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Abstract. We consider the problem of computing non-crossing span-
ning trees in topological graphs. It is known that it is NP-hard to decide
whether a topological graph has a non-crossing spanning tree, and that
it is hard to approximate the minimum number of crossings in a span-
ning tree. We consider the parametric complexities of the problem for
the following natural input parameters: the number k of crossing edge
pairs, the number μ of crossing edges in the given graph, and the number
ι of vertices in the interior of the convex hull of the vertex set. We start
with an improved strategy of the simple search-tree method to obtain an
O∗(1.93k) time algorithm. We then give more sophisticated algorithms
based on graph separators, with a novel technique to ensure connectivity.
The time complexities of our algorithms are O∗(2O(

√
k)), O∗(μO(μ2/3)),

and O∗(2O(
√

ι)). By giving a reduction from 3-SAT, we show that the
O∗(2

√
k) complexity is hard to improve under a hypothesis of the com-

plexity of 3-SAT.

1 Introduction

A topological graph is a graph with an embedding of its edges as curve segments
in the plane such that each pair of edge curves intersects at most once. We refer
to the embeddings of the vertices also as vertices, and to the geometric curve seg-
ments as curves. A topological graph is said to be non-crossing if none of the edge
curves cross. We consider non-crossing subgraph problems that involve finding
a non-crossing subgraph satisfying some property: spanning tree, s–t path, and
cycle. All of these problems are known to be NP-hard [10,6]. In this article we fo-
cus on the non-crossing spanning tree problem (NCST). The corresponding min-
imization problem may be of interest when focusing on finding structures in the
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drawing of an embedded graph. Removing as many edges and crossings as possi-
ble makes it easier to recognize the structure of the graph in terms of connectivity.

Let G be a topological graph on n vertices and m edges. A crossing is a pair of
edges that meet in a non-vertex point, and a crossing edge is one that participates
in some crossing. A crossing point is a non-vertex point that is contained in at
least two edge curves. Note that if d edges intersect in a crossing point, they
create

(
d
2

)
= d(d − 1)/2 crossings. Let X be the set of crossings in G, and let

EX be the set of crossing edges. Let k = |X | be the number of crossings and let
μ = |EX | be the number of crossing edges. Observe that μ/2 ≤ k ≤ μ(μ − 1)/2.
We assume without loss of generality that the curves intersect only in individual
points, not in curve segments. Note that sometimes [8], a topological graph is
allowed to have multiple crossings between a pair of edges, and our theory can
be easily modified to that definition as long as the number of multiple crossings
between each pair of edges is bounded by a constant.

A very naive method for a noncrossing subgraph problem is to exhaustively
check the noncrossing properties for all subgraphs with the requested properties.
This needs exponential time in the number m of edges of the graph. However, if
k is small and the problem is polynomial time solvable without the noncrossing
condition (e.g., spanning tree, cycle and s-t path), we have the following better
strategy: For every crossing pair of edges, we delete one of the crossing edges to
have a non-crossing subgraph. We have 2k possible combinations of deletions,
and it takes polynomial time for each fixed combination to find a spanning tree
(for example) in the subgraph if it is connected. We can see that if G has a
noncrossing spanning tree, we can find one by the above method. Thus, it is
clear that the problem is computed in O∗(2k) time, where the O∗-notation hides
polynomial terms. Recently, Knauer et al. [8] gave algorithms for NCST with
improved time complexity of O∗(1.9999992k). This left the question of how far
down the complexity can be brought down.

Our results. We give a number of results that answer many of the open questions
about the fixed-parameter tractability of non-crossing subgraph problems.

We first give an improved O∗(1.928k)-time algorithm for NCST. This is based
on a compact kernel for the problem, and on a new set of reduction rules that
takes advantage of limited recurrences for low-degree vertices. This approach
actually applies to a generalized problem, involving arbitrary pairwise conflicts
on the edges.

One of the main contributions of this paper is an algorithm for NCST with an
asymptotic improvement in the time complexity to 2O(

√
k) (we ignore polynomial

time preprocessing), see Section 3. This is based on finding a cyclic separator in
a related planar graph. Thus turns out to be best possible, under the exponential
time hypothesis that 3-SAT does not have a 2o(n)-time algorithm (where n is the
number of variables), as shown in Section 5.

We also present fixed-parameter algorithms for two further parameters. For
the parameter μ, the number of crossing edges, we give a μO(μ2/3)-time algorithm.

A geometric graph is a topological graph whose edges correspond to the
straight-line segments that connect their endpoints. For geometric graphs, we
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use another measure to design a fixed-parameter algorithm. Consider the vertex
set of the embedded graph as a set of points in the plane. Then we can refer
to the points that lie in the interior of the convex hull of the point set as inner
points. The number ι of inner points has been used successfully to parameter-
ize some hard geometric problems on points in the plane, including Minimum
Weight Triangulation problem (MWT) [4,13]. For this parameter, we give an
algorithm that solves NCST for geometric graphs in O∗(ιO(

√
ι)) time. Note that

it is easy to come up with geometric graphs where ι is small but k is large. We
also show that it is unlikely that a 2o(

√
ι)-time algorithm exists.

2 Improved Search-Tree Algorithm

We first give a simple search-tree method to find a non-crossing spanning tree
in a topological graph with k crossings in time 1.9276k (plus polynomial time
preprocessing) if one exists. This improves on the previous bounds of 1.99999k, as
well as on the 1.968k bound for a Monte-Carlo algorithm [8]. Although it will be
greatly improved asymptotically to 2O(

√
k) in Section 3, we feel the above result

is valuable since the search-tree algorithm is preferable in practice for the range
of k that the problem is solvable in real feasible time, and our improved method
gives little additional burden to programmers who want to implement a search-
tree method. We reduce the original problem to a compact kernel problem, and
then introduce some simple rules for a naive search-tree algorithm to obtain the
improved time complexity.

Kernel. A kernel is a reduced problem instance, whose solution can be “easily”
turned into a solution of the original instance. To form a kernel for NCST we
use edge contractions, where contracting the edge uv in a graph G results in the
graph where the vertices u and v have been merged into a single vertex that has
all the neighbors of that either of its original vertices had.

Edges that cross are said to be crossing edges ; if they share an endpoint v,
we say they are tangled, more specifically, they are tangled at v.

To form a small kernel, we contract all non-crossing edges of the graph G
yielding a new topological graph G′. More precisely, for each connected com-
ponent of the induced subgraph of G by the non-crossing edges, we select any
spanning tree, and contract it. The other edges in the connected component are
deleted. It is clear that the kernel is obtained in polynomial (indeed, linear) time.

Note that this does not affect the crossing properties of the crossing edges.
However, it can lead to non-tangled pairs to become tangled. A planar subgraph
H ′ of G′ maps to a subgraph H of G; adding the contracted edges to H still
retains planarity. Hence, there is a bijective mapping between maximal planar
subgraphs of G and G′.

Every edge in G′ is crossing, thus the number of edges in G′ is at most μ. Since
the graph G′ is necessarily connected and non-acyclic, the number of vertices in
G′ is at most its number of edges. We further delete all loop edges in G′ even if
they are crossing. This resolves some crossings, but does not affect the problem
solution because of the property of a spanning tree.
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Proposition 1. A kernel for NCST with at most μ edges and vertices can be
computed in linear time.

Search-tree approach. We give reduction rules that result in an efficient search
tree for a non-crossing connected spanning subgraph. A non-crossing spanning
trees can then be easily found.

In most nodes of the search tree we select an edge e for branching: either a
solution contains e or it does not. If it contains e it cannot contain the edges Ce

crossing e. Hence, we obtain two subproblems: G − {e} and G − Ce. In either of
the subproblems, we eliminate all crossings incident on e, and apply the available
contractions. The measure, T (k), of a subproblem is the number of search tree
leaves in terms of the number k of crossings. In subproblem G−Ce, the number
of crossings is reduced by one, for a measure of T (k − 1). We want to show that
the measure of G − {e} is less.

We select branching edges in the following order of preference:

1. If there is an edge crosses two or more edges, then we choose such an edge.
Crossing number k is reduced by at least two in G − {e} (also in G − Ce).
2. For tangled parallel edges, we can pick either of them, yielding the same sub-
problem, since neither is twice-crossing (otherwise, we should apply the rule 1).
This allows us to contract both edges, reducing k by one.
3. Consider a node v of degree ≤ 3. At least one edge e incident on v is not
tangled with either of the other incident edges; otherwise, one of them would
be twice-crossing. We branch on e and obtain on one branch a degree-2 node.
For a degree-2 node with two incident tangled edges, branching on either edges
yields the same subproblem after contractions. Otherwise, we branch on one of
the incident edges, obtaining on one branch a degree-1 node. A degree-1 node
must be connected in a spanning tree, thus only one choice is then possible.
Hence, a problem with a node of degree at most 3 has a measure of at most
T (k − 1) + T (k − 2) + T (k − 3).
4. Consider a degree-4 node v with an edge untangled at v. Let e be an edge
incident on v that is not tangled with the other edges incident on v. When we
branch on e, the non-included case leaves us with v being of degree-3. We then
apply the degree-3 case above.
5. When none of the above rules apply, we branch on an arbitrary edge.

In each case, except when we reach the last rule, we measure the decrease in
the number of crossings. This allows us to bound the size of the search tree.

Let us first consider what happens when we reach the last rule. In that case,
all nodes are of degree at least four. Further, only nodes that have two tangled
incident edge pairs have degree 4, while the others are of degree at least 5. Thus,
each edge that is tangled at node v appears untangled at the other endpoint,
since there are no tangled parallel edges and no twice-crossing edges. Thus, no
two degree 4 nodes are adjacent to each other. We claim that the number of
nodes, n, is at most 9μ/20. Let a denote the number of degree 4 nodes, and note
that all neighbors of degree-4 nodes are of degree at least 5. Therefore, counting
edge incidences, μ ≥ 4a+5(n−a)

2 = 5n−a
2 . But clearly, μ ≥ 4a. Combining the
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two inequalities, we have that μ ≥ (20/9)n. We contract an edge, eliminating
a vertex, in each round. Hence, the depth of the recursion is at most n − 1 ≤
(9/20)μ = (9/10)k, for a time complexity of 20.9k.

Let us now evaluate the effects of the other branching rules. In each rule, we
perform one or more branches, yielding a set of subproblems measured in terms
of the number of crossings remaining. We express each case as a recurrence
relation:

T (k)≤max

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2 T (k − 2), Twice-crossing edge
T (k−1), Tangled parallel edges
T (k − 1) + T (k − 2) + T (k − 3), Degree-3 case
T (k − 1) + T (k − 2) + T (k − 3) + T (k − 4), Degree-4 case
20.9k. Dense case

The worst case is the degree-4 case, which yields T (k) ≤ 1.9276k ≈ 20.9468k.1

Generalized structures. Our arguments do not use planarity in any way, except
indirectly as prescribing conflicts between edges. Thus, the approach works more
generally for finding spanning forests of graphs with conflicts between edges.
More generally, we can formulate the Conflict-Free Spanning Tree (CFST) prob-
lem, where we are given a graph G and a conflict graph H defined on the edge
set E(G). We are to determine whether there exists a subset of mutually non-
conflicting edges forming a spanning tree. In NCST, the conflicts are given by the
crossings, and |E(H)| = k. For another example, the algorithm can be applied
to layouts of graphs on surfaces of higher genus.

Theorem 1. Given graphsGandH,CFSTcanbe solved in timeO∗(1.9276|E(H)|).

3 Separator-Based Algorithm

We describe here our algorithm for the non-crossing spanning tree problem. The
approach bears some similarity to the algorithm of Deineko et al [1] for the
Hamilton cycle problem in planar graphs. that has complexity O∗(2O(

√
n)). Our

method is based on a cycle separator theorem of Miller.

Proposition 2. (Miller [12]) Let G′ be an embedded triangulated planar graph
on n vertices. Then, there is a linear time algorithm that finds in G′ a simple
cycle C of at most

√
8n vertices that partitions G′ − C into a vertex set A that

lies within the region inside of C, and a vertex set B that lies outside of C, with
|A| ≤ 2n/3 and |B| ≤ 2n/3.

Before applying the above theorem, we resolve the multiplicities of the ker-
nel. The multiplicity of a crossing is the number of pairs of edges that meet
in the same point. Large multiplicity can confuse good algorithms, especially
those based on separators, and the same can be said of high-degree vertices.

1 1.9276 represents the positive-valued solution of the equation x4 = 1 + x + x2 + x3.
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Fortunately, we can assume without loss of generality that crossings are of unit
multiplicity and vertices of maximum degree 3. We omit details, but the basic
idea is to clip edges at high-degree vertices and to replace the clipped stars by
binary trees and to wiggle edge curves in order to avoid degenerate crossings.
We have the following theorem:

Theorem 2. Suppose there is an algorithm that solves NCST on degree-3 graphs
with unit crossing multiplicity in time T (k, μ, n). Then, there is an algorithm for
NCST for general topological graphs running in time O(T (k, μ, n)).

Given a topological graph H , we form an associated triangulated plane graph
P = PH as follows. We replace each crossing point of H by a vertex and the curve
of each crossing edge by line segments connecting the vertices and the crossing
points. Finally, we arbitrarily triangulate the graph. The edges of the resulting
graph P are therefore of three kinds: non-crossing edges from H , segments of
crossing edges (connected a crossing point to either another crossing point or
to an original vertex), and newly introduced “dummy” edges. Observe that the
number n(PH) of vertices in H equals μ + k.

The idea of our algorithm is as follows. In the preprocessing step, we find a
kernel, as guaranteed by Proposition 1, and apply the multiplicity reduction of
Theorem 2 to ensure each crossing point involves exactly two crossing edges.

The main algorithm finds a cycle separator in the derived plane graph PH ,
and solves the two resulting subgraphs of H recursively, under all possible ways
of constraining one subsolution to contribute to the connectedness of the whole
solution. More precisely, if C is a cycle separator of PH , we partition its nodes
into Cv, a set of vertices of H , and Cc, a set of crossing points in H . The algorithm
tries all 2|Cc| ways of breaking the crossings of Cc. Consider one such decision
vector D, and let Dv be the set of vertices of the chosen crossing edges that are
on the inside of the cycle C. Consider now the set S = Cv ∪ Dv. This set can be
topologically arranged on a circle C′, such that no edges cross the circle. Let HA

be the subgraph of H induced by vertices on the inside of or on the circle C′,
and HB the subgraph on the outside of or on C′. Thus, V (HA) ∩ V (HB) = S.

Given HA and HB, the algorithm examines all the ways that the vertices of S
can be connected inside C′ (i.e. within HB) while maintaining planarity. Namely,
if we view S as being an ordered set, we seek, in combinatorial terminology, a
non-crossing partition of S. A partition of an ordered set is non-crossing if no
two blocks “cross” each other, i.e. whenever a and b belong to one block and
x and y to another, they are not arranged in the order axby. For each non-
crossing partition Π , we form a star forest X = XΠ with the leaves of each star
corresponding to a block of the partition and a new node as the root of the star.
Let H ′

B = HB ∪X . The algorithm recursively solves H ′
B, yielding a non-crossing

forest FB in HB. By induction, crossing edges in G have either all of its segments
in H in FB or none. The algorithm then recursively solves H ′

A = HA∪FB , giving
a non-crossing spanning tree in G.

Theorem 3. The algorithm solves NCST in time 2O(
√

k)+O(m) and polynomial
space.
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Proof. We first show that the correctness of the algorithm. Suppose that the
input graph G contains a non-crossing spanning tree T . Let TA (TB) be the
restriction of T to HA (HB). Each tree of the forest TA contains some nodes of
S; for the purpose of the solution of HB, all that matters is that it connects those
vertices together. Thus, if we replace each tree U of TA by a star with nodes
in S ∩ U as leaves, the resulting union, joined with TB, induces a connected
tree spanning all the nodes. Hence, by induction, the first recursive call of the
algorithm returns a spanning tree of H ′

B , whose restriction to HB is the forest
FB. Now, FB ∪TA is connected and spans FB ∪HA. Hence, the second recursive
call will also result in a non-crossing spanning tree T ′ of H ′

A = HA ∪ FB . The
nodes of FB are the nodes of HB; hence, we have spanned all of G. Thus, the
algorithm correctly computes a non-crossing spanning tree. On the other hand,
if G does not contain a non-crossing spanning tree, the second recursive call
never finds a non-crossing spanning tree.

Next, we analyze the complexity. Let ν = n(PH) = μ+k to be the measure of
the problem. By Proposition 2, the algorithm finds a cycle separator in P of size
at most z =

√
8ν. We have at most 2z ways of resolving the crossing edges on the

separator. The size of S and the cycle C′ is still z. The number of non-crossing
partitions of S equals the Catalan number Cz = 1

z+1

(2z
z

)
< 4z.Thus, there are

less than 8z cases considered by the algorithm.
Each case involves two subproblems. The larger of the subproblems is of mea-

sure M of at most 2ν/3+ z. A more careful analysis actually shows that most of
the cases involve smaller subproblems. The measure of the smaller subproblem
is at most (ν − M) + 2z. The time complexity for any subproblem, aside from
recursive calls, is linear in the size of the graph. Thus, the complexity of the
algorithm is bounded by T (ν) = O(8z/z3/2) · (T (2ν/3+ z)+T (ν/3+ z))+O(ν).
This leads to T (ν) = O(218

√
ν). Since ν = μ + k ≤ 3k, T (ν) = 2O(

√
k). QED.

The parameter μ. A straightforward O∗(2μ) algorithm for NCST follows by
considering all subsets of the set of crossing edges, and O∗(20.552μ) can be ob-
tained by the search-tree method (omitted in this version). We further give the
following asymptotic improvement by combining the search method and the
separator-based method:

Theorem 4. NCST can be solved in μO(μ2/3)+O(m) time and polynomial space.

Proof. We split the computation into two cases, depending on the size of μ
relative to ν = μ + k. Let R(μ) be the number of subproblems in an instance
with μ crossing edges. If ν < 2μ4/3 (Case 1), then the separator-based algorithm
gives R(μ) < 2c

√
ν < 22cμ2/3

. Otherwise (Case 2), ν ≥ 2μ4/3. Then there exists
an edge that participates in at least 2μ1/3 crossings. We branch on that edge,
resulting in two subproblems: one without that edge, and the other without all
the edges crossing it. This gives the recurrence R(μ) ≤ R(μ−1)+R(μ−2μ1/3)+1.
The time complexity follows from this recurrence using Case 1 as the induction
basis.
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(a) (c)

u

v(b)

u

v
π

Pπ

Fig. 1. A geometric graph, the polygon Pπ and the subgraph Gπ

4 Dynamic Programming Approach for the Parameter ι

A necessary prerequisite to successfully parameterize a problem with the number
of inner points is that we can solve the problem in polynomial time for sets of
points in convex position. For geometric graphs whose vertices are in convex
position, it is easy to see that NCST can be solved using dynamic programming
in O(n3) time. So this parameter could be viewed as a measure that tries to
capture for each input its “distance from triviality” [3]. The key observation that
provides a unified view on many of the problems mentioned in the introduction
is that we can reformulate them as the search for a certain kind of triangulation.
For NCST, we are given a geometric graph G = (V, E) and the goal is to find a
triangulation T of V such that the graph formed by those edges of G contained
in the triangulation T is connected. Then, we can easily find a noncrossing
spanning tree by using only those edges.

We describe the subproblem considered in our dynamic programming algo-
rithm to solve NCST. The subproblem is defined by a crossing-free path π that
starts at an outer vertex u, visits some inner vertices and ends at another outer
vertex v. Such a path π splits the convex hull of V into two polygonal regions.
Note that π is not necessarily a path in the input graph, but any noncrossing
path connecting vertices by line segments is fine; indeed, it is a path in the
(unknown) triangulation we are searching for. By Pπ we denote the polygonal
subregion to the left of π. An example is given in Figure 1(b), where Pπ is shaded.
The subgraph Gπ induced by π consists of all those vertices and edges of G that
are contained in Pπ . This is illustrated in Figure 1(c).

We now describe what we actually want to compute for each Pπ . It is not
enough to decide whether or not there is a crossing-free spanning tree in Gπ .
Intuitively, we need a list of those crossing-free spanning forests of Gπ where
each tree in the forest shares at least one vertex with the path π. However, it is
costly to consider the complete list of such spanning forests. Instead, it suffices
to know which vertices on π belong to the same tree in the spanning forest. We
can handle this by considering partitions of the set of vertices of the path π. For
each such path π we have a collection of subproblems: one for each partition of
the vertices of π. For such a subproblem we must decide whether or not there is
a spanning forest of Gπ such that every tree in the forest has at least one vertex
on π and vertices on π in a component of the partition belong to the same tree
in the forest.
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The key fact for the analysis is that the existence of small simple cycle sep-
arators in planar triangulated graphs implies that we can restrict ourselves to
subproblems defined by paths with O(

√
ι) vertices [9]. Thus, the number of

polygonal regions Pπ considered in the algorithm is bounded by n2ιO(
√

ι) (se-
lecting two outer vertices and O(

√
ι) inner vertices), and there are ιO(

√
ι) possible

partitions for the vertices of the path π of each region. In the DP table we record
whether there is a triangulation containing a feasible forest for each partition of
each such polygonal region. Thus, the table size is O(n2ιO(

√
ι)).

It remains to sketch how we process a subproblem in Pπ by using information
for smaller polygons stored in the dynamic programming table. We check every
triangle Δ that is contained in Pπ, shares an edge with the path π, and does
not contain a vertex of V in its interior. Checking Δ means to decide whether
a suitable triangulation for the subproblem containing Δ exists. By removing
Δ from Pπ we have one or two subpolygons, and this leads us to one or two
smaller subproblems. We remark that we discard the choice of Δ if it generates
a subpolygon with too many interior points on its boundary. It is routine to
see that we can now solve the subproblem for Pπ by referring the dynamic
programming table. Thus, we have the following theorem:

Theorem 5. Given a geometric graph G with n vertices we can decide in
O∗(ιO(

√
ι)) time and O∗(ιO(

√
ι)) space whether or not G admits a crossing-free

spanning tree.

The time and space complexities are O(n3ιO(
√

ι)) and O(n2ιO(
√

ι)) if we consider
polynomial factors of n. We can also compute a crossing-free spanning tree (not
only decision) if exists in the same time and space complexities.

5 Hardness Results

We show here that the results of Section 3 are in some sense best possible, assum-
ing the well-known Exponential time hypothesis, which is that 3-SAT cannot be
solved in sub-exponential time. This hypothesis was formalized by Impagliazzo,
Paturi, and Zane [5]. Evidence was given there and in later papers for support
of the hypothesis. We are interested in the NCSTκ problem, where we decide
whether an input geometric graph G = (V, E) with k crossings has a crossing
free spanning tree, and we use κ(G) = �

√
k	 as the parameter. We want to re-

late the question of whether there is an algorithm solving NCSTκ in O∗(2o(κ(G)))
time to an open question concerning the 3SATν (3-SAT with the parameter ν):

Instance: Exact 3-SAT formula (CNF formula with exactly three literals
per clause) F .
Parameter: The number ν(F ) of variables occurring in F .
Problem: Decide whether F is satisfiable.

The exponential time hypothesis is that 3SATν cannot be solved in time
O∗(2o(ν(F ))). If we take the closure of 3SATν under so called subexponential
reduction families (serf) (cf. [2]) we obtain the class S[1]. Our goal is to show
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that NCSTκ is S[1]-hard. S[1]-hardness can be also shown for the parameter
√

ι,
but we omit it because of space limitation.

To achieve the S[1]-hardness, it suffices to give a parameter preserving poly-
nomial time reduction from 3SATν to NCSTκ . Such a reduction transforms a
given instance F of 3SATν in polynomial time into a instance G of NCSTκ such
that κ(G) ∈ O(ν(F )). We can give such a reduction through some intermedi-
ate problems. The first is 3SATμ , which has the same instance and problem as
3SATν but the parameter is the number μ(F ) = 3m where m is the number of
clauses of F . 3SATμ is known to be S[1]-complete (cf. [2]).

With every 3-CNF formula F we can associate a bipartite graph H(F ) =
((V, C), E). The vertices in V represent the variables occurring in F . The vertices
in C represent the clauses of F . A variable is connected to a clause by an edge in
E iff the variable occurs in this clause. Lichtenstein [11] gives a polynomial time
algorithm that computes for every 3-CNF formula F a 3-CNF formula F ′ such
that (1) formula F is satisfiable iff formula F ′ is satisfiable, (2) the associated
bipartite graph H(F ′) is planar, and (3) Formula F ′ has O((μ(F ))2) clauses.

This immediately gives a parameter preserving polynomial time reduction
from 3SATμ to the following planar 3SATμ′ .

Instance: Exact 3SAT formula F such that the graph H(F ) is planar.
Parameter: μ′(F ) = �

√
m	 where m is the number of clauses of F .

Problem: Decide whether F is satisfiable.

Moreover, it is shown in [11] that we can restrict to instances F of planar 3SATμ′

where the bipartite graph H(F ) has a drawing satisfies the following conditions:
Every vertex of H(F ) that represents a variable in F lies on a horizontal line,
no edge crosses the horizontal line, and no vertex representing a clause lies on
the horizontal line. Hence planar 3SATμ′ with these properties is S[1]-hard.

Thus, it suffices to give a polynomial time reduction from this restricted ver-
sion of planar 3SATμ′ to NCSTκ . We remark that this reduction was also given
in [7] in the context of NP-hardness and approximation hardness.

Our reduction maps a given instance F of planar 3SATμ′ to a geometric graph
GF such that GF has a crossing-free spanning tree iff F is satisfiable. The overall
structure of GF is indicated in the left picture of Figure 2 for F = (x1 ∨ x2 ∨
x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4).

x2x1 x3 x4

x1 ∨ x2 ∨ x4

x2 ∨ x3 ∨ x4

x1 ∨ x3 ∨ x4

to
pr

ev
io

us
va

ri
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le
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to clause to clause

to clause to clause to clause

to clausex x

x x x
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c′3

Fig. 2. Overall structure of GF (left), and a part of a variable gadget (right)
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true false

x x x x

x x x x

Fig. 3. Spanning trees encoding true and false for a variable

We have a gadget for every variable occurring in F . These gadgets are arranged
along a horizontal line �. We further have a gadget for every clause in F which
is connected with every variable occurring in the clause. This gadget looks like
a three-legged comb.

Now let’s have a closer look at the gadgets. The leftmost part of the gadget for
a variable x is shown as the right picture in Figure 2. The gadget for x consists
of at most twice as many boxes as there are clauses in F that contain x. Three
of these boxes are drawn with solid edges in Figure 2. The dotted edges that
emanate from the boxes fulfill three tasks. First they connect consecutive boxes
within one variable gadget. Second they connect the first and last box of variable
gadgets that are consecutive on the line �. Third they connect boxes to clause
gadgets. Each dotted edge that connects a variable gadget to a clause gadget is
associated with a literal. This literal will be true if the dotted edge is part of the
spanning tree of GF .

The intended way of simulating the truth assignment of the variable x is
indicated in Figure 3. The Boolean values of x correspond to the two ways in
which a crossing-free spanning tree can be chosen among the edges of the gadget
of x. Note that only every other box can be connected to a clause gadget above
(below) �. This way we ensure that according to the value of x either only the
dotted edges associated to positive literals or only the dotted edges associated to
negative literals can connect x to clause gadgets. Not all points of type ci or c′i in
a variable gadget are used—only those where the variable is in fact connected to
a clause gadget in GF . A clause gadget is just a vertex of degree three connecting
to the corresponding literals.

It remains to argue that our reduction is parameter preserving. We charge the
crossings in one box of a variable gadget to a clause that is connected to this box
or its predecessor or its successor. At least one of these boxes must be connected
to a clause, otherwise we could omit them. This way a clause is charged only a
constant number of times and every time we charge the clause we charge it only
with a constant number of crossings. Hence, the number of crossings in GF is in
O(m) where m is the number of clauses of F . But this gives κ(GF ) ∈ O(μ′(F )),
as desired.
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6 Concluding Remarks

As we have claimed in the introduction, we can apply our method to several
other problems such as non-crossing s–t paths and cycles. We can also deal with
the optimization problems, minimizing either the number of components in a
non-crossing spanning forest or the number of crossing edges in a spanning tree.
These extensions will be given in the full paper.
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