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10.1 Summary

We provide a new and general rule that predicts when native insect herbivores
will have a major influence on dominant native plant species in communities
and ecosystems worldwide. We argue that native insect herbivores will func-
tion as classic keystone species whenever their hosts become abundant and
form large, persistent, dense stands. Specifically, our Host Concentration
Model predicts that the impact of specialist insect herbivores will be more
severe on a per individual basis as host species build up to form large and
dense stands. The impact of these native insect herbivores, while important at
non-outbreak levels, will be most important during major bouts of defoliation
that occur during periodic insect outbreaks. Our review of the literature sug-
gests that such outbreaks are common from a phytocentric perspective. Con-
sequently, these insect outbreaks will have a major influence on ecosystem
function via their ability to regulate and reduce the abundance of host species
that may typically be the superior competitor across the landscape. Finally, we
believe that this Host Concentration Model will predict when specialist
insects will regulate plant communities and ecosystems better than resource
supply models that rely on gradients in fertility or productivity.

10.2 Introduction

“The role of rare events, such as outbreaks … cannot be ignored as a force
structuring ecological communities just because they are rare”

(Strong et al. 1984).
We propose a general rule that predicts when native insect herbivores will

have very strong top-down effects on plant communities and ecosystems in
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any terrestrial or wetland habitat worldwide. Specifically, native specialist
insect herbivores will function as a keystone species (sensu Paine 1969) when-
ever their hosts become abundant and form large, persistent, dense stands
(see also Carson and Root 2000; Long et al. 2003). This Host Concentration
Model results from a modification and extension of Root’s resource concen-
tration hypothesis (Root 1973), which states “...herbivores are more likely to
find and remain on hosts that are growing in dense or nearly pure stands”.
There is ample empirical evidence to support this hypothesis for plant popu-
lations (see a review by Andow 1991; Joshi et al., Chap. 6, this Vol.), but its
importance has only been recently extended to predict when insects will con-
trol vegetation dynamics (Carson and Root 2000; Long et al. 2003). This rule
will operate whenever insect herbivores can track host plant abundance and
should work in nearly any ecosystem at spatial scales from a few tens of
meters to thousands of square kilometers. While outbreaks of native insects
are not required for the rule to operate (see Long et al. 2003) or for insect her-
bivory to alter community dynamics (e.g. Bach 1994; Carson and Root 1999),
the influence of insects will be most pronounced and important during out-
break events at both the community and ecosystem levels (e.g. Carson and
Root 2000; Lovett et al. 2002). This rule leads to the conclusion that species-
level trophic cascades will commonly lead to community-level trophic cas-
cades in terrestrial communities whenever hosts are abundant, long-lived
perennial plant species (cf. Polis and Strong 1996; Polis 1999). Furthermore,
this rule means that as a superior plant competitor increases in density,
becomes widespread and suppresses the abundance of subordinate plant
species, it will not be long before it is found and attacked by its enemies. These
attacks will decrease the abundance of the dominant plant so as to promote
plant species coexistence, increase plant species diversity, lower standing crop
biomass for potentially long periods of time and likely alter successional tra-
jectories (e.g. Carson and Root 2000; Bach 2001).

10.3 The Significance of Insect Outbreaks

This general rule runs counter to much conventional wisdom and several the-
oretical lineages in ecology. First, outbreaks of native insects have often been
considered rare and unusual events (Hairston et al. 1960; Strong et al. 1984;
Faeth 1987; Owen 1987; Hartley and Jones 1997; Lowman 1997; Weisser and
Siemann, Chap. 1, this Vol.; but see Matson and Addy 1975). Consequently, a
prevailing view is that outbreaks are too infrequent and their effect too
ephemeral to cause substantial and enduring top-down effects on plant com-
munities. Consistent with this view, theories or discussions of trophic cas-
cades rarely give outbreaks a place of importance (e.g. Polis 1999). We dis-
agree with this perspective. Outbreaks of native insects appear to be nearly
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ubiquitous in ecosystems worldwide (Table 10.1). In addition, it is likely that
these outbreaks result in strong and lasting top-down effects on these com-
munities (e.g. Carson and Root 2000; Bach 2001).Also, these outbreaks appear
to be much more common and more devastating in dense host stands (see
below). Finally, outbreaks tend to occur repeatedly during the life span of
long-lived perennial plant species; thus these events are not uncommon from
a phytocentric perspective.

Second, outbreaks by their very nature are instances where plant defences,
enemies, intra- or interspecific interactions among insects, and other
processes (see Polis 1999) fail to prevent runaway consumption which results
in major food depletion for the outbreaking insect (Berryman 1987). These
bottom-up and top-down forces may ‘kick in’ during or following the out-
break and reduce herbivore numbers and their impact. By then, however,
insect damage already will have had a strong top-down effect on the plant
community. Consequently, theories regarding top-down control of insect her-
bivores by their enemies and bottom-up theories regarding plant defences or
nutrition do not apply or only ameliorate or modify the effect of the outbreak.
Below, we provide evidence for and explore the community- and ecosystem-
level consequences of the following observations: (1) insect outbreaks occur
in the vast majority of ecosystems and community types worldwide; (2) insect
outbreaks are more common and more devastating per host in large, dense
and continuous host stands; (3) outbreaking insects function as keystone
species by reducing the abundance of the dominant species and increasing
diversity; (4) insect outbreaks are common relative to host life span yet may
often go unnoticed; (5) chrysomelid beetles and lepidoptera seem to be
responsible for the majority of outbreaks. Finally, we briefly discuss and com-
pare the Host Concentration Model with resource supply models.

10.3.1 Insect Outbreaks Are Common 
in Numerous Community Types Worldwide

Very few terrestrial communities and ecosystems are spared from outbreaks
by native phytophagous insects (Carson and Root 2000; Table10. 1). Insect
outbreaks appear to be common in numerous ecosystems including grass-
lands, mangroves, old-fields, heathlands, dry tropical forests, Eucalyptus for-
est and even in some wetland communities. Overall, we have identified more
than 30 ecosystem and community types worldwide where outbreaks occur
and cause major defoliation, often over vast areas, of the dominant plant
species. Even relatively abundant species in diverse tropical forests may suffer
from repeated insect outbreaks (Wolda 1978; Wolda and Foster 1978; Janzen
1981). Insect outbreaks appear to be particularly devastating in forest ecosys-
tems. For example, numerous papers describe these outbreaks and their
impact in northern and boreal forests (Table 10.1; see also Berryman 1987;
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Carson and Root 2000). Lowman (1997) has suggested that outbreaks in
forests occur frequently but are overlooked because they are patchy and go
unnoticed high in the canopy (see also Wolda and Foster 1978).

10.3.2 Insect Outbreaks Are More Common and More Devastating Per
Host in Large, Dense and Continuous Host Stands

The Host Concentration Model provides a viable insect–plant feedback mech-
anism whereby insect impact and damage increases as dominant plant
species or superior competitors become more and more dense or concen-
trated (e.g. Long et al. 2003). If insect damage and subsequent impact are
greater (per capita) and insect outbreaks more common in larger and denser
stands of hosts, then insect herbivory may commonly exert strong top-down
effects on plant communities whenever superior competitors increase suffi-
ciently in density and area (cf. Strong 1992; Polis and Strong 1996; Polis 1999).
Indeed, there seems to be a growing consensus that outbreaks are more likely
and insect impact greater in natural vegetation where one or a few plant
species are dominant, abundant or aggregated, thereby forming large, contin-
uous host stands (Whitmore 1975; Morrow and Fox 1989; Bach 1994; Morris
et al. 1996; Schowalter 1996a; Bergeron and Leduc 1998; Cappucino et al. 1998;
Carson and Root 2000; Dymerski et al. 2001; Nair 2000, 2001; Schops 2002;
Long et al. 2003).

That insect outbreaks occur more frequently and do more damage per host
plant in large, continuous host stands comes as no surprise to ecologists who
study northern, boreal and subalpine ecosystems (see a review by McCul-
lough et al. 1998; Table 10.1). Indeed, Bergeron and Leduc (1998) concluded
that in balsam fir forests (Abies balsamea) “...mortality due to outbreaks
appears to be more important in regions where Abies balsamea is dominant”.
They further concluded that there was “...a direct correlation between mortal-
ity and the abundance of the host species”. This relationship between host
concentration and insect outbreaks appears to hold for numerous community
types. For example, insect outbreaks have defoliated hundreds of square kilo-
meters of mangroves in locations worldwide (Table 10.1; Anderson 1961;
Whitten and Damanik 1986). Mangroves are typically characterized by dense
stands of one or a few dominant species. Similarly, Australian Eucalyptus
forests are low-diversity forests dominated by the genus Eucalyptus. These
forests suffer heavy insect damage and outbreaks are common relative to the
life span of the hosts (Morrow and Fox 1989; Fox and Morrow 1992;
Table 10.1). Morrow and Fox (1989) concluded that the primary factor that
caused these forests to suffer heavy damage was host concentration. Likewise,
Nair (2000) concluded that in tropical Indonesian forests “...most outbreaks
have been recorded in tree species that occur gregariously....A high host den-
sity appears to be a key factor promoting pest outbreaks” (see also Nair 2001).
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Indeed, Nascimento and Proctor (1994) documented an outbreak event that
severely damaged a monodominant Amazonian rainforest and Wolda and
Foster (1978) documented an outbreak of a lepidopteran that attacked what is
by far the most abundant woody species – Hybanthus prunifolius – on Barro
Colorado Island in Panama. There are now numerous examples of insect out-
breaks attacking dominant or abundant species in natural vegetation
(Table 10.1).

10.3.3 Native Outbreaking Insects Function as Keystone Species 
by Reducing the Abundance of the Dominant Species and Increasing
Diversity

Insect outbreaks typically reduce the abundance or growth of the dominant
species within the community, subsequently freeing resources for subordinate
species and thereby increasing diversity (MacLean 1988; Bach 1994; De
Grandpré and Bergeron 1997; Carson and Root 2000; Dery et al. 2000;
Matouska et al. 2001; Parish and Antos 2002; Long et al. 2003). In this way, out-
breaking insects function as classic keystone species (e.g. Carson and Root
2000). Matouska et al. (2001) described the strong top-down impact of the
spruce beetle (Dendroctonus rufipennis) on boreal forest systems:

“Outbreaks varying in size and severity have occurred in the region at
approximately 30- to 50-year intervals since 1920. During large outbreaks,
spruce beetles can cause widespread changes to the structure of forests by
selectively attacking and killing the large diameter spruce (Picea sp.)....After
the canopy forming trees have died, understorey vegetation may be released
from competition for light, nutrients and water; this may result in the rapid
growth of the smaller, subordinate trees, shade-intolerant herbs and grasses.
As a result, plant communities following a large outbreak may be quite differ-
ent in structure and composition from those that dominated before the irrup-
tion”.

Unfortunately, with the exception of northern and boreal forests (e.g.
MacLean 1988; Veblen et al. 1991; De Grandpré and Bergeron 1997; Dery et al.
2000; Matouska et al. 2001; Parish and Antos 2002) and sand dune and old-
field successional communities in the USA and Canada (e.g. McBrien et al.
1983; Bach 1994; Carson and Root 2000), most studies have not considered the
consequences of outbreaks for non-host species, for plant species composi-
tion or for diversity. Nonetheless, large-scale outbreaks of native insect herbi-
vores often dramatically reduce the growth of their hosts and cause substan-
tial mortality of the dominant plant species (e.g. Carson and Root 2000). If
these outbreaks are common relative to host life span, then outbreaking
insects may typically function as keystone species, causing strong top-down
effects on plant communities. Indeed, Schowalter (1996a) concluded that
when hosts become abundant, “...high intensities of herbivory represent a
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major mechanism for reversing site dominance ...and increasing diversity” in
forest ecosystems.

10.3.4 Insect Outbreaks Are Common Relative to Host Life Span Yet May
Often Go Unnoticed

There is a general perception that outbreaks of native insect species defoliat-
ing native plant species are uncommon or rare events (Hairston et al. 1960;
Strong et al. 1984; Hartley and Jones 1997; Lowman 1997). Nonetheless, it is
clear that in many cases outbreaks will occur repeatedly over the life span of
long-lived hosts. For example, Root (1996) concluded that devastating out-
breaks would occur on goldenrods in goldenrod-dominated fields in central
New York, USA, every 5–15 years and goldenrod life span and period of dom-
inance is 10–30+ years. These outbreaks dramatically reduce community bio-
mass, increase plant diversity and alter successional trajectories for years fol-
lowing the outbreak (Carson and Root 2000). Outbreaks of insects in aspen
stands in Canada, mountain birch forests in Europe, Eucalyptus forest in Aus-
tralia, spruce-fir forests in North America and heathlands in Europe all expe-
rience outbreaks that occur at least once, if not repeatedly, during the life span
of the dominant species in the stand (Table 10.1; Hildahl and Reeks 1960;
Berdowski and Zeilinga 1987; Morrow and Fox 1989; Veblen et al. 1991; Fox
and Morrow 1992; Carson and Root 2000; Ruohomaki et al. 2000; Matouska et
al. 2001). For many community types, however, the frequency and scale of out-
breaks remain unknown. If the probability of an outbreak is high for domi-
nant or abundant plant species in a stand in any community type, then out-
breaks may commonly have a strong top-down effect on plant communities.
Unfortunately, in many community types, outbreaks are fairly short-term
events that appear and then disappear relatively suddenly. In addition, in
forests, outbreaks may occur high in the canopy and go unnoticed (e.g.Wolda
and Foster 1978; Lowman 1997). Consequently, outbreaks may be poorly doc-
umented, dismissed or overlooked.

10.3.5 Chrysomelid Beetles and Lepidoptera Seem to Be Responsible for
the Majority of Outbreaks

We found that Lepidoptera and Coleoptera accounted for approximately 58
and 36 % of outbreaking taxa respectively (Table 10.1). Thus, these two taxa
accounted for more than 90 % of the outbreaks categorized in Table 10.1. Sim-
ilarly, of the major defoliations described by Janzen (1981), Lepidoptera and
Coleoptera accounted for 65 and 30 % respectively. These percentages among
community types (Table 10.1) and within a community type (tropical dry for-
est, Janzen 1981) are strikingly similar and this may in part reflect the promi-
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nence of these two taxa among phytophagous insects (Strong et al. 1984) as
well as reflecting the characteristics of these groups that make them more
likely to outbreak (e.g. Schultz 1987).

Within the Lepidoptera, we found that 50 % of the outbreaks were caused
by noctuids, tortricids and geometrids (Table 10.1). Janzen (1981) found that
geometrids and noctuids accounted for 33 % of outbreaks in a dry tropical
forest, but he did not describe any outbreaks by tortricids, which seem to be
most important in northern and boreal forests (Table 10.1). Schultz (1987)
concluded that geometrids were prone to being pests. We found that among
the Coleoptera, a surprising 75 % of outbreaks were caused by chrysomelids.
We suggest that chrysomelid beetles may frequently function as keystone
species in plant communities (1) because they are a species-rich group, (2)
owing to their tendency to break out (Table 10.1; Root 1996; White 1996; Car-
son and Root 2000), (3) owing to their tendency to aggregate on host plants or
dense host patches (Bach and Carr 1990; Herzig 1995; Herzig and Root 1996;
Morris et al. 1996; Long et al. 2003) and (4) because they cause strong top-
down effects on biomass in plant communities (e.g. Carson and Root 2000).
Thus, we suggest that it may be more than pure coincidence that three most
‘spectacular cases’ of biological control have used chrysomelid beetles to con-
trol abundant exotic perennial plants (Hypericum perforatum, Senecio
jacobaea and Alternanthera philoxeroids; Huffaker 1964; Maddox et al. 1971;
Crawley 1989; McEvoy et al. 1993; Buckingham 1996; Zwölfer and Zimmer-
mann, Chap. 7, this Vol.). Overall, our findings lead us to the conclusion that
chrysomelid beetles along with outbreaking species of Lepidoptera may com-
monly exert strong top-down effects on numerous community types world-
wide. Lepidoptera appear to have their greatest impact on forest systems
whereas chrysomelids appear to have their greatest impact on herbaceous or
early successional systems, though exceptions to this generalization occur
(Table 10.1).

10.4 The Host Concentration Model May Predict Insect
Impact on Plant Communities at Multiple Spatial Scales
Better Than Resource Supply Theory

10.4.1 Resource Supply Theory

The bottom-up, top-down debate has been dominated by a single and very
important theoretical framework, called here Resource Supply Theory (RST;
also called Resource Dependent Foodwebs by Grover 1997). RST encom-
passes a variety of models that are all fundamentally based on the premise
that variation in the strength of top-down control by herbivores can be
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explained by changes in resource supply to primary producers (e.g. Oksanen
et al. 1981, 1995; Leibold 1989, 1996; Schmitz 1992, 1993, Holt et al. 1994;
Grover 1997). Much empirical work investigating top-down effects has taken
its lead from these theories and has investigated how resource supply influ-
ences herbivore abundance (e.g. Siemann 1998; Ritchie 2000) and herbivore
impact on communities (e.g. Fraser and Grime 1998). There is now a whole
array of these models (see Chase et al. 2000) with varying degrees of empir-
ical support.

We suggest that this theoretical framework may not accurately predict
when specialist insect herbivores will have a strong top-down impact on a
plant community. Specifically, RST models focus on how resource supply
affects plant defences or net primary productivity or both, which then directly
or indirectly (via predators) regulate herbivore control over primary produc-
ers. Alternatively, we suggest that insects will regulate vegetation dynamics
whenever dominant host plants become concentrated and abundant and that
this regulation will be most pronounced during outbreaks (but see Long et al.
2003 for a non-outbreak example). This means that to predict when specialist
insect herbivores will have a strong top-down effect it may be more important
to know the distribution and abundance of their hosts than to know how
resource supply affects their enemies or plant traits (e.g. defences). Because
the vast majority of insect herbivores are specialists (e.g. Fox and Morrow
1981; Thompson 1994; Janz et al. 2001; Nosil 2002), the Host Concentration
Model may typically predict when insect herbivores in general will impact
plant communities. We do not dispute the fact that resource supply and its
relationship to productivity, plant defences and enemies have important con-
sequences for insect herbivores. All we are suggesting is that host concentra-
tion may more accurately predict and determine when insect herbivores will
have a strong top-down effect on a plant community.

10.4.2 The Host Concentration Model (HCM)

HCM predicts that specialist insect herbivores will have strong top-down
effects on plant communities whenever their hosts form large, persistent
dense stands (see also Long et al. 2003; Carson and Root 2000). This impact
will be most pronounced and enduring following outbreaks. The host con-
centration model is more parsimonious than resource supply models (also
see Polis 1999). It makes assumptions neither about predators, plant defences
nor changes in resource supply. The only assumption of HCM is that the per
stem impact of herbivores increases with host plant density or area suffi-
ciently enough to have a top-down impact on plant communities. Further-
more, if native plants that are superior competitors are also widespread,
which is typical, then these plants will have a substantially richer herbivorous
insect fauna than inferior competitors that are more sparsely distributed
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(Strong et al. 1984). Consequently, widespread, superior competitors may
commonly have specialist insects that not only track their abundance but also
periodically outbreak (Table 10.1), thereby reducing the impact of these dom-
inant plant species on subordinate plant species within the community.
Finally, insect herbivores appear to be able to track host plant abundance
from spatial scales of a few tens of meters (e.g. Morrow et al. 1989; Herzig and
Root 1996; Carson and Root 2000; Long et al. 2003) to tens of thousands of
hectares (e.g. Bergeron and Leduc 1998; Cappucino et al. 1998; McCullough et
al. 1998; Kruess et al., Chap. 8, this Vol.). Consequently, the host concentration
model should apply across huge spatial scales depending upon the host find-
ing behaviour of the specialist insect.

10.4.3 Distinguishing Between the Two Models

It is important to note that RST and the HCM can make very similar predic-
tions about increasing regulation of plant communities with increasing
resource supply when both the density and productivity of the dominant host
plant increases with community productivity. If insect herbivores track host-
plant abundance but host-plant abundance and productivity are positively
correlated, then RST can make the correct prediction based on the wrong
mechanism. Alternatively, if insect herbivores track host-plant abundance but
host-plant abundance and resource supply are not correlated, RST can make
the wrong prediction. It is only when measures of both host plant density, host
plant productivity and host quality at both the population and community
level are available that we can distinguish among the models.

10.5 Relationship to Other Related Processes Proposed to
Promote Diversity

Our goal in this chapter was to provide a general rule to predict when special-
ist insect herbivores will have strong top-down effects on plant communities
across multiple spatial scales and to argue that such effects may be pervasive
and enduring from a phytocentric perspective. The current prevailing view is
that top-down (e.g. predation and parasitism) and bottom-up forces (e.g.
plant defences) in terrestrial food webs severely constrain the impact of insect
herbivores on plant communities.We believe this focus may miss the brief but
critical windows when insect herbivory will regulate plant communities:
specifically when hosts form large dense stands and when insects outbreak in
these stands.We recognize that the rule has many similarities to other general
processes where enemies respond and suppress their prey or hosts in a den-
sity-dependent fashion. For example, our rule has many parallels to the
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Janzen–Connell hypothesis that was originally proposed to explain the main-
tenance of tree diversity in tropical forests (Connell 1971; Janzen 1970). Our
hypothesis, however, is focused specifically on the impact of specialist out-
breaking phytophagous insects that attack large, dense concentrations of
hosts. It is not focused on seed predation, the impact of predators on juveniles
or the relationship between juvenile survivorship and distance to putative
adult parents. Nonetheless, inherent within our rule and the Janzen-Connell
hypothesis is that as host density increases the per host impact of predation
(or herbivory) increases.

10.5.1 Does Pathogen Impact Increase with Host Concentration?

There is growing evidence that pathogens, like specialist insects, can have a
strong top-down effect on plant communities (Dickman 1992; Van der Putten
et al. 1993; Van der Putten and Peters 1997; Olff et al. 2000; Packer and Clay
2000; Rizzo et al. 2000; Joshi et al., Chap. 6, this Vol.; Kruess et al., Chap. 8, this
Vol.). If the per host impact of these pathogens increases with host density
(e.g. reviewed in Burdon and Chilvers 1982; Augspurger 1988; Burdon et al.
1989; Alexander 1992), then we believe the Host Concentration Model will
also apply to many plant pathogens. Consequently, abundant plant species
may have to contend with not only periodic insect outbreaks but also periodic
pathogen outbreaks. Because of lack of empirical work at the community
level, it remains unknown which is more important or how the combined
impact of host-tracking insects and pathogens may interact to structure plant
communities.
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