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Abstract. We study the straggler identification problem, in which an
algorithm must determine the identities of the remaining members of a
set after it has had a large number of insertion and deletion operations
performed on it, and now has relatively few remaining members.

1 Introduction

Imagine a security guard, who we’ll call Bob, working at a large office building.
Every day, Bob comes to work before anyone else, unlocks the front doors, and
then staffs the front desk. After unlocking the building, Bob’s job is to check in
each of a set of n workers when he or she enters the building and check each
worker out again when he or she leaves. Most workers leave the building by
6pm, when Bob’s shift ends. But, at the end of Bob’s shift, there may be a
small number, at most d << n, of stragglers, who linger in the building working
overtime. Before Bob can leave for home, he must tell the night guard the ID
numbers of all the stragglers. The challenge is that Bob has only a small clipboard
of size o(n) to use as a “scratch space” for recording information as workers come
and go. That is, Bob does not have enough room on his clipboard to write down
all ID numbers of the workers as they arrive and check them off again as they
leave. Of course, he also has to deal with the fact that some of the n workers
may not come to work at all on any given day. The question we address in this
paper is, “How can Bob, the security guard, check workers in and out so as to
identify all d stragglers at the end of his shift, using a scratch space of size only
o(n)?”

Formally, suppose we are given a universe U = {x1, x2, . . . , xn} of unique
identifiers, each representable with O(log n) bits. Given an upper bound param-
eter d << n, the straggler identification problem is to design a data structure
that uses only o(n) bits and efficiently supports the following operations on an
initially-empty subset S of U :

– Insert xi: Add the identifier xi to S.
– Delete xi: Remove the identifier xi from S.
– ListStragglers: Test whether |S| ≤ d, and if so, list all the elements of S.
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We assume, without loss of generality, that d is small enough so that d log(n/d)
is o(n), since we need Ω(d log(n/d)) bits just to produce the answer to an List-
Stragglers query, and if d is close to n we might as well just store all the
elements of S explicitly. That is, we are interested in an implicit representation
of S, which can be used to list the contents of S when |S| ≤ d, but makes no
such guarantees when |S| > d.

In addition to our motivating example of Bob, the security guard (which also
applies to other in-and-out physical environments, like amusement parks), the
straggler identification problem has the following potential applications:

– In a high bandwidth multicast data stream, a server sends packets to many
different clients, which send acknowledgments back to the server identifying
each packet that was successfully received. The server then needs to identify
and re-send the packets to clients that did not successfully receive them. This
round-trip data stream application is an instance of the straggler identifi-
cation problem, since we expect most of the packets to be sent successfully
and we would like to minimize the space needed per client at the server for
unacknowledged packet identification.

– In heterogeneous Grid computations, a supervisor sends independent tasks
out to Grid participants, who, under normal conditions, perform these tasks
and return the results to the supervisor. There may be a few participants,
however, who crash, are disconnected from the network, or otherwise fail to
perform their tasks. The supervisor would like to identity the tasks without
responses, so that they can be sent to other participants for completion.

Our Results. In this paper, we study the straggler identification problem, showing
that it can be solved with small space and fast update times. We provide a de-
terministic solution, which uses O(d log n) bits to represent the dynamic set S of
O(log n)-bit identifiers. Our solution is based on a novel application of Newton’s
identities and allows for insertions and deletions to be done in O(d logO(1) n)
time. It allows the ListStragglers operation to be done in time polynomial
in d and log n. This solution does not allow (false) Delete x operations that
have no matching Insert x operations, however. Interestingly, we show that
no deterministic algorithm can guarantee correctness in such scenarios, so this
drawback should come as no surprise. Nevertheless, we provide a simple random-
ized solution to the straggler identification problem that uses O(d log n log(1/ε))
bits and tolerates false deletions, where ε > 0 is a user-defined error probabil-
ity bound. This solution is based on a novel extension to the counting Bloom
filter [3, 14], which itself is a dynamic, cardinality-based extension to the well-
known Bloom filter data structure [1] (see also [5]). We refer to our extension
as the invertible Bloom filter, because, unlike the standard Bloom filter and its
counting extension—which provide a degree of data privacy protection—the in-
vertible Bloom filter allows for the efficient enumeration of its contents if the
number of items it stores is not too large. This might seem like a violation of the
spirit of a Bloom filter, which was invented specifically to avoid the space needed
for content enumeration. Nevertheless, the invertible Bloom filter is useful for
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straggler identification, because it can at one time represent, with small space,
a multiset that is too large to enumerate, and later, after a series of deletions
have been performed, provide for the efficient listing of the remaining elements.

Related Prior Work. Our work is most closely related to the “deterministic k-set
structure” of Ganguly and Majumder [16]. This structure solves the straggler
detection problem, allowing items to have multiplicity greater than one but dis-
allowing false deletions. This solution, like our deterministic algorithm, is based
on finite fields; however the most space-efficient version of their solution uses
roughly twice as many bits as ours, and their decoding times are slower: ignor-
ing logarithmic factors, O(d3) or O(d4) time, compared to O(d2) for ours. An
additional technical difference is that, for the algorithm of Ganguly and Ma-
jumder, the parameter k (analogous to our d) measures the number of distinct
stragglers, while for us it measures the total number of stragglers. Independently
of our work, Ganguly and Majumder added to the submitted journal version of
their paper a lower bound similar to ours proving the impossibility of straggler
detection with false deletions (Ganguly, personal communication). Our deter-
ministic solution is also related to work on set reconciliation in communication
complexity [23].

Some additional existing work can be adapted to solve the straggler identifica-
tion problem. For example, Cormode and Muthukrishnan [8] study the problem
of identifying the d highest-cardinality members of a dynamic multiset. Their so-
lution can be applied to the straggler identification problem, since whenever there
are d or fewer elements in the set, then all elements are of relatively high cardi-
nality. Their result is a randomized data structure that uses O(d log2 n log(1/ε))
bits to perform updates in O(log2 n log(1/ε)) time and can be adapted to an-
swer ListStragglers queries in O(d log2 n log(1/ε)) time (in terms of their bit
complexities), where ε > 0 is a user-defined parameter bounding the probability
of a wrong answer.

Also relevant is prior work on combinatorial group testing (CGT), e.g., see [7,
10,11,12,13,15,18,22], and multiple access channels (MAC), e.g., see [6,17,19,20,
21,25,26,28]. In combinatorial group testing, there are d “defective” items in a set
U of n objects, for which we are allowed to perform tests, which involve forming
a subset T ⊆ U and asking if there are any defective items in T . In the standard
CGT problem, the outcome is binary—either T contains defective items or it
does not. The objective is to identify all d defective items. The CGT algorithms
that are most relevant to straggler identification are nonadaptive, in that they
must ask all of their tests, T1, T2, . . . , Tm, in advance. Such an algorithm can
be converted to solve the straggler identification problem by creating a counter
ti for each test Ti. On an insertion of x, we would increment each ti such that
x ∈ Ti. Likewise, on a deletion of x, we would decrement each ti such that x ∈ Ti.
The tests with non-zero counters would be exactly those containing our objects
of interest, and the nonadaptive CGT algorithm could then be used to identify
them. Unfortunately, these algorithms don’t translate into efficient straggler-
identification methods, as the best known nonadaptive CGT algorithms (e.g.,
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see [11,12]) use O(d2 log n) tests, which would translate into a straggler solution
needing O(d2 log2 n) bits.

The MAC problem is similar to the CGT problem, except that the items of
interest are no longer “defective”—they are d devices, out of a set U , wishing to
broadcast a message on a common channel. In this case a “test” is a time slice
where members of a subset T ⊆ U can broadcast. Such an event has a three-way
outcome, in that there can be 0 devices that use this time slice, 1 device that uses
it (in which case it is identified and taken out of the set of potential broadcasters),
or there can be 2 or more who attempt to use the channel, in which case none
succeed (but all the potential broadcasters learn that T contains at least two
broadcasters). Unfortunately, traditional MAC algorithms are adaptive, so do
not immediately translate into straggler identification algorithms.

Nevertheless, we can extend the MAC approach further [17,25,26,28], so that
each test T returns the actual number of items of interest that are in T . This
extension gives rise to a quantitative version of CGT (e.g., see [11], Sec. 10.5).
Unfortunately, previous approaches to the quantitative CGT problem are either
non-constructive [25], adaptive [17,25,26,28], or limited to small values of d. We
know of no nonadaptive quantitative CGT algorithms for d ≥ 3, and the ones
for d = 2 don’t translate into efficient solutions to the straggler identification
problem (e.g., see [11], Sec. 11.2).

2 Straggler Detection Via Symmetric Polynomials

We now describe a deterministic algorithm for straggler detection using near-
optimal memory. The algorithm is algebraic in nature: it stores as its snapshot of
the data stream a collection of power sums in a finite field, GF [pe]. The decoding
algorithm for this information uses Newton’s identities to convert these power
sums into the coefficients of a polynomial that has the stragglers as its roots,
and finds the roots of this polynomial.

As is standard for this sort of computation, we represent values in GF [pe] as
univariate polynomials of degree at most e−1, with coefficients that are integers
modulo p; the GF [pe] arithmetic operations are the standard polynomial arith-
metic, modulo a primitive polynomial of degree e. Therefore, values in the field
GF [pe] may be represented in space O(e log p) each. Addition and subtraction
of values in GF [pe] may be performed using modulo-p operations independently
over each coefficient, while multiplication of values in GF [pe] may be performed
using a convolution-based polynomial multiplication algorithm, together with re-
duction modulo the primitive polynomial. Our algorithms also involve division
by integers in the range [2, p−1], which may again be done independently on each
coefficient. Therefore, each field operation may be performed in bit complexity
Õ(e log p), where Õ(x) is a convenient shorthand for O(x logO(1) x).

Theorem 1. There is a deterministic streaming straggler detection algorithm
using O(d log n) bits of storage, such that Insert and Delete operations can be
performed in bit complexity Õ(d log n), and such that ListStragglers operations
can be performed in bit complexity Õ(d log3 n+d2 log n+d3/2 log2 n min(d, log n)).
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Proof. We let p be a prime number, larger than d, and choose e such that pe > n.
We perform all operations of the algorithm in the field GF [pe], and interpret all
identifiers in the straggler detection problem as values in this field. The number
of bits needed to represent a single value in GF [pe] is O(log n), and, with this
choice of p and e, each arithmetic operation in the field may be performed in bit
complexity Õ(log n).

Define the power sums
sk(S) =

∑

xi∈S

xk
i

(where xi and sk belong to GF [pe], except for s0 which we store as a log n bit
integer). Our streaming algorithm stores sk(S) for 0 ≤ k ≤ d. As s0(S) is the
number of stragglers, we can easily compare the number of stragglers to d.

To update the power sums after an insertion of a value xi, we simply add
xk

i to each power sum sk; this requires O(d) arithmetic operations in GF [pe].
Similarly, to delete xi, we subtract xk

i from each power sum sk.
At any point in the algorithm, we may define a polynomial in GF [pe][x],

P (x) =
∏

xi∈S

(x − xi) =
|S|∑

k=0

(−1)kσkx|S|−k,

where σk is the kth elementary symmetric function of S (the sum of the products
of all k-tuples of members of S). These coefficients can be related to the power
sums by Newton’s identities (e.g. see [9]):

sk − k(−1)kak = −
k−1∑

i=1

(−1)iσisk−i.

That is,

s1 − σ1 = 0
s2 + 2σ2 = σ1s1

s3 − 3σ3 = σ1s2 − σ2s1

s4 + 4σ4 = σ1s3 − σ2s2 + σ3s1

s5 − 5σ5 = σ1s4 − σ2s3 + σ3s2 − σ4s1,

and so on. These equations hold over any field, and in particular over GF [pe].
By using these identities, we may calculate the coefficients of P in sequence from
the power sums and the earlier coefficients, using O(d2) arithmetic operations
to compute all coefficients. Note that these calculations involve divisions by the
numbers 2, 3, 4, . . ., d, but all such divisions are possible modulo p. Thus, this
stage of the ListStragglers operation takes bit complexity Õ(d2 log n).

Finally, to determine the list of stragglers, we find the roots of the polynomial
P (x) that has been determined as above. The deterministic root-finding algo-
rithm of Shoup [27] solves this problem in Õ(d log2 n + d3/2 log n min(d, log n))
field operations; thus, the overall bit complexity bound is as stated. ��
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We note that a factor of d1/2 in Shoup’s algorithm [27] occurs only when p
has an unexpectedly long repeated subsequence in its sequence of quadratic
characters. It seems likely that a more careful choice of p can eliminate this factor,
simplifying the time bound for the ListStragglers operation to Õ(d log3 n +
d2 log n). If this is possible, it would be an improvement when d lies in the range
of values from log2/3 n to log2 n.

For d ≤ 4, the root finding algorithm may be replaced by the usual formulae
for solving low degree polynomials in closed form.

3 Impossibility Results for False Deletions

So far, we have assumed that an element deletion can occur only if a correspond-
ing insertion has already occurred. That is, the only anomalous data patterns
that might occur are insertions that are not followed by a subsequent dele-
tion. What can we say about more general update sequences in which insertion-
deletion pairs may occur out of order, multiple times, or with a deletion that
does not match an insertion? We would like to have a streaming data structure
that handles these more general event streams and allows us to detect small
numbers of anomalies in our insertion-deletion sequences.

Formally, define a signed multiset over a set S to be a map f from S to the
integers, where f(x) is the number of occurrences of x in the multiset. To insert
x into a signed multiset, increase f(x) by one, while to delete x, decrease f(x)
by one. Thus, any sequence of insertions and deletions, no matter how ordered,
produces a well-defined signed multiset. We wish to find a streaming algorithm
that can determine whether all but a small number of elements in the signed
multiset have nonzero values of f(x) and identify those elements. But, as we
show, for a natural and general class of streaming algorithms, even if restricted
to signed multisets in which each x has f(x) ∈ {−1, 0, 1}, we cannot distinguish
the empty multiset (in which all f(x) are zero) from some nonempty multiset.
Therefore, it is impossible for a deterministic streaming algorithm to determine
whether a multiset has few nonzeros.

The signed multisets form a commutative group, which we will represent using
additive notation: (f + g)(x) = f(x) + g(x). Call this group M . Define a unit
multiset to be a signed multiset in which all values f(x) are in {−1, 0, 1}; the
unit multisets form a subset of M , but not a subgroup.

Suppose a streaming algorithm maintains information about a signed multi-
set, subject to insertion and deletion operations. We say that the algorithm is
uniquely represented if the state of the algorithm at any time depends only on
the multiset at that time and not on the ordering of the insertions and deletions
by which the multiset was created. That is, there must exist a map u from M
to states of the algorithm.

Define a binary operation + on states of a uniquely represented multiset
streaming algorithm, as follows. If a and b are states, let A and B be signed
multisets such that u(A) = a and u(B) = b, and let a + b = u(A + B).
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Lemma 1. If a streaming algorithm is uniquely represented, and u(P ) = u(Q),
then u(P + R) = u(Q + R).

Proof. Let s be a sequence of updates that forms R. Then s transforms u(P )
to u(P + R) and u(Q) to U(Q + R). Since u(P ) = u(Q), u(P + R) must equal
u(Q + R). ��

Lemma 2. The operation defined above is well-defined independently of how
the representative multisets A and B are chosen, the states of the streaming
algorithm form a commutative group under this operation, and u is a group
homomorphism.

Proof. Independence from the choice of representation is Lemma 1. Associativ-
ity and commutativity follow from the associativity and commutativity of the
corresponding group operation on M . By Lemma 1, u(A) + u(−A) = u(0) and
u(A) + u(0) = u(A), so u(0) satisfies the axioms of a group identity; therefore,
we have defined a commutative group. That u is a homomorphism follows from
the way we have defined our group operations as the images by u of group op-
erations in M . ��

Theorem 2. Any uniquely represented multiset streaming algorithm for a mul-
tiset on n items, with fewer than n bits of storage, will be unable to distinguish
between the empty set and some nonempty unit multiset.

Proof. Suppose there are k < n bits of storage, so 2k possible states. By the
pigeonhole principle, two different sets A and B, when interpreted as multisets
and mapped to states, map to the same state u(A) = u(B). Then by Lemma 2,
u(A−B) = u(∅). A−B is a nonempty unit multiset that cannot be distinguished
from the empty set. ��

By applying similar ideas, we can prove a similar impossibility result without
assumption about the nature of the streaming algorithm.

Theorem 3. No deterministic streaming algorithm with fewer than n bits of
storage can distinguish a stream of matched pairs of insert and delete operations
over a set of n items from a stream of insert and delete operations that are not
matched in pairs.

Proof. Suppose that we have a deterministic streaming data structure with k < n
bits of storage. For any set A, let f(A) denote the state of the data structure on a
stream that starts with an empty set and inserts the items in A in some canonical
order. By the pigeonhole principle there exist two sets A and B such that A 	= B
but such that f(A) = f(B). Let sPQ (P, Q ∈ {A, B}) be the operation stream
formed by inserting the items in set P followed by deleting the items in set Q.
Then the streaming algorithm must have the same state after stream sAA as
it does after stream sBA, but sAA consists of matched insert-delete pairs while
sBA does not. ��
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4 Invertible Bloom Filters

The standard Bloom filter [1] is a randomized data structure for approximately
representing a set S subject to insertion operations and membership queries.
Given a parameter d on the expected size of S and an error parameter ε > 0, it
consists of a hash table B containing m = O(d log(1/ε)) single-bit cells (which we
denote as a “bit” field), which are initially all 0’s, together with k = Θ(log(1/ε))
random hash functions {h1, . . . , hk} that map elements of S to integers in the
range [0, m − 1]. Performing an insert of element x amounts to setting each
B[hi(x)].bit to 1, for i = 1, . . . , k. Likewise, testing for membership of x in S
amounts to testing that there is no i ∈ {1, . . . , k} such that B[hi(x)].bit = 0.
Setting the constants appropriately, one can make the probability of returning
a false positive to a membership query (that is, an element not in S identified
as belonging to S) to be less than ε (e.g., see [4]).

The counting Bloom filter [3,14] extends the standard Bloom filter by replac-
ing each “bit” cell of B with a counter cell, “count” (initialized to 0 for each
cell). An insertion of item x amounts to incrementing each B[hi(x)].count by
1, for i = 1, . . . , k. Such a structure also supports the deletion of an item x,
by decrementing each cell B[hi(x)].count by 1, for i = 1, . . . , k. Answering a
membership query is similar to that for the standard Bloom filter, amounting to
testing that there is no i ∈ {1, . . . , k} such that B[hi(x)].count = 0.

The invertible Bloom filter extends the counting Bloom filter, in several ways,
and allows us to solve the straggler identification problem even in the presence of
false deletions. It requires that we use three additional random hash functions,
f1, f2, and g, in addition to the k hash functions, h1, . . . , hk, used for B above.
The functions, f1 and f2 map integers in [0, n] to integers in [0, m]. The function
g maps integers in [0, n] to integers in [0, n2]. In addition, we add two more fields
to each Bloom filter cell, B[i]:

– An “idSum” field, which stores the sum of all the elements, x in S, for x’s
that map to the cell B[i]. Note that if B[i] stores m copies of a value x (and
no other values), then B[i].idSum = mx.

– A “hashSum” field, which stores the sum of all the hash values, g(x), for x’s
that map to the cell B[i]. Note that if B[i] stores m copies of a value x (and
no other values), then B[i].hashSum = mg(x).

Moreover, we create a second Bloom filter, C, which has the same number of
(count, idSum, and hashSum) fields as B, but uses only the functions f1 and f2
to map elements of S to its cells. That is, C is a secondary augmented counting
Bloom filter with the same number of cells as B, but with only two random hash
functions, f1 and f2, to use for mapping purposes. Intuitively, C will serve as a
fallback Bloom filter for “catching” elements that are difficult to recover using
B alone. Finally, in addition to these fields, we maintain a global count variable,
initially 0. Each of our count fields is a signed counter, which (in the case of
false deletions) may go negative.
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Since all n ID’s in U can be represented with O(log n) bits, their sum can
also be represented with O(log n) bits. Thus, the space needed for B and C is
O(m log n) = O(d log n log(1/ε)).

We process updates for the invertible Bloom filter as follows.

Insert x:
increment count
for i = 1, . . . , k do

increment B[hi(x)].count
add x to B[hi(x)].idSum
add g(x) to B[hi(x)].hashSum

for i = 1, 2 do
increment C[fi(x)].count
add x to C[fi(x)].idSum
add g(x) to C[fi(x)].hashSum

Delete x:
decrement count
for i = 1, . . . , k do

decrement B[hi(x)].count
subtract x from B[hi(x)].idSum
subtract g(x) from B[hi(x)].hashSum

for i = 1, 2 do
decrement C[fi(x)].count
subtract x from C[fi(x)].idSum
subtract g(x) from C[fi(x)].hashSum

That is, to insert x, we go to each cell that x maps to and increment its
count field, add x to its idSum field, and add g(x) to its hashSum field. Thus, the
methods for element insertion is fairly straightforward. Deletion is similarly easy,
in that we simply decrement counts and subtract out the appropriate summands
to reverse the insertion operation.

Our method for performing the ListStragglers operation is a bit more in-
volved, however. The basic idea is that some cells of B are likely to be pure, that
is, to have values that have been affected by only a single item. If we can find
a pure cell, we can recover the identity of its item by dividing its idSum by its
count. Once a single item and its count are known, we can remove that item
from the data structure and continue until all items have been found.

The difficulty with this approach is in finding the pure cells. Because of
the possibility of multiple insertions and false deletions, we cannot simply test
whether count is one: some pure cells may have larger counts (i.e., have multiple
copies of the same value), and some impure cells may have a count equal to one
(e.g., because of two insertions of a value x followed by a false deletion of a value
y that collides with x at this cell). Instead, to test whether a cell is pure, we use
its hashSum: in a pure cell, the hashSum should equal the count times the hash
of the item’s identifier, while in a cell that is not pure it is very unlikely that the
hashSum, idSum, and count fields will match up in this way.
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The following pseudo-code expresses the decoding algorithm outlined above.

ListStragglers:
while ∃i, s. t. g(B[i].idSum/B[i].count) = B[i].hashSum/B[i].count do

if B[i].count > 0 then {this is a good element}
Push x = B[i].idSum/B[i].count onto an output stack O.
Delete all B[i].count copies of x from B and C (using a method
similar to Delete x above)

else {this is a false delete}
Back out all −B[i].count falsely-removed copies of x from B and C
(using a method similar to Insert x above)

if count = 0 then
Output the elements in the output stack and insert each element back
into B and C.

else {we have mutually-conflicting elements in B}
Repeat the above while loop, but do the tests using C instead of B.
Output the elements in the output stack, O, and insert each element
back into B and C.

There is a slight chance that this algorithm fails. For example, we could have
two or more items colliding in a cell of B, but we could nevertheless have the
condition, g(B[i].idSum/B[i].count) = B[i].hashSum/B[i].count, satisfied (and
similarly for C in the second while loop). Fortunately, since g is a random func-
tion from [0, n] to [0, n2], such an event occurs with probability at most 1/n2;
hence, over the entire algorithm we can assume, with high probability, that it
never occurs (since d << n). More troubling is the possibility that, even after us-
ing the fallback array, C, to find and enumerate elements in the invertible Bloom
filter (in the second while loop), we might still have some mutually-conflicting
elements in C.

Lemma 3. If the number of elements in S, which were inserted but not deleted,
plus the number of false elements negatively indicated in S, corresponding to
items deleted but not inserted, is at most d, then the first while loop will remove
all but εd such elements from S with probability 1 − ε/2, for ε < 1/4.

Proof. Omitted due to space limitations. ��

Let us assume, therefore, that at most εd elements (true and/or false) remain
in S after the first while loop. Let us suppose further that each is mapped to
two distinct cells in C (the probability there is any such self-collision among the
remaining elements in C is at most εd/4dk ≤ ε/4). We can envision each cell in
C as forming a vertex in a graph, and each selected pair of cells as forming an
edge in the graph; thus our data can be modeled as a random multigraph with
x ≤ εd edges and y = 4dk ≥ 8d vertices. Thus, it is a very sparse graph. Let
c = y/x ≥ 8/ε.

Two types of bad event could prevent us from decoding the data remaining
in C after the first loop. First, two items could map to the same pair of cells, so
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that our multigraph is not a simple graph. There are x(x − 1)/2 pairs of items,
and each two items collide with probability 2/(y(y−1)), so the expected number
of collisions of this type is x(x − 1)/(y(y − 1)), roughly 1/c2. Second, the graph
may be simple but may contain a cycle. As shown by Pittel [2, Exercise 8, p.
122], the expected number of vertices in cyclic components of a random graph of
this size is bounded by

∑∞
k=3 kc−k = O(1/c3). Therefore, the expected number

of events of either type, and the probability that there exists an event of either
type, is O(1/c2). Choosing c = O(

√
1/ε) is sufficient to show that we will fail in

the second while loop with probability at most ε/4.

Theorem 4. If the number of elements in S, which were inserted but not deleted,
plus the number of false elements negatively indicated in S, which correspond to
items deleted but not inserted, is at most d, then the above algorithm correctly
answers a ListStragglers query with probability at least 1 − ε, where ε < 1/4.
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