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Abstract. We give an output-sensitive algorithm for computing the vis-
ibility map of a set of n constant-complexity convex fat polyhedra or
curved objects in 3-space. Our algorithm runs in O((n + k) polylog n)
time, where k is the combinatorial complexity of the visibility map. This
is the first algorithm for computing the visibility map of fat objects that
does not require a depth order on the objects and is faster than the best
known algorithm for general objects. It is also the first output-sensitive
algorithm for curved objects that does not require a depth order.

1 Introduction

Hidden-surface removal is an important and well-studied computational-geometry
problem with obvious applications in computer graphics. The problem is to find
those portions of objects in a scene that are visible from a given viewpoint. There
are two main approaches to the hidden-surface removal problem: the image-space
approach and the object-space approach. In the former, one calculates the visible
object for each pixel of the image; the well known Z-buffer algorithm is the stan-
dard example of this. In the latter, one computes the so-called visibility map of the
scene, which gives an exact description of the visible part of each object; this is the
approach taken in computational geometry.

Formally, the visibility map of a set P of objects in R
3 with respect to a

viewpoint p is defined as the subdivision of the viewing plane into maximal
regions such that in each region a single object in P is visible from p, or no
object is visible. We will assume in this paper, as is usual, that the objects
are disjoint. The visibility map of a set of n constant-complexity objects can
be computed in O(n2) time [17]. Since the (combinatorial) complexity of the
visibility map can be Ω(n2)—a set of n long and thin triangles that form a grid-
like pattern when projected on the viewing plane is an example—this is optimal
in the worst case. In most cases, however, the complexity of the visibility map
is much smaller than quadratic. Therefore the main challenge in the design of
algorithms for computing visibility maps has been to obtain output-sensitive
algorithms: algorithms whose running time depends not only on the complexity
of the input, n, but also on the complexity of the output (that is, the visibility
map), k. Ideally the running time should be near-linear in n and k.
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(i) (ii)

Fig. 1. (i) The visibility map of fat boxes can have quadratic complexity. Left: the
scene. Right: the visibility map for p = (0, 0, ∞). (ii) The visibility map of a scene with
cyclic overlap.

The first output-sensitive algorithms for computing visibility maps only worked
for polygons parallel to the viewing plane or for the slightly more general case that
a depth order on the objects exists and is given [10,13,14,19,20,21]. Unfortunately
a depth order need not exist since there can be cyclic overlap among the objects—
see Figure 1 (ii). De Berg and Overmars [7] (see also [3]) developed a method to
obtain an output-sensitive algorithm that does not need a depth order. When ap-
plied to axis-parallel boxes (or, more generally, c-oriented polyhedra) it runs in
O((n+k) log n) time [7] and when applied to arbitrary triangles it runs in O(n1+ε+
n2/3+εk2/3) time [1]. Unfortunately, the running time for the algorithm when ap-
plied to arbitrary triangles is not near-linear in n and k; for example, when k = n
the running time is O(n4/3+ε). For general curved objects no output-sensitive al-
gorithm is known,1 not even when a depth order exists and is given.

In this paper we study the hidden-surface removal problem for so-called fat
objects—see the next section for a definition of fatness. As illustrated in Figure 1,
the complexity of the visibility map of fat objects can still be Θ(n2), so also here
the main challenge is to obtain an output-sensitive algorithm. Fat objects have
received ample attention over the past decade or so, both from a combinatorial
and from an algorithmic point of view, and many problems can be solved much
more efficiently for fat objects than for general objects. Since hidden-surface
removal has been widely studied in computational geometry, it is not surprising
that it has also been studied for fat objects: Katz et al. [15] gave an algorithm
with running time O((U(n) + k) log2 n), where U(m) denotes the maximum
complexity of the union of the projection onto the viewing plane of any subset
of m objects. Since U(m) = O(m log log m) for fat polyhedra [18] and U(m) =
O(λs+2(m) log2 m) for fat curved objects [5], their algorithm is near-linear in n
and k. (Here λs+2(n) is the maximum length of an (n, s+2) Davenport-Schinzel
sequence; λs+2(n) is almost linear in n.) However, the algorithm only works
if a depth order exists and is given. This leads to the main question we wish

1 Some of the algorithms can be generalized to curved objects using standard techniques.
The resulting algorithms are not very efficient, however, and typically have running
time close to quadratic even when the visibility map has linear complexity.
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to answer: is it possible to obtain an output-sensitive hidden-surface removal
algorithm for fat objects that is near-linear in n and k and does not need a
depth order on the objects? We answer this question affirmatively by giving
an algorithm with running time O((n + k) polylogn) for fat convex objects of
constant-complexity. More precisely, the running time is O((n log n(log log n)2 +
k) log3 n) when the objects are polyhedra, and it is O((n log5+ε n + k) log3 n)
when the objects are curved.

The main difficulty we have to overcome is that the only known method for
output-sensitive hidden-surface removal that can handle objects without depth
order [3,7] needs an auxiliary data structure for ray shooting in so-called cur-
tains—these are semi-infinite surfaces, extending downward from the edges of
the input objects—and it appears to be difficult to profit from the fact that
the objects are fat when implementing this data structure. This also explains
why there is no (efficient) output-sensitive algorithm for hidden-surface removal
in curved objects: there are no efficient data structures known for ray shooting
(with curved rays, in this case) in curved curtains. Our method therefore works
differently: instead of ray shooting in curtains, we trace the rays on several two-
dimensional planes by performing many simultaneous and coordinated sweeps
on these planes. To obtain a suitable set of planes, we use a suitably augmented
variant of the BSP for ray shooting that was recently introduced by De Berg [4].

2 Preliminaries

Let P be a set of disjoint convex objects in R
3. We assume the objects are β-fat

according to the following definition of fatness [9]: an object o in R
d is β-fat if

for any ball b whose center lies in o and that does not fully contain o, we have
vol(b∩ o) ≥ β · vol(b), where vol(o) denotes the volume of o. (For convex objects
this definition is equivalent, up to constant factors, to other definitions of fatness
that have been proposed.)

We define size(o), the size of an object o, to be the radius of the smallest
enclosing ball of o. The density of a set S of objects is defined as the smallest
number λ such that any ball b is intersected by at most λ objects o ∈ S such
that size(o) ≥ size(b). The following well-known lemma [9] relates the density
of a group of objects to the fatness constant.

Lemma 1. [9] A set of disjoint β-fat objects has density λ where λ = O(1/β).

For a curve e in R
3 define the curtain of e, denoted curt(e), as the ruled surface

constructed by taking a vertical ray pointing downward and moving its starting
point from one end of e to the other. Thus, if e is a segment then curt(e) is
an infinite polygon defined by e and two unbounded edges, each parallel to the
z-axis. For a set E of curves we let curt(E) := {curt(e)|e ∈ E}.

Next we define some notation and terminology relating to visibility maps.
We assume from now on that we are looking at the scene from above with the
viewpoint at z = ∞—hence, we are dealing with a parallel view. As already
mentioned, the visibility map M(P) of P is the subdivision of the viewing plane
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into maximal regions such that in each region a single object in P is visible from
the viewpoint p, or no object is visible. We assume without loss of generality
that the viewing plane is the xy-plane.

Consider an object o ∈ P . We denote the projection of o onto the viewing
plane by proj(o). Since o is convex, the boundary of proj(o) consists of the
projection of all points of vertical tangency of o. Let σ(o) denote the curve2 on
the boundary of o that projects onto the boundary of proj(o). Note that if o
is polyhedral, σ(o) consists of certain edges of o. We cut σ(o) into two pieces
at the points of minimum and maximum x-coordinate; we can assume without
loss of generality that these points are unique. We call these pieces silhouette
curves—note that for polyhedral objects a silhouette curve consists of multiple
edges of the object—and their endpoints vertices.

M(P) is a plane graph whose nodes are intersection points of projected sil-
houette curves and whose arcs are portions of projected silhouette curves. Arcs
of the visibility map will be denoted by a, and silhouette curves by e. The curve
whose projection contains the arc a is denoted e(a). It will be convenient to also
consider the projections of visible endpoints of silhouette curves (that is, visible
vertices) as nodes. Since we cut σ(o) into two pieces when it changes direction
with respect to the x-axis, the arcs of M(P) are x-monotone.

The existing output-sensitive hidden-surface removal algorithm from [3] works
as follows. It sweeps over the viewing plane from left to right, detecting the arcs
of the visibility map along the way. Note that the left endpoint of an arc is one
of two types. It is either the projection of a visible vertex of a silhouette curve
or it is the right endpoint of some other arc.

To detect left endpoints of the first type we need a data structure to determine
for a vertex v whether it is visible or not. If it is, two new arcs start at proj(v),
which are contained in the projections of the two silhouette curves incident to v.
Detecting if v is visible can be done by vertical ray shooting: shoot a ray from v
vertically upwards; if no object is hit then v is visible.

We also need to be able to detect the right endpoint of an arc (and thereby the
left endpoints of the second type). An arc a can end for two reasons. One is that
the silhouette curve e(a) projecting onto a ends. The other is that proj(e(a))
intersects some other projected silhouette curve proj(e′) such that either e(a)
becomes invisible or e′ becomes visible—see Figure 2 (i). These two latter events
are detected using a ray shooting operation in a set of curtains, as explained next.
When e(a) becomes invisible because it disappears below some object o, then
the ray along e(a) must hit the curtain hanging from one of o’s silhouette curves.
When some other silhouette curve e′ becomes visible, something similar holds.
To this end, we define a ray3 ρ(a) for an arc a of the visibility map as follows.
Let q be the point on e(a) projecting onto the left endpoint of a. Project the
portion of e(a) to the right of q onto the object o(q) immediately below q. (If
there is no such object, we project onto a plane below all objects.) This gives us

2 For simplicity of presentation we assume o does not have any vertical facets, so that
σ(o) is uniquely defined. It is easy to adapt the definitions to the general case.

3 Note that in case of curved objects, the ray will be curved.
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Fig. 2. (i) The node v in the visibility map is made by the intersection of proj(e) and
proj(e′). (ii) ρ(a) hits a curtain in curt(E) at point q when its projection intersects a
silhouette curve of a union stored at S+(ν). Note that the objects pictured here are
not fat under our definition, but could be the top surfaces of fat polyhedra. We draw
the objects in this way to ease visualization.

a ray on the surface of o(q) whose projection contains a. It can be argued [3] that
the point where ρ(a) hits curt(e′) corresponds to the point where the silhouette
curve e′ becomes visible. (Note that ρ(a) is about to leave o(q) when it reaches
a silhouette curve of o(q); in this case ρ(a) hits the curtain hanging from that
silhouette curve, which is then the curve that becomes visible.) Since any curtain
hit by the ray along e(a) is also hit by ρ(a)—after all, ρ(a) is below e(a)—we
can detect events where e(a) becomes invisible by shooting along ρ(a) as well.

The next lemma summarizes the discussion above.

Lemma 2 ([3]). Let E be the set of silhouette curves of the objects in P. The
right endpoint of an arc a of M(P) is the leftmost of the following event points:

– The projection of the right endpoint of e(a).
– The projection of the first intersection of ρ(a) with a curtain in curt(E).

3 The Algorithm

As mentioned in the introduction, it seems hard to implement a structure for ray
shooting in curtains that profits from the fact that the objects are fat. Therefore
we use the following idea.

Suppose that all objects are above a plane h and the query ray ρ(a) is below h.
Then we can project all objects and the ray onto h, and shoot with the projected
ray in the union of the projected objects; the point where the ray hits a curtain
then corresponds to the point where the projected ray hits the union. This is
true because in our application the ray will always be visible, so the projected
ray cannot start inside the union. Unfortunately two-dimensional ray shooting is
still too costly. If, however, we have to answer many queries, then we can project
all of them onto h, and perform a sweep to detect when they intersect the union.
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Of course there will not be a plane h that nicely separates all objects from all
rays. Therefore we construct a binary space partition (a BSP) on the objects.
This will basically give us a collection of O(log n) planes that separate any ray
from the objects. The ray will then be traced on each of these planes. In the
next section we make this idea more precise.

We start by describing the BSP in Section 3.1, then discuss in Section 3.2 the
correspondence between ray shooting in curtains and tracing rays on a suitable
set of planes, and finally we give the details of the algorithm in Section 3.3.

3.1 The Data Structure

A balanced aspect ratio tree (or BAR-tree for short) is a special type of BSP for
storing points. It was introduced by Duncan [11,12]. The variant known as the
object BAR-tree [8] stores objects rather than points and has proved especially
useful in designing data structures for fat objects. It has been used as a basis for
vertical ray shooting [4,6] as well as approximate range searching and nearest
neighbor searching [8].

We denote the region associated with a node ν in the object BAR-tree for
P by region(ν), and we let Pν denote the set of all objects o ∈ P intersecting
region(ν), clipped to region(ν). The following lemma states the properties of the
object BAR-tree we will need.

Lemma 3. [8] Let P be a set of n β-fat disjoint convex objects in R
d. An object

BAR-tree on P is a BSP tree T for P with the following properties:

(i) the tree has O(n) leaves; each leaf region intersects O(1/β) objects from P;
(ii) the depth of the tree is O(log n);
(iii) for each node ν, region(ν) has constant complexity and fatness.

De Berg [4] has shown how to augment an object BAR-tree T with secondary
structures, so that vertical ray shooting can be performed efficiently. The aug-
mentation is as follows.

– For each leaf node μ of T , we store the set Pμ in a list Lμ.
– For an internal node ν, let hν denote the splitting plane stored at ν.

• If hν is vertical, then we store the set {hν ∩ o : o ∈ Pν}—that is, the
cross-sections of the polyhedra in Pν with hv—in a structure Tν , which is
an optimal point-location structure [16] on the trapezoidal map defined
by hν ∩ Pν .

• If hν is not vertical, then ν has two associated data structures, T +
ν and

T −
ν , defined as follows.

Let P+
ν denote the set of object parts from Pν lying above hν . Thus P+

ν =
Pμ, where μ is the child of ν corresponding to the region above hν . Let
proj(P+

ν ) denote the set of vertical projections of the objects inP+
ν ontohν .

Then T +
ν is an optimal point-location structure for U(proj(P+

ν )), the union
of proj(P+

ν ). In our application, we not only store the point-location struc-
ture for U(proj(P+

ν )), but also an explicit list of all union edges.
The associated structure T −

ν is defined similarly, but this time for the
object parts below hν .
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Recall that we want to use the structure to answer ray shooting queries in
curtains, where the query rays are projections of (parts of) silhouette curves
onto the object immediately below. A problem with this approach is that an
object may be cut into many pieces,4 and we would then have to spend time
whenever the ray goes from one piece to the next.

To avoid this problem we need some extra information. In particular, for each
object o ∈ P we need to store the union of the projection of a certain subset
P(o) ⊂ P onto ∂+(o), the top surface of o. (The top surface of o is the part of
the boundary of o visible from above.) The subset P(o) is defined as follows.

Call an object o large at a node ν of T if o intersects region(ν) and the
following two conditions are met: (i) size(o) < size(region(parent(ν))) and (ii)
either size(o) ≥ size(region(ν)) or ν is a leaf. Now we define

P(o) := { o′ ∈ P : there is a node ν such that o is large at ν,
o′ intersects region(ν) and o′ is above o }

Besides these extra unions on the top surface of each object o, we also need the
union of the projections of all the objects in P onto the xy-plane. (The xy-plane
can be seen as a dummy object added below the whole scene, which is large at
the root of T .)

Next we analyze the cost of the additional information.

Lemma 4. Any object o ∈ P is large at O(log n) nodes, and at any node ν there
are O(1/β) large objects.

Proof. By Lemma 3 we know that every cell of T is O(1)-fat. This means that
any collection of disjoint cells has density O(1). Therefore, since the cells at any
level of the BAR-tree are disjoint, the number of nodes ν in any level of the
BAR-tree intersecting some o ∈ P with size(region(ν)) ≥ size(o) is O(1). An
object o can only be large at the node ν if size(region(parent(ν))) ≥ size(o).
Thus, the number of cells per level at which o can be large is O(1). Finally we
know that T has O(log n) levels by Lemma 3, proving the first part of the lemma.

A set of disjoint β-fat objects has density O(1/β)—see Lemma 1—which,
together with Lemma 3(i), implies the second part. �	

From Lemma 4 we derive:
∑

o |P(o)| ≤
∑

ν{(# large objects at ν) · (# objects intersecting region(ν))}
≤ O(1/β) ·

∑
ν |Pν | ≤ O((1/β) · n log n),

where the last inequality follows from [4]. Together with the known bounds on
the union of fat objects [5,18] this is easily seen to imply that the total amount of

4 The fact that an object is cut into many pieces also prevents us from applying
the following simple strategy: compute the object BAR-tree, use it to find a depth
order on the resulting set of pieces, and apply the algorithm of Katz et al. [15]. The
problem is that the visibility map of the pieces may be much more complex than
the visibility map of the original objects.
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storage and preprocessing time for the unions of the projections of P(o) onto the
top surfaces ∂+(o) does not increase the total amount of storage or preprocessing
asymptotically, and the bounds we get are the same as in [4]. (The constants in
the O-notation depend on the fatness factor β.)

Lemma 5. Letβ beafixedconstant.Thedata structureabove for convexβ-fat poly-
hedral objects requires O(n log3 n(log log n)2) storage and O(n log4 n(log log n)2)
preprocessing time, andO(n log7+ε n) storage andO(n log8+ε n)preprocessing time
for convexβ-fat curvedobjects.With this structure,wecananswer vertical ray shoot-
ing queries in O(log2 n) time.

3.2 Tracing an Arc

Recall that the right endpoint of an arc a can be found by shooting with ρ(a) in
curt(E). Next we explain how to find the right endpoint of a using the unions
stored in T and additional unions described above. The key is to find a collection
of O(log n) unions such that the first point where ρ(a) hits a curtain corresponds
to the first point where one of the unions is hit.

To this end we first define for a node ν a collection S+(ν) of O(log n) splitting
planes, which consists of those splitting planes hν′ such that ν′ is an ancestor of
ν and region(ν) is below hν′ . Now let e(a) be the silhouette curve defining an
arc a, and let p ∈ e(a) be the point projecting onto the left endpoint of a. Recall
that ρ(a) is a ray on the top surface of the object o directly below p. We denote
the projection of p onto o by p̃.

The first curtain hit by ρ(a) can now be found using the following lemma.

Lemma 6. Let ρ(a) be a ray on the top surface of an object o ∈ P, let p̃ be
the starting point of ρ(a), and let ν be the node in T such that p̃ ∈ region(ν)
and o is large at ν. Then ρ(a) hitting a curtain from curt(E) inside region(ν)
corresponds to (a suitable projection of) ρ(a) hitting either the union of (the
projection of) P(o) on o or a union on one of the splitting planes in S+(ν).

Proof. Note that the node ν referred to in the lemma is unique and must exist,
since we consider the xy-plane to be a dummy object below the whole scene.

Let q̃ be the first point where ρ(a) intersects a curtain in curt(E), let e be the
silhouette curve defining the curtain, and let q ∈ e be the point directly above
q̃. If q ∈ region(ν) then the object containing the silhouette curve e is a member
of P(o) and we are done. Otherwise there is a splitting plane hν′ stored at some
ancestor ν′ of ν with q above hν′ and q̃ below hν′ . Then the relevant portion of
e must be part of the union stored at the first such node ν′ (as seen from the
root of T ). See Figure 2 (ii).

Conversely, since all the unions considered are generated by (parts of) objects
above o, we know that ρ(a) cannot hit such a union before it hits a curtain. �	

3.3 Details of the Algorithm

We now describe a space-sweep algorithm for computing the visibility map of a
set P = {o1, . . . , on} of convex, constant-complexity, β-fat objects. We move a



Computing the Visibility Map of Fat Objects 259

sweep plane h parallel to the yz-plane from left to right through space. The space
sweep induces a plane sweep for each of the unions stored in T . Thus, instead
of thinking about the algorithm as a 3D sweep, one may also think about it
as a number of coordinated 2D sweeps. That is, while we sweep R

3 with h, we
also sweep each (non-vertical) splitting plane hν with the line h ∩ hν . This 2D
sweep is performed to detect intersections of the union on hν with certain rays
(projected onto hν). The same holds for the unions stored for each object: while
we sweep R

3 with h, we sweep the top surface ∂top(o) of each object o with the
curve h ∩ ∂top(o). Finally, the sweep of h induces a sweep on the viewing plane.
As in the algorithm from [3], the visibility map will be computed as we go, so
that at the end of the sweep the entire visibility map has been computed.

The space-sweep algorithm is supported by the following data structures:

– There is a global event queue Q, where the priority of an event is its x-
coordinate. Initially, all vertices of the objects (that is, all endpoints of sil-
houette curves) are placed into Q. In addition, all vertices of any of the
unions stored in T are placed into Q. During the sweep, new event points
will be inserted into Q, for example endpoints of arcs of the visibility map.
It is also possible that events will be removed before they are handled.

– For every splitting plane hν (and the top surface of every object o) we main-
tain a balanced binary tree, which we will call the intersection-detection data
structure. This tree will store the edges of the union on the splitting plane
(resp. ∂top(o)) that intersect the sweep line h ∩ hν (resp. h ∩ ∂top(o)) as well
as the rays traced on it that intersect the sweep line; the edges and rays are
stored in order of their intersection with the sweep line. Thus we are essen-
tially running the standard line-segment intersection algorithm of Bentley
and Ottmann [2] on the union edges and rays.

Next we discuss the events that can take place, and how they are handled.

(i) The sweep reaches the left endpoint of an arc a.
Let e(a) be the silhouette curve defining a, and let p ∈ e(a) be the point
whose projection is the left endpoint of a. Let o be the first object that
a vertical ray downward from p hits, and ν be the node where o is large
in region(ν) and p̃ ∈ region(ν). Determine S+(ν), and insert the portion
of e(a) starting at p into each of the intersection-detection data struc-
tures associated with the splitting planes in S+(ν). (More precisely, the
projection of the silhouette curve on the plane is added.) Also add the pro-
jection of the silhouette curve onto ∂top(o) to the intersection-detection
structure for o. Determine any new events using these data structures in
the standard way (that is, by checking new pairs of adjacent elements);
add any new events to Q. Finally, add the following three events to Q: the
right endpoint of e(a), the (first) intersection of ρ(a) with the boundary
of region(ν), and the (first) intersection of ρ(a) with the silhouette of o.

(ii) The sweep reaches the right endpoint of an arc a.
Determine ν and o as above. Remove a from all intersection-detection
data structures in S+(ν) and the intersection-detection data structure
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associated with o. Remove all events associated with a from Q. Check for
new events in each of the intersection-detection data structures; add any
new events to Q. Output a as an arc of M. (Note that the right endpoint
of an arc may be the left endpoint of one or two other arcs; in this case
the left endpoints will be separate events, which are handled according to
case (i).)

(iii) The sweep reaches the left vertex v of a silhouette curve.
(In other words, we reach the leftmost point of an object o ∈ P .) Deter-
mine if v is visible by shooting a ray vertically up from it. If v is visible,
two arcs start at the projection of v onto the viewing plane. Run the
actions from case (i) for each of these arcs.

(iv) The sweep reaches the right vertex v of a silhouette curve it is currently
tracing.
Run the actions from case (ii) for the arc ending at the projection of v.

(v) The sweep reaches the intersection point of the union boundary on some
splitting plane (or top surface of an object) and an arc a traced on the
plane (or top surface).
This case corresponds to a hitting a curtain in curt(E). Now the arc a
ends. Run the actions from case (ii) for a. One or two new arcs may start
at this point, at most one along the silhouette curve e(a), and one along
the silhouette curve corresponding to the curtain that is hit. Run the
action from case (i) for the new arc(s).

(vi) The sweep reaches a point p where the projection of a currently visible
silhouette curve onto the object o below hits the boundary of a cell ν where
o is large.
Remove a from all the intersection-detection data structures in S+(ν) and
all events associated with a from Q. Run the action for case (i) for the
continuation of the arc a defined by the silhouette curve. (The only thing
that happens here is that the set S+(·) changes, because the ray that we
are tracing moves out of a cell where the object o on which the ray is
traced is large.)

(vii) The sweep reaches the point where the object o immediately below a cur-
rently visible silhouette curve changes.
Now p is the right endpoint of an arc a. Run the actions from case (ii)
for a. Two new arcs start at p, one that is the continuation of a, and
one that is along a silhouette curve of o (which became visible). Run the
actions for case (i) on both curves.

(viii) The sweep reaches a point on a splitting plane (or top surface of an object),
where a union edge starts or ends.
In this case we only have to update the relevant intersection-detection
data structure, check for new events in the intersection-detection data
structures, and add any new events to Q.

Lemma 7. The number of events of type (i)–(vii) is O(n + k log n), where
k is the complexity of M, and the total number of events of type (viii) is
O(n log3 n(log log n)2) for fat polyhedra and O(n log7+ε n) for fat curved objects.
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Proof. Clearly, the number of events of types (i), (ii), (iv), (v), and (vii) is O(k),
since they can be charged to a vertex of M. The number of events of type (iii)
is O(n). It remains to bound the number of events of type (vi). Consider the
portion of a silhouette curve e(a) defining some arc a. This portion has a unique
object o immediately below it. Since o is large at O(log n) cells by Lemma 4 and
the projection of e(a) onto o can leave any cell only a constant number of times,
we can conclude that there are only O(log n) type (vi) events for any arc a, this
giving O(k log n) such events in total.

The bound on the number of events of type (viii) follows immediately from
Lemma 5. �	

Lemma 8. The time taken for each event of type (i)–(vii) is O(log2 n), and the
time taken for each event of type (viii) is O(log n).

Proof. In all event types, we may need to perform several actions: vertical
ray shooting, updating intersection-detection data structures, determining a set
S+(ν), and updating Q.

By Lemma 5, the time taken for the vertical ray shooting is O(log2 n). Each
event needs to do only a constant number of ray shooting queries, so this is
O(log2 n) in total. The intersection-detection data structures are balanced binary
trees, so updates take O(log n) time. At each event we have to update O(log n)
intersection-detection data structures, so the total time taken for updating is
O(log2 n). Determining new events in the intersection-detection data structures
takes O(1) per data structure, so the total amount of time taken for events of
type (iii) is O(log2 n). Determining a set S+(ν) can be done in O(log n) time by
searching in T . At each event we may have to remove O(log n) event points from
Q, each removal taking O(log n) time. Hence, all events of type (i)–(vii) can be
handled in O(log2 n) time, as claimed.

The events of type (viii) require O(log n) time, since they involve a constant
number of operations on a single intersection-detection data structure. �	

The correctness of the algorithm follows from Lemmas 2 and 6 as well as the
correctness of the algorithm in [3]. We conclude with the following theorem.

Theorem 1. The visibility map of a set of n disjoint constant-complexity convex
β-fat polyhedra in R

3 can be computed in time O((n log n(log log n)2 +k) log3 n),
where k is the complexity of the visibility map. When the objects are curved
(and disjoint, constant-complexity, convex, and β-fat) the visibility map can be
computed in time O((n log5+ε n + k) log3 n).
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