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Abstract. This article presents our divide-and-conquer optimal algo-
rithms for lightweight suffix array construction for constant alphabets.
These algorithms can efficiently compute the suffix array of a size-n text
T with an alphabet Σ using O(n log Σ) time and (�(T ) + |Σ|�log n� +
O(1))-bit working space (excluding the space for the output suffix array),
where Σ is an integer or constant alphabet, and �(T ) is the length of T
measured in bits. For popular applications in practice with n ≤ 232 and
|Σ| ≤ 256, these results translate into O(n) time and a total space of
5n + O(1) bytes, which are the optimal time and space complexities for
lightweight suffix array construction.

1 Introduction

The suffix array is a fundamental index data structure used in a broad range of
applications such as compression, string matching and computational biology [1].
For a n-character text T , its suffix array SA(T ) is an array of pointers for all
suffixes in T sorted lexicographically, which requires O(n�log n�)-bit space. The
concept of suffix array was initially proposed by Manber and Myers in 1990 [2,3].
Since then, suffix arrays have been employed widely for data indexing, retriev-
ing, storing and processing. For example, the Burrows-Wheeler transform [4] for
building efficient compression solutions can be quickly computed by fast suffixes
sorting based on suffix array construction. In many cases where suffix arrays
are applied, constructing the suffix arrays generally constitutes the basis for
subsequent tasks. Recently, it has been observed that the construction of suf-
fix arrays is needed for large-scale applications where the input texts are huge
with over billions characters (e.g., biology genome database) [5, 6, 7, 8, 9], which
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motivated the currently intensive research on time and space efficient suffix array
construction algorithms (SACAs).

The suffix array is usually known as a space efficient alternative to the suffix
tree. In general, applications built on suffix trees can run times faster than that
using suffix arrays; however, the storage of a suffix tree also consumes a memory
space times more than its suffix array counterpart. To maximize the benefit
from using suffix arrays, it is highly desirable to further reduce the working
space required for constructing a suffix array, where the term of working space
in this context doesn’t include the space for the output suffix array 1. In 2002,
Manzini and Ferragina [11] initially raised the problem of lightweight suffix array
construction, which was informally termed as quickly constructing the suffix
array of a size-n text using 5n + O(1) bytes, for n ≤ 232 and the alphabet |Σ| ≤
256. One year later, Burkhardt and Kärkkäinen [10] presented their algorithm
based on the concept of “difference covers”, with O(n log n) worst-case runtime
and using a working space as the input plus O(n/

√
log n). In the same year,

Hon and Sadakane et al. [7] showed that the suffix arrays can be constructed in
optimal O(n log n) time and O(n log n)-bit space for texts with integer alphabets,
or O(n) time and O(n)-bit working space for texts with constant alphabets.
Later, Na [12] proposed an alphabet-independent linear O(n) time algorithm for
constructing suffix arrays using O(n log |Σ| logα

|Σ| n)-bit working space, where
α = log3 2. Very recently, Puglisi and Smyth et al. [1] conducted a thorough
survey on SACAs including [11,10,7,13,14,15,16,17,18,19,20,12], and concluded
that to devise an optimal SACA which is fast, lightweight and linear in the worst
case still remains as a challenge.

What of our particular interest here is the optimal lightweight suffix array
construction for texts with constant alphabets, which we term as to construct
suffix arrays with the known optimal time complexities, and meanwhile, using a
space as small as possible. Specifically, we present here our novel solution with
a set of practical algorithms for optimal lightweight suffix array construction for
constant alphabets, which is optimal in the sense that it can compute the suffix
array of a size-n text of n log |Σ|-bit using O(n log |Σ|) time and (n log |Σ| +
|Σ| logn + O(1))-bit working space (excluding the space for the output suffix
array), where Σ is an integer or constant alphabet. For popular applications in
practice with n ≤ 232 and |Σ| ≤ 256, these results translate into O(n) time
and a total space of 5n + O(1) bytes, which are the optimal time and space
complexities for lightweight suffix array construction termed by Manzini and
Ferragina [11]. We intentionally don’t use the big-O notations for n and |Σ| in
the space complexity formulas, in order to show the accurate space requirement
which is a main concern for lightweight suffix array construction.

The rest of this article is organized as following. Section 2 introduces the
preliminaries including some general notations and assumptions. Our solution for
optimal lightweight suffix array construction is presented in Section 3. Section 4
summarizes the main results. Finally, Section 5 gives the conclusion.

1 In the literature for suffix array construction algorithms, the working space may
exclude both the input text and the output suffix array, for example, in [10].
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2 Preliminaries

2.1 Notations

Let T = t0t1t2 . . . tn−2$ be the input text with n characters arranged as an array,
where the characters are in an alphabet Σ. Two kinds of alphabets are considered
for Σ here: (1) an integer alphabet with characters in the range of [0, nO(1)), and
(2) a constant alphabet of size O(1). Without loss of generality, the characters of
T , from left to right, are indexed starting from 0. The last character $ is called
the sentinel, which is unique in T , not in Σ and lexicographically smaller than
any character in Σ.

For a size-m text X = x0x1x2 . . . xm−2$, we define some notations as below:

– S(X, i): the suffix in X starting at xi and running to the sentinel $, i.e.
S(X, i) = xixi+1 . . . xm−2$, where i ∈ [0, m).

– SA(X): the suffix array of X , which is the pointer array for all the m suffixes
in X sorted in their lexicographically order, i.e., each item in SA(X) contains
an unique pointer to a suffix in X . Without loss of generality, the sorted order
is assumed to be ascending.

– ISA(X): the inverse suffix array of X , defined as SA[ISA[i]] = i, for i ∈
[0, m).

Let ≺ and � be the lexicographical preceding and succeeding operators, re-
spectively, we define τ(T, i) to be the LS-type function for T , given as:

τ(T, i) =
{

0, for S(T, i) � S(T, i + 1) and i ∈ [0, n);
1, for (S(T, i) ≺ S(T, i + 1) and i ∈ [0, n − 1)) or i = n − 1.

For denotation simplicity, a character T [i] is said to be type-L or type-S for
τ(T, i) = 0 or 1, respectively. Moreover, a suffix S(T, i) is said to be a type-L or
type-S suffix if T [i] is type-L or type-S, respectively. Let B be the size-n array
[0..n−1] of integers allocated for storing the output suffix array SA(T ), in which
each item is �log n�-bit. Next, B[i] and T [i] are said to be a pair of siblings, and
an item B[i] is said to be type-L or type-S if its sibling T [i] is type-L or type-S,
respectively. Further, let BS and BL be two sets consisting of the last n0 type-S
and type-L items in B, respectively, where n0 = |T0| ≤ �n/2� and T0 will be
defined in Section 3.1. To denote a substring xixi+1 . . . xj in a text X , a simpler
form of X [i, . . . , j] could be used. In addition, we use �(υ0, . . . , υk) to denote the
total length of all objects υ0, . . . , υk measured in bits.

2.2 Assumptions

Unless otherwise specified, in this article, we have the following general assump-
tions:

– The working space of a computation doesn’t include the space for the output.
In other words, the working space equals to the total space minus the space
for the output. Without explicit specification, the term space implies the
total space.
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– The space is provided in a unit-cost RAM with word size O(log W )-bit,
where n ≤ W . Following this assumption, a standard arithmetic or bitwise
boolean operation on word-sized operands costs O(1) time.

3 Solution

Our divide-and-conquer solution for computing SA(T ) for T is presented in this
section. To solve the problem at hand, we first reduce the problem, next compute
the suffix array for the reduced problem and then based on which, to derive the
suffix array for the original problem.

3.1 Reducing the Problem

First of all, we introduce some basic definitions for reducing the problem. A S-
string in T is: (1) ti . . . tj (0 ≤ i ≤ j < n) for both ti and tj are type-S; or (2) the
sentinel $ itself. In addition, the rank of ti is defined as the number of characters
less than ti in T ; all the ranks of T starts from 0. Further, let Zk(T, i) denote
a substring in T consisting of the k (k > 0) consecutive S-strings starting at a
type-S character T [i], in which fewer S-strings are possible when the sentinel $
is included. Any k consecutive S-strings in T is called a Zk-string.

Let T0 be the text consists of the ranks (also known as the lexicographical
names) of all S-strings in T , and let n0 = |T0|. The Corollary 2 in [16] says that
the sorted order of all suffixes in T0 determines the sorted order of all type-S
suffixes in T . Further, let % denote the modulo operator and T1 be the text
consisting of the ranks for triples in {T0[i, i + 1, i + 2] : i%3 	= 2, i ∈ [0, n0)},
where the ones for {i%3 = 0} are arranged in one consecutive block following
by another block consisting of those for {i%3 = 1}, and let n1 = |T1|. Similarly,
let T2 be the text consisting of the ranks for triples in {T0[i, i + 1, i + 2] : i
mod 3 = 2, i ∈ [0, n0)}; and let n2 = |T2|. Without loss of generality, we as-
sume that there are less 2 type-S characters than the type-L characters in T
and n is even for presentation simplicity, which leads to n1 ≤ �2n0/3� ≤ �n/3�.
Although T1 can be computed by first computing T0 from T and then comput-
ing T1 from T0, doing in this way is too space consuming for our purpose. In
the following, we design a space efficient algorithm for directly computing T1
from T .

To present the algorithm, we continue to introduce some more definitions.
Let P1 be the index array for all ith Z3-strings of T satisfying i%3 	= 2, i.e.,
P1[i] gives the pointers to all these ith Z3-strings in T ; specifically, in P1, the
ones for {i%3 = 0} and {i%3 = 1} are arranged in two consecutive blocks, re-
spectively. Next, let P ′

1 be the result array of sorting all elements in P1 in the
lexicographically ascending order of their corresponding Z3-strings in T , where
ties between any two Z3-strings with different lengths are broken by giving the

2 In case that the type-S characters are more, the same discussion can be conducted
symmetrically on the type-L characters, see [16] for details.
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shorter a higher priority 3. Further, let H1 be an array for recording the lengths
of all Z3-strings in P1. From the definitions of P1, P ′

1 and H1, each of them is
an array with n1 items in the range of [0, n), which means that each item can
be encoded in �log n�-bit.

Because n1 ≤ �2n0/3� ≤ �n/3�, instead of constructing SA(T ) directly, we
can compute SA(T1) and then derive SA(T ) from SA(T1) using the algorithms
developed below. The whole procedure is started by computing T1 from T . In
brief, computing T1 from T consists of three steps: (1) compute P1 from T ; (2)
compute P ′

1 from P1 and T ; and (3) compute T1 from P ′
1 and T . We further to

go through them one-by-one.
First, we have the below lemma for determining the type of a character in T .

Lemma 1. For i ∈ [0, n − 1), we have (1) τ(T, i) = 0 if T [i] > T [i + 1]; (2)
τ(T, i) = 1 if T [i] < T [i + 1]; and (3) τ(T, i) = τ(T, i + 1) if T [i] = T [i + 1].

Proof. The correctness of (1) and (2) is obvious from the definition of τ(T, i).
For (3), if τ(T, i + 1) = 0 or 1, we have S(T, i + 1) � S(T, i + 2) or S(T, i + 1) ≺
S(T, i + 2), respectively. Given T [i] = T [i + 1], this yields S(T, i) � S(T, i + 1)
or S(T, i) ≺ S(T, i + 1), respectively, i.e. τ(T, i) = τ(T, i + 1).

We proceed to compute P1 and then sort P1 to obtain P ′
1.

Lemma 2. Given T , P1 can be computed using O(n) time and a working space
of �(T ) + O(1) bits.

Proof. This can be done by simply traversing T once from right to left, to record
in P1 the positions of all type-S characters in T . At each step, the type of the
current character is derived from that of its immediately succeeding character
in O(1) time, using Lemma 1.

Lemma 3. (time bottleneck) Given T , P1 and H1, P ′
1 can be computed using

O(�(T )) time and a total space of at most �(B, T ) + O(1) bits.

Proof. Omitted due to the space limit.

For computing T1 from P ′
1, all the Z3-strings in T need to be sorted. For which,

we have the below lemma for retrieving a S-string from its head in T .

Lemma 4. Given T [i] is type-S, starting from T [i], we can find the first type-
S item T [j] succeeding to T [i] by traversing up to the first type-L item T [k]
succeeding to T [j], where i < j < k.

Proof. If T [i] = T [i + 1], we know that T [i + 1] must be type-S and j = i + 1.
Suppose T [i] < T [i+1], starting from T [i+1], we traverse forward to the first T [k]
(k > i + 1) satisfying T [k − 1] < T [k]. At this moment, we know that T [k − 1]
must be type-S. From T [k], we traverse backward to the first T [j] satisfying
T [j − 1] > T [j] (j < k).
3 The correctness of this tie-breaking scheme is supported by the Lemma 2 in [16],

which states that if T [i] = T [j], T [i] is type-L and T [j] is type-S, then S(T, i) ≺
S(T, j).
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Without the space constraint, T1 can be easily computed from P ′
1 and T using an

auxiliary array as large as B. We design a space efficient algorithm Compute-T1

to avoid using such a large auxiliary array, from which we have the below result,
which proof is omitted due to the space limit.

Lemma 5. Given P ′
1 and T , T1 can be computed using O(n) time and a total

space of �(B, T ) + O(1) bits.

Hence, we have the following result on the complexities for computing T1 from
T .

Lemma 6. Given T , T1 can be computed using O(�(T )) time and a total space
of �(T ) + 3�(T1) + O(1) bits.

Proof. The time and space complexities for the three steps for computing T1
from T are given by Lemma 2, 3 and 5, respectively. Both the maximum time
and the maximum space are observed for computing T1 from P ′

1, H1 and T ,
which dominate the total time and space complexities.

Now, we have successfully reduced the problem size from n to �n/3�. We proceed
to solve the reduced problem, i.e., to compute SA(T1) from T1.

3.2 Solving the Reduced Problems

We design in Fig. 1 the algorithmLightweight-KS-Sort for computing SA(T1)
from T1 in O(n) time and �(B) space, which is a lightweight alternative to the
traditional KS algorithm and described as follows:

– Let U , V and X be 3 arrays [0, m−1] of integers, where each item is �log m�-
bit. Moreover, suppose the buffers for U , V are allocated consecutively. Let
SAx denote SA(X).

– Let X1 and X2 denote the texts consisting of the lexicographical names for
triples in {X [i, i+1, i+2] : i%3 	= 2, i ∈ [0, m)} and {X [i, i+1, i+2] : i%3 =
2, i ∈ [0, m)}, respectively (in X1, the names for triples with {i%3 = 0} are
in a consecutive block and those for {i%3 = 1} are in another.), and X0 =
X1 ⊕ X2, where “⊕” denotes the text concatenating operator. Moreover, let
m1 = |X1| and m2 = |X2|. We first to compute X1 and X2 from X into V ,
using bucket sorting with U as the counter array and V as the bucket array.
Then, X1 and X2 are copied to X for later use. This step can be done in
O(m) time.

– (Now, there are two copies of X1, one in the last m1 items of V , and another
in X .) Let V1 denote the size-m1 array immediately right to the X1 in V ,
and U1 be the size-m1 array immediately right to V1. We make the func-
tion call Lightweight-KS-Sort(X1, U1, V1) to recursively compute SAx1,
where SAx1 denotes SA(X1). This step can be done in O(m) time.

– Provided with SAx1 in V and the X2’s copy in X , we use the induced sorting
method in the KS algorithm to compute SAx2 from SAx1 and X2, where
SAx2 denotes SA(X2). This step can be done in O(m) time. As the result,
SAx1 and SAx2 are stored in V .
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– Let SAx0 denote SA(X0). Now, we are going to merge SAx1 and SAx2 to
produce SAx0. From SAx1 and SAx2 in V , we compute ISAx1 and ISAx2
into U , where ISAx1 and ISAx2 are the inverse SAx1 and SAx2, defined as
SAx1[ISAx1[i]] = i (i ∈ [0, m1)) and SAx2[ISAx2[j]] = j (j ∈ [0, m2)). This
can be done in O(m) time.

– Let Y1 and Y2 be defined as SAx1[i]=SAx0[Y1[i]] and SAx2[j] = SAx0[Y2[j]],
respectively, for i ∈ [0, m1) and j ∈ [0, m2). Y1 and Y2 are called the position
index arrays for SAx1 and SAx2, which give the position indices for all items
in SAx1 and SAx2 in the merged suffix array SAx0. Computing Y1 and Y2
can be done by traversing SAx1 and SAx2 once and using the buffers for
SAx1 and SAx2 only, i.e., V is updated with Y1 and Y2. This can be done in
O(m) time.

– Now, U contains ISAx1 and ISAx2, and V contains Y1 and Y2. To compute
ISAx0, which is the inverse SAx0, we simply traverse U once to set U [i] =
V [U [i]], for each i ∈ [0, m). From the definitions of ISAx1, ISAx2, Y1 and
Y2, it is trivially to see that U contains ISAx0 now. This can be done in
O(m) time.

– Given ISAx0 in U , we compute SAx0 into V by traversing U once to set
V [U [i]] = i, for each i ∈ [0, m). This can be done in O(m) time.

– Now, because the original positions of the elements of X1 and X2 in X are
interleaved (every two elements of X1 followed by an element of X2), we
traverse SAx0 once with a complexity of O(m) to compute SAx as

SAx[i] =

⎧⎨
⎩

3SAx0 [i], for SAx0 [i] ∈ [0, �m1/2�);
3(SAx0 [i] − �m1/2�) + 1, for SAx0 [i] ∈ [�m1/2�, m1);
3(SAx0 [i] − m1) + 2, for SAx0 [i] ∈ [m1, m).

(1)

– Finally, we copy SAx in V to X for returning the result.

Lemma 7. Given a size-n text X with each character encoded in �log n�-bit,
SA(X) can be computed in O(n) time and using a total space of 3�(X)+O(1) bits.

Proof. In the Lightweight-KS-Sort algorithm, The time is governed by the
recurrence T (n) = T (�2n/3�) + O(n) and T (n) = O(1) for n < 3, which leads
to T (n) = O(n). At each iteration, when making the recursion call in line ??,
only X is occupied, and U and V are available for use as the buffer space for
the recursion. Hence, (omitting the space used for the recursion stack which is
O(log n)-bit and commonly neglected in the literature for suffix array construc-
tion algorithms) a total space of �(X, U, V ) = 3�(X) + O(1) bits is sufficient for
the recurrence.

Recalling that each element of T1 is �log n1�-bit and n1 ≤ �n/3�, Lemma 7
immediately suggests the following result.

Corollary 1. Given T1, SA(T1) can be computed using O(n) time and a total
space of 3�(T1) + O(1) bits.

Provided that SA(T1) is know, it is only a routine job for us to induce SA(T2)
from SA(T1) using the KS skew algorithm [15], in two steps as follows:
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– Compute T2 from T , using the method for computing T1. This step can be
done using O(�(T )) time and a total space of �(T ) + 3�(T2) + O(1) bits (see
Lemma 6).

– Compute SA(T2) from SA(T1) and T2, using the KS skew algorithm. This
can be done using O(n) time and a total space of �(T1)+3�(T2)+O(1) bits.

Lightweight-KS-Sort(X ,U ,V )
� Input: X—array [0..m − 1] of integer, each item is �log m�-bit.
� Output: SAx—the suffix array of X , returned in the buffer of X .
� U , V : array [0..m − 1] of integer, each item is �log m�-bit.
� Assumption: The buffers for U and V are allocated consecutively .

1 if |X | < 3
2 then Directly compute SAx from X and store the result in X .
3 return
4 Compute X1 and X2 from X into V . � X1 is stored in the last m1 items of V .
5 Copy X1 and X2 from V to X . � Save X1 and X2 for computing SAx2 later.
6 m1 ← |X1|; m2 ← |X2|
7 Let U1 and V1 be the two arrays [0..m1 − 1] immediately right to the X1 in V .
8 Lightweight-KS-Sort(X1, U1, V1) � Compute SAx1 into V1.
9 Induced sorting SAx2 from SAx1 into U1.

10 Traverse SAx1 and SAx2 in V once to compute ISAx1 and ISAx2 into U .
� Now, U contains [ISAx1, ISAx2]; V contains [SAx1, SAx2]; X contains [X1, X2].

11 Traverse SAx1 and SAx2 in V once to update V with the position index arrays
Y1 and Y2.

12 For each i ∈ [0, m), U [i] ← V [U [i]]. � Compute ISAx0.
13 For each i ∈ [0, m), V [U [i]] ← i. � Compute SAx0.
14 For each i ∈ [0, m), compute SAx from SAx0 by Eq.(1).
15 Copy V to X . � Return the result in X .
16 return

Fig. 1. The linear lightweight KS sorting algorithm

Recalling that n1 ≤ n/3, n2 ≤ n/6, and B, T1 and T2 have the same item’s
size of �log n�-bit, the maximum space of the above two-step procedure is upper
bounded by �(T, B) + O(1) bits. The complexities for inducing SA(T2) from
SA(T1) is concluded as follows.

Lemma 8. Given SA(T1) and T , SA(T2) can be computed using O(�(T )) time
and a total space of �(T, B) + O(1) bits.

3.3 Inducing the Final Result

Having solved SA(T1) and SA(T2), we proceed to merge SA(T1) and SA(T2) into
SA(T0) in O(n) time and (�(T, B)+ O(1))-bit space. If we use the skew method
in the Lightweight-KS-Sort algorithm, a total space of 3�(T1, T2) + O(1) =
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1.5�(B) + O(1) bits is required, which is too space consuming. Notice that in
the algorithm Lightweight-KS-Sort, X is used only for rank comparisons.
Given T , SA(T1) and SA2, we design a more space efficient algorithm for this
job, which performs rank comparisons using Z3-strings in T . This algorithm is
described below:

– Let SA′
1 and SA′

2 be defined as SA′
1 = {P1[SA(T1)[i]] : i ∈ [0, n1)} and

SA′
2 = {P2[SA(T2)[i]] : i ∈ [0, n2)], respectively. An item B[i] is said to in

a set X if B[i] is allocated for storing an item in X . Further, supposed that
SA′

1 and SA′
2 are initially stored in the first n0 (recalling that n0 = n1 +n2)

items of B, and SA′
1 is left to SA′

2.
– First, we move SA′

1 and SA′
2 into the type-L items in BL by traversing B

once from right to left. At this step, we record in h the position of the first
B[i] in SA′

2. This can be done in O(n) time.
– Next, ISA′

1 and ISA′
2 are computed into the type-S items in BS , where

ISA′
1 is defined as for each B[i] in SA′

1, ISA′
1[B[i]] = i, and similarly, ISA′

2
is defined as for each B[i] in SA′

2, ISA′
2[B[i]] = i, where i ∈ [0, n).

– Now, BL contains SA′
1 and SA′

2, and BS contains ISA′
1 and ISA′

2. We
proceed to merge-sort SA′

1 and SA′
2. We first traverse BL to compute the

position index of each item in SA′
1 and SA′

2 in the merged set SA0, where
SA0 denotes SA(T0) and the index starts from 0. To determine the order
between an item B[u] in SA′

1 and an item B[v] in SA′
2, let i = B[u] and

j = B[v], we compare Z3(T, i) and Z3(T, j) (these two strings can be re-
trieved utilizing Lemma 4). If they are different, the order is immediately
determined; or else we continue to compare as follows 4:

• Suppose Z3(T, i) is the kth Z3-string in T , k ∈ [0, n0), we say Z3(T, i) is
a residue-0 or residue-1 string if k mod 3 = 0 or 1, respectively.

• In case that Z3(T, i) is a residue-0 string, compare Z3(T, i′) with Z3(T, j′),
where Z3(T, i′) and Z3(T, j′) are the first S-strings succeeding to Z3(T, i)
and Z3(T, j), respectively. The order of Z3(T, i′) and Z3(T, j′) is deter-
mined by B[i′] and B[j′], for ISA′

1 and ISA′
2 are stored in BS and both

B[i′] and B[j′] are in BS .
• In case thatZ3(T, i) is a residue-1 string, compareZ3(T, i′′)withZ3(T, j′′),

where Z3(T, i′′) and Z3(T, j′′) are the 2nd S-strings succeeding to Z3(T, i)
and Z3(T, j), respectively. Similar to the previous case, the order of
Z3(T, i′′) and Z3(T, j′′) is determined by B[i′′] and B[j′′], for both B[i′′]
and B[j′′] are in BS .

Retrieving the strings, once more, can be done utilizing Lemma 4. Checking
if Z3(T, i) is a residue-0 or residue-1 string can be done in O(1) time by
simply comparing B[i] with h, for all items of SA′

1 are stored before the
item B[h]. Because each S-string in T can be visited at most four times (1
due to locating the terminating character of the S-string preceding to it and
3 due to S-string comparisons) for merging SA1 and SA2, this step is done
in O(n) time.

4 The correctness of this comparison scheme can be trivially seen from the KS skew
algorithm in [15].
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– Let ISA0 denote the inverse SA(T0). ISA0 is computed by first traversing
B once from right to left to set each type-S item B[i] with B[B[i]]; and then
traverse B once more from right to left to move all the items in BS into the
last n0 items of B. This can be done in O(n) time.

– Given ISA0 (in the last n0 items of B), SA0 can be easily computed into
the left half of B in O(n) time.

As a summary for the above algorithm, we have the following lemma.

Lemma 9. Given T , SA(T1) and SA(T2), SA(T0) can be computed using O(n)
time and a total space of �(B, T ) + O(1) bits.

Given SA0 and T , we can compute SA(T ) in two steps, as described below:

– Let P0 be the S-string array for T , which is the index array for all S-strings
in T . In addition, let SAS denote the suffix array for all type-S suffixes in
T , defined as SAS = {SA(T )[i] : T [SA(T )[i]] is type − S, i ∈ [0, n)}. Given
SA0 (stored in the left half of B), SAS can be computed in two steps: (1)
compute P0 into the right half of B by traversing B once from right to left;
and (2) compute SAS by traversing SA0 once to set SA0[i] = P0[SA0[i]].
Now, SAS is contained in the first n0 items of B. This step can be done in
O(n) time.

– Use the KA skew algorithm [16] to induce SA(T ) from SAS and T , which
requires a bucket counter array 5 of |Σ|�log n�-bit in addition to B and T ,
and is done in O(n) time. The maximum total space for the whole procedure
of computing SA(T ) from T is due to this step.

Hence, the complexities for computing SA(T ) from SA(T0) are concluded as
follows.

Lemma 10. (space bottleneck) Given T and SA(T0), SA(T ) can be computed
using O(n) time and a total space of �(B, T ) + |Σ|�log n� + O(1) bits.

4 Main Results

Theorem 1. For a size-n text T with an integer or constant alphabet Σ, SA(T )
can be computed using O(n log |Σ|) time and a total space of �(T, B)+|Σ|�logn�+
O(1) bits.

Proof. The whole procedure for computing SA(T ) from T consists of the follow-
ing steps in sequence:

1. Compute T1 from T and SA(T1) from T1, see Lemma 6 and Corollary1.
2. Compute SA(T2) from SA(T1) and T , see Lemma 8.
3. Merge SA(T1) and SA(T2) into SA(T0), see Lemma 9.
4. Induce SA(T ) from SA(T0), see Lemma 10.
5 Two bucket counter arrays can be used for higher speed when |Σ| is not large, e.g.,

O(1).
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The bucket sorting function for computing P ′
1 from P1 and T in Step 1, as

well as that for computing P ′
2 from P2 and T in Step 2, dominate the whole

procedure’s time complexity, which is O(�(T )) = O(n log |Σ|) from Lemma 3.
The total space consists of 3 parts: (1) the array T for the input text; (2) the

array B for the output suffix array; and (3) the |Σ|�log n�-bit bucket counter
array for inducing SA(T ) from SA(T0).

From Theorem 1, we have the following two results for texts with integer and
constant alphabets, respectively.

Corollary 2. For a size-n text T with an integer alphabet Σ, where |Σ| ≤ n,
SA(T ) can be computed using O(n log n) time and a total space of at most
3n�logn� + O(1) bits.

Corollary 3. (optimal lightweight) For a size-n text T with a constant alphabet
Σ, where n ≤ 232 and |Σ| ≤ 256, SA(T ) can be computed using O(n) time and
a total space of 5n + O(1) bytes.

5 Conclusion

A divide-and-conquer solution with a set of practical algorithms has been devel-
oped in this work for optimal lightweight suffix array construction. The crucial
task for developing this solution, as we have shown, is how to reduce the problem
size to be small enough so that the reduced problem can be efficiently computed
and meanwhile, the final suffix array can be augmented from the reduced one
time and space efficiently. Once the problem has been reduced, a number of tra-
ditional suffix array construction algorithms are allowed to be further exploited
to solve the reduced problem. This makes the solution flexible to be further
improved for better average performance.
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Yates, R.A., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp.
200–210. Springer, Heidelberg (2003)

17. Kim, D.K., Jo, J., Park, H.: A fast algorithm for constructing suffix arrays for fixed-
size alphabets. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS, vol. 3059,
pp. 301–314. Springer, Heidelberg (2004)

18. Itoh, H., Tanaka, H.: An efficient method for in memory construction of suffix
arrays. In: Proceedings of String Processing and Information Retrieval Symposium
(1999)

19. Seward, J.: On the performance of BWT sorting algorithms. In: Proceedings DCC
2000 Data Compression Conference, Snowbird, UT, USA, pp. 173–82 (2000)
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