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Abstract. We present a polynomial time approximation scheme (PTAS)
for the Steiner tree problem with polygonal obstacles in the plane with
running time O(n log2 n), where n denotes the number of terminals plus
obstacle vertices. To this end, we show how a planar spanner of size
O(n log n) can be constructed that contains a (1+ε)-approximation of the
optimal tree. Then one can find an approximately optimal Steiner tree in
the spanner using the algorithm of Borradaile et al. (2007) for the Steiner
tree problem in planar graphs. We prove this result for the Euclidean met-
ric and also for all uniform orientation metrics, i.e. particularly the recti-
linear and octilinear metrics.
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1 Introduction

We consider the following network design problem: given a set of points in the
plane and a set of disjoint polygonal obstacles, find the shortest network inter-
connecting the points and avoiding the interior of the obstacles. We refer to the
given points as terminals and to the obstacle vertices as corners. We let n be the
total number of terminals and corners. The shortest interconnecting network of
the terminals will be a tree, a so-called Steiner tree, and it might use corners
and additional vertices called Steiner points (note that we use this term only to
refer to points that do not coincide with terminals or corners). This problem is
called the obstacle-avoiding Steiner minimum tree problem (SMTO) or ESMTO
when we are using the Euclidean metric.

Uniform orientation metrics are derived from λ-geometries. In a λ-geometry,
one is allowed to move only along λ ≥ 2 orientations building consecutive angles
of π/λ. The rectilinear or Manhattan metric corresponds to the 2-geometry and
the octilinear metric to the 4-geometry. We call the corresponding SMT problems
λ-SMT or, when obstacles are to be avoided, λ-SMTO. In this case, the obstacle
edges must obey the restrictions of the given orientations, too.

It has been a long-standing open problem whether these SMT problems among
obstacles admit a polynomial time approximation scheme (PTAS). With the
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recent result of Borradaile et al. [1,2] about Steiner trees in planar graphs, this
question can now be answered affirmatively by combining a number of results
in the literature (see Section 1.1). However, to obtain a near linear running
time, new ideas and more sophisticated techniques are required; this is the main
contribution of our work. Our approach is based on constructing a planar graph
of size O(n log n) that contains a (1 + ε)-approximation of the solution and
then find an approximate solution in that graph. The total running time will
be O(n log2 n). Along the way, we prove a number of spanner results and other
properties of SMTOs both for the Euclidean and uniformly oriented case.

The SMT problem and its many variations are of high theoretical (see below)
and practical relevance. The applications reach from all kinds of network design
to phylogenetic trees. Especially the geometric case with obstacles is very impor-
tant in VLSI design, since there are usually regions in the plane that may not be
crossed by wire. Also, it is often only allowed to route the tree along a rectilinear
or octilinear grid and so, SMTs in uniformly oriented metrics are required.

1.1 Related Work

The ESMTO problem is clearly NP-hard since it contains the Steiner mini-
mum tree problem without obstacles as a special case [3]. For the SMT prob-
lem without obstacles, Arora [4] and Mitchell [5] were the first to present a
PTAS. Rao and Smith [6] improved the running time of Arora’s algorithm from
O(n(1

ε log n)O(1/ε)) to O(2poly(1/ε)n+n logn) using a certain spanner graph they
call a “banyan” and this is the best running time known so far. However, none
of these algorithms are applicable to the case with obstacles since a so-called
“patching lemma” that is necessary for these approaches, fails to hold. Provan [7]
has shown how to approximate ESMTO by an SMT problem in graphs and de-
rived an FPTAS for the special case when the terminals lie on a constant number
of “boundary polygons” and interior points.

The PTASs discussed above also apply to λ-SMTs for all λ ≥ 2. The rectilinear
and octilinear case have been shown to be NP-complete in [8,9]. For general
fixed λ no proof has been published so far, though it is widely believed that these
problems are hard, too. Properties of uniformly oriented SMTs have been studied
by Brazil et al. [10]. Approximation algorithms for rectilinear SMTO have been
proposed by Ganley and Cohoon [11] and for the octilinear case by Müller-
Hannemann and Schulze [9,12]. For rectilinear SMTO with a constant number of
obstacles, Liu et al. [13] presented a PTAS based on Mitchell’s [5] approach. The
SMT problem with length restrictions on obstacles has been studied by Müller-
Hannemann and Peyer [14] in the rectilinear case, and by Müller-Hannemann and
Schulze [12] in the octilinear case, and constant-factor approximation algorithms
have been proposed.

The SMT problem in graphs has also been studied widely in the literature.
It has been shown to be APX -complete [15] and thus, no PTAS exists unless
P = NP . The best approximation factor known so far is 1.55 + ε [16]. The case
of planar graphs has very recently been shown to admit a PTAS by Borradaile
et al. [1,2]. This results immediately in a PTAS for rectilinear, octilinear, and
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Euclidean SMTO using the following results from the literature: the so-called
Hanan-grid [11,17] for the rectilinear case, the result of Müller-Hannemann and
Schulze [12] for the octilinear case, and Provan’s construction [7] together with
the planar spanner result of Arikati et al. [18] for the Euclidean case. However,
in all these cases, the PTAS of Borradaile et al. has to be run on a graph of
size O(n2) and thus, the total running time will be O(n2 log n). In this work, we
show alternative constructions with running time O(n log2 n).

1.2 On Spanners and Banyans

A t-spanner of a set of points P is a graph that contains a path between any two
points of P that is at most a factor of t longer than the shortest path between
them. Spanners have been vastly studied in the literature [19] and have been
often used in the design of PTASs [6]. Of particular interest to us are spanners
of the visibility graph among obstacles in the plane. The visibility graph contains
all straight line connections between terminals and corners that do not cross the
interior of any obstacle. Clarkson [20] showed how to construct a (1+ ε)-spanner
of linear size of the visibility graph in O(n log n) time. A linear-sized planar
spanner for both the rectilinear and Euclidean metric has been shown to exist
and also to be computable in O(n log n) time by Arikati et al. [18,21]. We will
show how to extend these ideas to derive sparse planar spanners in the same
time bound for all uniform orientation metrics.

Rao and Smith [6] introduced the notion of banyans. A banyan is a graph that
contains a (1+ ε)-approximation of the SMT of a given set of points1 and whose
weight is at most a constant factor larger than the SMT. Rao and Smith showed
how to construct a banyan of size O(n) in time O(n log n) in the obstacle-free
case.

1.3 Our Contribution and Outline

One of the main results of our work is to show how to construct a planar banyan
for SMTO of size O(n log n) in O(n log2 n) time by building on the framework of
Rao and Smith using new ideas and combining other results from the literature,
especially the banyan-result for planar graphs contained in [1]. An approximate
Steiner tree can then be obtained on this planar graph using [1]. Since the
algorithm in [1,2] is exponential in 1/ε, so is our resulting algorithm.

The main difficulties that arise when obstacles are present are to deal with
visibility and the fact that only a subset of corners is included in the SMT,
i.e. we do not know which vertices of a spanner will be part of the SMT. In
particular, a spanner might include arbitrary short edges between corners that
are not part of the SMT and this causes an important proof idea of Rao and
Smith to fail. Roughly speaking, they show that in the obstacle-free case, there
is always a “long enough” spanner edge near non-negligible SMT edges and so,
1 Their construction was in fact more powerful as it included an approximate SMT

for any subset of the terminals.
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they introduce a grid of candidate Steiner points in a neighborhood around every
spanner edge to capture these SMT vertices. Our main new algorithmic idea is
to use O(log n) layers of candidate Steiner points around each spanner edge, so
that we are guaranteed to find such appropriate points even when our spanner
edges are short. Another important difference is that we use planar spanners, so
that afterwards, we can use the algorithm of [1] instead of building on Arora’s
approach [4] to obtain our PTAS. We present our algorithm in Section 2 and
then present two proofs for the correctness of our algorithm for the Euclidean
case in Section 3: one using an analog of the hexagon property [3] and another
one using a generalization of the empty ball lemma [6]. Even though our proofs
follow the lines of the proofs of Rao and Smith, they differ conceptually at some
key points and other techniques have to be used, see Section 3.1.

Afterwards, in Section 4, we turn our attention to uniform orientation metrics
and argue how the presented proofs can be modified to work for these cases, too.
Along the way, we have to argue that a lemma by Provan [7] about δ-grids among
obstacles in the plane still holds true for all uniform orientation metrics. At last,
we prove a variation of Arikati et al.’s planar spanner result [18] to apply to
uniform orientation metrics.

Due to space limitations, several details and proofs had to be shortened or
omitted. We refer the interested reader to the full version of this paper.

2 The Algorithm

The main result of our work is the following theorem:

Theorem 2.1. The Steiner minimum tree problem among disjoint polygonal
obstacles in the plane admits a PTAS in the Euclidean metric and in all uniform
orientation metrics. The running time is O(n log2 n), where n is the total number
of terminals and obstacle corners.

Our algorithm is summarized in Alg. 1. We are given a set of terminals Z and
a set of disjoint polygonal obstacles O as described in the introduction. In the
first step, we find a (1 + ε1)-spanner G1 of the visibility graph of Z ∪ O. In the
Euclidean case, this can be done using the algorithm of Clarkson [20] or Arikati
et al. [18,21] in O(n log n) time. Arikati et al. also provide an algorithm for the
rectilinear case and we will show in Section 4.2 how to extend this result to other
uniform orientation metrics. Note that these algorithms construct a spanner
without having to build the full visibility graph. The graph G1 will have O(n)
edges. Around each such edge, we place �log2 n� circles with doubling radii and
place a grid of constant size inside each of them. Here, we make use of a constant
κ that depends on the metric being used. For ε1 ≤ 1, in the Euclidean metric, κ
can be chosen to be ≤ 226, and in the rectilinear metric ≤ 50. This introduces
a set P0 of O(n log n) “candidate Steiner points” from which we remove the
ones that lie inside obstacles. This can be done using a sweep-line algorithm
in O(k log k) = O(n log2 n)-time with k = n + |P0| = O(n log n). Let G2 be the
visibility graph of Z∪P0∪O and let G3 be a planar (1+ε2)-spanner of G2. G3 can
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Algorithm 1. A PTAS for SMTO
Input : a set of terminals Z and a set of disjoint polygonal obstacles O in the

plane and the desired accuracy 0 < ε ≤ 1.
Output : a (1 + ε)-approximation of the obstacle-avoiding Steiner minimum

tree of the terminals.
Note : κ is a constant and can be ≤ 226 in the Euclidean case and ≤ 50 in

the rectilinear case, ε1 and ε2 have to be chosen appropriately, e.g.
ε1 = ε2 = ε

22 .
begin1

find a (1 + ε1)-spanner G1 of the visibility graph of Z ∪ O;2

let P0 = ∅;3

for each edge e in G1 do // let � be the length of e4

for i = 0 to �log2 n� do5

let r = κ2i�/ε1;6

let C be a circle of radius r around the midpoint of e;7

place a grid with spacing δ(r) = rε31/κ2 inside C;8

// the grid has ≤ 4κ4/ε61 = O(1) points
add these points to P0;9

remove all the points from P0 that lie inside obstacles;10

// let G2 be the visibility graph of Z ∪ P0 ∪ O
find a planar (1 + ε2)-spanner G3 of G2;11

find a (1 + ε/3)-approximate SMT T of Z in G3;12

// using the PTAS of Borradaile et al. [1]
return T ;13

end14

be found using Arikati et al.’s algorithm or our extension of it for other uniform
orientation metrics. Let k = O(n log n) be the number of vertices of G2. The
spanner algorithms need O(k log k) time and introduce O(k) additional Steiner
points to achieve planarity. Thus, G3 can be constructed in O(n log2 n) time and
has O(n log n) vertices (note that G2 is not constructed explicitly). Now we find
a (1 + ε/3)-approximate Steiner minimum tree of the terminals Z in G3 using
the PTAS of Borradaile et al. [1,2] for the Steiner tree problem in planar graphs.
The time needed for this step is O(k log k) and hence, the total runtime of our
algorithm is O(n log2 n).

Note that the first step of the PTAS of Borradaile et al. is to determine a
subgraph G4 of G3 that contains a (1 + ε/3)-approximation of the SMT of G3
and has weight at most a constant times the weight of the SMT of G3. Hence,
G4 is a planar banyan of the terminal set Z and so, our algorithm also delivers
a planar banyan of a set of terminals among obstacles in the plane.

A note on the running time. Of course, the constants hidden in the O-
notations above all depend on 1/ε. Our algorithm builds the planar graph G3

in time O( κ4

ε11 n log2 n) and its size is more precisely O( κ4

ε11 n logn). The PTAS of
Borradaile et al. takes time singly exponential in 1/ε [2].
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3 Correctness

We present two proofs for the correctness of Alg. 1. The first one results in
better constants but does not work in the rectilinear case. The other one is more
general and can even be partly extended to give us some structural information
about SMTOs in higher dimensions but uses much larger constants. The proof
technique and the generalization of the empty ball lemma used in the second
proof might also be interesting in their own right. In the next section, we discuss
uniform orientation metrics where we include a simpler proof for the rectilinear
case that results in small constants.

3.1 Key Differences

The main new idea in our algorithm compared to that of Rao and Smith’s is the
use of O(log n) layers of grids around each edge of the spanner G1. We had to
do this because in our case, we do not have the so-called spanner path property
(Lemma 34 in [6]), that essentially says that two vertices that are connected in
the SMT by an edge of length L, can not be connected in a spanner by a chain
of “tiny” edges of length < L. In our case, two terminals and/or corners can be
connected by a path consisting entirely of “tiny” edges, finding their way among
obstacles. But we know that any two vertices in the spanner are connected by
a short path with at most n edges and one of them can be made “long enough”
by multiplying it with a power of 2 if necessary.

Also, we have the additional problem that many vertices of our spanner need
not be part of the optimal Steiner tree: we do not know which corners will be
included in the SMT. And there is the issue of visibility. To deal with these
problems, we formulate and prove Lemma 3.1, which is a technical lemma that
is very important in both of our proofs. The reason it works well is that since we
do not make use of the spanner path property, it is not necessary for us that the
vertices that we find close to a Steiner point A be in fact close to A in the SMT
or even be part of the SMT at all. This enabled us to prove our generalizations
of the hexagon property and the empty ball lemma and use them to prove our
main theorem.

3.2 First Proof

We use the notation d(A, B) for the length of the shortest obstacle-avoiding
path between two points A and B and the notation dG(A, B) for the shortest
path between A and B in a graph G. We start by mentioning some well known
facts about Euclidean Steiner minimum trees [22,7,23] (recall that we use the
term Steiner point for vertices of the tree that do not coincide with terminals or
corners):

Fact 0: The SMT is a tree that includes all terminals as vertices. It might
include corners or Steiner points as additional internal vertices.
Fact 1: Every Steiner point has 3 incident edges making angles of 120◦.
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Fact 2: A Steiner point may not occur on the boundary of some obstacle.
Fact 3: Every terminal and corner has degree at most 3 in the SMT.
Fact 4: If there are k terminals, there are at most k − 2 Steiner points.
Fact 5: Two edges of the SMT meet only at a common endpoint, i.e. the SMT
is not self-intersecting.
Fact 6: (120◦ wedge property) If s is a Steiner point of the SMT, then in any
closed 120◦ wedge with apex s, there exists a terminal or corner v and an SMT
path sv that lies entirely inside the wedge.

The following lemma is of central importance for our work:

Lemma 3.1. Let S be a closed convex region of the plane and let A ∈ S be a
point that is not contained in the interior of any obstacle. Then, we have

(i) a terminal or corner in S that is visible to A; or
(ii) the maximal visible area to A in S is a closed convex region S′ ⊆ S that
contains no terminal or corner and that shares its border with S except for
finitely many straight line segments, where its border may consist of obstacle
edges. Furthermore, any obstacle-avoiding path contained in S and connected to
A is contained in S′.

Consider an SMT edge AB and some fixed distance D. Let HA be the regular
hexagon of side length D that has A as a corner, does not contain AB, and
builds two 120◦ angles with AB, i.e. if we extend AB, it would cut HA in
half. Furthermore, we define an SMT edge AB to be locally D-bounded if when
walking from A or B for at most 3 SMT edges or until we encounter a terminal
or corner (whichever comes first), all edges we pass have length at most D. We
have the following property:

Lemma 3.2 (Generalization of the hexagon property). Let AB be a lo-
cally D-bounded SMT edge. Then the regular hexagon HA of side length D de-
fined above contains a terminal or a corner that is visible to A (this terminal or
corner could be A itself).

Let AB be an SMT edge of length L. For given constants c ≥ 1 and ε1 > 0, we
define AB to be locally long if it is locally cL/ε1-bounded. Otherwise we call it
locally short. The next lemma builds the heart of our first proof of Theorem 2.1.
It assures that near every locally long SMT edge AB, we find a spanner edge of
G1 that is long enough, so that a layer of grids around it will enclose the points
A and B; and short enough, so that the grid spacing does not introduce too
large an error.

Lemma 3.3. Let AB be a locally long SMT edge of length L as defined above
with some constants c ≥ 1 and 0 < ε1 ≤ 1 to be specified. Consider Alg. 1 with a
constant κ ≥ 8c+2. Then there exists an edge e of length � in the (1+ε1)-spanner
G1 and an integer 0 ≤ i ≤ �log2 n�, so that L ≤ 2i� ≤ κL/ε1 and so that A and
B are included in a circle of radius κ2i�/ε1 around the midpoint of e.
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Fig. 1. Proof of Lemma 3.3; L ≤ d(VA, VB) ≤ 4cL/ε1 + L

Proof. By the hexagon property above with D = cL/ε1, we know that there
exists a terminal or corner VA inside HA and a terminal or corner VB inside HB,
so that VA is visible to A and VB is visible to B (note that VA resp. VB could
be equal to A resp. B). Then we know that L ≤ d(VA, VB) ≤ L + 4cL/ε1 =: M
(see Fig. 1). Now consider the shortest path between VA and VB in the spanner
G1. It consists of at most n edges and its length is at least L and at most
(1 + ε1)M = ((4c + 1)ε1 + 4c + ε21)L/ε1 ≤ κL/ε1 if we choose κ ≥ 8c + 2. Also,
this path lies entirely inside a circle Q of radius R := (1 + ε1/2)M around the
midpoint of the edge AB, since otherwise it would be too long for G1 to be a
(1+ ε1)-spanner. Hence, there exists an edge e of length � on this path inside Q,
so that L/n ≤ � ≤ κL/ε1. If � < L, one can choose an integer 0 ≤ i ≤ �log2 n�
so that L ≤ 2i� ≤ 2L ≤ κL/ε1 otherwise choose i = 0. Also, since e is inside
Q, the distance between the midpoint of e to A and B is at most R + L/2 =
((2c + 1.5)ε1 + 4c + ε21/2)L/ε1 ≤ κ2i�/ε1.

Proof (First proof of Theorem 2.1 for the Euclidean metric). Let us denote the
length of a tree T by �(T ). Let T � be an optimal obstacle-avoiding Steiner tree
of the terminal set and let T be the tree returned by Alg. 2.1. We show that the
graph G3 contains a Steiner tree T ′ with �(T ′) ≤ (1 + ε/2)�(T �). Then we know
that �(T ) ≤ (1 + ε/3)�(T ′) ≤ (1 + ε)�(T �) and we are done.

We partition the edges of T � into locally long and locally short edges as defined
above and construct the tree T ′ as follows: for every locally long edge in T �, we
find appropriate endpoints and a short path in G3 to add to T ′; then we get a
number of connected components and interconnect them with a minimum forest
in G3. We now analyze the length of T ′.

Let AB be a locally long edge of T � of length L. By Lemma 3.3, we find
an edge e of length � in G1 and a circle C of radius r = κ2i�/ε1 around the
midpoint of e for some integer 0 ≤ i ≤ �log2 n�, so that A and B are included in
C. The grid inside C has spacing2 δ = rε31/κ2 = 2i�ε21/κ ≤ Lε1 since 2i� ≤ κL/ε1
by Lemma 3.3. A technical lemma of Provan (Lemma 3.2 in [7]) says that for a
given Steiner point A in a δ-grid among obstacles, we can always find a terminal,
corner or grid point A′ that is visible to A, so that d(A, A′) ≤ 2δ. Let A′ and B′

be vertices of G3 that are visible to and closest to A and B, respectively. Add
the shortest path between A′ and B′ in G3 to T ′. We have

2 The grid spacing in [6] is rε21/κ2 but we believe that the exponent of ε1 should be 3.
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d(A′, B′) ≤ d(A′, A) + d(A, B) + d(B, B′)
≤ L + 4δ ≤ L + 4Lε1 = (1 + 4ε1)L

(1)

and thus, dG3(A′, B′) ≤ (1 + ε2)(1 + 4ε1)L.
We leave the detailed analysis of locally short edges for the full paper; one

can show that the overhead caused by ignoring locally short edges is at most
equal to the total length of all locally short edges and can be upper bounded3

by (1 + ε2)ε1�(T �). So, we get that

�(T ′) ≤ (1 + ε2)(1 + 4ε1)�(T �) + (1 + ε2)ε1�(T �) ≤ (1 + ε/2)�(T �) (2)

if ε1 and ε2 are chosen appropriately, e.g. ε1 = ε2 = ε
22 .

Second Proof. Due to space limitations, we leave our second proof for the full
paper. Here, we just state our generalization of the empty ball lemma:

Lemma 3.4 (Generalization of the empty ball lemma). Let S1 and S2
be closed convex regions in the plane whose interiors are free of terminals and
obstacle edges but whose borders may partly consist of obstacle-edges. Denote the
parts of their borders that are not obstacle-edges as the free border. Assume that
S2 encloses S1 and that the distance between every point on the free border of S1
to any point on the free border of S2 is at least γ > 0. Then, for any obstacle-
avoiding SMT, the number of Steiner points inside S1 is bounded by a constant
s0 ≤ (96e)8 (where e is the base of the natural logarithm).

4 Uniform Orientation Metrics

We briefly discuss how our proofs adapt to uniform orientation metrics and
provide a somewhat different proof for the rectilinear case that results in much
better constants. Afterwards, we prove our generalization of Arikati et al.’s [18]
planar spanner result to the cases with λ ≥ 3.

4.1 Adapting the Proofs

The Cases λ ≥ 3. Brazil et al. [10] showed that for λ ≥ 3, there always exists an
SMT, such that the minimum angle at a Steiner point is 90◦ ≤ αmin ≤ 120◦ and
the maximum angle is 120◦ ≤ αmax ≤ 150◦. For these cases, we get an αmax-
wedge property like Fact 6 of the Euclidean case and we can use it to prove
an analog of the Hexagon property (Lemma 3.2). Also, using this αmax-wedge
property one can generalize Provan’s lemma [7] to ensure that in a δ-grid around
a Steiner point A, one can always find a grid point, terminal, or corner A′ that
is visible to A, so that d(A, A′) ≤ δ/cosαmax

2 . Using these two results, one can
generalize both of our proofs from Section 3 straightforwardly to all λ-geometries
with λ ≥ 3, where again, the first proof results in much better constants (but
possibly different ones from the Euclidean case).
3 To achieve this, we have to set c = 28 and thus, we can choose κ = 8c + 2 = 226.
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The Rectilinear Case. In the rectilinear case, we do not have an α-wedge property
for an α < 180◦; in fact, 180◦-angles can occur at any Steiner point. But instead,
the structure of rectilinear Steiner trees is well-studied. Particularly, one can
derive the following lemma using results from [24,25]:

Lemma 4.1. For a given set of terminals and disjoint rectilinear obstacles in the
plane, there exists an obstacle-avoiding RSMT that has the following properties:
(i) for any two Steiner points A and B that are connected by a horizontal line-
segment, B is not connected to a third Steiner point by a vertical line segment;
(ii) if there is a grid with spacing δ around a Steiner point A, then there exists
a grid point, terminal, or corner A′ that is visible to A, so that d(A, A′) ≤ 2δ.

Using this lemma, both of our proofs from the last section adapt straightfor-
wardly to the rectilinear case. Furthermore, one can choose c = 12 and also
κ = 4c + 2 = 50.

4.2 Planar Spanners

Consider a λ-geometry and let ω = π/λ be the smallest allowed angle. Before
we start with the construction of our spanner, we need the following technical
lemma:

Lemma 4.2. Consider a λ-geometry with smallest allowed angle ω and let a set
of disjoint polygonal obstacles be given whose edges are parallel to the allowed
directions. Consider two points A and B in the plane. Then there exists a shortest
path (with respect to the metric of the λ-geometry) between A and B that passes
through A = v0, v1, v2, . . . , vk = B, so that each vi with 0 < i < k is a corner and
so that the path between each vi and vi+1 is either a straight line in an allowed
direction or is comprised of two straight lines in allowed directions that build an
angle of π − ω with each other.

Arikati et al. [18,21] showed how to find a planar rectilinear (1+ε)-spanner of the
visibility graph among disjoint polygonal obstacles in the plane that uses at most
O(n) Steiner points in time O(n log n). This spanner might include obstacle-
edges that are not rectilinear but their length is measured in the rectilinear
metric. We first show that one can rotate the axes of the coordinate system to
build an arbitrary angle and still obtain such a spanner:

Lemma 4.3. Given a set of terminals and a set of disjoint polygonal obstacles
in the plane, one can find a planar (1 + ε)-spanner of the visibility graph of size
O(n) in O(n log n) time that uses only edges in two directions d1 and d2 building
an angle ω with each other (except for parts of the spanner that coincide with
obstacle edges).4

Now we can use a similar trick to the one used by Arikati et al. to obtain
their Euclidean spanner: let d1, d2, . . . , dλ be the allowed directions, so that two
4 The spanning property is with respect to the metric induced by d1 and d2.
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consecutive ones build an angle of ω = π/λ with each other. Find (1+ε)-spanners
G1, . . . , Gλ, so that Gi uses only edges parallel to di and di+1 (or dλ and d1)
using Lemma 4.3. Let G be the graph obtained by superimposing all these graphs
on each other, i.e. putting them on each other and adding all intersection points
as new vertices to the graph. A straightforward adaption of the proof of Arikati
et al. for the Euclidean case (published in the thesis of Zeh [21]) shows that G
will still have O(n) vertices5 and can be obtained in O(n log n) time. Also, by
Lemma 4.2, G is indeed a (1+ ε)-spanner of the visibility graph (an approximate
shortest path between each vi and vi+1 of the lemma lies entirely in a spanner
Gj), i.e. we have

Theorem 4.4. Consider a λ-geometry and let a set of terminals and a set of
disjoint polygonal obstacles whose edges are in the allowed directions be given,
so that the total number of terminals and corners is n. Then one can find a
planar (1 + ε)-spanner (with respect to the metric of the λ-geometry) of the
visibility graph of size O(n) in O(n log n) time that uses only edges in the allowed
directions.
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