The major steps of a typical Monte-Carlo localization algorithm (left) and our
improved Monte-Carlo localization algorithm (right)

These pixels transformed into robot centered coordinates (xj , yj) serve as input
for the sensor model introduced in this section.

For an efficient evaluation of the sensor model Röfer et al. [9,10] and Hun-
delshausen et al. [12] presented an idea of transforming the line points to the
pose li = (xi, yi, θi) of the sample si, such that the coordinate system of the line
points is located at position (xi, yi) and oriented according to θi. Denoting the
new location of the line points as (xi,j , yi,j) and the vector from these points to
their nearest model line in a model of the field as

fi,j = (xm,j − xi,j , ym,j − yi,j), (1)

an overall distance DL,i per sample can be calculated by summing over the
squared distances to the model as

DL,i =
1
j

∑
j

‖fi,j‖2. (2)

As these distances only depend on the position on the field they can be precom-
puted on a discrete grid and easily stored in a two-dimensional look-up table
(distance matrix ). In contrast to the original methods the proposed algorithm
uses the squared distances to let line points with a higher distance to the next
model line have an even greater influence than line points that are almost per-
fectly matched. As DL,i is only based on the symmetric marking lines on a
RoboCup soccer field, it would be the same for at least two poses in each cycle.
Thus, to resolve the symmetry the angle to the two differently coloured goals
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was introduced as an extra feature. From the omnidirectional image the angles
φ̂1,i and φ̂2,i to the two goals are extracted. Comparing these angles with the
expected angles at the pose of a sample φ1,i and φ2,i results in a goal distance

DG,i =
(∥∥∥φ̂1 − φ1,i

∥∥∥ +
∥∥∥φ̂2 − φ2,i

∥∥∥)2

, (3)

where ‖·‖ is the absolute value of the smaller angle difference accounting for
the 2π period of angles. Again this distance is squared to let higher angular
differences have a greater influence. The total distance value is computed as

Di = (1− λ)DL,i + λDG,i, (4)

with λ ∈ [0, 1] representing the balance of the two distance terms, and finally,
the weights are updated as

wi,t = α
1

Di
, (5)

with α such that
∑
i

wi = 1. In the tracking mode the distances are only computed

for the calculation of the number of samples used in the next step Nt+1.

2.4 Iterative Improvement of the Pose Estimation

A preliminary pose estimation is calculated as weighted mean over all samples

p̂ = (x, y, θ) =
∑

n

wnln, (6)

and is used as starting pose for the iterative improvement. In the tracking mode
p̂ is the pose of the single sample.

In addition to the distance matrix Hundelshausen et al. [12] proposed a dead-
reckoning approach for self-localization. By applying forces exerted on the trans-
formed line points by the model lines an estimated position (x, y) is iteratively
improved in both directions. Using the same forces a torque is computed which
iteratively improves the orientation θ. Again, these forces can be precomputed
and stored in a look-up table (force matrix ). Here we use the force matrix to
improve the pose estimation p̂ from the MCL in a number of iterations k. It
contains the two-dimensional vectors fi,j from equation (1) that can be inter-
preted as a force exerted by the nearest model line proportional to the distance.
A mean force acting on the pose estimation p̂ can be computed as

F =
1
j

∑
j

fi,j . (7)

A fraction of this force can be added to the pose estimation p̂ in each iteration to
improve it regarding the position. In contrast to Hundelshausen et al. we com-
pute a mean torque according to the estimated pose to improve the orientation
estimation. It is computed over all line points as

M =
1
j

∑
j

(xi,j , yi,j)× fi,j . (8)
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Thus, in each iteration k a new pose estimation p̂k = (xk, yk, θk) is generated by

(xk, yk) = (xk−1, yk−1) + μF (9)
θk = θk−1 + νM , (10)

starting with the preliminary estimation

(x0, y0, θ0) = p̂. (11)

The iterations can be seen as a local search that minimizes F and M and thus
stabilizes the pose estimation by removing the noise from the weighted mean
when Nt > 1 and reducing the tracking errors when Nt = 1. The search contin-
ues until a maximum number of iterations kmax is reached or the improvement
between the iterations was too low. The final pose estimation p is the pose
resulting from the last iteration. Please note that apart from inserting the im-
proved pose estimation p into the sample set St+1 the stochastic process of the
Monte-Carlo Localization is not influenced by the iterative improvement.

2.5 Calculation of the Number of Samples

The number of samples needed for the next cycle is calculated depending on the
distance D of the final pose estimation p according to equation (4) as

Nt+1 =

⎧⎨
⎩

Nmax : if ξD ≥ Nmax
ξD : if 1 < ξD < Nmax

1 : if ξD ≤ 1
, (12)

where ξ is a factor that controls how fast the number of samples n is reduced.

2.6 Resampling

If Nt > 1 the cycle ends with an importance resampling from the set of samples
S with probability wi,t for resampling an old sample si,t. The sampling continues
until the number of samples Nt+1 for the next cycle was reached. To represent
the improved pose information p in the sample set, this pose is inserted as new
sample into the sample set St+1 for the next cycle.

3 Results

This section presents results obtained by two experiments made in our robot lab
on a half field of 7m width and 4m length. Throughout this section positions
and orientations are given in meters and radians, respectively. In all experiments
presented in this section we used the parameters given in table 1. The maximum
number of samples Nmax used was chosen such that it is comparable to a stan-
dard MCL approach with a fixed number of samples.

In a first experiment we compared the localization algorithm with a fixed
number of samples N = 200, N = 100, N = 50 and the proposed method. As a
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Table 1. Parameter set used for the experiments

Nmax λ ξ μ ν kmax

200 0.1 2500 0.001 0.0003 20

database for the comparison we located the robot at a pose p1 = (1.04, 1.07, 2.1)
and stored the detected line points of 98 images from the omnidirectional camera
system. Afterwards, the robot was relocated to pose p2 = (1.64, 2.68, 0.0) where
the line points from another 98 images were stored. The line points were used as
input to 196 cycles of the localization algorithm without any odometry informa-
tion, resulting in a kidnapped robot problem. Fig. 2 shows the estimation error
of the algorithms. Independent of N the algorithms compute a very good pose
estimation after at most 15 cycles, where the number of samples in the adaptive
method drops to N = 1 in only 6 cycles. From cycle 20 to 90 the estimation
error and the number of samples stay at the same level. In cycle 99 where the
relocation of the robot happened the proposed algorithm immediately generates
N = Nmax samples, reacting to the high estimation error. Apart from the al-
gorithm with N = 50 samples all methods regenerate a good pose estimation
after at most 10 cycles, whereas the number of samples in the adaptive method
returns to N = 1 after 8 cycles, thus using only a single sample in 92.87% of the
cycles. A fixed number of N = 50 samples without the iterative improvement is
not able to handle the kidnapped robot problem in this case, as the estimation
error does not recover after the relocation in cycle 98. Although the other three
algorithms show comparable results concerning the estimation error, the pro-
posed algorithm performes much better if the computation time is considered.
Table 2 lists the mean computation time and estimation error.

With the second experiment we show that the method is also able to correctly
track the pose of a moving robot. As a ground truth we used a laser scanner to
record the true position of the robot. The robot was then manually controlled
around the field. In the first run the mean speed was at 1 m/s, in the second
run we raised the speed to 2 m/s. To show that the algorithm works for both
differential drive and omnidirectional systems we first controlled the robot like a
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Fig. 2. Comparison of our algorithm to MCL with fixed numbers of samples
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Table 2. Results of 196 cycles using different numbers of particles N

N adaptive N = 50 N = 100 N = 200

mean time 1.7632ms 3.6426ms 6.8223ms 14.2508ms
mean error 0.1936m 2.2515m 0.2075m 0.2057m

1
2

3

1
2

3

4
5

6

44

Fig. 3. This figure compares the position estimates of the proposed algorithm (dashed
grey line) to the ground truth (solid black line). The algorithm needs up to 6 cycles
to find the initial pose and then correctly tracks the robot. In the second run, the
algorithm fails to track the position once, but relocalizes only a few cycles later.

differential drive and then the orientation was nearly fix in the second run. Fig. 3
(left) shows the results of the first run. In the beginning the weighted mean over
the rndomly distributed samples results in a pose near the center of the field.
After 3 cycles the starting pose of the robot is correctly estimated. Throughout
the rest of the 212 cycles the estimated pose follows the path on the field with
a mean accuracy of 9.89cm, using only a single sample in 97.17% of the cycles.
The mean computation time for a cycle of the algorithm in this experiment was
1.5731ms on an Athlon XP 1800+ system. In the second run (Fig. 3, right)
the algorithm needed 6 cycles to correctly estimate the starting position. The
estimated position then follows the real position until the robot changes its
direction very quickly two times in a row. Here the algorithm temporarily looses
the track of the robot and distributes a higher number of samples (cycle 44).
Thus, the mean accuracy without the initialization cycles was 23.97cm and the
mean computation time increased to 4.32ms as only 90.64% of the cycles used
the tracking mode.

4 Conclusion and Future Work

This paper presents an efficient combination of global Monte-Carlo localization
with an adaptive number of samples and local position tracking. With a fast
estimation of the samples’ fitness and a local search for iterative improvement of
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the estimated pose the number of samples was reduced to a single sample result-
ing in a smooth transition between global localization and local pose tracking.
We showed that the algorithm was able to handle the kidnapped robot problem
and to track a moving robot. In all experiments the mean cycle time of the al-
gorithm was leaving enough time for other important tasks like object detection
and planning to be done in real-time.
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Abstract. The interpretation of spatial activities plays a fundamental
role in several areas, ranging from the analysis of animal behaviour to
location-based assistance applications. One important aspect when inter-
preting spatial activities consists in relating them to their environment.
A problem arises insofar propositional representations lack an appropri-
ate attention mechanism to comprehend the spatiotemporal development
of spatial activities. Therefore, we propose a diagrammatic formalism
which allows spatial activities to get classified depending on their spatial
context and provide a link to propositional formalisms. It shows that
RoboCup soccer is particularly suitable for investigating these issues. In
fact, alone the spatial activity of the ball teaches us to a considerable
degree much about a game.

1 The Representational Problem of Spatial Activities

Making explicit spatial activities of animals and human beings, activity patterns
play a fundamental role in several areas: patterns of animal movements are
investigated providing a detailed picture of seasonal variability in the scale and
patterns of movements [2]; location-aware shopping guides help people to find
an efficient way through an unfamiliar shopping mall [1]. In these examples, the
spatial activities of man and beast are analysed and interpreted.

Several approaches allow spatial activities to be represented, such as the cal-
culus of events [4] and the situation calculus [6]. The intuition behind such ap-
proaches is that the world can be described in terms of situations and that the
world changes from one situation to another one by performing specific actions.
It is the axiomatic specification of situations and actions what characterises these
approaches. Thus, their strengths consist in providing sound logical foundations
for reasoning about actions and time. However, such logical languages fail to ad-
equately represent how location related activities unfold themselves over time.
The problem of representing activities in which objects change their location,
so that their spatiotemporal development becomes explicit, is referred to as the
representational problem of spatial activities. Solving this problem allows the spa-
tial activities of objects to be valued, e.g. to distinguish whether someone moves
around purposeful or purposeless and to determine the similarity of movements.

In this paper, we devote our attention to the representational problem of
spatial activities. In section 2 a formalism is provided which complements logi-
cal languages about action and time in that it allows the spatial realisation of
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activities to be dealt with more directly. Section 3 introduces a diagrammatic
formalism using which frequency distributions about spatial activities can be
derived. In order to investigate the representational problem of spatial activities
it is necessary to clarify problems in a well defined testing environment, as it is
provided by RoboCup soccer. In this way, it shows how RoboCup sticks to its
principles to foster AI and intelligent robotics research, namely by illustrating
representational issues on spatial activities. Section 4 shows how our diagram-
matic formalism acts in concert with a logical language, allowing conclusions
about matches to be derived on the basis of the spatial activity of the ball.

2 Contextualising Motion Patterns

A soccer game can be conceived of as a sequence of things happening: play-
ers dribble, they pass each other the ball, somebody else tries to stop the ball
which is flying towards the goal. What is important for any soccer event is the
spatial change of objects (players and ball). That is to say, for the purpose of
characterising the behaviour of objects the only change that matters concerns
spatial changes which correspond to patterns of changing positions. Connecting
those positions we obtain trajectories of the objects. Parts of them correspond
to specific events, and each event is described by a trajectory.

Furthermore, the pattern of changing positions which arises from the intention
of a soccer player is called an activity pattern. More general, any pattern of some
intentional or unintentional event is called a motion pattern:

Definition 1 (Motion pattern). T denotes the infinite set of realisable trajec-
tories, and M is a set of representatives of a partition of T. Then, each sequence
M = m1, ..., mk with mi ∈ M is called a motion pattern.

For the most precise set of motion patterns it holds that there exists a bijective
mapping between T and M. However, such a set of motion patterns requires the
consideration of infinite many cases. But we shall learn below that a small set
of coarse motion patterns, consisting only of a few distinguishable cases, suffice
for the representation in some cases. What will be our running example shows
even the simplest case: it is only distinguished whether an object is motionless
or whether it moves. Then, there are two equivalence classes: one is represented
by the null-trajectory, referred to as motionlessness, the other one, called motion,
contains all other trajectories, i.e. M = {motion, motionlessness}. A possible
motion pattern is M = (motion, motionlessness, motion, motion), denoting any
case in which an object moves somehow, keeps still, and moves again two times
(the latter being equal to a single motion event). Eventually, the simplest motion
patterns consist only of single elements of M.

Much effort has been put into the development of methods for describing
motion patterns, e.g. [7]. Though, it is frequently not the motion pattern itself
that determines its meaning alone. Rather, changing the context in which a
motion pattern occurs causes a semantic change. Taking into account its spatial
context means to consider the motion pattern’s environment. For instance, at
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the level of topology its spatial context extends the meaning of a motion pattern
as follows:

Definition 2 (Topologically contextualised motion pattern). M denotes
a finite set of motion patterns, R denotes a finite set of regions, and St denotes
a relation St ⊆ R ×M. Then, each sequence S = s1, s2, ..., sn with si ∈ St is
called a topologically contextualised motion pattern.

St allows dependencies between motion patterns and regions to be represented,
that is, the space where a motion pattern occurs is taken into account. For
example, R = {leftHalf, rightHalf, lPenalty, rPenalty} and M = {motion, motion-
lessness}. Then, St = {(leftHalf, motion), (rightHalf, motion), (lPenalty, motion),
... } and for the activity pattern on the left hand side of Fig. 1 it holds that S =
((leftHalf, motion), (lPenalty, motion), (leftHalf, motion)).

Fig. 1. Some trajectories, defenders of Apollo (middle) and AT-Humboldt (right)

As with the topological case, other spatial relations can also be considered,
such as cardinal directions or distances between objects. We define accordingly
and more general:

Definition 3 (Spatially contextualised motion pattern). M denotes a fi-
nite set of motion patterns, O denotes a finite set of objects, and S denotes a
relation S ⊆ O×M. Then, each sequence S = s1, s2, ..., sn with si ∈ S is called
a spatially contextualised motion pattern.

O denotes any spatial concept, such as cardinal directions or a specific set of
landmarks. Any combination can be represented by O, too, for instance, land-
marks which are in a specific distance away from a motion pattern. However,
here we shall exemplify the idea behind spatial contextualisations for motion
patterns at the level of topology and confine the discussion on whether a motion
pattern is (partly or completely) contained in a specific region.

The part of the trajectory t corresponding to any motion pattern sk can be
determined in different ways, amongst others, by the length of specific time
intervals or by the spatial contextualisation itself. An example for the latter is
the partition of t into parts at the boundaries of regions, i.e. whenever t crosses
the boundary of a region a new part of the motion pattern is defined. Taking
the example on the left hand side of Fig. 1, t is divided up into three parts since
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the boundary of the left penalty area is crossed twice. However, in the simplest
case t would not be divided up into parts, and there would exist only a single
spatially contextualised motion pattern. In our example M is defined as before
and we will simply distinguish whether an object crosses specific regions or not.

3 A Diagrammatic Representation of Motion Patterns

After a conceptual framework for describing spatial activities has been intro-
duced, we are able to solve the representational problem of spatial activities.
The problem consists in representing the location of an object and its change
in location, so as to make explicit its spatial activity. Solving this problem for
topologically contextualised motion patterns amounts to project the trajectory
of the object’s spatial activity on its spatial environment. In this way, the topo-
logical context of the object’s activity is made explicit. Such a diagrammatic
representation allows model-based deductions, namely those which can be ob-
tained by inspection processes [5]. For instance, it can be read off the diagram,
to which we refer to as D, which regions are crossed by the trajectory. The left
hand side of Fig. 1 gives an example.

Definition 4 (Spatially contextualised diagram). Let t ∈ T denote a tra-
jectory and R the arrangement of a set of regions R. Then, a spatially contex-
tualised diagram D of motion patterns is obtained by projecting t onto R.

D explicitly depicts the topologically contextualised spatial activity of the ob-
ject, i.e. such a diagrammatic representation is only capable of representing a
specific model. On the other hand, only valid models can be constructed, whereas
propositional languages would allow invalid mappings to be considered, such as
impossible changes of the object’s positions. This is one of the most prominent
advantages of diagrammatic representations (cf. [5]).

Accordingly to [3] we shall make use of graphical constructions for the pur-
pose of model-based deductions. The graphical constructions we use are closely
related to Euler diagrams which use topological properties such as enclosure
and exclusion to illustrate set-theoretic notions of containment and disjointness,
respectively. The advantages of such diagrams derive from their built-in logics.
With these diagrams, we shall deduce the extent to which an object occupies
specific regions in order to determine the object’s activities regarding its envi-
ronment. This is done by spatial templates which represent specific regions, rk.
Such a template is mapped onto D and an and-operation determines whether
t crosses rk. Especially, this operation can be extended in order to obtain the
amount with which the object occupies rk during its activities. By this means, a
frequency distribution of the object’s motion pattern is obtained, showing those
regions which are most frequently visited by the object.

Definition 5 (Spatial template). A spatial template T is a binary image
depicting a specific, not necessarily connected region.
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For the purpose of applying T to D, which is denoted by T ⊗D, both diagrams
have either to be equal in size or it has to be defined how T is to be mapped
onto D. However, at any position a logical and-operation is applied which results
into true if both diagrams are marked at that same position; note that a position
in D can be marked k times depending on how often the trajectory crosses that
position. Counting these positions it is determined to which extent t covers the
region represented by T . The resulting diagram marks those positions and can
recursively be applied to further diagrams.

Definition 6 (Set-theoretic diagrammatic operations). Let R, S, and T
denote diagrams which are equal in size. Then, the following operations are de-
fined in accordance to the set-theoretic operations:

1. R = S ⊗ T , R is marked wherever S and T are both marked (intersection);
2. R = S ⊕ T , R is marked where either S or T is marked (union);
3. R, R is marked wherever it was not marked before (complement).

While the diagram explicitly represents information about topological and other
geometric relations among the players and the pitch, in a sentential representa-
tion, such as in the situation calculus, these information is available only implic-
itly. Clearly, the diagrammatic representation is informationally equivalent to
logical representations, but there are advantages concerning the computational
efficiency. A trajectory mapped onto the regions of the pitch allows several ques-
tions about the spatial activity of a player directly to be answered: does he keep
to his area, or where does he move? The example in the middle of Fig. 1 shows
how a defender allows himself his position to left, while the defender of the other
team (right same Fig.) does not allow himself to do this.

The computational advantage is due to the diagrammatic representation of
the topologically contextualised activity patterns of the players. Such a represen-
tation guides attention, allowing the player’s area as well as deviations from it
to get inferred. By contrast, a pure logical representation requires to thoroughly
search through all positions in order to determine the player’s area and to recog-
nise any deviations from it, lacking an appropriate attention mechanism. By
means of predefined spatial templates, attention processes of visual inspection
routines are simulated to comprehend the activities of players. It is the attention
mechanism of any representation which determines its search strategy and which
frequently makes diagrammatic representations computationally more efficient
than sentential representations [5].

4 Interpreting Motion Patterns

In this section we will show how to derive qualitative information from spatial
activities. Especially, we analysed games of the RoboCup 2005 2d-simulation
league in Osaka. Exemplarily, we analyse the trajectory of the ball mapped onto
the regions of a pitch (topological contextualisation), in order to generate answers
concerning game and team behaviour. For this purpose, we combine logical with
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Fig. 2. Three most left: The trajectory of the ball during some games in the preliminary
round; Right: The trajectory of the ball during the game RoboSina vs. TsinghuAeolus

Fig. 3. Spatial templates used in our example (symmetrical regions are also used)

diagrammatic reasoning methods. Fig. 2, for example, shows a game which is
quite centred, another one which is asymmetrical, and a third one showing a
good wing play of one of the teams while the other team has a good defence.

In detail, we define a set of predicates (e.g. LeftTeam and Motion, etc.)
which can be expressed in first order predicate logic to allow spatial activities
of soccer games to be formalised. Based on the particular predicate Motion we
provide a link to diagrammatic reasoning algorithms. Thus, the domain of this
predicate will be defined in reference to the given spatial templates representing
specific regions of a pitch (cf. Definition 5). While a spatial template determines
to which degree a trajectory crosses a specific region, the Motion predicate only
distinguishes whether the region is significantly crossed by the trajectory or not.
The significance is determined by the domain expert who, for instance, defines
that Motion holds as soon as the region is covered by the trajectory at least to
a degree of 20%. Our example is based on a set of spatial templates which are
shown in Fig. 3. These templates have to be defined by the domain expert, too.

Given terminological knowledge in terms of inference rules ε1, ..., ε3 which are
based on a structure A = (UA, IA):

UA = A ∪ B ∪ R, a universe
A = {ball}, available trajectories
R = {full, lPenalty, rPenalty, leftHalf, left18Yard,

rightHalf, right18Yard, lTopCorner, lBotCorner,
rTopCorner, rBotCorner}, a finite set of regions

B = {RoboSina, TsinghuAeolus}, a set of teams

IA(Motion) = {(m, n)|m ∈ A und n ∈ R}
IA(LeftTeam) = {m|m ∈ B}
. . .

A set of inference rules ε1, ..., ε3:
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ε1 : Good Defence(team) ⇒
LeftTeam(team) ∧ Motion(ball, left18Yard) ∧¬Motion(ball, lPenalty)

ε2 : Defending Deep(team) ⇒ LeftTeam(team)
∧(Motion(ball, leftHalf) ∨ Motion(ball, left18Yard))
∧(¬Motion(ball, rightHalf) ∨ ¬Motion(ball, right18Yard))

ε3 : Balanced Wing Playing(team) ⇒
LeftTeam(team) ∧Motion(ball, rTopCorner) ∧Motion(ball, rBotCorner)

Using this logical representation we can use an abductive reasoning approach to
make inferences on the basis of observed motion patterns, and consequently, to
find possible reasons for the team behaviour.

Firstly, if we want to receive an affirmative answer for a specific question
such as ’Does the RoboSina team has a good defence?’, then it will be neces-
sary to analyse all inference rules containing the Good Defence(RoboSina)
predicate within the head of the rule, and try to prove these rules with the
use of a backward-chaining algorithm. This process results in some atomic sen-
tences which are to be proved within a diagrammatic inference algorithm (e.g.
Motion(ball, left18Yard) and ¬Motion(ball, lPenalty)).

Secondly, sentences given as the result of a diagrammatic reasoning process
allow a game to be interpreted in several ways. For example, we take a look at
the game RoboSina vs. TsinghuAeolus (see Fig. 4). In this case, a diagrammatic
inference algorithm derives the following assertions:

¬Motion(ball, full), ¬Motion(ball, leftHalf), Motion(ball, rightHalf),
Motion(ball, left18Yard), Motion(ball, right18Yard),
¬Motion(ball, lTopCorner), Motion(ball, lBotCorner),
Motion(ball, rTopCorner), Motion(ball, rBotCorner),
¬Motion(ball, lPenalty), Motion(ball, rPenalty)

On the basis of these assertions, our inference rules, and additional knowledge
such as LeftTeam(RoboSina) we are able to infer Good Defence(RoboSina)
which means that the defending team is under great pressure but yet able to
keep the ball out of the penalty area.

Having analysed all games of the RoboCup 2005 2d-simulation league, it shows
that the trajectory of the ball provides indeed significant information about a
game, identifying the proposed technique as a useful means for automatically eval-
uating games. Taking alone the predicate Balanced Wing Playing shows the
usefulness of spatially contextualised motion patterns: in about 57% of all the
games (excluding those games where the wing play of both teams is equally well)
that team with the better wing play wins (Fig. 4 show some examples). This in-
dicates that the trajectory of the ball should indeed be taken into account for the

Fig. 4. Games which have been won by those teams with a good wing play
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purpose of automatically deriving conclusions about a game. Clearly, combining
appropriately a number of predicates more sophisticated inferences can be made.

5 In Sum

When observations about the spatial activity of objects are to be interpreted,
we are in need of methods in order to understand their spatial activities. In
particular, in soccer we want to comprehend the run of a play and we want to
learn for the future. In our examples we analysed the ball’s trajectory and all
our conclusions are based on its spatial activties. For the purpose of analysing
more precisely a game, the spatial activities of single players, their trajecto-
ries, and further spatially contextualised motion patterns are to be taken into
account. For example, relations among players would tell us something about
dummy runs, circulations, and corner kicks. Especially, the proposed formalism
can be applied to compare those activities among different leagues. However,
our primary aim here consisted in clarifying issues about spatial activities and
to provide the framework for implementing interpretation systems on spatial ac-
tivities. At the same time it should be clear that issues concerning the choice of
spatial contextualisations and their interpretations are left to the domain expert.
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Mobile Robots for an E-Mail Interface for

People Who Are Blind
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Abstract. The availability of inexpensive robotic hardware has brought
to realization the dream of having autonomous mobile robots around us.
As such, the research community has recently manifested more interest in
assisting robotic technology (see proceedings of the last two IEEE RO-
MAN conferences, the emergence of the RoboCup@Home challenge at
RoboCup and the first annual Human Computer Interaction Conference
jointly sponsored by IEEE and ACM). Robots provide to the blind what
was lost as textual interfaces were replaced by GUIs. This paper describes
the design, implementation and testing of a first prototype of a multi-
modal Human-Robot Interface for people with Vision Impairment. The
robot used is the commercially available four legged SONY Aibo.

1 Introduction

It is now accepted that domestic robots will provide entertainment, care, and
perform household chores. Inexpensive hardware has brought the realization that
robots are moving out of industrial settings and are sharing the environments
once considered only for humans. While robots may still be a long way from
having generic capabilities, they can perform many useful, socially meaningful
and productive tasks (like rescue robots or land-mine finding robots). Among
the contributions that mobile robotics can make to the well being of humans
are the entertainment, assistive and supportive roles for elderly humans, peoples
with disabilities [19] and tutors for human [17]. However, for robots to constitute
a useful interface between humans and intelligent systems or ubiquitous com-
puting, many usability and Robot-Human interaction issues must be resolved.

For access by the blind, the conversion for textual output was considered
trivial because of Text-To-Speech Technology or Braille output devices [8] while
input could be handled by training on a keyboard. The introduction of GUIs and
the mouse requires spatial display and more visual interaction resulting in chal-
lenging barriers for computer usage by the blind [18]. Multi-modal interaction
can significantly facilitate computer usage by the blind [2]. While there has been
significant interest in Robot-Human Interaction [3] and in assistive robotics [16],
the suggestion of using robots as the multi-modal interface between the blind and
ubiquitous computing has received very little attention [1,14]. Ubiquitous Com-
puting is considered the next phase of ICT [10]. In this Ambient Intelligence [12],

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 338–346, 2007.
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buildings, domestic appliances, cars and many other devices are to provide hard-
ware for intelligent agents that jointly provide Intelligent Environments. Such
environments will be homes and offices where domestic robots would be part of
the human-environment interface. Most approaches of robotic applications focus
on assistive technologies [4] and orientation and navigation [6,7]. However, our
approach is to consider the robot as a multi-modal replacement for the com-
puter mouse and visual display. Robots as multi-modal interfaces have recently
attracted interest [5]. We show that while general principles of user interface de-
sign are applicable to robots as interfaces, some new considerations emerge. In
particular, users are not so prepared to accept robots that appear spontaneous
or surprising while the user is attempting to complete a task.

The amalgamation of capabilities by computer technology in TVs, desktops,
digital cameras and mobile devices makes possible what seemed impossible. Mo-
biles phones seemed useless to the deaf, but now, they are a flexible tool trough
SMS and actions (like vibration) for incoming calls. These devices are becoming
multi-modal interfaces and robotic capabilities would enable even more channels
of communication through gestures and embodiment. Our thesis is that robots
are to become an effective multi-modal interface for people who are blind. This
thesis is illustrated with a prototype that uses the Sony AIBO legged robot as
a multi-modal interface to applications on a PC with a 802.11b wireless card
and Internet access. The Sony AIBO ERS-210 has a wireless card for an ad-
hoc wireless connection to the PC. The PC provides the connectivity node and
configuration facilities to enable tasks such as browsing the Internet, receiving
and sending e-mail, and playing and recording audio files. The modes of com-
munication for input include, physical manipulation, speech recognition, gesture
recognition, and even posture. Output are also gestures of the robot, but the
main output is sound since the intended users are people who are blind. Phys-
ical manipulation in this context is the touching of buttons, and movement of
extremities, including the head and tail. A camera on the “nose” of the robot
enables gesture recognition. An on-board speaker allows the system (through
synthesised speech) to communicate available menus and options and request
input. Sensors on all the joints allows for the monitoring of their positions. The
system tracks when a joint is moved beyond a threshold from its current target
position (because of human user shifting the limb), it triggers a signal that we
can marshal and send a specific message to the PC. The system implements a
state machine in the PC with state transitions that are the result of the joint
moved and the current state. For instance, the moving of the tail to the left sets
the system to select the next track, if it was in the audio player state.

We found [1] the ERS-210 provided enough spatial information and its design
provided sufficient physical clues that made the project feasible. Fundamental
operational issues were resolved. Namely, the robot could have its battery re-
placed and charged, and it would be strong and reliable enough to be operated
manually by a blind person (for the ERS-7 the‘ outcome was unsatisfactory). Al-
though there were some significant shortcoming in relation to tactile recognition
of buttons, we added different textures to the three buttons [1].
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Using the User Centred Design approach, we had several iterations to revise
the specification of some aspects of the interface and the protocol. Two blind
University students interacted 3 times each to evaluate and provide feedback on
the usability of the system. Their input influenced the interface design.

2 Evaluation

We conducted two types of evaluations to draw conclusions regarding human-
robot interaction. These were both usability assessments. Firstly, we video two
full sessions with two blind university students. This process not only validated
the User Centred Design that lead to a deployment where usability issues had
been resolved, it also confirmed people who were blind from birth could operate
it. The second technique was required due to the low numbers of subjects of the
first evaluation. Sessions were now conducted with 15 full sighted adults. This
subjects were not familiar with the Sony AIBO at all and wore a blindfold before
the robot was presented and throughout the entire duration of the test.

In both case, each session lasted for 20 to 25 minutes. The actual exercise
lasted between 15 and 20 minutes whilst a questionnaire was completed in the
remaining time. The first part of the experiment involves the participant becom-
ing familiar with the robot (mostly touching it, and experiencing the feedback
of joints as well as its sounds). Participants were requested to pick the robot up,
and explore it themselves. Once having completed this, the instructor would then
direct their fingers to points of interest such as the tail, the textured buttons on
the back and head, and the on/off button on the chest. Participant were asked
to turn on the Sony AIBO and three applications were used to demonstrate the
capability of the robotic interface. We refer to them as the Audio Player, the
Voice Recorder, and the E-mailer. Participants were guided through the steps
of each application once. Then, they were required to accomplish a simple task
on each. For example, with the Voice Recorder, they were asked to to record a
short message, and then review it. They are also given the opportunity to hear
the messages in the out-box. The participant were taken through the process of
composing an e-mail, send it and then verify that they could retrieve an e-mail.

Table 1. (a) Best default setting for mnemonic commands for the Audio Player.
(b) Best default settings for mnemonic universal commands.

Audio Player mnemonic commands Universal mnemonic commands

Command User’s Action Command User’s Action

Play Head down Back Button on the back

Stop Head up Stop Application Close mouth

Pause Tail up

Next Track Tail left

Previous Track Tail right

(a) (b)



Mobile Robots for an E-Mail Interface for People Who Are Blind 341

The Sony AIBO takes some time to initialise. The Audio Player is easiest
and has basic controls of a media player. These are Play, Stop, Pause, Next

Track, and Previous Track. Our usual mapping of these controls to the
actual actions on the robot is listed in Table 1. While this mapping between
actions (from the user on the robot) to effects of the Audio Player can be re-
configured, we have found that the 4-legged shape of the robot allows for the
user actions to be mnemonic. For example, the head movement down is a gesture
of confirmation, acceptance and even obedience in dogs and many cultures.

The architecture uses the PC to manage the actual media. For example, a
CD with musical content exist on the local disk of the PC. Typically, one can
configure the track numbering by copying the audio-files to a directory. When
music is selected, the sound is directed to the speakers of the PC (rather than
the Sony AIBO) or another set of speakers in the environment. This achieves
two issues. At a minimum, the music (or other audio, like iPod radio programs)
is played through the speakers on the PC with higher clarity, and avoids high
volume traffic on wireless networks. But more importantly, the intention of the
Audio Player is not to reproduce media content on the Sony AIBO but in the
environment in the sense of Ambient Intelligence. Thus, reproducing audio on
the environment allows us to use the Sony AIBO clearly as an interface between
the human and the surrounding environment.

Within each application there can be several different contexts [13]. A context
can be seen as a step in a process. For instance, in the E-mailer, when users
first enters the application, they need to specify whether they want to send an

Fig. 1. The context diagrams reflect the complexity of the application
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email or review the in-box. This decision is the context. As there are only two
things to do here, there will be only two actions mapped. Each context has
its own button configuration, complementing the universal commands (refer to
Table 1 (b)). Moving between contexts is the result of actions on the robot. For
example, by selecting to review the in-box, the user moves to a different context
where different options are possible (among the options in the new context we
find listening to an e-mail in the in-box). We can measure the complexity of an
application. The Audio Player is simple because it comprises of just one context.
The universal commands listed in Table 1 (b) apply to every context. Touching
the back of the Sony AIBO results in users moved to the previous context. That
is, they are taken back to the previous menu (provided this makes sense). In
some instances it is not possible to go back a step in the process as the action is
permanent. For example, sending an email can not be undone. The back button
effectively behaves as an an undo function. Whichever application is running,
closing the mouth will stop the application and return the user to the root
context of the system. The mnemonic for this is based upon the recommendation
that to break and stop a dog fight, one shall grab the jaw of the dog.

Voice Recorder has two functions, recording and reviewing voice messages.
The participants voice is captured on the stereo microphones on the Sony AIBO’s
head. The sound is streamed to the PC as an audio file. Logically, this constitutes
an out-box of pre-recorded messages. It is not possible to use the on-board
storage of the Sony AIBO as memory sticks are unsuitable for recording large
amounts of audio.

We performed the developed process with an understanding of user inter-
face design, but not adhering to any specific methodology, in order to allow
more freedom that the prescriptive approaches and guidelines that the litera-
ture recommends for human computer interaction [11,13,15]. Once we completed
the deployment, we compared with the guidelines suggested in the literature.
These guidelines are in agreement with our final product. For illustration, we
present a discussion regarding Shneiderman’s “Eight Golden Rules of Interface
Design” [13]. Rule 1 says “Strive for consistency”. We found this rule neces-
sary and applicable as we consistently trough contexts we used the tail to allow
users to scroll forwards or backwards through lists. Rule 3 indicates “Offer in-
formative feedback”, we found necessary for the applications to respond to some
commands by synthesised phrases. Like when users entered the E-mailer the ro-
bot would respond with the phrase “Emailer enabled”. We also provided visual
feedback trough the leds in the face of the Sony AIBO. While these are clearly
of no value to blind users, they are helpful to trainers as well as for maintenance,
and even set up by sighting people. Rule 4 mandates to “Design dialog to yield
closure”; that is, to organise actions into groups with a beginning, a middle
and an end. This is precisely what contexts achieve. Our Back button achieves
Rule 5, namely, “Offer simple error handling” and Rule 6 “Permit easy reversal
of actions”. However, to stress the point in Rule 5 and prevent serious errors
we believe it is intuitive to require, before an irreversible action is performed,
confirmation where it is required to move the head of the robot down. We found
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that users were rapidly in control of the robot. They also felt in control. Thus,
we believe we concur with Rule 7 that dictates one should “Support internal
locus of control”. The applications are simple; however, we found it necessary to
provide users with a universal command that could repeat the options available
and in this way comply with Rule 8 “reduce short-term memory load.”

3 Discussion

Assistive technologies overcome some problems people who are blind face when
using a GUI. These include Screen Readers and zoom displays. However, these
are merely add-ons onto a system that has been designed for people whose main
channel of interaction is sight. One would expect that commercial products would
have been available to assist the blind in using e-mail and to interact with robots.
But, we were rather surprised that we could only find very limited options.
For example, we evaluated the Sony AIBO messenger software. While promoted
as a complete e-mail application, it is closer to an e-mail reader. It has no
functionality to compose and send e-mails. Moreover, it has not been designed
for people who are blind. Therefore, our system is the first system to

1. provide a mobile robotic interface for Ambient Intelligence,
2. enable mnemonic commands because of the embodiment in a 4-legged dog

looking robot, and
3. allow rapid learning and use by blind adults.

There were several lessons learned. With the blind participants, any kind of
unexpected movement by the robot is distressing. Thus, in our application, the
robot remains essentially motionless when in use. This is a very distinct aspect
from current trends in GUIs and the World Wide Web. Current GUIs allow
or enable push content on Internet navigation. Applications allow enabling the
sudden appearance of wizards while most applications now have update wizards.
These unexpected appearances on the visual display are in general far more easily
tolerated by users than sudden movement, gestures, actions or sounds by the
robotic interface. While it seems reasonable to prompt suddenly with a wizard
on a visual display in order for some software update, robots as interfaces need
more delicate consideration of this issue. At least, use of sudden actions should
be restricted to limited situations (the ones we foresee are alarms or regular
warnings, like updating a virus signature file or battery in need of charge).

Two other lessons learned are as follows. First, gaining familiarity with the
use of a robot as an interface can be a rather quick process. It must certainly
be an incremental process that builds and introduces functionality on top of
already familiar functionality. If this principle is followed, then the learning of
the interface and the modules is fast. The incremental process can be regulated
in terms of the complexity of the functionality as follows. The depth of menus
or the size of the sets of options per menu item, or the number of context should
all be small for the first applications and then increase as the user progresses to
more complex contexts. Note that our design found very useful reuse modules and
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reproduce sequences in the Audio Player for subtasks in the Voice Recorder. The
recording and playing of messages in the Voice Recorder is part of the E-mailer.
Second, to preserve the context and the familiarity gained, it is also important
that the robot starts in a default state the user is significantly familiar with
(thus, the simplest is the first application, and is always the starting point).

We use anthropomorphic robots to design mnemonic commands. For example,
pulling the head back is a common practice to halt a dog or other quadrupeds.
Since the user will have the robot standing laterally with the head close to the
right hand (to operate the head with this hand) and the tail on the left hand,
a push of the tail away from the user constitutes a move to go forward to the
next track, while pulling the tail back for the user brings the application one
track back (as we indicated, a right-handed versus a left handed user can easily
reverse the position of the robot and the mapping of commands).

A multimodal system allows confirmation of a command by simultaneous
production in two channels. However, the system should be configurable to allow
unimodal use. The literature suggests that 95% to 100% of users preferred to
interact in a multimodal manner when given the choice to use either speech, a
pen or both [9]. We do see speech as becoming the core in the system. However,
speech recognition demands that the context be limited in options and still seems
very useful to preserve the “push the back” action to withdraw a command
misunderstood or incorrectly indicated. Also, touching commands are a strong
resource when speech is not viable, as in noisy environments.

The questionnaires revealed that the majority found tasks easy to complete
(65%). The hardest aspect was remembering how to accomplish a task. However,
observation with the blind adults shows that in fact, after one very short session,
the steps are easy to remember and they can even describe the process to others.
All participants described their experience as very enjoyable and only one person
did not find the Sony AIBO easy to manipulate. Unfortunately, in two occasions
the tail fell off. This caused some concern to the users at the time. We also
notice that a few participants commented on being “worried about breaking it”.
However, once they grasped the amount of force required to generate a command,
they found the setting satisfactory. All participants felt that this software was
very useful in assisting vision impaired people. Even 8 sighted people thought
that it would assist them in day to day computing. Moreover, these sighting
people indicated they would use it if available at home. Note that sighting people
would not be using it at home blindfolded. All of the participants were regular
users of computers. Only 2 people would prefer it over traditional interfaces,
because they were of the opinion that performing tasks would be more time
consuming that on a GUI interface with a desk computer.

Currently the robot does very little computation. It indeed behaves almost as
a “dumb” interface. However, in the same way as computing power increased to
transform “dumb terminals” into machines capable of run significant graphics
layouts and client software, we expect the power on inexpensive domestic robots
to increase. This power needs to be put to use for good, reliable and comfortable
human-computer interfaces. Naturally, one would expect that the improvements
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would be along the lines of speech recognition and gesture recognition. In par-
ticular, we expect these tasks will migrate from the desktop PC across to the
robot. It also remains to study how configurable the interface and its settings
shall be. The availability of configurable menus allows far more flexibility and
users may tailor menus and settings to their needs. However, rapidly the user
can be in a position that there is too much inconsistency between sequences to
achieve tasks and the tool is too personalised. It seems that, in the same way any
user can access a computer in a public library, robotic interfaces may need to
develop standard interfaces, so some of them can be deployed for generic, rather
than personalised use.

In summary, robots as interfaces to Ambient Intelligence allow anthropomor-
phic mnemonics. Multi-modality reduces the situations where a command is
misunderstood. But, the willingness to accept a robot moving by itself in unex-
pected ways is low.
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Abstract. In some Robocup leagues, specially in the four-legged league,
robots make use of coloured landmarks for localisation. Because these
landmarks have no correlation with real soccer, it seems a natural ap-
proach to remove them. But for this to be a reality, there are some
difficulties that need to be solved, mainly an efficient and robust field
features detection and an efficient localisation technique to manage such
type of information. In this paper we deal with an approach for field fea-
tures detection based on finding intersections between field lines which
runs at frame rate in the AIBO robots. We also present some experi-
mental results of the vision system and a comparison of the traditional
coloured landmark localisation and the field features only localisation,
both using a fuzzy-Markov localisation technique.

Keywords: Autonomous robots, fuzzy logic, image processing, localisa-
tion, state estimation.

1 Introduction

The Sony Four-Legged Robot (SFLR) League is one of the official leagues in
Robocup, in which a standardised robot platform is used, the Sony AIBO. The
main exteroceptive sensor is a camera, which can detect objects on the field.
Objects are colour coded: there are four uniquely coloured landmarks, two goal
nets of different colour, the ball is orange, and the robots wear coloured uniforms.
However, in a real soccer field there are not characteristic coloured cues. The
rules of RoboCup are gradually changed year after year in order to push progress
towards the final goal. Removal of the artificial coloured beacons will be the next
step in this direction.

Moreover, coloured landmarks and nets are not frequently perceived in game’s
conditions, because robots are constantly looking to field to find the ball. There-
fore, natural landmarks over the field are constantly perceived, that is field lines,
which can be used to update robot localisation more frequently. For these field
lines to be successfully used, there are two problems that must be addressed: ro-
bust field features detection in real time, and robust localisation able to manage
such information.

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 347–354, 2007.
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Preliminary work has been done by some teams in this league to allow the
robot to self-localise without using the artificial beacons. For instance, the Ger-
man Team and other teams use a sub-sampling technique to detect pixels that
belong to the field lines [6], distinguishing between field lines along the field and
field lines across the field to improve the goalkeepers localisation. These pixels
are used in a Monte-Carlo localisation (MCL) schema [5]. Some teams use a
kalman filter as their localisation approach, although it can not handle more
than one position hypothesis. In order to overcome this problem, rUNSWift
uses a Multiple Hypothesis Tracking approach called the multi-hypothesis lo-
calisation (MHL) [4]. In our case, we are using a fuzzy-Markov self-localisation
technique, in which the robot location is modelled as a belief distribution on a
2 1

2D possibility grid [1]. This formalism allows us to represent and track multiple
possible positions where the robot might be. Moreover, it only requires an ap-
proximate model of the sensor system and a qualitative estimate of the robot’s
displacement.

In this paper we propose an alternative solution to using field line detection for
the localisation process, which is based on field line intersections detection. The
proposed method is described in section 2. These detected features can be intro-
duced in any localisation filter, as those mentioned above. Section 3 describes
briefly how we introduce these perceptions in a fuzzy-Markov localisation filter.
Section 4 presents some experimental results of the proposed method by way of
the evaluation of the localisation accuracy. Finally, conclusions are presented.

2 Perception

The AIBO robots use a CCD camera as the main exteroceptive sensor. The per-
ception process is in charge of extracting convenient features of the environment
from the images provided by the camera. As the robot will localise relying on the
extracted features, both the amount of features detected and their quality will
clearly affect the process. Because of the league rules, all the processing must
be done on board and for practical reasons it has to be performed in real time,
which prevents us from using time consuming algorithms.

A typical approach for detecting straight lines in digital images is the Hough
Transform and its numerous variants. The various variants have been developed
to try to overcome the major drawbacks of the standard method, namely, its
high time complexity and large memory requirements. Instead of using the field
lines as references for the self-localisation, we use the corners produced by the
intersection of the field lines (which are white). The two main reasons for using
corners is that they can be labelled (depending on the type of intersection) and
they can be tracked more appropriately given the small field of view of the
camera.

2.1 Vision System Description

The vision system flowchart that we use on the AIBOs is depicted in Fig. 1. The
source is the YUV images from the camera and the result is a set of features
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Fig. 1. Vision system flowchart

of the environment in robot-centric coordinates that is called Local Perceptual
Space (LPS). There are two different paths: the detection of colour-coded object
(ball, nets, robots, and landmarks) and the detection of field features (field line
intersections). We will describe the second one.

The first step after taking a camera image is computing the horizon line,
based on the pose of the robot and its head. The idea is looking for field lines
only on the horizontal plane, thus saving computing time and avoiding false
positives.

The second step is applying a border extraction filter to the brightness
channel of the YUV image, in particular a Sobel filter is used (Figs. 2b and 3b).
By sub-sampling the border-filtered image from the bottom up to the horizon
line (Figs. 2a and 3a), transitions of the form non-border (black) → border
(white) → non-border (black) are stored and considered for further processing.

The third step, which is shared with the coloured objects recognition path,
is converting the YUV image to the HSV colour space (Figs. 2c and 3c). As this
is a time consuming process, we perform the conversion using a look-up table
with pre-computed values.

The fourth step is filtering out non-field line transitions from the candidate
list. These candidate transitions are checked with the HSV colour segmented
image to detect which ones have been produced by the field lines, in particular
we consider the following transition types:

– Carpet-to-line. Transition from carpet (green) pixels to line (white) pixels.
– Line-to-carpet. Transition from line (white) pixels to carpet (green) pixels.
– Carpet-to-net. Transition from carpet (green) pixels to net pixels (cyan or

yellow).

These labelled transitions are grouped together into sets of transitions that
belong to the same straight segment. These segments are obtained using the
Recursive Iterative End Point Fit Algorithm (RIEPFA) [2]. RIEPFA groups a
set of points into segments by evaluating the distance of the points to candidate
end segment points, which are recursively divided into smaller segments until the
fit criteria is hold (point to segment distance). Segments are further evaluated
to meet a minimum number of points and maximum point-to-point distance



350 D. Herrero-Pérez and H. Mart́ınez-Barberá

(a) (b) (c)

Fig. 2. Image from the goalkeeper position (a) Sub-sampling and intersections. (b)
Sobel filter of the YUV brightness channel. (c) Colour segmentation of the HSV image.

(a) (b) (c)

Fig. 3. Image from the defender position (a) Sub-sampling and intersections. (b) Sobel
filter of the YUV brightness channel. (c) Colour segmentation of the HSV image.

criteria. The segments that are not rejected by the previous criteria are then
labelled according to the transition pixels that originated the segment.

The fifth step is finding intersections between the labelled segments to pro-
duce field lines corners (Figs. 2a and 3a). The intersections are evaluated based
on the segments labelling, segments orientation, and end points proximity. Valid
intersections are then labelled as following:

– Closed-intersection. Intersection between carpet-to-line or line-to-carpet
segments, with an angle less than 180 degrees.

– Open-intersection. Intersection between carpet-to-line or line-to-carpet
segments, with an angle greater than 180 degrees.

– Net-intersection. Intersection between a carpet-to-line or line-to-carpet
segment and a carpet-to-net segment. The angle is not taken into account.

The sixth step is grouping segment intersections into labelled field features,
rejecting those that do not lie into any of the following categories:

– Type C. An open-intersection nearby of a closed-intersection. This feature
can be found in the corners of the goal keeper area.

– Type T-field. Two closed-intersections. This feature can be found in the
intersection of the field lines perimeter and any other type of line.

– Type T-net. A closed-intersection nearby of a net-intersection. This feature
can be found in the intersection between the goal lines and the corresponding
net.
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The seventh step is the last one in the pipeline. It consists on computing
the distance and orientation from the robot to each detected field feature. The
pose of the camera is computed using the joint angles of the legs and the head.
Then the pixel from the image that represents a field feature is projected onto
the field, subject to the constraint that the feature is on the horizontal ground
plane. Then the projection point is used to compute the corresponding distance
and orientation.

2.2 Vision System Analysis

In this section we will discuss two important aspects of the field features detection
procedure presented above: robustness and performance. Because the detected
features will be used for locating the robot on the field, one key point is false
positives. Reducing the possibility of false positives reduces the possibility of
wrong position estimation. The goal of the presented detection procedure is the
identification of field lines intersection, and the underlying idea is the filtering
of candidates that might be false positives.

Several works detects transitions in segmented images [5] or extracts cor-
ners from grey-scale images [3]. But these approaches can not distinguish pixels
belonging to the lines or to white robots. Although, these techniques can not
distinguish pixels belonging to straight-lines or curve-lines. Furthermore, in the
case the carpet perimeter is placed over a plain floor or there is a white hurdle,
these pixels are labelled as lines. Thus, typical false positive cases are produced
by the white robots, non-straight lines and non-normalised transition in the field
perimeter.

All these cases can produce false positives what are very difficult to avoid
without evaluate if the pixel belong to a straight line or not. Other technique to
get straight line segments is the Hough Transform, but it has as main disadvan-
tage the high computational cost.

3 Localisation

Once we are able to obtain a series of percept, be them coloured landmarks,
nets or field features, we need a way to combine such information in order to
estimate the robots pose on the field: the localisation filter. Although other
techniques might be used, without loss of generality we describe how we model
the uncertainty associated to the perceived field features using a fuzzy-Markov
technique [1]. See [3] for more details.

4 Experimental Results

In order to validate the perception process described in the paper, two localisa-
tion experiments have been performed. In both cases the robot has been placed
in the goal area, facing more or less to the opposite net. This is the typical goal-
keeper position. For a goalkeeper localisation is critical because many behaviour
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depend on the absolute position. If localisation fails, the robot would start wan-
dering around, possibly leaving the net clear to the other team. In both cases,
the localisation process is initialised with a belief distributed along the whole
field, that is it does not know its own location. Then the robot starts scanning
its surroundings by moving its head from left to right. As soon as a feature is
perceived, it is incorporated into the localisation process. The first experiment
corresponds to the standard RoboCup scenario, with coloured landmarks and
nets as the only perceptual source for localisation. The second experiment cor-
responds to a possible future RoboCup scenario, in which coloured landmarks
have been completely removed, being the perceptual sources the nets and the
field lines.

In the experiments we compare the estimated position with the real position.
In order to measure the real robot position (actually tracking many robots and
the ball) we use an external vision system. This is composed of an overhead
camera with a wide angle lens mounted on a aluminium structure at 2.5 metres
over the floor. The robot wears a coloured mark which allows computing both
the position and orientation of the robot. Because of the high distortion of the
lens, the accuracy of the position is of ±2 centimetres and ±5 degrees.

(a) (b)

Fig. 4. Resulting beliefs (a) Coloured landmarks and nets (b) Field lines and nets

The experiments start with belief distributed along the whole field and the
robots are left for some seconds scanning the surroundings. The resulting beliefs
of both experiments are shown in Fig. 4. The red box corresponds to the estimate
of the uncertainty of the robot’s position (obtained by finding the bounding box
of the highest possibility area) and the red arrow corresponds to the estimate
of the robot’s position (obtained by defuzzification of the fuzzy belief with the
centre of gravity). The comparison of the belief distributions shows that the
uncertainty obtained in the standard RoboCup experiment (Fig. 4a) is larger
than the one obtained with field lines (Fig.4b). This is because the coloured
landmarks are further from the robot than the goal area lines are, thus having
a larger uncertainty in the distance. Moreover, this uncertainty in the distance
also depends on the colour calibration (the more pixels are segmented the closer
the landmark will be perceived), while the field features are less sensible to this
effect.
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(a) (b)

Fig. 5. Position error (a) using coloured landmarks and nets and (d) using field lines
and nets

The reduction of the uncertainty conditions very much the accuracy of the lo-
calisation process, that is, less uncertainty usually leads to better accuracy. Fig. 5
shows the absolute position error over time, both for the coloured landmarks and
field lines experiments. The absolute error is computed taking the difference be-
tween the estimated position (on-board) and the measured position (overhead
camera). The estimated absolute error is computed from the uncertainty of the
belief distribution and the estimated position (on-board). Because the belief dis-
tribution is a grid, the minimum estimated absolute error corresponds to the
tessellation size, which corresponds to 100 mm in these experiments.

5 Conclusions

This paper presents a novel technique for recognising field features for local-
isation in the RoboCup Four-Legged League (FLL), although the results can
be used in other leagues and scenarios. There is a push towards the removal of
coloured landmarks in RoboCup leagues to make the fields more soccer-like. The
typical approach in this context is the recognition of field lines. The described
technique is based on the recognition of field line intersections, keeping into main
the constraints of the FLL: on-board processing and the AIBO’s camera. The
computational burden of the process is low, and it can be set to run at frame
rate on the AIBOs. In addition, most of the efforts of the technique are in the
direction of avoiding false positives, which can lead to wrong localisation.

In order to validate the usability of the proposed vision process, the detected
features are incorporated in a localisation filter. Without loss of generality, we use
a fuzzy-markov grid in which we have modelled the perception and its associated
uncertainty of different types of field line intersections. This localisation filter
provides an effective solution to the problem of localisation of a legged robot in
the RoboCup domain [1].

We have presented a series of experiments to show the performance of the
localisation process in the standard RoboCup field (with uniquely coloured land-
marks and nets) and the more soccer-like scenario (with field lines and uniquely
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coloured nets). We have compared the estimated robot position with the real
one in both scenarios and have shown the feasibility of the removal of the land-
marks. Moreover, in certain circumstances the field lines localisation can be more
accurate than using landmarks (at least from the goalkeeper’s position).

The standard RoboCup scenario provides unique coloured landmarks (that
is, there is no ambiguity in the perception process), while the field lines scenario
needs unique nets to cope with the natural symmetry of the field. Currently
there are no plans to move from unique nets to equally coloured-nets (at least
in the FLL), and thus this is not a drawback of the proposed method. Once the
use of field lines and unique nets localisation is common in the leagues, there
will be necessary any other means to break with the ambiguity, which are left
as future work.
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Abstract. A key feature of human cooperation is that we can coor-
dinate well without communication or negotiation. We achieve this by
anticipating the intentions and actions of others, and adapting our own
actions to them accordingly. In contrast, most multi-robot systems rely
on extensive communication to exchange their intentions.

This paper describes the joint approach of our two research groups
to enable a heterogeneous team of robots to coordinate implicitly, with-
out negotiation. We apply implicit coordination to a typical coordination
task from robotic soccer: regaining ball possession. We discuss the bene-
fits and drawbacks of implicit coordination, and evaluate it by conducting
several experiments with our robotic soccer teams.

1 Introduction

Coordination of actions is essential to solve multi-agent tasks effectively. A strik-
ing aspect of human coordination is that we can achieve it with little or no com-
munication. Consider two people assembling a bookcase. With apparent ease,
actions are anticipated and coordinated: if I see you grab a screwdriver, I will
take one of the shelves, and hold it in place, and so forth. Instead of commu-
nicating, humans achieve this by inferring the intentions of others. Once the
beliefs and desires of the cooperating party are known, we simply imagine what
we would do in that situation. This is called the Intentional Stance [1].

In previous research, we have achieved negotiation-free coordination, also
called implicit coordination, within the Agilo RoboCuppers group [2]. Here,
we extend and integrate this with another line of research, which is the forma-
tion of a mixed team [3]. Due to scientific as well as pragmatic reasons, there is
a growing interest in the robotics field to join the efforts of different labs to form
mixed teams of autonomous mobile robots. For many tasks, a group of hetero-
geneous robots with diverse capabilities and strengths is likely to perform better
than one system that tries to encapsulate them all. Also, for many groups, the
increasing cost of acquiring and maintaining autonomous mobile robots keeps
them from forming a mixed team themselves. Furthermore, to allow all mid-size
teams to participate at RoboCup 2006, many of them are required to form a
mixed team. Our two groups, who have individually taken part in the RoboCup
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mid-size league since 1998, have formed a mixed team with robots from the differ-
ent labs. As almost all robots in this league, our robots are custom built research
platforms with unique sensors, actuators, and software architectures. Therefore,
forming a heterogeneous cooperative team presents an exciting challenge. One
of these challenges is achieving robust coordination.

The standard solution in robotic teams is not to anticipate the actions of oth-
ers, as humans do, but instead to extensively communicate utilities or intentions
in a negotiation scheme. Previous work on robot coordination seems to have fo-
cussed almost exclusively on explicit coordination, as an overview paper on the
key architectures shows [4].

In this paper, we discuss the benefits of implicit coordination, and implement
it for our heterogeneous team. We apply implicit coordination to a typical co-
ordination task from robotic soccer: regaining ball possession. Acquiring ball
possession is a goal for the team as a whole, but only one of the field players
is needed to achieve it. Of course, the robots must agree upon which robot will
approach the ball. The intuitive underlying rule is that only the robot who is
quickest to the ball should approach it. To infer the intentions of others, the
agents first learn utility prediction models from observed experience. For the
ball approach task, the utility measure is time, so the robots learn to predict
how long it will take to approach the ball. During task execution, the robots
locally predict the utilities for all robots, and globally coordinate accordingly.

The main contributions of this paper are: 1) learning temporal prediction
models that take technical differences between the robot platforms into account
2) using these models to enable implicit coordination within a heterogeneous
team of robots 3) demonstrating that coordination based on belief states is more
robust than explicit coordination.

The rest of this paper is organized as follows. In the next section we describe
how implicit coordination was implemented in our teams. Experimental results
are presented in Section 3. In this section, we also discuss the benefits, as well as
some drawbacks, of implicit coordination. Related work is presented in Section 4,
and we conclude with Section 5.

2 Applying Implicit Coordination

In [2], we introduced a computational model for implicit coordination, that spec-
ifies three components are necessary for implicit coordination: 1) utility predic-
tion models 2) knowledge of the states of others 3) the robots should have a
shared performance model for joint actions. In our scenario, the latter compo-
nent is a locker-room agreement [5] that only the quickest robot should approach
the ball. Here, we apply this computational model to a team of heterogeneous
robots. After presenting the two teams, we discuss the first two components of
the computational model in more detail.

The Ulm Sparrows [6] are custom built robots, with infrared based near range
finders and a directed camera. The available actuators are a differential drive,
a pneumatic kicking device and a pan unit to rotate the camera horizontally
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(270o). Each robot acts upon an egocentric belief state, using the camera as its
main sensor. The Agilo RoboCuppers [7] are customized Pioneer I robots, with
differential drive and a fixed forward facing color CCD camera. They act upon
an allocentric belief state, which is acquired by cooperative state estimation.
For the experiments we will present later, it is important that the variables are
controllable and reproducible. Therefore, we have used our ground truth system
to determine the positions of the robots with even more accuracy. This system
uses three ceiling cameras to detect colored markers on top of the robots.

Utility Prediction Models. All robots must be able to predict their own ball
approach time, as well as that of others. Therefore, they learn temporal predic-
tion models from observed experience. Examples are gathered by navigating to
random targets on the field, thereby measuring the time it took to approach the
target. These measurements were acquired through the ground truth system. A
model tree is then trained with these examples. Model trees are functions that
map continuous or nominal features to a continuous value. They recursively par-
tition the data, and fit linear models to the data in each partition. In previous
research [2], we have shown that executing 300 navigation tasks yields a suffi-
cient amount of training examples to learn an accurate prediction model. This
takes about half an hour, so this is well within the continuous operational range
of the robots. The mean absolute error of the models on a separate test set was
0.25s for the Ulm Sparrows, and 0.18s for the Agilo RoboCuppers. For more
information about model trees, and how they can be used to learn action models
of navigation tasks, we refer to [2].

Knowledge of the states of others. Predicting utilities for others, called
perspective taking, can only be done if the robots have estimates of the other’s
states, which can be difficult if the robots only have local sensors. For instance,
due to the limited view of our cameras, it is often not possible to see all the
teammates. Therefore, our robots communicate their belief states to each other
to achieve more coherent and complete beliefs about the world [3], which they
use to determine their (joint) actions. This might seem contrary to the paradigm
that we want to achieve coordination without communication. However, there
are some important differences between communicating intentions and commu-
nicating beliefs, as we shall discuss in Section 3.2.

3 Experimental Evaluation

To evaluate if the learned prediction models and shared representations are suffi-
ciently accurate for implicit coordination, we have conducted three experiments,
one in a dynamic, one in a static environment, and one in simulation. For each
experiment, we used one Sparrow and one Agilo robot. Each robot has a tem-
poral prediction model for both robot types.

Dynamic environment experiment. In this experiment, the robots contin-
uously navigated to random targets on the field, for about half an hour. The
paths were generated such that interference between the robots was excluded.
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At 10Hz, each robot records its own position and orientation, as well as that of
its teammate and the ball. Each robot also logs the predicted approach time for
both robots, and based on these times, which robot should approach the ball, in
their view. Note that the robots never actually approach the ball.

Static environment experiment. In the previous experiment, it is impossi-
ble to measure if the temporal predictions were actually correct, and if potential
inaccuracies caused the robots’ estimate of who is quickest to be incorrect. There-
fore a second experiment was conducted. The experimental set-up was as follows:
Both robots navigate to different random positions and wait there. During the
experiment, the target to approach is fixed and the same for both robots. Then,
the robots are requested to record their own state, as well as that of their team
mate. The robots compute the predicted approach times, and add them to the
log-file. Then, one after the other, the robots are requested to drive to the goal
position, and the actual approach duration is recorded. The log-files so acquired
are almost identical to the ones in the dynamic experiment. The only difference
is that they also contain the actual observed time for the robot. This static en-
vironment is less realistic, but allows us to compare the predicted time with the
actually measured time for each robot.

Simulated experiment. Here, the experimental set-up is identical to the dy-
namic experiment. The simulator allows us to vary two variables that most
strongly influence the success of implicit coordination. The first is communi-
cation quality. At random times, and for random durations, communication is
switched off in both directions. By controlling the length of the intervals, we can
vary between perfect (100%) and no (0%) communication. The second is the field
of view of the robot. We can set the view angle of the robot’s forward facing
camera between 0 (blind) and 360 (omni-directional vision) degrees. The other
robot and the ball are only perceived when in the field of view. Gaussian noise
with a standard deviation of 9, 25 and 22 cm is added to the robot’s estimates of
the position of itself, the teammate and the ball respectively. These correspond
to the errors we have observed on the real robots.

3.1 Results

Do the robots agree upon who should approach the ball? To answer this question,
we simply determined how often the two robots agreed on which robot should
approach the ball in the dynamic experiment, which was 96%.

Do the robots choose the quickest one? We would also like to know if the
chosen robot is actually the quickest one to approach the ball. Of course, this
could only be determined in the static experiment, in which the actual times it
took each robot to approach the ball are known. A robot’s decision to coordinate
is deemed correct, if the robot that was the quickest was indeed predicted to be
the quickest. The robots’ choice was correct 92% of the time.

Are temporal prediction models necessary, or would a more simple value such
as distance suffice? Using only distance as a rough estimate of the approach
time, would save us the trouble of learning models. Although time is certainly
strongly correlated with distance, using distance alone leads to significantly more
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incorrect coordinations. Agreement is still very good (95%), but the robot that
is really the quickest is chosen only 68% of the time. So, when using distance,
the robots are still very sure about who should approach it, but they are also
wrong about it much more often.

When does implicit coordination fail? In the dynamic experiment, coordina-
tion succeeds 96% of the time. In the log-file, we labeled all examples in which
exactly one robot decided to approach the ball with ‘Success’, and others with
‘Fail’. A decision tree was then trained to predict this value. The learned tree
is represented graphically in Figure 1. The main rule is that if the difference in
predicted times between two robots is small, coordination is likely to fail, and if
it is large, it is likely to succeed. This is intuitive, because if the difference be-
tween the times is large, it is less likely that estimation errors will invert which
time is the smallest. Note that in between these two limits, there is a ‘gray’ area,
in which some other rules were learned. They only accounted for a small number
of example, so for clarity, we will not discuss them here.

In sports like soccer or volleyball, it is
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Fig. 1. Visualization of the deci-
sion tree that predicts coordina-
tion failure

sometimes not completely clear who should
go for the ball. Humans solve this problem
by communicating their intention through an
exclamation:“Mine!”, or “Leave it!”. The de-
cision tree essentially provides the robots with
similar awareness, as they predict when im-
plicit coordination failure is likely. So, they
could be used for instance to determine when
robots should resort to explicit coordination.

How do communication quality and state estimation accuracy influence co-
ordination? The results of the simulation experiment, which show how the
performance of different coordination strategies depends on the quality of com-
munication and the field of view, are depicted in Figure 2. Communication qual-
ity is the percentage of packets that arrive, and field of view is in degrees. The
z-axis depicts coordination success, which is the percentage that only one robot
intended to approach the ball.
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Fig. 2. Results of the simulation experiment, which show how the performance of
coordination strategies depends on the quality of communication and the field of view
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Since explicit coordination is based completely on communication, it is not
surprising that it perfectly correlates with the quality of the communication,
but is independent of the size of the field of view. No communications means
no coordination, and perfect communication means perfect coordination. For
implicit coordination without communication, the relation is converse. If a robot
is able to estimate the states of others better, it is able to coordinate better. The
third graph shows implicit coordination with belief state exchange (as used on
our real robots). If the robot has another in its field of view, it determines
the other’s state through state estimation, otherwise it uses communication (if
possible) to exchange beliefs. These states are then used to predict the utilities of
others, independent if they were perceived or communicated. The graph clearly
shows that this approach combines the benefits of both.

3.2 Discussion

There are several important benefits that implicit coordination without com-
munication has over explicit coordination. First of all, protocols and arbitration
mechanisms must be adopted between communicating entities to enable inten-
tion communication, which adds complexities and can degrade the system. It
is generally argued that communication can add unacceptable delays in infor-
mation gathering and should be kept minimal [8]. Furthermore, rescue robotics
and autonomous vehicles operating in traffic are examples of domains in which
robust communication is not guaranteed, but where correct coordination and ac-
tion anticipation is a matter of life and death. Finally, human-robot interaction,
a current research focus in for instance space exploration or rescue robotics, it
cannot be expected of humans to continuously communicate their intentions.
Instead, the robot must be able to anticipate a human’s intentions, based on
predictive models of human behavior. We consider implicit coordination to be
essential for natural interaction between robots and humans, so adhering to ex-
plicit coordination will prevent robots from making a break-through into these
application domains.

The most difficult aspect of implicit coordination is estimating the states of
others. Especially for robots with a limited field of view, such as ours, this is
problematic. Therefore, we resorted to the communication of beliefs to acquire
a shared representation. This might seem contrary to our communication-free
paradigm, but there is an important difference between communicating inten-
tions and beliefs. We believe that improvements in sensor technology and state
estimation methods will allow robots to autonomously acquire a increasingly
complete and accurate estimation of the states of others. In RoboCup for in-
stance, almost all mid-size teams have resorted to omni-directional vision to
achieve exactly that. So, beliefs needed to infer the intentions of others are be-
coming more complete and accurate, independent of communication. The arrow
in the third graph in Figure 2 depicts this trend. More accurate state estimation
can essentially replace communication. This is certainly not the case for explicit
coordination, which will always fully rely on communication.
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Furthermore, the third graph in Figure 2 clearly shows that implicit coordina-
tion with belief exchange achieves better performance with communication loss
than explicit coordination alone. Instead of complete coordination failure in case
of communication loss, there is a graceful decay, because a second system based
on state estimation can still be used to estimate the intentions of others.

Summarizing, improvements in sensor and state estimation will allow implicit
coordination to depend less and less on belief communication. This is necessary
to simplify communication schemes, increase coordination robustness, and enable
human-robot cooperation. This work proposes a step in this direction.

4 Related Work

The idea of cross team cooperation has some tradition within the RoboCup
leagues. The most similar mixed team cooperation effort was the Azzurra Robot
Team, a mid-size team from various Italian universities. Their focus was on
explicit role assignment and communication-based coordination strategies among
the field players [9].

Previous research on cooperation has focussed almost exclusively on explicit
coordination [4]. On the other hand, work on implicit coordination usually as-
sumes that all agents have access to a central and global representation of the
world, which is enabled by simulation, as in [10], or global perception, as in the
RoboCup small-size league [8,11]. In all these papers, teammates are not rea-
soned about explicitly, but are considered to be mere environment entities, that
influence behavior in similar ways to obstacles or opponents.

In [5] the issue of low band-width communication in the simulation league
is dealt with by locker-room agreements, in which players agree on assigning
identification labels to certain formations. During the game, only these labels,
instead of complete formations, must be communicated.

Most similar to our work is [12], in which robots in the legged-league also coor-
dinate through implicit coordination which is based on representations which are
completed through the communication of belief states. Communication is essen-
tial, and assumed to be flawless. It is not investigated how communication loss
influences coordination. The utility measure is a sum of heuristic functions, which
are represented as potential fields. Whereas our utility models are grounded in
observed experience, and have a well-defined meaning (e.g. execution duration
in seconds), these heuristic functions have no clear semantics. Therefore, cus-
tomizing these functions to individual robots is difficult, as the semantics of and
interactions between them are not fully understood. However, this customiza-
tion is essential for achieving efficient coordination in a heterogeneous team with
robots with different dynamics and capabilities.

5 Conclusion

In this paper, we have discussed the necessity for implicit coordination in do-
mains in which communication is unreliable or impossible. Relying on intention
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communication will prevent multi-robot systems from being applied in these
domains. We have presented a system that achieves implicit coordination by
predicting the utility of itself and others, and adapt its actions to the predicted
intentions of others. Knowing the states of others is essential, so belief states
are communicated. We have shown that this approach is more robust than com-
municating intentions, and have argued that improvements in sensors and state
estimation will allow implicit coordination to become increasingly independent
of communication. We have applied the system to a ball approach task from
robotic soccer, and demonstrated its performance in several experiments.

Our current work aims at learning temporal models that take opponent ro-
bots into account. Because the state space of this problem is much larger, more
training examples are needed. We will also learn more complex models that take
into account the player’s roles, as well as strategic considerations.
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Forschungsgemeinschaft (German Research Foundation), in the SPP-1125, “Co-
operating Teams of Mobile Robots in Dynamic Environments”.
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Abstract. Many approaches for object detection based on color coding
were published in the RoboCup domain. They are tuned to the typical
RoboCup scenario of constant lighting using a static subdivision of the
color space. However, such algorithms will soon be of limited use, when
playing under changing and finally natural lighting. This paper presents
an algorithm for automatic color training, which is able to robustly adapt
to different lighting situations online. Using the ACT algorithm a robot is
able to play a RoboCup match while the illumination of the field varies.

1 Introduction

The extraction of landmarks and objects from a camera image is a crucial task
for robots. In RoboCup the color of such features is sufficient for their extraction.
Although there were attempts to detect objects - mainly the ball - using form or
texture [4],[12], the majority of the RoboCup teams uses algorithms exploiting
the special colors to reduce the computational load. Most of these algorithms
utilize a predefined subdivision of the three-dimensional color space into several
color classes. In the Middle-Size-League (MSL) there are 6 color classes cor-
responding to different objects. If the image pixels are transformed into these
color classes the extraction of the different objects can be very efficient [6]. The
approaches mainly differ concerning the subdivision of the color space. Bruce et
al. use a rectangular subdivision with a minimum and maximum threshold for
each color class [2]. Others, such as Bandlow et al. use an arbitrary shape in the
two color dimensions of the YUV color space and two thresholds in the intensity
channel in order to achieve some independency of the lighting conditions [1].

However, with changing lighting, the colors change their representation in all
three dimensions of the color space (cf. [10]). Therefore, our team uses a color
look-up table that maps each color to its corresponding class. With such a table
it is possible to model any subdivision of the color space. Nevertheless, even this
approach will fail if the amount and the speed of changes in lighting conditions
rises when playing at natural light. In addition, the time needed to manually
train a color look-up table was still up to 5 minutes per robot which is too much
if we want to be able to extremely reduce the setup time for the teams. Thus,
there is clearly a need for a fast and automatic training of a look-up table that
dynamically maps the colors to different color classes with changing lighting.

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 363–370, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Related work on this topic includes the semi-automatic self-calibration sys-
tem for MSL robots presented in [9], that subdivides the color space into circular
clusters. However, the mapping of the clusters to their corresponding color class
has to be decided by a human supervisor. Other methods from the Sony four-
legged league require special movements of the camera to train the color look-up
table [3] or simply train a color mapping for only three different illumination
scenarios [11]. A very promising method is presented in [8]. This method re-
trains a look-up table without an a-priori known subdivision of the color space.
However, this method would require too much computation time when applied
to a 580× 580 pixel image that is used on our MSL robots.

In this paper we present a new algorithm to automatically train such a table
for a RoboCup robot, using only knowledge of the field geometry. By incorporat-
ing the pose of the robot computed by our self-localization [5], this algorithm is
able to constantly retrain the mapping in conditions where the lighting changes.
By keeping the amount of training per cycle as low as possible, the algorithm
can be processed 50 times a second on our RoboCup MSL robots, while being
capable of adapting to sudden changes in illumination in only a few cycles.

The remainder of the paper is organized as follows: the proposed algorithm
is presented in detail in the following section. Section 3 emphasizes the robust-
ness of the algorithm concerning changes in lighting by presenting experimental
results, while the last section concludes this paper.

2 The Automatic Color Training Algorithm

The main idea of the automatic color training (ACT) algorithm is to automat-
ically train a color look-up table, using the pose of the robot from the self-
localization and a model of its environment to compute the expected color class
for the image pixels. For this, the a priory known field parameters are used and
a mapping from pixel to two-dimensional world coordinates is trained, using the
field markings and a predefined pose of the robot [7].

However, the use of self-localization for the automatic color training results
in a mutual dependency. Two features are used to overcome this mutual depen-
dency. First, the image that is used for training the mapping from pixel to world
coordinates is used for the training of an initial color look-up table. Second,
the extraction of the green and the white color class is robust enough to cope
with a sudden change in illumination as shown in section 2.1. This enables the
self-localization to keep track of the robot until the other classes are adapted.

With the color values of the pixels and the expected color class a look-up
table is trained. As there will obviously be errors in the expected color class,
ACT tracks clusters of the color classes in the color space with a mean value
and standard deviation, to filter out such errors. Only colors of pixels that fit
into a sphere centered in the mean value of a color class with radius equal to a
multiple of the standard deviation, are added to the look-up table, while colors of
pixels that correspond to coordinates outside of the playable field are removed.
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2.1 Computation of the Expected Color Class

Given the pose of the robot and the mapping from pixel to world coordinates,
the algorithm can easily compute, which part of the field should correspond to
a given pixel. Every pixel that corresponds to coordinates inside of the field is
either classified as white field line or green floor, according to the field model.
As green is the predominant color in the image in RoboCup, green pixels are
usually classified as green, even if the pose estimation from the self-localization
is not very accurate. White, however, is very rare in the image but has the main
influence on the landmark-based self-localization. Therefore, a special treatment
is used for pixels that are mapped to the white class. Only those pixels that have a
higher intensity than their surrounding are ultimately used to train white. Given
the intensity of a pixel I(px,y) at position (x, y) this filter is defined as

I(px,y) >
1
25

x+2∑
i=x−2

y+2∑
j=y−2

I(pi,j). (1)

Objects that extend into the third dimension cannot be mapped correctly.
However, the region of the image that displays the goal can be defined, depending
on the camera system. Only pixels inside this area are mapped to yellow or blue.
To train black, the algorithm uses pixels that correspond to the chassis of the
own robot. The ball color, though, is a problem for a calibration-free algorithm,
as the ball is not static and there is no way of training the ball color without
some previous knowledge about the color or position. All pixels that are mapped
to a position outside of the field are assigned to the special color class unknown.

2.2 Adaptation of the Cluster for Each Color Class

For each color class k = 1 . . . 6, ACT tracks a cluster in the color space with a
mean value μk and a standard deviation σk resulting from the color values of
the previous cycles. For color values c = (u, v, w) ∈ {0, Cmax}3, the parameters
of the different clusters are initialized as

μk,0 =
1
2

(Cmax, Cmax, Cmax) (2)

σk,0 =
√

3
2

Cmax. (3)

Given the set of colors Xk,t = c1, . . . , cm of all pixels expected to belong to
color class k at cycle t, these parameters are updated as

μk,t =
1

η + 1

(
η μk,t−1 +

1
m

m∑
i=1

ci

)
(4)

σk,t =
1

η + 1

⎛
⎝η σk,t−1 +

√√√√ 1
m− 1

m∑
i=1

(ci − μk,t)2

⎞
⎠ . (5)
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To save computation time, the algorithm uses only every 400th pixel, starting
at a random pixel. The choice of η determines the responsiveness of the color
look-up table update. A value of η = 4 was empirically determined as optimal,
enabling the algorithm to extremely reduce the number of examined pixels. In or-
der to avoid the cluster from collapsing, a lower bound of the standard deviation
σmin is introduced. As it is possible that the cluster is too small to include the
new color values after a change of illumination, the standard deviation is then
doubled to increase the size of the cluster until it includes these color values.

2.3 Add Colors to the Color Look-Up Table

To find out which colors are finally mapped to the classes, again a subset of
every 400th pixel is selected. After the calculation of the expected color class,
each color value is compared to the mean value of the corresponding color class.
Given a color value c that is computed to belong to color class k, the mapping
from c to k is only added into the look-up table if ‖μk − c‖ < ζ σk, with ζ > 1,
and ‖·‖ being the Euclidian norm and ζ being a threshold controlling the ratio
between higher adaptability of the color look-up table and a higher false positive
rate. The influence of ζ is investigated through experiments in section 3.1.

2.4 Remove Colors from the Color Look-Up Table

After the addition of mappings to the look-up table, colors that are mapped
to the special unknown class are removed from the table. To process a large
number of pixels outside of the field every 20th pixel is used to completely
remove unwanted color mappings. A color value c that is expected to belong to
the unknown class in this cycle but that was previously mapped to color class k
is removed, if ‖μk − c‖ > ξ σk, with ξ > 1, and ξ being a threshold controlling
the ratio between a lower false positive rate and lower true positive rate. The
influence of this threshold is also investigated in section 3.1.

3 Results

3.1 Influence of the Thresholds

To analyse the influence of the thresholds ζ σk and ξ σk for adding and removing
color mappings from the color look-up tables the algorithm was tested on three
images with different brightness. For each image, several runs of the algorithm
were started with different values for ζ using the appropriate pose estimation.
After a few cycles the color look-up table converged to a stable state in each run
and the quality or fitness of the resulting color look-up table was computed as
the sum of the fitness of the k color classes

f =
∑

k

(
1− TPk

TPk + FNk

)
, (6)
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Fig. 1. Fitness of the color mapping of the resulting color look-up tables when ACT
is applied to the test images

where TPk is the number of true positives for class k and FNk is the number
of false negatives for class k. The fitness values for all runs are shown in figure
1. For the dark image, the algorithm converges to the best fitness for values
ζ = [1.75, 3.0], while the interval of best fitness is ζ = [2.25, 3.25] and ζ =
[2.25, 3.5] for the normal and the brightened image, respectively. On the one
hand, lower values of ζ force the color classes to converge to a very small part of
the color space that might not include all color values needed to correctly classify
all pixels. If the image is very dark, however, the differences between the color
classes and the deviation of the colors from the common mean per class are very
low. Therefore good results can be achieved with lower values of ζ in the dark
image. On the other hand, higher values of ζ enable the color class to spread out
in the color space, resulting in a high standard deviation. This includes many
colors that should not be mapped to this color class. Fortunately, there is a broad
range of values ζ = [2.25, 3.0] for which all three images are classified with a very
high fitness. For all subsequent experiments, a value of ζ = 2.5 was used. The
experiments done with the three test images to test the influence of ξ show that
different values of ξ result in similar classification results for all three images. In
fact, the selection of ξ for a good quality of the algorithm is depending far more
on the selection of ζ. With ζ = 2.5 the best results were achieved with a value of
ξ = [1.2, 1.5]. For lower values of ξ, too many colors are removed from the table,
while for higher values of ξ, too many colors from outside of the field remain in
the table. For all subsequent experiments, a value of ξ = 1.35 was used.

3.2 Automatic Color Training on a Static Robot

This experiment demonstrates that a robot using the ACT algorithm is able to
cope with sudden changes of lighting. First, the image on the left of figure 2 is
used for training a color look-up table. The classified version of this image using
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Fig. 2. The image in the middle shows the classification results using the look-up table
trained by ACT on the left image. Using the same table to classify a darkened version
of this image results in the classification shown on the right. Clearly, a robot with a
static color mapping would have no chance of playing using such a classification.

Fig. 3. The darkened image classified after 1, 2, and 8 steps of retraining the color
look-up table of figure 2 using the ACT algorithm

the table trained by ACT is shown in the middle in figure 2. Then, to simulate
such a sudden change in lighting, the same look-up table was used to classify a
darkened version of this image generated by reducing the brightness and contrast
to 50%. resulting in the classifaction shown on the right side in figure 2. Clearly,
a robot with a static color lok-up table would have no chance of playing using
such a classification. With the ACT algorithm, however, the color look-up table
is adapted to a stable optimum in only 12 cycles, which would result in only
240ms without color classification. In addition, the look-up table is already very
close to the optimum after 2 cycles, at least for the important color classes green
and white. Figure 3 shows the classified image after 1, 2, and 8 cycles of adaption.

3.3 Automatic Online Color Training on a Moving Robot

As the presentation of results from a moving robot is very difficult, one exper-
iment was carried out to show that the algorithm embedded in the rest of the
robot control system including the self-localization is able to handle a completely
wrong pose estimation. For that, three different images were consecutively fed
into the ACT algorithm, two from a known pose of the robot and one from a
pose where the robot was located 2.5m away from the old pose and rotated by
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Fig. 4. After a few cycles of adaptation the ACT algorithm is able to train a very
good color look-up table in all three situations, even with a completely wrong pose
estimation (right)

165 degrees (cf. figure 4, top row). While the self-localization uses the trained
color look-up table for the pose estimation, the ACT algorithm always used the
known pose as estimation. The classification results are shown in figure 4, bot-
tom row. ACT is able to keep a very good color look-up table, even if the pose
used for retraining the table is completely wrong. As the quality of the look-up
table adapted by ACT is hardly depending on the quality of the pose estima-
tion, the mutal dependency of the self-localization and the color training is no
problem when using the ACT algorithm.

In order to use the ACT algorithm for online training on a moving, soccer
playing robot running other processes like self-localization, the time needed to
compute one cycle of the ACT algorithm has to be very low. Fortunately, in
all the experiments presented in this paper, the computation time was below
4ms for one cycle on an Athlon XP 2400+ with 2GHz. This fits into the main
cycle time on our RoboCup MSL robots that are capable of running all processes
needed to control the robot in a 20ms cycle on their Pentium-M 2GHz computer.

4 Conclusions

This paper presents an algorithm for automatic online training of a look-up table
that maps the colors of a three-dimensional color space onto different color classes
used for the detection of objects and landmarks in camera images. For that,
the ACT algorithm incorporates knowledge about its environment to compute
which colors correspond to which color class. ACT consecutively adapts the
look-up table to changing lighting situations resulting in a robust classification
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of the image pixels. The presented results show that the main parameters of the
algorithm can be chosen in a way to produce good results over a large variety of
lighting scenarios. Finally, the algorithm was implemented on a RoboCup MSL
robot for online training of the color look-up table. Here, the mutual dependency
of the color training and the self-localization is shown to have very little impact
on the robustness of the algorithm, as the color training is very stable, even for
a completely wrong pose estimation. With a cycle time of only 4ms the ACT
algorithm was easily embedded into the control system of our RoboCup robots
with a main cycle time of 20ms.
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Learning to Shoot Goals

Analysing the Learning Process and the
Resulting Policies

Markus Geipel and Michael Beetz

Department of Computer Science, Technische Universität München

Abstract. Reinforcement learning is a very general unsupervised learn-
ing mechanism. Due to its generality reinforcement learning does not
scale very well for tasks that involve inferring subtasks. In particular
when the subtasks are dynamically changing and the environment is ad-
versarial. One of the most challenging reinforcement learning tasks so far
has been the 3 to 2 keepaway task in the RoboCup simulation league. In
this paper we apply reinforcement learning to a even more challenging
task: attacking the opponents goal. The main contribution of this paper
is the empirical analysis of a portfolio of mechanisms for scaling rein-
forcement learning towards learning attack policies in simulated robot
soccer.

1 Introduction

Reinforcement learning is a popular method for solving complex control tasks.
It has been applied to a variety of problem domains in various forms. Our con-
tribution will be to provide an in depth analysis of reinforcement learning for
a problem of high complexity. For our work we focused on learning a complex
control task in the context of simulated robot soccer: the goalshooting scenario.
In our experiments we investigated the differences between hand-coded policies
and learned ones. Our next focus was the process of learning. We monitored
not only the success rate but also the action usage in the team as well as the
change rate in the policy of each agent. Further more we developed a method
to visualize learned policies and used it to compile a video clip of the changing
policy during training. Finally we developed a concise method to bring a learned
policy into human readable form.

We will now briefly introduce simulated robot soccer, and then specify the
goalshooting task and its properties. The perceptions in robot soccer fall into
three categories: visual, acoustic and self perception. Visual percepts include
the relative distance and angle to all objects within the field of view. They are
tainted by random noise according to the distance of the perceived object. The
standard agent disposes of three physical actions: turn(angle), dash(power) and
kick(power, angle) as well as an action for inter-agent communication. An in
depth explanation of simulated robot soccer can be found in the server manual
[1]. The goalshooting scenario is a sub problem of RoboCup simulated soccer. It is

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 371–378, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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designed to mimic the last phase of an attack on the opponent’s goal. A team of
three attackers tries to score a goal. The goal is guarded by two defenders and one
goalie. In the initial formation the three attackers are positioned equidistantly
on the 26 meter line. The ball is positioned one meter in front of a randomly
chosen attacker. The two defenders are positioned on the 10 meter line, blocking
the direct shooting lanes from the wing attackers to the goal. The shooting lane
of the centre attacker is blocked by the goalie. An episode is counted as failure
if a time limit is exceeded, the ball gets behind the 30 meter line or leaves the
field. We will call the number of successfully completed episodes divided by the
number of played episodes the success rate of the attackers. To maximize this
success rate is the objective in the goalshooting scenario.

One of the most challenging reinforcement learning tasks so far has been the 3
to 2 keepaway task in the RoboCup simulation league, introduced by Stone and
Sutton [2]. Goalshooting however, exhibits a higher complexity than keepaway for
the following reasons: Shooting goals demands more coordination and rewards
are more scarce. Reward is given only on completing the task either with failure
or success. A series of right actions by more than one agent is needed to succeed.
This gives also rise to the inter agent credit assignment problem. In goalshooting
we have chosen to use complex opponents: the ”UvA trilearn players 2003” from
the binary distribution serve as defenders of the goal.

This paper will be structured as follows. We will describe how the reinforce-
ment learning algorithm SARSA(λ) the goalshooting task. In the next section
we will describe all the techniques we developed to comprehend and interpret
the policies produced by learning agents as well as the process leading to them.
Finally we will point out related work and last but not least draw a conclusion.

2 Scaling Reinforcement Learning to Goalshooting

We did not implement our soccer agents from scratch but set the learning mech-
anism on top of the well known UvA Trilearn Open Source Distribution. It is
available at [3] for free. Henceforth we will refer to the UvA Trilearn player of
the Open Source Distribution as basic player. Figure 1 shows the architecture
of the learning agents. The grey parts are already addressed by the basic player,
the white ones depict the learning layer that was added. The architecture takes
its cues from the one proposed by Russell and Norvig [4] for learning agents.
Rectangles represent data structures while boxes with round edges represent
algorithmic parts. The critic calculates a feature set based on the belief state.
It also estimates the utility of the current state and provides a reward signal.
The performance element stores the current policy and is manipulated by the
learning element, which implements the actual learning algorithm. The problem
generator suggests actions for exploration.

The attackers are the ones to decide what to do when in possession of the ball.
They choose an action from the set of parameterless high level actions. shoot:
shoot the ball towards a randomly chosen corner of the goal. dribble goal:
dribble towards the goal. dribble free: dribble towards an open spot. An open
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Fig. 1. The agent’s architecture

spot is chosen with the SPAR1 algorithm. pass near: pass to the nearest team
mate. pass far: pass to the second nearest team mate. hold: wait and see.
They were built on top of the basic player’s ready to use sub-policies or skills.
Henceforth we will call these actions “high level actions” to distinguish them
from the atomic actions understood by the soccer server.

The perceptions in simulated robot soccer can not directly be used as input
for the learning algorithm. As can be seen in figure 1, state estimation brings
the belief state in sync with the current perceptions. This is accomplished by
the basic player. Still the state space is too big for learning to be feasible. The
critic condenses it to a set of numerical values, called features. The feature set
used by Stone and Sutton [2] to built soccer agents that master the keepaway
task has been the role model for ours. The feature calculation is based on: the
set of attackers A and the set of defenders D were the members are ordered by
increasing distance from the agent, which is thus defined as a1. gr represents
the center of the right goal. The distance between x and y is given by dist(x,
y) and the angle between x and y with vertex at z by ang(x, y, z). The fea-
ture set consists of 7 numerical values. Four distances: dist(a1,gr), dist(a1,d1),
dist(a1,a2), dist(a1,a3). Three angles: min(ang(a1,gr, d ∈ D)), min(ang(a1,a2,
d ∈ D)), min(ang(a1,a3, d ∈ D)). The rationale is, that these angles are a good
indicator for the width of an opponent free shooting lane to the goal or the team
mates. Not only does the critic calculate an appropriate feature set but it also
provides the reward signal.

The learning relies on the performance element, the learning element and
the problem generator. The learning element depicted in figure 1 will tune the
performance element based on the feature vector and the reward. It uses the
SARSA(λ) algorithm as it is presented in ”Reinforcement Learning: An Intro-
duction” by Sutton and Barto [6]. The problem generators task is to suggest
actions for exploration to the learning element. In our case the problem gener-
ator just returns a random action. The performance element holds the learned
policy in form of two components: A value-function for each possible action and
an arbitration mechanism that returns the action that has the highest value for

1 SPAR stands for Strategic Positioning with Attraction and Repulsion and was in-
troduced by Veloso, Stone and Bowling [5].
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the current feature vector. The value-functions themselves are approximated by
a CMAC-function-approximator2.

3 Analyzing Learning and Learned Policies

Now that our test bed is properly defined we will ask the following questions:
How well does a learned policy do compared to a hand-coded one and will it be
more robust to changes in the environment? Will the policy itself be continuously
changed or will there be bursts of changes? Is there a way to visualize the learned
policies? Is there a way to bring a learned policy in to a human readable form?

3.1 Robustness of Hand-Coded Policies and Learned Ones

Question: “Are learned policies more robust in respect to changes in the envi-
ronment than hand-coded ones?”. In order to find an answer we used the setup
just described to conduct the following experiment: First we will compare the
performance of the learning algorithm with the performance of a hand-coded
policy. In the next step we will slightly change the environment and look again.
In order to make this comparison we need a hand-coded policy. It is essential
to make a fair comparison. Thus the hand-coded policy should have exactly the
same feature vector available as the learning algorithm. It took several days of
testing to find and fine tune a hand-coded policy: The basic idea is to shoot if
near enough to the goal. To pass as far as possible or shoot if the enemy is too
near. Finally the agent will dribble if no other rule fits. The top plot (90 degrees
field of view) in figure 2 shows the result: We plotted the success of the hand-
coded policy as well a the success of the learned one. For the next experiment we
slightly changed the environment. In the standard configuration, the agents have
a view cone of 90o. We changed it to 180o. The bottom plot (180 degrees field
of view) in figure 2 shows the result: While the learning from scratch is working
just as fine as before (A), the hand-coded policy fails horribly. Furthermore the
policy learned in the 90o scenario seems to be quite robust. We see that learning
agents starting with it, succeed with an average of 27 percent in the beginning
and adapt pretty soon (B). The failure of the hand-coded policy is amazing be-
cause the hand-coded policy seemed to be well suited for both scenarios. This
example shows that learning is the more flexible and more robust approach.

3.2 Visualization of the Learning Process

The agents basically learn a action-value-function which is represented by the
function approximator. But this multidimensional function is not accessible for
humans. The objective of this experiment is to visualize policies and the learning
process. The key idea is to find a different policy representation. The policy
can also be represented by a large number of typically visited points in the
feature space. The original policy is used to tag each point with the action it
2 For a introduction to CMAC consult the work of J. S. Albus [7].
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Fig. 2. Each curve is an average of 24 independent runs. See text for an explanation.

would choose in that case. What we get is a set of classified samples. Principal
Component Analysis was chosen to project the points in the seven dimensional
space down to three dimensional one. The points are colored according to their
classification. The policy after every episode was visualized as a picture. All the
pictures were compiled to a video. So each frame corresponds to one episode
and we can watch the learning taking place in fast motion. The video can be
downloaded at http://home.in.tum.de/geipel/da.

3.3 The Learning Process

To see what happens to the policy during the learning process we will monitor
the following aspects: success rate, action usage by the policies and change rate of
the policy of each agent. The results for the training of one attacker team will be
presented and interpreted. How do we assess these three aspects? Success rate is
the number of successfull episodes divided by the overall number of episodes. The
action usage can be extracted from the classified samples by counting all samples
that were tagged with one specific action. Please note that not all samples are
yet classified at the beginning of the training. For the change rate we count the
samples for which the classification changed.

Figure 3 shows the results for one team of attackers. The first plot shows the
success of the team. The second the usage of the different actions used by all
three players. Finally the third one shows the amount of change in each agent’s
policy. It can be seen that the success curve consists of three phases of increase
with intermediate phases of stagnation. The beginning of each increase phase is

http://home.in.tum.de/geipel/da
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Fig. 3. Top: The success rate of the agents. Center: The usage of the actions. a a for
shoot, b for dribble, c for dribble open, d for pass near, e for pass far and f for hold.
Bottom: The changes in the policy for each agent.

marked with an arrow. The phase itself is underlined. Each phase of boosting
success is launched by a sudden change in the policy of one or more agents.
Phase one is most probably caused by steep increase in the usage of the action
shoot. The policy of all agents undergoes heavy changes. Phase two goes along
with a sudden steep increase of the usage of the action pass far. It is marked
with an arrow and the number two. The ”policy change” plot also shows that
this change is only effecting agent one and three, the wing attackers. The third
phase seems to be due to a change in the policy of agent one. The usage of hold
is slightly increased while the usage of dribble open decreases.

3.4 Identifying Situations

In this subsection we describe a method to interpret the learned policy. We would
like to express what the agent learned in simple rules like for example: ”The agent
shoots if the goal is near and free of opponents.” We just saw that there are ways
to visualize the policies. But this is not yet enough to properly interpret them.
Again we will use the before mentioned policy representation based on a set of
classified samples. There are nearly single colored regions in the policy, as can
be seen in the video. Such a region can be interpreted as a situation in which the
policy chooses one action. First we will split the data by actions. This means all
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samples that were classified with action 0 form a new set, same is done for action
1, and so on. Now a clustering algorithm is applied to each. The clusters that
are found are just these ”situations”. So we get a list of clusters for each action
that describes in which situation these actions are applied. Figure 4 shows such a
clustering for the shoot action. The Expectation-Maximization-Clusterer which
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Fig. 4. Clustering for the shoot action

was used, describes clusters by the mean and variance of every dimension or
respectively feature in our case. As an example we will pick one cluster and take
a look at the cluster description. The description of the cluster marked 1 with
the interesting facts highlighted can also be seen in figure 4. Informally speaking
it shows a situation where the agent is relatively close to the goal. The goal itself
is quite clear of opponents, as the minimal angle between agent, opponents and
goal (MinAngleGoal) is comparatively wide. Further more, information about
the teammates is inconsistent, which is expressed by negative values for the
features DistanceNearTeammate and DistanceFarTeammate. The action shoot
makes perfect sense. However not all clusters make sense. The cluster marked 2
is an example of a rather bad decision: The agent does know the position of its
teammates and is far away from the goal. Passing would be the right action, not
shooting. This fact that suboptimal clusters prevail, suggests that the learning
algorithm does not find a global optimum but gets stuck in a local one.

4 Related Work

There is no directly related work, concerning the analysis tools we presented.
There are however several interesting approaches to solve subproblems of
simulated robot soccer with reinforcement learning. Riedmiller and Merke [8]
employed reinforcement learning to tune the positioning behavior of agents at-
tacking the goal. The scenario included seven attackers and seven defenders.
The rest of the attackers behavior is hard wired. Stone and Sutton [2] used re-
inforcement learning successfully to train soccer agents in the keepaway task.
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The keepers try to stay in possession of the ball as long as possible while hard
wired takers aim to get the ball. The learning keepers where able to outperform
hand-coded ones.

5 Conclusion

In this work we concentrated on analyzing the learning process in a challenging
domain, namely the goalshooting task. Our key findings are the following: The
SARSA(λ) algorithm in combination with a CMAC function approximator is
able to achieve the same success rate as a tediously tuned hand-coded policy.
Even more, for small changes in the environment, the learning shows stable
results while the hand-coded policy may suddenly fail. Even though the policy
learned by the agents is cryptic for humans there are ways to visualize and
interpret it. The fact that we find suboptimal decisions in policies where the
learning already leveled off suggests that the learning agent do not find a globally
optimal policy. This is backed by the fact that the learned policies are sometimes
very different although their success rate is the same. Learning in the goalshooting
scenario with the agents described in this work, takes place in phases of increasing
success with intermediate phases of stagnation. The boost in performance are
due to sudden changes in the agent’s policy.
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Abstract. The objective of the current research is to develop a generalized 
approach for human-robot interaction via spoken language that exploits recent 
developments in cognitive science, particularly notions of grammatical 
constructions as form-meaning mappings in language, and notions of shared 
intentions as distributed plans for interaction and collaboration. We demonstrate 
this approach distinguishing among three levels of human-robot interaction. The 
first level is that of commanding or directing the behavior of the robot. The 
second level is that of interrogating or requesting an explanation from the robot. 
The third and most advanced level is that of teaching the robot a new form of 
behavior. Within this context, we exploit social interaction by structuring 
communication around shared intentions that guide the interactions between 
human and robot. We explore these aspects of communication on distinct 
robotic platforms, the Event Perceiver and the Sony AIBO robot in the context 
of four-legged RoboCup soccer league. We provide a discussion on the state of 
advancement of this work. 

1   Introduction 

Ideally, research in Human-Robot Interaction will allow natural, ergonomic, and 
optimal communication and cooperation between humans and robotic systems.  In 
order to make progress in this direction, we have identified two major requirements:  
First, we must work in real robotics environments in which technologists and 
researchers have already developed an extensive experience and set of needs with 
respect to HRI.  Second, we must develop a domain independent language processing 
system that can be applied to arbitrary domains and that has psychological validity 
based on knowledge from social cognitive science. In response to the first 
requirement regarding the robotic context, we have studied two distinct robotic 
platforms.  The first, the Event Perceiver is a system that can perceive human events 
acted out with objects, and can thus generate descriptions of these actions. The second 
is the Sony AIBO robot having local visual processing capabilities in addition to 
autonomous mobility. In the latter, we explore human-robot interaction in the context 
of four-legged RoboCup soccer league. From the psychologically valid language 
context, we base the interactions on a model of language and meaning correspondence 
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developed by Dominey et al. [1] having described both neurological and behavioral 
aspects of human language, and having been deployed in robotic contexts, and 
second, on the notion of shared intentions or plans by Tomasello et al. [2, 3] that will 
be used to guide the collaborative interaction between human and robot.  The 
following sections describe the platforms, the spoken language interface for 
command, control and teaching these systems, and current experimental results with 
the Sony AIBO platform. 

2   Cognitive Robotics: A Spoken Language Approach 

In Dominey & Boucher [4, 5, 6] we describe the Event Perceiver System that could 
adaptively acquire a limited grammar based on training with human narrated video 
events. An image processing algorithm extracts the meaning of the narrated events 
translating them into action(agent, object, recipient) descriptors. The event extraction 
algorithm detects physical contacts between objects (see [7]), and then uses the 
temporal profile of contact sequences in order to categorize the events. The visual 
scene processing system is similar to related event extraction systems that rely on the 
characterization of complex physical events (e.g. give, take, stack) in terms of 
composition of physical primitives such as contact (e.g. [8, 9]). Together with the 
event extraction system, a speech to text system was used to perform translations 
sentence to meaning using different languages [10]. 

2.1   Processing Sentences with Grammatical Constructions 

Each narrated event generates a well formed <sentence, meaning> pair that is used as 
input to a model that learns the sentence-to-meaning mappings as a form of template 
in which nouns and verbs can be replaced by new arguments in order to generate the 
corresponding new meanings. These templates or grammatical constructions (see 
[11]) are identified by the configuration of grammatical markers or function words 
within the sentences [12].  

Table 1. Sentences and corresponding constructions 

 Sentence Construction <sentence, meaning>  
1 The robot kicked the ball <Agent event object, event(agent, object>  
2 The ball was kicked by the robot <Object was event by agent, event(agent, object>  
3 The red robot gave the ball to the 

blue robot 
<Agent event object to recipient,  
             event(agent, object, recipient)> 

4 
 

The ball was given to the blue 
robot by the red robot  

<Object was event to recipient by agent, 
           event(agent, object, recipient)> 

5 The blue robot was given the ball 
by the red robot 

<Recipient was event object by agent, 
           event(agent, object, recipient)> 

 
Each grammatical construction corresponds to a mapping from sentence to 

meaning. This information is also used to perform the inverse transformation from 
meaning to sentence. For the initial sentence generation studies we concentrated on 
the 5 grammatical constructions shown in Table 1. These correspond to constructions 
with one verb and two or three arguments in which each of the different arguments 
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can take the focus position at the head of the sentence. On the left example sentences 
are presented, and on the right, the corresponding generic construction is shown. In 
the representation of the construction, the element that will be at the pragmatic focus 
is underlined. 

This construction set provides sufficient linguistic flexibility, for example, when 
the system is interrogated about the red robot, the blue robot or the ball. After 
describing the event give(red robot, blue robot, ball), the system can respond 
appropriately with sentences of type 3, 4 or 5, respectively. Note that sentences 1-5 
are specific sentences that exemplify the 5 constructions in question, and that these 
constructions each generalize to an open set of corresponding sentences.   

We have used the CSLU Speech Tools Rapid application Development (RAD) 
[13] to integrate these pieces, including (a) scene processing for event recognition, (b) 
sentence generation from scene description and response to questions, (c) speech 
recognition for posing questions, and (d) speech synthesis for responding. 

2.2   Shared Intentions for Learning 

Perhaps the most interesting aspect of the three part “command, interrogate, teach” 
scenario involves learning.  Our goal is to provide a generalized platform independent 
learning capability that acquires new <percept, response> constructions.  That is, we 
will use existing perceptual capabilities, and existing behavioral capabilities of the 
given system in order to bind these together into new, learned <percept, response> 
behaviors.   

The idea is to create new <percept, response> pairs that can be permanently 
archived and used in future interactions. Ad-hoc analysis of human-human interaction 
during teaching-learning reveals the existence of a general intentional plan that is 
shared between teachers and learners, which consists of three components. The first 
component involves specifying the percept that will be involved in the <percept, 
response> construction. This percept can be either a verbal command, or an internal 
state of the system that can originate from vision or from another sensor. The second 
component involves specifying what should be done in response to this percept.  
Again, the response can be either a verbal response or a motor response from the 
existing behavioral repertoire. The third component involves the binding together of 
the <percept, response> construction, and validation that it was learned correctly. 
This requires the storage of this new construction in a construction database so that it 
can be accessed in the future. This will permit an open-ended capability for a variety 
of new types of communicative behavior. 

In the following section this capability is used to teach a robot to respond with 
physical actions or other behavioral responses to perceived objects or changes in 
internal states. The user enters into a dialog context, and tells the robot that we are 
going to learn a new behavior. The robot asks what is the perceptual trigger of the 
behavior and the human responds. The robot then asks what is the response behavior, 
and the human responds again. The robot links the <percept, response> pair together 
so that it can be used in the future. 

Having human users control and interrogate robots using spoken language results 
in the ability to ergonomically teach robots.  Additionally, it is also useful to execute 
components of these action sequences conditional on perceptual values.  For example 
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the user might want to tell the robot to walk forward until it comes close to an 
obstacle, using a "command X until Y" construction, where X corresponds to a 
continuous action (e.g. walk, turn left) and Y corresponds to a perceptual condition 
(e.g. collision detected, ball seen, etc.). 

3   Human-Robot Coaching in RoboCup Soccer 

In order to demonstrate the generalization of the spoken language human-robot 
interaction approach we have begun a series of experiments in the domain of 
RoboCup Soccer [14], a well documented and standardized robot environment thus 
provides a quantitative domain for evaluation of success. For this project we have 
chosen as testing platform the Four-Legged league where ITAM’s Eagle Knights 
team regularly competes [15, 16]. In this league two teams of four robots play soccer 
on a small-carpeted soccer field using Sony’s Four-Legged AIBO robots. While no 
human intervention is allowed during a game, in the future humans could play a 
decisive role analogous to real soccer coaches adjusting in real-time their team 
playing characteristics according to the state of the game, individual or group 
performance. While no such human interaction is possible in the Four-Legged league, 
RoboCup incorporates a simulated coaching league where coaching agents can learn 
during a game and then advice virtual soccer agents on how to optimize their behavior 
accordingly (see [17, 18]).  

3.1   Human-Robot Architecture 

The human-robot interaction architecture is illustrated in Figure 2. The spoken 
language interface is provided by the CSLU-RAD framework while communication 
to the Sony AIBO robots is done in a wireless fashion via the CMU Tekkotsu 
platform [19] and URBI [21]. The CMU Tekkotsu and URBI systems provide a high 
level interface for remotely controlling the AIBO. Via this interface, the AIBO can be 
commanded to perform different actions as well as be interrogated with respect to 
various internal state variables. Additionally, Tekkotsu provides a vision and motion 
library where higher level perceptions and movements can be specified. The AIBO 
architecture shown at the right hand side of Figure 1 describes the robot processing 
modules. To play soccer robots are programmed with a set of behaviors that are 
activated depending on information read from sensors and state information that 
includes ball position, game state, localization, number of robots in the field, team 
strategies, etc. 

3.2   Command, Interrogate and Teach Dialogs 

In order to demonstrate the human coaching model we have developed and 
experimented with simple dialogs that let the user: (1) command the robot to perform 
certain actions; (2) interrogate the robot specific questions about its state; and (3) 
teach the robot to link a sequence of lower level behaviors into a higher level 
command such as “Go get the ball and walk it into the goal”. Videos for these dialogs 
can be found in [20]. A sample command and interrogate dialog is shown in Table 2. 
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Fig. 1. A schematic view of the CSLU-Tekkotsu/URBI-AIBO system architecture. The 
diagram to the right shows the internal AIBO processing modules: Sensors, Actuators, Vision, 
Motion, Localization, Behaviors and Wireless Communication. 

Table 2. Example dialog for commanding and interrogating the robot 

Robot: Welcome to the LAFMI Human-Robot Interaction Demonstration. I 
am the AIBO… 
Human: Do you see the ball? 
Robot: Looking for the ball…I don’t see anything. 
Human: Turn right.  
Robot: Turning right. (Turns right) 
Human: Do you see the ball? 
Robot: Looking for the ball… I see the ball. 
Human: Get the ball. 
Robot: Going for the ball. (Starts walking to the ball). 
Human: Stop. Turn right. 
Robot: Turning right. (Turns right but misses the ball) 
Human: Back up. 
Robot: Back up. (Backs up) 
Human: Turn left. 
Robot: Turning left. (Turns left but misses the ball) 
Human: Turn right. 
Robot: Turning right. (Turns right and catches the ball) 
Human: Walk. 
Robot: Walking. (Starts walking, pushing the ball towards the goal) 
Human: Walk. 
Robot: Walking. (Keeps walking, pushing the ball and “scoring”) 

3.3   Human-Robot Coaching 

In pursuing coaching capabilities we utilize the three previous levels of human-robot 
interaction having been defined in the context of soccer playing robots: command, 
interrogate and teach. We have defined a set of basic commands, action-only and 
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action-perception behaviors that can be instructed to the robot. Additionally the robot 
may be interrogated with state and perception related queries. Finally, these 
commands form the basis for teaching new behaviors in the soccer playing domain. 
While different levels of these commands have already been implemented in the 
AIBO in the context of soccer playing, we are at this point experimenting with them. 

Command. We define a set of action-only and action perception commands. Action-
only commands i.e. no perception, include: Stop, Move, Turn, Turn Head, and Kick 
Ball. Depending on the commands, these may include arguments such as magnitude of 
rotation, and movement in degrees or steps, etc. For example a rotation command would 
be Turn 180 degrees and a movement command would be Move 4 steps. It should be 
noted that at this level commands such as Kick Ball would not use any perceptual 
information, i.e. the resulting kick will be similar (hopefully) to the current robot 
orientation. We also define a set of action-perception commands requiring the full 
perception-action cycle, i.e. the action to be performed depends on the current robot 
perceptions. These commands include: Kick Ball with a specified direction; Reach Ball 
moving to a position behind the ball pointing towards the goal; Initial Position during 
game initialization requiring localization in the field; Pass the Ball to gently kick the 
ball to another team robot; Move to Location specifying a position in the field where to 
move; Search Ball resulting in robot looking for a ball nearby; Explore Field resulting 
in a more extensive search for the ball; Defend Goal resulting in all robots moving close 
to the goal requiring knowledge of the robot location in the field; Defend Kick in trying 
to block a kick from the other team, requiring knowledge of ball location, and Attack 
Goal similar although opposite in behavior to defending goal.  

Interrogation. We define state and perception interrogation commands returning 
information on current actions or behaviors. State interrogations include for example: 
What was your last action, e.g. kicked the ball; Why did you take the last action, e.g., 
I saw the ball, so I moved towards it; What is your current behavior, e.g. I’m 
searching for the ball; What is your current role in the game, e.g. I am the goalie. 
Perception interrogations include for example: Do you see the ball returning e.g. I do, 
I don’t; What is your distance to the ball, returning e.g. 30 centimeters; What is your 
current orientation, returning e.g. 45 degrees (in relation to field coordinate system); 
What is your current position, returning e.g. I am in region 9; What is the position of 
object X returning an estimate of its position. 

Teach. The ultimate goal in human-robot coaching in the context of soccer is being 
able to positively affect the team performance during a game. While part of this 
interaction can eventually be carried out by agent coaches inside the robot, it is our 
goal to define the basic capabilities and communication interactions that human 
coaches should have. For example, being able to transmit strategy knowledge in the 
form “if blocked pass the ball to player behind”. Such a command will modify an 
internal robot database with “if possess(ball) and goal(blocked) then pass(ball)”. 

4   Conclusions and Discussion 

The stated objective of the current research is to develop a generalized approach for 
human-machine interaction via spoken language that exploits recent developments in 
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cognitive science - particularly notions of grammatical constructions as form-meaning 
mappings in language, and notions of shared intentions as distributed plans for 
interaction and collaboration. In order to do this, we tested human-robot interaction 
initially with the Event Perceiver system and later on with the Sony AIBOs under 
soccer related behaviors. 

With respect to social cognition, shared intentions represent distributed plans in 
which two or more collaborators have a common representation of an action plan in 
which each plays specific roles with specific responsibilities with the aim of 
achieving some common goal. In the current study, the common goals were well 
defined in advance (e.g. teaching the robots new relations or new behaviors), and so 
the shared intentions could be built into the dialog management system. 

An initial evaluation period revealed that while technically we had demonstrated 
command, interrogation and teaching, the user interface ergonomics was somewhat 
clumsy. In particular the dialog pathways were somewhat constrained, with several 
levels of hierarchical structure in which the user had to navigate the control structure 
with several single word commands in order to teach the robot a new relation, and 
then to demonstrate the knowledge, rather than being able to do these operations in 
more natural single sentences. In order to address this issue, we reorganized the dialog 
management where context changes are made in a single step.  Also, in order to focus 
the interactions, we worked around scenarios in which the human and robot 
collaborate around the shared goal of finding the ball and moving it towards a 
landmark so that the robot can see both at the same time. 
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Removing the Dependence on Artificial Landmarks
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Abstract. The abilities of mobile robots depend greatly on the per-
formance of basic skills such as vision and localization. Although great
progress has been made in the 4-Legged league in the past years, the
performance of many of those approaches completely depends on the
artificial environment conditions established on a 4-Legged soccer field.
In this article, an algorithm is introduced that can provide localization
information based on the natural appearance of the surroundings of the
field. The algorithm starts making a scan of the surroundings by turning
head and body of the robot on a certain spot. The robot learns the ap-
pearance of the surroundings at that spot by storing color transitions at
different angles in a panoramic index. The stored panoramic appearance
can be used to determine the rotation (including a confidence value) rel-
ative to the learned spot for other points on the field. The applicability of
this kind of localization for more natural environments is demonstrated
in two environments other than the official 4-Legged league field.

1 Introduction

1.1 Context

Mobile robots need to know where they are. Robot localization is therefore an
important basic skill of mobile robots, e.g. when playing robot soccer. Many other
processes of the robot’s cognition - like world modeling and action planning -
strongly depend on fast, accurate and robust position estimates.

In the 4-Legged league1 of the RoboCup, teams consisting of four Sony Aibo
robot dogs play soccer fully autonomously against each other on a field of 6x4m.
Colored flags, goals and various field lines can be used to achieve localization
accuracies below six centimeters [1,2].

The price that these approaches pay is their total dependency on artificial
landmarks of known shape, positions and color. Most algorithms even require
manual calibration of the actual colors and lighting conditions used on a field
and still are quite susceptible for disturbances around the field, as for instance
produced by brightly colored clothes in the audience.
1 RoboCup Four Legged League homepage, last accessed in April 2006, http://tzi.de/

4legged

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 387–394, 2007.
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The interest in more general solutions has been (and still is) growing over the
past few years. The almost-SLAM challenge 2 of the 4-Legged league and the
upcoming challenges in natural environments of the newly founded RoboCup @
home league 3 reflect this growing interest within the robotics community.

1.2 Related Work

As many teams of the 4-Legged league use similar approaches for vision and
localization (from the raw camera image to the robot’s pose), we briefly want to
point out typical main processing steps and their corresponding considerations.

1. In the image processing step, the image pixels are divided into color
classes. Coarse scanning through the image then yields object candidates
that need to be post-processed by object specialists for object recognition.
Finally the complete set of detected objects is filtered by a second-order
sanity checker to remove invalid percepts. Representative and well-working
implementations can be found in [1,3].

2. In the localization step, the perceived landmarks are filtered over time and
merged with the data from the robot’s body odometry. Common approaches
include Kalman Filters, Monte-Carlo approaches or combinations thereof.
For a good comparison see [4].

Other interesting approaches can be found in the Mid-Size league 4 : as the
hardware of a Mid-Size robot is only limited to what it can carry, both different
types of sensors as well as different classes of algorithms become feasible. Most
Midsize robots use omni-directional high-quality cameras whereof each camera
image carries enough information to localize the robot almost perfectly [5]. These
approaches are not applicable on an Aibo with its limited camera angle; therefore
panorama images have to be constructed of several images.

Also inspiring, but also only partially transferable to the 4-Legged league is
the work that has been done on the SLAM problem in general, for instance on
panoramic pictures [6,7,8,9]. One of these approaches [10] divides the panoramic
image in multiple sectors, but uses as characteristic feature the average color
of the sector. Our approach combines sectors with as characteristic feature the
frequency of colortransitions.

2 Approach

The main idea is quite intuitive: we would like the robot to generate and store a
360o panorama image of its environment while it is in the learning phase. After
2 Details about the Simultaneous Localization and Mapping challenge can be found

at http://www.tzi.de/4legged/pub/Website/Downloads/Challenges2005.pdf
3 RoboCup @ Home League homepage, last accessed in March 2006, http://www.ai.

rug.nl/robocupathome/
4 RoboCup Mid-Size league homepage, last accessed in April 2006, http://www.idt.

mdh.se/rc/Mid-Size/
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Fig. 1. Architecture of our algorithm

(a) Unsupervised learned
color segmentation.

(b) Sectors and strong color
transitions visualized.

Fig. 2. Image processing: from the raw image to sector representation. This conversion
consumes approximately 6ms/frame on an Sony Aibo ERS7.

that, it should align each new image with the stored panorama, and from that
the robot should be able to derive its relative position (in the localization phase).
This alignment is not trivial because the new image can be translated, rotated,
stretched and perspectively distorted when the robot does not stand anymore
at the point where the panorama was originally learned.

Of course, the Aibo is not able (at least not in real-time) to compute this
alignment on full-resolution images. Therefore a reduced feature space is designed
so that the computations become tractable 5 on an Aibo. Figure 1 gives a quick
overview of the algorithm’s main components.

The Aibo performs a calibration phase before the actual learning can start.
In this phase the Aibo first decides on a suitable camera setting (i.e. camera

5 Our algorithm consumes per image frame approximately 16ms, therefore we can
easily process images at the full Aibo frame rate (30fps).
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gain and the shutter setting) based on the dynamic range of brightness in the
autoshutter step. Then it collects color pixels by turning its head for a while
and finally clusters these into 10 most important color classes in the color clus-
tering step using a standard implementation of the Expectation-Maximization
algorithm assuming a Gaussian mixture model [11]. The result of the calibra-
tion phase is an automatically generated lookup-table that maps every YCbCr
color onto one of the 10 color classes and can therefore be used to segment in-
coming images into its characteristic color patches (see figure 2(a)). As these
initialization steps are not in the focus of this article we kept the explanation
short.

2.1 Sector Signature Correlation

Every incoming image is now divided into its corresponding sectors6. Using the
lookup table from the unsupervised learned color clustering, we can compute the
sector features by counting per sector the transition frequencies between each
two color classes in vertical direction. This yields 10x10 transition frequencies
per sector, which we subsequently discretize into 5 logarithmically scaled bins.
In figure 2(b) we displayed the strongest color transitions (bin 5) for each sector.

In the learning phase we estimate these 80x(10x10) distributions7. We define
a single distribution for a currently perceived sector by

Pcurrent (i, j, bin) =
{

1 discretize (freq (i, j)) = bin
0 otherwise

(1)

and the distribution learned from many frequency count samples of a certain
sector by

Plearned (i, j, bin) =
countsector (i, j, bin)∑

bin∈frequencyBins

countsector (i, j, bin)
(2)

Now we can simply multiply the current and the learned distribution to get
the correlation between a currently perceived and a learned sector:

Corr(Pcurrent, Plearned) =
∏

i,j∈colorClasses,
bin∈frequencyBins

Plearned (i, j, bin) ·Pcurrent (i, j, bin)

(3)

2.2 Alignment

After all the correlations between the stored panorama and the new image signa-
tures were evaluated, we would like to get an alignment between the stored and
6 80 sectors corresponding to 360o; with an opening angle of the Aibo camera of

approx. 50o, this yields between 10 and 12 sectors per image (depending on the head
pan/tilt).

7 When we use 16bit integers, a complete panorama model can be described by (80
sectors)x(10 colors x 10 colors)x(5 bins)x(2 byte) = 80 KB of memory.
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(a) robot looking straight ahead (b) robot looking 45o to the left

Fig. 3. Resulting sector correlation matrix between the 12 seen sectors of the current
image and the 80 stored panorama model sectors. The bright diagonal line corresponds
to a minimum in the correlation and constitutes the alignment we want to find.

seen sectors so that the overall likelihood of the alignment becomes maximal. In
other words, we want to find a diagonal path with the minimal cost through the
correlation matrix.

We consider the fitted path to be the true alignment and extract the rotational
estimate ϕrobot from the offset from its center pixel to the diagonal (Δsectors):

ϕ̂robot =
360◦

80
Δsectors (4)

Further, we try to estimate the noise by fitting again a path through the
correlation matrix far away from the best-fitted path.

SNR =

∑
(x,y)∈minimumPath

Corr(x, y)

∑
(x,y)∈noisePath

Corr(x, y)
(5)

The results of eq. 4 and eq. 5 can be found in figure 4.

3 Results

3.1 Environments

We selected five different environments to test our algorithm under a variety of
circumstances. The first two experiments were conducted at home on a sunny
afternoon and in an office environment8 to measure performance under real-
world circumstances. Furthermore, we conducted exhaustive tests on a (classical)
4-Legged field to test the performance under RoboCup circumstances. Then,
we repeated the same measurements on a Midsize field8,which could become
interesting for future 11-against-11 games. Even more challenging, we took an
Aibo to a real-world soccer field outdoors. This could be interesting especially
for public demonstrations because until now all demonstrations had to be given
in closed rooms with artificial lights.

8 Results omitted due to the lack of space, both located at Delft.
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(a) Robot standing on the
trained spot (matching line is
just the diagonal)

(b) Robot turned right by 45
degrees (matching line dis-
placed to the left)

Fig. 4. Visualization of the alignment step while the robot is scanning with its head.
The green line marks the minimum path (assumed true alignment) while the red line
marks the second-minimal path (assumed peak noise). The grey line represents the
diagonal, while the orange line illustrates the distance between the found alignment
and the center diagonal (Δsectors).

(a) Rotational test in natural environment
(living room, sunny afternoon)

(b) Outdoor human soccer field (80x
64m)

Fig. 5. Results of a rotational experiment conducted in a regular living room (left
picture) and a translational test conducted on an outdoor soccer field

3.2 Measured Results

Figure 5(a) illustrates the results of a rotational test in a normal living room.
As the error in the rotation estimates ranges between -4.5 and +4.5 degrees,
we may assume an error in alignment of a single sector; moreover, the size of
the confidence interval can be translated into one and two sectors respectively,
which corresponds to the maximal angular resolution of our approach.

The next experiments were conducted on different types of soccer fields,
exemplarily we present the measurements recorded on a real outdoor soccer
field (fig. 5(b)) and a regular 4-Legged field indoor (fig. 6(a)). We developed a
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(a) 4-Legged field (6x4m) (b) Signal degradation as a function of the distance
to the learned spot (measured on a 4-Legged field)

Fig. 6. Test results on an official field of the 4-Legged league

suitable visualization that resembles a magnetic field where we can display esti-
mated rotations and confidence ranges in an intuitive way. The direction of an
arrow shows the estimated rotation (with respect to the trained spot) and the
grey arc shows the 80%-confidence interval around this estimate. Interestingly,
it can be seen that the (imaginary) elongations of the arrows all run together in
a single spot corresponding to the intersection point with the panoramic index.

In both cases it can be seen intuitively that the rotation estimates are within
acceptable range, in the sense that all arrows point in the direction of the orig-
inal 0-sector. This can also be shown quantitatively (see figure 6(b))): both the
rotational error and the width of the confidence interval increase slowly and in
a graceful way when the robot is moved away from the training spot.

4 Conclusion

Although at first sight the algorithm seems to rely on specific texture features
of the surrounding surfaces, in practice no dependency could be found. This can
be explained by two reasons: firstly, as the (vertical) position of a color transi-
tion is not used anyway, the algorithm is quite robust against (vertical) scaling.
Secondly, as the algorithm aligns on many color transitions in the background
(typically more than a hundred in the same sector), the few color transitions
produced by objects in the foreground (like beacons and spectators) have a mi-
nor impact on the match (because their sizes relative to the background are
comparably small).

The lack of absolute position estimates seems to be a clear drawback with
respect to the other methods, but bearing information alone can already be very
useful for certain applications. For example, an attacking robot can highly benefit
from a robust bearing estimation towards the goal. With this bearing estimating
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the robot can rush into the right direction. After 3 seconds the robot has to shoot,
at that moment an additional distance estimation could be advantageous.

Further, this approach of panoramic localization is actually interesting for a
broader spectrum than soccer. The requirements for both the robot as well as
for its environment are quite moderate (on a Sony Aibo ERS7, the computation
time is below 20ms/frame). The robot itself needs only a simple camera and
medium computational power, while most natural environments (both indoors
and outdoors) carry, as shown, enough panoramic information the algorithm
can lock on to. Therefore, this method becomes for example interesting for the
newly established RoboCup @ Home league, where fast localization information
is needed in natural but completely unknown environments.

As the training on a single spot can be completed in less than one minute on
a Sony Aibo in an arbitrary place, small demonstrational games (for example
a striker versus a goalkeeper) could be set up more easily especially at non-
prepared places. Progress in this domain facilitates the advancement of mobile
robots - and thereby robotics research itself - into more natural environments.
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Abstract. In RoboCup small-size league, it is necessary to analyze the 
opponent robots' behavior in order to make a strategy of the own team. 
However, it is difficult to prepare image processing methods in advance in 
order to detect opponent robots' sub-markers used for the orientation detection 
and identification of the robots, because there is no limitation in the rule in 
shape, color, arrangement, and the number. This paper proposes a new method 
to select the most specific sub-marker attached on the top of the robot based on 
the features such as the size, area, and color values by using the discriminant 
analysis, and also explains how to extract opponent robots’ orientations with 
some experimental results.  

1   Introduction 

It is necessary to analyze the opponent robots' behavior in order to make a strategy of 
the own team in RoboCup. Almost all of the teams utilize one or a set of sub-markers 
attached on the top of the robot for the orientation extraction and identification1. Even 
though it is not so easy to extract own robots in real time, it becomes more difficult 
for a team to recognize opponent team’s robots, because we have no knowledge about 
opponent team’s sub-markers and also we can’t prepare the image processing 
algorithms for the recognition of them in advance. Figure 1 shows some examples of 
sub-markers. There is no limitation in the rule in shape, color, arrangement, and the 
number of the sub-marker in the Small-Size League (SSL)2. The freedom of designing 
sub-markers of own team rises, at the same time the recognition rate of sub-markers 
of the opponent team falls. 

This paper proposes a new method to select the most specific sub-marker attached 
on the top of the robot based on the features such as the size, area, and color values by 
using the discriminant analysis, and also presents how to extract opponent robots’ 
orientations. This method realizes a strategic planning of the robots based on the locus 
and the direction of the opponent robots. First, this paper describes how to utilize the 
orientation of the robots in the section 2, and then explains the recognition method of 
the opponent robots and experimental results in the sections 3 and 4, respectively. 
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(a) team A     (b) team B     (c) team C 

Fig. 1. Examples of sub-markers 

2   How to Utilize the Orientations of the Opponent Robots for 
Planning 

SSL’s robot has a kicking device and a dribbling device. In this paper, let the 
orientation of them be the ‘front’ of the robot. To recognize the opponent robots’ 
orientations realizes a strategic planning as follows. 

2.1   Judgment of Kicking or Holding a Ball 

If the orientation of the opponent robot nearby a ball is known, the system can judge 
whether the opponent robot is kicking or holding the ball. More strategic planning as 
shown Figure 2 could be realized by this information. 

 

Fig. 2. Judgment of having ball 

2.2   Judgment of the Shoot Course 

In the penalty kick scene, for example, many teams take a strategy to prevent a shoot 
only by changing the direction of the robot in the same position. In this kind of scene, 
own robot plays more defensively based on the shoot course in Figure 3 if the 
orientation of the opponent robot is known. 

2.3   Paying Attention to the Opponent Robots 

When own robot plays with paying attention to the opponent robots, the orientations 
of the opponent robots are very important information. Own robot plays more 
offensively if the robot knows which robot among opponent team’s will receive a 
ball. 

 

This robot doesn’t have a ball. 
…Our robot may as well get the ball. 

Does this robot have a 
ball? 

This robot has a have a ball. 
…Our robot may as well block a shoot. 
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Fig. 3. Judgment of shoot course 

3   Orientation Extraction and Identification of Robots 

This chapter presents a method of orientation extraction and identification of 
opponent robots. In general, template matching technique is used to detect unknown 
patterns, and is a robust method to extract the most certain locus of the template from 
an input image, it takes much time. RoboCup’s image processing system is required 
to work in real time, for example, 60fps performance. Since there is no information 
about opponent teams, we can’t prepare the image processing algorithms in advance 
for the recognition of the opponent teams’ sub-markers. Hereafter, this section 
explains a new method to select the most specific sub-marker attached on the top of 
the robot based on the features such as the size, area, and color values by using the 
discriminant analysis, and also presents how to extract opponent robots’ orientations. 

3.1  Selection of the Most Specific Sub-marker 

Before the game starts, first input the opponent robots’ image (sub-markers’ image) and 
then select the most specific sub-marker, hereafter we call it ‘feature marker’, among N 
pieces of sub-markers on a robot. Both of the orientation extraction and identification of 
each robot is executed based on the locus or arrangement of the feature markers. 

 

Fig. 4. Paying attention to the opponent robots 

The parameter list L(i) of the i-th sub-marker (i=1,...N) is composed of variety of 
parameters such as color, area, size, the center of gravity, and so on. Let the number 
of them on a robot be M. 

 

Pass Cut

This robot has high probability of 
receiving a ball. 

Which robot will receive a ball? 

? 
Real Line
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L(1)={colorR
(1), ..., area(1), … ,Gx(1),... }

L(2)={colorR
(2), ..., area(2), … ,Gx(2),... }

 

Fig. 5. Example of marker’s parameters 

First, make a list of each sub-marker L(i) = {x1
(i), x2

(i), … , xM
(i)}( i = 1…N ) as 

shown in Figure 5 and decide the ‘feature marker’ which has the most specific 
parameter value. There are many well known methods to select one of the most 
specific value among M, but we designed a method whose computation cost is not so 
high as follows. 

Step-1. Make a set Fj ={xj
(1), xj

(2), … , xj
(N)} of the j-th parameter (j=1,2,...,M)  

 as shown in Figure 6. 
Step-2. For the j-th parameter, apply the discriminant analysis method to the set Fj , 

that is, devide Fj into 2 classes and caluculate the separation ratio Sj   
between them. 

Step-3. If each of devided classes is not composed of one element, then let Sj be 0.  
 Repeat from Step-2 to Step-3 for all parameter j=1,2,...,M. 

Step-4. Search the maximum Sj among {Sj ; j=1,2,...,M} and let the number be jMAX  
 and the element’s number be iMAX. 

Step-5. Let the sub-marker which has iMAX-th  and jMAX-th element be the ‘feature  
 marker’ G and terminate the program. 

 
If  Sj=0 in Step-4, it means that ‘feature marker’ could not be decided only one 

parameter, so we have to combine 2 or more parameters to decide ‘feature marker’ G.  

 

 

 

 

 

 
 
 
 
 

Fig. 6. Example of deciding feature maker 

0.7 Sj   0.3 0.0 
In this case, the maximum of Sj is 0.7 and L(2) which 
include x2

(2) becomes‘feature marker’ G. 

L(2)=( x1
(2) ,  x2

(2) ,…, xM
(2) ) 

… F1 FmF2

L(1)=( x1
(1) ,  x2

(1) ,…, xM
(1) ) 

G

L(N)=( x1
(N),  x2

(N),…, xM
(N))

…
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3.2   Identification of the Robot and Orientation Extraction 

The robot is identified by matching the parameter lists (i.e. cosψ �0.95, here, ψ  is the 
angle between two vectors corresponding to the lists in M dimensional space. 0.95 is 
obtained by some experiments). 

As shown in Figure 7, the orientation of the robot is calculated by using the ‘feature 
marker’ G. If the real front orientation φ0 and the angle θ0 of the ‘feature marker’ 
G are known in advance, the front orientation φ during the game is obtained by  

φ  = (θ  − θ0) + φ0 (1) 

where, θ  is the angle of the ‘feature marker’ G . This angle θ  is easily calculated by  

GT

GT

xx

yy

−
−

= −1tanθ  (2) 

where, ),( TT yx  and ),( GG yx  are the centers of gravity of team marker T and 

the ‘feature marker’ G , respectively. 

G
G

 

Fig. 7. Feature marker and the definition of the orientation  
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Fig. 8.  Marker set of opponent robot’s  



400 S. Umemura, K. Murakami, and T. Naruse 

4   Experiments and Discussions 

In order to confirm the effectiveness of the proposed method, we experimented by 
using several typical sets of sub-markers used in the past games in RoboCup 
competitions. Figure 8 shows examples of the sub-markers, and Table 1 shows the 
experimental results. A, B, ...in the figure denotes the team and ID is the identification 
number of each robot. Orientation error in Table 1 is the difference between the real 
and measured angles. 

Table 1.  Identification rate and orientation extraction error 

Set of markers A B C D E
Identification Rate % 100.0 99.44 100.0 100.0 100.0
Maximum of Orientation Extraction Error deg 9.818 98.44 7.275 178.01 7.967
Minimum of Orientation Extraction Error deg 0.093 0.108 0.040 0.192 0.000
Average ofOrientation ExtractionError deg 2.956 7.157 2.183 9.729 3.199

 

From the experiments, there appear some errors in the orientation extraction, 
especially for B and D team’s sub-markers. The differences of size of sub-markers for 
team B’s and the differences of shape, rectangle and circle sub-markers, for team D’s 
are the main causes of the errors.  

We compared calculation time with several conventional methods, template 
matching etc. Here, ‘calculation time’ is measured only foe the orientation extraction 
and the identification processes just after the main-marker extraction process. The 
results are shown in Table 2. As a result of the experiment, the accuracy of the 
individual identification rate was about 99.8%, and error for the orientation extraction 
is about 4.95 degrees. 

Table 2.   Comparison of calculation time 

 Calculation Time [msec] Orientation Extraction Error[deg] 

proposed method 0.15 4.95 
nearest neighbor method 207 
bi-linear method 214 
bi-cubic method 417 

2.0 

5   Conclusion 

This paper described a new method to select the most specific sub-marker attached on 
the top of the robot based on the features such as the size, area, and color values by 
using the discriminant analysis. This method realized a strategic planning of the 
robots based on the locus and the direction of the opponent robots. 

Although the proposed method shows the effectiveness, there remain some subjects 
to be solved. It is necessary to add and increase the menu of the shape measures such 
as the complexity of the sub-markers. Since the robot doesn’t always kick a ball to the 
front direction, it is also important to introduce the learning mechanism from image 
sequences of the game in order to recognize real front orientation of the robot. These 
are future works.  
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Abstract. This paper describes corrections to image distortion found
on the Sony AIBO ERS-7 robots. When obtaining an image the camera
captures each pixel in series, that is there is effectively a ’rolling shutter’.
This results in a delay between the capture of the first and last pixel.
When combined with movement of the camera the image produced will
be distorted. The sensor values from the robot, coupled with knowledge
of the camera’s timing, are used to calculate the effect of the robots move-
ment on the image. This information can then be used to remove much of
the distortion from the image. The correction improves the effectiveness
of shape recognition and bearing-to-object accuracy.

1 Introduction

Rolling shutters are commonly found in low-cost, low-power CMOS cameras.
These cameras are being commonly used in many non-stationary and robotic
applications. Cameras that contain rolling shutters do not expose the entire
image at one instance, as is done with a global shutter. Instead rolling shutters
have pixels that have been exposed at different times and merged together to
form a single image. This causes problems when the scene changes in a time
which is less than that taken to expose the entire image. This causes some
pixels to have newer information than others. The combination between new
and old information causes distortions in the image when viewing an object
with movement relative to the camera.

These distortions are evident on the CMOS cameras found in the Sony AIBO
ERS-7 robots used in the RoboCup Four-Legged League. However these errors
will also be found whenever similar camera technology is used in non-stationary
cameras. A major contribution to this distortion is the desire to constantly move
the camera to gather as much information about the surrounding environment
as possible.

These distortions can cause differences in the co-ordinates, as well as the
shape of the objects that the robot has seen. Since the distortion stretches or
compresses the image of objects, the co-ordinates derived from that image are
also altered. The changed co-ordinates, in particular the bearing to an object,
have the potential to cause problems when attempting to determine the location
of the object. While the distortion causes problems when the shape of the object
is used for its identification or measurement. An example of which is the circle
fitting on a ball image in the Four-Legged robotic League. If the ball is no longer
circular in shape, circle fitting loses some of its effectiveness.

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 402–409, 2007.
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There are two main sources for this relative velocity that causes distortions
in the image. The movement may be that of the object, or the movement of
the camera itself. In many cases there is a mixture of both. The velocity from
the camera can in most cases be measured, or at least estimated, however the
velocity of the object is far less easily determined from a single frame.

This paper covers the technique used to correct the distortion caused by the
rolling shutter. The correction was designed for the Sony AIBO ERS-7 robot,
the hardware used for the RoboCup Four-Legged League. In this case the image
is corrected for the movement of the robot’s camera caused by the panning
motor on the robot. This has been observed to be a major cause of this type
of distortion, particularly when calculating the bearing to objects or attempting
to identify shapes. A correction method used to improve similar problems with
bearings was briefly mentioned in [1] and [3].

Fig. 1. Effect of image distortion can be seen on both the round ball, and the rectan-
gular goals

2 De-Skewing Approach

The following section describes the principles and equations used to calculate
the required constants for image de-skewing. Followed by the equations required
to implement the correction using these values.

2.1 Delay for an Entire Image

Before the image can be de-skewed, the timing of the camera must be known.
The magnitude of the delay determines the magnitude of the distortion on the
image. To find this value an image was taken of a fluorescent light that flickers
at a know frequency (100Hz). When viewed, the fluorescent light displayed three
light and dark bands upon the image. This shows that the light went through
three dark/light cycles in the time one image was taken. Given the period of
the cycles (0.01s), the time taken to capture the frame was calculated to be
approximately 0.03s (1). This value is very close to the frame rate of the camera,
which operates at 30 frames per second. Therefore it was assumed that the
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Fig. 2. Image of the fluorescent light shows three distinct light/dark cycles

entire period between frames is used to capture the next frame. This gives an
approximate period of 33.3ms.

Tcamera ≈ 3× TFL = 30ms ≈ 33.3ms = TImage (1)

2.2 Conversion Between Pan Angle and Pixel Position

All pixels in an image have a equivalent angle offset from the center of the
image. The center pixels always have an offset of zero, however the pixels near
the edge of the image have an offset determined by the camera’s field of view.
This offset is required when converting from a pixel to a relative pan location.
The relationship between image pixel and offset angle was calculated using the
following trigonometry;

First an effective camera distance is found using the field of view of the robot
and the resolution of the image in pixels. (figure 3). The effective camera distance
is used to convert the pixel position to an offset angle and back again (figure 3).

CameraDist =
1/2× ImageWidth

tan(1/2× FOV )
=

104
tan(28.45)

= 191.9 pixels (2)

x = CameraDist× tan(θ) (3)

Fig. 3. Calculation of effective camera distance.(left), Pixel position calculation using
angle (θ).(right)
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2.3 Finding the Angle of Distortion

The position of each pixel at the time of capture is required to correct the image.
The total pan angle change during the image is proportionally applied over the
pixels within the image. Since the first pixel was captured at the camera’s original
position it has the maximum distortion. The distortion subsequently drops for
each pixel captured until the last is assumed to be captured at the camera’s
current position. This maximum distortion is calculated using the difference
between the camera’s previous position and the current position. This calculation
is simplified since the camera was found to take the entire time between frames
to capture a new image.

θMaxDistortion = θprev − θcurr (4)

2.4 Applying Correction

To apply the correction the panning movement of the robot is assumed to be
constant between frames. While the velocity of the camera may change within
a frame, the inclusion of these changes makes de-skewing much more proces-
sor intensive. Also such changes tend to be relatively small and insignificant.
For these reasons the total velocity of the camera is used to calculate a linear
approximation of the camera’s position at the time of pixel capture.

On the AIBO robots the pan sensor reports angles to the right to be negative,
while angles to the left are positive. The pixels within the picture are described
in (x, y) coordinates with the upper left hand corner (0, 0). For this reason the
equations assume these systems, converting between the two coordinate systems
as necessary.

First, the angle of the current pixel is found using equation (5). This equation
also shifts the coordinates so that the center of the image is at 0 radians. Angles
and pixels to the right of this are negative, while angles and pixels to the left
are positive.

θoriginal = arctan(
ImageWidth

2 − x

CameraDist
) (5)

A linear approximation is then made for the pan angle for this particular
pixel. Finding the amount of distortion the pixel has in relation to the bottom
right pixel.

θdistorted = θMaxDistortion × (
y × ImageWidth + x

TotalP ixels
− 1.0) (6)

This calculated distortion is then subtracted from the current pixel’s angle,
giving the corrected angle for that particular pixel.

θcorrected = θoriginal − θdistorted (7)

Using this new corrected angle, the x location of this pixel can be found using
equation (3). This is then shifted back to the image’s (x, y) coordinate system
(8).

(
ImageWidth

2
− CamDist× tan(θCorrected), y) (8)
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Using an equation to correct individual pixels allows the correction to be
performed only on the interesting pixels in the image. This means that only the
required information, such as an object’s X and Y values, have to be corrected,
rather then the entire image. This reduction in processing allows de-skewing to
be applied to more items with a less noticeable impact on CPU time.

3 Applications of Correction

The following section describes some of the uses for the correction.

3.1 Applying Correction to Shape Fitting

The rolling shutter can cause errors in both the perceived location and shapes
of an object. This may cause problems when attempting to identify an object
by shape and subsequently determine its position. To over come this, object
candidates are first located in the distorted image. These candidates have their
edge pixels corrected for skew. From these corrected points the object can then
be identified by shape. If further details are needed on the object for position
or distance data, the properties of the shape can be used without needing to
re-correct the pixels. The use of de-skewing in this manner to verify probable
objects reduces the processor load when compared to correcting the entire image.

Fig. 4. Visual correction of classified image of ball. Circle fitting shown in blue. Left :
Original Image, Right : Corrected image.

3.2 Line Detection

The use of field lines for localisation provides great benefits, particularly with
recent reductions in the number of beacons on the roboCup field. Lines offer
a good source of extra information for localisation, since the they are visible
from almost anywhere on the field. Although field lines generally provide only
ambiguous information for localisation, they may still allow a robot to remain
localised without seeing a distinct marker. In particular, the orientation of a field
line in the image may be important information.

Field lines are more susceptible to distortion due to camera skew. To use a line
from an image in localisation two bearings to that line are needed. This allows
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Fig. 5. Visual correction of classified image of line. Left : Original Image, Right :
Corrected image.

the robot to calculate the line’s angle and position relative to the camera. Since
lines often stretch the length of the image, distortions have a more pronounced
effect. Such distortions are then accentuated when the line is translated into real
world co-ordinates.

4 Experimental Results

To determine the potential advantages from image correction, a simple experi-
ment was performed. The experiment involved a robot viewing a ball in a known
stationary position while quickly panning its head. The data that is most dis-
torted by this kind of action is the bearing to an object. To measure the expected
improvement produced by a corrected image the bearing was calculated from
both the original and corrected points. Comparing both the values allows the
performance of the correction to be evaluated.

The bearing to the ball was first measured by having the robot view a sta-
tionary ball with no relative movement. The bearing was calculated to be ap-
proximately -1 degree. This value contained very little noise, and was therefore
assumed to be the correct bearing.

The robot was then set to pan back and forth. These images were captured
and both the corrected and uncorrected bearings recorded. The sensor data from
the robot was also recorded for later analysis and verification.

The results show that the correction improved the accuracy of the calculated
bearing. While both the corrected and uncorrected values gave an average bear-
ing close to the non panning value, the spread of the corrected data was lower
in comparison. However there is still significant noise present in the corrected
bearing values. This may be a result of acceleration during the exposure of the
frame, which is not taken into account by the linear approximation.

Table 1. Overall results of panning test

Uncorrected Corrected

Average -1.434 -1.272
Std.Deviation 6.186 2.961
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Fig. 6. Resulting bearings to stationary object test

Visual testing was also done to verify that the corrections performed were
suitable. In this case the full image was visually corrected (figure 4).

5 Discussion

The correction accounts for the movement of the robot’s camera. This however
leaves the possibility that once the robot’s distortion is corrected, then the per-
pendicular velocity of the object may be found from the remaining distortion.
The distortion left being that created by the movement of the object. If the
distance to the object is known and the relative angle that it has moved can be
inferred from the distortion, then the perpendicular velocity can be calculated.
This would allow a robot to calculate the object’s velocity from a single image
frame, instead of the normal two or three.

The correction works only on the panning of the head. Vertical movements
are not accounted for as they are reliant on many more parameters on the ERS-7
robot. These including two vertical head joints and the body position, and there-
fore all 12 of the ERS-7s leg joints. Because of a reliance on so many different
joints the calculated movement is very noisy. This noise makes it difficult to
accurately determine the movements of the robots body.

6 Conclusion

The usage of a rolling shutter causes a distortion in the image when the camera is
moving. These distortions skew the objects being viewed resulting in bad shapes
and inaccurate bearings. By using the described de-skewing technique these dis-
tortions can be reduced or removed. Once the distortion has been removed from
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the image the data obtained on an object is improved, with improvements in the
bearing to an object of better than 50%.
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Abstract. Learning automata act in a stochastic environment and are able to 
update their action probabilities considering the inputs from their environment, 
so optimizing their functionality as a result. In this paper, the goal is to investi-
gate and evaluate the application of learning automata to cooperation in multi-
agent systems, using soccer simulation server as a test bed. We have also  
evaluated our learning method in hard situations such as malfunctioning of 
some of the agents in the team and in situations that agents’ sense/act abilities 
have a lot of noise involved. Our experiment results show that learning auto-
mata adapt well with these situations. 

1   Introduction 

As a model for learning, learning automata act in a stochastic environment and are 
able to update their action probabilities considering the inputs from their environment, 
so optimizing their functionality as a result.  

Also, as a test-bed, we have used the simulated robotic soccer, “SoccerServer2D” 
[3] in this paper. Robotic soccer is an example of a complex environment that some 
agents should cooperate with each other, in order to achieve the team’s goal [2][3]. In 
fact, in this paper we have focused on the systems composed of some autonomous 
agents that can act in real-time, noisy, collaborative and adversarial environments [1]. 

To do so, we implemented teams composed of 11 agents that learn using learning 
automata and compared them to similar teams that have no learning capability or use 
other learning methods such as Q-learning. 

In this paper, we have used Learning Automata [4] as our machine learning method. 
In the coming sections of this paper, we first present our use of learning automata in a 
complex multi agent domain with presenting some results of our simulations.  

Then, we evaluate our learning method by running some simulated plays with mi-
nor and major changes in environment parameters. Also, we evaluate our learning 
method in hard situations such as malfunctioning of some of the agents in the team 
and in situations that agents’ sense/act abilities have a lot of noise involved. 

The goal is to investigate our learning method’s adaptation with these changes. 
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2   Cooperation in a Team Using Learning Automata 

Our goal in this section is to use learning automata for cooperation among the mem-
bers of a simulated soccer team with 11 players in order to achieve the team’s goal. 
By now, various machine learning methods such as Q-learning, genetic algorithms, 
decision trees, behavioral learning, to mention a few, have been used for training the 
soccer player agents [1]. To our knowledge, this research is the first attempt to use 
learning automata in cooperation in multi-agent systems. 

Because of the large state space in such a complex multi agent domain, it is vital to 
have a method for environmental states’ generalization. In this paper we have used 
the technique called the “Best Corner in State Square” for generalizing the vast num-
ber of states in agent’s domain environment to a few number of states by building a 
virtual grid in that environment [5]. Our experiments in [6] show that by using the 
“Best Corner in State Square” technique, each agent performs well in determining its 
own state and consequently, in determining the proper action in that state. 

We have also used 8 learning automata for each agent (one automata for each cor-
ner in the “Best Corner in State Square” [6]). Also, we have defined 8 actions for each 
learning automata; sending the ball to the center of one of agent’s 8 immediate 
squares as defined in the “Best Corner in State Square” technique [6]. 

In our simulations we used 4-3-3 formation for each team for organizing the eleven 
players in the field. We implemented some teams using fixed structure learning auto-
mata, some teams using variable structure learning automata, and a team using Q-
learning (as a team that uses another method of learning). Each of the above teams 
played against the “without learning” team. Note that the “without learning” team in 
our simulations is like the “learning” teams from every aspect (architecture, states, ac-
tions, and even team formation), except that it can’t learn from its previous experi-
ences. 

In our “learning automata” teams (fixed or variable), the agents determine their 
current state by the “Best Corner in State Square” technique [5]. Then the agent that 
possesses the ball performs the action that is advised by the corresponding automata 
in its state. The agent then percepts its action’s result, and gives itself a reward or a 
penalty depending on that result. 

In fact, our agent simply gives itself a reward if the ball has gone toward oppo-
nent’s goal and one of its teammates (or even itself, in case of a dribble) has chased 
the ball (as the result of its action). Similarly, the agent gives itself a penalty if the ball 
has gone toward its team’s goal and one of the opponent players has chased the ball 
(again as the result of its action). In all other cases, the agent does not give itself any 
reward or penalty and leaves its learned values unchanged. 

Note that we have simulated our agents to learn from zero (i.e. without any previ-
ous knowledge of the environment before starting the simulation). Also, we have used 
the agent itself for the judgement about its action’s results and this let us have what 
we call “distributed judgement”, again a multi-agent approach. 

We should point that we have used a memory depth of 3 for our fixed structure 
learning automata teams (L2N,2, G2N,2, Krylov, and Krinky). Also, for our variable 
structure learning automata teams, we have used (a = b = 0.1) for Lrp, (a = 0.1, b = 
0.0) for Lri, and (a = 0.1, b = 0.01) for Lrep and Full_ Lrep. For our Q-learning team, we 
have used the TPOT_RL introduced in [1]. 
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The simulation results show that the learning automata teams could defeat the 
“without learning” team after a few number of training plays.  Figure 1, shows one of 
the results of our simulations.  

Note that we have give our results based on the number of games played and each 
player in our team has a chance of 5 ball kicking (by average) in each game. More re-
sults are presented in [6]. 
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Fig. 1. The ratio of the average goals scored to the average goals received for each team (during 
3 test plays), after 15 training plays against the “without learning” team 

This figure shows that the variable structure learning automata teams have a better 
performance in defeating the “without learning” team and so exhibit higher ability of 
learning in this domain.  

We have also discussed the speed of convergence of our learning automata algo-
rithms used by the agents and suggested some techniques for increasing the speed of 
convergence in [6].  

Our simulations [5][6][7] show that learning automata perform well in order to 
have a cooperative team of agents in a complex multi-agent domain. 

3   Evaluation Tests for Teams Using Learning Automata 

In previous section, we investigated the efficiency of using learning automata in doing 
teamwork [5][6][7]. In this section we evaluate our learning method by running some 
simulated plays with one of the teams that had taken part in previous world RoboCup 
competitions. Also we investigate the efficiency of learning automata by changing 
some of the RoboCup SoccerServer2D parameters and observing their effects on our 
teams’ performance. It is necessary to note that our base code is the code of CMU-
nited98 team [1]. 

In doing so, we used the team Saloo 2001 [10] that was similar to our team from 
the agent individual behaviors’ (shooting the ball, etc.) point of view. We let our 
learning automata teams play against this team and observed the results in detail [6].  

In this section, we use the teams Full_ Lrep and also Lrep (both based on Lrep  
automata) for our simulations. Selecting these automata is because of the good results  
obtained for them in our previous simulations.  For more simulations the reader may  
refer to  [5][6][7]. 
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Also in this section, we investigate the performance of our learning method in the 
environment situations that are more difficult for the agents to adapt with (comparing 
the situations we have considered so far). 

At the end of this section, we have investigated the effects of different formations 
on the teamwork. 

In the first series of simulations, ten consecutive plays between team Lrep (learning 
from zero) and the “without learning” team were simulated.  Our goal was to investi-
gate the efficiency of our learning methods and to observe how our team performs 
against “without learning” team in the presence of noise. 

There are several parameters in the RoboCup SoccerServer2D that can be changed 
[3]. In the first series of simulations conducted, we study the effect of the “rand” pa-
rameters (which indicate the amount of noise values) in the RoboCup Soc-
cerServer2D. We changed the parameter “player_rand” from 0.1 to 0.2, the parameter 
“ball_rand” from 0.05 to 0.1, and at last the parameter “kick_rand” from 0.0 to 0.1. 
The first parameter mentioned enables us to add noise to the players’ movements and 
the second and the third parameters, add noise to the ball movement and kicking the 
ball, respectively. 

Figure 2 shows the cumulative results of this experiment. As the figure shows, by 
playing more games, the learning team, adapts itself to the situation more and more 
and increases its gap with the “without learning” team. This figure shows the effi-
ciency of the proposed learning method when the environment is noisy. 
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Fig. 2. The number of goals scored versus the number of goals received by the learning team 
during 10 consecutive training plays versus the team “without learning”, as the noise increases 

In the second series of simulations, we studied the effects of not using (although 
single-channel, crowded, and unreliable) communication facility provided by Ro-
boCup SoccerServer2D on the performance of the proposed learning method. We 
simulated 10 consecutive plays between team Lrep (learning from zero) and the “with-
out learning” team. Figure 3 shows the efficiency of our learning method and indi-
cates that by playing more games, the learning team, adapts itself with the situation 
and increases its gap with the “without learning” team. 

In third series of simulations, we eliminated 3 players from the left side of our 
team. They were player number 2 from the defense line (the left defense), player 
number 6 from the middle line (the left piston), and player number 10 from the for-
ward line (the left forward) of our team [6]. Our goal was to evaluate the function of 
our team in the case of failure in some of our agents. 
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Fig. 3. The number of goals scored versus the number of goals received by the learning team 
during 10 consecutive training plays versus the team “without learning”, without the communi-
cation facility between the agents 

We simulated 15 consecutive plays between team Lrep (learning from zero) and the 
“without learning” team (with 11 players). Figure 4 shows the results of this experi-
ment. Since each player in our team has a limited freedom around its special post in 
the field, our simulations show that this elimination causes our team’s left side to mal-
function. Note that we have used a 4-3-3 formation for our teams. 
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Fig. 4. The number of goals scored versus the number of goals received by the learning team 
during 15 consecutive training plays versus the team “without learning”, with eliminating 3 
players from the left side of the learning team 

As figure 4 shows, our learning team was able to overcome the absence of its play-
ers and adapted itself to fewer number of players and finally defeated the “without 
learning” team. 

In next series of simulations, we made some simulations between team Lrep (learn-
ing from zero) and team Saloo 2001 and the results of the first seven plays are gath-
ered in table 1. As the table shows, team Saloo 2001 could win all the first games with 
relatively high goal average (average scored goals of 5.7 versus average received 
goals of 0.3 in each play), and has an absolute better performance comparing to our 
team. We conducted more training plays in order to be able to defeat the team Saloo 
2001. So, we simulated 150 consecutive plays (equal to 25 hours) between the two 
teams.  
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Table 1. The statistics for the first 7 plays between team Lrep (learning from zero) and team Sa-
loo 2001 

52.6 The percentage of possession of the ball for the opponent team (Saloo 2001) 
47.4 The percentage of possession of the ball for the our team (Lrep) 
10.5 The percentage of ball movement in opponent’s 1/3 of the field 
47 The percentage of ball movement in the middle 1/3 of the field 

42.5 The percentage of ball movement in our 1/3 of the field 
185 The maximum continuous time that opponent team has the ball in possession 
112 The maximum continuous time that our team has the ball in possession 
14 The maximum number of continuous passes between the members of the 

opponent’s team 
8 The maximum number of continuous passes between the members of our 

team 

Table 2. The statistics The statistics for the last 7 plays (after 25 hours training) between team 
Lrep (learning from zero) and team Saloo 2001 

45 The percentage of possession of the ball for the opponent team (Saloo 2001) 
55 The percentage of possession of the ball for the our team (Lrep) 

24.5 The percentage of ball movement in opponent’s 1/3 of the field 
42 The percentage of ball movement in the middle 1/3 of the field 

33.5 The percentage of ball movement in our 1/3 of the field 
112.7 The maximum continuous time that opponent team has the ball in possession 
134.2 The maximum continuous time that our team has the ball in possession 
8.8 The maximum number of continuous passes between the members of the op-

ponent’s team 
12 The maximum number of continuous passes between the members of our 

team 

Table 3. Average wrong actions’ percentage for each agent of the team Lrep in the first 7 plays 
versus the last 7 plays (after 25 hours of training) when played against team Saloo 2001 

 Wrong actions’ percentage 
In the first 7 plays 40.1 
In the last 7 plays 24.6 

During these 150 simulated plays (that their overall results are shown in tables 1-3), 
our team could improve its performance and gradually move toward “not losing" and fi-
nally to continuously “win”. 

The statistics of the first 7 plays are given in table 1. Also, the statistics of the last 7 
plays are given in table 2. In these simulations, an average scored goals of 3.6 and an 
average received goals of 0.1 is obtained. In table 3, we give the average percentage 
of wrong actions done [6] by the learning team’s players in the first 7 plays and in the 
last 7 plays, for the sake of comparison.  

It is necessary to remind that our agents try to send the ball toward one of their 8 
directions, whichever seems to be better for achieving the team’s goal [5][6][7]. This 
action might (relative to position) seem as a pass, a dribble, a shoot, etc.  In team 
CMUnited98, there are two layers for multi-agent behavior (pass evaluation that is 
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trained offline using decision trees) and for team behavior (pass selection that is 
trained online using a method based on Q-learning which uses the output of the previ-
ous mentioned layer as the input) [1]. 

Our method for learning has combined the above two layers into one layer. We’ve 
done some offline training before our team plays against another team. We haven’t 
separated “pass evaluation” from “pass selection”. In fact we are dealing with actions 
that a player chooses and whether or not the action chosen is a right action. We aren’t 
involved with “pass” as a separate problem to solve. Instead, we have looked at the 
problem of “cooperation between our agents”.  

As an end to this research, we investigated the effects of different team formations 
on the agents’ cooperation. Note that for all the simulation presented so far we have 
used 4-3-3 team formation. We created similar teams (Lrep) but with different forma-
tions 4-4-2, 3-6-1, 4-3-3, 3-5-2, and 3-4-3 and then simulated a series of plays as a 
tournament between them. By tournament, we mean that we let each of the above 
mentioned teams play against all other teams and gathered the results. Figure 5 shows 
the results of these simulations [6]. 

As the results show it is very important to have a proper team formation in order to 
achieve a good team performance. Figure 5 shows that the highest number of goals 
scored was by the team with the formation 3-5-2 and the least number of goals re-
ceived was by the team with the formation 4-4-2. 
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Fig. 5. Scored and received goals by the learning automata teams (Lrep) for different team for-
mations playing against each other in a tournament (from left to right 4-4-2, 4-3-3, 3-6-1, 3-5-2, 
and 3-4-3) 

For simulations in which other learning automata such as “Estimator algorithm” 
[8] and “Discretized Pursuit Learning Automata” [9] are used, the reader may refer to 
[6]. For a discussion about the speed of convergence of the proposed method and also 
methods to improve the speed of convergence the reader may again refer to [6]. 

4   Conclusion 

We used learning automata for successful production of a series of actions for agents 
that were members of a team, such that the resulting team could act well in multi-
agent, adversarial, noisy, real-time, and most important collaborative environments.  



 Evaluating Learning Automata as a Model for Cooperation 417 

The methods introduced are general methods that can be implemented, applied, 
and used in other domains or other test-beds with minor changes. 

At last, we evaluated the efficiency of learning automata in cooperation among 
agents that are seeking a common team goal by implementing some evaluation tests 
and observing the results.  

Our experiments, showed that learning automata adapts itself well with major and 
minor changes in the environment parameters and also in hard situations such as mal-
functioning of some of the agents in the team and in situations that agents’ sense/act 
abilities have a lot of noise involved. 

References 

1. Stone, P.: Layered Learning in Multi_Agent Systems, PhD thesis, School of Computer 
Science. Carnegie Mellon University (December 1998) 

2. Kitano, H. (ed.): RoboCup-97: Robot Soccer World Cup I. Springer, Heidelberg (1998) 
3. Andre, D., Corten, E., Dorer, K., Gugenberger, P., Joldos, M., Kummenje, J., Navaratil, 

P.A., Noda, I., Riley, P., Stone, P., Takahashi, R., Yeap, T.: Soccer server manual, version 
4.0, Technical Report RoboCup –1998-2001, RoboCup (1998) 

4. Narendra, K.S., Thathachar, M.A.L.: Learning Automata: An Introduction. Prentice Hall, 
Inc., Englewood Cliffs (1989) 

5. Khojasteh, M.R., Meybodi, M.R.: The Technique “Best Corner in State Square” for Gen-
eralization of Environmental States in a Cooperative Multi-agent Domain. In: Proceedings 
of the 8th annual CSI computer conference (CSICC’ 2003), pp. 446–455, Mashhad, Iran 
(February 25–27, 2003) 

6. Khojasteh, M.R.: Cooperation in Multi-agent Systems using Learning Automata, M.Sc. 
thesis, Computer Engineering Faculty, Amirkabir University of Technology (Tehran Poly-
technic), Tehran, Iran (May 2002) 

7. Khojasteh, M.R., Meybodi, M.R.: Using Learning Automata in Cooperation among Agents 
in a Team. In: Proceedings of the 12th Portuguese Conference on Artificial Intelligence, 
IEEE Conference Publication Program with ISBN 0-7803-9365-1 and IEEE Catalog 
Number 05EX1157, University of Beira Interior, pp. 306–312, Covilhã, Portugal (Decem-
ber 5th-8th, 2005) 

8. Thathachar, M.A.L., Sastry, P.S.: A New Approach to the Design of Reinforcement 
Schemes for Learning Automata, IEEE Transactions on Systems, Man, and Cybernetics, 
Vol. SMC-15(1) (Janaury/February 1985) 

9. Oomen, B.J., Lanctot, J.K.: Discretized Pursuit Learning Automata. IEEE Transactions on 
Systems, Man, and Cybernetics SMC-20(4) (July/August 1990) 

10. Noda, I.: Team Description: Saloo, AIST & PREST, Japan (2001) 



Cooperative 3-Robot Passing and Shooting in

the RoboCup Small Size League

Ryota Nakanishi1, James Bruce2, Kazuhito Murakami1,
Tadashi Naruse1, and Manuela Veloso2

1 Aichi Prefectural University, Nagakute-cho, Aichi, 480-1198 Japan
2 Carnegie Mellon University, Pittsburgh PA 15213, USA
is031032@cis.aichi-pu.ac.jp, bruce@andrew.cmu.edu

Abstract. This paper describes a method for cooperative play among
3 robots in order to score a goal in the RoboCup Small Size League. In
RoboCup 2005 Osaka, our team introduced a new attacking play, where
one robot kicks a ball and the other receives and immediately shoots
the ball on goal. However, due to the relatively slow kicking speed of
the robot, top opponent teams could prevent successful passing between
robots. This motivates the need for more complex play, such as passing
around to several robots to avoid the opponents’ passing defense. In this
paper we propose a method to realize such a play, i.e. a combination play
among 3 robots. We discuss the technical issues to achieve this combina-
tion play, especially for a pass-and-shoot combination play. Experimental
results on real robots are provided. They indicate that the success rate of
the play depends strongly on the arrangement of the robots, and ranges
from 20 % to 90 % in tests with an opponent goalkeeper which stands
still.

1 Introduction

Year by year, the skill of the robot systems in the Small Size League is growing
higher and higher. Cooperation between robots has become a necessary technol-
ogy in the Small Size League. In these years, passing between two robots has
become a stable technology[1]. Last year, in RoboCup 2005 Osaka, our team[2]
performed a new attacking play, that is, one robot kicks a ball and the other
receives and shoots the ball with no delay. It is an efficient play and is an in-
teresting technique, but due to the rather slow kicking speed by our robot, top
opponent teams could prevent the ball from passing between our robots. Kick-
ing the ball faster makes it possible for a successful passing play, but the vision
processing and physical robot limits bound the maximal speed of the ball for a
reception to work. In order to prevent the opponent robots from stopping the
play, a bit more complex play such as passing around between the robots is
needed.

One method to achieve such a play is a combination play among 3 robots.
In the other words, if a robot A tries to pass the ball to a robot B and an
opponent robot intervenes on the pass line, then the robot A should pass it to

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 418–425, 2007.
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a robot C, the robot C just kicks it to the robot B without holding it and the
robot B shoots on the goal (or some other target). We call this a 1-2-3 shoot.
Cooperation between 3 robots has several technical issues, mainly the following:

– where should three robots position on the field?
– how is the second robot controlled?

In this paper, we discuss the above issues to achieve a successful 1-2-3 shoot play,
and show with experimental results how the play can be carried out effectively
with real robots.

2 Cooperation of Multiple Robots

2.1 Why Is Cooperation Necessary?

Humans can easily adapt themselves to suit the environment where they live,
while a robot is typically vulnerable to changes in the environment due to its
static policies. If a robot could gain the adaptation ability of a human, the robot
could be used more often in situations of the human-robot cooperation. We feel
that multiple robots cooperating in response to an external opponent is a useful
step in that direction. So, in this paper, we discuss the cooperation among robots
employed in the RoboCup Small Size League. More specifically, we discuss the
methodology for achieving the goal of tight cooperation of three robots.

This situation occurs when a robot holding the ball has its direct shot on
the goal blocked by opponent robots, making it difficult to achieve a goal on its
own. The possible actions to do next are either moving somewhere else while
dribbling the ball, or passing the ball to a teammate. According to the rules
of the RoboCup Small Size League, it is not possible to move a long distance
while dribbling the ball. Therefore, it is advantageous to achieve the goal with
a combination play between robots that uses pass plays aggressively.

2.2 What Kind of Cooperation Do We Achieve?

A primary form of cooperation used in this paper is what we call a direct play,
where the robot changes the direction of the ball’s velocity without holding or
dribbling the ball, but by kicking the ball in a new direction as soon as it arrives.

The direct play makes it possible to achieve continuous passing among team-
mate robots without stopping the ball’s motion. This results in a situation where
the opponent robots have a difficult time intercepting the ball and consistently
defending the goal. Moreover, in a real game, since the opponent robots are likely
to move in the direction of preventing the teammate robot holding the ball from
shooting on the goal, the second teammate robot (receiving robot) can get the
ball from the first robot and achieve the goal relatively easily.

The next kind of cooperation is a 1-2-3 shoot, which we define as a play
where three robots (A, B, C) cooperate and the robot A who is holding the ball
kicks the ball toward robot B, and robot B kicks the ball toward robot C by
a direct play and finally the robot C shoots on the goal. If successfully carried
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out, this play makes it possible to achieve a goal with high probability since the
fast handling of the ball and direction changes make it difficult for the opponent
robots to follow the ball.

3 Achieving a Direct Play

The basis of the 1-2-3 shoot play is a direct play. This section describes an
algorithm to achieve the direct play. The direct play is played by two robots (A,
B); the robot A holding the ball kicks the ball toward the robot B, and the robot
B kicks the coming ball toward in a different direction without holding it. An
algorithm to achieve the direct play is as follows:

[Direct play algorithm ]
Let A be a robot holding the ball and B be a cooperating robot.

Step 1. The robot B moves to an open location that has an open shooting line
to the goal (or a pass line to another robot). That is, in the shoot line case,
the robot B moves to a position where there are no opponent robots on the
line that connects the robot B and the goal (see position Bt1 in figure 1). If
such a position doesn’t exist, it looks for the next chance.

Step 2. The robot A kicks the ball toward the robot B. No opponents are
assumed to be blocking the direction that the ball follows.

Step 3. Measuring the ball speed using the vision system, calculate the position
and the time that the ball meets the robot B.

Step 4. The robot B moves to Bt2 meeting at exactly time t2. (Figure 1)
Step 5. The proximity sensor of the robot B detects the moment that the ball

touches to the robot B and kicks the ball at the moment.

Fig. 1. Direct play Fig. 2. An example dominant region

4 Achieving a 1-2-3 Shoot

To achieve a 1-2-3 shoot, the teammate robots should have an advantage that a
pass is possible between them without being intervened by the opponents. The
dominant region method [3] provides a method for calculating a solution to this
problem.
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4.1 Dominant Region Method

The dominant region method is a kind of Voronoi diagram. It is calculated with
respect to two agents, one of which is a teammate and the other which is an
opponent. The diagram divides the area of the soccer field into two regions, where
one region is the one that the teammate can get to faster than the opponent,
while the other is the one that the opponent can get to faster.

4.2 Calculation of the Dominant Region

Figure 2 shows an example of the dominant region. The shaded area is a dom-
inant region for the teammate robot and the other is for the opponent. In the
following, we show how to compute the dominant region.

Let v1 and a1 be an initial velocity and an acceleration of the teammate
robot, and v2 and a2 be those of the opponent. Let (x1, y1) and (x2, y2) be the
current positions of the teammate and opponent robot, respectively. Then, for
given position (x, y), the distance between each robot and the given position and
arrival time are given by the following

Li = viti +
1
2
ait

2
i =

√
(x− xi)2 + (y − yi)2, (1)

i = 1(teammate), i = 2(opponent)

Solving Eqs (1) with respect to t1and t2, respectively, we obtain,
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√
v2
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√
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ai
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In case of zero initial velocity.
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2 − y2
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Equation (3) expresses the border between the regions.
The dominant region can be generalized to multiple teammates and oppo-

nents. It is calculated by considering all pairs of teammates and opponents,
and for each location the minimum time value is taken to construct the overall
diagram.

4.3 Pass Play and Dominant Region

First, we discuss a direct play based on the dominant region method. Figure 3
is a typical case of such a situation.

The teammate B has an open line from teammate A, as well as an open line
to the goal. Teammate A can thus pass the ball to teammate B. The dominant
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Fig. 3. Typical attack positioning Fig. 4. Dominant region of figure 3

region of the figure 3 is given by the figure 4. In the Figure, each solid curve
shows a dominant boundary between one of the teammate robots and one of
the opponent robots. Shaded area is the dominant region for the teammates. It
is clear from the figure 4 that the opponent can easily intercept the ball if the
teammate A kicks the ball to the teammate B too slowly for the direct play.

On the other hand, as shown in figure 5, three teammates make a dominant re-
gionwhich canpass around theopponent robots inas shown in thedominant region.

The dominant region method is useful as a criterion for whether a pass should
be done or not. In a real game, we might weaken this criterion slightly. However,
we feel it can still act as a good criterion for judging whether to a direct play
should be done or not.

Fig. 5. Example of cooperation among 3 ro-
bots

Fig. 6. 1-2-3 shoot position

4.4 Algorithm for the 1-2-3 Shoot

When should we play a 1-2-3 shoot? The following is a basic procedure to select
the 1-2-3 shoot play.

[Selection procedure of action]
Let A be a robot holding ball, and let B and C be cooperating robots.

if (Robot A have a shoot line)
{ Robot A shoots.} else {
Search open space which is able to make shoot line.
Robot C moves to the open space.
Calculate dominant region.
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if (Pass line is in the dominant region of the teammate)
{Direct play between robots A and C.} else {
Robot B moves to the appropriate position.
1-2-3 shoot play among robots A, B and C.

}
}

When the 1-2-3 shoot play is selected, the following algorithm is executed.

[1-2-3 Shoot algorithm ]
Let A be a robot holding the ball, and B and C be cooperating robots.
Assume that the positions of the robots are shown in figure 5.

Step 1. The robot C moves to the open space that has a shoot line to the goal.
(The same movement as Step 1 in the direct play algorithm)

Step 2. If the pass line crosses the opponent dominant region, the robot B
moves to the vertex of the near equilateral triangle as shown in figure 6. As
a result, a pass line is made in the teammate dominant region. (If this is not
the case, a re-schedule should be done.) The robot B turns to the robot C.

Step 3. The robot A kicks the ball to the robot B, then the robot B kicks it to
the robot C according to the direct play algorithm.

Step 4. The robot C kicks the ball toward the goal mouth.

5 Empirical Study

We implemented the 1-2-3 shoot algorithm in our system and measured the
success rate of the 1-2-3 shoot under the condition that an opponent goalkeeper
stands still, as a first step toward usage in a real game.

5.1 Experimental Environment

Figure 7 shows the robots (with and without cover) we employed in the exper-
iment. The robot consists of 4 omnidirectional wheels with diameter 60mm, 4
motors to drive the wheels, Hitachi’s SH2 control processor and its peripheral
circuits, dribbling and kicking devices, infrared proximity sensor and radio com-
munication device. The robot moves at the maximal speed of 150cm/sec. During
these experiments the robot is limited to a speed of 100cm/sec.

The host processor system consists of the Athlon64 3500+ CPU running at
2.2 GHz, 512 MB memory and Debian Linux as the operating system. The
host processor system controls the robots by sending commands using the radio
communication system. We developed a 1-2-3 shoot program on the system.

5.2 Experimental Results

It is difficult for the robot to kick a moving ball from a direction perpendicular
to the initial velocity of the ball while it is rather easy to kick it from the parallel
direction to the ball line. So we have tested two cases shown in Figures 8 and 9.

For each case, we ran 20 trials. The success rate of the 1-2-3 shoot is shown
in the Table 1.
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Fig. 7. Appearance of the robot Fig. 8. Experiment 1

Fig. 9. Experiment 2 Fig. 10. Improvement of control of robot B

Table 1. Success rate of the 1-2-3 shoot play

success fail rate of success (%)

experiment 1 (figure 8) 4 16 20

experiment 2 (figure 9) 12 8 60

experiment 3 (figure 10) 18 2 90

5.3 Discussion

In addition to the direction between the line on which the ball moves and the
kicking direction, the distance between two robots that pass through are im-
portant factor to raise the success rate, since the longer the distance the easier
the control of the robot becomes. This is because the receiving robot has time
to move to the point where the ball comes, compared to a short distance pass.
However, the longer distance also gives the opponents a better chance for an
interception. Therefore, the positioning shown in figure 6 with long distance
should be searched for. Such a strategy is an interesting future research topic.

In the previous implementation, the robot B (in Figures 8 and 9) moves on
the pass line back and forth and adjust the kick line to the robot C. However, the
success rate did not rise. We improved the control of the robot B as we let the
robot move left and right on the line perpendicular to the kick line to the robot
C as shown in figure 10. The success rate raised 90 % by this improvement. The
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reason why the improvement is achieved is that, by the left and right movement,
we can keep the distance long enough and form V-shaped kicking lines.

6 Concluding Remarks

We have developed a cooperative skill involving 3 robots, called 1-2-3 shoot, to
perform a pair of passes and a goal shot, which is based on the direct play from
our previous system and the dominant region for aiding in decisions. This is a
highly cooperative play and one of the useful skills for the future of the RoboCup
Small Size League, since the goal block skills of opponent robots makes it difficult
to achieve a goal by a single robot alone.

Experimental results show that the success rate of the play ranges from 20 %
to 90 % depending on the positioning of the robots. Though the success rate
varies in wide depending on the positioning, it is important to have shown the
continuous cooperation among 3 robots. A successful 1-2-3 shoot play could have
a much higher scoring probability than a direct shot, making it worthwhile even
if the play is not successfully executed on every attempt. From the experiment,
the varying success rate raises the next problem of how best positioning can
be achieved. Moreover, a way of effective selection among many skills must not
be found by analyzing a game, choosing between plays such as a direct shot, a
direct passing play, and the 1-2-3 shoot play.
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Abstract. In multi agent environments or systems equipped with ar-
tificial intelligence it is often difficult to obtain the function or method
which led to a particular behavior that is noticeable from outside. How-
ever, this information is crucial if not necessary to optimize the agents
behavior. In the RoboCup 3D simulation league this dilemma becomes
obvious when replaying logfiles of a game that was simulated before. The
3D soccer simulation league monitor (rcssmonitor-lite) is restricted with
regards to replaying logfiles.

This paper describes the concept and the implementation of improve-
ments for the logplaying and analyzing abilities of the monitor. The idea
is to provide a tool that is able to assist developers to detect problems
of their agents both in single and cooperation mode.

1 Motivation

In the past 10 years the simulation league was two dimensional, all players and
even the ball moved on the ground. During this time numerous sophisticated
tools were created for analyzing the simulated games such as Logalyzer[1] or
Team Assistant[2].

The Logalyzer provides information about detected actions like passes and
several visualizations for the collected data about the game. The Team Assistant
is able to display information provided via agent logfiles along with statistics
about detected actions. The Team Assistant is also mentioned in the 2002 league
summary[3] as the winner of the presentation tournament.

In 2003, the 3D simulation was introduced including basic tools to view and
replay the simulated game. The tools used in 2D can not be used in 3D simula-
tions because of the lack of one dimension and a different format of the logfiles.

The current monitor is capable of showing the current simulated game (at
current time) and of replaying monitor logfiles. The replaying mode can be used
to watch previously simulated games again. There is also a ”single step mode”
which provides slow motion replay.

When trying to develop a behavior for an agent or verifying behaviors acquired
by machine learning methods it is hard to determine which methods or functions
led to the actions observed in the game. This information is crucial when trying
to debug or improve the agents in their behavior and collaboration. Especially
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in the case of collaboration it is tedious and time-consuming to check what
each agents intention is. This is caused by the fact that every logfile has to
be searched for the right record of the actual time displayed in the monitor by
hand. Additionally, the agent logfiles are not numbered according to the uniform
numbers of the agents which complicates finding the desired logfile.

The aim of this work is to create a logfile player and analyzer for the 3D
simulation league with new functions allowing to analyze the agent’s behavior
and collaboration with other agents. The importance of the evaluation of agent
teamwork has been addressed in many papers for 2D simulation [4][5] and [6].

2 Related Work

Analyzing tools in 3D simulation are rare, most of the development efforts that
have been done in the past years were made in the conception and development
of the 3D simulation server. Even in the 2005 soccer simulation development
competition just one tool was introduced, which is the ”Persian Robotics Ana-
lyst”1.

The Persian Robotics Analyst (PRA) offers information about ball possession,
successful and unsuccessful passes and about good and bad actions.

There is also an unpublished ”Studienarbeit”[7] (student project) at the Uni-
versität Koblenz which has been worked on in parallel to this work. There are
some common functions with this work such as the possibility of agents to draw
into the displayed scene or the displaying ability of text messages according to
the current scene. That tool also provides the detection of (double-) passes, goal-
shots, dribbling and their outcome. Also ball contacts and tackling are detected.
Statistics about these detected events are written into a text file. Commenta-
tory text messages can be displayed according to the current detected situation.
These comments were the main aspect of this work.

3 Requirements

In consultation with other agent developers, providing an easy and clear way to
gather information about what the agent intends and how the world looks like,
according to the agent, is essentially needed.

The following features are judged beneficial and essential to debug handwrit-
ten behaviors and to verify the decisions of learned behaviors.

3.1 Features

While analyzing a special situation of the game it is obvious that forward and
backward replay in different speeds is useful. With this possibility the situation
can be analyzed again without starting the game from the beginning until the
desired situation is reached.
1 http://www.persianrobotics.net

http://www.persianrobotics.net
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To gain knowledge of the agents intentions in an situation an output of agents
logfile according to current time is needed.

In addition to the logfile displaying it is valuable to enable the agents to draw
information directly into the displayed scene, like a line from the agent to the
position it intends to move to.

Also filtering the logfile output may be helpful to display only those informa-
tion needed by the developer. This way only those information provided by the
current developed behavior could be displayed.

New camera positions, like birdview which resides directly over the agent of
interest, may be beneficial.

When using the single step mode of the monitor displaying the ball’s and
player’s movements for some time forward can be an improvement, the developer
could see the next movements without proceeding forward in scene display.

A Grafical User Interface would be useful to grant an easy access to all func-
tions of the monitor/ logplayer. This way nobody would have to remember all
the keyboard shortcuts.

3.2 Additional Features

Displaying the offside line will become necessary when the 0.4 version of the sim-
ulation server becomes official (probably RoboCup 2006, not for qualification),
which will include the offside rule.

In some situations it could be difficult to distinguish on which side of the
offside line an agent is, so marking agents that are in an offside position if the
ball would be played to them may be a good feature.

Detecting events and the number of their occurrence may provide essential in-
formation about what parts of the agent have to be worked on (i.e. if passes often
fail there is some space for improvements). Those events are: pass success/fails,
ball dribbling, lost balls, goal shot (success, out, intercepted) and kick out.

By detecting event sequences more information can be extracted such as lost
balls after dribbling.

Plotting graphs also may provide beneficial knowledge. If the ball is in the
own half most of the game, the agents may play too defensive. Or if they move
all the time their batteries may run low. Useful graphs could be: goal distance,
velocity and ball possession.

4 Implementation

When talking about a logplayer or a monitor this essentially means the same
program in two different operation modes, logplayer means that the program
replays logfiles of a previously simulated game, montior that a game that is
currently simulated is displayed.

4.1 Features

Forward and backward replay in different speeds is achieved by reading and pars-
ing the logfiles at the beginning of the execution of the logplayer into a new data
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structure with the result that playback is simply done by iterating through the
(previously parsed) gamestates. Playback is much faster now, it has to be slowed
down artificially leading to the opportunity of different playback speeds.

Output of agent logfiles according to current time can be done if the agent
provides time information for its output in its logfile. The times according to
the various agent outputs is also parsed at startup. When displaying, the fitting
record of the agent logfile is found using the time currently displayed by the
monitor.

The rcssmonitor-lite does not really know what the numbers of the agents
(0-21) according to their uniform numbers are, this makes it hard to display the
right logfile, only if the agent writes its team name and uniform number into its
logfile, the right logfile is displayed.

In order to Enable the agents to draw information directly into the displayed
scene the agent’s logfile record for a given time is separated into ”draw com-
mands” and plain text. Draw commands are not displayed as text output. They
are parsed according to the kind of the command and the desired action is exe-
cuted (fig. 1).

Fig. 1. Output of an agent

Implemented draw commands are: A circle which draws a circle at the given
position with a given radius. Lines can be drawn from a starting point to a target
point, if a length is given the line starts at the start point into the direction of the
target point but stops at the length. Text can be displayed at a given position
in the 3D scene. Ground rectangles colorizing the ground in color given though
the color command which changes the color of all further items drawn.

In case of filtering the logfile output the agent just has to name a filter himself
and use it. The filter is detected while parsing the logfile and is made selectable
for the developer.
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New camera positions were implemented, most of them are adjustable in a
way (camera height, distance or point to look at).

Displaying the ball’s and player’s movements for some time forward is solved
as lines in the color of the team or white for the ball. The length of the line (how
far into the future movements are shown) can be adjusted. The agents track
(movements throughout the whole game) can also be displayed, this track can
be colored according to the agents movement speed.

The Grafical User Interface (GUI) has different layouts according to the cur-
rent usage. When the program is used as monitor, game control buttons are
displayed (drop ball, kickoff, kickoff side). The controls for logfile displaying are
shown when used as logplayer.

4.2 Additional Features

For plotting graphs the desired informations are piped into the gnuplot2 program.
Information that can be displayed this way are ball position, player position,
distance to opponent goal and player speed.

4.3 Other Features Derived from the Implementation

The new data structure of the program allows the user to use single step mode,
for- and backward even when watching the game ”live”. The server is contin-
uing the simulation in background, even if the monitor is in single step mode.
Functions that are independent from agent logfiles, such as movement display,
can be shown in this mode.

5 Results

The logfile output is useful to understand the agents behavior. This program
has replaced the lite monitor that comes with the simulation server within the
Virtual Werder team, which started the development of this program. The agent
may communicate its decisions to the developer. (i.e. which role it plays, which
behavior of the role it has chosen and what action it selected (fig. 1, 2)).

In occurrence of an error in the ball movement prediction the agent was
changed to display its data about the ball (its position and movement vector
according to the agents world model). This way the error became visible. The
line representing the movement vector pointed straight upwards, no matter in
which direction the ball was moving. This way the error was resolved very quickly,
the x and y component of the movement vector were not written properly into
the world model. Without displaying that data, localizing the error would have
taken much longer.

When creating a behavior that covers an opponent, it is mostly wanted that
only one player covers an opponent at a time. To verify the opponent selection

2 http://www.gnuplot.info

http://www.gnuplot.info
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Fig. 2. Covering output

the agent can simply draw a line from himself to the opponent it intends to
cover or include the chosen position into its drawings. When displaying the
draw commands of all agents it becomes visible if something is wrong with the
selection or the position the agent has chosen to move to (lines connecting the
agent with the one he has chosen to cover, the circle in middle of the line is the
cover position; fig.2). Especially in this case it is useful to display all drawings
of the agents to recognize errors in team collaboration.

The new camera features are also useful for verifying behaviors. For example
in case of optimizing the ball approaching, a good position for the camera is
directly over the agent looking down and moving with it. When checking the
goalie behavior a view from behind the goal looking to the ball is a good position
for the camera. The view from the side moving left and right with the selected
object will be useful to develop offside rule handling.

In case of the ball approach the display of the future movements in addition
to the camera view becomes valuable, the developer may directly see possible
failures i.e. the agent takes a way that is too long or is moving around the ball
too close or far away (fig. 3).

Fig. 3. Approaching the ball
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The ability of reverse playback of the game gives the opportunity of analyz-
ing the same scene again without watching the game from the beginning. Also
slight transitions in action selection may be analyzed without much interfer-
ence. This feature in addition to the display of agentlogs (in both ways, text and
drawings) gives the opportunity to understand the agents decisions according
to its own world model, and not only the real simulated world displayed in the
monitor.

The ability of delayed playback and direct analyzing of a currently simu-
lated game provides a real speedup in development in comparison to other tools.
Simulating a 3D game may take up to 10 or 20 min which is a long time the
developer has to wait in order to in example analyze the previously mentioned
ball approach (fig. 3) in slow motion. With the delayed playback that situation
may be analyzed while the game is still simulated in background. After the an-
alyzing was finished the game may be watched time shifted in normal speed or
the replay may be fastened to reach the most recent scene.

The track display in the 3D scene along with the plotting opportunities were
giving the developer essential information about the agents or ball movements
throughout the game. This way the developer can find agents which are not
moving much or fast, which may point to a suboptimal formation or behavior.

By viewing the ball movement plot (fig. 4) of the 2005 final between Brain-
stormers3D (left) and Aria2005 (right) it is obvious that the ball was mostly
located on the left side of the field and though that Aria2005 dominated the
game. It also looks like Aria2005 is able to cross the ball and the Brainstorm-
ers3D are not. Aria2005 won this match 2:0.

Fig. 4. Plotted ball position
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6 Conclusion

The logplayer can be a useful tool when trying to resolve strange behavior of
an agent or verifying the proper work of the agent. The Virtual Werder team
resolved some problems within their code using the logplayer. These resolved
problems are namely the examples given in section 5. The resolving of these
problems would have taken longer without the possibility of drawing or text
output.

Due to the parsing at the beginning the startup of the logplayer takes longer
in comparison to the lite monitor/ logplayer, but the playback is much faster
and the monitor does not have to be restarted to watch the game again.

On the other hand the agent logfiles are growing rapidly in size if a lot of
draw commands are written to them which also leads to high memory usage
after startup.
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Abstract. In the RoboCup small-size league, most teams calculate the robots' 
positions by means of a camera that is mounted above the field as well as 
different kinds of artificial intelligence methods that run on an additional PC. 
This processing loop induces various time delays, which require forecasting 
routines, if more accurate behaviors are desired. This paper shows that by 
utilizing a combination of a neural network and local sensors, the robot is able 
to estimates its actual position quite accurately. This paper furthermore shows 
that the learning procedure is also able to compensate for slip and friction 
effects that cannot be observed by the local sensors. 

1   Introduction 

RoboCup small-size league is of particular interest, because it combines engineering 
tasks, such as building robot hardware and designing electronic components, with 
computer science applications, such as localization of objects, finding the robots’ 
positions, and calculating the best path through obstacles. Another interesting 
challenge emerges from the requirement that all team members have to communicate 
with each other in order to develop a cooperative behavior. Research on artificial 
intelligence may help find the optimal solution in all of these areas.  

In the small-size league, two cameras mounted approximately four meters above 
the floor observe the field of four by five meters in size on which two teams 
consisting of five robots play. The processing sequence starting at the camera image 
and ending at the robots executing their received (action) commands suffers from 
significant time delays. These time delays have the consequence that when receiving a 
command, the robot’s current position does not correspond to its position in the 
camera image. Consequently, the actions are either inaccurate or may even lead to 
improper behavior in the extreme case. For example, the robot may try to kick the ball 
even though it is not in reach anymore. Section 2 discusses how the position 
correction can be further improved on the robot itself and how local sensors can 
alleviate this problem to a large extent.  

Fig. 1 shows the omnidirectional drive commonly used by most robots of the 
small-size league. As can be seen, an omnidirectional drive consists of three wheels, 
which are twisted to each other by 120 degrees. Other drives with different degrees or 
four wheeled robots are also present in the small size league. This drives has the 
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Fig. 1. An omnidirectional drive with its calculation model while the robot is driving in 
direction of F3 and wheel 2 and 3 compensate the rotation with F1y equal to -F2y.and F1+F2=-F3 

advantage that a robot can be simultaneously doing both moving forward and 
spinning around its own central axis. Furthermore, the particular wheels, as shown on 
the left-hand-side of Fig. 1, yield high grip in the rotation direction, but almost-
vanishing friction perpendicular to it. The specific orientation of all three wheels, as 
illustrated on the right-hand-side of Fig. 1, requires advanced controllers and exhibit 
higher friction than standard two-wheel drives. The latter requires sophisticated servo 
loops and (PID1 ) controllers. Depending on the carpet and the resulting wheel-to-
carpet friction, one or more wheels may slip. As a consequence, the robot leaves its 
recalculated moving path. To this end, Section 3 employs a back-propagation network 
directly on the robot in order to learn the robot’s specific slip and friction effects. 
Section 3 concludes this paper with a brief discussion including possible future 
research. 

2   Local Sensors 

As has been outlined in the introduction, the latency caused by the imaging-
processing-and-action-generation loop leads to non-matching robot positions. As a 
measurable effect, the robot starts oscillating, turning around the target position, 
missing the ball, etc. An approach to solve the latency problem is to do the 
compensation calculation on the robot itself. The main advantage of this approach is 
that the robot's wheel encoders can be used to obtain additional information about the 
robot’s actual behavior. However, since the wheel encoders measure only the wheel 
rotations, they cannot sense any slip or friction effects directly. 

2.1   Latency Time 

RoboCup robots are real-world vehicles rather than simulated objects. Therefore, all 
algorithms have to account for physical effects, such as inertia and delays, and have to 
meet real-time constraints [5]. Because of the real-time constraints, perfectly exact 
                                                           
1 PID is the abbreviation of proportional-integrate-differential. For further detail, the interested 

reader is referred to [4]. 
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algorithms [1] would usually require too much a calculation time. Therefore, the 
designer has to find a good compromise between computational demands and the 
precision of the results [2]. In other words, fast algorithms with just a decent precision 
are the method of choice here. 

For the top-level control software, which is responsible for the coordination of all 
team members, all time delays appear as a constant-time lag element. The 
consequences of the latency problem are further illustrated in Fig. 2. 

   t   0   true position while  
image grabbing  

t 2  true position when data   
received by the robot  

ball  

t   1    true position when 
image is analyzed 

calculated position after 
image analysis 

position send to the  
robot 

 

Fig. 2. Due to the latency problem, the robot receives its commands at time t2 , which actually 
correspond to the image at time t0 

Fig. 2 illustrates the various process stages and corresponding robot positions. At 
time t0, the camera takes an image with the robot being on the left-hand-side. At the 
end of the image analysis (with the robot being at the old position), the robot has 
already advanced to the middle position. At time t2, the derived action commands 
arrive at the robot, which has further advanced to the position 2t to the right-hand-
side. In this example, when being in front of the ball, the robots receive commands 
which actually belong to a point in time in which the robot was four times its body 
length away from the ball. 

2.2   Experimental Analysis 

In order to compensate for the effects discussed above, the knowledge of the exact 
latency time is very important. The overall latency time was determined by the 
following experiment: The test software was continuously sending a sinusoidal drive 
signal to the robot. With this approach, the robot drives 40cm forward and than 40cm 
backwards. Then, the actual robot position as was seen in the image data was 
correlated with the control commands. As Fig. 3 shows, the duration of the latency 
time is seven time slots in length, which totals up to 234ms with 30 frames send by 
the camera. 
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Fig. 3. Detection of the Latency time in the control loop 

It might be worthwhile to mention here that for technical reasons, the time delay of 
the DECT modules is not constant; the jitter is in the order of up to 8ms. The values 
given above are averages over 100 measurements. 

2.3   Increased Position Accuracy by Local Sensors  

In the ideal case of slip-free motion, the robot can extrapolate its current position by 
combining the position delivered by the image processing system, the duration of the 
entire time delay, and the traveled distance as reported by the wheel encoders. In other 
words: in case slip does not occur, the robot can compensate for all the delays by storing 
previous and current wheel tick counts. This calculation is illustrated in Fig. 4. 
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Fig. 4. Extrapolation of the robot’s position using the image processing system and the robot’s 
previous tick count 

Since the soccer robots are real-world entities, they also have to account for slip 
and friction, which are among other things, nonlinear and stochastic by nature. The 
following section employs back-propagation networks to account for those effects. 

3   Embedded Back-Propagation Network 

Due to the resource limitations of the robot hardware, the number of nodes and 
connections that the robot can store on its hardware is quite limited. From a hardware 
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point of view, the memory available on the robot itself is the major constraint. In 
addition to the actual learning problem, this section also addresses the challenge of 
finding a good compromise between the network’s complexity and its processing 
accuracy. 

A second constraint to be taken into account concerns the update mechanism of the 
back-propagation learning algorithm. As is well known, back-propagation temporarily 

stores the calculated error sums as well as all the weight changes ijwΔ  [3]. This leads 

to a doubling of the memory requirements, which would exhaust the robot’s onboard 
memory size even for moderately sized networks. This section stores those values on 
the central control PC and communicates the weight changes by means of the wireless 
communication facility. 

3.1   Methods 

As has been discussed above, the neural network has to estimate the robot position 
also when slip and/or friction occur. Since the coding of the present problem is but 
trivial, this section provides a detailed description of it. In order to avoid a 
combinatorial explosion, the robot is set at the origin of the coordinate system in 
every iteration. All other values, such as the target position and orientation, are 
relative to that point. 
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Fig. 5. And example configuration for the slip and friction compensation. For details please see 
text. 

Fig. 5 illustrates an example configuration. This configuration considers three 
robot positions labeled “global”, “offset”, and “target”. The first robot corresponds to 
the position as provided by the image processing system. The second position, called 
“offset”, corresponds to the robot’s true position, and hence includes the traveled 
distance during the time delay. The third robot symbolizes the robot’s target position. 
As has already been mentioned above, the neural network estimates the robot’s true 
positions (labeled by “offset”) from the target position, the robot’s previous position, 
and its traveled distances. The relative values mentioned above are scaled such that 
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they fit into -40 to 40, and all angels are directly coded between 0 and 359 degrees. 
With all these values the input layer has to have seven nodes. 

Due to the limited calculation capabilities of the microcontroller, all values of the 
neural network may be stored in integer quantities. In this format, every operation on 
the microcontroller is done in two processing steps because of the mathematical 
coprocessor. For this, the feed forward network calculation (FFN) on the robot must 
be adapted. To this end a simulation of different FFNs on a PC provide important 
criteria for the implementation on the robot.  

Fig. 6 compares the performance of different FFN architectures. All experiments 
where done with 400 pre-selected training patterns and 800 test patterns. The initial 
learning rate was set to 1.0=η . During the course of learning, the learning rate was 

increased by 2% in case of decreasing error values and decreased by 50% otherwise. It 
should be noted that in 10% of all experiments, back-propagation got stuck in local 
optima. These runs were discarded and are not further considered in this paper. Learning 
was terminated, if no improvement could be achieved over 100 consecutive iterations. 

As can be seen, the one and two-hidden layer networks provide a comparable 
accuracy. Networks with more hidden layers are not considered here, since they 
would exceed the available computational resources. The variations between the 
average errors of different node counts are also low. The outcome of this is that the 
network structure of choice is a one hidden layer network with five nodes. This 
network is a good compromise between network accuracy and calculation time. 

 

Fig. 6. Average error in mm of two and one hidden layer FFNs 

The next step is the adaptation of the selected FFN on the robot. The measurements 

show that all resulting network weights ijwΔ  are in the range of -10 to 10. The 

integer variable on the microcontroller has a range between -32,768 and 32,767. So 
all weights multiplied by 1,000 to fit into the integer range. The input values, i.e., 
global, offset, and target position, are multiplied by 100. All nodes calculate their 
input according to  
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Hence the node input inet  on the microcontroller is by a factor 1,000 ⋅ 100=100,000 

larger than on the PC side. As an exception, the node inputs are stored as long 
integers in consequence of the possible high range. The neural network learning 
process on the PC side operates with floating-point arithmetic to evaluate the 
sigmoidal function and the node output, which is also required on the microcontroller. 
The calculation of the results is difficult to implement, because of the limited 
calculation time on the robot. The answer to the problem is to store the network’s 
values in a constant predefined array, because no RAM and calculation power is 
required for the activation function. With this modification, the calculation of the FFN 
is feasible on the microcontroller. 

3.2   Results 

The results indicate that the FFN provides a gain of 50% in accuracy. The error 
caused by the modification of the FFN on the robot is less than 8%. A second 
measurement evaluates the quality of the correction by driving an 8-shaped figure. In 
this real world test, the robot is controlled by the camera and the PC outside, as has 
been suggested by others [5]. This test environment shows how precise and fast the 
robot can drive. The driven figure has a size of three by one meter and is cut into 64 
areas. The PC outside the field checks the robot’s position during the measurement 
and sets the new area as target position when the robot has reached the area before, so 
the robot cannot derivate from its way. The results shown in Table 1 exemplify that 
the robot’s speed has significantly increased on the field via the employment of FFN. 

Table 1. Average time needed to drive the test figure 

 Robot Robot with History Robot with FFN 
Time 8.2s 6.8s 5.9s 

 
This results show that local wheel sensors implemented on the robot advance the 

accuracy of movement control. But wheel sensors cannot measure slip and friction 
effects. Back-propagation networks can reduce the positioning errors caused by these 
effects, but most microcontrollers and embedded devices cannot provide the required 
calculation power and memory. The adaptation of FFN to accomplish the hardware 
limitations on autonomous robots was also successful. The measurements show that 
only marginal variations between the common FFN and the adapted version occur. 
So, this advancement can be used for further implementations and other 
developments. 

4   Conclusions 

The focus of this paper was on the small-size league in which two teams of five 
robots each play soccer against each other. Since no human control is allowed, the 
system has to control the robots in an autonomous way. To this end, a control 
software analyzes images sent by two cameras and derives appropriate control 
commands for all team members. 
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Unfortunately, the image processing system exhibits various time delays at 
different stages, which leads to erroneous robot behavior. Section 0 has shown how 
local sensors compensate those effects. 

The omnidirectional drives used by most research teams exhibit certain 
inaccuracies due to two physical effects called slip and friction. Section 3 has 
indicated that neural networks are able to significantly improve the robot’s behavior 
with respect to accuracy, drift, and response. 

Furthermore, the architectures presented here still require hand-crafted adjustments 
to some extent. In addition, the resources available on the mobile robots significantly 
limit the complexity of the employed networks.  

First of all, future research will be addressing the problems discussed above. For 
this goal, the incorporation of short-cuts into the back-propagation networks seems a 
promising option. Another important aspect will be the development of complex 
controllers that would fit into the low computational resources provided by the robot’s 
onboard hardware. 
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Abstract. Self-localization is a deeply investigated field in mobile
robotics, and many effective solutions have been proposed. In this
context, Monte Carlo Localization (MCL) is one of the most popular
approaches, and represents a good tradeoff between robustness and ac-
curacy. The basic underlying principle of this family of approaches is
using a Particle Filter for tracking a probability distribution of the pos-
sible robot poses.

Whereas the general particle filter framework specifies the sequence
of operations that should be performed, it leaves open several choices
including the observation and the motion model and it does not directly
address the problem of robot kidnapping.

The goal of this paper is to provide a systematic analysis of Particle
Filter Localization methods, considering the different observation models
which can be used in the RoboCup soccer environments. Moreover, we
investigate the use of two different particle filtering strategies: the well
known Sample Importance Resampling (SIR) filter, and the Auxiliary
Variable Particle filter (APF).

1 Introduction

The knowledge of the pose and the orientation of a mobile robot in its operat-
ing environment is of utmost importance for an autonomous robot. Therefore
self-localization is a well known problem in mobile robotics, and many effective
solutions have been proposed. The presence of an initial position guess about ro-
bot position determines a distinction between the position tracking and the global
localization problems. The prototype of the algorithms for the position track-
ing problem is Kalman Filter localization [6], while global positioning encloses
common frameworks like Multi Hypotheses Localization, Histogram Filters and
Particle Filters [1]. In the last years Particle Filter Localization, also known as
Monte Carlo Localization (MCL), became one of the most popular approaches
for solving the global localization problem.

Whereas the implementation of a particle filter for localization is straight-
forward, its performance is strongly affected by the modeling of the process to
estimate. Namely the user has to specify the system motion model, that is the

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 442–449, 2007.
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probability distribution of successor states conditioned to the odometry readings,
and the observation model that describes the likelihood of a given observation
given the current robot position.

In the RoboCup Four-legged league the localization problem becomes a chal-
lenging task, because of the following reasons: i) the only sensor that can be used
for acquiring measures of the environment is a low resolution and low quality cam-
era; ii) the robot motion is affected by a considerable amount of noise due to both
the presence of opponents in the field of play and to the poor accuracy of the odom-
etry; iii) the computational power available for localization is rather limited.

The dynamic environment strongly violates the Markov assumption which
underlies most of the approaches proposed in literature. In order to cope with
such violations, several extensions have been proposed to the original Bayes
formulation of the localization problem. To this end the most popular technique
is known as sensor resetting [5]. It consists in bootstrapping the estimator with
hypotheses based on the raw observations.

The goal of this paper is to present a systematic analysis performed on the
Particle Filter localization, when considering the different observation models
which can be used in the RoboCup Four Legged league contexts. Moreover, we
investigate the use of two different particle filtering strategies: the well known
Sample Importance Resampling (SIR) filter [2], and the Auxiliary Variable Par-
ticle filter (APF) [8].

Localization based on APF has been previously proposed by Vlassis et al. [9]
for solving the vision based localization problem, together with a nonparametric
estimate of the likelihood function. The main focus of their work is on how to
compute a satisfactory nonparametric estimate of the direct observation model
p(x|z), expressing the probability of being in a given location x given the ob-
served panoramic camera image z. Such a distribution is expressed through a
Gaussian mixture learned from the data.

In contrast to [9], the contribution of our work is to investigate possible vari-
ants of the particle based localization algorithms, for parametric (feature based)
observation models, treating APF as an additional degree of freedom.

2 Particle Filtering

One of the most popular algorithms used in localization is the so-called Monte
Carlo Localization introduced by Dellaert et al. [1]. The core idea of the al-
gorithm is to estimate a robot pose distribution using a particle filter. The
system state is represented through a set of samples in the robot pose space{
x(i) = (x,y, θ)(i)

}
∈ �2 × [0 . . . 2π).

p(x) � 1
N

N∑
i=0

δx(i)(x)

here δx(i)(·) is the impulse function centered in the sample x(i). The denser are
the samples in a state space region the higher the probability that the robot is
in that region.
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Ideally one wants to sample from the posterior distribution

x
(i)
t ∼ p(xt|z0:t, u0:t)

but this is not possible in the general case because such a distribution is not
available in closed form. However b.

By representing the distribution through a set of weighted samples<w(i), x(i) >,
it is possible to estimate p(x). The samples are drawn from a proposal distribution
q(xt|z0:t, u0:t), while the weights for each sample are computed according to the
Importance Sampling Principle

w
(i)
t =

p(x(i)
t |z0:t, u0:t)

q(x(i)
t |z0:t, u0:t)

(1)

By choosing the motion model p(xt|x(i)
t−1, ut) as proposal distribution, we can

recursively compute the weights as

w
(i)
t ∝ p(zt|x(i)

t )w
(i)
t−1.

Two particle filtering techniques used in self-localization are the Sampling Im-
portance Resampling (SIR) [2] and the Auxiliary Variable Particle Filter (APF)
[8,9].

One of the main problems of the SIR algorithm is the degeneracy problem [8].
If the ratio between the variance of the proposal distribution and the observation
model is high, it can happen that only a few samples generated in the sampling
steps have a meaningful weight. The subsequent application of the resampling
operation results in the suppression of most of the samples generated, because
only those with greater weight are replicated, replacing the low-weighted parti-
cles. This fact reduces the chances that the filter achieves to a correct convergence
because it impoverishes the set diversity.

The APF has been introduced to lessen the degeneracy problem. The key
idea of this algorithm is to select the samples that will be propagated in the
subsequent updated estimate. Such a selection is performed by evolving the cur-
rent filter state using a reduced noise motion model, and evaluating the sample
weights according to the Importance Sampling (IS) principle. Then a set of in-
dices is sampled from the weights distribution, and only the surviving particles
will be used for computing the updated particle generation, by means of the
original motion model. This ensures an increased particle diversity, since the
resampling is performed before evolving the filter.

More in detail the APF exploits the following factorization over the joint
posterior of particle indices and robot poses

p(xt, i|z0:t, u0:t) ∝ p(zt|μ(i)
t )p(xt|x(i)

t−1, ut).

Here μt is a mean, a mode or some other indicator of the predicted distribution,
designed so that

p(i|z0:t, u0:t) ∝ p(zt|μ(i)
t ).
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Under the above hypotheses, we can sample from p(xt, i|z0:t, u0:t) by sampling
an index j with probability λ(j) = p(zt|μ(i)

t ). We denote with ji that the value of
the jth sampled index is the original index i. Subsequently, we can sample from
the motion model x

(j)
t ∼ p(xt|x(ji)

t−1), according to the value of the state referred
to by the drawn index.

According to the IS principle, the resulting weights will be:

w(j) =
p(zt|x(j)

t )
λ(j)

3 Algorithm Implementation

Given a filtering method, there are a number of implementation issues to be
considered and several parameters to be tuned. The motion model depends on
the robot kinematics and on the characteristics of the environment (i.e., the
friction with the surface and the presence of collisions). The observation model
depends on the characteristics of both the landmarks being observed and the
sensor.

Motion Model. When the robot moves, its pose estimate should be updated ac-
cording to the motion model, incorporating the relative movement ut, estimated
from the odometry. In the Sony AIBO, such a displacement can be obtained
by taking into account the joints measures returned from the internal motor
encoders. Inaccuracies in the model, as well as environment random phenomena
(such as slipping and collisions), affect reliability and precision of measuring such
a displacement.

A simple motion model can take into account such a noise by adding an
amount of random Gaussian noise to odometry update:

xt ∼ xt−1 ⊕ (ut + et)

where et is the random variable representing the noise affecting the odometry
measure ut, and ⊕ is the standard motion composition operator defined as in
[7].

A more complex motion model can also consider noise depending on the rel-
ative motion of the robot

xt ∼ xt−1 ⊕ (ut + α(ut)et)

where α(ut) is a matrix of functions of the odometry motion, and et represents
the noise affecting the movement for each time a unity distance is traveled. If α
is a constant, the variance of the odometry error grows linearly with the distance
traveled by the robot.

Finally, we can extend the previous model considering the presence of ran-
dom collisions. When a robot hits an object or another robot, it is likely to
stack, although the odometry measures a non zero displacement. We can take
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into account this phenomenon by including a prior of hitting an obstacle and
marginalizing it out, as follows.

xt ∼ hxt−1 + ¬h(xt−1 ⊕ (ut + α(ut)et))

where h is a binary random variable that takes into account the probability of
hitting an obstacle.

3.1 Observation Model

The environment of RoboCup Four-Legged League includes a set of features that
are normally used in localization: unique colored beacons (or markers), unique
colored goals, and white lines on the green carpet.

Since the beacons are of limited size they are usually entirely contained in an
image. The vision system on the robot can estimate the position of these beacons
in the robot reference frame. With these preconditions, developing a localization
algorithm should be straightforward, however the noise affecting both the robot
sensing and the robot motion, as well as the dynamic environment turns this
task into a challenging one.

In particular, the low resolution of the camera, combined with motion blurring
effects caused by the robot movements, affects the reliability and precision of
feature detection. This is particularly evident when a landmark located quite far
away from the robot is perceived. In this case a beacon occupy only a few pixels
in the image (as few as 10), and the estimation process is likely to fail.

An adequate observation model for a generic landmarks takes into account
these phenomena is

p(z|x) = p(ze) +
∑

i

p(zi|x)

here, p(z|x) is the probability of the reading z given the robot pose x. It can be
expressed as the conjunction of the following disjoint events:

– the reading is generated by a spurious reading with probability p(ze) or,
– it is due the landmark γi, with probability p(zi|x).

More in detail, p(zi|x) can be expressed as

p(zi|x) = p(z|γi, x)p(γi|x)

here, p(z|γi, x) is the probability of making the observation z given that it origi-
nates from landmark γi and the robot is in x, and p(γi|x) is the prior of perceiving
the landmark γi from the location x.

The measurement probability is a function of the angular (δα) and linear (δρ)
distance between the expected and the measured landmark locations. For every
type of landmark (beacon bi, goal post pi and line li) we use these equations:

p(z|bi, x) ∝ e(δ2
α/σ2

α)e(δ2
ρ/σ2

ρ)

p(z|pi, x) ∝ e(δ2
α/σ2

α)

p(z|li, x) ∝ e(δ2
θ/σ2

θ)e(δ2
ρ/σ2

ρ).
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In the previous equations we use α denote angular measurements, and ρ indi-
cates the distance. For lines across the fields (and corners, that are intersection
of lines), we assume that they are expressed in polar coordinates, so ρ and θ
indicates the hough parameters of a single detected line.

For a single beacon observation bi we use both angle and distance, while for
single goal post pi we only use the measured angle. This is because goal posts
are not recognized exactly and they are less reliable. Each σ inside equation is
specific to type of observation and are note the same.

The probability for the single observation models are then combined to form
definitive probabilities

pparticles =
∏

p(z|bi, x)
∏

p(z|pi, x)
∏

p(z|li, x)

4 Experiments

In this section we present the results of localization experiments for the methods
described in the previous section.

The experiments have been performed using standard Four-Legged soccer field
as used in RoboCup 2005 and RoboCup 2006. The scenario is more challenging
for localization task with respct to RoboCup 2004 setting (having a smaller field
and six beacons instead of four), where experiments in [3] have been performed.
We also use two different strategies to track real robot position: external camera
to track real position of robot and ground truth made using some measured
spot and a smoothing technique. For acquiring a smooth ground truth of robot
position we process off-line log data captured from the robot, as follows:

– we take a log containing images and internal information from the robot;
– we manually mark every feature on the images in the log;1

– we use the true perceptions to generate a log with reliable and more precise
measures about distances and angles for objects (these represent the real
ground truth of perception);

– we iterate the localization task several times on same input: first iteration the
localization is performed in normal way. The second iteration starts using the
last set of particles and use log backward from last to first frame. Running
localization many times we obtain a smoothed ground truth.

The same log (with ground truth on perception) is then used to run localiza-
tion methods (with different parameters) several times and to compare different
methods on the same input. Moreover, by using the external camera view and
the ground-truth of robot path, we can measure absolute errors in localization.

The subsequent path graphs use these conventions: green is used for field lines,
cyan for ground truth, red for SIR and blue for APF.

1 These data sets have been used also for evaluating color segmentation and image
processing and are available from www.dis.uniroma1.it/∼spqr
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Random walk without kidnapping. In the first experiment we consider the behavior
of SIR and APF using 100 particles, when the robot is in a random walk, without
obstacles. In Fig. 1, the left graph shows the result with sensor resetting disabled,
while the right one shows the behavior of sensor resetting. While the behaviour
of the two filters is similar in the first case, the SIR particle filter converges faster
and recover more precisely the position with sensor resetting enabled, while the
APF is less robust and more spikes are present in the calculated path.

Fig. 1. Random walk with sensor resetting disabled (left) and enabled (right)

Random walk with kidnapping. The second experiment considers another random
walk but with a teleporting of robot to simulate the kidnapping problem. The
kidnapping was performed from (a) to (b), shown in Fig. 2. Again the SIR filter
using sensor resetting recovers from erroneous positions quickly, while the APF
changes more slowly.

a
b

Fig. 2. Second experiment: random walkwith kidnapping from a to b

Playing mode. The third experiment has been done in a typical playing sequence.
When robot is in playing state, it interacts with other robot, competing for the
ball, occasionally kicking the ball itself. In such situations the odometry give
very noisy information to robot. Therefore, sensor resetting needs to be enabled.

Following [3], we performed experiments varying the observation frequency
(up to a fraction of 1/256) and adding Gaussian noise (approximately 15% of the
real distance and 10 degrees for the angle). As shown in Figure 3 the difference
between the two methods are negligible and both degrades its performance in a
similar way as in [3].
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Fig. 3. Performance of SIR and AUX compared a) when using only a fraction of ob-
servations and b) when additional gaussian noise is present

5 Conclusion

In this paper we have illustrated the performance of SIR-based particle filter and
Auxiliary Particle Filter, to accomplish a localization task based on visual land-
marks with AIBO robots. The results show that both the method are suitable
for this task, and that SIR is slightly better in combination with sensor resetting
techniques that are needed in the RoboCup soccer scenario.

Additional results, including the use of datasets used in [3] and [4], are pro-
vided in a technical report available from www.dis.uniroma1.it/∼spqr
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Abstract. There is no ideal footprint for a rescue robot. In some situa-
tions, for example when climbing up a rubble pile or stairs, the footprint
has to be large to maximize traction and to prevent tilting over. In other
situations, for example when negotiating narrow passages or doorways,
the footprint has to be small to prevent to get stuck. The common ap-
proach is to use flippers, i.e., additional support tracks that can change
their posture relative to the main locomotion tracks. Here a novel mecha-
tronic design for flippers is presented that overcomes a significant draw-
back in the state of the art approaches, namely the large forces in the
joint between main locomotion tracks and flippers. Instead of directly
driving this joint to change the posture, a link mechanism driven by a
ballscrew is used. In this paper, a formal analysis of the new mechanism
is presented including a comparison to the state of the art. Furthermore,
a concrete implementation and results from practical experiments that
support the formal analysis are presented.

1 Introduction

Moving around in an unstructured environment is the principal ability a mobile
robot must have to be a rescue robot. Locomotion systems in general can be
classified as wheeled, tracked or legged. In the RoboCup Rescue 2005 competition
tracked robots were very popular and successful. Figure 1 shows an overview of
the different tracked robots in this league in 2005. This type of locomotion is often
considered as the most versatile locomotion system as it can handle relatively
large obstacles and loose soil [Har97][Won01]. Some versions of tracked vehicles
are even used by several teams, namely the Tarantula and RobHaz DT-3. The
Tarantula is a typical toy car substantiating the concept that low cost platform
can be deployed for rescue application. The Tarantula is R/C vehicle with four
tracked articulated arms which can climb over obstacles, steps or stairs. The team
Freiburg for example very successfully used this toy [KSD+06]. The RobHaz DT-
3 is a sturdy commercial platform. It is based on a passive double track platform.
There were three teams using this platform in the competition with impressive
performances, namely ROBHAZ-DT3 [LKLP06], CASualty [KKP+06], and the
Intelligent Robot Laboratory team [TT06].
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Fig. 1. Flippers as additional tracks that can change their posture relative to the main
locomotion tracks are a very common approach to allow for a flexible footprint. The
general advantages of this locomotion principle is for example indicated by the many
teams that chose this approach for their robots. Some examples from RoboCup 2005
are shown above.

Though a differential drive based on two tracks is simple and in principle
already very capable, there is a significant problem especially for rescue robots.
A critical aspect is that it is almost impossible to select the right parameters
for a single pair of tracks. For some situations, for example when negotiating
narrow passages, the footprint of the robot and hence the length of the tracks
should be small. When climbing large obstacles, slopes or stairs the footprint
should be large. The common solution to this problem is to use additional tracks
that can change their posture relative to the main robot body. Note that all
robots in figure 1 are equipped with according flippers. The state of the art
for changing the posture of the flipper is to directly drive the joint between
the additional small track and the main locomotion system. This approach has
the tremendous disadvantage that due to the large forces on this active joint it
is extremely difficult to construct mechanisms that are sufficiently stable and
still within feasible size and weight limits. Broken joints are hence a common
phenomena (figure 2). Here a novel design from the IUB rescue robot team
[BC06] is presented that circumvents these problems.

2 The Underlying Concept

The standard approach to change the posture of a flipper is to directly drive the
joint as shown in figure 3. This can be done by spur or worm gear or a belt or
chain drive. But no matter what mechanism is used, it has to take quite some
stress. First of all, it has to provide high forces for moving the flipper under load,
especially for pushing it down when the full weight of the robot is supported by
it. Second, it is subject to shocks and impacts, for example when the robot drives
over bumps, stairs, etc. Especially these forces can be very high and they are very
hard to predict. It is hence almost impossible to design a fail-safe mechanism
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(a) (b)

Fig. 2. Large forces have to be provided when using the standard approach to directly
drive the joint of a flipper. In addition, shocks to the tracks are likely to occur in rough
locomotion conditions. These can cause large load changes and huge unpredictable
dynamic forces directly at the transmission in the joint. Broken transmissions in the
flipper-joints are hence a common problem, not only for simple bases like the Taran-
tula (a) but even for advanced robots like the winner of the RoboCup 2005 rescue
competition (b).

(a) (b) (c) (d)

Fig. 3. A sketch of a classical locomotion system with flipper (a) and its basic free
body diagram (c) compared to a sketch (b) and the basic free body diagram (d) of the
novel system.

within feasible weight and size limits with this approach. Accordingly, broken
flipper joints are a common problem (figure 2).

The novel flipper design presented here consists of a ball screw, a passive link
and a motor (figure 3). As shown in the formal analysis later on, the driving force
that needs to be provided by the motor is smaller with this set-up. Furthermore,
all shocks go against the passive link and the ball screw, which in contrast
to spur/worm-gears or belt/chain-drives can be easily laid out to absorb them
without any damage. Figure 4 also shows an implementation of the flipper itself.

3 Formal Analysis of the Design

When the robot moves around on the floor, the small track is up to minimize the
footprint. Whenever the robot has to move over a big obstacle or up, respectively
down a stair, the small track is pushed down to the same level of the big track.
The small track is moved up from or down to the floor by a ball screw. The crucial
parameters for the ball screw are the thrust force and the stroke of movement.
The thrust force of the ball screw determines the force for pulling the small
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Fig. 4. An implementation of the novel flipper design

track up, respectively pushing the small track down. First, the thrust force is
determined that is needed to push the small track down. After that we will find
the second parameter, the stroke of movement. First we consider the situation
that robot is on a two points support with an angle θ with respect to the floor.
To calculate the thrust force of the ball screw, the force in the direction of cos θ
has to be considered. The maximum value of cos θ is one when θ is zero. The
maximum thrust force is hence needed in a situation when θ is zero.

Fig. 5. The core parameters in the free body diagram of the ball screw and the small
track

In the following, the maximum thrust force is analyzed following the free body
diagrams in figures 5 and 6. First of all, it is assumed that the ball screw is fixed
to the robot such that it forms with the robot body and its main locomotion
track a single object as shown in figure 6(a). The small track of the flipper is a
second object as shown in figure 6(b). As the main locomotion track of Rugbot
is 650mm long, a length of 300 mm is chosen for the small track. With this set
up, Rugbot is always supported on stairs when the flipper is on the ground.
From the stability viewpoint, the stairs can be considered in the worst case like
an obstacle on the ground with just two support points at the extrema of the
footprint. F and y2 are most important as they determine the selection of the
ball screw and the motor. Also, the length L of the mechanism, i.e., y plus y2, is
of interest. Given the height of a Rugbot that is 550 mm, the mechanism should
not extend over it. So, y is the minimum height of the ball screw to which we
want to lower down the small track on to the floor. And y2 is the stroke of the
ball screw to move the small track up from the floor. Therefore, F cos α is a lower
constraint on the thrust force. The common condition of the free body diagrams
of figure 6(a) and 6(b) is that the robot is stable without any movement in any
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(a) (b) (c)

Fig. 6. More detailed free body diagrams and parameters of (a) the main track system
with the ball screw and (b) the small track. The free body diagram of the ball screw
and the small track when the flipper is moved up (c).

direction. So, the total force in x direction and y direction must be zero. Hence,
we get

Mg + Fy − F cos(α) = FN1 (1)
F sin(α) = Fx (2)

mg − Fy + F sin(θ) = FN2 (3)
F cos(θ) = Fx (4)

y = x tan(θ) (5)
θ + α = 90 deg (6)

Rearrange (1) and (3) with (6)

FN1 + FN2 = Mg + mg + F(sin(θ)− cos(α)) (7)
FN1 + FN2 = Mg + mg (8)

The sum of moment about A:

Mg × 270 + F sin(α)y = FN1 × 450 (9)

FN1 =
Mg × 270 + F sin(α)y

450
(10)

mg × 150 + F sin(θ)x = FN2 × 300 (11)

FN2 =
mg × 150 + F sin(θ)x

300
(12)

From (5), (6), (7) and (8)

Mg + mg =
Mg × 270 + F sin(α)y

450
+

mg × 150 + F sin(θ)x
300

(13)

0.4×Mg + 0.5×mg = F× (
sin(α)x tan(θ)

450
+

sin(θ)x
300

) (14)

F =
225

sin(α)x tan(θ)
450 + sin(θ)x

300

(15)
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With equation (15), we have the relation between thrust force F cos(α), the
point of push/pull force connect to small track x, and the initial length of the ball
screw y. With a numerical analysis, different variations of these parameters can
be computed. Based on the size aspect of Rugbot, the size L of the mechanism
is the first parameter that should be specified.

Then, the values of x and y are used to calculate the stroke y2 by the next
free body diagram shown in figure 6(c). Given a minimum angle of 10 degrees
between the small track and the ball screw, we get the relation between x, y,
and y2 as:

W =
x

cos(θ)
(16)

α = arcsin(
x× sin(10)

W
) (17)

y2 =
W × sin(170− α)

sin(10)
− y (18)

With the height limit of the robot, we can analyze the set of the data including
thrust force, x, θ, y, and y2. As we specified in the beginning that the first priority
in optimization is L, so we analyze the data set with L equal 400 mm, 450 mm,
500 mm, and 550 mm by using the present parameters of the Given the basic
parameters of Rugbot with M = 50 kg, m = 5 kg, and g = 10 m/s2, a numerical
analysis can be done with L equals 400 mm, 450 mm, 500 mm, and 550 mm
(table 1).

Table 1. Results of the numerical analysis of the parameters for different mechanism
lengths L

L: mm θ: deg F: N x: mm y: mm y2: mm
400 50 334.7 158 188.3 211.7
450 52 297.1 173 221.5 228.5
500 52 267.7 192 253.6 253.6
550 51 243.6 214 284.7 284.7

It can be seen that there is an inverse relation between the thrust force and
the upper limit. If the upper limit is increased by about 15 cm, there is almost
half the thrust force needed than with the shorter upper limit. Based on the
parameters of Rugbot and on available ball screws, in the final implementation
a ball screw with l=500 mm was chosen leading to a thrust force as 267.7 N.

The benefits of this design concept can also be illustrated by considering the
case when the robot faces a ramp as shown in figure 7. Before the robot is going
up the ramp, the component has lifted the small track up. When Rugbot is going
up the ramp, an inclinometer senses the angle of the ramp ϕ and the component
starts to lay down the track simultaneously. For tele-operated robots this is of
course done by the operator. Suppose the robot is moving over the ramp with an
approximately constant speed and the same holds for the angle φ. So, φ is varied
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Fig. 7. The new flipper design facing a ramp (left). The forces in dependence of the
posture angle for different ramp angles (right).

in each step the robot is moving up the ramp, which can be determined based
on ϕ, robot speed, and the parameters of the flipper. Moreover, the force used
to lay down the small track against the floor also can be analyzed to verify the
strength of the motor and the ball screw. Figure 7 shows the graphs for several
ramp angles with one second period between each data point and a robot speed
of 20 mm/sec. As the robot moves up the ramp, the value of φ is increasing while
the force is decreasing. The analysis also shows that ϕ not only effects the value
of φ, but also the force. Larger angles ϕ need higher forces to put the small track
against the floor at the beginning steps to move over the ramp. Note that the
overall forces are by far within the allowable range of the ball screw and can be
easily provided by the chosen motor.

Fig. 8. Rugbot going up stairs

The formal analysis is also supported by all field tests of the robots. The
flippers are very sturdy. The can even be used as a handle to pull or lift the
whole weight of the robot without the slightest disturbance to the joint between
the robot and its flipper. In addition, they support the climbing of obstacles and
stairs exactly as they are supposed to do (figure 8).
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4 Conclusion

Adjustable support tracks are a common concept for changing the footprint of a
robot. Here, a novel mechanism for flipper design was presented that overcomes
the flaws of the standard approach to directly drive the joint between the robot
body with the main locomotion tracks and the flipper. Instead, a ballscrew and
a passive link are used.
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Abstract. Mapping is a fundamental topic for robotics in general and
in particular for rescue robotics where the provision of information about
the location of victims is a core task. Occupancy grids are the standard
way of generating and representing maps, i.e., in form of raster data. But
vector representations are for many reasons, especially due to their com-
pactness and the possibility to use very efficient computational geometry
algorithms, highly desirable for many applications. Here a novel method
for vectorization is presented that is intended to work particularly well
with maps. It is based on an evolutionary algorithm that generates vector
code for a so to say drawing program. The output of the evolving vector
code is compared to the input grid map via a special similarity function
as fitness. Experiments are presented that indicate that the approach is
indeed a successful method to extract vector data out of grid maps.

1 Introduction

Mapping is a very important topic for rescue robotics for two quite different
reasons. First of all, it is in general a core problem in robotics [Thr02]. Many
fundamental algorithms for mobile robots simply depend on maps without which
the system is restricted to be a crude tele-operated device that can hardly be
called a robot. Second, maps are a fundamental added value of rescue robots over
conventional systems for finding victims [BC06]. While the IUB rescue robot
team [Bir05,BCK03,BKR+02] has been the first team to manage mapping in
the challenging environment of the RoboCup rescue league in 2003 at the World
Championship in Padua, this task meanwhile belongs to the standard challenges
in this league [JMW+03,JWM03].

Probabilistic grids, also known as occupancy grids, are a well known approach
to represent obstacles and free space by assigning according likelihoods to each
cell in the grid [Mor88]. According to [Thr03], occupancy grids are the predom-
inant method for generating, respectively representing maps. Occupancy grids
can be easily generated, but they have their disadvantages. They represent maps
as raster data, i.e., a collection of values arranged in a rectangular array. Due to
its nature, it is difficult to manage and edit, requires a lot of space and contains

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 458–465, 2007.
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Fig. 1. A map (left) generated by an IUB rescue robot (middle) in the entrance hall
of a building with a few boxes as obstacles (right)

no intrinsic semantics. Vector data is in contrast a compact format, that de-
scribes the geometry of a bar, i.e., a straight line segment with non-zero width,
using a small number of attribute values, e.g., two endpoints and line width
[DL99].

Many methods, differing in their precision and robustness, have been designed
throughout the years for vectorization, i.e., the conversion of raster data into
a vector format. The majority share the same structure - group pixels from
a raster image into sets, approximate the sets with a set of vectors by some
polygonal approximation method and post-process if necessary [TT00,SSTC02].
The classical approaches to vectorization use the following steps [CJ94]:

– Thin the image in order to extract its skeleton.
– Chain-code the thinned image.
– Reduce the chain codes to straight lines.

When the raster data is for example an image based on a line drawing, the
standard methods work very well. But they are known to have difficulties with
noisy data and ”jerks” in the lines, two phenomena that are very common in
robot maps. Here a vectorization technique is presented that is based on so-
called reproductive perception, which tries to address this task in a non-classical
way. Instead of processing the input raster data stepwise to produce its vector
representation, exactly the opposite is done: namely vector code is evolved that
is used to generate raster data, which is compared to the input data.

2 Overview of the Approach

Some terminology is introduced in this section that will be used in the remainder
of the paper. First of all, note that grid maps can be thought of as images. Images,
respectively grid maps are rectangular arrays of raster data where each pixel,
respectively cell has a value that represents color, respectively the likelihood of
free space. As many concepts in this paper are borrowed from image processing,
the terms image and grid map are used in an interchangeable way, whatever is
more appropriate in respect to its original context.
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Fig. 2. A simple drawing program and its output

– A Line is a data structure that describes a single line - it contains x1, y1,
x2, y2 of the endpoints as well as thickness and color.

– A Program is a data structure that contains a given number of Lines. Each
Program describes an image containing straight lines and can be easily
converted to a PNG or BMP format. The image described by a Program
will be referred to as the output of the Program, shown in figure 2.

– Population is a data structure that contains a set of Programs.
– Selection is a set of Programs returned by a selection scheme.

The goal of the Reproductive Perception Vectorization algorithm (RPV ) can
be summarized in the following way. Given a raster image X like a grid map,
create a Program Pr such that X ′, which is the output of Pr satisfies a similarity
measure Dthresh(X, X ′), i.e., Pr is the vectorization of X . The set of lines in Pr
represents a compact mathematical model of the grid map X . If X ′ is constructed
by using only lines of width 1, it is also the skeleton of X .

3 Fitness Calculation

The RPV employs an evolutionary algorithm approach to accomplish its goal.
Evolutionary algorithms are a type of heuristic search techniques that incorpo-
rate principles of natural selection and ”survival of the fittest”. They maintain
a population P that evolves at each iteration, according to rules called evolu-
tionary operators. A fitness function F : P → R assigns a value, referred to
as fitness, to each individual in the population. A selection operator selects the
”fittest” individuals from the current population, which are then used as input
to the transformation operators. Individuals with a better fitness are more likely
to yield superior ones after transformation [S.F93].

The fitness of each individual is calculated after each evolutionary step, there-
fore the choice of a good fitness function is vital for the performance of the
algorithm. In our specific case, where each individual is a Program, a way to
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determine the fitness of an individual is to compare its output X ′ with the orig-
inal grid map X , and take into account its length in terms of number of Lines.

We define a measure of difference between two bitmaps called picture distance
function D : Bitmaps × Bitmaps → R, where Bitmaps is the population of
grid maps, including X . Because P may potentially be a very large population
of programs and the algorithm may have to iterate through many generations,
it is desirable that D is not computationally expensive. A fast image distance
function, linear in the number of pixels in X ′, is introduced in [BJP00,Bir96]:

D(X, X ′) =
∑

c

d(X, X ′, c) + d(X ′, X, c) (1)

d(X, X ′, c) =

∑
X[p1]=c min{md(p1, p2)|X ′[p2] = c}

#c(X)
(2)

where

– c is a color (c ∈ C, C is the set of all colors)
– X [p] is the color at position p(i, j) in image X

– md(p1, p2) = |i1 − i2|+ |j1 − j2| is the Manhattan distance between p1 and
p2.

– #c(X) is the number of pixels in X having a color c

A very efficient way to compute d(X, X ′, c) is described in [BJP00]. Finally, the
fitness function Ffit: Programs x Bitmaps → R, based on the picture distance
is defined as Ffit(Pr, X) = D(X, X ′, c)+5∗len(Pr) where X ′ is the output of the
drawing program Pr. The lower the fitness of Pr, the better the approximation.

4 Evolutionary Operators and Selection Scheme

The algorithm that is used here diverges from the common types of evolu-
tionary algorithms such as genetic programming [RK94,RK92], genetic algo-
rithms [Gol89], evolutionary programming [FOW66] by using a problem-specific
set of genetic operators, which are presented below. Each operator creates a new
individual, leaving the parents unchanged.

– Random Line Addition: Program→ Program. Adds a Line L with randomly
generated end point coordinates.

– Random Line Deletion: Program → Program. Randomly picks a Line from
the set of Lines in the Program, and removes it.

– Concatenate Programs: Program × Program → Program. Concatenates the
two Programs.

– Hill-climbing: Program → Program. Randomly translates the end points of
a randomly picked Line from the input Program in a specified range. This
procedure is performed k times and the best resultant individual is returned.
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As selection operator we are using Roulette Selection - a randomized variant of
fitness-proportionate selection. The chance of each individual to be selected is
determined by its fitness. This is where the concept of ”survival of the fittest”
comes into play. However, because in our case a better individual has a smaller
fitness (picture distance from the raster image), each individual Xi is assigned
a value equal to Xworst - Xi. In this way the worst Program will have 0%
probability of being selected and the best - the largest value compared to all
other Programs in Population.

5 The Algorithm in Pseudo-Code

Algorithm Vectorize(Image, Threshold, additionalargs)
1. Create Initial Population();
2. while Best Individual Fitness ≥ Threshold
3. do Selection ←Roulette Selection();
4. Evolve(Selection);
5. Add Selection To Population;
6. Remove Extra Individuals();
7. Save Best Individual;

Algorithm Evolve(Selection)
1. Random = Random Number(0,1);
2. Operator ←Determine Evolutionary Operator(Random);
3. for i ←1 to Selection.Size - 1
4. do case: Operator = Random Line Addition
5. Add Random Line(Selection[i]);
6. case: Operator = Random Line Removal
7. Remove Random Line(Selection[i]);
8. case: Operator = Hill-climbing
9. Hill-Climbing(Selection[i]);
10. case: Operator = Concatenate Two Programs
11. Concatenate(Selection[i], Selection[i+1]);
12. ++i;

As a first step an initial Population of 50 Programs is created. Each Program
contains a random number of Lines (between MIN and MAX specified either
as input arguments to the algorithm or as global constants). Each Line is also
randomly created in the context of a target grid map (i.e the dimensions of the
grid map are known so the Line coordinates are on the grid map). At creation
time the fitness of each Program is evaluated, taking into account both the
picture distance and the number of Lines present in the Program.

The initial Population is evolved until a Program that is a good enough ap-
proximation of the target grid map is produced. At each iteration, a number of
individuals called Selection is chosen via a selection routine, in our case Roulette
Selection. An evolutionary operator that either evolves or mates individuals is ap-
plied on Selection, the parents remain unchanged. The frequency of each operator
is determined by its probability of occurring, specified as an input to the algo-
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rithm. As mentioned before the evolutionary operators are - Random Line Addi-
tion, Random Line Removal, Concatenation of two Programs and Hill-Climbing
on the end points of a Line. The best performance is reached when probabilities
of 30%, 25%, 15% and 30% respective to the above-mentioned operators are used.

At the end of each iteration, the same number of Programs that were added
beforehand is removed via inverse roulette selection, i.e., by favoring worse in-
dividuals, in order to keep the population size constant. This approach retains
a certain diversity in the population and at the same time quickly converges to
the desired target grid map.

6 Experiments and Results

Figure 3 shows the result with an experiment within a typical office environment.
The grid map contains about 10 KBytes of data that is reduced to a few hundred
bytes to represent 19 vectors. Also, noisy and spurious data in the grid map has
more or less disappeared in the vector representation. More important than the
compression is that the vectors can serve in contrast to the raster data as basis
for efficient computational geometry operations that are very beneficial for many
robotic algorithms as discussed in the introduction.

Fig. 3. On the left, a grid map from a typical office environment. Its vectorized rep-
resentation is shown on the right. The EA has removed some noise and spurious data
and generated out of the about 10KBytes of raster data a compact representation with
just 19 vectors.

The trend of the average fitness of the whole population is shown in figure
figure 4. On a standard PC with a Pentium-4 2.2GHz processor, it takes in the
order of 250 msec for computing a whole generation. Analyzing the trends it
can be observed that the RPV algorithm behaves like a typical evolutionary
algorithm. During the first iterations, the population very quickly improves its
fitness, while in the late stages it converges slowly to the target grid map. For
many purposes like scan matching in SLAM, the fast rough matches after a few
iterations are fully sufficient.

In the following example, a very dense number of lines is used. The purpose
of this test case is to test whether the RPV algorithm is able to deal with
complicated problems. It managed to evolve a good approximation of the input,
although it requires a larger number of iterations. The input and output images
are shown in figure 5. The EA performs quite similar to the previous case. The
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Fig. 4. On the left, the average fitness of the population when generating the vector-
ization of an office environment. On the right, the best, worst and average Fitness of
the population in an experiment with a very crowded set of lines.

Fig. 5. An example with very ”crowded” lines. The original raster data is shown on
the left, a result of vectorization on the right.

population does not contain large discrepancies as can be seen from figure 4 -
worst to best fitnesses ratio is roughly 2:1, which is a favorable condition, since
there are hardly local minima, that could hinder the evolution.

7 Conclusion

Grid maps are widely used to generate a representation of a robot’s environment
as they are very well studied and as they can be easily generated. But grid
maps as a form of raster data have disadvantages, especially when it comes
to utilizing the data. Vector data in contrast is very compact and it can be
very efficiently processed by computational geometry algorithms, for example
for feature extraction or pattern recognition for SLAM or map merging. Here
a novel method for vectorization was presented. It is based on an evolutionary
algorithm that generates vector code, which represents the input raster data.
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Abstract. We propose an algorithm to estimate the ego-motion of an
omnidirectional robot based on a sequence of position estimates. Thereto,
we derive a motion model for omnidirectional robots and an estimation
procedure to fit the model to observed positions. Additionally, we show
how we can benefit from the velocity estimates deriving an algorithm
that recognizes situations in which a robot is blocked by an obstacle.

1 Introduction

Autonomous robots which interact with other objects in a dynamically changing
world must be able to acquire information about the dynamics in their environ-
ment. The faster objects are moving, the more important building dynamic mo-
tion models becomes. In RoboCup, the velocities of robots have increased a lot
in recent years and therefore the need of dynamic modeling has become crucial
to be able to interact with the rolling ball and with teammates and opponent
robots. E.g., taking into consideration the internal delays in sensors and motor
controllers of about 100 − 200ms [1] and robots that drive with 2 − 3m

s the
robot can cover a distance of at most 60cm meanwhile. Furthermore, assuming
maximal deceleration of 4 m

s2 the stopping distance is longer than 1.1m.
While motion models become more and more important the sensors to deter-

mine the robot velocity are simple so far: most teams use wheel encoders without
considering problems like wheel slippage and single wheels loosing contact with
the ground for short periods of time. Alternatively, desired robot velocities are
used instead of the actual velocities ignoring imperfect motor controllers. Both
approaches are unreliable and become worse the faster a robot drives. We give
an example in Fig. 1.

To avoid these shortcomings we derive a new algorithm to estimate the robot
velocity independently of wheel encoders and motor commands. It is based on
the idea of fitting a motion model to a sequence of observed robot positions. In
contrast to [2,3], our analysis specializes in omnidirectional robots which require
the estimation of both the linear velocity as well as the angular velocity.

To illustrate the benefits of velocity estimates we propose in section 3 an
algorithm that detects situations of a robot being blocked by an obstacle just by
comparing the desired velocity and the estimated velocity without any additional
hardware. The algorithms were tested on robots in the Middle Size League.

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 466–473, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2 Estimating the Ego-Motion

2.1 Principle Idea

As mentioned before, estimating the robot movement only from the wheel en-
coders is not reliable. As well, optical flow analysis [4] fails since optical flow
is misleading in an environment in which other objects move. Kalman filtering
techniques [5] suffer from the assumption of a linear motion model. Even the first
order approximation which is made in the extended Kalman filtering approach
may be misleading if the robot’s angular velocity is large compared to its linear
velocity so that the robot is driving on a circle rather than a line.

In recent years, some reliable and accurate self-localization algorithms have
been proposed which allow to estimate the robot’s pose with an expected er-
ror of only a few centimeters [6,7]. These approaches already combine different
sources of information like wheel encoders, camera images and laser range scans
to eliminate sensor noise. Thus, using these aggregated information makes the
estimation of velocity parameters more robust compared to approaches based on
the noisy sensory output.

The principle idea of our approach is to use a parameterized motion model of
an omnidirectional robot and fitting it to the pose estimates from self-localization.
In the remaining part of this section we will first derive the motion model and
afterwards show how the model can be fitted to the position estimates.

2.2 Omnidirectional Motion Model

The motion of an omnidirectional robot is determined by its ability to drive in all
directions and to turn simultaneously. Here, we want to focus on the trajectories
that can be driven by such a robot.

Assuming a robot with differential drive first and assuming constant angular
velocity ω and linear velocity v the robot drives on an arc. According to [8] the
expected position (x, y) and robot heading φ at time t is:

φ(t) = ωt mod 2π (1)

x(t) =
v

ω
(cos (ωt)− 1) (2)

y(t) =
v

ω
sin (ωt) (3)

Here, x and y are referring to the robocentric coordinate system at the beginning
of the movement.

Things become more complicated in the case of an omnidirectional robot
since the linear velocity is not restricted to forward or backward movements but
it can be any vector v in the robocentric coordinate system. Hence, we have to
generalize (2) and (3) applying first a rotation that turns the coordinate system
into the situation discussed in the case of a differential drive, applying (2) and
(3) and finally turning the coordinate system back into its original orientation.
Additionally, to get coordinates referring to a fixed global coordinate system we
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have to consider the current position p of the robot and its heading φ at the
beginning of the movement.

Denoting with u the robot velocity in global coordinates we get after some
transformations the completed motion model for an omnidirectional robot:

φ(t) = φ0 + ω · t (mod 2π) (4)

p(t) =

⎧⎪⎨
⎪⎩

p0 + u(t) · t if ω = 0

p0 + 1
ω

(
sin(ωt) cos(ωt)−1

1−cos(ωt) sin(ωt)

)
u(t) if ω �= 0

(5)

ω(t) = ω = ω0 (6)

u(t) =
(

cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

)
u0 (7)

The parameters φ0, p0, ω0 and u0 denote the initial heading, position, angular
and linear velocity (in global coordinates) at point in time 0, respectively.

Due to our assumption of constant velocities, the angular velocity ω is inde-
pendent of time (6) but the linear velocity ut in global coordinates is turning in
the same manner as the robot turns (7).

The case-distinction in (5) depends on the angular velocity ω: if it is zero, the
robot is driving on a straight line and performs a purely linear movement (first
case) while in the case of ω �= 0 it drives on an arc. Notice that the first case is
the limit of the second case for ω → 0.

2.3 Estimating the Robot Velocity

Once having derived the motion model in (4)-(7) we can fit it to the observed
positions of the robot that are calculated by the self-localization approach. Let us
denote the pose estimates with tuples (pi, φi, ti) where pi refers to the estimated
position of the i-th observation (i ≥ 1), φi to the robot heading and ti to the
point in time when this observation has been made.

A direct approach to find the parameters minimizing the discrepancy suffers
from three problems:

(a) which error measure do we use to describe the discrepancy between an ob-
served pose and an expected pose of the robot?

(b) how can we deal with the cyclic structure of angles, i.e. the problem that an
angle of α is equal to an angle of α + 2π?

(c) how can we overcome the problem that the motion model contains a case
distinction?

The first problem contains the problem of finding a balance between the error
that is made in the position of the robot and its heading. Since both parameters
are elements of completely different spaces there is no natural common measure
of discrepancy. Basically we are faced with the question whether the estimate
should be more accurate with respect to the heading or to the position.
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The second problem can be solved mapping the angles φi onto a linear scale
of real numbers. Here, we assume that in the time interval ti+1− ti between two
consecutive observations of the robot’s pose the robot does not turn by an angle
of π or more. Hence, we can “unroll” the measured robot headings on a real axis
adding multiples of 2π to the angle in such a way that consecutive values do not
differ more than π. To avoid using a new symbol for the unrolled headings we
will interpret the symbol φi as those values instead of the original angles.

To overcome the third problem we propose an algorithm that makes use of
the hierarchical structure of the motion model. Our idea is to decompose the
whole task into two subtasks:

minimize
φ0,ω0

1
2

n∑
i=1

(
φi − φ(ti)

)2 (8)

minimize
p0,u0

1
2

n∑
i=1

||pi − p(ti)||2 (9)

where we use the result of (8) to solve (9).
By estimating the angular velocity first without considering the position of

the robot the estimate becomes more sensitive to errors in the heading than
errors in the position.

Using the general idea outlined in the previous paragraph we have to derive a
solution of (8) firstly. Assuming that the observed values of φi have been rolled
out as described before the task of estimating the angular robot velocity becomes
a linear regression task since we have to fit the linear model

φ(t) = φ0 + ω · t (10)

to data points of the form (φi, ti). The solution can be derived analytically:

ω̂ =
n
∑n

i=1(φiti)−
∑n

i=1 ti
∑n

i=1 φi

n
∑n

i=1 t2i − (
∑n

i=1 ti)2
(11)

Now, we can tackle (9) using the already estimated ω̂ instead of ω. Depending
on the value of ω̂ we have to consider the appropriate case in the motion model
(5). If ω̂ = 0 we are faced with a linear movement on a straight line. Hence (9)
turns out to be a linear regression task. Similarly to (11), the solution can be
derived analytically as:

û =
n
∑n

i=1(piti)−
∑n

i=1 ti
∑n

i=1 pi

n
∑n

i=1 t2i − (
∑n

i=1 ti)2
(12)

In the second case of a movement on an arc we get the solution calculating
the partial derivatives of 1

2

∑n
i=1 ||pi − p(ti)||2 and looking for the zeros. After

some mathematical transformations we get the system of equations:⎛
⎜⎜⎝

n 0
∑

si

∑
ci

0 n −
∑

ci

∑
si∑

si −
∑

ci

∑
(s2

i + c2
i ) 0∑

ci

∑
si 0

∑
(s2

i + c2
i )

⎞
⎟⎟⎠
⎛
⎜⎜⎝

p0,x

p0,y

u0,x

u0,y

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

∑
pi,x∑
pi,y∑

(sipi,y − cipi,y)∑
(cipi,x + sipi,y)

⎞
⎟⎟⎠ (13)
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Fig. 1. Acceleration and deceleration of a robot. The dash-dot line shows the desired
robot velocity over time, the dotted line shows the odometer values and the solid line
shows the estimated velocity using the 10 latest observations.

with si = sin(ω̂ti)
ω̂ and ci = cos(ω̂ti)−1

ω̂ . pi,x and pi,y are denoting the first and
second coordinate of pi. Resolving (13) with respect to u0 yields:

û0 =
1
d

(∑
si

∑
pi,x −

∑
ci

∑
pi,y − n

∑
(sipi,y − cipi,y)∑

si

∑
pi,y +

∑
ci

∑
pi,x − n

∑
(cipi,x + sipi,y)

)
(14)

with d = (
∑

si)2 + (
∑

ci)2 − n
∑

(s2
i + c2

i ).
The number n of pose estimates that are used for velocity estimation must be

at least 2 but should be taken larger than 2 to reduce the noise in the estimates
which heavily depends on the number of observations. Beneath the possibility to
use a fixed number n like, e.g. 10, it is also possible to use an adaptive strategy
that reduces n when the robot accelerates or decelerates and increases n when
it drives with constant velocity. This idea is very similar to the approach that
was used in [9] to estimate the ball velocity.

Figure 1 shows the velocity estimates for a run on a real robot of the Brain-
stormers Tribots RoboCup team. Obviously, when accelerating the robot, there
is some delay until the estimated velocities follow the actual ones but, on the
other hand, they do not show the artefacts due to slippage that can be ob-
served considering the odometer values. Furthermore, the slope of the curve is
much more realistic than the slope of the odometry or motor command curve.
It corresponds to an acceleration of approximately 2 m

s2 .

3 Collision Detection

While we described in section 2 how to estimate the robot velocity we will show
in this section an example of how we can benefit from it. In the RoboCup Middle
Size League it often happens that robots collide or even push each other. These
situations are very undesirable, not only since they are judged as a foul but also
since they potentially lead to damaged motors.

There are several ways to recognize pushing situations:

– using elaborated image processing algorithms is a desirable way but needs
too much computation time to be applied under hard real time constraints.
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Fig. 2. Acceleration of a robot and collision with an obstacle. After accelerating in
the time interval from 9000 until 10000 and driving with constant velocity the robot
collided with an obstacle at point in time 11000. The obstacle bared the robot from
driving forwardly. The dash-dot line shows the desired robot velocities over time, the
dotted line shows the odometer values and the solid line shows the estimated velocity.

– using haptic sensors is a possible way but needs additional hardware that
has to be maintained.

– here, we want to propose a simple and at the same time very effective ap-
proach that is based on a comparison between the actual robot velocity and
the desired velocity. This approach does not need any additional hardware
and is also very efficient. It can be seen as a virtual sensor.

Fig. 1 shows what happens if the robot drives without being hindered: the
odometer values as well as the estimated velocities follow in principle the driving
commands with a certain delay and smoothed over time. Due to slippage the
maximal velocity that is actually reached is below the desired velocity.

In contrast, Fig. 2 shows a situation in which the robot was accelerating until
it collided with an obstacle at point in time 11000 and after that was blocked by
the obstacle. While the motor commands as well as the odometer values indicate
a large robot velocity of more than 2m

s the estimated velocity decreases to less
than 0.5m

s . Notice that the motor controllers try to turn the wheels with the
desired velocity against the resistance of the blocking obstacle. Hence, they need
a lot of energy which gets completely lost in slippage.

We can make use of the observed discrepancy between estimated velocity
and desired velocity to detect situations of the robot being blocked. Thereto, we
calculate the difference between û and the desired velocity uc: e := ||û−uc||. To
be more precise and to take into account the internal delays of the camera, the
velocity estimator, and the motor controller [1] we do not compare the current
velocity estimate with the most recent motor command but with the driving
command that was sent to the motor controller 200ms before.

If the discrepancy e is large, say larger than a threshold θ1, we are faced with
a suspicious situation in which the robot potentially is blocked. Unfortunately,
large values of e do also occur when the robot is accelerated or decelerated since
the motors realize a desired change of velocity only incrementally.

To overcome this problem we propose a combination of two techniques: (a)
filtering out times of acceleration and (b) considering intervals of time instead
of single points in time. The general idea behind the second technique is that
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Fig. 3. Motor commands and velocity estimates for a run of the robot of 40 seconds.
The dash-dot line shows the desired velocity (motor command), the solid (dotted) line
show the estimated velocities using 20 (5) points for estimation.

blocking situations typically hold on for a longer period of time (> 500ms) so
that for a whole interval in time the values of e are suspicious while the influence
of random disturbances is typically shorter.

To ignore periods of acceleration we consider the derivative of the desired
velocity with respect to time: u̇c. If it is larger than a threshold θ2 we do not
consider this point in time. The determination of the thresholds θ1 and θ2 needs
to be done manually.

4 Experimental Results

To evaluate the performance of the velocity estimator we applied it to the robots
of the Brainstormers Tribots Middle Size League RoboCup team. In several runs
where we drove a robot by joystick we observed the velocity estimates. Figure 3
shows the estimates of angular and linear velocity for a run of 40 seconds.

The figure compares velocity estimates with differing number of points used
for estimation: while the estimates exhibit a large noise level in the case of only
five points used they are very smooth in the case of twenty points. On the other
hand, the estimates using only five points react quicker to changes in the velocity
than the estimates with twenty points. Hence, an optimal choice depends on
the purpose for which the velocity estimates are be used. A good compromise
between both extremes is a number of ten observations. Furthermore, Fig. 3
reveals a dependency between angular and linear velocity: as soon as the robot
turns the linear velocity decreases.

To test whether the approach to detect situations of a blocked robot works we
made experiments driving the robot against a heavy box so that it gets blocked
by it. In some cases the robot was able to push the box with reduced velocity
or, in the case of a lopsided contact, the robot was turned unintentionally.

The tests contained 20 different blocking situations, in five of it the robot was
pushing the box and in three the robot was unintentionally turned. Through-
out the experiments which lasted for 320 seconds 17 situations were correctly
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recognized by the blocking sensor and only one false alarm occurred. The three
situations that were missed are pushing and turning situations.

5 Discussion

We proposed two algorithms in this paper, an approach for estimating the ego-
motion of the robot and a virtual sensor of blocking situations. As demonstrated
the advantage of the ego-motion estimator is its independence of wheel encoders.
Hence we get independent information about the robot movement and we are
able to reveal kinetic effects of the omnidirectional drive which is a groundwork
for controlling fast robot movements accurately.

The algorithm for recognizing blocking situations has also been turned out to
be helpful. We used it successfully in tournaments where recognition of blocking
situations enables behaviors that free the ball in such a case. Morover, recog-
nizing blocking situations is important to save energy and to prevent the robots
from damage. Characteristically, a motor of one of our robots was destroyed
when we made experiments with blocking situations.

While we presented in this paper only an approach to estimate the ego-motion
and to recognize blocking situations, our research objective is to build a complete
dynamic model of the environment incorporating a kinetic model of the robot
movements, of its teammates and opponents as well as the movement of the ball.
Hence, we will be able to drive faster and more accurate and to interact with
other objects.

Acknowledgments. This work was supported by the German Research Foun-
dation (DFG) SPP 1125.
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Abstract. The perception and modeling of other robots has been a
topic of minor regard in the Four-Legged League, because of the limited
processing und sensing capabilities of the AIBO platform. Even the cur-
rent world champion, the GermanTeam, abandoned the usage of a robot
recognition. Nevertheless, accurate position estimates of other players
will be needed in the future to accomplish tasks such as passing or ap-
plying adaptive tactics. This paper describes an approach for localizing
other players in a robot’s local environment by integrating different un-
reliable perceptions of robots and obstacles, which may be computed in a
reasonable way. The approach is based on Gaussian distributions describ-
ing the models of the robots as well as the perceptions. The integration
of information is realized by using Kalman filtering.

1 Introduction

The Four-Legged Robot League is one of the official leagues in RoboCup, in
which a standardized robot platform is used, namely the Sony AIBO, which has
quite limited perceptual capabilities. The main sensor of the Sony AIBO is a
camera located in its head. The head can be turned around three axes, and the
camera has a field of view of approximately 57◦ by 42◦. As the main sensor of the
robot is a camera, all objects on the RoboCup field are color coded. For robots,
this leads to two different tricot colors, i. e. red and blue, which are applied to
the robots as patches (Fig. 1).

During actual RoboCup games, robots are hard to perceive. Especially the
blue tricots are often indistinguishable from black or dark grey. The relatively
large distances on the field as well as the limited field of view—compared to
robots in other leagues that are allowed using omni-directional sensors—make it

� The Deutsche Forschungsgemeinschaft supports this work through the priority pro-
gram “Cooperating teams of mobile robots in dynamic environments”.
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a) b)

Fig. 1. Detection of robots by using a grid of scan lines

almost impossible for a single robot to compute accurate estimates of all players
on a field based on its own perceptions.

Despite of the existence of robot detection algorithms [1,2,3,4], often only sim-
ple obstacle information [5,6] is used for navigation. Nevertheless, a localization
for robots is needed, if techniques such as passing towards teammates or tactics
which are adapting to the opponent’s positions should be applied. Because of
the limited field of view, and the unreliability of the available robot perceptions,
sophisticated techniques for modeling are needed.

The approach presented in this paper aims at computing accurate estimates
of player positions in the robot’s local environment by using probabilistic mod-
eling techniques. It does not incorporate communication with other robots and
depends therefore on visual perceptions. To improve estimates, information dif-
ferent from explicit robot perceptions is additionally integrated, i. e. occupied
spaces as well as free spaces on the field.

In the Four-Legged League domain, player position estimation has been a
topic of minor regard, so far. Nevertheless, several similar works about modeling
position and velocity of the ball using Kalman filters [3] or Rao-blackwellized
particle filters [7] have been published. Also the integration of different percep-
tions for improving estimates of the ball position has been described by [2].

This paper is organized as follows: Section 2 presents the perceptions which are
used for computing estimates. The estimation approach is described in Sect. 3.
Experimental results are presented in Sect. 4. The paper ends with a conclusion
and an outlook on future work in Sect. 5.

2 Perceptions

The work described in this paper is based on the software of the GermanTeam
2005 [4] and therefore uses its vision system. This system processes images of a
resolution of 208 × 160 pixels, but actually considers only a horizon-aligned grid
of less pixels [8] (see Fig. 1). Each grid line is scanned pixel by pixel. During
the scan, each pixel is classified by color. A characteristic series of colors or a
pattern of colors is an indication of an object of interest.



476 T. Laue and T. Röfer

a) b)

Fig. 2. Detection of obstacles. a) Lines scanning for unoccupied space. The bright dots
indicate the end of the free field. b) A similar situation represented in the robot’s world
model. The short lines indicate the free space among the robot and another robot. The
sectors surrounded by black lines are regions which are considered to be unoccupied.

Robot Detection. To find the indications for other robots, the scan lines are
searched for the colors of the tricots of the robots. The scan lines are followed
until the green of the field appears (cf. Fig. 1a). Thus the foot points of the
robot are detected. From these foot points, the distance to the robot can
be determined. A refinement for determining the position of the robot is
the extraction of the position of a front foot from the image [4] (cf. Fig.
1b). Using this simple approach, a recognition of a robot’s rotation is not
possible. The only information is the relative position of a robot. The small
tricot elements cause a detection of robots at a distance of more than 1.5m
to be highly unlikely. The precision of these percepts is shown in Sect. 4,
their integration into a robot position estimation is described in Sect. 3.2.

Obstacles and Free Space. A concept different from the recognition of robots
is the detection of obstacles [6,5]. Instead of searching robot features in an
image, the unoccupied regions, i. e. the green field including the white lines,
are determined (cf. Fig. 2a). Thus, areas not classified as free space have
to be considered to be obstacles. Though obstacles don’t necessarily need
to be robots (e. g. beacons, goals, and the feet of a referee would also be
classified as obstacles), they can be used for improving the estimation of a
robot position (cf. Sect. 3.2). In contrast to this positive information, this
perception additionally bears negative information about regions in which
no robots are located. The usage of this perception is described in Sect. 3.3.

Collisions. A completely proprioceptive kind of percept is information about
the current physical state of the robot, i. e. the correctness of the calculated
camera position or the odometry. Both information may be disturbed by
collisions with other robots and hence lead to disturbed perceptions. For
instance in [9], it has been shown that it is possible to compute reliable
information about collisions occurring to a moving AIBO robot. The use of
this information is described in Sect. 3.1.
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3 Robot Models

Since the number of players that could be observed from a robot’s position varies,
a set1 of actual estimations—in the following termed as hypotheses—has to be
kept and updated. A robot hypothesis H is modeled as a Gaussian distribution.
Therefore it is a tuple consisting of a mean μh which describes the position of
the robot and a covariance Σh which models the uncertainty of the position.
Since the image processing algorithms used for this work are not capable of
recognizing a robot’s relative rotation, two-dimensional distributions are used.
All hypotheses are kept relative to the observing robot in polar coordinates which
consist of a distance d and an angle α.

μh =
(

d
α

)
, Σh =

(
var(d) cov(α, d)

cov(d, α) var(α)

)
(1)

New hypotheses may be created from perceptions of robots (cf. Sect. 3.2)
whilst existing hypotheses are maintained by a Kalman Filter [10,11] which in-
corporates the robot’s motion (cf. Sect. 3.1) and integrates different perceptions
(cf. Sect. 3.2–3.3) to improve the estimation of player’s positions. Every hypoth-
esis is considered to be a single robot that is tracked. Nevertheless, it is possible
that noisy perceptions lead to different hypotheses describing the same robot.
These effects are addressed by the mechanisms described in Sect. 3.4. The general
approach—the structure of which is similar to [12]—is depicted in Fig. 3.

3.1 Motion Update

On every execution of the modeling module, all existing hypotheses have to be
updated according to the motion (Δx, Δy, Δα) of the observing robot since the
last execution. This information is gained from the robot’s odometry. The update
also includes noise depending on the quantity of the motion. The mean of the
hypothesis is updated by

α+ = atan2(sin(α−)d− −Δy, cos(α−)d− −Δx)−Δα (2)

d+ =
√

(sin(α−)d− −Δy)2 + (cos(α−)d− −Δx)2. (3)

The uncertainty caused by the robot’s motion is added to the hypothesis’ co-
variance matrix Σ by

Σ+ = J1Σ
−J1

T + J2(1 + ec)ΣΔJ2
T + ΣN (4)

where two Jacobian matrices J1 and J2 are defined as

J1 =
∂

(
α+

d+

)

∂

(
α−

d−

) , J2 =
∂

(
α+

d+

)

∂

⎛
⎝Δx

Δy
Δα

⎞
⎠

. (5)

1 Actually, the implementation keeps red and blue robots in two different sets, but
this detail is not addressed in this general description of the approach.
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RobotModeling (Hypotheses, RobotPerceptions, Obstacles, Odometry)
for each Hypothesis H:

MotionUpdate (H, Odometry)
for each RobotPerception P:

if IntegrationPossible(Hypotheses, P)
Integrate(P, BestMatch(Hypotheses, P))

else
Hypotheses add P

for each Hypothesis H:
UpdateByPositiveObstacles (H, Obstacles)
UpdateByNegativeObstacles (H, Obstacles)
if LowQuality(H)

Hypotheses remove H
else if (H∗| MergingPossible(H∗, H)) exists

Merge(H, H∗)
end

Fig. 3. The general operation of the robot modeling

The matrix ΣΔ contains information about the uncertainty of the robot’s motion
and is provided by the odometry model. Additionally, collisions may be taken
into account by multiplying the matrix with a factor ec. This factor is zero,
if no collisions occur. In case of a collision, a positive value reflects the higher
uncertainty of odometry. Through the matrix ΣN , constant white noise is added
reflecting the uncertain motion of the observed robots. This causes the variance
to grow constantly in absence of any measurements. Adequate values for ΣΔ,
ΣN and ec have to be determined empirically.

3.2 Robot Percepts and Positive Obstacle Information

Before adding new hypotheses to the list, all measurements are tried to be in-
tegrated with existing estimations. In a first step, a percept is converted to a
hypothesis Hm. Its mean μm is the position of the measurement. A correspond-
ing covariance matrix Σm has to be precomputed from a set of measurements (as
those made for Fig. 4a). This can be refined by providing matrices for different
distances and angles and using interpolations of these for new measurements.

The new hypothesis has now to be associated to an already existing robot
hypothesis Hr. The Mahalanobis distance

dM (Hr, Hm) = (μr − μm)T (Σr + Σm)−1(μr − μm) (6)

provides a distance measure that describes the compatibility of two hypothe-
ses, indicating whether both could refer to the same robot. After the closest
hypothesis Hr has been found and dM (Hr, Hm) is below a maximum acceptable
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a) b) c) d)

Fig. 4. A robot standing at a distance of 80cm is perceived and its position is estimated.
Every dot indicates an estimate, the black circle surrounds the ground truth position.
a) The plain perception from the vision system. b) Plain obstacle positions as used by
3.2. c) The modeled position using robot perceptions only. d) The modeled position
using robot and obstacle perceptions.

distance, Hm is integrated:

μ+
h = μ−

h + Σ−
h (Σ−

h + Σm)−1(μm − μ−
h ) (7)

Σ+
h = Σ−

h −Σ−
h (Σ−

h + Σm)−1Σ−
h (8)

Otherwise, the measurement will be added to the list as a new hypothesis.
In general, perceived obstacles are treated similar to robot percepts, solely

the usage of a lower threshold κo for hypothesis association is needed and the
possibility of adding new hypotheses to the list does not exist. The mean μo is
computed from a set of adjacent obstacle segments (cf. Fig. 2a). Of course, the
values for the covariance matrix Σo have also to be determined empirically, since
they differ strongly from the robot percept values (cf. Fig. 4b).

3.3 Negative Obstacle Information

In opposite to the previous two perceptions, which denote the presence of ro-
bots, the negative obstacle information, i. e. empty regions of the field, denotes
absence of any robots. This information is quite useful for the elimination of
false positives as well as for a quick update of the world model in case of a robot
kidnapping (which have e. g. been picked up by a referee). The incorporation
of this information is done via checking the inclusion of every hypothesis’ mean
μh inside every sector recognized as being empty (cf. Fig. 2). In case of such an
inclusion, white noise is added to the corresponding covariance matrix.
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3.4 Maintenance of Hypotheses

While maintaining a list of hypotheses, it has not only to be taken care of
removing elements, e. g. those with an uncertainty above a given threshold. The
possibility of having two hypotheses describing the same robot must also be
considered. This effect is detected by using a heuristic derived from the limits of
the used image processing approaches: Two hypotheses H1 and H2 whose means
μ1 and μ2 are located very close to each other can not be distinguished anymore
by robot percepts in a reasonable way. These two hypotheses become merged,
i. e. they are viewed as a sum-of-two-Gaussians distribution and replaced by a
single Gaussian with the same mean and covariance. This is accomplished by

μn = w1μ1 + w2μ2 (9)
Σn = w1Σ1 + w2Σ2 + w1w2(μ1 − μ2)(μ1 − μ2)T (10)

where the relative weight of the two hypotheses is controlled by

w1 =
PH1(μH1)

PH1 (μH1) + PH2(μH2)
, w2 =

PH2(μH1 )
PH1(μH1) + PH2(μH2)

. (11)

4 Experimental Results

The approach described in this paper has been implemented using the framework
of the GermanTeam. Several experiments using an AIBO on an original Four-
Legged League field have been conducted. To demonstrate the improvement
of player position estimates by using the proposed modeling techniques, the
quality of hypotheses while sensing different robots at different distances has
been measured. One example is depicted in Fig. 4.

To demonstrate the capability to model several robots simultaneously as well
as assigning measurements to different robots of the same color, different set-
tings including a number of robots have been investigated (cf. Fig. 5). These

a) b)

Fig. 5. An example with several robots. The large dots indicate the positions of the
hypotheses. The lines through the dots illustrate the uncertainty of the estimations.
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experiments included only standing robots due to a lack of adequate ground
truth data for moving robots.

The implementation of this approach has already been applied to a dynamic
scenario by the Bremen Byters team which built some tactical behaviors upon
the computed robot estimations and used these in a RoboCup competition.

5 Conclusion and Future Works

In this paper, the authors have shown that it is possible to compute accurate
position estimations of robots in the Four-Legged League. The low quality of
information that is caused by the low perceptual capabilities of the AIBO robot
may be compensated by applying sophisticated estimation techniques. The next
step will be to create a complete world model that includes the positions of all
robots on the field. Due to the limitations of a single robot, this has to be done
by communicating information among the robots in a team. The local models
described in this paper will be used as a foundation for such a global model.
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Abstract. We present refinements to our previous work on team commu-
nication and multi-robot world modeling in the RoboCup legged league.
These refinements put high priority on the communication of task-relevant
data. We also build upon past results within the simulation and the small-
size leagues and contribute a distributed, play-based role assignment al-
gorithm. This algorithm allows the robots to autonomously adapt their
strategy based on the current state of the environment, the game, and the
behavior of opponents. The improvements discussed in this paper were
used by CMDash in the RoboCup 2005 international competition.

1 Introduction

A common goal of distributed autonomous robotic systems is the development of
teamwork and coordination strategies. The benefits of adding multiple robots to
a system, such as increased performance and reliability, have been demonstrated
in many different situations. However, depending on the domain and the task,
different sorts of approaches might be needed. We are interested in multi-robot
coordination in domains with high uncertainty and dynamic environments.

In this paper, we present two main contributions: refinements to our previous
work in multi-robot world modeling and a novel approach to role assignment.
Both contributions are discussed in the context of the RoboCup four-legged
league [1], in which two teams of four Sony AIBO robots compete in a ro-
bot soccer game. This domain presents many challenges, including: full robot
autonomy, distributed robot team control, limited individual robot perception,
the presence of robot adversaries, task-dependent temporal constraints, and high
communication latency. In this paper, we contribute a new distributed play-based
system that equips the robots with plays – alternative teamwork strategies. This
method was developed to overcome limitations of previous approaches. In par-
ticular, it assigns roles to robots in a fault-tolerant manner that minimizes role
switching and synchronization problems. This paper is explicitly targeted at the
very challenging issues posed by the RoboCup four-legged league; however, our
approach is designed to be relevant to general multi-robot domains that share
some of the challenging features of robot soccer.

In section 2, we discuss our enhancements to communication and multi-robot
world modeling. Section 3 introduces our play-based teamwork strategy, and

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 483–490, 2007.
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refers to some positive experimental results. Section 4 presents our conclusions.
Related work is discussed throughout the paper as needed.

2 Communication Strategies

Many multi-robot teams make use of communication for world state sharing.
Due to the AIBOs’ limited perception range and the extensive object occlusion
in the RoboCup environment, teams can benefit greatly by building a shared
world model. A common approach, used by our team in the past [2], is to have
each robot periodically broadcast a packet containing all the shared information,
such as the robot’s current position, its best estimate of the ball position, and the
positions of detected opponent robots. However, some domain information (such
as the position of the ball) is inherently more important to the success of the team
than other types of information. We have therefore developed a factored commu-
nication strategy. In this strategy, there are several different types of message,
containing different pieces of information. We can then independently choose the
transmission rate for each type of message. This communication strategy allows
the robots to respond more quickly to important events (such as a change in the
ball’s position) without the need to transmit a large message over the communi-
cation network. In this section, we present a brief overview of the world-modeling
information our robots shared in the RoboCup 2005 competition.

2.1 Ball Messages

These messages are sent by all robots to indicate important information about
the status of the ball. Each message contains the following information:

– Ball state. This is a new feature that was added to our world model for
RoboCup 2005. This can take on one of the following values:
• Lost: No reliable estimate of the ball’s location is available.
• Visible: The ball is currently seen.
• Possession: The ball is believed to be in the possession of the robot

(i.e., the robot has grabbed the ball and is lining up for a kick.)
• NotInFOV: The ball is not currently seen, but is not expected to be

seen because it is outside the robot’s field of view. This happens (e.g.)
when a robot takes its view off the ball to look at a localization marker.

• InFOVButMissing: The ball is not currently seen, even though the
robot believes it is looking at the ball’s location.

• InFOVButOccluded: The ball is not currently seen, but the robot
believes that an object (such as another robot) is occluding the ball.

We now send these symbolic ball states instead of numerical confidence val-
ues. These symbolic values allow the team to more accurately characterize
the true state of the ball.

– Whether the robot transmitting the message believes that it is lost. This is
determined by thresholding the robot’s localization uncertainty.
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– The global position of the ball. Global ball position estimates are not used
from any robot that claims to be lost, since a lost robot is very likely to
project its local ball estimate to an incorrect global position.

– The position of the ball relative to the robot. If the ball is very close to
the reach of a robot, and that robot intends to kick the ball, the robot’s
teammates should avoid interfering with the kick, even if the robot believes
that it is lost. The transmission of relative ball locations allows robots to
back off in this situation, without the need to rely on visually seeing the
teammate near the ball.

Since the location of the ball is of utmost importance to the proper functioning
of the team, the ball messages are sent frequently. A robot will send a new ball
message every 1/8 second if it has a good ball hypothesis and is not lost. If the
robot becomes lost or does not have a valid ball hypothesis, it waits a while
longer to see if the situation improves. This is done because a valid global ball
location provides more valuable information to teammates. After 1/4 second has
passed, however, the robot sends a ball message regardless of the circumstances.

2.2 Status Messages and Intentions

Another type of message is the status message. Status messages are sent by each
robot at periodic intervals (typically 4 Hz). They include the robot’s current
position and angle (as reported by localization) as well as the current “intention”
of the robot. Intention is a very important concept that we have added to our
teamwork this year. When a robot is very close to the ball, its teammates should
stay out of the way, to ensure that they do not interfere with the attacker’s
actions. However, there are specific times when nearby robots might not be
intending to go for the ball. In these cases, the teammates should not back away
just because another robot is near. The intention of the robot is determined by
the robot’s top-level behavior, and can take on any of the following values:

– Attack: the robot intends to approach the ball and manipulate it.
– Wait: the robot does not intend to approach the ball. This happens when

a robot is returning to position or is searching for the ball.
– Yield: the robot would intend to approach the ball, except that it is yielding

to a teammate instead.

2.3 Periodic Messages

Periodic messages are provided as a form of robustness to failure. The informa-
tion contained in periodic messages allow the robots to determine when network
failures have occurred, when a teammate has crashed, or other anomalous events
have occurred. The team can then take appropriate actions to ensure that team
play degrades gracefully in the presence of failure. The periodic message is typ-
ically sent at a rate of 1 Hz.
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3 Distributed Play-Based Role Assignment

It is our experience that it is rather challenging to generate or learn a team
control policy in complex, highly dynamic (in particular adversarial), multi-robot
domains. Therefore, instead of approaching teamwork in terms of a mapping
between state and joint actions [3], we follow a play-based approach, as introduced
by Bowling et al. [4]. A play-based approach allows us to handle the domain
challenges introduced in section 2. A play specifies a plan for the team; i.e.,
under some applicability conditions, a play provides a sequence of steps for the
team to execute. Multiple plays can capture different teamwork strategies, as
explicit responses to different types of opponents. Bowling showed that play
selection weights could be adapted to match an opponent. Plays also allow the
team to reason about the zero-sum, finite-horizon aspects of a game-playing
domain: the team can change plays as a function of the score and time left in
the game. Our play-based teamwork approach ensures that robots do not suffer
from hesitation nor oscillation, and that team performance is not significantly
degraded by possible periods of high network latency. We believe that ours is
the first distributed play-based teamwork approach within the context of the
RoboCup four-legged league.

3.1 Plays

A play is a team plan that provides a set of roles, which are assigned to the
robots upon initiation of the play. Bowling [4] introduced a play-based method
for team coordination in the RoboCup small-size league. However, the small-size
league has centralized control of the robots. One of the significant contributions
of our work is the development of a play system that works in a distributed team.
The play language described by Bowling assumes that the number of robots is
fixed, and therefore always provides exactly four different roles for the robots.
In another extension to Bowling’s work, our plays also specify which roles are
to be used if the team loses some number of robots due to penalties or crashes.
This extension to the role-assignment aspects of Bowling’s play language allows
the team to robustly adapt to the loss or penalization of team members without
the need for additional communication.

Our play language itself is also strongly inspired by the work of Bowling. Our
language allows us to define applicability conditions, which denote when a play
is suitable for execution; what roles should be assigned when we have a specific
number of active robots on the team; and a weight, which is used to decide which
play to run when multiple plays are applicable.

Applicability. An applicability condition denotes when a play is suitable for
execution. Each applicability condition is a conjunction of binary predicates.
A play may specify multiple applicability conditions; in this case, the play
is executable if any of the separate applicability conditions are satisfied.
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Roles. Each play specifies which roles should be assigned to a team with a
variable number of robots by defining different ROLES directives. A directive
applies when a team has k active robots, and specifies the corresponding
k roles to be assigned. If a robot team has n members, each play has a
maximum of n ROLES directives. Since our AIBO teams are composed of
four robots, our plays have four ROLES directives.

Weight. Weight is used to decide which play to run when multiple plays are
applicable. In our current algorithm, the play selector always chooses the
applicable play with greatest weight. Future work could include choosing
plays probabilistically based on the weight values or updating the weights at
execution time to automatically improve team performance. Playbook adap-
tation of this sort was introduced by Bowling for the small-size league [4].

Unlike the work of Bowling, we do not have DONE or TIMEOUT keywords that
specify when a play is complete. Rather, the play selector runs continuously,
and each play is considered to be complete as soon as a different play is chosen.
This may happen because the current play is no longer applicable or because
another play with greater weight has recently become applicable. Each predicate
used in an applicability condition is designed with some hysteresis, such that it
is not possible for the predicate to rapidly oscillate between true and false. The
predicates used in our approach depend on features of the environment – such as
the time left in game, the number of goals scored by each team, and the number
of robots available to each team – that by their nature cannot rapidly oscillate.
This ensures that the play choice also cannot rapidly oscillate.

Figure 1 shows an example of a defensive play. Its applicability conditions
specify that this play is applicable 1) when our team is winning and has fewer
active players than the opponents or 2) when the game is in the second half
and our team is winning by at least two points. If we have only one active ro-
bot on our team, we will assign it the Goalkeeper role; if we have two robots,
one is assigned the Goalkeeper role and the other is assigned the Defender role;
and so on. We have developed a total of sixteen plays, but not all were used in
the RoboCup 2005 competition. Figure 2 shows a summary of the seven plays
that were used in the competition. (Only the roles used for a 4-robot team are
shown.)

PLAY Guard
APPLICABLE winning fewerPlayers
APPLICABLE secondHalf winningBy2OrMoreGoals
ROLES 1 Goalkeeper
ROLES 2 Goalkeeper Defender
ROLES 3 Goalkeeper Defender Independent
ROLES 4 Goalkeeper Defender Midfielder Independent
WEIGHT 3

Fig. 1. An example play with multiple applicability conditions
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Default: Goalkeeper Defender Striker Independent
Defensive: Goalkeeper Defender Midfielder Independent
Guard: Goalkeeper Defender MidfieldDefender Independent
Flankers: Goalkeeper Defender LeftFlanker RightFlanker
Aggressive: Goalkeeper LeftFlanker RightFlanker Independent
PullGoalie: Midfielder LeftFlanker RightFlanker Independent
Kickoff: Goalkeeper Defender Charger KickoffDodger

Fig. 2. Summary of the seven plays used by our team in RoboCup 2005

3.2 Play Selector

The play selector runs on one robot that is arbitrarily chosen to be the leader.
The play selector chooses which play the team should be running. The leader pe-
riodically broadcasts the current play (and role assignments) to its teammates.
Distributed play-based coordination is achieved through a predefined agreement
among the team members to resort to a default play if a robot doesn’t hear a
play broadcast within a communication time limit. A failure of the leader or a
network problem may trigger this default coordination plan. A more sophisti-
cated approach could incorporate an algorithm for leader selection in the event
of failure. However, we did not pursue such an approach for the work presented
in this paper. The algorithm used by the play selector is presented in Figure 3.

SELECT_PLAY(S: world state, P: playbook, D: default play):
BEST_PLAY <- D
BEST_WEIGHT <- WEIGHT(D)
for each PLAY in P:

if WEIGHT(PLAY) > BEST_WEIGHT:
for each CONDITIONS in APPLICABLE(PLAY):

if all CONDITIONS are satisfied in STATE:
BEST_PLAY <- PLAY
BEST_WEIGHT <- WEIGHT(PLAY)

return BEST_PLAY

Fig. 3. Algorithm used by the play selector

3.3 Role Allocator

The selection of a play determines which roles need to be allocated to the ro-
bots. However, it does not specify which robots should be assigned to each role.
Therefore, a role allocation algorithm is still needed to assign the roles. This
algorithm also runs on the leader robot, which broadcasts the assignment along
with the selected play. Our role allocator has two features that differentiate it
from those used by many other RoboCup teams [5]. First, it only runs when a
play is initially selected, as opposed to continuously. Second, it allocates roles in
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a role-preserving manner – minimizing role switching. Formally, if a new play Pt

is selected at time t, and Pt specifies n roles {R1..n} for the n robots r1..n, and
ri was already assigned to Rj in Pt−1, ri is guaranteed to still be assigned to Rj

in Pt. (Any remaining roles can be allocated in a greedy fashion.) If two plays
share some roles, this strategy guarantees that some of the robots can assume
their new roles without any transitional cost. These features provide additional
resistance to oscillation in cases in which two plays share common roles.

3.4 Roles

The role assigned to each robot determines what behaviors the robot actually
runs. Our approach, used in RoboCup 2005, is unique in that it is region-based :
each robot is assigned to a region of the field. A robot is primarily responsible for
going after the ball whenever the ball is in that robot’s region. Roles are designed
simply by configuring a generic “Player” behavior with appropriate settings for
that role. The configurable items include:

– Region: an area of the field that the robot is responsible for covering.
– Ball in Region Policy: the behavior the robot should adopt when it knows

that the ball is in its region. Typically, this will involve approaching the ball
and trying to clear it downfield or take a shot on goal.

– Ball out of Region Policy: the behavior the robot should adopt when it knows
that the ball is not in its region. Some roles specify that a robot is simply
to return to a home position, while other roles may have the robot move to
block the path between the ball and the goal, or to position for a pass.

– Ball Lost Policy: the behavior the robot should adopt when it believes the
ball is lost. This is typically some sort of searching behavior.

Unlike our previous approaches, robots no longer need to negotiate with one
another in order to gain the attacker role that allows them to approach the ball.
In this way, the performance of the team does not degrade significantly under
high network latency. We have developed algorithms that prevent the robots
from interfering with one another even when they are playing in overlapping re-
gions. To provide robustness against communication failure, these algorithms are
designed to operate without the need for communication, using local informa-
tion such as a robot’s vision of its own teammates. If communication is available,
our robots use additional features (such as reported teammate positions) that
provide added confidence that our robots will not interfere with one another.

3.5 Experimental Results / Discussion

Due to lack of space, we are unable to present detailed experimental results here.
Instead, we refer the reader to previous work in which we have presented related
results. In [6], we show that using high-level features, such as the presence of
opponents, to select a team strategy can improve the goal-scoring performance
of a team of two robots. In [7], we explore the problem of ball advancement in
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a team of three robots. These results show that the role-preserving behavior of
our role-assignment algorithm allows our team to maintain a consistent level of
performance even when the active play is switched at a rapid rate.

The presented role-assignment algorithm and plays have been tested in the
RoboCup 2005 competition. Our team came in fourth place in a challenging
competition of twenty-four teams. Our team typically rotated through three
well-balanced plays in the first minutes of each game, which allowed us to see
the performance of each play against the specific opponent. We could manually
change the team’s strategy at halftime or during a timeout.

Our role assignment system is unique in that it allows role assignments to
happen to all robots, including the goalkeeper. If there is not much time left in
the game and our team is losing, we have plays that will “pull” the goalkeeper
out of the goal box, which provides us with another field player that could score
a goal. In fact, in the 3rd-4th place game of the RoboCup 2005 competition, our
goalkeeper robot nearly scored a goal in the final seconds of the game.

4 Conclusion

In this paper, we have presented improvements to our team’s communication and
world modeling strategies. These improvements place high priority on the com-
munication of task-relevant data and ensure that robots communicate some use-
ful information even when lost. We have also presented a distributed, play-based
role-assignment algorithm, which aims to solve several important challenges,
including the presence of adversaries, task-based temporal constraints, and ro-
bustness to network failure. Our future work includes automatic play adaptation
within the underlying challenges of a distributed team, and principled reasoning
about adversarial temporal constraints, such as changing strategies based on the
time left in the game and the current score.
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Abstract. The increasing interest towards rescue robotics and the com-
plexity of typical rescue environments make it necessary to use high
fidelity 3D simulators during the application development phase. USAR-
Sim is an open source high fidelity simulator for rescue environments,
based on a commercial game engine. In this paper, we describe the devel-
opment of an autonomous rescue robot within the USARSim simulation
environment. We describe our rescue robotic system and present the ex-
tensions we made to USARSim in order to have a satisfying simulation
of our robot. Moreover, as a case study, we present an algorithm to avoid
obstacles invisible to our laser scanner based mapping process.

1 Introduction

Robotic systems have been proposed in recent years in a variety of settings and
frameworks, pursuing different research goals, and successfully applied in many
application domains. Technological improvements both in the hardware and in
the associated software of robotic platform push their application towards more
and more complex scenarios.

Search and Rescue robotics is one of the most challenging and interesting
application environments for AI and robotics. Such an application requires the
robots to be equipped with several complex sensors and to be able to perform
complex manoeuvres in cluttered and unstructured spaces.

When working with an expensive and complex hardware, the presence of a
simulator is of significant importance. On the one hand, it enables the evaluation
of different alternatives during the robot system design phase leading to better
decisions and cost savings. On the other hand, it supports the process of software
development by providing a replacement when robots are not available (e.g.
broken or used by another person) or unable to endure long running experiments.
Furthermore, the simulation offers the possibility to perform an easier and faster
debugging phase.

Several robotic simulators for 3D environments have recently been developed,
providing a valid alternative to the canonical 2D-oriented ones. A high fidelity
3D environment adds to the simulation the possibility to test extremely realistic
interactions, with a superior graphic rendering, extending the range of sensors
to be tested.

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 491–498, 2007.
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USARSim is an open source 3D simulator for the urban search and rescue
(USAR) environment based on a commercial game engine, currently supported
by an international community.

This paper aims to describe the realization of an autonomous robotic system
for search and rescue missions using USARSim. The robotic system is based
on a Pioneer P3AT1 commercial platform equipped with a sonar ring. We cus-
tomized the platform adding a SICK Laser Range Finder, a Stereo Color Camera
mounted on a pan-tilt unit, an Infra Red Sensor and a wireless acces point to
communicate with a ground station. The purpose of the robotic system is the
autonomous exploration of a rescue scenario searching for victims and building
the map of the explored area. The autonomous navigation system, which is based
on a two level path-planner, is able to guarantee safe navigation in highly clut-
tered space [8]. The mapping system is based on Laser Range Finder readings
and uses a scan matcher based approach so to localize the robot and build the
map. Finally, Stereo Vision is used to detect victims.

The first task was to build an interface between USARSim and our robotic
development platform to simulate our real robot and its equipment. In particular
we both modeled our system with the available built-in features (e.g. Pioneer ro-
botic platform and SICK Laser Range Finder) and extended the simulator, so to
correctly represent all our equipment (e.g. the Stereo Color Camera). Moreover,
we improved the existing simulation environment, synchronizing sensor readings
and correcting the simulation of transparent objects. Interfacing our develop-
ment platform with USARSim we are able to test the same code on both the
real robot and the simulator: as a consequence, we are now able to use USARSim
as a powerful debugging environment in the development phase of our robotic
applications.

Furthermore, we present a case study concerning path-planning in unknown
and cluttered environments. We modeled in USARSim several test scenarios and
developed a speed tracking based stall recovery subsystem to deal with invisible
obstacles. We tested the algorithm in USARSim, saving time and preserving the
robot from dangerous impacts.

The paper is organized as follows: in the next Section we describe the USAR-
Sim simulator. Section 3 shows our work with the simulator, the interface we
built and the customization we made. In Section 4 we discuss the case study.
Section 5 discusses related works and Section 6 concludes the paper.

2 USARSim

USARSim (presented in [1]) is a 3D high fidelity simulator of USAR robots
and environments. USARSim can be a valid tool for the study of basic robotic
capabilities in 3D environment. USARSim provides a high quality rendering
interface and it is able to accurately represent the robotic system behavior.

USARSim development started in the University of Pittsburgh and is cur-
rently supported by an international community. It is released as open source

1 ActiveMedia: Pioneer. http://www.activrobots.com
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software2 and has been adopted as the standard simulation tool for the RoboCup3

Virtual Robots Competition in the upcoming 2006 edition.
The current version of USARSim consists of: i) standardized environmental

sample models; ii) robot models of several commercial and experimental robots;
iii) sensor models, like Laser Scanners, Sonars and Cameras; iv) drivers to inter-
face with external control frameworks, like MOAST, Pyro and Player.

USARSim uses Epic Games Unreal Engine 24 to provide a high fidelity simu-
lation at low cost. Unreal is one of the leading engines in the first-person shooter
genre and is widely used in both the game industry and in the academic com-
munity. The use of the Unreal Engine provides several interesting features to
USARSim: i) a high-quality, fast 3D scene rendering, supporting mesh, surface
(texture) and lighting simulation; ii) a high fidelity rigid body physical simulator,
Karma, supporting collision detection, joint, force and torque modeling; iii) a de-
sign tool, UnrealEd, that enables developers to build their own 3D robot models
and environments; iv) an object-oriented scripting language, UnrealScript, which
supports state machine, time based execution, and networking; v) an efficient
client-server architecture to support multiple players.

3 Modeling an Autonomous Rescue Robotic System in
USARSim

To fully integrate our robotic rescue system within the USARSim virtual envi-
ronment we performed the following steps: i) we modeled our robotic platform
in the USARSim framework and developed a low level interface to the simulator
environment; ii) we modified the simulator to improve sensors’ realism; iii) we
introduced in USARSim a Stereo Vision Camera sensor and a 3D Camera.

In the following, we discuss each phase of the development. Moreover, we
show some validation results concerning autonomous exploration in a USARSim
simulated environment.

3.1 Modeling Our Robot in USARSim and Building the Interface

The robot we currently use is a Pioneer P3AT. We equipped the virtual chassis
(already modeled in USARSim) with a full Sonar ring made of 16 sensors, a
SICK Laser Range Finder and Camera mounted on a Pan-Tilt unit. Figure 1
shows a comparison between our real robot and its model in USARSim.

Our development framework, is based on a set of independent modules that
interact and communicate among each other using a centralized blackboard-type
repository [4]. To interact with the USARSim environment we built specific mod-
ules that directly communicate with the USARSim server. Since these modules
use the standardized framework interface, they can be directly replaced with
those that communicate with real hardware or different simulator environments.

2 USARSim project page: http://sourceforge.net/projects/usarsim
3 RoboCup 2006: http://www.robocup2006.org
4 Epic Games: Unreal Engine. www.epicgames.com
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Fig. 1. Our robot and its model in USARSim

This way, we can use all the other modules (e.g. navigation module, mapping
module, etc.) without the need of any modification.

In particular, we developed four basic modules: i) the robot module, which
manages the communication socket, receives and stores odometry and current
speed data and sends motion commands to the server; ii) the laser module, which
stores data gained from the simulated Laser Scanner Sensor, and views/changes
its configuration; iii) the sonar module, which manages a set of simulated Sonar
Sensors; iv) the camera module. Camera Sensor simulation is obtained in US-
ARSim using the video feedback of Unreal Client, the Unreal Engine application
for 3D scene rendering; in particular, an ImageServer is provided to capture the
Unreal Client data and to serve it through TCP/IP. Our camera module holds
a dedicated socket to connect the ImageServer and get the virtual Camera data;
moreover, the camera module is used to view the Camera configuration and to
move the simulated Pan-Tilt unit.

3.2 Improving Sensors’ Simulation

USARSim does not provide timestamp information for sensor readings. However,
when processing data coming from different sensors, synchronization can be a
critical issue. For example, several of our platform subsystems (e.g. the SLAM
subsystem) need timestamps for Odometry, Laser and Sonar readings, in order
to calculate data confidence and perform coherent state estimation. We added a
timestamp information to the Sonar, Laser and Odometry data.

We experienced that the simulated Laser Scanner sensor detected transparent
objects as if they were opaque. Every object in USARSim holds a “material”
property: we modified the Laser Scanner erroneous behaviour, spreading the laser
beam over the transparent objects until it hits another material or it reaches
the sensor max range. Thanks to such a modification we have been able to
test in USARSim our scanmatcher-based SLAM (simultaneous localization and
mapping) and the glass detection subsystem for the identification of transparent
materials (which are undetectable by the Laser Scanner) based on the Sonar
data.

3.3 Stereo Vision in USARSim

Naturally enough, within a Rescue environment the victim recognition sub-
system carries a major weight. Our current approach uses a human detection
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algorithm driven by a Stereo Vision unit, which is composed of a couple of syn-
chronized cameras with the same orientation.

As seen before, camera sensor simulation is obtained in USARSim through
the capture of the video feedback of Unreal Client. Currently, only one running
copy of Unreal Client at a time is allowed for each operating system. This limit
comes from the single-user nature of the simulation: consequently Unreal-based
Stereo Vision seems to be impossible until future versions of the Unreal Engine
are released.

Since it is impossible to have multiple camera simulation on the same screen,
we extended the robot definition code. Each virtual robot is described in the
simulation by an Unreal Script definition code, storing information about its
model and instructions to handle input data, to make movements and to draw
the camera data.

We modified the function usually used to draw double-exposure images on
the screen. Every time a frame is being drawn on the screen, we split vertically
the output window overriding the first half with the left camera data and the
second with the right camera data, maintaining data synchronization. With this
new self-developed Stereo Vision sensor we are now able to have a complete high
fidelity simulation of our rescue robot.

3.4 3D Camera Sensor

The Swiss Ranger Camera5 is a sensor able to add a distance information to
every pixel of the image data captured by its internal camera. Such sensor can
be extremely useful in the USAR environment, both for navigation and for victim
detection.

We added a Swiss Ranger Camera simulation in USARSim introducing a new
IRC (Infra-Red Range Camera) sensor providing, for each pixel, the distance
from the objects in the scene. By using the IRC sensor together with an ordinary
Camera with the same position, orientation and resolution, we add the distance
information to every pixel of the camera image, obtaining a simulation of the
Swiss Range Camera.

Figure 2 shows, side by side, the Camera feedback (on the left) and the IRC
sensor output (on the right, the brightness is proportional to the distance).

Fig. 2. A Camera image and the corresponding IRC sensor feedback

5 CSEM: Swiss Ranger Camera. http://www.swissranger.ch/products.php
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3.5 Validation Results

We performed several tests to validate the whole system configuration. We
placed our robot into different USARSim virtual environments, to perform an
autonomous exploration. The system behaviours consistently matched the real
robotic system. In particular, we verified that the data gained from the sensors
and the motion commands execution were as expected.

Figure 3 shows our rescue robot while autonomously exploring an unknown
virtual 3D environment generated by USARSim. In the map on the right the
unknown parts are drawn in blue (grey), while walls and obstacles are drawn
in black and free space in white. The small table in front of the robot is not
drawn by the SLAM module (i.e. in black), because it is invisible to the Laser
Range Finder. However, our stall recovery subsystem, described in the following
paragraph, identifies the impact surface and draws it on the map.

Fig. 3. Our rescue robot exploring an unknown virtual environment

4 Case Study: Exploration with Invisible Obstacles

During autonomous exploration missions in rescue environments, stall problems
ofter arise. Our frontier based autonomous exploration subsystem, presented in
[8], uses a two-level approach for navigation. It is based on a global topologi-
cal path-planner and on a local motion planner, which is an extension of the
well-known Randomized Kinodynamic Tree [9]. This kind of algorithms works
by building a tree of safe, randomly-generated robot configurations. This local
motion planner may be stuck by obstacles that are undetectable by the Laser
Scanner, because they do not lie on its scanning plane.

We built a stall recovery subsystem, whose development was highly sim-
plified because of the use of USARSim: the simulated environment helped us to
save testing time and to preserve the real robot from dangerous impacts with
unknown obstacles. We modeled small obstacles such as a tube, a ramp and a
small table and observed the reactions of the virtual robot towards these objects.

The main cycle of the subsystem is composed of the following steps:

1. The subsystem first calculates the actual value of linear and angular speed,
given the actual and previous robot poses (from the SLAM subsystem).

2. The differences between desired and actual speeds are monitored for several
positions around the robot surface, using different stall conditions.
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3. To avoid false positives we integrate over time the stall conditions.
4. If a stall condition is verified for several cycles, an obstacle is drawn on the

map and an alarm is sent to the navigation subsystem to allow for a fast
re-planning.

We tested the stall recovery subsystem in USARSim obtaining valuable re-
sults. Figure 3 shows on the left, the robot hitting a small table invisible to the
laser; on the right, the obstacle representation in the robot map. Subsequent
tests were performed on the real robot, using different obstacles such as chairs
and bricks: the subsystem correctly identified stall situations tracking all the
objects and allowing complete explorations of the environment.

5 Related Works

Moast6, is a development framework providing a multi-agent simulation envi-
ronment, a baseline control system, and a mechanism to migrate algorithms
from the virtual world to the real implementation. Moast is intended to provide
USARSim users with a customizable control system allowing for a high level in-
teraction with the simulator. Compared to Moast, our system does not need to
migrate the developed algorithms to the real implementation; in fact, our system
runs indifferently on the real robot and on virtual environments.

Several works related to USARSim focus on validation of sensors such as
Laser Scanner [2] or robot mobility [3]. In comparison to these works, we focused
more on improving sensor data coherence (e.g. synchronizing sensor readings and
testing sensorial fusion tasks) than on validating single sensor simulation.

As for obstacles which are not detectable by Laser Scanner sensors or cameras,
different solutions are proposed in literature. Several approaches are based on
touch sensors: for example in [5] the authors describe a cylindrical robot with
a total coverage bumper, while in [6] an actuated whisker is used to identify
objects. Such approaches however require additional sensors. Another way to
address the problem is proposed in [7]. In this work the authors describe a mobile
robot used as a tour guide, which is able to deal with invisible objects given the
known map of the environment, lowering the speed when the localization error
is higher. Unfortunately such, a technique is useless in a USAR environment,
where the environment map is not known in advance.

To the best of our knowledge, the rescue system presented in this paper is one
of the first complete autonomous rescue systems both working on real robots
and integrated in the USARSim simulator.

6 Conclusions

Our experience in simulation before USARSim was limited to two dimensions.
Several features of our robotic system such as the glass detection subsystem
or the victim recognition subsystem were impossible to test during a simulated
mission. Using USARSim, we had the widely acknowledged advantages of a high
6 MOAST Project page. http://moast.sourceforge.net
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fidelity 3D simulation, such as an accurate model of robot mechanics, different
materials available on 3D surfaces etc.

In this paper we presented the development of an autonomous working sys-
tem within USARSim. We modeled our robotic system within USARSim, sig-
nificantly extending the simulation environment. In particular, we added the
possibility to use Stereo Vision for our victim recognition subsystem, and syn-
chronized all sensor readings in order to have a coherent map building process.
Moreover, we addressed the problem of safe navigation in presence of obstacles
which are invisible to the 2D Laser based mapping process. We proposed a solu-
tion to this problem and tested our system in the USARSim virtual environment.

The performed tests within the USARSim virtual environment of our robotic
system confirm that such a framework is suitable for preliminary validation dur-
ing the robotic application development phase. In fact, using our virtual robotic
system we have been able to conduct experiments involving invisible obstacles
preserving the real robot’s integrity. Moreover, we can now perform a high fi-
delity experimental analysis of different rescue system configurations without
the need to modify the actual robotic platform.

As a future work we plan to deeply investigate the interactions between the
invisible obstacle detection process and the navigation and mapping process. In
particular, it would be interesting to represent invisible obstacles as dangerous
or forbidden configurations inside the navigation world model, and to study how
this different obstacle representation would impact on the system performance.
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Abstract. Transformation of high-dimensional images to a low-dimen-
sional feature space using Eigenimages is a well known technique in the
field of face recognition. In this paper, we investigate the applicability of
this method to the task of discriminating several types of robots by their
appearance only. After calculating suitable Eigenimages for Middle Size
robots and selecting the most useful ones, a Support Vector Machine
is trained on the feature vectors to reliably recognize several types of
robots. The computational demands and the integration into a real-time
vision system have an important role throughout the discussion.

1 Introduction

In the Middle Size League of the RoboCup two teams of four to seven fully
autonomous mobile robots compete to win a game of soccer. The detection of
obstacles (robots or referees) obviously is important for successfully planning
motions, dribbling over the field and scoring goals. Whereas the pure detection
of objects is simple— according to the rules, robots have to be mostly black—
discriminating teammates and opponents is more difficult and has been imple-
mented in the robots seldom. But now, after reaching the needed robustness in
the more basic abilities like self localization, ball detection and motion planning,
the teams more and more concentrate on implementing cooperative behaviors.
Hence, reliably discriminating teammates and opponents becomes important.

The visual discrimination between the robots could be facilitated by the help
of the prescribed colored team markers, each robot has to be equipped with
(cyan and magenta). But considering the unstructured background, relying on
color information only is error-prone. Hence, a robust classifier should consider
other features of the robots appearance, too. Recapitulating, a vision system
solving this task has to meet the following constraints:

– The system should not only recognize robots but also robustly discriminate
between teammates and opponets.

– It should consider color information as well as shape information.
– It must be computational very efficient considering the hard real-time con-

straints under the availability of only limited computing power.

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 499–506, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



500 S. Lange and M. Riedmiller

In this paper, we propose the application of the Eigenimage method in com-
bination with the Support Vector Machine (SVM) to the robot discrimination
problem. While reaching a generalization accuracy of about 95% in several set-
tings an important strength of the constructed classifiers is their computational
efficiency and their real-time capability; thus fulfilling the above constraints.

2 Previous Work

The recognition of obstacles in the Middle Size League of RoboCup has been
studied previously [4,9]. The authors proposed to use multi-layer perceptrons to
classify regions of interest (ROI). This pioneering method gives a good accuracy
for recognizing robots but its real-time capability, due to the computational
complexity of the (hand-)chosen features, is at least questionable.

Using the Eigenimages method is well known in the context of face recogni-
tion [5,13,12] and has been applied— in less extent— to more general object
recognition [11]. In this paper, we give a new application of this method, namely
the recognition and discrimination of robots in the RoboCup domain under hard
real-time constraints.

3 Visual Learning of Robots

The general scheme applied in this work is to build and train a classifier on a
set of labeled training images offline that afterwards can be utilized online in a
real-time vision system.

The first step is to construct a suitable feature space from a number of proto-
type images. As the dimension of the feature space still may be too big, selection
of the most valuable dimensions is the next step. The resulting small feature vec-
tors are used to train a SVM on the robot classification task.

Finally, the resulting classifiers can be utilizied in the real-time vision systems
of the robots implementing three sequential processing steps (following [4]): 1.
Detecting and preprocessing Regions of Interest (ROI) (see sec. 4), 2. Extracting
features from each ROI and 3. Classification of feature vectors using the trained
SVMs. The results of the last step can then be integrated into a sensor fusion
process. If object tracking is implemented, imperfect classification results can be
easily enhanced by considering subsequent frames [10,8].

3.1 Constructing the Feature Space

We consider a set of n (w×h) images Ii that we could encode each in a p = w ·h
dimensional vector x̃i. X̃ is the (n × p) matrix containing the image x̃i in its
ith row. The Principal Component Analysis (PCA) can be used to construct
a (lower-dimensional) feature space, called the Eigenspace that preservers in
the projected data Z̃ as much as possible of the variation present in X̃. Before
utilizing the PCA it is advisable to center the original data X̃ by subtracting the
average image x̄ with entries x̄j =

∑n
i=0 X̃ij , j = 1, 2, ..., p from each original

image.
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PCA and SVD. In general, the Principal Component Analysis looks for a few
derived variables

zk =
p∑

j=1

akjxj = aT
k x (1)

that explain most of the variation present in all p original variables xi of a random
vector x. Whereas in the original data we expect to find some interrelation
between the variables xi, the derived variables zk are choosen to be uncorrelated
to each other. More formally, it comes down to maximizing var[aT

k x] = aT
k Σak

subject to

aT
k al =

{
1 if l = k
0 otherwise

where Σ is the covariance matrix of x.
Solving this constrained maximization problem e.g. via applying Lagrange

multipliers it turns out that for k = 1,2,...,p the kth ak is identical to the eigen-
vector corresponding to the kth largest eigenvalue λk of the covariance matrix
Σ [3]. Further, if ak is choosen to have unit length, as we did here, then the
variance var[zk] equals the eigenvalue λk.

In practice the underlying covariance matrix Σ of the image sampling process
is unkown. Therefore, Σ is replaced by the sample covariance matrix S that for
centered data is given by S = 1

nXT X where X is the (n× p) matrix containing
the images xi of size p measured about their mean.

We usually have only a few hundreds of observations compared to the thou-
sands of variables, thus rank(S) = rank(XT X) = rank(X) ≤ n << p. In this
case, the PCA can be calculated computationally efficient by doing a compact
Singular Value Decompositin (SVD). The compact SVD factorizes X into three
matrices X = UrLrA

T
r [3]. Let r = rank(S), Ar is defined as the (p× r) matrix

with its kth column ak being the eigenvector corresponding to the kth largest
eigenvalue of the sample covariance matrix S. Lr is a (r×r) diagonal matrix with

its kth diagonal element the singular value l
1
2
k . L contains all non-zero singular

values of X in a non-increasing order l1 ≥ l2 ≥ ... ≥ lk > 0. It can be shown, that
lk is also the kth largest eigenvalue of XT X and with (3.1) λk = 1

n lk = 1
n (l

1
2
k )2.

Ur is defined as the (n× r) matrix with the kth column uk = l
− 1

2
k Xak. A proof

and a more extensive derivation can be found in [3].
With these results we are now prepared to calculate the zk and thus map

images to their representation in the feature space. The mapping of i centered
p-dimensional images X̂ is given by (in matrix notation) Ẑ = X̂Ar where the
entry ẑik of Ẑ is the value of the ith image x̂i on the kth PC. The eigenvectors
ak of the sample covariance matrix S span an r-dimensinal orthonormal feature
space, where the most variation will be observed along the first dimensions. Since
the eigenvectors ak have the same dimension as the original data and they can
be visualized as sometimes familar and othertimes strange looking coefficient
images (see fig. 1), they are called ”Eigenimages”.
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Fig. 1. Top row: the first six Eigenimages of the second experiment of section 5. Gray
pixels correspond to coefficients being zero. Lower row: original images of several objects
and their reconstruction using only the scores on the first four PCs.

3.2 Selecting PCs

If X is of rank r the compact SVD helped us to construct a r-dimensional
feature space. If a further reduction of the dimensionality is desired, a promising
strategy is to select the n-first PCs, since the PCs resulting from the PCA/SVD
are ordered according to the variance they explain (example in figure 1). An
in-depth discussion of several strategies of automatically selecting good PCs in
the case of regression analysis can be found in chapter 8 of [3].

3.3 Classification

After projecting a set X̂ of images centered about the average image x̄ to the con-
structed feature space we can now train and test a classifier. We use a standard
implementation [1] of a C-Support Vector Machine with Radial Basis Function
(RBF) kernels as classifier [2,14]. Good parameters γ and C are chosen doing a
grid-search in the parameter space [1]. To handle more than two classes we adopt
the ”one-against-one”-strategy and train an ensemble of k(k−1)/2 classifiers [6].

4 Integrating the Classifiers into the Middle Size Robots

In order to successfully utilize the Eigenimages method in official games, we have
to consider several important practical aspects:

Different viewing angles. From the different possibilities of representing ob-
jects photographed from different viewing angles [11,12] we have chosen to
follow [11] using a single feature space.

Background. The robots should be placed in front of the same background
when taking the images that are used to calculate the feature space.

Translation and Scaling. It is necessary to center and scale the objects to
always have the same size (see sec. 4).
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Fig. 2. Images used in the first experiment. The first three images are from the set
that have been used to calculate the PCs. The other images have been used during
training and validating the SVM.

Lighting conditions. By constantly adapting the camera parameters accord-
ing to a software implemented white-balance and auto exposure routine [15],
color constancy and a constant brightness are assured up to a certain degree.

Detecting and Preprocessing Regions of Interest (ROI). Here we briefly
describe an algorithm to find, center and scale Regions of Interest in the images
produced by the directed camera of our robots. This method heavily depends
on prior, domain specific knowledge.

We search about 180 carefully placed scanlines for the nearest non-isolated
black pixels (according to the rules, robots have to be mostly black). Those pixels
are clustered using a distance-threshold. The most central point of each cluster
marks the initial position of a Region of Interest. Due to the placement of the
scanlines, the initial position is at the bottom of the object. Using a calibrated
camera and knowledge about the maximal size of the robots (specified in the
rules) it is possible to determine the necessary size of a bounding box for every
image location. An estimate of the real horizontal center of the black region
is found by a heuristic looking at the black pixels in the lower 15 lines of the
slightly enlarged (to compensate bad first guesses of the ROIs center position)
bounding box. The initial guess of the position of the ROI is then improved by
this estimate. Finally the part of the image in the re-placed bounding box— now
using the correct size— is scaled, the particular scaling factor determined by the
distance of the object.

Although this method is rather simple, the error in the centering typically
is well below the amount that is tolerated by the classifiers (see fig. 4). For an
object at the distance of about 1.5m the centering and scaling (using nearest
pixels) could be done in less than 2ms on our robots.

5 Results

5.1 Discriminating Similar Looking Robots

The only difference between the otherwise similar looking two types of robots
used in this experiment is a grating that extends the chassis of the goalie robot.
The set contains 76 images of the robot that is used as fieldplayer and 80 images
of the goalie (see fig. 2). Half of the images was taken in front of a non-varying
background.
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Fig. 3. Results of the 10-fold cross-validation on the first n PCs. Left: Results of the
first experiment. Right: Results of the second experiment.

Finding Principal Components. To calculate the PCs we used only the im-
ages with the non-varying background. To get the best possible results we ver-
ified the correctness of the region detected automatically by the ROI-detecting
algorithm and— in the hand full of cases it was necessary— corrected the au-
tomatically selected bounding box by hand for the images used to calculate the
PCs. The selected image region was scaled to a size of (131× 163) pixels.

Classification. All 156 images have been processed by the ROI-detector and
were used for the training and testing of the SVM. We did extensive cross-
validation experiments to find the best number of PCs to be used for the clas-
sification. We formed separate pattern sets for the first 1, 2, 3, ... PCs and did
a search for good parameters γ and C (see section 3.3) on each of it. Using
these parameters, the classifier’s generalization accuracy was validated doing
10-fold cross-validations. Typical results of the grid-search for good paramters
are γ ≤ 0.5 and C = 32.

The classifier works quite accurately for a small number of included features.
After including 10 PCs the result is not improved significantly by adding more
dimensions. It should be noted that in this case the SVM turned out to be
very robust against adding to many dimensions (small risk of overfitting). If
reducing the computational demands to a minimum is a must, looking at the
class distributions and selecting PCs by hand may be a useful strategy. We
found a combination of 4 PCs on that the SVM reaches an accuracy of about
94% clearly outperforming all other classifiers using 4 or less of the first 40 PCs.

5.2 Teammates, Opponents, Boxes and Other Obstacles

In regular competition games we are interested in discriminating between team-
mates, opponents and other non-robot obstacles. We formed a collection of 98
images of our robots (class 1 and 2), of opposing ”bin-bots” (class 4), of black
cardboards (class 3) and of other objects (class 5), our ROI-detector may iden-
tify erroneously as obstacle (humand legs, dark goal corners, etc.). Our robots
are split into two classes, one class of robots equipped with a cyan team marker
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Fig. 4. Left: A bounding box with a correctly centered robot and the same object
deliberately shifted to the left for 10, 15 and 25 pixels in order to simulate centering
errors. Right: The classification accuracy on the shifted images.

and the other class wearing the magenta team marker. The opposing robots have
been photographed wearing both of their team markers, too. Using the proposed
assignment of class labels, both types of information, color and shape have to
be considered for a correct classification result. All classes contained about the
same number of images.

We applied the same procedure as used in the first experiment, but now using
two Eigenspaces: one for the intensity- and one for the hue-channel of the color
images. The results of using the first n PCs is given in the right diagram of
figure 3. Using the PCs of the monochromatic images only results in a poor clas-
sification accuracy; the PCs of the color channel are clearly needed. To conclude
the results we tested the classifier’s vulnerability to incorrectly centered objects
(fig. 4).

5.3 Consideration of Computational Demands

Considering the computational demands, the most costly step is to calculate the
compact SVD on the image data when constructing the classifier (offline). Using
the compact SVD this can be done within less than 10s.

The more critical part that has to be done in real-time, is the transformation
of the ROIs to the feature space. We have to calculate equation (1) for each score
zk on each feature k. This needs (2p)−1 operations (additions + multiplications).
For a classifier using 8-PCs, the complete mapping of a single ROI to the feature
space takes about 0.4ms in average.

6 Conclusion

We have described and evaluated a module of a vision system capable of find-
ing and discriminating robots in real-time. Each possible location of a robot is
evaluated— even in worst case— in less than 3ms. Using the Eigenimages method
it is possible to automatically construct useful features for discriminating robots
in the RoboCup domain. No intuition or prior knowledge about the appearance
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of the robots is needed. Further dimensionality-reduction can be achieved by
selecting only the n-first Principal Components to be presented to the classifier
or by using the distribution of the class instances in the Eigenspace to manually
identify and select useful features. The resulting classifiers have proven to be very
reliable while being computationally efficient at the same time. In direct com-
parison to [4,9] the extraction of features using the Eigenimags is computational
less demanding and solves the more complex task of discriminating robots.

We plan to investigating the possibility of using MCMC-training of GMMs
[7] in order to construct a one-class classifier rejecting all non-teammates, thus
rendering the training procedure of previously unseen opponents obsolete.
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Abstract. We propose the use of a Fuzzy Naive Bayes classifier with a
MAP rule as a decision making module for the RoboCup Soccer Simu-
lation 3D domain. The Naive Bayes classifier has proven to be effective
in a wide range of applications, in spite of the fact that the conditional
independence assumption is not met in most cases. In the Naive Bayes
classifier, each variable has a finite number of values, but in the RoboCup
domain, we must deal with continuous variables. To overcome this issue,
we use a fuzzy extension known as the Fuzzy Naive Bayes classifier that
generalizes the meaning of an attribute so it does not have exactly one
value, but a set of values to a certain degree of truth. We implemented
this classifier in a 3D team so an agent could obtain the probabilities of
success of the possible action courses given a situation in the field and
decide the best action to execute. Specifically, we use the pass evaluation
skill as a test bed. The classifier is trained in a scenario where there is one
passer, one teammate and one opponent that tries to intercept the ball.
We show the performance of the classifier in a test scenario with four op-
ponents and three teammates. After a brief introduction, we present the
specific characteristics of our training and test scenarios. Finally, results
of our experiments are shown.

1 Introduction

Classification is a statistical operation in which certain objects are put into
groups or classes according to their characteristics, sometimes called attributes,
found on a training set. There are many approaches to classification in literature,
like Decision trees, Neural networks, Support vector machines and Bayesian net-
works, among others. From the aforementioned classifing methods, the bayesian
approach is the most commonly used to deal with uncertainty, because it is based
on the probability theory.

A well known classifier is the Naive Bayes classifier [1], a simple type of
bayesian network [2] that explodes the conditional independence assumption
among attributes given the class. In real life, this assumption does not hold
most of the time. However, Naive Bayes classifiers have proven to be successful
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and more or equally effective than other classification methods in certain do-
mains, like anti-spam filtering [3], information retrieval [4], speech recognition
[5], emotion recognition [6] and medicine [7]. An analysis of the reasons why
Naive Bayes works well is done in [8].

Generally, in a Naive Bayes classifier the attributes are discrete, but in most
real-life situations, attributes are continuous. Crisp partitioning the domain can
clearly cause some loss of information [9]. There have been some approaches to
overcome this matter with the use of fuzzy variables [10,11].

The aim of this paper is to use the Fuzzy Naive Bayes classifier proposed in [10]
as a decision module for a RoboCup [12] Soccer Simulation 3D team. Although
the RoboCup simulation 3D is based on SPADES [13] multi-agent discrete event
simulator, the data handled by the soccer agents is continuous, i.e. is defined
in the range of real numbers. Also, the environment has too many features and
the sensed data is influenced by a random noise. These characteristics make the
RoboCup simulation 3D domain an excelent platform to test the Fuzzy Naive
Bayes classifier effectiveness.

2 Fuzzy Naive Bayes Classifier

The Naive Bayes probabilistic model is one of the simplier Bayesian Network
models used in Artificial Intelligence and Machine Learning nowadays. Let C
be a class label with k possible values, and X1...Xn be a set of attributes or
features of the world with a finite domain D(Xi) where i = 1..n. The objective
is to obtain the conditional model P (C|X1, ..., Xn). We can represent this model
using the bayes’ rule as follows

P (C|X1, ..., Xn) =
P (X1, ..., Xn|C)P (C)

P (X1, ..., Xn)
(1)

where P (C) and P (X1, ..., Xn) are a priori probabilities, and P (X1, ..., Xn|C)
is the likelihood of event X1, ..., Xn conditioned on the class C. Notice that the
denominator remains constant for every value of C, thus it serves as a normal-
ization constant and will be ommited from now on.

For computing the conditional probabilities of the model, the full joint proba-
bility table is needed. When the number of attributes is very large or the domain
of such attributes consists of a large set of values, the use of the full joint becomes
unfeasible. To overcome this difficulty, the conditional independence assumption
is exploded. If we assume that every attribute is independent of each other given
the class C, the model can be reformulated again as

P (C|X1, ..., Xn) = P (C)
n∏

i=1

P (Xi|C) (2)

that is known as the Naive Bayes probabilistic model. because the assumption of
conditional independence does not hold in most scenarios. Besides of that, the
Naive Bayes model has proven to be effective in a whole range of applications.
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The Naive Bayes Classifier combines the Naive Bayes probabilistic model with
a so called decision rule (or discriminant function in [8]). Generally, a maximum
a posteriori (MAP) decision rule is used and we get the definition of a Naive
Bayes Classifier

NBclassify(a) = arg max
c∈C

P (c)
n∏

i=1

P (xi|c) (3)

where xi means Xi = xi, c means C = c and a is a complete assignation of
attributes, i.e. a = {X1 = x1, ..., Xn = xn} and so will be hereafter. In this
context, a represents a new example not classified yet. The classifier is used to
select a class C given the new example a, based on the previously calculated val-
ues of all the probabilities needed by the model. The probabilities are estimated
using relative frequencies from data. Sometimes, Laplace-correction is applied to
smooth calculations avoiding extreme values obtained with small training sets.

The classical Naive Bayes classifier considers attributes and classes with dis-
crete domains. When dealing with continuous domains, the classifier needs a
modification. One way is discretizing or crisp partitioning the domain of at-
tributes into a finite number of classical sets. But that could cause a loss of
information [9].

A better method is proposed in [10], consisting of a hybrid classifier bringing
together Fuzzy Set Theory and a Naive Bayes classifier, named the Fuzzy Naive
Bayes classifier

FNBclassify(a) = arg max
c∈C

P (c)
∑

x1∈X1

P (x1|c)μx1 ...
∑

xn∈Xn

P (xn|c)μxn (4)

where μxi ∈ [0, 1] denotes a membership fuction or degree of truth of attribute
xi ∈ Xi in a new example a. To be conservative, it is required that all de-
grees of truth are normalized in the current variable assignation, in this case∑

xi∈Xi
μxi = 1. The probabilities for equation (4) can be calculated as below

P (C = c) =
(
∑

e∈L μe
c) + 1

|L|+ |D(C)| (5)

P (Xi = xi) =
(
∑

e∈L μe
xi

) + 1
|L|+ |D(Xi)|

(6)

P (Xi = xi|C = c) =
(
∑

e∈L μe
xi

μe
c) + 1

(
∑

e∈L μe
c) + |D(Xi)|

(7)

where L is the training set consisting of all examples e = {X1 = x1, ..., Xn =
xn, C = c}, μe

c ∈ [0, 1] denotes the degree of truth of c ∈ C in a example e ∈ L,
and μe

xi
∈ [0, 1] is the membership of attribute xi ∈ Xi in such example. As

mentioned before, all degrees of truth must be normalized such that
∑

c∈C μe
c = 1

and
∑

xi∈Xi
μe

xi
= 1. Notice that Laplace-correction is applied to compute the

probabilities.



510 C. Bustamante, L. Garrido, and R. Soto

Fig. 1. Training scenario used to learn the probabilities for the Fuzzy Naive Bayes
classifier, where we can see a passer agent (A), a receiver teammate (T), an opponent
(O) and the ball (B). The features taken into account are: distance to ball dAB, distance
to teammate dTB , distance to opponent dOB, alignment angle (θ) and angle bewteen
teammate and opponent from the ball’s view point (α).

3 Empirical Scenarios

There are many opportunities to apply and test the classifier in the RoboCup
domain. We chose the pass skill as a platform because it is a classical test bed
for RoboCup. Specifically, we focus on pass evaluation, i.e., the capacity of an
agent to evaluate the probability of success of a pass.

We created a training scenario for learning the probabilities for the Fuzzy
Naive Bayes model. It is similar to the scenario proposed in [14] for the 2D
league. But here we have to consider the alignment angle and ball distance,
because in 3D soccer the agents are spheres and sometimes have to surround the
ball for kicking in the right direction. The training scenario is shown in figure 1.

The scenario is mounted as follows

1. A passer agent is placed in the center of the field.
2. The ball is randomly placed next to the passer.
3. A teammate is randomly placed at a distance dTB ∈ [2, 20] from the ball.
4. An opponent is randomly placed at a distance dOB ∈ [2, 20] from the ball,

such that the angle between the teammate and the opponent from the ball’s
view point is α ∈ [0, π

6 ].

Before an episode begins, the agent records five variables: distance to the ball
dAB, distance to teammate dAT , distance to opponent dAO, alignment angle θ ∈
[0, π] and the angle between teammate and opponent α. During each episode, the
agent aligns with the ball to pass it to the teammate. Then both the teammate
and the opponent try to intercept the pass. If the teammate gets the ball the
episode is labeled as SUCCESS. If the opponent gets the ball first the episode is
labeled as MISS.
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Fig. 2. Fuzzy Sets for each Fuzzy Variable. (a) Distance to the ball dAB , (b) Distance
to teammate dAT and distance to opponent dAO, (c) Alignment Angle θ and (d) Angle
between teammate and opponent α.

Each variable mentioned above is a fuzzy variable and it is defined by several
fuzzy sets. The fuzzy sets for distance to the ball dAB , distance to teammate dAT

and distance to opponent dAO variables are {short, medium, long}. The fuzzy
sets for θ and α variables are {closed, medium, wide}. A graphical representation
for each fuzzy variable is shown in figure 2.

4 Experimental Results

We obtained 1000 training examples, which we used to calculate the probabilities
for the Fuzzy Naive Bayes classifier represented by equations (5), (6) and (7).

We ran 250 episodes to create a test set so we can measure the performance of
the classifier. A representative graph is shown in figure 3. As can be seen in the
figure, the graph stabilizes quickly, approximately at 120 traning examples. The
maximum proportion of correclty classified examples was 0.806 which occured
approximately at 350 examples.

To test the performance of the classifier for the pass evaluation skill, we created
a test scenario which is shown in figure 4. In this scenario, the ball is in (x =
−20, y = 0) and the agent is placed at (x ∈ [−22,−18], y ∈ [kickrange, 2]).
Four opponents and three teammates appear randomly in the area defined by
(x ∈ [−30,−10], y ∈ [10, 30]).
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Fig. 3. Performance of the Fuzzy Naive Bayes classifier. The x-axis shows the number
of examples used to train the classifier. The y-axis shows the proportion of the correcly
classified examples in the test set. The size of the test set is 250.

When the scenario begins, the passer agent chooses the teammate with the
best chances to intercept the ball using the Fuzzy Naive Bayes classifier. This is
achieved in the following way: the passer uses the classifier to evaluate all 1 vs. 1
competitions between each teammate and each opponent. The lowest probability
of success is stored for each teammate given all its 1 vs. 1 competitions and finally
the teammate with the maximum probability of success is chosen. Formally,

Receiver = argmaxt∈T argmino∈O P (SUCCESSto) (8)

where T is the set of all teammates, O is the set of all opponents and
P (SUCCESSto) is the probability of success given the 1 vs. 1 competition be-
tween teammate t ∈ T and opponent o ∈ O.

An episode is considered SUCCESS if a teammate is able to intercept the ball
before any opponent does. If an opponent gets the ball before a teammate does,
the episode is classified as MISS.

We obtained 300 examples using the test scenario described above. The per-
centage of SUCCESS and MISS classified examples is shown in table 1.

Table 1. Percentage of SUCCESS and MISS for a total of 300 classified examples
using the test scenario of figure 4

Class Percentage Number of examples

SUCCESS 76 228
MISS 24 72
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Fig. 4. Test scenario for the pass evaluation skill. Four opponent agents (black circles)
and three teammates (gray-circles) appear randomly in a certain area of the field. The
passer (white circle) and the ball (little circle) are placed a few meters away from them.
The passer chooses the teammate with the best chances to intercept the ball using the
classifier.

5 Conclusions

In this paper, we researched the application of a Fuzzy Naive Bayes classification
algorithm to the decision making process of a RoboCup 3D team, specifically in
the pass evaluation skill. The Naive Bayes method has proved to be effective in
a wide range of situations although conditional independence assumtion is not
met. As in RoboCup simulation we can consider variables as being continuous, we
suggested seeing them as fuzzy variables so we could apply the Fuzzy extension
to Naive Bayes proposed in [10].

We trained the classifier under a specific scenario where one agent passes
the ball to a teammate and an opponent tries to intercept such pass. This 1
vs. 1 competition for pass evaluation can be easily extended to be used for
the pass selection skill as in equation (8). As shown in figure 3 the classifier
(trained with 1000 training examples) correclty classified a proportion of 0.806
examples of a test set of 250. Although the performance is not so good as in other
implementations of Fuzzy Bayes in similar domains as in [15], we think it is not
a bad performance at all. In table 1 we can see that 76% of the passes in our test
scenario where successful passes. This is relatively better than the results shown
by Stone [16], who used a Decision Tree for the pass evaluation procedure and
a similar test scenario, and just 65% of all passes where successful.

We plan to extend our implementation in a near future to other skills like
dribble and shoot. We think the performance may increase if the fuzzy sets are
constructed more carefully. Perhaps it would be possible to extend this classifier
to use fuzzy k-means clustering to obtain the fuzzy sets directly from data. We
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would like to implement other classifiers and compare their performance against
the Fuzzy Naive Bayes classifier. Another possibility is to use the classifier to
decide when to execute an air kick and take advantage of the characteristics of
the 3D environment. Our final goal is to have a 3D team fully based on the
fuzzy-bayes hybrid approach for the world cup competitions.
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Abstract. This paper discusses the mechanical design and simulation
of a novel omnidirectional wheel based on Reuleaux-triangles. The main
feature of our omniwheel is that the point of contact of the wheel with
the floor is always kept at the same distance from the center of rotation
by mechanical means. This produces smooth translational movement on
a flat surface, even when the profile of the complete wheel assembly has
gaps between the passive rollers. The grip of the wheel with the floor
is also improved. The design described in this paper is ideal for hard
surfaces, and can be scaled to fit small or large vehicles. This is the first
design for an omnidirectional wheel without circular profile, yet capable
of rolling smoothly on a hard surface.

1 Motivation and Reuleaux Triangles

It has been thought for many years, that the only way of providing a smooth
rolling effect when using omnidirectional wheels1 with gaps between rollers is: a)
by stacking two wheels on the same axis, producing a combined circular profile;
b) by using several synchronized wheels which combine in order to support the
vehicle keeping the distance to the floor constant; or c) by using spheres or quasi-
spheres as wheels. There is a fourth alternative, which is to design omniwheels
with a circular profile, in which the gaps are almost closed by using two kinds of
rollers alternatively, as in [3]. Long and short rollers alternate on the periphery of
the wheel. In this paper we show for the first time that it is possible to build an
omnidirectional wheel with gaps between the transversal rollers, that is without
circular profile, which is nevertheless able to drive smoothly.

A so-called Reuleaux triangle (named after the German engineer Franz
Reuleaux, who was a professor of mechanical engineering at the Technical Uni-
versity of Berlin) is a geometric shape whose width remains constant during
rotation. This means that two parallel lines in contact with the shape’s bound-
ary stay at the same distance independently of the shape’s orientation. The
simplest shape of constant width is a circle. Other geometric figures can be
modified to have constant width. Fig. 1 shows how a Reuleaux triangle is con-
structed. Starting from an equilateral triangle of side length l, constant width is
1 The very first omnidirectional wheel was patented in 1919 by J. Grabowiecki in the

US [1]. Bengt Ilon patented another in 1973 [2].
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Fig. 1. Construction of the Reuleaux triangle

achieved adding circular arcs with radius l to each of the triangle’s sides. The
center of each arc is placed at the corner opposite the respective side. Reuleaux
first mentioned these triangles in 1876 [4].

The shape’s area can be increased by extending the triangle’s sides beyond
the corners by a distance x (Fig 1, right). The arcs’ radii become then l + x.
The gaps outside the original triangle and between two crossing sides are closed
by circular arcs of radius x. In the following, the smaller arcs of radius x will be
referred to as lx-sections, and the larger arcs as lr-sections.

Fig. 2. The Reuleaux triangle rotating inside a square

The characteristics of a Reuleaux triangle allows such shape to rotate inside
a square, as a circle also can (Fig. 2, see [5] for an explanation). Notice that the
triangle’s center does not remain in the same place while rotating the triangle,
but moves along a curve consisting of four elliptical arcs. For the wheel design
presented in this paper, this curve is approximated by a circle2. The circle’s
diameter du is obtained using the following formula:

du = l · (4
3
· cos(π/6)− 1)

2 The curve is nearly the superellipse x2.36 + y2.36 = c, where c is a constant [5].
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obtained from elementary geometrical considerations. This diameter remains
the same for a given l, independent of the chosen extension of length x. There-
fore, the principal movement can be obtained from considering simple Reuleaux-
triangles (that is, triangles for which x = 0) instead of extended triangles. This
fact is important since the wheel design presented here makes use of extended
Reuleaux-triangles.

2 Wheel Design

The omnidirectional wheel proposed in this paper consists basically of the fol-
lowing parts:

1. Two discs based on Reuleaux-triangles, each carrying three passive wheels.
2. A gear connecting these discs, which allows the transmission of rotation

between both.
3. An excenter which holds both discs and the gear.

In our wheel, a Reuleaux-triangle of enhanced area is used for the shape of the
component which carries each group of three passive wheels (Fig. 3). The shape
of the passive wheels’ profile is determined by the lx-sections described above.
The lr-sections remain empty, except for small supporting structures.

The structures do not allow the passive wheels to lose contact with the ground
as long as the next passive wheel has not reached the ground yet. The path
described by such passive wheels is explained below.

The passive wheel is built by using the lx-section shape as the profile of a
roller. Note that the position of the center axis of this roller (which is actually the
passive wheel’s axis) may be chosen arbitrarily. Thus it is possible to construct
passive wheels of different sizes.

Fig. 3. Profile of the Reuleaux wheel (left). The wheel has three passive rollers. The
rollers can have a smaller radius (centerline A), or a larger radius (centerline B). In
each case, the effect is the same.

Before describing the remaining parts, it is necessary that the reader under-
stands the principle behind the functionality of this omnidirectional wheel.
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Fig. 4. Two Reuleaux discs shifted in phase

As described above, a Reuleaux-triangle can be rotated inside a square [5]. The
square’s sides are touched alternately by the triangle’s corners and the circular
arcs (in the extendend triangle by the lx-section and the lr-section). Imagine one
of the square’s sides to be the ground over which the Reuleaux discs roll, with the
passive wheels touching the ground (remember that the passive wheels’ profile
matches the curve that describes the lx-section). Each disc has contact with the
ground only part of the time, because when the lx-section loses contact with
one side, the lr-section reaches that side. Remember that the lr-section-surface
is empty in the Reuleaux discs.

To guarantee ground contact the entire time, a second Reuleaux disc is added
to the wheel design, describing the exact same path of movement, but with a
phase shift. The phase shift corresponds to exactly one half of a rotation of
the Reuleaux-triangles’ center around the displacement path of diameter du, as
illustrated in Fig. 4 (one triangle looks as “flipped” by vertical reflection ).

This ensures that the Reuleaux discs’ passive wheels always touch the ground,
alternating from one disc to the other. A simulation of a working omnidirectional
wheel following this principle is shown in Fig. 5. The advantage of this wheel
design becomes clear immediately: The passive wheels describe a purely linear
path along the ground, preventing any up- and down-movement. On the contrary,
since conventional omnidirectional wheels are shaped as n-side polygons (see
Fig. ??, left diagram), this leads to an up-and-down movement of the robot,
which is lifted up every time a passive wheel touches the ground . At high
velocities, the entire wheel might lose ground contact, making it difficult to
drive accurately (as often happens during RoboCup competitions.

3 Design of Excenter and Gears

In order to achieve the circular movement of the center of each Reuleaux disc an
excenter is needed. This excenter is held in place by the motor axis to which the
torque is applied in order to drive the omnidirectional wheel. The first Reuleaux
disc center axis is placed at a distance 1

2du of the motor axis (black rod in Fig. 6).
When the excenter is rotated, the Reuleaux disc’s center describes the desired
curve (a circle of diameter du).
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Fig. 5. Rotation of the wheel and relative displacement of the rollers. The wheel starts
on the upper left and rolls counterclockwise. The passive roller on the ground loses con-
tact only when the next roller has reached the ground-contact position. The combined
movement looks as if the next roller “stretches a leg” before reaching ground.

Fig. 6. Gear wheels and their diameter. When rotating around the gear fixed to the
robot, the center of the Reuleaux disc describes a circle of radius du.

Additionally, for each complete rotation around the excenter, the Reuleaux
disc itself needs to rotate by − 2

3π around its center. This combined movement is
realized by two connected gear wheels. The smaller gear wheel, with the sprockets
on the outside, is fixed to the Reuleaux disc. Its diameter must be 3 · du. Since
this gear wheel rotates around the motor axis excentrically, a counterweight may
be attached to the excenter to compensate the gear wheel’s centrifugal force. The
second larger gear wheel, with its sprockets on the inside, is fixed to the robot.
Its diameter is 4 · du. Fig. 6 shows the complete configuration.
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Fig. 7. Assembly and movement of the two Reuleaux discs. To the left a diagram, in
the middle a cross section of the assembly, and to the right the transmission gear.

Now that the first Reuleaux disc describes the desired movement, the second
disc needs to be connected to imitate the exact same movement with a phase
shift. To obtain a phase shift of 1

3π, we just flip the Reuleaux structure by 180
degrees, as shown in Fig. 7. Building a gear for this task is not difficult: the
second disc’s center axis is placed at a distance 1

2du from the motor axis, as
before, but in the opposite direction of the first disc’s axis. In order to rotate
the second disc, a transmission gear is constructed to provide a 1:1 transmission
of rotation from the first to the second disc (Fig. 7).

4 Conclusions

This paper has presented a new design for an omnidirectional wheel based on
Reuleaux triangles. We have shown that even when the complete profile of the
wheel mount has “gaps” between the passive rollers, it is indeed possible to
achieve smooth rotational movement. For this to occur, the wheel center rotates
around an excenter. A conventional wheel with profile gaps resembles a polygon
and a rotating polygon moves the wheel’s center up and down – if nothing is
done against that movement. The wheels used by almost all teams in the small-
size league resemble such polygons. Mid-size teams have used also wheels with
perpendicular passive rollers and gaps in the wheel profile. The wheels presented
in this paper are an alternative solution.

We are aware that the wheel design described in this paper is more complex
than other omnidirectional wheels and requires more mechanical parts. Nev-
ertheless, the wheel presented here has some interesting theoretical properties.
Firstly, its profile is not circular, correcting the long held misconception that
only circular-profile omniwheels can roll smoothly. Secondly, this design allows a
robot (or other vehicle) highly precise and controllable omnidirectional driving,
even at high speeds. Wheel grip is optimal because driving is vibration free, and
the individual passive wheels have contact with the ground over a long time.
Modelling Mecano wheels is extremely complex (because of the angle at which
the passive rollers are placed) [6]. Kinematic modeling of the Reuleaux wheels
is much simpler.
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Fig. 8. Our first two Reuleaux omnidirectional wheel prototypes

Fig. 8 shows a ready-to-build sample design, including all the components
described above and a photograph of the first prototype. The smooth rolling
movement was validated in the computer before the prototype was built. Two
Reuleaux omnidirectional wheels will be on display at the RoboCup 2006 com-
petition in Bremen. It is a new attempt at reinventing the wheel, right, but the
omnidirectional wheel.
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Abstract. In the field of robotics, simulators are important tools to verify al-
gorithms. They are required to generate movements and physical interactions of
objects based on the dynamics and to simulate outputs of sensors. However, few
simulators of robots simulate dynamics of objects and outputs of sensors, in par-
ticular omnidirectional cameras, which are effective sensors because they can ac-
quire an omnidirectional field of view at one time. In this study, omnidirectional
vision simulators are developed based on the ray casting method. The proposed
simulators enables to render accurate omnidirectional images and an intersection
test is developed for speeding up. These are able to be used in ”Gazebo” which is
open source 3D dynamics simulator. The proposed methods are verified through
comparison of the rendered images with the images which are obtained by real
omnidirectional vision sensor.

1 Introduction

Omnidirectional vision sensors, which can acquire an omnidirectional field of view at
video rate, have been applied in a variety of fields such as autonomous mobile robot,
telepresence, virtual reality and remote monitoring [1]-[2]. In robotics, many kinds of
robots such as soccer playing robots, communication robots, and monitoring robots
equip this kind of sensors. The omnidirectional vision sensors are widely used. There-
fore, the omnidirectional vision simulators are required. Some omnidirectional vision
simulators have been developed [3][4], but they render only simplified images. More
accurate one is required to verify processing algorithms using omnidirectional vision
sensor. In addition, it is necessary for accurate simulations to generate movements and
physical interactions of objects based on the dynamics and the kinematics of objects in
3D worlds. Some 3D dynamics simulators are developed; ”Webots” [5]-[7], ”Gazebo”
[8][9], and some simulators for RoboCup Legged League [10]-[13]. However, most
simulators of robots are for 2D worlds, and images from an omnidirectional vision sen-
sor are rarely simulated.

This paper aims at developing a 3D dynamics simulation system for autonomous
mobile robots with an omnidirectional vision sensor which is albe to render accurate
images from sensors. For realization of them, an omnidirectional vision simulator using
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omnidirectional vision model is developed based on 3D dynamics simulator ”Gazebo”.
The omnidirectional vision simulator in which ray casting method is applied can render
accurate image based on the model, and can easily be used as robot sensor because it
is developed as ”sensor” model of Gazebo. Moreover, an intersection test algorithm is
developed for the purpose of speeding up rendering. The effectiveness of the omnidi-
rectional vision simulator is verified through comparison of the rendered images with
the images which are obtained by a real omnidirectional vision sensor.

2 Gazebo

Gazebo is a 3D dynamics simulator and can simulate some sensors such as odometer,
ray proximity sensor, and camera. Some robot models, actuator models and sensor mod-
els are prepared in Gazebo, and the addition of new model is easy. Therefore, Gazebo is
suitable as a basic system for developing sensor simulator. The architecture of Gazebo is
shown in Fig.1. Client programs receive simulated outputs of sensor models and return
commands data to actuator models through a shared memory interface so that simulator
and client programs can be developed independently. Gazebo utilizes Open Dynamics
Engine [14] as a physics engine and OpenGL [15] as a graphics interface. These are
briefly described below.

Open Dynamics Engine (ODE). The ODE is a widely used physics engine which was
developed by Russel Smith under open source licenses. It is designed to simulate rigid
body dynamics. This engine includes many features such as numerous joints, collision
detection, many geometries and so on. Gazebo utilizes these features by providing a
layer of abstraction situated between ODE and Gazebo models.

OpenGL and GLUT(OpenGL Utility Toolkit). OpenGL is a standard library for
the creation of 2D and 3D interactive applications. It is platform independent, reliable,
portable, scalable, stable, and continually being developed. GLUT is a toolkit indepen-
dent of window system for writing OpenGL programs. It implements a simple window-
ing API for OpenGL. Gazebo uses these for visualization and providing user interface
with standard input devices such as keyboards and mice.

Fig. 1. Architecture of Gazebo
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3 Omnidirectional Vision

3.1 Omnidirectional Vision Model

In this study, a model which consists of a camera and a hyperboloidal mirror is used
as an omnidirectional vision model. The optical axis of the camera is aligned with the
hyperboloidal mirror’s one, as shown in Fig.2. This model is proposed by Yamazawa et
all[16]. In this model, a two-sheeted circular hyperboloid is chosen as a design of the
mirror surface. The hyperboloidal mirror is defined as follows.

x2
� y2

a2
� z2

b2
� �1 (1)

where a and b are parameters for determining the shape of hyperboloid. The hyper-
boloid has two focal points. The focal point of mirror is fixed at one of focal points
OM (0� 0��c) and the center of camera is fixed at the other point OC (0� 0��c). The
parameter c is defined as follows.

c �
�

a2
� b2 (2)

The three dimensional coordinate system O-XYZ, aligned with the image coordinate
system o-xy and the Z-axis pointed toward the vertex of the hyperboloidal mirror is
used. The point P at (X� Y� Z) is projected onto the image point p at (x� y). The azimuth
is described as follows.

tan � � Y�X � y�x (3)

The following equation of the hyperboloidal projection is derived from simple geomet-
rical analysis of the vertical section through P and the Z-axis as shown in Fig.3.

Z �

�
X2

� Y2 tan� � c (4)

Fig. 2. Configuration of omnidirectional vision
sensor

Fig. 3. Linear relation of tilt angle
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� � tan�1 (b2
� c2) sin � � 2bc

(b2 � c2) cos�
(5)

� � tan�1

�
������

�
x2
� y2

f

�
������ (6)

where f is the focal distance of the camera lens, and � is the tilt angle from the horizontal
plane. These equations mean that the azimuth � and the tilt angle � are given uniquely
by fixing the center of the camera lens at the focal point OC. Therefore, the image on
the image points p (x� y) can be simulated by rendering the image from the focal point
of the hyperboloidal mirror OM.

3.2 Omnidirectional Vision Simulator

An omnidirectional simulator is constructed according to the omnidirectional vision
model described in section 3.1. First, a simulator based on the camera model of Gazebo
which utilizes OpenGL camera is constructed. The procedure is as following.

1. Set resolution
2. Set field of view
3. Set view point
4. Set sight line
5. Construct all light models
6. Construct all object models
7. Capture image

In order to render an omnidirectional image, the resolution of OpenGL camera is set
up to 1 � 1 pixel, the view angle is set up to 0Æ, and the view point is fixed at the fo-
cal point of the mirror OM. The sight line is determined based on � and �. Thus, an
omnidirectional image can be rendered by the implementation of the process from 1.
to 7. on all image points respectively, and the resolution of it is equal to the number
of the image points. However, the calculation cost of the process 6. becomes enormous
according to increasing complexity of the environment, so that an intersection test al-
gorithm is developed to speed up rendering. By this method, the nearest object in the
field of view is detected, and the reduction of the calculation cost is achieved by con-
structing only this object on the process 6. An intersection of a sight line and a object
is equivalent to the collision between the ray and the object. From this concept, two
kinds of omnidirectional vision simulators using collision detection function in ODE
are constructed.

Omnidirectional vision simulator based on intersection test with light model. In
this method, the sight line model of OpenGL and the ray model of ODE are used for
rendering an omnidirectional vision with shade. First, the ray model from view point is
constructed by � and � of image point p. Next, intersection test between the ray model
of ODE and objects is carried out by using collision detection function in ODE, and
the distance from the view point is calculated. If the intersection point is the nearest
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Fig. 4. Flow chart with light model Fig. 5. Flow chart without light model

from the view point, sight line of OpenGL camera is set to get the image of the point.
The model of the light and the object which collides with the ray is constructed to
create accurate image of the intersection point. By iterating this process on all p, an
omnidirectional vision image with shade is rendered. In this method, the number of
constructed model is reduced, so that great reduction of the processing time is brought
about. The flow chart of this method is shown in Fig.4.

Omnidirectional vision simulator based on intersection test without light model.
In the method with light model, the rendering time is reduced. However, it still takes
much time for reconstruction by OpenGL to simulate shade. To reduce the processing
time, the method not using OpenGL camera is proposed. The flow chart of this method
is shown in Fig.5. In this method, the intersection test is carried out as well as the
method described above, and the color of object is directly obtained when the nearest
intersection is detected. By iterating this process on all image point p, an omnidirec-
tional vision is rendered. In this method, the shade of the objects can not be simulated,
but the processing time is much shorter than the method with light model. The basic
idea of this method is similar to the ray casting method. The ray casting is carried by
using ODE to reduce the proseccing time.

4 Construction of the Model of RoboCup Middle Size League

To verify the omnidirectional vision sensor model proposed in chapter 3, a robot model
which equips the proposed sensor and an environment model are constructed. This robot
equips an omni-drive system with four roller omni-wheels and kicking device as actu-
ators, and it also equips odometers and omnidirectional vision camera as sensors. The
mass of this robot is 17.5 kg. A soccer field is constructed as simulation environment ac-
cording to the regulation of RoboCup MSL. Robot models and environment models are
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Fig. 6. Soccer robot model Fig. 7. Soccer field model

easily constructed.The constructed robot model and the environment model are shown
in Figs.6 and 7.

5 Evaluation of the Developed Simulator

The omnidirectional vision simulator is verified by using the robot model and the envi-
ronment model described in chapter 4. First, an image from a real omnidirectional vision
sensor and an image rendered by the simulator are compared. The environment for ver-
ification is shown in Fig.8. The field size of real and simulation environments are same;
6.2m� 4.5m. The marked robot shown in Fig.8 equips an omnidirectional vision sensor.
The image from a real sensor is shown in Fig.9, and the image rendered by the fastest
method without light model is shown in Fig.10. The resolutions of the real image and the
simulated image are 320 � 240 pixels and 240 � 240 pixels respectively. The simulated
image is very similar to the real image. Next, the three kinds of the simulation methods
described below are compared to verify the methods and the intersection test algorithm.

Fig. 8. Simulation environment

a) the method without intersection test
b) the method with intersection test and the light model of OpenGL
c) the method with intersection test and without the light model

The environment for verification is shown in Fig.11 where the omni directional simu-
lator is marked, and the rendered image and the processing time are investigated. The
results are shown in Fig.12. In this verification, the resolution of the image is 50 � 50
pixels and 100� 100 pixels. These images show that these methods are able to simulate
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Fig. 9. Real image Fig. 10. Simulated image

the omnidirectional vision accurately, and the mirror reversed images are simulated cor-
rectly. In the methods a) and b), images with shade are rendered, and an image without
shade is rendered in the method c). The processing time of each method is shown in
Tables.1 and 2. The computer simulation environment is a laptop PC of which CPU is
Pentium M 1.8GHz, memory is 1.0GB, and video chip is ATI MOBILITY RADEON
(AGP 4X) 16MB. From the results shown in Tables.1 and 2, the processing time is
reduced in the methods b) and c). This shows that the intersection test algorithm is ef-
fective. The processing speeds depend on the conditions of objects in the environment,
but it is considered that the method c) is sufficiently fast for simulation. Figure 13 shows
the scenes of the simulation of robot behavior using the methods c) (50 � 50 pixels) as

Fig. 11. Simulation environment

(a) Method a) (b) Method b) (c) Method c)

Fig. 12. Simulated images of the three models

Table 1. Average processing time (50x50)[sec]

method a) method b) method c)

12.9 0.300 0.0238

Table 2. Average processing time (100x100)[sec]

method a) method b) method c)

50.6 1.36 0.282
Fig. 13. Simulation result
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sensor input. By considering the processing time and the resolution, the method c) with
50 � 50 pixels is suitable for a sensor for robots. If the accurate simulation with the
lighting is required, the method b) is suitable.

6 Conclusion

The 3D dynamics simulation system with omnidirectional vision was developed. An
intersection test algorithm was developed for the purpose of speeding up rendering the
omnidirectioan vision image. The effectiveness of the omnidirectional vision simula-
tor is verified through comparison of the rendered images with the images which are
obtaind by real omnidirectional vision sensor.
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Abstract. Motion planning is a critical component for autonomous mo-
bile robots, requiring a solution which is fast enough to serve as a building
block, yet easy enough to extend that it can be adapted to new platforms
without starting from scratch. This paper presents an algorithm based
on randomized planning approaches, which uses a minimal interface be-
tween the platform and planner to aid in implementation reuse. Two
domains to which the planner has been applied are described. The first
is a 2D domain for small-size robot navigation, where the planner has
been used successfully in various versions for five years. The second is a
true 3D planner for autonomous fixed-wing aircraft with kinematic con-
straints. Despite large differences between these two platforms, the core
planning code is shared across domains, and this flexibility comes with
only a small efficiency penalty.

1 Introduction

Motion planning is problem central to autonomous robotics. As soon as a robot
needs to move within a nontrivial environment, the question arises as to how it
should move to satisfy the constraints posed by its environment. In its general
form, the simplest motion planning problem is that of a single query [1]. That
is, given some configuration space C that the robot operates within, find a free
path from an initial position qi to a final or goal position qf . Obstacles pose
constraints on valid configurations in C, thus we can subtract them from the
full space, leaving the remaining “free” configuration space Cf in which the
robot can move without hitting any obstacles. The path planning problem then
becomes finding a continuous curve p(s) ∈ Cf for s ∈ [0, 1] where p(0) = qi and
p(1) = qf . For some robots, additional constraints are needed due to limitations
of the robot itself. These could be kinematic limitations, such as a car-like robot’s
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steering limitations, or they could be dynamics constraints such as maximum
acceleration. These are collectively known as kinodynamic constraints and take
the form of additional constraints on p(s).

While the problem of motion planning has been studied extensively, the gen-
eral trend of research has been concerned with solving successively more difficult
problems. While it is important to expand the problems solvable given generous
time and computing resources, advances may not translate directly to improve-
ments at the other end of the spectrum. This other end consists of relatively
“easy” problems, but with much tighter time bounds and limited available com-
putation. It is these latter problems which abound in mobile robotics, and with
which this work is concerned. The vast majority of mobile robots exist on a 2D
surface, while those that do move freely in 3D, such as unmanned aerial vehi-
cles (UAVs) typically do not encounter dense obstacles (i.e. Cf occupies a large
fraction of C).

In fairly static domains, two-stage “multi-shot” planners such as PRM
[2, 3] work well. PRMs separate planning into a learning phase, which builds
a finite graph model G of Cf , and the query phase, which maps the problem
to graph search on G. In highly dynamic environments however, learned models
quickly become obsolete. This encourages the use of “one-shot” planners which
only concern themselves with solving a single query given no apriori model of Cf .
Among the fastest one-shot planners are the RRT family of randomized plan-
ners [4, 5, 6]. RRT planners incrementally build a tree in Cf while they search
for the solution to a planning problem. A typical RRT search is as follows. First,
qi is added as the root of a tree. Then we iterate the following: Pick a draw a
random sample qr from C, find the closest vertex v in the current tree, then
grow the tree toward qr using an extend operator. The end of the extension is
added to the tree with v as its parent. The first few steps of such a tree are
shown in Figure 1. As this process is iterated, the RRT grows to fill the free
space, tending toward an even distribution. The major variables in the method
are in how we draw the random samples and in how the extend operator works.
Two adjustments turn the space-filling RRT into a planner. First, we can throw
out any extension segment that would hit an obstacle, thus restricting the tree
to Cf and guaranteeing that any path from node to node is a valid path in free
space. Next, we can alter the random target distribution by picking the goal
configuration some fraction of the time, thus biasing the tree to grow toward
the goal in a more directed fashion. Once a node is added to the tree that is
sufficiently close to the goal configuration, we can trace up the parent pointers
in the tree to recreate the path from qf to qi, the reverse of which is a plan [4].

1.1 Approach

The ERRT planner developed in previous work [6] builds on RRT and offers a
navigation approach for mobile robots using iterated replanning. Each control
cycle, a new plan is developed, rather than waiting for an error condition to oc-
cur before replanning. This allows the planner to deal with both small and large
errors in the same way, and thus is highly tolerant of position jumps and action
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Fig. 1. Example growth of an RRT tree for several steps. At each iteration, a random
target is chosen and the closest node in the tree is “extended” toward the target, adding
another node to the tree.

error which is invariably present in physical robots. To speed up replanning, and
decrease the variance from cycle to cycle in the plans, ERRT also introduces the
concept of a waypoint cache. This is a fixed-size bin with random replacement
into which states from previous plans are added. During RRT’s target point
selection, some part of the time waypoints are chosen instead of random con-
figurations or qf . This biases the planner to search along previously successful
plans, both decreasing the running time of the planner and resulting in more
stable solutions during successive iterative replans.

In our work, we have built upon ERRT to create a planner for mobile robots
which span a wide range of parameters. The first platform are robots built for
the RoboCup F180 “small size” league [7]. The field of play is a carpet mea-
suring 4.9m by 3.8m, similar to that shown in Figure 2. Due to its competitive
nature, teams have pushed robotic technology to its limits, with the small robots
travelling over 2m/s, accelerations between 3− 6m/s2, and kicking the golf ball
used in the game at up to 10m/s. These speeds require every module to run in
realtime to minimize latency, all while leaving enough computing resources for
all the other modules to operate. Since five robots must be controlled at up to
60Hz, this leaves a realistic planning time budget of about 1ms for each robot.
The robots themselves are holonomic, and controlled through a local obstacle
avoidance mechanism which incorporates dynamics. Thus the planner is free to
operate without kinodynamic constraints.

The second platform is an autonomous unmanned air vehicle (UAV), and
in particular an autopilot designed for the small UAV shown in Figure 2. The
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Fig. 2. Two teams are shown playing soccer in the RoboCup small size league (left),
and the RnR RPV-3 unmanned air vehicle (UAV) (right)

UAV and thus the planner must operate in 3D at low to intermediate altitude,
avoiding both the terrain and user specified “no-fly” zones as obstacles. The UAV
has highly constrained kinodynamics; Despite is small size and 3.5m wingspan,
the minimum turning radius is 300m, while climb and descent rates are limited to
5m/s. The autopilot can accept new sets of waypoints every few seconds, leading
to a much less constrained timing schedule compared to the RoboCup robots.
However due to the 3D nature of the problem and the constrained kinodynamics,
the problem to be solved is much more difficult.

While widely varied, the two domains still offer similarities we may take ad-
vantage of. They are both mobile agents operating primarily in ordinary 2D or
3D space, and both can be conservatively but acceptable modelled by a bound-
ing circle or sphere. The remainder of this paper describes the planner we have
implemented based off of a generalized extension of the ERRT approach. The
next section describes an abstract domain interface that allowed us to share core
planning code across the two domains without sacrificing the planners’ execu-
tion speed. The following section then describes our collision detection approach
which takes advantage of bounding spheres to implement exact swept-volume
collision checks with high efficiency, while keeping a straighforward implemen-
tation to add new types of obstacles.

2 The Domain Interface

The domain interface resulted from an attempt to unify platform interfaces so
that common planning code could be developed. In traditional planning work,
there are typically three primary modules: Planner, collision detection, and a
platform model. While this approach works well for robots of relatively similar
type, the communication required between the platform model and collision de-
tection are through the planner, complicating the interface so that the planner
needs to know much more about the domain than is really necessary. Thus the
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current approach was devised, in which platform model and collision detection
are wrapped into a single “domain” module that the planner interacts with. In-
ternally, collision detection and the platform model are implemented separately,
but importantly the planner doesn’t depend on anything involved in the com-
munication between the two. This allows states in the configuration space to be
a wholly opaque type to the planner (denoted by S), which needs only to be
copied and operated on by the domain’s functions. Additionally, to speed up
nearest neighbor lookups, the state must provide bounds and accessors to its
individual component dimensions. This allows the planner to build a K-D tree
of states so that linear scans of the tree are not necessary for finding the near-
est state to a randomly drawn target. While the traditional architecture can be
made nearly as flexible, it typically does so at a cost in efficiency. The domain
interface approach leaves open the opportunities for improved collision detection
speed that can come with constraints or symmetry present in the agent model.
The domain operations are as follows:

– RandomWorldTarget():S - Returns a state uniformly distributed in C
– RandomGoalTarget():S - Returns a random target from the set of goal states
– Extend(s0:S,s1:S):S - Returns a new state incrementally extending from s0

toward s1

– Check(s:S):bool - Returns true iff s ∈ Cf

– Check(s0:S,s1:S):bool - Returns true if swept-sphere from s0 to s1 is con-
tained in Cf

– Dist(s0:S,s1:S):real - Returns distance between states s0 and s1

– GoalDist(s:S):real - Returns distance from s to the goal state set

Using these primitives, an RRT planner can be built which operates across
multiple platforms, and does so without sacrificing runtime efficiency. One could
say that it moves most of the important code into the domain itself, making
the planner itself simplistic. However, the crucial difference is that the code in
the domain is relatively straightforward and self contained, while the intricate
interactions and practicality driven fallback cases of planning reside in the core
planning code. Thus one could implement a domain with little or no knowledge
of path planning, reaching a core goal of general modular programming.

3 Fast Collision Checking

Collision detection is a research area in its own right, and has been extensively
studied (for a good survey see [8]). However for our planner we can achieve higher
performance than general solutions by taking advantage of some simplifications
present in our domains. First, since the mobile robots are bounded by circles or
spheres, we need not check two complex shapes against one another to test for
collision; We merely need to be able to test a sphere against the possibly com-
plex environment. This results in our planner being pessimistic, but allows us
one critical advantage: The ability to model continuous time trajectories in the
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collision check. Many implemented planners using general collision checkers rep-
resent time trajectories as fixed steps along the path. Unfortunately this creates
an uneasy tradeoff between planning time and safety. We take the conservative
approach of bounding the agent in a simple shape, but then use exact collision
checking for time trajectories given that shape. The result is a planner that does
not sacrifice safety in obtaining its fast execution times.

In our originally developed 2D implementation, checking a line-swept circle
against various geometries proved easy enough to implement for various obsta-
cles geometries, although adding a new type of obstacle proved quite tedious.
Supporting 3D queries for the UAV would have resulted in a much more com-
plex implementation to solve the trajectory-swept-sphere problem, so a different
solution was sought. Our new approach required implementing only a single
primitive for each obstacle: distance from the obstacle to a point in space. From
this primitive, all the other required queries could be derived numerically. In par-
ticular, this included the swept-sphere query required for checking trajectories.
The method works as shown in Figure 3. For any particular point, the current
distance to obstacles, or clearance, determines how far along a trajectory is safe.
The checker can then step forward by that distance, and recursively check the
remaining swept area. The figure shows a dark blue trajectory to be checked, the
light blue is the current clearance, and the red spheres show the steps that can
be safely taken each iteration. Normally, few iterations are required, although
the algorithm can take many steps if it is very close to an obstacle. This is han-
dled by failing after a certain number of iterations have been exceeded. Though
this is yet another pessimistic approximation, long paths running very close to
obstacles are not typically desirable for execution by mobile robots anyway.

Fig. 3. An example of checking a swept circle using only obstacle distance queries to
iteratively step forward along the swept path

While in our current implementation, only line-swept-spheres are supported,
the distance query stepping method of checking a swept sphere can be applied
to other trajectory functions as well. For some continuous trajectory function
x(t) where time t ∈ [0, tf ], starting from an initial position x(0) with a distance
of at least D(x(0)) = d from all obstacles, we need only find the first t such that
‖x(t) − x(0)‖2 = d2, or verify that no such t exists for t ∈ [0, tf ]. For functions
with bounded curvature, such as lines and circular arcs, these calculations are
straightforward. In particular, for a linear trajectory defined by x(t) = a + bt,
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then the solution is ti =
√

ds − r2/‖b‖. If ti > tf , then the trajectory is verified
to be free, otherwise a recursive check must be made with a new trajectory
starting at time ti. Thanks to the square root, ti increases quite rapidly from
zero even with very small clearances, resulting in few steps needed for a typical
check, and making the approach efficient in practice.

The obstacles implemented by our collision checker range from the obvious
simple geometric shapes all the way up to 200x200 terrain meshes for the UAV
planner. While the geometric shapes are straightforward to develop a distance
metric for, the terrain posed the challenge of efficient distance calculation. Since
the terrain is a 2D grid projected into 3D as a low-curvature mesh (i.e. a relatively
flat manifold), we broke it up using a 2D K-D tree in grid space, and bounded
the individual nodes with an axis-aligned bounding box in the 3D space. To
query the distance from a point to the terrain, we follow the branches of the
K-D tree nearest first, calculating a distance to the actual terrain once a leaf
node is reached. After that, the remainder of the traversals and be compared
against this known minimum and pruned if the bounding box is further than
the current minimum. This aggressive pruning and the relatively flat nature of
actual terrain meshes yields near logarithmic access times for the queries.

4 Results and Conclusion

In the RoboCup domain, we found the planner to work well in practice, helping
our team consistently place within the top four teams, with comparatively few
penalties for aggressive play. In testing, the planner in the RoboCup achieved
execution times below 1ms to meet the tight timing requirement of the small-size
system. It averaged just 0.5 ms per run, compared to an average of 0.9 ms for a
baseline RRT implementation lacking a waypoint cache. In practice this means
that the ERRT implementation can expand more nodes than plain RRT while
remaining within the 1 ms planning envelope. Next, while reusing the same code
and the same generic collision detection framework, a UAV planner was created
by writing a new domain implementation. An example is shown in Figure 4,
using actual data for the 12km x 12km area surrounding Reno, Nevada, USA. It
has been tested driving a vendor-provided UAV simulator and a real hardware
autopilot for an existing UAV. Depending on the problem difficulty, it runs
from 0.5s to 2.0s per query on a modern computer. Eight ERRT searches are
generated per query, and the shortest plan from a successful search is returned.
Due to local minima in the distance metric resulting from kinematic constraints,
running several independent runs generated more consistent results than running
one large plan. In the RoboCup environment, path consistency is achieved by a
high waypoint cache bias in ERRT [6].

Development of a unified planner for multiple mobile robot platforms provided
many insights that would be difficult to determine if only one platform or similar
platforms were considered for an implementation. However there are still many
interesting areas of further work. First and foremost, the relationship between dis-
tance metric, kinodynamic constraints, and accelerated nearest-neighbor search
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Fig. 4. A kinodynamicly-limited search tree (left), and the corresponding simplified
plan (right) for the UAV. The plan length is approximately 13km with waypoints
every 100m.

should be explored. Developed good distance metrics for kinematically constrained
platforms is possible, but tedious, and more seriously it prevents most forms of
accelerating nearest-neighbor search to fail because the triangle inequality is no
longer satisfied. Using Euclideandistance worked,but generated localminima that
could only be avoided by rerunning the planner several times, which is an inelegant
solution. Better approximations which still allow the use of fast geometric data
structures most likely exist.
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Abstract. When a quadrupedal robot moves, the body and head pitch, yaw and
roll, because of its stepping. This natural effect of body and head motion ad-
versely effects the use of visual sensors embedded in the robot’s head. Any ob-
ject in the visual frame of the robot will, from the perspective of the robot, be
subject to considerable unmodeled motion or slip. This problem does not affect
mammals, which have vestibulo-collic and vestibulo-ocular reflexes that stabilize
their gaze in space and maintain objects of interest approximately fixed on the
retina. Our work is aimed towards constructing an artificial vestibular system for
quadrupedal robots to maintain accurate gaze. This paper describes the first part
of this work, wherein we have mounted an artificial vestibular system in a Sony
AIBO robot.

1 Introduction

Robot locomotion has been studied using a wide range of wheeled and legged robots
[3]. Although wheeled robots move quickly, they can only move on smooth terrain and
lack the versatility of legged robots in handling rough terrain. As a result, there has
been a concerted effort within the robot community to understand the motion of legged
robots [11]. This is particularly true within the RoboCup community, where there has
been considerable work on both the Sony AIBO used by the legged league [11,12] with
a long-term aim of developing sophisticated humanoid soccer players and a humanoid
league [4].

When playing soccer, using AIBO robots, one aim is to maintain specific landmarks
and the ball within the visual range of a camera [17], which is mounted in the robot’s
head. A number of mechanisms that move the head with the aim of keeping the relevant
object in the visual frame have been implemented [6] by obtaining feedback from motor
sensors. These implementations are not accurate representations of head position in
space, resulting in considerable errors during tasks that make use of vision information,
such as self-localization [18], navigation [7] and identification of the ball [21]. This, in
turn, leads to non-optimal trajectories in adjusting robot motion towards the ball and in
team coordination activities such as passing the ball.

Additional problems arise during actual motion of the robot. The head, in which the
camera is mounted, will pitch, yaw, and roll as well as linearly accelerate because of
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that motion. The very fact that legged motion generates this kind of disturbance makes
it difficult to keep the visual frame stable.

One approach to dealing with this motion of the camera is to accept the motion and
use a Kalman filter to track objects in the visual frame [6]. Another approach is to move
the head to compensate for the unwanted motion, guided not by the direct feedback
from the motor sensors, but instead from a learned response to the motor sensors which
indicates what the motion really is. Such an approach could be based either on the
model-based method introduced in [19], or on the neural-network method of [13].

In our work, we take a different approach, hypothesizing that the estimation of land-
marks and ball position could be significantly improved if we had a priori knowledge
of the statistics and spectral content of head rotations and linear accelerations when the
robot executes particular tasks. As a result, we set out to measure these accurately. In
mammals, the vestibular system compensates and orients the head and body as it moves
through space. The purpose of this paper is to describe an enhancement that we have
made to an AIBO robot using an an artificial vestibular system that allows us to estimate
these statistics and spectra during particular motions that are presently used to identify
landmarks and the ball. To this end, we have augmented the AIBO with a system that
mimics the inertial sensing mechanisms of the vestibular system of mammals — see
[15] for review. In this paper, we show the considerable angular head perturbations that
exist during robot motions. We derive the signals in terms of the Euler angles of head ro-
tation so that these signals can be utilized in estimating the landmarks and ball in space,
relative to the camera during the various head maneuvers and locomotion. Rotational
head compensations for linear perturbations are more complicated [16] and beyond the
scope of this paper.

2 Related Work

A number of studies have utilized robot enhancement using similar principles associ-
ated with the vestibular system [10,13]. One approach attached gyrosensors to a walk-
ing robot to reduce the shaking effect on the camera caused by the walk [10]. This
was done by using a high resolution camera and cutting out a subimage. The subimage
frame moved according to the rotations measured by the gyrosensors. Despite this en-
hancement, the sensors alone did not provide satisfactory image clarity and additional
template matching was utilized to refine the image. Our work to define the statistical
and spectral content of the head perturbation in space should help to define the cor-
rections needed to reduce the errors in the visual processing of the landmark and ball
images.

3 Robot Modification for Studying Quadrupedal Locomotion

For our investigation, we used a Sony AIBO ERS-210 robot. The ERS-210 is a quadrupedal
robot that has has three perpendicular degrees of freedom (DOF) in the head. The three
degrees of freedom makes it possible to study the 3D head motion in space.
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A) B)

Fig. 1. A) Diagram of the head of an AIBO ERS-210 with embedded sensor mimicking the semi-
circular canals and otoliths. The heavy arrows show the roll (X), pitch (Y ), and yaw (Z) axes
of the head. The circular arrows indicate the positive direction of rotation. B) Modified AIBO

ERS-210 that was used for these experiments, showing the sensor firmly mounted in the back of
the head.

3.1 Sensor for Measuring Head Perturbations

The AIBO has a linear acceleration sensor built into its body that can be used to ob-
tain some useful data about its motion [20]. However, there is no accurate informa-
tion about how the head moves. To establish information about the head, we used an
Xsens MTX sensor1. This sensor is factory calibrated and can detect 3D linear accelera-
tion (±17m/s2) and 3D rotational velocity (±1200deg/s). This mimicks the peripheral
vestibular system in live animals, which contains the semicircular canals and otoliths,
structures that are embedded in the inner ear and sense angular and linear acceleration,
respectively — see [15] for a review of work on the vestibular systems of humans and
monkeys. The system of canals and otoliths is important for compensating and limiting
head perturbations via the vestibulo-collic reflex as well as maintaining the stability of
the visual world via the vestibulo-ocular reflex [15].

The sensor is 38 × 53 × 21mm and weights 30g. Communication with the sensor
is over an RS-232 interface to an off-board computer at a rate of 100Hz using a bau-
drate of 57.6kbits/s. We have implemented an interface in Matlab 7 SP32 that runs
on a Linux-based PC and can access signals from the sensor via Matlab. We have also
implemented the matrix transformations that convert the rotary signals from the sen-
sor into the Euler angular perturbations corresponding to the AIBO’s head motor axes.
The sensor was firmly embedded in the head of the AIBO at the approximate positions
at which the peripheral vestibular system is located in the head of humans and other
animals. This location is close to the origin of the axes of rotation of the head3 (see
Figure 1). As a result, the weight and displacement did not significantly alter the head’s
moment of inertia or its dynamic properties.

1 www.xsens.com
2 www.mathworks.com
3 Note that the ears of the AIBO are still attached despite the modification to the head of the

robot. This was necessary since if the ears are removed, the AIBO will not boot up.

www.xsens.com
www.mathworks.com
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4 Relationship Between Robot Head Motors and the Sensor

The AIBO has two coordinate frames: the body coordinate frame (BCF) and the head
coordinate frame (HCF). The sensor is attached to the head so that its 3 axes corre-
spond to the 3 axes of the HCF. The motors rotate the head with Euler angles defining
a Helmholtz gimbal, i.e., the pitch axis fixed relative to the body [8]. The first motor
performs a pitch of angle θ at the neck and moves the head, which contains the other
two motors. The second motor performs a yaw of angle φ and moves the part of the
head that contains the remaining motor. The last motor performs a roll of angle ψ and
moves the final part of the head containing the sensor. Each rotation can be represented
as a rotation around an axis:

roll = Rx(ψ) pitch = Ry(θ) yaw = Rz(φ)

The rotations may be combined in the proper order to create one pitch-yaw-roll rotation
RPY R = RxRzRy that defines the transformation from the BCF to the HCF.

4.1 Sensor Reading

The sensor provides the 3D rotation velocity in space in terms of the head coordi-
nate frame. Let us call this velocity ωs. To convert this to Euler angles we need to
determine the rotation of the head, add the incremental rotation caused by ωs at time
t, and determine what Euler angles would be the equivalent of such a rotation. Let
Pcur = [ψcur, θcur, φcur], equal to the original motor position. The original rotation
matrix Rcur is obtained by inserting Pcurinto RPY R [8].

Any rotation in space may be represented by a single axis and a rotation angle. To
obtain the axis of incremental rotation n̂inc, we need to normalize the velocity vector
ωs. To obtain the angle of incremental rotation Φinc, we multiply the magnitude of this
vector by Δt. In our case, Δt is the amount of time between sensor readings or .01s.

n̂inc =
ωs

‖ωs‖
Φinc = ‖ωs‖Δt

Now to obtain the new rotation, we simply apply the incremental rotation Rinc

(n̂inc, Φinc) to the current rotation Rcur to generate Rnew :

Rnew = RincRcur

From this matrix and the definition of the RPY R matrix, we can extract the Euler angles
of the new position Pnew :

ψnew = tan−1 r32

r22
θnew = tan−1 r13

r11
φnew = − sin−1 r12

The change of Euler angles is then Pnew −Pcur. (See [14] for a complete derivation of
these results.)
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5 Experimental Results and Data Analysis

We measured the positions as output by the external sensor and the internal motor sen-
sors while the robot is walking. To generate the motion we utilized the motion module
of the Carnegie Mellon University (CMU) team CMPack’04 from the 2004 RoboCup
competition [5]4. The robot gait utilized was the standard trot gait at the maximum
forward velocity of 240mm/s.
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Fig. 2. Comparison of pitch, yaw, roll of the motor position sensors (A, C, E) and the artificial
“vestibular” sensor (B, D, F) during walking

The test was run over a period of 8 seconds. The data were filtered by removing linear
trends in position to remove the drift appearing in the external sensor readings. The
resulting graphs are shown in Figure 2. The position information was then run through
the Welch function available in Matlab to obtain power spectrums. The resulting graphs
are shown in Figure 4. The averaged cycles were determined and are shown in Figure 3.

During walking at 240 mm/sec with a period of 640ms, the feedback from the exter-
nal sensor shows considerable motion of the head in all three axis. The roll component
of the head, which is approximately 6◦ peak to peak as reported by the vestibular sensor
(Fig. 2 B) appears as less than 1◦ as reported by the motor sensors(Fig. 2 A). Similar
strong discrepancies in rotation angles of the motor and vestibular sensor were found
for pitch and yaw (Compare Fig. 2 C, E to Fig. 2 D, F).

We next considered how to best utilize the information in order to make correc-
tions for the head movement. To accomplish this, we determined the average roll, pitch

4 This gait is a variation of the trot gait used by most RoboCup legged league teams.
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Fig. 3. Comparison of the average cycle of pitch, yaw, roll of the motor position sensors (A, C,
E) and the artificial “vestibular” sensor (B, D, F) during walking
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and yaw waveform during locomotion. The vestibular sensor determined clear periodic
oscillatory patterns with small standard deviations around the mean (Fig. 3 B, D, F)
whereas the motor sensors reported a negligible oscillation in all components of head
movement.

The spectra of the comparable signals from motor and vestibular sensors were also
significantly different (Fig. 4). The peak powers as reported by the external vestibular
sensor were several orders of magnitude higher. The spectral content is also much nar-
rower and more concentrated around the dominant harmonics in the vestibular sensor
output as compared to the motor sensors. These are important parameters for determin-
ing the control that would be needed for optimizing compensatory head movements for
maintaining head stability.

6 Conclusions

The results of this study indicate that all components of the head movements of an
AIBO robot are periodic during locomotion. The spectra are fairly narrow and the av-
erage waveforms have small standard deviation over the period of movement. This in-
dicates that the waveforms, as reported by the vestibular sensor, could form a basis for
making corrections to images in camera coordinates and provide a stable platform for
identifying objects of interest, including the ball and other robots.

We are currently working on using the readings to stabilize the visual frame of the
AIBO. Initially we plan to add sensor feedback into existing approaches to gait devel-
opment — for example [9] — delivering new gaits that exhibit better head stability.
Subsequently, we aim to have the AIBO respond in real-time, adjusting the head mo-
tors in response to detected head motion. Eventually, we plan to extend this work to
humanoid robots. To our knowledge, there is currently no research on using vestibular
feedback in gait development — despite the use of gyroscopic sensors [2] that provide
similar information — nor is there any work on having robots dynamically adjust their
gait to help stabilize head movement despite much work on gaits [1].

While RoboCup rules prevent us from using the modified AIBO in competition, we
anticipate using the “head-stable” gaits we develop in future RoboCup events.

Acknowledgements. This work was supported by NIH grant DC 05222 from the
NIDCD (TR), NSF CNS-0520989 (TR and SP) and CUNY Collaborative Grant 80209-
09-12 (TR and SP).
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Abstract. For accurate self-localization using probabilistic techniques, robots
require robust models of motion and sensor characteristics. Such models are sen-
sitive to variations in lighting conditions, terrain and other factors like robot bat-
tery strength. Each of these factors can introduce variations in the level of noise
considered by probabilistic techniques. Manually constructing models of noise is
time-consuming, tedious and error-prone. We have been developing techniques
for automatically acquiring such models, using the AIBO robot and a modified
RoboCup Four-Legged League field with an overhead camera. This paper de-
scribes our techniques and presents preliminary results.

1 Introduction

Robots in RoboCup have two main requirements in order to play effective soccer. They
have to be able to self-localize with reasonable accuracy [6], and they have to be able
to detect and track the ball [13]1. The current state-of-the-art in localization is to use
Bayesian filter models [22, chap. 3–4], and a particularly popular approach is the parti-
cle filter [23]. This is especially popular in RoboCup because it allows robots to track
multiple position hypotheses, helpful when robots are regularly kidnapped by referees,
while running on modest computational hardware. To apply any Bayesian filter model,
a robot requires a model of its own motion, which it uses to predict new poses from
old ones following motion, and a model of its sensor behavior, which the robot uses to
choose between multiple possible poses. The sensor model is clearly also important for
detecting and tracking the ball.

Now, it is clear that the sensor and motion models are of importance to obtaining
effective behavior from any robot, but they are especially important in vision-based
soccer-playing robots. As a number of authors have pointed out, for example [6,15],
vision-based robots have much less sensor data to work with than robots equipped with
sonar or laser range-finders (at least when the vision is based on landmark detection
as it so often is in RoboCup). This comparative paucity of sensor data argues for the
importance of making each datum as accurate as possible (though it should be noted

1 Successful soccer-playing robots clearly need to be able to do a lot of other things as well, but
these other things — effective moving of the ball, tactical positioning, and coordinated team
play, for example — have good self-localization and ball-detection as pre-requisites.

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 548–555, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. An AIBO with a color marker

that if sensor data is too accurate, the performance of the particle filter degrades slightly
[23]). The paucity of sensor data also argues for making the motion model as accurate
as possible — with infrequent sightings of landmarks, robots have to run for several
seconds at a time without sensor data [15], and during that time can only update their
notion of where they are using motion data. Furthermore, when tracking the ball, the
robot may not see a landmark for considerably longer, and so will have to rely on what
is effectively dead-reckoning from its last confirmed position.

This requirement on the vision sensor model holds not only for models of the kind
that we deal with here, which use information about distance and bearing to landmarks,
but also for models that deal only with bearing [12] (and recent work [15] shows that
distance information helps to improve the precision of localization provided that the
distance information is adequately calibrated).

In this paper, we are concerned with the Sony AIBO ERS-7, the robot used by our
Legged League team MetroBots2. To construct both motion and sensor models for the
AIBO we are usually reduced to taking measurements “by hand and tape measure”
[18]—running the robot for a given time and measuring how far it moved, or having
the robot estimate how far it is from a landmark and comparing that with the measured
distance. This gives relatively few measurements from which to construct and evaluate
models, and the work described here is a response to that situation.

In this paper we describe how we have been using a global vision system, a system
which uses an overhead camera, and from that image data determines the position of
the robot, to automatically acquire motion and sensor data. This approach allows us to
collect data sufficiently easily and rapidly — several hundred data points in an hour3

— that we can use data-intensive machine learning techniques to construct models of
motion and sensor error.

2 Experimental Setup

For our experimental work, we have adapted a modified setup derived from the
RoboCup E-League [1]. The E-League makes use of a simplified small-size league en-
vironment, where global vision data is provided by a common vision server. This data
is sent to both teams using UDP broadcast. Teams decide how to move their robots, and

2 http://agents.sci.brooklyn.cuny.edu/metrobots
3 A limit set, effectively, by the fact that at the moment we have to have the robot write image

data to its memory stick, which takes several seconds, and then upload the image by ftp and
that we use just a single robot. A group of several robots could collect data faster, as suggested
in [11].

http://agents.sci.brooklyn.cuny.edu/metrobots
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Fig. 2. The experimental setup

package instructions for the robots into a common format. These instructions are then
combined into messages by the communication server, and broadcast to the robots via
an infra-red transmitter. Each robot on each team unpacks the messages to find out what
to do next.

At the heart of our setup is the Mezzanine visual tracking package [9]. Suitably cal-
ibrated, this software provides 2D tracking of objects — establishing x, y coordinates
and orientation — provided that the objects are color coded for easy recognition from
above. Mezzanine provides accurate tracking even with very unsophisticated camera
hardware and can handle considerable image distortion. We currently use an XCam2
WideEye from X10, an inexpensive wide-angle security camera4. The original vision
tracking system used by the E-League was Doraemon [2], which provides robust posi-
tion estimates even when the camera is mounted at an angle rather than directly over-
head. We are using Mezzanine because it more accurately handles the type of fish-eye
images obtained from the wide-angle camera that is needed in order to get the whole
soccer pitch in a single field-of-view.

As mentioned above, instead of the type of small, wheeled robots that have typically
been used in the E-League, we have been working with Sony AIBO ERS-7 robots. To
make them visible to Mezzanine, we simply attach a color marker to the back of the
robot as in Figure 1. Since the AIBO is equipped with a wireless ethernet card, we can
send data between the robot and the computer that is running the control code and the
data logger (both are the same machine, though logically distinct), and we can send the
position data from Mezzanine directly to the robot as well. The setup is as in Figure 2.

The idea of the experimental setup is to provide a completely automated mechanism
for data-collection. The control module polls Mezzanine for location data and simul-
taneously sends instructions to the AIBO telling it how to move around the pitch, and
when to gather data from its internal camera. When the robot is moving, we can con-
tinuously collect data about its position, and collate this position data with the motion
commands sent to the robot. As we discuss below, this data can be used, amongst other
things, to learn a motion model for the robot.

In addition to collecting this motion data, we can collect sensor data from the robot.
Of particular interest, given the fact that the data used by the robot for self-localization
is visual data, is the collection of camera images. Currently we do this by causing the

4 www.x10.com

www.x10.com
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robot to pause—thus allowing us to get an accurate idea of where each picture was
taken without having to synchronise the clocks on the robot and the machine running
Mezzanine—and then take a picture (which takes a few seconds to write to the robot’s
memory stick) and then upload the picture to the data logger.

3 Results

We used the setup described in the previous section to construct models for the robot’s
standard trot gait and the error in its perception of the Legged League markers. The
robot gait is that from the motion module of the Carnegie Mellon University Legged
League team CMPack’04 from the 2004 RoboCup competition [4].

3.1 Motion Model

Data for the motion model was collected by making the AIBO walk forwards and back-
wards for 10 seconds at a time, while Mezzanine measured the coordinates of the robot
at one second intervals. From these measurements, we computed the velocity of the
robot over the relevant period in the three coordinate directions of the global frame of

(a) (b)

(c) (d)

Fig. 3. The motion model for walking forward: (a) scatter plot of rates of motion in the x and
y directions (x on the horizontal axis, y on the vertical) when walking forward; (b) histogram
of motion in the x direction when walking forward; (c) Gaussian mixture fitted to the forward
motion data; and (d) Gaussian mixture scaled and plotted with histogram of forward data
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reference used by Mezzanine5. Since the robot takes time to accelerate and decelerate,
we effectively had two sets of data—measurements for the robot moving continuously,
and measurements for the robot when it was speeding up or slowing down.

For both forwards and backwards motion, we then plotted a histogram of around
3600 velocity measurements, obtaining two-peaked distributions — the lower valued
peak corresponding to times when the robot was changing veocity, and the larger peak
corresponding to constant velocity motion — that were approximately Gaussian. We
then learnt the parameters of a two-Gaussian mixture that fitted the data. This learning
was carried out using the standard EM algorithm [5]. A sample of this procedure for the
x component of forward motion (that is the component in the direction of motion) is
provided in Figure 3. Looking at Figure 3 (a) the two sets of measurements are clear,
and these emerge as two distinct peaks in the histogram in Figure 3 (b) and (d). As
Figure 3 (c) and (d) show, the two-Gaussian mixture closely fits the data.

The two forward motion distributions have means of 77 and 204, and standard de-
viations of 22 and 28 respectively, while the two backward motion distributions have
means of 87 and 174, and standard deviations of 27 and 23, respectively.

3.2 Sensor Model

Our second use of the experimental setup was to measure the error in the robot’s esti-
mates of its distance from the Legged League beacons. To do this, we first used the ex-
perimental setup to have the robot move around the pitch taking pictures, and recording
the robot’s position when these pictures were taken6. We used these images to build a
color map and to calibrate a distance coefficient, based on the number of pixels counted
for each beacon shape and the robot’s distance measured from the beacon by hand.
We then used the experimental setup to have the robot take a much larger set of images,
again recording the position at which each picture was taken. For each of this second set
of images we had the perception system of the robot calculate the distance to the bea-
con, and we compared this with the real distance as measured by the global vision—the
difference is then the error in the local vision system.

Given this error data, we then carried out exactly the same kind of learning as in the
previous section, and the steps in this process are as depicted in Figure 4.

3.3 Discussion

The main thrust of the work described here has been the use of the external camera
to measure robot pose and the subsequent use of this information, in conjunction with
information computed on board the robot, to develop a motion model for the robot and
a sensor error model. This is rather different to most existing work on developing vision
models within RoboCup, for example [3,10,16,17,24], which has tended to concentrate
on the automated segmentation of images, especially with an eye to handling chang-
ing illumination of the playing field, or work such as [21], which has concentrated on
automatically identifying landmarks from sensor data.

5 Taking due account of the orientation of the robot in that frame of reference.
6 In fact we combined taking pictures with the motion measurements required for the motion

model.
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(a) (b)

Fig. 4. The sensor error model (a) histogram of the error established from the global vision; (b)
the model learnt from the data (adjusted for a measurement of 1200 mm)

Of course, there are problems with using the overhead camera as a measure of
“ground truth”, since, as [14] points out, overhead camera-based global vision systems
tend to suffer from quantization problems and are adversely affected by noise in the im-
age. However, these problems are much reduced for us in comparison with [14] thanks
to the unique beacons used by the Legged League — [14] studies the small size league
setup. These beacons greatly simplify the problem of localizing a robot by uniquely
anchoring points on the image. Furthermore, while an occasional error in robot local-
ization can have catastropic effects on the way that the robot plays soccer, which is the
concern in [14], in our work an error will only introduce a little more noise, and create
distributions with slightly more variance.

Our work described here is clearly related to the simultaneous learning of sensor and
motion models described by [18,19]. That exciting work promises to supercede what
we are doing here, but for now is only capable (at least as reported in the literature) of
learning models that work in the same single dimension — in the case of [18,19] that
is motion towards and away from a beacon, along with sensing of the distance to the
beacon. In contrast our approach, while requiring data external to the robot — which is
clearly a limitation in some domains — can aquire multi-dimensional models (and so,
for example, can easily acquire models for the y direction and rotation).

4 Future Work

We began this work not just to obtain data from which we could learn motion and sensor
models off-line, but in order to be able to learn them on-line. In particular, we wanted to
be able to run the robot, have it self-localize, and then adjust the parameters that control
its motion and sensor models in order to improve its self-localization in much the way
that [11] adjust parameters in order to optimize the robot gait (though clearly in a less
autonomous way). This is still our aim, and we are continuing to work towards it. At the
moment, as an intermediate between our overall goal and what we have reported here,
we are using the experimental setup we have described to evaluate our use of particle
filtering to localize the AIBO while it is playing soccer.

There have been many previous evaluations of localization. For example [7] examine
a range of different probabilistic algorithms, while [6], and [20] evaluate RoboCup



554 A.T. Ozgelen, E. Sklar, and S. Parsons

specific approaches, and [8,12] look at the quality of localization on the AIBO in a
RoboCup setting. However, all of these use rather contrived scenarios. For example, [6]
required the robot to be manually placed around the pitch in order that the true location
be known, while [8] controlled the robot with a joystick and obtained measurements by
moving the robot over a known location and seeing where the robot thought it was as it
passed over that location. [12] comes closest to what we are working on, using a laser
range-finder to monitor continuously the real location of the robot, but never carried
this out during a game (the addition to the robot to allow the laser to detect the robot
presumably prevented this). As a result, we have no data on the extent to which actually
playing, and thus, as described above, having to focus on the ball, affects the quality of
the localization.

5 Summary

This paper has described the use of a global vision system as a means of automatically
acquiring motion and vision sensor data for a legged robot. Despite the fact that these
models are essential in order that robots can accurately self-localize, there has been little
work to try and acquire them automatically. In addition to describing the process by
which we collect the data in order to construct the motion and sensor models, we have
demonstrated the kinds of results that it is possible to obtain in this way. In particular,
we gave two components of the motion model for an AIBO ERS-7 that we learnt in this
way, and the error model for the extraction of the beacons on the Four-Legged League
pitch. While the learning process currently involves some human intervention, and is
run on an off-board computer, there is no especial reason why the process could not be
completely automated and run on-board.
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10. Jungel, M., Hoffmann, J., Lötzsch, M.: A real-time auto-adjusting vision system for robot
soccer. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS
(LNAI), vol. 3020, pp. 214–225. Springer, Heidelberg (2004)

11. Kohl, N., Stone, P.: Machine learning for fast quadrupedal locomotion. In: Proceedings of
the 19th National Conference on Artificial Intelligence, San Jose, CA (July 2004)

12. Röfer, T., Jüngel, M.: Fast and robust edge-based localization in the Sony four-legged robot
league. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS
(LNAI), vol. 3020, pp. 262–273. Springer, Heidelberg (2004)

13. Schmitt, T., Hanel, R., Buck, S., Beetz, M.: Probabilistic vision-based opponent tracking in
robot soccer. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS (LNAI),
vol. 2752, pp. 426–434. Springer, Heidelberg (2003)

14. Sekimori, D., Usui, T., Masutani, Y., Miyasaki, F.: Evaluation of self-localization perfor-
mance for a local vision robot in the small size league. In: Kaminka, G.A., Lima, P.U., Rojas,
R. (eds.) RoboCup 2002. LNCS (LNAI), vol. 2752, pp. 41–52. Springer, Heidelberg (2003)

15. Sridharan, M., Kuhlmann, G., Stone, P.: Practical vision-based Monte-Carlo localization on
a legged robot. In: Proceedings of the IEEE International Conference on Robotics and Au-
tomation, Barcelona (April 2005)

16. Sridharan, M., Stone, P.: Autonomous color learning on a mobile robot. In: Proceedings of
the 20th National Conference on Artificial Intelligence, Pittsburgh, PA (July 2005)

17. Sridharan, M., Stone, P.: Towards eliminating manual color calibration at RoboCup. In:
Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI),
vol. 4020, Springer, Heidelberg (2006)

18. Stronger, D., Stone, P.: Simultaneous calibration of action and sensor models on a mobile
robot. In: Proceedings of the IEEE International Conference on Robotics and Automation,
Barcelona (April 2005)

19. Stronger, D., Stone, P.: Towards autonomous sensor and actuator model induction on a mo-
bile robot. Connection Science, 18(2) (to appear)

20. Stroupe, A.W., Sikorski, K., Balch, T.: Constraint-based landmark localization. In: Kaminka,
G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS (LNAI), vol. 2752, pp. 8–24.
Springer, Heidelberg (2003)

21. Thrun, S.: Bayesian landmark learning for mobile robot localization. Machine Learn-
ing 33(1), 41–76 (1998)

22. Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics. MIT Press, Cambridge, MA (2006)
23. Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust Monte Carlo localization for mobile

robots. Artificial Intelligence 128(1–2), 99–141 (2001)
24. Zagal, J.C., del Solar, J.R., Guerrero, P., Palma, R.: Evolving visual object recognition for

legged robots. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003.
LNCS (LNAI), vol. 3020, pp. 181–191. Springer, Heidelberg (2004)



Ambulance Decision Support Using

Evolutionary Reinforcement Learning in
Robocup Rescue Simulation League

Ivette C. Mart́ınez, David Ojeda, and Ezequiel A. Zamora

Grupo de Inteligencia Artificial
Universidad Simón Boĺıvar
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Abstract. We present a complete design of agents for the RoboCup Res-
cue Simulation problem that uses an evolutionary reinforcement learning
mechanism called XCS, a version of Holland’s Genetic Classifiers Sys-
tems, to decide the number of ambulances required to rescue a buried
civilian. We also analyze the problems implied by the rescue simulation
and present solutions for every identified sub-problem using multi-agent
cooperation and coordination built over a subsumption architecture. Our
agents’ classifier systems were trained in different disaster situations.
Trained agents outperformed untrained agents and most participants of
the 2004 RoboCup Rescue Simulation League competition. This system
managed to extract general rules that could be applied on new disaster
situations, with a computational cost of a reactive rule system.

1 Introduction

RoboCup Rescue has become a standard problem for the artificial intelligence,
intelligent robotics and multi-agents communities. In particular, the RoboCup
Rescue Simulation League problem (RCRSL) has proven to be a excellent envi-
ronment for AI and Machine Learning software testing.

Tadokoro et.al. [9] define RCRSL as a semi optimal behavior planning problem
with extremely complex constraints having widely time-varying multiples objec-
tives, these constraints include limited time for decision making, limited commu-
nication, constantly changing conditions and incomplete and partial information.

In this work we decided to focus on one of the multiple challenges RCRSL
offers, the victim rescue problem, which has the strongest impact on the team’s
performance. This problem depends on various simulation factors. We chose
four of them: world time and victim buriedness, damage and health points. All
this factors have a large feasible domain, which combined generate a very large
state-space.

Usually large state-space problems are managed through generalization tech-
niques such as neural networks and other function approximator; which allow
compact storage of learned information and transfer of knowledge between “sim-
ilar” states and actions [3].

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 556–563, 2007.
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In order to manage this large state-space problem under RCRSL time restric-
tions, we use an accuracy-based evolutionary reinforcement learning mechanism
called XCS [11]. In particular the XCS decides how many Ambulance Teams are
required to make an effective rescue of a victim buried in a building.

Evolutionary reinforcement learning (ERL) is an approach to reinforcement
learning that takes advantage of Darwin’s theory of evolution. Evolutionary al-
gorithms can find satisfactory solutions in large state-spaces at a low computa-
tional cost. Methods from genetic algorithms, evolutionary programming, genetic
programming, and evolutionary strategies could all be used in this framework to
form effective decision making agents [5].

We compared our agents with other successful teams from the 2004 com-
petition and obtained satisfactory results. We believe this technique is able to
process the pertinent information from the environment and give the appro-
priate output to solve this problem. Additionally we give a short description
of our RoboCup Rescue decomposition into sub-problems and the solutions we
designed and implemented for each one of them.

2 XCS

The XCS classifier systems [10], as well as Holland’s Learning Classifier Systems
(LCS) [2], are domain independent adaptive learning systems. Its main distin-
guishing features are the base of classifier fitness on the accuracy of classifier
reward prediction instead of the prediction itself, and the use of a niche genetic
algorithm, i.e., a GA that operates on a subset of the classifier population.

The structure of XCS rules’ conditions are the translation of the conditional
part of the logical rules. Rules’ actions are binary strings that represent motion
actions.

A classifier is a compact representation of a complex set of environment states.
Rules have the form 〈condition〉 → 〈action〉. Conditions are strings of length l in
the alphabet {0, 1, ∗}. A classifier’s condition satisfies a message if its condition
matches the input message. A condition c matches message m if and only if:
∀i, (1 ≤ i ≤ l) → Πi(c) = Πi(m) ∨ Πi(c) = ′∗′ 1. Actions are fixed length
strings in the alphabet {0, 1}.

XCS are composed by three subsystems: A performance system, a learning
system and a rule discovery system.

The performance system takes an input from the environment, selects an
action and transforms it into an output message.

The learning system takes feedback signals from the environment and updates
the values of the four parameters that replaces the traditional fitness of LCS:
prediction, prediction error, accuracy, and fitness. This change allows a more
complete State×Actions → Prediction mapping than traditional LCS.

The rule discovery system uses a GA in order to create new rules. XCS’s
rule discovery system has two operations: niche GA and covering. The niche GA
acts over the Action Set [A], choosing random parents in proportion to the rules’
1 Where Πi represents the character located at the position i of the string.
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fitness. Offsprings are copies of the parents, modified by crossover and mutation.
Covering is triggered when the matches set is empty or its mean prediction is a
small fraction of the population [P] average prediction. Covering creates a new
classifier whose condition matches the current input message and its action is
generated randomly.

In the Reinforcement Learning (RL) research, two different approaches have
been stated. These two approaches are known as: searching in value function
space, and searching in policy space. In the first approach, RL algorithms try
to find the optimum value function for the problem. Then, to find the optimal
policy given the optimal values function, is immediate. The second approach
is to search an optimal policy directly over the space of the policies. For this
purpose, evolutionary algorithms are frequently used [5].

This RL approach based on evolutionary algorithms is called Evolutionary
Reinforcement Learning (ERL). The ERL algorithms vary in terms of the policies
representation method and the fitness evaluation for individual policies.

The two methods of policies’ representation are: a chromosome representation
and distributed rules-based representations. LCS [2] as well as XCS are examples
of a rules-based ERL.

The advantage of XCS from the ERL point of view is its generalization capac-
ity. For this reason, the XCS must be able to scale to more complex problems,
in contrast with the RL traditional algorithms [11].

3 Design

We present the result of our analysis and decomposition of RoboCup Rescue
into sub-problems. We use a hybrid approach for decision making, i.e. some
decisions are centralized while others are taken by platoon agents. Therefore,
platoon agents can take decision with slight relevance but central agents must
decide the most important matters.

3.1 Problems Categories

Sub-problems were divided into four categories: Common Problems, Fire Ex-
tinction, Rubble Cleaning and Victim Rescue. Now we describe some of the
identified problems and their solutions.

1. Common Problems

Civilian search: Our agents look for civilians in all the buildings in the
city. Each platoon must do this job when there is no other higher-priority
task to do. All agents have a “world model” which they share in every turn
to avoid visiting an already explored site and to provide central agents with
the necessary information to make decisions.

Route planning: This problem was solved by implementing the idea of
LongRoads proposed by ResQ Freiburg [4].
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Communication: In order to make information available for as many agents
as possible, we designed and built a communication protocol which intends
to use the messages as much as possible and gives preference to high-priority
information.

2. Victim Rescue
We decided to use a centralized approach for this task. The Ambulance
Center must decide which victim is going to be rescued next, the number of
ambulances that will be sent to the rescue site, which ambulances must go
and which one takes the victim to the refuge.

The next victim selection algorithm we are using is a based on the strat-
egy proposed by Damas Team [6]. It goal is to minimize future casualties
considering the next rescue.

The number of ambulances for each victim is determined using an XCS
classifier system whose structure and parameters are explained in Section
3.3. Once the number of ambulances is fixed, the nearest ambulances are
sent to the rescue. If we do not have enough ambulances, all free ambulances
are sent and the rest will be sent when they report themselves as freed. The
nearest ambulance of all takes the victim to the rescue.

3. Fire Extinction
The Fire Station Agent decides which fires to extinguish. It uses a set of
fixed rules that chooses how many fire brigades are going to be sent to each
fire and sends the nearest units. We consider a fire as a group of burning
buildings relatively close to each other. Each fire is built using clustering
techniques. Once the agent gets to the fire, it chooses which building is go-
ing to put out. Considering that all agents have a similar “world model”, it
is highly probable that the fire brigades assigned to this fire will choose the
same building.

4. Rubble Cleaning
We implemented several techniques for choosing the next road to be cleaned,
the Police Station sorts police agents to each one at the beginning of the
simulation.

– Road selection techniques:
• Select the nearest LongRoad and clean all its roads.
• Select the roads belonging to the most frequently used LongRoads.
• Select the roads around a certain spot of the map.
• Select the nearest road (only when all LongRoads are passable).

– Cleaning requests: If a platoon agent needs to go through a blocked
area, it sends a cleaning request to the Police Station, who assigns a
police force agent to clean it.
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Fig. 1. Subsumption Architecture Diagram - Ambulance Teams

3.2 Subsumption Architecture

Our agents’ conduct was modeled using Brooks’ Subsumption Architecture [1].
Each kind of agent has different behaviors but they all have the same structure.
We decided to sort our agent behaviors in four levels, which we describe next:

Level 0. This level contains the most basic behaviors, which are RoboCup
Rescue commands and actions.
Level 1. This level contains the default behavior of agents such as building
exploration and victim search.
Level 2. This defines those behaviors that are only activated by a central
order such as victim rescue and extinction of fires.
Level 3. This is where the highest-priority behavior are located.

Fig. 1 shows the subsumption diagram for ambulance platoon agents. Level 3
behaviors are shared by all platoon agents, Level 2 has the behaviors that entail
those agents main tasks, while Level 1 behaviors encode cooperation mechanisms.

3.3 Description of Genetic Classifiers

As we mentioned in Section 2, we use XCS genetic classifiers to support our
decision making. In particular we decide how many ambulances are required to
rescue a victim using this kind of system.

XCS Design for Victim Rescue. Our classifier system takes into account
the following attributes: health points, damage, buriedness and world time. Each
classifier contains 24 bits as shown in Fig. 2.

HP/Damage Buriedness World-Time Output
0 1 1 1 0 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 1 1 0 1

Fig. 2. Ambulance Center’s Classifier Structure
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Bits 0 to 7 contain the ratio of the victim’s health points to its damage, bits
7 to 14, its degree of buriedness, and the other 6 bits from the input represent the
simulation time in order to inform the system about how much time can be used
to rescue the victim. The translation between integer and binary representation
is accomplished by creating predefined ranges.

Each classifier has 3 output bits that represent the number of ambulances
that will be sent to rescue the victim.

4 Experiments and Results

Two different classifier sets were defined in order to train the XCS system using
the parameters shown in Table 1. The rules of the first set, called Foligno-Rules,
were generated using the classifier system on a learning phase over two maps
of the same city: FolignoEasy and Foligno. The second set of rules, Kobe-Rules,
was generated with the same procedure, only changing the maps to Kobe and
KobeEasy.

Table 1. XCS and GA Parameters

XCS Parameter Value
Genetic algorithm probability 0.2
Reinforcement update rate (α) 0.1
Min error (ε0) 0.5
Error Penalty (n) 5

Covering Parameter Value
Don’t care bit probability 0.2
Initial prediction 0
Initial error 100
Initial fitness 0
Max population size(|[P ]|) 100

GA Parameter Value
Replacement algorithm Elitist
Selection algorithm 8-tournament
Crossover algorithm One point
Mutation algorithm One point
Mutation probability 0.02

Each classifier set was initially empty. All new rules generated by covering
or by the evolutive steps of the XCS. After each simulation resulting rules were
stored and used in the next simulation.

We used the percentage of alive agents and the score at the end of each simula-
tion to measure the performance of the decision system for the rescue operations.
This procedure was repeated 900 times. The analyzed data are shown in Fig. 3.1.

We selected the trained classifier that showed the highest score and alive
agents at the end of the simulation. The rules used around the 250th simulation
for the Foligno-Rules training were selected for our experiments.

In order to observe the performance of the classifier system, we selected three
maps from different cities and compared the rescue task of our agents using
trained rules and random rules. Each group of agents’ results are a mean of 20
simulations, except for the results of ResQ Freiburg [4], DAMAS Team [6] and
5Rings [8], which were extracted from the 2004 competition logs.
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Fig. 3.2 shows the results of the experiments on all maps. It can be noticed
that on all test cases our agents show better results when using the trained set of
rules. These agents achieve higher scores and percentage of alive agents than the
ones using randomly generated rules. This demonstrates that the evolutionary
reinforcement learning system tends to refine and keep better rules for the XCS.
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Our trained agents also managed to rescue more agents than DAMAS Team
and outperformed the 5Rings agents. However, ResQ Freiburg agents can solve
the victim rescue problem with better results by using all available Ambulance
Teams to rescue a civilian and choosing the rescue order with a GA [4].

5 Concluding Remarks and Future Work

This paper presents an approximation to the RoboCup Rescue simulation prob-
lem that uses an evolutionary reinforcement learning technique, particularly XCS
classifier systems, to support the decision making of a central agent that coor-
dinates several platoon agents on the complicated victim rescue task.

The agents can solve numerous coordination problems presented by RoboCup
Rescue using a distributive coordinated search for civilians, as well as road clean-
ing, and a centralized coordination for victim rescue and fire extinction.

Many ideas and approaches used by our agents are based on previous stud-
ies and agent teams. These included informed search using LongRoads, victim
selection minimizing future casualties, building clustering, token-based commu-
nications, distributed civilian search and road unblocking petitions.

The design proposed by this paper proved to be an effective solution to the
problem and is competitive with other agent teams. Reinforcement learning tech-
niques proved to be a feasible method to extract general rules that can support
decision making on RoboCup Rescue. In particular, the number of ambulances
needed to save a victim depends on several non-predictable factors; this study
found that a trained classifier system provides a good approximation at a low
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computational cost. We conclude that evolutionary reinforcement approaches
are appropriate for the RoboCup Rescue domain.

Even though this paper presents a successful decision support system and a
design for a RoboCup Rescue agents team, further development is needed to
present these agents on a competition. The agents must be revised in order to
assure compatibility with the current competition rules, since our agents were
developed and tested with the rules published in 2004.

Parameters of the GA should be examined in future studies. Determination
of which mutation and crossover strategies work best with this problem should
be considered.

The current design of the XCS classifier system for rescue task is currently
very simple. An extension of the elements taken into account by the rules shall
outperform the current system with a longer training procedure tradeoff.

We are currently meticulously studying an appropriate design for a XCS that
can determine the number of fire brigades needed to control and extinguish a
fire.
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Herrero-Pérez, D. 347
Hexel, René 232
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Matteucci, Matteo 194
Mayer, Gerd 355
Mayer, Norbert Michael 25
McMillen, Colin 483
Meybodi, Mohammad Reza 410
Middleton, Richard H. 402
Miikkulainen, Risto 219
Murakami, Kazuhito 395, 418

Nakanishi, Ryota 418
Nardi, Daniele 491
Naruse, Tadashi 395, 418



566 Author Index

Nicklin, Steven P. 402
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