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Abstract. We consider a memory allocation problem that can be mod-
eled as a version of bin packing where items may be split, but each bin
may contain at most two (parts of) items. This problem was recently
introduced by Chung et al. [3]. We give a simple 3/2-approximation al-
gorithm for it which is in fact an online algorithm. This algorithm also
has good performance for the more general case where each bin may
contain at most k parts of items. We show that this general case is also
strongly NP-hard. Additionally, we give an efficient 7/5-approximation
algorithm.

1 Introduction

A problem that occurs in parallel processing is allocating the available memory
to the processors. This needs to be done in such a way that each processor has
sufficient memory and not too much memory is being wasted. If processors have
memory requirements that vary wildly over time, any memory allocation where
a single memory can only be accessed by one processor will be inefficient. A
solution to this problem is to allow memory sharing between processors. However,
if there is a single shared memory for all the processors, there will be much
contention which is also undesirable. It is currently infeasible to build a large,
fast shared memory and in practice, such memories are time-multiplexed. For n
processors, this increases the effective memory access time by a factor of n.

Chung et al. [3] studied this problem and described the drawbacks of the
methods given above. Moreover, they suggested a new architecture where each
memory may be accessed by at most two processors, avoiding the disadvantages
of the two extreme earlier models. They abstract the memory allocation problem
as a bin packing problem, where the bins are the memories and the items to be
packed represent the memory requirements of the processors. This means that
the items may be of any size (in particular, they can be larger than 1, which is
the size of a bin), and an item may be split, but each bin may contain at most
two parts of items. The authors of [3] give a 3/2-approximation for this problem.
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We continue the study of this problem and also consider a generalized problem
where items can still be split arbitrarily, but each bin can contain up to k parts
of items, for a given value of k ≥ 2.

We study approximation algorithms in terms of the absolute approximation
ratio or the absolute performance guarantee. Let B(I) (or B, if the input I is clear
from the context), be the cost of algorithm B on the input I. An algorithm A is an
R-approximation (with respect to the absolute approximation ratio) if for every
input I, A(I) ≤ R·opt(I), where opt is an optimal algorithm for the problem.
The absolute approximation ratio of an algorithm is the infimum value of R such
that the algorithm is an R-approximation. The asymptotic approximation ratio
for an online algorithm A is defined to be

R∞
A = lim sup

n→∞
sup
I

{
A(I)

opt(I)

∣∣∣∣∣opt(I) = n

}
.

Often bin packing algorithms are studied using this measure. The reason
for that is that for most bin packing problems, a simple reduction from the
partition problem (see problem SP12 in [6]) shows that no polynomial-time
algorithm has an absolute performance guarantee better than 3

2 unless P=NP.
However, since in our problem items can be split, but cannot be packed more
than a given number of parts to a bin, this reduction is not valid. In [3], the
authors show that the problem they study is NP-hard in the strong sense for
k = 2. They use a reduction from the 3-Partition problem (see problem [SP15]
in [6]). Their result does not seem to imply any consequences with respect to
hardness of approximation.

Independently of our work and simultaneous with it, Graham and Mao [7]
analyzed the asymptotic approximation ratio of several algorithms, giving upper
bounds of 1.498 for k = 2, 3/2 for k = 3 and 2−2/k for k ≥ 4. They also showed
an upper bound of 2− 1/k for NEXT FIT and a lower bound of 1+ (k+ 1

k+1 )−1

for online algorithms.
A related, easier problem is known as bin packing with cardinality constraints.

In this problem, all items have size at most 1 as in regular bin packing, and the
items cannot be split, however there is an upper bound of k on the amount
of items that can be packed into a single bin. This problem was studied with
respect to the asymptotic approximation ratio. It was introduced and studied
in an offline environment as early as 1975 by Krause, Shen and Schwetman
[10,11]. They showed that the performance guarantee of the well known FIRST
FIT algorithm is at most 2.7− 12

5k . Additional results were offline approximation
algorithms of performance guarantee 2. These results were later improved in
two ways. Kellerer and Pferschy [9] designed an improved offline approximation
algorithm with performance guarantee 1.5 and finally a PTAS was designed in
[2] (for a more general problem).

On the other hand, Babel et al. [1] designed a simple online algorithm with
asymptotic approximation ratio 2 for any value of k. They also designed improved
algorithms for k = 2, 3 of asymptotic approximation ratios 1 +

√
5

5 ≈ 1.44721
and 1.8 respectively. The same paper [1] also proved an almost matching lower
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bound of
√

2 ≈ 1.41421 for k = 2 and mentioned that the lower bounds of [14,13]
for the classic problem hold for cardinality constrained bin packing as well. The
lower bound of 1.5 given by Yao [14] holds for small values of k > 2 and the
lower bound of 1.5401 given by Van Vliet [13] holds for sufficiently large k. No
other lower bounds are known.

Finally, Epstein [4] gave an optimal online bounded space algorithm (i.e., an
algorithm which can have a constant number of active bins at every time) for this
problem. Its asymptotic worst-case ratio is an increasing function of k and tends
to 1 + h∞ ≈ 2.69103, where h∞ is the best possible performance guarantee of
an online bounded space algorithm for regular bin packing (without cardinality
constraints). Additionally, she improved the online upper bounds for 3 ≤ k ≤ 6.
In particular, the upper bound for k = 3 was improved to 7

4 .
Another related problem was studied recently by Shachnai et al. [12]. They

considered an offline bin packing problem where items may be split arbitrarily.
However, to make the problem non-trivial, there are some restrictions. In one
model, each part of a split item increases by a constant additive factor. Another
variant gives an upper bound on the number of split items. They showed that
both these problems do not admit a PTAS unless P = NP. They designed a
dual PTAS and an AFPTAS for both problems. Their problem is different from
our problem since in their case all items have size at most 1. In their case it is
possible to exploit the existence of simple structures of optimal solutions, which
are more complicated in our case.

Our results. In the current paper, we begin by showing that this problem is
NP-hard in the strong sense for any fixed value of k. This generalizes a result
from Chung et al. [3]. We also show that the simple NEXT FIT algorithm has an
absolute approximation ratio of 2 − 1/k. Note that Graham and Mao [7] prove
only an asymptotic upper bound of 2 − 1/k for NEXT FIT. Finally, we give an
efficient 7/5-approximation algorithm for k = 2.

2 NP-Hardness of the Problem (in the strong sense)

Theorem 1. Packing splittable items with a cardinality constraint of k parts of
items per bin is NP-hard in the strong sense for any fixed k ≥ 3.

Proof. Given a fixed value of k, we show a reduction from the 3-Partition problem
defined as follows (see problem [SP15] in [6]). We are given a set of 3m positive
numbers s1, s2, . . . , s3m such that

∑3m
j=1 sj = mB and each si satisfies B

4 < si <
B
2 . The goal is to find out whether there exists a partition of the numbers into
m sets of size 3 such that the sum of elements of each set is exactly B. The
3-Partition problem is known to be NP-hard in the strong sense.

Given such an instance of the 3-Partition problem we define an instance of
the splittable item packing with cardinality constraints as follows. There are
m(k − 3) items, all of size 3k−1

3k(k−3) (for k = 3, no items are defined at this point).
These items are called padding items. In addition, there are 3m items, where
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item j has size sj

3kB (for k = 3 we define the size to be sj

B ). These items are called
adapted items. The goal is to find a packing with exactly m bins. Since there
are mk items, clearly a solution which splits items must use at least m + 1 bins.
Moreover, a solution in m bins contains exactly k items per bin. Since the sum
of items is exactly m, all bins in such a solution are completely occupied with
respect to size.

If there exists a partition of the numbers into m sets of sum B each, then
there is a partition of the adapted items into M sets of sum 1

3k each (the sum is
1 for k = 3). Each bin is packed with k − 3 padding items and one such triple,
giving m sets of k items, each set of sum exactly 1.

If there is a packing into exactly m bins, as noted above, no items are split
and each bin must contain exactly k items. If k = 3, this implies the existence
of a partition. Consider the case k ≥ 4. We first prove that each bin contains
exactly k − 3 padding items.

If a bin contains at least k − 2 padding items, their total size is at least
(3k−1)(k−2)

3k(k−3) = 3k2−7k+2
3k2−9k = 1 + 2k+2

3k(k−3) . For k ≥ 4 this is strictly larger than 1
and cannot fit into a bin. If there are at most k − � ≤ k − 4 padding items, then
there are � additional items of size at most 1

6k (� ≥ 4). The total size is therefore
at most (3k−1)(k−�)

3k(k−3) + �
6k = 6k2−2k−5�k−�

6k(k−3) . This value is maximized for the smallest

value of � which is � = 4. We get the size of at most 6k2−22k−4
6k(k−3) = 1 − 4(k+1)

6k(k−3) .
For k ≥ 4 this is strictly less than 1, which as noted above does not admit a
packing into m bins.

Since each bin contains exactly k − 3 padding items, it contains exactly three
adapted items, whose total size is exactly 1

3k . The original sum of such three
items is B, we get that a solution in m bins implies a partition. �

3 The NEXT FIT Algorithm

We can define NEXT FIT for the current problem as follows. This is a straight-
forward generalization of the standard NEXT FIT algorithm. An item is placed
(partially) in the current bin if the bin is not full and the bin contains less than k
item parts so far. If the item does not fit entirely in the current bin, the current
bin is filled, closed, and as many new bins are opened as necessary to contain
the item.

Note that this is an online algorithm. The absolute approximation ratio of
NEXT FIT for the classical bin packing problem is 2, as Johnson [8] showed.
Surprisingly, its approximation ratio for our problem tends to this value for large
k. The two problems are different, and the two results seem to be unrelated.

We show that the approximation ratio of NEXT FIT is exactly 2−1/k. Thus,
this extremely simple algorithm performs as well as the algorithm from [3] for
k = 2.

Theorem 2. The approximation ratio of NEXT FIT is 2 − 1/k.

Proof. We first show a lower bound. The instance contains an item of size Mk−1
followed by M(k − 1)k items of size ε, where M is large and ε = 1/(Mk(k − 1)).
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Then the first item occupies Mk − 1 bins, and the rest of the items are k per
bin, in M(k − 1) bins. OPT has Mk bins in total. This proves a lower bound of
(M(2k − 1) − 1)/(Mk), which tends to 2 − 1/k for M → ∞.

Now we show a matching upper bound. We define a block as a maximal set
of bins which were consecutively filled by NEXT FIT (NF) in which each pair
of consecutive bins contains parts of the same item. A block may contain only
one bin. Denote the number of blocks by m. Let u1, u2, . . . , um be sizes of the
blocks 1, . . . , m of NF. In each block, all bins are full except perhaps the last
one, which contains k parts of items (except for block m, perhaps). We assign
weights to items. Let the size of item i be si. Then wi = �si	/k. Note that in
any packing, there are at least �si	 parts of item i. Since there can be at most
k parts in a bin, this means

opt ≥ 1
k

∑
i

�si	 =
∑

i

�si	
k

. (1)

This explains our definition of the weights. This generalizes the weight definition
from Chung et al. [3].

Consider the last bin from a block i < m. Since NF started a new bin after this
bin, it contains k parts of items. Thus it contains at least k − 1 items of weight
1/k (the last k − 1 items are not split by the algorithm). If ui = 1, there are k
such items. If ui > 1, consider all items excluding the k − 1 last items in the last
bin. We do not know how many items there are in the first ui −1 bins (where the
last item extends into bin ui). However, for a fixed size s, the weight of a group
of items of total size s is minimized if there is a single item in the group (since
we round up the size for each individual item to get the weight). This implies
the total weight in a block of ui bins is at least ui/k+(k−1)/k = (ui +k−1)/k.

Now consider block m. If ui = 1, the weight is at least 1/k since there is at
least one item. Else, as above the weight is at least ui/k, since the last bin of
this block has at least one item or a part of an item.

We have nf =
∑

ui. Therefore

opt ≥
∑

i

wi ≥
∑m

i=1(ui + k − 1) − (k − 1)
k

=
nf + (m − 1)(k − 1)

k
. (2)

Also by size, opt > nf−m and thus opt ≥ nf−m+1. Multiply this inequality
by (k − 1)/k and add it (2) to get

2k − 1
k

· opt ≥ nf

(
1
k

+
k − 1

k

)
+ (m − 1)

k − 1
k

− (m − 1)
k − 1

k
= nf.

We conclude nf ≤ (2 − 1/k)opt. �

4 The Structure of the Optimal Packing for k = 2

Before we begin our analysis, we make some observations regarding the packing
of opt. A packing can be represented by a graph where the items are nodes and
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edges correspond (one-to-one) to bins. If there is a bin which contains (parts
of) two items, there is an edge between these items. A bin with only one item
corresponds to a loop on that item. The paper [3] showed that for any given
packing, it is possible to modify the packing such that there are no cycles in the
associated graph. Thus the graph consists of a forest together with some loops.
We start by analyzing the structure of the graph associated with the optimal
packing. Items of size at most 1/2 are called small.

Lemma 1. There exists an optimal packing in which all small items are leaves.

Proof. Consider a small item that has edges to at least two other items. Note
that if two small items share an edge, the packing can be changed so that these
two items form a separate connected component with a single edge. Thus we
may assume that all neighbors are (parts of) medium or large items.

Order the neighbors in some way and consider the first two neighbors. Denote
the small item by s and the sizes of its neighboring parts by w1 and w2. In bin
i, wi is combined with a part si of the small item s (i = 1, 2).

We have s1 + s2 ≤ 1/2. If s1 ≤ w2, we can cut off a part of size s1 from w2
and put it in bin 1, while putting s1 in bin 2. This removes neighbor w1 from the
small item s. Otherwise, w2 < s1 ≤ 1/2, which means that we can put s1 into
bin 2 without taking anything out of bin 2: we have w2 < 1/2 and s1 +s2 ≤ 1/2.
Again, w1 is no longer a neighbor of s (or even connected to s).

Thus we can remove one neighbor from s. We can continue in this way until
s has only one neighbor left. �

Due to space constraints, we omit the proof of the following lemma.

Lemma 2. An item of size in ((i − 1)/2, i/2] has at most i neighbors for all
i ≥ 2.

5 A 7/5-Approximation for k = 2

Let k = 2. We call items of size in (1/2, 1] medium and remaining items large.
Our algorithm works as follows. We present it here in a simplified form which
ignores the fact that it might run out of small items in the middle of step 2(b) or
while packing a large item in step 4. We will show later how to deal with these
cases while maintaining an approximation ratio of 7/5. See Figure 1.

We begin by giving an example which shows that this algorithm is not optimal.
For some integer N , consider the input which consists of 4N small items of size
2/N , 2N medium items of size 1 − 1/N , 3N medium items of size 1 − 2/N .

ALG packs the items of size 1 − 1/N in 4N bins, together with 4N small
items. It needs 3N(1 − 2/N) = 3N − 6 bins for the remaining medium items.
Thus it needs 7N − 6 bins in total. OPT places 3N small items in separate bins
(one per bin), and N small items are split into two equal parts. This gives 5N
bins in which there is exactly enough room to place all the medium items.

Theorem 3. This algorithm achieves an absolute approximation ratio of 7/5.
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1. Sort the small items in order of increasing size, the medium items in order
of decreasing size, and the large items in order of decreasing size.

2. Pack the medium items one by one, as follows, until you run out of
medium or small items.
(a) If the current item fits with the smallest unpacked small item, pack

them into a bin.
(b) Else, pack the current item together with the two largest small items

in two bins.
3. If no small items remain unpacked, pack remaining medium and large

items using Next Fit and halt. Start with the medium items.
4. Pack all remaining small items in separate bins. Pack the large items one

by one into these bins using Next Fit (starting with the largest large item
and smallest small item).

5. If any bins remain that have only one small item, repack these small items
in pairs into bins and halt.

6. Pack remaining large items using Next Fit.

Fig. 1. The approximation algorithm for k = 2

The analysis has three cases, depending on whether the algorithm halts in
step 3, 5 or 6. The easiest case among these is without a doubt step 5, at least
as long as all bins packed in step 5 contain two small items.

5.1 Algorithm Halts in Step 5

Based on inequality (1), we define weights as follows.

Definition 1. The weight of an item of size wi is �wi	/2.

In our proofs, we will also use weights of parts of items, based on considering
the total weight of an item and the number of its parts. By Definition 1, small
and medium items have weight 1/2. Therefore, we have the following bounds on
total weight of bins packed in the different steps:

2.(a) 1/2 + 1/2 = 1
2.(b) We pack three items of weight 1/2 in two bins, or 3/4 weight per bin on

average.
4. Consider a large item which is packed in g bins, that is, together with in

total g small items. Its size is strictly larger than g−1
2 and thus its weight

is at least g/4. Each small item has a weight of 1/2, so we pack a weight
of at 3g/4 in these g bins.

5. 1/2 + 1/2 = 1

This immediately proves an upper bound of 4/3 on the absolute approximation
ratio. There is, however, one special case: it can happen that one small item
remains unpaired in step 5. Since this case requires deeper analysis, we omit it
due to space constraints.
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5.2 Critical Items

Definition 2. A critical item is a medium item that the algorithm packs in Step
2(b).

From now on, for the analysis we use a fixed optimal packing, denoted by OPT.
We consider the critical items in order of decreasing size. Denote the current
item by x. We will consider how OPT packs x and define an adjusted weight
based on how much space x occupies in the bins of OPT. Denote the adjusted
weight of item i by Wi. The adjusted weights will satisfy the following condition:

n∑
i=1

�wi	
2

≤
n∑

i=1

Wi ≤ opt. (3)

Specifically, we will have Wi ≥ �wi	/2 for i = 1, . . . , n. Thus the numbers Wi will
generate a better lower bound for opt, that we can use to show a better upper
bound for our algorithm. This is the central idea of our analysis. We initialize
Wi = �wi	/2 for i = 1, . . . , n. There are four cases.

Case 1. OPT packs x by itself. In this case we give x adjusted weight 1, and
so our algorithm packs an adjusted weight of 1 in each of the (two) bins that
contain x.

Case 2. OPT packs x with part of a small item. Again x and the bins with x get
an adjusted weight of 1. This holds because when OPT splits a small item (or a
medium item), it is as if it packs two small items, both of weight 1/2. Therefore
such an item gets adjusted weight 1. We can transfer the extra 1/2 from the
small item to x.

Case 3. OPT combines x with a complete small item y. Since our algorithm
starts by considering the smallest small items, y must have been packed earlier
by our algorithm, i.e. with a larger medium item x′ (which is not critical!). If
OPT packs x′ alone or with part of a small item, it has an adjusted weight of
1 (Cases 1 and 2). Thus the bin with x′ has an adjusted weight of 3/2, and we
transfer 1/2 to x. If OPT packs x′ with a full small item y′, then y′ is packed
with a larger non-critical item x′′ by our algorithm, etc. Eventually we find a
non-critical medium item x∗ which OPT packs alone or with part of a small
item, or for which Case 4 holds. The difference between the weight and the
adjusted weight of x∗ will be transferred to x. Note that the bin in which our
algorithm packs x∗ has a weight of 1 since x∗ is non-critical. All intermediate
items x′, x′′, . . . have weight 1/2 and are non-critical as well, and we change
nothing about those items.

Case 4. OPT packs x with a split medium or large item, or splits x itself.
Since there might be several critical items for which Case 4 holds, we need to
consider how OPT packs all these items to determine their adjusted weight. We
are going to allocate adjusted weights to items according to the following rules:
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1. Each part of a small item (in the OPT packing) gets adjusted weight 1/2.
2. A part of a large item which is in a bin by itself gets adjusted weight 1.
3. Other parts of large items get adjusted weight 1/2.

We do not change the weight of non-critical items. The critical items receive
an adjusted weight which corresponds to the number of bins that they occupy
in the packing of OPT. As noted above, this packing consists of trees and loops.
Loops were treated in Case 1. To determine the adjusted weights, we consider
the non-medium items that are cut into parts by OPT. Each part of such
an item is considered to be a single item for this calculation and has adjusted
weights as explained above. We then have that the optimal packing consists only
of trees with small and medium items, and loops. It can be seen that each part
of a non-medium item (for instance, part of a large item) which is in a tree has
weight 1/2.

Consider a tree T in the optimal packing. Denote the number of edges (bins)
in it by t. Since all items in T are small or medium, there are t+1 items (nodes)
in T by Lemmas 1 and 2. Any items that are small (or part of a small item) or
medium but non-critical have adjusted weight equal to the weight of a regular
small or medium item which is 1/2. Denoting the number of critical items in
T by c, we find that the t + 1 − c non-critical items have weight t+1−c

2 . All
items together occupy t bins in the optimal packing. This means we can give
the critical items each an adjusted weight of (t − t+1−c

2 )/c = 1
2 + t−1

2c while still
satisfying (3). This expression is minimized by taking c maximal, c = t + 1, and
is then t/(t + 1). We can therefore assign an adjusted weight of t/(t + 1) to each
critical item in T .

Since the algorithm combines a critical item with two small items of weight
(at least) 1/2, it packs a weight of 1 + t/(t + 1) = 2t+1

t+1 in two bins, or 2t+1
2t+2 per

bin. This ratio is minimized for t = 2 and is 5/6.
However, let us consider the case t = 2 in more detail. If the OPT tree with

item x (which is now a chain of length 2) consists of three critical items, then
the sum of sizes of these items is at most 2. Our algorithm packs each of these
items with two small items which do not fit with one such item. Let the sizes
of the three medium items be m1, m2, m3. Let the two small items packed with
mi be si,j for j = 1, 2. We have that m1 + m2 + m3 ≤ 2 but mi + si,j > 1 for
i = 1, 2, 3 and j = 1, 2. Summing up the last six inequalities and subtracting the
one before, we get that the total size of all nine items is at least 4. Thus the area
guarantee in these six bins is at least 2/3.

If one of the items in the chain is (a part of) a small or large item, or a medium
non-critical item, it has adjusted weight 1/2. This leaves an adjusted weight of
3/4 for the other two items. In this case we pack at least 3/4 + 1 = 7/4 in two
bins, or 7/8 per bin. For t ≥ 3, we also find a minimum ratio of 7/8.

Thus we can divide the bins with critical items into two subtypes: A with an
adjusted weight of 5/6 and area 2/3, and B with an adjusted weight of (at least)
7/8 and area 1/2.
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5.3 Algorithm Halts in Step 3

We divide the bins that our algorithm generates into types. We have

1. groups of two small items and one medium item in two bins
2. pairs of one small item and one medium item in one bin
3. groups of four or more medium items in three or more bins
4. groups of three medium items in two bins
5. one group of bins with 0 or more medium items and all the large items

Note that bins of type 4 contain a total weight of at least 3/4 (3/2 per two bins),
as well as a total size of at least 3/4 (3 items of size more than 1/2 in two bins).
Thus, whether we look at sizes or at weights, it is clear that these bins can be
ignored if we try to show a ratio larger than 4/3.

Furthermore, in the bins of type 5 we ignore that some of the items may be
medium. The bounds that we derive for the total size and weight packed into
these bins still hold if some of the items are only medium-sized.

The bins of type 1 contain the critical items. We say the bins with sub-
type A are of type 1a, and the bins with subtype B are of type 1b. Define
x1a, x1b,x2, x3, x4 as the number of bins with types 1a, 1b, 2, 3, and 5, respec-
tively.

Consider the bins of type 3. Let k be the number of groups of medium items.
Let ti ≥ 3 be the number of bins in group 1 ≤ i ≤ k. The items in group i have
total size more than ti − 1/2, since the last bin contains a complete medium
item. The total weight of a group is ti+1

2 , since it contains ti + 1 items, each
of weight 1

2 . We get that the total size of items in bins of type 3 is at least∑k
i=1(ti − 1

2 ) = x3 − k
2 , and the total weight of these items is

∑k
i=1

ti+1
2 = x3+k

2 .
We find two different lower bounds on OPT.
Adjusted weight:

OPT ≥ 5
6
x1a +

7
8
x1b + x2 +

x3

2
+

k

2
+

x5

2
. (4)

Size:
OPT ≥ 2

3
x1a +

x1b

2
+

x2

2
+ x3 − k

2
+ max(x5 − 1, 0). (5)

Multiplying the first inequality by 4
5 and the second one by 3

5 we get

7
5
OPT ≥ 16

15
x1a + x1b +

11
10

x2 + x3 +
k

10
+

2
5
x5 +

3
5

max(x5 − 1, 0). (6)

If x5 = 0 we are done. Else, (5) is strict and we get

OPT >
2
3
x1a +

x1b

2
+

x2

2
+ x3 − k

2
+ x5 − 1. (7)

This means x3 and x5 occur with the same fractions in (4) and (7). Thus we can
set x3 := x3 + x5 and x5 := 0. Adding (4) and (7) and dividing by 2 gives

opt >
3
4
(x1a + x2 + x3) +

11
16

x1b − 1
2

.
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This implies we are done if x1a + x2 + x3 ≥ 3
4x1b + 14. Clearly, this holds if any

of x1a, x2 or x3 are at least 14. Finally, by (4) we are also done if

5
6
x1a +

7
8
x1b + x2 +

x3

2
+

k

2
≥ 5

7
(x1a + x1b + x2 + x3).

This holds if
5
42

x1a +
9
56

x1b +
2
7
x2 +

k

2
≥ 3

14
x3.

Since we may assume x3 < 14, we are in particular done if x1b ≥ 18 or k ≥ 6.
This leaves a limited set of options for the values of x1a, x1b, x2, x3 and k that

need to be checked. It is possible to verify that for almost all combinations, we
find opt ≥ 5

7alg. One exception is x3 = 3, k = 1. However, going back to the
original variables, this means x3+x5 = 3 and k = 1. But x3 is either 0 or at least
3. If k = 1, we must have x3 = 3 and x5 = 0, so we treated this case already.
Two other cases require special attention and are described below.

Special cases. Step 2(b) requires two small items. If only one is left at this point,
and there is also no remaining medium item with which it could be packed, we
redefine it to be a medium item and pack it in step 3. This leads to it being
packed in a bin of type 3 (or 4). Note that in this case, this small item and any
medium item we tried to pack with it in Step 2 have total size more than 1. Thus
if the small item ends up in a group of type 4 (a group of two bins), the total
size of the items in these bins (as well as the total weight) is still at least 3/2,
and we can ignore these bins in the analysis. Therefore the analysis still holds.

There are two cases where opt < 5
7alg is possible. If x2 = 1 and x5 = 2, a

packing into two bins could exist in case there is only one large item. (If the bins
counted in x5 contain two medium items, then we have that the three medium
items require (at least) two bins and the small item requires an extra bin.) If such
a packing exists, it works as follows: pack first the medium item, then the large
item (partially in the second bin), then the small item. If this gives a packing
into two bins, this is how our algorithm packs the items. Otherwise we already
have an optimal packing.

If x1b = 4, x2 = 1 and x5 = 5, it is a simple matter to try all possible packings
for the items in 7 bins and check if one is valid. (We can try all possible forests
on at most 13 nodes and at most 7 edges.) If there is no packing in 7 bins, then
our algorithm maintains the ratio of 7/5. If there is one, we use it.

5.4 Algorithm Halts in Step 6

In this case we have the following bin types.

1. groups of two small items and one medium item in two bins
2. pairs of one small item and one medium item in one bin
3. groups of large items with small items
4. one group of large items

The analysis in this case is similar to the one in the previous case. We omit it
due to space constraints.
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6 Conclusions

In this paper, we gave the first absolute upper bounds for general k for this
problem. Furthermore we provided an efficient algorithm for k = 2. An inter-
esting question is whether it is possible to give an efficient algorithm with a
better absolute approximation ratio for k = 2 or for larger k. In a forthcoming
paper [5] we will present approximation schemes for these problems. However,
these schemes are less efficient than the algorithms given in this paper already
for ε = 2/5.
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