
A Pseudopolynomial Time
O(log n)-Approximation Algorithm for Art

Gallery Problems

Ajay Deshpande1, Taejung Kim2, Erik D. Demaine1, and Sanjay E. Sarma1

1 Massachusetts Institute of Technology, Cambridge, MA 02139 USA
{ajayd,edemaine,sesarma}@MIT.EDU

2 Dankook University, Hanam-Dong, Seoul, 140-714 Korea
taejungkim@dankook.ac.kr

Abstract. In this paper, we give a O(log copt)-approximation algorithm
for the point guard problem where copt is the optimal number of guards.
Our algorithm runs in time polynomial in n, the number of walls of the
art gallery and the spread Δ, which is defined as the ratio between the
longest and shortest pairwise distances. Our algorithm is pseudopoly-
nomial in the sense that it is polynomial in the spread Δ as opposed
to polylogarithmic in the spread Δ, which could be exponential in the
number of bits required to represent the vertex positions. The special
subdivision procedure in our algorithm finds a finite set of potential
guard-locations such that the optimal solution to the art gallery prob-
lem where guards are restricted to this set is at most 3copt. We use a set
cover cum VC-dimension based algorithm to solve this restricted problem
approximately.

1 Introduction

The art gallery problem addresses the following question [7]: How many guards
are required to guard an art gallery with n walls? This problem was first posed by
Victor Klee in 1973 [8]. Chvátal showed that �n

3 � guards are always sufficient and
occasionally necessary [10]. Since then, numerous variations of this problem have
been studied including mobile guards, guards with limited visibility, guarding
rectilinear polygons, etc., see, e.g., [8,9,7]. In this paper, we study one version of
the art gallery problem, also known as the point-guard problem. The point-guard
problem involves finding the minimum number of points and their positions so
that guards located at these points cover (i.e. see) every point in the interior of
the art gallery.

Lee and Lin show that the point-guard problem is NP-hard [11]. Eidenbenz,
Stamm and Widmayer prove that even finding a (1 + ε)-approximation for this
problem for any ε > 0 is NP-hard [4]. They also show that the problem of art
gallery with holes can not be approximated by a polynomial time algorithm
with ratio (1−ε

12) ln n for any ε > 0, unless NP ⊆ TIME(nO(log log n)). Brodén,
Hammar and Nisson prove that the point-guard problem even for a special class
of art galleries, which are 2-link polygons, is APX-hard [12].

F. Dehne, J.-R. Sack, and N. Zeh (Eds.): WADS 2007, LNCS 4619, pp. 163–174, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

164 A. Deshpande et al.

In [5], Ghosh proposes an O(log n)-approximation algorithm for the min-
imum vertex-guard problem where guards can be be located only at the
vertices of the art gallery. González-Banos and Latombe [3] consider another
version of the art gallery problem in which guards have range and incidence
constraints and are required to cover only the walls of the art gallery. They
choose a set of uniformly randomly selected points from the art gallery as po-
tential guard-locations and solve this new problem. They argue that their algo-
rithm computes with high probability a solution whose size is at most a factor
O(log n· log (c log n)) times the size of the optimal solution c. In [15], Efrat and
Har-Peled consider another variant of the art gallery problem where guards are
restricted to be placed on the points of a dense grid and propose a randomized
algorithm which with high probability yields the approximation ratio within
O(log c′), where c′ is the optimal solution size for the modified problem. In
the same paper [15], Efrat and Har-Peled propose an exact algorithm for the
point-guard problem with running time at most O((nc)3(2c+1)), where is c is
the size of the optimal solution. This is the first known exact solution to the
problem, although the running time is exponential in the size of the optimal
solution.

Our result. We give a pseudopolynomial time O(log copt)-approximation algo-
rithm for the point-guard problem, where copt is the size of the optimal solution
which can be as large as Θ(n) in some cases. Our algorithm is pseudopolynomial
in the sense that it is polynomial in the number of walls n of the art gallery and
the spread Δ of the vertices of the art gallery. The spread of a set of points is
defined as the ratio of the longest and shortest pairwise distances [13,14]. In the
worst case, the spread Δ could possibly be exponential in the number of bits
required to represent positions of the vertices of the art gallery. To the best of
our knowledge, this is the first pseudopolynomial time algorithm that yields a
solution with a guaranteed approximation ratio.

Our basic approach involves using a special subdivision procedure to obtain
a finite set of potential guard-locations. We then consider a new problem of
choosing the minimum number of guards from this finite set. We devise our
algorithm such that the new problem has an optimal solution at most three
times the optimal solution to the original point-guard problem. We solve the
new problem using a set cover cum VC-dimension-based algorithm. Our overall
algorithm can be summarized in the following 3 steps:

– Step 1: Generate an initial triangulation of the art gallery based on the
visibility cell decomposition.

– Step 2: Subdivide the initial triangulation such that each triangle in the
final triangulation satisfies a special property – the region that is visible to
any point in a triangle is always a subset of the region simultaneously visible
to the three vertices of the triangle.

– Step 3: Formulate the set cover problem and solve it approximately using
the VC-dimension-based algorithm of González-Banos and Latombe [3].

A Pseudopolynomial Time O(log n)-Approximation Algorithm 165

2 Basic Terminology

Most of the definitions and notation we present in this section have been bor-
rowed from [1,2]; however, we reformulate some of these and define new ones
for our convenience. Most of the notions we describe below are illustrated in
Figure 1.

For the sake of simplicity, we consider the case of an art gallery without holes.
At the end of the paper, we comment about the case of an art gallery with holes.
An art galley without holes can be represented as a simple polygon. Here, we
consider the boundary also as a part of the polygon. Let P be a simple polygon
with n vertices. Some of these are reflex vertices that subtend an angle greater
than 1800 inside P . We say two points in P see each other if the line segment
between them does not intersect with the exterior of P .

The visibility polygon V (x) for any point x ∈ P , is the polygon consisting of
all the points in P that are visible from x. Note that some of the edges of V (x)
coincide with those of the original polygon P and some are newly introduced
as shown in Figure 1(a). A new edge is introduced at a reflex vertex of P that
blocks the view of x. We call this reflex vertex a blocking reflex vertex. The other
end-point of the new edge which lies on the boundary of P is referred to as an
image of x through the blocking reflex vertex. To remove any ambiguities, we
assume that for P and V (x), no two consecutive edges are collinear.

For any point x ∈ P , we say that x sees an edge of P , if it sees a point on
the edge. If x cannot see either of the end-points of a visible edge of P , we say
that x sees the edge partially. We call the corresponding edge of P a partial edge
with respect to x. We say that x sees a visible edge of P non-partially, if it sees
at least one of its end-points. We call the corresponding edge of P a non-partial
edge with respect to x. If we join every vertex of V (x) to x, we get a triangulation
of V (x). We call each triangle as a visibility sector of x. The edge of a visibility
sector that is a part of an edge of P is referred to as a base of the visibility
sector. Depending upon the type of the edge of P corresponding to the base of
a visibility sector, we classify the visibility sector into non-partial-edge sector or
partial-edge sector.

3 Initial Triangulation Using Visibility Cell
Decomposition

In this section, we define a particular subdivision of the polygon – the visibility
cell decomposition. Then we show how to triangulate this subdivision to generate
the initial triangulation in Step 1 of our algorithm.

The visibility cell decomposition of P is a subdivision induced by visibility
polygons of all the vertices of P . We call each component of the subdivision a
visibility cell. We state without proofs the following properties of the visibility
cell decomposition that are useful both in the construction and analysis of our
algorithm. We refer interested readers to the papers by Bose et al. [1] and Guibas
et al. [2] for further details.

166 A. Deshpande et al.

x

new edgenon-partial edge

x

partial-edge

sector

partial edge

non-partial edge non-partial-edge
sector

The visibility polygon V (x) of x

image of x through

a blocking reflex vertex

a blocking
reflex vertex

Fig. 1. Visibility polygon and visibility sectors

– Each visibility cell is a convex polygon.
– The total number of visibility cells in the visibility cell decomposition is

O(n3).
– By definition, any two points in a visibility cell see the same set of vertices

of P . Furthermore any two points in the same visibility cell see the same set
of non-partial edges and the same set of partial edges of P .

Step 1 of our algorithm can be summarized as follows:
Construct the visibility cell decomposition of the polygon. Triangulate each

visibility cell simply by joining its one particular vertex to every other vertex.

4 Further Subdivision of the Initial Triangulation

In this section, we describe Step 2 of our algorithm. We give a procedure to
subdivide the initial triangulation in such a way that each triangle in the final
triangulation satisfies a special visibility property – the region that is visible to
any point in a triangle is covered by the visibility polygons of the three vertices
of the triangle.

4.1 Vertex-Visibility Property and Vertex-Pair-Visibility Property

We first define the desirable property which each triangle in the final triangula-
tion is required to satisfy.

Definition 1. Let �abc be a triangle in the polygon P . We say �abc satisfies the
vertex visibility property, if for any point x ∈ �abc, V (x) ⊆ V (a)∪V (b)∪V (c).

Covering the visibility polygon of a point is equivalent to covering every visibility
sector of the point. This motivates the following definition.

A Pseudopolynomial Time O(log n)-Approximation Algorithm 167

Definition 2. A triangle in a visibility cell satisfies the vertex-visibility prop-
erty with respect to a particular edge of the polygon, if the corresponding visi-
bility sector of any point in the triangle is a subset of the union of the visibility
polygons of the vertices of the triangle.

The vertex-visibility property is not directly useful in the construction of our
algorithm. We define a more convenient property.

Definition 3. A triangle in a visibility cell satisfies the vertex-pair-visibility
property with respect to a particular edge of the polygon, if the visibility sectors
of any two vertices of the triangle overlap on the edge.

Consider the images of two points in a visibility cell through a blocking reflex
vertex on an edge of the polygon. We call the portion of the edge between the
two images as a span of the two points corresponding to the blocking reflex
vertex. Note that the image of a point on the segment joining these two points
lies in the span by one-to-one mapping. Now consider the images of the three
vertices of a triangle in a visibility cell through a blocking reflex vertex on an
edge of the polygon. One of the three images lies between the other two. We call
the portion of the edge between the two extreme images as a span of the triangle
through the blocking reflex vertex.

Lemma 1. For any point in a triangle in a visibility cell, its image through a
blocking reflex vertex always lies in the span of the triangle through the blocking
reflex vertex.

Proof. The image of any point on a segment lies in the span of the two endpoints
of the segment corresponding to a blocking vertex. Thus, the image of any point
on the perimeter of a triangle lies in the span of the triangle. Now consider any
point in the interior of the triangle. The image of this point is same as the image
of the point on the perimeter of the triangle where the line segment joining this
point, the blocking reflex vertex and its image intersects the perimeter. Hence
the image of any point in the triangle is in its span. �	

Theorem 1. A triangle in a visibility cell satisfies the vertex-pair-visibility as
well as the vertex-visibility property with respect to a non-partial edge.

Proof. Let �abc be a triangle in a visibility cell C. Let e be a non-partial edge.
As we have already seen, at least one of the end-points of a non-partial edge is
visible from any point in a visibility cell. Depending on whether one or both the
end-points of a non-partial edge are visible, we make two cases and deal with
each case separately.

Case 1: Both the end-points of e are visible from any point in C. In this case,
by definition, �abc satisfies the vertex-pair-visibility property. Let u and v be
the end-points of e. Consider the convex hull of a, b, c, u and v. Since �abc is
on one side of e, line segment uv must be one of the edges of the convex hull.
Therefore, the convex hull can also be formed by considering the union of �abc
and the visibility sectors of a, b and c. Note that the convex hull is a subset

168 A. Deshpande et al.

of V (a)∪V (b)∪V (c) and the visibility sector of any point x ∈ �abc is a subset
of this convex hull. Therefore, �abc also satisfies the vertex-visibility property
with respect to e.

Case 2: In this case, only one end-point of e is visible from any point in C. Let
u be the visible end-point. Let r be a blocking reflex vertex. Again by definition
�abc satisfies the vertex-pair-visibility property because u is a common visible
point. Now, consider any point x in �abc. The visibility sector of x with respect
to e consists of two triangles, �xur and �urx′, where x′ is the image of x
through r. By similar arguments as in the first case, we can prove that �xur is
a subset of V (a)∪V (b)∪V (c). By Lemma 1, x′ lies in the span of the image of
�abc through r. Thus, at least one of a, b or c cover �rux′. Therefore, �abc
satisfies the vertex-visibility property with respect to e. �	

Theorem 2. If a triangle in a visibility cell satisfies the vertex-pair-visibility
property with respect to a partial edge e, then it also satisfies the vertex-visibility
property with respect to e.

Proof. Let �abc be a triangle in a visibility cell C such that it satisfies the
vertex-pair-visibility property with respect to the partial edge e. Let r1 and r2
be the two blocking reflex vertices. Consider vertices a and b. The visibility
sectors of a and b overlap on e. Let a1 and a2 be images of a through r1 and r2
respectively. Let b1 and b2 be images of b through r1 and r2 respectively. Since
a1a2 and b1b2 overlap on e, at least one of b1 and b2 lies in between a1 and a2.
Since e is a partial edge, a1b1 and a2b2 do not overlap on e. In other words, the
spans of a and b with respect to r1 and r2 do not overlap on e. By extending this
argument to the three vertices, a, b and c, the spans of any two vertices with
respect to r1 and r2 do not overlap. This implies that the spans of �abc also do
not overlap on e because if they do, the previous condition of pairwise vertices
having non-overlapping spans is violated for at least one pair. The portion of e
that is simultaneously visible to a, b and c consists of the spans of �abc through
r1 and r2 and the patch between the two spans. By Lemma 1, for any point x in
�abc, the two images of x through r1 and r2 lie in the spans of �abc through
r1 and r2 respectively. Thus, the portion of e that is visible to x is contained in
the portion that is visible to a, b and c. Therefore, the visibility sector of x is a
subset of V (a)∪V (b)∪V (c). �	

The theorem we prove below is useful in the analysis of the algorithm. Let
subtriangle be a triangle that is contained within a triangle.

Theorem 3. If a triangle in a visibility cell satisfies the vertex-pair-visibility
property with respect to a partial edge e, then any subtriangle also satisfies the
vertex-pair-visibility property with respect to e.

Proof. Let �abc be a triangle in a visibility cell C such that it satisfies the
vertex-pair-visibility property with respect to the partial edge e. Let r1 and r2
be the two blocking reflex vertices. We already proved in the proof of Theorem 2
that the spans of �abc through r1 and r2 do not overlap on e because it satisfies

A Pseudopolynomial Time O(log n)-Approximation Algorithm 169

the vertex-pair-visibility property. For any two points x and y in �abc, the spans
of x and y through r1 and r2 do not overlap on e because they are contained in
the spans of �abc through r1 and r2. Therefore, the visibility sectors of x and
y overlap on e. Therefore, any �xyz in �abc satisfies the vertex-pair-visibility
property. �	

The above theorem allows us to further subdivide the visibility cell without
affecting already existent vertex-pair visibility property with respect to a partial-
edge visibility sector.

4.2 Further Subdivision

In this subsection, we give a procedure to further subdivide the initial triangu-
lation obtained in Step 1 of our algorithm. The subdivision procedure described
below generates the final triangulation where every triangle satisfies the vertex-
visibility property. This property is required so that we can reduce the art gallery
problem to a problem with guaranteed approximation ratio. Using the results of
Theorem 1 and Theorem 2, we achieve this by developing a subdivision proce-
dure which is based on a stronger condition, the vertex-pair-visibility property.

First we define a notion that is useful in the description of our algorithm. Let
a and b be two points in a visibility cell such that the visibility sectors of a and
b do not overlap on a partial edge. Let r1 and r2 be the corresponding blocking
reflex vertices. Consider the convex hull of a, b, r1 and r2. We call a triangle
obtained by taking set difference between the convex hull and the union of the
visibility sectors of a and b as a dark triangle of segment ab. An example of a
dark triangle is shown in Figure 2(a).

Step 2 of our algorithm can be summarized as follows.
For every �abc in the initial triangulation obtained in Step 1, repeat the

following procedure:

1. Construct a set S of partial edges for which �abc does not satisfy the vertex-
pair-visibility property. Repeat the following procedure for every edge e ∈ S:
(a) Construct a dark triangle of every edge of �abc.
(b) For each dark triangle whose interior is not disjoint with �abc, invoke

SUBDIVIDE-DARK-TRIANGLE.
(c) Intersect with �abc, the subdivisions of all such dark triangles on which

the function SUBDIVIDE-DARK-TRIANGLE is invoked in the above
step to generate a new subdivision of �abc.

2. Intersect all the subdivisions of �abc corresponding to every edge e ∈ S to
generate the final subdivision. Triangulate the final subdivision in the similar
way as in Step 1 of our algorithm and return the final triangulation of �abc.

Function SUBDIVIDE-DARK-TRIANGLE:
Input: A dark triangle �aob corresponding to the two blocking reflex vertices

r1 and r2
Procedure: Let a1b1 and a2b2 be the two spans of ab through r1 and r2 re-

spectively on the partial edge. Construct a line joining the reflex vertex r2 and

170 A. Deshpande et al.

the image a1 of a through r1 and another line joining the reflex vertex r1 and
the image b2 of b through r2. Depending upon whether the two lines intersect
inside or outside �aob, choose one of the following two steps.

(Case 1) The two lines meet outside �aob : Return the new subdivision of
�aob induced by the two lines (Figure 2(a)). Terminate the function.

(Case 2) The two lines meet in �aob : Return the new subdivision of �aob
without �a′o′b′, where o′ is the point of intersection of the two lines, and a′

and b′ are the points of intersection of the two lines with the segment ab.
Check if �a′o′b′ satisfies the vertex-pair-visibility property. If it does not, in-
voke SUBDIVIDE-DARK-TRIANGLE on �a′o′b′. (Figure 2(b))

b

a

b

a2

b1

b2

a1

b1

b2

a1

a2

o
′

r2

a
′

b
′

(a)
(b)

r1

r1

r2

a

oo

Fig. 2. �aob is a dark triangle. Two cases in SUBDIVIDE-DARK-TRIANGLE:
(a)lines a1r2 and b2r1 meet outside �aob (b) lines a1r2 and b2r1 meet in �aob.

As a result of Theorem 1 and Theorem 2, in our subdivision procedure, we
need to subdivide a triangle only if it does not satisfy the vertex-pair-visibility
property with respect to a partial edge. The result of our subdivision procedure
is the final triangulation where every triangle satisfies the vertex-pair visibility
property and in turn, the vertex-visibility property. Now we prove this result.

As we have already mentioned, using the results of Theorem 1 and Theorem 2,
we check whether a triangle in the initial triangulation satisfies the vertex-pair-
visibility with respect to partial edges only. As a result of Theorem 3, the sub-
division procedure of a triangle with respect to one edge is ‘independent’ of the
subdivision procedure with respect to another edge. This allows us to subdivide
a triangle in the edge-by-edge fashion.

A Pseudopolynomial Time O(log n)-Approximation Algorithm 171

Lemma 2. Consider the partial-edge visibility sector of a point in a visibility
cell. Any triangle that lies in the visibility sector as well as the visibility cell
always satisfies the vertex-pair-visibility property.

Proof. Let x be a point in a visibility cell C. Let r1 and r2 be the blocking reflex
vertices corresponding to the partial edge. Let x1 and x2 be the images of point
x through r1 and r2 respectively. Any point a that lies in the visibility sectors of
x as well as in the same visibility cell C, sees the line segment x1x2. Therefore,
by definition, any triangle that lies in the visibility sector of x as well as in C
satisfies the vertex-pair-visibility property. �	

Let �abc be a triangle in the initial triangulation. Suppose that it does not satisfy
the vertex-pair-visibility property with respect to a partial edge. Consider the
convex hull of a, b, c, r1 and r2. The convex hull can also be obtained by taking
union of the visibility sectors of a, b and c and the dark triangles of all the edges
of �abc. By Lemma 2, the portions of �abc that lie in the visibility sector of any
of the vertices satisfies the vertex-pair-visibility property. The remaining part of
�abc is a subset of the union of the dark triangles. Therefore, in our subdivision
procedure in Step 2, we just subdivide the dark triangles.

Now we prove correctness of the function SUBDIVIDE-DARK-TRIANGLE
with reference to Figure 2

Theorem 4. In the first case, the subdivision of �aob satisfies the vertex-pair-
visibility property.

Proof. Consider line a1r2. It subdivides �aob into two part. a1 is always visible
from any point in one part. Therefore that always satisfies the vertex-pair visi-
bility property. Similarly line b2r1 subdivides �aob in two parts out of which one
part always satisfies the vertex-pair-visibility property because b2 is the common
visible point from that part. In the first case lines a1r2 and b2r1 meet outside
�abc. Both the parts of mentioned above that satisfy the vertex-pair-visibility
property cover �aob in the first case. Therefore, the subdivision of �aob satisfies
the vertex-pair-visibility property. �	

Theorem 5. In the second case, the subdivision of �aob except �a′o′b′ satisfies
the vertex-pair-visibility property.

The proof of the above theorem is similar to the proof of Theorem 4. �a′o′b′ may
not satisfy the vertex-pair-visibility property. In that case, we subdivide �a′o′b′

by again invoking the function SUBDIVIDE-DARK-TRIANGLE. The first case
is the termination case for the recursion in SUBDIVIDE-DARK-TRIANGLE. In
the next section, we show that SUBDIVIDE-DARK-TRIANGLE indeed termi-
nates. Thus, subdivision generated by SUBDIVIDE-DARK-TRIANGLE always
satisfies the vertex-pair-visibility property.

The function SUBDIVIDE-DARK-TRIANGLE in the subdivision procedure
described above is recursive. Here, we address the question after how many steps
this recursion ends. We define spread Δ of the vertices of the art gallery as the

172 A. Deshpande et al.

ratio of the longest and shortest pairwise distances [13,14]. Now we prove the
following theorem.

Theorem 6. The recursive function SUBDIVIDE-DARK-TRIANGLE ends in
O(Δ) steps.

Proof. Let L be the longest and let ε be the shortest pairwise distances among
the vertices of the art gallery. Thus, Δ = L/ε. The length of each subdivision
of the partial edge at the end of the recursive procedure is at most ε. Since the
length of any partial edge can be at most L, the total number of subdivisions
does not exceed Δ. �	

5 Set Cover Formulation and Approximate Solution

In this section, we describe Step 3 of our algorithm. We choose all the vertices
of the final triangulation obtained in Step 2 as the potential guard-locations and
formulate the set cover problem. The set cover problem is then solved approxi-
mately using a VC-dimension-based algorithm.

Step 3 of our algorithm can be summarized in the following way:

1. Construct a set G consisting of all the vertices of the final triangulation
obtained in Step 2 of our algorithm. Let |G| = m.

2. Construct the visibility polygon for every gi ∈ G and generate the new
subdivision of the polygon. Enumerate all the cells in the new subdivision
and group them in the set X = {1, 2, .., l}. For each gi ∈ G, construct a
set Ri of cells visible from gi, that is, Ri = {x ∈ X |x ∈ V (gi)}. Build the
set family, R = {R1, R2..., Rm}. Group X and R together to form the set
system (X, R).

3. Invoke the function SET-COVER on the set system (X, R) to obtain a near-
optimal covering of X from the set family R.

The function SET-COVER used in the above procedure is based on the algo-
rithm proposed by Brönnimann and Goodrich [6] for finding set covers for set
systems with finite VC-dimension. Here, we do not give details of the function
SET-COVER. Instead, we refer interested readers to [3] for further details.

6 Analysis of the Algorithm

In this section, we analyze the bound on the approximation ratio and running
time of our algorithm.

6.1 Bound on the Approximation Ratio of Our Algorithm

Consider the set system (X, R) that we construct in Step 3 of our algorithm.
Let Tx, where x ∈ X , be a set consisting of all the sets in R that contain x. We

A Pseudopolynomial Time O(log n)-Approximation Algorithm 173

define the dual set system (Y, S) of (X, R) by setting Y = R and S = {Tx|x ∈ X}
[6,3]. Y corresponds to the set of candidate locations for guards. An element
in S corresponds to a cell and is a set of candidate guard-locations that are
visible from every point in the cell. We can also write this dual set system as
(G, {G∩V (x) | x ∈ P}), where G consists of the set of all candidate guard-
locations. Valtr showed that the VC-dimension of the more general set system
(P, {P∩V (x) | x ∈ P}) is bounded by 23 [16]1. Using the definition of the VC-
dimension it is easy to prove that the VC-dimension of the dual set system (Y, S)
is also bounded by 23.

The result from [6] implies that it is possible to compute an approximate solu-
tion to the set cover problem with the approximation ratio O(d log(dc)), where d
is the VC-dimension and c is the size of the optimal solution. The constant bound
on the VC-dimension in this case implies that we obtain O(log copt)-approximate
solution, where copt is the size of the optimal solution. copt can be as large as
Θ(n) in some cases.

6.2 Analysis of the Running Time of the Algorithm

Theorem 7. The running time of our algorithm is polynomial in the number
of walls, n and the spread Δ of the vertices of the art gallery.

Proof. Here we provide only the sketch of the proof. In Step 1, the initial tri-
angulation can be generated in O(n4) time and consists of O(n4) triangles [1,2].
In Step 2, for each triangle in the initial triangulation, we can check in O(n)
time whether it satisfies the vertex-pair visibility property. In the worst case,
the recursive subdivision procedure for each triangle with respect to a partial
edge may run in O(Δ) time as shown in Theorem 6 and may generate O(Δ) line
segments to form the subdivision. This ensures that the number of triangles in
the final subdivision is polynomial in n and Δ. In Step 3, SET-COVER runs in
O(|X |) time [6,3], where |X | is the total number of cells. �	

Δ can be at most exponential in the input size. Thus, our algorithm runs in
pseudopolynomial time.

6.3 Art Gallery with Holes

When the art gallery has holes, our algorithm can still be used. Guibas et al. [2]
extend the visibility cell decomposition to a polygon with holes; except that
in this case, the vertices of the holes also act as the blocking vertices. The
subdivision procedure of our algorithm is still valid in this case. Valtr prove
that for this case of an art gallery with holes the VC-dimension is bounded by
O(log h), where h is the number of holes [16]. Thus, in this case our algorithm
yields a solution with the approximation ratio O(log h· log(copt log h)).

1 In the earlier draft of this paper, we had used O(log n) bound on the VC-dimension.
Csaba Toth pointed us to the constant VC-dimension bound in [16].

174 A. Deshpande et al.

7 Conclusions

In this paper, we have presented a pseudopolynomial time algorithm for the
point guard problem with guaranteed O(log n) approximation ratio. The immi-
nent question is whether we can improve the running time of our algorithm. An
interesting topic for future research is to investigate whether our subdivision pro-
cedure can be applied to other variants of the art gallery problems, particularly
for the case when guards have limited range.

Acknowledgments

We thank Csaba Toth for pointing to us a better VC-dimension bound (see
Footnote 1). We thank the anonymous referees for their useful comments and
bringing to our attention the reference [15]. The first author would like to thank
Prahladh Harsha for many useful discussions and feedback on the earlier drafts
of the paper.

References

1. Bose, P., Lubiw, A., Munro, J.I.: Efficient visibility queries in simple polygons. In:
Proc. 4th Canad. Conf. Comput. Geom. pp. 23–28 (1992)

2. Guibas, L.J., Motwani, R., Raghavan, P.: The robot localization problem. SIAM
J. Comput. 26(4), 1120–1138 (1997)

3. González-Banos, H., Latombe, J.: A randomized art-gallery algorithm for sensor
placement. In: Proc. 17th Symp. Comput. Goem, pp. 232–240 (2001)

4. Eidenbenz, S., Stamm, C., Widmayer, P.: Inapproximability Results for Guarding
Polygons and Terrains. Algorithmica 31, 79–113 (2001)

5. Ghosh, S.: Approximation algorithm for art gallery problems. In: Canad. Informa-
tion Processing Soc. Congress (1987)

6. Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite VC-
dimension. In: Proc. 10th Symp. Comp. Geom. pp. 293–302 (1994)

7. Urrutia, J.: Art Gallery and Illumination Problems. In: Sack, J. R., Urrutia, J.
(eds.) Handbook of Computational Geometry (2000)

8. O’Rourke, J.: Art Gallery Theorems and Algorithms (1987)
9. Shermer, T.: Recent results in art galleries. Proc. IEEE. 80, 1384–1399 (1992)

10. Chvátal, V.: A combinatorial theorem in plane geometry. J. Combinat. Theory
B 18, 39–41 (1975)

11. Lee, D.T., Lin, A.K.: Computational complexity of art gallery problems. IEEE
Trans. Info. Theory. IT-32, 276–282 (1986)

12. Brodén, B., Hammar, M., Nilsson, B.J.: Guarding lines and 2-link polygons is
APX-hard. In: Proc. 13th Canad. Conf. Comp. Geom. pp. 45–48 (2001)

13. Erickson, J.: Nice point sets can have nasty Delaunay triangulations. In: Proc. 17th
Symp. Comp. Geom. pp. 96–105 (2001)

14. Erickson, J.: Dense point sets have sparse Delaunay triangulations: or “...but not
too nasty”. In: Proc. 13th Symp. Disc. Algo. pp. 125–134 (2002)

15. Efrat, A., Har-Peled, S.: Guarding galleries and terrains. Info. Proc. Lett. 100(6),
238–245 (2006)

16. Valtr, P.: Guarding galleries where no point sees a small area. Israel J. Math. 104,
1–16 (1998)

	A Pseudopolynomial Time O(log n)-Approximation Algorithm for Art Gallery Problems
	Introduction
	Basic Terminology
	Initial Triangulation Using Visibility Cell Decomposition
	Further Subdivision of the Initial Triangulation
	Vertex-Visibility Property and Vertex-Pair-Visibility Property
	Further Subdivision

	Set Cover Formulation and Approximate Solution
	Analysis of the Algorithm
	Bound on the Approximation Ratio of Our Algorithm
	Analysis of the Running Time of the Algorithm
	Art Gallery with Holes

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

