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Abstract. Boundary approximation of planar shapes by circular arcs
has quantitive and qualitative advantages compared to using straight-
line segments. We demonstrate this by way of three basic and frequent
computations on shapes – convex hull, decomposition, and medial axis. In
particular, we propose a novel medial axis algorithm that beats existing
methods in simplicity and practicality, and at the same time guarantees
convergence to the medial axis of the original shape.

1 Introduction

The plain majority of algorithms in computational geometry have been designed
for processing linear objects, like lines, planes, or polygons. On the one hand,
this is certainly due to the fact that many interesting and deep computational
and combinatorial questions do arise already for inputs of this simple form.
Again, the pragmatic reason is that algorithms for linear objects are usually both
easier to develop and simpler to implement. To make things work for nonlinear
objects, which arise frequently in practical settings, such objects are usually
approximated in a piecewise-linear manner and up to a tolerable error. Existing
approaches [10] to directly extending polygonal algorithms to curved objects are
rare and, due to their generality, of limited practical use.

In its simplest form, the input object is a single planar shape, A, with curved
and connected boundary ∂A. Frequent tasks to be performed on A – each being
prior to a variety of more involved computations – include constructing the
convex hull of A, decomposing A into primitives, and calculating the medial axis
of A. These tasks are well investigated in the case of polygonal shapes. In certain
situations, however, the number of line segments required for approximating ∂A
with high accuracy may be prohibitively large. Even more seriously, making a
piecewise-linear approximation of ∂A and invoking a polygonal-shape algorithm
may generate results that are topologically incorrect; the medial axis is a well-
known example.
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The intention of the present paper is to highlight the use of circular arcs for
boundary representation. It is well known that for nonlinear curve segments the
approximation order increases in comparison to using straight-line segments. In
particular, if a given accuracy ε is achieved by using N line segments, then as
few as n = Θ(N2/3) circular arcs can accomplish the same. This has been an
issue in approximation theory, but in computational geometry this gain seems
to have been less valued than eliminating small factors in the complexity of the
subsequently applied algorithm. Boundary approximation by circular arcs may
be of advantage also in a qualitative respect. For instance, it avoids the men-
tioned topological inconsistencies in medial axis computations, and it supports
the computation of shape offsets, as the class of shapes bounded by circular arcs
is closed under offset operations.

We will show that for the three basic problems mentioned above – convex
hull, triangulation, and medial axis – simple and practical, though still efficient
algorithms exist that work for circular arc inputs. The first two problems are
less demanding; we treat them mainly to point out the respective favorable (in
our opinion) approach, whose practicality shall encourage the use of circular arc
boundary representation. Nevertheless, substantial differences to the polygonal
case occur; see below. For computing the medial axis, we propose a novel and
extremely simple algorithm that is based on a known (though less recognized)
decomposition lemma. After having computed a purely combinatorial description
of the medial axis using tailored shape splitting, its individual parts (conics and
line segments, like in the polygonal case) are reassembled without the need of
merging.

Suitable circular arc approximations of shapes can be found in linear time. In
summary, the obtained shape processing algorithms are superior in runtime and
output volume to their line segment based counterparts, retain much (if not all)
of their simplicity, and are even more natural in some cases.

1.1 Outline and Background

We briefly describe the contributions of this paper and relate them to existing
literature.

Section 2 deals with approximating general curves by suitable primitives. This
is a topic of importance in geometric modeling and in CAD and NC applica-
tions, and many quite recent results are available [24,25,27,33,17,31]. Our aim is
to approximate a parametric curve c(t) by circular arcs. We assume that c(t) is
piecewise-polynomial of constant degree, and we use biarcs (pairs of smoothly
joined circular arcs) [30,25,31] as primitives. A straight-forward bisection algo-
rithm for biarc generation already fits our purposes. It uniquely assigns biarcs
to parameter intervals, which facilitates the error evaluation. An approximating
spline curve b of size n is computed in O(n) time. It fits the input curve c(t) in
slope at biarc endpoints, and can be tuned to match c(t) in curvature at certain
points (a fact being important in subsequent medial axis computations). Though
not being optimal in the number of arcs, the approximation order of b is still
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three [24,31]. In contrast, with line segments one cannot exceed order two, and
a polyline of size N = Θ(n3/2) is needed to arrive at the same precision.

The remaining sections propose algorithms for circular arc shapes A, where
the boundary ∂A of A is given as a simple curve composed of n circular arcs.
Choice is guided by efficiency as well as by reducibility to basic operations that
have robust implementations [11]. Due to lack of space, we had to skip two
sections from this version of the paper. Let us nevertheless provide here a short
description of the material they contain.

The first topic is computing the convex hull of a circular arc shape A. This
task is one of the most basic to be performed for a given shape, and has a variety
of applications including shape fitting, motion planning, shape separation, and
many others. At least four linear-time algorithms have been developed for polyg-
onal shapes [4,16,23,26]. The incremental method by Melkman [26] stands out
by its simplicity, and it is this candidate we generalize for circular arc shapes.
Compared to the original setting, two difficulties arise. Deciding inclusion for a
currently inserted arc in the convex hull constructed so far is no trivial test, and
the convex hull cannot be described by a sequence of input vertices of the shape.
We show that a runtime of O(n) is still possible. The basic subroutine of the
algorithm computes the convex hull of only two circular arcs.

The second topic is shape triangulation, a fundamental building block in algo-
rithms for decomposition, shortest path finding, and visibility – to name a few.
Most existing algorithms are meant for polygonal shapes. They partition a given
(simple) n-vertex polygon into triangles without introducing Steiner points. Ef-
ficient candidates are [14,22,3,18,7] which all show an O(n log n) runtime. The-
oretically more efficient methods do exist, but when aiming at simplicity, choice
should be made from the list above. When trying to generalize to shapes A
bounded by circular arcs, we face two problems. First of all, if the use of Steiner
points is disallowed, then a partition of A into primitives bounded by a constant
number of circular arcs need not exist. Also, not all triangulation methods are
suited to generalization. This applies, for instance, to the extremely simple ear
cutting method in [20] which runs in time O(r·n), where r is the number of reflex
vertices of A. The triangulation algorithm we propose is closest to Chazelle’s [7].
It manages with an (almost) worst-case minimal number of Steiner points on ∂A,
runs in O(n log n) time, and uses a dictionary as its only nontrivial data struc-
ture. The produced primitives are arc triangles with at least one straight edge.
The most complex geometric operation is intersecting a circle with a line.

Section 3 is devoted to the medial axis, a frequently used structure associated
with a given input shape. Its main applications include shape recognition, solid
modeling, pocket machining, and others. Interest in mathematical properties of
the medial axis for general shapes found renewal in recent years [9,28,5,6,2]. In
our case, where the shape A is simply connected and ∂A consists of n circular
arcs, its medial axis M(A) is known to be a tree composed of O(n) conic edges.
Algorithmic work on the medial axis either concentrated on the case where A is
a polygon [21,7,8], or on general sets of curved arcs [33,19,28,1] (and their Voronoi
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diagram) without, however, exploiting the fact that the input arcs define a simple
curve. (The various existing methods for computing digital versions of the me-
dial axis are not considered here.) Though theoretically efficient as O(n log n)
or better, these algorithms suffer from involved merge or insertion steps which,
even for straight arcs as input, are difficult to implement. In addition, numer-
ical stability issues arise heavily; intersections of conics have to be determined
repeatedly which, when not calculated exactly, are bound to cumulate the error.

We present a simple randomized divide-and-conquer algorithm for comput-
ing M(A) that overcomes these drawbacks. In contrast to comparable algo-
rithms, the costly part is delegated to the divide step. The basic subroutine
there is an inclusion test for an arc in a circle. The merge step is trivial: it con-
catenates two medial axes. The expected runtime is bounded by O(n3/2), but is
provably better for most types of shape. For example, O(n log n) expected time
suffices if the diameter of M(A) is Θ(n). No nontrivial data structures are used.

To guarantee applicabiliy of our methods to approximating the medial axes
of general shapes B, a convergence result is needed. We prove in Section 4 that,
for a suitable approximation of ∂B by biarcs, M(B) is the limit of M(A) when
the approximating arc shape A converges to B. Related results exist, but either
presuppose C2 conditions on ∂A not attainable by circular arcs [6], or concern
subsets of the medial axis [5] that survive after pruning the Voronoi diagram of
point samples from ∂B. (As a negative side effect, the medial axis approximation
obtained from a point sample is not C1.) It is well known [2] that medial axis
convergence is not given for polygonal approximations of B. In conclusion, cir-
cular arcs are the simplest possible tool for boundary conversion that guarantees
a stable medial axis approximation.

2 Circular Arcs

In order to represent a general shape A in a form suitable for geometric compu-
tations, we discuss methods for approximating ∂A by circular arcs. We assume
that ∂A is given as a polynomial spline curve of constant degree. Attention is
restricted to degree 3, as every free-form curve can efficiently and with any de-
sired precision be converted into cubics [29], and in many applications the input
will already be available in this common form [12].

Several approaches to generating circular arc splines exist; see [24] for a review.
We consider a simple bisection algorithm consisting of two steps, approximation
and error measurement. A geometric primitive b (an arc or a biarc) is fitted
to a segment s of the given cubic curve c(t), and the distance from b to s is
computed. The algorithm is relatively easy to implement and still adapts the
degrees of freedom to the input data. As a slight disadvantage, the number of
primitives (the resulting data volume) is minimal only in the asymptotic sense.

Define the one-sided Hausdorff distance from a primitive b to a segment
s ⊆ c(t) as δ(b, s) = maxp∈b minq∈s ||p − q||. (We consider b and s as closed
sets.) Let ε denote the error tolerance to be met by the algorithm.



378 O. Aichholzer et al.

Algorithm BISECT(t0, t1)

Construct b
Compute δ = δ(b, c[t0, t1])

If δ ≤ ε then return {b}
Else return BISECT(t0, t0+t1

2 ) ∪ BISECT( t0+t1
2 , t1)

Depending on the primitive b used, Algorithm BISECT produces splines of dif-
ferent quality: merely continuous (C0) circular arc splines, or tangent continuous
(C1) arc splines. When being content with the former type, we can simply choose
for b the unique circular arc passing through the three points c(t0), c( (t0+t1)

2 ),
and c(t1). To obtain C1 arc splines, so-called biarcs [30] are utilized.

A biarc b consists of two circular arcs with common unit tangent vector at
their joint. Usually, b is described by its source x with associated unit tangent
vector vx, and its target y with unit tangent vector vy. Given these data, there
exists a one-parameter family of interpolating biarcs. All possible joints are lo-
cated on the circle σ passing through x and y and having the same oriented angles
with vx and vy. Several ways for choosing the joint m have been proposed; see
e.g. [25,31]. For many applications, taking m = σ ∩ c[t0, t1] is appropriate. To
calculate m, a polynomial of degree 4 has to be solved (where a closed-form
solution is still available). The output is a C1 arc spline with all arc endpoints
sitting on c(t).

In view of subsequent stable medial axis computations, the choice of m has to
be made more carefully. Define an apex of c(t) as a local curvature maximum.
The apices split the curve c(t) into pieces of monotonic signed curvature, so-
called spirals . Following [25], we aim at approximating spirals of c(t) by circular
arc spirals. To this end, we split c(t) at its apices. These points can be found
by solving polynomials of degree 5. Now, we exploit that spiral biarcs can be
constructed that connect two given points x and y, match unit tangents there,
and assume a predefined curvature in one of them. Let kx and ky be the curvature
of c(t) at x and y, respectively, and suppose kx < ky. To match curvature at x, we
choose the radius of the first arc, b1, equal to rx = 1/kx. The joint m is obtained
by intersecting the circle supporting b1 with the joint circle σ. According to [25],
the radii and curvatures satisfy rx > ry > 1/ky. When starting the next biarc
from y with ry = 1/ky (unless y is an apex), monotonicity of signed curvature
will be preserved.

Each arc is found in O(1) time, where the constant depends on the degree of
the polynomial to be solved. Concerning the error measurement, each produced
circular arc bi has to be matched to its corresponding segment s on the curve c.
We then compute an upper bound for the one-sided Hausdorff distance δ(bi, s) by
substituting the parametric representation of s into the implicit equation of the
circle supporting bi. A simpler upper bound can be calculated (without polyno-
mial solving) by using Bernstein-Bézier representations [13]. In summary, when
algorithm BISECT spans a binary recursion tree with n leaves (the returned n
primitives), any of the described arc splines can be constructed in O(n) time.

Let us discuss the asymptotic behaviour of the number n for decreasing toler-
ance ε. For a given curve c(t) with domain [t0, t1], which is assumed to contain
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neither inflections nor apices, we consider primitives having approximation or-
der k. Adapting the analysis in [24,31], we get δ = Θ(hk) for the one-sided Haus-
dorff distance δ, provided that c(t) is approximated with (small) parameter step
size h, and that k is considered a constant.

This relation implies a general lower bound. For any approximation of c(t)
by n primitives of order k, the largest step size satisfies Δt ≥ t1−t0

n . Thus from
ε ≥ δ, which is to be achieved by the approximation, and from δ = Θ((Δt)k),
we get n = Ω(1/ε1/k). On the other hand, the smallest step size Δt taken by
algorithm BISECT satisfies Δt ≤ t1−t0

n . When doubling the step size we have
δ=Θ((2Δt)k) but ε < δ, as the tolerance is not yet achieved. Thus n=O(1/ε1/k).

In conclusion, for sufficiently small tolerance ε, the number n of primitives
constructed by algorithm BISECT is asymptotically optimal. This is also true in
the general case where c(t) contains inflections and apices, because the resulting
number of spirals of c(t) is independent of n. In conclusion, to arrive at toler-
ance ε, Algorithm BISECT needs n = Θ(1/ 3

√
ε) cicular arcs (order 3), whereas

N = Θ(1/
√

ε) line segments (order 2) have to be invested by any polygonal
approximation method.

Lemma 1. Compared to approximating c(t) with a polyline, the data volume
drops from N to Θ(N2/3) when circular arc splines are used.

It should be observed that, the other way round, when approximating c(t) with
a point sample (as commonly done for medial axis computations [2]), the data
volume increases to Θ(n3) compared to n circular arcs.

3 Medial Axis

Let A be the circular arc shape under consideration. (All objects are considered
to be closed sets in the sequel). Call a disk D ⊆ A maximal if there exists no
disk D′ different from D such that D ⊂ D′ and D′ ⊆ A. The medial axis, M(A),
of A is defined as the set of all centers of maximal disks.

As the boundary of A is a connected and simple curve with n circular arcs,
M(A) is finite, connected, and cycle-free [9] and thus forms a tree. M(A) can
be decomposed into O(n) edges , which are maximal pieces of straight lines and
(possibly all four types of) conics. Endpoints of edges will be called vertices
of M(A).

The contribution of this section is a simple and practical randomized algo-
rithm for computing M(A). It works by divide-and-conquer and accepts as in-
put any description of ∂A by circular arcs and/or line segments. The costly
part is delegated to the divide step, which basically consists of inclusion tests
for arcs in circles. The merge step is trivial; it just concatenates two partial
medial axes. The expected runtime is bounded by O(n3/2), and will be proved
to be O(n polylog n) for several types of shape. A qualitative difference to ex-
isting medial axis algorithms is that a combinatorial description of M(A) is
extracted first, which can then be directly (and robustly) converted into a ge-
ometric representation. We base our algorithm on the following simple though
elegant decomposition lemma [9].
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Fig. 1. Walk (dashed) and cut (dotted)

Lemma 2. Consider any maximal disk D for A. Let A1, . . . , At be the connected
components of A \ D, and denote with p the center of D. The following holds.

(1) M(A) =
t⋃

i=1

M(Ai ∪ D) (2) {p} =
t⋂

i=1

M(Ai ∪ D)

In plain words, having at hands some maximal disk one can compute the medial
axes for the resulting components recursively, and then glue them together at a
single point. However, the desired efficiency of this strategy calls for a balanced
decomposition. Its existence is given below.

Lemma 3. There exists a maximal disk D for A such that at most n
2 arcs

from ∂A are (completely) contained in each component of A \ D.

Proof. Each point p ∈ M(A) corresponds to a unique maximal disk Dp for A.
Let f(Dp) be the number of arcs from ∂A in the largest component induced
by Dp. As long as f(Dp) > n

2 , the component that realizes f(Dp) is unique,
and we can decrease f(Dp) by continuously moving p on M(A) such that Dp

enters into this component. This process terminates at some point p∗ where
f(Dp∗) ≤ n

2 . We never move back the way we came, as the component we move
out never exceeds a size of n

2 .

We are left with the algorithmic problem of finding some maximal disk that
yields a well-balanced partition. Observe that the optimal point p∗ above may
be not unique, because the number f(Dp) is invariant under motion of p within
the relative interior of any fixed edge e ⊂ M(A). Let us define Walk(e) as the
path length in M(A) from e to p∗. Further, define Cut(e) as the size of the
smaller one among the two subtrees which constitute M(A) \ {e}. See Figure 1.
Any tree with small ’cuts’ tends to have short ’walks’, in the following respect.

Lemma 4. Let e be an edge of M(A), chosen uniformly at random. Then
E[Walk(e)] = Θ(E[Cut(e)]).
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Proof. Orient all the paths in M(A) away from the point p∗. This defines a
partial order ≺ on the edges of M(A). We have the set equality

⋃

e∈M(A)

{(a, e) | a ≺ e} =
⋃

e∈M(A)

{(e, b) | b � e}

because either set contains each pair of the relation exactly once. The (disjoint)
subsets united in the left set, L, represent all the paths in M(A) between its
edges e and p∗. Thus we have E[Walk(e)] = 1

m · |L|, where m is the number
of edges of M(A). The (disjoint) subsets united in the right set, R, represent
those subtrees defined by the edges e of M(A) which avoid p∗. If we neglect
subtrees of sizes larger than m

2 , then the cardinality of the set drops by a constant
factor (of at most 4, if ≺ would be a total order, hence less). This implies
1
m · |R| > E[Cut(e)] > 1

m · |R|
4 . The lemma now follows from |R| = |L|.

Lemma 4 motivates the following disk finding algorithm which combines ran-
dom cutting with local walking. Its main subroutine, MAX(b), selects for an
arc b ⊂ ∂A its midpoint x and returns the unique maximal disk for A with x on
its boundary. For the ease of description, we assume that this disk splits A into
exactly two components. Let c ≥ 3 be a (small) integer constant.

Procedure CUT(A)

Put A′ = A
Repeat
Choose a random arc b of ∂A′

Compute D=MAX(b) and let A0 be the
larger component of A induced by D

Assign A′ = A′ ∩ A0

Until A0 contains less than n − n
c

arcs

Report D

Procedure WALK(A)

Choose a random arc b of ∂A
Compute D=MAX(b)
Put A0 =larger component induced by D

While A0 contains > n − n
c

arcs do
Let b1 (b2) be the first (last) complete
arc of ∂A in A0

Find D1=MAX(b1) and D2=MAX(b2)
Put A0 = smallest of the respective lar-

ger components of A for D1 and D2

Let D∈{D1, D2} be the respective disk

Report D

The disk finding algorithm now runs CUT(A) and WALK(A) in parallel and
terminates as soon as the first disk is reported. To analyze its runtime, let us first
consider the assignment of arcs on ∂A to edges of M(A), as done in subroutine
MAX. Namely, if MAX(b)=D then arc b is mapped to the edge e that contains
the center of D. Observe that either 0, 1, or 2 arcs are mapped to a fixed edge.
Moreover, no two unaddressed edges and no two doubly addressed edges are
neighbored. This assignment is sufficiently uniform to convey randomness from
arcs to edges. So Lemma 4 applies, and in the worst case of walk length being
balanced with cut number, a bound of O(

√
n) on the expected number of loop

executions in at least one of CUT(A) and WALK(A) holds.
The costly part in both procedures is their subroutine MAX, whose expected

number of calls obeys the same bound. D=MAX(b) has a simple implementation
which runs in O(n) time: We initialize the disk D as the (appropriately oriented)
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halfplane that supports b at its midpoint x and, for all remaining arcs bi ⊂ ∂A
that intersect D, we shrink D so as to touch bi while still being tangent to b
at x. The most complex operation needed for shrinking D is an inclusion test of
a point in a circle. In particular, and unlike previous medial axis algorithms, no
conics take part in geometric operations.

In summary, the randomized complexity for computing the medial axis is
given by T (n) = T (1

c n) + T ((1 − 1
c )n) + O(n3/2) = O(n3/2). In many cases,

however, will the algorithm perform substantially better. Let d be the graph
diameter of M(A). Then the loop in WALK(A) is executed less than d times.
So, for example, if d = Θ(log n) then an overall runtime of O(n log2 n) is met.
For the other extreme case, d = Θ(n), our strategy is even faster. With constant
probability, an edge on the diameter is chosen, and Θ(n) such edges e have
Cut(e) = Θ(n). The expected number of loop executions in CUT(A) now is
only O(1), and an O(n log n) algorithm results. We conjecture that the latter
situation is quite relevant in practice. In many applications, for typical shapes
their medial axes will not branch extensively. Even if so, the branching will be
independent of n, because each branch will be approximated by a large number
of circular arcs in order to achieve the necessary precision.

The output of the algorithm is a list of O(n) points on M(A), namely, the
centers of the splitting disks, plus a list of O(n) edges connecting them. Each edge
is given implicitly by its defining two arcs on ∂A. To make sure that the reported
point list includes all the vertices of M(A), base cases that involve constantly
many (pieces of) original arcs from ∂A have to be solved directly. (The constant
equals 2 or 3 if ∂A is C1.) Note that the algorithm works exclusively on ∂A
except for a final step, where the conic edges of M(A) are explicitly calculated
and reassembled. This gives rise to increased numeric stability in comparison to
existing approaches.

Opposed to approximating ∂A with the same accurracy by a polyline of size N ,
our circular arc algorithm takes O(n3/2) = O(N) time; see Lemma 1 in Section 2.
Thus, even for (probably rare) worst-case inputs, our simple algorithm competes
asymptotically well with previous methods. Another advantage over polygonal
approximation is described in Section 4.

4 Convergence

A well-known unpleasant phenomenon of the medial axis is its instability under
perturbations of the shape boundary. Several papers discussing this issue have
been published recently. A result in [6] shows that stability is, in general, not
given unless perturbations are C2. To deal with general shapes, the so-called
λ-medial axis has been introduced as a tool in [5]. After drawing a point sample
from the shape boundary, the Voronoi diagram of these points is constructed
and pruned appropriately. The λ-medial axis converges to the original for van-
ishing sample distance. Drawbacks are the large sample size for a close (and
homotopy-equivalent) approximation, the lack of its C1 behavior, and the need
of computing a general planar Voronoi diagram.
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We prove in this section that medial axis convergence under the Hausdorff
distance comes as a byproduct of the careful (though, of course, still C1) biarc
boundary conversion described in Section 2. We start with two technical lemmas,
whose proofs are omitted due to lack of space.

For some shape A and a point p ∈ M(A), let Dp denote the unique maximal
disk with center p. Recall that M(A) is defined as the union of the centers of all
maximal disks. Define ξp ≤ π as the largest angle at p spanned by two points in
the set Dp ∩ ∂A. The assertion below does not assume any regularity condition
for the shape boundaries.

Lemma 5. Let A and B be two shapes whose (two-sided) Hausdorff distance
satisfies H(∂A, ∂B) = ε. Define k = 4

1−cos(ξp/2) and let Dp denote any maximal
disk for A whose radius r fulfills r > k · ε > 0. Then there exists a maximal
disk Dq for B such that ‖p − q‖ < k · ε.

Define a leaf of the medial axis as a vertex with a single incident edge. The
following lemma describes the behavior of M(A) in the vicinity of its leaves.
Recall that an apex of ∂A is a point of maximal curvature.

Lemma 6. For an apex x of ∂A, consider the unique maximal disk Dp that
avoids a segment of ∂A through x with fixed (small) length �. Further, consider
the maximal disk Dq osculating at x. If ∂A is piecewise analytic C2 in the
neighborhood of x then

‖q − p‖ → 0 as O(�2).

We are now prepared to prove the claimed convergence result. Slightly more
general than in Section 2, we assume that ∂A for the original shape A is C2 and
piecewise analytic. (These requirements are fulfilled if ∂A is a cubic spline.) The
proof generalizes easily to the case where ∂A is an arbitrary concatenation of
analytic pieces, and thus, in particular, is allowed to contain ’sharp’ vertices.

Let Bn denote some circular arc shape that comes from approximating ∂A by
a suitable biarc spline; see Section 2. For sufficiently large n, each leaf of M(A)
is also a leaf of M(Bn), and all leaves of M(Bn) are contained in M(A). This is
because the spline preserves not only spirals, but also position, normal vector,
and curvature at each apex x of ∂A. All leaves are centers of osculating disks at
some apex x.

Let us remove from ∂Bn the containing circular arc bx for each apex x whose
osculating disk is included in Bn (and hence is maximal for Bn). This decom-
poses ∂Bn into components. The lengths of the arcs bx shrink to zero as Ω(n−1)
by construction of Bn, as does their minimum dn. Apart from disks for leaves,
each maximal disk Dp for Bn has contact to at least two different components.
(Otherwise, there would be a supplementary leaf of M(Bn).) For such a disk Dp,
we have the angle inequality ξp ≥ ξn, for ξn = 2 arcsin(dn/2L), and L denoting
the geometric diameter of Bn. Because dn → 0 as Ω(n−1) and since L is a con-
stant, we have 1 − cos(ξn/2) = Ω(n−2). Moreover, H(∂A, ∂Bn) → 0 as O(n−3)
by construction. That is, the condition in Lemma 5 holds for almost all maxi-
mal disks Dp for Bn when n is sufficiently large. Consequently, for each point
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p ∈ M(Bn) there exists a point q ∈ M(A) such that ‖p − q‖ → 0 as O(n−1). That
is, the one-sided Hausdorff distance δ(M(Bn), M(A)) converges at this speed.

The other direction can be proved similarly. For each apex x of A, we define
a neighborhood cx on ∂A of length n−3/4. Removal of the segments cx leads us
to two types of maximal disks Dq for A, depending on whether Dq touches a
single segment cx (q is then close to x), or not. For the latter type, the analysis
is the same as above, and shows that q approaches the center of some maxi-
mal disk for Bn at speed O(n−3/2). For the former type, due to Lemma 6, the
distance ‖q − p‖ between q and the leaf p ∈ M(Bn) associated with cx behaves
as Θ(n−3/4)2, i.e., the same. The one-sided Hausdorff distance δ(M(A), M(Bn))
thus converges at that speed.

Note that the global convergence speed of the medial axis with respect to the
Hausdorff distance is Θ(n−1), whereas the error of the boundary approximation
improves as Θ(n−3). This is due to the behavior of the medial axis close to its
leaves. When we restrict ourselves to the λ-medial axis [5] for any λ > 0, then dn

in the formula for ξn becomes a constant, and the approximation speed is Θ(n−3)
by Lemma 5. This well compares to using a size-n point sample on ∂A and
pruning its Voronoi diagram, as the approximation speed then is only Θ(n−1).

Acknowledgements. Thanks go to Raimund Seidel for discussions on Section 3.
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