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Preface

The papers in this volume were presented at the 10th Workshop on Algorithms
and Data Structures (WADS 2005). The workshop took place August 15 - 17,
2007, at Dalhousie University, Halifax, Canada. The workshop alternates with
the Scandinavian Workshop on Algorithm Theory (SWAT), continuing the tra-
dition of SWAT and WADS starting with SWAT 1988 and WADS 1989. From
142 submissions, the Program Committee selected 54 papers for presentation at
the workshop. In addition, invited lectures were given by the following distin-
guished researchers: Jeff Erickson (University of Illinois at Urbana-Champaign)
and Mike Langston (University of Tennessee).

On behalf of the Program Committee, we would like to express our sincere
appreciation to the many persons whose effort contributed to making WADS
2007 a success. These include the invited speakers, members of the Steering and
Program Committees, the authors who submitted papers, and the many referees
who assisted the Program Committee. We are indebted to Gerardo Reynaga for
installing and modifying the submission software, maintaining the submission
server and interacting with authors as well as for helping with the preparation
of the program.

August 2007 Frank Dehne
Jörg-Rüdiger Sack

Norbert Zeh
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Jan Remy, Reto Spöhel, and Andreas Weißl

Session 11B

Optimal Lightweight Construction of Suffix Arrays for Constant
Alphabets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613

Ge Nong and Sen Zhang



XVI Table of Contents

Range Non-overlapping Indexing and Successive List Indexing . . . . . . . . . 625
Orgad Keller, Tsvi Kopelowitz, and Moshe Lewenstein

Space-Efficient Straggler Identification in Round-Trip Data Streams
Via Newton’s Identities and Invertible Bloom Filters . . . . . . . . . . . . . . . . . 637

David Eppstein and Michael T. Goodrich

Dynamic TCP Acknowledgment with Sliding Window . . . . . . . . . . . . . . . . 649
Hisashi Koga

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661



Finding Small Holes
A Brief Foray into Computational Topology

Jeff Erickson

University of Illinois, Urbana-Champaign
jeffe@cs.uiuc.edu

http://www.cs.uiuc.edu/~jeffe

Numerous applications call for the detection of small topological features in var-
ious spaces; examples include simplification of surfaces reconstructed from point
clouds, efficient algorithms for graphs embedded on surfaces, coverage analysis
for ad-hoc/sensor networks, and topological analysis of high-dimensional data.
This talk is a survey algorithms for one of the simplest problems of this type:
finding the shortest cycle in a given topological space that cannot be continuously
contracted to a point. Spaces of interest include polygons with holes, combinato-
rial surfaces, piecewise-linear 2-manifolds, Rips-Vietoris complexes, and general
simplicial complexes. Almost no optimal algorithms are known, even in settings
where the problem has a straightforward polynomial-time solution; consequently,
the talk will include several open problems. No prior knowledge of topology will
be assumed.

F. Dehne, J.-R. Sack, and N. Zeh (Eds.): WADS 2007, LNCS 4619, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Approximate Range Searching: The Absolute
Model�

Guilherme D. da Fonseca

Department of Computer Science
University of Maryland

College Park, Maryland 20742
fonseca@cs.umd.edu

Abstract. Range searching is a well known problem in the area of ge-
ometric data structures. We consider this problem in the context of
approximation, where an approximation parameter ε > 0 is provided.
Most prior work on this problem has focused on the case of relative er-
rors, where each range shape R is bounded, and points within distance
ε · diam(R) of the range’s boundary may or may not be included. We
consider a different approximation model, called the absolute model, in
which points within distance ε of the range’s boundary may or may not
be included, regardless of the diameter of the range. We consider range
spaces consisting of halfspaces, Euclidean balls, simplices, axis-aligned
rectangles, and general convex bodies. We consider a variety of prob-
lem formulations, including range searching under general commutative
semigroups, idempotent semigroups, groups, and range emptiness. We
show how idempotence can be used to improve not only approximate,
but also exact halfspace range searching. Our data structures are much
simpler than both their exact and relative model counterparts, and so
are amenable to efficient implementation.

1 Introduction

The range searching problem involves preprocessing a set P of n points in Rd

so that given a region R, that is drawn from a predefined set of shapes R, a
predefined function f(P ∩ R) can be computed efficiently. The set of possible
shapes R characterizes the range space, and the elements of R are called ranges.
Examples of range spaces include halfspaces, axis-aligned rectangles, and sim-
plices. We let q(R) = f(P ∩R) denote the result of the query. The points p ∈ P
are called data points.

Range searching is a well-studied problem in computational geometry. Excel-
lent surveys have been written by Matoušek [17] and Agarwal and Erickson [1].
The two most common examples include range counting, where f(Q) = |Q| and
range reporting, where f(Q) = Q.

� The work of the author has been supported in part by CAPES, Brazil, under grant
BEX-1319027. The author would like to thank his advisor David M. Mount.

F. Dehne, J.-R. Sack, and N. Zeh (Eds.): WADS 2007, LNCS 4619, pp. 2–14, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Approximate Range Searching: The Absolute Model 3

More generally, we have a commutative semigroup (S,+), a weight function
w : P → S, and want to compute f(Q) =

∑
p∈Qw(p). This general version of

the problem is called the semigroup version. In the group version of the problem,
(S,+) is a commutative (Abelian) group. The group version may admit more
efficient solutions, because both addition and subtraction may be used to com-
pute the answer to the query. In the idempotent version of the problem, (S,+)
is an idempotent group, i.e. x+ x = x for all x ∈ S. One example of idempotent
semigroup is (R,max). The emptiness version can be modeled by the idempotent
semigroup ({0, 1},∨) and assigning w(p) = 1 for all p ∈ P .

The relatively high complexity of exact range searching has led researchers
to consider the problem in the context of approximation. A natural way to do
this is to consider the range shape to be “fuzzy,” and allow points that are close
to the range boundary to either be counted or not. There are two natural ways
to define approximation. In both cases a user-supplied approximation parameter
ε > 0 is given, either at preprocessing time or at query time. In the relative error
model (or simply relative model for short) it is assumed that the range shape R
is bounded, and points lying within distance ε · diam(R) of the boundary of the
range may or may not be included. In contrast, in the absolute error model (or
simply absolute model) points lying within distance ε of the range’s boundary
may or may not be included.

Note that, in the absolute model, some type of scaling is needed, for otherwise
it would be possible to answer queries with arbitrarily high precision by applying
some high scale factor to the point and range coordinates, while keeping the error
parameter fixed. Without loss of generality, we assume throughout that the point
set P has been transformed (through a uniform scaling and translation) to lie
within the unit hypercube [0, 1]d. We assume that the ranges have been similarly
transformed, and the parameter ε has been scaled correspondingly.

Approximate range searching in the relative model is studied in [6, 3, 4, 5].
Chazelle, Liu and Magen [12] studied approximate range searching in the abso-
lute model, but considered the problem in spaces of high dimension. They pre-
sented a data structure which answers halfspace queries in O((d/ε)2 logO(1)(d/ε))
time with dnO(1/ε2) storage. Throughout this paper, we assume that the dimen-
sion d is constant.

There are a number of reasons for studying approximate range searching in
the absolute model. First, the absolute model admits much simpler solutions.
While the most efficient data structures for answering range queries both in
the relative model and exact case tend to be quite complex, our techniques are
extremely simple (involving simple structures such as grids and quadtrees) and
so are amenable to efficient implementation. In the absolute model, the data
structures are not sensitive to the point distribution. Therefore, the absolute
model allows us to reason about the range searching problem (for example, the
best size and shape of the generators) in a simpler context, and may lead to
more efficient and simpler structures for exact range searching.

Second, the absolute model is better suited for several applications, when
compared to the relative model. If the coordinates of a point represent an object
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that exists within some extent in space, or data that is subject to measurement
errors or noise, then the approximation quality should be based on the expected
error of the point locations, not on the diameter of the query range. A short-
coming of the relative model is that it cannot directly handle unbounded ranges,
such as halfspaces and unbounded polyhedra.

Finally, the storage space and query time of the absolute model data struc-
tures is independent of n, and hence our results can be adapted to work in the
data stream model [18, 7]. In the data stream model, the data set is too large
to fit in memory, therefore the storage space should be independent of n (some-
times polylogarithmic functions of n are acceptable). Also, the data points are
examined one at a time, in a single pass, while queries regarding the points that
have already been seen, or that have been seen recently, need to be answered
efficiently. Exact range searching clearly requires Ω(n) storage for all reasonable
sets of ranges, and approximate range searching in the relative model requires
Ω(n) storage when the query ranges can be scaled arbitrarily. Suri, Tóth, and
Zhou [19] consider approximate range counting in the data stream model, ap-
proximating the number of points inside the query region.

We assume a model of computation that supports integer division. We use
Õ(x) to denote O(x logO(1) x), Ω̃(x) to denote Ω(x/ logO(1) x), and α(m,n) to
denote the inverse Ackermann function [20].

The main results of this paper include the introduction of the absolute model,
and approximate data structures for the most common range spaces, including
a data structure that benefits from idempotence, as well as the halfbox quadtree
data structure. Several data structures provide a space-time tradeoff, where the
query time can be made arbitrarily low, at the cost of extra storage space. The
complexities of our approximate data structures are summarized in Table 1.

We also relate approximate data structures in the absolute model to exact
data structures. Assuming uniformly distributed data points, we provide an ex-
act data structure for halfspace range searching, which makes use of idempotence
to improve over the most efficient exact data structure previously known. This
exact data structure is defined in the semigroup arithmetic model [11, 9, 5], and
has O(n1−2/(d+1)) expected query time with O(n) space, matching the lower
bound proved in [9] up to logarithmic factors. The theoretical importance of the

Table 1. Complexities of several approximate range searching data structures

Range Version Storage space Query time Preprocessing Section

Halfspace semigroup O(1/εd) O(1) Õ(n + 1/εd) 3.1

idempotent m ≥ 1/ε(d+1)/2 O(1/mεd) Õ(n + 1/εd) 3.2

emptiness m ≥ 1/ε(d−1)/2 O(1/mεd−1) O(n + 1/εd) 3.2

Spherical semigroup Õ(1/εd) O(1/ε(d−1)/2) Õ(n + 1/εd) 4.1

semigroup m ≥ 1/εd+1 O(1/m(1/2)−O(1/d)εd−O(1)) O(n +m/ε(d−1)/2) 4.1

Simplex group Õ(1/εd) O(1/εd−2 + log(1/ε)) Õ(n + 1/εd) 4.2

Orthogonal semigroup m ≥ 1/εd O(α(m, 1/εd)) O(n +m) 5

group O(1/εd) O(1) O(n + 1/εd) 5

Convex semigroup O(1/εd) O(1/εd−1) O(n + 1/εd) 5
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data structure relies on the fact that uniform distribution and the semigroup
arithmetic model are also assumed in the lower bound proved in [9]. Therefore,
we open some important theoretical and practical questions: Is the average case
complexity for uniformly distributed data strictly lower than the worst case com-
plexity? Does the semigroup arithmetic model allow more efficient idempotent
halfspace range searching data structures than the real RAM model? An im-
proved data structure that worked in the real RAM model would be of practical
interest, even if it relied on the uniform distribution of the points.

In Section 2, we formalize some definitions. In Section 3, we introduce half-
space range searching data structures for different versions of the problem. In
Section 4, we introduce the halfbox quadtree, which answers spherical and sim-
plex queries. In Section 5, we briefly mention approximate data structures for
orthogonal and general convex ranges.

Some details and proofs are omitted from this conference version due to space
limitations. Complete details are presented in the full paper [14].

2 Preliminaries

In this section, we provide basic definitions and discuss some results that are
used throughout the paper. We start by formally defining the absolute model.

Given a range R ∈ R and an approximation error ε > 0, we define R+ as
the locus of points x such that dist(x,R) ≤ ε. We define R− as the locus of
points x such that dist(x,R) ≥ ε, where R is the complement of R. We say
that Rε ε-approximates R within B if R− ∩ B ⊆ Rε ∩ B ⊆ R+ ∩ B. We say
that Rε ε-approximates R if Rε ε-approximates R within [0, 1]d. We say qε(R)
is an ε-approximation of q(R) if there is Rε such that qε(R) = q(Rε) and Rε
approximates R.

We define a computational model, called the Approximate Semigroup Arith-
metic model (ASA model for short), which makes it easier to describe our data
structures. The ASA model is similar to the semigroup arithmetic model [11,9,5].
We explain how to convert our approximate data structures from the ASA model
to the real RAM model (with integer division), preserving the same query time
and storage space.

Given a collection of sets S, let
⋃

(S) =
⋃
S∈S S. In the semigroup version, we

say that a set of regions G and a function g : R → 2G ε-generates R if, for all
R ∈ R, the sets in g(R) are pairwise disjoint, and

⋃
(g(R)) ε-approximates R.

The elements of G are called generators. In the idempotent version the elements
of g(R) do not need to be pairwise disjoint, because x + x = x for all x ∈ S. In
the group version, as the elements of the semigroup (S,+) have an inverse, the
generators can be summed and subtracted in a multiset fashion, as long as the
final result is a set, that is, no point is counted more than once, or counted a
negative number of times. For simplicity, we use

⋃
(g(R)) to refer to the sums

and subtractions of generators in the group version.
In the ASA model, a set G and a function g that ε-generates R is called a data

structure for R. The storage space of the data structure is defined as |G|, and the
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query time is defined as T (G,R) = maxR∈R |g(R)|. We say that a data structure
provides internal approximation if

⋃
(g(R)) ⊆ R, for all R ∈ R, and provides

external approximation if R ⊆
⋃

(g(R)), for all R ∈ R. Modifying our data
structures to provide either internal approximation or external approximation is
straightforward.

There would be little use to develop upper bounds using the ASA model, if we
could not convert the data structures from the ASA model to a more standard
model of computation such as the real RAM model. The ASA model (as well as
the semigroup arithmetic model) considers neither preprocessing time nor the
time to identify the proper generators for a given range. Identifying the proper
generators consists of computing g(R) efficiently, and is a simple task for the data
structures we present, with the exception of the exact halfspace data structure
from Section 3.3. Preprocessing consists of computing w(G) =

∑
p∈P∩G w(p), for

all G ∈ G. We may modify our set of generators G in order to obtain a set that
is faster to preprocess, by using an approximation of each G ∈ G, instead of G
itself, when computing w(G). We provide details on how to preprocess our data
structures efficiently throughout the text. Therefore, our data structures work
in the real RAM model, with the exception of the exact halfspace data structure
from Section 3.3, which works in the semigroup arithmetic model.

3 Halfspace Range Searching

In the halfspace range searching problem, the range space is the set of all half-
spaces. Brönnimann, Chazelle, and Pach [9] showed that a data structure with
m ≥ n storage space takes Ω̃(n1− d−1

d(d+1) /m
1
d ) query time. The lower bound uses

the semigroup arithmetic model, and holds on the expected case when the data
points are uniformly distributed in the unit hypercube.

The most efficient exact data structure known for the semigroup version is
due to Matoušek [16] and has Õ(n/m1/d) query time with m storage space. For
small d, the gap between the best general lower bound and the best upper bound
is significant. For example, when m = O(n) and d = 2, there is a Ω̃(n1/3) lower
bound, and a O(n1/2) upper bound.

Arya, Malamatos, and Mount [5] studied the importance of the semigroup
being idempotent. A semigroup (S,+) is idempotent if x + x = x for all x ∈ S,
and is integral if kx 	= x for all x ∈ S\{0}, and k ∈ N+. They showed that, when
the semigroup is integral, the lower bound for exact halfspace range searching
can be improved to Ω̃(n/m(d+1)/(d2+1)). They also used idempotence to develop
more efficient spherical range searching data structures, in the relative model.
We show that idempotence can be used not only to improve halfspace range
searching in the absolute model, but also in the exact version assuming uniform
distribution.

In Section 3.1, we show that the approximate version can be solved in O(1)
query time, O(1/εd) space, and Õ(n + 1/εd) preprocessing time. This is note-
worthy, given the high complexity of the exact version. In Section 3.2, we make
use of idempotence to achieve a space-time tradeoff, building a data structure
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with m ≥ 1/ε(d+1)/2 storage space and O(1/mεd) query time. We also mention
how to improve the idempotent data structure for the case of emptiness queries.
In Section 3.3, we use the approximate idempotent data structure to improve
the best known bounds of exact range searching, in the semigroup arithmetic
model, when the points are uniformly distributed in the unit cube.

Without loss of generality, we consider the range space R to be the set of
halfspaces of the form xd ≤ b+ a1x1 + · · ·+ ad−1xd−1 with −1 ≤ a1, . . . , ad−1 ≤
1. We call the terms a1, . . . , ad−1 slopes and b the xd-intercept. An arbitrary
halfspace can be converted into this form through an appropriate rotation. As
only 2d different rotations are necessary, one data structure can be kept for each
rotated set of points, without changing our asymptotic results.

3.1 Approximate Semigroup Version

In this section, we provide a data structure to solve approximate halfspace range
searching with O(1) query time, O(1/εd) storage space, and Õ(n+1/εd) prepro-
cessing time. The general idea is to define a sufficiently large set G of halfspaces,
so that any query halfspace is approximated by some halfspace in G. As no two
halfspaces in G are too similar to each other, efficient preprocessing requires
building approximate data structures for subdivisions of the unit cube.

We define the set of generators G as the set that contains ∅, [0, 1]d, and the
halfspaces whose boundary intersect the unit hypercube and have the slopes and
the xd-intercept as multiples of a parameter ε′ to be specified later. Therefore,
G contains O(1/ε′d) halfspaces. Given a halfspace R ∈ R, the function g(R) is
the set containing the single halfspace obtained by rounding all slopes and the
xd-intercept of R to the closest multiple of ε′. If the boundary of R does not
intersect the unit hypercube, then g(R) is defined as {[0, 1]d} if [0, 1]d ⊆ R, and
{∅} if R ∩ [0, 1]d = ∅. It is straightforward to prove the following lemma.

Lemma 1. g(R) (dε′/2)-approximates R.

To build an ε-approximate data structure, we set ε′ = 2ε/d. Using Lemma 1, we
have:

Theorem 1. (G, g) is an ε-approximate halfspace range searching data structure
with O(1/εd) storage space, O(1) query time, and Õ(n+1/εd) preprocessing time.

It is easy to implement the query algorithm in the real RAM model, without
changing the storage space or the query time, as long as integer division is avail-
able. Preprocessing the data structure efficiently is not trivial, though. Consider
the following preprocessing algorithm.

Divide the unit hypercube in 2d identical hypercubes. Recursively compute an
approximate halfspace range searching data structure for each subdivision, using
the case when the hypercube has diameter ε as a base case. For each generator
G ∈ G (|G| = 1/εd), and each subdivision s (out of 2d subdivisions), perform a
query for the intersection of G and s using the data structure for the subdivision
s. Make w(G) the sum of the results of all queries from generator G.
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Disregarding the additive term of O(n), the preprocessing time T (δ) for a data
structure of diameter δ satisfies T (ε) = O(1), and T (δ) = O(δ/εd)+2dT (δ/2) =
O(δ log(δ/ε)/εd).

We should note that the error accumulates through O(log(1/ε)) levels. Con-
sequently, the data structure is O(ε log(1/ε))-approximate. We can set ε =
ε′/ log(1/ε′), in order to obtain an O(ε′)-approximate data structure in O(n +
logd+1(1/ε′)/ε′d) preprocessing time.

3.2 Approximate Idempotent Version

In this section, we make use of idempotence to achieve a space-time tradeoff,
building a data structure with m ≥ 1/ε(d+1)/2 storage space and O(1/mεd)
query time. The idea is to use a set of properly placed large balls as generators.
There are two sources of approximation error: one comes from the fact that we
are approximating flat surfaces with balls, and the second one comes from the
fact that we may use balls that are not exactly tangent to the surface being
approximated. First, we present a scheme involving an infinite number of gen-
erators, which adressess the first issue. Then, we reduce this to a finite set of
generators.

Let r >
√
d+1 be a constant, and let ε < 1/2 be an approximation parameter.

We define G′ to be the set of balls B of radius r such that B is centered at
(x1, . . . , xd) where x1, . . . , xd−1 are multiples of

√
rε/d. Note that |G′| is infinite.

Given a halfspace R ∈ R, let g′(R) be the subset of balls from G′ that are tangent
to the boundary of R and are contained in R. The proof of the following lemma
is ommited due to space limitations.

Lemma 2. (G′, g′) (ε/2)-generates R.

We now define G ⊂ G′ as the set of balls B such that: (i) B has radius r; (ii)
there is a hyperplane h with slopes between −1 and 1, that is tangent to B at
point p, with p ∈ [−

√
rε/d, 1 +

√
rε/d]d−1 × [0, 1 +

√
d]; and (iii) B is centered

at (x1, . . . , xd) where x1, . . . , xd−1 are multiples of
√
rε/d, and xd is a multiple

of ε/2.
The function g(R) is obtained by replacing each ball B′ from g′(R) that

approximates the boundary of R within [0, 1]d, with the closest ball B ∈ G such
that B ⊂ R. The preprocessing uses Theorem 5.

Theorem 2. (G, g) is an ε-approximate halfspace range searching data struc-
ture, for the idempotent version, with internal approximation, m ≥ 1/ε(d+1)/2

storage space, O(1/mεd) query time, and O(n + logd+1(1/ε)/εd) preprocessing
time.

For the emptiness version, the generators are bullet-shaped objects, formed by
each ball and a semifinite cylinder extending downwards, and we use a simple
compression argument to reduce the storage space by a factor of ε. Details are
ommited due to space limitations.
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Theorem 3. There is an ε-approximate halfspace range searching data structure
for the emptiness version with m ≥ 1/ε(d−1)/2 storage space, O(1/mεd−1) query
time, and O(n + 1/εd) preprocessing time.

Another approach for the emptiness version consists of computing an ε-kernel [2,
10] containing O(1/ε

d−1
2 ) points, and then using an exact halfspace emptiness

data structure with the ε-kernel as the set of points. The latter approach attains
lower query times for the case of O(1/ε(d−1)/2) space, but involves complex data
structures from [15] for d > 3.

3.3 Exact Idempotent Version

In this section, we show how to use the approximate idempotent data structure
to build an exact halfspace range searching data structure in the semigroup
arithmetic model. To our knowledge, this is the first data structure to match the
Ω̃(n1−2/(d+1)) lower bound [9] when the storage space is linear, and the data
points are uniformly distributed within the unit cube. We do not provide an
efficient way to determine the set of generators for a given query. Consequently,
the results hold only for the semigroup arithmetic model.

The general idea of the data structure is to properly set the parameter ε used
in the data structure from Section 3.2, in order to make the expected number of
points in the fuzzy boundary equal to the query time of the approximate data
structure. Generators for individual points can be used to count the points in
the fuzzy boundary.

In this section, we assume that the n data points are uniformly distributed
in the unit hypercube [0, 1]d. Let m ≥ n denote the storage space, and ε =
O((nm)−1/(d+1)). We apply Theorem 2 to build an ε-approximate data structure
(G1, g1) with O(m) storage space and query time

O

(
1

mεd

)

= O

(
n1−1/(d+1)

m1/(d+1)

)

= O(nε).

As the data structure (G1, g1) provides internal approximation, no data points
outside R are counted, but some data points inside R and within distance ε
from the boundary may not be counted. To answer the query exactly, we set
G2 = {{p} : p ∈ P} and define g2(R) as the set of generators {p} ∈ G2 such that
p ∈ R and p is within distance ε from the boundary of R. As the data points
are uniformly distributed within the unit hypercube, for any fixed R ∈ R, the
expected number of generators in g2(R) is E(|g2(R)|) = O(nε).

Let G′ = G1 ∪ G2, and g′(R) = g1(R) ∪ g2(R). To use the standard semigroup
arithmetic model definition of generators, let G denote the set of linear forms∑
p∈P∩G′ w(p) for all G′ ∈ G′.

Theorem 4. G is an exact halfspace range searching data structure in the semi-
group arithmetic model with m ≥ n storage space, and O(n1−1/(d+1)/m1/(d+1))
expected query time assuming that the points are uniformly distributed in a hy-
percube. When m = n, the query time is O(n1−2/(d+1)).
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Theorem 4 matches the lower bound of Ω̃(n1−(d−1)/d(d+1)/m1/d) [9] for the case
of m = n (up to logarithmic factors). The lower bound is also in the semigroup
arithmetic model, and also assumes that the points are uniformly distributed
inside the unit hypercube. Therefore, improving the lower bound for the case of
m = n, if at all possible, would require either a different model of computation
or a different set of data points.

4 Halfbox Quadtree

In this section, we introduce a data structure called the halfbox quadtree, and
present some applications. In Section 4.1, we analyze the query time of the
halfbox quadtree for spherical ranges. We also show how an additional set of
generators can be used to provide a space-time tradeoff. In Section 4.2, we an-
alyze the query time of the halfbox quadtree for simplex ranges, in the group
version.

A quadtree box is a box that can be obtained by recursively dividing the unit
hypercube into 2d identical hypercubes. We define a half quadtree box (halfbox
for short) as the intersection of a quadtree box and a halfspace. The size of a
halfbox is the diameter of the corresponding quadtree box. A halfbox quadtree
is formed by associating each quadtree box Q of diameter at least ε with an
ε-approximate halfspace range searching data structure for the bounding box
Q. If we use the halfspace data structure from Theorem 1, the resulting halfbox
quadtree has O(log(1/ε)/εd) storage space, O(n+logd+1(1/ε)/εd) preprocessing
time, O(1) query time for halfbox ranges.

4.1 Approximate Spherical Range Searching

In spherical range searching, the ranges are Euclidean balls. The exact version
of the problem can be reduced to halfspace range searching by projecting the
points onto an appropriate (d + 1)-dimensional paraboloid [8]. Spherical range
queries in P are equivalent to halfspace range queries in P ′. Arya, Malamatos and
Mount [3,5] present approximate data structures, in the relative model, with m ≥
n log(1/ε) space and Õ(n1−1/d/m1/dεd−1) query time, for general semigroups,
and Õ(n1/2−1/2d/m1/2dε(d−1)/2) query time for idempotent semigroups.

In this section, we show that the halfbox quadtree answers spherical range
queries in O(1/ε

d−1
2 ) time. The data structure works for general semigroups. We

also show how to reduce the query time by increasing the space, adding some
extra generators to the data structure. Lemma 3 shows that a small number of
halfboxes can approximate a ball significantly better than a larger number of
quadtree boxes.

Lemma 3. A ball B of radius r can be ε-approximated by a set of disjoint half
quadtree boxes, where each half quadtree box has size Ω(

√
rε).

The following packing lemma allows us to bound the query time as a function
of the size of the quadtree boxes (this follows from Lemma 3 in [6]).
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Lemma 4. If Q is a set of pairwise disjoint quadtree boxes, each of diameter at
least δ, that intersect the boundary of a convex range of diameter Δ ≥ δ, then
|Q| = O((Δ/δ)d−1).

It follows that:

Theorem 5. The halfbox quadtree is an ε-approximate range searching data
structure for spherical ranges with O(log(1/ε)/εd) storage space, O(1/ε(d−1)/2)
query time, and O(n + logd+1(1/ε)/εd) preprocessing time. If the query ball B
has radius r, then the query time is O((min(r, 1)/(r + 1)ε)(d−1)/2).

The spherical range searching data structure from Theorem 5 has minimum
storage space, except for a logarithmic factor (because we could place 1/εd points
in a grid, and retrieve each individual weight using ranges of radius ε). It is
natural to ask how we could improve the query time by increasing the storage
space. Let r > 1 be a parameter, and consider the set of generators G formed by
∅, [0, 1]d, and the balls B such that (i) B has radius at most r, (ii) the radius
of B is a multiple of ε/2, (iii) the boundary of B intersects [0, 1]d, and (iv) B is
centered at (x1, . . . , xd) where x1, . . . , xd are multiples of ε/2

√
d.

Theorem 6. The halfbox quadtree, together with (G, g), is an ε-approximate
range searching data structure for spherical ranges with m = rd/εd+1 > 1/εd+1

storage space, O(1/m
1
2− 1

2d εd−
1
2− 1

2d ) query time, and O(n+m/ε(d−1)/2) prepro-
cessing time.

4.2 Approximate Simplex Range Searching

In simplex range searching, the ranges are d-dimensional simplices. Chazelle [11]
proved that, if m units of storage are allowed, then the query time is Ω(n/

√
m) in

the plane, and Ω((n/ logn)/m1/d) in d-dimensional space. In the exact version,
the most efficient linear size data structure is due to Matoušek [16] and has
O(n1−1/d) query time.

We show how to answer ε-approximate simplex queries in O(log(1/ε)) time
for d = 2 and O(1/εd−2) time for d ≥ 3, using the halfbox quadtree. Our query
algorithm requires the use of a subtraction operation, and so applies only in the
group setting.

We recursively answer a query q(Q,R) with a simplex range R in the quadtree
box Q, starting with Q as the unit hypercube. If Q ∩ R = ∅, then we return 0.
If Q ∩ R = B, then we return the precomputed w(Q) =

∑
p∈P∩Qw(p). If Q

does not contain any (d − 2)-faces of R, then there is a set H of at most d + 1
halfspaces that form the complement of R, and the halfspaces in H are pairwise
disjoint. Then, we can return w(Q)−

∑
h∈H qε(h∩Q), where h∩B is a halfbox,

and qε(·) is the result of the approximate query using the halfbox quadtree. If
the diameter of Q is less than ε, then we verify whether R contains the center
of Q and answer accordingly. Otherwise, we return the sum of q(Q′, R) for all
2d subdivisions Q′ of Q.

We can use the following packing lemma to bound the query time.



12 G.D. da Fonseca

Lemma 5. If C is a set of pairwise disjoint quadtree boxes, each of diameter at
least δ, that intersect a (d−2)-dimensional convex polytope of constant diameter,
then |C| = O(1 + 1/δd−2).

To analyze the query time, we look at the recursion tree of the query algorithm.
The diameter of the quadtree boxes at level � is Θ(2−�). The query algorithm
only makes a recursive call when Q intersects the a (d−2)-face of R. As R is the
intersection of a constant number of halfspaces, the number of (d−2)-faces of R
is also constant. As R is convex, each (d − 2)-face of R inside the unit box is a
convex polytope of constant diameter. It follows from Lemma 5 that the number
of recursive calls at level � is Θ(2�(d−2)). Summing the number of recursive calls
for all log(Θ(1/ε)) levels we conclude:

Theorem 7. The halfbox quadtree is an ε-approximate range searching data
structure for simplex ranges, in the group version, with O(1/εd log(1/ε)) storage
space, O(log(1/ε)) query time for d = 2, O(1/εd−2) query time for d ≥ 3, and
O(n + logd+1(1/ε)/εd) preprocessing time.

5 Other Results

An important aspect of this work is the observation that the absolute model al-
lows efficient approximate range searching with very simple methods. As further
evidence of this, in this section, we briefly examine approximate range search-
ing data structures for two additional problems: orthogonal ranges and convex
ranges. The set of orthogonal ranges is the set of all axis-aligned hyper-rectangles.
The set of convex ranges is the set of all d-dimensional convex shapes.

For the case of orthogonal ranges, we create a set P ′ of O(1/εd) grid aligned
points where, for any point p ∈ P , there is a point a(p) ∈ P ′ with dist(p, a(p)) ≤
ε. We define the weight w(p′), for p′ ∈ P ′, as the sum of w(p) for the points p with
p′ = a(p). Then, we build a d-dimensional array A, ranging from 1 to O(1/ε) in
each dimension, using the weights of the points in P ′. A partial sum query in A
is equivalent to an ε-approximate orthogonal range query for P . If subtraction is
allowed, partial sum queries can be answered in O(1) time with O(1/εd) storage
space. Without subtraction, partial sum queries take O(α(m, 1/εd)) time with
m ≥ 1/εd storage space [21, 13].

For the case of convex ranges, we define G as the set of quadtree boxes of diam-
eter at least 2ε. Note that |G| = O(1/εd). The function g(R) is defined as the set
of quadtree boxes from G whose centers are contained in R. The data structure
(G, g) answers convex range queries in O(1/εd−1) time. We can efficiently com-
pute g(R) in the real RAM model if we assume that we can determine whether a
range intersects a quadtree box in O(1) time (as in [6]). A variation of this data
structure uses a compressed quadtree to store arbitrarily small quadtree boxes.
In this variation, the parameter ε only needs to be provided at query time, and
the storage space is O(n).
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16. Matoušek, J.: Range searching with efficient hiearchical cuttings. Discrete & Com-
putational Geometry 10, 157–182 (1993)
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Abstract. In this paper we describe space-efficient data structures for
two-dimensional range searching problem.

We present a dynamic linear space data structure that supports or-
thogonal range reporting queries in O(log n + k logε n) time, where k is
the size of the answer. Our data structure also supports emptiness and
one-reporting queries in O(log n) time and thus achieves optimal time
and space for this type of queries. In the case of integer point coordi-
nates, we describe a static linear space data structure that supports range
reporting queries in O(log n/ log log n+k logε n) time and emptiness and
one-reporting queries in O(log n/ log log n) time. This is the first linear
space data structure for these problems that achieves sub-logarithmic
query time.

We also present a dynamic linear space data structure for range count-
ing queries with O((log n/ log log n)2) time and a dynamic O(n log n/
log log n) space data structure for semi-group range sum queries with
query time O((log n/ log log n)2).

1 Introduction

In the orthogonal range searching problem we store the set of d-dimensional
points P in a data structure so that for an arbitrary d-dimensional query rect-
angle Q information about the points in Q ∩ P can be provided efficiently. In
the case of the orthogonal range reporting problem, all points in Q ∩ P must
be reported. In the case of the orthogonal semi-group range sum problem, we
associate an element g(p) of a commutative semi-group G with each point p of
P , and for a query rectangle Q,

∑
p∈Q∩P g(p) can be computed. In the case of

orthogonal range counting problem, |Q ∩ P | must be reported. In the case of
emptiness queries, we must determine if P ∩ Q = ∅. One-reporting queries are
a special case of range reporting queries: for a query-rectangle Q we report an
arbitrary point p ∈ P ∩Q, if P ∩Q 	= ∅. In this paper we describe linear space
dynamic data structures for two-dimensional range reporting and counting. We
also improve the space usage and query time of the dynamic data structure for
the two-dimensional semi-group range sum problem.

Two-dimensional range reporting queries can be answered in O(log n+k) time
by a data structure that uses O(n logε n) space both in static [6] and dynamic [14]
scenarios. Here and further k denotes the size of the answer and ε is an arbitrary
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positive constant. The fastest linear space data structure [11] supports queries
in O(

√
n logn + k) and updates in O(log n) time. If we allow penalties for each

point in the answer, the best previously known linear space static data structure
of Chazelle [6] supports queries in O(log n + k logε n) time. The dynamic data
structure of [15] supports queries in O(log n log logn + k logε n) time and O(n)
space. Two previous results imply that emptiness and one-reporting queries can
be answered in O(log n) time in the static case and O(log n log logn) time in the
dynamic case.

In this paper, we present a dynamic linear space data structure that sup-
ports orthogonal range reporting queries in O(log n+k logε n) time and updates
in O(log7/2 n) time. Our data structure supports emptiness and one-reporting
queries in O(log n) time thus matching the static data structure of Chazelle [6].
We also present a linear space static data structure with O(log n/ log log n +
k logε n) time (respectively O(log n/ log logn) for the emptiness and one-
reporting queries) in the case when point coordinates are integers. This is the
first data structure with linear space and sublogarithmic query time for these
problems. We describe a linear space dynamic data structure for range count-
ing queries with O((log n/ log logn)2) query time. This is an O((log logn)2)
factor improvement over the fastest previously known linear space data struc-
ture of Chazelle [6]. Our dynamic data structure for two-dimensional semi-
group range sum queries supports queries in O((log n/ log logn)2) time and
uses O(n logn/ log logn) space. As follows from the lower bound recently proven
by Pǎtraşcu [17], this query time is optimal for any data structure with poly-
logarithmic update time.

Our approach is based the construction of efficient data structures for the
narrow grid: the y-coordinates of points are (different) integers in the interval
[1, O(n)] and the x-coordinates are integers in the interval [1, logc n] for some con-
stant c < 1. Using a modification of the standard range tree technique [4] a gen-
eral two-dimensional range searching query can be reduced to O(log n/ log logn)
queries to data structures on a narrow grid. In sections 2 and 3 we describe data
structures for range reporting and range counting on a narrow grid. Results for
two-dimensional orthogonal range reporting and orthogonal range counting are
given in section 4. In section 5 we present a data structure for orthogonal semi-
group range sum queries. The model of computation used in this paper is the
unit cost word RAM: we assume that point coordinates of an arbitrary point fit
into one machine word and all operations, including multiplication and bitwise
operations, can be performed in O(1) time.

2 Range Reporting on the Narrow Grid

In this section we describe a data structure for range reporting queries on a
W × H grid, so that W = O(log1/4 n), H = O(n), and all points have dif-
ferent y-coordinates. We divide the grid into O(n/

√
logn) rows Ri = [1,W ] ×

[ri−1, ri), i = 1, 2, . . . , O(n/
√

logn) for ri = i
√

log n. Thus, the grid is divided
into O(n/

√
logn) rows and every row contains O(

√
logn) elements. Our data
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structure for the range reporting queries consists of the following components:
For every pair i, j, 1 ≤ i ≤ j ≤ W , there is a data structure Cij for one-
dimensional range reporting queries. If there is at least one point p = (x, y)
with rs−1 ≤ y ≤ rs and i ≤ x ≤ j, then we store an element s in Cij . For
every row Ri, we also store the coordinates of points that belong to Ri. We will
show below that range reporting queries to a single row Ri can be supported
in O(k) time, and the total space necessary to store all points in all rows Ri
is O(n log logn) bits. Then, we will show that each data structure Cij can be
implemented with O((n/

√
logn)) bits, so that one-dimensional range reporting

queries are supported efficiently. Finally, we will describe how the queries and
updates on the narrow grid are supported.

First, we describe a data structure for range reporting queries on Ri. For every
point p in Ri we store the difference dp between the y-coordinate of p and ri−1.
Since dp − ri−1 ≤

√
logn and the total number of points in Ri does not exceed√

logn, the values of dp for all p ∈ Ri can be stored in O(
√

logn log logn) bits.
Since the x-coordinates of all points belong to [1, O(log1/4 n)], x-coordinates of
all points can be also stored in O(

√
logn log logn) bits. All points in Ri are stored

in a fixed order (e.g. sorted by their y-coordinates). Let dj be the value of dp for
the j-th point p. Let v be the number of points in Ri. We store the values of dj
in a word Di; Di consists of v components of s = log log n bits each; components
are separated by special bits called flag bits. In the same way we store the x-
coordinates of points in a word Xi. Since each point needs O(log logn) bits, we
can store words Xi and Di for all i in a list L, so that L uses O(n log logn) bits.

Since both x- and y-coordinates of all points in Ri can be stored in one
machine word, we can answer two-dimensional range-reporting queries for Ri
in constant time by exploiting the bit parallelism. Here and further we denote
by AND and OR the bitwise AND and OR operations; xv denotes the string x
repeated v times. Consider a two-dimensional range reporting query [a, b]× [c, d],
so that 1 ≤ a ≤ b ≤ W , ri−1 ≤ c ≤ d < ri. Let c′ = c−ri−1−1, d′ = d−ri−1 +1.
Using standard techniques we can construct words Mc and Md that contain v
copies of c′ and d′ respectively. We multiply c′ with 1(0s1)v and obtain the word
Mc that contains v copies of c′ separated by zeros. We set all flag bits of Di to 1
by AND with (10s)v. Let M1 = Di −Mc. The sj-th bit of M1 equals to 1 iff the
j-th component stored in Di is greater than c′. We set M1 = (M1 AND (10s)v).
Analogously, we multiply d′ with 1(0s1)v and obtain the word Md that contains
v copies of d′ separated by zeros. We set the flag bits of Md to 1 by OR with
(10s)v. Let M2 = ((Md−Di) AND (10s)v). The j-th flag bit of M2 is 1, iff the j-th
component of Di is smaller than d′. Let M = M1 AND M2. The sj-th bit of the
mask M equals to 1, iff c′ < dj < d′. But c′ < dj < d′ iff c ≤ yj ≤ d, where yj is
the y-coordinate of the j-th point. In the same way, we can construct the mask
M ′, such that the sj-th bit of M ′ equals to 1, iff a ≤ xj ≤ b. Hence, the sj-th
bit of M ′′ = M AND M ′ is 1 iff the j-th point in Ri is contained in [a, b]× [c, d].
Using a look-up table of size o(n) we can identify the positions of all non-zero
bits in M ′′ and output the coordinates of corresponding points using Xi and Di.
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A data structure Cij contains elements from [1,m] for m = O(n/
√

logn). This
fact can be used to implement Cij with O(m) = O(n/

√
logn) bits. With a slight

misuse of notation we will also denote by Cij the set of elements stored in Cij . We
store all elements of Cij in the compact list L organized in the same way as the
data structure of [5] (a similar approach is also used in [15]). All elements of L are
divided into groups, and the elements of each group except of the first element
are difference encoded: if the i-th group Gi consists of elements ei1, ei2, . . . eini ,
then we store ei1, δi2 = ei2 − ei1, . . . δini = eini − eini−1 in Gi. Each difference
δij is gamma coded[7], so that δij is stored with O(log δij) bits. We choose the
size of each group Gi in such a way that all encoded elements in Gi require at
most 8 logm−4 bits and at least 2 logm−1 bits. It can be shown (s. [5]) that all
groups Gi require O(m) bits; hence, there are O(m/ logm) groups. In [5] it is also
shown that since Gi is stored in O(1) words, we can insert and delete elements
into Gi and search in Gi in O(1) time using table look-up. We store the first
elements of each group in a data structure C′

ij . If we implement C′
ij using a linear

space data structure, then C′
ij uses O((m/ logm) log m

logm ) = O(m) bits. We can
implement C′

ij as a van Emde Boas data structure with O(log logn + k) query
time and O(log logn) update time. Alternatively, C′

ij can be implemented as a
static data structure with O(k) query time, or as a randomized data structure
of [16] with O(log log logn + k) query time and O(log logn) update time. We
also store an array V with m/ logm entries: V [s] stores a pointer to the smallest
element es in Cij that belongs to the interval [(s−1) logm, s logm]. V [s] consists
of the pointer to a group Gi in which es is stored and the index of es in Gi;
hence V [s] can be stored with O(logm) bits and V requires O(m) bits. Due
to the concavity of the logarithm function, the total number of bits to encode
all elements e ∈ [(i − 1) logm, i logm] is O(ν log logm

ν ) for ν = |{e|e ∈ [(i −
1) logm, i logm] ∩ Cij}|. Since ν log logm

ν ≤ logm for ν ≤ logm, all difference
coded values can be stored in O(1) words. Hence, all elements of Cij that belong
to an interval [(s − 1) logm, s logm] for some s are stored in O(1) consecutive
groups Gi.

A one-dimensional query [c, d] to Cij is answered as follows. We compute
c′ = c/ logn and d′ = d/ logn. If V [c′] is empty, we set c′′ = �c/ logn�, otherwise
we find succ(c, Cij). Here and further the predecessor of an integer e in a set
S is pred(e, S) = max{x ∈ S ∪ {−∞}|x ≤ e}, and the successor of e in a S is
succ(e, S) = min{x ∈ S ∪{+∞}|x ≥ e}. Observe that since at least one element
of Cij belongs to [c′ logn, (c′ + 1) logn], either a predecessor or a successor of c
is contained in Cij ∩ [c′ logn, (c′ +1) logn]. Since all elements from [c′ logn, (c′ +
1) logn] belong to a constant number of groups Gi that follow the group to
which V [c′] points, we can find succ(c, Cij) in O(1) time. Let Gj be the group to
which succ(a, Cij) belongs. We can find all elements in Gj that belong to [c, d]
in O(1) time per element and set c′′ to be the first element in the group Gj+1

that follows Gj . If V [d′] is empty, we set d′′ = d′ logn, otherwise we find a group
Gl that contains the predecessor of d in Gl. We report all elements of Gl that
belong to [c, d] in O(1) time per element, and set d′′ to be the first element in Gl.
We find all groups Gm, such that all elements of Gm belong to [c′′, d′′] using C′

ij .
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For every element e of C′
ij that belongs to [c′′, d′′] we output all elements of the

corresponding group Ge. Thus a one-dimensional query to Cij can be answered
in O(f(n) + k) time, where f(n) is the query time of the one-dimensional linear
space data structure C′

ij and k is the size of the answer.
To answer a two-dimensional range reporting query [a, b]× [c, d] on a narrow

grid, we find f = �c/
√

logn� and l = �d/
√

logn�. If f = l, [a, b] × [c, d] is
contained in a row Rf , and we can report all points in [a, b]× [c, d] using Xf and
Df as described above. If f < l, [a, b]× [c, d] = [a, b]× [rf , rl−1]∪ [a, b]×(rl−1, d]∪
[a, b]×[c, rf). Thus a range reporting query is reduced to a one-dimensional range
reporting query to Cab and two three-sided queries to rows Rf and Rl. If f < l
we find all relevant rows Rs that contain at least one element with x-coordinate
in [a, b] by a one-dimensional query [f+1, l−1] to Cab. For every found element s
we report all points in Rs whose x-coordinates belong to [a, b] using Xs. Finally
we answer queries ([a, b]× (rl, d])∩Rl and ([a, b]× [c, rf ))∩Rf . The search time
is dominated by the search time of the one-dimensional query to Cab.

When a new point p = (x, y) is inserted, we find s = �y/ logn�. For every pair
a, b such that 1 ≤ a ≤ x ≤ b ≤ W , we insert s into Cab if necessary. If the row
Rs is empty, we construct the words Xs and Ds and insert them into the list L.
Deletions are processed in a similar way.

We can sum up the results of this section in the following:

Lemma 1. There exists a data structure for an O(log1/4 n) × O(n) grid that
uses O(n log logn) bits and supports range reporting queries in O(log logn + k)
time and updates in O(log1/2 n log logn) time.

There exists a static data structure for an O(log1/4 n) × O(n) grid that uses
O(n log logn) bits and supports range reporting queries in O(k) time.

There exists a randomized data structure for a O(log1/4 n) × O(n) grid that
uses O(n log log n) bits and supports range reporting queries in O(log log logn+k)
time and updates in O(log1/2 n log logn) time.

3 Range Counting Queries on the Narrow Grid

In this section we describe a data structure for orthogonal range counting queries
on a W ×H grid for W = O(log1/4 n) and H = O(n). We can use an approach
similar to the approach of section 2. In the same way as in the previous section,
the grid is divided into n/

√
logn rows Ri = [1, O(log1/4 n)] × [ri−1, ri), so that

ri − ri−1 =
√

logn for i = 1, 2, . . . , O(n/
√

logn).
For every row Ri we store words Xi and Di defined in section 2. The range

counting queries for each row Ri can be answered in O(1) time: As described in
the previous section, for an arbitrary [a, b]× [c, d] contained in a row Ri, we can
construct the word M of o(log n) bits such that the number of 1’s in M equals to
the number of points in [a, b]× [c, d]∩Ri. We can count the number of 1’s in M
in O(1) time with a look-up table of size o(n/ logn). We also store for each pair
i, j, 1 ≤ i ≤ j ≤ W , a one-dimensional data structure Cij for the special case of
range sum queries: we associate an integer value w(e), w(e) ≤

√
logn, with each
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element e of Cij , so that for an arbitrary interval [c, d], the sum
∑
e∈[c,d] w(e)

can be computed. Observe that this problem is easier than the semi-group range
sum problem, because subtractions are allowed and bit-packing techniques can
be applied. We associate with each element s stored in Cij the number of points
(x, y) ∈ Rs with i ≤ x ≤ j. We will show later in this section that each Cij uses
O(n log logn/

√
logn) bits.

Analogously to the range reporting query processing, a range counting query
[a, b] × [c, d] is answered by answering at most three queries: if l > f for f =
�c/

√
logn� and l = �d/

√
logn�, [a, b]× [c, d] = [a, b]× [rf , rl−1]∪ [a, b]×(rl−1, d]∪

[a, b]× [c, rf ); if l = f , it suffices to answer a query [a, b]× [c, d] for the row Rf .
Range counting queries to a single row Ri can be answered as described above.

Now we turn to the description of a data structure Cij . Elements
of Cij belong to the interval [1, U ] for U = O(n/

√
logn). We divide

[1, U ] into O(n log logn/ logn) intervals of size logn/ log log n each. For
the m-th interval Um = [(m − 1) logn/ log logn,m logn/ log logn], m =
1, 2, . . . , O(n log logn/ log3/2 n), we store the prefix sums sume of all elements
of the interval Um in a word Wm. Here for an element e ∈ Um, sume =∑
e′∈Um,e′≤e w(e). Observe that each value associated with an element of Cij

does not exceed
√

logn. Therefore prefix sums stored in Wi do not exceed log3/2 n
and each prefix sum can be stored in O(log logn) bits. When a value associated
with some element of Um is incremented or decremented, Wm can be updated
in O(1) time using the bit parallelism. We associate with an element m of the
data structure C′

ij the sum of values associated with all elements of Cij that
belong to Um. We will show below that C′

ij uses linear space in the number
of its elements. Since C′

ij contains O(n log logn/ log3/2 n) elements, C′
ij uses

O(n log logn/
√

logn) bits. The sum of values associated with elements of Cij in
the interval [c, d] for c ∈ Um and d ∈ Um, can be computed as sumd − sumc−1,
where sumd and sumc are the prefix sums of d and c respectively. Both sumd and
sumc can be computed in O(1) time with help of Wm. Let v = log n/ log logn.
We can answer a general range sum query [c, d] to Cij by answering a range sum
query [�c/v�, �d/v�] to C′

ij and two range sum queries [c, �c/v�v] and [�d/v�v, d]
to W�c/v	 and W
d/v�+1 respectively. It remains to show how a linear space data
structure C′

ij for range sum queries can be constructed.
We start with a description of the dynamic variant of the data structure

C′
ij . Later in this section we will describe a static data structure. Dynamic data

structure C′
ij is implemented as a B-tree T with node degree log1/4 n. The values

associated with elements of C′
ij are stored in the leaves of T . In every internal

node v of T we store the data structure Sv that supports range sum queries in
the interval [1, 2 log1/4 n]. A query (i, j) to Sv returns the total number of leaves
in children vi, vi+1, . . . , vj of the node v.

We say that a node v is on level l if the path from v to a leaf node consists
of l edges. In every node v on level l > 1 the data structure Sv consists of two
parts: array Av with log1/2 n entries and a word Bv with log1/2 n components of
log logn bits. Following the idea of [18], we store the information about log1/2 n
most recent updates in the word Bv and the information about the older updates
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in array Av. Components in Bv and entries in Av correspond to pairs r, s, 1 ≤
r ≤ s ≤ log1/4 n. In the entry of Av that corresponds to a pair r, s we store
the total number of elements in children vr, vr+1, . . . , vs of v at some previous
time. We keep track of the recent changes with help of the word Bv. When the
i-th child of v is updated, i.e. when the number of elements in vi is incremented
or decremented, we update all components r, s of Bv with r ≤ i ≤ s. Since all
components of Bv fit into one machine word, we can increment or decrement
all relevant components in O(1) time. During the t-th update operation we set
Av[r, s] = Av[r, s] + Bv[r, s] and Bv[r, s] = 0 for r = (t mod log1/2 n)/ log1/4 n

and s = (t mod log1/2 n) mod log1/4 n. Hence, the components of Bv keep
track of the changes in the sums during the last log1/2 n updates. Therefore
the values of components do not exceed log1/2 n and can be stored in less than
log logn bits each. Thus each data structure Sv for a node v on level l ≥ 2 uses
log1/2 n words of memory and supports updates in O(1) time. Data structures
Sv for internal nodes on level l = 1 consist only of a word Bv. Since the children
of Bv are leaves, all components of Bv fit into one word. If a new leaf child of
v is inserted (an old child is deleted), we insert or remove one component of Bv
and update all relevant components of Bv in O(1) time. Since the total number
of nodes on levels l ≥ 2 is O(n/ log1/2 n), all data structures Sv use O(n) words.
Suppose that the total number of points in an interval [c, d] must be found. Using
a standard searching data structure, we identify the predecessor td of d and the
successor tc of c among the leaves of T . Let q be the lowest common ancestor of
tc and td. Then a range sum query can be answered by answering at most two
queries to internal nodes of T on each level l, 1 ≤ l ≤ lq, where lq is the level
of the node q. Hence, a range sum query can be answered in O(log n/ log logn)
time.

When a new element is inserted into C′
ij we insert the new leaf u into T .

For the parent v of u we update Sv by inserting new components into Bv in
O(1) time. For every node w on the path from v to the root, we update Sw in
O(1) time as described above. If the number of children of some node x exceeds
2 log1/4 n, we split x and insert the new element into the data structure Sy for
the parent y of x and rebuild Sy into O(log1/4 n) time. Since a node on level l is
split after O(Bl) updates the amortized cost of rebuilding data structures Sy is
O(log n/ log logn). Deletions can be processed in a similar way. We can update
the value associated with some element e of C′

ij by removing e from C′
ij and

re-inserting e with the new associated value. Thus C′
ij (and hence, Cij) supports

update operations in O(log n/ log logn) time. When a new point is inserted or
removed, O(log1/2 n) elements in data structures Cij may be updated; hence,
the total update time is O(log3/2 n/ log logn).

In the static case we can easily construct a data structure C′
ij that uses linear

space in the number of its elements and supports range sum queries in O(1) time:
with every element e we store the sum Se of values associated with elements that
precede e, Se =

∑
e′≤e w(e′), and the sum of values in the range [c, d] equals to

Sd − Sc−1. We sum up our results in the following:
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Lemma 2. There exists a dynamic data structure for range counting queries on
an O(log1/4 n) × O(n) grid with O(log n/ log logn) query time and O(log3/2 n/
log logn) update time that uses O(n log log n) bits.

There exists a static data structure for range counting queries on an
O(log1/4 n) ×O(n) grid with O(1) query time that uses O(n log logn) bits.

4 Two-Dimensional Range Searching

Let P be the set of points stored in the data structure; let Px and Py be the sets
of x- and y-coordinates of points in P . We assume w.l.o.g. that all points have
different y-coordinates.

We can transform a data structure for a narrow grid into a two-dimensional
range searching data structure using the standard range trees technique [4]. We
build a tree Tx over the set of x-coordinates Px. In order to support re-balancing
operations efficiently, we implement Tx as a WBB tree [2] with branching pa-
rameter log1/4 n and leaf parameter 1. Every internal node has at most 4 log1/4 n
children [2]. With every leaf x we associate a range [x, x′), where x′ is the suc-
cessor of x in Px; a range associated with an internal node is a union of ranges
associated with its children.

In every internal node v we store a data structure Dv. For every point (x, y)
such that x belongs to the range of v, we store a point (i, lv(y)) in Dv. We
choose i so that (x, y) belongs to the range of the i-th child of v, and lv(y) is
the v-label assigned to the point (x, y) in the node v. The labels are assigned
in such way that for any points (x1, y1), (x2, y2) whose labels are stored in
Dv, y1 < y2 ⇒ lv(y1) < lv(y2). Besides that, for all (x, y) that belong to the
range of v, lv(y) ∈ [1, O(m)], where m is the total number of points that belong
to the range of v. Since all elements (i, lv(y)) stored in Dv are points on a
O(log1/4 n) × O(m) grid, we can implement Dv as one of the data structures
described in sections 2 and 3.

To answer a query [a, b]× [c, d] we find ax = succ(a, Px) and bx = pred(b, Px).
For every node v on the path from the root of Tx to ax and for every node v
on the path from the root to bx, we answer a two-dimensional range searching
query [i, j]× [cv, dv], such that the ranges of the children vi, vi+1, . . . , vj of v are
contained in [a, b]. The interval [cv, dv] contains a label lv(y), iff y ∈ [c, d]. We
will show later how intervals [cv, dv] can be found. Since at most two queries to
data structures Dv are answered on each level of Tx, the total number of queries
on a narrow grid is O(log n/ log logn). Hence, a two-dimensional range counting
query can be answered in O((log n/ log logn)q(n)) time, where q(n) is the query
time for a data structure on a O(log1/4 n)×O(n) grid. A two-dimensional range
reporting query can also be answered in O((log n/ log logn)q(n)) time, if we
ignore the time to output the points in the answer.

The labeling lv can be constructed and maintained in the same way as in [15].
Let Yu be the set of u-labels of the elements that belong to node u; let Yv,u
be the set of v-labels of the elements that belong to u, where v is the parent
node of u. For every internal node v and every child u of v we store a mapping
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fu : Yv,u → Yu. Thus fu maps the v-labels of points that belong to u into their
u-labels. In the root r of Tx we store an additional mapping fr that assigns a
label lr to every element of Py. The mappings fu can be maintained with the
sparse table technique [10], [19]. As shown in [3], to maintain the mapping fu
it suffices to store |Yu|/ log(|Yu|) auxiliary records of log(|Yu|) bits each. When
the set Yu is updated, we may change the values of fu(e1), fu(e2), . . . , fu(es) for
some elements e1, e2, . . . , es ∈ Yv,u, so that the order-preserving property of fu
is maintained. In this case we say that elements e1, . . . , es are fu-moved. Using
e.g. the algorithm of [3], we fu-move O(log2 |Yv,u|) elements of Yv,u in the case of
an update operation, so that the properties of the mapping fu are preserved. It
was shown in [15] that given a mapping f : S → V , such that S ⊂ U and V ⊂ U

for |U | < n, we can store a data structure of O(|S| log |U|
|S| ) bits, so that for every

element e ∈ S f(e) can be computed in O(log logn) time and an element e with
the corresponding f(e) can be inserted into (removed from) S in O(log logn)
time. We can also construct a static data structure that uses O(|S| log |U|

|S| ) bits,
such that for every e ∈ S f(e) can be computed in O(1) time. Besides that, we
store for every child vs of each node v a data structure that supports prede-
cessor and successor queries in O(log logn) time and uses O(|Yvs | log logn) bits.
Alternatively, we can store a static data structure that supports predecessor and
successor queries in O(1) time and also uses O(|Yvs | log logn) bits. A detailed
description of these data structures will be given in the full version of this paper.

To answer a two-dimensional range reporting query [a, b]× [c, d], we compute
cr = fr(succ(c, Py)) and dr = fr(pred(d, Py)). We visit all nodes on the paths
from r to ax and from r to bx as described above. In every visited node v we
proceed as follows: If the ranges of children vi, vi+1, . . . , vj of v are contained in
[a, b], we answer a query [i, j]×[cv, dv]. By Lemma 1 such a query can be answered
in O(log logn+k) time in the dynamic case or in O(k) time in the static case. If
the child vs of v must also be visited, we set cvs = fvs(succ(cv, Yv,vs)) and dvs =
fvs(pred(dv, Yv,vs)). Since the total number of visited nodes is O(log n/ log logn),
we can find the labels of all points in [a, b] × [c, d] in O(log n + k) time. If
point coordinates are integers, a static data structure can answer queries in
O(log n/ log logn + k) time. For every found label ev ∈ Yv, such that cv ≤
ev ≤ dv, we identify the corresponding point p = (x, y), such that ev is a v-
label of p. This can be done by computing eu1 = f−1

v (ev), eu2 = f−1
u1

(eu1), . . .,
er = f−1

us
(eus), where u1, u2, . . . , us are nodes of Tx on the path from v to the

root r. Since all points have different y-coordinates, we can identify a point by
its r-label using a look-up table of linear size. This procedure incurs a O(log n)
penalty for each point in the answer. The penalty can be reduced to O(logε n)
using the method described in [15], section 4.

When a new point (x, y) is inserted into the dynamic data structure, we insert
the v-labels of p into data structures Dv for O(log n/ log logn) nodes v1, v2, . . . , vt
(i.e. nodes whose ranges contain x). When a new v-label is inserted into the set
of v-labels Yv, we may have to change the values of O(log2 n) other v-labels. This
means that O(log2 n) elements must be removed from and re-inserted into Dv.
Hence the cost of an insertion is O(log2 n log1/2 n log logn(log n/ log logn)) =
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O(log7/2 n). When a new element is inserted into a WBB tree Tx, some inter-
nal nodes can be split and associated data structures can be re-built. It follows
from [2] that if a node v on level l is split, then at least logl/4 n/2 insertions
below v must be performed before it splits again. We can show that the amor-
tized cost incurred by re-building data structures associated with split nodes
is O(log5/2 n/ log logn). Details will be given in the full version. Hence the to-
tal insertion time is O(log7/2 n). Deletions are processed in the same way as
insertions.

Results for two-dimensional range reporting queries are summed up in the
following theorem:

Theorem 1. There is a linear space data structure A for two-dimensional
orthogonal range reporting queries with O(log n + k logε n) query time and
O(log7/2 n) update time. A supports emptiness and one-reporting queries in
O(log n) time.

If all point coordinates are integers, there exists a linear space static
data structure B for two-dimensional orthogonal range reporting queries with
O(log n/ log logn+k logε n) query time. B supports emptiness and one-reporting
queries in O(log n/ log logn) time.

The data structure for the two-dimensional dynamic range counting problem is
almost identical with the data structure of Theorem 1. The only difference is
that we store in every node v a data structure Sv of Lemma 2 that supports
range counting queries on a narrow grid in O(log n/ log logn) time.

Theorem 2. There is a linear space data structure C for orthogonal range count-
ing queries with O((log n/ log logn)2) query time and O(log9/2 n/(log logn)2)
update time.

5 Two-Dimensional Semi-group Range Counting

In this section we assume that an element g(p) of a commutative semi-group
G is associated with each point p. The goal of the semi-group range sum query
is to find for a query rectangle [a, b] × [c, d] the sum of values associated with
points p that belong to [a, b]× [c, d]. We assume that an arbitrary element of G
fits into one word of memory. Observe that unlike in the previous sections it is
not possible to pack more than one element of G into a machine word.

In the following Lemma we show how semi-group range counting queries on
the narrow grid can be processed.

Lemma 3. There exists a linear space data structure S for semi-group
range sum queries on O(log1/4 n) × O(n) grid that supports queries in
O(log n/ log logn) time and updates in O(log3/2+ε n) time.

Proof. Suppose that the x-coordinates of all points belong to the range [1,W ]
for W = O(log1/4 n). Data structure S consists of the same components as data
structures in Lemmas 1 and 2: the grid is divided into rows Ri = [1, O(log1/4 n)]×
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[ri−1, ri), where rt = t
√

logn, t = 0, 1, . . . , O(n/
√

logn). Elements of each row Ri
are stored in a list Li. For every pair i, j, such that 1 ≤ i ≤ j ≤ W , we store a data
structure Cij that supports one-dimensional semi-group range sum queries and
contains O(n/

√
logn) elements. We associate a value v =

∑
p∈[rs−1,rs)×[i,j] g(p)

with en element s stored in Cij . All data structures Cij , 1 ≤ i ≤ j ≤ W , contain
O(n) elements and use O(n) space.

To answer a query [a, b]× [c, d] we find rf = �c/
√

log n� and rl = �d/
√

logn�.
If rf = rl, the query rectangle is contained in row Rf . Hence, we can examine all
O(

√
logn) points in Lf and compute the sum of values associated with points

p ∈ [a, b]×[c, d] in O(
√

logn) time. If rf < rl, we find q1 =
∑
p∈([a,b]×(rl−1,d])

g(p),
q2 =

∑
p∈([a,b]×[c,rf)) g(p), and q3 =

∑
p∈([a,b]×[rf ,rl−1])

g(p). We can compute q1

and q2 in O(
√

logn) time; q3 is computed with a range sum query [f, l] to Cab.
Cij can be implemented as a B-tree TB with node degree O(logε n). Elements

and their values are stored in the leaves of TB. In every internal node v we store
a data structure Sv with O(logε n) elements. Let vi be the i-th child of v and
set(i) be the set of all leaf descendants of vi. We associate with an element i of
Sv the value w(i), such that w(i) equals to the sum of values associated with
leaf descendants of vi, w(i) =

∑
e∈set(i) g(e). For each node v on level l ≥ 2, we

additionally store in Sv the sum
∑j
a=i w(a) for all pairs i, j. Every data structure

Sv for a node v on level l ≥ 2 uses O(log2ε n) space and supports updates in
O(log2ε n) time and semi-group range sum queries in O(1) time. Every data
structure Sv for a node v on level l = 1 supports range-sum queries in O(logε n)
time and updates in O(1) time. To answer a one-dimensional semi-group range
sum query, we visit all nodes ν on the path from lc to q and on the path from
ld to q, where lc and ld are the leaves of TB corresponding to c and d, and q
is the least common ancestor of lc and ld. In every visited node ν we answer a
range sum query to Sν . There are at most two visited nodes on level l = 1, and
the total number of visited nodes is O(log n/ log logn). Hence, the total time to
answer a query is O(log n/ log logn). Thus Cij uses O(n/

√
logn) space, semi-

group range sum queries are supported in O(log n/ log logn) time, and updates
are supported in O(log1+2ε n) time.

When a new point (x, y) is inserted into (removed from) the data structure,
we update the value associated with s = �y/

√
logn� in all Cij for 1 ≤ i ≤ x ≤

j ≤ W . We also add (x, y) into (remove (x, y) from) the list Ls. Hence, insertions
and deletions are supported in O(log3/2+2ε n) time. To obtain the result of the
Lemma, it remains to substitute ε′ = ε/2 into the above proof.

Theorem 3. There exists a data structure for two-dimensional orthogonal semi-
group range sum queries that uses O(n log n/ log logn) space and supports queries
in O((log n/ log logn)2)) time and updates in O(log9/2+ε n) time.

Proof. The data structure is organized in the same way as the data structures of
Theorems 1 and 2, but in every node v of the range tree Tx a data structure Fv
of Lemma 3 is stored. A two-dimensional range sum query can be answered by
answering O(log n/ log logn) queries to data structures Fv. An update operation
leads to updating O(log n/ log logn) data structures Fv in O(log5/2 n/ log log n).
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Besides that we must update the labeling lv in O(log n/ log logn) nodes v. In the
same way as in the proof of Theorem 1, inserting or deleting a v-label can lead
to v-moving O(log2 n) elements. Hence, O(log2 n) elements must be removed
and re-inserted into Fv for O(log n/ log logn) nodes v, and the total cost of an
update operation is O(log2 n log3/2+ε n(logn/ log logn)) = O(log9/2+ε n).
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Abstract. LSH (Locality Sensitive Hashing) is one of the best known
methods for solving the c-approximate nearest neighbor problem in high
dimensional spaces. This paper presents a variant of the LSH algorithm,
focusing on the special case of where all points in the dataset lie on the
surface of the unit hypersphere in a d-dimensional Euclidean space. The
LSH scheme is based on a family of hash functions that preserves local-
ity of points. This paper points out that when all points are constrained
to lie on the surface of the unit hypersphere, there exist hash functions
that partition the space more efficiently than the previously proposed
methods. The design of these hash functions uses randomly rotated reg-
ular polytopes and it partitions the surface of the unit hypersphere like
a Voronoi diagram. Our new scheme improves the exponent ρ, the main
indicator of the performance of the LSH algorithm.

1 Introduction

Nearest Neighbor Search is one of the fundamental problems in computer sci-
ence with applications in information retrieval, pattern recognition, clustering,
machine learning, data mining, and so forth. If we have a set of n data points in
d-dimensional space, a brute-force search can find the nearest neighbor in O(dn)
time. Nowadays, since the size of the data we should treat tends to become larger
and larger, the linearity of the complexity to the size of the population has posed
a problem. Therefore, we need some new data structure that returns the nearest
neighbor of an arbitrarily given point faster than the brute-force method. The
main objective of the algorithms for a nearest neighbor search is to build a data
structure which, given any query point q, quickly reports the data point that is
closest to q.

As a result of an intensive research efforts, this problem was well solved, par-
ticularly for low dimensional spaces. However, all of them tend to fail when
the dimensionality goes higher: sometimes the time complexity asymptotically
tends to be O(dn), which means no improvement over the brute-force method,
and sometimes they need memory space exponential to d, which is of course
infeasible when d is large. In this way the nearest neighbor search in high di-
mensions is still a difficult problem. This difficulty is known as “the curse of
dimensionality.”

F. Dehne, J.-R. Sack, and N. Zeh (Eds.): WADS 2007, LNCS 4619, pp. 27–38, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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In recent years, approximation methods have been proposed to overcome the
curse of dimensionality. The c-approximate nearest neighbor problem is the re-
laxed problem that allows an output point to be at most c times distant than
the exact nearest neighbor is. A randomized (or probabilistic) algorithm is also
often employed to overcome the curse of dimensionality. With a fixed parame-
ter δ, the randomized algorithm should return requested point with a probability
of no less than 1 − δ. Using these approximations, many algorithms have been
proposed. Among them, one of the best known algorithms is Locality Sensitive
Hashing[1,2,3], which is also called LSH.

LSH [1,2,3] is a randomized algorithm for the approximate nearest neighbor
problem that runs significantly faster than other existing methods, especially in
high dimensional spaces. The basic idea of LSH is to hash each data point into
hash tables using a hash function randomly chosen from the locality sensitive
hash function family. In finding the nearest neighbor, LSH scans only the points
that have the same hash index as the query point. It runs in Õ(nρ) time, where
ρ is the main indicator of the performance, and it satisfies ρ < 1. The value of ρ
has been improved several times during this decade. It has been reported that
state-of-the-art algorithm [3] for high dimensional spaces has reduced the value
of ρ to 0.5563 for c = 1.5, and to 0.3641 for c = 2.0.

The main indicator of performance, noted as ρ, was determined by the design
of the hash functions. The firstly proposed LSH [1] used random bit extraction
from unary expressions, and showed the performance to be ρ = 1/c. In a later
improvement of LSH [2], a random projection based on p-stable distributions
was employed and ρ was slightly improved from earlier versions. The most recent
improvement of LSH is found in [3], which proposed novel hash functions and ρ
was significantly improved, especially for d ≤ 24.

As seen before, much effort has been made to solve the approximate nearest
neighbor problem in IRd space. In practical applications of pattern recognition,
however, it is often the case that to find the nearest neighbor on the hypersphere
is more important than that in the entire IRd space. In such cases, descriptor-
vectors are sometimes normalized to unit length in preprocessing because their
magnitudes are less important than their directions. For example, the SIFT
(Scale Invariant Feature Transform) descriptor [4,5], which is one of the most
famous descriptors in computer vision, uses a 128-dimensional descriptor-vector
normalized to unit length. In text processing, the cosine similarity [6] is widely
used. Note that the nearest neighbor search with a cosine similarity measure is
equivalent to the nearest neighbor search with a Euclidean distance measure after
normalizing all the vectors to unit length. Other than mentioned here, we have
many examples of pattern recognition algorithms that use vectors normalized to
unit length.

In this paper, we focus on the special case of the approximate nearest neighbor
problem — all points in the dataset are constrained to lie on the surface of the
unit hypersphere — and propose a variant of LSH that efficiently solves this spe-
cial problem. Since our algorithm works for datasets of points on a hypersphere,
we named our algorithm as Spherical LSH (SLSH).
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2 Locality Sensitive Hashing (LSH)

Since our proposal is a variant of the LSH algorithm, we must describe LSH.
The following is a brief introduction to the LSH algorithm. A more detailed
description will be found in [1].

LSH is a randomized algorithm for solving the (R, c)-NN problem. The (R, c)-
NN problem is a decision version of the approximate nearest neighbor problem.
It is known that the c-approximate nearest neighbor problem can be reduced
to (R, c)-NN problem with complexity O(log(n/ε)). In the following, c is an
approximation factor, and let c = 1 + ε.

Definition 1. The c-approximate nearest neighbor problem is defined
as follows: Given a set P of points in a d-dimensional space IRd, devise a data
structure which for any query point q ∈ IRd find a point p ∈ P that satisfies for
all p′ ∈ P , d(p, q) ≤ c · d(p′, q).

Definition 2. The (R, c)-NN problem is defined as follows: Given a set P
of points in a d-dimensional space IRd, and a parameter R > 0, devise a data
structure which for any query point q ∈ IRd does the following:

– if there exists a point p ∈ P s.t. d(p, q) ≤ R then return YES and a point
p′ ∈ P s.t. d(p′, q) ≤ cR,

– if d(p, q) > cR for all p ∈ P then return NO.

In [7], Har-Peled showed the following theorem.

Theorem 1. The c-approximate nearest neighbor problem can be reduced to a
(R, c)-NN problem with complexity O(log(n/ε)).

LSH can solve the (R, c)-NN problem significantly faster than other existing
methods, especially in high dimensional spaces. The basic idea of LSH is to hash
every point in the dataset into hash tables using a hash function randomly chosen
from the locality sensitive hash function family. Finding the nearest neighbor
of a query point involves applying the hash functions to the query point and
accumulating the points in the dataset that appear in the corresponding buckets.

The locality sensitive hash function family is an important constituent of the
LSH algorithm. For a domain S of the point set, an LSH family is defined as
follows:

Definition 3. A family H = {h : S → U} is called (r1, r2, p1, p2)-sensitive if
for any u, v ∈ S,

– if d(u, v) ≤ r1 then PrH[h(u) = h(v)] ≥ p1,
– if d(u, v) > r2 then PrH[h(u) = h(v)] ≤ p2,

where d(u, v) is the distance between u and v.

In order for an LSH family to be useful, it has to satisfy the inequalities p1 > p2

and r1 < r2.
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For solving the (R, c)-NN problem, LSH sets r1 = R and r2 = cR, and then
amplifies the difference of collision probabilities by taking direct product of hash
functions, i.e.,

g(p) = { h1(p), h2(p), . . . , hk(p) }, (1)
where hi is a (r1, r2, p1, p2)-sensitive hash function randomly chosen from the
family H. For a query point q, LSH scans only the points that stay in the same
bucket as g(q). Since the process is probabilistic, it could occur that the query
point and the nearest point stay away from each other. In order to reduce such
false negatives, the LSH algorithm makes L hash tables, and scans the points in
the union of the buckets corresponding to each of g1(p), g2(p), . . . , gL(p).

From the settings above, we can obtain the following theorem:
Theorem 2. LSH can solve the (R, c)-NN problem with O(dn+n1+ρ) space and
Õ(nρ) time, where ρ = log 1/p1

log 1/p2

Now, the remaining problem is to design the locality sensitive hash functions.
The firstly proposed LSH [1], which worked for the Hamming metric space, used
a random bit extraction from unary expressions. It showed the performance to
be ρ = 1/c. The later improvement of LSH [2] extended the target metric space
to arbitrary lp-norm space with p ∈ (0, 2], and it also improved the index ρ
by using a random projection based on p-stable distributions. The most recent
improvement of LSH [3] employed “ball partitioning” instead of the former “grid
partitioning” to partition the space and bounded the complexity by

ρ =
1
c2

+ O

(
log logn

log1/3 n

)

. (2)

For the practical variant, the paper [3] also proposed to use the Leech Lattice-
based partitioning, which is likely to perform better than the aforementioned
“ball partitioning” due to much lower “big-Oh” constants. It uses a lattice called
Leech Lattice [8], which is a very symmetric lattice embedded in a 24-dimensional
space. When the dimensionality is larger than 24, dimensionality reduction is
needed before using Leech Lattice.

These improvements are all concerned with the problem of: “How to partition
the space well?” Leech Lattice-based partitioning, which is round and symmetric,
is quite a nice partitioning method except that it can be applied only to a 24-
dimensional space.

Now recall that the purpose of this paper is to solve the nearest neighbor
problem on a unit hypersphere. While the examples presented above are all
considering the general problem to partition the entire IRd space, we have to
solve the special problem of partitioning the unit hypersphere embedded in IRd.
Is there any partitioning that works nicely especially for the hypersphere? Our
answer will be described in the next section.

3 Spherical LSH (SLSH)

Here we propose a novel locality sensitive hash function that performs better
than the previously proposed ones. While earlier LSH families are considering
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arbitrary points in IRd space as in [1,2,3], we are considering arbitrary points on
the unit (d−1)-sphere embedded in IRd space with center at the origin. In other
words, all we have to do is to partition the surface of the unit hypersphere in IRd,
in contrast to the fact that the earlier LSH algorithm [1,2,3] had to partition the
entire IRd space. This section describes the locality sensitive hash functions for
partitioning the surface of the unit hypersphere in high dimensions. We named
this process as SLSH (Spherical LSH).

3.1 Problem Description

The problem of interest in this paper is defined as follows.

Definition 4. The (R, c)-NN problem on the Unit Hypersphere: Given
a set P of points in a d-dimensional space IRd, and all points p ∈ P satisfies
that ||p|| = 1. Given a parameter R > 0, devise a data structure which for any
query point q ∈ IRd satisfying ||q|| = 1 does the following:

– if there exists a point p s.t. d(p, q) ≤ R then return YES and a point p′ s.t.
d(p′, q) ≤ cR,

– if d(p, q) > cR for all p ∈ P then return NO.

This is a special case of the (R, c)-NN problem (Def. 2), but with a wide appli-
cation area as described in Section 1.

3.2 Locality Sensitive Hash Functions Using a Regular Polytope

SLSH uses a randomly rotated regular polytope for partitioning the surface of
the unit hypersphere. After rotating the polytope at random, the hash function
h(p) is then defined as the number assigned to the vertex which is nearest to p.
In other words, our hash function partitions the surface of the unit hypersphere
like a Voronoi diagram.

First let us go through some notations.
Hypersphere: A hypersphere is the generalization of the sphere to higher di-
mensions. Often the symbol Sn is used to represent the n-sphere that has an n
surface dimension and is embedded in an (n+1)-dimensional space.
The unit hypersphere is the hypersphere whose radius is unity. From now on we
will consider the unit (d−1)-sphere, whose center is located at the origin. Note
that the (d−1)-sphere is embedded in IRd.
Regular polytope: A regular polytope is the generalization of the regular poly-
gon (in two-dimensional space) and the regular polyhedron (in three-dimensional
space) to higher dimensions. It has a high degree of symmetry such as the fol-
lowing:

– All edges have an equal length, which means that the distance between the
adjacent vertices are always the same.

– All faces are congruent.
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It is known that there exist only three kinds of regular polytopes in higher (d≥5)
dimensions, namely,

Simplex, having d+1 vertices, is analogous to the tetrahedron.
Orthoplex (Cross polytope), having 2d vertices, is analogous to the octa-

hedron.
Hypercube (Measure polytope), having 2d vertices, is analogous to the

cube.

Suppose that we randomly rotate the regular polytope inscribed in a unit
(d−1)-sphere. We can partition the (d−1)-sphere so that all points belong to
the nearest vertex of the rotated regular polytope.

Definition 5. (The Key idea of our algorithm): Let {ṽ1, ṽ2, . . . , ṽN}
(||ṽi||2 = 1) be a set of vertices that forms a regular polytope in IRd where N
represents the number of vertices of the employed polytope, and let A be a rota-
tion matrix. For an arbitrary unit vector p, a hash function hA(p) is defined as
the following:

hA(p) = argmini ||Aṽi − p||2. (3)

Note that for a given p, we can obtain hA(p) in O(d2) time for every type of
regular polytope (it will be discussed later).

By considering A as an arbitrary rotation matrix in IRd space, H = {hA}
satisfies the definition of the locality sensitive hash function family. SLSH uses
this LSH family for hashing.

3.3 The Algorithm

Here we will describe the details of the algorithm.
The coordinates of the vertices of the regular polytope in d-dimensional space

are given by the following:

Simplex:

[ṽi]j = δij −
d + 1 −

√
d + 1

d(d + 1)
(i = 1, 2, . . . , N) (4)

[ṽN+1]j =
1 −

√
d+ 1
d

− d + 1 −
√
d + 1

d(d + 1)
(5)

where [ṽi]j represents the j-th coordinate of the i-th vertex ṽi, and δij is 1
for i = j and 0 otherwise.

Orthoplex: All permutations of (±1, 0, 0, · · · , 0) give the coordinates of the
vertices. It follows that orthoplex has 2d vertices.

Hypercube: 1√
d
× (±1,±1, · · · ,±1) give the coordinates of the vertices. It

follows that the hypercube has 2d vertices.
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Let us consider how to obtain the nearest vertex efficiently. Instead of directly
solving Eq.(3), it is computationally easier to solve

hA(p) = argmaxi(Aṽi · p). (6)

If we calculate {vi = Aṽi | i = 1, · · · , N} in advance, a d + 1 dot-product
calculation would suffice to return hA(p) for the simplex. For the orthoplex, doing
a 2d dot-product calculation is also possible; however, a more efficient way exists.
If v is a vertex of the orthoplex, then −v is also a vertex of the orthoplex. The
dot-product of −v and p is just −(v·p). Therefore, we do not have to calculate the
dot-product 2d times — a calculation of only d times will suffice. For hypercube,
naively solving Eq.(6) needs a 2d times dot-product calculation that is of course
infeasible. However, a way exists to avoid such prohibitive calculations. The
same partitioning can be obtained by a d times bisection using orthonormal
basis vectors {e1, · · · , ed}. We can bisect the hypersphere using each one of the
basis vectors, i.e., Bisecei(p) = 1 if (ei · p) ≥ 0 and Bisecei(p) = 0 otherwise.
Then we could construct the map p ∈ Sd−1 �→ {0, 1}d �→ {0, 1, · · · , 2d−1}.
This partitioning is equivalent to a partitioning based on the nearest vertices
of a hypercube. Thus, we can conclude the following: for every type of regular
polytope, hA(p) can be calculated in O(d2) time.

Let us discuss the preprocessing cost. Preprocessing of SLSH costs O(d3+d2n)
time for one hash table. The former d3 is the cost to make random rotation
matrix. The latter d2n is to hash all points in the dataset. The memory space
overhead is O(d2L) to store the rotated vertices, and O(nL) to store the hash
index of all points in the datasets. Note that the number of the hash tables L
can be bounded by nρ.

The algorithm is summerized in Fig. 3 and Fig. 4.

4 Performance Evaluation

As mentioned before, the performance of LSH is evaluated by the index ρ =
log 1/p1
log 1/p2

. In this section we describe the evaluation of the ρ.
Again, p1 is the probability of collision of two points with a distance of R,

and p2 is the probability of collision of two points with a distance of cR. In
the original LSH they can change the scale of the coordinate; thus, they can
assume R = 1 without loss of generality. On the other hand, we cannot scale the
coordinate because SLSH works only to Sd−1. Therefore the performance index
ρ of SLSH must be evaluated for several Rs.

For ease of comparison, we evaluated several types of locality sensitive hash
functions. The candidates were as follows:

SLSH (Our proposal): Partitioning based on the rotated regular polytope.
Leech Lattice: Proposed in [3], with the dimensionality reduction of d to 24.
Spherical Bisection: Another candidate for partitioning the hypersphere.

The Sperical Bisection bisects the hypersphere with a random set of vectors,
in contrast to our “hypercube-partitioning” which bisects the hypersphere
with an orthonormal set of vectors.
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Table 1. Probabilities of collision for two points with the distance of r. Except for
the value of the Leech Lattice, which is cited from [3], the values displayed below are
obtained through our Monte-Carlo simulation for 106 trials (We omitted the value of
spherical bisection. It is just 1 − cos−1(1 − r2/2)/π).

Distance LeechLattice 16-dim 16-dim 16-dim 64-dim 64-dim 64-dim
r (d > 24) simplex orthoplex hypercube simplex orthoplex hypercube

0.10 0.90133 0.88612 0.59084 0.87169 0.85846 0.12152
0.20 0.80746 0.77939 0.33587 0.75356 0.73061 0.01271
0.30 0.71800 0.67894 0.18092 0.64590 0.61412 0.00116
0.40 0.63309 0.58535 0.09186 0.54531 0.50879 0.00008
0.50 0.55276 0.49754 0.04315 0.45407 0.41365 0.00000
0.60 0.47649 0.41595 0.01836 0.37078 0.32937 0.00000
0.70 0.08535 0.40459 0.34066 0.00676 0.29652 0.25503 0.00000
0.80 0.05259 0.33750 0.27211 0.00212 0.23071 0.19144 0.00000
0.90 0.03117 0.27473 0.21051 0.00050 0.17326 0.13748 0.00000
1.00 0.01779 0.21676 0.15533 0.00006 0.12449 0.09314 0.00000
1.10 0.00975 0.16419 0.10797 0.00000 0.08456 0.05854 0.00000
1.20 0.00515 0.11785 0.06906 0.00000 0.05260 0.03326 0.00000
1.30 0.00266 0.07826 0.03872 0.00000 0.02921 0.01656 0.00000
1.40 0.00133 0.04622 0.01789 0.00000 0.01378 0.00644 0.00000
1.50 0.00067 0.02253 0.00587 0.00000 0.00504 0.00181 0.00000
1.60 0.00033 0.00775 0.00108 0.00000 0.00117 0.00028 0.00000
1.70 0.00016 0.00124 0.00006 0.00000 0.00010 0.00001 0.00000
1.80 0.00008 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000
1.90 0.00004 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
2.00 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Let p(r) represent the collision probability of a single hash function with
respect to the distance r, i.e., p(r) = PrH[h(u) = h(v)] for the two point u and
v that satisfy ||u− v|| = r.

In Table 1, the values of p(r) are displayed. The values of the Leech Lattice
were cited from [3]. The values of the Spherical Bisection were analytically ob-
tained by the equation p(r) = 1−θ/π, where θ represents the angle between two
vectors measured in radians. The cosine of θ and the Euclidean distance r has
the relationship as r2 = 2(1−cos θ). The values p(r) of the SLSH were computed
by the Monte-Carlo simulation for 106 trials. Note that the value p(r) does not
depend on input sets, distributions, or anything like that: it relies on the prob-
ability of two points being hashed to the same value, which can be computed
using Monte-Carlo methods fairly accurately.

Figures 1 and 2 plot the value of ρ vs. R = r1. As mentioned before, the
performance of the Leech Lattice method does not depend on R because the
coordinate scale is changeable in the Leech Lattice method. Therefore, only the
best ρ over R is plotted for the Leech Lattice. For the SLSH and the Spherical
Bisection, the value of ρ = log 1/p1

log 1/p2
was calculated from p(r) displayed in Table 1.
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Table 2. The values of ρ

R c Leech Lattice (d > 24) SLSH for 64-dim orthoplex
0.64 1.5 0.5563 0.5471
0.72 1.5 0.5563 0.5189
0.80 1.5 0.5563 0.4858
0.56 2.0 0.3641 0.3456
0.64 2.0 0.3641 0.3063

In the calculation we did not use the value p(r) less than 0.00001, since such
values are less reliable and inappropriate for SLSH implementation.

From these figures, we can observe the following: For any dimensionalities and
for any polytopes, SLSH performs better than the Spherical Bisection method.
Comparing ρ on the same polytopes, larger dimensionality implies better ρ. It
means that our method could avoid the curse of dimensionality. Comparing ρ
on various types of polytopes, simplex and orthoplex tend to show a similar
result except that the orthoplex shows slightly better result when R becomes
larger. The hypercube shows quite different behavior from the others. The col-
lision probability p(r) of the hypercube rapidly drops to near zero, especially
in high dimensional spaces. Although the index ρ is lower than the others are,
its use for a practical application is difficult because too small p(r) prevent the
proper adjustment of k and L, that are restricted to positive integer. Comparing
SLSH with the Leech Lattice-based method, in the case of c = 1.5, for almost
all dimensionalities, SLSH performs better than the Leech Lattice-based method
when R is larger than 0.60–0.64. In the case of c = 2.0, for almost all dimension-
alities, SLSH performs better than the Leech Lattice-based method when R is
larger than 0.48–0.52. We displayed some of the representative values in Table 2.

Here we note that R = 0.65 and c = 1.5 are a practical values found in
the literature. The paper [9] says that all but 3% of the data points have their
nearest neighbor within a distance of R = 0.65 in their experiment. Furthermore,
if we want to implement the c-approximate nearest neighbor, its reduction to
(R, c)-NN needs the hierarchical implementation of LSH such as R = C0c

λ for
λ = 1, 2, · · · , Λ. SLSH helps substitute for the LSH-based c-approximate nearest
neighbor in some hierarchies of the implementation.

5 Discussion

Why could SLSH outperform the original LSH? One of the reasons is that SLSH
could work on the original dimension. It does not need the dimensionality reduc-
tion. In dimensionality reduction, one cannot avoid the chance of far away points
colliding to the near point. It is the disadvantage of dimensionality reduction.
We can avoid such disadvantages by not using the dimensionality reduction. We
have developed a good partitioning method that can be applied to any dimen-
sional hypersphre. In our partitioning, the point p1 and p2 = −p1 + ε, where ε
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in case c = 1.5
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Fig. 2. The values of ρ = log p1
log p2

in case c = 2.0

is an arbitrary small vector, will never collide for any type of polytope, say, sim-
plex, orthoplex, or hypercube. If we try to guarantee that p1 and p2 will never
collide by the Spherical Bisection method, we need at least d times partitioning
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simplex — The range of the function is: hA(p) ∈ {1, . . . , d + 1}
Preprocessing:

Let {ṽi | i = 1, . . . , d + 1} be a set of vectors described in Eq. (4) and (5).
Let A be a random rotation matrix.
For i ← 1 to d + 1 do
vi ← Aṽi

(Then {v1, v2, · · · , vd} forms a randomly rotated simplex.)
Calculation of hA(p) for input p:

hA(p) ← argmaxi(vi · p)
Return hA(p)

orthoplex — The range of the function is: hA(p) ∈ {1, . . . , 2d}
Preprocessing:

Let vi be the i-th column of a random rotation matrix A.
(Then {v1, v2, · · · , vd, −v1, −v2, · · · , −vd} forms a randomly rotated ortho-
plex.)

Calculation of hA(p) for input p:
hA(p) ← argmaxi|vi · p|.
if (vhA(p) · p) < 0 then hA(p) ← hA(p) + d
Return hA(p)

hypercube — The range of the function is: hA(p) ∈ {0, . . . , 2d − 1}
Preprocessing:

Let vi be the i-th column of a random rotation matrix A.
(Then {us1s2···sd =

∑
sivi | si = ±1} forms a randomly rotated hypercube.)

Calculation of hA(p) for input p:
hA(p) ← 0
For i ← 1 to d do
if (vi · p) ≥ 0 then hA(p) ← hA(p) + 2i−1

Return hA(p)

Fig. 3. The implementation of hA(p) for each type of regular polytope

How to make a random rotation matrix:

For i ← 1 to d do

Let vi be a random vector from the d-dimensional Gaussian distribution.

For j ← 1 to i − 1 do

vi ← vi − (vi · vj)vj/|vj | (Gram-Schmidt orthogonalization)

vi ← vi/|vi| (normalize to unit length)

Return (v1 v2 · · · vd)

Fig. 4. Algorithm for making a random rotation matrix

(It is similar to our hypercube method). However, like our hypercube method, it
tends to partition the space too thin. It may be understood by the fact that it
partitions the space into 2d fragments. On the other hand, our simplex method
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and orthoplex method partition the space into d + 1 or 2d fragments. It is a
milder partitioning than that of the partitioning into 2d fragments, but points
far away will collide with very little probability. The aforementioned supports
the efficacy of our algorithm.

6 Conclusion

In this paper we have proposed an algorithm to solve the approximate nearest
neighbor problem when all points are constrained to lie on the surface of the
unit hypersphere. Our algorithm, named SLSH, is based on the LSH scheme,
and outperforms state-of-the-art LSH variants.
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Abstract. The minimum cardinality 3-edge-connected spanning sub-
graph problem is considered. An approximation algorithm with a perfor-
mance ratio of 4/3 ≈ 1.33 is presented. This improves the previous best
ratio of 3/2 for the problem. The algorithm also works on multigraphs
and guarantees the same approximation ratio.

Keywords: Approximation algorithms, Graph and network algorithms,
Connectivity, Combinatorial Optimization.

1 Introduction

We study the minimum-cardinality 3-edge-connected spanning subgraph (3-
ECSS) problem. The corresponding vertex-connectivity problem is 3-VCSS. A
graph is k-edge-connected if the deletion of up to k− 1 edges leaves a connected
graph. It can also be expressed as a graph that has k edge-disjoint paths be-
tween every pair of vertices. The 3-ECSS problem is a fundamentally important
problem. We demonstrate using examples that the previous approaches can not
guarantee a ratio of 4/3. We prove a new lower bound for 3-ECSS and use it to
derive a 4/3-approximation algorithm.

It is known that an inclusion-wise minimal subgraph that is 3-connected is a
2-approximation. In a landmark paper, Cheriyan and Thurimella [1] presented
an elegant algorithm (that we will call the CT algorithm) that achieves a per-
formance ratio of 1 + 2

k+1 for k-ECSS. For 3-ECSS, the ratio is 3/2 for simple
graphs. Gabow [2] has given a 3/2 approximation algorithm for 3-ECSS in
multigraphs. Gabow et al [3] have analyzed algorithms for k-ECSS by using a
linear programming approach. Interestingly, the ratio for 3-VCSS obtained by
the CT algorithm is 4/3, which is smaller than the 3/2 ratio for 3-ECSS. In fact,
if the given graph is 3-vertex-connected, then their 3-VCSS algorithm finds a
4/3-approximate solution for the 3-ECSS problem! The gap between the perfor-
mance ratios of 3-VCSS and 3-ECSS is only in graphs that are 3-edge-connected,
but are not 3-vertex-connected. We close this gap by presenting an algorithm
for 3-ECSS with a performance ratio of 4/3.

Khuller and Vishkin [6] obtained approximation algorithms for 2-ECSS and
2-VCSS with ratios 3/2 and 5/3 respectively. Vempala and Vetta [9] improved
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the ratios for both problems to 4/3. The ratio for 2-ECSS was subsequently
improved to 5/4 by Jothi et al [5], and the ratio for 2-VCSS was improved to
9/7 by Gubbala and Raghavachari [4]. There are two surveys that highlight the
work in this area by Khuller [7], and Kortsarz and Nutov [8].

2 Definitions

Let G = (V,E) be the given graph, with |V | = n. Let Opt be an optimal 3-ECSS
of G. We will also use Opt to denote the cardinality of an optimal 3-ECSS of G,
and this should cause no confusion. The term “connectivity” in this paper refers
to edge-connectivity, unless explicitly stated as “vertex-connectivity”.

A subgraph H = (V,E′) with E′ ⊆ E is called a 2-edge cover if the degree
of each node is at least 2. A 2-matching is a subgraph, all of whose vertices
have degree 2 or less. The minimal 2-edge cover and the maximal 2-matching
problems are closely related, and a solution for one can be easily converted into a
solution for the other. Both problems are solved using algorithms for matching.

Given a cycle C, we say that two chords (a, b) and (x, y) cross each other
if the vertices appear in the order a, x, b, y or a, y, b, x when we go around the
cycle. We call this two edge set a crossing. We define two different kinds of edge
crossings in a specific setting. A crossing can be a useful crossing (UFC) or a
useless crossing (ULC) with respect to a pair of vertices in a cycle. Let u and
v be any two vertices on C. We call a crossing ULC(u, v) if one edge in the
crossing is incident on u and the other edge is incident on v. We call all other
kinds of crossings UFC(u, v).

3 Locally Connected Cycles and a New Lower Bound

We call a cycle of length k a locally connected cycle (lcc) if the following condi-
tions are met: (a) k ≥ 6, (b) k−2 vertices of the cycle have no outside neighbors,
and (c) the cycle has no useful crossings with respect to the vertices that have
outside neighbors. Figure 12 shows an lcc in which all nodes outside the cycle
have been grouped into a set called the core. It can be shown that 2k − 3 edges
are incident on these k− 2 vertices even in an optimal solution, and all of these
edges are contained within the nodes of the cycle. We now prove a new lower
bound for minimum cardinality 3-ECSS problem. We use it in the analysis of
our algorithm to prove that the approximation ratio is 4/3.

Lemma 1. Consider G = (V,E), a 3-edge-connected graph on n vertices that
has no cut vertices. Let p be the number of paths in a maximum cardinality 2-
matching. Let L be a set of locally connected cycles, all of whose vertices are
disjoint. Let |L| = lc. Then, Opt ≥ 3n/2 + 3p/4 + 3lc/4.

Proof. Due to lack of space, we provide just a sketch of the proof. Suppose we
shrink the vertices of an lcc of k vertices into a single vertex. This operation
decreases the number of vertices in the graph by k − 1, but Opt decreases by
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at least 2k − 3 (which is the number of edges of Opt that is entirely contained
within the cycle). Any other lcc of L in the original graph is also an lcc of the
new graph. In addition, it is possible to show that the difference in the number
of paths in a maximal 2-matching between the two graphs is at most 1.

The proof is by induction on lc, the cardinality of L. It is known that Opt ≥
3n/2 + p [1]. If lc = 0, we get Opt ≥ 3n/2 + 3p/4 + 3lc/4. Let the graph be
Gc = (Vc, Ec) with nc vertices after c ≥ 0 cycles have been shrunk. By induction,
we have Optc+1 ≥ 3

2nc+1+ 3
4pc+1+ 3

4 lcc+1. From this we can derive the inequality
Optc ≥ 3

2nc + 3
4pc + 3

4 lcc as long as the length of the lcc being shrunk, kc is at
least 6, using the facts nc = nc+1 + kc − 1, Optc ≥ Optc+1 + 2kc − 3, and that
|pc − pc+1| ≤ 1 and |lcc − lcc+1| ≤ 1.

4 Examples

Cheriyan and Thurimella [1] gave two elegant algorithms with two different
lower bounds for k-connectivity, one for k-ECSS and one for k-VCSS. Using
examples, we show that neither of their algorithms can obtain a ratio of 4/3 for
3-ECSS. Gabow [2] has shown an example in which his algorithm’s performance
is worse than 1.41.

CT algorithm for k-ECSS: Find a minimum cardinality D3 ⊆ E of G. Then
augment D3 with a minimal edge set F ⊆ E − D3 such that D3 ∪ F is 3-
edge-connected. In this algorithm, the lower bound used is D3. Figure 1 il-
lustrates the worst case performance of this algorithm. In the first step, the
algorithm finds all the rectangles with 2 chords as D3. Then the algorithm
adds 3 edges for each rectangle to 3-edge-connect it to the top rectangle. Here,
|D3| = 3n/2 and the output has approximately 9n/4 edges, a 3/2 approxi-
mation. Note that in reality the CT algorithm’s performance in this exam-
ple is better than 3/2, but the lower bounds used by them are unable to es-
tablish a better ratio. Our algorithm finds a solution with about 8n/4 = 2n
edges.

CT algorithm for k-VCSS: Find a minimum cardinality 2-edge cover, D2, in
G and add to it a minimal edge set F ⊆ E−D2 such that D2∪F is 3-connected.
In this algorithm, the lower bound used is |D2|+ n/2. The example in Figure 2
shows that if this algorithm is used for 3-ECSS, then it does not obtain a 4/3
ratio using their lower bound of |D2| + n/2. In the first step, the algorithm
may find a subgraph with all hexagons. Then it adds 7 edges for each hexagon
to 3-edge-connect it to the hexagon on top. Since |D2| = n in this example,
the lower bound is 3n/2. Their solution, and in fact any solution, consists of
approximately 13n/6 edges. If the lower bound is 3n/2, to achieve 4/3 ratio, one
can use at most 2n edges. In this case, even an optimal solution uses about 13n/6
edges. So, with their lower bound, it is not possible to achieve a ratio of 4/3.
Our new lower bound is useful here, since all the 6-cycles are locally connected
cycles.
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5 Overview of the Algorithm

It is known that the input graph can be assumed to be 2-vertex-connected
when we are solving edge connectivity problems because graphs with cut vertices
can be split into multiple graphs that are all 2-vertex-connected, and solutions
to these graphs can be combined into a solution for the input graph (in an
approximation-preserving fashion).

Our algorithm proceeds as follows. We find a maximum cardinality 2-matching
(subgraph in which each vertex is incident to at most two edges). We process
it to ensure that end vertices of paths are not adjacent to its vertices. One of
its cycles is selected as the “core”. We 2-connect all the paths and cycles one
at a time to the core. We call this the 2-connect step. In the final step, we add
more edges from G to this subgraph to make it 3-connected. We call this the
3-connect step.

In a 2-connected graph, a set of vertices that are 3-connected among them-
selves is called a cluster. For example, a Hamiltonian cycle of a graph with n
vertices has n clusters, each with a singleton vertex. Since edge connectivity
forms an equivalence relation among vertices, when a vertex in cluster A is 3-
edge-connected to a vertex in cluster B, then all the vertices in both clusters
A and B are 3-edge-connected, thus forming a single cluster. When we add an
edge that collapses clusters together, we call it a merger. Each merger decreases
the number of clusters in the graph by one. Sometimes, adding two edges in
a 2-connected subgraph may cause three mergers. Identifying and adding these
kind of useful edges helps us in finding a 3-connected subgraph with fewer edges.
When we 2-connect the graph, we simultaneously try to minimize the number of
edges while maximizing the number of mergers. The more the number of merg-
ers in the 2-connect step, the fewer the number of edges that are added in the
3-connect step.

We proved in Lemma 1 that Opt ≥ 3n/2 + 3p/4 + 3lc/4. Since our goal is a
4/3-approximation, we can use up to 4/3(3n/2 + 3p/4 + 3lc/4) = 2n + p + lc
edges. We allocate a charge of 2 to each vertex, 1 to each path and 1 to each lcc,
and pay for the edges selected using a combination of these charges.

5.1 Virtual Edges

We process the cycles and paths of the 2-matching in a depth-first order (ex-
plained in more detail later). An edge (u, v) is called a virtual edge if there is a
vertex u, whose proper descendant (in the DFS tree) is adjacent to v. We use
the term component to refer to either a path or a cycle. While running DFS, the
vertex from which we enter a component is called an upper tree vertex (UTV).
When we 2-connect a component x (a path or a cycle), we always make sure
that there is an edge incident on UTV and x. This is important because it makes
the concept of virtual edges work in the algorithm. When we consider selecting
a virtual edge (u, v) in the solution from the perspective of vertex u, we actually
select the back edge from u’s descendant component cu. The connectivity from u
to that descendant component cu is ensured during the progress of the algorithm
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because we always make sure that there is an edge incident on UTV and the
component that we 2-connect. We also ensure that the edges from a component
fall on two different vertices in the core.

5.2 Algorithm 3EdgeConnect(G)

1. Find a maximum 2-matching (maximum cardinality subgraph in which each
vertex is incident to at most two edges) in the graph. Let the 2-matching
that we obtain be a collection of cycles C and a set of paths P . If an end
vertex of a path is adjacent to a vertex on the same path, we can split the
path into a cycle and a path. After doing so, the number of paths and the
number of edges in the 2-matching are unchanged, but the number of cycles
increases by 1. We repeat this transformation until no end vertex of a path
is adjacent to a vertex on the same path. After this step, edges from end
vertices of a path always fall on other components. This property is useful
when we 3-connect paths.

2. Select a cycle as core. Let its length be k. Assign it a credit of k edges for
the 3-connect step.

3. Repeat until there is only one component: Select a target component A. If
A is a cycle, call 2connectCycle(A) else call 2connectPath(A).

4. Add a minimal set of edges from G that 3-connects the currently 2-connected
subgraph.

5.3 Selecting a Target Component

With C and P (cycles and paths in a maximum 2-matching) on hand, we select
a cycle and call it “core”. We call paths and cycles as components. We build
a depth-first (DFS) tree on a graph induced by the components, starting from
the core. The set of edges we add in this process forms a spanning tree on the
graph induced by the components. We call the vertices of this tree as “nodes” to
distinguish them from the vertices of the given graph. We select the target node
in DFS order. Because each node is a component, we need a priority scheme
within the vertices of a node which determines the order in which edges from
each node are considered. Vertices of a path are given decreasing priority from
one end to the other, with one end chosen arbitrarily as the “left” end. When
a path component is encountered by DFS, we give more priority to edges on
vertices that are more to the left. The left-most vertex has highest priority and
the priority decreases as we go from left to right. The only exception to this
priority scheme is when we give least priority to the vertex through which DFS
enters a path. When a cycle is encountered by DFS, we give least priority to the
vertex we entered. The adjacent vertex that is left (one of the two directions is
arbitrarily chosen as “left”) of the vertex we entered has highest priority. As we
go further, the priority decreases and we finally hit the vertex we entered that
has the least priority.
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5.4 2-Connecting a Cycle

In general, a cycle of length k has a charge of 2k edges because it has k vertices
and each vertex has a charge of 2 edges. So, between the 2-connecting and 3-
connecting steps, we are allowed to spend 2k edges. But when we encounter an
lcc, we can use 2k + 1 edges because each vertex has a charge of 2 edges and an
lcc has a charge of 1 edge. After finishing the 2-connecting step, we make sure
that we have enough charge left for the 3-connecting step. In addition, when 2-
connecting a cycle, we make sure that there is at least one edge that is incident
on UTV and any vertex in the cycle. We also ensure that the cycle is connected
to at least two different vertices in the core.

Lemma 2. Consider a graph G(V,E) with no cut vertices. If c is a cycle of
length k, then one of the following is true:

1. It can be 3-connected to the core with a charge of at most 2k edges, or,
2. It is an lcc and it can be 3-connected to the core with a charge of at most

2k + 1 edges.

Proof. There has to be at least one edge (that is not a virtual edge) incident on
UTV in core and a vertex v1 in the cycle because we enter the cycle using that
particular DFS edge. We will refer to that vertex as v1, and the corresponding
edge as the upper tree edge. We do not need to keep the upper tree edge in the
solution. All we need to ensure is there is an edge incident on UTV and one of
the vertices of the cycle. We also make sure that whenever we 3-connect a cycle,
edges from the cycle are incident on at least two different vertices in the core.

Case 1: There exists at least three vertices, namely v1, v2, and v3, in c that
have edges (possibly, virtual edges) to the core: We select the edges of the cycle c
and these three edges from three different vertices to the core (see Fig. 3). The
3-connected components in the graph processed so far are {core, v1, v2, v3} and
k − 3 singleton components. We need at most k − 3 edges to 3-connect these
3-connected components. We have used k + 3 edges in the 2-connect step and
leave a charge of k − 3 edges for the 3-connect step.

The following idea is used in all of the cases, and we will discuss it just once
here. We make sure that all the three edges from the cycle do not fall on the same
vertex in the core, which is possible because G does not have cut vertices. The
2-connect algorithm needs to make sure that there is at least one edge incident
on UTV. If none of these three edges selected falls on UTV, we add an edge
incident on UTV and delete one of the selected three edges.

Case 2: All edges to the core from c come from just two vertices v1 and v2:

1. If there exists an edge (v3, v4) that crosses (v1, v2) in c, we do the following
(see Fig. 4). We select all the k edges of the cycle, (v1, core), (v2, core) and
(v3, v4). When selecting edges incident on core, we make sure that both
edges do not fall on the same vertex. Now we have spent k + 3 edges to 2-
connect this cycle of length k. The 3-connected components in the graph are
{v1, v2, v3, v4}, core and k − 4 singleton vertices. So, we need at most k − 3
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edges to 3-connect this cycle to the core. As we have spent k + 3 edges in
the 2-connect step, we have enough charge available to finish the 3-connect
step.

2. If there exists a UFC(v1, v2) in the cycle, we do the following. Let the cross-
ing be {(vi, vj), (vk, vl)}.
(a) If none of the edges that cross each other falls on v1 or v2 (see Fig. 5), we

select the cycle c with the edges (vi, vj), (vk, vl), (v1, core), and (v2, core).
Now we have selected k + 4 edges. The 3-connected components in the
subgraph we selected are {core}, {v1, v2}, {vi, vj , vk, vl}, and k − 6 sin-
gleton vertices. We need at most k − 4 edges to 3-connect this cycle to
the core. As we have spent k + 4 edges in the 2-connect step, we have
enough charge to finish 3-connect step.

(b) If one of the edges that cross each other falls on v1 or v2 (see Fig. 6),
we do the following. Without loss of generality, let vi = v1. We select
edges of the cycle c, (v1, vj), (vk, vl), (v1, core) and (v2, core). Now we
have selected k+ 4 edges. The 3-connected components in the subgraph
we selected are {core}, {v1, v2, vj , vk, vl}, and k − 5 singleton vertices.
We need at most k−4 edges to 3-connect this cycle to the core. Because
have spent k + 4 edges in the 2-connect step, we have enough charge to
finish the 3-connect step.

3. If one of the k − 2 vertices in the cycle other than v1 and v2, say v3, has a
descendant component c3 (see Fig. 7), we do the following. We know that
after c3 is 3-connected, at least one edge falls on v3 because v3 is UTV of
c3. In addition, edges from c3 should fall on at least two different vertices on
“core”. From the perspective of the descendant component, “core” means
the cycle c and its core. So, after c3 is 3-connected, v3 is 3-connected to
one of the vertices in c or the core. So, we select k + 2 edges: the cycle c,
(v1, core) and (v2, core). The 3-connected components in the subgraph we
selected are {core}, {v1, v2}, and k− 2 singleton vertices. But we know that
v3 is 3-connected to one of the vertices in c or core after c3 is 3-connected.
So, we only need k − 2 edges to 3-connect this current cycle to the core.

4. If v1 and v2 are adjacent vertices in the cycle and if v2 has a descendant
component c2 (see Fig. 8), we do the following. As in the previous case, when
c2 is 3-connected, we add an edge incident to v2 and an edge incident to one
of the vertices in the cycle or core other than v2 (say va). So, we select k+2
edges: the cycle c, (v1, core) and (v2, core). The 3-connected components in
the subgraph we selected are {core}, {v1, v2}, and k − 2 singleton vertices.
In all cases except when va = v1, we save an edge because v2 is 3-connected
to some vertex in cycle or core other than v1 due to 3-connecting c2. So,
we only need k − 2 edges to 3-connect this current cycle to the core. As we
spent k + 2 edges, we have the required charge of k − 2 edges to 3-connect
this current cycle. In the case when va = v1, we can delete edge (v1, v2) from
the solution because v1 and v2 are 4-connected. So, we have selected only
k+ 1 edges and we have the required charge of k− 1 edges to 3-connect this
current cycle to the core.
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5. If v1 and v2 are non adjacent vertices in the cycle and edges from v2’s descen-
dant falls on at least one vertex v3 other than v1 or v2, we do the following.
Let v1 be the vertex through which DFS entered the cycle. So, v1 has a direct
edge (not virtual) to the core (see Fig. 9). Let that descendant component
of v2 that has edges incident on v3 be c2. If v2 has an edge to the core that is
independent of c2, we change UTV of c2 to v3. Now this case is exactly same
as Case 3. If all edges from v2 to the core are virtual edges through c2, we do
the following. Consider the vertices on left hand side of {v1, v2} in the cycle.
Let us call them LHS. Note that c2 can not have edges incident on LHS
because of our priority scheme. So, v3 is on the right hand side of {v1, v2}.
We already considered the case when at least one vertex other than v1 or v2

have a descendant component. So, when the algorithm enters this step, we
know that LHS does not have any descendant components. Also, LHS can
not have edges to the core because only v1 or v2 have edges incident to the
core. In a scenario such as this, in simple graphs, there must be a crossing
on the LHS. Because we considered all UFC(v1, v2)’s, that crossing must
be a ULC(v1, v2). Now, we change the UTV of c2 from v2 to v3. After this
change, only v1 and v3 have edges to the core. Observe that a ULC(v1, v2)
is a UFC(v1, v3). So, this case is same as Case 2.

6. When algorithm enters this step, we know that the cycle does not have any
useful crossings with respect to vertices v1 and v2. Also, none of the vertices
other than v1 and v2 has outside neighbors. So, the cycle we are considering
is an lcc (see Fig. 12). We can spend a charge of 2k + 1 edges to 3-connect
this cycle. We select the edges of the cycle, (v1, core), (v2, core). We spent
k + 2 edges to 2-connect this cycle. In the process, we 3-connected v1 and
v2. That leaves us with the following 3-connected components in the graph:
{core}, {v1, v2} and k − 2 singleton vertices in the cycle. So, we need k − 1
edges to 3-connect these components. As we spent k+ 2 edges out of 2k+ 1
edges, we have the required charge of k − 1 edges to 3-connect this cycle.

5.5 2-Connecting a Path

A path with k vertices has a charge of 2k + 1 edges, because each vertex has
a charge of 2 and each path has a charge of 1. We will show that this charge
is sufficient to 3-connect a path in this section. After the 2-connecting step, we
make sure that we have enough charge left for the 3-connecting step. When we
2-connect a path, we also ensure that there is at least one edge that is incident
on UTV and any vertex in the path, and that the path is connected to at least
two different vertices in the core.

Algorithm for 2-connecting a path: Let k be the number of vertices in the
path under consideration. One end of the path is arbitrarily chosen as the “left”
end. We start from leftmost vertex in the path and try to add an edge that is
incident on the right most vertex in the path. But there are some exceptions.
We try to generate open ears wherever possible. Let l be the left-most vertex
of the path that is connected to the core, and let r be the right-most vertex in
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it connected to the core. A special ear is an ear that has two edges: one from
l to the core, and the other from r to the core. When we add a special ear,
we try to add it to two different vertices in the core whenever possible. In the
following discussion, assume that the vertices of the path are v1 . . . vk, where v1

is the left-most vertex. During the DFS on components, we give more priority
to edges on vertices that are further to the left. So, v1’s child can have an edge
to v2, but not the other way around (except when DFS enters the path through
v1). When v1 is the vertex from which DFS enters the path, v2’s descendant
can have edges on v1 because when we do DFS, we give least priority to v1’s
neighbors. In the general case, v2’s descendant c2 can not have edges incident on
v1 because otherwise c2 would have been v1’s descendant component. But, while
2-connecting a path we may change the UTV of the descendants. That means
we can make v1’s child as v2’s child if we do not use those virtual edges from v1’s
child. Note that we can not change UTV of current component (i.e., the path
that is being currently processed). But, we can change UTV of a descendant
component (future component).

Rule-1: Whenever possible, we try to add open ears. We add a closed ear only
when we are unable to find an open ear. Rule-2: In general, we prefer ears that
cover more vertices. But, special ears have higher priority than other ears even
if it covers fewer vertices. Notice that rule-1 has maximum priority.

Lemma 3. Consider a graph G(V,E) with no cut vertices. If p is a path of
length k, p can be 3-connected to the core with a charge of at most 2k+ 1 edges.

Proof. Let the number of ears we added be e1, and we know that it causes
either e1−1 or e1−2 mergers. In the following discussion, Case 1 deals with the
situation when there are e1− 1 mergers. If only e1− 2 mergers are caused and it
generates a closed ear, we handle it in Case 2a. Only possibility left now is that
there are only e1 − 2 mergers and two ears cause the same merger. This case
is further divided in two subcases. First subcase (Case 2(b)i) is when leftmost
vertex in the path has an edge incident to the core. Second subcase (Case 2(b)ii)
is when leftmost vertex in the path does not have an edge to the core.

1. If there are e1 − 1 mergers we do the following. If both edges (l, core) and
(r, core) fall of the same vertex in the core, we see whether that vertex is
UTV. If it is UTV, we add another edge that is incident on any vertex other
than UTV in core and some vertex in path. This edge causes a merger. If it
is not UTV, we add an edge incident on UTV and any vertex in path. This
also causes a merger. If both edges (l, core) and (r, core) fall on two different
vertices in the core, we take a look at the two vertices. If one of them is
UTV, we do not add the third edge. If neither of them is UTV, we add an
edge incident on UTV and any vertex in path. This also causes a merger.
Every time we add a third edge, we caused a merger. So, we can delete that
third edge and analyze the performance of the algorithm.

Note that in all the cases, whenever we 3-connect a path, we need to make
sure that at least one edge falls on UTV and edges from the path are incident
on at least two different vertices in the core. We can ensure these two things
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using the above steps. So, here onwards we will not repeat this part. We
have selected k + e1 edges. If the path is just 2-connected to the core, there
are k + 1 3-connected components including core and the singleton vertices.
But we have e1 − 1 mergers. So, number of 3-connected components in the
subgraph selected is k − e1 + 2. Therefore, we need k − e1 + 1 edges to 3-
connect the path to the core. As we have spent only k + e1 edges, we have
enough charge to finish the 3-connecting step.

2. If there are e1 − 2 mergers in the path, we do the following.

(a) If we get a closed ear (see Fig 10), we do the following. A closed ear
can only start at r because if it starts at any other vertex, we have a cut
vertex there and we know that input graph is processed for cut vertices.
When we get a closed ear at r, to avoid a cut vertex at r, a descendant
component of r must exist such that it has at least one edge incident
to the core and at least one edge incident to one of the vertices that
are right of r in the path. Let the descendant component of r be cr and
the ear that starts at r be er = (r, vp). Let vq be the right-most vertex
that has an edge incident to cr. We know that r < q ≤ p, because we
considered ears that cover more vertices.

In this case, we delete (r, core) from the solution, change the UTV of
cr from r to vq and add the edge (vq, core) to the solution. We know
that edge (vq, core) exists because the descendant component cr has at
least an edge incident to the core. If the ear added just before special
ear uses a virtual edge through cr, that edge will now fall on vq and that
is fine. If q = p, we delete the edge (r, vp). Otherwise we will keep that
edge. Now, e1 ears cause (e1 − 1) mergers (see Fig 11). This case falls
under Case 1.

(b) If two ears cause the same merger, we do the following.
i. If leftmost vertex v1 has an edge incident to the core, we do the

following. In this case, the first ear selected by the algorithm is the
special ear. After selecting that first ear, every open ear causes a
merger. We already considered the case when we have a closed ear.
So, we assume that all ears are open. As a result of that we have
e1 − 1 mergers and this case falls under Case 1.

ii. If leftmost vertex v1 does not have an edge incident to the core, it
has a descendant component due to the following reason. We know
that the end vertices of the path can have edges only to other com-
ponents. Leftmost vertex is an end vertex in a path. So, it can have
edges incident only to other components. Also, the leftmost vertex is
generally given the highest priority when finding the target compo-
nents. Only case when leftmost vertex is not given highest priority is
when DFS enters the path through its leftmost vertex. In this case,
it has an edge to the core. So, leftmost vertex of a path either has
a descendant component or it has an edge incident to the core. But,
in this case, leftmost vertex v1 does not have any edges incident to
the core. So, it has a descendant component.
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The only possibility left is that the special ear and the next ear we
add 3-connects same two vertices l and r.Note that, the algorithm
selects only two edges incident on v1. That is because v1 does not
have any edges to the core and we first add an ear that starts at v1

and covers maximum number of vertices. We will not add any edges
incident to v1 later. So, v1 just has two edges incident on it and that
means it is not 3-connected to any other vertex. But we know that
after the descendant component c1 of v1 is 3-connected, v1 will be
3-connected to at least one vertex in the path or core because v1 is
the UTV of c1. So, we save an edge.

We have selected k + e1 edges. If path is just 2-connected to the
core, there are k+1 3-connected components including the core and
the singleton vertices. But we have e1 − 2 mergers. So, the number
of 3-connected components in the subgraph selected is k − e1 + 3.
Therefore, we need k − e1 + 2 edges to 3-connect the path to the
core. Because we saved an edge due to the existence of c1, we have
enough charge to finish the 3-connecting step.

6 Summary

In summary, we preprocess the graph for cut vertices then apply our algorithm.
We find a maximum 2-matching in the given graph. First we reserve enough
edges for a cycle to 3-edge-connect itself and call it core. Then we 2-connect
one path or cycle at a time and always save enough charge to 3-connect that
particular path or cycle. In the end, we have a 2-connected subgraph of the given
graph with enough charge available to 3-connect it by adding a minimal set of
edges to it.
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Abstract. In the maximum sharing problem (MS), we want to compute
a set of (non-simple) paths in an undirected bipartite graph covering as
many nodes as possible of the first node layer of the graph, with the con-
straint that all paths have both endpoints in the second node layer and
no node in that layer is covered more than once. MS is equivalent to the
node-duplication based crossing elimination problem (NDCE) that arises in
the design of molecular quantum-dot cellular automata (QCA) circuits
and the physical synthesis of BDD based regular circuit structures in
VLSI design. We show that MS is NP-hard, present a polynomial-time
1.5-approximation algorithm, and show that MS cannot be approximated
with a factor better than 740

739 unless P = NP .

1 Introduction

Let G = (U, V ;E) be an undirected bipartite graph in which U is the upper
node layer and V is the lower node layer. Let m = |E| and n = |U | + |V |. In
the maximum sharing (MS) problem we want to find a set of (non-simple) paths
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Fig. 1. MS and NDCE: (a) A layout of a two-layer graph G with ten edge crossings; (b)
an MS solution with four sharings; (c) the corresponding NDCE solution with two node
duplications

with both endpoints in V maximizing the total length of the paths. Every edge
and every node of V can appear at most once in all the paths, except for edges
to nodes in V of degree one which may appear twice consecutively in the same
path. Note that a node in U can occur multiple times in the same path, and in
multiple paths as well. See Fig. 1(b) for an example. Intuitively, a path in an MS
solution can be viewed as a concatenated sequence of sharings. A sharing is a
path (x, u, y) with u ∈ U and x, y ∈ V , x 	= y.

MS has important applications in circuit design. Consider, for example, the
(two-layer) crossing minimization problem (CM). The two layers of G are laid
out on parallel straight lines and each edge is drawn as a straight line segment
between an upper node and a lower node. The objective is to minimize the
number of edge crossings by reordering the nodes in the two layers. In some
applications it is not enough to minimize the number of edge crossings — we
must have no crossings at all. This can be achieved by duplicating nodes of the
upper layer [3,4]. When we duplicate a node u we create a new node u′ and
partition the edges incident to u into a set of edges that remain incident to u
and a set of edges that become incident to u′. A node may be duplicated multiple
times; at each instance some of the currently incident edges are transferred to
the new copy. In the node-duplication based crossing elimination problem (NDCE)
we want to minimize the number of upper nodes to be duplicated such that,
after a suitable reordering of the nodes, all edges can be drawn crossing-free as
straight lines. See Fig. 1(c) for an example.

An MS solution with s sharings corresponds to an NDCE solution with m−n−s
node duplications [4]. Thus, minimizing node duplications in NDCE is equivalent
to maximizing sharings in MS.

Good approximations for MS do not necessarily translate into good approx-
imations for NDCE (just consider the case when NDCE has a solution with zero
duplications), but a good MS-approximation can serve as a good heuristic for solv-
ing NDCE. For example, if the number of sharings is at most a fraction k/(k + 1)
of the number of upper vertices, for some k ≥ 1, then NDCE can be approximated
to a (1 + k/3) factor in polynomial time, using our 1.5-approximation for MS.

Our results. MS generalizes the NP-hard maximum weight node-disjoint path
cover problem (MWPC), where we want to find a set of node-disjoint paths in an
undirected graph maximizing the number (or total weight) of the edges used by
the paths. MWPC is equivalent to MS when all nodes in U have degree two (V and
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U correspond to the nodes and edges of the MWPC instance, respectively). Thus,
MS is also NP-hard.

MWPC is also equivalent to the (1, 2)-TSP problem in the following sense. An
approximation ratio of γ for one problem yields an approximation ratio of 1

2−γ
for the other [15] (note that we adapted their formula for the approximation
ratio to our different definition of approximation ratio). Since (1, 2)-TSP can be
approximated with a factor of 8

7 [2], MWPC, and thus the case of MS where all
nodes in U have degree two can be approximated with a factor of 7

6 . On the
other hand, it is NP-hard to approximate (1, 2)-TSP better than with a factor of
741
740 [10]. Thus, MS cannot be approximated with a factor better than 740

739 unless
P = NP . This lower bound could also be derived directly from an approximation
preserving reduction from (1, 2)-TSP to MWPC.

The main result of this paper is a polynomial-time 1.5-approximation algo-
rithm for MS by a reduction to the color path packing problem (CPP). A maximum
matching in the graph of the CPP instance would give us a 2-approximation for
MS. We can solve a relaxation of CPP, the color path-cycle packing problem (CPCP),
optimally in polynomal time by computing a maximum matching in a related
graph. In a non-trivial step we can then transform an optimal CPCP solution
back to a 1.5-approximation solution for MS. The 2-matching algorithm would
also give us a 1.5-approximation for MWPC.

Related work. CM has been studied in the context of graph drawing [7], visual-
ization [6], DNA mapping [17], and optimization of circuit layouts in terms of
wiring congestion, total wire length, and layout area (e.g., see [3,14]). It is NP-
hard [13], even when one layer of nodes is already in a fixed order [8] (so-called
fixed-layer CM). No approximability results are known for CM.

A related problem is to determine whether a given bipartite graph has a (not
necessarily induced) planar subgraph with at least k edges, for a given k. This
problem, too, was shown to be NP-complete by Eades and Whitesides [7]. It
remains NP-complete even for the fixed-layer case. If both layers have a fixed
ordering, then there is a polynomial-time algorithm. Another related problem is
when only a given set of edge crossings is considered as restricted, and the objec-
tive is to minimize the restricted crossings; Finocchi [11] gave a 2-approximation
solution for this problem.

NDCE was introduced (and solved by an integer linear program formulation) by
Chaudhary et al. [4] to solve layout problems in the design of molecular quantum-
dot cellular automata (QCA) circuits [1,16]. QCA circuits are currently the fo-
cus of increasingly intense research efforts aimed at building logic gates at the
nanoscale. A major obstacle to building QCA circuits is that chemists are find-
ing that it is considerably difficult to fabricate wire crossings in molecular QCA
circuit layouts. Thus, some of the current research efforts are focused on building
QCA circuits with no crossings in their layouts. Hence the need for solving NDCE.

Another application for crossing elimination can be found in the physical
synthesis of Binary Decision Diagram (BDD) based regular circuit structures [3].
In contrast to CM, fixed-layer NDCE (where the order of the nodes in V is fixed)
can be solved in linear time [4]. For NDCE on general non-bipartite graphs, a
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heuristic method was proposed by Cao and Koh [3] but they did not give any
guarantees on the quality of the solution.

Sharings were introduced by Chaudhary et al. [4]. In an earlier paper [5],
the authors studied the maximum simple sharing problem (MSS), where also the
upper nodes can only be visited at most once by the paths. By relaxing the path
constraint to also allow cycles, they were able to obtain a 5

3 -approximation for
MSS. Although the two problems seem to be closely related, the techniques used
for solving MSS are not helpful for solving MS.

2 Approximating MS: A Special Case

In this section we present a polynomial-time 1.5-approximation algorithm for MS
under the assumption that all lower nodes in V have degree at least two. In the
next section we show how to extend it to also handle degree-one nodes.

Let G = (U, V ;E) be an undirected bipartite graph such that the nodes in
V have degree at least two. We will transform the MS problem on G into a
color path-cycle packing problem (CPCP) on a graph GV generated from G. CPCP
captures the key structure of MS, and we can solve it optimally in polynomial time
by reduction to a maximum matching problem. From an optimal CPCP solution
on GV we can then obtain a set of feasible paths forming a 1.5-approximate
solution for MS on G.

2.1 The Color Path-Cycle Packing Problem (CPCP)

Consider the following undirected graph GV = (V,EV ), which intuitively col-
lapses every sharing in G into a single edge between two lower nodes. The node
set of GV is just the lower node set V . For any two distinct nodes v, w in V , if v
and w can form a sharing in G, then we put the edge (v, w) in EV . We associate
with each edge e = (v, w) in EV a set Ce of upper nodes of G, called colors,
such that if v and w can form a sharing in G through an upper node u, then u
is included as a color in Ce.

MS is equivalent to the color path packing problem (CPP) on GV , where we
want to find a subgraph H of GV with the maximum number of edges consisting
of a set of node-disjoint simple paths in GV such that we can color each edge e
of H by a color in Ce without coloring any two consecutive edges in any path of
H by the same color. Since MS is NP-hard, CPP is also NP-hard.

To approximate MS, we actually need to relax CPP by allowing simple cycles
as well as simple paths in the sought subgraph of GV . We also relax the color
constraints. We call this relaxed version the color path-cycle packing problem
(CPCP). Formally, CPCP is the problem to find a subgraph H of GV with the
maximum number of edges such that every node in H has degree at most two
and we can color both endnodes of every edge e of H by a color in Ce such that
the two colors corresponding to the two incident edges of a node are different.
Note that an edge may assign different colors to its two endpoints. In other
words, an edge may or may not change its color halfway between the endpoints.
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Fig. 2. Transforming an MS problem on G into a maximum matching problem on G′.
(a) A simple bipartite graph G; (b) the corresponding graph G′ with a maximum
matching (the dashed edges); (c) the corresponding sharing path (v3, u, v1, w, v2) in
G.

Clearly, the optimal objective function value of CPCP is at least as large as that
of CPP. We show below that we can obtain a CPP solution SOLCPP from any
CPCP solution SOLCPCP such that |SOLCPP | ≥ 2

3 |SOLCPCP |. Since we can
solve CPCP optimally in polynomial time by reduction to a maximum matching
problem, we obtain a 2

3 -approximation for CPP.

2.2 Solving CPCP

We construct an undirected graph G′ = (V ′, E′) from G and GV as follows (see
Fig. 2). For every node v ∈ V we put two nodes v′ and v′′ in V ′, called V -type
nodes. For every edge (v, u) in E with v ∈ V and u ∈ U we add to V ′ two nodes
C′
v,u and C′′

v,u, called C-type nodes, and to E′ three edges (v′, C′
v,u), (v′′, C′

v,u),
and (C′

v,u, C
′′
v,u). For any two nodes v1, v2 in G that can form a sharing through

an upper node u ∈ U we add to V ′ two nodes Pv1;v1,v2 and Pv2;v1,v2 , called
P -type nodes, and to E′ an edge (Pv1;v1,v2 , Pv2;v1,v2); moreover, we add edges
(Pv1;v1,v2 , C

′′
v1,u) and (Pv2;v1,v2 , C

′′
v2,u) to E′. These are the nodes and edges of

G′. Note that V ′ contains exactly 2 · |V | V -type nodes, 2 · |E| C-type nodes, and
2 · |EV | P -type nodes.

This construction transforms the MS problem on G to a maximum matching
problem on G′ (by relaxing some constraints of the MS problem). Fig. 2(c) gives
an example showing a sharing path in G corresponding to a matching in G′.

Theorem 1. Suppose GV has an optimal CPCP solution SOL whose value is
|SOL|, and G′ has a maximum matching M . Then, |M | = |EV |+ |E| + |SOL|.

Proof. First we prove |M | ≥ |EV |+ |E|+ |SOL|. Given an optimal CPCP solution
SOL on GV , we construct a matching M ′ of size |EV | + |E| + |SOL| in G′ as
follows. For every edge e = (v, w) ∈ SOL in GV whose endpoints are colored by
ce,v and ce,w (possibly ce,v = ce,w), we add the edges (v′, C′

v,ce,v
), (C′′

v,ce,v
, Pv;v,w),

(w′, C′
w,ce,w

), and (C′′
w,ce,w

, Pw;v,w) of G′ to M ′. Note that v′ (or w′) should be
changed to v′′ (or w′′) if v′ (or w′) is already matched by an edge of M ′. Clearly,
these edges are part of a matching in G′.

After adding these edges to M ′, each unsaturated pair of P -type nodes
Pv1;v1,v2 and Pv2;v1,v2 can be matched by adding the edge (Pv1;v1,v2 , Pv2;v1,v2)
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to M ′. Each pair of unsaturated nodes C′
v,u and C′′

v,u can be matched by adding
the edge (C′

v,u, C
′′
v,u) to M ′. Note that for every edge in SOL, our construction

of M ′ saturates two V -type nodes in G′; further, all C-type nodes and P -type
nodes are saturated. Therefore, the number of saturated nodes in G′ is exactly
2|SOL|+ 2|E|+ 2|EV |, and |M ′| = |SOL| + |E|+ |EV |.

Now we prove |M | ≤ |EV |+|E|+|SOL|. Given a maximum matching M in G′,
it is sufficient to construct a CPCP solution SOL′ of size |SOL′| = |M |−|EV |−|E|
in GV . Note that there exists a maximum matching in G′ such that all the P -
type nodes and C-type nodes are saturated (the set of all edges of the types of
(C′
v,u, C

′′
v,u) and (Pv1;v1,v2 , Pv2;v1,v2) forms a matching in G′ saturating all P -type

and C-type nodes; then start Edmonds’ algorithm [9]). Suppose w.l.o.g. that M
has this property. Let ns denote the number of saturated V -type nodes in M .

Note that if any two nodes Pv1;v1,v2 and Pv2;v1,v2 are not matched by the
edge (Pv1;v1,v2 , Pv2;v1,v2) in M , then both nodes must each be matched with
some C-type nodes. Let the corresponding edges in M be (Pv1 ;v1,v2 , C

′′
v1,c1) and

(Pv2;v1,v2 , C
′′
v2,c2). Then, SOL′ contains the edge e = (v1, v2), and the colors

assigned to (v1, v2) in SOL′ are ce,v1 = c1 and ce,v2 = c2.
We first argue that ns = 2 · |SOL′|. Since all P -type and all C-type nodes

are saturated, for each pair of P -type nodes, say Pv1;v1,v2 and Pv2;v1,v2 , that
are not matched by the edge (Pv1;v1,v2 , Pv2;v1,v2) in M , there is a one-to-one
correspondence with a pair of saturated V -type nodes: one of v′1 or v′′1 and one
of v′2 or v′′2 .

Next, we prove that SOL′ is indeed a CPCP solution on GV . It is easy to
see that the degree of every node v in SOL′ is at most two, because each of
v′, v′′ ∈ V ′ can contribute to at most one edge adjacent to v in SOL′. Suppose
e1 = (u, v), e2 = (v, w) ∈ SOL′ are two adjacent edges, which means that in
G′, Pv;u,v is not matched with (Pv;u,v, Pu;u,v) and Pv;v,w is not matched with
(Pv;v,w, Pw;v,w). W.l.o.g. assume that Pv;u,v is matched with (Pv;u,v, C′′

v,c1) and
Pv;v,w is matched with (Pv;v,w , C′′

v,c2). Then we have c1 	= c2, and the label
colors ce1,v = c1 	= c2 = ce2,v (otherwise, C′′

v,c1 = C′′
v,c2 would be adjacent to

two different edges in the matching M , a contradiction). Therefore, SOL′ is a
feasible CPCP solution. Since 2|M | = ns + 2|EV | + 2|E| and ns = 2|SOL′|, we
conclude |SOL′| = |M | − |EV | − |E|. ��

Corollary 1. There is a polynomial-time algorithm for computing an optimal
CPCP solution on GV .

Proof. The maximum matching problem on G′ can be solved in O(
√
|V ′| · |E′|)

time [12]. The proof of Theorem 1 shows how to obtain in polynomial time an
optimal CPCP solution SOL′ in GV from a maximum matching M in G′. ��

2.3 A 1.5-Approximation for CPP and MS

In this subsection, we show how to obtain a 1.5-approximate CPP solution SOL
on GV from an optimal CPCP solution SOL′ on GV . This immediately gives a
1.5-approximation for MS on G. First, we illustrate on an example why a CPCP
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solution SOL′ may fail to be a feasible CPP solution, and how we can make
it feasible by removing some edges from SOL′. Let P = (v1, v2, v3, v4) be a
path in GV with C(v1,v2) = {c1}, C(v2,v3) = {c1, c2}, and C(v3,v4) = {c2}. A
CPCP solution could contain all three edges with the following color labeling:
c(v1,v2),v1 = c(v1,v2),v2 = c1, c(v2,v3),v2 = c2, c(v2,v3),v3 = c1, and c(v3,v4),v3 =
c(v3,v4),v4 = c2. This is not a feasible CPP solution. But we can remove the
middle edge (v2, v3) to make it feasible.

Below we show how we can remove some edges from SOL′ to obtain a CPP
solution. Remember that we want to remove at most one third of all edges from
SOL′.

Let P =(v1, . . . , v�) be a path in SOL′ with label colors such that c(vi−1,vi),vi
	=

c(vi,vi+1),vi
for any i with 1 < i < �. We say P can be feasibly colored if the

coloring of P can be converted to a feasible CPP coloring by carefully choosing
color labels for its edges (not for its nodes) from the color labels of its nodes.
To be more precise, we can label each edge (vi−1, vi) of P by a color c(vi−1,vi) ∈
{c(vi−1,vi),vi−1 , c(vi−1,vi),vi

} for 1 < i ≤ �, such that c(vi−1,vi) 	= c(vi,vi+1), for
1 < i < �.

Lemma 1. Paths in SOL′ of length at most 2 are feasibly colorable. ��

Note that in G two different nodes v1, v2 ∈ V cannot simultaneously have shar-
ings with two distinct upper nodes u,w ∈ U in a feasible MS solution. Such short
cycles cannot occur in SOL′ (for example, in Fig. 2(a), v1, v2 ∈ V cannot si-
multaneously have sharings with u,w ∈ U). It might appear that such infeasible
simultaneous sharings might correspond to a “degenerate” cycle (v1, v2, v1) in
SOL′. The next lemma shows that there is no such “degenerate” cycle in SOL′.

Lemma 2. Every cycle in SOL′ has length at least three. ��

SOL′ may contain simple paths and simple cycles. We first deal with the paths
in SOL′. Let P = (v0, . . . , vt−1) be a path in SOL′. We remove the edges
(v3k−1, v3k) from P , for k = 1, . . . , � t3�. The remaining parts of P are a set of
paths of length at most two. By Lemma 1, these paths can be feasibly colored.
Note that we deleted no more than one third of the edges of SOL′.

Handling cycles in SOL′ is more complicated. By Lemma 2, the length of
each cycle in SOL′ is at least three. We distinguish three cases based on the
cycle length. An edge e = (u, v) in SOL′ with label colors ce,u = ce,v is called a
1-color edge, otherwise a 2-color edge.

Lemma 3. (a) A simple path consisting of successive 1-color edges and at most
two 2-color edges, one at each end of the path, that does not form a cycle can
be feasibly colored.
(b) A simple path consisting of successive 2-color edges and at most one 1-color
edge at one end of the path that does not form a cycle can be feasibly colored.

Proof. We only show part (b). Consider a simple path P = (v1, . . . , v�), in which
(v1, v2) is a 1-color edge and the other edges are 2-color edges. First, we label
(v1, v2) with color c(v1,v2),v1 . Since c(v2,v3),v2 	= c(v2,v3),v3 , at least one of them is
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not equal to c(v1,v2),v1 . Thus, we can label (v2, v3) with this color. Similarly, we
can feasibly color the other 2-color edges of P . ��

Lemma 4. For any cycle C ∈ SOL′ of length at least four, there exists a subpath
of length three in C that can be feasibly colored.

Proof. If C contains only 2-color edges or only 1-color edges (but not both types),
then, by Lemma 3, any three consecutive edges of C can be feasibly colored. If C
includes edges of both types, then consider a maximal subpath P of C consisting
of only 1-color edges. P is certainly not a cycle. If |P | ≥ 3, then the lemma holds
for P . If |P | is 1 (or 2), then we take two (or one) of the edges adjacent to
the endnodes of P (P together with these edges does not form a cycle, because
|C| > 3). The subpath of C formed by P and these edges can be feasibly colored
by Lemma 3(a). ��

Lemma 5. For any cycle C ∈ SOL′ of length at least five in which the 1-color
edges and 2-color edges do not appear alternatingly, there exists a subpath of
length four in C that can be feasibly colored. ��

Case 1: C = (v0, v1, . . . , v3t−1, v0) is a cycle of length 3t. We remove the edges
(v3k, v3k+1) from C, for k = 0, . . . , t− 1. The remaining parts of C are a set of
paths of length exactly two which can be feasibly colored by Lemma 1.

Case 2: C is a cycle of length 3t + 1. We want to remove t edges, resulting in
one path of length three and t− 1 paths of length two which can all be feasibly
colored. By Lemma 4, we can find three successive edges of C that can be feasibly
colored (and thus be kept in the CPP solution SOL). Next, we remove the two
edges of C adjacent to this length-three subpath (if t = 1, then there is only
one such adjacent edge). If t ≥ 2, what is left from C at this point is a path P
of length 3t − 4. By using the same scheme as for handling the path case, we
remove t− 2 edges from P and obtain a set of paths of length at most two. Note
that we remove a total of t edges from C, which is less than a third of all edges.

Case 3: C is a cycle of length 3t + 2. Similarly to Case 2, if we can find four
successive edges in C that can be colored feasibly by Lemma 5, then we are
done. Suppose we cannot; then by Lemma 5, the 1-color edges and 2-color edges
in C must appear alternatingly, and thus t must be an even integer. Let C =
(v0, . . . , vt′−1), where t′ = 3t + 2, be a cycle in which the 1-color edges and 2-
color edges appear alternatingly and (v0, v1) is a 1-color edge. We remove the
edges (v4k, v4k+1), for k = 0, . . . , � t′−1

4 �. The remaining parts of C are all paths
of length at most three which can be feasibly colored by Lemma 3(a). Hence, in
this case we remove a total of � t′−1

4 �+ 1 ≤ t edges, which is less than a third of
all edges.

Theorem 2. MS can be approximated within a factor of 1.5 in polynomial time
if there are no degree-one lower nodes.

Proof. The claim follows from Corollary 1. The running time of our MS approxi-
mation algorithm is dominated by the step of computing a maximum matching
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in the graph G′, whose numbers of nodes and edges are a low degree polynomial
in the numbers of nodes and edges of the input graph G. ��

2.4 A More Practical 1.5-Approximation Algorithm

The technique described in the previous subsection gives the currently best ap-
proximation ratio for MS. In practice, however, we can do better, since many
edges removed are unnecessary. Here, we propose a more practical algorithm to
compute a CPP solution by removing edges from a CPCP solution. Note that, in
the worst case, the scheme in this subsection also gives a 1.5-approximation.

Given a CPCP solution SOLCPCP that consists of some cycles and paths, we
first analyze the structures that make SOLCPCP not a feasible CPP solution.
One reason could be the existence of cycles, and we need to remove at least one
edge on each cycle.

Another problem might be a subpath formed by 2-color edges with two 1-color
edges at each end. For example, consider a simple path P = (v1, . . . , v�) in which
� is even, (v1, v2) and (v�−1, v�) are both 1-color edges, and the other edges are
2-color edges. Moreover, colors are assigned as follows: c(v1,v2),v1 = c(v2,v3),v3 =
· · · = c(v�−2,v�−1),v�−1 = c1, and c(v2,v3),v2 = c(v3,v4),v3 = · · · = c(v�−2,v�−1),v�−2 =
c(v�−1,v�),v�

= c2. Clearly, this subpath cannot be feasibly colored without edge
removals. To see why this is the only case when we cannot feasibly color all edges,
consider an optimal deletion of a 1-color edge (v1, v2). It should be a 1-color edge
because we cannot feasibly color (v1, v2) with its color c(v1,v2),v1 = c1. This is
because one of its adjacent 2-color edges, say (v2, v3), would be forced to be
colored with c1 = c(v2,v3),v3 (note that c(v2,v3),v2 	= c1). If there is another choice
to color (v2, v3) (i.e., using color c(v2,v3),v2) without changing other edges’ colors,
we could add (v1, v2) to the solution SOLCPCP , contradicting the optimality.
But why is (v2, v3) forced to be colored with c1 = c(v2,v3),v3? That is because its
adjacent 2-color edge (v3, v4) is forced to be colored with c1 = c(v2,v3),v2 . We can
continue this argument until we encounter a 1-color edge (v�−1, v�) which must
be colored with c(v�−1,v�),v�

.
If a 2-color edge is deleted in an optimal deletion, the argument is similar

and proceeds until meeting the 1-color edges at the two ends of the path. If
such a structure occurs, then we cannot feasibly color all edges in the structure,
and at least one edge must be deleted. At the same time, it is easy to see that
it is sufficient to delete only one 1-color edge in such a subpath. Thus, we can
w.l.o.g. assume that an optimal method always removes 1-color edges. Moreover,
such subpaths are mutually disjoint except that some pairs of them may share
a common 1-color edge (at the ends of such a pair of subpaths).

We construct the following graph D for the edge removal. The nodes of D
are all 1-color edges of the CPCP solution. Two nodes of D are linked by an
edge if the two corresponding 1-color edges are at the two ends of one subpath
described above. Thus any edge removal that makes the CPCP solution a feasible
CPP solution corresponds to a vertex cover in D. Since D is a graph of maximum
degree two, we can compute a minimum vertex cover in D in polynomial time.
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3 Approximating MS: The General Case

In this section we show how to modify the approximation algorithm of Section 2
to accommodate lower nodes of degree one. We will use the fact that we may
assume w.l.o.g. that each upper node is connected to at most one degree-one
lower node (if we can connect crossing-free to one such node, we can connect
crossing-free to many such nodes).

Given G, we construct GV exactly as before. We must slightly relax the color
constraint in the definition of CPP. If a path visits a degree-one node in V , it may
have two consecutive occurrences of the same edge leading to that node, which
of course must have the same color. Now, MS on G is again equivalent to CPP on
GV . For CPCP, we need a similar relaxation of the color constraint at degree-one
nodes of V . The optimal objective value of CPCP on GV is then at least as large
as that of CPP.

Now we construct the graph G′ from G. Let VS be the set of degree-one lower
nodes in G. For each v ∈ V we add two V-type nodes v′ and v′′, for a total of
2 · |V | such nodes. For each edge (v, u) in G with v ∈ V and u ∈ U , if v 	∈ VS ,
we add two C-type nodes C′

v,u and C′′
v,u, and we add edges as described before.

If, however, v ∈ VS , we add four C-type nodes: C′
va,u and C′′

va,u, as well as
C′
vb,u

and C′′
vb,u

. Further, we add the following six edges: (v′, C′
va,u), (v′′, C′

va,u),
and (C′

va,u, C
′′
va,u), and (v′, C′

vb,u), (v′′, C′
vb,u), and (C′

vb,u, C
′′
vb,u). Thus the total

number of C-type nodes is 2 · (|E + |VS |). Finally, we add 2 · |EV | P-type nodes
exactly as before. The edges between P-type and C-type nodes are added just
as before, except when for an edge (v1, v2) ∈ EV in which one (and there can
be only one) of the nodes, say v2, is in VS . In that case, let v1 and v2 have a
common upper node neighbor u (again, only one common neighbor is possible).
We add the following four edges to E′: (Pv1;v1,v2 , Pv2;v1,v2), (Pv1 ;v1,v2 , C

′′
v1,u),

(Pv2;v1,v2 , C
′′
v2a,u), and (Pv2;v1,v2 , C

′′
v2b,u

).

Theorem 3. Suppose GV has an optimal CPCP solution SOL whose value is
|SOL|, and G′ has a maximum matching M . Then, |M | = |EV | + |E| + |VS | +
|SOL|. ��

Informally, the only change in G′ is that there are now more C-type nodes —
2 · |VS | more nodes. See Fig. 3 for an illustration.

The final step is to show that given any CPCP solution on GV , say SOL′,
we can obtain a solution SOL for CPP on GV such that |SOL| ≥ 2

3 |SOL′|. Let
v ∈ VS be a degree-one lower node that is a neighbor of the upper node u ∈ U .
Suppose SOL′ consists of a path or cycle with the three nodes σv = (v1, v, v2)
in order, and with corresponding colors c(v1,v),v1 , c(v1,v),v, c(v,v2),v, and c(v,v2),v2 .
Now c(v1,v),v = c(v,v2),v = u (this is a legal coloring). Observe that if there is no
such sequence σv in SOL′ for any v ∈ VS , then SOL′ is also a solution to CPCP
on GV , and we can directly use the algorithm in Section 2.3 to obtain a solution
SOL for CPP on GV .

So suppose such a sequence σv exists. There can be at most one sequence for
each v ∈ VS . Take the path (or cycle) P ′ containing v and break it into two paths
(or one path, respectively) at the node v. In other words, the sequence (v1, v) is
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Pv1;v1,v5

Pv4;v3,v4

C ′′
v1,u5

C ′′
v2,u3

C ′′
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Pv2;v2,v3

Pv4;v4,v5

C ′
v1,u1

C ′′
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C ′
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v2,u1

C ′
v4,u3

Pv5;v4,v5

C ′′
v4,u4

Pv4;v2,v4

Pv2;v2,v4

v′4

C ′
v4,u4

Pv3;v3,v4
C ′′

v2,u2

C ′′
v3b,u2

C ′
v3b,u2

v′′5

v′1

v′2 v′3

v′′4

v′′1

v′′2
v′′3

v′5

C ′
v1,u5

C ′′
v1,u1

Pv1;v1,v2 Pv2;v1,v2

C ′
v2,u1 C ′

v2,u3

C ′
v2,u2

Fig. 3. The graph G′ corresponding to G in Fig. 1(a). The thick edges are the extra
edges required due to degree-one lower nodes. The dashed edges are the matching
corresponding to the CPCP solution.

separated from (v, v2). Let the resulting path(s) be denoted by P . Remove the
third edge for each path in P , as in Section 2.3, followed by an application of
Lemma 1, to obtain paths in P in which exactly one color from Ce is assigned to
each edge e, and no two consecutive edges have the same color. P may, however,
have two occurrences of v and thus cannot be part of a solution for CPP. We
remedy this by combining back the two separate ends (if they both exist) to
form the original sequence (v1, v, v2). This will lead to two consecutive edges
having the same color, but that is a legal coloring.

Does this recombination create a cycle? Observe that if the original sequence
σv is part of a cycle, the cycle has at least three edges. This follows from reasoning
very similar to the proof of Lemma 2. If P consists of a single path, it has at
least three edges, and thus at least one edge is removed. Thus, recombinations
do not form a cycle. The process described above is performed on every sequence
σv, for each v ∈ VS . For paths or cycles in SOL′ not containing such sequences,
the process is exactly as described in Section 2.3.

Theorem 4. MS can be approximated within a factor of 1.5 in polynomial time.
��
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1 Introduction

Suppose that you work for a networking company that owns many point-to-point
connections between several locations, and your job is to sell these connections.
A customer wants to construct a network connecting all pairs of locations in the
form of a spanning tree. The customer can buy connections that you are selling,
but can also buy connections offered by your competitors. The customer will
always buy the cheapest possible spanning tree. Your company has researched
the price of each connection offered by the competitors. The problem considered
in this paper is how to set the price of each of your connections in order to
maximize your revenue, that is, the sum of the prices of the connections that
the customer buys from you.

This problem can be cast as a Stackelberg game, a type of two-player game
named introduced by the German economist Heinrich Freiherr von Stackel-
berg [18]. In a Stackelberg game, there are two players: the leader moves first,
then the follower moves, and then the game is over. The follower thus optimizes
its own objective function, knowing the leader’s move. The leader has to optimize
its own objective function by anticipating the optimal response of the follower.
In the scenario depicted in the preceding paragraph, you were the leader and
the customer was the follower: you decided how to set the prices for the connec-
tions that you own, and then the customer selected a minimum spanning tree.
In this situation, there is an obvious tradeoff: the leader should not put too a
high price on the connections—otherwise the customer will not buy them—but
on the other hand the leader needs to put sufficiently high prices to optimize
revenue.

Formally, the problem we consider is defined as follows. We are given an
undirected graph G = (V,E) whose edge set is partitioned into a red edge set R
and a blue edge set B. Each red edge e ∈ R has a nonnegative fixed cost c(e)
(the best competitor’s price). The leader owns every blue edge e ∈ B and has to
set a price p(e) for each of these edges. The cost function c and price function
p together define a weight function w on the whole edge set. By “weight of edge
e” we mean either “cost of edge e” if e is red or “price of edge e” if e is blue. A
spanning tree T is a minimum spanning tree (MST) if its total weight

∑

e∈E(T )

w(e) =
∑

e∈E(T )∩R
c(e) +

∑

e∈E(T )∩B
p(e) (1)

is minimum. The revenue of T is then
∑

e∈E(T )∩B
p(e). (2)

The Stackelberg Minimum Spanning Tree problem, StackMST, asks for a price
function p that maximizes the revenue of an MST. Throughout, we assume that
the graph contains a spanning tree whose edges are all red; otherwise, there is a
cut consisting only of blue edges and the optimum value is unbounded. Moreover,
to avoid being distracted by epsilons, we assume that among all edges of the
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same weight, blue edges are always preferred to red edges; this is a standard
assumption. As a consequence, all minimum spanning trees for a given price
function p have the same revenue; see Section 2 for details.

Related work. A similar pricing problem, where the customer wants to construct
a shortest path between two vertices instead of a spanning tree, has been studied
in the literature; see van Hoesel [17] for a survey. Complexity and approxima-
bility results have recently been obtained by Roch, Savard and Marcotte [14],
and by Grigoriev, van Hoesel, Kraaij, Uetz, and Bouhtou [9]: the problem is
strongly NP-hard and O(log |B|)-approximable. A generalization of the problem
to more than one customer has been tackled using mathematical programming
tools, in particular bilevel programming; see Labbé, Marcotte, and Savard [12].
This generalization was motivated by the problem of setting tolls on highway
networks. Cardinal, Labbé, Langerman, and Palop [3] give a geometric version
of the problem.

Sometimes the goal of the leader is not to invite the followers to use his/her
part of the network and maximize his/her own revenue but to encourage so-
cially acceptable or optimal behaviors among the followers (the users of the
network) so as to maximize some global objective. These kinds of Stackelberg
games have been studied recently, e.g., by Cole, Dodis and Roughgarden [4] and
Swamy [16]. An extensive bibliography on similar networking games has been
compiled recently by Altman et al. [2]. In another Stackelberg game studied
by Roughgarden [15], the leader is a job scheduler whose goal is to compute a
scheduling strategy for the jobs he/she controls such that total latency in the
system is minimized after the followers have selfishly scheduled their jobs.

Hartline and Koltun [10] propose approximation algorithms for several APX-
hard pricing problems, where the goal is to find the best prices for a set of
items, given knowledge of the consumer’s behavior in the form of a combinatorial
preference structure.

Finally, our problem should not be confused with other spanning tree games
found in cooperative games and mechanism design theory [8,11], with parametric
spanning tree problems [7,6], or with two-stage stochastic minimum spanning
tree problems [5].

Our results. We analyze the complexity and approximability of the StackMST

problem. Specifically, we prove the following:

1. StackMST is APX-hard, even if there are only two red costs, 1 and 2
(Section 3). This result is also the first NP-hardness proof for this problem.
The reduction is from SetCover.

2. StackMST is O(log n)-approximable, and is O(1)-approximable when the
red costs either fall in a constant-size range or have a constant number of
distinct values (Section 4). More precisely, we analyze the following simple
approximation algorithm, called Best-out-of-k: for all i between 1 and k, con-
sider the price function for which all blue edges have price ci, and output the
best of these k price functions. Here, and throughout the paper, ci denotes
the ith smallest cost of a red edge and k the number of distinct red costs.
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We prove that the approximation ratio of this algorithm is bounded above
by min{k, 3 + 2 ln b, 1 + ln(ck/c1)}, where b is the number of blue edges.

3. The integrality gap of a natural integer linear programming formulation
asymptotically matches the approximation guarantee of Best-out-of-k (Sec-
tion 5). Thus, effectively, any approximation algorithm based on the linear
programming relaxation of our integer program (or any weaker relaxation)
cannot do better than Best-out-of-k. Of course, this result does not im-
ply that Best-out-of-k is optimal. In fact, a central open question about
StackMST is to determine if it admits a constant factor approximation
algorithm.

Some of the proofs are omitted and will appear in the full version of this paper.

2 Basic Results

Before we proceed to our main results, we prove a few basic lemmas about
StackMST.

We claimed in the introduction that the revenue of the leader depends on the
price function p only, and not on the particular MST picked by the follower. To
see this, let w1 < w2 < · · · < w� denote the different edge weights. The greedy
algorithm (a.k.a. Kruskal’s algorithm) will work in � phases: in its ith phase, it
will consider all blue edges of price wi (if any) and then all red edges of cost
wi (if any). The number of blue edges selected in the ith phase will not depend
on the order in which blue or red edges of weight wi are considered. This shows
the claim. Moreover, if there is no red edge of cost wi then p is not an optimal
price function because the leader can raise the price of every blue edge of price
wi to the next weight wi+1 and thus increase his/her revenue. This implies the
following lemma.

Lemma 1. In every optimal price function, the prices assigned to the blue edges
appearing in some MST belong to the set {c(e) : e ∈ R}. ��
Notice that the prices given to the blue edges that are in no MST do not really
matter (as long as they are high enough). We find it convenient to see them
as equaling ∞. This has the same effect as deleting those blue edges. A direct
consequence of Lemma 1 is that the decision version of StackMST belongs to
NP, using some price function p with p(e) ∈ {c(e) : e ∈ R}∪{∞} for all e ∈ B as
a certificate. Another possibility for a certificate is an acyclic set of blue edges F ,
interpreted as the set of blue edges in any MST. Given F , we can easily compute
an optimal price function such that F is the set of blue edges in any MST, with
the help of Lemma 2 below. In the lemma, we denote by Ce the set of cycles of
G = (V,E) that include some edge e. (Notice that Ce is nonempty whenever e
is blue because Gr = (V,R) is connected.)

Lemma 2. Consider a price function p, a corresponding minimum spanning
tree T , and let F = E(T ) ∩B. Then for every e ∈ F , we have

p(e) ≤ min
C∈Ce

max
e′∈E(C)∩R

c(e′). (3)
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Moreover, whenever F is any acyclic set of blue edges and we set p(e) equal to
the right hand side of (3) for e ∈ F and p(e) = ∞ for e ∈ B − F , we have
E(T ′) ∩B = F for any corresponding MST T ′.

It follows from the above lemma that StackMST is fixed parameter tractable
with respect to the number of blue edges. Indeed, to solve the problem, one could
try all acyclic subsets F of B, and for each of them put the prices as above (this
can easily be done in polynomial time), and finally take the solution yielding the
highest revenue. We conclude this section by stating a useful property satisfied
by all optimal solutions of StackMST.

Lemma 3. Let p be an optimal price function and T be a corresponding MST.
Suppose that there exists a red edge e in T and a blue edge f not in T such that
e belongs to the unique cycle C in T +f . Then there exists a blue edge f ′ distinct
from f in C such that c(e) < p(f ′) ≤ p(f).

3 Complexity and Inapproximability

By Lemma 1, StackMST is trivially solved when the cost of every red edge is
exactly 1, i.e., when c(e) = 1 for all e ∈ R. In this section, we show that the
problem is APX-hard even when the costs of the red edges are only 1 and 2, i.e.,
when c(e) ∈ {1, 2} for all e ∈ R. We start with NP-hardness:

Theorem 1. StackMST is NP-hard even when c(e) ∈ {1, 2} for all e ∈ R.

Proof. We present a reduction from SetCover (in its decision version).
Let (U ,S) and the integer t be an instance of SetCover, where U =
{u1, u2, . . . , un}, and S = {S1, S2, . . . , Sm}. Without loss of generality, we as-
sume that un ∈ Si for every i = 1, 2, . . . ,m (we can always add one element to
U and to every Si to make sure this holds).

We construct a graph G = (V,E) with edge set E = R∪B and a cost function
c : R → {1, 2} as follows. The vertex set of G is U ∪ S = {u1, u2, . . . , un} ∪
{S1, S2, . . . , Sm}. The edge set of G and cost function c are defined as follows:

– there is a red edge of cost 1 linking ui and ui+1 for every 1 ≤ i < n;
– there is a red edge of cost 2 linking un and S1, and linking Sj and Sj+1 for

every 1 ≤ j < m;
– whenever ui ∈ Sj we link ui and Sj by a blue edge.

We illustrate such a construction in Fig. 1. We claim that (U ,S) has a set cover
of size t if and only if there exists a price function p : B → {1, 2,∞} for the blue
edges of G whose revenue is n + 2m− t− 1.

(⇒) Suppose (U ,S) has a set cover of size t. We construct p as follows: for
every blue edge e = uiSj , we set p(e) to be 1 if Sj is in the set cover, and
2 otherwise. We show that the revenue of p equals n + 2m − t − 1 by running
Kruskal’s MST algorithm starting with an empty tree, T . Because the blue edges
of weight 1 are the lightest, we start with adding them one by one to T such



The Stackelberg Minimum Spanning Tree Game 69

u1 u2
1 1 u3

1 u4
1 u5

1 u6

S2

S1 S3

(a)

u1 u2
1 1 u3

1 u4
1 u5

1 u6

S2

S1 S3

(b)

11
1111

1

22 2

Fig. 1. (a) The graph G constructed for n = 6, m = 3 with S1 = {u1, u2, u3, u4, u6},
S2 = {u3, u4, u6} and S3 = {u5, u6}. The red edges of cost 2 are omitted for clarity.
The red edges of cost 1 are dashed, and the blue edges are solid. (b) An optimal price
function p on the blue edges that yields a revenue of 9, an example MST is depicted
in bold.

that we add an edge only if it doesn’t close a cycle in T . After going over all
blue edges of weight 1, we are guaranteed that T is a tree that spans all the
vertices ui for every i = 1, . . . , n, and every vertex Sj such that Sj is in the set
cover. This is because these vertices are connected through un with only blue
edges of weight 1. So the current weight of T is |T | − 1 = n+ t− 1. We next try
to add the red edges of weight 1, but every such edge connects two vertices, ui
and ui+1, already spanned by T and therefore closes a cycle, so we add none of
them. Next we add the blue edges of weight 2. For every Sj not in the set cover,
we connect Sj to T with one blue edge of weight 2 (the second one will close
a cycle). Therefore, after going over all the blue edges of weight 2, we added
a weight of 2(m − t) to T . Furthermore, T spans the entire graph so there is
no need to add any red edges of weight 2. All the edges in T are blue and the
revenue of T is (n + t− 1) + 2(m− t) = n + 2m− t− 1.

(⇐) Suppose that there exists a price function p : B → {1, 2,∞} for the blue
edges of G whose revenue is n+2m− t− 1 for some t. By Lemma 1, there exists
such a function p that is optimal. Choose then p : B → {1, 2,∞} as an optimal
price function that minimizes the number of red edges in an MST T .

Assume first that T contains only blue edges. Then every vertex ui is incident
to some blue edge in T with price 1. Thus the set S′ of those Sj ’s that are linked
to some blue edge in T with price 1 is a set cover of (U ,S). On the other hand,
notice that any Sj ∈ S \ S′ is a leaf of T , because if there were two blue edges
uiSj , ui+�Sj in T then none of them could have a price of 2 because of the cycle
Sjuiui+1 . . . ui+�Sj. Therefore, the revenue of p equals (n+|S′|−1)+2(m−|S′|) =
n + 2m − |S′| − 1. As by hypothesis this is at least n + 2m − t − 1, we deduce
that the set cover S′ has size at most t.

Suppose now that T contains some red edge e and denote by X1 and X2

the two components of T − e. There exists some blue edge f = uiSj in G
that connects X1 and X2 because the graph (V,B) induced by the blue edges
is connected (because un is linked with blue edges to every Sj). By Lemma 3,
there exists a blue edge f ′ = ui′Sj′ distinct from f in the unique cycle C in T +f
such that c(e) < p(f ′) ≤ p(f). In particular, we have c(e) = 1 and p(f ′) = 2. By
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an argument given in the preceding paragraph, Sj′ is a leaf of T , hence we have
j′ = j. Also, every blue edge distinct from f and f ′ in C has price 1. But then
the price function p′ obtained from p by setting the price of both f and f ′ to 1
is also optimal and has a corresponding MST that uses less red edges than T ,
namely T − e + f , a contradiction. This completes the proof. ��

The reduction used in Theorem 1 implies a stronger hardness result.

Theorem 2. StackMST is APX-hard even when c(e) ∈ {1, 2} for all e ∈ R.

The above theorem is proved by showing that, for any ε > 0, a (1 − ε)-
approximation for StackMST implies a (1 + 8ε)-approximation for Vertex-

Cover in graphs of maximum degree at most 3. The theorem then follows from
the APX-hardness of the latter problem [1,13]. The formal details will appear in
the full version of this paper.

4 The Best-Out-Of-k Algorithm

As before, let k denote the number of distinct red costs, and let c1 < c2 < · · · < ck
denote those costs. Without loss of generality, we assume that all weights are
positive (otherwise we contract all red edges of cost 0). Recall that the Best-out-
of-k algorithm is as follows. For each j between 1 and k, set p(e) = cj for all
blue edges e ∈ B and compute an MST Tj . Then pick j such that the revenue
of Tj is maximum and output the corresponding feasible solution. We analyze
the approximation ratio ensured by this algorithm.

Theorem 3. Best-out-of-k is a ρ-approximation, where

ρ = 1 +
k∑

i=2

ci − ci−1

ci
= 1 +

c2 − c1
c2

+ · · ·+ ck − ck−1

ck
.

Proof. Consider a minimum cost red spanning tree, that is, an MST obtained
after setting the prices on all blue edges to ∞. For j = 1, . . . , k, let mj denote the
number of red edges of cost cj in that tree. Similarly, denote by m′

j the number
of red edges of cost cj in any MST the follower can select when all blue edges
are for free (i.e., have a price of 0). Then we can bound the optimal revenue as
follows:

OPT ≤
k∑

i=1

cimi −
k∑

i=1

cim
′
i =

k∑

i=1

ci(mi −m′
i). (4)

Let bj be the number of blue edges in Tj , the MST computed by Best-out-of-k
at step j, and set bk+1 = 0. Let also Rj denote the red edges of cost at most cj .
For E′ ⊆ E, we denote by G/E′ the graph obtained from G after contraction of
every edge in E′. Because the number of edges in a set F ⊆ E inducing a forest
in G equals |G| − |G/F | (where |H | denotes the number of vertices of graph H),
we obtain



The Stackelberg Minimum Spanning Tree Game 71

mj = |G/Rj−1| − |G/Rj |,
m′
j = |G/(Rj−1 ∪B)| − |G/(Rj ∪B)|,
bj = |G/Rj−1| − |G/(Rj−1 ∪B)|,

and so we deduce
mj −m′

j = bj − bj+1. (5)

Thus the revenue given by Tj, which we denote qj , is exactly

qj = cjbj =
k∑

i=j

cj(bi − bi+1) =
k∑

i=j

cj(mi −m′
i).

Then (5) implies:

mj −m′
j =

qj
cj

− qj+1

cj+1
for 1 ≤ j ≤ k − 1 and mk −m′

k =
qk
ck
.

Therefore we can rewrite our upper bound on OPT given in (4) in terms of the
qj ’s:

k∑

i=1

ci(mi −m′
i) = c1

(
q1
c1

− q2
c2

)

+ c2

(
q2
c2

− q3
c3

)

+ · · ·+ ck
qk
ck

= q1 +
c2 − c1
c2

q2 + · · ·+ ck − ck−1

ck
qk.

Now consider the index j such that qj is maximum. The above equation and (4)
together imply:

OPT
qj

≤
∑k
i=1 ci(mi −m′

i)
qj

=
q1
qj

+
c2 − c1
c2

· q2
qj

+ · · ·+ ck − ck−1

ck
· qk
qj

(6)

≤ 1 +
c2 − c1
c2

+ · · ·+ ck − ck−1

ck
= ρ.

So Best-out-of-k is a ρ-approximation algorithm. (The last inequality follows
from the maximality of qj .) ��

Observe that the above proof shows that Best-out-of-k can be implemented to
run within the same time complexity as an MST algorithm. Indeed, when the
price of all blue edges is set to cj , the resulting revenue is

∑k
i=j cj(mi−m′

i). Thus
we can find which cj would maximize the revenue simply by computing the mi’s
and m′

i’s, which can be done by computing an MST of (V,R) and (V,R ∪ B),
respectively (where the edges in B have price 0).

Note also that if the costs are exactly 1, 2, . . . , k, then ρ equals the kth
harmonic number Hk = 1 + 1/2 + · · · + 1/k. In general, ρ − 1 can be regarded
as a Riemann (under-)approximation of the integral

∫ ck
c1

1
t dt. So we have

ρ ≤ 1 +
∫ ck

c1

1
t

dt = 1 + ln ck − ln c1 = 1 + lnW,
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where W = ck/c1. We also have ρ ≤ k, because ρ is the sum of k terms, all
not exceeding 1. Moreover, as we now prove, Equation (6) implies the following
result leading to the conclusion that Best-out-of-k is, in particular, a min{k, 3 +
2 ln |B|), 1 + ln( ckc1 )} - approximation.

Proposition 1. Best-out-of-k is a (3 + 2 ln b)-approximation, where b is the
number of blue edges.

Proof. Recall qi is the revenue of the ith tree computed by Best-out-of-k, and qj
is their maximum. Let c0 = 0 and � be the index where c�−1 <

ck
b2 and c� ≥ ck

b2 .
Without loss of generality, we assume qk 	= 0 (otherwise we focus on the last qi
that is non-zero) so we have ck ≤ qk ≤ qj . We then deduce

qi ≤ ci ·m <
ck
b2

· b ≤ qj
b

for every 1 ≤ i ≤ �− 1. (7)

Equation (6) in the proof of Theorem 3 and Equation (7) together imply:

OPT
qj

≤
�−1∑

i=1

ci − ci−1

ci

qi
qj

+
k∑

i=�

ci − ci−1

ci

qi
qj

≤
�−1∑

i=1

qi
qj

+
k∑

i=�

ci − ci−1

ci

<

�−1∑

i=1

1
b

+ 1 +
∫ ck

c�

1
t

dt

< �/b+ 1 + ln
ck
c�

≤ �/b+ 1 + ln(b2) = �/b+ 1 + 2 ln b.

To complete the proof we describe a procedure to simplify the StackMST

instance in order to ensure �/b ≤ 2. First, as long as some vertex v of the graph
has no blue edge incident to it, contract the cheapest edge in δ(v) = {e ∈ E :
v ∈ e}. Next, remove the most expensive edge in every red cycle in the graph,
until the red edges form a spanning tree. As is easily verified, the resulting
StackMST instance is equivalent to the original. That is, the set of blue edges
does not change and the revenue of every price function is the same for both
instances. So for the analysis we can assume that every vertex has some blue
edge incident to it and the red edges form a spanning tree. Therefore, we have
b ≥ n/2 ≥ (k + 1)/2 ≥ �/2 and Best-out-of-k is a (3 + 2 ln b)-approximation. ��

A natural generalization of StackMST to matroids is as follows. Given a ma-
troid (S, I) with I partitioned into two sets R and B, and nonnegative costs on
the elements of R, assign prices on the elements of B in such a way that the rev-
enue given by a minimum weight basis of (S, I) is maximized. We mention that
the analysis of Best-out-of-k given in the proof of Theorem 3 extends swiftly to
the case of matroids, yielding a ρ-approximation algorithm in this more general
setting.
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5 Linear Programming Relaxation

In this section, we give an integer programming formulation for the problem
and study its linear programming relaxation. In this section, all costs ci are
assumed to be positive. For each j = 1, . . . , k, and each blue edge e ∈ B we
define a variable xj,e. The interpretation of these variables is as follows: think
of a feasible solution p : B → {c1, c2, . . . , ck} and a minimum spanning tree T
with respect to p. Then xj,e = 1 means that the blue edge e appears in T , with
a price p(e) of at least cj .

We let c0 = 0 and denote by Rj the set of red edges of cost at most cj . For t
pairwise disjoint sets of vertices C1, . . . , Ct, we denote by δB(C1 : C2 : · · · : Ct)
the set of blue edges that are in the cut defined by these sets. The integer
programming formulation then reads:

(IP) max
∑

e∈B
1≤j≤k

(cj − cj−1)xj,e

s.t.
∑

e∈δB(C1:C2:···:Ct)

xj,e ≤ t− 1 ∀j ≥ 1, (8)

∀C1, ..., Ct components of (V,Rj−1);
∑

e∈P∩B
x1,e + xj,f ≤ |P ∩B| ∀f = ab ∈ B, ∀j ≥ 2, (9)

∀P ab-path in (B ∪Rj−1) − f ;

x1,e ≥ x2,e ≥ · · · ≥ xk,e ≥ 0 ∀e ∈ B; (10)

xj,e ∈ {0, 1} ∀j, ∀e ∈ B. (11)

Proposition 2. The integer program above is a formulation of StackMST.

As already noted,
∑k
j=1 cj(mj−m′

j) is an upper bound on OPT (see Section 4).
The rest of this section is devoted to the LP relaxation of the above IP, obtained
by dropping constraint (11). We will show that the LP is tractable and that it
provides an upper bound on OPT at least as good as

∑k
j=1 cj(mj − m′

j). On
the other hand, its integrality gap turns out to be k on instances with k distinct
costs, thus matching the guarantee given by the Best-out-of-k algorithm. (Let us
recall that the integrality gap of the LP on a specified set of instances is defined
as the supremum of the ratio (LP)/(IP) over these instances.)

Proposition 3. The LP can be separated in polynomial time.

Proposition 4. We have (IP) ≤ (LP) ≤
∑k
j=1 cj(mj −m′

j).

Proposition 5. The integrality gap of the LP is k on instances with k distinct
costs.

Proof. We already know from Proposition 4 that the integrality gap is at most
k on instances with k distinct costs. In order to show that it is also at least k,
we define an instance of StackMST as follows:
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– choose an integer a ≥ 2;
– the graph has ak−1 + 1 vertices, the set of whose is denoted V =
{v0, v1, . . . , vak−1};

– the set of blue edges is a spanning star with v0 as center, i.e. B = {v0vi|1 ≤
i ≤ ak−1};

– the ith red cost is ci = ai−1, for 1 ≤ i ≤ k;
– the components of the graph (V,Ri), where Ri is the set of red edges of

cost at most ci (and R0 = ∅), are {v1, . . . , vai}, {vai+1, . . . , v2ai}, . . . ,
{v(ak−i−1)ai+1, . . . , vak−iai}, for 1 ≤ i ≤ k − 1;

– the unique component of (V,Rk) is V .

We didn’t define explicitly the set of red edges in the above description. This
is because, as shown by the IP formulation, it is sufficient to give the components
of the graph (V,Ri) for i = 1, 2, . . . , k. (Notice for instance that we may always
‘realize’ these components with a set of red edges inducing a path.)

Consider an optimal solution of the StackMST problem for the instance
defined above, and let T be a corresponding MST. Look at any blue edge e in T ,
of price ci, and let Ce be the unique component of (V −v0, Ri−1) that contains an
endpoint of e. No other blue edge of T has an endpoint in Ce, because otherwise
T has not minimum weight. Thus, if e and f are two distinct blue edges of T ,
then Ce ∩ Cf = ∅. Noticing that the price given to e is ci = ai−1 = |Ce|, we
deduce that the revenue given by T is

∑

e∈B∩T
|Ce| ≤ ak−1.

Moreover, a revenue of ak−1 is easily achieved, set for instance all blue edges to
the same price ci for some i ∈ {1, . . . , k}. Hence, (IP) = ak−1.

We now define a feasible solution x∗ for the LP. The point x∗ will have the
property that x∗i,e = x∗i,f for 1 ≤ i ≤ k and all e, f ∈ B. We thus let yi = x∗i,e for
e ∈ B. The constraints on the yi’s imposed by the LP are then:

ai−1yi ≤ 1 for 1 ≤ i ≤ k;
y1 + yi ≤ 1 for 2 ≤ i ≤ k;
y1 ≥ y2 ≥ · · · ≥ yk ≥ 0.

Set y1 = (a − 1)/a and yi = 1/ai−1 for 2 ≤ i ≤ k, which satisfies the above
constraints. The value of the objective function of the LP for the point x∗ is

LP(x∗) =
∑

e∈B
1≤i≤k

(ci − ci−1)x∗i,e

= ak−1

⎛

⎝a− 1
a

+
∑

2≤i≤k
(ai−1 − ai−2)

1
ai−1

⎞

⎠ = kak−1 − kak−2.

Therefore, the ratio LP(x∗)/(IP) tends to k as a →∞, implying the claim. ��
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To conclude this section, let us mention that we know of additional families of
valid inequalities that cut the fractional point used in the above proof. We leave
the study of those for future research.

Acknowledgments
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Abstract. Edge casing is a well-known method to improve the read-
ability of drawings of non-planar graphs. A cased drawing orders the
edges of each edge crossing and interrupts the lower edge in an appro-
priate neighborhood of the crossing. Certain orders will lead to a more
readable drawing than others. We formulate several optimization criteria
that try to capture the concept of a “good” cased drawing. Further, we
address the algorithmic question of how to turn a given drawing into an
optimal cased drawing. For many of the resulting optimization problems,
we either find polynomial time algorithms or NP-hardness results.

1 Introduction

Drawings of non-planar graphs necessarily contain edge crossings. The vertices of
a drawing are commonly marked with a disk, but it can still be difficult to detect
a vertex within a dense cluster of edge crossings. Edge casing is a well-known
method—used, for example, in electrical drawings and, more generally, in infor-
mation visualization—to alleviate this problem and to improve the readability
of a drawing. A cased drawing orders the edges of each crossing and interrupts
the lower edge in an appropriate neighborhood of the crossing. One can also
envision that every edge is encased in a strip of the background color and that
the casing of the upper edge covers the lower edge at the crossing. See Fig. 1 for
an example.

If there are no application specific restrictions that dictate the order of the
edges at each crossing, then we can in principle choose freely how to arrange

Fig. 1. Normal and cased drawing of a graph

F. Dehne, J.-R. Sack, and N. Zeh (Eds.): WADS 2007, LNCS 4619, pp. 77–88, 2007.
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them. Certain orders will lead to a more readable drawing than others. In this
paper we formulate several optimization criteria that try to capture the concept
of a “good” cased drawing. Further, we address the algorithmic question of how
to turn a given drawing into an optimal cased drawing.

Definitions. Let G be a graph with n vertices and m edges and let D be a
drawing of G with k crossings. We want to turn D into a cased drawing where
the width of the casing is given in the variable casingwidth . To avoid that the
casing of an edge covers a vertex we assume that no vertex v of D lies on (or
very close to) an edge e of D unless v is an endpoint of e. Further, no more than
two edges of D cross in one point and any two crossings are far enough apart so
that the casings of the edges involved do not interfere. With these assumptions
we can consider crossings independently. Without these restrictions the problem
changes significantly—optimization problems that are solvable in polynomial
time can become NP-hard. Additional details can be found in the full paper.

We define the edge crossing graph GDC for D as follows. GDC contains a
vertex for every edge of D and an edge for any two edges of D that cross. Let C
be a crossing between two edges e1 and e2. In a cased drawing either e1 is drawn
on top of e2 or vice versa. If e1 is drawn on top of e2 then we say that C is a
bridge for e1 and a tunnel for e2. In Fig. 2, C1 is a bridge for e1 and a tunnel
for e2. The length of a tunnel is casingwidth/ sinα, where α ≤ π/2 is the angle
of the edges at the crossing. A pair of consecutive crossings C1 and C2 along an
edge e is called a switch if C1 is a bridge for e and C2 is a tunnel for e, or vice
versa. In Fig. 2(a), (C1, C2) is a switch.

Stacking and weaving. When we turn a given drawing into a cased draw-
ing, we need to define a drawing order for every edge crossing. We can choose
to establish a global top-to-bottom order on the edges, or to treat each edge
crossing individually. We call the first option the stacking model and the second
the weaving model, since cyclic overlap of three or more edges can occur (see
Fig. 2(b)).

Quality of a drawing. Globally speaking, two factors may influence the read-
ability of a cased drawing in a negative way. Firstly, if there are many switches
along an edge then it might become difficult to follow that edge. Drawings that
have many switches can appear somewhat chaotic. Secondly, if an edge is fre-
quently below other edges, then it might become hardly visible. These two con-
siderations lead to the following optimization problems for a drawing D.

(a) (b)

e1

e2

C1

C2

Fig. 2. (a) Tunnels and bridges. (b) Stacking and weaving.
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MinTotalSwitches Minimize the total number of switches.
MinMaxSwitches Minimize the maximum number of switches for any edge.
MinMaxTunnels Minimize the maximum number of tunnels for any edge.
MinMaxTunnelLength Minimize the maximum total length of tunnels for

any edge.
MaxMinTunnelDistance Maximize the minimum distance between any two

consecutive tunnels.

Fig. 3 illustrates that the weaving model is stronger than the stacking model for
MinTotalSwitches—no cased drawing of this graph in the stacking model
can reach the optimum of four switches. For, the thickly drawn bundles of c > 4
parallel edges must be cased as shown (or its mirror image) else there would be
at least c switches in a bundle, the four vertical and horizontal segments must
cross the bundles consistently with the casing of the bundles, and this already
leads to the four switches that occur as drawn near the midpoint of each vertical
or horizontal segment. Thus, any deviation from the drawing in the casing of the
four crossings between vertical and horizontal segments would create additional
switches. However, the drawing shown is not a stacked drawing.

Related work. If we consider only simple arrangements of line segments in the
plane as our initial drawing, then there is a third model to consider, an inter-
mediate between stacking and weaving: drawings which are plane projections
of line segments in three dimensions. We call this model the realizable model.
Clearly every cased drawing in the stacking model is also a drawing in the real-
izable model, but not every cased drawing in the weaving model can be realized
(see [8]). The optimal drawing in Fig. 3 can be realized, hence the realizable
model is stronger than the stacking model. In the full paper we show that the
weaving model is stronger than the realizable model.

Results. For many of the problems described above, we either find polynomial
time algorithms or NP-hardness results in both the stacking and weaving models.
We summarize our results in Table 1. In this paper we assume that our input
drawing is a straight line drawing, but several of our results also generalize
to curved drawings. Section 2 presents the results concerning the optimization
problems that seek to minimize the number of switches and Section 3 discusses
our solutions to the optimization problems that concern the tunnels. In the full
paper we show that MinTotalSwitches becomes NP-hard in both the weaving

c edges

Fig. 3. Optimal drawing in the weaving model for MinTotalSwitches
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Table 1. Table of results: n is the number of vertices, m = Ω(n) is the number of edges,
K = O(m3) is the total number of pairs of crossings on the same edge, k = O(m2) is
the number of crossings of the input drawing, and q = O(k) is the number of its odd
face polygons

Model Stacking Weaving
MinTotalSwitches open O(qk + q5/2 log3/2 k)
MinMaxSwitches open open
MinMaxTunnels O(m log m + k) exp. O(m4)
MinMaxTunnelLength O(m log m + k) exp. NP-hard
MaxMinTunnelDistance O(m log m + k log m) exp. O((m + K) log m) exp.

and the stacking model if we allow more than three edges to cross in one point.
We conclude with some open problems.

2 Minimizing Switches

In this section we discuss results related to the MinTotalSwitches and Min-

MaxSwitches problems. We first discuss some non-algorithmic results giving
simple bounds on the number of switches needed, and recognition algorithms
for graphs needing no switches. As we know little about these problems for the
stacking model, all results stated in this section will be for the weaving model.

Lemma 1. Given a drawing D of a graph we can turn D into a cased drawing
without any switches if and only if the edge crossing graph GDC is bipartite.

Corollary 1. Given a drawing D of a graph we can decide in O((n+m) log(n+
m)) time if D can be turned into a cased drawing without any switches.

Proof. We apply the bipartiteness algorithm of [3]. Note that this does not con-
struct the arrangement, so there is no term with k in the runtime. ��

Define a vertex-free cycle in a drawing of a graph G to be a face f formed by the
arrangement of the edges in the drawing, such that there are no vertices of G
on the boundary of f . An odd vertex-free cycle is a vertex-free cycle composed
of an odd number of segments of the arrangement.

Lemma 2. Let f be an odd vertex-free cycle in a drawing D. Then in any casing
of D, there must be a switch on one of the segments of f .

Proof. Unless there is a switch, the segments must alternate between those that
cross above the previous segment, and those that cross below the previous seg-
ment. However, this alternation cannot continue all the way around an odd cycle,
for it would end up in an inconsistent state from how it started. ��

Lemma 3. Given a drawing D of a graph the minimum number of switches of
any cased drawing obtained from D is at least half of the number of odd vertex-
free cycles in D.
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(a)

f1

f2

(b)

Fig. 4. (a) A construction with O(n) edges and Ω(n2) triangles. (b) A degree-one
graph, f1 is an odd polygon and f2 is an even polygon.

Proof. Let o be the number of odd vertex-free cycles in D. By Lemma 2, each
odd vertex-free cycle must have a switch on one of its segments. Choose one
such switch for each cycle; then each segment belongs to at most two vertex-
free cycles, so these choices group the odd cycles into pairs of cycles sharing a
common switch, together with possibly some unpaired cycles. The number of
pairs and unpaired cycles must be at least o/2, so the number of switches must
also be this large.

Lemma 4. For any n large enough, a drawing of a graph G with n vertices and
O(n) edges exists for which any crossing choice gives rise to Ω(n2) switches.

Proof. A construction with three sets of parallel lines, each of linear size, gives
Ω(n2) vertex-free triangles, and each triangle gives at least one switch (see
Fig. 4(a)). ��

Lemma 5. For any n large enough, a drawing of a graph G with n vertices and
O(n2) edges exists for which any crossing choice gives rise to Ω(n4) switches.

Proof. We build our graph as follows: make a very elongated rectangle, place
n/6 vertices equally spaced on each short edge, and draw the complete bipartite
graph. This graph has (n/6)2 edges. One can prove that there is a strip parallel
to the short side of the rectangle, such that the parts of the edges inside the strip
behave in the same way as parallel ones do with respect to creating triangles
when overlapped the way it is described in the previous lemma. This gives us
the desired graph with Ω(n4) triangles, and hence with Ω(n4) switches. ��

We define a degree-one graph to be a graph in which every vertex is incident to
exactly one edge; that is, it must consist of a collection of disconnected edges.

Lemma 6. Let D be a drawing of a graph G. Then there exists a drawing D′ of
a degree-one graph G′, such that the edges of D correspond one-for-one with the
edges of D′, casings of D correspond one-for-one to casings of D′, and switches
of D correspond one-for-one with switches of D′.

Proof. Form G′ by placing a small circle around each vertex of G. Given an
edge e = (u, v) in G, let ue be the point where e crosses the circle around u and



82 D. Eppstein et al.

similarly let ve be the point where e crosses the circle around v. Form D′ and
G′ by replacing each edge e = (u, v) in G by the corresponding edge (ue, ve),
drawn as the subset of edge e connecting those points.

As these replacements do not occur between any two crossings along any edge,
they do not affect the switches on the edge. Both drawings have the same set of
crossings, and any switch in a casing of one drawing gives rise to a switch in the
corresponding casing of the other drawing. ��

In a drawing of a degree-one graph, define a polygon to be a sequence of segments
of the arrangement formed by the drawing edges that forms the boundary of a
simple polygon in the plane. Define a face polygon to be a polygon that forms
the boundary of the closure of a face of the arrangement; note that there may
be edges drawn in the interior of this polygon, as long as they do not separate
it into multiple components.

Lemma 7. In a drawing of a degree-one graph, there can be no vertex on any
segment of a polygon.

Proof. We have already required that no vertex can lie on an edge unless it is
the endpoint of an edge. And, if a segment contains the endpoint of an edge, it
cannot continue past the endpoint to form the boundary of a polygon. ��

Note, however, that a polygon can contain vertices in its interior. Define the
complexity of a polygon to be the number of segments forming it, plus the
number of graph vertices interior to the polygon. We say that a polygon is odd
if its complexity is an odd number, and even if its complexity is an even number
(see Fig. 4(b)).

Lemma 8. Let p be a polygon in a drawing of a degree-one graph. Then, modulo
two, the complexity of p is equal to the sum of the complexities of the face polygons
of faces within p.

Proof. Each segment of p contributes one to the complexity of p and one to the
complexity of some face polygon. Each vertex within p contributes one to the
complexity of p and one to the complexity of the face that contains it. Each
segment within the interior of p either separates two faces, and contributes two
to the total complexity of faces within p, or does not separate any face and
contributes nothing to the complexity. Thus in each case the contribution to p
and to the sum of its faces is the same modulo two. ��

Lemma 9. Let p be an odd polygon in a drawing of a degree-one graph. Then
there exists an odd face polygon in the same drawing.

Proof. By Lemma 8, the complexity of p has the same parity as the sum of the
complexities of its faces. Therefore, if p is odd, it has an odd number of odd
faces, and in particular there must be a nonzero number of odd faces. ��

Lemma 10. Let D be a drawing of a degree-one graph. Then D has a casing
with no switches if and only if it has no odd face polygon.
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Proof. As we have seen, D has a casing with no switches if and only if the
edge crossing graph is bipartite. This graph is bipartite if and only if it has no
odd cycles, and an odd cycle in the edge crossing graph corresponds to an odd
polygon in D. For, if C is an odd cycle in the edge crossing graph, it must lie on
a polygon p of D. Each crossing in C contributes one to the complexity of this
polygon. Each edge of D that crosses p without belonging to C either crosses it
an even number of times (contributing that number of additional segments to
the complexity of p) and has both endpoints inside p or both outside p, or it
crosses an odd number of times and has one endpoint inside p; thus, it contributes
an even amount to the complexity of p. Thus, p must be an odd polygon. By
Lemma 9, there is an odd face polygon in D. Conversely, any odd face polygon
in D can be shown to form an odd cycle in the edge crossing graph. ��
Theorem 1. MinTotalSwitches in the weaving model can be solved in time
O(qk+q5/2 log3/2 k), where k denotes the number of crossings in the input draw-
ing and q denotes the number of its odd face polygons.

Proof. Let D be the drawing which we wish to case for the minimum number
of switches. By Lemma 6, we may assume without loss of generality that each
vertex of D has degree one.

We apply a solution technique related to the Chinese Postman problem, and
also to the problem of via minimization in VLSI design [2]: form an auxiliary
graph Go, and include in Go a single vertex for each odd face polygon in D. Also
include in Go an edge connecting each pair of vertices, and label this edge by
the number of segments of the drawing that are crossed in a path connecting the
corresponding two faces in D that crosses as few segments as possible. We claim
that the minimum weight of a perfect matching in Go equals the minimum total
number of switches in any casing of D.

In one direction, we can case D with a number of switches equal to or better
than the weight of the matching, as follows: for each edge of the matching,
insert a small break into each of the segments in the path corresponding to the
edge. The resulting broken arrangement has no odd face cycles, for the breaks
connect pairs of odd face cycles in D to form larger even cycles. Therefore, by
Lemma 10, we can case the drawing with the breaks, without any switches.
Forming a drawing of D by reconnecting all the break points adds at most one
switch per break point, so the total number of switches equals at most the weight
of the perfect matching.

In the other direction, suppose that we have a casing of D with a minimum
number of switches; we must show that there exists an equally good matching in
Go. To show this, consider the drawing formed by inserting a small break in each
segment of D having a switch. This eliminates all switches in the drawing, so by
Lemma 10, the modified drawing has no odd face polygons. Consider any face
polygon in the modified drawing; by Lemma 9 it must include an even number
of odd faces in the original drawing. Thus, the odd faces of D are connected in
groups of evenly many faces in the modified drawing, and within each such group
we can connect the odd faces in pairs by paths of breaks in the drawing, giving a
matching in Go with total weight at most equal to the number of switches in D.
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The number of vertices of the graph Go is O(q), where q is the number of odd
face polygons in D. We can construct Go in time O(qk) where k is the number of
crossings in D by using breadth-first search in the arrangement dual to D to find
the distances from each vertex to all other vertices. A minimum weight perfect
matching in a complete weighted graph with integer weights bounded by k can
be found in time O(q5/2 log3/2 k) using the algorithm of Gabow and Tarjan [5].
Therefore the time for this algorithm is O(qk + q5/2 log3/2 k). ��

3 Minimizing Tunnels

In this section we present three algorithms that solve MinMaxTunnels, Min-

MaxTunnelLength, and MaxMinTunnelDistance in the stacking model.
We also present algorithms for MinMaxTunnels and MaxMinTunnelDis-

tance in the weaving model. MinMaxTunnelLength is NP-hard in the weav-
ing model.

3.1 Stacking Model

In the stacking model, some edge e has to be bottommost. This immediately
gives the number of tunnels of e, the total length of tunnels of e, and the short-
est distance between two tunnels of e. The idea of the algorithm is to deter-
mine for each edge what its value would be if it were bottommost, and then
choose the edge that is best for the optimization to be bottommost (smallest
value for MinMaxTunnels and MinMaxTunnelLength, and largest value
for MaxMinTunnelDistance). The other m− 1 edges are stacked iteratively
above this edge. It is easy to see that such an approach indeed maximizes the
minimum, or minimizes the maximum. We next give an efficient implementation
of the approach. The idea is to maintain the values of all not yet selected edges
under consecutive selections of bottommost edges instead of recomputing it.

We start by computing the arrangement of edges in O(m logm+ k) expected
time, for instance using Mulmuley’s algorithm [7]. This allows us to determine
the value for all edges in O(k) additional time.

For MinMaxTunnels and MinMaxTunnelLength, we keep all edges in a
Fibonnacci heap on this value. One selection involves an extract-min, giving
an edge e, and traversing e in the arrangement to find all edges it crosses. For
these edges we update the value and perform a decrease-key operation on the
Fibonnacci heap. For MinMaxTunnels we decrease the value by one and for
MinMaxTunnelLength we decrease by the length of the crossing, which is
casingwidth/ sinα, where α is the angle the crossing edges make. For MinMax-

Tunnels and MinMaxTunnelLength this is all that we need. We perform m
extract-min and k decrease-key operations. The total traversal time along
the edges throughout the whole algorithm is O(k). Thus, the algorithm runs in
O(m logm + k) expected time.

For MaxMinTunnelDistance we use a Fibonnacci heap that allows ex-

tract-max and increase-key. For the selected edge we again traverse the
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arrangement to update the values of the crossing edges. However, we cannot
update the value of an edge in constant time for this optimization. We maintain
a data structure for each edge that maintains the minimum tunnel distance in
O(logm) time under updates. The structure is an augmented balanced binary
search tree that stores the edge parts in between consecutive crossings in its
leaves. Each leaf stores the distance between these crossings. Each internal node
is augmented such that it stores the minimum distance for the subtree in a vari-
able. The root stores the minimum distance of the edge if it were the bottommost
one of the remaining edges. An update involves merging two adjacent leaves of
the tree and computing the distance between two crossings. Augmentation al-
lows us to have the new minimum in the root of the tree in O(logm) time per
update. In total this takes O(m logm + k logm) expected time.

Theorem 2. Given a straight-line drawing of a graph with n vertices, m = Ω(n)
edges, and k edge crossings, we can solve MinMaxTunnels and MinMaxTun-

nelLength in O(m logm + k) expected time and MaxMinTunnelDistance

in O(m logm + k logm) expected time in the stacking model.

3.2 Weaving Model

In the weaving model, the polynomial time algorithm for MinMaxTunnels

comes from the fact that the problem of directing an undirected graph, and
minimizing the maximum indegree, can be solved in time quadratic in the num-
ber of edges [9]. We apply this on the edge crossing graph of the drawing, and
hence we get O(m4) time. For minimizing tunnel length per edge, we can show:

Theorem 3. MinMaxTunnelLength is NP-hard in the weaving model.

Proof. The reduction is from planar 3-sat, shown NP-hard by Lichtenstein [6].
The reduction is similar to the one for maximizing minimum visible perimeter
length in sets of opaque disks of unit size [1]. Note that the proof implies that
no PTAS exists. The reduction only uses edges that intersect two or three other
edges, so restricting the number of intersections per edge to be constant leaves
the problem NP-hard. Also, the number of orientations of edges is constant.

A cased drawing of a set of line segments has property (A) if every line segment
has at most two tunnels at crossings with a perpendicular segment, or one tunnel
at a crossing with a non-perpendicular segment. Our reduction is such that a
planar 3-sat instance is satisfiable if and only if a set of line segments has a
cased drawing with property (A).

We arrange a set of line segments of equal length, using only four orientations.
The slopes are −4, − 1

4 , + 1
4 , and +4. If two perpendicular line segments cross,

then one has tunnel length equal to the width w of the casing at the crossing.
If two other line segments cross, then one edge has tunnel length w/ sin(γ) =
2, 125 ·w at the crossing, where γ = 2 ·arctan(1

4 ) is the (acute) angle between the
line segments. Therefore, a cased drawing with property (A) has tunnel length
at most 2, 125 · w, whereas a cased drawing that does not satisfy property (A)
has an edge that has tunnel length at least 3 · w. This shows the direct relation
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between property (A) and MinMaxTunnelLength, and provides the gap that
shows that no PTAS exists.

A Boolean variable xi is modeled by a cycle of crossing line segments as
in Fig. 5. Along the cycle, crossings alternate between perpendicular and non-
perpendicular, and hence it has even length. The variable satisfies property (A)
iff the cycle has cyclic overlap, which can be clockwise or counterclockwise. One
state is associated with xi =true, the other is associated with xi = false. In
each state, the line segments of the cycle alternate in allowing an additional,
perpendicular line segment to have a bridge over the line segment of the cycle.
In the figure, where the cycle is in the true-state, the line segments with slope
+ 1

4 and +4 allow such an extra tunnel under a line segment that is not from
the cycle. If the cycle is in the false-state, the line segments with slope −4
and − 1

4 allow the extra tunnel. We use the line segments of slope − 1
4 to make

connections and channels to clauses where xi occurs, and the line segments with
slope + 1

4 for clauses where xi occurs. Note that the variable can be made larger
easily to allow more connections, in case the variable occurs in many clauses.

Channels are formed by line segments that do not cross perpendicularly. So
any line segment of the channel can have a tunnel at at most one of its two
crossings, or else property (A) is violated. Note that a sequence of crossing line
segments with slopes such as −4, +4, + 1

4 , −
1
4 gives a turn in the channel. The

exact position of the crossing is not essential and hence we can easily reach
any part of the plane with a channel, and ending with a line segment of any
orientation. A 3-sat clause is formed by a single line segment that is crossed
perpendicularly by three other line segments, see Fig. 6. Property (A) holds if
the clause line segment has at most two tunnels. This corresponds directly to
satisfiability of the clause.

Towards a clause where
the variable is used

Towards a
clause where
the negation
of the variable
is used

Variable
set to true

Towards a clause
where the negation
of the variable is used

Fig. 5. Boolean variable and the connection of channels
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From a variable that
makes the clause true

From variables
that do not make
the clause true

clause

Fig. 6. A clause construction

With this reduction, testing if property (A) holds is equivalent to testing if
the planar 3-sat instance is satisfiable, and NP-hardness follows. ��

In the remainder of this section we show how to solve MaxMinTunnelDis-

tance. We observe that there are polynomially many possible values for the
smallest tunnel distance, and perform a binary search on these, using 2-sat

instances as the decision tool.
We first compute the arrangement of the m edges to determine all crossings.

Only distances between two—not necessarily consecutive—crossings along any
edge can give the minimum tunnel distance. One edge crosses at most m−1 other
edges, and hence the number of candidate distances, K, is O(m3). Obviously,
K is also O(k2). From the arrangement of edges we can determine all of these
distances in O(m logm + K) time. We sort them in O(K logK) time to set up
a binary search. We will show that the decision step takes O(m +K) time, and
hence the whole algorithm takes O(m logm + K logK) = O((m + K) logm)
time.

Let δ be a value and we wish to decide if we can set the crossings of edges
such that all distances between two tunnels along any edge is at least δ. For
every two edges ei and ej that cross and i < j, we have a Boolean variable
xij . We associate xij with true if ei has a bridge at its crossing with ej , and
with false otherwise. Now we traverse the arrangement of edges and construct
a 2-sat formula. Let ei, ej , and eh be three edges such that the latter two cross
ei. If the distance between the crossings is less than δ, then ei should not have
the crossings with ej and eh as tunnels. Hence, we make a clause for the 2-sat

formula as follows (Fig. 7): if i < j and i < h, then the clause is (xij ∨ xih);
the other three cases (i > j and/or i > h) are similar. The conjunction of all
clauses gives a 2-sat formula that is satisfiable if and only if we can set the
crossings such that the minimum tunnel distance is at least δ. We can construct
the whole 2-sat instance in O(m+K) time since we have the arrangement, and
satisfiability of 2-sat can be determined in linear time [4].

Theorem 4. Given a straight-line drawing of a graph with n vertices and m =
Ω(n) edges, we can solve MaxMinTunnelDistance in O((m + K) logm) ex-
pected time in the weaving model, where K = O(m3) is the total number of pairs
of crossings on the same edge.
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δ

e1

e2

e3

e4

e5

Fig. 7. The 2-sat formula (x13 ∨ x23) ∧ (x23 ∨ x34) ∧ (x23 ∨ x35) ∧ (x34 ∨ x35)

4 Conclusions and Open Problems

We presented polynomial time algorithms or NP-hardness results for a number
of optimization problems that are motivated by cased drawings. Naturally, we
would like to establish the difficulty of the MinMaxSwitches problem. We
would also like to implement our algorithms to visually evaluate the quality of
the resulting drawings.
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How to Draw a Clustered Tree�
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Abstract. The visualization of clustered graphs is a classical algorith-
mic topic that has several practical applications and is attracting in-
creasing research interest. In this paper we deal with the visualization of
clustered trees, a problem that is somehow foundational with respect to
the one of visualizing a general clustered graph. We show many, in our
opinion, surprising results that put in evidence how drawing clustered
trees has many sharp differences with respect to drawing “plain” trees.
We study a wide class of drawing standards, giving both negative and
positive results. Namely, we show that there are clustered trees that do
not have any drawing in certain standards and others that require expo-
nential area. On the contrary, for many drawing conventions there are
efficient algorithms that allow to draw clustered trees with polynomial
asymptotic optimal area.

1 Introduction and Overview

The problem of drawing trees is a classical topic of investigation in algorithmics.
Contributions on that field span almost three decades, from the groundbreaking
work of Valiant [13] to the recent papers of Garg and Rusu that investigate how
to obtain optimal area drawings with prescribed aspect ratio [11]. Algorithms
for drawing trees have been proposed within many drawing conventions. To give
a few examples, upward drawings have been studied in [9], straight-line upward
drawings in [12,2], and straight-line orthogonal drawings in [3,1].

Despite such a large amount of investigation on algorithms for drawing trees
no contribution has been presented in the literature on how to draw clustered
trees. A clustered graph (c-graph) is a pair C = (G, T ), where G is a graph and
T is a rooted tree such that the leaves of T are the vertices of G. Graph G and
tree T are called underlying graph and inclusion tree, respectively. A clustered
tree (c-tree), is a c-graph whose underlying graph is a tree. Each internal node
ν of T corresponds to the subset V (ν) of the vertices of G (called cluster) that
are the leaves of the subtree rooted at ν. The subgraph of G induced by V (ν) is
denoted by G(ν), where ν is a cluster of T . If each cluster induces a connected
subgraph of G, then C is c-connected.

A drawing of a c-graph C = (G, T ) consists of a drawing of G and of a
representation of each node ν of T as a simple closed region R(ν) such that: (i)
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R(ν) contains the drawing of G(ν); (ii) R(ν) contains a region R(μ) iff μ is a
descendant of ν in T ; and (iii) the borders of any two regions don’t intersect.
Consider an edge e and a node ν of T . If e crosses the boundary of R(ν) more
than once, we say that e and R(ν) have an edge-region crossing. A drawing of a
c-graph is c-planar if it doesn’t have edge crossings or edge-region crossings and
a graph is c-planar if it has a c-planar drawing.

Many papers have been presented for constructing c-planar drawings within
many drawing conventions. Namely, in [7] it is shown how to construct O(n2)
area c-planar orthogonal drawings of c-graphs with max degree 4. Eades et al. [6]
present an algorithm for constructing c-planar straight-line (SL) drawings of c-
graphs, where clusters are drawn as convex regions. Such an algorithm requires,
in general, exponential area. However, in [8] it is shown that such a bound is
asymptotically optimal in the worst case.

In this paper we look for algorithms for constructing c-planar drawings of
c-trees in efficient area, by considering the most investigated drawing standards
for the underlying tree (see e.g. [1,2,9,10]). We deal both with c-connected and
non-c-connected c-trees and consider drawings in which the clusters are repre-
sented by rectangles (R-drawings), by convex polygons (C-drawings), and also
by eventually non-convex polygons (NC-drawings). In most cases we are able
to find asymptotically optimal area bounds. After preliminaries (Section 2), in
Section 3 we deal with c-connected c-trees and show that quadratic area is achiev-
able for many drawing styles, namely strictly upward order-preserving poly-line
R-drawings, strictly upward non-order-preserving SL R-drawings, and upward
orthogonal order-preserving R-drawings (if the underlying graph is a binary
tree). Such results are interesting to compare with the results in the above men-
tioned [8], where it is shown that for general c-connected c-graphs exponential
area can be needed. Furthermore, such bounds are asymptotically optimal in
the worst-case. On the other hand, we show that orthogonal SL R-drawings are
generally not realizable. In Section 4 we deal with non-c-connected c-trees: we
show that SL C-drawings generally require exponential area, and that poly-line
order-preserving drawings can be realized in optimal quadratic area. Moreover,
we show that upward drawings of non-c-connected c-trees aren’t generally feasi-
ble. In Section 5 we show that if the clusters can be represented by non-convex
regions, then polynomial area is achievable in many cases. Some proofs are omit-
ted, for space limitations. Details can be found in [4].

A summary of the results presented in this paper is given in Tables 1 and 2,
where “UB” and “LB” stand for Upper Bound and Lower Bound, respectively.
“Upward” means upward when referred to orthogonal drawings and means
strictly upward otherwise. If the straight-line column doesn’t have a “�”, then
the drawing is poly-line. Orthogonal drawings are referred to binary trees. An
“X” means that in general a drawing with the corresponding features does not
exist. Observe that an area upper bound obtained within a certain drawing
convention (say, upward straight-line) for R-drawings is also an upper bound
for C-drawings and for NC-drawings. On the contrary, a lower bound for NC-
drawings implies a lower bound for C-drawings and for R-drawings.
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Tables 1 and 2 are also a reference point for classifying open problems. They
correspond to question marks, to cells where upper and lower bounds do not
match, and to cells where a drawing is in general not feasible. Such latter cells
open the problem of recognizing the c-trees that have one. Among the open prob-
lems, we underline the one of determining the area requirement of SL (strictly
upward) order-preservingC-drawings of c-connected trees. In fact, an O(n2) area
bound on this problem would imply most of our positive results on c-connected
trees. Further, it is interesting in our opinion to state whether SL R-drawings
of non-c-connected c-trees always exist. As far as we know the same problem is
open also for c-connected c-graphs. About (upward) SL NC-drawings of non-
c-connected c-trees we conjecture that polynomial area is always achievable.
However, it is not clear which would be the appropriate bound.

Table 1. Summary of the results on minimum area drawings of c-connected c-trees

R-Drawings C-Drawings NC-Drawings
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UB ref. LB ref. UB ref. LB ref. UB ref. LB ref.

� � O(n2) Th. 2 Ω(n2) Le. 1 O(n2) Th. 2 Ω(n2) Le. 1 O(n2) Th. 2 Ω(n2) Le. 1

� � � ? - Ω(n2) Le. 1 ? - Ω(n2) Le. 1 O(n4) Th. 8 Ω(n2) Le. 1

� � O(n2) Th. 1 Ω(n2) Le. 1 O(n2) Th. 1 Ω(n2) Le. 1 O(n2) Th. 1 Ω(n2) Le. 1

� � � O(n2) Th. 3 Ω(n2) Le. 1 O(n2) Th. 3 Ω(n2) Le. 1 O(n2) Th. 3 Ω(n2) Le. 1

� � X Th. 4 ? - Ω(n2) Le. 1 O(n3 log n) Th. 9 Ω(n2) Le. 1

� � O(n2) [7] Ω(n2) Le. 1 O(n2) [7] Ω(n2) Le. 1 O(n2) [7] Ω(n2) Le. 1

Table 2. Summary of the results on min area drawings of non-c-connected c-trees

R-Drawings C-Drawings NC-Drawings

u
p
w

a
rd

st
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li
n
e

o
rd

e
re

d

o
rt

h
o
g
o
n
a
l

UB ref. LB ref. UB ref. LB ref. UB ref. LB ref.

� X Th. 5 X Th. 5 ? - Ω(n2) Le. 1

� ? - Ω(2n) Th. 6 O(2n) [6] Ω(2n) Th. 6 ? - Ω(n2) Le. 1

� � O(n2) [7] Ω(n2) Le. 1 O(n2) [7] Ω(n2) Le. 1 O(n2) [7] Ω(n2) Le. 1

� O(n2) Th. 7 Ω(n2) Le. 1 O(n2) Th. 7 Ω(n2) Le. 1 O(n2) Th. 7 Ω(n2) Le. 1

2 Preliminaries

A grid drawing of a graph is a mapping of each vertex v to a point (x(v), y(v))
in the plane, where x(v) and y(v) are integers, and of each edge to a Jordan
curve between the endpoints of the edge. A planar drawing is such that no
two edges intersect. A planar graph is a graph that admits a planar drawing.
A poly-line (PL) drawing is such that the edges are sequences of rectilinear
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segments. An orthogonal drawing is such that the edges are sequences of axis-
parallel rectilinear segments. A straight-line (SL) drawing is such that all edges
are rectilinear segments. The smallest rectangle with sides parallel to the axes
that covers a drawing completely is called bounding box of the drawing. The
height (width) of a drawing is one plus the height (resp. width) of its bounding
box. The area a drawing is the product of its height by its width. A rooted tree
is a tree with one distinguished node called root. A binary tree is a rooted tree
such that each node has at most 2 children. For an underlying tree G (for an
inclusion tree T ) the subtree of G (the subtree of T ) rooted at a vertex v is
denoted by G(v) (by T (v)). A drawing of a tree is upward (strictly upward) if
every node is placed not below (above) its children and each edge is represented
by a curve non-increasing (monotonically decreasing) in the vertical direction.
A drawing of a tree is order-preserving if the order of the edges incident on each
node is the same of one specified in advance.

We define the following drawing conventions for c-graphs. A polygon with
vertices having integer coordinates is a lattice polygon. A drawing of a c-tree C =
(G, T ) is an NC-drawing (Non-Convex -drawing) if it is c-planar, the vertices
of G and the bends on the edges of G (if any) have integer coordinates, and
the border of each cluster is a lattice polygon. An NC-drawing is a C-drawing
(Convex -drawing) if the border of each cluster is a convex lattice polygon. A
C-drawing is an R-drawing (Rectangle-drawing) if the border of each cluster is
an axis-parallel rectangle with corners having integer coordinates.

Lemma 1. There exist n-vertex c-trees requiring Ω(n2) area in any NC-drawing.

3 R-Drawings of C-Connected C-Trees

We show that quadratic area is sufficient (and necessary) to constructR-drawings
of c-connected c-trees in which the underlying tree is represented within several
drawing standards. Namely, we present an algorithm for constructing Θ(n2) area
strictly upward order-preserving PL R-drawings of n-vertex c-connected c-trees.
Then, we slightly modify such an algorithm to obtain different drawings.

Let C = (G, T ) be a c-connected c-tree and suppose G is rooted at any ver-
tex r. For each cluster of T we add dummy vertices and edges to G as follows.
Consider any arbitrary order of the clusters. For each cluster, vertices and edges
are added to the c-tree obtained from the augmentations performed when con-
sidering the previous clusters. For each cluster μ inducing a subtree G(μ) of G,
consider the root rμ of G(μ) and the parent pμ of rμ (if it exists) in G (see
Fig. 1.a). Split edge (pμ, rμ) by inserting a dummy vertex sμ into edges (pμ, sμ)
and (sμ, rμ). For the clusters μ such that the root of G(μ) is r, insert a dummy
vertex sμ and an edge (sμ, rμ). In any case, add also two dummy vertices c1μ and
c2μ as children of sμ and a dummy vertex c3μ as child of c2μ. The counter-clockwise
order of the children of sμ is c1μ, rμ, and c2μ (Fig. 1.b). Vertices sμ, c1μ, c

2
μ, and

c3μ belong to cluster μ. After having performed the described augmentation on
each cluster, we obtain a c-tree C′ = (G′, T ′). We call r′ the root of G′.
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Fig. 1. (a) Edge (rμ, pμ). (b) Dummy vertices and edges for μ. (c) Position of the
dummy vertices of μ. (d) Replacing dummy vertices with a rectangle representing μ.

We now construct a strictly upward drawing of G′. Denote by p(v) the parent
of v. First, assign an x-coordinate to each vertex in G′ with a depth-first traversal
of G′. Set x(r′) = 1. Then, suppose that the x-coordinate has been already
assigned to a vertex v. Let v1, v2, . . . , vm be the children of v in counter-clockwise
order. Set x(v1) = x(v); for each child vi of v, i = 2, . . . ,m, set x(vi) = 1 +
maxu∈G′(vi−1){x(u)}. Concerning the y-coordinates, we perform a traversal of
G′ with the following properties: When a vertex in V ′(μ) is encountered, every
vertex in V ′(μ) will be visited before each not yet visited vertex w /∈ V ′(μ).
Observe that this implies that when you are visiting μ and you encounter a
vertex that belongs to V ′(μ) and to V ′(ν), with ν descendant of μ in T ′, then
every vertex in V ′(ν) will be visited before each not yet visited vertex w ∈ V ′(μ)
such that w /∈ V ′(ν). Set y(r′) = 1. Let μr be the smallest cluster containing
r′. Now suppose that you are currently analyzing a cluster μ; if there is more
than one vertex in V ′(μ) that isn’t yet visited, then consider the first not yet
visited vertex v ∈ V ′(μ) that is encountered in a depth-first traversal of G′(μ); if
the smallest cluster ν containing v is the same cluster or is a descendant of the
smallest cluster containing p(v), then set y(v) = y(p(v)) − 1, otherwise set y(v)
equal to the minimum y-coordinate of a vertex in the biggest cluster containing
p(v) and not containing v minus one. In every case cluster ν will be the new
current cluster. If there is exactly one vertex in V ′(μ) that isn’t yet visited, then
such vertex is c3μ; set y(c3μ) equal to the minimum y-coordinate of a vertex in
V ′(μ) minus one. If all the vertices in V ′(μ) have been already visited, then let
the cluster parent of μ be the new current cluster.

For each cluster μ remove vertices sμ, c1μ, c2μ, and c3μ and their incident edges,
and insert a rectangle Rμ:[x(sμ), x(c3μ)]× [y(c3μ), y(sμ)] representing μ (Fig. 1.c-
d). Draw the edges of G: for each edge (p(v), v) in G, if y(v) < y(p(v) − 1),
then draw a polygonal line composed of two segments, the first between p(v)
and point (x(v), y(p(v)) − 1), and the second between point (x(v), y(p(v)) − 1)
and v. Otherwise (y(v) = y(p(v)) − 1) draw a SL segment between p(v) and v.

Theorem 1. For every n-vertex c-connected c-tree C = (G, T ) a Θ(n2) area
strictly upward order-preserving PL R-drawing can be constructed in O(n2) time.

The above described algorithm can be slightly modified in order to produce
R-drawings within different drawing conventions for the underlying tree.
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Fig. 2. (a) A c-planar drawing of C. (b) Regions Ai and Ai. (c) The edges connecting
ui to its children and the edges connecting uj to its children cross. (d) Ai is inside Aj .

Theorem 2. For every n-vertex c-connected c-tree C = (G, T ) a Θ(n2) area
strictly upward non-order-preserving SL R-drawing can be constructed in O(n2)
time.

Theorem 3. For every n-vertex c-connected binary c-tree a Θ(n2) area upward
orthogonal order-preserving R-drawing can be constructed in O(n2) time.

Contrasting with the above positive results, we prove Theorem 4, also contrasting
with the fact that each binary tree has an orthogonal SL drawing.

Theorem 4. There exists a c-connected c-planar binary c-tree that doesn’t ad-
mit any orthogonal SL R-drawing.

Proof. Consider the c-tree C = (G, T ) defined as follows: G is a complete rooted
binary tree with 31 vertices; all the non-leaf vertices of G belong to the same
cluster α that is the only non-root cluster, and all the leaves of G don’t belong
to α. It’s easy to see that C is c-planar (see Fig. 2.a).

Consider the rectangle A representing α in any orthogonal SL R-drawing Γ
of C. Let r be the root of G, let u1, . . . , u8 be the 8 vertices that are leaves in
G(α), and let v1, . . . , v4 be the corners of A. Consider any placement of r inside
A. The two edges connecting a vertex ui and its children divide A in two regions
Ai and Ai the first containing r and the second not. Since Γ is a SL orthogonal
drawing, then both Ai and Ai contain at least one corner vk (see Fig. 2.b). If two
regions Ai and Aj , with i 	= j, contain the same corner vk, then either the edges
connecting ui to its children and the edges connecting uj to its children cross (see
Fig. 2.c), or Ai (Aj) is enclosed inside Aj (resp. Ai), and so the path connecting
r and ui (resp. connecting r and uj) crosses one of the edges connecting uj and
its children (resp. connecting ui and its children) (see Fig. 2.d). Since (i) each
region Ai contains at least one corner vk of A, (ii) any two regions Ai and Aj ,
with i 	= j, cannot contain the same corner vk, and (iii) there are 4 corners vk
and 8 regions Ai, then Γ cannot be an orthogonal SL R-drawing of C. �

4 R-Drawings and C-Drawings of Non-C-Connected
C-Trees

We consider R-drawings and C-drawings of non-c-connected c-trees. Most of
the positive results presented for c-connected trees are not achievable for non-c-
connected trees, that seem to have the same area requirement of general c-graphs.
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Fig. 3. (a) A c-planar drawing of C; (b) p′ is outside β and r∗ is closer than p′ to p;
(c) p′ is inside β or r∗ is farther than p′ to p, and (r∗, b∗) has no intersection with h;
(d) p′ is inside β or r∗ is farther than p′ to p, and (r∗, b∗) has any intersection with h

Theorem 5. There exists a non-c-connected c-planar c-tree that doesn’t admit
any upward C-drawing.

Proof. Consider the c-tree C = (G, T ) defined as follows: G has root b1, that
has two children r1 and r2. Vertex r1 (vertex r2) has two children b2 and g1

(b3 and g2). Vertex b2 (vertex b3) has a child g3 (resp. g4). Vertices bi, with
i ∈ {1, 2, 3}, belong to cluster β, vertices ri, with i ∈ {1, 2} belong to cluster ρ,
and vertices gi, with i ∈ {1, 2, 3, 4} belong to cluster γ. The inclusion tree T has
root α that has three children β, ρ, and γ. It’s easy to see that C is c-planar (see
Fig. 3.a). Suppose that an upward C-drawing Γ of C exists. Let l be the line
through b1 and through the one of b2 and b3 that has minimum y-coordinate.
The upwardness of Γ implies that mini∈{2,3}(y(bi)) ≤ y(r1), y(r2) ≤ y(b1). It
follows that vertices r1 and r2 are both on the same of the half-planes induced
by l, since otherwise β would cross ρ. We claim that either there exists a vertex
ri, with i ∈ {1, 2}, that is enclosed inside a region R delimited by cluster β and
by edges (bj , rk), with j ∈ {1, 2, 3}, k ∈ {1, 2}, and k 	= i, or there exists a vertex
bi, with i ∈ {2, 3} that is enclosed inside a region R delimited by cluster ρ and
by edges (bj , rk), with j ∈ {1, 2, 3}, k ∈ {1, 2}, and j 	= i.

Consider the horizontal line h∗ through the one between r1 and r2 that has
greater y-coordinate. Consider any intersection point p between h∗ and β. Let r∗

(r) be the one between r1 and r2 that has greater (resp. smaller) y-coordinate.
If y(r1) = y(r2), then let r∗ (r) be the one between r1 and r2 that is closer (resp.
farther) to p. Let b∗ (b) be the only child of r∗ (r) in β. Consider any intersection
point p′ between h∗ and edge (b1, r). If p′ is outside β and r∗ is closer than p′ to
p, then by simple topologic arguments r∗ is closed inside the region R delimited
by cluster β, by edge (b1, r), and by edge (r, b) (Fig. 3.b). If p′ is inside β or if
r∗ is farther than p′ to p, let h be the horizontal line through r. If edge (r∗, b∗)
has no intersection with h, then we have that b∗ is closed inside the region R
delimited by cluster ρ, by edge (b1, r∗), and by edge (b1, r) (see Fig. 3.c). If
edge (r∗, b∗) has intersection with h, then vertex r is closed inside the region R
delimited by cluster β, by edge (b1, r∗), and by edge (r∗, b∗) (Fig. 3.d). Observe
that every vertex bi or rj , with i ∈ {2, 3} and j ∈ {1, 2}, has a child gk, with
k ∈ {1, 2, 3, 4}, belonging to cluster γ. Hence, the child gk of the vertex bi or
rj that is closed inside R must lie inside R, as well, since placing gk outside R
would imply an edge crossing or an edge-region crossing. Moreover, the child g′k
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Fig. 4. (a) Inductive construction of the c-tree Ck. (b) c-planar drawing of Ck.

of the vertex bi that has minimum y-coordinate among the vertices of cluster β
lies outside R, with k ∈ {3, 4} and i ∈ {2, 3}. It follows that γ crosses region R,
implying an edge-region crossing or a region-region crossing. �
Now we show that SL drawings of non-c-connected c-trees may require exponen-
tial area. Let Ck = (Gk, Tk) be the family of non-c-connected c-planar c-trees
described below (Fig. 4.a). G0 has vertices s0 and t0 and edge (s0, t0). T0 has
a root node with two children σ and τ . Node σ (node τ) has one child σ0 (τ0),
where s0 ∈ V (σ0) (t0 ∈ V (τ0)). G1 is obtained from G0 by adding vertices s1, t1,
s′′0 , and t′′0 and edges (s1, t0), (s1, s′′0), (t1, s0) and (t1, t′′0). T1 is obtained from T0

by adding σ1 to the children of σ and τ1 to the children of τ , where s′′0 ∈ V (σ0),
s1 ∈ V (σ1), t′′0 ∈ V (τ0), and t1 ∈ V (τ1). In general, Ck (k > 1) is defined as
follows. Gk is obtained from Gk−1 by adding vertices sk, tk, s′′k−1, t

′′
k−1, s

′
k−2,

and t′k−2, and edges (sk, tk−1), (sk, s′′k−1), (tk, sk−1), (tk, t′′k−1), (sk, t′k−2), and
(tk, s′k−2). Tk is obtained from Tk−1 by adding σk to the children of σ and τk
to the children of τ , where s′k−2 ∈ V (σk−2), s′′k−1 ∈ V (σk−1), sk ∈ V (σk),
t′k−2 ∈ V (τk−2), t′′k−1 ∈ V (τk−1), and tk ∈ V (τk). It is easy to see (Fig. 4.b) that
Ck is c-planar. Also, G(σ), G(τ), G(σi), and G(τi) (i = 0, . . . , k − 1) are not
connected. For simplifying the notation, in the following we assume k is odd.

Lemma 2. In any c-planar drawing of Ck we can find polygonal lines l(s0, s1)
connecting s0 to s1, l(t0, t1) connecting t0 to t1 and, for i = 2, . . . , k, l(si−1, si)
connecting si−1 to si, l(ti−1, ti) connecting ti−1 to ti, l(ti−2, si) connecting ti−2 to
si, and l(si−2, ti) connecting si−2 to ti such that those lines do not cross between
them, don’t cross any edge of Gk, and: (1) l(s0, s1) crosses only the border of σ0

and σ1; (2) l(t0, t1) crosses only the border of τ0 and τ1; (3) l(si−1, si) crosses
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Fig. 5. Graph G′
k. (a) Cycles c2i and (b) their interconnections.

only the border of σi−1 and σi; (4) l(ti−1, ti) crosses only the border of τi−1 and
τi; (5) l(ti−2, si) crosses only the border of τi−2, τ , σi, and σ; and (6) l(si−2, ti)
crosses only the border of σi−2, σ, τi, and τ .

To study the c-planar drawings of Ck we study those of c-graphs C′
k = (G′

k, T
′
k).

See [8]. Roughly, the vertices of G′
k are the vertices of Gk but for those vertices

with apex “prime” or “double prime”. The edges are those induced by such
vertices plus the edges corresponding to the polygonal lines of Lemma 2.

More formally, graph G′
k is defined as follows (Fig. 5). Let c2i (i = 0, . . . , k−1

2 )
be the cycle composed by (s2i, s2i+1), (t2i, t2i+1), (s2i, t2i+1), and (s2i+1, t2i).
Each c2i is connected to c2i+2 by (s2i, t2i+2), (t2i, s2i+2), (s2i+1, t2i+2),
(t2i+1, s2i+2), (s2i+1, s2i+2), (t2i+1, t2i+2), (s2i+1, t2i+3), and (t2i+1, s2i+3). The
graph resulting from the connection of all the c2i is G′

k. The inclusion tree T ′
k

is the subtree of Tk restricted to the vertices of G′
k. Since a c-planar drawing of

C′
k can be obtained from a c-planar drawing of Ck by inserting the polygonal

lines of Lemma 2, and by removing the vertices with apex “prime” or “double
prime” and their incident edges, then C′

k is c-planar. Also, it is easy to see that
G′
k is triconnected.
Since G′

k is triconnected the embeddings G′
k differ only in the external face.

Consider any face f of G′
k as external. Three cases are possible: (i) f = c0;

(ii) f = ck−1; (iii) c2h and c2h+2 are the cycles that contain the vertices of f .
Selecting f as external face induces a nesting of the cycles c2i of G′

k. In case (i)
c2i+2 is contained into c2i (i = 0, . . . , k−1

2 ). In case (ii) c2i is contained into c2i+2

(i = 0, . . . , k−1
2 ). In case (iii) c2i is contained into c2i+2 for i = 0, . . . , h and c2i+2

is contained into c2i for i = h + 1, . . . , k−1
2 . In all cases there is a nesting of the

cycles with depth greater or equal than (k− 1)/4. Consider only such a nesting.
Also, for sake of simplicity, renumber the vertices of G′

k (and of Gk) according
to such a nesting. Namely, call c0 the most nested cycle, s0, t0, s1, and t1 its
vertices. Call c2 the cycle surrounding c0 etc. Denote the external cycle by c2d.

The following lemma generalizes Theorem 4 of [8]. In [8] the drawings of C′
k

are studied where all the edges are straight-lines, while in the following lemma
only the edges of G′

k that are also edges of Gk are required to be straight.
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Lemma 3. Any c-planar drawing of C′
k where the edges of Gk are SL segments

and the clusters are convex polygons requires Ω(bn) area, with b > 1.

Proof. Let Γ ′
2i be any c-planar drawing of the subgraph of C′

k embedded in-
side c2i, including such a cycle. We remind that c2i consists of edges (s2i, s2i+1),
(t2i, t2i+1), (s2i, t2i+1), and (t2i, s2i+1), 0 ≤ i ≤ d. Edges (s2i, t2i+1) and
(t2i, s2i+1) are straight-lines. Because of the convexity of σ and τ there exists a
line l separating s-vertices from t-vertices. Suppose w.l.o.g. that l is horizontal
and that s-vertices are above t-vertices. We argue that the area of Γ ′

2i+2 is at
least twice the one of Γ ′

2i, 0 ≤ i ≤ d − 1, even if they differ only in 6 vertices.
The thesis follows from this argument. First, we show that y(sj) < y(sj+1),
0 ≤ j ≤ 2d − 2. Suppose y(sj) ≥ y(sj+1). Consider any placement of tj+2 and
any drawing of its incident edges. It is easy to see that sj+2 is forced inside a
face that is internal to the cycle composed by (sj+1, tj), (tj+1, tj), (tj+1, tj+2),
and (tj+2, sj+1). Hence, if j is even (if j is odd) cj+2 cannot be external to cj
(resp. cj+1 cannot be external to cj−1), contradicting the assumption to draw
c2i+2 externally with respect to c2i. Analogously, we have that y(tj) > y(tj+1),
0 ≤ j ≤ 2d − 2. Since it has to be connected to vertex s2i+1 with a SL seg-
ment, vertex t2i+2 can lie in three possible regions. (A) the half-plane cut by
(t2i, s2i+1) and not including s2i, (B) the half-plane cut by (s2i, s2i+1), not in-
cluding t2i and above the horizontal line through t2i+1, and (C) the half-plane
cut by (s2i, s2i+1), not including t2i and below the horizontal line through t2i+1.
Region (A) is discarded because placing t2i+2 in such a region has the effect
of forcing s2i+2 inside a face that is internal to the cycle composed by edges
(s2i+1, t2i), (t2i+1, t2i), (t2i+1, t2i+2), and (t2i+2, s2i+1). This contradicts the as-
sumption to draw cycle c2i+2 externally with respect to cycle c2i. Placing t2i+2

inside Region (B) implies that y(t2i+2) ≤ y(t2i+1), hence such a region is also
discarded. Hence, we have that Region (C) is the only possible placement of
t2i+2. This implies the duplication of the area, as it can be shown with the same
technique applied in [5]. �

Lemma 4. If it exists a SL C-drawing of Ck with area a, then it exists a c-
planar drawing of C′

k such that the edges of Gk are SL segments, the clusters
are represented by convex polygons, and the area is less or equal than a.

Proof. Consider any C-drawing of Ck with area a. It can be augmented without
increasing the area with the polygonal lines of Lemma 2, still remaining c-planar.
The vertices that are not of G′

k and their incident edges can be removed obtaining
a c-planar drawing of C′

k with area less or equal than a. �
From the above lemmas we have:

Theorem 6. There exist n-vertex non-c-connected c-planar c-trees requiring
Ω(bn) area in any SL C-drawing, with b > 1.

The above lower bound can be matched by an exponential upper bound. Namely,
one can augment the non-c-connected c-planar c-tree in a c-connected c-planar
c-graph, that admits an exponential area C-drawing, by the results in [6]. If we
relax the SL constraints, then better results can be obtained:
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Theorem 7. There exists an algorithm for computing a Θ(n2) area order-
preserving 2-bends PL R-drawing of every non-c-connected c-planar c-tree.

Proof. The proof is based on the results in [7] that show how to construct a
Θ(n2) area visibility representation of a c-graph; such a representation can be
easily turned in an order-preserving 2-bends PL R-drawing. �

5 NC-Drawings of C-Trees

We show that polynomial area is sufficient for strictly upward order-preserving
SL NC-drawings of c-connected c-trees. Note that in the same drawing conven-
tion, if R- and C-drawings require polynomial or exponential area is open.

We show an inductive algorithm to construct a strictly upward order-
preserving SL NC-drawing of a c-connected c-tree C = (G, T ). Let r be the root
of G and let G(r1), G(r2), . . ., G(rk) be the subtrees of G rooted at the children
r1, r2, . . ., rk of r. Suppose that, for each Ci = (G(ri), Ti), (1 ≤ i ≤ k), where
Ti is the subtree of T induced by the clusters that contain at least one vertex of
G(ri), it can be constructed a strictly upward NC-drawing Γi. Suppose also that
each cluster μ in Ti is represented by a polygonal line composed by four parts: an
horizontal segment T (μ) delimiting the top side of the cluster and lying on the
line y = yT (μ), two vertical segments L(μ) and R(μ) delimiting the left and right
sides of the cluster and lying on the lines x = xL(μ) and x = xR(μ), respectively,
and one polygonal line B(μ) monotonically increasing in the x-direction delim-
iting the bottom side of the cluster. Notice that the above inductive hypothesis
is easily verified in the base case. Namely, if G(ri) has only one vertex v, it is
drawn on a grid point. The clusters containing v are drawn as squares enclosing
each other. Now, suppose to have a drawing Γi of each Ci. For each i such that
1 ≤ i ≤ k, consider the set Vi of vertices of G(ri) and the set Si of clusters
belonging to Ti that don’t contain r. Let xL(Γi) = minv∈Vi,μ∈Si{x(v), xL(μ)},
xR(Γi) = maxv∈Vi,μ∈Si{x(v), xR(μ)}, and yT (Γi) = maxμ∈Si{y(ri), yT (μ)}. For
each i such that 1 ≤ i ≤ k, remove the part of Γi that is inside one of the
three half-planes x < xL(Γi), x > xR(Γi), and y > yT (Γi). This gives us partial
drawings Γ ′

i of all the Ci’s, where the notations xL(Γ ), xR(Γ ), and yT (Γ ) are
extended to xL(Γ ′), xR(Γ ′), and yT (Γ ′), respectively, in the obvious way. Place
the Γ ′

i ’s one beside the other, with xL(Γ ′
i+1) = xR(Γ ′

i ) + 1, and so that all the
ri’s lie on the same horizontal line h. Place r 2n2 units above and on the same
vertical line of r1. Draw SL edges between r and its children. Consider the clus-
ters μ1, μ2, . . . , μl containing r ordered so that μj is a sub-cluster of μj+1, for
1 ≤ j < l. For each μj , draw T (μj) as an horizontal segment between points
(xL(Γ ′

1) − j, y(r) + j) and (xR(Γ ′
k) + j, y(r) + j); draw L(μj) as a vertical seg-

ment between points (xL(Γ ′
1)− j, y(r) + j) and (xL(Γ ′

1)− j, yT (Γ ′
1) + l− j + 1);

draw R(μj) as a vertical segment between endpoints (xR(Γ ′
k) + j, y(r) + j) and

(xR(Γ ′
k) + j, yT (Γ ′

k) + l − j + 1). Now we draw each B(μj). For each Γ ′
i and

each μj such that Ti doesn’t contain μj , with 1 ≤ i ≤ k and 1 ≤ j ≤ l,
draw an horizontal segment between points (xL(Γ ′

i ), yT (Γ ′
i ) + l − j + 1) and
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(xR(Γ ′
i ), yT (Γ ′

i ) + l − j + 1). Notice that now for each Γ ′
i and each μj the part

B(Γ ′
i , μj) of B(μj) between x-coordinates xL(Γ ′

i ) and xR(Γ ′
i ) has been drawn.

For each pair (Γ ′
i , Γ

′
i+1) and each μj , with 1 ≤ i < k and 1 ≤ j ≤ l, con-

nect B(Γ ′
i , μj) and B(Γ ′

i+1, μj) by a segment between the rightmost point of
B(Γ ′

i , μj) and the leftmost point of B(Γ ′
i+1, μj). Close the polygon representing

μj with a segment between (xL(Γ ′
1) − j, yT (Γ ′

1) + l − j + 1) and the leftmost
point of B(Γ ′

1, μj) and a segment between (xR(Γ ′
k) + j, yT (Γ ′

k) + l − j + 1) and
the rightmost point of B(Γ ′

k, μj). It’s easy to see that in the obtained drawing Γ
each cluster is drawn as a polygon with the properties described in the inductive
hypothesis of the construction. Hence we obtain:

Theorem 8. For every c-connected c-tree there exists a strictly upward order-
preserving SL NC-drawing in O(n4) area.

Theorem 9. For every c-connected binary c-tree C = (G, T ) there exists a SL
orthogonal upward NC-drawing with O(n3 logn) area.

Proof. We construct an hv-drawing [3] of G with O(n) height and O(log n)
width, with the algorithm in [3]. Then, for each cluster μ we augment the grid
inserting O(n) horizontal lines and O(log n) vertical lines. Such lines are used to
insert new tracks between vertices. Such tracks are exploited to route the edges
of the boundary of μ. Since we have O(n) clusters the thesis follows. �
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Abstract. Let G be a planar graph with n vertices whose vertex set is
partitioned into subsets V0, . . . , Vk−1 for a positive integer 1 ≤ k ≤ n and
let S be a set of n distinct points in the plane partitioned into subsets
S0, . . . , Sk−1 with |Vi| = |Si| (0 ≤ i ≤ k − 1). This paper studies the
problem of computing a crossing-free drawing of G such that each vertex
of Vi is mapped to a distinct point of Si. Lower and upper bounds on the
number of bends per edge are proved for any 3 ≤ k ≤ n. As a special case,
we improve the upper and lower bounds presented in a paper by Pach
and Wenger for k = n [Graphs and Combinatorics (2001), 17:717–728].

1 Introduction and Overview

Let G be a planar graph with n vertices whose vertex set is partitioned into
subsets V0, . . . , Vk−1 for some positive integer 1 ≤ k ≤ n and let S be a set of n
distinct points in the plane partitioned into subsets S0, . . . , Sk−1 with |Vi| = |Si|
(0 ≤ i ≤ k − 1). Each index i is a color, G is a k-colored planar graph, and S
is a k-colored set of points compatible with G. This paper studies the problem of
computing a k-colored point-set embedding of G on S, i.e. a crossing-free drawing
of G such that each vertex of Vi is mapped to a distinct point of Si.

Computing k-colored point-set embeddings of k-colored planar graphs has
applications in graph drawing, where the semantic constraints for the vertices
of a graph G define the placement that these vertices must have in a readable
visualization of G (see, e.g., [7]). For example, in the context of data base systems
design some particularly relevant entities of an ER schema may be required to be
drawn in the center and/or along the boundary of the diagram (see, e.g., [18]);
in social network analysis, a typical technique to visualize and navigate large
networks is to group the vertices into clusters and to draw the vertices of the
same cluster close to each other and relatively far from those of other clusters
(see, e.g., [6]). A natural way of modelling these types of semantic constraints
is to color a (sub)set of the vertices of the input graph and to specify a set of
locations having the same color for their placement in the drawing.

The problem of computing k-colored point-set embeddings of k-colored pla-
nar graphs has therefore attracted considerable interest in the graph drawing
� This work is partially supported by the MIUR Project “MAINSTREAM: Algorithms

for massive information structures and data streams”.

F. Dehne, J.-R. Sack, and N. Zeh (Eds.): WADS 2007, LNCS 4619, pp. 102–113, 2007.
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and computational geometry communities, where particular attention has been
devoted to the curve complexity of the computed drawings, i.e. the maximum
number of bends along each edge. Namely, reducing the number of bends along
the edges is a fundamental optimization goal when computing aesthetically pleas-
ing drawings of graphs (see, e.g., [7]). Before presenting our results, we briefly
review the literature on the subject. Since there is not a unified terminology, we
slightly rephrase some of the known results; in what follows, n denotes both the
number of vertices of a k-colored planar graph and the number of points of a
k-colored set of points compatible with the graph.

Kaufmann and Wiese [16] study the “mono-chromatic version” of the problem,
that is they focus on 1-colored point-set embeddings. Given a 1-colored planar
graph G (i.e. a planar graph G) and a (1-colored) set S of points in the plane
they show how to compute a 1-colored point-set embedding of G on S such that
the curve complexity is at most two, which is proved to be worst case optimal.
Further studies on 1-chromatic point-set embeddings can be found in [4,5,11];
these papers are devoted to characterizing which 1-colored planar graphs with n
vertices admit 1-colored point-set embeddings of curve complexity zero on any
set of n points and to presenting efficient algorithms for the computation of such
drawings.

2-colored point-set embeddings are studied in [10] where it is proved that sub-
classes of outerplanar graphs, including paths, cycles, caterpillars, and wreaths
all admit a 2-colored point-set embedding on any 2-colored set of points such
that the resulting drawing has constant curve complexity. It is also shown in [10]
that there exists a 3-connected 2-colored planar graph G and a 2-colored set
of points S such that every 2-colored point-set embedding of G on S has at
least one edge requiring Ω(n) bends. These results are extended in [8], where an
O(n log n)-time algorithm is described to compute a 2-colored point-set embed-
ding with constant curve complexity for every 2-colored outerplanar graph and
it is proved that for any positive integer h there exists a 3-colored outerplanar
graph G and a 3-colored set of points such that any 3-colored point-set embed-
ding of G on S has at least one edge having more than h bends. Characterizations
of families of 2-colored planar graphs which admit a 2-colored point-set embed-
ding having curve complexity zero on any compatible 2-colored set of points can
be found in [1,2,13,14,15].

Key references for the “n-chromatic version” of the problem are the works
by Halton [12] and by Pach and Wenger [17]. Halton [12] proves that an n-
colored planar graph always admits an n-colored point-set embedding on any
n-colored set of points; however, he does not address the problem of optimizing
the curve complexity of the computed drawing. About ten years later, Pach
and Wenger [17] re-visit the question and show that an n-colored planar graph
G always has an n-colored point-set embedding on any n-colored set of points
such that each edge of the drawing has at most 120n bends; they also give a
probabilistic argument to prove that, asymptotically, the upper bound on the
curve complexity is tight for a linear number of edges. More precisely, let G be
an n-colored planar graph with m independent edges and let S be a set of n
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points in convex position such that each point is colored at random with one of
n distinct colors. Pach and Wenger prove that, almost surely, at least m

20 edges
of G have at least m

403 bends on any n-colored point-set embedding of G on S.
The present paper describes a unified approach to the problem of computing

k-colored point-set embeddings for 3 ≤ k ≤ n. The research is motivated by the
following observations: (i) The literature has either focused on very few colors
or on the n colors case; in spite of the practical relevance of the problem, little
seems to be known about how to draw graphs where the vertices are grouped
into 3 ≤ k ≤ n clusters and there are semantic constraints for the placement of
these vertices. (ii) The Ω(n) lower bound on the curve complexity for 2-colored
point-set embeddings described in [10] implies that for any 2 ≤ k ≤ n there can
be k-colored point-set embeddings which require a linear number of bends per
edge. This could lead to the conclusion that in order to compute k-colored point-
set embeddings that are optimal in terms of curve complexity one can arbitrarily
n-color the input graph, consistently color the input set of points, and then use
the drawing algorithm by Pach and Wenger [17]. However, the lower bound
of [10] shows Ω(n) curve complexity for a constant number of edges, whereas the
drawing technique of Pach and Wenger gives rise to a linear number of edges each
having a linear number of bends. Hence, the total number of bends in a drawing
obtained by the technique of [17] is O(n2) and it is not known whether there are
small values of k for which o(n2) bends would always be possible. (iii) There is a
large gap between the multiplicative constant factors that define the upper and
the lower bound of the curve complexity of n-colored point-set embeddings [17].
Since the readability of a drawing of a graph is strongly affected by the number
of bends along the edges, it is natural to study whether there exists an algorithm
that guarantees curve complexity less than 120n. Our main results are as follows.

– A lower bound on the curve complexity of k-colored point-set embeddings
is presented which establishes that Ω(n2) bends may be necessary even for
small values of k. Namely, it is shown that for any k such that 3 ≤ k ≤ n
there exists a k-colored planar graph G and a k-colored set of points S
compatible with G such that any k-colored point-set embedding of G on S
has at least n6 − 1 edges each having at least n6 − 1 bends. This lower bound
generalizes and improves the one in [17] for k = n.

– An O(n2 logn)-time algorithm is described that receives as input a k-colored
planar graph G (3 ≤ k ≤ n), a k-colored set of points S compatible with
G, and computes a k-colored point-set embedding of G on S with curve
complexity at most 3n+2. This reduces by about forty times the previously
known upper bound for k = n [17].

– Motivated by the previously described lower bound, special colorings of the
input graph are studied which can guarantee a curve complexity that does
not depend on n. Namely, it is shown that if the k-colored planar graph G
has k − 1 vertices each having a distinct color and n− k + 1 vertices of the
same color, it is always possible to compute a k-colored point-set embedding
whose curve complexity is at most 9k − 1.

For proofs omitted in this abstract refer to the full version of this paper [3].
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2 Preliminaries

A drawing of a graph G is a geometric representation of G such that each vertex
is a distinct point of the Euclidean plane and each edge is a simple Jordan curve
connecting the points which represent its end-vertices. A drawing is planar if
any two edges can only share the points that represent common end-vertices. A
graph is planar if it admits a planar drawing.

Let G = (V,E) be a graph. A k-coloring of G is a partition {V0, V1, . . . , Vk−1}
of V where the integers 0, 1, . . . , k−1 are called colors. In the rest of this section
the index i is 0 ≤ i ≤ k− 1 if not differently specified. For each vertex v ∈ Vi we
denote by col(v) the color i of v. A graph G with a k-coloring is called a k-colored
graph. Let S be a set of distinct points in the plane. We always assume that the
points of S have distinct x-coordinates (this condition can always be satisfied
by means of a suitable rotation of the plane). For any point p ∈ S we denote by
x(p) and y(p) the x- and y-coordinates of p, respectively. A k-coloring of S is a
partition {S0, S1, . . . , Sk−1} of S. A set S of distinct points in the plane with a
k-coloring is called a k-colored set of points. For each point p ∈ Si col(p) denotes
the color i of p. A k-colored set of points S is compatible with a k-colored graph
G if |Vi| = |Si| for every i; if G is planar, we say that G has a k-colored point-set
embedding on S if there exists a planar drawing of G such that: (i) every vertex
v is mapped to a distinct point p of S with col(p) = col(v), (ii) each edge e of G
is drawn as a polyline λ; a point shared by any two consecutive segments of λ is
called a bend of e. The curve complexity of a drawing is the maximum number
of bends per edge. Throughout the paper n denotes the number of vertices of
graph and m the number of its edges.

3 Lower Bound on the Curve Complexity

A diamond graph is a 3-colored planar graph as the one depicted in Figure 1(a).
More formally, let n ≥ 12, let n′′ = (n mod 12) and let n′ = n − n′′ =
12h for some h > 0; a diamond graph Gn = (V,E) is defined as follows:
V = V0 ∪ V1 ∪ V2; V0 = {vi | 0 ≤ i ≤ n′

3 + �n′′

2 �}; V1 = {ui | 0 ≤ i ≤
n′

3 + �n′′

2 �}; V2 = {wi | 0 ≤ i ≤ n′

3 }; E = E0 ∪ E1 ∪ E2 ∪ E3 ∪ E4; E0 =
{(vi, vi+1) | 0 ≤ i ≤ n′

3 + �n′′

2 � − 1}; E1 = {(ui, ui+1) | 0 ≤ i ≤ n′

3 + �n′′

2 � − 1};
E2 = {(wi, wi+1), (wi+1, wi+2), (wi+2, wi+3), (wi+3, wi) | 0 ≤ i ≤ 4h − 1, i
mod 4 = 0}; E3 = {(wi+1, wi+4), (wi+3, wi+4), (wi+1, wi+6), (wi+3, wi+6) | 0 ≤
i ≤ 4h − 5, i mod 4 = 0}; E4 = {(w4h−1, vn′

3 +�n′′
2 	), (w4h−3, v0), (w0, u0),

(w2, un′
3 +
n′′

2 �)}.
Let S′ = S0 ∪ S1 be a 2-colored set of points all belonging to a horizontal

straight line �; S′ is a bi-colored sequence if |S0| = |S1| or |S0| = |S1|+1 and given
two points p and q of S′ such that there is no point r with x(p) < x(r) < x(q),
then col(p) 	= col(q). A 3-colored set of points with an alternating bi-colored
sequence is a 3-colored set of points S = S0 ∪ S1 ∪ S2 such that S′ = S0 ∪ S1 is
an alternating bi-colored sequence and no point of S2 is on �. A 3-colored set of
points with an alternating bi-colored sequence is shown in Figure 1(b).
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Fig. 1. (a) A diamond graph for h = 3. (b) A 3-colored set of points with an alternating
bi-colored sequence.

Let Gn (n ≥ 12) be the diamond graph with n vertices and let S be a 3-colored
set of points with an alternating bi-colored sequence and compatible with Gn.
Let Γn be a 3-colored point-set embedding of Gn on S. Let p0, p1, . . . , p8h+n′′−1

be the points of the bi-colored sequence of S ordered according to their x-
coordinates. Denote with zi the vertex of Gn which is mapped to pi. Notice
that zi and zi+1 are not adjacent in Γn because one of them belongs to V0 and
the other one belongs to V1 in Gn. Connect in Γn zi and zi+1 with a straight-line
segment (i = 0, . . . , 8h+n′′−2); the obtained path is called bi-colored path on Γn.

Lemma 1. Let Gn (n ≥ 12) be a diamond graph and let S be a 3-colored set
of points with an alternating bi-colored sequence such that S is compatible with
Gn. Let Γn be a 3-colored point-set embedding of Gn on S, let e be an edge of
Γn, and let Π be the bi-colored path on Γn. If Π crosses e b times, then e has at
least b− 1 bends.

Lemma 2. Let Gn (n ≥ 12) be a diamond graph and let S be a 3-colored set of
points with an alternating bi-colored sequence such that S is compatible with Gn.
Let Γn be a 3-colored point-set embedding of Gn on S and let Π be the bi-colored
path on Γn. Π crosses at least n

′

6 − 1 edges of Γn, where n′ = n− (n mod 12);
also, Π crosses each of these edges at least n

′

6 times.

Proof. For a planar drawing of Gn and a cycle C ∈ Gn we say that C separates
a subset V ′ ⊂ V from a subset V ′′ ⊂ V if all vertices of V ′ lie in the interior of
the region bounded by C and all vertices of V ′′ are in the exterior of this region.
In every planar drawing of Gn each of the h cycles defined by the edges in the
set E2 separates all vertices in V0 from all vertices in V1. Thus, every edge of Π
must cross these h cycles. Analogously, in every planar drawing of Gn, each of
the h − 1 cycles defined by the edges in the set E3 separates all vertices in V0

from all vertices in V1. Therefore, every edge of Π must also cross these h − 1
cycles. The number of edges in Π is 2n′

3 +n′′−1, where n′′ = n−n′ = n mod 12,
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and hence each cycle is crossed 2n′

3 + n′′ − 1 times. Since each cycle has four
edges, we have that at least 2h− 1 = n′

6 − 1 edges (one per cycle) are crossed at
least �n′

6 + n′′

4 − 1
4� ≥ � 12h

6 − 1
4� = �2h− 1

4� = 2h = n′

6 times. ��

Theorem 1. For every n ≥ 12 and for every 3 ≤ k ≤ n there exists a k-colored
planar graph G with n vertices and a k-colored set of points S compatible with G
such that any k-colored point-set embedding of G on S has at least n

′

6 − 1 edges
each having at least n

′

6 − 1 bends, where n′ = n− (n mod 12).

We conclude this section comparing the result of Theorem 1 with the known
lower bound for k = n [17]. Let G be an n-colored graph with m independent
edges and let S be a set of n points in convex position such that each point is
colored at random with one of n distinct colors. In [17] it is proved that, almost
surely, at least m

20 edges of G have at least m
403 bends on any possible n-colored

point-set embedding of G on S. A comparison with the result in Theorem 1 can
be easily done by observing that the maximum number of independent edges in
a graph with n vertices is at most n/2.

4 Upper Bound on the Curve Complexity

Theorem 1 shows that in terms of curve complexity the problem of computing
a k-colored point-set embedding for any k ≥ 3 is as difficult as computing an
n-colored point-set embedding. Therefore, a drawing algorithm that is asymptot-
ically optimal in terms of curve complexity for all values of k such that 1 ≤ k ≤ n
could be designed as follows: (1) Randomly assign each vertex of color i of the
input graph to a distinct point of color i of the input set of points. (2) Apply
the drawing algorithm of Pach and Wenger [17], which constructs an n-colored
point-set embedding whose curve complexity is at most 120n. However, since
optimizing the number of bends per edge is an important requirement that guar-
antees the readability of a drawing of a graph [7], we present in this section a new
approach to the computation of n-colored point-set embeddings which reduces
the maximum number of bends per edge from at most 120n to at most 3n + 2.

The key idea is to translate the geometric problem into an equivalent topo-
logical problem, namely that of suitably augmenting a planar graph by adding
dummy edges that do not cross the real edges too many times. The main ingre-
dients for this approach are: (i) The notion of augmenting k-colored Hamiltonian
path for a k-colored planar graph G. (ii) A theorem that proves that the number
of crossings between the edges of an augmenting k-colored Hamiltonian path
and the edges of a k-colored planar graph give an upper bound on the curve
complexity of a k-colored point-set embedding of G. (iii) An augmentation algo-
rithm that, for any linear ordering of the vertices of G, computes an augmenting
k-colored Hamiltonian path which visits the vertices according to this ordering
and that crosses each edge of G at most 3n− 1 times.

A k-colored sequence σ is a linear sequence of (possibly repeated) colors c0, c1,
. . . , cn−1 such that 0 ≤ cj ≤ k − 1 (0 ≤ j ≤ n− 1). We say that σ is compatible
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with a k-colored graph G if, for every 0 ≤ i ≤ k − 1, color i occurs |Vi| times in
σ. Let S be a k-colored set of points and let p0, p1, . . . , pn−1 be the points of S
ordered according to their x-coordinates. We say that S induces the k-colored
sequence σ = col(p0), col(p1), . . . , col(pn−1).

A graph G has a Hamiltonian path if it has a simple path that contains all
the vertices of G. If G is a k-colored graph and σ = c0, c1, . . . , cn−1 is a k-colored
sequence compatible with G, a k-colored Hamiltonian path of G consistent with
σ is a Hamiltonian path v0, v1, . . . , vn−1 such that col(vi) = ci (0 ≤ i ≤ n− 1).
Suppose that G is a k-colored planar graph and that G does not have a k-colored
Hamiltonian path consistent with σ. One can augment G to a (not necessarily
planar) k-colored graph G′ by adding to G a suitable number of dummy edges
and such that G′ has a k-colored Hamiltonian path H′ consistent with σ and
that includes all dummy edges.

If G′ is not planar, we can apply a planarization algorithm (see, e.g., [7]) to
G′ with the constraint that only crossings between dummy edges and edges of
G − H′ are allowed. Such a planarization algorithm constructs an embedded
planar graph G′′ where each edge crossing is replaced with a dummy vertex,
called division vertex. By this procedure an edge e ofH′ can be transformed into a
path whose internal vertices are division vertices. The subdivision of H′ obtained
this way is called an augmenting k-colored Hamiltonian path of G consistent with
σ and is denoted as H′′. If every edge e of G is crossed at most d times in G′ (i.e.
e is split by at most d division vertices in G′′), H′′ is said to be an augmenting k-
colored Hamiltonian path of G consistent with σ and inducing at most d division
vertices per edge. If G′ is planar, then H′′ coincides with H′. If both end-vertices
of H′′ are on the external face of the augmented Hamiltonian form of G, then
H′′ is said to be external.

Let vd be a division vertex for an edge e of G. Since a division vertex corre-
sponds to a crossing between e and an edge of H′, there are four edges incident
on vd in G′′; two of them are dummy edges that belong to H′′, the other two
are two “pieces” of edge e obtained by splitting e with vd. Let (u, vd) and (v, vd)
be the latter two edges. We say that vd is a flat division vertex if it is encoun-
tered after u and before v while walking along H′′; vd is a pointy division vertex
otherwise. The following theorem refines and improves a result presented in [8].

Theorem 2. Let G be a k-colored planar graph, let σ be a k-colored sequence
compatible with G, and let H be an augmenting k-colored Hamiltonian path of
G consistent with σ having at most df flat and dp pointy division vertices per
edge. If H is external then G admits a k-colored point-set embedding on any set
of points that induces σ such that the maximum number of bends along each edge
is df + 2dp + 1.

Based on Theorem 2, we show our upper bound by proving that for any n-
colored sequence σ an n-colored planar graph G always admits an augmenting
k-colored Hamiltonian path of G consistent with σ such that df ≤ 3n − 3 and
dp ≤ 2, which implies a curve complexity of 3n + 2. The algorithm to compute
an augmenting k-colored Hamiltonian path of G consistent with σ relies on a
morphing technique that starts with a special type of planar drawing where all
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vertices are aligned and transforms it into a drawing with aligned vertices that
respects the given linear ordering.

Let G = (V,E) be a planar graph. A topological book embedding of G is a
planar drawing such that all vertices of G are represented as points of a horizontal
straight line � called spine and each edge intersects the spine a finite number
of times. The straight line � defines two half-planes one above and one below �
which are called the top page and the bottom page, respectively. In a topological
book embedding each edge can be either completely contained in the top page,
or completely contained in the bottom page, or can cross the spine. A crossing
between an edge and the spine is called a spine crossing. In order to simplify
the description of our results, we assume that a topological book embedding is
such that every edge is a sequence of circular arcs; each circular arc of an edge
e is called an arc of e. It is also assumed that if an edge e crosses the spine at a
point p, the two arcs of e sharing p belong to opposite pages.

A monotone topological book embedding is a topological book embedding such
that each edge crosses the spine at most once. Also, let e = (u, v) be an edge
of a monotone topological book embedding that crosses the spine at a point p;
e is such that if u precedes v in the left-to-right order along the spine then p is
between u and v, the arc with endpoints u and p is in the bottom page, and the
arc with endpoints u and v is in the top page.

Theorem 3. [9] Every planar graph admits a monotone topological book em-
bedding. Also, a monotone topological book embedding can be computed in O(n)
time, where n is the number of the vertices in the graph.

Given a monotone topological book embedding Γ of a planar graph G, we trans-
form Γ into a new topological book embedding Γ ′ such that the linear ordering
of the vertices along the spine coincides with an arbitrary given linear ordering λ
of the vertices of G. Every vertex v of G has a source position s(v) defined by the
point representing v in Γ and a target position t(v) in Γ ′ defined by the point
representing v in Γ ′. The linear ordering of the target positions of the vertices of
G in Γ ′ coincides with λ. The transformation from Γ to Γ ′ moves each vertex of
G from its source to its target position by processing the vertices in Γ from left
to right. The trajectory of vertex v is the straight-line segment s(v)t(v). When
v is moved to its target position the shape of those edges that are incident to v
and of those edges that are intersected by the trajectory of v is changed in order
to guarantee the planarity of the drawing.

To better explain the various steps of this morphing technique from Γ to Γ ′,
we introduce the notion of 2-spine drawing of a planar graph G which generalizes
the definition of topological book embedding. A 2-spine drawing Γ ∗ of G is a
planar drawing such that each vertex is represented as a point of one among
two parallel horizontal lines called spines of Γ ∗. Each edge e = (u, v) of G can
have both end-vertices represented in Γ ∗ as points both in the same spine or in
different spines. If both u and v are in the same spine, edge e is drawn in Γ ∗ as
a sequence of arcs; if u is in the upper spine and v is in the lower spine, then
when going from u to v along e in Γ ∗ we find a (possibly empty) sequence of
arcs whose endpoints are in the upper spine, a straight-line segment between the
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two spines, and a (possibly empty) sequence of arcs whose endpoints are in the
lower spine. A sequence of arcs of an edge e whose endpoints are in the upper
(respectively, lower) spine is called an upper sequence of e (respectively, a lower
sequence of e). The straight-line segment of an edge e between the two spines
is called the inter-spine segment of e. Note that a 2-spine drawing such that all
vertices are points of one of the spines is a topological book embedding.

Lemma 3. Let G be a planar graph and let λ be a given linear ordering of the
vertices of G. G admits a topological book embedding such that the left-to-right
order of the vertices along the spine is λ.

Sketch of Proof. Based on Theorem 3, G has a monotone topological book em-
bedding that we call Γ . Let � be the spine of Γ and let v0, . . . , vn−1 be the
vertices of G in the left-to-right order they have along �. Let �′ be a horizontal
line below �. For each vertex v of G we define a target position on �′ such that
the left-to-right order of these target positions corresponds to λ.

We process each vertex of Γ in the left-to-right order along �. At each step
a vertex is moved to its target position on �′ and a 2-spine drawing with spines
� and �′ of G is computed. Indeed, in order to compute a topological book
embedding Γ ′ of G such that Γ ′ satisfies the statement, we compute a sequence
Γ0, . . . , Γn of 2-spine drawings with spines � and �′ such that Γ0 coincides with
Γ and Γn coincides with Γ ′. At Step i (0 ≤ i ≤ n− 1) the 2-spine drawing Γi is
transformed into Γi+1 by moving vi to its target position on �′ and by changing
the shape of the edges accordingly.

When vertex vi is moved to its target position, we maintain the planar em-
bedding and only change the shape of the edges incident on vi and the shape of
any edge that is intersected by the trajectory of vi. In the remainder, we assume
that the target positions along �′ are such that a trajectory of a vertex intersects
an arc with end-points p and q only if one of the end-points of the trajectory
is in the closed interval defined by p and q. (This assumption can be satisfied
by suitably choosing the radii of the arcs of the edges and the distance between
spines � and �′.)

Transformation of the shape of the edges intersected by the trajectory
of vi: The trajectory τ of vi can intersect both inter-spine segments of some
edges or arcs belonging to the the lower sequence of some edges. Notice that if τ
intersects both inter-spine segments and arcs, then the inter-spine segments are
encountered before the arcs when going from s(vi) to t(vi); see also Figure 2. Let
s0, s1, . . . , sh−1 be the segments crossed by τ in the order they are encountered
when going from s(vi) to t(vi) along τ ; denote by xj the endpoint of sj that
is on � and by x′j the endpoint of sj that is on �′ (0 ≤ j ≤ h − 1). Two cases
are possible: Case a: x′j is to the left of x′j+1 along �′, and therefore xj is to
the left of xj+1 along � (see Figure 2(a)); Case b: x′j is to the right of x′j+1

along �′, and therefore xj is to the right of xj+1 along � (see Figure 2(b)). Let
c0, c1, . . . , cl−1 be the arcs crossed by τ in the order they are encountered going
from s(vi) to t(vi) along τ ; denote by yj and zj the endpoints of cj, with yj to
the left of zj (0 ≤ j ≤ l− 1). Notice that yj is to the left of yj+1 and zj is to the
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Fig. 2. Transformation of the shape of the edges intersected by the trajectory of vi

right of zj+1. Refer to Figures 2(c) and 2(d). Let t′ and t′′ be two points of �′

such that t′, t(vi) and t′′ appear in this left-to-right order along �′ and no vertex
or spine crossing is between t′ and t(vi) and between t(vi) and t′′ on �′. Choose
h+ l points p0, p1, . . . , ph−1, ph, . . . , ph+l−1 such that each pj (0 ≤ j ≤ h+ l− 1)
is between t′ and t(vi) on �′ and pj is to the right of pj+1 on �′. Choose h + l
points q0, q1, . . . , qh−1, qh, . . . , qh+l−1 such that each qj (0 ≤ j ≤ h + l − 1) is
between t(vi) and t′′ on �′ and qj is to the left of qj+1 on �′. If Case a holds
(see Figures 2(c)), replace each segment sj = xjx′j (0 ≤ j ≤ h − 1) with: (i)
an arc with endpoints x′j and pj ; (ii) an arc with endpoints pj and qj ; (iii) a
straight-line segment qjxj . If Case b holds (see Figures 2(d)), replace each
segment sj = xjx′j (0 ≤ j ≤ h − 1) with: (i) an arc with endpoints x′j and qj ;
(ii) an arc with endpoints qj and pj ; (iii) a straight-line segment pjxj . Replace
each arc cj (0 ≤ j ≤ l − 1) whose endpoints are yj and zj with: (i) an arc with
endpoints yj and ph+j ; (ii) an arc with endpoints ph+j and qh+j ; (ii) an arc with
endpoints qh+j and zj.
Transformation of the shape of the edges incident on vi: We partition
the edges incident on vi into four sets. The set Et,l (respectively, Eb,l) contains
the edges e = (vj , vi) such that j < i and the arc of e incident on vi is in the top
(respectively, bottom) page of Γ . Analogously we can define sets Et,r and Eb,r
for the edges (vi, vj) with i < j.

Let e = (vj , vi) be an edge of Et,l or Eb,l. When we move vi, vj has already
been moved to �′ (because j < i) and therefore when going from vj to vi along e
in Γi we find the (possibly empty) lower sequence σl of e, the inter-spine segment
se of e, and the (possibly empty) upper sequence σu of e. Let x′ be the endpoint
of se on �′. Replace se and σu with an arc whose endpoints are x′ and t(vi).
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Let e = (vi, vj) be an edge of Eb,r. Edge e is represented in Γi as an arc ce
with endpoints s(vi) and s(vj). Arc ce is replaced by the straight-line segment
t(vi)s(vj); see also Figure 3.

Let ej = (vi, vij ) (0 ≤ j ≤ h − 1) be the edges of Et,r with ij < ij+1

(0 ≤ j < h − 1). Let s′ be a point on � such that s′ is to the right of s(vi)
and no vertex or spine crossing is between s(vi) and s′ on �. Choose h points
p0, p1, . . . , ph−1 such that each pj (0 ≤ j ≤ h − 1) is between s(vi) and s′ on
� and pj is to the left of pj+1 along � (0 ≤ j < h − 1). Edge ej is represented
in Γi as an arc cej with endpoints s(vi) and s(vij )(0 ≤ j ≤ h − 1). Arc cej is
replaced by the segment t(vi)pj and the arc with endpoints pj and s(vij ); see
also Figure 3.
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Fig. 3. Transformation of the shape of the edges incident on vi

After n steps have been executed, and hence all vertices have been moved to
their target positions, we obtain a drawing Γn where all vertices are aligned and
have a left-to-right order coincident with λ. It can be proved that the drawing
Γi+1 obtained after the execution of Step i is a 2-spine drawing of G. It follows
that Γn is a 2-spine drawing (and hence a topological book embedding) of G.�
By means of Lemma 3 and Theorem 2 the following results can be proved.

Lemma 4. Let G be an n-colored planar graph with n vertices and let σ be
an n-colored sequence compatible with G. G admits an augmenting n-colored
Hamiltonian path consistent with σ and inducing at most 3n − 3 flat division
vertices and at most 2 pointy division vertices per edge.

Theorem 4. Let G be a k-colored planar graph with n vertices such that 1 ≤
k ≤ n and let S be a k-colored set of points compatible with G. There exists an
O(n2 logn)-time algorithm that computes a k-colored point-set embedding of G
on S having curve complexity at most 3n + 2.

Since by Theorem 1 k-colored point-set embeddings can have a linear number
of edges each requiring a linear number of bends, the upper bound on the curve
complexity expressed by Theorem 4 is asymptotically tight. However, as the next
theorem shows, there can be special colorings of the input graph which guarantee
a curve complexity that depends on k and does not depend on n.

Theorem 5. Let G be a k-colored planar graph with n vertices such that: (i)
1 ≤ k < n; (ii) |Vi| = 1 for every 0 ≤ i ≤ k − 2; (iii) |Vk−1| = n− k + 1. Let S
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be a k-colored set of points compatible with G. There exists an O(n2 logn)-time
algorithm that computes a k-colored point-set embedding of G on S having curve
complexity at most 9k − 1.
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Abstract. This paper studies a discrepancy-sensitive approach to dy-
namic fractional cascading. We provide an efficient data structure for
dominated maxima searching in a dynamic set of points in the plane,
which in turn leads to an efficient dynamic data structure that can an-
swer queries for nearest neighbors using any Minkowski metric.

1 Introduction

Discrepancy theory deals with the degrees to which point sets differ from their
expected uniformity (e.g., see Chazelle [8,9]). This theory is usually applied
globally, for entire sets, but we are interested in local notions of discrepancy,
dealing with how sets differ from their expected uniformity in small intervals.
This interest is motivated from dynamic fractional cascading [10,11,17].

In fractional cascading [10,11], we are given a bounded-degree1 catalog graph
G, such that each vertex v of G stores a catalog C(v) ⊂ U , for a total order
U . Given a value x belonging to the total order for a path P in G, a query for
x in P searches for x in the catalog C(v) for each vertex v in P . If insertions
and deletions are allowed in the C(v)’s, then we have the “dynamic fractional
cascading” [17] problem. Static fractional cascading solutions due to Chazelle
and Guibas [10,11] allow for queries to be performed in a path of length k in time
O(log n+k), where n is the total size of all the catalogs, and dynamic fractional
cascading solutions due to Mehlhorn and Näher [17] show that such queries can
be done in a dynamic setting in O(log n+ k log logn) time, with updates taking
O(log n log log |U |) amortized time. The reduced efficiency of dynamic fractional
cascading seems to come from its need to dynamically handle discrepancy. Our
interest in this paper, therefore, is to address discrepancy head on—to design a
scheme for dynamic fractional cascading that is discrepancy sensitive.
1 We note that a catalog graph of degree d > 3 can be transformed into a degree-3

catalog graph by replacing high-degree nodes with complete binary trees.
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Previous Related Work. For prior results in discrepancy theory, for example,
please see the excellent book by Chazelle [9]. Subsequent to the introduction of
fractional cascading by Chazelle and Guibas [10,11] and its dynamic implemen-
tation by Mehlhorn and Näher [17], there have been many specific uses for this
technique, as well as a generalization, due to Sen [21], based on randomized skip
lists, and an extension for I/O efficiency due to Yap and Zhu [24].

The prior work on nearest neighbor structures is vast; for more detailed re-
views, see the surveys by Alt [1] or Clarkson [12]. For static data, there are
several ways to achieve O(log n) time for nearest-neighbor queries in the plane,
including constructing a planar point location data structure “on top” of a
Voronoi diagram (e.g., see [20]). For uniformly distributed data, Bentley, Weide,
and Yao [5] give optimal algorithms for static data, and Bentley [4] gives an
optimal algorithm for the semidynamic (deletion only) case. For approximate
nearest-neighbor queries, Arya et al. [3] give an optimal static structure, and
Eppstein et al. [14] give an optimal dynamic structure. Finally, for general exact
nearest-neighbor queries, Chan [7] gives a dynamic method that achieves poly-
logarithmic expected times for updates and queries. In addition, there has been
some work on nearest-neighbors in non-Euclidean settings for “reasonably sepa-
rated” uniform point sets (e.g., see [6,16,15]), but this does work does not apply
efficiently to Euclidean metrics on point sets taken from continuous uniform
distributions.

Our Results. In this paper, we introduce a study of a discrepancy-sensitive ap-
proach to dynamic fractional cascading. Unlike the Mehlhorn-Näher approach,
which assumes a worst-case distribution for the discrepancies between adjacent
catalogs, our approach is sensitive to these differences. That is, it runs faster
through low-discrepancy neighbors and slower through high-discrepancy neigh-
bors. We show, for example, that a search for a value x in a collection of cat-
alogs, of size at most n, stored in vertices of a path P can be done in time
O(log n +

∑
(v,w)∈P log δv,w(x)), where δv,w(x) is the relative local discrepancy

at x of the catalogs stored at the nodes v and w in G. Such a discrepancy-
sensitive result is useful in a number of real-world scenarios, as we show that
there are several practical distributions such that the sum of the relative local
discrepancies in the catalogs belonging to a path of length k is O(k) with high
probability. For example, we use this approach to provide an efficient data struc-
ture for dominated maxima searching in a dynamic set of uniformly distributed
points in the plane. This, together with the known fact that the expected num-
ber of maxima points in an uniformly distributed set S of n points in R2 is
O(log n), shows that we can construct a dynamic data structure that can an-
swer queries for nearest neighbors in S using any Minkowski metric, where inser-
tions and deletions run in O(log2 n) expected time and queries run in O(log n)
expected time, as well. These expectations assume a uniform distribution, but
even with real-life (not uniformly distributed) data we experimentally observe
it to hold.
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2 Discrepancy-Sensitive Dynamic Fractional Cascading

Weisstein [23] defines a notion for local discrepancy, which, for an interval I,
gives a measure of how much the number of points intersecting I differs from
the normalized length of I. We are, however, interested in the application to
dynamic fractional cascading, which involves comparing adjacent catalogs to
each other, not arbitrary intervals to catalogs. Suppose, therefore, that (v, w) is
an edge in G and that C(v) and C(w) are the catalogs stored respectively at
the vertices v and w in G. Let us assume, without loss of generality, that C(v)
and C(w) both store sentinel values, “−∞” and “+∞,” which are respectively
the smallest and the largest elements in the common total order to which all
catalog elements belong. For any value x, and vertex v in G, let predv(x) denote
the predecessor of x in C(v), that is, the largest element in C(v) less than or
equal to x. Likewise, let succv(x) denote the successor of x in C(v), that is, the
smallest element in C(v) greater than or equal to x. For any edge (v, w) in G,
we define the relative local discrepancy from C(v) to C(w) at x as follows:

δv,w(x) = |[a, b] ∩C(v)| + |[a, b] ∩ C(w)| ,

where a = min{predv(x), predw(x)} and b = max{succv(x), succw(x)}, i.e.,,
the relative local discrepancy from C(v) to C(w) at x is the number of items
of C(v) and C(w) falling in the closed interval [a, b] = [predv(x), succv(x)] ∪
[predw(x), succw(x)]. It is a measure of how different C(v) and C(w) are in the
vicinity of x. Note that δv,w(x) ≥ 2, even if C(v) = C(w).

Augmenting a Catalog Graph to Support Searches and Updates. Let us first
give some intuition about our augmentation. Imagine that we have a determin-
istic skip list [19] built “on top” of the elements in C(v) and that the nodes
in this structure are all colored black. Likewise, imagine that we have a deter-
ministic skip list built “on top” of the elements in C(w) and that the nodes in
this structure are all colored white. These structures allow for both top-down
and bottom-up searches and updates to be performed in O(log n) time [19]. Now
imagine further that we merge these two structures into a common structure by
having each black node “cut” any white edge (i.e., interval of white nodes) that
it is contained in and having each white node “cut” any black edge that it is
contained in. Let us then link the roots of all the remaining bottom-level skip
lists. The remaining structure is the “fractionally-cascaded” merge of C(v) and
C(w) and this is the structure that we will maintain dynamically.

More formally, our structure is defined so that we maintain the following
substructures for each edge (v, w) in G (see Fig. 1):

– We maintain in a “black” deterministic skip list each maximal contiguous
interval of C(v) that contains no elements of C(w).

– We maintain in a “white” deterministic skip list each maximal contiguous
interval of C(w) that contains no elements of C(v).

– We maintain black-white links between the roots of these skip lists.
– Each bottom-level skip-list interval that is cut by a skip list of the other

color has a link to and from the root of that skip list.
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Fig. 1. An example of the fractionally-cascaded structures that join a “black” C(v)
to a “white” C(w). Skip-list edges are shown in bold, with those cut by a sublist of
the opposite colored gray. The links between skip-list roots are shown dashed and the
arrowed lines show the links between bottom-level skip-list edges and the roots of the
opposite-color skip lists that cut that edge.

Searches. A search in a catalog graph G consists of an element x for which
we would like to find predv(x) in C(v) for each node v in a given path P =
(v1, v2, . . . , vk). We assume that we have a complete deterministic skip list for
the first node, v1, of P . This allows us to locate predv1(x) in O(log n) time,
where n is the maximum size of any catalog. For locating x in C(vi+1), for
i = 1, . . . , k − 1, we start from a pointer to predvi

(x), which we will have found
inductively. There are two cases at this point:

– Case 1: x falls inside a maximal skip list in C(vi). In this case, we traverse up
the skip list for this interval in C(vi) to its root and then follow the pointer
from the root to the interval in C(vi+1) containing x.

– Case 2: x falls outside a maximal skip list in C(vi). In this case, we follow
the pointer from the “cut” interval in C(vi) containing x to the root of the
skip list in C(vi+1) falling in this interval. We then search down this skip
list to locate the predecessor of x in C(vi+1).

Note that, in either case, each step i of the search, after the first, runs in
O(log δvi,vi+1(x)) time, since the size of the skip list we search in for either
case is O(δvi,vi+1(x)).

Updates. Let us consider how to perform an update in our structure, that is, an
insertion or deletion in a C(v) list, assuming we have already located the place in
C(v) where the update is to occur (let us account separately for the time needed
to find this location). We perform the necessary updates for each edge (v, w), of
which there are only a constant number, according to the following cases:

– Insert y:
• Case 1: y falls inside a maximal skip list L in C(v). In this case, we

simply insert y in L.
• Case 2: y falls outside a maximal skip list in C(v). In this case, we follow

the interval pointer from the (gray) interval in C(v) containing y to the
skip list L in C(w) and search down for y in this list. If y falls in the
interior of L then we split L at y, set up y as its own skip list in C(v)
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and update the pointers of the three new root nodes. If y falls outside L,
then we simply insert y in the appropriate predecessor or successor skip
list in C(v) and update the (gray) interval to now have y as an endpoint.

– Delete y:
• Case 1: y falls in a maximal skip list L in C(v) with at least one other

element. In this case, we simply remove y from L (possibly updating
boundary pointers if y was the smallest or largest element in L or the
root pointers, if y was a root element—so that the appropriate adjacent
pointers now point to the new root of L).

• Case 2: y is the only element of its skip list in C(v). In this case, we follow
the pointers from y’s (root) node to the two skip lists in C(w) that y
separates, and we perform a splice of these two structures, updating the
root pointers as needed.

Note that in either an insertion or a deletion, the time needed to perform
all the necessary local searching, insertions, deletions, splits, and/or splices is
O(log δv,w(y)).

Theorem 1. A catalog graph G, with maximum catalog size n, can be augmented
with additional structures so as to support searches for an element x in the
catalogs in a path P in G in time O(log n +

∑
(v,w)∈P log δv,w(x)). Likewise, a

sequence of updates for an element y in catalogs in a path P in G can be done
in these structures in time O(log n +

∑
(v,w)∈P log δv,w(y)).

Uniform data. Suppose that each catalog in G contains n points chosen inde-
pendently and uniformly at random from the interval [0, 1]. In this case, the
set of points in a catalog C(v) define a set of order statistics, and the distribu-
tion of the length of consecutive spacings therefore follows the Beta distribution
with parameters 1 and n (e.g., see [2,13]). Thus, the expected interval length is
1/(n + 1). Having fixed such an interval in C(v), the number of points in C(w)
that falls in this interval follows a Binomial distribution, with probability equal
to the length of the interval. Thus, the distribution of each δv,w(v) follows the
Beta-Binomial distribution, with parameters 1 and n, which has expected value
μ = n/(n+ 1) [22].

The performance of searching and updating our augmented structures at an
element x along a path P = (v1, . . . , vk) in a catalog graph G depends on the
random variable,

TP =
∑

(vi,vi+1)∈P
log δvi,vi+1(x).

Unfortunately, the relative local discrepancies for consecutive edges in P are not
necessarily independent. Even so, we can write

TP =
∑

(vi,vi+1)∈P, odd i

log δvi,vi+1(x) +
∑

(vi,vi+1)∈P, even i

log δvi,vi+1(x), (1)

and we note that each term in the separate sums are independent. Thus, we can
bound the degree to which TP differs from its expectation by adding bounds on
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the two sums. Combining this with the expected value of the associated Beta-
Binomial distribution given above, we can use a Chernoff bound twice (e.g.,
see [18]) to prove the following (we give the proof in the final version):

Theorem 2. Given a catalog graph G such that each catalog is a set of O(n)
independent, uniform random points in the interval [0, 1], then for any path P
of length k in G,

∑
(v,w)∈P log δv,w(x) is O(k) with probability 1 − 1/2k.

Using this result, we can take the dynamic range searching structure of Mehlhorn
and Näher [17], which is based on range trees (e.g., see [20], and replace their
dynamic fractional cascading solution with ours, which gives us the following:

Theorem 3. We can maintain a dynamic range searching data structure for a
set of points taken uniformly at random in the unit cube so as to support point
insertions and deletions in O(log n) time w.h.p. and the reporting of all the points
in a rectangular query range [x1, x2]× [y1, y2] in O(log n+ k) time w.h.p., where
k is the number of points returned by the query.

3 Dynamic Dominated Maxima

This section describes a scheme for dynamically maintaining a set S of points
drawn from a uniform distribution in a rectangle, so that a dominated maxima
query can be done in O(log n) expected time: Given a query point q, the query
returns the set of maximal elements among the points of S that are dominated
by q; note that the expected size of the output is itself O(log n) (because of
the uniform distribution). The expected time for an update will be shown to be
O(log2 n).

We shall find it necessary to maintain 4 such data structures, one for each
of the 4 possible sets of coordinate axes obtained by reversing the direction of
{neither,one,both} of the x and y axes – having all 4 such structures makes it
possible to achieve the bounds we claim but imposes only a constant factor of 4
on the complexity bounds.

In order to more explicitly define the 4 above-mentioned problems, and also
to facilitate the understanding of our algorithm, we will consider the smallest
origin-centered square containing the whole set S for a given state of S. We
position four coordinate systems, one at each of the four corners of the square,
with the origin being at the corresponding corner and the directions of the
axes pointing from the origin along the edges of the square. We call these four
coordinate systems South-West (abbreviated as SW ), South-East (SE), North-
West (NW ), North-East (NE). For a point q ∈ S, we use xSW (q) (resp., ySW (q))
to denote the x (resp., y) coordinate of q in the SW coordinate system. A similar
notation is used for the other three coordinate systems.

The 4 problems mentioned above are then the following: (i) A South-West
problem that pertains to the subset of S that is dominated by the query point
q0 in the SW coordinate system, i.e., the subset “below and to the left of q0”;
(ii) a South-East problem that pertains to the subset of S that is dominated by
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the query point q0 in the SE coordinate system (the subset “below and to the
right of q0”); (iii) a North-East problem that pertains to the subset of S that
is dominated by the query point q0 in the NE coordinate system (the subset
“above and to the right of q0”); and (iv) a North-West problem that pertains to
the subset of S that is dominated by the query point q0 in the NW coordinate
system (the subset “above and to the left of q0”).

Recall that a point q is maximal in the set S relative to the SW coordinate
system iff for every other point q′ ∈ S at least one of the following inequalities
holds:

xSW (q′) ≤ xSW (q) ySW (q′) ≤ ySW (q),

which, in words, can be stated as: “no other point of S dominates q in the SW
coordinate system.” For a point q and a set S we also define the notion of a
maximal set in the SW coordinate system with respect to q. This set, denoted
by MSW (S, q), is computed by first considering only those points in S that are
dominated by q in the SW coordinate system (i.e., the subset of S below and to
the left of q) and then computing the maximal points of that subset. All points
in MSW (S, q) are assumed to be sorted by increasing x coordinates. A similar
notation is used for the other three coordinate systems.

In the rest of our discussion we focus on the South-West problem. All of our
solutions for this South-West problem can be translated into similar ones for the
South-East, North-East, and North-West problems.

The Data Structure. Let Tx be an n-node search tree structure whose nodes
are the n points of S ordered by their x coordinates. Tx verifies the following
properties, v being a node of Tx :

– Tx is a weight balanced binary search tree
– All nodes in the right subtree of v have greater x value than v
– All nodes in the left subtree of v have lesser value than v

For each node v in Tx, we use Slv to denote the subset of S that lies in the
subtree of v and have x coordinate lesser or equal to v’s one. Each such Slv is
itself organized as a dynamic search structure according to the y coordinates
of the points in it. The Tx tree and its associated Slv’s are organized as the
dynamic fractional cascading structure described above. With this structure in
place, for every path P in Tx, searching for y0 in Slv for every v ∈ P can be
done in O(log n + |P|) expected time.

An update to this structure due to insertion or deletion of a point consists of
adding or removing a node of Tx, updating all the Slv sets from that node to the
root and finally then rebalancing Tx. Note that the insertion of a point (x0, y0)
does not cause the creation of a new node in Tx if there exists already a point
with x0 coordinates, but only an update in the underlying dynamic fractional
cascading structure. We have the equivalent property for deletion. Rebalancing
the tree implies O(1) rotations. A rotation associated with three node v, v′, v′′

implies the reconstruction of the underlying sets Slv, Sl
′
v, Sl

′′
v , that is, O(|Slv|)

insertions and deletions in the dynamic fractional cascading structure. Since Tx
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is a weight balanced search tree, the amortized value of |Slv| is logn. Thus an
update to this structure takes O(log n) amortized time.

In addition to the above, each copy of a point q in Slv stores the following:

– lSW (v, q) = the leftmost (hence, highest) point in MSW (Sv, q).
– rSW (v, q) = the rightmost (hence, lowest) point in MSW (Sv, q).
– lSE(v, q) = the leftmost (hence, lowest) point in MSE(Sv, q).
– rSE(v, q) = the rightmost (hence, highest) point in MSE(Sv, q).
– lNW (v, q) = the leftmost (hence, lowest) point in MNW (Sv, q).
– rNW (v, q) = the rightmost (hence, highest) point in MNW (Sv, q).
– lNE(v, q) = the leftmost (hence, highest) point in MNE(Sv, q).
– rNE(v, q) = the rightmost (hence, lowest) point in MNE(Sv, q).

The above quantities will be shown to facilitate a query, but they also impose
the burden of dynamically updating them. We need to describe how a query is
processed, and how to dynamically update all of the above quantities.

Processing a Query. The query processing consists of, given a query point q0,
returning the maximal elements of the subset of S dominated by q0 in the SW
coordinate system. (The query point is arbitrary and need not be in S.)

More formally, to process a query for a point q0 with the coordinates (x0, y0),
we do the following:

1. First we locate the node which has greatest x value lesser or equal to x0 in
Tx, thereby defining a root-to-leaf path P in Tx. Let v1, . . . , vt be (in left to
right order) the nodes whose right sibling is on P . We henceforth refer to
these nodes as the fringe of x0 in Tx. Note that t ≤ logn, and that every
point in

⋃t
i=1 Slvi has an x coordinate that is ≤ x0 and that there is no

other such points.
2. Within every Slvi , 1 ≤ i ≤ t, let y′i be the largest y coordinate that is ≤ y0.

Computing all the y′is involves locating y0 in every Slvi . Using the dynamic
fractional cascading search structure, the computation of all the y′is can be
done in O(log n + t) expected time, which is O(log n).

3. Let Y1, . . . , Yt be defined inductively as follows:
(a) Yt = −∞
(b) Yk−1 = max{Yk, y′k} for k = t− 1, t− 2, . . . , 1.
In words, Yk (k < t) is the largest y coordinate among the points in⋃t
i=k+1 Slvk

.
4. Enumerate the points in MSW (S, q). Before explaining how this enumeration

done, we point out that the point of S that constitutes the South-West solu-
tion must belong to MSW (S, q), which is easy to prove by contradiction. We
also point out that the expected number of points in MSW (S, q) is O(log |S|),
hence O(log n). Thus, the O(log n) average query performance would be
achieved if we could somehow enumerate the points of U = MSW (S, q) in
time O(|U |). We do this by first observing that the subset of S from which
the maximal points are computed consists of the subset of

⋃t
i=1 Slvk

hav-
ing y coordinates < y0. Our strategy will be to enumerate, in the order
k = 1, . . . , t the maximal points of Slvk

that belong to U , call their set Uk,



122 M.J. Atallah et al.

stopping as soon as the about-to-be-enumerated y coordinate drops below Yk.
(If we did not stop at that point, we would be enumerating points that do
not belong to U .) This enumeration of Uk is done as follows:
(a) Let qk be the point with the y coordinate y′k (that is, qk is the highest

point of Slvk
whose y coordinate is ≤ y0).

(b) While the y coordinate of qk is ≥ Yk, we (i) include qk as a member
of Uk, and then (ii) set qk = rSE(v, qk), which is the rightmost (hence,
highest) point in MSE(Sv, qk).

Of course, in the above, U is the concatenation of U1, . . . , Ut.
5. Since we have not checked the points with y-coordinate equal to y0 in

MSW (S, q), we need to add them to U . This can be done by searching for y0

in the fringe of x0 which takes O(log n) expected time using the fractional
cascading structure.

As argued above, the average complexity of the above query processing is
O(log n). We now turn our attention to the dynamic updates. We begin with
the case of insertions.

Processing an Insertion. Let q0 = (x0, y0) be the point being inserted. We al-
ready argued that the fractional cascading structure can be updated in O(log n)
expected time as a result of this insertion. The main task we face now is how
to update the quantities lSW (v, q), rSW (v, q), lSE(v, q), rSE(v, q), lNW (v, q),
rNW (v, q), lNE(v, q), and rNE(v, q), for each q = (x, y) ∈ S and each v that is
ancestor of x in Tx. We explain how to update only rSE(v, q) for all v’s that
are ancestors of x in Tx; similar updating can be repeated for each of the seven
other quantities (relative to their own frame of reference).

We begin with the updating of the rSE(v, q)’s for all points other than q0
(i.e., the points in S−{q0}). And we will explain how to compute the rSE(v, q0)
separately.

The first step is to compute, as a query that is processed just as in the previous
section (except that the coordinate system is different), the set U = MNE(S, q0),
where, as before, the expected size of U is O(log n). The only points q of S
whose rSE(v, q) may change are in U . For each point q of U , we update its (at
most logn) rSE(v, q) values. This is done in constant time for each value, by
checking whether q0 can cause an improvement when v is ancestor of q0. The
total update time for doing this is therefore O(|U | log n), which is O(log2 n) on
average.

To compute the rSE(v, q0), we first compute U ′ = MSE(S, q0) as a query,
hence in O(log n) expected time. We then walk along the path from x0 to the
root in Tx, and at each node v along this path we set rSE(v, q0) equal to the
highest point of U ′ that is in Slv. Note that this whole walk can be done in time
O(log n) because of monotonicity: The Slv’s of the nodes on that walk to the
root monotonically “swallow” U ′ in left-to-right order (hence, by increasing y
coordinates). Thus we end up going through U ′ only once (not logn times).
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Processing a Deletion. Let q0 = (x0, y0) be the point being deleted. We already
argued that the fractional cascading structure can be updated in O(log n) ex-
pected time as a result of this deletion. Now we need to show how to update
the quantities lSW (v, q), rSW (v, q), lSE(v, q), rSE(v, q), lNW (v, q), rNW (v, q),
lNE(v, q), and rNE(v, q), for each q = (x, y) ∈ S and each v that is ancestor of
x0 in Tx. We explain how to do it for rSE(v, q) for all v that are ancestors of
x0 in Tx, all other values are updated similarly (relative to their own frame of
reference).

First, we compute each of the sets U = MNW (S, q0) and U ′ = MSW (S, q0) as
queries (and, hence, in O(log n) expected time). The only points q of S whose
rSE(v, q) may change as a result of the deletion are in U . Moreover, for each
such point q whose rSE(v, q) changes, its new rSE(v, q) is either in U ′ or it is
the old rSE(v, q0). The best candidate from U ′ for each q ∈ U need not be done
in isolation; rather, it can be done for all the points of U together. This can
be performed in a manner reminiscent of the way two sorted lists are merged,
by walking simultaneously along U and U ′. This has to be done only once (not
repeated for the rSE(v, q) of every ancestor v of x0). On the other hand, the
comparison of the old rSE(v, q) with the two new candidates, which are the old
rSE(v, q0), and the point of U ′ determined during the above-mentioned merge-
like procedure, needs to be done for every v and q. Hence, the overall time for a
deletion is O(log2 n) on average.

4 Dynamic Nearest Neighbors in Minkowski Metrics

Given a nearest-neighbor query for a point q0, in a set S of uniformly-distributed
points in an axis-aligned rectangle, we partition the problem into four sub-
problems: (i) a South-West problem that consists of computing the nearest
neighbor from among the subset of S that is dominated by the query point
q0 in the SW coordinate system, i.e., the subset “below and to the left of q0”;
(ii) a South-East problem that consists of computing the nearest neighbor from
among the subset of S that is dominated by the query point q0 in the SE co-
ordinate system (the subset “below and to the right of q0”); (iii) a North-East
problem that consists of computing the nearest neighbor from among the sub-
set of S that is dominated by the query point q0 in the NE coordinate system
(the subset “above and to the right of q0”); and (iv) a North-West problem that
consists of computing the nearest neighbor from among the subset of S that
is dominated by the query point q0 in the NW coordinate system (the subset
“above and to the left of q0”). We solve all of (i)–(iv) and choose, as the solution
to the nearest-neighbor query, the best from the four answers they return. Our
performance bounds for this problem therefore immediately follow from those
we established in the previous section for the dynamic dominated maxima prob-
lem: O(log n) expected query time, and O(log2 n) expected time for an update
(insertion or deletion).
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5 Experimental Results

Local Discrepancy on a Range Tree. In this section we explore the distributions
of the local discrepancy in the catalogs of the nodes of a range tree, augmented
using our dynamic fractional cascading structure.

To evaluate the distributions of the local discrepancy along a path in the range
tree we use, we have inserted the points of the real data set S in such a range
tree and chose random query points (x, y). For each point, we calculated the
local discrepancy relative to y for each edge on the path from the leaf associated
with x to the root of the tree. We also did the same work with the same number
of evenly distributed points (see Fig. 2).

As we see in Fig. 2, the distributions of local discrepancy for the real data set
is very close to the distributions of local discrepancy in the case of evenly dis-
tributed points. Their plot in logarithmic scale indicates that they are very close
to exponential distributions, which shows that the demonstration for theorem 3
still holds in the case of the real data set.

Fig. 2. Distributions of the local discrepancy along top-down path in a range tree
using real data set in the upper-left corner and evenly distributed points on the upper-
right corner. The distribution heightk represents the distribution of local discrepancy
for edges between nodes at height k − 1 and k containing respectively 2k−1 and 2k

points in their catalogs. The two plots below show the same distributions on a log
scale.



Discrepancy-Sensitive Dynamic Fractional Cascading 125

Acknowledgments

Portions of this work were supported by Grants IIS-0325345, CCR-0312760, and
CNS-0627488 from the National Science Foundation, and by sponsors of the
Center for Education and Research in Information Assurance and Security.

References

1. Alt, H.: The nearest neighbor. In: Computational Discrete Mathematics. LNCS,
vol. 2122, pp. 13–24. Springer, Heidelberg (2001)

2. Arnold, B.C., Balakrishnan, N., Nagaraja, H.N.: A First Course in Order Statitics.
Wiley-Interscience, Chichester (1992)

3. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.: An optimal algo-
rithm for approximate nearest neighbor searching in fixed dimensions. J. ACM 45,
891–923 (1998)

4. Bentley, J.L.: K-d trees for semidynamic point sets. In: SCG ’90. Proceedings of
the sixth annual symposium on Computational geometry, pp. 187–197. ACM Press,
New York (1990)

5. Bentley, J.L., Weide, B.W., Yao, A.C.: Optimal expected-time algorithms for clos-
est point problems. ACM Trans. Math. Softw. 6(4), 563–580 (1980)

6. Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neighbor. In:
ICML ’06. Proceedings of the 23rd international conference on Machine learning,
pp. 97–104 (2006)

7. Chan, T.M.: A dynamic data structure for 3-d convex hull and 2-d nearest neighbor
queries. In: Proceedings of the seventeenth ACM-SIAM symposium on Discrete
algorithm, pp. 1196–1202. ACM Press, New York (2006)

8. Chazelle, B.: Geometric complexity and the discrepancy method. In: Abstracts 15th
European Workshop Comput. Geom., pp. 21–23. INRIA Sophia-Antipolis (1999)

9. Chazelle, B.: The Discrepancy Method. Cambridge Univ. Press, Cambridge (2002)
10. Chazelle, B., Guibas, L.J.: Fractional cascading: I. A data structuring technique.

Algorithmica 1(3), 133–162 (1986)
11. Chazelle, B., Guibas, L.J.: Fractional cascading: II. Applications. Algorithmica 1,

163–191 (1986)
12. Clarkson, K.L.: Nearest-neighbor searching and metric space dimensions. In:

Shakhnarovich, G., Darrell, T., Indyk, P. (eds.) Nearest-Neighbor Methods for
Learning and Vision: Theory and Practice, pp. 15–59. MIT Press, Cambridge
(2006)

13. David, H.A., Nagaraja, H.N.: Order Statitics, 3rd edn. Wiley-Interscience, Chich-
ester (2003)

14. Eppstein, D., Goodrich, M.T., Sun, J.Z.: The skip quadtree: A simple dynamic data
structure for multidimensional data. In: SCG. 21st ACM Symp. on Computational
Geometry, pp. 296–305. ACM Press, New York (2005)

15. Karger, D.R., Ruhl, M.: Finding nearest neighbors in growth-restricted metrics.
In: STOC ’02. Proceedings of the thiry-fourth annual ACM symposium on Theory
of computing, pp. 741–750. ACM Press, New York (2002)

16. Krauthgamer, R., Lee, J.R.: Navigating nets: simple algorithms for proximity
search. In: SODA. Proceedings of the 15th ACM-SIAM Symposium on Discrete
Algorithms, pp. 798–807. ACM Press, New York (2004)
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Abstract. In the faulty-memory RAM model, the content of memory
cells can get corrupted at any time during the execution of an algorithm,
and a constant number of uncorruptible registers are available. A resilient
data structure in this model works correctly on the set of uncorrupted val-
ues. In this paper we introduce a resilient priority queue. The deletemin
operation of a resilient priority queue returns either the minimum uncor-
rupted element or some corrupted element. Our resilient priority queue
uses O(n) space to store n elements. Both insert and deletemin operations
are performed in O(log n + δ) time amortized, where δ is the maximum
amount of corruptions tolerated. Our priority queue matches the perfor-
mance of classical optimal priority queues in the RAM model when the
number of corruptions tolerated is O(log n). We prove matching worst
case lower bounds for resilient priority queues storing only structural
information in the uncorruptible registers between operations.

1 Introduction

Memory devices continually become smaller, work at higher frequencies and
lower voltages, and in general have increased circuit complexity [1]. Unfortu-
nately, these improvements come at the cost of reliability [2,3]. A number of fac-
tors, such as alpha particles, infrared radiation, and cosmic rays, can cause soft
memory errors where a bit flips and as a consequence the value stored in the cor-
responding memory cell is corrupted. An unreliable memory can cause problems
in most software ranging from the harmless to the very serious, such as breaking
cryptographic protocols [4,5], taking control of a Java Virtual Machine [6] or
breaking smart-cards and other security processors [7,8,9]. Furthermore, many
modern computing centers consist of relatively cheap of-the-shelf components,
and the large number of individual memories involved in these clusters substan-
tially increase the frequency of memory corruptions in the system. Hence it is
crucial that the software running on these machines is robust. Since the amount
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of cosmic rays increases dramatically with altitude, soft memory errors are of
special concern in fields like avionics or space research. Furthermore, soft mem-
ory error rates are expected to rise for both DRAM and SRAM memories [2].

At the hardware level, the soft memory errors can be handled by means of error
detection mechanisms such as parity checking, redundancy or Hamming codes.
Unfortunately, implementing these mechanisms incur penalties with respect to
performance, size and money. Therefore, memories using these technologies are
rarely found in large scale computing clusters or ordinary workstations. On the
software level, a series of low-level techniques have been proposed for dealing
with the soft memory errors, many of them coping with corrupted instructions.
Examples include algorithm based fault tolerance [10], assertions [11], control
flow checking [12], or procedure duplication [13].

Traditionally, the work within the algorithmic community has focused on mod-
els where the integrity of the memory system is not an issue. In these models, the
corruption of even a single memory cell can have a dramatic effect on the output.
For instance, a single corrupted value can induce as much as Θ(n2) inversions
in the output of a standard implementation of mergesort [14]. Replication can
help in dealing with corruptions, but is not always feasible, since the time and
space overheads are not negligible.

A multitude of algorithms that deal with unreliable information in various
ways were developed during the last decades. Aumann and Bender [15] intro-
duced fault tolerant pointer-based data structures. In their model, error detection
is done upon access, i.e. accessing a faulty pointer yields an error message. Obvi-
ously, this is not always the case in practice, since a pointer might get corrupted
to a valid value and thus an error is not reported. Furthermore, their algorithms
allow a certain amount of the data structure to be lost upon corruptions, and
this is not accepted in many practical applications. The liar model considers al-
gorithms in a comparison model where the result of a comparison is unreliable.
Work in this model include fundamental problems such as sorting and search-
ing [16,17,18]. A standard technique used in the design of algorithms in the liar
model is query replication, which is not of much help when memory cells, and
not comparisons, are unreliable. Kutten and Peleg [19,20] introduced the con-
cept of fault local mending in the context of distributed networks. A problem is
fault locally mendable if there exists a correction algorithm whose running time
depends only on the (unknown) number of faults. Some other works studying
network fault tolerance include [21,22,23,24,25,26,27].

Finocchi and Italiano [14] introduced the faulty-memory random access ma-
chine, which is a random access machine where the content of memory cells can
get corrupted at any time and at any location. Corrupted cells cannot be distin-
guished from uncorrupted cells. The model is parametrized by an upper bound δ
on the number of corruptions occurring during the lifetime of an algorithm. It
is assumed that O(1) reliable memory cells are provided, a reasonable assump-
tion since CPU registers are considered reliable. Also, copying an element is
considered an atomic operation, i.e. the elements are not corrupted while being
copied. An algorithm is resilient if it is able to achieve a correct output at least
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for the uncorrupted values. This is the best one can hope for, since the output
can get corrupted just after the algorithm finishes its execution. For instance a
resilient sorting algorithm guarantees that there are no inversions between the
uncorrupted elements in the output sequence.

Several important results has been achieved in the faulty-memory RAM. In
the original paper, Finocchi and Italiano [14] proved lower bounds and gave (non-
optimal) resilient algorithms for sorting and searching. Algorithms matching the
lower bounds for sorting and searching(expected time) were presented in [28]. An
optimal resilient sorting algorithm takes Θ(n log n + δ2) time, whereas optimal
searching is performed in Θ(log n + δ) time. Furthermore, in [29] a resilient
search tree that performs searches and updates in O(log n+ δ2) time amortized
was developed. Finally, in [30] it was shown that resilient sorting algorithms are
of practical interest.

Results. In this paper we design and analyze a priority queue in the faulty-
memory RAM model. It uses O(n) space for storing n elements and performs
both Insert and Deletemin in O(log n+δ) time amortized. Our priority queue
matches the bounds for an optimal comparison based priority queue in the RAM
model while tolerating O(log n) corruptions. It is a significant improvement over
using the resilient search tree in [29] as a priority queue, since it uses O(log n+δ2)
time amortized per operation and thus only tolerates O(

√
logn) corruptions to

preserve the O(log n) bound per operation. Our priority queue is the first re-
silient data structure allowing O(log n) corruptions, while still matching optimal
bounds in the RAM model. Our priority queue does not store elements in reli-
able memory between operations, only structural information like pointers and
indices. We prove that any comparison based resilient priority queue behaving
this way requires worst case Ω(log n+ δ) time for either Insert or Deletemin.

The resilient priority queue is based on the cache-oblivious priority queue
by Arge et al. [31]. The main idea is to gather elements in large sorted groups
of increasing size, such that expensive updates do not occur too often. The
smaller groups contain the smaller elements, so they can be retrieved faster
by Deletemin operations. We extensively use the resilient merging algorithm
in [28] to move elements among the groups. Due to the large sizes of the groups,
the extra work required to deal with corruptions in the merging algorithm be-
comes insignificant compared to the actual work done.

Outline. The remainder of the paper is structured as follows. In Section 2 we
define the resilient priority queue and introduce some notation. We give a de-
tailed description of the resilient priority queue in Section 3, while in Section 4
we prove its correctness and complexity bounds. Finally, in Section 5 we prove
matching lower bounds for resilient priority queues.

2 Preliminaries

In this section we define the resilient priority queue and introduce some notation
used throughout the paper.
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Given two sequences X and Y , we let XY denote the concatenation of X
and Y . A sequence X is faithfully ordered if its uncorrupted keys appear in non-
decreasing order. Finally, a reliable value is a value stored in unreliable memory
which can be retrieved reliably in spite of possible corruptions. This is achieved
by replicating the given value 2δ+1 times. Retrieving a reliable value takes O(δ)
time using the majority algorithm in [32], which scans the 2δ+ 1 values keeping
a single majority candidate and a counter in reliable memory.

Definition 1. A resilient priority queue maintains a set of elements under
the operations Insert and Deletemin. An Insert adds an element and a
Deletemin deletes and returns the minimum uncorrupted element or a cor-
rupted one.

We note that our definition of a resilient priority queue is consistent with the
resilient sorting algorithms introduced in [14]. Given a sequence of n elements,
inserting all of them into a resilient priority queue followed by n Deletemin

operations yields a faithfully ordered sequence.

3 Fault Tolerant Priority Queue

In this section we introduce the resilient priority queue. It resembles the cache-
oblivious priority queue by Arge et al. [31]. The elements are stored in faithfully
ordered lists and are moved using two fundamental primitives, Push and Pull,
based on faithful merging. We describe the structure of the priority queue in
Section 3.1 and then introduce the Push and Pull primitives in Section 3.2.
Finally, in Section 3.3, we describe the Insert and Deletemin operations.

3.1 Structure

The resilient priority queue consists of an insertion buffer I together with a
number of layers L0, . . . , Lk, with k = O(log n). Each layer Li contains an up-
buffer Ui and a down-buffer Di, represented as arrays. Intuitively, the up-buffers
contain large elements that are on their way to the upper layers in the prior-
ity queue, whereas the down-buffers contain small elements, on their way to
lower layers. The buffers in the priority queue are stored as a doubly linked
list U0, D0, . . . , Uk, Dk, see Figure 1. For each up and down buffer we reliably
store the pointers to their adjacent buffers in the linked list and their size. In
the reliable memory we store pointers to I, U0 and D0, together with |I|. Since
the position of the first element in U0 and D0 is not always the first memory cell
of the corresponding buffer, we also store the index of the first element in these
buffers in reliable memory. The insertion buffer I contains up to b = δ+logn+1
elements. For layer Li we define the threshold si by s0 = 2 · (δ2 + log2 n)
and si = 2si−1 = 2i+1 · (δ2 + log2 n), where n is the number of elements in
the priority queue. We use these thresholds to decide whether an up buffer con-
tains too many elements or whether a down buffer has too few. For the sake of
simplicity, the up and down buffers are grown and shrunk as needed during the
execution such that they don’t use any extra space.
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Fig. 1. The structure of the priority queue. The buffers are stored in a doubly linked
list using reliably stored pointers. Additionally, the size of each buffer is stored reliably.

To structure the priority queue, we maintain the following invariants for the
up and down buffers.

– Order invariants:
1. All buffers are faithfully ordered.
2. DiDi+1 and DiUi+1 are faithfully ordered, for 0 ≤ i < k.

– Size invariants:
3. si/2 ≤ |Di| ≤ si, for 0 ≤ i < k.
4. |Ui| ≤ si/2, for 0 ≤ i < k.

By maintaining all the up and down buffers faithfully ordered, it is possible to
move elements between neighboring layers efficiently, using faithful merging. By
invariant 2, all uncorrupted elements in Di are smaller than all uncorrupted
elements in both Di+1 and Ui+1. This ensures that small elements belong to the
lower layers of the priority queue. We note that there is no assumed relationship
between the elements in the up and down buffers in the same layer. Finally, the
size invariants allow the sizes of the buffers to vary within a large range. This
way, Ω(si) Insert or Deletemin operations occur between two operations on
the same buffer in Li, yielding the desired amortized bounds.

Since the si values depend on n, whenever the size of the priority queue
increases or decreases by Θ(n), we perform a global rebuilding. This rebuilding
is done by collecting all elements, sorting them with an optimal resilient sorting
algorithm [28], and redistributing the output into the down buffers of all the
layers starting with L0. After the global rebuilding, the up buffers are empty
and the down buffers full, except possibly the last down buffer.

3.2 Push and Pull Primitives

We now introduce the two fundamental primitives used by the priority queue.
The Push primitive is invoked when an up buffer contains too many elements,
breaking invariant 4. It “pushes” elements upwards, repairing the size invariants
locally. The Pull operation is invoked when a down buffer contains too few
elements, breaking invariant 3. It fills this down buffer by “pulling” elements
from the layer above, again locally repairing the size invariants. Both operations
faithfully merge consecutive buffers in the priority queue and redistribute the
resulting sequence among the participating buffers. After merging, we deallocate
the old buffers and allocate new arrays for the new buffers.
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Push. The Push primitive is invoked when an up buffer Ui breaks invariant 4,
i.e. when it contains more than si/2 elements. In this case we merge Ui, Di
and Ui+1 into a sequence M using the resilient merging algorithm in [28]. We
then distribute the elements in M by placing the first |Di|− δ elements in a new
buffer D′

i, and the remaining |Ui+1|+|Ui|+δ elements in a new buffer U ′
i+1. After

the merge, we create an empty buffer, U ′
i , and deallocate the old buffers. If U ′

i+1

contains too many elements, breaking invariant 4, the Push primitive is invoked
on U ′

i+1. When Li is the last layer, we fill D′
i with the first elements of M and

create a new layer Li+1 placing the remaining elements of M into D′
i+1 instead

of U ′
i+1. Since |D′

i| is smaller than |Di|, it could violate invariant 3. This situation
is handled by using the Pull operation and is described after introducing Pull.

Unlike the priority queue in [31], the Push operation decreases the size of
a down buffer. This is required to preserve invariant 2, in spite of corruptions.
After a Push call, D′

i can contain elements from Ui ∪ Ui+1. Since there is no
assumed relationship between elements in Ui ∪ Ui+1 and those in Di+1 ∪ Ui+2,
we need to ensure that each element in D′

i originating from Ui∪Ui+1 is faithfully
smaller than the elements in Di+1 ∪ Ui+2. Assume the size of Di is preserved,
i.e. |D′

i| = |Di|. Consider a corruption that alters an element in Di to some
large value before the Push. This corrupted value could be placed in U ′

i+1 and,
since |D′

i| = |Di|, an element from Ui ∪ Ui+1 must be placed in D′
i. This new

element in D′
i potentially violates invariant 2.

Pull. The Pull operation is called on a down buffer Di when it contains less
than si/2 elements, breaking invariant 3. In this case, the buffers Di, Ui+1,
and Di+1 are merged into a sequence M using the resilient merging algorithm
in [28]. The first si elements from M are written to a new buffer D′

i, and the
next |Di+1|−(si−|Di|)−δ elements are written to D′

i+1. The remaining elements
of M are written to U ′

i+1. A Pull is invoked on D′
i+1, if it is too small.

Similar to the Push operation, the extra δ elements lost by Di+1 ensure that
the order invariants hold in spite of possible corruptions. That is, a corruption
of an element in Di∪Di+1 to a very large value may cause an element from Ui+1

to take the place of the corrupted element in D′
i+1 and this element is possibly

larger than some uncorrupted element in Di+2 ∪ Ui+2.
After the merge, U ′

i+1 contains δ more elements than Ui+1 had before the
merge, and thus it is possible that it has too many elements, breaking invariant 4.
We handle this situation as follows. Consider a maximal series of subsequent
Pull invocations on down buffers Di, Di+1, . . . , Dj, 0 ≤ i < j < k. After the
first Pull call on Di and before the call on Di+1 we store a pointer to Di in the
reliable memory. After all the Pull calls we investigate all the affected up buffers,
by simply following the pointers between the buffers starting from Di, and invoke
the Push primitive wherever necessary. The case when Push operations cause
down buffers to underflow is handled similarly.

3.3 Insert and Deletemin

An element is inserted in the priority queue by simply appending it to the
insertion buffer I. If I gets full, its elements are added to U0 by first faithfully
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sorting I and then faithfully merging I and U0. If U0 breaks invariant 4, we invoke
the Push primitive. If L0 is the only layer of the priority queue and D0 violates
the size constraint, we faithfully merge the elements in I with D0 instead.

To delete the minimum element in the priority queue, we first find the mini-
mum of the first δ+1 values in D0, the minimum of the first δ+1 values in U0, and
the minimum element in I. We then take the minimum of these three elements,
delete it from the appropriate buffer and return it. After deleting the minimum,
we right-shift all the elements in the affected buffer from the beginning up to
the position of the minimum. This way we ensure that elements in any buffer
are stored consecutively. If D0 underflows, we invoke the Pull primitive on D0,
unless L0 is the only layer in the priority queue. If U0 or D0 contains Θ(log n+δ)
empty cells, we create a new buffer and copy the elements from the old buffer
to the new one.

4 Analysis

In this section we analyze the resilient priority queue. We prove the correctness
in Section 4.1 and analyze the time and space complexity in Section 4.2.

4.1 Correctness

To prove correctness of the resilient priority queue, we show that the Deletemin

operation returns the minimum uncorrupted value or a corrupted value. We first
prove that the order invariants are maintained by the Pull and Push operations.

Lemma 1. The Pull and Push primitives preserve the order invariants.

Proof. Recall that in a Pull invocation on buffer Di, the buffers Di, Ui+1,
and Di+1 are faithfully merged into a sequence M . The elements in M are then
distributed into three new buffers D′

i, U
′
i+1, and D′

i+1, see Figure 2. To argue
that the order invariants are satisfied we need to show that the elements of
the down buffer on layer Lj , for 0 ≤ j < k, are faithfully smaller than the
elements of the buffers on layer Lj+1, where k is the index of the last layer. The
invariants hold trivially for unaffected buffers. The faithful merge guarantees
that D′

iD
′
i+1 as well as D′

iU
′
i+1 are faithfully ordered, and thus the individual

buffers are also faithfully ordered. Since invariant 2 holds for the original buffers
all uncorrupted elements in Di+1 and Ui+1 are larger than the uncorrupted
elements in Di, guaranteeing that Di−1D

′
i is faithfully ordered. Finally, we now

show that Di+1Di+2 and Di+1Ui+2 are faithfully ordered.
Let m be the minimum uncorrupted element in Di+2∪Ui+2. We need to show

that all uncorrupted elements in D′
i+1 are smaller than m. If no uncorrupted

element from Ui+1 is placed in D′
i+1, the invariant holds by the order invariants

before the operation. Otherwise, assume that an uncorrupted element y ∈ Ui+1

is moved to D′
i+1. Since |U ′

i+1| = |Ui+1|+δ and y is moved to D′
i+1, at least δ+1

elements originating from Di ∪Di+1 are contained in U ′
i+1. Since there can be

at most δ corruptions, there exists at least one uncorrupted element, x, among
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D′
i D′

i+1 U ′
i+1

︷︸︸︷

|Ui+1|
︸ ︷︷ ︸

δ

M
︸ ︷︷ ︸

|Di| + |Di+1|

Fig. 2. The distribution of M into buffers

these. By faithful merging, all uncorrupted elements in D′
i+1 are smaller than x,

which means that y ≤ x. Since x originates from Di∪Di+1, it is smaller than m.
We obtain y ≤ m.

A similar argument proves correctness of the Push operation. We conclude
that both order invariants are preserved by Pull and Push operations. ��

Having proved that the order invariants are maintained at all times, we now
prove the correctness of the resilient priority queue.

Lemma 2. The Deletemin operation returns the minimum uncorrupted value
in the priority queue or a corrupted value.

Proof. We recall that the Deletemin operation computes the minimum of the
first δ+1 elements of U0 and D0. It compares these values with the minimum of I,
found in a scan, and returns the smallest of these elements. Since U0 and D0

are faithfully ordered, the minimum of their first δ + 1 elements is either the
minimum uncorrupted value in these buffers, or a corrupted value even smaller.
Furthermore, according to the order invariants, all the values in layers L1, . . . , Lk
are faithfully larger than the minimum in D0. Therefore, the element reported
by Deletemin is the minimum uncorrupted value or a corrupted value. ��

4.2 Complexity

In this section we show that our resilient priority queue uses O(n) space and
that Insert and Deletemin take O(log n + δ) amortized time. We first prove
that the Pull and Push primitives restore the size invariants.

Lemma 3. If a size invariant is broken for a buffer in L0, invoking Pull or
Push on that buffer restores the invariants. Furthermore, during this operation
Pull and Push are invoked on the same buffer at most once. No other invariants
are broken before or after this operation.

Proof. Assume that Push is invoked on U0, and that it is called iteratively up
to some layer Ll. By construction of Push, the size invariants for all the up
buffers now hold. Since a Push steals δ elements from the down buffers, the
layers L0, . . . , Ll are traversed again and Pull is invoked on these as needed.
The last of these Pull operations might proceed past layer Ll. Similarly, a
Pull may cause an up buffer to overflow. However, since the cascading Push

operations left |Ui| = 0 for i ≤ l, any new Push are invoked on up buffers only
on layer Ll+1 or higher, thus Push is invoked on each buffer at most once. A
similar argument works for the Pull operation. ��
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Lemma 4. The resilient priority queue uses O(n+δ) space to store n elements.

Proof. The insertion buffer always uses O(log n + δ) space. We prove that the
remaining layers use O(n) space. For each layer we use O(δ) space for storing
structural information reliably. In all layers, except the last one, the down buffer
contains Ω(δ2) elements by invariant 3. This means that for each of these layers
the elements stored in the down buffer dominate the space complexity. The
structural information of the last layer requires additional O(δ) space. ��

The space complexity of the priority queue can be reduced to O(n) without
affecting the time complexity, by storing the structural information of L0 in safe
memory, and by doubling or halving the insertion buffer during the lifetime of
the algorithm such that it always uses O(|I|) space.

Lemma 5. Each Insert and Deletemin takes O(log n + δ) amortized time.

Proof. We define the potential function:

Φ =
k∑

i=1

(c1 · (log n− i) · |Ui| + c2 · i · |Di|)

We use Φ to analyze the amortized cost of a Push operation. In a Push oper-
ation on Ui, buffers Ui, Di, and Ui+1 are merged. The elements are then dis-
tributed into new buffers U ′

i , D
′
i, and U ′

i+1, such that |U ′
i | = 0, |D′

i| = |Di| − δ,
and |U ′

i+1| = |Ui+1|+ |Ui|+ δ. This gives the following change in potential ΔΦ:

ΔΦ = −|Ui| · c1 · (log n− i)− δ · c2 · i + (|Ui| + δ) · c1(logn− (i + 1))
= −c1 · |Ui| + δ(−c2 · i + c1 · logn− c1 · i− c1) .

Since the Push is invoked on Ui, invariant 4 is not valid for Ui and there-
fore |Ui| ≥ si

2 = 2i (log2 n + δ2). Thus:

ΔΦ ≤ −c1·|Ui|+c1 ·δ·logn ≤ −c1 ·2i·(log2 n+δ2)+c1 ·δ·logn ≤ −c1 ·c′·|Ui| , (1)

for some constant c′ > 0.
Since faithfully merging two sequences of size n takes O(n+ δ2) time [28], the

time used for a Push on Ui is upper bounded by cm · (|Ui|+ |Di|+ |Ui+1|+ δ2),
where cm depends on the resilient merge. This includes the time required for
retrieving reliably stored variables. Adding the time and the change in potential
we are able to get the amortized cost less than zero by tweaking c1 based on
equation (1). This is because |Ui| is Ω(δ2) and at most a constant fraction smaller
than the participants in the merge.

A similar analysis works for the Pull primitive. We now calculate the amor-
tized cost of Insert and Deletemin. We ignore any Push or Pull operations
since their amortized costs are negative. The amortized time for inserting an
element in I, sorting I, and merging it with U0 is O(log n + δ) per operation.
The change in potential when adding elements to L0 is O(log n) per element.
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The time needed to find the smallest element in a Deletemin is O(log n + δ),
and the change in potential when an element is deleted from L0 is negative.

The cost of global rebuilding is dominated by the cost of sorting, which
is O(n log n+ δ2). There are Θ(n) operations between each rebuild, which leads
to O(log n+δ) time per operation, since δ ≤ n, and this concludes the proof. ��
Theorem 1. The resilient priority queue takes O(n) space and uses amor-
tized O(log n + δ) time per operation.

5 Lower Bound

In this section we prove that any resilient priority queue takes Ω(log n+ δ) time
for either Insert or Deletemin in the comparison model, under the assumption
that no elements are stored in reliable memory between operations. This implies
optimality of our resilient priority queue under these assumptions. We note that
the reliable memory may contain any structural information, e.g. pointers, sizes,
indices.
Theorem 2. A resilient priority queue containing n elements, with n > δ,
uses Ω(log n + δ) comparisons to perform Insert followed by Deletemin.

Proof. Consider a priority queue Q with n elements, with n > δ, that uses less
than δ comparisons for an Insert followed by a Deletemin. Also, Q does not
store elements in reliable memory between operations. Assume that no corrup-
tions have occurred so far. Without loss of generality we assume that all the ele-
ments in Q are distinct. We prove there exists a series of corruptions C, |C| ≤ δ,
such that the result of an Insert of an element e followed by a Deletemin

returns the same element regardless of the choice of e.
Let k < δ be the number of comparisons performed by Q during the two

operations. We force the result of each comparison to be the same regardless
of e by suitable corruptions. In all the comparisons involving e, we ensure that e
is the smallest. We do so by corrupting the value which e is compared against
if necessary, by adding some positive constant c ≥ e to the other value. If two
elements different than e are compared, we make sure the outcome is the same
as if no corruptions had happened. If one of them was corrupted, adding c to the
other one reestablishes their previous ordering. If both of them were corrupted
by adding c, their ordering is unchanged and no corruptions are needed. Forcing
any comparison to give the desired outcome requires at most one corruption,
and therefore |C| ≤ k < δ.

We now consider the value e′ returned by Deletemin on Q. If e = e′ then
we choose e to be larger than some element x ∈ Q not affected by a corruption
in C. Such a value exists because the size of the priority queue is larger than δ.
Since e = e′ > x, Q returned an uncorrupted element that was not the minimum
uncorrupted element in Q. If e 	= e′ we choose e to be smaller than any element
in Q. With such a choice of e, no corruptions are required and the value returned
by Q was not corrupted, but still larger than e. This proves Q is not resilient.

Adding the classical Ω(log n) bound for priority queues in the comparison
model the result follows. ��
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Abstract. A perfect hash function (PHF) h : U → [0, m − 1] for a
key set S is a function that maps the keys of S to unique values. The
minimum amount of space to represent a PHF for a given set S is known
to be approximately 1.44n2/m bits, where n = |S|. In this paper we
present new algorithms for construction and evaluation of PHFs of a
given set (for m = n and m = 1.23n), with the following properties:

1. Evaluation of a PHF requires constant time.
2. The algorithms are simple to describe and implement, and run in

linear time.
3. The amount of space needed to represent the PHFs is around a

factor 2 from the information theoretical minimum.

No previously known algorithm has these properties. To our knowledge,
any algorithm in the literature with the third property either:

– Requires exponential time for construction and evaluation, or
– Uses near-optimal space only asymptotically, for extremely large n.

Thus, our main contribution is a scheme that gives low space usage for
realistic values of n. The main technical ingredient is a new way of basing
PHFs on random hypergraphs. Previously, this approach has been used
to design simple PHFs with superlinear space usage.

1 Introduction

Perfect hashing is a space-efficient way of associating unique identifiers with the
elements of a static set S. We will refer to the elements of S as keys. A perfect
hash function (PHF) maps S ⊆ U to unique values in the range [0,m− 1]. We
let n = |S| and u = |U | — note that we must have m ≥ n. A minimal perfect
hash function (MPHF) is a PHF with m = n. For simplicity of exposition, we
consider in this paper the case logu � n. This allows us to ignore terms in the
space usage that depend on u.
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In this paper we present a simple, efficient, near space-optimal, and practical
family F of algorithms for generating PHFs and MPHFs. The algorithms in F
use r-uniform random hypergraphs given by function values of r hash functions
on the keys of S. An r-uniform hypergraph is the generalization of a standard
undirected graph where each edge connects r ≥ 2 vertices. The idea of basing
perfect hashing on random hypergraphs is not new, see e.g. [14], but we will
proceed differently to achieve a space usage of O(n) bits rather than O(n log n)
bits. (As in previous constructions based on hypergraphs we assume that the
hash functions used are uniformly random and have independent function values.
However, we argue that our scheme can also be realized using explicitly defined
hash functions using small space.) Evaluation time for all schemes considered
is constant. For r = 2 we obtain a space usage of (3 + ε)n bits for a MPHF,
for any constant ε > 0. For r = 3 we obtain a space usage of less than 2.7n
bits for a MPHF. This is within a factor of 2 from the information theoretical
lower bound of approximately 1.4427n bits. More compact, and even simpler,
representations can be achieved for larger m. For example, for m = 1.23n we
can get a space usage of 1.95n bits. This is slightly more than two times the
information theoretical lower bound of around 0.89n bits. The bounds for r = 3
assume a conjecture about the emergence of a 2-core in a random 3-partite
hypergraph, whereas the bounds for r = 2 are fully proved. Choosing r > 3 does
not give any improvement of these results.

We will argue that our method is far more practical than previous methods
with proven space complexity, both because of its simplicity, and because the
constant factor of the space complexity is more than 6 times lower than its closest
competitor, for plausible problem sizes. We verify the practicality experimentally,
using heuristic hash functions, and slightly more space than in the mentioned
theoretical bounds.

2 Related Work

In this section we review some of the most important theoretical and practi-
cal results on perfect hashing. Czech, Havas and Majewski [4] provide a more
comprehensive survey.

2.1 Theoretical Results

Fredman and Komlós [9] proved that at least n log e+log log u−O(logn) bits are
required to represent a MPHF (in the worst case over all sets of size n), provided
that u ≥ nα for some α > 2. Logarithms are in base 2. Note that the two last
terms are negligible under the assumption log u � n. In general, for m > n the
space required to represent a PHF is around (1 + (m/n− 1) ln(1− n/m))n log e
bits. A simpler proof of this was later given by Radhakrishnan [18].

Mehlhorn [15] showed that the Fredman-Komlós bound is almost tight by
providing an algorithm that constructs a MPHF that can be represented with
at most n log e + log log u + O(log n) bits. However, his algorithm is far from
practice because its construction and evaluation time is exponential in n.
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Schmidt and Siegel [19] proposed the first algorithm for constructing a MPHF
with constant evaluation time and description size O(n + log log u) bits. Their
algorithm, as well as all other algorithms we will consider, is for the Word RAM
model of computation [10]. In this model an element of the universe U fits into
one machine word, and arithmetic operations and memory accesses have unit
cost. From a practical point of view, the algorithm of Schmidt and Siegel is
not attractive. The scheme is complicated to implement and the constant of the
space bound is large: For a set of n keys, at least 29n bits are used, which means a
space usage similar in practice to the best schemes using O(n log n) bits. Though
it seems that [19] aims to describe its algorithmic ideas in the clearest possible
way, not trying to optimize the constant, it appears hard to improve the space
usage significantly.

More recently, Hagerup and Tholey [11] have come up with the best theoretical
result we know of. The MPHF obtained can be evaluated in O(1) time and stored
in n log e+log log u+O(n(log logn)2/ logn+log log log u) bits. The construction
time is O(n+ log log u) using O(n) words of space. Again, the terms involving u
are negligible. In spite of its theoretical importance, the Hagerup and Tholey [11]
algorithm is also not practical, as it emphasizes asymptotic space complexity
only. (It is also very complicated to implement, but we will not go into that.)
For n < 2150 the scheme is not well-defined, as it relies on splitting the key set
into buckets of size n̂ ≤ logn/(21 log logn). If we fix this by letting the bucket
size be at least 1, then buckets of size one will be used for n < 2300, which
means that the space usage will be at least (3 log log n+log 7)n bits. For a set of
a billion keys, this is more than 17 bits per element. Thus, the Hagerup-Tholey
MPHF is not space efficient in practical situations. While we believe that their
algorithm has been optimized for simplicity of exposition, rather than constant
factors, it seems difficult to significantly reduce the space usage based on their
approach.

2.2 Practical Results

We now describe some of the main “practical” results that our work is based on.
They are characterized by simplicity and (provably) low constant factors.

The first two results assume uniform random hash functions to be available for
free. Czech et al [14] proposed a family of algorithms to construct MPHFs based
on r-uniform hypergraphs (i.e., with edges of size r). The resulting functions can
be evaluated in O(1) time and stored in O(n log n) bits. Botelho, Kohayakawa
and Ziviani [3] improved the space requirement of one instance of the family
considering r = 2, but the space requirement is still O(n log n) bits. In both cases,
the MPHF can be generated in expected O(n) time. It was found experimentally
in [3] that their construction procedure works well in practice.

Pagh [16] proposed an algorithm for constructing MPHFs of the form h(x) =
(f(x) + d[g(x)]) mod n, where f and g are randomly chosen from a family of
universal hash functions, and d is a vector of “displacement values” that are used
to resolve collisions that are caused by the function f . The scheme is simple and
evaluation of the functions very fast, but the space usage is (2 + ε)n logn bits,
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which is suboptimal. Dietzfelbinger and Hagerup [5] improved [16], reducing
from the space usage to (1 + ε)n logn bits, still using simple hash functions.
Woelfel [20] has shown how to decrease the space usage further, to O(n log logn)
bits asymptotically, still with a quite simple algorithm. However, there is no
empirical evidence on the practicality of this scheme.

2.3 Heuristics

Fox et al. [7,8] presented several algorithms for constructing MPHFs that in
experiments require between 2 and 8 bits per key to be stored. However, it is
shown in [4, Section 6.7] that their algorithms have exponential running times in
expectation. Also, there is no warranty that the number of bits per key to store
the function will be fixed as n increases. The work by Lefebvre and Hoppe [13] has
the same problem. They have designed a PHF method to specifically represent
sparse spatial data and the resulting functions requires more than 3 bits per key
to be stored.

3 A Family of Minimal Perfect Hashing Methods

In this section we present our family F of algorithms for constructing near space-
optimal MPHFs. The basic idea is as follows. The first step, referred to as the
Mapping Step, maps the key set S to a set of n = |S| edges forming an acyclic
r-partite hypergraph Gr = (V,E), where |E(Gr)| = n, |V (Gr)| = m and r ≥ 2.
Note that each key in S is associated with an edge in E(Gr). Also in the Mapping
Step, we order the edges of Gr into a list L such that each edge ei contains a
vertex that is not incident to any edge that comes after ei in L. The next step,
referred to as the Assigning Step, associates uniquely each edge with one of its
r vertices. Here, “uniquely” means that no two edges may be assigned to the
same vertex. Thus, the Assigning Step finds a PHF for S with range V (Gr).
If we desire a PHF with a smaller range (n < |V (Gr)|), we subsequently map
the assigned vertices of V (Gr) to [0, n − 1]. This mapping is produced by the
Ranking Step, which creates a data structure that allows us to compute the rank
of any assigned vertex of V (Gr) in constant time.

For the analysis, we assume that we have at our disposal r hash functions
hi : U → [imr , (i + 1)mr − 1], 0 ≤ i < r, which are independent and uni-
formly distributed function values. (This is the “uniform hashing” assumption,
see Section 6 for justification.) The r functions and the set S define, in a nat-
ural way, a random r−partite hypergraph. We define Gr = Gr(h0, h1 . . . , hr−1)
as the hypergraph with vertex set V (Gr) = [0,m − 1] and edge set E(Gr) =
{{h0(x), h1(x), . . . , hr−1(x)} | x ∈ S}. For the Mapping Step to work, we need Gr
to be simple and acyclic, i.e., Gr should not have multiple edges and cycles. This
is handled by choosing r new hash functions in the event that the Mapping Step
fails. The PHF p : S → V (Gr) produced by the Assigning Step has the form

p(x) = hi(x), where i = (g(h0(x)) + g(h1(x)) + · · ·+ g(hr−1(x))) mod r. (1)
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The function g : V (Gr) → {0, 1, . . . , r} is a labeling of the vertices of V (Gr). We
will show how to choose the labeling such that p is 1-1 on S, given that Gr is
acyclic. In addition, g(y) 	= r if and only if y is an assigned vertex, i.e., exactly
when y ∈ p(S). This means that we get a MPHF for S as follows:

h(x) = rank(p(x)) (2)

where rank : V (Gr) → [0, n− 1] is a function defined as:

rank(u) = |{v ∈ V (Gr) | v < u ∧ g(v) 	= r}|. (3)

The Ranking Step produces a data structure that allows us to compute the rank
function in constant time.

Figure 1 presents a pseudo code for our family of minimal perfect hashing
algorithms. If we omit the third step we will build PHFs with m = |V (Gr)|
instead. We now describe each step in detail.

procedure Generate (S , r , g , rankTable)
Mapping (S , Gr , L) ;
Assigning (Gr , L , g ) ;
Ranking (g , rankTable) ;

Fig. 1. Main steps of the family of algorithms

3.1 Mapping Step

The Mapping Step takes the key set S as input, where |S| = n, and creates an
acyclic random hypergraph Gr and a list of edges L. We say that a hypergraph
is acyclic if it is the empty graph, or if we can remove an edge with a node of
degree 1 such that (inductively) the resulting graph is acyclic. This means that
we can order the edges of Gr into a list L = e1, . . . , en such that any edge ei
contains a vertex that is not incident to any edge ej , for j > i. The list L is
obtained during a test which determines whether Gr is acyclic, which runs in
time O(n) (see e.g. [14]).

Let Pra denote the probability that Gr is acyclic. We want to ensure that
this is the case with constant probability, i.e., Pra = Ω(1). Define c by m = cn.
For r = 2, we can use the techniques presented in [12] to show that Pra =√

1 − (2/c)2. For example, when c = 2.09 we have Pra = 0.29. This is very close
to 0.294 that is the value we got experimentally by generating 1, 000 random
bipartite 2-graphs with n = 107 keys (edges). For r > 2, it seems to be technically
difficult to obtain a rigorous bound on Pra. However, the heuristic argument
presented in [4, Theorem 6.5] also holds for our r−partite random hypergraphs.
Their argument suggests that if c = c(r) is given by

c(r) =

⎧
⎨

⎩

2 + ε, ε > 0 for r = 2

r
(
minx>0

{
x

(1−e−x)r−1

})−1

for r > 2,
(4)
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then the acyclic random r-graphs dominate the space of random r-graphs. The
value c(3) ≈ 1.23 is a minimum value for Eq. (4). This implies that the acyclic
r-partite hypergraphs with the smallest number of vertices happen when r = 3.
In this case, we have got experimentally Pra ≈ 1 by generating 1, 000 3-partite
random hypergraphs with n = 107 keys (hyperedges).

It is interesting to remark that the problems of generating acyclic r-partite
hypergraphs for r = 2 and for r > 2 have different natures. For r = 2, the
probability Pra varies continuously with the constant c. But for r > 2, there is a
phase transition. That is, there is a value c(r) such that if c ≤ c(r) then Pra tends
to 0 when n tends to ∞ and if c > c(r) then Pra tends to 1. This phenomenon
has also been reported by Majewski et al [14] for general hypergraphs.

3.2 Assigning Step

The Assigning Step constructs the labeling g : V (Gr) → {0, 1, . . . , r} of the
vertices of Gr. To assign values to the vertices of Gr we traverse the edges in
the reverse order en, . . . , e1 to ensure that each edge has at least one vertex that
is traversed for the first time. The assignment is created as follows. Let Visited
be a boolean vector of size m that indicates whether a vertex has been visited.
We first initialize g[i] = r (i.e., each vertex is unassigned) and Visited [i] = false ,
0 ≤ i ≤ m− 1. Then, for each edge e ∈ L from tail to head, we look for the first
vertex u belonging to e not yet visited. Let j, 0 ≤ j ≤ r− 1 be the index of u in
e. Then, we set g[u] = (j −

∑
v∈e∧Visited [v]=true g[v]) mod r. Whenever we pass

through a vertex u from e, if it has not yet been visited, we set Visited [u] = true.
As each edge is handled once, the Assigning Step also runs in linear time.

3.3 Ranking Step

The Ranking Step obtains MPHFs from the PHFs presented in Section 3.2. It
receives the labeling g as input and produces the rankTable as output. It is
possible to build a data structure that allows the computation in constant time
of function rank presented in Eq. (3) by using o(m) additional bits of space. This
is a well-studied primitive in succinct data structures (see e.g. [17]).

Implementation. We now describe a practical variant that uses εm additional
bits of space, where ε can be chosen as any positive number, to compute the data
structure rankTable in linear time. Conceptually, the scheme is very simple: store
explicitly the rank of every kth index in a rankTable, where k = �log(m)/ε�. In
the implementation we let the parameter k to be set by the users so that they
can trade off space for evaluation time and vice-versa. In the experiments we
set k to 256 in order to spend less space to store the resulting MPHFs. This
means that we store in the rankTable the number of assigned vertices before
every 256th entry in the labeling g.

Evaluation. To compute rank(u), where u is given by Eq. (1), we look up in
the rankTable the rank of the largest precomputed index v ≤ u, and count the
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number of assigned vertices from position v to u− 1. To do this in time O(1/ε)
we use a lookup table that allows us to count the number of assigned vertices in
Ω(logm) bits in constant time. Such a lookup table takes mΩ(1) bits of space.

In the experiments, we have used a lookup table that allows us to count the
number of assigned vertices in 8 bits in constant time. Therefore, to compute
the number of assigned vertices in 256 bits we need 32 lookups. Such a lookup
table fits entirely in the cache because it takes 28 bytes of space.

We use the implementation just described because the smallest hypergraphs
are obtained when r = 3 (see Section 3.1). Therefore, the most compact and
efficient functions are generated when r = 2 and r = 3. That is why we have
chosen these two instances of the family to be discussed in the following sections.

4 The 2-Uniform Hypergraph Instance

The use of 2-graphs allows us to generate the PHFs of Eq.(1) that give values
in the range [0,m − 1], where m = (2 + ε)n for ε > 0 (see Section 3.1). The
significant values in the labeling g for a PHF are {0, 1}, because we do not need
to represent information to calculate the ranking (i.e., r = 2). Then, we can
use just one bit to represent the value assigned to each vertex. Therefore, the
resulting PHF requires m bits to be stored. For ε = 0.09, the resulting PHFs are
stored in approximately 2.09n bits.

To generate the MPHFs of Eq. (2) we need to include the ranking information.
Thus, we must use the value r = 2 to represent unassigned vertices and now
two bits are required to encode each value assigned to the vertices. Then, the
resulting MPHFs require (2 + ε)m bits to be stored (remember that the ranking
information requires εm bits), which corresponds to (2 + ε)(2 + ε)n bits for any
ε > 0 and ε > 0. For ε = 0.125 and ε = 0.09 the resulting functions are stored
in approximately 4.44n bits.

4.1 Improving the Space

The range of significant values assigned to the vertices is clearly [0,2]. Hence
we need log(3) bits to encode the value assigned to each vertex. Theoretically
we use arithmetic coding as block of values. Therefore, we can compress the
resulting MPHF to use (log(3) + ε)(2 + ε)n bits of storage space by using a
simple packing technique. In practice, we can pack the values assigned to every
group of 5 vertices into one byte because each assigned value comes from a range
of size 3 and 35 = 243 < 256. Thus, if ε = 0.125 and ε = 0.09, then the resulting
functions are stored in approximately 3.6n bits.

We now sketch another way of improving the space to just over 3 bits per key,
adding a little complication to the scheme. Use m = (2 + ε/2)n for ε > 0. Now
store separately the set of assigned vertices in a bit array T of size m, such that
rank operations are efficiently supported using (ε/2)n bits of extra space. Then,
store for each vertex v ∈ V (Gr) the bit g(v) (must be 0 or 1), which costs m
bits. Now we can create a compressed representation g′ that uses only n bits and
enables us to compute any bit of g in constant time by using rank on the set of
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assigned vertices represented by T . That is, g′[rank(v)] = g[v]. This is possible
since rank(v) is 1-1 on elements in V (Gr). In conclusion, we can replace g by g′

and reduce the space usage to (3 + ε)n bits.

5 The 3-Uniform Hypergraph Instance

The use of 3−graphs allows us to generate more compact PHFs and MPHFs at
the expense of one more hash function h2. An acyclic random 3−graph is gen-
erated with probability Ω(1) for m ≥ c(3)n, where c(3) ≈ 1.23 is the minimum
value for c(r) (see Section 3.1). Therefore, we will be able to generate the PHFs
of Eq. (1) so that they will produce values in the range [0, (1.23 + ε)n − 1] for
any ε ≥ 0. The values assigned to the vertices are drawn from {0, 1, 2, 3} and,
consequently, each value requires 2 bits to be represented. Thus, the resulting
PHFs require 2(1.23+ ε)n bits to be stored, which corresponds to 2.46n bits for
ε = 0.

We can generate the MPHFs of Eq. (2) from the PHFs that take into account
the special value r = 3. The resulting MPHFs require (2+ε)(1.23+ε)n bits to be
stored for any ε > 0 and ε ≥ 0, once the ranking information must be included.
If ε = 0.125 and ε = 0, then the resulting functions are stored in approximately
2.62n bits.

5.1 Improving the Space

For PHFs that map to the range [0, (1.23+ε)n−1] we can get still more compact
functions. This comes from the fact that the only significant values assigned to
the vertices that are used to compute Eq. (1) are {0, 1, 2}. Then, we can apply the
arithmetic coding technique presented in Section 4.1 to get PHFs that require
log(3)(1.23 + ε)n bits to be stored, which is approximately 1.95n bits for ε = 0.
For this we must replace the special value r = 3 to 0.

6 The Full Randomness Assumption

The full randomness assumption is not feasible because each hash function hi :
U → [imr , (i + 1)mr − 1] for 0 ≤ i < r would require at least n log mr bits to be
stored, exceeding the space for the PHFs. From a theoretical perspective, the
full randomness assumption is not too harmful, as we can use the “split and
share” approach of Dietzfelbinger and Weidling [6]. The additional space usage
is then a lower order term of O(n1−Ω(1)). Specifically, the algorithm would split
S into O(n1−δ) buckets of size nδ, where δ < 1/3, say, and create a perfect
hash function for each bucket using a pool of O(r) simple hash functions of size
O(n2δ), where each acts like truly random functions on each bucket, with high
probability. From this pool, we can find r suitable functions for each bucket, with
high probability. Putting everything together to form a perfect hash function for
S can be done using an offset table of size O(n1−δ).
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Implementation. In practice, limited randomness is often as good as total
randomness [19]. For our experiments we choose hi from a family H of universal
hash functions proposed by Alon, Dietzfelbinger, Miltersen and Petrank [1], and
we verify experimentally that the schemes behave well (see Section 7). We use a
function h′ from H so that the functions hi are computed in parallel. For that,
we impose some upper bound L on the lengths of the keys in S. The function
h′ has the following form: h′(x) = Ax, where x ∈ S ⊆ {0, 1}L and A is a γ × L
matrix in which the elements are randomly chosen from {0, 1}. The output is a
bit string of an a priori defined size γ. Each hash function hi is computed by
hi(x) = h′(x)[a, b] mod (mr ) + i(mr ), where a = βi, b = a + β − 1 and β is the
number of bits used from h′ for computing each hi. In [2] it is shown a tabulation
idea that can be used to efficiently implement h′ and, consequently, the functions
hi. The storage space required for the hash functions hi corresponds to the one
required for h′, which is γ × L bits.

7 Experimental Results

In this section we evaluate the performance of our algorithms. We compare them
with the main practical minimal perfect hashing algorithms we found in the
literature. They are: Botelho, Kohayakawa and Ziviani [3] (referred to as BKZ),
Fox, Chen and Heath [7] (referred to as FCH), Majewski, Wormald, Havas and
Czech [14] (referred to as MWHC), and Pagh [16] (referred to as PAGH). For the
MWHC algorithm we used the version based on 3-graphs. We did not consider
the one that uses 2-graphs because it is shown in [3] that the BKZ algorithm
outperforms it. We used the linear hash functions presented in Section 6 for all
the algorithms.

The algorithms were implemented in the C language and are available at
http://cmph.sf.net under the GNU Lesser General Public License (LGPL).
The experiments were carried out on a computer running the Linux operating
system, version 2.6, with a 3.2 gigahertz Intel Xeon Processor with a 2 megabytes
L2 cache and 1 gigabyte of main memory. Each experiment was run for 100 trials.
For the experiments we used two collections: (i) a set of randomly generated
4 bytes long IP addresses, and (ii) a set of 64 bytes long (on average) URLs
collected from the Web.

To compare the algorithms we used the following metrics: (i) The amount
of time to generate MPHFs, referred to as Generation Time. (ii) The space
requirement for the description of the resulting MPHFs to be used at retrieval
time, referred to as Storage Space. (iii) The amount of time required by a MPHF
for each retrieval, referred to as Evaluation Time. For all the experiments we used
n = 3, 541, 615 keys for the two collections. The reason to choose a small value
for n is because the FCH algorithm has exponential time on n for the generation
phase, and the times explode even for number of keys a little over.

We now compare our algorithms for constructing MPHFs with the other al-
gorithms considering generation time and storage space. Table 1 shows that
our algorithm for r = 3 and the MWHC algorithm are faster than the others to
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Table 1. Comparison of the algorithms for constructing MPHFs considering generation
time and storage space, and using n = 3, 541, 615 for the two collections

Algorithms Generation Time (sec) Storage Space
URLs IPs Bits/Key Size (MB)

Our
r = 2 19.49 ± 3.750 18.37 ± 4.416 3.60 1.52

r = 3 9.80 ± 0.007 8.74 ± 0.005 2.62 1.11
BKZ 16.85 ± 1.85 15.50 ± 1.19 21.76 9.19
FCH 5901.9 ± 1489.6 4981.7 ± 2825.4 3.66 1.55

MWHC 10.63 ± 0.09 9.36 ± 0.02 26.76 11.30
PAGH 52.55 ± 2.66 47.58 ± 2.14 44.16 18.65

generate MPHFs. The storage space requirements for our algorithms with r = 2,
r = 3 and the FCH algorithm are 3.6, 2.62 and 3.66 bits per key, respectively. For
the BKZ, MWHC and PAGH algorithms they are logn, 1.23 logn and 2.03 logn
bits per key, respectively.

Now we compare the algorithms considering evaluation time. Table 2 shows
the evaluation time for a random permutation of the n keys. Although the num-
ber of memory probes at retrieval time of the MPHF generated by the PAGH
algorithm is optimal [16] (it performs only 1 memory probe), it is important to
note in this experiment that the evaluation time is smaller for the FCH and our
algorithms because the generated functions fit entirely in the L2 cache of the
machine (see the storage space size for our algorithms and the FCH algorithm in
Table 1). Therefore, the more compact a MPHF is, the more efficient it is if its
description fits in the cache. For example, for sets of size up to 6.5 million keys
of any type the resulting functions generated by our algorithms will entirely fit
in a 2 megabyte L2 cache. In a conversely situation where the functions do not
fit in the cache, the MPHFs generated by the PAGH algorithm are the most
efficient (because of lack of space we will not show this experiment).

Table 2. Comparison of the algorithms considering evaluation time and using the
collections IPs and URLs with n = 3, 541, 615

Algorithms Our BKZ FCH MWHC PAGH
r = 2 r = 3

Evaluation IPs 1.35 1.36 1.45 1.01 1.46 1.43
Time (sec) URLs 2.63 2.73 2.81 2.14 2.85 2.78

Now, we compare the PHFs and MPHFs generated by our family of algorithms
considering generation time, storage space and evaluation time. Table 3 shows
that the generation times for PHFs and MPHFs are almost the same, being the
algorithms for r = 3 more than twice faster because the probability to obtain an
acyclic 3-graph for c(3) = 1.23 tends to one while the probability for a 2-graph
where c(2) = 2.09 tends to 0.29 (see Section 3.1). For PHFs with m = 1.23n
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Table 3. Comparison of the PHFs and MPHFs generated by our algorithms, consid-
ering generation time, evaluation time and storage space metrics using n = 3, 541, 615
for the two collections. For packed schemes see Sections 4.1 and 5.1.

r Packed m
Generation Time (sec) Eval. Time (sec) Storage Space

IPs URLs IPs URLs Bits/Key Size (MB)
2 no 2.09n 18.32 ± 3.352 19.41 ± 3.736 0.68 1.83 2.09 0.88
2 yes n 18.37 ± 4.416 19.49 ± 3.750 1.35 2.63 3.60 1.52
3 no 1.23n 8.72 ± 0.009 9.73 ± 0.009 0.96 2.16 2.46 1.04
3 yes 1.23n 8.75 ± 0.007 9.95 ± 0.009 0.94 2.14 1.95 0.82
3 no n 8.74 ± 0.005 9.80 ± 0.007 1.36 2.73 2.62 1.11

instead of MPHFs with m = n, then the space storage requirement drops from
2.62 to 1.95 bits per key. The PHFs with m = 2.09n and m = 1.23n are the
fastest ones at evaluation time because no ranking or packing information needs
to be computed.

8 Conclusions

We have presented an efficient family of algorithms to generate near space-
optimal PHPs and MPHFs. The algorithms are simpler and has much lower
constant factors than existing theoretical results for n < 2300. In addition, it
outperforms the main practical general purpose algorithms found in the litera-
ture considering generation time and storage space as metrics.
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10. Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with O(1) worst
case access time. Journal of the ACM 31(3), 538–544 (1984)

11. Hagerup, T., Tholey, T.: Efficient minimal perfect hashing in nearly minimal space.
In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 317–326.
Springer, Heidelberg (2001)

12. Janson, S.: Poisson convergence and poisson processes with applications to random
graphs. Stochastic Processes and their Applications 26, 1–30 (1987)

13. Lefebvre, S., Hoppe, H.: Perfect spatial hashing. ACM Transactions on Graph-
ics 25(3), 579–588 (2006)

14. Majewski, B.S., Wormald, N.C., Havas, G., Czech, Z.J.: A family of perfect hashing
methods. The Computer Journal 39(6), 547–554 (1996)

15. Mehlhorn, K.: Data Structures and Algorithms 1: Sorting and Searching. Springer,
Heidelberg (1984)

16. Pagh, R.: Hash and displace: Efficient evaluation of minimal perfect hash functions.
In: Dehne, F., Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS 1999. LNCS,
vol. 1663, pp. 49–54. Springer, Heidelberg (1999)

17. Pagh, R.: Low redundancy in static dictionaries with constant query time. SIAM
Journal on Computing 31(2), 353–363 (2001)

18. Radhakrishnan, J.: Improved bounds for covering complete uniform hypergraphs.
Information Processing Letters 41, 203–207 (1992)

19. Schmidt, J.P., Siegel, A.: The spatial complexity of oblivious k-probe hash func-
tions. SIAM Journal on Computing 19(5), 775–786 (1990)

20. Woelfel, P.: Maintaining external memory efficient hash tables. In: Dı́az, J., Jansen,
K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and RANDOM 2006. LNCS,
vol. 4110, pp. 508–519. Springer, Heidelberg (2006)



A Near Linear Time Approximation Scheme for
Steiner Tree Among Obstacles in the Plane

Matthias Müller-Hannemann and Siamak Tazari�

Darmstadt University of Technology, Dept. of Computer Science
{muellerh,tazari}@algo.informatik.tu-darmstadt.de

Abstract. We present a polynomial time approximation scheme (PTAS)
for the Steiner tree problem with polygonal obstacles in the plane with
running time O(n log2 n), where n denotes the number of terminals plus
obstacle vertices. To this end, we show how a planar spanner of size
O(n log n) can be constructed that contains a (1+ε)-approximation of the
optimal tree. Then one can find an approximately optimal Steiner tree in
the spanner using the algorithm of Borradaile et al. (2007) for the Steiner
tree problem in planar graphs. We prove this result for the Euclidean met-
ric and also for all uniform orientation metrics, i.e. particularly the recti-
linear and octilinear metrics.

Keywords: Steiner Tree, Obstacles, PTAS, Euclidean Metric, Uniform
Orientation Metric, Spanner, Banyan, Planar Graph.

1 Introduction

We consider the following network design problem: given a set of points in the
plane and a set of disjoint polygonal obstacles, find the shortest network inter-
connecting the points and avoiding the interior of the obstacles. We refer to the
given points as terminals and to the obstacle vertices as corners. We let n be the
total number of terminals and corners. The shortest interconnecting network of
the terminals will be a tree, a so-called Steiner tree, and it might use corners
and additional vertices called Steiner points (note that we use this term only to
refer to points that do not coincide with terminals or corners). This problem is
called the obstacle-avoiding Steiner minimum tree problem (SMTO) or ESMTO
when we are using the Euclidean metric.

Uniform orientation metrics are derived from λ-geometries. In a λ-geometry,
one is allowed to move only along λ ≥ 2 orientations building consecutive angles
of π/λ. The rectilinear or Manhattan metric corresponds to the 2-geometry and
the octilinear metric to the 4-geometry. We call the corresponding SMT problems
λ-SMT or, when obstacles are to be avoided, λ-SMTO. In this case, the obstacle
edges must obey the restrictions of the given orientations, too.

It has been a long-standing open problem whether these SMT problems among
obstacles admit a polynomial time approximation scheme (PTAS). With the
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recent result of Borradaile et al. [1,2] about Steiner trees in planar graphs, this
question can now be answered affirmatively by combining a number of results
in the literature (see Section 1.1). However, to obtain a near linear running
time, new ideas and more sophisticated techniques are required; this is the main
contribution of our work. Our approach is based on constructing a planar graph
of size O(n log n) that contains a (1 + ε)-approximation of the solution and
then find an approximate solution in that graph. The total running time will
be O(n log2 n). Along the way, we prove a number of spanner results and other
properties of SMTOs both for the Euclidean and uniformly oriented case.

The SMT problem and its many variations are of high theoretical (see below)
and practical relevance. The applications reach from all kinds of network design
to phylogenetic trees. Especially the geometric case with obstacles is very impor-
tant in VLSI design, since there are usually regions in the plane that may not be
crossed by wire. Also, it is often only allowed to route the tree along a rectilinear
or octilinear grid and so, SMTs in uniformly oriented metrics are required.

1.1 Related Work

The ESMTO problem is clearly NP-hard since it contains the Steiner mini-
mum tree problem without obstacles as a special case [3]. For the SMT prob-
lem without obstacles, Arora [4] and Mitchell [5] were the first to present a
PTAS. Rao and Smith [6] improved the running time of Arora’s algorithm from
O(n(1

ε logn)O(1/ε)) to O(2poly(1/ε)n+n logn) using a certain spanner graph they
call a “banyan” and this is the best running time known so far. However, none
of these algorithms are applicable to the case with obstacles since a so-called
“patching lemma” that is necessary for these approaches, fails to hold. Provan [7]
has shown how to approximate ESMTO by an SMT problem in graphs and de-
rived an FPTAS for the special case when the terminals lie on a constant number
of “boundary polygons” and interior points.

The PTASs discussed above also apply to λ-SMTs for all λ ≥ 2. The rectilinear
and octilinear case have been shown to be NP-complete in [8,9]. For general
fixed λ no proof has been published so far, though it is widely believed that these
problems are hard, too. Properties of uniformly oriented SMTs have been studied
by Brazil et al. [10]. Approximation algorithms for rectilinear SMTO have been
proposed by Ganley and Cohoon [11] and for the octilinear case by Müller-
Hannemann and Schulze [9,12]. For rectilinear SMTO with a constant number of
obstacles, Liu et al. [13] presented a PTAS based on Mitchell’s [5] approach. The
SMT problem with length restrictions on obstacles has been studied by Müller-
Hannemann and Peyer [14] in the rectilinear case, and by Müller-Hannemann and
Schulze [12] in the octilinear case, and constant-factor approximation algorithms
have been proposed.

The SMT problem in graphs has also been studied widely in the literature.
It has been shown to be APX -complete [15] and thus, no PTAS exists unless
P = NP . The best approximation factor known so far is 1.55 + ε [16]. The case
of planar graphs has very recently been shown to admit a PTAS by Borradaile
et al. [1,2]. This results immediately in a PTAS for rectilinear, octilinear, and



A Near Linear Time Approximation Scheme 153

Euclidean SMTO using the following results from the literature: the so-called
Hanan-grid [11,17] for the rectilinear case, the result of Müller-Hannemann and
Schulze [12] for the octilinear case, and Provan’s construction [7] together with
the planar spanner result of Arikati et al. [18] for the Euclidean case. However,
in all these cases, the PTAS of Borradaile et al. has to be run on a graph of
size O(n2) and thus, the total running time will be O(n2 logn). In this work, we
show alternative constructions with running time O(n log2 n).

1.2 On Spanners and Banyans

A t-spanner of a set of points P is a graph that contains a path between any two
points of P that is at most a factor of t longer than the shortest path between
them. Spanners have been vastly studied in the literature [19] and have been
often used in the design of PTASs [6]. Of particular interest to us are spanners
of the visibility graph among obstacles in the plane. The visibility graph contains
all straight line connections between terminals and corners that do not cross the
interior of any obstacle. Clarkson [20] showed how to construct a (1+ ε)-spanner
of linear size of the visibility graph in O(n log n) time. A linear-sized planar
spanner for both the rectilinear and Euclidean metric has been shown to exist
and also to be computable in O(n log n) time by Arikati et al. [18,21]. We will
show how to extend these ideas to derive sparse planar spanners in the same
time bound for all uniform orientation metrics.

Rao and Smith [6] introduced the notion of banyans. A banyan is a graph that
contains a (1+ ε)-approximation of the SMT of a given set of points1 and whose
weight is at most a constant factor larger than the SMT. Rao and Smith showed
how to construct a banyan of size O(n) in time O(n log n) in the obstacle-free
case.

1.3 Our Contribution and Outline

One of the main results of our work is to show how to construct a planar banyan
for SMTO of size O(n log n) in O(n log2 n) time by building on the framework of
Rao and Smith using new ideas and combining other results from the literature,
especially the banyan-result for planar graphs contained in [1]. An approximate
Steiner tree can then be obtained on this planar graph using [1]. Since the
algorithm in [1,2] is exponential in 1/ε, so is our resulting algorithm.

The main difficulties that arise when obstacles are present are to deal with
visibility and the fact that only a subset of corners is included in the SMT,
i.e. we do not know which vertices of a spanner will be part of the SMT. In
particular, a spanner might include arbitrary short edges between corners that
are not part of the SMT and this causes an important proof idea of Rao and
Smith to fail. Roughly speaking, they show that in the obstacle-free case, there
is always a “long enough” spanner edge near non-negligible SMT edges and so,
1 Their construction was in fact more powerful as it included an approximate SMT

for any subset of the terminals.
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they introduce a grid of candidate Steiner points in a neighborhood around every
spanner edge to capture these SMT vertices. Our main new algorithmic idea is
to use O(log n) layers of candidate Steiner points around each spanner edge, so
that we are guaranteed to find such appropriate points even when our spanner
edges are short. Another important difference is that we use planar spanners, so
that afterwards, we can use the algorithm of [1] instead of building on Arora’s
approach [4] to obtain our PTAS. We present our algorithm in Section 2 and
then present two proofs for the correctness of our algorithm for the Euclidean
case in Section 3: one using an analog of the hexagon property [3] and another
one using a generalization of the empty ball lemma [6]. Even though our proofs
follow the lines of the proofs of Rao and Smith, they differ conceptually at some
key points and other techniques have to be used, see Section 3.1.

Afterwards, in Section 4, we turn our attention to uniform orientation metrics
and argue how the presented proofs can be modified to work for these cases, too.
Along the way, we have to argue that a lemma by Provan [7] about δ-grids among
obstacles in the plane still holds true for all uniform orientation metrics. At last,
we prove a variation of Arikati et al.’s planar spanner result [18] to apply to
uniform orientation metrics.

Due to space limitations, several details and proofs had to be shortened or
omitted. We refer the interested reader to the full version of this paper.

2 The Algorithm

The main result of our work is the following theorem:

Theorem 2.1. The Steiner minimum tree problem among disjoint polygonal
obstacles in the plane admits a PTAS in the Euclidean metric and in all uniform
orientation metrics. The running time is O(n log2 n), where n is the total number
of terminals and obstacle corners.

Our algorithm is summarized in Alg. 1. We are given a set of terminals Z and
a set of disjoint polygonal obstacles O as described in the introduction. In the
first step, we find a (1 + ε1)-spanner G1 of the visibility graph of Z ∪O. In the
Euclidean case, this can be done using the algorithm of Clarkson [20] or Arikati
et al. [18,21] in O(n logn) time. Arikati et al. also provide an algorithm for the
rectilinear case and we will show in Section 4.2 how to extend this result to other
uniform orientation metrics. Note that these algorithms construct a spanner
without having to build the full visibility graph. The graph G1 will have O(n)
edges. Around each such edge, we place �log2 n� circles with doubling radii and
place a grid of constant size inside each of them. Here, we make use of a constant
κ that depends on the metric being used. For ε1 ≤ 1, in the Euclidean metric, κ
can be chosen to be ≤ 226, and in the rectilinear metric ≤ 50. This introduces
a set P0 of O(n log n) “candidate Steiner points” from which we remove the
ones that lie inside obstacles. This can be done using a sweep-line algorithm
in O(k log k) = O(n log2 n)-time with k = n + |P0| = O(n log n). Let G2 be the
visibility graph of Z∪P0∪O and let G3 be a planar (1+ε2)-spanner of G2. G3 can
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Algorithm 1. A PTAS for SMTO
Input : a set of terminals Z and a set of disjoint polygonal obstacles O in the

plane and the desired accuracy 0 < ε ≤ 1.
Output : a (1 + ε)-approximation of the obstacle-avoiding Steiner minimum

tree of the terminals.
Note : κ is a constant and can be ≤ 226 in the Euclidean case and ≤ 50 in

the rectilinear case, ε1 and ε2 have to be chosen appropriately, e.g.
ε1 = ε2 = ε

22 .
begin1

find a (1 + ε1)-spanner G1 of the visibility graph of Z ∪ O;2

let P0 = ∅;3

for each edge e in G1 do // let 
 be the length of e4

for i = 0 to �log2 n do5

let r = κ2i
/ε1;6

let C be a circle of radius r around the midpoint of e;7

place a grid with spacing δ(r) = rε31/κ2 inside C;8

// the grid has ≤ 4κ4/ε61 = O(1) points
add these points to P0;9

remove all the points from P0 that lie inside obstacles;10

// let G2 be the visibility graph of Z ∪ P0 ∪ O
find a planar (1 + ε2)-spanner G3 of G2;11

find a (1 + ε/3)-approximate SMT T of Z in G3;12

// using the PTAS of Borradaile et al. [1]
return T ;13

end14

be found using Arikati et al.’s algorithm or our extension of it for other uniform
orientation metrics. Let k = O(n log n) be the number of vertices of G2. The
spanner algorithms need O(k log k) time and introduce O(k) additional Steiner
points to achieve planarity. Thus, G3 can be constructed in O(n log2 n) time and
has O(n log n) vertices (note that G2 is not constructed explicitly). Now we find
a (1 + ε/3)-approximate Steiner minimum tree of the terminals Z in G3 using
the PTAS of Borradaile et al. [1,2] for the Steiner tree problem in planar graphs.
The time needed for this step is O(k log k) and hence, the total runtime of our
algorithm is O(n log2 n).

Note that the first step of the PTAS of Borradaile et al. is to determine a
subgraph G4 of G3 that contains a (1 + ε/3)-approximation of the SMT of G3

and has weight at most a constant times the weight of the SMT of G3. Hence,
G4 is a planar banyan of the terminal set Z and so, our algorithm also delivers
a planar banyan of a set of terminals among obstacles in the plane.

A note on the running time. Of course, the constants hidden in the O-
notations above all depend on 1/ε. Our algorithm builds the planar graph G3

in time O( κ
4

ε11n log2 n) and its size is more precisely O( κ
4

ε11n logn). The PTAS of
Borradaile et al. takes time singly exponential in 1/ε [2].
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3 Correctness

We present two proofs for the correctness of Alg. 1. The first one results in
better constants but does not work in the rectilinear case. The other one is more
general and can even be partly extended to give us some structural information
about SMTOs in higher dimensions but uses much larger constants. The proof
technique and the generalization of the empty ball lemma used in the second
proof might also be interesting in their own right. In the next section, we discuss
uniform orientation metrics where we include a simpler proof for the rectilinear
case that results in small constants.

3.1 Key Differences

The main new idea in our algorithm compared to that of Rao and Smith’s is the
use of O(log n) layers of grids around each edge of the spanner G1. We had to
do this because in our case, we do not have the so-called spanner path property
(Lemma 34 in [6]), that essentially says that two vertices that are connected in
the SMT by an edge of length L, can not be connected in a spanner by a chain
of “tiny” edges of length < L. In our case, two terminals and/or corners can be
connected by a path consisting entirely of “tiny” edges, finding their way among
obstacles. But we know that any two vertices in the spanner are connected by
a short path with at most n edges and one of them can be made “long enough”
by multiplying it with a power of 2 if necessary.

Also, we have the additional problem that many vertices of our spanner need
not be part of the optimal Steiner tree: we do not know which corners will be
included in the SMT. And there is the issue of visibility. To deal with these
problems, we formulate and prove Lemma 3.1, which is a technical lemma that
is very important in both of our proofs. The reason it works well is that since we
do not make use of the spanner path property, it is not necessary for us that the
vertices that we find close to a Steiner point A be in fact close to A in the SMT
or even be part of the SMT at all. This enabled us to prove our generalizations
of the hexagon property and the empty ball lemma and use them to prove our
main theorem.

3.2 First Proof

We use the notation d(A,B) for the length of the shortest obstacle-avoiding
path between two points A and B and the notation dG(A,B) for the shortest
path between A and B in a graph G. We start by mentioning some well known
facts about Euclidean Steiner minimum trees [22,7,23] (recall that we use the
term Steiner point for vertices of the tree that do not coincide with terminals or
corners):

Fact 0: The SMT is a tree that includes all terminals as vertices. It might
include corners or Steiner points as additional internal vertices.
Fact 1: Every Steiner point has 3 incident edges making angles of 120◦.
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Fact 2: A Steiner point may not occur on the boundary of some obstacle.
Fact 3: Every terminal and corner has degree at most 3 in the SMT.
Fact 4: If there are k terminals, there are at most k − 2 Steiner points.
Fact 5: Two edges of the SMT meet only at a common endpoint, i.e. the SMT
is not self-intersecting.
Fact 6: (120◦ wedge property) If s is a Steiner point of the SMT, then in any
closed 120◦ wedge with apex s, there exists a terminal or corner v and an SMT
path sv that lies entirely inside the wedge.

The following lemma is of central importance for our work:

Lemma 3.1. Let S be a closed convex region of the plane and let A ∈ S be a
point that is not contained in the interior of any obstacle. Then, we have

(i) a terminal or corner in S that is visible to A; or
(ii) the maximal visible area to A in S is a closed convex region S′ ⊆ S that
contains no terminal or corner and that shares its border with S except for
finitely many straight line segments, where its border may consist of obstacle
edges. Furthermore, any obstacle-avoiding path contained in S and connected to
A is contained in S′.

Consider an SMT edge AB and some fixed distance D. Let HA be the regular
hexagon of side length D that has A as a corner, does not contain AB, and
builds two 120◦ angles with AB, i.e. if we extend AB, it would cut HA in
half. Furthermore, we define an SMT edge AB to be locally D-bounded if when
walking from A or B for at most 3 SMT edges or until we encounter a terminal
or corner (whichever comes first), all edges we pass have length at most D. We
have the following property:

Lemma 3.2 (Generalization of the hexagon property). Let AB be a lo-
cally D-bounded SMT edge. Then the regular hexagon HA of side length D de-
fined above contains a terminal or a corner that is visible to A (this terminal or
corner could be A itself).

Let AB be an SMT edge of length L. For given constants c ≥ 1 and ε1 > 0, we
define AB to be locally long if it is locally cL/ε1-bounded. Otherwise we call it
locally short. The next lemma builds the heart of our first proof of Theorem 2.1.
It assures that near every locally long SMT edge AB, we find a spanner edge of
G1 that is long enough, so that a layer of grids around it will enclose the points
A and B; and short enough, so that the grid spacing does not introduce too
large an error.

Lemma 3.3. Let AB be a locally long SMT edge of length L as defined above
with some constants c ≥ 1 and 0 < ε1 ≤ 1 to be specified. Consider Alg. 1 with a
constant κ ≥ 8c+2. Then there exists an edge e of length � in the (1+ε1)-spanner
G1 and an integer 0 ≤ i ≤ �log2 n�, so that L ≤ 2i� ≤ κL/ε1 and so that A and
B are included in a circle of radius κ2i�/ε1 around the midpoint of e.
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Fig. 1. Proof of Lemma 3.3; L ≤ d(VA, VB) ≤ 4cL/ε1 + L

Proof. By the hexagon property above with D = cL/ε1, we know that there
exists a terminal or corner VA inside HA and a terminal or corner VB inside HB,
so that VA is visible to A and VB is visible to B (note that VA resp. VB could
be equal to A resp. B). Then we know that L ≤ d(VA, VB) ≤ L + 4cL/ε1 =: M
(see Fig. 1). Now consider the shortest path between VA and VB in the spanner
G1. It consists of at most n edges and its length is at least L and at most
(1 + ε1)M = ((4c + 1)ε1 + 4c+ ε21)L/ε1 ≤ κL/ε1 if we choose κ ≥ 8c + 2. Also,
this path lies entirely inside a circle Q of radius R := (1 + ε1/2)M around the
midpoint of the edge AB, since otherwise it would be too long for G1 to be a
(1+ ε1)-spanner. Hence, there exists an edge e of length � on this path inside Q,
so that L/n ≤ � ≤ κL/ε1. If � < L, one can choose an integer 0 ≤ i ≤ �log2 n�
so that L ≤ 2i� ≤ 2L ≤ κL/ε1 otherwise choose i = 0. Also, since e is inside
Q, the distance between the midpoint of e to A and B is at most R + L/2 =
((2c+ 1.5)ε1 + 4c+ ε21/2)L/ε1 ≤ κ2i�/ε1.

Proof (First proof of Theorem 2.1 for the Euclidean metric). Let us denote the
length of a tree T by �(T ). Let T � be an optimal obstacle-avoiding Steiner tree
of the terminal set and let T be the tree returned by Alg. 2.1. We show that the
graph G3 contains a Steiner tree T ′ with �(T ′) ≤ (1 + ε/2)�(T �). Then we know
that �(T ) ≤ (1 + ε/3)�(T ′) ≤ (1 + ε)�(T �) and we are done.

We partition the edges of T � into locally long and locally short edges as defined
above and construct the tree T ′ as follows: for every locally long edge in T �, we
find appropriate endpoints and a short path in G3 to add to T ′; then we get a
number of connected components and interconnect them with a minimum forest
in G3. We now analyze the length of T ′.

Let AB be a locally long edge of T � of length L. By Lemma 3.3, we find
an edge e of length � in G1 and a circle C of radius r = κ2i�/ε1 around the
midpoint of e for some integer 0 ≤ i ≤ �log2 n�, so that A and B are included in
C. The grid inside C has spacing2 δ = rε31/κ

2 = 2i�ε21/κ ≤ Lε1 since 2i� ≤ κL/ε1
by Lemma 3.3. A technical lemma of Provan (Lemma 3.2 in [7]) says that for a
given Steiner point A in a δ-grid among obstacles, we can always find a terminal,
corner or grid point A′ that is visible to A, so that d(A,A′) ≤ 2δ. Let A′ and B′

be vertices of G3 that are visible to and closest to A and B, respectively. Add
the shortest path between A′ and B′ in G3 to T ′. We have

2 The grid spacing in [6] is rε21/κ2 but we believe that the exponent of ε1 should be 3.
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d(A′, B′) ≤ d(A′, A) + d(A,B) + d(B,B′)
≤ L + 4δ ≤ L + 4Lε1 = (1 + 4ε1)L

(1)

and thus, dG3(A′, B′) ≤ (1 + ε2)(1 + 4ε1)L.
We leave the detailed analysis of locally short edges for the full paper; one

can show that the overhead caused by ignoring locally short edges is at most
equal to the total length of all locally short edges and can be upper bounded3

by (1 + ε2)ε1�(T �). So, we get that

�(T ′) ≤ (1 + ε2)(1 + 4ε1)�(T �) + (1 + ε2)ε1�(T �) ≤ (1 + ε/2)�(T �) (2)

if ε1 and ε2 are chosen appropriately, e.g. ε1 = ε2 = ε
22 .

Second Proof. Due to space limitations, we leave our second proof for the full
paper. Here, we just state our generalization of the empty ball lemma:

Lemma 3.4 (Generalization of the empty ball lemma). Let S1 and S2

be closed convex regions in the plane whose interiors are free of terminals and
obstacle edges but whose borders may partly consist of obstacle-edges. Denote the
parts of their borders that are not obstacle-edges as the free border. Assume that
S2 encloses S1 and that the distance between every point on the free border of S1

to any point on the free border of S2 is at least γ > 0. Then, for any obstacle-
avoiding SMT, the number of Steiner points inside S1 is bounded by a constant
s0 ≤ (96e)8 (where e is the base of the natural logarithm).

4 Uniform Orientation Metrics

We briefly discuss how our proofs adapt to uniform orientation metrics and
provide a somewhat different proof for the rectilinear case that results in much
better constants. Afterwards, we prove our generalization of Arikati et al.’s [18]
planar spanner result to the cases with λ ≥ 3.

4.1 Adapting the Proofs

The Cases λ ≥ 3. Brazil et al. [10] showed that for λ ≥ 3, there always exists an
SMT, such that the minimum angle at a Steiner point is 90◦ ≤ αmin ≤ 120◦ and
the maximum angle is 120◦ ≤ αmax ≤ 150◦. For these cases, we get an αmax-
wedge property like Fact 6 of the Euclidean case and we can use it to prove
an analog of the Hexagon property (Lemma 3.2). Also, using this αmax-wedge
property one can generalize Provan’s lemma [7] to ensure that in a δ-grid around
a Steiner point A, one can always find a grid point, terminal, or corner A′ that
is visible to A, so that d(A,A′) ≤ δ/cosαmax

2 . Using these two results, one can
generalize both of our proofs from Section 3 straightforwardly to all λ-geometries
with λ ≥ 3, where again, the first proof results in much better constants (but
possibly different ones from the Euclidean case).
3 To achieve this, we have to set c = 28 and thus, we can choose κ = 8c + 2 = 226.
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The Rectilinear Case. In the rectilinear case, we do not have an α-wedge property
for an α < 180◦; in fact, 180◦-angles can occur at any Steiner point. But instead,
the structure of rectilinear Steiner trees is well-studied. Particularly, one can
derive the following lemma using results from [24,25]:

Lemma 4.1. For a given set of terminals and disjoint rectilinear obstacles in the
plane, there exists an obstacle-avoiding RSMT that has the following properties:
(i) for any two Steiner points A and B that are connected by a horizontal line-
segment, B is not connected to a third Steiner point by a vertical line segment;
(ii) if there is a grid with spacing δ around a Steiner point A, then there exists
a grid point, terminal, or corner A′ that is visible to A, so that d(A,A′) ≤ 2δ.

Using this lemma, both of our proofs from the last section adapt straightfor-
wardly to the rectilinear case. Furthermore, one can choose c = 12 and also
κ = 4c+ 2 = 50.

4.2 Planar Spanners

Consider a λ-geometry and let ω = π/λ be the smallest allowed angle. Before
we start with the construction of our spanner, we need the following technical
lemma:

Lemma 4.2. Consider a λ-geometry with smallest allowed angle ω and let a set
of disjoint polygonal obstacles be given whose edges are parallel to the allowed
directions. Consider two points A and B in the plane. Then there exists a shortest
path (with respect to the metric of the λ-geometry) between A and B that passes
through A = v0, v1, v2, . . . , vk = B, so that each vi with 0 < i < k is a corner and
so that the path between each vi and vi+1 is either a straight line in an allowed
direction or is comprised of two straight lines in allowed directions that build an
angle of π − ω with each other.

Arikati et al. [18,21] showed how to find a planar rectilinear (1+ε)-spanner of the
visibility graph among disjoint polygonal obstacles in the plane that uses at most
O(n) Steiner points in time O(n logn). This spanner might include obstacle-
edges that are not rectilinear but their length is measured in the rectilinear
metric. We first show that one can rotate the axes of the coordinate system to
build an arbitrary angle and still obtain such a spanner:

Lemma 4.3. Given a set of terminals and a set of disjoint polygonal obstacles
in the plane, one can find a planar (1 + ε)-spanner of the visibility graph of size
O(n) in O(n log n) time that uses only edges in two directions d1 and d2 building
an angle ω with each other (except for parts of the spanner that coincide with
obstacle edges).4

Now we can use a similar trick to the one used by Arikati et al. to obtain
their Euclidean spanner: let d1, d2, . . . , dλ be the allowed directions, so that two
4 The spanning property is with respect to the metric induced by d1 and d2.
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consecutive ones build an angle of ω = π/λ with each other. Find (1+ε)-spanners
G1, . . . , Gλ, so that Gi uses only edges parallel to di and di+1 (or dλ and d1)
using Lemma 4.3. Let G be the graph obtained by superimposing all these graphs
on each other, i.e. putting them on each other and adding all intersection points
as new vertices to the graph. A straightforward adaption of the proof of Arikati
et al. for the Euclidean case (published in the thesis of Zeh [21]) shows that G
will still have O(n) vertices5 and can be obtained in O(n logn) time. Also, by
Lemma 4.2, G is indeed a (1+ ε)-spanner of the visibility graph (an approximate
shortest path between each vi and vi+1 of the lemma lies entirely in a spanner
Gj), i.e. we have

Theorem 4.4. Consider a λ-geometry and let a set of terminals and a set of
disjoint polygonal obstacles whose edges are in the allowed directions be given,
so that the total number of terminals and corners is n. Then one can find a
planar (1 + ε)-spanner (with respect to the metric of the λ-geometry) of the
visibility graph of size O(n) in O(n logn) time that uses only edges in the allowed
directions.
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Abstract. In this paper, we give a O(log copt)-approximation algorithm
for the point guard problem where copt is the optimal number of guards.
Our algorithm runs in time polynomial in n, the number of walls of the
art gallery and the spread Δ, which is defined as the ratio between the
longest and shortest pairwise distances. Our algorithm is pseudopoly-
nomial in the sense that it is polynomial in the spread Δ as opposed
to polylogarithmic in the spread Δ, which could be exponential in the
number of bits required to represent the vertex positions. The special
subdivision procedure in our algorithm finds a finite set of potential
guard-locations such that the optimal solution to the art gallery prob-
lem where guards are restricted to this set is at most 3copt. We use a set
cover cum VC-dimension based algorithm to solve this restricted problem
approximately.

1 Introduction

The art gallery problem addresses the following question [7]: How many guards
are required to guard an art gallery with n walls? This problem was first posed by
Victor Klee in 1973 [8]. Chvátal showed that �n3 � guards are always sufficient and
occasionally necessary [10]. Since then, numerous variations of this problem have
been studied including mobile guards, guards with limited visibility, guarding
rectilinear polygons, etc., see, e.g., [8,9,7]. In this paper, we study one version of
the art gallery problem, also known as the point-guard problem. The point-guard
problem involves finding the minimum number of points and their positions so
that guards located at these points cover (i.e. see) every point in the interior of
the art gallery.

Lee and Lin show that the point-guard problem is NP-hard [11]. Eidenbenz,
Stamm and Widmayer prove that even finding a (1 + ε)-approximation for this
problem for any ε > 0 is NP-hard [4]. They also show that the problem of art
gallery with holes can not be approximated by a polynomial time algorithm
with ratio (1−ε

12 ) lnn for any ε > 0, unless NP ⊆ TIME(nO(log logn)). Brodén,
Hammar and Nisson prove that the point-guard problem even for a special class
of art galleries, which are 2-link polygons, is APX-hard [12].
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In [5], Ghosh proposes an O(log n)-approximation algorithm for the min-
imum vertex-guard problem where guards can be be located only at the
vertices of the art gallery. González-Banos and Latombe [3] consider another
version of the art gallery problem in which guards have range and incidence
constraints and are required to cover only the walls of the art gallery. They
choose a set of uniformly randomly selected points from the art gallery as po-
tential guard-locations and solve this new problem. They argue that their algo-
rithm computes with high probability a solution whose size is at most a factor
O(log n· log (c logn)) times the size of the optimal solution c. In [15], Efrat and
Har-Peled consider another variant of the art gallery problem where guards are
restricted to be placed on the points of a dense grid and propose a randomized
algorithm which with high probability yields the approximation ratio within
O(log c′), where c′ is the optimal solution size for the modified problem. In
the same paper [15], Efrat and Har-Peled propose an exact algorithm for the
point-guard problem with running time at most O((nc)3(2c+1)), where is c is
the size of the optimal solution. This is the first known exact solution to the
problem, although the running time is exponential in the size of the optimal
solution.

Our result. We give a pseudopolynomial time O(log copt)-approximation algo-
rithm for the point-guard problem, where copt is the size of the optimal solution
which can be as large as Θ(n) in some cases. Our algorithm is pseudopolynomial
in the sense that it is polynomial in the number of walls n of the art gallery and
the spread Δ of the vertices of the art gallery. The spread of a set of points is
defined as the ratio of the longest and shortest pairwise distances [13,14]. In the
worst case, the spread Δ could possibly be exponential in the number of bits
required to represent positions of the vertices of the art gallery. To the best of
our knowledge, this is the first pseudopolynomial time algorithm that yields a
solution with a guaranteed approximation ratio.

Our basic approach involves using a special subdivision procedure to obtain
a finite set of potential guard-locations. We then consider a new problem of
choosing the minimum number of guards from this finite set. We devise our
algorithm such that the new problem has an optimal solution at most three
times the optimal solution to the original point-guard problem. We solve the
new problem using a set cover cum VC-dimension-based algorithm. Our overall
algorithm can be summarized in the following 3 steps:

– Step 1: Generate an initial triangulation of the art gallery based on the
visibility cell decomposition.

– Step 2: Subdivide the initial triangulation such that each triangle in the
final triangulation satisfies a special property – the region that is visible to
any point in a triangle is always a subset of the region simultaneously visible
to the three vertices of the triangle.

– Step 3: Formulate the set cover problem and solve it approximately using
the VC-dimension-based algorithm of González-Banos and Latombe [3].
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2 Basic Terminology

Most of the definitions and notation we present in this section have been bor-
rowed from [1,2]; however, we reformulate some of these and define new ones
for our convenience. Most of the notions we describe below are illustrated in
Figure 1.

For the sake of simplicity, we consider the case of an art gallery without holes.
At the end of the paper, we comment about the case of an art gallery with holes.
An art galley without holes can be represented as a simple polygon. Here, we
consider the boundary also as a part of the polygon. Let P be a simple polygon
with n vertices. Some of these are reflex vertices that subtend an angle greater
than 1800 inside P . We say two points in P see each other if the line segment
between them does not intersect with the exterior of P .

The visibility polygon V (x) for any point x ∈ P , is the polygon consisting of
all the points in P that are visible from x. Note that some of the edges of V (x)
coincide with those of the original polygon P and some are newly introduced
as shown in Figure 1(a). A new edge is introduced at a reflex vertex of P that
blocks the view of x. We call this reflex vertex a blocking reflex vertex. The other
end-point of the new edge which lies on the boundary of P is referred to as an
image of x through the blocking reflex vertex. To remove any ambiguities, we
assume that for P and V (x), no two consecutive edges are collinear.

For any point x ∈ P , we say that x sees an edge of P , if it sees a point on
the edge. If x cannot see either of the end-points of a visible edge of P , we say
that x sees the edge partially. We call the corresponding edge of P a partial edge
with respect to x. We say that x sees a visible edge of P non-partially, if it sees
at least one of its end-points. We call the corresponding edge of P a non-partial
edge with respect to x. If we join every vertex of V (x) to x, we get a triangulation
of V (x). We call each triangle as a visibility sector of x. The edge of a visibility
sector that is a part of an edge of P is referred to as a base of the visibility
sector. Depending upon the type of the edge of P corresponding to the base of
a visibility sector, we classify the visibility sector into non-partial-edge sector or
partial-edge sector.

3 Initial Triangulation Using Visibility Cell
Decomposition

In this section, we define a particular subdivision of the polygon – the visibility
cell decomposition. Then we show how to triangulate this subdivision to generate
the initial triangulation in Step 1 of our algorithm.

The visibility cell decomposition of P is a subdivision induced by visibility
polygons of all the vertices of P . We call each component of the subdivision a
visibility cell. We state without proofs the following properties of the visibility
cell decomposition that are useful both in the construction and analysis of our
algorithm. We refer interested readers to the papers by Bose et al. [1] and Guibas
et al. [2] for further details.



166 A. Deshpande et al.

x

new edgenon-partial edge

x

partial-edge

sector

partial edge

non-partial edge non-partial-edge
sector

The visibility polygon V (x) of x

image of x through

a blocking reflex vertex

a blocking
reflex vertex

Fig. 1. Visibility polygon and visibility sectors

– Each visibility cell is a convex polygon.
– The total number of visibility cells in the visibility cell decomposition is
O(n3).

– By definition, any two points in a visibility cell see the same set of vertices
of P . Furthermore any two points in the same visibility cell see the same set
of non-partial edges and the same set of partial edges of P .

Step 1 of our algorithm can be summarized as follows:
Construct the visibility cell decomposition of the polygon. Triangulate each

visibility cell simply by joining its one particular vertex to every other vertex.

4 Further Subdivision of the Initial Triangulation

In this section, we describe Step 2 of our algorithm. We give a procedure to
subdivide the initial triangulation in such a way that each triangle in the final
triangulation satisfies a special visibility property – the region that is visible to
any point in a triangle is covered by the visibility polygons of the three vertices
of the triangle.

4.1 Vertex-Visibility Property and Vertex-Pair-Visibility Property

We first define the desirable property which each triangle in the final triangula-
tion is required to satisfy.

Definition 1. Let �abc be a triangle in the polygon P . We say �abc satisfies the
vertex visibility property, if for any point x ∈ �abc, V (x) ⊆ V (a)∪V (b)∪V (c).

Covering the visibility polygon of a point is equivalent to covering every visibility
sector of the point. This motivates the following definition.
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Definition 2. A triangle in a visibility cell satisfies the vertex-visibility prop-
erty with respect to a particular edge of the polygon, if the corresponding visi-
bility sector of any point in the triangle is a subset of the union of the visibility
polygons of the vertices of the triangle.

The vertex-visibility property is not directly useful in the construction of our
algorithm. We define a more convenient property.

Definition 3. A triangle in a visibility cell satisfies the vertex-pair-visibility
property with respect to a particular edge of the polygon, if the visibility sectors
of any two vertices of the triangle overlap on the edge.

Consider the images of two points in a visibility cell through a blocking reflex
vertex on an edge of the polygon. We call the portion of the edge between the
two images as a span of the two points corresponding to the blocking reflex
vertex. Note that the image of a point on the segment joining these two points
lies in the span by one-to-one mapping. Now consider the images of the three
vertices of a triangle in a visibility cell through a blocking reflex vertex on an
edge of the polygon. One of the three images lies between the other two. We call
the portion of the edge between the two extreme images as a span of the triangle
through the blocking reflex vertex.

Lemma 1. For any point in a triangle in a visibility cell, its image through a
blocking reflex vertex always lies in the span of the triangle through the blocking
reflex vertex.

Proof. The image of any point on a segment lies in the span of the two endpoints
of the segment corresponding to a blocking vertex. Thus, the image of any point
on the perimeter of a triangle lies in the span of the triangle. Now consider any
point in the interior of the triangle. The image of this point is same as the image
of the point on the perimeter of the triangle where the line segment joining this
point, the blocking reflex vertex and its image intersects the perimeter. Hence
the image of any point in the triangle is in its span. ��

Theorem 1. A triangle in a visibility cell satisfies the vertex-pair-visibility as
well as the vertex-visibility property with respect to a non-partial edge.

Proof. Let �abc be a triangle in a visibility cell C. Let e be a non-partial edge.
As we have already seen, at least one of the end-points of a non-partial edge is
visible from any point in a visibility cell. Depending on whether one or both the
end-points of a non-partial edge are visible, we make two cases and deal with
each case separately.

Case 1: Both the end-points of e are visible from any point in C. In this case,
by definition, �abc satisfies the vertex-pair-visibility property. Let u and v be
the end-points of e. Consider the convex hull of a, b, c, u and v. Since �abc is
on one side of e, line segment uv must be one of the edges of the convex hull.
Therefore, the convex hull can also be formed by considering the union of �abc
and the visibility sectors of a, b and c. Note that the convex hull is a subset
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of V (a)∪V (b)∪V (c) and the visibility sector of any point x ∈ �abc is a subset
of this convex hull. Therefore, �abc also satisfies the vertex-visibility property
with respect to e.

Case 2: In this case, only one end-point of e is visible from any point in C. Let
u be the visible end-point. Let r be a blocking reflex vertex. Again by definition
�abc satisfies the vertex-pair-visibility property because u is a common visible
point. Now, consider any point x in �abc. The visibility sector of x with respect
to e consists of two triangles, �xur and �urx′, where x′ is the image of x
through r. By similar arguments as in the first case, we can prove that �xur is
a subset of V (a)∪V (b)∪V (c). By Lemma 1, x′ lies in the span of the image of
�abc through r. Thus, at least one of a, b or c cover �rux′. Therefore, �abc
satisfies the vertex-visibility property with respect to e. ��

Theorem 2. If a triangle in a visibility cell satisfies the vertex-pair-visibility
property with respect to a partial edge e, then it also satisfies the vertex-visibility
property with respect to e.

Proof. Let �abc be a triangle in a visibility cell C such that it satisfies the
vertex-pair-visibility property with respect to the partial edge e. Let r1 and r2
be the two blocking reflex vertices. Consider vertices a and b. The visibility
sectors of a and b overlap on e. Let a1 and a2 be images of a through r1 and r2
respectively. Let b1 and b2 be images of b through r1 and r2 respectively. Since
a1a2 and b1b2 overlap on e, at least one of b1 and b2 lies in between a1 and a2.
Since e is a partial edge, a1b1 and a2b2 do not overlap on e. In other words, the
spans of a and b with respect to r1 and r2 do not overlap on e. By extending this
argument to the three vertices, a, b and c, the spans of any two vertices with
respect to r1 and r2 do not overlap. This implies that the spans of �abc also do
not overlap on e because if they do, the previous condition of pairwise vertices
having non-overlapping spans is violated for at least one pair. The portion of e
that is simultaneously visible to a, b and c consists of the spans of �abc through
r1 and r2 and the patch between the two spans. By Lemma 1, for any point x in
�abc, the two images of x through r1 and r2 lie in the spans of �abc through
r1 and r2 respectively. Thus, the portion of e that is visible to x is contained in
the portion that is visible to a, b and c. Therefore, the visibility sector of x is a
subset of V (a)∪V (b)∪V (c). ��

The theorem we prove below is useful in the analysis of the algorithm. Let
subtriangle be a triangle that is contained within a triangle.

Theorem 3. If a triangle in a visibility cell satisfies the vertex-pair-visibility
property with respect to a partial edge e, then any subtriangle also satisfies the
vertex-pair-visibility property with respect to e.

Proof. Let �abc be a triangle in a visibility cell C such that it satisfies the
vertex-pair-visibility property with respect to the partial edge e. Let r1 and r2
be the two blocking reflex vertices. We already proved in the proof of Theorem 2
that the spans of �abc through r1 and r2 do not overlap on e because it satisfies
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the vertex-pair-visibility property. For any two points x and y in �abc, the spans
of x and y through r1 and r2 do not overlap on e because they are contained in
the spans of �abc through r1 and r2. Therefore, the visibility sectors of x and
y overlap on e. Therefore, any �xyz in �abc satisfies the vertex-pair-visibility
property. ��

The above theorem allows us to further subdivide the visibility cell without
affecting already existent vertex-pair visibility property with respect to a partial-
edge visibility sector.

4.2 Further Subdivision

In this subsection, we give a procedure to further subdivide the initial triangu-
lation obtained in Step 1 of our algorithm. The subdivision procedure described
below generates the final triangulation where every triangle satisfies the vertex-
visibility property. This property is required so that we can reduce the art gallery
problem to a problem with guaranteed approximation ratio. Using the results of
Theorem 1 and Theorem 2, we achieve this by developing a subdivision proce-
dure which is based on a stronger condition, the vertex-pair-visibility property.

First we define a notion that is useful in the description of our algorithm. Let
a and b be two points in a visibility cell such that the visibility sectors of a and
b do not overlap on a partial edge. Let r1 and r2 be the corresponding blocking
reflex vertices. Consider the convex hull of a, b, r1 and r2. We call a triangle
obtained by taking set difference between the convex hull and the union of the
visibility sectors of a and b as a dark triangle of segment ab. An example of a
dark triangle is shown in Figure 2(a).

Step 2 of our algorithm can be summarized as follows.
For every �abc in the initial triangulation obtained in Step 1, repeat the

following procedure:

1. Construct a set S of partial edges for which �abc does not satisfy the vertex-
pair-visibility property. Repeat the following procedure for every edge e ∈ S:
(a) Construct a dark triangle of every edge of �abc.
(b) For each dark triangle whose interior is not disjoint with �abc, invoke

SUBDIVIDE-DARK-TRIANGLE.
(c) Intersect with �abc, the subdivisions of all such dark triangles on which

the function SUBDIVIDE-DARK-TRIANGLE is invoked in the above
step to generate a new subdivision of �abc.

2. Intersect all the subdivisions of �abc corresponding to every edge e ∈ S to
generate the final subdivision. Triangulate the final subdivision in the similar
way as in Step 1 of our algorithm and return the final triangulation of �abc.

Function SUBDIVIDE-DARK-TRIANGLE:
Input: A dark triangle �aob corresponding to the two blocking reflex vertices

r1 and r2
Procedure: Let a1b1 and a2b2 be the two spans of ab through r1 and r2 re-

spectively on the partial edge. Construct a line joining the reflex vertex r2 and
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the image a1 of a through r1 and another line joining the reflex vertex r1 and
the image b2 of b through r2. Depending upon whether the two lines intersect
inside or outside �aob, choose one of the following two steps.

(Case 1) The two lines meet outside �aob : Return the new subdivision of
�aob induced by the two lines (Figure 2(a)). Terminate the function.

(Case 2) The two lines meet in �aob : Return the new subdivision of �aob
without �a′o′b′, where o′ is the point of intersection of the two lines, and a′

and b′ are the points of intersection of the two lines with the segment ab.
Check if �a′o′b′ satisfies the vertex-pair-visibility property. If it does not, in-
voke SUBDIVIDE-DARK-TRIANGLE on �a′o′b′. (Figure 2(b))
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Fig. 2. �aob is a dark triangle. Two cases in SUBDIVIDE-DARK-TRIANGLE:
(a)lines a1r2 and b2r1 meet outside �aob (b) lines a1r2 and b2r1 meet in �aob.

As a result of Theorem 1 and Theorem 2, in our subdivision procedure, we
need to subdivide a triangle only if it does not satisfy the vertex-pair-visibility
property with respect to a partial edge. The result of our subdivision procedure
is the final triangulation where every triangle satisfies the vertex-pair visibility
property and in turn, the vertex-visibility property. Now we prove this result.

As we have already mentioned, using the results of Theorem 1 and Theorem 2,
we check whether a triangle in the initial triangulation satisfies the vertex-pair-
visibility with respect to partial edges only. As a result of Theorem 3, the sub-
division procedure of a triangle with respect to one edge is ‘independent’ of the
subdivision procedure with respect to another edge. This allows us to subdivide
a triangle in the edge-by-edge fashion.
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Lemma 2. Consider the partial-edge visibility sector of a point in a visibility
cell. Any triangle that lies in the visibility sector as well as the visibility cell
always satisfies the vertex-pair-visibility property.

Proof. Let x be a point in a visibility cell C. Let r1 and r2 be the blocking reflex
vertices corresponding to the partial edge. Let x1 and x2 be the images of point
x through r1 and r2 respectively. Any point a that lies in the visibility sectors of
x as well as in the same visibility cell C, sees the line segment x1x2. Therefore,
by definition, any triangle that lies in the visibility sector of x as well as in C
satisfies the vertex-pair-visibility property. ��

Let �abc be a triangle in the initial triangulation. Suppose that it does not satisfy
the vertex-pair-visibility property with respect to a partial edge. Consider the
convex hull of a, b, c, r1 and r2. The convex hull can also be obtained by taking
union of the visibility sectors of a, b and c and the dark triangles of all the edges
of �abc. By Lemma 2, the portions of �abc that lie in the visibility sector of any
of the vertices satisfies the vertex-pair-visibility property. The remaining part of
�abc is a subset of the union of the dark triangles. Therefore, in our subdivision
procedure in Step 2, we just subdivide the dark triangles.

Now we prove correctness of the function SUBDIVIDE-DARK-TRIANGLE
with reference to Figure 2

Theorem 4. In the first case, the subdivision of �aob satisfies the vertex-pair-
visibility property.

Proof. Consider line a1r2. It subdivides �aob into two part. a1 is always visible
from any point in one part. Therefore that always satisfies the vertex-pair visi-
bility property. Similarly line b2r1 subdivides �aob in two parts out of which one
part always satisfies the vertex-pair-visibility property because b2 is the common
visible point from that part. In the first case lines a1r2 and b2r1 meet outside
�abc. Both the parts of mentioned above that satisfy the vertex-pair-visibility
property cover �aob in the first case. Therefore, the subdivision of �aob satisfies
the vertex-pair-visibility property. ��

Theorem 5. In the second case, the subdivision of �aob except �a′o′b′ satisfies
the vertex-pair-visibility property.

The proof of the above theorem is similar to the proof of Theorem 4. �a′o′b′ may
not satisfy the vertex-pair-visibility property. In that case, we subdivide �a′o′b′

by again invoking the function SUBDIVIDE-DARK-TRIANGLE. The first case
is the termination case for the recursion in SUBDIVIDE-DARK-TRIANGLE. In
the next section, we show that SUBDIVIDE-DARK-TRIANGLE indeed termi-
nates. Thus, subdivision generated by SUBDIVIDE-DARK-TRIANGLE always
satisfies the vertex-pair-visibility property.

The function SUBDIVIDE-DARK-TRIANGLE in the subdivision procedure
described above is recursive. Here, we address the question after how many steps
this recursion ends. We define spread Δ of the vertices of the art gallery as the



172 A. Deshpande et al.

ratio of the longest and shortest pairwise distances [13,14]. Now we prove the
following theorem.

Theorem 6. The recursive function SUBDIVIDE-DARK-TRIANGLE ends in
O(Δ) steps.

Proof. Let L be the longest and let ε be the shortest pairwise distances among
the vertices of the art gallery. Thus, Δ = L/ε. The length of each subdivision
of the partial edge at the end of the recursive procedure is at most ε. Since the
length of any partial edge can be at most L, the total number of subdivisions
does not exceed Δ. ��

5 Set Cover Formulation and Approximate Solution

In this section, we describe Step 3 of our algorithm. We choose all the vertices
of the final triangulation obtained in Step 2 as the potential guard-locations and
formulate the set cover problem. The set cover problem is then solved approxi-
mately using a VC-dimension-based algorithm.

Step 3 of our algorithm can be summarized in the following way:

1. Construct a set G consisting of all the vertices of the final triangulation
obtained in Step 2 of our algorithm. Let |G| = m.

2. Construct the visibility polygon for every gi ∈ G and generate the new
subdivision of the polygon. Enumerate all the cells in the new subdivision
and group them in the set X = {1, 2, .., l}. For each gi ∈ G, construct a
set Ri of cells visible from gi, that is, Ri = {x ∈ X |x ∈ V (gi)}. Build the
set family, R = {R1, R2..., Rm}. Group X and R together to form the set
system (X,R).

3. Invoke the function SET-COVER on the set system (X,R) to obtain a near-
optimal covering of X from the set family R.

The function SET-COVER used in the above procedure is based on the algo-
rithm proposed by Brönnimann and Goodrich [6] for finding set covers for set
systems with finite VC-dimension. Here, we do not give details of the function
SET-COVER. Instead, we refer interested readers to [3] for further details.

6 Analysis of the Algorithm

In this section, we analyze the bound on the approximation ratio and running
time of our algorithm.

6.1 Bound on the Approximation Ratio of Our Algorithm

Consider the set system (X,R) that we construct in Step 3 of our algorithm.
Let Tx, where x ∈ X , be a set consisting of all the sets in R that contain x. We
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define the dual set system (Y, S) of (X,R) by setting Y = R and S = {Tx|x ∈ X}
[6,3]. Y corresponds to the set of candidate locations for guards. An element
in S corresponds to a cell and is a set of candidate guard-locations that are
visible from every point in the cell. We can also write this dual set system as
(G, {G∩V (x) | x ∈ P}), where G consists of the set of all candidate guard-
locations. Valtr showed that the VC-dimension of the more general set system
(P, {P∩V (x) | x ∈ P}) is bounded by 23 [16]1. Using the definition of the VC-
dimension it is easy to prove that the VC-dimension of the dual set system (Y, S)
is also bounded by 23.

The result from [6] implies that it is possible to compute an approximate solu-
tion to the set cover problem with the approximation ratio O(d log(dc)), where d
is the VC-dimension and c is the size of the optimal solution. The constant bound
on the VC-dimension in this case implies that we obtain O(log copt)-approximate
solution, where copt is the size of the optimal solution. copt can be as large as
Θ(n) in some cases.

6.2 Analysis of the Running Time of the Algorithm

Theorem 7. The running time of our algorithm is polynomial in the number
of walls, n and the spread Δ of the vertices of the art gallery.

Proof. Here we provide only the sketch of the proof. In Step 1, the initial tri-
angulation can be generated in O(n4) time and consists of O(n4) triangles [1,2].
In Step 2, for each triangle in the initial triangulation, we can check in O(n)
time whether it satisfies the vertex-pair visibility property. In the worst case,
the recursive subdivision procedure for each triangle with respect to a partial
edge may run in O(Δ) time as shown in Theorem 6 and may generate O(Δ) line
segments to form the subdivision. This ensures that the number of triangles in
the final subdivision is polynomial in n and Δ. In Step 3, SET-COVER runs in
O(|X |) time [6,3], where |X | is the total number of cells. ��

Δ can be at most exponential in the input size. Thus, our algorithm runs in
pseudopolynomial time.

6.3 Art Gallery with Holes

When the art gallery has holes, our algorithm can still be used. Guibas et al. [2]
extend the visibility cell decomposition to a polygon with holes; except that
in this case, the vertices of the holes also act as the blocking vertices. The
subdivision procedure of our algorithm is still valid in this case. Valtr prove
that for this case of an art gallery with holes the VC-dimension is bounded by
O(log h), where h is the number of holes [16]. Thus, in this case our algorithm
yields a solution with the approximation ratio O(log h· log(copt log h)).

1 In the earlier draft of this paper, we had used O(log n) bound on the VC-dimension.
Csaba Toth pointed us to the constant VC-dimension bound in [16].
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7 Conclusions

In this paper, we have presented a pseudopolynomial time algorithm for the
point guard problem with guaranteed O(log n) approximation ratio. The immi-
nent question is whether we can improve the running time of our algorithm. An
interesting topic for future research is to investigate whether our subdivision pro-
cedure can be applied to other variants of the art gallery problems, particularly
for the case when guards have limited range.

Acknowledgments

We thank Csaba Toth for pointing to us a better VC-dimension bound (see
Footnote 1). We thank the anonymous referees for their useful comments and
bringing to our attention the reference [15]. The first author would like to thank
Prahladh Harsha for many useful discussions and feedback on the earlier drafts
of the paper.

References

1. Bose, P., Lubiw, A., Munro, J.I.: Efficient visibility queries in simple polygons. In:
Proc. 4th Canad. Conf. Comput. Geom. pp. 23–28 (1992)

2. Guibas, L.J., Motwani, R., Raghavan, P.: The robot localization problem. SIAM
J. Comput. 26(4), 1120–1138 (1997)
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6. Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite VC-
dimension. In: Proc. 10th Symp. Comp. Geom. pp. 293–302 (1994)

7. Urrutia, J.: Art Gallery and Illumination Problems. In: Sack, J. R., Urrutia, J.
(eds.) Handbook of Computational Geometry (2000)

8. O’Rourke, J.: Art Gallery Theorems and Algorithms (1987)
9. Shermer, T.: Recent results in art galleries. Proc. IEEE. 80, 1384–1399 (1992)
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Abstract. This paper discusses optimization of quality measures over
first order Delaunay triangulations. Unlike most previous work, our mea-
sures relate to edge-adjacent or vertex-adjacent triangles instead of only
to single triangles. We give efficient algorithms to optimize certain mea-
sures, whereas other measures are shown to be NP-hard. For two of the
NP-hard maximization problems we provide for any constant ε > 0, fac-
tor (1−ε) approximation algorithms that run in 2O(1/ε) ·n and 2O(1/ε2) ·n
time (when the Delaunay triangulation is given). For a third NP-hard
problem the NP-hardness proof provides an inapproximability result.
Our results are presented for the class of first-order Delaunay triangula-
tions, but also apply to triangulations where every triangle has at most
one flippable edge. One of the approximation results is also extended to
k-th order Delaunay triangulations.

1 Introduction

Triangulation is a well-studied topic in computational geometry. The input is
a point set or planar straight line graph in the plane, and the objective is to
generate a subdivision where all faces are triangles, except for the outer face. In
some cases extra points are allowed, in which case we speak of a Steiner trian-
gulation. Since a point set (or planar straight line graph) allows many different
triangulations, one can try to compute one that optimizes a criterion. For exam-
ple, one could maximize the minimum angle used in any triangle, or minimize
the total edge length (minimum weight triangulation). The former optimization
is solved with the Delaunay triangulation in O(n log n) time for n points. The
latter optimization is NP-hard [18].

Several other optimization measures exist. In finite element methods, trian-
gular meshes with various quality constraints are used, and Steiner points may
be used to achieve this; Bern and Plassmann [4] give a survey. Other optimiza-
tion measures arise if the triangulation represents a terrain (called a polyhedral
terrain in computational geometry): all vertices have a specified height, and the
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(a) (b) (c)

Fig. 1. (a) Delaunay triangulation (zero-th order). (b) Second order Delaunay trian-
gulation (light grey triangles are first order, darker triangles are second order). (c) For
first order Delaunay triangulations, one of every pair of dotted edges must be chosen.

height of points on edges and on triangles is obtained by linear interpolation.
Such a terrain representation is common in GIS and is called a TIN [6,22].

Bern et al. [3] show that measures like maxmin triangle height, minmax slope,
and minmax eccentricity of any triangle can be optimized with a technique called
edge insertion in O(n3) or O(n2 logn) time. Other measures such as minmax an-
gle [9] and minmax edge length can also be optimized in polynomial time [8].
Interestingly, the Delaunay triangulation optimizes several measures simulta-
neously: maxmin angle, minmax circumscribed circle, minmax enclosing circle,
and minimum integral of the gradient squared (e.g. [3]). For terrain modeling in
GIS, Steiner points cannot be used because their elevation would not be known.
Terrain modeling leads to a number of optimization criteria, both to yield good
rendering of the terrain for visualization, and to make it suitable for modeling
processes like water runoff and erosion [13,17]. Slope characteristics are espe-
cially important. Furthermore, local minima and artificial dams, which may be
artifacts due to the creation of the triangulation, should be avoided [7,14,21].

The Delaunay triangulation of a set P of points is defined as the triangulation
where all vertices are points of P and the circumcircle of the three vertices of any
triangle does not contain any other point of P . If no four points of P are cocircu-
lar, then the Delaunay triangulation is uniquely defined. Gudmundsson et al. [10]
generalize this to higher order Delaunay triangulations. A triangulation is k-th
order Delaunay if the circumcircle of the three vertices of any triangle contains
at most k other points (see Figure 1). For higher order Delaunay triangulations,
fewer results are known. Minimizing local minima in a terrain becomes NP-hard
for orders higher than nε, for constant ε. Experiments showed that low order
Delaunay triangulations can reduce the number of local minima significantly [7].

First order Delaunay triangulations have a special structure. All edges that
are in any first order Delaunay triangulation form a subdivision that only has
triangles and convex quadrilaterals (see Figure 1(c)). In the quadrilaterals, both
diagonals are possible to obtain a first order Delaunay triangulation. We call
these quadrilaterals and diagonals flippable. Due to this structure, measures like
the number of local minima or extrema can be minimized in O(n log n) time.
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Table 1. Optimization problems and complexity results for first order Delaunay tri-
angulations. d is the maximum vertex degree in the Delaunay triangulation.

Triangles Opt. worst local measure Result Opt. # occurrences Result
incident to (minmax)
edge area ratio O(n log n) max #convex edges NP-hard

angle of outward normals O(n log n)
vertex area ratio O(nd log n) max #convex vertices O(n log n)

angle of outward normals O(nd log n) min #local minima O(n log n) [10]
vertex degree NP-hard min #mixed vertices NP-hard

The same holds for minimizing the maximum area triangle, minimizing the total
edge length, and various other measures [10]. On the other hand, minimizing the
maximum vertex degree was only approximated by a factor of roughly 3/2.

Many of the measures mentioned above are measures for single triangles. Ex-
ceptions are total edge length, number of local minima or extrema, and maximum
vertex degree. In this paper, we consider measures that depend on pairs of tri-
angles that are edge-adjacent, and measures that depend on groups of triangles
that are vertex-adjacent. Note that a single flip in a first order Delaunay trian-
gulation influences five pairs of edge-adjacent triangles and four vertex-adjacent
groups. We consider objectives of the maxmin or minmax type, and objectives
where the number of undesirable situations must be minimized. Examples of
minmax objectives for edge-adjacent triangles include minimizing the maximum
ratio of edge-adjacent triangle areas, which is relevant for numerical methods
on meshes, or minimizing the maximum spatial angle of the normals of edge-
adjacent triangles in polyhedral terrains, which is important for flow modeling.
Geomorphologists classify parts of mountains or hills as footslopes, hillslopes,
valley heads, etc. [13]. If we know that a part of a terrain is a valley head, we
should maximize the number of convex edges or convex vertices in that part. A
vertex of a polyhedral terrain is convex if there is a plane through that vertex
such that all of its neighbors are on or below that plane, and at least one strictly
below. A vertex is mixed if every plane containing it has neighbors strictly above
and below the plane. We study maximization of convex edges, maximization of
convex vertices, and minimization of mixed vertices.

Given a planar point set P with or without elevation, we study the complex-
ity of optimizing measures over all first order Delaunay triangulations. Measures
we consider and results are shown classified in Table 1. The optimization of
other worst local measures for edge-adjacent triangles can also be solved in
O(n log n) time with the same technique, like minimizing the largest minimum
enclosing circle of any two edge-adjacent triangles. Our proof of NP-hardness
of minimizing the maximum vertex degree justifies the factor 3/2 approxima-
tion algorithm given before in [10]. The proof yields inapproximability beyond a
constant greater than 1 in polynomial time unless P=NP. It was already known
that triangulating a biconnected planar graph while minimizing the maximum
degree is NP-hard [15]. The NP-hard problems of maximizing convex edges and
maximizing non-mixed vertices can be approximated within a factor 1 − ε in
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2O(1/ε) · n and 2O(1/ε2) · n time, if the Delaunay triangulation is given. The NP-
hardness results show that, despite the simple structure of first order Delaunay
triangulations, optimization of various measures is hard.

2 Exact Algorithms

We start this section with a problem that turns out to be surprisingly easy to
solve, namely, maximizing the number of convex vertices over all possible first
order Delaunay triangulations. Let P be a set of n points in the plane, where
each point has a height value. As observed before, if we take the Delaunay
triangulation T of P , it has a number of edges that are in any first order Delaunay
triangulation, and a number of flippable edges, and no two flippable edges bound
the same Delaunay triangle [10]. The Delaunay triangulation and its flippable
edges can be determined in O(n logn) time.

For any flippable quadrilateral, one diagonal is reflex and the other diagonal
is convex in 3-dimensional space, unless the four vertices of the quadrilateral
are co-planar. Consider a convex vertex v in T . If it is incident to a flippable
quadrilateral where the convex diagonal is present, then v will remain convex if
we use the reflex diagonal instead (regardless of which diagonal is incident to v).
In other words: using only reflex edges in flippable quadrilaterals does not cause
any vertex to become non-convex. At the same time, it may turn non-convex
vertices into convex ones. It follows that the maximization problem on the given
point set P can be solved in O(n log n) time.

2.1 Measures on Edge-Adjacent Triangles

In this section we show how to optimize a measure function M defined for a
triangulation T , over all first order Delaunay triangulations of P . The func-
tion M should be of the shape M(T ) = maxq∈T μ(q) for q a (not necessarily
flippable) quadrilateral, and we wish to minimize M(T ) over all first order De-
launay triangulations T . We also use μ(e) for any edge e in a triangulation to
denote μ(q), where e is the diagonal of q. A first order Delaunay triangulation
has four types of edges: between two fixed triangles, between a fixed triangle
and a flippable quadrilateral, between two flippable quadrilaterals, and flippable
edges. As a consequence, there are only O(n) possible values for M(T ), and we
can determine and sort them in O(n log n) time.

We solve the minM(T ) problem by transforming it into a series of 2-SAT
instances. We will use 2-SAT to answer the following question: Is there a first
order Delaunay triangulation T such that M(T ) ≤ μ0? Since there are O(n)
interesting values for μ0, we can apply binary search to find the smallest one.

Let S be the subdivision that is the Delaunay triangulation of P with all
flippable edges removed, and let μ0 be given. For every edge e of S between a
triangle and a quadrilateral, decide which of the two diagonals of the quadrilat-
eral has μ(e) > μ0. If neither does, then we can answer the question immediately
with “no”. If only one diagonal has μ(e) > μ0, then we fix the other diagonal in
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S. Otherwise, we continue with the next edge between a triangle and a quadri-
lateral. This step may have made flippable quadrilaterals into two fixed triangles
in S. Next we test the possible diagonals of each quadrilateral of S. If both di-
agonals give μ(.) > μ0, then we answer with “no” again. If only one diagonal
gives μ(.) > μ0, then we fix the other diagonal to make two new triangles in S.
Next we test all edges of S between adjacent triangles. If any such edge does not
satisfy μ(e) > μ0, then we answer the question with “no” again.

It remains to solve the problem for edges between quadrilaterals of S. For
every quadrilateral q we introduce a Boolean variable xq, and let one diagonal
choice represent true and the other false. Let e be an edge of S between
two quadrilaterals q and r. For each choice of diagonals in q and r that gives
μ(e) > μ0, for example the one with true in q and false in r, we make a clause
(¬xq ∨xr). We get at most four clauses for any edge between two quadrilaterals,
so O(n) clauses overall. The conjunction of all clauses is a 2-SAT instance, which
we can solve in linear time with the algorithm of Aspvall et al. [1]. The binary
search must try O(log n) values for μ0 until we find the one minimizing M(T ).
Hence, the whole algorithm takes O(n log n) time.

2.2 Measures on Vertex-Adjacent Triangles

The algorithm described in the previous section can easily be extended to mini-
mize measure functions of the form M(T ) = maxt,t′∈T μ(t, t′) for t and t′ trian-
gles in T with a common vertex. The set of possible values of M(T ) induced by
pairs of triangles incident to a vertex v is

(
d(v)
2

)
, where d(v) denotes the degree

of v. Since the sum of the degrees of all vertices is O(n), the total number of
possible values of M(T ) is at most

∑
v∈T d(v)

2 = d ·
∑
v∈T d(v) = O(dn), where

d is the maximum degree of any vertex in the triangulation.

Theorem 1. A first order Delaunay triangulation that minimizes the maximum
area ratio of edge adjacent triangles can be computed in O(n log n) time. If the
triangulation represents a polyhedral terrain, the same result holds for minimiz-
ing the maximum angle of outward normals. If we consider these ratio measures
over pairs of vertex adjacent triangles, the algorithms take O(nd log n) time,
where d is the maximum vertex degree in the Delaunay triangulation.

3 NP-Hardness Results

We show NP-hardness for three different optimization problems on first order
Delaunay triangulations. The proof for the first problem, minimization of the
number of mixed vertices in a terrain, is treated in detail. The other two NP-
hardness results are only stated; the proofs can be found in the full paper [23].

3.1 Mixed Vertices

In a terrain, we call a vertex mixed if every plane through it has neighboring
vertices above and below the plane. In some types of terrains, such vertices are
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Fig. 2. (a) A fan. (b) One of the solutions: a left-turning fan. Similarly a right-turning
fan is possible. (c) An inverter gadget. (d) One of the two solutions.

uncommon, so we may want to minimize their number. Given a set of points with
height information, we study the problem of constructing a first order Delaunay
triangulation of this point set such that the number of mixed vertices is minimal.
This problem is NP-hard. We prove this by reduction from planar 3-SAT [16].

We represent the variables of a 3-SAT instance by fan gadgets, see Figure 2(a).
A fan gadget consists of 25 points with elevations. In the figure, all possible first
order Delaunay edges are shown. Solid edges are in every first order Delaunay
triangulation; dashed and dotted edges are flippable. The square nodes and the
dotted edges are the most important part. We observe that a square vertex is
mixed if and only if both incident dotted edges are in the triangulation.

We construct the gadget in such a way that the state of the round vertices does
not depend on any of the dotted edges. The white round vertices are always non-
mixed, even if all incident edges would be in the triangulation; the grey round
vertices are always mixed, already if only the fixed edges are in the triangulation.
Hence the number of mixed vertices is only affected by square vertices, and can
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Fig. 3. (a) Connecting variables. (b) Three variables come together in a clause.
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Fig. 4. A coating to shield the construction from the outside

only be minimal if there are never two dotted edges at the same square vertex.
A fan gadget therefore has two possible states, see Figure 2(b).

We can connect fans together to form larger chains that are all in the same
state, see Figure 3(a). We turn two more vertices into squares, and if the left
fan is left-turning, the right fan must also be left-turning and the other way
around. We can connect up to three fans to an existing fan, so chains can also
split. We also make negations in chains using the inverter gadget in Figure 2(c).
Here, if the leftmost square has its positive sloping diagonal in the triangulation,
the rightmost square must have its negative sloping diagonal and the other way
around, see Figure 2(d). We use an inverter gadget in a chain to negate a variable.

We represent the clauses occurring in the 3-SAT instance by a special clause
vertex, see Figure 3(b). Here three fan chains come together at one square vertex
in a darker shade of grey. This vertex has a slightly different property than the
other square vertices. A clause vertex is mixed if and only if all three incident
dotted edges are in the triangulation.

So, the clause can be satisfied if at least one of the three fans is not right-
turning, and by including inverters at the appropriate places this can represent
any Boolean clause of a 3-SAT formula. With these gadgets we can build the
whole planar 3-SAT instance. Finally, we need to triangulate the remaining gaps,
so we need to ensure that the vertices on the boundary really have a fixed value.
We add an extra layer of sufficiently high vertices (labeled ∞ in Figure 4). These
vertices are all non-mixed, and the properties of the vertices that are not on the
boundary can be checked locally.

Theorem 2. Minimizing the number of mixed vertices over all first order De-
launay triangulations is NP-hard.



182 M. van Kreveld, M. Löffler, and R.I. Silveira

3.2 Maximum Vertex Degree and Convex Edges

In the full paper [23] we also give NP-hardness proofs for minimizing the maxi-
mum vertex degree and maximizing the number of convex edges in a polyhedral
terrain. The reductions are from planar 3-SAT and planar MAX-2-SAT [11].

Theorem 3. The problems of minimizing the maximum vertex degree and max-
imizing the number of convex edges over all first order Delaunay triangulations
are NP-hard.

4 Approximation Algorithms

The problems of optimizing the number of convex edges or mixed vertices and
minimizing the maximum vertex degree were shown NP-hard; hence it is of
interest to develop approximation algorithms for them. For the last problem
there is already a 1.5-approximation [10], and our NP-hardness proof shows that
no polynomial time approximation scheme exists unless P=NP. For the other two
problems we present polynomial time approximation schemes. We also sketch an
extension to k-th order Delaunay triangulations for maximizing convex edges.

The general idea is as follows. First we transform the problem into a graph
problem on some planar graph that can be obtained from the Delaunay trian-
gulation without flippable edges. The resulting graph is partitioned into layers
of outerplanarity at most λ. For each choice of i, where 0 ≤ i < λ, we delete
every (jλ + i)-th layer of vertices, where j = 0, 1, 2, . . .. The resulting “thick”
layers are independent. For each thick layer, we compute a tree decomposition
of width at most 3λ− 1 and solve the problem optimally on this decomposition
in 2O(λ)n time, using dynamic programming. Finally, the union of the solutions
of all the thick layers for a given i yields a solution to the original problem. We
simply choose i such that the size of the solution is the maximal, and return
the corresponding triangulation as output. Such an approach gives a (1 − ε)-
approximation if λ is chosen suitably, depending on the problem and ε [2,12].

4.1 Maximizing the Number of Convex Edges

We build a graph G that has a vertex (called q-vertex) for each flippable quadri-
lateral, and an edge between two q-vertices if and only if their corresponding
quadrilaterals share an edge. The rest of the input (all the fixed triangles) are
not explicitly represented, see Figure 5(b). Each q-vertex has two possible states,
convex or reflex, depending on the choice of the diagonal. It also has a value that
depends on its state and represents the number of convex edges among the flip-
pable edge and any edges that the quadrilateral shares with fixed triangles when
the q-vertex is in that state (from 0 to 5). Furthermore, every edge in G has
a value that depends on the states of both incident q-vertices. The goal of the
algorithm is to find a state for each q-vertex such that the sum of the values
(total number of convex edges) is maximized.
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Fig. 5. (a) Initial triangulation (solid edges are fixed). (b) Graph (in gray) where each
vertex represents a flippable quadrilateral. (c) The same graph showing the outerpla-
narity layers.

To create the independent thick layers from the graph we will remove the
edges that connect two consecutive layers jλ + i and jλ + i + 1 in G, where
j = 0, 1, 2, . . ., for all choices of 0 ≤ i < λ. The layers created after removing
one set of layers of edges are independent, so if we optimize them separately and
then join them by adding the removed edges, the number of convex edges after
the join cannot decrease. Some edges are not considered for every i, but only in
λ − 1 out of λ solutions. We get a (1 − ε)-approximation algorithm by taking
λ = � 1

ε�, due to the pigeonhole principle [2,12].
Once we have the thick layers, each layer is solved optimally by using a tree

decomposition approach. Since each layer is a λ-outerplanar graph, a tree de-
composition with treewidth at most 3λ − 1 can be computed in time linear in
the number of nodes of the graph [5]. Once we have this decomposition we can
apply one of the standard techniques to deal with problems on graphs of small
treewidth. The technique consists of building tables of partial solutions in the
nodes of the tree decomposition [5,19].

Definition 1. (from [19], originally in [20]) Let G = (V,E) be a graph. A tree
decomposition of G is a pair 〈{Xi|i ∈ I}, T 〉 where each Xi is a subset of V ,
called a bag, and T is a tree with the elements of I as nodes. The following three
properties must hold:

1.
⋃
i∈I Xi = V ;

2. for every edge {u, v} ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi; and
3. for all i, j, k ∈ I, if j is on the path between i and k in T then Xi∩Xk ⊆ Xj.

The width of 〈{Xi|i ∈ I}, T 〉 equals max{|Xi| | i ∈ I} − 1. The treewidth of G
is the minimum ω such that G has a tree decomposition of width ω.

We will make T rooted by choosing any node to be the root. For each bag Xi,
we will store a table Ai (i ∈ I). Tables will be created in a bottom up fashion as
follows. For each bag Xi, the table Ai has 2ni rows and ni + 1 columns, where
ni = |Xi|. Each row represents a coloring, which is an assignment of a state
(reflex/convex ) to each q-vertex (flippable quadrilateral) in Xi. All the different
possible colorings for the bag are represented in the table. Furthermore, for each
coloring Cj an extra value mi(Cj) is stored, containing the number of convex
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edges in an optimal triangulation of the point set induced by the subtree rooted
at Xi that includes the current coloring as a subset. The details on how to
compute these values are presented below.

Step 1: Table initialization. For every table Ai and each coloring Cj , we set
mi(Cj) to the number of convex edges for that assignment: The sum of the values
of each q-vertex (that will vary according to its state), plus 1 for each edge with
both incident q-vertices in Xi if their states define a convex edge between the
corresponding quadrilaterals (with diagonals chosen).

Step 2: Table update. Next the tree is traversed, starting from the leaves,
finishing at the root. For each node, the column mi of Ai is updated based on
its children. Let i be the parent of node j. Bags Xi and Xj have some q-vertices
in common. We sort both tables first by the columns of the shared q-vertices,
and second by mi. Then we scan Ai row by row, and for each coloring Cl we
update mi(Cl) based on the highest value that mj() has for that combination of
the shared q-vertices. For later reconstruction of the triangulation we also store
a pointer to the corresponding row in Aj . When a node Xi has several children,
we update Ai against each child, one at a time, in the same way. Once the root
node is updated, the number of convex edges in an optimal triangulation will be
in the last column of one of the rows of its table. The final triangulation can be
computed by following the pointers in the tables.

The correctness of the method follows from the definition and properties of
tree decompositions, and the arguments are identical to the ones that hold for
other well-known problems where the same technique has been used, such as
vertex cover or dominating set (see [19]).

The running time is dominated by the computation and merging of the tables.
The sorting of each table can be done in time O(2ωω) (because all but one column
have only two states). The time for updating a table based on another one is
linear in the size of the largest one, so O(2ω). The number of tables is linear in
the number of nodes |I| of tree T , hence the total running time is O(2ωω · |I|).
Since the graph is λ-outerplanar we can compute a tree decomposition of width
ω ≤ 3λ − 1 and |I| = O(n) nodes [5,19]. We apply this algorithm to the λ
different values of i to get an approximation scheme, so the worst-case running
time is O(λ2ωω · |I|) = O(λ28λ · n) = O( 1

ε2 8
1
ε · n) = 2O(1/ε) · n.

Theorem 4. For any ε > 0, a (1− ε)-approximation algorithm for maximizing
the number of convex edges over all first order Delaunay triangulations exists
that takes 2O(1/ε) · n time (if the Delaunay triangulation is given).

4.2 Maximizing the Number of Non-mixed Vertices

Using a similar approach as above, we can also maximize the number of non-
mixed vertices of a terrain. Because the mixed/non-mixed state of a vertex is
determined by a large (possibly non-constant) number of neighboring quadrilat-
erals, several adaptations are needed. We now construct a graph with vertices for
both the vertices and the quadrilaterals of the terrain. We remove the graph ver-
tices that represent terrain vertices that have a fixed state, a high degree, or that
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can always be satisfied without disturbing the others. Of the remaining graph,
we create λ-thick layers again, and we compute a tree decomposition of every
layer, which we blow up such that every vertex contains all its neighbors in some
bag. We solve the problem in each layer optimally by dynamic programming.
More details are in the full paper [23]. We achieve:

Theorem 5. For any ε > 0, a (1− ε)-approximation algorithm for maximizing
the number of non-mixed vertices over all first order Delaunay triangulations
exists that takes 2O(1/ε2) · n time (if the Delaunay triangulation is given).

4.3 Maximizing the Number of Convex Edges, k-th Order

The approximation algorithm for maximizing convex edges extends to k-th order
Delaunay triangulations. To assure that every k-order Delaunay edge with its
incident triangles is considered as a potentially convex edge in enough subprob-
lems, we need layers with thickness proportional to k/ε. To use tree decompo-
sitions with bounded treewidth for maximizing convex edges, we also need to
assure that the four vertices involved in two adjacent k-order Delaunay triangles
appear in some bag of the tree decomposition. We show in the full paper [23]:

Lemma 1. If 〈{Xi|i ∈ I}, T 〉 is a tree decomposition of the Delaunay trian-
gulation of a set of points with width ω, then a tree decomposition of width at
most 2O(k)ω2 exists where every pair of adjacent k-th order Delaunay triangles
appears in some bag.

The number of states of a bag is exponential in the treewidth, and combining
two bags takes time nearly linear in their number of states. This leads to:

Theorem 6. For any ε > 0, a (1− ε)-approximation algorithm for maximizing
the number of convex edges over all k-th order Delaunay triangulations exists
that takes 22O(k)/ε2 · n time (if the Delaunay triangulation is given).

5 Discussion

We analyzed the algorithmic complexity of optimizing various measures that
apply to triangulations, and terrains represented by triangulations. The class of
triangulations over which optimization is done is the first order Delaunay tri-
angulations. We gave efficient algorithms for four measures, NP-hardness proofs
for three other measures, and polynomial time approximation schemes for two
measures that were shown NP-hard. One approximation algorithm could be ex-
tended to k-th order Delaunay triangulations.

Other measures related to terrain modeling in GIS may be of interest to
optimize. Also, certain measures that have efficient, optimal algorithms for first
order Delaunay triangulations may become harder for second and higher order
Delaunay triangulations. These are interesting topics for further research. It is
also unknown how to generalize the approximation algorithm for maximizing
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non-mixed vertices to higher order Delaunay triangulations. Finally, improving
on the doubly-exponential dependency on the order k in the approximation
algorithm for maximizing convex edges is worthwhile.

Acknowledgements. The authors thank Hans Bodlaender and René van Oost-
rum for helpful discussions.
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Abstract. An approach for reducing the navigation effort for the users
of a web site is to enhance its hyperlink structure with additional hotlinks.
We address the task of adding at most one such additional outgoing edge
to each page of a tree-like site, minimizing the path length, i.e. the ex-
pected number of “clicks” necessary for the user to reach his destination
page. Another common formulation of that problem is to maximize the
gain, i.e. the path length reduction achieved by the assignment.

In this work we analyze the natural greedy strategy, proving that it
reaches the optimal gain up to the constant factor of 2. Considering the
gain, we also prove the existence of a PTAS. Finally, we give a poly-
nomial time 2-approximation which constitutes the first constant factor
approximation in terms of the path length. The algorithms’ performance
analyses are made possible by a set of three new basic operations for the
transformation of hotlink assignments.

Keywords: Hotlink Assignment, Approximation Algorithms, Graph
Theory, Greedy Algorithms, Dynamic Programming.

1 Introduction

Due to the extensive growth of the Internet as a huge information source, the
task of making an increasing amount of information accessible in a user-friendly
way is becoming more and more important. The value of any information is
closely related to its accessibility. Therefore, the effort spent by users searching
for a specific piece of information, or trying to get an overview of some subset
of the available information, should be minimized.

In this work we address the concept of improving the design of large web
directories or similar structures by assigning additional hotlinks to its pages.
By taking access frequencies into account, hotlinks can especially reduce the
access times of popular pages, while the site’s original structure is preserved.
A considerable amount of research has been spent on this approach, see e.g.
[1,2,3,4,5,6,7,8,9,10,11,12,13]. It can be applied in a number of additional sce-
narios, e.g. knowledge bases, file systems, menus of computer applications, and,
as observed by Bose et. al. in [15], even in asymmetric communication protocols.

Problem definition: A hierarchical web site can be modeled as a weighted tree
T = (V,E, ω) where (V,E) is a tree. Let L ⊆ V be the set of leaves of T . The
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weight function ω : L → IR+
0 assigns a non-negative weight to each leaf. The

weights can be interpreted as access frequencies or, if normalized to sum up to
1, as access probabilities. Let ch(v) denote the set of children and let desc(v)
(anc(v)) denote the set of proper descendants1 (ancestors) of a node v.

We assume that information is stored in the leaves only. In order to access a
leaf l, the user has to traverse the directed path from the root to l. A hotlink
assignment (HLA) is a set A ⊂ V × V of additional edges, providing shortcuts
for the user. The elements of A are called hotlinks. For (u, v) ∈ A we refer to v
as u’s hotchild. We further refer to u as v’s hotparent and say that the hotlink
starts in u and ends v.

In this work we assume that the user only knows about the outgoing hotlinks
of the nodes he has already visited and always takes any hotlink that leads
him closer to his destination leaf. This is referred to as the greedy user model. In
contrast, in the clairvoyant user model users take the shortest path in (V,E∪A).

The greedy user assumption leads us to demand that any hotlink assignment
A satisfies three feasibility properties (referring to [8]).

(i) For every edge (u, v) ∈ A, v ∈ desc(u) in T .
(ii) Let (u, v), (u′, v′) ∈ A and let u′ ∈ desc(u) ∩ anc(v). Then v′ ∈ anc(v).
(iii) For every node u ∈ V there is at most one edge (u, v) ∈ A.

Properties (i) and (ii) are consequences of the greedy user assumption, since
hotlinks violating these properties would never be taken by a greedy user. Prop-
erty (iii) demands that each node may have at most one hotchild. This reflects
the fact that the number of hotlinks on a concise web page must be somehow
limited. Relaxations of property (iii) are considered in Section 6.

For a given weighted tree T , the path length of a hotlink assignment A is
defined as

p(A) =
∑

l∈L
ω(l)distA(r, l) ,

where L is the set of leaves, r is the root of T and distA(u, v) determines the
number of edges and hotlinks a greedy user traverses when traveling from u to
v. The Hotlink Assignment Problem denotes the problem of finding a hotlink as-
signment for a given tree, minimizing the path length. An alternative formulation
of that problem is to maximize the gain

g(A) = p(∅)− p(A) .

The two problem formulations are equivalent in the sense that a HLA maximizes
the gain if and only if it achieves a minimum path length. They are however not
equivalent when we are interested in approximation ratios. We will see in the
later sections that there are in fact algorithms that approximate the gain (path
length) up to a constant ratio but do not guarantee any constant ratio in terms
of the path length (gain).

1 All descendants (ancestors) a node v, not including v itself, are proper descendants
(ancestors) of v.
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Related work: The concept of assigning hotlinks to web sites was suggested by
Perkowitz and Etzoni in [14]. Bose et. al. have shown in [1] that the problem is
NP-hard when considering general DAGs instead of trees. They have proposed
algorithms for full binary trees with special probability distributions on the
leaves. The first strategies for assigning at most a fixed number of k hotlinks
to each node of full d-ary trees have been given in [2].

In [1] the authors have also proven a lower bound for the path length using
coding theory: No assignment of at most k hotlinks to each node can result in a
path length smaller than H(p)/ log(d + k), where H(p) =

∑
l∈L ω(l) log( 1

ω(l) ) is
the entropy of the probability distribution over the leaves. Efficient algorithms
achieving a path length of O(H(p)) have been published in [4,12] and most
recently in [13]. Dynamic maintenance of such HLAs has also been studied in [12].
These algorithms hold constant approximation ratios for trees of fixed degree.

For the clairvoyant user model, Matichin and Peleg have proven in [9] that the
natural greedy strategy holds an approximation ratio of 2 even in DAGs. In [11]
the same authors have given a 2-approximation for arbitrary trees in the more
realistic greedy user model. Their algorithm assigns only hotlinks from nodes to
one of their grandchildren.

Gerstel et. al. ([7]) and Pessoa et. al. ([8]) have independently discovered an
optimal algorithm whose running time is exponential in the depth of the tree and
thus polynomial for trees of logarithmic depth. It is yet unknown if the optimal
solution for arbitrary trees can be computed in polynomial time.

A number of experimental papers on hotlink assignment have been published
([3,6,10]) and a software tool for assigning hotlinks to web sites has been devel-
oped ([5]). A surprising application of hotlink assignment in asymmetric com-
munication protocols has been suggested by Bose et. al. in [15].

Our contribution: We present two constant factor approximations and one
PTAS for the hotlink assignment problem on arbitrary trees and thus substan-
tially improve the best approximation ratios previously known for both the path
length and the gain.

– The natural greedy algorithm GR, which always adds a hotlink achieving the
greatest gain, has exhibited the best performance among the approximation
algorithms studied experimentally in [3,6,10]2. So far, no bound for its ratio
in the greedy user model was known. We show that GR is a 2-approximation
in terms of the gain.

– We prove the existence of a PTAS in terms of the gain. More specific, we
give an upper bound for the loss of gain caused by restricting the length of
hotlinks to a fixed value. Then we modify the PATH-algorithm of Pessoa,
Laber and Souza ([8]) such that it achieves the gain of any length-restricted
assignment in polynomial time.

– We present the first algorithm that yields a constant approximation ratio
in terms of the path length for trees of unbounded degree. Our approach
decomposes the tree into subtrees called heavy centipedes. Optimal hotlink

2
GR is called recursive in [3,6] and greedyBFS in [10].
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assignments for such subtrees can be computed efficiently by dynamic pro-
gramming. The resulting approximation ratio is 2.

The foundation of all the algorithms’ performance analyses is formed by three ba-
sic operations for HLA modification. These are introduced in Section 2 together
with some further notation. The algorithms are then presented and analyzed in
the following three sections, which can be read independently from each others.
In Section 6 we briefly discuss if and how our algorithms can be generalized for
relaxations of feasibility property (iii). Section 7 concludes. Omitted proofs ap-
pear in the long version of the paper, as well as lower bounds for all algorithms’
approximation ratios and detailed descriptions of the generalized algorithms.

2 Further Notation and Basic Operations

In this section we introduce some further notation for our problem and subse-
quently define and analyze three new operations for the modification of hotlink
assignments.

For nodes v in T we denote by T (v) the maximum subtree of T rooted at v. For
any set V ′ of nodes, let T (−V ′) be the tree obtained by omitting from T all max-
imum subtrees rooted at a node in V ∩V ′. Let further T (v)(−A) = T (v)(−{v′ ∈
desc(v) | ∃(u, v′) ∈ A : u ∈ anc(v)}) be the subtree rooted at v where the maxi-
mum subtrees rooted at the hotchildren of v’s ancestors are omitted. Finally, for
any subtree T ′ of T , we define A|T ′ = {(u, v) ∈ A | u, v are nodes in T ′}.

We extend the weight function ω to be defined also for inner nodes. The weight
of such a node u is calculated by summing up the weights of all leaves l where u
is on a greedy user’s path from r to l. Given an assignment A, these are exactly
the leaves in T (u)(−A), i.e.

ωA(u) =
{
ω(u) if u is a leaf∑
v∈chA(u) ω

A(v) otherwise ,

where chA(u) denotes the set of u’s children and hotchildren in T (u)(−A).
The gain of a hotlink assignment A can be formulated as the sum over the

path shortening contributions of its hotlinks, i.e.

g(A) =
∑

(u,v)∈A
ωA(v)(dist∅(u, v)− 1) .

The gain of a single hotlink of A is defined as gA(u, v) = dist((u, v)− 1) ·ωA(v).
Concerning the empty assignment we use the following abbreviations: ω∅ = ω,

dist∅ = dist and g{(u,v)}(u, v) = g(u, v). For T = (V,E, ω) we sometimes write
v ∈ T instead of v ∈ V .

We proceed introducing three basic operations that modify hotlink assign-
ments. Note that none of these operations is actually applied by any algorithm
given in this paper. We need them however for the performance analyses in
Sections 3, 4 and 5.
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Definition 1. Let A be a hotlink assignment for a weighted tree T and let u be
a node in T . The operation pushdown(u) is defined as follows:

If u has no hotchild under A, do nothing. If u’s hotchild is one of its chil-
dren or grandchildren, delete the corresponding hotlink. Otherwise, let v be u’s
hotchild and let u1 be the child of u that is located on the path from u to v. Apply
pushdown(u1) and subsequently replace (u, v) by (u1, v) in the assignment.

After applying pushdown(u) to a hotlink assignment, the node u is guaranteed
to have no hotchild.

Lemma 1. Let A be a HLA for a weighted tree T and let u be a node in T . The
operation pushdown(u) causes a decrease in gain of at most ωA\{(u,v)}(u1). �

Note that in most of the analyses in the later sections it suffices to use a weaker
version of Lemma 1, assuming a maximum decrease in gain of ωA(u).

Definition 2. Let A be a hotlink assignment for a weighted tree T , let u be an
inner node in T that has no hotchild under A and let v be a node in T (u)(−A).
The operation free-insert(u, v) is defined as follows:

Let uu1 . . . unv be the path from u to v, let uk(1), . . . , uk(m) be the list of nodes
on this path that have a hotchild in T (v), ordered by decreasing depth. Let further
vk(i) be the hotchild of uk(i), 1 ≤ i ≤ m .

For i = 1, . . . ,m, apply pushdown(v) and subsequently replace (uk(i), vk(i))
by (v, vk(i)). After these m iterations, add (u, v) to the assignment.

Lemma 2. No decrease in gain occurs when applying free-insert. �

Definition 3. Let A be a HLA for a weighted tree T , let (u, v) ∈ A and let
v′ ∈ desc(u) ∩ anc(v). The operation shorten-hl(u, v′) is defined as follows:
Temporarily allow u to have a second hotchild and perform free-insert(u, v′).
Then apply pushdown(v′). Finally, replace (u, v) by (v′, v).

Due to feasibility condition (ii), v′ is also a node in T (u)(−A), which ensures
that the operation is always applicable.

Lemma 3. Let A′ be the HLA obtained from A by applying shorten-hl(u, v′).
Then g(A) − g(A′) ≤ ωA

′
(v′).

Proof. The claim follows straightforward from Lemma 1 and 2. �

3 The Natural Greedy Strategy

The natural greedy strategy, denoted as GR in this paper, initializes A with A =
∅ and always adds a hotlink (u, v) to A that maximizes gA(u, v). The procedure
terminates when any further hotlink would violate a feasibility condition.

GR can be formulated in a number of alternative ways. One is to traverse
the nodes in a topological order3 and for each node u add a hotlink (u, v) that

3 In a topological order each node appears before its children.
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causes a maximum gain. Another equivalent formulation is to add a maximum
gain hotlink (r, v) that starts in the root and recursively apply the algorithm
to the subtrees T (u1)(−A), . . . , T (ud)(−A) and T (v), where u1, . . . , ud are the
children of r.

In the latter formulation GR has been introduced by Czyzowics et al. in [3],
where it is called recursive. In that work the authors have also considered another
greedy algorithm greedyBFS 4. The difference to GR is that greedyBFS does not
take the hotlinks it has already assigned into account for the calculation of the
inner node’s weights, i.e. it works with ω∅ instead of ωA. The weight function ω∅

is also used by recursive in that work, but in that formulation of the algorithm
it makes no difference since hotlinks are only added to empty assignments. The
experiments in [3,6] examine in fact a slightly better performance of GR.

Theorem 1. GR holds an approximation ratio of 2 in terms of the gain.

Proof. We show how to transform an optimal HLA Ã into a GR-assignment
AGR loosing not more than half of the gain. Let A be our working assignment,
initialized by A = Ã. We traverse the nodes of T in some topological order.
For each node u we delete the hotlink (u, v) ∈ A if it exists. Let (u, v′) ∈ AGR.
Due to the topological traversal, v′ is a node in T (u)(−A). Thus, we are able
to apply free-insert(u, v′) to A, preserving the gain of the assignment due to
Lemma 2. Furthermore, the topological traversal ensures that ωA(v′) will not
decrease later in the transformation process. From the definition of GR follows
that the decrease caused by the deletion of (u, v) is not greater than the gain
guaranteed by (u, v′).

So, after the complete transformation, we have lost a total amount of gain
that is not greater than the gain of the resulting assignment. �

4 An Approximation Scheme for the Gain

In this section we present an algorithm that computes a (1 + ε)-approximation
in time O(n3

1
ε ). In [11], Matichin and Peleg have shown that restricting hotlinks

to length 2 at most halves the possible gain. They have given an algorithm that
computes a best length 2 hotlink assignment and is thus a 2-approximation.

On a high level, our approach can be interpreted as a generalization to that of
Matichin et al. However, both our proof technique and our algorithmic idea are
completely different. Let the length of the hotlink (u, v) be defined as dist(u, v).
We prove that one looses at most 1

h of the gain when restricting hotlinks to a
maximum length of h. Then we show how to compute an assignment achieving
at least the gain of the best length h HLA.

Lemma 4. For any tree T and any integer h > 1 there is a HLA Ah with
dist(u, v) ≤ h for each (u, v) ∈ Ah and h

h−1g(A
h) ≥ g(Ã), where Ã is an optimal

HLA for T .

4 In contrast, the algorithm called greedyBFS in [10] is actually GR.
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Proof sketch: Ã can be transformed into a length h assignment Ah by cutting
each long hotlink at length h using shorten-hl. Not more than 1/h of Ã’s gain
is lost due to these operations. �
Now we show how to efficiently compute optimal length-restricted HLAs. The
PATH algorithm presented in [8] computes a best HLA A that satisfies
distA(r, u) < h for any node u. We give a modified version LPATH which com-
putes an optimal HLA A under the restriction that distA\{(u,v)}(u, v) ≤ h for any
(u, v) ∈ A. Since the latter restriction is weaker than demanding dist∅(u, v) ≤ h,
the HLA computed by LPATH is at least as good as any assignment of hotlinks
of maximum length h. Thus, Lemma 4 implies an approximation ratio of h

h−1
for LPATH.

Algorithmic idea: The main idea is to determine the concrete hotchildren of
the nodes as late as possible. Assume we are given a subtree T ′ together with
a number of hotlinks that have already been decided to end in T ′. One of these
hotlinks could end in the root r of T ′. For each of the others, we have to decide
in which subtree of T ′ it ends.

Detailed description of the algorithm: The structure of the subproblems is
exactly the same as for PATH. Let T be the input tree. Subproblems are defined
by a triple (q, a, T ′), where q = q1 . . . qn is a directed path, a = a1 . . . anan+1b ∈
{0, 1}n+2 is a binary vector and T ′ is a subtree of T . It represents the tree qT ′

obtained by appending the root r of T ′ to qn. The vector a represents a number
of restrictions concerning hotlink assignments for qT ′. Path nodes qi are only
allowed to have a hotchild if ai = 1. They are not allowed to be hotchildren
themselves. The node r is only allowed to be a hotfather if an+1 = 1, and
may only be a hotchild if b = 1. Observe that the original problem can also be
described as such a subproblem.

We proceed describing how LPATH computes a best HLA for (q, a, T ′), i.e.
maximizes g̃(q, a, T ′). Let r be an inner node. Then we distinguish between two
cases.

Case I: There is a hotlink that ends in r. The hotfather of r is some node qi
with ai = 1. Due to feasibility condition (ii), there can be no hotlink starting
in any qj with j > i. Moreover, hotlinks (qk, v) with k < i and v ∈ desc(r) will
decrease the gain of (qi, r) by (dist(qi, r)− 1) · ω(v). This is equivalent to saying
that the gain of (qi, r) is fixed and the distance between qk and v is reduced by
(dist(qi, r) − 1). So the gain of an optimal assignment for (q, a, T ′) is calculated
by

g̃I(q, a, T ′) = max
ai=1

{(n− i) · ω(r) + g̃(q1 . . . qi, a1 . . . ai−10an+10, T ′)} .

Case II: No hotlink ends in r. The hotchild of any qi with ai = 1 must be either
in some subtree rooted at the first child u1 of r (assuming any order), or in a
subtree rooted at another child of r. The same holds for r if an+1 = 1. We use
a vector c ∈ {0, 1}n+1 to describe the distribution of these hotchildren among
T (u1) and T (−{u1}). The set C contains all feasible vectors for the subproblem,
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i.e. C = {c ∈ {0, 1}n+1 | ci + ai ≤ 1∀i = 1, . . . , n + 1}. The gain of an optimal
HLA is calculated by

g̃II(q, a, T ′) = max
c∈C

{g̃(q1 . . . qnr, c1 . . . cn+111, T ′(u1)) + g̃(p, c̄0, T ′(−{u1}))} ,

where c̄0 represents the vector (1 − c1, . . . , 1 − cn+1, 0).
As we want to bound the relative length of hotlinks to h, we cut off the first

n−h components of q and a whenever n > h. This constitutes the only difference
between PATH and LPATH, as PATH would set the gain to −∞ in case of n > h.
PATH and LPATH behave identically in the basic case when T ′ is a leaf.

So the formula used by LPATH for calculating the gain of an optimal HLA
for the subproblem (q, a, T ′) is

g̃(q, a, T ′) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max({0} ∪ {n− i | ai = 1}) · ω(r) if r is a leaf
0 if ch(r) = ∅
g̃(qn−h . . . qn, an−h . . . an+1b, T

′) if n > h
g̃II(q, a, T ′) if b = 0
max{g̃I(q, a, T ′), g̃II(q, a, T ′)} otherwise .

Analysis of LPATH: LPATH uses dynamic programming, maintaining a table
with an entry for each configuration of a and T ′. The performance analysis is the
same as for PATH, we therefore refer the reader to [8]. The memory requirements
are in O(n2h), while the runtime is in O(n3h).

Theorem 2. For any ε > 0, LPATH computes a (1 + ε)-approximation in time
O(n3

1
ε ) and space O(n2

1
ε ).

Proof. For a given ε > 0, choose h such that h
h−1 ≤ 1 + ε < h−1

h−2 . According to
Lemma 4, the left inequality implies that LPATH with parameter h guarantees
an approximation ratio of (1 + ε).

For the runtime and memory analysis we assume (1 + ε) = h−1
h−2 , as a smaller

ε only implies weaker runtime and memory demands. Thus, h = 2 + 1
ε and the

runtime of LPATH is in O(n32+ 1
ε ) = O(n3

1
ε ), while the algorithm uses O(n2

1
ε )

space. �

5 A 2-Approximation in Terms of the Path Length

In this section we develop the first constant approximation in terms of the path
length. We give a lower bound pmin for the path length of any hotlink assignment.
Then we show that this bound can be reached up to the constant factor of 2 by
a HLA that satisfies the centipede property (see Definition 5). Finally we give a
polynomial time algorithm for computing the best centipede assignment.

Definition 4. Let T be a weighted tree rooted at r. The function pmin : T → IR
is recursively defined as follows:

pmin(T ) =
{

0 if r is a leaf
(ω(r) −maxu∈ch(r) ω(u)) +

∑
u∈ch(r) pmin(T (u)) otherwise .

Intuitively, pmin is the sum over the weights of all nodes having a heavier sibling.
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Lemma 5. pmin(T ) is a lower bound for the path length that any hotlink as-
signment can achieve.

Proof. We prove the lemma by induction over the depth of the tree. The basic
case is obvious. For the induction step we consider a HLA A for a tree T with
depth n. Let r be the root of that tree and let u1, . . . , ud be the children of r
where w.l.o.g. u1 is an ancestor of r’s hotchild. By applying pushdown(r) to A,
due to Lemma 1, we increase the path length by at most ω(u1). Let A′ be the
resulting assignment. Then

p(A) ≥ p(A′) − ω(u1)
≥
∑
u∈ch(r)(ω(u) + p(A′|T (u)))−maxu∈ch(r) ω(u)

≥ ω(r) +
∑
u∈ch(r) pmin(T (u)) −maxu∈ch(r) ω(u) = lmin .

Here p(A′|T (u)) is the path length of A′ in T (u). The last inequality is implied
by the induction hypothesis and the fact that the weights of r’s children sum up
to ω(r). �

Definition 5. A HLA A for a tree T satisfies the centipede property, iff

(u, v) ∈ A, u′ ∈ desc(u) ∩ anc(v) ⇒ u′ ! u′′ ∀ siblings u′′ of u′ ,

where ”!” is some total order of the children of a node with ω(u′) > ω(u′′) ⇒
u′ ! u′′.

Lemma 6. For each weighted tree T there exists a hotlink assignment Ac, where
p(Ac) ≤ 2 · p(Ã) for any HLA Ã, and Ac satisfies the centipede property.

Proof. We show how to transform any HLA Ã into a centipede assignment Ac.
For each node u′ where there exists a u′′ ! u′ and which has ancestors that are
hotparents of descendants of u′ under Ã, perform the following operation: Let u
be among these ancestors the one having the shortest distance to the root. We
apply shorten-hl(u, u′), increasing the path length by at most ω(u′).

No hotlink starting in an ancestor of u′ is added or modified during the oper-
ation (although some of these hotlinks might be deleted). Thus, for any ancestor
of u′ satisfying the centipede property before the the application of shorten-hl,
that property will also hold afterwards. So if we consider the nodes u′ in a topo-
logical order, the centipede condition will hold for the resulting HLA. The total
increase in path length caused by the shorten-hl-operations is bounded by
pmin(T ), which implies the lemma. �

It remains to show that the best HLA satisfying the centipede property can be
computed in polynomial time. Assume that we want to compute a centipede
assignment for a tree T . For any node u having a sibling u′ ! u, there can
be no hotlink from an ancestor of u to a descendant of u. This fact has two
implications. The first is that, when computing the hotchildren of u’s ancestors,
we can consider the tree T ′ obtained from T by deleting u’s descendants and
transforming u into a leaf of weight ω(u). The second implication is that the
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partial assignment A|T (u) can be computed independently from T (−{u}). So
the subtrees T ′ and T (u) can be considered separately.

By applying this observation to every node u with u′ ! u for some sibling u′

of u, we split the tree into the set of heavy centipedes C1, . . . , Ck, where Ci is a
centipede tree for 1 ≤ i ≤ k.

Definition 6. A centipede tree is a tree whose inner nodes have at most one
non-leaf child. Let h be the depth and r be the root of a centipede tree. Then

lev(v) =

⎧
⎨

⎩

h− dist(v, r) if v is an inner node
h− dist(v, r) + 1 if v is a leaf, but not the root
1 otherwise .

The definition of lev implies that in a non-trivial centipede tree each level consists
of exactly one inner node and the leaf children of that node.

In the remainder of the section we show that for the heavy centipedes
C1, . . . , Ck it is possible to efficiently compute best HLAs A1, . . . , Ak. Then the
union

⋃
1≤i≤k Ai of these assignments is a best centipede-HLA for T and, due to

Lemma 6, holds an approximation ratio of 2. We give two structural properties
of optimal hotlink assignments for centipede trees and subsequently formulate a
dynamic programming algorithm that takes advantage of these properties.

Lemma 7. Let Ã be an optimal HLA for a centipede tree C rooted at r. If
(r, l) ∈ Ã and l is a leaf, then there is no (u′, l′) ∈ A with ω(l′) > ω(l). �

Lemma 8. For any centipede tree C rooted at r there is an optimal hotlink
assignment Ã satisfying the following property:

(r, l) ∈ Ã, l is a leaf ⇒ lev(l) < lev(l′) for all l′ with ω(l′) = ω(l). �

Lemma 9. An optimal hotlink assignment for centipede trees can be computed
in polynomial time.

Proof. We extend “!” (see Definition 5) to be some total order of all leaves of
a centipede tree with

(
ω(l) > ω(l′)

)
∨
(
ω(l) = ω(l′) ∧ lev(l) < lev(l′)

)
⇒ l ! l′ .

From Lemma 7 and 8 follows that an optimal assignment containing (r, l) con-
tains no hotlink (u, l′) with l′ ! l.

Let C be a centipede tree of depth h. For any leaf l in C and h ≥ x ≥ lev(l) ≥
y ≥ 1, the tree C[x, y, l] is defined as the maximum subtree of C satisfying the
following properties:

(a) It contains only nodes v with x ≥ lev(v) ≥ y.
(b) It contains no leaf l′ ! l.
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The gain of an optimal hotlink assignment for C[x, y, l] can recursively calculated
by the following formulae:

g̃(C[x, y, l]) =
{

max(GL(x, y, l) ∪GN (x, y, l)) if x− y ≥ 1
0 otherwise

GL(x, y, l) = max{g(vx, l′) + g̃(C[x− 1, y, l′′]) | l′, l′′ ∈ C[x − 1, y, l], l′′ ≺ l′}
GR(x, y, l) = max{(x− k − 1)ω[x,y,l](vk) + g̃(C[x − 1, k + 1, l1]) + g̃(C[k, y, l2])

| l1 # l, l2 # l, x > lev(l1) > k ≥ lev(l2) ≥ y} .

where vi is the inner node at level i and ω[x,y,l](u) is ω(u) in C[x, y, l]. GL
represents the HLAs where the hotchild of the subtree’s root is a leaf, while GN
represents those where that hotchild is an inner node.

Let n be the number of nodes in C. There are O(n3) different configurations
of (x, y, l). Thus by dynamic programming we can calculate an optimal hotlink
assignment for C with space requirements O(n4).

For a fixed l′ we can restrict the choice of l′′ to the greatest (with respect to
“!”) possible leaf. The same holds for l1 and l2, when k is fixed. So for each
configuration of (x, y, l) we have to compare O(n) different possibilities and thus
the runtime of the algorithm is in O(n4). �

Theorem 3. There is a polynomial time 2-approximation in terms of the re-
maining path length for the hotlink assignment problem.

Proof. The claim follows directly from Lemma 6 and 9. �

6 Generalization to Multiple Hotlink Assignment

In this section we briefly discuss how to generalize our algorithms in order to,
for any fixed k, assign at most k hotlinks to each node of a weighted tree. See
the long version of the paper for details.

The generalized version of GR preserves the approximation ratio of 2 by
traversing the tree in a topological order, assigning the currently best set of k
hotchildren to each node. The best known implementation of that strategy leads
to a running time of O(n4k2).

A natural generalization of LPATH computes a (1+ε)-approximation in terms
of the gain in time O(n(1

2 (k + 1)(k + 2))
1
ε ) and space O(nk

1
ε ).

There seems to be no natural generalization of the centipede algorithm which
has both a polynomial running time and a constant approximation ratio.

7 Final Remarks

All approximation ratios given in this paper are tight, and each of the presented
algorithms holds a constant ratio only for one optimization term (path length
or gain). Instances proving this proposition are given in the long version of the
paper. Nevertheless, one could obtain a constant factor approximation for both
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optimization terms by choosing the best HLA from those generated e.g. by GR

and the centipede algorithm.

Open problems: While we know that the hotlink assignment problem is NP-hard
for general DAGs (see [1]), it is still an open question if that complexity holds
when the input graph is a tree. Besides the computation of the optimal solution,
the question arises if there are algorithms that exhibit better approximation
ratios and/or lower resource requirements than the known strategies. Finally,
it would be interesting to know about the practical performance of the newer
algorithms given in [11,12,13] and this work.

References

1. Bose, P., Czyzowicz, J., Gasienicz, L., Kranakis, E., Krizanc, D., Pelc, A., Martin,
M.V.: Strategies for hotlink assignments. In: Lee, D.T., Teng, S.-H. (eds.) ISAAC
2000. LNCS, vol. 1969, Springer, Heidelberg (2000)

2. Fuhrmann, S., Krumke, S.O., Wirth, H.-C.: Multiple hotlink assignment. In:
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Abstract. The stable marriage problem is a classical matching problem
introduced by Gale and Shapley. It is known that for any instance, there
exists a solution, and there is a polynomial time algorithm to find one.
However, the matching obtained by this algorithm is man-optimal, that
is, the matching is preferable for men but unpreferable for women, (or,
if we exchange the role of men and women, the resulting matching is
woman-optimal). The sex-equal stable marriage problem posed by Gus-
field and Irving asks to find a stable matching “fair” for both genders,
namely it asks to find a stable matching with the property that the sum
of the men’s score is as close as possible to that of the women’s. This
problem is known to be strongly NP-hard.

In this paper, we give a polynomial time algorithm for finding a near
optimal solution in the sex-equal stable marriage problem. Furthermore,
we consider the problem of optimizing additional criterion: among sta-
ble matchings that are near optimal in terms of the sex-equality, find
a minimum egalitarian stable matching. We show that this problem is
NP-hard, and give a polynomial time algorithm whose approximation
ratio is less than two.

Keywords: the stable marriage problem, the sex-equal stable marriage
problem, approximation algorithms.

1 Introduction

An instance I of the stable marriage problem consists of n men, n women, and
each person’s preference list. A preference list is a totally ordered list including all
members of the opposite sex depending on his/her preference. For a matching
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M between men and women, a pair of a man m and a woman w is called a
blocking pair if both prefer each other to their current partners. A matching with
no blocking pair is called stable. Gale and Shapley showed that every instance
admits at least one stable matching, and proposed a linear time algorithm to
find one, which is known as the Gale-Shapley algorithm [4]. However, in general,
there are many different stable matchings for a single instance, and the Gale-
Shapley algorithm finds only one of them (man-optimal or woman-optimal) with
an extreme property: In the man-optimal stable matching, each man is matched
with his best possible partner, while each woman gets her worst possible partner,
among all stable matchings. Hence, it is natural to try to obtain a matching which
is not only stable but also “good” in some criterion.

There are three major optimization criteria for the quality of stable matchings.
Let pm(w) (pw(m), respectively) denote the position of woman w in man m’s
preference list (the position of man m in woman w’s preference list, respectively).
For a stable matching M , define a regret cost r(M) to be

r(M) = max
(m,w)∈M

max{pm(w), pw(m)}.

Also, define an egalitarian cost c(M) to be

c(M) =
∑

(m,w)∈M
pm(w) +

∑

(m,w)∈M
pw(m),

and a sex-equalness cost d(M) to be

d(M) =
∑

(m,w)∈M
pm(w) −

∑

(m,w)∈M
pw(m).

The minimum regret stable marriage problem (the minimum egalitarian stable
marriage problem and the sex-equal stable marriage problem, respectively) is
to find a stable matching M with minimum r(M) (c(M) and |d(M)|, respec-
tively) [6]. Note that the number of stable matchings for one instance grows
exponentially in general (see [8], e.g.). Nevertheless, for the first two problems,
Gusfield [5], and Irving, Leather and Gusfield [9], respectively, proposed poly-
nomial time algorithms by exploiting a lattice structure which is of polynomial
size but contains information of all stable matchings.

In contrast, it is hard to obtain a sex-equal stable matching. The question of
its complexity was posed by Gusfield and Irving [6], and was later proved to be
strongly NP-hard by Kato [11]. Thus, the next step should be its approximability
for which we have no knowledge so far.

Our Contribution. In this paper, we consider finding near optimal solutions
for the sex-equal stable marriage problem. Let M0 and Mz be the man-optimal
and the woman-optimal stable matchings, respectively. Note that d(M0) ≤
d(M) ≤ d(Mz) for any stable matching M (see Fig. 1). Our goal is to ob-
tain a stable matching M such that −εΔ ≤ d(M) ≤ εΔ for a given constant
ε, where Δ = min{|d(M0)|, |d(Mz)|}. Namely, we define the following problem
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called Near SexEqual (NSE for short). Given a stable marriage instance I and a
positive constant ε, it asks to find a stable matching M such that |d(M)| ≤ εΔ if
such M exists, or answer “No” otherwise. We give a polynomial time algorithm
for NSE, which runs in time O(n3+ 1

ε ).

� d(M)�

d(Mz)
�

εΔ

�

0
�

−εΔ
�

d(M0)

Fig. 1. The sex-equalness costs of stable matchings

NSE asks to find an arbitrary stable matching whose sex-equalness cost lies
within some range. However, we may want to find a good one if there are several
solutions in the range. In fact, there is an instance I that has two stable match-
ings M and M ′ such that d(M) = d(M ′) = 0 but c(M) � c(M ′). This motivates
us to consider the following corresponding optimization problem MinESE (Min-
imum Egalitarian Sex-Equal stable marriage problem): Given a stable marriage
instance I and a positive constant ε, find a stable matching M which minimizes
c(M) under the condition that |d(M)| ≤ εΔ, (or answer “No” if none exists). We
show that MinESE is NP-hard, and give a polynomial time (2−(ε−δ)/(2+3ε))-
approximation algorithm for an arbitrary δ such that 0 < δ < ε, whose running
time is O(n4+ 1+ε

δ ). Here, an Algorithm A is said to be a c-approximation algo-
rithm if A(I)/OPT (I) ≤ c holds for any input I, where A(I) and OPT (I) are
the costs of A’s solution and optimal solution, respectively.

Our results also hold for the weighted versions of the above problems, in which
pm(w) (pw(m), respectively) represents not simply a rank of w in m’s preference
list, but an arbitrary score of m for w (of w for m), where pm(w) > 0 (pw(m) > 0)
and pm(w) < pm(w′) if and only if m prefers w to w′ (pw(m) < pw(m′) if and
only if w prefers m to m′) for all m and w.

Related Results. As mentioned above, the minimum regret stable marriage
problem and the minimum egalitarian stable marriage problem can be solved in
polynomial time [5,9,6], but the sex-equal stable marriage problem is strongly
NP-hard [11]. If we allow ties in preference lists, all these problems become hard,
even to approximate, if we seek for optimal weakly stable matching: For each
problem, there exists a positive constant δ such that there is no polynomial-time
approximation algorithm with approximation ratio δn unless P=NP [7].

2 Rotation Poset

In this section, we explain a rotation poset (partially-ordered set), originally
defined in [8], which is an underlying structure of stable matchings. Here, we
give only a brief sketch necessary for understanding the algorithms given later.
Readers can refer to [6] for further details.

We fix an instance I. Let M be a stable matching for I. For each such M , we
can associate a reduced list, which is obtained from the original preference lists
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by removing entries by some rule. One property of the reduced list associated
with M is that, in M , each man is matched with the first woman in the reduced
list, and each woman is matched with the last man. A rotation exposed in M is
an ordered list of pairs ρ = (m0, w0), (m1, w1), . . . , (mr−1, wr−1) such that, for
every i (0 ≤ i ≤ r− 1), mi and wi are matched in M , and wi+1 is at the second
position in mi’s reduced list, where i + 1 is taken modulo r. There exists at
least one rotation for any stable matching except for the woman-optimal stable
matching Mz.

For a stable matching M and a rotation ρ = (m0, w0), (m1, w1), . . . ,
(mr−1, wr−1) exposed in M , eliminating ρ from M means to replace mi’s part-
ner from wi to wi+1 for each i (0 ≤ i ≤ r − 1), (and to update a reduced list
accordingly). Note that by eliminating a rotation, men become worse off while
women become better off. The resulting matching is denoted by M/ρ. It is well
known that M/ρ is also stable for I. If a rotation is exposed in M/ρ, then we
can similarly obtain another stable matching by eliminating it.

Now, let M be the set of all stable matchings for I, and Π be the set of
rotations ρ such that ρ is exposed in some stable matching in M. Then, it is
known that |Π | ≤ n2. The rotation poset (Π,≺), which is uniquely determined
for instance I, is the set Π with a partial order ≺ defined for elements in Π .
For two rotations ρ1 and ρ2 in Π , ρ1 ≺ ρ2 intuitively means that ρ1 must be
eliminated before ρ2, or ρ2 is never exposed until ρ1 is eliminated. It is known
that the rotation poset can be constructed in O(n2) time.

A closed subset R of the rotation poset (Π,≺) is a subset of Π such that if
ρ ∈ R and ρ′ ≺ ρ then ρ′ ∈ R. There is a one-to-one correspondence between M
and the set of closed subsets of (Π,≺): Let R be a closed subset. Starting from the
man-optimal stable matching M0, if we eliminate all rotations in R successively
in a proper order defined by ≺, then we can obtain a stable matching. Conversely,
any stable matching can be obtained by this procedure for some closed subset.
We denote the stable matching corresponding to a closed subset R by MR.
For simplicity, we sometimes write c(R) and d(R) instead of c(MR) and d(MR),
respectively. Especially, the empty subset corresponds to the man-optimal stable
matching M0, and the set Π itself corresponds to the woman-optimal stable
matching Mz. From M0, if we eliminate all rotations according to the order ≺,
then we eventually reach Mz.

For a rotation ρ = (m0, w0), (m1, w1), . . . , (mr−1, wr−1), we define wc(ρ) and
wd(ρ), which represent the cost change of egalitarian and sex-equalness, respec-
tively, by eliminating ρ:

wc(ρ) =
r−1∑

i=0

(pmi(wi+1) − pmi(wi)) +
r−1∑

i=0

(pwi(mi−1) − pwi(mi)),

wd(ρ) =
r−1∑

i=0

(pmi(wi+1) − pmi(wi)) −
r−1∑

i=0

(pwi(mi−1) − pwi(mi)).
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Here, note that wd(ρ) > 0 for all ρ since by eliminating a rotation, some men
become worse off, and a some women become better off, and other people remain
matched with the same partners. Now, let ρ be a rotation exposed in a stable
matching M . Then, it is obvious from the definition that c(M/ρ) = c(M)+wc(ρ)
and d(M/ρ) = d(M) + wd(ρ). Also, it is easy to see that for any closed subset
R,

c(MR) = c(M0) +
∑

ρ∈R
wc(ρ) and d(MR) = d(M0) +

∑

ρ∈R
wd(ρ).

Hence, the minimum egalitarian stable marriage problem (the sex-equal stable
marriage problem, respectively) is equivalent to the problem of finding a closed
subset R such that c(M0)+

∑
ρ∈R wc(ρ) (|d(M0)+

∑
ρ∈R wd(ρ)|, respectively) is

minimum. For example, the algorithm for finding a minimum egalitarian stable
matching in [9] efficiently finds such R by exploiting network flow.

3 The Sex-Equal Stable Marriage Problem

Recall that M0 is the man-optimal stable matching and Mz is the woman-
optimal stable matching. Note that any stable matching M satisfies d(M0) ≤
d(M) ≤ d(Mz). Thus, this problem is trivial if d(M0) ≥ 0 or d(Mz) ≤ 0,
namely, if d(M0) ≥ 0, M0 is optimal, while if d(Mz) ≤ 0, Mz is optimal.
Therefore, we consider the case where d(M0) < 0 < d(Mz). Recall that Δ =
min{|d(M0)|, |d(Mz)|}. In the following, we assume without loss of generality
that |d(M0)| ≤ |d(Mz)| since otherwise, we can exchange the role of men and
women. Hence, Δ = min{|d(M0)|, |d(Mz)|} = |d(M0)|.

We first briefly give the underlying idea of our algorithm presented in this
section. Recall that, for a given instance I and ε, we are to find a stable matching
M such that −εΔ ≤ d(M) ≤ εΔ if any. As an easy case, assume that all rotations
ρ of I satisfy wd(ρ) ≤ 2εΔ. Now, we construct a rotation poset (Π,≺) of I, and
starting from M0, we eliminate rotations in an order of any linear extension of
≺. Recall that by eliminating a rotation, the sex-equalness cost increases, but by
at most 2εΔ by assumption. Note that d(M0) < 0 < d(Mz), and recall that if we
eliminate all rotations from M0, we eventually reach Mz. Then, in this sequence,
we certainly meet a desirable stable matching at some point.

However, this procedure fails if there is a rotation with large sex-equalness
cost: If we eliminate such a rotation, then we may “jump” from M to M ′ such
that d(M) < −εΔ and d(M ′) > εΔ even if there is a feasible solution. To resolve
this problem, we will try all combinations of selecting such “large” rotations, and
treat “small” rotations in the above manner. To evaluate the time complexity,
we show that the number of large rotations is limited.

Before giving a description of our algorithm, we give a couple of notations.
Let R be any (not necessarily closed) subset of a poset (Π,≺). Then Rmin = R∪
{ρ | there exists a ρ′ such that ρ′ ∈ R and ρ ≺ ρ′}. That is, Rmin is the minimal
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closed subset of Π satisfying Rmin ⊇ R. Similarly, Rmax = R∪{ρ | there exists a
ρ′ such that ρ′ ∈ R and ρ′ ≺ ρ}.

Algorithm 1
1. Construct the rotation poset (Π,≺).
2. Let RL be the set of rotations ρ such that wd(ρ) > 2εΔ, and RS be Π \RL.
3. For each set R in 2R

L

such that |R| ≤ 1+ε
2ε , do,

(a) If Rmin ∩ (RL \R)max 	= ∅, then go to 3 and choose the next R.
(b) If −εΔ ≤ d(Rmin) ≤ εΔ, then output MRmin.
(c) Fix an arbitrary order ρ1, ρ2, · · · , ρk ∈ RS \ (Rmin ∪ (RL \R)max)
which is consistent with ≺.
(d) For i = 1 to k, if −εΔ ≤ d(Rmin ∪ {ρ1, ρ2, · · · , ρi}) ≤ εΔ, then output
MRmin∪{ρ1,ρ2,···,ρi} and halt.

4. Output “No,” and halt.

Theorem 1. There is an algorithm for NSE whose running time is O(n3+ 1
ε ).

Proof. Correctness Proof. Clearly, if there is no M such that −εΔ ≤ d(M) ≤
εΔ, then the algorithm answers “No.” On the other hand, suppose that there is
MX such that −εΔ ≤ d(MX) ≤ εΔ, where X is the set of rotations corresponding
to MX . Let XL = X ∩ RL and XS = X ∩ RS . Then, d(XL) ≤ d(MX) ≤
εΔ. Because wd(ρ) > 2εΔ for any rotation ρ ∈ XL, |XL| < d(XL)−d(M0)

2εΔ ≤
|d(M0)|+εΔ

2εΔ = 1+ε
2ε . So, Algorithm 1 selects XL at Step 3 as R, and we consider

this particular execution of Step 3.
First, note that d((XL)min) ≤ εΔ since otherwise, d(MX) ≥ d((XL)min) >

εΔ, a contradiction. If −εΔ ≤ d((XL)min) ≤ εΔ, then Algorithm 1 outputs
M(XL)min at Step 3(b). Finally, suppose that d((XL)min) < −εΔ. Note that
d((XL)min ∪ {ρ1, ρ2, · · · , ρk}) ≥ d(MX) ≥ −εΔ and that any rotation ρi (1 ≤
i ≤ k) satisfies wd(ρi) ≤ 2εΔ. Hence there must be j (1 ≤ j ≤ k) such that
−εΔ ≤ d((XL)min ∪ {ρ1, ρ2, · · · , ρj}) ≤ εΔ.

Time Complexity. Steps 1 and 2 can be performed in O(n2). Inside the loop
of Step 3 can be performed in O(n2) since the number of rotations is at most
O(n2). Clearly, Step 4 can be performed in constant time.

We consider the number of repetitions of Step 3, i.e., the number of R satis-
fying the condition at Step 3. Let this number be t. Recall that the number of
rotations is at most n2 as mentioned in Sec. 2. So, |RL| ≤ n2. Since |R| ≤ 1+ε

2ε ,

t =

 1+ε

2ε �∑

k=1

(
n2

k

)

≤

 1+ε

2ε �∑

k=1

(n2)

1+ε
2ε �

k!
= O(n

1+ε
ε ).

Hence the time complexity of Algorithm 1 is O(n2) ·O(n
1+ε

ε ) = O(n3+ 1
ε ). ��
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4 The Minimum Egalitarian Sex-Equal Stable Marriage
Problem

In NSE, we are asked to find a stable matching whose sex-equalness cost is in
some range close to 0. However, if there are several stable matchings satisfying
the condition, there might be good ones and bad ones. In fact, there is an instance
I that has two stable matchings M and M ′ whose sex-equalness costs are the
same (0), but egalitarian costs are significantly different. (Because of the space
restriction, we omit the construction of this instance.) This motivates us to
consider the following problem, MinESE (the Minimum Egalitarian Sex-Equal
stable marriage problem): Given an instance I and a constant ε such that 0 <
ε < 1, find a stable matching M with minimum c(M), under the condition that
|d(M)| ≤ εΔ, (or answer “No” if no such solution exists). First, in Sec. 4.1,
we show that MinESE is NP-hard. Then, in Sec. 4.2, we give an approximation
algorithm for MinESE.

4.1 NP-Hardness of MinESE

It turned out that there is a polynomial-time algorithm for obtaining a sta-
ble matching M such that (a) −εΔ ≤ d(M) ≤ εΔ or (b) c(M) is minimum.
Interestingly, it is hard to obtain M satisfying (a) and (b).

Theorem 2. MinESE is NP-hard.

Proof. Because of the space restriction, we give only a rough idea of the proof,
and omit the details.

We show that MinESE is NP-hard by a reduction from the k-clique problem.
In this problem, we are given a graph G(V,E) and an integer k, and asked if
there exists a clique of size k. This problem is NP-complete.

Given a graph G = (V,E) and an integer k, we first construct a poset (Π,≺)
in a similar manner as the construction in [10]. Let Π be V ∪ E, and define
the precedence relation ≺ as follows: v ≺ e if and only if v ∈ V is incident to
e ∈ E in G(V,E). We then give weights to each element in (Π,≺): We give some
negative weight to each element corresponding to an edge, and positive weight
to an element corresponding to a vertex. Note that if we want to select a closed
subset with smaller weight, we want to select many elements corresponding to
edges, but to make the subset closed, we need to select elements corresponding
to adjacent vertices, which may increase the weight. We give weights to vertices
and edges appropriately, so that only closed subsets corresponding to k-cliques
can have a desirable (negative) weight.

Next, we construct an instance I of MinESE from the poset (Π,≺) using a
similar construction as [11], so that the rotation poset of I is exactly (Π,≺). In
the construction, we ensure that the egalitarian cost of each rotation is exactly
the same to the weight of the corresponding element defined above. We also
adjust sex-equalness cost of rotations so that if R is a closed subset corresponding
to a k-clique of G, then d(MR) lies between −εΔ and εΔ. In summary, our
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reduction satisfies the following: G has a k-clique if and only if there is a stable
matching M in I such that −εΔ ≤ d(M) ≤ εΔ and c(M) < c(M0).

We can show that MinESE is NP-hard as follows: Given an instance of the
clique problem, we construct a MinESE instance I by the above reduction. Then,
we find an optimal solution M and the man-optimal stable matching M0. Finally,
we compare c(M0) and c(M): If c(M) < c(M0), the answer to the clique problem
is “yes,” otherwise, “no.” ��

Remark. Although details are omitted, the reduction in the NP-hardness proof
produces an instance (I, ε) of MinESE such that |d(M0)| = |d(Mz)| in I, and
ε is any constant such that 0 < ε < 1. Observe that if |d(M0)| = |d(Mz)| and
ε = 1, then MinESE is equivalent to the minimum egalitarian stable marriage
problem, which can be solved in polynomial time.

Remark. We can modify the reduction so that it preserves the gap of the
Dense Subgraph Problem (DSP) (see [3,1], e.g.). Although some PTASs are
known for DSP in some settings of parameters, existence of PTAS is not known
for general case. Feige [2] and Khot [12] provided evidence that DSP may be
hard to approximate within some constant factor. Therefore, we conjecture that
MinESE either does not have a PTAS.

4.2 Approximation Algorithms for MinESE

Here, we give a (2 − (ε − δ)/(2 + 3ε))-approximation algorithm for MinESE
for an arbitrary δ such that 0 < δ < ε. Similarly as Sec. 3, we assume that
|d(M0)| ≤ |d(Mz)|. In this section, we prove two simple but important lemmas
that link the egalitarian cost and the sex-equalness cost, whose proofs are given
later. (i) For any stable matching M , |d(M)| < c(M) (Lemma 1). (ii) For any
stable matching M and a rotation ρ exposed in M , by eliminating ρ from M , the
cost change in the egalitarian cost is at most the cost change in the sex-equalness
cost (Lemma 2).

To illustrate an idea of the algorithm, we first consider a restricted case and
show that our algorithm achieves 2-approximation. For a fixed δ > 0, suppose
that all rotations satisfy wd(ρ) ≤ δΔ. Given I and ε, we first find a mini-
mum egalitarian stable matching Meg, which can be done in polynomial time.
If −εΔ ≤ d(Meg) ≤ εΔ, then we are done since Meg is an optimal solution for
MinESE. If d(Meg) < −εΔ, then we eliminate rotations one by one as Algorithm
1 until the sex-equalness cost first becomes −εΔ or larger. If d(Meg) > εΔ, then
we “add” rotations one by one until the sex-equalness cost first becomes εΔ or
smaller. Here, “adding a rotation” means the reverse operation of eliminating a
rotation. If we do not reach a feasible solution by this procedure, then we can con-
clude that there is no feasible solution, by a similar argument as in Sec. 3. If we
find a stable matching M such that −εΔ ≤ d(M) ≤ εΔ, then we can show that
this is a 2-approximation, namely, c(M) ≤ 2c(Meg) using (i) and (ii) above (note
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that the optimal cost is at least c(Meg)): Suppose, for example, that d(Meg) <
−εΔ (see Fig. 2). Then, by (ii), c(M) − c(Meg) ≤ d(M) − d(Meg), and by (i),
|d(Meg)| < c(Meg). Also, since the costs of rotations are at most δΔ, and since
M is the first feasible solution found by this procedure, d(M) ≤ −(ε− δ)Δ < 0.
Putting these together, we have that c(M)/c(Meg) < 2.
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Fig. 2. C ≤ B by (i) and A ≤ C by (ii). Hence A + B ≤ C + B ≤ 2B.

However, we may have rotations of large costs. Then we take a similar ap-
proach as in Sec. 3: Let RL be the set of such large rotations. Then, for any
partition R1 and R2 of RL (R1 ∪R2 = RL and R1 ∩R2 = ∅), we want to obtain
a minimum egalitarian stable matching whose corresponding closed subset A
contains all rotations in R1 but none in R2. For this purpose, we need to solve
the following problem: Given an instance I and disjoint subsets of rotations R1

and R2 of RL, find a minimum egalitarian stable matching MA under the condi-
tion that the corresponding closed subset A satisfies A ⊇ R1 and A∩R2 = ∅. For
this problem, we can use the same algorithm for the minimum egalitarian stable
marriage problem in [6]. We denote this procedure by minEgalitarian(R1, R2).
First, we review the following proposition described in [6]:

Proposition 1. [6] Given a poset (Π,≺), there is an O(n4)-time algorithm
which finds a minimum-weight closed subset of (Π,≺) with respect to the egali-
tarian cost.

Our procedure minEgalitarian(R1, R2) is as follows: Without loss of generality,
assume that there are no elements such that r2 ≺ r1 (r1 ∈ R1 and r2 ∈ R2) since
there exists no solution in such a case. Construct the poset (Π ′,≺) by removing
all the rotations in (R1)min and (R2)max from (Π,≺) (recall the definitions of
Rmin and Rmax given before Algorithm 1), and let R′ be the subset obtained
by using Proposition 1 to (Π ′,≺). Then, it is easy to see that (R1)min ∪ R′ is
an optimal solution for minEgalitarian(R1, R2). Now, we are ready to give the
algorithm for MinESE.
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Algorithm 2
1. Construct the rotation poset (Π,≺).
2. Let Mbest = NULL.
3. Let RL be the set of rotations ρ such that wd(ρ) > δΔ, and RS be Π \RL.
4. For each set R in 2R

L

such that |R| ≤ 1+ε
δ , do,

(a) Let A = minEgalitarian(R,RL \R). If d(A) < −εΔ, go to (b).
If d(A) > εΔ, go to (c). If −εΔ ≤ d(A) ≤ εΔ, go to (d).
(b) Fix an arbitrary order ρ1, ρ2, · · · , ρk ∈ RS \ (A ∪ (RL \R)max) which
is consistent with ≺.
For i = 1 to k, if −εΔ ≤ d(A ∪ {ρ1, ρ2, · · · , ρi}) ≤ εΔ, then
let A = A ∪ {ρ1, ρ2, · · · , ρi} and go to (d).
(c) Fix an arbitrary order ρ1, ρ2, · · · , ρk ∈ (A ∩RS) \Rmin which
is consistent with ≺.
For i = k to 1, if −εΔ ≤ d(A \ {ρi, ρi+1, · · · , ρk}) ≤ εΔ, then
let A = A \ {ρi, ρi+1, · · · , ρk} and go to (d).
(d) If c(A) < c(Mbest), then let Mbest = MA.

5. If Mbest 	= NULL, then output Mbest, otherwise output “No,” and
halt.

Theorem 3. There is a (2− (ε− δ)/(2 + 3ε))-approximation algorithm for Mi-
nESE whose running time is O(n4+ 1+ε

δ ) for an arbitrary δ such that 0 < δ < ε.

Proof. Correctness Proof. Clearly, if there is no M such that −εΔ ≤ d(M) ≤
εΔ, then the algorithm answers “No.” On the other hand, suppose that there
is a feasible solution, and let Mopt be an optimal solution. We first show that
Algorithm 2 finds a feasible solution. Let OPT be the rotation set correspond-
ing to Mopt, and OPTL = OPT ∩ RL. Then, d(OPTL) ≤ d(Mopt) ≤ εΔ.
Because wd(ρ) > δΔ for any rotation ρ ∈ OPTL, |OPTL| < d(OPTL)−d(M0)

δΔ ≤
|d(M0)|+εΔ

δΔ = 1+ε
δ . So, Algorithm 2 selects OPTL at Step 4 as R, and we consider

this particular execution of Step 4. We show that in this execution, Algorithm 2
finds a feasible solution. Let Aopt = minEgalitarian(OPTL, RL \OPTL). There
are three cases:

(i) −εΔ ≤ d(Aopt) ≤ εΔ. MAopt is selected as Mbest at Step 4(d).
(ii) d(Aopt) < −εΔ. Note that d(Aopt ∪ {ρ1, ρ2, · · · , ρk}) ≥ d(Mopt) ≥ −εΔ
and that any rotation ρi (1 ≤ i ≤ k) satisfies wd(ρi) ≤ δΔ. Hence there must
be j (1 ≤ j ≤ k) such that −εΔ ≤ d(Aopt ∪ {ρ1, ρ2, · · · , ρj}) ≤ −(ε− δ)Δ. (See
Fig. 3.)
(iii) d(Aopt) > εΔ. Note that d(Aopt \ {ρ1, ρ2, · · · , ρk}) ≤ d(Mopt) ≤ εΔ and
that any rotation ρi (1 ≤ i ≤ k) satisfies wd(ρi) ≤ δΔ. Hence there must be j
(1 ≤ j ≤ k) such that (ε− δ)Δ ≤ d(Aopt \ {ρj, ρj+1, · · · , ρk}) ≤ εΔ.
Next, we analyze the approximation ratio. Let M∗ be the matching found
in this particular execution of Step 4. We show that c(M∗) ≤ (2 − (ε − δ)/
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(2+3ε))c(Mopt), which gives a proof for the approximation ratio. We first prove
the following two lemmas:

Lemma 1. For any stable matching M , |d(M)| < c(M).

Proof. If d(M) ≥ 0, then c(M) − |d(M)| = 2
∑

(m,w)∈M pw(m) > 0. Otherwise,
c(M)− |d(M)| = 2

∑
(m,w)∈M pm(w) > 0. ��

Lemma 2. Let R = {ρ1, . . . , ρr−1} be a set of rotations and let M1, · · · ,Mr be
stable matchings such that Mi+1 = Mi/ρi for 1 ≤ i < r. Then, |c(Mr)−c(M1)| ≤
d(Mr)− d(M1).

Proof. Suppose that m = Mi(w) = Mi+1(w′) and w = Mi(m) = Mi+1(m′) for a
fixed i. By the properties of the rotation [6], m prefers w to w′ and w prefers m′

to m. Let d(m) = pm(w′)− pm(w) and d(w) = pw(m)− pw(m′). Then d(m) ≥ 0
and d(w) ≥ 0, and it follows that

|c(Mi+1)−c(Mi)| =

∣
∣
∣
∣
∣

∑

m

d(m) −
∑

w

d(w)

∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣

∑

m

d(m) +
∑

w

d(w)

∣
∣
∣
∣
∣
= d(Mi+1)−d(Mi).

By summing up the above inequality for all i, we have

|c(Mr)−c(M1)| ≤
r−1∑

i=1

|c(Mi+1)−c(Mi)| ≤
r−1∑

i=1

(d(Mi+1)−d(Mi))=d(Mr)−d(M1).

��

Note that Aopt = minEgalitarian(OPTL, RL \ OPTL). So, c(Aopt) ≤ c(Mopt)
since OPT , the rotation set corresponding to Mopt, is one of the candidates for
Aopt. We will consider the following four cases (note that d(Aopt) ≥ −Δ for any
stable matching M):

Case (i): −εΔ ≤ d(Aopt) ≤ εΔ. In this case, M∗ = MAopt , which is an
optimal solution since c(Aopt) = c(Mopt).
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Fig. 3. Finding a feasible solution
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Case (ii): εΔ < d(Aopt) ≤ (2+3ε)Δ. In this case, Step 4(b) of Algorithm
2 is executed. We have |c(Aopt)− c(M∗)| ≤ d(Aopt)− d(M∗) by Lemma 2. Since
d(M∗) ≥ (ε−δ)Δ and (ii) hold, |c(Aopt)−c(M∗)| ≤ (1−(ε−δ)/(2+3ε))d(Aopt).
Since |d(Aopt)| < c(Aopt) by Lemma 1 and c(Aopt) ≤ c(Mopt), c(M∗) < (2− (ε−
δ)/(2 + 3ε))c(Mopt).

Case (iii): (2 + 3ε)Δ < d(Aopt). Since both Mopt and M∗ can be
obtained by repeatedly eliminating rotations from M0, |c(Mopt) − c(M0)| ≤
d(Mopt) − d(M0) and |c(M∗) − c(M0)| ≤ d(M∗) − d(M0) by Lemma 2. Since
both d(Mopt) and d(M∗) are at most εΔ, c(M∗) − c(Mopt) ≤ 2(1 + ε)Δ (note
that |d(M0)| = Δ). It follows that c(M∗)− c(Mopt) ≤ 2(1+ ε)d(Aopt)/(2+3ε) =
(2 − ε/(2 + 3ε))d(Aopt). Since we have |d(Aopt)| < c(Aopt) by Lemma 1 and
c(Aopt) ≤ c(Mopt), c(M∗) ≤ (2 − ε/(2 + 3ε))c(Mopt).

Case (iv): −Δ ≤ d(Aopt) < −εΔ. The same as Case (ii).

Time Complexity. Steps 1, 2, 3, and 5 can be executed in O(n2) time. Step
4(a) is performed in the same time complexity as finding a minimum egalitarian
stable matching, namely, O(n4). We can see that Steps 4(b) through 4(d) can
be performed in time O(n2) by a similar analysis of Algorithm 1. The number of
repetitions of Step 4 can be analyzed in the same way as the proof of Theorem 1,
which is O(n

1+ε
δ ). Hence the time complexity of Algorithm 2 is O(n4+ 1+ε

δ ). ��

5 Concluding Remarks

In this paper, we gave a polynomial time algorithm for finding near optimal
sex-equal stable matching. Furthermore, we proved NP-hardness and developed
a polynomial time approximation algorithm whose approximation ratio is less
than 2 for MinESE. Our future work is to improve the approximation ratio of
MinESE.
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7. Halldórsson, M.M., Irving, R.W., Iwama, K., Manlove, D.F., Miyazaki, S., Morita,
Y., Scott, S.: Approximability results for stable marriage problems with ties. The-
oretical Computer Science 306, 431–447 (2003)



Approximation Algorithms for the Sex-Equal Stable Marriage Problem 213

8. Irving, R.W., Leather, P.: The complexity of counting stable marriages. SIAM J.
Comput. 15(3), 655–667 (1986)

9. Irving, R.W., Leather, P., Gusfield, D.: An efficient algorithm for the “optimal”
stable marriage. J. ACM 34(3), 532–543 (1987)

10. Johnson, D.S., Niemi, K.A.: On knapsacks, partitions, and a new dynamic pro-
gramming technique for trees. Mathematics of Operations Research 8(1), 1–14
(1983)

11. Kato, A.: Complexity of the sex-equal stable marriage problem. Japan Journal of
Industrial and Applied Mathematics (JJIAM) 10, 1–19 (1993)

12. Khot, S.: Ruling out PTAS for graph min-bisection, densest subgraph and bipartite
clique. In: Proc. of the 45th Annual IEEE Symposium on Foundations of Computer
Science, pp. 136–145 (2004)



A Stab at
Approximating Minimum Subadditive Join

Staal A. Vinterbo1,2,3

1 Decision Systems Group, Brigham and Women’s Hospital, Boston
2 Harvard Medical School, Boston

staal@dsg.harvard.edu
3 Harvard-MIT, Division of Health Sciences and Technology, Boston

Abstract. Let (L, ∗) be a semilattice, and let c : L → [0, ∞) be mono-
tone and increasing on L. We state the Minimum Join problem as: given
size n sub-collection X of L and integer k with 1 ≤ k ≤ n, find a size k
sub-collection (x′

1, x
′
2, . . . , x

′
k) of X that minimizes c(x′

1 ∗ x′
2 ∗ · · · ∗ x′

k).
If c(a ∗ b) ≤ c(a) + c(b) holds, we call this the Minimum Subadditive
Join (MSJ) problem and present a greedy (k − p + 1)-approximation al-
gorithm requiring O((k − p)n + np) joins for constant integer 0 < p ≤ k.
We show that the MSJ Minimum Coverage problem of selecting k out
of n finite sets such that their union is minimal is essentially as hard to
approximate as the Maximum Balanced Complete Bipartite Subgraph
(MBCBS) problem. The motivating by-product of the above is that the
privacy in databases related k-ambiguity problem over L with subaddi-
tive information loss can be approximated within k − p, and that the
k-ambiguity problem is essentially at least as hard to approximate as
MBCBS.

1 Introduction

In this paper we will often talk about finite collections of elements from some
set. What we mean by a collection is an ordered multiset. Let In = {1, 2, . . . , n},
and let U be a set. We can then represent a collection of size n of elements
from U as a function X : In → U . We will denote the set of all collections of
elements from U of size n as Cn(U). We can now formally define the Minimum
Subadditive Join1 (MSJ) problem as follows.

Problem 1 (Minimum Subadditive Join). Let (L, ∗) be a semilattice where ∗ is
polynomial time computable, and let c : S → [0,∞) be a monotone, increasing
and polynomial time computable function on L such that

c(a ∗ b) ≤ c(a) + c(b) (1)

holds for a, b ∈ L. Given Xn ∈ Cn(L) an integer k with 1 ≤ k ≤ n, find a subset
S = {s1, s2, . . . , sk} ⊂ In that minimizes c(Xn(s1) ∗ Xn(s2) ∗ · · · ∗ Xn(sk)). We
denote an instance of this problem as ((L, ∗),Xn, c, k).
1 We could equally well have chosen to call the operation ∗ “meet”, but motivated by

the behavior of cardinality over (2X , ∪), we chose “join”.

F. Dehne, J.-R. Sack, and N. Zeh (Eds.): WADS 2007, LNCS 4619, pp. 214–225, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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If (1) is not required to hold, we call the problem the Minimum Join (MJ)
problem.

Our study of the Minimum Join problem is principally motivated by its re-
lation to privacy in databases. Biomedical research is dependent on sharing of
data [1,2]. Two immediate reasons for this are the principle of reproducibility
of research, and the need of comparative retrospective data analysis. However,
we are ethically [3], and legally [4] bound to protect the privacy of individu-
als, and the consequences of loss of trust in the preservation of privacy can be
dire [5].

With the advent of large collections of data relatively easily available in elec-
tronic form on the web, privacy is endangered through the potential ability of
linking a combination of individually seemingly “safe” data items across tables.

Consider the following data matrix in Table 1. Let each row represent what
we know about a particular individual. We want to release the data contained

Table 1. Example data set

a b c d

1 1 0 1 1
2 0 1 1 1
3 0 0 0 1
4 0 1 1 0

in Table 1 without endangering the privacy rights of the individuals in question.
As we don’t know what a potential adversary is capable of, we postulate the
existence of a “linking machine” φ that when given a row in Table 1, yields
the identity of the individual. Introducing ambiguity in the data is a counter-
measure [6,7,8,9] that can be applied to reduce the applicability of φ. A way to
introduce this ambiguity is to define the value & to be indistinguishable from
both 0 and 1, in effect representing both of these values. A row is then made
indistinguishable from others by substituting values with &. Consider row 1. It
differs from row 2 in attributes a and b. We collect the sets of attributes in which
row 1 differs from all the others it in a collection C1 = ({a, b}, {a, c}, {a, b, d}). If
we need to make row 1 indistinguishable from k rows, we can do this by selecting
k − 1 elements from C1 and substituting & for the values in row 1 identified by
the union of the selected elements. Say k = 3, we can then choose the sets {a, b}
and {a, b, d} corresponding to rows 2 and 4, respectively. The result for row 1 is
(&&1&).

The above is an example of k-ambiguity [9] by cell suppression. A particular
flavor of k-ambiguity is k-anonymity [6], in that k-anonymity requires that ev-
ery record in the transformed data is equivalent to k records in the transformed
data. The problem of introducing k-anonymity by a minimum number of cell
suppressions was shown to be approximable within O(k log k) [10], and subse-
quently a more general version of the k-anonymity problem was shown to be
approximable within max{2k − 1, 3k − 5} [11]. We will in the following
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– present a polynomial time (k− p+ 1)-approximation algorithm for the MSJ
problem and show that this algorithm fails to provide any bound for non-
subadditive instances of MJ, and

– prove that a specialization Minimum Coverage (MinC) of the MSJ prob-
lem is essentially as hard to approximate as the known NP-hard Maximum
Balanced Complete Bipartite Subgraph (MBCBS) problem,

– use the connection between MJ and k-ambiguity to present a (k−p)-approxi-
mation algorithm for subadditive information loss instances of the k-ambi-
guity problem. We also show that negative approximation results obtained
for MSJ are applicable to the k-ambiguity problem.

2 A Polynomial Time Approximation Algorithm

The algorithm Greedy-MSJ in Algorithm 1 is a simple greedy algorithm that
essentially works by iteratively adding the unused element that minimizes the
added cost to the solution. We also include that by pre-computing an optimal
solution for p ≤ k, we can improve the upper approximation bound. Let V ∗ =
Xn(v1) ∗ Xn(v2) ∗ · · · ∗ Xn(vm) for any V = {v1, v2, . . . , vm} ⊆ In.

Algorithm 1. The greedy (k − p + 1)-approximation algorithm

Greedy-MSJ(Xn, c, k, p)
C ← In

S ← ∅
(i1, i2, . . . , ip) ← arg min1≤j1<j2<···<jp≤n c({j1, j2, . . . , jp}∗)
S ← {i1, i2, . . . , ip}
z ← c(S∗)
C ← C − S
while k > p

i ← arg minj∈C c(z ∗ Xn(j))
S ← S ∪ {i}
z ← z ∗ Xn(i)
C ← C − {i}
k ← k − 1

return S

Theorem 1. For constant integer 0 < p ≤ k we have that Greedy-MSJ is a
polynomial time (k−p+1)-approximation algorithm for the Minimum Subadditive
Join problem that can be implemented to run in O(((k − p)n + np)t(∗)) time,
where t(∗) is the time it takes to compute ∗.

Proof. Let

– S(i) = {s1, s2, . . . , si} be the solution returned by Greedy-MSJ(Xn, c, i, p),
with sj being added to the solution before sj+1 for all j > p, and
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– O(i) = {io1, io2, . . . , ioi}, be an optimal solution for instance (Xn, c, i), and
let O(i) be ordered such that any elements in O(i) occurring in S(i) come
first and in the same order as in S(i). This ensures that

ioi 	∈ S(i− 1) (2)

holds.

First of all, note that by design of the algorithm, we have that

c(O(p)∗) = c(S(p)∗) . (3)

Next we note that because of monotonicity of c and (1) we have that for any
i ≥ p

c(O(i)∗) = 0 ⇒ c(S(i)∗) = 0 , (4)

and Greedy-MSJ produces an optimal solution in this case. Therefore now
assume that c(O(i)∗) > 0. By the greediness of Greedy-MSJ, (2), and (1) we
also have that that for i ≥ p

c(S(i + 1)∗) = c(S(i)∗ ∗ Xn(si+1))
≤ c(S(i)∗ ∗ Xn(i+1oi+1))
≤ c(S(i)∗) + c(Xn(i+1oi+1)) (5)

holds. By (3) we get

c(S(p)∗) + c(Xn(p+1op+1)) = c(O(p)∗) + c(Xn(p+1op+1)) . (6)

Further, we have that c(O(i)∗) ≥ c({io1, io2, . . . , ioi−1}∗) ≥ c(O(i − 1)∗) by
monotonicity of c and optimality of O(i − 1). This, combined with (5) and (6),
means that

c(S(p + 1)∗)
c(O(p + 1)∗)

≤ c(O(p)∗) + c(Xn(p+1op+1))
c(O(p + 1)∗)

=
c(O(p)∗)

c(O(p + 1)∗)
+

c(Xn(p+1op+1))
c(O(p + 1)∗)

≤ 1 + 1 ≤ 2 . (7)

Furthermore, using (5) and c(O(i)∗) ≥ c(O(i− 1)∗), we get that for i > p

c(S(i)∗)
c(O(i)∗)

≤ c(S(i− 1)∗) + c(Xn(ioi))
c(O(i)∗)

=
c(S(i− 1)∗)
c(O(i)∗)

+
c(Xn(ioi))
c(O(i)∗)

≤ c(S(i− 1)∗)
c(O(i− 1)∗)

+
c(Xn(ioi))
c(O(i)∗)

holds. By monotonicity of c we have that c(Xn(ioi)) ≤ c(O(i)∗), by which we
get

c(S(i)∗)
c(O(i)∗)

≤ c(S(i− 1)∗)
c(O(i− 1)∗)

+ 1 . (8)
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Using (7) and induction on (8), we get

c(S(k)∗)
c(O(k)∗)

≤ k − p + 1 . (9)

The computation of an optimal solution for i = p in line 3 can be implemented as
p nested loops over C, which yields the O(npt(∗)) term. The subsequent steps are
O((k− p)nt(∗)), making the algorithm implementable in O(((k− p)n+ np)t(∗))
time. ��
We now investigate the non-subadditive case. We will in the following show that
for any β > 1, we can construct a MJ instance such that Greedy-MSJ produces
a solution worse than β times the optimal.

Proposition 1. Greedy-MSJ fails to approximate MJ within any given bound
β > 1.

Proof. Let X = {s1, s2, . . . , sk, o1, o2, . . . , ok} = L, and let ∗ be defined such
that the Hasse diagram of ≤ is Figure 1. Further, let

s′
k

��
��

��
��

��
��

��
��

s′
k−1 o′

k

s′
3

��
��

��
��

o′
3

��
��

��
��

s′
2

��
��

��
��

o′
2

��
��

��
��

s1 s2 s3 · · · sk−1 sk ok · · · o3 o2 o1

Fig. 1. Example of Greedy-MSJ failure

– c(s1) = 1
3k and c(si) = 1

2k for 2 ≤ i ≤ k,
– c(oi) = 1

k for 1 ≤ i ≤ k,
– c(s′i) =

∑i
j=1 c(sj) for 1 ≤ i < k,

– c(o′i) =
∑i
j=1 c(oj) for 1 ≤ i ≤ k, and

– c(s′k) = (β + ε),

for some ε > 0 and β > 1. Let Xn represent X , then we have that

c(Greedy-MSJ(Xn, c, i, 1)∗)
c(Oi)

= 1, for 1 ≤ i < k, and

c(Greedy-MSJ(Xn, c, k, j)∗)
c(Ok)

> β

for j < k if we let Oi be an optimal solution for k = i. ��
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3 Minimum Coverage

Consider the problem of selecting k out of n finite subsets of some set such that
their union is minimal. It is clear that this problem can be formulated as follows.

Problem 2 (Minimum Coverage). Let U be a finite set, and let Xn ∈ Cn(2U ).
Find S = {s1, s2, . . . , sk} ⊂ In that minimizes |Xn(s1)∪Xn(s2)∪ · · · ∪ Xn(sk))|.
We denote an instance of this problem as (Xn, k).

We call the above Problem 2 Minimum Coverage (MinC) since the problem
of maximizing |Xn(s1) ∪ Xn(s2) ∪ · · · ∪ Xn(sk))| in Problem 2 is known as the
Maximum Coverage problem [12].

It is also clear that since (2U ,∪) is a semi-lattice, that |X ∪ Y | ≥ |X | and
|X ∪ Y | ≤ |X | + |Y | for all X,Y ∈ 2U , and that both ∪ and || are computable
in polynomial time, we have that a Minimum Coverage instance (Xn, k) is the
MSJ instance ((2U ,∪),Xn, c, k) where c(X) = |X |. We formulate the above as
the following proposition.

Proposition 2. The Minimum Coverage instance (Xn, k) is the Minimum Sub-
additive Join instance ((2U ,∪),Xn, c, k) where c(X) = |X |.

Proposition 3. Let (L,∨,∧, , 0, 1) be a finite Boolean algebra such that ∨, ∧,
and all are computable in polynomial time. Let polynomial time computable
function g : L → [0,∞) be such that g(x) = g(1) − g(x) for all x ∈ L, and let
h(x) = g(1)−g(x). Also, let Xn be such that Xn(i) = Xn(i). Then MSJ instances
((L,∨),Xn, g, k) and ((L,∧),Xn, h, k) are polynomial time equivalent.

Proof. We start by noting that by applying DeMorgan’s laws we have that

Xn(i) ∨ Xn(j) = Xn(i) ∧ Xn(j) = Xn(i) ∧ Xn(j) .

Using this we have that

g(Xn(i)∨Xn(j))=g(Xn(i) ∧ Xn(j)) = g(1)−g(Xn(i)∧Xn(j)) = h(Xn(i)∧Xn(j)) .

We also have that
g(x) = g(1) − g(x) = h(x) .

The proof then follows from the polynomial time computability of the Boolean
algebra operators. ��

Now consider the problem of finding k out of n finite subsets of some set such that
their intersection is maximal. This problem we call the Maximum Intersection
(MaxI) problem and define it formally as follows.

Problem 3 (Maximum Intersection). Let U be a finite set, let and let Xn ∈
Cn(2U ). Find S = {s1, s2, . . . , sk} ⊂ In that maximizes |Xn(s1) ∩ Xn(s2) ∩ · · · ∩
Xn(sk))|. We denote an instance of this problem as (Xn, k).
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Proposition 4. Maximum Intersection and Minimum Coverage are polynomial
time equivalent.

Proof. We begin by noting that for a finite set U we have that (2U ,∪,∩, , ∅, U) is
a Boolean algebra with polynomial time computable operations. Let g(X) = |X |,
we then have that g(X) = g(U)−g(X), and that g(X∪Y ) ≥ g(X) and g(X∪Y ) ≤
g(X) + g(Y ) for all X,Y ∈ 2U . Let h(X) = g(U)− g(X). Then by Proposition 3
we have that MSJ instances ((2U ,∪),Xn, g, k) and ((2U ,∩),Xn, h, k) are polyno-
mially equivalent. We finish the proof by recognizing that ((2U ,∪),Xn, g, k) is the
Minimum Coverage instance (Xn, k) and since maximizing g(x) = |X | is equiva-
lent to minimizing |X| = h(X), we recognize ((2U ,∩),Xn, h, k) as the Minimum
Intersection instance (Xn, k). ��

4 Hardness

Consider the Maximum Balanced Complete Bipartite Subgraph (MBCBS) prob-
lem defined as follows.

Problem 4 (Maximum Balanced Complete Bipartite Subgraph). Given a bipartite
graph G = ((V,W ), E) find a maximum biclique H in G such that |H ∩ V | =
|H ∩W |.

This problem is known to be NP-hard as the associated decision problem is
NP-complete [13].

We start by noting that any vertex in a bipartite graph that has no incident
edges is of no interest in the context of the MBCBS problem and can be removed
in polynomial time. Hence, we can assume that any instance G = ((V,W ), E)
of the MBCBS problem can be represented by Xn ∈ Cn(2W ). Further, let A be
an algorithm for the MaxI problem such that A(Xn, k) is the solution given by
A for the MaxI instance (Xn, k). Now consider the MBCBS algorithm given as
Algorithm 2.

Algorithm 2. The MBCBS algorithm using the MaxI algorithm A
MBCBS(Xn)
i ← n
while i > 0

S′ ← A(Xn, i)
s ← | ∩x∈S′ Xn(x)|
if s ≥ i

return S′

i ← i − 1
return ∅

Lemma 1. Let Ho be an optimal solution to MBCBS instance Xn, and let H
be the solution found by applying MBCBS(Xn). Then
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|Ho|
|H | ≤ r (10)

where r is the performance ratio of the best known algorithm A for MaxI.

Proof. Let Ao be an optimal algorithm for the MaxI problem, let ao(i) =
| ∩x∈Ao(Xn,i) Xn(x)|, and let a(i) = | ∩x∈A(Xn,i) Xn(x)|. Note that

ao(i) ≥ ao(i + 1) .

Note that we can, without loss of generality, assume that

a(i) ≥ a(i + 1) .

This because we can construct a MaxI algorithm A′ that for a given i in poly-
nomial time finds n ≥ j ≥ i such that a(j) − a(i) is maximal, and return any
i size subset S′′ of the corresponding solution. We then have that |S′′∩| ≥ a(l),
for any l > i, and we can use A′ instead of A in MBCBS.

Now let io be the largest i in MBCBS such that ao(i) ≥ i, and let iA be the
largest i in MBCBS such that a(i) ≥ i. Inspecting the MBCBS algorithm we
have that

ao(io + 1) < io + 1
ao(io) ≥ io

a(iA + 1) < iA + 1
a(iA) ≥ iA .

Now note that if io = iA we have that |Ho|
|H| = 1. Then the theorem holds as 1 is

a lower bound for performance ratios under our (implicitly assumed standard)
computational model. Therefore in the following assume that io 	= iA, which
means that io > iA. Combining the above we then get

a(iA) ≥ iA ≥ a(iA + 1) ≥ a(io) ,

and
ao(iA) ≥ ao(iA + 1) ≥ ao(io) ≥ io .

Using this we get that
|Ho|
|H | =

io
iA

≤ ao(io)
a(io)

≤ r . (11)

��

Theorem 2. MinC is NP-hard.

Proof. We first note that if A runs in polynomial time, then MBCBS runs in
polynomial time. Then the NP-hardness of MaxI follows from Lemma 1, as we
can solve the NP-hard MBCBS problem optimally in polynomial time if we have
an optimal polynomial time algorithm for MaxI. The theorem then follows from
Proposition 4. ��
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Corollary 1. MJ and MSJ are NP-hard.

We now state the main theorem of this section, that MinC is essentially as hard
to approximate as the MBCBS problem.

Theorem 3. Let n be the number of vertices in a MBCBS problem instance
graph, and let g be a monotonically increasing function. Let the MBCBS problem
be hard to approximate within a factor of g(n) unless proposition P holds. Then
MinC is hard to approximate within g(n) unless proposition P holds.

Proof. This follows from Lemma 1 and Proposition 4. ��
Corollary 2. MJ and MSJ are essentially at least as hard to approximate as
MBCBS.

Corollary 3. Let ε > 0 be an arbitrarily small constant. Then there is no poly-
nomial time algorithm for MinC that achieves an approximation ratio nε

′
where

ε′ = 1
2O(1/ε log(1/ε)) unless there exists probabilistic algorithm for SAT that runs

in time 2n
ε

on an instance of size n. Also, assuming that NP 	⊆ BPTIME(2n
ε

)
MinC allows no PTAS.

Proof. This follows from Theorem 3 and hardness results established by Khot
[14]. ��

5 Approximation of Minimum Loss k-Ambiguity

Informally, k-ambiguity is a property of a transformation Δ of a data set X such
that every point in the transformed data set Δ(X) is a generalization of at least
k elements in X . Following Vinterbo [9] we express this formally in Problem 5.

Problem 5 (Minimum Loss k-Ambiguity). Let V be a set and let ≤ be a partial
order on V with a single maximal element. For v ∈ V and Xn ∈ Cn(V ) define
σ(v) = {i ∈ In|Xn(i) ≤ v} to be the “meaning” of element v with respect to Xn.
Associate with V a measure λ : V → [0,∞) of information loss computable in
polynomial time and let the measure λ be monotone and increasing in our partial
order ≤. Given finite Xn ∈ Cn(V ) and a positive integer k ≤ n find Δ : V → V
such that for each x ∈ In both

x ∈ σ(Δ(Xn(x))) (12)
|σ(Δ(Xn(x)))| ≥ k (13)

hold and λ(Δ(Xn(x))) is minimized.

Vinterbo [9] calls the requirements (12) the preservation of meaning, and (13)
k-ambiguity.

Theorem 4. Any instance X = (V,≤,Xn, λ, k) of Problem 5 such that (V,≤)
is a join-semilattice (V,∨) and for which

λ(x ∨ y) ≤ λ(x) + λ(y)

holds for all x, y ∈ V , is approximable within k − p in O((2n(k − p) + p + (n−
1)p)t(∨)) time where p ≤ k is a positive integer.
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Proof. Since we have that the join ∨(x1, x2, . . . , xk) for any k elements x1, x2,
. . . , xk ∈ V can be written as a join ∨(x1 ∨ x2, x1 ∨ x3, . . . , x1 ∨ xk) of k − 1
elements, we have that all joins of size k elements from Xn containing one fixed
element x = Xn(j) can be written as all joins of k − 1 elements from X xn−1 =
{(i, x∨Xn(y))|y ∈ In−{j}∧ i = y− I(y > j)}, where I is the Boolean indicator
function. Computing X xn−1 can be done in polynomial time as ∨ is polynomial
time computable.

Let Yx = ((V,∨),X xn−1, λ, k − 1) be an instance of MSJ, and let for for all
x ∈ X Δ(x) = Greedy-MSJ(Yx, λ, k − 1, p)∨. From the argument above and
Theorem 1, we can conclude the proof. ��

Problem 6 (k-Ambiguity by Cell Suppression). Let X be a set, let & 	∈ X , and
V = (X ∪ {&})m. Define ∗ on V such that (x1x2 · · ·xm) ∗ (y1y2 · · · ym) =
(z1z2 · · · zm) where zi = xi if xi = yi and zi = & otherwise, and let Xn ∈
Cn(V ). The class of Problem 5 instances (V, ∗,Xn, λ, k), where λ(x1x2 · · ·xm) =∑m
i=1 I(xi = &) where I is the Boolean indicator function, is called the k-

ambiguity by cell suppression problem.

We see that the example of k-ambiguity given in Section 1 is an instance of
k-ambiguity by cell suppression over V = {0, 1,&}4. We can use the connection
between k-ambiguity by cell suppression and MinC to show that the former is
as hard to approximate as the latter.

Theorem 5. k-ambiguity by cell suppression is essentially as hard to approxi-
mate as the MBCBS problem.

Proof. Let (C = (S1, S2, . . . , Sn), k) be an instance of the Minimum Coverage
problem. We can in polynomial time construct a binary data table with n + 1
rows in which row 1 differs from row j in attributes corresponding exactly to
Sj−1. Let S be the set of suppressed entries in row 1 returned by a k-ambiguity
by cell suppression algorithm. Then we know that S is a superset of at least k of
the sets in C. We can in polynomial time find k of these. The non-approximation
results then follow from Theorem 3. ��

Corollary 4. Problem 5 is essentially at least as hard to approximate as the
MBCBS problem.

6 Discussion

The above results suggest that finding a PTAS for the Minimum Join problem is
highly unlikely. However, it seems likely that the analysis of particular NP-Hard
specializations of MSJ might yield better approximation algorithms for these
than the generic Greedy-MSJ algorithm.

The proof of Greedy-MSJ failure on non-subadditive MJ instances begs the
question whether such examples of failure can be constructed for larger classes
of algorithms.
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Even though our analysis of MSJ was primarily motivated by the connection
to privacy in databases, there are other motivating factors as well. Minimum
Coverage, in addition to being a complement to Maximum Coverage analyzed
by Hochbaum et al. [12], and its equivalent problem, Maximum Intersection, can
be used to gain insight into problems from other areas as well.

One such (arguably esoteric) example is the problem of finding k out of n
integers that share the most factors. As each square-free integer in a finite set can
be represented by a finite set containing its prime factors, the problem restriction
to square-free integers corresponds to the Maximum Intersection problem. This
means that it is for instance highly unlikely that there exists a PTAS for the
square-free instance and hence the problem in general.

Another example might be a location selection type problem. Assume we have
k factories each of which we wish to place in one of n locations. Each placement
has a set of requirements that needs to be met. The requirements are such that
if it is met for one location, it is also met for all other locations. Assuming that
the the fulfillment of each requirement has a positive cost associated with it, it
is natural to seek out the k locations that minimize this cost.

Acknowledgments. Thanks go to Stephan Dreiseitl for fruitful input. This
work was funded by NIH grant R01 LM007273-04A1.
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Algorithmic Challenges for Systems-Level
Correlational Analysis: A Tale of Two Datasets�

Michael A. Langston
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I will discuss novel algorithmic, combinatorial and correlational tools for the
analysis of complex natural systems. A pair of illustrative but widely diver-
gent applications will be described. Despite huge differences in data acquisition
methodologies, the algorithmic missions for both problems are similar, and help
to highlight the rich interplay between data quality and effective computation.

The first application centers on determining the effects of environment on
man. As a case study, we search for biological pathways relevant to the human
allergic response. We exploit well-designed studies and quantitative data gener-
ated with state-of-the-art technologies. We extract putative relationships from
the simultaneous expression of vast numbers of genes, under the premise that
genes encoding proteins functioning in a common pathway often exhibit corre-
lated levels of expression. Thus the identities and ontologies of these genes can
be used to pinpoint existing and assimilate new functional pathway elements.
Armed with advanced technologies and high-quality data, we seek to elucidate
genetic components relevant to allergic rhinitis, asthma and eczema.

The second application focuses on the rather complementary problem of de-
termining the effect of man on environment. As a case study, we analyze quantifi-
able variables of significance to oceanic ecosystems. These variables encompass
a huge variety of biotic and abiotic factors, and tend to possess differing peri-
odicities and other diverse properties. Only heuristic experimental designs and
incomplete and sometimes dubious historical data is available. We labor to un-
cover temporal, spatial and other meaningful patterns on an immense scale, and
to shed light on inflection points, putative regime changes and other complex
relationships. Data quality and missing or corrupted values are significant, as is
the mining of information at multiple levels of granularity. Armed with powerful
technologies but highly challenging data, we seek to establish dependencies upon
which we can draw conclusions about the impact of man and other agents upon
the sea.
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Flooding Countries and Destroying Dams�
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Abstract. In many applications of terrain analysis, pits or local min-
ima are considered artifacts that must be removed before the terrain can
be used. Most of the existing methods for local minima removal work
only for raster terrains. In this paper we consider algorithms to remove
local minima from polyhedral terrains, by modifying the heights of the
vertices. To limit the changes introduced to the terrain, we try to min-
imize the total displacement of the vertices. Two approaches to remove
local minima are analyzed: lifting vertices and lowering vertices. For the
former we show that all local minima in a terrain with n vertices can be
removed in the optimal way in O(n log n) time. For the latter we prove
that the problem is NP-hard, and present an approximation algorithm
with factor 2 ln k, where k is the number of local minima in the terrain.

1 Introduction

Digital terrain analysis is an important area of GIS. In many cases, when the
terrains are used for purposes concerning land erosion, landscape evolution or
hydrology, it is generally accepted that the majority of the depressions present
in the terrains are likely to be spurious features. The sources of such artifacts
can be many, including low-quality input data, interpolation errors during the
generation of the terrain model and truncation of interpolation values [12]. As
a result, it is standard in many applications of terrain analysis, particularly in
hydrologic applications such as automatic drainage analysis, to do some kind
of preprocessing of the terrain to remove these spurious sinks [21,18]. This is
because this kind of artifact can severely hinder flow routing. Several related
terms have been used before to refer to these features, such as depressions,
sinks, pits and local minima. In this paper, following the computational geometry
literature, we use the term local minimum.

The most widely used type of digital terrain model, or simply terrain, is the
square grid digital elevation model (raster DEM), mainly due to its simplicity.
Another common type of terrain is the triangulated irregular network (TIN),
which is a triangulation of a set of points with elevation. It involves a more
complex data structure because it is necessary to store its irregular topology,
but also has several advantages, such as variable density and continuity.
� This research has been partially funded by the Netherlands Organisation for Scien-

tific Research (NWO) under the project GOGO.
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Regarding the removal of local minima, most of the literature in GIS has
focused on algorithms for (raster) DEMs. Most of the proposed methods are some
type of “pit filling” technique [2,12,21]. They consist in raising the local minimum
to the elevation of its lowest neighbor. This type of method implicitly assumes
that most of the spurious local minima result only from underestimation errors,
neglecting the ones caused by overestimation. Not many papers address the
problem in the opposite way, removing local minima by lowering a neighboring
vertex to a lower height. An example of such a technique was proposed by Rieger
[14] and is also part of the “outlet breaching” algorithm of Martz and Garbrecht
[13]. Even though pit filling is the most widely implemented method for local
minima removal, recent studies have shown that the lowering methods perform
significantly better than the depression filling techniques, in terms of the impact
on the terrain attributes [10].

When the terrain is modeled as a TIN, a few algorithms have been presented
to deal with the problem of local minima. Theobald and Goodchild [19] show
experimental results on the number of local minima produced by different meth-
ods to extract TINs. Liu and Snoeyink [11] present an algorithm to simulate the
flooding of a TIN, a problem that, although different, is related to removing local
minima by pit filling. A different approach against local minima is the one fol-
lowed by de Kok et al. [3] and Gudmundsson et al. [7]. Instead of modifying the
elevation of the points, they choose the edges of the triangulation in such a way
that the number of local minima is minimized. They optimize over a particular
class of well-shaped triangulations, the higher-order Delaunay triangulations [7].

In this paper we present algorithms to remove local minima from TINs by
modifying the heights of the vertices. We study both lifting points (pit filling)
and lowering points (breaching). In both cases we want to remove local minima
while modifying the terrain as little as possible. To formalize this second goal,
we introduce a cost function that is applied to each point or vertex whose height
is modified. The objective is to minimize the total cost of the removal. There is
no obvious choice for this measure of the cost, and many of them are reasonable.
The one adopted throughout most of this paper is the total displacement of the
vertices. A few other measures are discussed in Section 3.3. To our knowledge,
no previous paper deals with optimization for local minima removal.

The different possibilities for the cost function give rise to different problems.
Furthermore, another source of variants of the problem is choosing what local
minima to remove. Possible options are: removing a given subset of the local
minima, removing all of them, or removing the cheapest k, for k a parameter.
When the removal method is lifting, the three options can be solved on a one-
by-one basis, that is, by removing each of the local minima separately. This is
possible because the removal of one minimum does not affect the removal of the
others. For lowering, the situation is different, because the way a local minimum
is removed may affect the cost of removing other minima.

We study both approaches, lifting and lowering, independently. Some com-
ments on their combination are made in Section 4. For the lifting approach,
we show how the use of contour trees allows to remove all the local minima in
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O(n logn) time, by facilitating the location of the vertices that must be used
to remove each minimum. The lowering approach turns out to be much harder
than the lifting version. We start by showing that removing all local minima is
NP-hard, and then propose an approximation algorithm to solve the problem,
based on an existing algorithm for the Node-Weighted Steiner Tree Problem.

We begin by studying the simplest of the two, the lifting approach, and then
we focus on the lowering technique.

2 Removing Local Minima by Lifting

In this section we present an algorithm to remove local minima by increasing
the elevation of some of the vertices. This can be seen as a flooding or pit filling
technique for TINs. We begin with a few basic definitions that will be also used
in the next sections. A polyhedral terrain T , or just terrain, is a triangulated
point set in the plane where each point or vertex v has a height, denoted h(v).
Any terrain has an associated graph, GT . Sometimes we will refer to both the
terrain and the associated graph as the terrain.

A (local) minimum is a maximally connected set of vertices M ⊂ T such that
all the vertices in M have the same height and no vertex in M has a neighbor
with lower height. Even though a minimum can be made of more than one vertex,
for the purpose of this paper it is more convenient to treat each minimum as
consisting of only one vertex. For example, if a minimum at vertex u is lifted to
height h, we will assume that also all the other vertices of the minimum u belongs
to are lifted in the same way. We do the same with the definition of saddle: below
we define it as being one vertex, but in practice it can be a connected set of them.
This does not affect our algorithms or their running times. These considerations
apply to the whole paper. From now on, we treat each minimum or saddle as
consisting of one vertex only.

A vertex is a saddle if and only if it has some neighboring vertices around it
that are higher, lower, higher, lower, in cyclic order around it. To simplify the
presentation of the algorithms, we will assume the terrain has only one global
minimum, and we will adopt the convention that when we refer to local minima,
we do not include the global minimum.

The cheapest way to remove a local minimum at a vertex v, with height
h(v), is by lifting it to h(w), where w is the lowest neighbor of v. However, this
may turn w into a local minimum. To fix this, the lifting procedure must be
propagated until no new local minimum exists.

Conceptually, the idea is as follows. We explain how to compute a list S =
{s1, . . . , sk} of vertices that must be lifted to remove a local minimum at v.
Initially, S = {s1 = v}, and it is expanded every time the lifting must be
propagated. Let U = {u1, . . . , um} be the union of the neighbors of all vertices
in S that are not in S themselves, and denote the vertex in U with lowest height
with umin. We raise all vertices in S such that h(si) = h(umin) for i ∈ {1, . . . , k}.
If umin is a saddle vertex of the terrain, then it is connected to another lower
vertex and we are done. Otherwise, we remove umin from U and add it to S as
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Fig. 1. Left: example of a terrain showing the elevation of the vertices (between paren-
thesis) and some of the contour lines. Right: the augmented contour tree of the terrain.

sk+1, and we set k to k + 1. Next, we add the neighbors of the new sk that are
not already in S to U . After the changes made to S and U , umin refers to the
new lowest vertex in U . This iterative approach lifts the whole basin of the local
minimum, in a bottom-up fashion, until it reaches its lowest saddle vertex.

The propagation of the lifting is facilitated by the variation of the contour tree
used by van Kreveld et al. [20]. Contour trees have been previously used in image
processing and GIS research [4,6,16,17] and are also related to the Reeb graph
used in Morse Theory [15]. Minima and maxima in the terrain are represented
by leaves in the contour tree, and saddle vertices in the terrain correspond to
nodes of degree three or higher. Ordinary, non-critical vertices appear as vertices
of degree two. See Figure 1 for an example. The contour tree for a terrain with
n vertices can be computed in O(n logn) time [1,20].

To remove a given local minimum at v in the terrain by propagated lifting,
we look at the corresponding leaf v′ in the contour tree. Let w′ be the node
of degree three or more in the contour tree that is closest to v′. It corresponds
to a saddle w in the terrain, the first one encountered when “flooding” v. To
remove the local minimum at v, we must lift all the vertices in the terrain that
correspond to nodes on the path from v′ to w′ in the contour tree, including v′,
but excluding w′, to the height of the saddle vertex.

After this change we must update the contour tree to reflect the changes.
The branch that ended at v′ disappears, and the nodes on it become ordinary
(non-critical) ones, at the same height as the saddle node. If necessary, we can
store any relevant information about the lifted vertices, like total displacement,
together with the saddle node. If before the lifting step the saddle had only one
downwards branch, then after the lifting it became a new local minimum, and
the lifting needs to be propagated until the lowest of the saddle ancestors is
reached (there could be more than one). If before the lifting step the saddle had
two or more downwards branches, then the saddle might continue as a saddle
or become an ordinary node. In both cases this lifting step is over. In any case,
during the removal of the local minima every node involved is processed only
once, because after lifting it, it becomes “part” of the saddle node.
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Fig. 2. Removing the local minimum of height 4 by lowering. Left: initial heights
(between parenthesis). The change in height of the lowered vertices is shown with an
arrow. Right: first a vertex is lowered from 6 to 3, turning it into a new local minimum.
To remove it, a neighboring vertex is lowered from 7 to 2. A breaching path from the
vertex of height 4 to the one of height 1 is highlighted.

Removing all the local minima, given the contour tree, can be done in linear
time. Hence the total running time equals the time needed to build the tree.

Theorem 1. Given a terrain T with n vertices, k of them local minima, a lifting
of the vertices that removes all local minima while minimizing the total displace-
ment of the vertices can be computed in O(n logn) time.

3 Removing Local Minima by Lowering

In this section we study how to remove local minima by lowering the heights of
some vertices. We begin with some definitions and basic observations.

Any vertex in a terrain can be lowered, meaning that its height can be de-
creased. The cost of lowering a vertex is defined as the difference between its
original height and the new one. Some other definitions are discussed in Sec-
tion 3.3. Recall that each local minimum is treated as consisting of exactly one
vertex.

A given local minimum at u is removed by lowering some neighboring vertex
to a height less than or equal to h(u). Since the lowered vertex can become a
local minimum itself, and we do not want to create new local minima (or make
an existing one worse), a propagation takes place, until the original and the
newly created local minima are removed. Figure 2 shows an example. Observe
that any given local minimum can be removed in this way (recall that we do not
consider the global minimum to be a local minimum). The same can be done for
any set of local minima that does not include the lowest minimum in the terrain.

The following definitions formalize the basic ideas related to lowering.

Definition 1. Let T be a terrain, and let u and v be two vertices of T , with
h(u) > h(v). A breaching path from u to v is a tuple ρ = (P,D), where P is a list
of vertices that induce a path between u and v, that is, P = {u,w1, w2, · · · , wη, v},
and D = {0, d1, d2, · · · , dη, 0} is a list of height displacements for the intermediate
vertices of the path, such that h(u) ≥ h(w1) + d1, h(wi) + di ≥ h(wi+1) + di+1

for every 1 ≤ i < η, and h(wη) + dη ≥ h(v). The cost of a breaching path is
Cost(ρ) =

∑
i |di|.
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Fig. 3. From left to right: a terrain with three local minima: at u,v and w; a breaching
path from v to u; a breaching graph of minimum cost that connects u,v and w

Intuitively, a breaching path is a path used to remove a local minimum at u, by
connecting it to a lower vertex v, by modifying the heights of all the vertices in
between (see Figure 2). A natural extension of the concept of breaching path is
the breaching graph.

Definition 2. Let T be a terrain. A breaching graph is a tuple ψ = (P,D),
where P is a set of vertices that induce a subgraph of T , such that all the vertices
of degree one are minima, and each vertex with degree higher than one has a
height displacement in D such that for each connected component, ψ includes a
breaching path connecting each of its local minima to the lowest minimum of the
component. The cost of the breaching graph is defined as Cost(ψ) =

∑
i |di|.

Note that since we aim at removing all local minima, the breaching graph must
be connected, because all local minima must be connected to the global mini-
mum. A minimum cost breaching graph may contain cycles, but it can be turned
into a tree by discarding some edges, without changing its cost. Hence we will
sometimes refer to a minimum cost breaching tree. Throughout this paper we
refer to connecting two minima u and v, meaning that the minimum at u or v
(the highest one) is removed by creating a breaching path connecting u and v.

Since we are minimizing the total displacement, each vertex will be lowered
as little as possible. Hence if a vertex wi needs to be lowered to connect a local
minimum at u to a lower vertex v, the new height of wi will be h(u).

In a breaching graph it can occur that an intermediate vertex wi is part of
more than one breaching path. See for example the vertex of initial height 3 in
Figure 3. In that case the new height of the vertex must be set to the height of
the lowest of those minima. We say that u pays for the lowering of a vertex wi
if u is the lowest local minimum that is removed by a breaching path through
wi. It is interesting to look at the structure of an optimal solution, in relation
to how the payment of the lowering is distributed. Figure 4 shows an example.

3.1 Removing All Local Minima

It is easy to verify that one given local minimum u can be removed optimally
by computing the shortest paths between u and each of the lower minima in a
directed graph based on the terrain. The vertices and edges of this graph are the
same as in the terrain, but edges are made directed and the weights are related
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Fig. 4. Left: terrain with four minima, with the breaching graph of an optimal solution
(only relevant heights shown). Center: breaching graph seen as a tree. Right: the black
vertices are paid by u, the medium gray vertices by w, and the light gray vertex by v.

to the vertical distance between neighboring vertices. Therefore a breaching path
of minimum cost removing u can be found in O(n logn) time.

Extending this idea to several local minima involves dealing with the possible
ways to combine the different breaching paths. For a non-constant number of
local minima, this leads to an exponential time algorithm. Moreover, in this
section we show that the problem of removing all local minima from a terrain
by lowering, minimizing the total displacement, is NP-hard. We use a reduction
from Planar Connected Vertex Cover (PCVC), which is known to be NP-hard [5].
The optimization version of PCVC consists in given a planar graph G = (V,E),
finding a set of vertices of minimum size such that every edge has at least one end
among the selected vertices, and the subgraph induced by the set is connected.

We show how to solve any instance of PCVC, given by a planar graph G =
(V,E), with an algorithm for our problem. We create a new graph G′ as follows.
Take G as the initial graph G′. Assign height 1 to each existing vertex. Then for
each edge e ∈ E, create a vertex “in the middle” of the edge at height 0 (these
will be all minima). Finally, change the height of an arbitrary local minimum to
−1, to create a global minimum. The resulting graph has exactly |E| minima.
Each of them corresponds to an edge in G that must be covered by the vertex set.
To turn the graph into a terrain, we compute a first arbitrary triangulation, and
for every edge added during the triangulation, we add a vertex on its midpoint at
height +∞. The resulting non-triangular faces are triangulated in some arbitrary
way. This guarantees that all the new edges have one endpoint with a vertex at
height +∞, so they will never be part of an optimal solution. It is straightforward
to see that the whole construction can be done in polynomial time.

Removing all local minima in G′ induces a set of vertices that must be lowered.
The fact that all local minima have been removed implies that all edges have one
end in the chosen set, so it is indeed a solution to Vertex Cover, and it is a tree,
hence also connected. It is easy to verify that if the local minima are removed
optimally, the vertex cover is also optimal.

Theorem 2. Given a terrain T with n vertices, it is NP-hard to compute a
lowering of the vertices that removes all local minima, that minimizes the total
displacement of the vertices.
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3.2 Approximation Algorithm

One of the simplest approximation algorithms that arise is computing an optimal
breaching path for each of the k local minima, and then merging them. However,
it can be easily shown that this leads to a k-approximation.

The inherent difficulty of the problem of removing a set of local minima lies
in finding the vertices that act as junctions of the different breaching paths.
This resembles the Steiner Tree Problem, and in particular, the Node-Weighted
Steiner Tree (NWST) problem in networks, which is a more general version of the
problem where the costs are assigned to the vertices. Even though constant factor
approximation algorithms are known for the standard Steiner Tree problem, no
approximation algorithms with factor less than logarithmic exist for the NWST
problem, unless NP ⊆ DTIME[nO(polylog n)] [9]. Our problem is still different
from the NWST problem because the cost paid for using a vertex is not fixed; it
depends on the heights of the local minima that are being removed through it.

In order to make an algorithm for NWST work for our problem, non-trivial
adaptations are needed. In this section we present an approximation algorithm,
with factor 2 ln k, which is an adaptation of the NWST approximation algorithm
of Klein and Ravi [9]. The general idea at each step is to connect some minima
in some simple way, using spiders, as to minimize the ratio of the cost of the
spider to the number of minima it connects. We begin with some definitions.

Definition 3. (Adapted from [9]) A spider is a tree with at most one vertex
of degree greater than 2. A center of a spider is a vertex from which there are
edge-disjoint paths to the leaves of the spider. A spider has a number of feet,
comprised by its leaves and, if the spider contains at least 3 leaves, its center. A
nontrivial spider is one with at least two feet.

Definition 4. (from [9]) Let G be a graph, and let M be a subset of its vertices.
A spider decomposition of M in G is a set of vertex-disjoint nontrivial spiders
in G such that the union of the feet of the spiders contains M .

We relate each spider to a breaching graph, and define its cost as follows:

Definition 5. Let T be a terrain and let S be a spider in T , with center v and
feet F , where at least two of its feet are minima of T . The cost of S, Cost(S), is
the minimum total displacement required to remove all (but the lowest) minima
in F by lowering vertices of S.

The algorithm. The goal is to find up to k spiders that cover the minima and
connect them with each other. This is done through an iterative process, that at
each iteration finds one spider and uses it to remove a number of local minima.
A spider is specified by a center vertex c and a set of leaves F . The elements of F
will be minima, which can always be removed (except for the global minimum)
if they are all connected to c, and c is connected to the lowest minimum of F .

The algorithm begins by computing the shortest (breaching) paths from each
minimum to all the other vertices. It then computes for each vertex, a list with
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the k minima sorted by increasing distance to the vertex (in the breaching path
sense). All this preprocessing takes O(kn logn) time.

Then up to k iterations take place. At each iteration, a spider is found that
connects at least two minima, hence removing at least one. The spider is chosen
as one that minimizes the ratio C(Fi)/|Fi|, where Fi is the set of minima con-
nected by the spider, |Fi| its size and C(Fi) the cost of the spider. To find such
an optimal spider, the algorithm needs to find a center vertex ci and the set of
minima that will be connected to the center, Fi. This is done as follows.

Every possible vertex is tried as the center ci. For each center candidate, all
the possible second lowest minima in Fi are tried. There are O(nk) of these pairs.
For a pair of center ci and second lowest minimum v

(2)
i , we still need to find the

other elements of Fi. The lowest element of Fi, v
(1)
i , is set to the nearest local

minimum lower than v
(2)
i , where the distance equals the displacement needed

to remove v
(2)
i by connecting it to v

(1)
i (going through ci). After this we have

Fi = {v(1)
i , v

(2)
i }. By construction this is the optimal choice for this pair and

|Fi| = 2. Next we can start augmenting Fi by adding, one by one, the local
minimum nearest to ci, among the ones higher than v

(2)
i . By nearest we mean

the one with the minimum cost breaching path to ci. This results in optimal
choices for each value of |Fi|, because the fact that all the local minima that are
added are higher than v

(2)
i guarantees that the total cost of the removal, C(Fi), is

increased only by the cost of connecting the added vertices to ci (the connection
from ci to v

(1)
i is paid by v

(2)
i ). We choose the minimum ratio combination over

all the ones considered in the current iteration.
Since each iteration removes at least one local minimum, the total number of

iterations is O(k), yielding a O(k3n + kn logn) running time.

Approximation factor. Our proof of the approximation factor follows the
proof in [9]. We first define some notation. Ti is the terrain just after iteration
i. The number of local minima (not yet removed) in Ti is denoted by φi. The
number of minima connected at iteration i (which is one more than the number
of local minima removed at that iteration) is denoted hi. The cost of the lowering
done at iteration i is Ci. Finally, OPT is the cost of an optimal solution. Since
any solution induces a breaching graph of T , which can be seen as a tree, we will
sometimes refer to the optimal tree, meaning one of the trees associated with
an optimal solution. The following lemma relates the ratio of the combination
chosen at step i to the ratio of an optimal solution.

Lemma 1. At any iteration i of the algorithm,

Ciφi−1

OPT
≤ hi (1)

Proof. Let T ∗ be a tree of an optimal solution. Some of the vertices in T ∗ may
correspond to local minima that have been already removed in the current terrain
(Ti−1). Let T ∗

i be a tree based on T ∗ where all the leaves that correspond to
local minima that have been removed in Ti−1 have been deleted, together with
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all the paths that connected them to the rest of the tree (we keep everything
just as to keep the remaining minima connected). If there is a removed local
minimum in T ∗ that is not a leaf, we treat that vertex as a normal one —
non-local minimum).

Let Cost(T ∗
i ) be the cost of T ∗

i , in the same way as it is defined for breaching
graphs: the cost of removing all local minima in the tree by lowering only vertices
of the tree. Observe that Cost(T ∗

i ) can be different from Cost(T ∗) = OPT ,
because the removal of some leaves of the tree may change the minimum that
pays for the lowering of some intermediate vertex. However, since the minimum
paying is always the lowest one, the new minimum paying for the intermediate
vertex will be higher than the previous one, and the displacement will decrease,
hence we have Cost(T ∗

i ) ≤ OPT .
Given a tree and a subset of its vertices M , |M | ≥ 2, there is always a spider

decomposition of M contained in the tree [9]. Thus we can compute a spider
decomposition of T ∗

i , where M are the minima. Let c1, ..., cr be the centers of
the spiders in the decomposition. For a spider with only two leaves (a path), we
pick any vertex in the path as its center. Let the cost of the spider Sj , centered
at cj , be Cost(Sj), and let nj be the number of minima that it connects.

During main step i of the algorithm, vertex cj (for any j), will be considered
as a possible center vertex to remove a set of local minima. The quotient of this
vertex was defined as to minimize the ratio between the cost of connecting the
minima and the number of minima that it connects. The cj with the minimum
ratio will be selected. That ratio can never be more than the ratio of the spider
with center cj . Notice that it could be lower, if for example some of the vertices
that must be lowered have been already partially lowered in a previous iteration.
Then for each spider Sj in the decomposition we have Ci

hi
≤ Cost(Sj)

nj
.

Rewriting and summing over all the spiders in the decomposition we get

Ci
hi

∑

j

nj ≤
∑

j

Cost(Sj) (2)

Now we argue that
∑
j Cost(Sj) ≤ Cost(T ∗

i ). The cost of some spider Si,
Cost(Si), can be different from the cost of the associated subgraph in T ∗

i . Some
vertices may have been lowered in a different way. This is because when T ∗

i is
divided into subtrees (each corresponding to one spider), it might occur that
the lowest vertex in one of the subtrees changes (because the original one is
now in some other subtree). This causes a series of changes in the way the local
minima of the subtree are removed, because another vertex must act as the
global minimum of the component. However, the new global minimum must be
higher than the previous one, hence using the same arguments used to claim
that Cost(T ∗

i ) ≤ OPT , it follows that Cost(Si) cannot be higher than the cost
of the associated subgraph of T ∗

i .
Going back to Equation (2), and using that Cost(T ∗

i ) ≤ OPT and that the
sum

∑
j nj equals the number of minima at the beginning of the current iteration,

φi−1, we get (Ci/hi)φi−1 ≤ OPT , which is (after rewriting) the result claimed.
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To get the approximation factor, exactly the same arguments used in [9] can
be used to conclude that if p is the total number of iterations of the algorithm,
then

∑p
j=1 Cj ≤ 2 lnk·OPT . An example showing that the approximation factor

is nearly tight can be constructed.

Theorem 3. Given a terrain T with n vertices, k of them minima, a lowering
of the vertices that removes all the local minima, that minimizes the total dis-
placement of the vertices, can be computed in O(k3n+ kn logn) time, where the
total displacement is at most 2 ln k times the minimum one.

3.3 Other Measures

Even though most of this paper considered the total displacement as the measure
being optimized, there are several other measures that are also interesting. Two
of them, similar to the one studied here, are the number of vertices lowered and
the total volume reduction. Both can be shown to be NP-hard for removing all
local minima, and our approximation algorithm can be adapted to work for them.
On the other hand, if the goal is to minimize the maximum displacement, that is,
the maximum height that any vertex is moved, then we can do it in polynomial
time, because for this measure simply merging the optimal breaching paths to
remove each minimum leads to an optimal solution.

4 Conclusions and Future Work

This paper studied optimization problems related to the removal of local min-
ima from triangulated terrains, by modifying the heights of the vertices. Two
techniques were analyzed, lifting and lowering, with the objective of removing
all local minima while minimizing the total displacement of the vertices. For
the lifting technique, we showed how to use contour trees to facilitate finding
which vertices need to be lifted to remove each local minimum. For the lowering
technique, we showed that one local minimum can be removed efficiently, but in
the general case the problem is NP-hard. With that in mind, we proposed an
approximation algorithm with factor 2 lnk.

There are many directions for further research, specially for the lowering ap-
proach. Approximation algorithms with better factors are one of them. There
are some better approximation algorithms for the NWST problem, like the ones
of Guha and Khuller [8], that improve the 2 ln k factor of [9] to 1.5 lnk or even
(1.35 + ε) ln k, but it is unclear how to adapt them to our problem. Another
aspect worth studying is the combination of lifting and lowering, that some-
times can result in a smaller total displacement. Finally, many other variants,
like removing the cheapest k local minima may pose interesting challenges.

Acknowledgments. We thank Marc van Kreveld for proposing the problem and
for many helpful suggestions.
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Abstract. We study the flow of water on fat terrains, that is, triangu-
lated terrains where the minimum angle of any triangle is bounded from
below by a positive constant. We give improved bounds for the worst-case
complexity of river networks on fat terrains, and show how to compute
the river network and other flow-related structures i/o-efficiently.

1 Introduction

In this paper we study one of the most important problems on terrains, analyzing
the flow of water. The basic questions in flow analysis are to identify the river
network and, for any given point q, its watershed (the part of the terrain from
which water flows to q). Acquiring real flow data for a terrain is tedious, time-
consuming and often impossible. Fortunately high-resolution elevation data is
now widely available. As a result, flow modeling and analysis based on elevation
data is a popular topic for researchers in gis (geographic information systems).

One common representation of terrain data in a gis is the tin (triangulated ir-
regular network). A tin—in computational-geometry terms: a triangulated poly-
hedral terrain—is obtained by triangulating a collection of irregularly spaced
sample points and then giving each triangulation vertex the elevation of the cor-
responding sample point. When working with very large terrains, the data is too
large to fit into the computer’s main memory. Most of the data must therefore
reside on disk during the computation, making i/o (moving data between main
memory and disk) the bottleneck of the computation. This leads us to the topic
of our paper: the study of river networks and watersheds on tins, and the design
of i/o-efficient algorithms for computing these structures.

We analyze our algorithms with the model introduced by Aggarwal and Vit-
ter [2], which has become the standard model for i/o-efficient algorithms. In
this model, a computer has an internal memory of size M and an arbitrarily
large external memory (disk) where data is stored in blocks of size B. The i/o-
complexity of an algorithm in this model is measured in terms of the number
of i/o’s—reading or writing a block from or to external memory—it performs.
In this model, scanning (reading a set of n consecutive items from disk) takes
Scan(n) = Θ(n/B) i/o’s, and sorting Sort(n) = Θ((n/B) logM/B(n/B)) i/o’s.

The previous work on modeling flow on tins falls into two classes. Most gis

papers [9,15,16,17,18] adopt a discrete approach and route flow from a triangle
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to one of its three neighbour triangles using the direction of steepest descent.
This approach is appealing because of its simplicity; it is problematic, however,
because it discretizes flow and tends to lead to inconsistencies when the triangles
in the tin differ a lot in size [10,19]. The approach taken in the computational-
geometry literature considers the tin as a continuous surface on which water
always flows in the direction of steepest descent. De Berg et al. [6], McAllis-
ter [11,12], McAllister and Snoeyink [13] and Yu and Snoeyink [19] study the
structure and the complexity of the river network and other structures on tins
under this model. In particular, De Berg et al. prove that the complexity of the
river network—see Section 2 for a formal definition—on a tin of n vertices is
Θ(n3) in the worst case: there can be Θ(n) separate rivers, each with complex-
ity Θ(n2). None of the papers mentioned above provide i/o-efficient algorithms.

I/O-efficient flow modeling was first studied—on grids, the other type of data
representation in gis—by Arge et al. [4]. Their system, Terraflow, has become
the state of the art in flow modeling on massive grids. Terraflow uses a discrete
approach which can be easily extended to tins. However, discrete flow is only
an approximation of real flow. Thus, the challenge is to develop i/o-efficient
algorithms to model continuous flow on tins, which is ultimately more accurate.

The main step in the computation of flow, and at the same time the bottle-
neck in the i/o-model, is tracing paths of steepest descent across the triangles
that they intersect—in particular, any river is such a path of steepest descent.
While in internal memory a path of size k can be traced in O(k) time, the best
known i/o-bound is O(k/ logB) i/o’s on planar graphs [1]. This results in a
straightforward bound of O((r + n)/ logB) i/o’s for the computation of a river
network of size r, but this would be prohibitively expensive.

Moreover, De Berg et al. [6] showed that r is Θ(n3) in the worst case. However,
the worst case is a construction that is unlikely to occur in real life. In computa-
tional geometry such discrepancies between worst case and practice have led to
the study of input models that resemble realistic inputs better. Moet et al. [14]
studied visibility and distance problems on realistic terrains. In this paper we
consider flow modeling on fat terrains, that is, terrains where the minimum angle
of any triangle is bounded from below by a positive constant1. Our notion of a
fat terrain is less restrictive than the notion of realistic terrains from Moet et al.

Our results. In this paper we give improved bounds for the complexity of the
river network on a fat terrain and show how to compute a number of flow-related
structures i/o-efficiently. The main ingredient in our solution is to represent the
terrain by a directed graph, which we call the descent graph, Gdesc. The nodes of
Gdesc represent the edges of the triangulation, and we define the arcs of Gdesc such
that following a path of steepest descent on the terrain corresponds to following
a path in Gdesc. Unfortunately, in its basic form Gdesc can have cycles, and a
path of steepest descent can visit the same edge more than once. In fact this
is exactly the reason why the complexity of a river in an arbitrary terrain can
be Θ(n2): it can visit a linear number of edges each a linear number of times [6].
1 Here the angle of a triangle is measured in space. Our results also hold if the angles

are measured in the projection on the xy-plane, or if all triangles are non-obtuse.
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In the i/o-model, a descent graph with cycles does not only signify a potentially
problematic output size, but it also constitutes an algorithmic problem, because
it is not known how to store such a graph on disk such that any path of length
k can be traced using O(k/B) i/o’s [1].

The cornerstone of this paper is an idea that solves both problems at the same
time: we subdivide each edge of the triangulation into a number of segments,
in such a way that the descent graph, defined on these segments instead of the
original edges, is acyclic. Moreover we show that for fat terrains a constant
number of segments per edge suffices. This implies that any path of steepest
descent can visit each segment at most once, and hence its worst-case complexity
is Θ(n). This in turn implies an O(n2) bound on the complexity s of the strip
map: the subdivision S of the terrain induced by the paths of steepest ascent
and descent from all vertices. It also follows that the complexity r of the river
network on a fat terrain is O(n2), which is a linear factor smaller than the O(n3)
bound for river networks on general terrains. In the full version of this paper we
shows that our bounds are tight in the worst case.

The acyclicity of the descent graph allows us to apply time-forward process-
ing [3,7] and traverse paths in a batched i/o-efficient manner. By applying and
refining ideas from McAllister [11] and Yu et al. [19], we obtain the following
algorithms and data structures, all computable in O(Sort(s)) i/o’s: (1) an al-
gorithm to compute the river network, with a piecewise quadratic function of
O(r + n) pieces whose value is the area of the watershed for each point of the
network; (2) a data structure that reports the boundary of the watershed of any
query point q in O(l + w/B) i/o’s, where l is the number of i/o’s needed to
locate q in S and w is the complexity of the reported watershed; (3) a structure
that reports the flow path from any point q (the course of water flowing from q)
in O(l + c/B) i/o’s, where c is the complexity of the path.

One of the open questions posed by De Berg et al. [6] was if one could prove
an O(n2) bound on the complexity of river networks in Delaunay triangulations.
In the full version of this paper we answer this question negatively and show that
we can construct Delaunay triangulations with river networks of size Θ(n3).

2 Preliminaries

Let T be a tin defined on n vertices. To model flow we assume that water always
runs downhill in the direction of steepest descent. Furthermore, we assume that
the direction of steepest descent is unique for any point in the terrain (so there
are no horizontal triangles); no water flows off the terrain, and no edge is parallel
to the direction of steepest descent on an adjacent triangle. We discuss how to
do without the last three assumptions in the long version of this paper.

Following Yu et al. [19], we distinguish three types of edges in T : transfluent
edges are edges that receive water from one adjacent triangle which continues its
way down the other triangle; channels are edges that receive water from both
adjacent triangles; ridges are edges that do not receive water from any triangle.
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The direction of steepest descent from a vertex may be along an incident edge,
or on an incident triangle orthogonal to its contour lines. To capture this, we
define the slope profile of a point p on the terrain as the function sp : S1 → R
such that sp(θ) is the slope of the path that leaves p in the direction θ. The
interesting directions for a vertex v of T correspond to the local maxima and
minima in the slope profile of v. Note that these directions include the directions
of channels and ridges incident to v, and also the directions of steepest descent
and ascent. A vertex v is a pit if its slope profile is entirely positive.

We define up-paths and down-paths as paths of locally steepest ascent or
descent as follows. An up-path from p is a path that starts at p, goes into a
direction θ that is a positive local maximum in the slope profile of p leading
onto the interior of an incident triangle, and then follows the steepest ascent
until a vertex or a ridge of T is reached. (The requirement that the path leads
onto the interior of the triangle incident to p prevents an up-path from leaving p
along a ridge.) Similarly, a down-path from p is a path that starts at p, goes into
a direction θ that is a negative local minimum in the slope profile of p leading
onto the interior of an incident triangle, and then follows the steepest descent
until a vertex or a channel of T is reached. An up-path from p to q is a down-path
from q to p. Therefore, we may sometimes refer to a down-path as an up-path
or the other way around, depending on our point of view.

The strip map S of T is the subdivision of T induced by the channels, ridges,
up-paths and down-paths from all vertices of T . We call the O(n) faces of this
map strips. Each strip is bounded by a portion of a ridge, a portion of a channel
(the foot), and two possibly empty chains of up-paths. Note that from every point
at the foot of a strip, the up-path through the strip has the same combinatorial
structure: it crosses the same triangles and leads to the same ridge.

The watershed W (q) of a point q on T is the set of all points on T from
which the water flows to q. The river network of T is the set of all points on T
with watersheds of non-zero area, or in other words, the set of points whose
watersheds are two-dimensional regions. De Berg et al. [6] argue that the river
network of T is the union of the channels of T and the paths of steepest descent
that start from the lower endpoints of channels.

3 Modeling Flow with a Descent Graph

In this section we describe how to model flow on a triangulated terrain T using a
descent graph Gdesc. Our goals are to define Gdesc such that it is acyclic and such
that any path of steepest descent in T corresponds to a path in Gdesc. For α-fat
terrains, that is, terrains T where the minimum angle of each triangle (measured
in the plane supporting the triangle) is at least a constant α > 0, we show how
to construct Gdesc with only O(n/α2) nodes. This leads to the following bounds
on the size of down-paths, up-paths, river networks and strip maps:

Theorem 1. Any down-path or up-path in an α-fat terrain has O(n/α2) ver-
tices, and the total complexity of its river network or the strip map is O(n2/α2).
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To define Gdesc, assume that the edges of T have been subdivided into segments,
as will be described below. Then the descent graph Gdesc of T contains a node
for each vertex and each segment in T ; let seg(v) denote the vertex/segment
corresponding to node v. To ensure that the sets seg(v) are disjoint, we consider
a segment to include its upper endpoint (unless this is a vertex of T ), and to
exclude its lower endpoint. Gdesc contains a directed arc from node a to node b
if and only if one of the following applies: (1) seg(a) is the upper endpoint of
seg(b), and seg(b) is a ridge or channel; (2) seg(b) is the lower endpoint of seg(a),
and seg(a) is a ridge or channel; (3) seg(a) and seg(b) are on the boundary of
the same triangle Δ, and there is a path of steepest descent across the interior
of Δ from seg(a) to seg(b). It can be seen that any path of steepest descent in
T corresponds to a path in Gdesc.

To ensure that Gdesc is acyclic we impose the following requirements on the
subdivision of the edges of T . Channels/ridges of T are not subdivided: each
channel/ridge is one segment. For a segment s on a transfluent edge e and a
triangle Δ incident to e, we have: (1) If s is not incident to a vertex, then the
(open) smallest enclosing sphere of s (that is, the sphere with s as a diameter)
does not intersect any other edge of Δ; (2) If s is incident to a vertex p of Δ,
then the (open) sphere centered at p with s as a radius does not intersect any
segment s′ on an edge of Δ, where s′ is not incident to p and s′ is not separated
from s by a line of steepest descent through p on Δ. We call a subdivision of the
edges of T that meets these requirements compliant.

We denote the upper endpoint, midpoint and lower endpoint of seg(v) by
up(v), md(v) and lw (v). If seg(v) is a vertex we have up(v) = md(v) = lw(v) =
seg(v). We define the anchor an(v) and relative position rp(v) of v as follows:

– if seg(v) is a channel, then an(v) = lw(v) and rp(v) = 1 (above the anchor);
– if seg(v) is a vertex or a segment of a transfluent edge, then an(v) = md(v)

and rp(v) = 0 (on the anchor);
– if seg(v) is a ridge, then an(v) = up(v) and rp(v) = −1 (below the anchor).

We now prove that any descent graph Gdesc based on a compliant subdivision
is acyclic. To this end, we define a partial order ! as follows: For two nodes a
and b in Gdesc, we define a ! b if and only if z(an(a)) > z(an(b)), or z(an(a)) =
z(an(b)) and rp(a) > rp(b), where z(p) is the elevation of p.

Lemma 1. Given Gdesc of a compliant subdivision, if seg(a) and seg(b) are on
the boundary of the same triangle Δ, seg(b) is not a channel, and there is a
path of steepest descent across the interior of Δ from seg(a) to seg(b), then
z(up(a)) ≥ z(up(b)), and equality can only hold if seg(a) is incident to up(b).

Proof. Let p ∈ seg(a) and q ∈ seg(b) such that the segment pq lies in Δ
and follows the direction of steepest descent. If seg(b) is a vertex of T , then
z(up(a)) ≥ z(p) > z(q) = z(up(b)). Since seg(b) is not a ridge or a channel, the
only remaining case is that seg(b) is a segment on a transfluent edge.

Consider now the plane Γ supporting Δ. Let S be the open half-plane on Γ
containing p, bounded by the line through seg(b). Let � be the intersection of Γ
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Fig. 1. Proof of Lemma 1

with the horizontal plane through up(b), and let h be the line on Γ orthogonal
to � through lw(b). Note that � is a contour line of Γ , the line h follows the
direction of steepest descent on Γ , and pq is parallel to h. Let L and H be the
closed lower and the open upper half-planes of Γ bounded by �, and let U be the
open half-plane of Γ bounded by h containing seg(b). Let C be the minimum
circumscribed circle C of seg(b) on Γ . See Fig. 1 (a) for an illustration. Since
q ∈ seg(b), we must have p ∈ U ∩ S. We distinguish three cases:

First, if seg(b) is not incident to a vertex of T , then by compliance condi-
tion (1) C does not intersect seg(a). By Thales’ theorem, the rectangular triangle
U ∩ S ∩ L lies in C, and so p 	∈ L. This implies z(up(a)) ≥ z(p) > z(up(b)).

Second, if lw(b) is a vertex of T , then let A be the open disk centered at lw (b)
through up(b). If seg(a) is not incident to lw(b), then by compliance condition (2)
it does not intersect A (since p ∈ U ∩ seg(a), seg(a) is not separated from seg(b)
by h). Since C ⊂ A, we again have z(up(a)) ≥ z(p) > z(up(b)). If seg(a) is
incident to lw(b) (Fig. 1 (b)), then by compliance condition (2) up(a) must lie
in U \A, and hence in H , implying z(up(a)) > z(up(b)).

Finally, if up(b) is a vertex of T , then let A′ be the open disk centered at up(b)
through lw(b). If seg(a) is incident to up(b), then clearly z(up(a)) ≥ z(up(b))),
otherwise by condition (2) seg(a) lies outside A′, and p lies again in H . ��

Corollary 1. If seg(a) and seg(b) are on the boundary of the same triangle Δ,
seg(a) is not a ridge, and there is a path of steepest descent across the interior
of Δ from seg(a) to seg(b), then z(lw(a)) ≥ z(lw(b)), and equality can only hold
if seg(b) is incident to lw(a).

Lemma 2. Given Gdesc of a compliant subdivision, if Gdesc contains an arc from
a to b, then a ! b.

Proof. We can verify that if seg(a) is the upper endpoint of seg(b), or if seg(b)
is the lower endpoint of seg(a), then a ! b. It remains to discuss the case where
there is a path of steepest descent from some point p ∈ seg(a) to some point q ∈
seg(b) across the interior of their common triangle Δ. We note that seg(a) cannot
be a channel, and seg(b) cannot be a ridge. We have z(up(a)) ≥ z(p) > z(q) ≥
z(lw(b)). We now distinguish four cases, proving z(an(a)) > z(an(b)) and thus
a ! b in each: First, if seg(a) is a ridge and seg(b) is a channel, then z(an(a)) =
z(up(a)) > z(lw(b)) = z(an(b)). Second, if seg(a) is a ridge and seg(b) is a vertex
or a segment on a transfluent edge, then z(an(a)) = z(up(a)) ≥ z(up(b)) (by
Lemma 1). Since z(up(a)) > z(lw(b)), then z(an(a)) > z(md(b)) = z(an(b)).
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Third, if seg(a) is a vertex or a segment and seg(b) is a channel, it is handled
symmetrically. Finally, if both seg(a) and seg(b) are segments of transfluent
edges, then we have both z(up(a)) ≥ z(up(b)) and z(lw(a)) ≥ z(lw(b)). We
cannot have equality in both inequalities, since if seg(a) and seg(b) would share
both up(b) and lw(a), that would imply up(b) = lw (a) and thus z(up(a)) =
z(lw(b)), contradicting z(p) > z(q). Hence equality holds in at most one of the
above comparisons, so z(an(a)) = z(md(a)) > z(md(b)) = z(an(b)). ��

It follows that Gdesc of a compliant subdivision is a directed acyclic graph. We
now sketch how to construct a compliant subdivision of size O(n) for an α-fat
terrain. Consider a vertex p of T , and let r be the distance from p to the nearest
edge not incident on p. We create a segment of length r/2 on each transfluent
edge incident to p. Since the ratio of the longest and shortest edge in a fat
triangle is bounded by a constant, and assuming the degree of p is constant, each
of these segments covers a constant fraction of its edge. We can subdivide the
remainder of the transfluent edges into a constant number of segments satisfying
condition (1). In the long version of this paper we prove that the assumption on
the vertex degree is not necessary and we analyse the dependency on α.

Theorem 2. Any α-fat terrain has a compliant subdivision of size O(n/α2).

4 Computing the Rivers and the Watershed Area Map

This section shows how the acyclic descent graph can be used to construct the
river network and the strip map of the terrain i/o-efficiently. We also show how
to compute, for every point on the river network, the area of its watershed.

First we need the following. In Section 3 we showed that an α-fat terrain can
be modeled by a descent graph Gdesc of O(n/α2) nodes and arcs. We have:

Lemma 3. Gdesc of an α-fat terrain can be computed in O(Sort(n/α2)) i/o’s.

Recall that the river network consists of the channels in the terrain and the paths
of steepest descent that start at the lower endpoints of channels. The channels
can be extracted from the terrain in a straightforward way. The challenge is
tracing paths of steepest descent i/o-efficiently: we need to trace each such path
from its upper endpoint across the triangles that it intersects, one segment at
a time. We would like that a path that crosses k triangles can be computed in
O(Sort(k)) i/o’s. A general solution for this problem is not known in the i/o-
model. This is where Gdesc comes to rescue. The key idea is that every segment
of a path of steepest descent is captured by an arc in the descent graph. Thus,
instead of tracing such paths on the original terrain, we trace them in Gdesc.
Doing this path by path would not be any faster, since even for planar directed
acyclic graphs it is not known how to preprocess them for fast path traversals.
Instead, we trace all paths of steepest descent in parallel while traversing Gdesc

in topological order (highest nodes first). In this way we compute the segments
of the paths of steepest descent i/o-efficiently in a batched way.
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More precisely, our approach is as follows. We put the arcs of Gdesc on a stack
A sorted by !-order of their nodes of origin, with the nodes that appear first
in !-order on top. Furthermore, we initialize an i/o-efficient priority queue Q
that stores pairs of the type (v, p), where v is a node in Gdesc, and p is a point of
seg(v). The queue is also organized by !-order. Initially we fill Q with all pairs
(v, p) where p is a vertex of a channel, and v is the corresponding node in Gdesc.

We now repeat the following until Q is empty. From Q we extract the pair
(v, p1) with highest priority, and all further pairs (v, p2), (v, p3), ... with the same
priority. From A we pop arcs −−→uw1 until u = v or until v ! u. In the latter case,
no arcs that lead out of v are found, and all paths of steepest descent that reach
v end there—we proceed to extracting the next pair (v, p1) from Q. Otherwise
at least one arc leads out of v. We also pop any remaining arcs −−→vw2,

−−→vw3, ...
that originate from v from A. For each pair (v, pi), we now select the arc −−→vwj
that captures the path of steepest descent from pi to a point qi on seg(wj). If
seg(wj) is not incident to pi, we output the line segment from pi to qi as a river
segment. If seg(wj) is not a channel or its bottom endpoint, we insert (wj , qi) in
Q so that the path of steepest descent is traced further. After handling all pairs
(v, p1), (v, p2), ..., we proceed by extracting the next pair from Q. We get:

Theorem 3. The river network of an α-fat terrain can be computed in O(Sort
(r + n/α2)) i/o’s, where r is the size of the river network.

The above approach can be extended to compute the subdivision of T induced
by all channels, ridges, up-paths and down-paths starting from vertices of T ,
that is, the strip map, in O(Sort(s+n/α2)) i/o’s, where s is the size of the map.

Let q be a point on a channel segment. The watershed W (q) of q contains
parts of the at most two strips that have q at their feet [19]; the area of each
part is given by a quadratic function of the position of q that is determined by
scanning the list of triangles that intersect the strip. All other strips lie either
inside or outside W (q); more precisely, a strip lies in W (q) if and only if its
lowest point lies at q or on the river network upstream of q.

To compute the piecewise quadratic function whose value is the watershed
area for every point on the river network, we process the river network from
the leaves to the root and collect, for every edge of the river network, the area
functions for the strips to the left and to the right and the total area of the strips
that drain into the subtree below (that is, upstream of) that edge. This can be
done with standard techniques (e.g. a post-order traversal of the river network).

Theorem 4. Given an α-fat terrain T we can compute in O(Sort(s + n/α2))
i/o’s a piecewise quadratic function of O(r+n) pieces whose value is the water-
shed area of every point in T , where r is the size of the river network and s is
the size of the strip map of T .

5 A Data Structure for Flow Path and Watershed
Queries

In this section we describe an i/o-efficient data structure for fast flow path and
watershed boundary queries: given a point q on the terrain, we want to report
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Fig. 2. Finding the watershed of q

the flow path starting at q and the boundary of the watershed W (q) of q. As
explained in the previous section, the watershed of a point q on the river network
can be found by traversing the subtree of the river network upstream of q, and
collecting the strips that drain into that subtree and parts of the strips that
have q at their feet. However, this would yield all strip boundaries that lie in
the interior of the watershed, whose total size may be much bigger than the
boundary of the complete watershed given as a simple polygon. To address this
problem McAllister [11] suggested to build a divide graph, Gdiv, that consists
of sections of ridges and certain up-paths in T . The watershed boundary of a
query point q can then be found by adding the up-paths from q to Gdiv. This will
divide the face of Gdiv that contains q into two subfaces: the subface upstream of
q is the watershed of q (see Fig. 2). Below we describe a refined version of Gdiv

and sketch how to store it face by face in a way that makes it possible to report
watershed boundaries i/o-efficiently.

For every vertex v of T , and for every endpoint v of an up-path or a down-
path from a vertex of T , consider an infinitesimally small circle centered at the
projection of v on the horizontal plane. Cut this circle where it is crossed by
the projections of up-paths that start from v, channels that lead down to v, or
the path of steepest descent from v. Note that we do not cut the circle at every
down-path from v, but only at the down-path that descends steepest from v.
Every piece of the circle that results constitutes a node of Gdiv, which is not
(directly) connected to the other pieces of the circle. The arcs of Gdiv correspond
to (i) the ridges of T and (ii) two copies of each up- or down-path starting from
a vertex v of T . The two copies are assumed to lie at an infinitesimally small
distance from the real course of the path, such that one copy runs to the left of
the path, and the other to the right, leaving a narrow corridor between them.

The arcs of Gdiv are connected to the nodes of Gdiv as follows. Every arc that
corresponds to a path π that has v as an endpoint, is connected to the node
whose piece of the circle around v is crossed by the projection of π on the plane.
When an up- or down-path passes between two pieces of the circle on its way to
or from v, the copy of the path that is offset to its left is connected to the piece
of the circle to its left, and the copy that is offset to its right is connected to the
piece of the circle to its right (Fig. 3). Note that arcs are incident to the same
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Fig. 3. An example of nodes and arcs in a divide graph

node—that is, the same piece of a circle—if and only if the geometric entities to
which these arcs correspond are not separated by any path of steepest descent.
Thus, no watershed is divided by face boundaries of Gdiv. The projection of a
vertex v on the horizontal plane always lies in the interior of a face of Gdiv, and
never on a node or arc of Gdiv. Thus every vertex of T lies inside a well-defined
watershed of a pit of the terrain.

We now find the watershed boundary of a point q as follows. If q is a pit, we
report the boundary of the face F (q) in Gdiv that contains q. Otherwise, let qL and
qR be the nodes in Gdiv corresponding to the circular pieces around q immediately
counterclockwise and clockwise, respectively, of the direction of steepest descent
from q. The area W (q) that drains through q is the area enclosed by the path
in Gdiv that follows the boundary of F (q) clockwise from qR to qL (see Fig. 2).

We now sketch the data structure that makes it possible to trace the up-paths
and the flow path from q efficiently and to trace the boundary of W (q) without
going down and back up arcs of Gdiv in the interior of W (q). Our solution consists
of four ingredients: (1) the divide graph Gdiv, stored face by face as explained
below; (2) the river network, preprocessed for fast downstream traversals (with
Hutchinson et al. [8]); (3) the strip map, stored strip by strip to facilitate fast
traversals of steepest-ascent and steepest-descent paths and to provide pointers
into the divide graph and the river network; (4) a point location structure on the
strip map so that we can locate, for each query point q, the strip that contains
it (with Arge and Vahrenhold [5]). Below we sketch our solution for storing a
face of the divide graph. Details can be found in the long version of this paper.

Let p be a pit. The boundary of the face F (p) of Gdiv that represents W (p)
can be seen as a clockwise cycle γ with trees protruding to its right, into the
watershed of p. Pick any node r that corresponds to a circular piece around p;
and let π be the path from r to a node s(p) of the boundary γ, such that s(p) is
the first and only node of γ on π. Our idea is to “cut” the graph at r, and convert
the boundary of F (p) to a tree (see Fig. 4). To do this, we start by splitting all
edges and vertices on π in a left copy and a right copy. Every right vertex is
connected to the right edges incident to it, and to any trees that protrude into
the watershed of p to the right of π. Furthermore, the right copy sR(p) of s(p)
is connected to the edge that follows s(p) in γ. Every left vertex is connected to
the left edges incident to it, and to any trees that protrude into the watershed
of p to the left of π. Furthermore, the left copy sL(p) of s(p) is connected to the



I/O-Efficient Flow Modeling on Fat Terrains 249

r r

s(p)
sL(p)

sR(p)

1

2

3

4

5

6

7

8

9

10

1112

13

14

15

16

17

18

19

20

21

22
23

24

25

26

27 28

29

30

31

32

33

34

35

36

37

38

39

40

Fig. 4. Transforming the boundary of a face into a rooted tree. In the right figure, the
edges are directed from child to parent, and numbers represent postorder ranks.

edge that precedes s(p) in γ. We root the resulting tree at the right copy of r. We
break up arcs that represent up-paths or down-paths in segments: one segment
for each triangle crossed by the path, with vertices at the points where the path
crosses a transfluent edge of the triangulation. Let the resulting tree be B(p); we
store with each node its rank in a postorder traversal of the tree, and preprocess
the tree for fast leaf-to-root traversals with the method of Hutchinson et al. [8].

To find the watershed boundary of a query point q, we briefly discuss the
(interesting) case when q is in the interior of a channel. Assume we have the
point location structure in [5] on the strip map so that we can locate the strips
that have q at their feet. We follow the up-paths from q until they meet Gdiv in
points uL and uR on the ridges at the top of these strips. We then report the path
between them that encloses the area upstream from q; from our construction,
this is the path that connects uL and uR in B(pit(q)), where pit(q) is the pit in
the face of Gdiv that contains q. The triangulation edges crossed by the up-paths
from q to uL and uR are stored in the strips on each side of the channel, and they
can be retrieved in a linear number of i/o’s. The arcs of B(pit(q)) that contain
uL and uR are stored with the strip. The path between uL and uR is obtained
from B(pit(q)) in a linear number of i/o’s by tracing it from uL and uR up to
their lowest common ancestor, which is easily recognized using the post-order
numbering of the nodes.

Let us denote q(s) = O((s/B) logB s) and l(s) = O(log2
B s) the number of

i/o’s to build and query, respectively, a point location structure as described by
Arge and Vahrenhold [5]. We have:

Theorem 5. A data structure of size O(s) for answering flow path and wa-
tershed boundary queries on an α-fat terrain T can be computed in O(q(s) +
Sort(n/α2)) i/o’s, where s is the size of the strip map of T . The structure re-
ports the watershed boundary or the flow path of any query point q in O(l(s) +
k/B) i/o’s, where k is the complexity of the answer.
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Computing the Visibility Map of Fat Objects�
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Abstract. We give an output-sensitive algorithm for computing the vis-
ibility map of a set of n constant-complexity convex fat polyhedra or
curved objects in 3-space. Our algorithm runs in O((n + k) polylog n)
time, where k is the combinatorial complexity of the visibility map. This
is the first algorithm for computing the visibility map of fat objects that
does not require a depth order on the objects and is faster than the best
known algorithm for general objects. It is also the first output-sensitive
algorithm for curved objects that does not require a depth order.

1 Introduction

Hidden-surface removal is an important and well-studied computational-geometry
problem with obvious applications in computer graphics. The problem is to find
those portions of objects in a scene that are visible from a given viewpoint. There
are two main approaches to the hidden-surface removal problem: the image-space
approach and the object-space approach. In the former, one calculates the visible
object for each pixel of the image; the well known Z-buffer algorithm is the stan-
dard example of this. In the latter, one computes the so-called visibility map of the
scene, which gives an exact description of the visible part of each object; this is the
approach taken in computational geometry.

Formally, the visibility map of a set P of objects in R3 with respect to a
viewpoint p is defined as the subdivision of the viewing plane into maximal
regions such that in each region a single object in P is visible from p, or no
object is visible. We will assume in this paper, as is usual, that the objects
are disjoint. The visibility map of a set of n constant-complexity objects can
be computed in O(n2) time [17]. Since the (combinatorial) complexity of the
visibility map can be Ω(n2)—a set of n long and thin triangles that form a grid-
like pattern when projected on the viewing plane is an example—this is optimal
in the worst case. In most cases, however, the complexity of the visibility map
is much smaller than quadratic. Therefore the main challenge in the design of
algorithms for computing visibility maps has been to obtain output-sensitive
algorithms: algorithms whose running time depends not only on the complexity
of the input, n, but also on the complexity of the output (that is, the visibility
map), k. Ideally the running time should be near-linear in n and k.
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(i) (ii)

Fig. 1. (i) The visibility map of fat boxes can have quadratic complexity. Left: the
scene. Right: the visibility map for p = (0, 0, ∞). (ii) The visibility map of a scene with
cyclic overlap.

The first output-sensitive algorithms for computing visibility maps only worked
for polygons parallel to the viewing plane or for the slightly more general case that
a depth order on the objects exists and is given [10,13,14,19,20,21]. Unfortunately
a depth order need not exist since there can be cyclic overlap among the objects—
see Figure 1 (ii). De Berg and Overmars [7] (see also [3]) developed a method to
obtain an output-sensitive algorithm that does not need a depth order. When ap-
plied to axis-parallel boxes (or, more generally, c-oriented polyhedra) it runs in
O((n+k) log n) time [7] and when applied to arbitrary triangles it runs inO(n1+ε+
n2/3+εk2/3) time [1]. Unfortunately, the running time for the algorithm when ap-
plied to arbitrary triangles is not near-linear in n and k; for example, when k = n
the running time is O(n4/3+ε). For general curved objects no output-sensitive al-
gorithm is known,1 not even when a depth order exists and is given.

In this paper we study the hidden-surface removal problem for so-called fat
objects—see the next section for a definition of fatness. As illustrated in Figure 1,
the complexity of the visibility map of fat objects can still be Θ(n2), so also here
the main challenge is to obtain an output-sensitive algorithm. Fat objects have
received ample attention over the past decade or so, both from a combinatorial
and from an algorithmic point of view, and many problems can be solved much
more efficiently for fat objects than for general objects. Since hidden-surface
removal has been widely studied in computational geometry, it is not surprising
that it has also been studied for fat objects: Katz et al. [15] gave an algorithm
with running time O((U(n) + k) log2 n), where U(m) denotes the maximum
complexity of the union of the projection onto the viewing plane of any subset
of m objects. Since U(m) = O(m log logm) for fat polyhedra [18] and U(m) =
O(λs+2(m) log2 m) for fat curved objects [5], their algorithm is near-linear in n
and k. (Here λs+2(n) is the maximum length of an (n, s+2) Davenport-Schinzel
sequence; λs+2(n) is almost linear in n.) However, the algorithm only works
if a depth order exists and is given. This leads to the main question we wish

1 Some of the algorithms can be generalized to curved objects using standard techniques.
The resulting algorithms are not very efficient, however, and typically have running
time close to quadratic even when the visibility map has linear complexity.
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to answer: is it possible to obtain an output-sensitive hidden-surface removal
algorithm for fat objects that is near-linear in n and k and does not need a
depth order on the objects? We answer this question affirmatively by giving
an algorithm with running time O((n + k) polylogn) for fat convex objects of
constant-complexity. More precisely, the running time is O((n log n(log logn)2 +
k) log3 n) when the objects are polyhedra, and it is O((n log5+ε n + k) log3 n)
when the objects are curved.

The main difficulty we have to overcome is that the only known method for
output-sensitive hidden-surface removal that can handle objects without depth
order [3,7] needs an auxiliary data structure for ray shooting in so-called cur-
tains—these are semi-infinite surfaces, extending downward from the edges of
the input objects—and it appears to be difficult to profit from the fact that
the objects are fat when implementing this data structure. This also explains
why there is no (efficient) output-sensitive algorithm for hidden-surface removal
in curved objects: there are no efficient data structures known for ray shooting
(with curved rays, in this case) in curved curtains. Our method therefore works
differently: instead of ray shooting in curtains, we trace the rays on several two-
dimensional planes by performing many simultaneous and coordinated sweeps
on these planes. To obtain a suitable set of planes, we use a suitably augmented
variant of the BSP for ray shooting that was recently introduced by De Berg [4].

2 Preliminaries

Let P be a set of disjoint convex objects in R3. We assume the objects are β-fat
according to the following definition of fatness [9]: an object o in Rd is β-fat if
for any ball b whose center lies in o and that does not fully contain o, we have
vol(b∩ o) ≥ β · vol(b), where vol(o) denotes the volume of o. (For convex objects
this definition is equivalent, up to constant factors, to other definitions of fatness
that have been proposed.)

We define size(o), the size of an object o, to be the radius of the smallest
enclosing ball of o. The density of a set S of objects is defined as the smallest
number λ such that any ball b is intersected by at most λ objects o ∈ S such
that size(o) ≥ size(b). The following well-known lemma [9] relates the density
of a group of objects to the fatness constant.

Lemma 1. [9] A set of disjoint β-fat objects has density λ where λ = O(1/β).

For a curve e in R3 define the curtain of e, denoted curt(e), as the ruled surface
constructed by taking a vertical ray pointing downward and moving its starting
point from one end of e to the other. Thus, if e is a segment then curt(e) is
an infinite polygon defined by e and two unbounded edges, each parallel to the
z-axis. For a set E of curves we let curt(E) := {curt(e)|e ∈ E}.

Next we define some notation and terminology relating to visibility maps.
We assume from now on that we are looking at the scene from above with the
viewpoint at z = ∞—hence, we are dealing with a parallel view. As already
mentioned, the visibility map M(P) of P is the subdivision of the viewing plane
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into maximal regions such that in each region a single object in P is visible from
the viewpoint p, or no object is visible. We assume without loss of generality
that the viewing plane is the xy-plane.

Consider an object o ∈ P . We denote the projection of o onto the viewing
plane by proj(o). Since o is convex, the boundary of proj(o) consists of the
projection of all points of vertical tangency of o. Let σ(o) denote the curve2 on
the boundary of o that projects onto the boundary of proj(o). Note that if o
is polyhedral, σ(o) consists of certain edges of o. We cut σ(o) into two pieces
at the points of minimum and maximum x-coordinate; we can assume without
loss of generality that these points are unique. We call these pieces silhouette
curves—note that for polyhedral objects a silhouette curve consists of multiple
edges of the object—and their endpoints vertices.

M(P) is a plane graph whose nodes are intersection points of projected sil-
houette curves and whose arcs are portions of projected silhouette curves. Arcs
of the visibility map will be denoted by a, and silhouette curves by e. The curve
whose projection contains the arc a is denoted e(a). It will be convenient to also
consider the projections of visible endpoints of silhouette curves (that is, visible
vertices) as nodes. Since we cut σ(o) into two pieces when it changes direction
with respect to the x-axis, the arcs of M(P) are x-monotone.

The existing output-sensitive hidden-surface removal algorithm from [3] works
as follows. It sweeps over the viewing plane from left to right, detecting the arcs
of the visibility map along the way. Note that the left endpoint of an arc is one
of two types. It is either the projection of a visible vertex of a silhouette curve
or it is the right endpoint of some other arc.

To detect left endpoints of the first type we need a data structure to determine
for a vertex v whether it is visible or not. If it is, two new arcs start at proj(v),
which are contained in the projections of the two silhouette curves incident to v.
Detecting if v is visible can be done by vertical ray shooting: shoot a ray from v
vertically upwards; if no object is hit then v is visible.

We also need to be able to detect the right endpoint of an arc (and thereby the
left endpoints of the second type). An arc a can end for two reasons. One is that
the silhouette curve e(a) projecting onto a ends. The other is that proj(e(a))
intersects some other projected silhouette curve proj(e′) such that either e(a)
becomes invisible or e′ becomes visible—see Figure 2 (i). These two latter events
are detected using a ray shooting operation in a set of curtains, as explained next.
When e(a) becomes invisible because it disappears below some object o, then
the ray along e(a) must hit the curtain hanging from one of o’s silhouette curves.
When some other silhouette curve e′ becomes visible, something similar holds.
To this end, we define a ray3 ρ(a) for an arc a of the visibility map as follows.
Let q be the point on e(a) projecting onto the left endpoint of a. Project the
portion of e(a) to the right of q onto the object o(q) immediately below q. (If
there is no such object, we project onto a plane below all objects.) This gives us

2 For simplicity of presentation we assume o does not have any vertical facets, so that
σ(o) is uniquely defined. It is easy to adapt the definitions to the general case.

3 Note that in case of curved objects, the ray will be curved.
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Fig. 2. (i) The node v in the visibility map is made by the intersection of proj(e) and
proj(e′). (ii) ρ(a) hits a curtain in curt(E) at point q when its projection intersects a
silhouette curve of a union stored at S+(ν). Note that the objects pictured here are
not fat under our definition, but could be the top surfaces of fat polyhedra. We draw
the objects in this way to ease visualization.

a ray on the surface of o(q) whose projection contains a. It can be argued [3] that
the point where ρ(a) hits curt(e′) corresponds to the point where the silhouette
curve e′ becomes visible. (Note that ρ(a) is about to leave o(q) when it reaches
a silhouette curve of o(q); in this case ρ(a) hits the curtain hanging from that
silhouette curve, which is then the curve that becomes visible.) Since any curtain
hit by the ray along e(a) is also hit by ρ(a)—after all, ρ(a) is below e(a)—we
can detect events where e(a) becomes invisible by shooting along ρ(a) as well.

The next lemma summarizes the discussion above.

Lemma 2 ([3]). Let E be the set of silhouette curves of the objects in P. The
right endpoint of an arc a of M(P) is the leftmost of the following event points:

– The projection of the right endpoint of e(a).
– The projection of the first intersection of ρ(a) with a curtain in curt(E).

3 The Algorithm

As mentioned in the introduction, it seems hard to implement a structure for ray
shooting in curtains that profits from the fact that the objects are fat. Therefore
we use the following idea.

Suppose that all objects are above a plane h and the query ray ρ(a) is below h.
Then we can project all objects and the ray onto h, and shoot with the projected
ray in the union of the projected objects; the point where the ray hits a curtain
then corresponds to the point where the projected ray hits the union. This is
true because in our application the ray will always be visible, so the projected
ray cannot start inside the union. Unfortunately two-dimensional ray shooting is
still too costly. If, however, we have to answer many queries, then we can project
all of them onto h, and perform a sweep to detect when they intersect the union.
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Of course there will not be a plane h that nicely separates all objects from all
rays. Therefore we construct a binary space partition (a BSP) on the objects.
This will basically give us a collection of O(log n) planes that separate any ray
from the objects. The ray will then be traced on each of these planes. In the
next section we make this idea more precise.

We start by describing the BSP in Section 3.1, then discuss in Section 3.2 the
correspondence between ray shooting in curtains and tracing rays on a suitable
set of planes, and finally we give the details of the algorithm in Section 3.3.

3.1 The Data Structure

A balanced aspect ratio tree (or BAR-tree for short) is a special type of BSP for
storing points. It was introduced by Duncan [11,12]. The variant known as the
object BAR-tree [8] stores objects rather than points and has proved especially
useful in designing data structures for fat objects. It has been used as a basis for
vertical ray shooting [4,6] as well as approximate range searching and nearest
neighbor searching [8].

We denote the region associated with a node ν in the object BAR-tree for
P by region(ν), and we let Pν denote the set of all objects o ∈ P intersecting
region(ν), clipped to region(ν). The following lemma states the properties of the
object BAR-tree we will need.

Lemma 3. [8] Let P be a set of n β-fat disjoint convex objects in Rd. An object
BAR-tree on P is a BSP tree T for P with the following properties:

(i) the tree has O(n) leaves; each leaf region intersects O(1/β) objects from P;
(ii) the depth of the tree is O(log n);
(iii) for each node ν, region(ν) has constant complexity and fatness.

De Berg [4] has shown how to augment an object BAR-tree T with secondary
structures, so that vertical ray shooting can be performed efficiently. The aug-
mentation is as follows.

– For each leaf node μ of T , we store the set Pμ in a list Lμ.
– For an internal node ν, let hν denote the splitting plane stored at ν.

• If hν is vertical, then we store the set {hν ∩ o : o ∈ Pν}—that is, the
cross-sections of the polyhedra in Pν with hv—in a structure Tν , which is
an optimal point-location structure [16] on the trapezoidal map defined
by hν ∩ Pν .

• If hν is not vertical, then ν has two associated data structures, T +
ν and

T −
ν , defined as follows.

Let P+
ν denote the set of object parts from Pν lying above hν . Thus P+

ν =
Pμ, where μ is the child of ν corresponding to the region above hν . Let
proj(P+

ν ) denote the set of vertical projections of the objects inP+
ν ontohν .

Then T +
ν is an optimal point-location structure forU(proj(P+

ν )), the union
of proj(P+

ν ). In our application, we not only store the point-location struc-
ture for U(proj(P+

ν )), but also an explicit list of all union edges.
The associated structure T −

ν is defined similarly, but this time for the
object parts below hν .
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Recall that we want to use the structure to answer ray shooting queries in
curtains, where the query rays are projections of (parts of) silhouette curves
onto the object immediately below. A problem with this approach is that an
object may be cut into many pieces,4 and we would then have to spend time
whenever the ray goes from one piece to the next.

To avoid this problem we need some extra information. In particular, for each
object o ∈ P we need to store the union of the projection of a certain subset
P(o) ⊂ P onto ∂+(o), the top surface of o. (The top surface of o is the part of
the boundary of o visible from above.) The subset P(o) is defined as follows.

Call an object o large at a node ν of T if o intersects region(ν) and the
following two conditions are met: (i) size(o) < size(region(parent(ν))) and (ii)
either size(o) ≥ size(region(ν)) or ν is a leaf. Now we define

P(o) := { o′ ∈ P : there is a node ν such that o is large at ν,
o′ intersects region(ν) and o′ is above o }

Besides these extra unions on the top surface of each object o, we also need the
union of the projections of all the objects in P onto the xy-plane. (The xy-plane
can be seen as a dummy object added below the whole scene, which is large at
the root of T .)

Next we analyze the cost of the additional information.

Lemma 4. Any object o ∈ P is large at O(log n) nodes, and at any node ν there
are O(1/β) large objects.

Proof. By Lemma 3 we know that every cell of T is O(1)-fat. This means that
any collection of disjoint cells has density O(1). Therefore, since the cells at any
level of the BAR-tree are disjoint, the number of nodes ν in any level of the
BAR-tree intersecting some o ∈ P with size(region(ν)) ≥ size(o) is O(1). An
object o can only be large at the node ν if size(region(parent(ν))) ≥ size(o).
Thus, the number of cells per level at which o can be large is O(1). Finally we
know that T has O(log n) levels by Lemma 3, proving the first part of the lemma.

A set of disjoint β-fat objects has density O(1/β)—see Lemma 1—which,
together with Lemma 3(i), implies the second part. ��

From Lemma 4 we derive:
∑
o |P(o)| ≤

∑
ν{(# large objects at ν) · (# objects intersecting region(ν))}

≤ O(1/β) ·
∑
ν |Pν | ≤ O((1/β) · n logn),

where the last inequality follows from [4]. Together with the known bounds on
the union of fat objects [5,18] this is easily seen to imply that the total amount of

4 The fact that an object is cut into many pieces also prevents us from applying
the following simple strategy: compute the object BAR-tree, use it to find a depth
order on the resulting set of pieces, and apply the algorithm of Katz et al. [15]. The
problem is that the visibility map of the pieces may be much more complex than
the visibility map of the original objects.
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storage and preprocessing time for the unions of the projections of P(o) onto the
top surfaces ∂+(o) does not increase the total amount of storage or preprocessing
asymptotically, and the bounds we get are the same as in [4]. (The constants in
the O-notation depend on the fatness factor β.)

Lemma 5. Letβ be a fixed constant. The data structure above for convexβ-fat poly-
hedral objects requires O(n log3 n(log logn)2) storage and O(n log4 n(log logn)2)
preprocessing time, andO(n log7+ε n) storage andO(n log8+ε n) preprocessing time
for convexβ-fat curved objects. With this structure, we can answer vertical ray shoot-
ing queries in O(log2 n) time.

3.2 Tracing an Arc

Recall that the right endpoint of an arc a can be found by shooting with ρ(a) in
curt(E). Next we explain how to find the right endpoint of a using the unions
stored in T and additional unions described above. The key is to find a collection
of O(log n) unions such that the first point where ρ(a) hits a curtain corresponds
to the first point where one of the unions is hit.

To this end we first define for a node ν a collection S+(ν) of O(log n) splitting
planes, which consists of those splitting planes hν′ such that ν′ is an ancestor of
ν and region(ν) is below hν′ . Now let e(a) be the silhouette curve defining an
arc a, and let p ∈ e(a) be the point projecting onto the left endpoint of a. Recall
that ρ(a) is a ray on the top surface of the object o directly below p. We denote
the projection of p onto o by p̃.

The first curtain hit by ρ(a) can now be found using the following lemma.

Lemma 6. Let ρ(a) be a ray on the top surface of an object o ∈ P, let p̃ be
the starting point of ρ(a), and let ν be the node in T such that p̃ ∈ region(ν)
and o is large at ν. Then ρ(a) hitting a curtain from curt(E) inside region(ν)
corresponds to (a suitable projection of) ρ(a) hitting either the union of (the
projection of) P(o) on o or a union on one of the splitting planes in S+(ν).

Proof. Note that the node ν referred to in the lemma is unique and must exist,
since we consider the xy-plane to be a dummy object below the whole scene.

Let q̃ be the first point where ρ(a) intersects a curtain in curt(E), let e be the
silhouette curve defining the curtain, and let q ∈ e be the point directly above
q̃. If q ∈ region(ν) then the object containing the silhouette curve e is a member
of P(o) and we are done. Otherwise there is a splitting plane hν′ stored at some
ancestor ν′ of ν with q above hν′ and q̃ below hν′ . Then the relevant portion of
e must be part of the union stored at the first such node ν′ (as seen from the
root of T ). See Figure 2 (ii).

Conversely, since all the unions considered are generated by (parts of) objects
above o, we know that ρ(a) cannot hit such a union before it hits a curtain. ��

3.3 Details of the Algorithm

We now describe a space-sweep algorithm for computing the visibility map of a
set P = {o1, . . . , on} of convex, constant-complexity, β-fat objects. We move a
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sweep plane h parallel to the yz-plane from left to right through space. The space
sweep induces a plane sweep for each of the unions stored in T . Thus, instead
of thinking about the algorithm as a 3D sweep, one may also think about it
as a number of coordinated 2D sweeps. That is, while we sweep R3 with h, we
also sweep each (non-vertical) splitting plane hν with the line h ∩ hν . This 2D
sweep is performed to detect intersections of the union on hν with certain rays
(projected onto hν). The same holds for the unions stored for each object: while
we sweep R3 with h, we sweep the top surface ∂top(o) of each object o with the
curve h ∩ ∂top(o). Finally, the sweep of h induces a sweep on the viewing plane.
As in the algorithm from [3], the visibility map will be computed as we go, so
that at the end of the sweep the entire visibility map has been computed.

The space-sweep algorithm is supported by the following data structures:

– There is a global event queue Q, where the priority of an event is its x-
coordinate. Initially, all vertices of the objects (that is, all endpoints of sil-
houette curves) are placed into Q. In addition, all vertices of any of the
unions stored in T are placed into Q. During the sweep, new event points
will be inserted into Q, for example endpoints of arcs of the visibility map.
It is also possible that events will be removed before they are handled.

– For every splitting plane hν (and the top surface of every object o) we main-
tain a balanced binary tree, which we will call the intersection-detection data
structure. This tree will store the edges of the union on the splitting plane
(resp. ∂top(o)) that intersect the sweep line h∩ hν (resp. h∩ ∂top(o)) as well
as the rays traced on it that intersect the sweep line; the edges and rays are
stored in order of their intersection with the sweep line. Thus we are essen-
tially running the standard line-segment intersection algorithm of Bentley
and Ottmann [2] on the union edges and rays.

Next we discuss the events that can take place, and how they are handled.

(i) The sweep reaches the left endpoint of an arc a.
Let e(a) be the silhouette curve defining a, and let p ∈ e(a) be the point
whose projection is the left endpoint of a. Let o be the first object that
a vertical ray downward from p hits, and ν be the node where o is large
in region(ν) and p̃ ∈ region(ν). Determine S+(ν), and insert the portion
of e(a) starting at p into each of the intersection-detection data struc-
tures associated with the splitting planes in S+(ν). (More precisely, the
projection of the silhouette curve on the plane is added.) Also add the pro-
jection of the silhouette curve onto ∂top(o) to the intersection-detection
structure for o. Determine any new events using these data structures in
the standard way (that is, by checking new pairs of adjacent elements);
add any new events to Q. Finally, add the following three events to Q: the
right endpoint of e(a), the (first) intersection of ρ(a) with the boundary
of region(ν), and the (first) intersection of ρ(a) with the silhouette of o.

(ii) The sweep reaches the right endpoint of an arc a.
Determine ν and o as above. Remove a from all intersection-detection
data structures in S+(ν) and the intersection-detection data structure
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associated with o. Remove all events associated with a from Q. Check for
new events in each of the intersection-detection data structures; add any
new events to Q. Output a as an arc of M. (Note that the right endpoint
of an arc may be the left endpoint of one or two other arcs; in this case
the left endpoints will be separate events, which are handled according to
case (i).)

(iii) The sweep reaches the left vertex v of a silhouette curve.
(In other words, we reach the leftmost point of an object o ∈ P .) Deter-
mine if v is visible by shooting a ray vertically up from it. If v is visible,
two arcs start at the projection of v onto the viewing plane. Run the
actions from case (i) for each of these arcs.

(iv) The sweep reaches the right vertex v of a silhouette curve it is currently
tracing.
Run the actions from case (ii) for the arc ending at the projection of v.

(v) The sweep reaches the intersection point of the union boundary on some
splitting plane (or top surface of an object) and an arc a traced on the
plane (or top surface).
This case corresponds to a hitting a curtain in curt(E). Now the arc a
ends. Run the actions from case (ii) for a. One or two new arcs may start
at this point, at most one along the silhouette curve e(a), and one along
the silhouette curve corresponding to the curtain that is hit. Run the
action from case (i) for the new arc(s).

(vi) The sweep reaches a point p where the projection of a currently visible
silhouette curve onto the object o below hits the boundary of a cell ν where
o is large.
Remove a from all the intersection-detection data structures in S+(ν) and
all events associated with a from Q. Run the action for case (i) for the
continuation of the arc a defined by the silhouette curve. (The only thing
that happens here is that the set S+(·) changes, because the ray that we
are tracing moves out of a cell where the object o on which the ray is
traced is large.)

(vii) The sweep reaches the point where the object o immediately below a cur-
rently visible silhouette curve changes.
Now p is the right endpoint of an arc a. Run the actions from case (ii)
for a. Two new arcs start at p, one that is the continuation of a, and
one that is along a silhouette curve of o (which became visible). Run the
actions for case (i) on both curves.

(viii) The sweep reaches a point on a splitting plane (or top surface of an object),
where a union edge starts or ends.
In this case we only have to update the relevant intersection-detection
data structure, check for new events in the intersection-detection data
structures, and add any new events to Q.

Lemma 7. The number of events of type (i)–(vii) is O(n + k logn), where
k is the complexity of M, and the total number of events of type (viii) is
O(n log3 n(log logn)2) for fat polyhedra and O(n log7+ε n) for fat curved objects.
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Proof. Clearly, the number of events of types (i), (ii), (iv), (v), and (vii) is O(k),
since they can be charged to a vertex of M. The number of events of type (iii)
is O(n). It remains to bound the number of events of type (vi). Consider the
portion of a silhouette curve e(a) defining some arc a. This portion has a unique
object o immediately below it. Since o is large at O(log n) cells by Lemma 4 and
the projection of e(a) onto o can leave any cell only a constant number of times,
we can conclude that there are only O(log n) type (vi) events for any arc a, this
giving O(k logn) such events in total.

The bound on the number of events of type (viii) follows immediately from
Lemma 5. ��

Lemma 8. The time taken for each event of type (i)–(vii) is O(log2 n), and the
time taken for each event of type (viii) is O(log n).

Proof. In all event types, we may need to perform several actions: vertical
ray shooting, updating intersection-detection data structures, determining a set
S+(ν), and updating Q.

By Lemma 5, the time taken for the vertical ray shooting is O(log2 n). Each
event needs to do only a constant number of ray shooting queries, so this is
O(log2 n) in total. The intersection-detection data structures are balanced binary
trees, so updates take O(log n) time. At each event we have to update O(log n)
intersection-detection data structures, so the total time taken for updating is
O(log2 n). Determining new events in the intersection-detection data structures
takes O(1) per data structure, so the total amount of time taken for events of
type (iii) is O(log2 n). Determining a set S+(ν) can be done in O(log n) time by
searching in T . At each event we may have to remove O(log n) event points from
Q, each removal taking O(log n) time. Hence, all events of type (i)–(vii) can be
handled in O(log2 n) time, as claimed.

The events of type (viii) require O(log n) time, since they involve a constant
number of operations on a single intersection-detection data structure. ��

The correctness of the algorithm follows from Lemmas 2 and 6 as well as the
correctness of the algorithm in [3]. We conclude with the following theorem.

Theorem 1. The visibility map of a set of n disjoint constant-complexity convex
β-fat polyhedra in R3 can be computed in time O((n logn(log logn)2 +k) log3 n),
where k is the complexity of the visibility map. When the objects are curved
(and disjoint, constant-complexity, convex, and β-fat) the visibility map can be
computed in time O((n log5+ε n + k) log3 n).
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Abstract. In this paper we analyze several approaches to the Maximum
Independent Set problem in hypergraphs with degree bounded by Δ. We
propose a general technique that reduces the worst case analysis of cer-
tain algorithms to their performance in the case of ordinary graphs. This
technique allows us to show that the greedy algorithm that corresponds
to the classical greedy set cover algorithm has a performance ratio of
(Δ + 1)/2. It also allows us to apply results on local search algorithms
of graphs to obtain a (Δ + 1)/2 approximation for a weighted case and
(Δ + 3)/5 − ε approximation for an unweighted case. We improve the
bound in the weighted case to �(Δ + 1)/3 using a simple partition-
ing algorithm. Finally, we show that another natural greedy algorihthm,
that adds vertices of minimum degree, achieves only a ratio of Δ − 1,
significantly worse than on ordinary graphs.

1 Introduction

In this paper we consider the independent set problem in hypergraphs. A hy-
pergraph H is a pair (V,E), where V = {v1, . . . , vn} is a set of vertices and
E = {e1, . . . , em} is a collection of subsets of V , or (hyper)edges. An indepen-
dent set in H is a subset of V that doesn’t properly contain any edge of H . Let
MIS denote the problem of finding a maximum independent set in hypergraphs.

MIS is of fundamental interest, both in practical and theoretical aspects. It
arises in various applications in data mining, image processing, database design,
parallel computing and many others. MIS is intimately related with classical
covering problems. The vertices not contained in a weak independent set form a
vertex cover, or a hitting set. Moreover, a set cover in the dual of a hypergraph
(replacing each set by a vertex and including a set for the incidences of each
original node) is equivalent to a hitting set in the original hypergraph. Thus, in
terms of optimization, MIS is equivalent to the Hitting Set and the Set Cover
problems.

Numerous results are known about independent sets in hypergraphs, including
approximation algorithms for MIS in [15] and [18]. The focus of the current work
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is on bounded-degree hypergraphs, where each vertex is of degree at most Δ.
Given that MIS generalizes the independent set problem in graphs, the problem
is NP-hard to approximate within a factor Δ/2O(

√
logΔ) unless P = NP [23].

Various approximation algorithms have been given for MIS in graphs.
Halldórsson and Radhakrishnan [13] showed that the minimum-degree greedy
algorithm approximates the size of an unweighted MIS within a factor of Δ+2

3 .
A simple partitioning algorithm due to Halldórsson and Lau [12] gives a (Δ+2)/3
approximations of weighted MIS. A better approximation ratio for an unweighted
MIS is (Δ + 3)/5 obtained by Berman and Fujito [3] using a local search algo-
rithm. Another local search algorithm by Berman [2] approximates weighted
MIS in (d + 1)-claw free graphs within a factor of (d + 1)/2, which implies also
a Δ/2-approximation. For large values of Δ, the best approximation is obtained
by using semi-definite programming, with a ratio of O(Δ log logΔ/ logΔ) due to
Vishwanathan [24] (and also in the weighted case, due to Halldórsson [11] and
Halperin [14]).

One of the best studied heuristics of all times is the greedy set cover algorithm,
which repeatedly adds to the cover the set with the largest number of uncovered
elements. In spite of its simplicity, it is in various ways also one of the most
effective ones. Johnson [17] and Lovász [20] showed that it approximates the
Set Cover problem with Hn ≤ lnn + 1 factor, which was shown by Feige [9]
to be the best possible up to a lower order term. Generalizations to weights [7]
and submodular functions [25] also yield equivalent ratios. And under numerous
variations on the objective function does it still achieve the best known/possible
performance ratio, e.g. Sum Set Cover [10], Entropy Set Cover [5], and Test Set.

Bazgan, Monnot, Paschos and Serrière [1] studied the differential approxi-
mation ratio of the greedy set cover algorithm, this ratio measures how many
sets are not included in the cover. When viewed on the dual hypergraph, this
is equivalent to studying the performance ratio the greedy set cover algorithm
for MIS. They proved that when modified with a post-processing phase, it has a
performance ratio of at most Δ/1.365 and at least (Δ+1)/4 . Caro and Tuza [6]
showed that the greedy set cover algorithm applied to MIS in r-uniform hyper-
graphs always finds a weak independent set of size at least Θ

(
n/Δ

1
r−1

)
. Thiele

[22] extended their result to non-uniform hypergraphs and gave a lower bound
on the size of an independent set found by the greedy set cover algorithm as
a complex function of the number of edges of different sizes incident on each
vertex in a hypergraph.

Another popular algorithm design technique is local search. This technique
is based on the concept of a neighborhood - a set of solutions close to a given
solution S. The idea is to start with some (arbitrary) solution S and iteratively
replace S by a better solution found in the neighborhood of S. Local search gives
the best approximations of weighted and unweighted MIS in bounded-degree
graphs for small values of Δ, due to Berman [2], Fujito [3] and Halldórsson
[11]. Bazgan, Monnot, Paschos and Serrière [1] considered a simple 2-OPT local
search algorithm to approximate MIS in hypergraphs and proved a tight bound
of (Δ + 1)/2.
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A yet simpler approach in approximation algorithm design is partitioning.
The strategy is to break the problem into a set of easier subproblems, solve
each subproblem and output the largest of the found solutions. Halldórsson [11]
applied this approach to obtain �(Δ+1)/3� approximations to the weighted MIS
in graphs.

In this paper we describe a general technique that reduces the worst case
analysis of certain algorithms to their performance in the case of ordinary graphs.
Given an approximation algorithm A, this technique, called shrinkage reduction,
truncates a hypergraph H to a graph G such that an optimal solution on H
is also an optimal solution in G, and A produces the same worst approximate
solution on H and G, proving that the performance ratio of A in hypergraphs is
no worse than in graphs.

We also present three different approaches to approximate weighted and un-
weighted MIS in bounded-degree hypergraphs. First, we apply shrinkage re-
duction to extend a factor (Δ + 3)/5 algorithm of Berman and Fujito [3] for
unweighted MIS and a factor Δ/2 algorithm of Berman [2] for weighted MIS.
We improve the bound in the weighted case to �(Δ + 1)/3� using a simple par-
titioning algorithm. Finally, using our technique we give a tight analysis of the
classical greedy set cover algorithm applied to MIS. It starts with the set of
all vertices, and greedily removes vertices of maximum degree until feasibility
is achieved. The performance ratio of this algorithm is exactly Δ+1

2 , improving
the bounds obtained by Bazgan et al. [1]. In addition, while their analysis re-
quired a post-processing maximalization phase, our bound applies to the greedy
algorithm alone. A second natural greedy algorithm acts in an opposite way of
greedily adding vertices of minimum degree to an initial empty solution. This
algorithm has a performance ratio at most Δ− 1, which is nearly tight.

The paper is organized as follows. After giving essential definitions of various
hypergraph properties, we describe shrinkage reduction technique in Section 3,
local search and partitioning approaches in Section 4 and 5, and conclude with
the analysis of two greedy algorithms in Section 6.

2 Definitions

Given a hypergraph H = (V,E), let n and m be the number of vertices and edges
in H . The degree of a vertex v is the number of edges incident on v. We denote
by Δ(d) the maximum (average) degree in the hypergraph. In a bounded-degree
hypergraph Δ is a constant. A hypergraph is Δ-regular if all vertices have the
same degree Δ.

The rank r of a hypergraph H is the maximum edge size in H . A hypergraph
is r-uniform if all edges have the same cardinality r.

A vertex u is a neighbor of a vertex v, if there exist an edge e ∈ E that
includes both u and v. A hyperclique is a hypergraph in which each vertex is a
neighbor of all other vertices. Note that a hyperclique need not be a uniform
hypergraph. By analogy with the graph being a 2-uniform hypergraph, a clique
is a 2-uniform hyperclique.
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An n-star is a tree on n + 1 nodes with one node having the degree n (the
root of the star) and the other having degree 1 (the endpoints of the star).

In the remainder we let H (G) be the collection of all hypergraphs (graphs)
and H (G) be a hypergraph (graph) in H (G). By cover we mean a hitting set
(a vertex cover) in H (G).

3 Shrinkage Reduction

Shrinkage reduction is a general technique that allows to apply the worst case
analysis of algorithms on graphs to the hypergraphs case. It is based on a shrink-
age hypergraph, or shrinkage for short.

Definition 1. A hypergraph H ′ is a shrinkage of H if V (H ′) = V (H) and for
any edge e ∈ E(H) there exist an edge e′ ∈ E(H ′) such that e′ ⊆ e, in other
words, the edges of H might be truncated in H ′ into sets of smaller size (and at
least 2).

Shrinkage reduction works for hereditary optimization problems. Given an in-
stance I, an optimization problem consists of a set of feasible solutions SI and
a function w : SI → R+ assigning a non-negative cost to each solution S ∈ SI .
Definition 2. An optimization problem on hypergraphs is hereditary, if for a
shrinkage H ′ of a hypergraph H it satisfies SH′ ⊆ SH .

Many problems on hypergraphs are hereditary, including the Minimum Hitting
Set, the Maximum Independent Set, the Minimum Coloring, the Shortest Hy-
perPath, etc. An example of non hereditary problem is the Longest HyperPath.
Given a hereditary problem, the essence of shrinkage reduction is the following.

Proposition 1. Let A be an approximation algorithm for a hereditary problem.
Suppose we can construct a shrinkage graph G of a hypergraph H such that an
optimal solution in H is also an optimal solution in G and A produces the same
worst approximate solution on H and G, then the performance ratio of A in
hypergraphs is no worse than in graphs.

Note that Proposition 1 applies also to non-deterministic (or randomized) ap-
proximation algorithms.

It is not easy to give a general rule on how to construct a shrinkage for an arbi-
trary approximation algorithm. In the following sections we describe reductions
for greedy set cover and local search algorithms for weighted and unweighted
MIS in bounded-degree hypergraphs.

4 Local Search

The idea of the local search approach is to start with an initial solution and
continually replace it by a better solution found in its neighborhood while pos-
sible. We need formal definitions to determine what a ”better solution” and a
”neighborhood” mean.
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A neighborhood function Γ maps a solution S ∈ SI into a set of solutions
ΓI(S) ⊆ SI , called the neighborhood of S. A feasible solution S̃ is locally optimal
w.r.t. Γ , or Γ -optimal for short, if for a minimization (maximization) problem
such solution satisfies w(S̃) ≤ w(S) (w(S̃) ≥ w(S)) for all S ∈ ΓI(S). A feasible
solution S∗ is globally optimal, or optimal for short, if for a minimization (max-
imization) problem such solution satisfies w(S∗) ≤ w(S) (w(S∗) ≥ w(S)) for all
S ∈ S. To specify more precisely the neighborhood functions used in our local
search algorithms, we need the following definition.

Definition 3. A neighborhood function Γ is said to be edge-monotone for a
hereditary problem on hypergraphs if for any shrinkage H ′ of a given hypergraph
H and any solution S ∈ SH′ the neighborhood of S satisfies ΓH′ (S) ⊆ ΓH(S).

In other words, the edge-monotonicity means that edge reduction can only de-
crease the neighborhood size.

A Γ -optimal algorithm is a local search algorithm that given an instance
I, starts with a (arbitrary) solution S and repeatedly replaces it by a better
solution found in ΓI(S) until S is Γ -optimal. The approximation ratio �Γ,I of a
Γ -optimal algorithm on a instance I is the maximum ratio between the sizes of
Γ -optimal and optimal solutions over all Γ -optimal solutions on I, i.e. �Γ,I =

max
∀S̃∈SI

|S̃|
|S∗|

(

�Γ,I = max
∀S̃∈SI

|S∗|
|S̃|

)

for a minimization (maximization) problem. The

performance ratio ρΓ,I of a Γ -optimal algorithm is the worst approximation ratio
over all instances I in the class of instances I.

Theorem 1. Given an edge-monotone neighborhood function Γ and a hyper-
graph H with an optimal cover S∗ and a Γ -optimal cover S̃, there exists a
shrinkage graph G of H on which S∗ and S̃ are also optimal and Γ -optimal
covers, respectively.

Proof. Given H , S∗ and S̃, we construct a shrinkage G as follows. From each
edge e in E(H), we arbitrarily pick vertices u and v such that {u, v} ∩ S̃ 	= ∅
and {u, v} ∩ S∗ 	= ∅, and add (u, v) to E(G).

Any edge in E(G) contains at least one vertex from S̃ and at least one vertex
from S∗, and so S̃ and S∗ are covers in G, i.e. S̃, S∗ ∈ SG. Given that Γ is
edge-monotone, SG ⊆ SH by definition. Since w(S∗) ≤ w(S) for all S ∈ SH , we
have w(S∗) ≤ w(S) for all S ∈ SG, and so S∗ is an optimal cover in G. The
same argument also applies to the local optimality of S̃ in G.

Corollary 1. If a neighborhood function Γ is edge-monotone for MIS, then
ρΓ,H ≤ ρΓ,G .

Proof. Given a hypergraph H(V,E), the vertices not contained in a weak in-
dependent set I form a vertex cover S in H , i.e. I = V \S. Given an edge-
monotone neighborhood function Γ for MIS, we define a new neighborhood
function Γ ′(S) = {S′ : V \S′ ∈ Γ (V \S)}. Note that Γ ′(S) is edge-monotone for
the Hitting Set problem. Moreover, if I∗ and Ĩ are optimal and Γ -optimal weak
independent sets in H , then S∗ = V \Ĩ∗ and S̃ = V \Ĩ are optimal and Γ -optimal
covers in H . The claim then follows from Theorem 1.
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The simplest local search algorithm for MIS is t-Opt, which repeatedly tries to
extend the current solution by deleting t elements while adding t + 1 elements.
It is easy to verify that the corresponding neighborhood function Γ (S) = {S′ ∈
SH : |S ⊕ S′| ≤ t} defined on SH in is edge-monotone. Then, the following
theorems are straightforward from Corollary 1 and the results of Hurkens and
Schrijver on graphs [16].

Theorem 2. t-Opt approximates an unweighted MIS within Δ/2 + ε, where
lim
t→∞ ε(t) = 0.

Theorem 3. 2-Opt approximates an unweighted MIS within (Δ + 1)/2.

Theorem 4. For every ε > 0 an unweighted MIS can be approximated within
(Δ + 3)/5 + ε for even Δ and within (Δ + 3.25)/5 + ε for odd Δ.

Proof. We extend the algorithm SICΔ,k of Berman and Fürer [4] for MIS in
bounded degree graphs to the hypergraph case. Given a hypergraph H(V,E)
and a weak independent set A in H , let BA equal V −A if the maximum degree
of H is three, and otherwise equal the set of vertices that have at least two
incident edges with vertices in A. Let Comp(A) be the subhypergraph induced
by BA.

Algorithm HSIC(H,Δ, k)
If Δ ≤ 2 then compute MIS exactly and stop
Let A be any maximal weak independent set
Repeat

Do all possible local improvements of size O(k log n)
If Δ = 3 then l = 1 else l = 2
Recursively apply HSIC(Comp(A), Δ − l, k)
and select the resulting weak independent set if it is bigger

Until no A has no improvements

There are two neighborhood functions in HSIC. The first function, which
maps a solution A to a set of all possible local improvements of size O(k log n),
is t-optimal with t = O(k logn) and so edge-monotone. The second function,
which maps a solution A to a set of weak independent sets in CompH(A), is
also edge-monotone. This is because shrinking H to H ′ reduces the degree of
some vertices, implying BA(H ′) ⊆ BA(H). Consequently, a weak independent
set in CompH′(A) is also a weak independent set in CompH(A). Thus, both
neighborhood functions are edge-monotone and the performance ratio of HSIC
is no worse than the performance ratio of SICΔ,k by Corollary 1.

Theorem 5. Weighted MIS can be approximated within (Δ + 1)/2 in hyper-
graphs of a constant rank r.

Proof. We extend the algorithm SquareIMP of Berman [2] for a weighted MIS
in bounded degree graphs to the hypergraph case. Given a hypergraph H(V,E)
and a vertex v ∈ V , we denote by N(v) a set of neighbors of v. Similarly, given



Independent Sets in Bounded-Degree Hypergraphs 269

a set U ⊆ V , we denote by N(U) a set of neighbors of vertices in U . Let S be
a weak independent set in H . We define (A,B) to be an improvement of S, if
there is a vertex v ∈ S such that A ⊆ N(v) ∩ (V \S), B ⊆ N(A) ∩ S, (S\B) ∪A
is a weak independent set and w2((S\B) ∪A) > w2(S).

Algorithm HSquareIMP (H)

S ← ∅
While there exist an improvement (A,B) of S
S ← (S\B) ∪A

Output S

The neighborhood function in HSquareIMP is edge-monotone. Shrinking
H to H ′ reduces the degree of some vertices and so every improvement A,B
of S in H ′ is also an improvement of S in H . Hence, the performance ratio
of HSquareIMP is no worse than the performance ratio of SquareIMP by
Corollary 1.

Note that finding an improvement (A,B) takes O(n2Δ
2(r−2)(r−1)) steps. Be-

cause in the worst case we check every vertex v ∈ S for a possible improvement,
and given v we consider every possible subset A ⊆ N(v)∩ (V \S) and every pos-
sible subset B ⊆ N(A)∩S to check whether (S\B)∪A is a weak independent set
and w2((S\B)∪A) > w2(S). Since |N(v)∩(V \S)| ≤ Δ(r−2), there are at most
2Δ(r−2) possible A sets. Similarly, since |N(A) ∩ S| ≤ Δ(r − 2)(Δ(r − 1) − 1),
there are at most 2Δ(r−2)(Δ(r−1)−1) possible B sets. In total we consider at most
2Δ

2(r−2)(r−1) possible pairs (A,B) for every vertex in v ∈ S until an improve-
ment is found.

5 Partitioning

The idea of the partitioning approach is to split a given hypergraph into k
induced subhypergraphs so that MIS can be solved optimally on each subhy-
pergraph in polynomial time. This is based on the strategy of [12] for ordinary
graphs. Note that the largest of the solutions on the subhypergraphs is a k-
approximation of MIS, since the size of any optimal solution is at most the sum
of the sizes of the largest independent sets on each subhypergraph.

We extend a partitioning lemma of Lovász [19] to the hypergraph case.

Lemma 1. The vertices of a given hypergraph can be partitioned into �(Δ+1)/3�
sets, where each set induces a subhypergraph of maximum degree at most two.

Proof. Start with an arbitrary vertex partitioning into �(Δ + 1)/3� sets. While
a set contains a vertex v with degree more than two, move v to another set that
properly contains at most two edges incident on v. Such a set exists, because
otherwise the total number of edges incident on v would be at least 3�(Δ +
1)/3� ≥ Δ + 1. Any such move increases the number of edges between different
sets, and so the process terminates with a partition where every vertex has at
most two incident edges in its set.
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The method can be implemented in time O(
∑
e∈E |e|) by using an initial greedy

assignment as shown in [12].

Lemma 2. A weighted MIS in hypergraphs of maximum degree two can be solved
optimally in polynomial time.

Proof. Given a hypergraph H(V,E) we consider the dual hypergraph H ′(E, V ),
whose vertices e1, . . . , em correspond to the edges of H and the edges v1, . . . , vn
correspond to the vertices of H , i.e. vi = {ej : vi ∈ ej in H}. The maximum edge
size in H ′ equals to the maximum degree of H , thus H ′ is a graph, possibly with
loops. A vertex cover in H is an edge cover in H ′ (where an edge cover in H ′ is
defined as a subset of edges that touches every vertex in H ′), and a minimum
weighted edge cover in graphs can be found in polynomial time via maximum
weighted matching [8]. All edges not in a minimum cover in H ′ correspond to a
maximum independent set of vertices in H .

The following result now is straightforward from Lemmas 1 and 2.

Theorem 6. A weighted MIS can be approximated within �(Δ+ 1)/3� in poly-
nomial time.

6 Greedy

The idea of the greedy approach is to construct a solution by repeatedly selecting
the best candidate on each iteration. There are two variations, called GreedyMAX
and GreedyMIN, depending on whether we greedily add or greedily reject vertices.

6.1 The GreedyMAX Algorithm

The GreedyMAX algorithm constructs a cover S by adding a vertex of maximum
degree, deleting it and its incident edges from the hypergraph, and iterating until
the edge set is empty. It then outputs the remaining vertices as an independent
set I.

Theorem 7. The performance ratio of GreedyMAX is at most Δ+1
2 .

Proof. Given a hypergraph H(V,E), let S∗ be a minimum cover. Then, the
performance ratio of GreedyMAX is:

ρ = max
∀H

n− |S∗|
n− |S| . (1)

The proof has two parts. First we show that the worst case for GreedyMAX
occurs on (ordinary) graphs. Namely, we show that we can reduce any hyper-
graph to a graph (actually, a multigraph) G for which GreedyMAX has a no
better approximation ratio. We then show that the bound actually holds for
(multi)graphs.
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Lemma 3. Given a hypergraph H with a minimum cover S∗, there exists a
shrinkage multigraph G of H on which S∗ is still a cover and where GreedyMAX
constructs the same cover for G as for H.

Proof. The proof is by induction on s, the number of iterations of GreedyMAX.
For the base case, s = 0, the claim clearly holds for the unchanged empty graph.

Suppose now that the claim holds for all hypergraphs for which GreedyMAX
selects s − 1 ≥ 0 vertices. Let u1 be the first vertex chosen by GreedyMAX,
E(u1) be the set of incident edges, and H1 be the remaining hypergraph after
removing u1 (with edge set E(H)\E(u1)). Based on E(u1), we form a set E′(u1)
of ordinary edges as follows. If u1 is contained in both S and S∗, then for each
edge e in E(u1) pick an arbitrary vertex v from e and add (u1, v) to E′(u1). If
u1 is only in S and not in S∗, then for each edge e in E(u1) we pick an arbitrary
vertex u from e that is contained in S∗ and add (u1, u) to E′(u1); such a vertex
u must exist, since e is covered by S∗. This completes the construction of E′(u1).

By the inductive hypothesis, there is a shrinkage multigraph G1 of H1 with a
greedy cover of S \ {u1} that is still covered by S∗. We now form the multigraph
G on the same vertex set as H with the edge set E′(u1) ∪ E(G1), and claim
that it satisfies the statement of the lemma. Since G1 is covered by S∗ and all
edges of E′(u1) are also covered by vertices of S∗, S∗ covers all edges of G.
The edge shrinkage only decreases degrees of vertices, but does not affect the
degree of u1. Therefore, u1 remains the first vertex chosen by GreedyMAX and,
by induction, the vertices chosen from G1 are the same as those chosen from
H1. Hence, GreedyMAX outputs the same solution on G as on H , completing the
lemma.

From Lemma 3 it follows immediately that GreedyMAX on hypergraphs has no
worse performance ratio than on graphs.

Lemma 4. The performance ratio of GreedyMAX on (multi)graphs is at most
Δ+1

2 .

Proof. Each vertex can cover at most Δ of the m edges of a graph. Therefore,
any optimal cover S∗ is of size at least

|S∗| ≥ m

Δ
=

d̄n

2Δ
. (2)

Sakai, Togasaki, and Yamazaki [21] obtained a lower bound on the size of
weighted independent set produced by GreedyMAX on graphs. In unweighted
case this bound reduces to a Caro-Wei improvement of the Turan bound on
graphs:

|I| ≥
∑

v∈V

1
d(v) + 1

. (3)

It can be verified that the proof of [21] applies also to multigraphs, if we under-
stand the neighborhood of a node to become a multiset.

We show that GreedyMAX attains its worst performance ratio in regular or
almost regular graphs. For that we refine d̄ as follows: let k ∈ [0, 1] be the value
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so that kn vertices have degree Δ and the remaining (1− k)n vertices have the
average degree d

′ ≤ Δ− 1. Then

d̄ = kΔ+ (1 − k)d
′
. (4)

Using (4) we rewrite (2) and (3) as

|S∗| ≥
n
(
kΔ + (1 − k)d

′
)

2Δ
(5)

and
|I| ≥ kn

Δ + 1
+

(1 − k)n
d′ + 1

. (6)

Combining (1), (5) and (6) we obtain an upper bound on the performance ratio
of GreedyMAX:

ρ = max
∀H

n− |S∗|
n− |S| = max

∀H
n− |S∗|

|I| ≤ 2Δ− kΔ− (1 − k)d
′

2Δ
(

k
Δ+1 + 1−k

d′+1

) =

=
(Δ + 1)(d

′
+ 1)

2Δ

(

1 +
Δ− d

′ − 1
Δ+ 1− k(Δ− d′)

)

(7)

≤ (Δ + 1)(d
′
+ 1)

2Δ

(

1 +
Δ− d

′ − 1
Δ+ 1− (Δ− d′)

)

=
Δ + 1

2
, (8)

where the first inequality in (8) is obtained by setting k = 1.

Note that multiple edges in a graph don’t affect the performance ratio of Greedy-
MAX. The edge reduction in E(H) might create multiples edges in E(G), but
the number of edges in G and H is not changed and the maximum degree in
G and H also remains the same. Thus, from Lemmas 3 and 4 the performance
ratio of GreedyMAX on hypergraphs is at most Δ+1

2 , completing the theorem.

Proposition 2. There exist hypergraphs where the approximation ratio of Greedy-
MAX is Δ+1

2 .

Proof. It remains to construct examples showing that the performance of Greedy-
MAX can actually reach this value, for eachΔ. Consider the hypergraphHΔ+1,Δ+1,
formed by a complete bipartite graph missing a single perfect matching. Greedy-
MAX may remove vertices alternately from each side, until two vertices remains as
amaximal independent set.The optimal solution consists of one of the bipartitions,
of size Δ + 1. By taking independent copies, this can be extended for arbitrarily
large hypergraphs.

6.2 The GreedyMIN Algorithm

The GreedyMIN algorithm starts with an empty independent set I, then itera-
tively adds a vertex of minimum degree into I and deletes it from the hypergraph.
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If the vertex deletion results in loops (edges containing only one vertex), then
the algorithm also deletes the vertices with loops along with the edges incident
on such vertices. The algorithm terminates when the vertex set is empty and
outputs I.

Theorem 8. The performance ratio of GreedyMIN is at most Δ− 1.

Proof. We split the sequence of the iterations of the algorithm into epochs, where
a new epoch starts when the algorithm selects a vertex of degree Δ. Clearly, if
the algorithm always selects a vertex of degree less than Δ, the whole sequence
of iterations is just one epoch. We show that in any epoch the ratio between the
sizes of the greedy and an optimal solutions is at most Δ− 1.

In each iteration i, the algorithm selects a vertex vi, whose set of neighbors in
the edges of size 2 we denote by N(vi). The vertices of N(vi) are deleted in the
iteration along with all incident edges. The maximum number of nodes removed
in an iteration i that can belong to an optimal solution is at most the degree of vi.

Suppose one of the deleted edges is incident on a vertex u outside of N(vi).
Then, in iteration i + 1, the vertex u will have the degree at most Δ − 1, and
therefore, the degree of vi+1 is at most Δ− 1. Thus, iteration i+1 will be in the
same epoch as i. The last iteration of an epoch occurs when a vertex is chosen
whose neighborhood is contained in N(vi)∪{vi}. This neighborhood then forms
a hyperclique, because any vertex in N(vi) has at least the degree of vi and all
its neighbors are contained in N(vi)∪{vi}. Notice that we may assume without
loss of generality that the hypergraph is simple, namely that no edge is a proper
subset of any other edge. Therefore, since the degree of vi is at most Δ, any edge
of the hyperclique contains at most Δ−1 vertices, and any optimal solution can
contain at most Δ− 2 vertices.

We see that the optimal solution can contain at most Δ− 2 vertices from the
vertices removed in the last iteration of an epoch, Δ− 1 from the intermediate
iterations and Δ from the first iteration of an epoch. On average, it can thus
contain at most Δ−1 vertices per iteration, while the greedy algorithm contains
exactly one.

Proposition 3. The performance ratio of GreedyMIN is tight for Δ = 3 and at
least Δ− 2 + 2

Δ+1 for any Δ ≥ 4.

Proof. The details of the proof are omitted here due to the limited space.
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Abstract. We give an algorithm that, for any ε > 0, any undirected
planar graph G, and any set S of nodes of G, computes a (1+ ε)-optimal
Steiner tree in G that spans the nodes of S. The algorithm takes time
O(2poly(1/ε)n log n).

1 Introduction

The Steiner problem in graphs is a fundamental and well-studied optimiza-
tion problem: given a graph with edge lengths and a set of terminals, find a
minimum-length connected subgraph that includes all the terminals. The prob-
lem is NP-hard [11] (even in planar graphs [8]) and is max SNP-complete in
general graphs [5]. Much work [22,14,24,23,15,26,2,25,17,12,10,21] has gone into
obtaining constant-factor approximation algorithms. There has also been work
[1,16,20] on approximation schemes for the case of Euclidean plane (or more
generally low-dimensional Euclidean space). In [6], we gave an O(n log n) ap-
proximation scheme for Steiner tree in planar graphs; more precisely, we showed
that for any ε > 0, there is an O(n log n) algorithm that returns a solution whose
length is at most 1 + ε times optimal. However, the constant factor for this al-
gorithm is triply exponential in 1/ε. In this paper, we give another O(n log n)
approximation scheme, one for which the constant factor is singly exponential
in a polynomial in 1/ε:

Theorem 1. For any ε > 0, there is an algorithm that, given a planar graph G
with edge lengths and a set S of vertices of G, finds a Steiner tree that spans S
and whose length is at most 1 + ε times the length of the optimal Steiner tree
spanning S. The running time is O(2poly(1/ε)n+ n logn) where n is the number
of vertices of G.

The previous approximation scheme fit into a framework given in [13]. What the
framework required to yield an approximation scheme (and what was provided
in [6]) was a kind of “spanner” result: an algorithm that, for a planar graph Gin
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and set of terminals Q, would return a “short” subgraph of Gin that approx-
imately preserved the value of the optimum. The approximation scheme then
follows rather directly from the framework. However, the spanner result had a
doubly-exponential dependence on 1/ε, which led to the triply-exponential de-
pendence of the final approximation scheme’s running time.

We overcome this deficiency using two ideas. One of the exponentials came
from a theorem in which we showed how to reduce the complexity of a subtree
of the optimal Steiner tree without increasing its cost too much. In this paper,
we prove the same theorem but with a polynomial instead of an exponential
(see Theorem 4). This idea by itself, if plugged back into [6], would yield doubly
exponential dependence on 1/ε.

The other idea is more global, and perhaps will turn out to be more generally
applicable for obtaining approximation schemes in planar graphs. The first step
of the spanner construction consisted of finding a short grid-like subgraph MG
of the input graph Gin that contains every terminal. In this paper, we use the
term brick to refer the subgraph consisting of a face of MG and the subgraph of
Gin embedded inside it.

In the new approximation scheme, we also start by finding MG. We then
decompose MG into “parcels” with short boundaries such that each parcel has
low carving-width (a relative of tree-width). Of course, MG is not the original
graph; it is missing the bricks. We add back the bricks but connect them to
MG via a small number of “portal edges”. We add some new terminals and, for
each parcel-plus-bricks, find an optimal Steiner tree using dynamic programming
(exploiting the low carving-width of the parcel and the small number of portal
edges). We prove that the union of all these trees is not much longer than the
optimal Steiner tree in the original graph. The base case for the dynamic program
uses an exact algorithm by Erickson et al. [7] for the special case where all
terminals are on the boundary of an embedded planar graph. We summarize
their result in the following theorem:

Theorem 2. [7] Let G be a planar embedded graph and Q be a set of k terminals
that all lie on the boundary of a single face. Then there is an algorithm1 to find
an optimal Steiner tree of Q in G in time O(nk3 + (n logn)k2).

We can replace the term n logn by n using the linear-time planarity-exploiting
shortest-path algorithm of [9], obtaining a running time of O(nk3).

1.1 Notation

We assume without loss of generality that the input graph Gin is planar embed-
ded and has degree at most three. The input graph has positive edge-lengths
� (·). For a set A of edges, we use � (A) to denote

∑
e∈A � (e). We take Q as the

set of terminal vertices.
1 This algorithm has been generalized by Bern [3] and by Bern and Bienstock [4] to

handle some additional special cases, e.g. where the terminals lie on a constant num-
ber of faces. Provan [19,18] used the same approach to give exact and approximate
algorithms for some geometric special cases.
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For notational convenience, we prove a slightly weaker version of main theorem
(Theorem 1). We show that, for any ε > 0, there is an O(n log n) algorithm to
find a Steiner tree whose length is at most (1 + cε)OPT(Gin, Q), where c is a
constant and OPT(G,Q) denotes the length of the Steiner minimal tree that
spans Q in graph G. To prove Theorem 1, for any given ε̄ > 0, we set ε = ε̄/c
and invoke the algorithm.

The boundary of a face of a planar embedded graph is the set of edges adjacent
to the face; it does not always form a simple cycle (Figure 2(a)). The boundary
∂H of a planar embedded graph H is the set of edges bounding the infinite face.
An edge is strictly enclosed by the boundary of H if the edge belongs to H but
not to ∂H .

Graphs are identified with sets of edges, thus a subgraph H of a graph G is
also considered a subset of the edges of G. The set of vertices that are endpoints
of edges in H is denoted V (H). For a tree T and vertices x, y ∈ V (T ), we denote
the unique simple x-to-y path in T by T [x, y]. In particular, if T is a path then
T [x, y] is the x-to-y subpath. We denote the length of the shortest x-to-y path
in G as distG(x, y).

For a connected planar embedded graph G, there is another connected planar
embedded graph denoted G∗. The faces of G are the vertices of G∗; the edges of
the two graphs are identified. We refer to G as the primal graph and to G∗ as
the dual.

2 Algorithm

2.1 Mortar Graph

We first find a connected grid-like subgraph of the input graph Gin, based on
the set Q of terminals and the given precision ε. The O(n log n)-construction
is given in [6]. We call the subgraph the mortar graph and denote it MG (see
Figure 1(b)). The mortar graph spans every terminal in Q and has length at
most 5ε−1 ·OPT(Gin, Q). We defer the remaining properties of MG to Section 3,
where they are needed for the proof of correctness.

Step 1: Construct the mortar graph, MG.

2.2 Bricks

Each face f of the mortar graph that strictly encloses at least one edge of Gin
defines a graph called a brick. The brick consists of the edges of Gin that are
enclosed by the boundary ∂f of f . This boundary is a cycle of edges, possibly
with repetition if some edges occur twice in the boundary (an example of such
a situation is shown on Figure 2). We duplicate the repeated edges as follows:

Cut the original graph Gin along ∂f , duplicating the edges you cut along
(and replicating the vertices), and define the brick to be the subgraph of Gin
embedded inside that cycle, including the boundary edges according to their
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(a) (b) (c)

(d) (e)

Fig. 1. (a) A fragment of an input graph Gin. The bold edges belong to the mortar
graph MG, the corresponding fragment of which is shown in (b). The corresponding
bricks are shown in (c), and the corresponding fragment of the portal-connected graph,
B+(MG), appears in (d). The portal edges are grey. (e) B+(MG) with the bricks con-
tracted to brick vertices.

multiplicity in ∂f . That is, if an edge occurs twice in the boundary of the face,
then there are two copies of that edge in the corresponding brick.

Step 2: Compute the set of bricks, B.

It is easy to see that Step 2 takes O(n).
The boundary ∂B of a brick B is the simple cycle of boundary edges. The

corresponding face of MG is called the mortar boundary of B. Each edge of
the mortar graph occurs at most twice in the disjoint union of the boundaries
of the bricks. Since we defined bricks corresponding only to non-empty faces,
every brick contains at least one edge not belonging to MG. Figure 1(c) is an
example of the set of bricks corresponding to the mortar graph of Figure 1(b).
The construction of a brick is illustrated in Figures 2(a) and (b).

(a) (b) (c)

Fig. 2. Construction of a brick: (a) The boundary of a face f of MG is a cycle of edges
(thick edges), possibly with repetition (i.e. an edge can occur twice in the boundary).
The light edges are those in the interior of f in Gin. (b) We obtain the corresponding
brick via Step 2. The resulting brick B has boundary ∂B. (c) A brick, copied.
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2.3 Portals

For portal selection, we use a parameter θ(ε) = 2α(ε)5ε−2 that depends on a
value α(ε) that in turn comes out of Theorem 3. Portals are selected greedily as
in [6] to satisfy:

Property 1. For any vertex x on ∂B, there is a portal y such that the x-to-y
subpath of ∂B has length at most � (∂B)/θ.

Step 3: For each brick B, designate θ vertices of ∂B as portals.

We additionally require that one portal be the endpoint of an edge that is strictly
enclosed in the brick (this, in addition to the assumption that our input graph is
degree three, allows us to build a binary recursion tree for the dynamic program).

2.4 Portal-Connected Graph and the Operation B+

In preparation for stating our Structure Theorem, we define an operation called
brick insertion. For any subgraph MG of G, we derive a planar embedded graph
B+(G) as follows. For each face f of G corresponding to a brick B, embed a copy
of B inside the face f , and, for each portal vertex v of B, connect v in the brick
to the corresponding vertex in f , using a zero-length artificial edge (Figure 2(c)).
We refer to the artificial edges as portal edges. This step is illustrated in Fig-
ure 1(d). We refer to B+(MG) as the portal-connected graph, and we denote it
by B+(MG). Intuitively, this graph is almost the same as the input graph Gin,
except that artificial cost-zero separations have been added so that paths that
connect vertices strictly enclosed by faces of the mortar graph to outside vertices
are forced to go through the portals.

If a vertex of MG is a terminal of Q, we do not consider its copy on the brick
to be a terminal vertex. Thus a brick has no terminals; this helps in the design
of the dynamic program (Section 2.7).

The following lemma follows directly from the fact that each portal edge in
B+(MG) connects a vertex of a brick to the corresponding vertex of MG.

Lemma 1. If A is a connected subgraph of B+(MG) that spans Q, then A −
{portal edges} is a connected subgraph of Gin that spans Q.

The following theorem, proved in Section 3, is central to the proof of correct-
ness of the spanner construction and the approximation scheme. Indeed, taken
together, Lemma 1 and Theorem 3 provide a reduction from the Steiner tree
problem on Gin to the Steiner tree problem on B+(MG).

Theorem 3 (Structure Theorem). There exists a constant θ(ε) depending
polynomially on 1/ε such that, for any choice of portals satisfying the Coverage
Property, the corresponding portal-connected graph B+(MG) satisfies

OPT(B+(MG), Q) ≤ (1 + cε)OPT(Gin, Q)

where c is an absolute constant.
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2.5 Parcels

First we further decompose MG into subgraphs called parcels, using an integer
parameter η(ε) = ε−2.

Step 4(a): Do breadth-first search in the planar dual MG∗ starting from r.

Define the level of a vertex of MG∗ (face of MG) as its distance from r. Let Ei
denote the set of edges whose two endpoints are at levels i and i + 1.

Step 4(b): For k = 0, 1, . . . , η − 1, let Ek = Ek ∪ Ek+η ∪ Ek+2η ∪ . . ..
Let k∗ be the index that minimizes � (Ek).

Let Y denote the set of connected components of MG∗ − Ek∗ . For each Y ∈ Y,
let HY denote the subgraph of MG consisting of the boundaries of faces in V (Y )
The set of parcels of MG is H = {HY : Y ∈ Y}.

Step 4(c): Find the set H of parcels of MG.

Lemma 2. The parcel decomposition has the following two properties:

Radius Property: The planar dual of each parcel has a spanning tree of depth at
most η + 1.
Boundary-Length Property: The sum of the lengths of the boundaries of the
parcels is at most 2� (MG)/η.

2.6 New Terminals

The next step is to select the new terminals. These new terminals will ensure that
the Steiner trees we find later will combine to form a connected subgraph. The
parcel-boundary length property ensures that connecting to these new terminals
does not increase the lengths of the optimal parcel solutions by much.

Step 5: For each parcel H and for each connected component C of the bound-
ary of H , if B+(MG) − V (C) disconnects some terminals, then designate a
vertex of C as a new terminal.

Note that the new terminals are vertices of the mortar graph, not of the bricks.
We omit the O(n) implementation of Step 5.

Lemma 3. The new terminals have the following two properties:

Spannable Property: Let T be a tree in B+(MG) that spans the original terminals
and let H be a parcel. Then T∪{parcel boundary edges} contains a tree in B+(H)
that spans the original and new terminals in H.
Connecting Property: For each parcel H that contains a terminal, let TH be a
tree in B+(H) spanning the original and new terminals belonging to H. Then⋃
H TH is a connected subgraph of B+(MG).
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2.7 Optimal Solution Within the Parcels

Step 6: For each parcel H , if H contains an original or new terminal then find
an optimal Steiner tree in B+(H) spanning the original and new terminals
in H .

This step is solved by a O(cθηm)-time dynamic programming algorithm where
m is the number of edges in H and c is a constant. We briefly sketch the idea.
Lemma 2 states that the planar dual of H has a spanning tree T ∗ of depth at
most η+1. When we apply B+ to H (inserting the bricks), we connect each brick
to the corresponding face boundary using at most θ portal edges. Suppose we
then contract the bricks in B+(H), turning them into brick vertices as shown in
Figure 1(e). Each brick vertex is connected to MG by at most θ portal edges. In
the dual, these portal edges form a cycle encircling the brick vertex. Add to T ∗

all these edges except the one that in the primal graph is incident to an internal
brick edge. Let T̂ ∗ be the resulting spanning tree. Its depth is at most θ(η + 1).

Let T̂ be the set of edges in the contracted graph that do not belong to T̂ ∗. A
classical result in planarity states that the complement of a spanning tree of the
dual is a spanning tree of the primal, so T̂ is a spanning tree of the primal. The
(primal) input graph had degree three. For each brick, T̂ has one edge connecting
the brick vertex to a vertex v of the mortar graph. In the input graph there was
an edge incident to v that is no longer present in the contracted graphs, so T̂
has degree at most three.

Root T̂ at a non-brick-vertex of degree at most two, and use the rooted tree
to guide a dynamic-programming algorithm for Steiner tree in B+(H). For each
vertex v of T̂ , the subtree rooted at v corresponds to a subgraph of B+(H) (re-
place each brick vertex by the corresponding brick). We show that this subgraph
connects with the rest of B+(H) via few edges. Suppose v is not the root, and
let e be the edge connecting v to its parent. In the dual, e is not an edge of
T̂ ∗, so it forms a cycle with the simple path in T̂ ∗ between its endpoints. Since
T̂ ∗ has depth at most θ(η + 1). the cycle has at most 2θ(η + 1) + 1 edges. This
shows that, in the primal, the subgraph connects to the rest of B+(H) via at
most 2θ(η + 1) + 1 edges, which enables us to do dynamic programming. Each
vertex corresponds to a subproblem. The size of the table for this subproblem
is d2θ(η+1)+1 where d is a constant. Because each vertex of T̂ has at most two
children, only two subproblems need to be combined at a time. If v is a brick
vertex, then v is a leaf in T̂ , and the subproblem corresponding to v can be
solved used the algorithm of Erickson et al. (Theorem 2).

Step 7: Take the union of the edge-sets of all the Steiner trees found in Step 6
(not including portal edges), together with the edges of S, and return the
connected component containing the terminals.

This completes the description of the approximation scheme. Lemma 3 shows
that the output is a feasible solution. Lemmas 2 and 3, together with the defini-
tion of η, show that the length of the output solution is at most
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(1+ dε)OPT(B+(MG), Q), and is therefore (by Theorem 3) at most (1+ dε)(1+
cε)OPT(Gin, Q).

3 Proof of the Structure Theorem (Theorem 3)

The construction of what we here call a brick decomposition was given in [6].
Step (i) of the construction involved cutting open the input graph along a 2-
approximate Steiner tree, obtaining a graph G1. Step (ii) used shortest paths
to decompose G1 into “strips.” Step (iii) found some shortest paths within each
strip, and Step (iv) designated some of the shortest paths found in Step (iii)
as supercolumns. For this paper, we define the mortar graph MG of Gin to be
the planar embedded subgraph consisting of (A) the edges of the 2-approximate
Steiner tree of Step (i), (B) the edges of the shortest paths used in Step (ii),
and (C) the edges of the supercolumns. The choice of supercolumns in Step (iv)
involves a parameter κ; choosing κ(ε) = 8ε−2(1 + ε−1) yields Lemma 5 (below).
In [6], we showed the following properties:

Lemma 4. The boundary of a brick B, in counterclockwise order, is the con-
catenation of four paths WB ∪ SB ∪ EB ∪NB such that:

1. Every terminal of Q that is in B is on NB or on SB.
2. NB and SB are ε-short.
3. V (SB) has a κ-element subset {s0, . . . , sκ} (in left-to-right order) where for

any i and any vertex x ∈ SB[si, si+1), distSB (x, si) < εdistB(x,NB).

Lemma 5. Summing over all bricks B,
∑
B � (EB) + � (WB) ≤ εOPT(Gin, Q).

3.1 Structural Property of Bricks

This decomposition into bricks is useful because there exists a near-optimal
Steiner tree that crosses the boundary of each face of MG a small number of
times. For H a subgraph of a graph G and P a path in H , a joining vertex of
H with P is a vertex of P that is the endpoint of an edge of H − P .

Theorem 4 (Structural Property of Bricks). Let B be a plane graph with
boundary N ∪E ∪ S ∪W and satisfying the brick properties of Lemma 4. Let F
be a set of edges of B. There is a forest F̃ of B with the following properties:

1. If two vertices of N ∪ S are connected in F then they are connected in F̃ .
2. The number of joining vertices of F with both N and S is at most α(ε).
3. � (F̃ ) ≤ (1 + cε)� (F ).

In the above, α(ε) = o(ε−5.5) and c is a fixed constant.

“N”, “E”, “S”, and “W” stand for north, east, south, and west.
In [6], the analogous theorem appeared as Theorem 3.1 with α(ε) = 2poly(1/ε)

instead. In order to prove Theorem 4, we use the following lemmas.
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Lemma 6. Let G be a planar embedded graph, let P be an ε-short path that is
a subpath of the boundary ∂G of G, and let T be a tree in G rooted at a vertex
r whose leaves are exactly V (T ) ∩ V (P ). There is another tree T̂ rooted at r

spanning V (T )∩ V (P ) whose total length is at most (1 + c1 · ε)�(T ) such that T̂
has at most c2 · ε−1.45 joining vertices with P .

Proof. Following [6], as long as there is a vertex u with at least 3 children, do
this: choosing u to be closest to the root, replace the subtree rooted at u with
(1) the minimal subpath P ′ of P containing all leaves of that subtree, and (2)
the shortest u-to-P ′ path. The resulting tree T ′ has � (T ′) ≤ (1 + ε)� (T ).

Define the level of a vertex v to be the number of degree-3 vertices on the
r-to-v path of T ′. Let U be the set of degree-3 vertices having level k (we will
choose k later). A super-edge is a maximal descending path in T ′ whose internal
vertices have degree 2, and its level is the level of its first vertex.

For each u ∈ U , replace the subtree T ′
u of T ′ rooted at u with another tree

T ′′
u rooted at u that is the union of the shortest subpath Pu of P spanning the

vertices of T ′
u ∩ P and the shortest u-to-Pu path (Figure 3.1(a)). Let T ′′ be the

result. Analysis is as follows.
For a degree-3 vertex u, let Qu be the path in T ′ between u’s leftmost and

rightmost descendent leaves. For each i, let Ei =
⋃
{Qu : u has level i}, and let

Li =
⋃
{level-i super-edges} − Ei−1. See Figure 3.1 (b). Let Si = ∪∞

j=iLj.

Qu

R

e
u

Pu

(a)

r

P

(b)

Fig. 3. (a) Solid line is Qu, dashed line is R, dotted line is Pu. Root of tree shown is
u, and left child edge is e.(b) Bold edges: E1, dotted edges: L2.

Let k′ be the first level i for which � (Li) ≤ � (Si+2) (if there is no such level,
let k′ = ∞). Let k = min

(
k′,
⌈
logΦ(

√
5(1/ε− 1))

⌉)
, where Φ is the golden ratio.

Since k ≤ �logΦ(
√

5(1/ε+1))�, the number of level-k vertices is ≤ 2k ≤ 11 ·ε−1.45

(for ε < 1), which leads to the bound on joining vertices. It remains to show that
� (T ′′) ≤ (1 + ε)� (T ′).

Let u be a vertex in level k. Let e be the unique super-edge in Lk whose
parent is u (as illustrated in Figure 3.1 (a). Let R be the path from u to P that
traverses e and subsequently uses only edges of Ek+1 − Ek.

� (T ′′
u ) = � (Pu) + distG(u, Pu) ≤ (1 + ε)� (Qu) + � (R) (1)
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Case 1: k = k′. Sk+2 is disjoint from Qu and R, so the RHS of (1) is at most
(1+ ε)[� (T ′

u)+ � (e)− � (Sk+2∩T ′
u)] < (1+ ε)[� (T ′

u)+ � (Lk∩T ′
u)− � (Sk+2∩T ′

u)].
Summing over all level-i vertices u, � (T ′′) < (1 + ε)[� (T ′) + � (Lk)− � (Sk+2)] <
(1 + ε)� (T ′) since � (Lk) ≤ � (Sk+2).

Case 2: k 	= k′. The RHS of (1) is ≤ (1+ε)� (Qu∪R)+� (e) ≤ (1+ε)� (T ′
u)+� (e).

Summing over all u ∈ U , � (T ′′) ≤ (1 + ε)� (T ′) + � (Lk) ≤ (1 + ε)� (T ′) + � (Sk).
Note that Si is the disjoint union of Li and Si+1, so �(Si) = � (Li) + � (Si+1).
Since � (Li) > � (Si+2) for every i ≤ k, we have �(Si) ≥ � (Si+2) + � (Si+1).
It follows that � (S1) ≥ kth Fibonacci number · � (Sk). Then by choice of k,
� (Sk) ≤ ε� (S1) ≤ ε� (T ′). ��

Lemma 7. Let G be a planar embedded graph and let T be a tree in G with
leaves on an ε-short path P that is a subpath of the boundary ∂G of G. Let p and
q be two vertices of T . There is another tree T̂ spanning p, q, and the vertices
of T ∩ P whose total length is at most (1 + c1 · ε)�(T ) such that T̂ has at most
c2 · ε−2.45 joining vertices with P .

The proof for Lemma 7 can be derived from the section titled Achieving the
Third Property in [6]. It builds on Lemma 6.

Proof idea for Theorem 4. We use the term bases to refer to the vertices s0, . . . , sk
of Part 3 of Lemma 4. We select S-to-N paths P0, P1, . . ., modifying F as we go,
as follows. (Let F ′ denote the modified F .)

Assume inductively that Pi has been selected, and let xi be its first vertex.
Let Si be the subpath of S going west from xi to the first base encountered.
Note that � (Si) ≤ ε� (Pi). We add Si to F , possibly creating cycles. To fix this,
remove an edge not in Pi∪Si from a cycle until no cycles remain. Next, let Pi+1

be the eastmost S-to-N path in F that starts from a vertex west of xi and that
is vertex-disjoint from Pi ∪ S. By acyclicity, there is at most one path Qi from
a vertex of Pi+1 to a vertex of Pi ∪ Si. If there is such a path, designate its first
vertex as a connector of Pi+1 and its last vertex as a hub of Pi. Note that the
hub has the following property: in the component of F ′ −Qi −Qi−1 containing
Pi, every S-to-N path goes through the hub. If there is no such path Qi, we
define Qi = ∅ and arbitrarily select as the hub of Pi any vertex satisfying that
property.
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Next, we transform F ′, obtaining another forest F ′′. For each i, consider the
component of F ′ −Qi −Qi−1 that contains Pi. Decompose this component into
two trees: the southern tree consists of the paths from the hub to vertices in S,
and the northern tree consists of the paths from the hub to vertices in N . We
apply Lemma 6 to whichever of these trees does not contain a connector (taking
r=the hub), and we apply Lemma 7 to whichever does contain a connector
(taking p=the hub and q=the connector). ��

3.2 Completion of the Proof of Theorem 3

The Structure Theorem (Theorem 3) states that OPT(B+(MG), Q) ≤ (1 +
cε)OPT(Gin, Q). We now give the proof using Theorem 4.

Proof. We start from an optimal solution T to the Steiner tree problem in Gin
and gradually transform it into a solution T̂ to the Steiner tree problem in
B+(MG), while approximately preserving its length. First, let T1 be the union
of T with the east and west boundaries (EB and WB) for every brick B in G.
Using Lemma 5, we have � (T1) ≤ OPT + εOPT(Gin, Q). Remove edges (other
than east/west boundary edges) to break cycles.

Next, apply Theorem 4 to the subgraph of T1 that is contained in each brick,
obtaining T2 such that � (T2) ≤ (1 + c′ε)� (T1).

Next, we must obtain a solution in B+(MG). Let T a2 be the set of brick-
boundary edges of T1, and let T b2 the other edges of T2. Let T3 be the set of edges
of B+(MG) consisting of (a) the edges of MG corresponding to edges of T a3 , and
(b) the edges of T b3 . Note that T3 is not a connected subgraph of B+(MG). A path
in T2 might pass from the interior of a brick to the boundary; the corresponding
sequence of edges in T3 would have a gap: the “path” would stop at a vertex
of the brick boundary, and resume at the corresponding vertex of the mortar
boundary. To close the gap, we must add paths connecting each to the nearest
portal vertex associated with that brick and then add the corresponding portal
edge. The resulting graph T4 is connected.

It remains to bound the length of all these detours. For brick B, the distance
to the nearest portal is at most � (∂B)/θ, so the length of the detour is at most
2� (∂B)/θ. By Theorem 4, the number of detours for this brick is at most α, so
the length of all these detours is at most 2α� (∂B)/θ. Summing over all bricks
and using the bound from Section 2.1 on the length of the mortar graph, we
obtain a bound of 10αε−1 · OPT(Gin, Q)/θ. The choice of θ ensures that this is
at most ε · opt(Gin, Q)/θ.

��
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Abstract. Consider an n-vertex planar graph G. We present an O(n4)-
time algorithm for computing an embedding of G with minimum distance
from the external face. This bound improves on the best previous bound
by an O(n log n) factor. As a side effect, our algorithm improves the
bounds of several algorithms that require the computation of a minimum
depth embedding.

1 Introduction

As pointed out in [4,9,8], the quality of a planar embedding of a planar graph
can be measured in terms of maximum distance of its vertices from the external
face fe. Such a distance can be given in terms of different incidence relationships
between vertices and faces. For example, if we say that two faces are adjacent
if they share a vertex, the maximum distance to fe is called radius [10]. If two
vertices are adjacent if they are endpoints of an edge, the maximum distance
to fe is called width [7]. If two vertices are adjacent if they are on the same
face and fe is adjacent to all its vertices, the maximum distance to fe is called
outerplanarity [2]. If two faces are adjacent if they share an edge, the maximum
distance to fe is called depth [3].

The algorithms that compute a planar embedding such that the vertices
have minimum maximum distance to the external face have several applica-
tions. The algorithm by Dolev, Leighton, and Trickey for drawing planar graphs
with asymptotically optimal area [7] requires the computation of the embedding
with minimum width. In [2] Baker gives approximation algorithms on planar
graphs for many NP-complete problems, including maximum independent set
and minimum vertex cover. The time complexity and the optimality bounds of
such algorithms depend on the outerplanarity of the graph. Finally, the algo-
rithm by Di Giacomo et al. [6] for constructing crossing-free minimum radial
drawings of planar graphs is based on the computation of their outerplanarity.

In [4] Bienstock and Monma present an algorithm to compute the planar em-
bedding of an n-vertex planar graph G with minimum maximum distance to the
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external face in O(n5 logn) time. The distance they consider is the depth. How-
ever, the other distances listed above can be computed with simple variations
of the algorithm. The algorithm is based on the decomposition of G into its bi-
and tri-connected components. The general approach is the one of selecting a
positive integer k and to check if an embedding exists with depth k. A binary
search is performed to determine the optimal value of k. For each selected k the
decomposition of G is visited associating to each component μ a left and a right
weight, corresponding to the distances of μ to the external face of G, which is
independent on the embedding of μ. The components are then visited to check
if their weights can be composed to construct en embedding with depth k. The
space complexity of the algorithm is not analyzed in the paper. In [9] Pizzo-
nia and Tamassia present an algorithm for solving in O(n) time an analogous
problem where the depth of the embedding is expressed in terms of biconnected
components traversed to reach the external face and the biconnected components
are “rigid”, in the sense that their embedding cannot be changed.

In this paper we present an algorithm that improves the time bound of [4] to
O(n4) time. As a side effect, we improve also the time bound of the algorithms
listed above that need to compute a planar embedding with minimum maximum
distance to the external face. Our approach is inspired by the methods in [4],
and develops on top of such methods several new techniques. As in [4], we de-
compose the graph into bi- and tri-connected components, using BC-trees and
SPQR-trees [5]. However, we are able to solve the problem on each biconnected
component with a given edge on the external face in O(n3) time. Then, we use
techniques analogous to those in [4] for assembling the results on each bicon-
nected component into a general solution. Among the techniques presented in
this paper, a key issue, that might have other applications, is the ability of rep-
resenting implicitly and with reasonable size all the possible values of depth of
each triconnected component. The space complexity of the algorithm is O(n3).

The paper is organized as follows. Section 2 gives basic definitions. Section 3
deals with the combinatorial structure of the depth of planar embeddings and
develops a theory of the set of integer pairs that is exploited by the algorithm.
Section 4 presents the algorithm for biconnected graphs and Section 5 extends
such an algorithm to general connected graphs. In Section 6 we give concluding
remarks and further compare our approach with the one in [4]. Because of space
limitation some proofs are omitted and can be found in [1].

2 Background

A graph G(V,E) is connected if every pair of vertices of G is connected by
a path. A separating k-set of a graph G is a set of k vertices whose removal
increases the number of connected components of G. Separating 1-sets and 2-
sets are called cutvertices and separation pairs, respectively. A connected graph
is biconnected if it has no cutvertices. The maximal biconnected subgraphs of
a graph are its blocks. Observe that each edge of G falls into a single block of
G, while cutvertices are shared by different blocks. The block cutvertex tree, or
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BC-tree, of a connected graph G has a B-node for each block of G and a C-node
for each cutvertex of G. Edges in the BC-tree connect each B-node μ to the
C-nodes associated with the cutvertices in the block of μ. The BC-tree of G may
be thought as rooted at a specific block ν.

The SPQR-tree T of a biconnected graph G describes the arrangement of its
triconnected components. Here we provide an intuitive sketch of the definitions
and properties related to SPQR-trees. For more details, see [5,1]. The nodes of
T are of four types: S-, P-, Q-, and R-nodes, and represent a recursive decom-
position of the graph G into structural components, each one attached to the
rest of the graph by means of a separation pair or a pair of adjacent vertices,
called poles. A Q-node is a component corresponding to an edge of G and is the
base case of the decomposition. An S-node (P-node, R-node, respectively) is a
component that corresponds to a more complex portion of the graph which can
be in its turn decomposed as a series of components (a parallel of components, or
an arrangement of components which is not a series nor a parallel, respectively).
Given a node μ of T , the skeleton of μ, denoted by sk(μ), is a graph showing
how its δ(μ) lesser components, represented by virtual edges, are arranged into
the current component. The poles are always placed on the external face of the
skeleton. Starting from a virtual edge (u, v) of sk(μ), or from the skeleton of the
corresponding child node ν, by recursively replacing each virtual edge with the
skeleton of the corresponding component, it can be obtained a subgraph of G
called the pertinent graph of (u, v) and denoted by pertinent(ν).

The SPQR-tree T of a graph G with n vertices and m edges has m Q-nodes
and O(n) S-, P-, and R-nodes. Also, the total number of vertices of the skeletons
stored at the nodes of T is O(n).

3 The Combinatorial Structure of Planar Embeddings
and Their Depths

A biconnected graph G is planar if and only if the skeletons of all the nodes of
the SPQR-tree T of G are planar. An SPQR-tree T rooted at a given Q-node
can be used to represent all the planar embeddings of G having the reference
edge (associated with the Q-node at the root) on the external face. Namely, any
embedding can be obtained by selecting one of the two possible flips of each
skeleton around its poles and selecting a permutation of the children of each
P-node with respect to their common poles.

Let G be a biconnected planar graph and let μi be a component of the SPQR-
tree decomposition T of G rooted at edge e. Observe that any embedding ΓG of
G with e on the external face corresponds to an embedding ΓGi of the pertinent
graph Gi of μi with poles ui and vi on the external face. Also, the external face
of ΓGi corresponds to two faces of ΓG, which can be arbitrarily called left and
right external faces of Gi and denoted by fμi

l and fμi
r . Following the approach

of [4], we give a definition of fμi

l and fμi
r which is independent on ΓG and only

depends on ΓGi . Let (ui, vi) be the virtual edge of μi that represents in μi the
portion of G containing e and denote by G+

i the graph obtained by adding edge
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(ui, vi) to the pertinent graph Gi of μi. The (ui, vi)-dual of Gi is obtained by
computing the dual of G+

i and removing the edge corresponding to (ui, vi). The
faces incident to the removed edge are fμi

l and fμi
r .

An SPQR-tree component μi satisfies the pair of non-negative integers 〈x, y〉
if its pertinent graph Gi admits an embedding ΓGi , with its poles on the external
face, where it is possible to find a partition of the set of its internal faces into
two sets, denoted by Fl and Fr, such that all faces in Fl have distance from fμi

l

less or equal than x and all faces in Fr have distance from fμi
r less or equal than

y. Obviously, if μi satisfies 〈x, y〉, then it satisfies any pair 〈w, z〉 with w ≥ x and
z ≥ y. The infinite set of integer pairs satisfied by component μi is the admissible
set of μi and is denoted by A(μi).

In order to efficiently represent the admissible set of μi, we need to investigate
its combinatorial properties. Hence, we provide a definition of a “precedence”
relationship between integer pairs and explore the combinatorial properties of
sets of integer pairs. Such properties can be also expressed in terms of poset
theory or inclusion relationships between geometric curves.

We say that pair 〈x1, y1〉 precedes wrt x (precedes wrt y) a pair 〈x2, y2〉 when
x1 ≤ x2 (y1 ≤ y2). We denote this relationship by #x (#y). For example
〈3, 1〉 #y 〈3, 5〉. We say that pair 〈x1, y1〉 precedes a pair 〈x2, y2〉 when 〈x1, y1〉
precedes 〈x2, y2〉 both wrt x and wrt y. We denote this relationship by #. For
example 〈3, 4〉 # 〈3, 5〉. Two pairs 〈x1, y1〉 and 〈x2, y2〉 are incomparable if none
of them precedes the other, i.e., if 〈x1, y1〉 � 〈x2, y2〉 and 〈x2, y2〉 � 〈x1, y1〉. The
incomparability relationship is denoted by �, as, for example, in 〈3, 4〉 � 〈2, 5〉.
Based on the above definition, if μi satisfies 〈x, y〉, then it satisfies any pair 〈w, z〉
such that 〈x, y〉 # 〈w, z〉.

A set S of pairs of non-negative integers 〈x, y〉 is succinct if the pairs of S are
pairwise incomparable. Given two sets S and S′ of pairs of integers, S′ precedes
S if for any pair p ∈ S there exists at least one pair p′ ∈ S′ such that p′ # p.
For example {〈0, 4〉〈3, 3〉〈5, 4〉} # {〈0, 5〉〈4, 5〉}. Also, S′ reduces S if S′ # S and
S′ ⊆ S. Further, if S′ is succinct and reduces S, S′ is a gist of S. For example
{〈0, 4〉〈3, 3〉} is a gist of {〈0, 4〉〈3, 3〉〈5, 4〉}. The gist S′ of a set S is unique and
is the smallest set preceding S.

Consider a set S and two integer pairs p1 = 〈x1, y1〉, p2 = 〈x2, y2〉 ∈ S. Denote
by xmax(S) (ymax(S)) the maximum value of xi (yi) in any pair 〈xi, yi〉 ∈ S.

Property 1. If S is succinct, then p1 #x p2 ⇔ p2 #y p1. Hence, the relationship
#x induces a total order on S, which is an inverse total order with respect to
relationship #y. Also, |S| ≤ xmax(S) and |S| ≤ ymax(S).

Let Sj , j = 1, . . . , k, be k sets of integer pairs and let S′
j be their gists. Suppose

that each S′
j is known and sorted with respect to the #x relationship.

Lemma 1. The gist of S1∩S2∩· · ·∩Sk and the gist of S1∪S2∪· · ·∪Sk, sorted
with respect to the #x relationship, can be computed in O(

∑k
j=1(x

max(S′
j))) or,

equivalently, in O(
∑k
j=1(|S′

j |)) time.
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Given the previously described precedence relationship, it is possible to represent
the infinite set A(μi) of integer pairs satisfied by component μi with its gist,
which is denoted by Â(μi) and assumed ordered wrt the #x relationship.

Let μi be a component, Gi its pertinent graph and ni the number of nodes of
Gi. If 〈x, y〉 ∈ Â(μi), then 〈y, x〉 ∈ Â(μi). Also, Â(μi) contains exactly one pair
〈x, y〉 with x = 0 and one pair 〈x′, y′〉 with y′ = 0. In such pairs x = y′ = O(ni).
Hence, Â(μi) is finite and |Â(μi)| is O(ni).

4 Computing a Minimum-Depth Embedding of a
Biconnected Planar Graph

The minimum-depth embedding of a biconnected planar graph G can be found
by applying for each edge e of G the algorithm presented in this section, which
computes the minimum-depth embedding of G with e on the external face. Such
a computation is performed by means of two traversals of its SPQR-tree T rooted
at e. The first traversal is a bottom-up traversal. Its purpose is to label each
virtual edge ei, corresponding to node μi, with suitable values that describe the
properties with respect to the depth of all possible embeddings of the pertinent
graph Gi. Such values are the gist of the admissible set of μi and the distance
between fμi

l and fμi
r in the (ui, vi)-dual of Gi, which is called the thickness of

μi and is denoted by t(μi). In [4], where the concept of thickness was also used,
it is shown that t(μi) is independent on the embedding of the pertinent graph
Gi of μi. At the end of the first bottom-up traversal, the child component of the
root of the SPQR-tree is labeled with the gist of the admissible set of G, from
which an optimal pair can be selected and used in a top-down traversal of T to
provide a suitable embedding for each skeleton of its nodes.

4.1 Labeling an SPQR-Tree with Minimum-Depth Embedding
Descriptors

For each component μi, we compute t(μi) and Â(μi) based on the thickness and
the gist computed for its children during the bottom-up traversal of T .

The embeddings Γ jμ of sk(μ), provided that sk(μ) admits more than one,
induce a partition on the embeddings of Gμ. Hence, in order to compute A(μ)
through all the possible embeddings of Gμ, we first compute the admissible sets
Aj(μ), restricted to those embeddings of Gμ corresponding to a single embedding
Γ jμ of sk(μ), and then perform the union of the Aj(μ).

Given an embedding ΓGμ of the pertinent graph Gμ of μ we distinguish two
types of faces. We call children faces the faces of ΓGμ that are also faces of some
ΓGν , with ν child of μ. We call skeleton faces all the other faces. Essentially,
“shrinking” each pertinent graph of the children of μ into a single (virtual) edge,
the skeleton faces of ΓGμ transform into the faces of an embedding Γ jμ of sk(μ).

Observe that, once the embedding Γ jμ of sk(μ) has been fixed, the distances
of each skeleton face of any embedding of ΓGμ from fμl and fμr depend on the
values t(ν1), . . . , t(νk) only, which, in turn, are independent from the embedding
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of each child component of μ. Hence, each face f of Γ jμ can be labeled with its
depths dl(f) and dr(f), which correspond to the above distances.

We provide for sk(μ) definitions analogous to those given for pertinent(μ),
and say that Γ jμ satisfies the pair of non-negative integers 〈x, y〉 if it is possible
to find a partition of its faces into two sets, denoted by Fl and Fr, such that
each face f ∈ Fl has dl(f) ≤ x and each face f ∈ Fr has dr(f) ≤ y. The infinite
set of integer pairs satisfied by Γ jμ is the admissible set of Γ jμ, and is denoted by
A(Γ jμ). Once the embedding Γ jμ of sk(μ) has been fixed, the admissible set Aj(μ)
can be computed starting from A(Γ jμ), the admissible set of each child νi, with
i = 1, . . . , δ(μ), and the values of the depths of its left and right external face
fνi

l and fνi
r . Namely, μ satisfies the integer pair 〈x, y〉 if 〈x, y〉 ∈ A(Γ jμ) and each

child νi satisfies a pair 〈xi, yi〉 such that: i) xi + dl(fνi

l ) ≤ x or xi+ dr(fνi

l ) ≤ y,
and ii) yi + dr(fνi

r ) ≤ y or yi + dl(fνi
r ) ≤ x.

Hence, in order to obtain A(μ), we compute for each child νi of μ the set
of integer pairs that are satisfied by νi when embedded into μ, that is, the set
of integer pairs that verify the conditions above. Namely, let μ be a node of
the SPQR-tree, let ν be a child of μ, and let 〈x, y〉 be a pair of non-negative
integers. Node ν satisfies 〈x, y〉, nested into μ, if the pertinent graph Gμ admits
an embedding ΓGμ where it is possible to find a partition of the set of the children
faces corresponding to the internal faces of ν into two sets, denoted by Fl and
Fr, such that all faces in Fl have distance from fμl less or equal than x and all
faces in Fr have distance from fμr less or equal than y.

The infinite set of integer pairs satisfied by component ν nested into μ is
the admissible set of ν into μ, and is denoted by A(ν|μ). The gist of A(ν|μ) is
denoted by Â(ν|μ) and assumed ordered with respect to the #x relationship.

Lemma 2. Given an embedding Γ jμ of sk(μ), the admissible set Aj(μ) of Gμ
(restricted to those embeddings of Gμ corresponding to Γ jμ) can be obtained by
intersecting the δ(μ) sets A(νi|μ) and A(Γ jμ).

As said above, the admissible set A(μ) can be easily obtained as the union of
the admissible sets Aj(μ) computed for any embedding Γ jμ of sk(μ).

The Series Case. In the series case, sk(μ) has exactly one embedding, and
such an embedding has no internal face. Hence, in order to compute Â(μ), it is
not necessary to compute A(Γ jμ) and it is sufficient, by Lemma 2, to intersect
the gists Â(νi|μ) of the admissible sets of the components νi nested into μ.

Given an S-node μ and one of its children ν, we suitably build a set S in
O(n(ν)) time, starting from Â(ν) and t(μ), that is the gist Â(ν|μ) of the admis-
sible set of ν nested into μ. First, initialize S with Â(ν). Observe that Â(ν) con-
tains the two pairs pfirst = 〈0, ymax〉 and plast = 〈xmax, 0〉, with ymax = xmax.
For each pair pk = 〈xk, yk〉 of Â(ν) define pkfirst = 〈0,max(yk, xk + t(μ))〉. De-
note by pfirst the pkfirst with minimum y and by plast the pair obtained from
pfirst swapping the two elements x and y. If pfirst # pfirst insert pfirst into S
and remove from S any pair p∗ such that pfirst # p∗. If plast # plast append
plast to S and remove from S any pair p∗ such that plast # p∗.
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Let μ be an S-node with children νi, for i = 1, . . . , δ(μ) and let n(νi) be the
number of vertices of νi. Since t(μ) = mini(t(νi)), for i = 1, . . . , δ(μ), we have:

Lemma 3. The thickness t(μ) can be computed in O(δ(μ)) time.

Lemma 4. Starting from Â(νi) and t(νi), for i = 1, . . . , δ(μ), the gist Â(μ) can
be computed in time O(

∑δ(μ)
i=1 n(νi)).

The Rigid Case. In the rigid case, since sk(μ) is a 3-connected component,
it admits exactly two embeddings, Γ 1

μ and Γ 2
μ , which only differ for a flipping

around its poles. Hence, it is possible to consider one of the two embeddings
only, say Γ 1

μ , compute the admissible set A1(μ) of μ restricted to Γ 1
μ , and obtain

the admissible set A2(μ) of μ restricted to Γ 2
μ by swapping, for every pair of

A1(μ), elements x and y. The gist Â(μ) is given by the union of the two sets. By
Lemma 2, A1(μ) can be obtained by intersecting the gist Â(Γ 1

μ) of the admissible
set of sk(μ) and the gists Â(νi|μ) of the admissible sets of the components νi
nested into μ, both computed on Γ 1

μ .
In order to compute Â(νi|μ) and Â(Γ 1

μ) it is useful to label each face f of Γ 1
μ

with its depths dl(f) and dr(f). This can be done in linear time performing a
single-source shortest path from the two external faces fμl and fμr .

Given an R-node μ and one of its children ν, we suitably build a set S in
O(n(ν)) time, starting from Â(ν), t(μ), and the depths dl(f) and dr(f) of each
face f of Γ 1

μ , that is the gist Â(ν|μ) of the admissible set of ν nested into μ.
First, build a set S′ containing a pair 〈xk + dl(fνl ), yk + dr(fνr )〉 for each pair
〈xk, yk〉 ∈ Â(ν), and a set S′′ containing a pair 〈yk + dl(fνr ), xk + dr(fνl )〉 for
each pair 〈xk, yk〉 ∈ Â(ν). Initialize S = S′ ∪ S′′. Observe that S contains the
two pairs pfirst = 〈0, ymax〉 and plast = 〈xmax, 0〉. For each pair pk = 〈xk, yk〉
of Â(ν) define pkfirst = 〈0,max(yk, xk + t(μ))〉. Denote by pfirst the pkfirst with
minimum y and by plast the pair obtained from pfirst swapping the two elements
x and y. If pfirst # pfirst insert pfirst into S and remove from S any pair p∗

such that pfirst # p∗. If plast # plast append plast to S and remove from S any
pair p∗ such that plast # p∗.

Given an R-node μ and the values of the depths dl(f) and dr(f) of each
face f ∈ Γ jμ, we build the gist Â(Γ jμ) of the admissible set of sk(μ) in O(δ(μ))
time. First, initialize Â(Γ jμ) = ∅. Then, for increasing values of x, consider the
partition of the internal faces of Γ jμ into Fl and Fr such that all faces at distance
less or equal than x from fμl are into Fl and the other ones are into Fr. Then, a
pair 〈x, y〉 such that all faces in Fr are at distance less or equal than y from fμr is
created and inserted into Â(Γ jμ) if it is incomparable with the last pair inserted.

Let μ be an R-node with children νi, for i = 1, . . . , δ(μ) and let n(νi) be the
number of vertices of νi. By performing a shortest-path on the (u, v)-dual of Gμ
between the external faces fμl and fμr , we have:

Lemma 5. The thickness t(μ) can be computed in O(δ(μ)) time.
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Lemma 6. Starting from Â(νi) and t(νi), for i = 1, . . . , δ(μ), the gist Â(μ) can
be computed in time O(

∑δ(μ)
j=1

∑j
i=1 n(νi)).

The Parallel Case. In the parallel case sk(μ) is composed of two vertices, u
and v, with δ(μ) parallel edges between them and admits a factorial number of
embeddings, corresponding to all the possible permutations of its δ(μ) edges.
Hence, according to Lemma 2, the gist Â(μ) can be obtained by performing
the union between δ(μ)! sets, where each set Aj(μ) corresponds to a different
embedding Γ jμ of sk(μ). Also, Aj(μ) can be computed by intersecting Â(Γ jμ)
and the gists Â(νi|μ) of the admissible sets of the components νi nested into μ.
Hence, a näıve computation of Â(μ) employs a factorial number of steps. We
reduce the number of permutations to be analyzed by exploiting the following
properties and considerations.

Let μ be a P-node with children νi, for i = 1, . . . , δ(μ). First, consider a pair
〈x, y〉 ∈ Â(μ) and an embedding ΓGμ of Gμ satisfying 〈x, y〉, i.e., whose internal
faces can be partitioned into two sets Fl and Fr such that all faces in Fl (Fr)
have distance from fμl (fμr ) less or equal than x (y).

Lemma 7. Let ΓGμ be an embedding of Gμ satisfying pair 〈x, y〉 ∈ Â(μ). There
exists a partition F ′

l and F ′
r such that: (i) all faces in F ′

l have distance from fμl
less or equal than x, (ii) all faces in F ′

r have distance from fμr less or equal than
y, (iii) there exists at most one component νc whose internal faces belong to both
F ′
l and F ′

r, and (iv) each child component at the left(right) of νc has its internal
faces in F ′

l (F
′
r).

The unique component νc, if any, whose faces belong to both F ′
l and F ′

r is called
the center of the permutation. Intuitively, Lemma 7 states that we could restrict
to consider those partitions Fl and Fr of the internal faces of ΓGμ such that each
child component different from νc has its internal faces into the same set Fl or
Fr. In other words, for each child component νi different from νc, Â(νi) can be
assumed to contain the two pairs 〈x, 0〉 and 〈0, y〉 only.

The gist Â(μ) can be computed by choosing, one by one, each child com-
ponent νc as the center of the permutation and inserting the other components
either to the left or the right of νc until a complete permutation is obtained. Each
subsequence σ of components is associated with the gist Â(σ) of its admissible
set A(σ), which is properly updated when a component is inserted. This ap-
proach would obtain the same permutation δ(μ) times, exploring O(δ(μ) · δ(μ)!)
sequences. Hence, at first glance, the computational complexity is augmented.
However, we show in the following that focusing on νc can greatly help to reduce
the number of permutations to be considered.

Lemma 8. Let σ be a sequence of child components of μ and let νi /∈ σ be a
child component with 〈0, yi〉, 〈xi, 0〉 ∈ Â(νi). Adding νi to the left(right) of σ we
obtain a sequence σ′(σ′′). The set S′ containing a pair 〈max(x+ t(νi), xi), y〉 for
each pair 〈x, y〉 ∈ Â(σ) is such that S′ # A(σ′) and S′ ⊂ A(σ′). Analogously,
the set S′′ containing a pair 〈x,max(y + t(νi), yi)〉 for each pair 〈x, y〉 ∈ Â(σ) is
such that S′′ # A(σ′′) and S′′ ⊂ A(σ′′).
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Let νi be a component. We introduce function l(νi) = t(νi) − xi, where xi is
such that pair 〈xi, 0〉 ∈ Â(νi).

Lemma 9. Let νc, ν′, and ν′′ be three child components of μ, and let Γ 1
μ and Γ 2

μ

be two embeddings of sk(μ) corresponding to two permutations of its components
which only differ for the swapping of two components ν′ and ν′′ lying on the
same side of νc. If l(ν′) < l(ν′′), then A2(μ) # A1(μ).

Intuitively, any permutation with a component ν′ further from νc than a second
component ν′′ with l(ν′′) < l(ν′) can be ignored since its admissible set is pre-
ceded by that computed with another permutation. Therefore, the number of
analyzed permutations can be reduced by ordering the components by decreas-
ing values of l(ν) and, once the center νc of the permutation has been chosen, by
adding the other components, ordered wrt l, either to its left or to its right. To
do so, we build a rooted tree T (νc) of height δ(μ)+1. Each node p at distance d
from the root is a pair 〈xp, yp〉 of non-negative integers and is associated with a
sequence σp of d child components of μ such that 〈xp, yp〉 ∈ Â(σp). The nodes at
distance d from the root are the incomparable pairs of integers satisfied by some
sequence of length d. Hence, the set of nodes at distance δ(μ) from the root is
Â(μ) restricted to the permutations having νc as the center.

Tree T (νc) is built as follows. The root is pair 〈0, 0〉 and corresponds to the
empty sequence. The root is added as many children as many pairs in the gist
Â(νc) of νc, each one associated with the sequence composed by νc only. The
following levels are obtained by considering one by one the other components
in decreasing order of l. When the k-th component νk is processed, each node p
at depth k − 1 is added two children pl and pr, corresponding to the sequences
νk · σp and σp · νk, respectively. Pairs pl and pr are computed, starting from p,
with the function presented in Lemma 8. From the set of pairs introduced at
level k all those preceded by a pair of the same level can be removed, pruning
the tree. The gist Â(μ) can be obtained as the union of the gists Âνc(μ), for each
child component νi chosen as the center of the permutation νc.

To efficiently build T (νc), we keep the nodes at each level ordered wrt the #x
relationship. When adding the k-th level, we produce the set Pl(Pr) of nodes
obtained by concatenating νk to the left(right) of σp, for each p at distance k−1
from the root. Since the nodes of the (k − 1)-th level are ordered wrt the #x
relationship, and due to the formula used to compute nodes in Pl(Pr), such a
set can be kept ordered wrt the #x relationship and succinct by comparing the
pair to be inserted with the last pair only. The set of nodes of the k-th level,
ordered wrt the #x relationship and succinct, is the union of Pl and Pr.

Since t(μ) =
∑δ(μ)
i=1 t(νi), we have:

Lemma 10. The thickness t(μ) can be computed in O(δ(μ)) time.

Lemma 11. Starting from Â(νi) and t(νi), the gist Âνc(μ) of the admissible set
restricted to all the permutations having νc as center can be computed in time
O(
∑δ(μ)
k=1

∑k
i=1 n(νi)).
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Lemma 12. Starting from Â(νi) and t(νi), for i = 1, . . . , δ(μ), the gist Â(μ)
can be computed in time O(δ(μ) ·

∑δ(μ)
k=1

∑k
i=1 n(νi)).

4.2 Computing the Minimum Depth and the Minimum-Depth
Embedding

At the end of the bottom-up traversal of T , the value of the minimum depth
can be computed starting from the gist of the admissible set of the component μ
that is the child of the root e of T . Namely, for each pair 〈xh, yh〉 ∈ Â(μ), denote
by mh the maximum between xh and yh. The minimum depth is the minimum
of the mh.

Lemma 13. Let μ be the child of the root of the SPQR-tree of an n-vertex graph
G. Starting from Â(μ), the minimum depth of G can be computed in O(n) time.

Theorem 1. Let G be an n-vertex biconnected planar graph and let T be the
SPQR-tree of G rooted at e. The minimum depth of an embedding of G with e
on the external face can be computed in O(n3) time and O(n2) space.

Proof: Consider the three sets S, R and P containing the series, rigid and parallel
nodes of T , respectively. For each series component μs ∈ S, by Lemmas 3 and 4,
t(μs) and Â(μs) can be computed in O(

∑δ(μs)
i=1 n(νi)) time. Hence, the overall

complexity for all the series nodes is O(
∑
μs∈S

∑δ(μs)
i=1 n(νi)). Since the number

of the series nodes is O(n), the above sum is O(n2).
For each rigid component μr ∈ R, by Lemmas 5 and 6, t(μr) and Â(μr) can

be computed in O(
∑δ(μr)
j=1

∑j
i=1 n(νi)). Hence, the overall complexity for all the

rigid nodes is O(

O(n)
︷ ︸︸ ︷

∑

μr∈R

δ(μr)∑

j=1

O(n)
︷ ︸︸ ︷
j∑

i=1

n(νi)), which is O(n2), since the total number of

children of all the rigid nodes is O(n).
For each parallel component μp ∈ P , by Lemmas 10 and 12, t(μp) and Â(μp)

can be computed in O(δ(μp)
∑δ(μp)
k=1

∑k
i=1 n(νi)) time. Hence, the overall com-

plexity for all the parallel nodes is O(

O(n2)
︷ ︸︸ ︷

∑

μp∈P
δ(μp)

δ(μp)∑

k=1

O(n)
︷ ︸︸ ︷
k∑

i=1

n(νi)), which is O(n3),

since the total number of children of all the parallel nodes is O(n). The time com-
plexity of the bottom-up traversal is O(n2) + O(n2) + O(n3) = O(n3). Starting
from the gist of the admissible set of the root, the minimum depth is computed,
by Lemma 13, in O(n) time.

The space bound can be obtained by considering that there are O(n) com-
ponents in T and that the size of the gists of their admissible sets is O(n).

�
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To produce a minimum-depth embedding of G with an edge e on the external
face we need some additional information to be added to each component during
the bottom-up traversal of T , meant to describe how the components must be
attached together in order to obtain an embedding satisfying each pair of the
gist of the admissible set.

Namely, for each node μ and for each pair p ∈ Â(μ) we attach an “embedding
descriptor” composed of (i) a Boolean variable bμ specifying whether μ must be
attached to its parent component ν with fl(μ) corresponding to fl(ν) or not,
and (ii) an integer pair pi for each child component νi of μ specifying how νi
must be, in its turn, embedded in order to obtain an embedding of μ satisfying
p. In addition, if μ is a parallel component, we record the needed ordering of its
child components νi.

The minimum-depth embedding is computed with a top-down traversal of the
SPQR-tree T rooted at e, using the above described additional structures, by
replacing each virtual edge with the skeleton of the corresponding component.

Theorem 2. Let G be an n-vertex biconnected planar graph. The minimum-
depth embedding of G can be computed in O(n4) time and O(n3) space.

Proof: For each edge e of G, compute the SPQR-tree rooted at e in O(n) time
and the minimum-depth embedding with e on the external face in O(n3) time.
The cubic space bound is due to the fact that, for each component and for each
integer pair of the gist of its admissible set, it must be recorded an integer pair
for each child and, eventually, an ordering of the children. �

5 Extension to General Planar Graphs

The minimum-depth embedding of a simply-connected planar graphG, described
by its BC-tree, can be found with an approach similar to that used in [4]. The
key point of such an approach is that the algorithm to compute a minimum-
depth embedding of a biconnected graph with a specified edge on the external
face can be suitably modified in order to be applied to each block μi, taking into
account the depth of the blocks that are attached to the cutvertices of μi, and
maintaining the O(n3

i ) time complexity, where ni is the number of vertices of μi
(see [1]). Each child block μj , sharing the cutvertex vj with μi, will be embedded
with vj on its external face. Hence, we apply the modified algorithm using as
reference edge each one of the edges incident to vj and choose the embedding
with minimum depth.

We start by choosing a root block for the BC-tree, and a reference edge
inside such a block. We traverse bottom-up the BC-tree applying the modified
algorithm. This computation has to be performed for each edge of each block
chosen as the root block. The overall O(n4) complexity can be obtained by
considering that the modified algorithm has to be launched at most three times
for each edge of G. Namely, we launch the algorithm on each edge e of G when
such an edge is chosen to be on the external face, taking into account the depths
of all the attached blocks, and we launch the algorithm on each edge e incident
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to a cutvertex v (hence, at most two times for each e) taking into account the
depths of all the attached blocks with the exception of those attached to v.
Therefore, the following theorem follows.

Theorem 3. Let G be an n-vertex connected planar graph. The minimum-depth
embedding of G can be computed in O(n4) time and O(n3) space.

6 Conclusions

We presented an O(n3)-time algorithm for computing a minimum-depth embed-
ding of a biconnected planar graph with a given edge on the external face. Then,
we exploited such a result to solve the problem on a general planar graph in
O(n4) time.

Since our approach is inspired by that in [4], it is useful to stress the simi-
larities ad the differences between the two contributions. We take from [4] the
fundamental idea of decomposing the graph into components and to separately
consider each component. Also, the concept of thickness is the same as in [4].
In both papers there is the idea of equipping each component with pairs of
integers, representing their distance from the external face. However, in [4] a
pair represents the result of a “probe” that says that a certain component is
feasible with that depth. In our case a set of pairs represents implicitly all the
admissible values of depth of the component. The combinatorial structure of
such pairs and their nice computational properties are a key ingredient of our
paper. The techniques for combining the components used in the two papers are
similar. However, in the critical problem of dealing with parallel compositions
we develop an approach that has many new features.

The natural problem that remains open is to fill the gap from our O(n4) time
to the linear time obtained in [9] for a simplified version of the problem.
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Abstract. We introduce a family of directed geometric graphs, denoted
Gθ

λ, that depend on two parameters λ and θ. For 0 ≤ θ < π
2 and 1

2 <

λ < 1, the Gθ
λ graph is a strong t-spanner, with t = 1

(1−λ) cos θ
. The

out-degree of a node in the Gθ
λ graph is at most �2π/ min(θ, arccos 1

2λ
)�.

Moreover, we show that routing can be achieved locally on Gθ
λ. Next,

we show that all strong t-spanners are also t-spanners of the unit disk
graph. Simulations for various values of the parameters λ and θ indicate
that for random point sets, the spanning ratio of Gθ

λ is better than the
proven theoretical bounds.

1 Introduction

A graphG whose vertices are points in the plane and edges are segments weighted
by their length is a geometric graph. A geometric graph G is a t-spanner (for
t ≥ 1) when the weight of the shortest path in G between any pair of points a, b
does not exceed t · |ab| where |ab| is the Euclidean distance between a and b. Any
path from a to b in G whose length does not exceed t · |ab| is a t-spanning path.
The smallest constant t having this property is the spanning ratio of the graph.
A t-spanning path from a to b is strong if the length of every edge in the path
is at most |ab|. The graph G is a strong t-spanner if there is a strong t-spanning
path between every pair of vertices.

The spanning properties of various geometric graphs have been studied ex-
tensively in the literature (see the book by Narasimhan and Smid [7] for a com-
prehensive survey on the topic). We are particularly interested in spanners that
are defined by some proximity measure or emptiness criterion (see for example
Bose et al. [2]). Our work was initiated by Chavez et al. [5] who introduced a
new geometric graph called Half-Space Proximal (HSP). Given a set of points
in the plane, HSP is defined as follows. There is an edge oriented from a point
p to a point q provided there is no point r in the set that satisfies the following
conditions: (a) |pr| < |pq|, (b) there is an edge from p to r and (c) q is closer to
r than to p.

� Research supported in part by NSERC, MITACS, MRI, and HPCVL.
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The authors show that this graph has maximum out-degree1 at most 6. The
authors also claim that HSP has a spanning ratio2 of 2π+1 and that this bound
is tight3. Unfortunately, we found statements made in their proofs for the latter
two claims to be erroneous or incomplete as we outline in Section 3. However,
in reviewing their experimental results as well as running some of our own,
although their proofs are incomplete, we felt that the claimed results might be
correct. Our attempts at finding a correct proof to their claims was the starting
point of this work. Although we have been unable to find a correct proof of
their claims, we introduce a family of directed geometric graphs that approach
HSP asymptotically and possess several other interesting characteristics outlined
below.

In this paper, we define a family Gθλ of graphs. These are directed geometric
graphs that depend on two parameters λ and θ. We show that each graph in
this family has bounded out-degree and is a strong t-spanner, where both the
out-degree and t depend on λ and θ. Furthermore, graphs in this family admit
local routing algorithms that find strong t-spanning paths. Finally, we show that
all strong t-spanners are also spanners of the unit-disk graph, which are often
used to model adhoc wireless networks.

The remainder of this paper is organized as follows. In Section 2, we introduce
the Gθλ graph and prove its main theoretical properties. In Section 3, we outline
the inconsistencies within statements of the proof of the upper and lower bounds
on the stretch factor of HSP given in Chavez et al. [5]. In Section 4, we show
that by intersecting the Gθλ graph with the unit disk graph, we obtain a spanner
of the unit disk graph. In Section 5, we present some simulation results about
the Gθλ graph.

2 The Family Gθ
λ of Graphs

In this section, we define the Gθλ graph and prove that it is a strong t-spanner of
bounded out-degree. We first introduce some notation. Let P be a set of points
in the plane, 0 ≤ θ < π

2 and 1
2 < λ < 1.

Definition 1. The θ-cone(p, r) is the cone of angle 2θ with apex p and having
the line through p and r as bisector.

Definition 2. The λ-half-plane(p, r) is the half-plane containing r and having
as boundary the line perpendicular to pr and intersecting pr at distance 1

2λ |pr|
from p.

Definition 3. The destruction region of r with respect to p, denoted K(p, r), is
the intersection of the θ-cone(p, r) and the λ-half-plane(p, r) (see Figure 1(a)).

The directed graph Gθλ(P ) is obtained by the following algorithm. For every
point p ∈ P , do the following:
1 Theorem 1 in [5].
2 Theorem 2 in [5].
3 Construction in Figure 2 in [5].
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Fig. 1. (a) The destruction region of r with respect to p, and (b) the location of a
point r destroying (p, q)

1. Let N(p) be the set P \ {p}.
2. Let r be the point in N(p) which is closest to p.
3. Add the directed edge (p, r) to Gθλ(P ).
4. Remove all q ∈ K(p, r) from N(p) (i.e., N(p) ← N(p) \K(p, r)).
5. If N(p) is not empty go to 2.

Note that the graph computed by this algorithm has the following property:

Lemma 1. There is an edge (p, q) ∈ Gθλ(P ) iff there is no point r ∈ P , such
that |pr| ≤ |pq|, (p, r) is an edge of Gθλ(P ) and q ∈ K(p, r), (ties on the distances
are broken arbitrarily). Such a point r is said to be a destroyer of the edge (p, q).

2.1 Location of Destroyers

What prevents the directed pair (p, q) from being an edge in Gθλ? It is the
existence of one point acting as a destroyer. Given two points p, q, where can a
point lie such that it acts as the destroyer of the edge (p, q)? In this subsection,
we describe the region containing the points r such that q ∈ K(p, r). This region
is denoted K(p, q). In other words, K(p, q) is the description of all the locations
of possible destroyers of an edge (p, q).

Proposition 1. Let R(p, q, λ) be the intersection of the disks C1 centered at
p with radius |pq| and C2 centered at c = p + λ(q − p) with radius λ|pq|. If
q ∈ K(p, r) and |pr| ≤ |pq|, then r ∈ R(p, q, λ).

Proof: If r destroyed (p, q), then |pr| ≤ |pq|. Therefore, r is in C1. To complete
the proof, we need to show that r is in C2. We begin by considering the case when
q lies on the line l which is the boundary of λ-half-plane(p, r) (see Figure 1(b)).
Let s1 be the midpoint of pr, t1 the intersection of l with pr and c′ the inter-
section of pq with the bisector of pr. Since the triangles �pt1q and �ps1c

′ are
similar, this implies that |pc′| = |pq| |ps1||pt1| = |pq| |pr|

2|pt1| = |pq| 2λ|pr|2|pr| = λ|pq| = |pc|.
Therefore, c′ = c, which implies that |cr| = |cp| thereby proving that r is on the
boundary of C2. In the case when q is not on l, then we have |pc′| < |pc| and r
lies on a circle centered at c′ going through p. Therefore, r is contained in C2,
which completes the proof. �
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From the definition of K(p, q) and Proposition 1, we have:

Proposition 2. Let K(p, q) be the intersection of R(p, q, λ) with the θ-cone(p, q).
If q ∈ K(p, r) and |pr| ≤ |pq|, then r ∈ K(p, q).

2.2 The Spanning Ratio of Gθ
λ

Theorem 1. For 0 ≤ θ < π
2 and 1

2 < λ < 1, the Gθλ graph is a strong t-spanner,
with t = 1

(1−λ) cos θ .

Proof: Let P be a set of points in the plane, p, q ∈ P and dG(p, q) be the length
of the shortest path from p to q in Gθλ(P ). By induction on the rank of |pq|, we
show dG(p, q) ≤ t|pq|.

p q

z

λ|pq|

r

v

α

c = (0, 0)

θ p q

z

λ|pq|

r

c = (0, 0)

β θp q

z

λ|pq|

r

c = (0, 0)

β θ

Case 1 Case 2.1 Case 2.2

Fig. 2. Cases for the proof of Theorem 1

Base case: If p and q form a closest pair, then the edge (p, q) is in Gθλ(P ) by
definition. Therefore, dG(p, q) = |pq| ≤ t|pq|.

Inductive case: If the edge (p, q) is in Gθλ(P ), then dG(p, q) = |pq| ≤ t|pq| as
required. We now address the case when (p, q) is not in Gθλ(P ). By Proposition 2,
there must be a point r ∈ K(p, q) with |pr| < |pq| that is destroying (p, q) and
such that the edge (p, r) is in Gθλ(P ). Since r ∈ K(p, q) and |pr| < |pq|, we have
that |rq| < |pq|. By the inductive hypothesis, we have dG(r, q) ≤ t|rq|.

Let z be the intersection of the boundaries of the disks C1 and C2 defined in
Proposition 1. We assume, w.l.o.g., that c is the origin and that points p, q are
on the x-axis with p to the left of q as depicted in Figure 2. The remainder of the
proof addresses two cases, depending on whether or not rx ≤ zx (the notation
px denotes the x-coordinate of a point p).

Case 1: rx ≤ zx. Let v ∈ K(p, q) be the point with the same x-coordinate as r
and having the greatest y-coordinate. In other words, v is the highest point in
K(p, q) that is strictly above r. We have:

dG(p, q) ≤ |pr| + dG(r, q) ≤ |pr| + t|rq| ≤ |pv| + t|vq|.
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Now, let α = ∠vpq ≤ θ We express |pv| and |vq| as a function of cosα. Consider
the triangle �(pvc) and note that |vc| = |pc| by construction. Since cosα =
|pv|/2λ|pq|, we have:

|pv| = 2λ|pq| cosα.

From the law of cosines, we see:

|vq|2 = |pv|2 + |pq|2 − 2|pv||pq| cosα = |pq|2(4λ2 cos2 α− 4λ cos2 α + 1)

which implies that:

dG(p, q) ≤ 2λ|pq| cosα + t|pq|
√

4λ2 cos2 α− 4λ cos2 α + 1

= |pq|(2λ cosα + t
√

4λ2 cos2 α− 4λ cos2 α + 1).

Therefore, we have to show that

t ≥ 2λ cosα
1 −

√
4λ2 cos2 α− 4λ cos2 α+ 1

.

Since α ≤ θ < π/2 implies cos θ ≤ cosα, by straightforward algebraic manipula-
tion we have that:

1
(1 − λ) cosα

≥ 2λ cosα
1−

√
4λ2 cos2 α− 4λ cos2 α + 1

.

Case 2: rx > zx. Let β = ∠zpq. We first compute the value of cosβ. From the
definition of C1 and C2, we have z2

x + z2
y = λ2|pq|2 and (zx − px)2 + z2

y = |pq|2.
Therefore, since px = −λ|pq|, we have zx = |pq|(1−2λ2)

2λ which implies

cosβ =
λ|pq| + zx

|pq| = λ +
1 − 2λ2

2λ
=

1
2λ

.

We need to consider two subcases, depending on whether or not β ≤ θ.

Case 2.1: β ≤ θ. In this case, we have:

dG(p, q) ≤ |pr| + dG(r, q) ≤ |pr| + t|rq| ≤ |pz|+ t|zq| = |pq|+ t|zq|.

By the law of cosines, we have

|zq|2 = |pq|2(2 − 1
λ

)

which implies

dG(p, q) ≤ |pq| + t|pq|
√

2 − 1
λ
.
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Therefore, we have to show that

t ≥ 1

1 −
√

2 − 1
λ

.

Since β ≤ θ, we have cosβ ≥ cos θ, and then

t =
1

(1 − λ) cos θ
≥ 1

(1 − λ) cos β
=

1
(1 − λ)(1/2λ)

=
2λ

1 − λ
≥ 1

1 −
√

2 − 1
λ

where the last inequality holds because it is equivalent to (1− λ)2 ≥ 0.

Case 2.2: β > θ. By the law of cosines we have

dG(p, q) ≤ |pq|+ t|pq|
√

2 − 2 cos θ

which means that we have to show that

t ≥ 1
1 −

√
2 − 2 cos θ

.

But 1
1−√

2−2 cos θ
≥ 1

(1−λ) cos θ since β > θ implies cos θ > cosβ = 1
2λ . This

completes the last case of the induction step. Note that the resulting t-spanning
paths found in this inductive proof are strong since both |pr| and |rq| are shorter
than |pq|. �
The above proof provides a simple local routing algorithm. A routing algorithm
is considered local provided that the only information used to make a decision is
the 1-neighborhood of the current node as well as the location of the destination
(see [4] for a detailed description of the model). The routing algorithm proceeds
as follows. To find a path from p to q, if the edge (p, q) is in Gθλ(P ), then take
the edge. If the edge (p, q) is not in Gθλ(P ), then take an edge (p, r) where r
is a destroyer of the edge (p, q). Recall that r is a destroyer of the edge (p, q)
if r ∈ K(p, q). This can be computed solely with the positions of p, q and r.
Therefore, determining which of the neighbors of p in Gθλ(P ) destroyed the edge
(p, q) is a local computation.

Proposition 3. The out-degree of a node in Gθλ is at most � 2π
min(θ,arccos 1

2λ )
�.

Proof: Let (p, r) and (p, s) be two edges of the Gθλ graph. W.l.o.g., |pr| ≤ |ps|.
Let l be the line perpendicular to pr through p+ 1

2λ (r−p). Then either ∠spr ≥ θ
or s lies on the same side of l as p. In the latter case, the angle ∠spr is at least
arccos 1

2λ (see Figure 3). The angle ∠spr is then at least min(θ, arccos 1
2λ), which

means that p has at most �2π/min(θ, arccos 1
2λ)� outgoing edges. �

Corollary 1. If θ ≥ π/3 and λ > 1
2 cos(2π/7) , then the out-degree of a node in

the Gθλ graph is at most six.
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p r

s

arccos 1
2λ

1
2λ |pr|

|pr|

l

θ

Fig. 3. The Gθ
λ graph has bounded out-degree

3 Half-Space Proximal

In this section, we outline the inconsistencies within statements of the proof of the
upper and lower bounds on the stretch factor of HSP given in Chavez et al. [5].

In the proof of the upper bound (Theorem 2 of Chavez et al. [5]), claim 4
states that all vertices u0, u1, u2, . . . , uk are either in clockwise or anticlockwise
order around v. The claim is that this situation exists when (u, v) is not an edge
of HSP and no neighbor of u is adjacent to v. However, as stated, this is not
true. A counter-example to this claim is shown in Figure 4. There is a unique
path from u to v, namely uu1u2v, but this path is neither clockwise nor counter-
clockwise around v. We believe that this situation may exist in the worst case.
However, a characterization of the worst case situation must be given and it
must be proven that the worst case situation has the claimed property.

u v

u1

u2

Fig. 4. Counter-example to the proof of Theorem 2 of [5]

For the lower bound, the authors also claim that the spanning ratio of HSP
can be arbitrarily close to 2π+1. However, the proof they provide to support that
claim is a construction depicted in Figure 5 (reproduced from [5]). The claim
is that the path from u to v can have length arbitrarily close to (2π + 1)|uv|.
Although this may be true for the path that they highlight, this path is not the
only path from u to v in HSP. The authors neglected the presence of the edge
(u1uk) in their construction, which provides a shortcut that makes the distance
between u and v much less than 2|uv|.

One of the main reasons we believe the claims made in Chavez et al. [5]
may be true is that in the simulations, all the graphs have small spanning ratio.
In fact, the spanning ratio seems to be even smaller than 2π+1. However, at this
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u u1 c2

c3

1
v 1 − δ

uk−1

uk

u2

u3

y z

Fig. 5. The illustration of the lower bound on the spanning ratio of [5]

point, no proof that HSP is a constant spanner is known. We provide a lower
bound of 3− ε on the spanning ratio of HSP:

Proposition 4. The HSP graph has stretch factor at least 3 − ε.

Proof: Consider the set of 6 point as in Figure 6, put δ = ε/6. The length of the
path between p and q via a and b is equal to the length of the path between p
and q via c and d. The length of both of these paths is 3− 6δ. Since the shortest
path between p and q in the HSP graph is one of the above paths, the stretch
factor is 3 − 6δ = 3 − ε. �

a

b

p

q

c

d

1

1 − δ

1 − δ 1 − 2δ

1 − 3δ

1 − δ

1 − δ

1 − 2δ

1 − 3δ

Fig. 6. Example of a 6 nodes HSP with a stretch factor of 3 − ε. The solid edges are
in HSP.

4 Unit Disk Graph Spanners

In Section 2, we showed that the Gθλ graph of a set of points in the plane is
a strong t-spanner of the complete graph of these points, for a constant t =

1
(1−λ) cos θ . We show in this section that strong t-spanners are also spanners of
the unit disk graph. That is, the length of the shortest path between a pair of
points in the graph resulting from the intersection of a strong t-spanner and a
unit disk graph is not more than t times the length of the shortest path in the
unit disk graph. Before proceeding, we need to introduce some notation.

For simplicity of exposition, we will assume that given a set P of points in the
plane, no two pairs of points are at equal distance from each other. The complete
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geometric graph defined on a set P of points, denoted C(P ), is the graph whose
vertex set is P and whose edge set is P × P , with each edge having its weight
equal to the Euclidean distance between its vertices. Let e1, . . . , e(n

2) be the

edges of C(P ) sorted according to their lengths L1, . . . , L(n
2). For i = 1 . . .

(
n
2

)
,

we denote by Ci(P ) the geometric graph consisting of all edges whose length is
no more than Li. In general, for any graph G whose vertex set is V , we define
Gi as G ∩ Ci(V ). Let UDG(P ) be the unit disk graph of P , which is the graph
whose vertex set is P and with edges between pairs of vertices whose distance is
not more than one. Note that UDG(P ) = Ci(P ) for some i.

We now show the relationship between strong t-spanners and unit disk graphs.

Proposition 5. If S is a strong t-spanner of C(P ), then for all i = 1 . . .
(
n
2

)

and all j = 1 . . . i, Si contains a t-spanning path linking the vertices of ej.

Proof: Let p and q be the vertices of ej . Consider a strong t-spanner path in
S between p and q. Each edge on this path has length at most |pq| = Lj ≤ Li.
Therefore, each edge is in Si. �

Proposition 6. If S is a strong t-spanner of C(P ), then for all i = 1 . . .
(
n
2

)
,

Si is a t-spanner of Ci(P ).

Proof: Let a and b be any two points such that dCi(P )(a, b) is finite. We need
to show that in Si there exists a path between a and b whose length is at most
t · dCi(P )(a, b). Let a = p1, p2, . . . , pk = b be a shortest path in Ci(P ) between a
and b. Hence:

dCi(P )(a, b) =
k−1∑

j=1

|pjpj+1|.

Now, by proposition 5, for each edge (pj , pj+1) there is a path in Si between pj
and pj+1 whose length is at most t · |pjpj+1|. Therefore:

dSi(P )(a, b) ≤
k−1∑

j=1

t · |pjpj+1| = t

k−1∑

j=1

|pjpj+1| = t · dCi(P )(a, b)

which means that in Si, there exists a path between a and b whose length is at
most t · dCi(P )(a, b). �

Corollary 2. If S is a strong t-spanner of C(P ), then S ∩UDG(P ) is a strong
t-spanner of UDG(P ).

Proof: Just notice that UDG = Ci for some i and the result follows from
Proposition 6. �
Thus, we have shown sufficient conditions for a graph to be a spanner of the unit
disk graph. We now show that these conditions are also necessary.

Proposition 7. If S is a subgraph of C(P ) such that for all i = 1 . . .
(
n
2

)
, Si is

a t-spanner of Ci(P ), then S is a strong t-spanner of C(P ).
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Proof: Let a, b be any pair of points chosen in P . We have to show that in S,
there is a path between a and b such that

1. its length is at most t · |ab| and
2. every edge on the path has length at most |ab|.

Let ei = (a, b). We know that Si is a t-spanner of Ci(P ). Since Ci(P ) contains
ei, dCi(P )(a, b) = |ab|. Hence, there is a path in Si (and therefore in S) whose
length is at most t · dCi(P )(a, b) = t|ab|. Also, since it is in Si, all of its edges
have length at most Li = |ab|. �
The two last results, together, allow us to determine whether or not given families
of geometric graphs are also spanners of the unit disk graph. First, since the Gθλ
graph is a strong t-spanner, we already know that it is also a spanner of the
unit disk graph. Second, Bose et al. [3] showed that the Yao graph [8] and the
Delaunay triangulation are strong t-spanners. Therefore, these graphs are also
spanners of the unit disk graph. Third, the θ-graph [6] is not always a spanner of
the unit disk graph. The reason for that is that in a cone, the edge you chose may
not be the shortest edge. Hence, the path from a point p to a point q may contain
edges whose length is greater than |pq| (see Figure 7). Using Proposition 7, we
thus know that the intersection of the θ-graph with the unit disk graph may not
be a spanner of the unit disk graph. Indeed, the intersection of the θ-graph with
the unit disk graph may not even be connected.

p q

Fig. 7. The θ-graph is not a strong t-spanner

5 Simulation Results

In Section 2, we provided worst-case analysis of the spanning ratio of the Gθλ
graph. Using simulation, we now provide estimates of the average spanning ratio
of the Gθλ graph. Using a uniform distribution, we generated 200 sets of 200
points each and computed the spanning ratio for λ ranging from 0.5 to 1 and
θ ranging from 5◦ to 90◦ (for θ = 0◦, the spanning ratio is exactly 1). For each
graph, we then computed the spanning ratio and the local routing ratio. The
spanning ratio is defined as the maximum, over all pair of points (p, q), of the
length of the shortest from p to q path in the Gθλ graph divided by |pq|. The
local routing ratio is defined as the maximum, over all pair of points (p, q), of
the length of the path produced by using a local routing strategy in the Gθλ
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Fig. 8. (a) Spanning Ratio and (b) Local Routing Ratio for λ = 0.5 to 1 and θ = 5◦
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Fig. 9. (a) Ratios for θ = 45◦ and (b) Ratios for λ = 0.75

graph divided by |pq|. The local routing strategy we have used is the following:
at each step, send the message to the neighbor which destroyed q. We also tried
the strategy which consists in choosing the neighbor which is the nearest to q,
and the results we obtained were the same.

Figure 8(a) shows the results we obtained for the spanning ratio. Figure 8(b)
shows the results we obtained for the local routing ratio. Exact values of our
simulations results can be found in the technical report version of this paper [1].

One interesting conclusion we can draw from these results is that for the
spanning ratio, θ has a more decisive influence than λ. Figure 9(a) shows the
simulation results for the cases where λ = 0.75. We see that even though both
ratios generally increase when θ increase, the spanning ratio varies between 1.07
and 2.21 (107% variation), while the local routing ratio only varies between 2.33
and 2.77 (19% variation). For the local routing ratio, it is the other way around.
It is λ which has a more decisive influence. Figure 9(b) shows the influence of λ
when θ = 45◦. In that case, the local routing ratio varies between 1.72 and 4.55
(165% variation), while the spanning ratio only varies between 1.52 and 1.81
(19% variation).
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6 Conclusion

We conclude with the problem that initiated this research. Determine whether
or not HSP is a strong t-spanner for some constant t.
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Abstract. A disk graph is an intersection graph of a set of disks with
arbitrary radii in the plane. In this paper, we consider the problem of ef-
ficient construction of sparse spanners of disk (ball) graphs with support
for fast distance queries. These problems are motivated by issues arising
from topology control and routing in wireless networks.

We present the first algorithm for constructing spanners of ball graphs.
For a ball graph in Rk, we construct a (1 + ε)-spanner with O(nε−k+1)
edges in O(n2�+δε−k log� S) expected time, using an efficient partitioning
of the space into hypercubes and solving intersection problems. Here 
 =
1−1/(�k/2�+2), δ is any positive constant, and S is the ratio between the
largest and smallest radius. For the special case where all the balls have
the same radius, we show that the spanner construction has complexity
almost equivalent to the construction of a Euclidean minimum spanning
tree. Previously known constructions of spanners of unit ball graphs have
time complexity much closer to n2. Additionally, these spanners have
a small vertex separator (hereditary), which is then exploited for fast
answering of distance queries. The results on geometric graph separators
might be of independent interest.

1 Introduction

Let G = (V,E) be a weighted graph, and let dG(u, v) be the length of a shortest
path between vertices u and v in G. For any fixed ε > 0, a (1 + ε)-stretch
spanner of G is a subgraph G′ such that for all pairs of vertices u and v,
dG′(u, v)/dG(u, v) ≤ (1 + ε). Spanner constructions have been widely investi-
gated for general graphs and complete Euclidean graphs, also with additional
properties like weight, diameter, degree [1].

We present a new method for producing spanners of geometric graphs based
on a hierarchical decomposition of the plane into tiles of various sizes. Our con-
structions are also more general, as they are not restricted to complete Euclidean
graphs, but extend to geometric disk graphs, as well as their higher dimensional
versions, the ball graphs. In all cases, edge lengths are given by Euclidean dis-
tances, but not all edges have to be present in our graphs. The difficulty in
constructing a spanner for the disk graph metric when compared to the metric
� A short abstract of this work appeared in the proceedings of FWCG 2006.
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induced by a complete Euclidean graph is that two points that are close in space
are not necessarily close under the graph metric.

The intersection graphs of disks in the Euclidean plane has been studied for
many years for its theoretical aspects as well as its applications. We consider
weighted disk graphs where the weight of an edge is the Euclidean distance
between centers. Such graphs have been used widely to model the communication
between objects in the context of wireless networks [2,3]. For wireless networks
they model the fact that two wireless nodes can directly communicate with each
other only if they are within a certain distance.

Spanners are important for disk graphs because restricting the size of a net-
work reduces the amount of routing information. Spanners are used in topology
control for maintaining network connectivity, improving throughput, and opti-
mizing network lifetime [3]. Geometric spanner constructions for disk-like graphs
have been widely investigated in both theory and networking communities. Many
constructions, both centralized and distributed, also with additional properties
like planarity, power saving have been proposed [2,3]. However, all these con-
structions only work for some restricted cases of disk graphs (for example like
for unit disk graphs).

We present the first algorithm for constructing spanners of general ball (disk)
graphs. Additionally, for unit ball graphs, we show that constructing (1 + ε)-
spanners has randomized complexity almost equivalent to the construction of a
Euclidean minimum spanning tree. Therefore we cannot hope to find a faster
algorithm for constructing spanners of unit ball graphs, unless we improve on
some other well-studied problems [4]. The previously best known constructions
of spanners of unit ball graphs were primarily based on Yao graph construction
and therefore have time complexity Ω(n2−a(k)) for a(k) = 2−k+1 in dimensions
k greater than 3 [5,6].

Our spanners also have a small separator decomposition, which helps us to
support fast answering of distance queries. Distance queries are important in
ball graphs as they are widely used to determine coverage in wireless sensor
networks, and for routing purposes [7]. Since complete Euclidean graphs are just
a special case of (unit) ball graphs, our results also provides a new approach for
constructing spanners with small separators in these graphs (a previous solution
[8] turned out to be incorrect [9]).

In a companion paper [10], the authors used a much simpler hierarchical par-
titioning scheme to construct a data structure for answering distance queries in
ball graphs. It is shown that a ball graph can be preprocessed inO(mn1−1/k ε−k+1

+mε−k logS) time, producing a data structure of O(n2−1/k ε−k+1 + nε−k logS)
size, such that subsequent distance queries can be answered approximately in
O(n1−1/k ε−k+1 + ε−k log S) time. Here S is the global scale factor (formally de-
fined later). The resulting distance estimate is within an additive error which is
less than ε times the longest edge on some shortest path. We build upon this foun-
dation and introduce several new techniques to obtain our new results. Note that
spanners are far more desirable (thus also tougher to construct) and the sparse
graphs constructed in [10] are not spanners.
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2 Preliminaries

Let P = {p1, . . . , pn} be a set of points in Rk for any fixed dimension k. We
assume w.l.o.g. that points are distinct. Let D = {Dp1 , . . . , Dpn} be a set of n
balls such that (i) Du is centered at u ∈ P , and (ii) Du has radius of ru. Balls
Du and Dv intersect if d(u, v) ≤ (ru + rv), where d(., .) denotes the Euclidean
metric. The ball graph G = (P , E) is a weighted graph where an edge between
u and v with weight d(u, v) exists iff Du and Dv intersect. Let dG denote the
shortest path metric induced by the connected graph G on its vertices. The
balls in D are rescaled such that the largest radius equals one. Now, the global
scale factor (ratio between the largest and smallest radius) of D is defined as
ρ(D) = 1/min{ru | Du ∈ D}.

Our algorithms use a variant of 2k-trees (quadtrees in the plane). For a node
t, denote by p(t) the parent of t in the tree. We use dt to denote the depth of
node t in the tree. A point (x, y) is contained in the node t representing a square
with center (xt, yt) and length lt in the quadtree iff xt − lt/2 ≤ x < xt + lt/2
and yt − lt/2 ≤ y < yt + lt/2. For a set of squares T in the quadtree a point
is contained in T iff there exists t ∈ T , such that point is contained in t. The
distance between two squares is the Euclidean distance between their centers.

Throughout the paper we refer to the vertices of a graph as vertices and
vertices of a tree as nodes. We assume w.l.o.g. that ε−1 is a power of 2. Floors
and ceilings are omitted throughout the paper, unless needed. Note that starting
with a fixed ε we get a (1 + cε)-spanner for a fixed constant c. For simplicity we
describe all the algorithms for k = 2 and then state the generalizations to higher
k. We use the notation Õ(f) ≡ O(f poly log f).

2.1 Our Contributions

For ball graphs in Rk, we solve halfspace range searching problems to construct
spanners with O(nε−k+1) edges. For the interesting case when ρ(D) is polyno-
mially bounded by using the currently best algorithm of Agarwal and Matoušek
[11] for halfspace range searching, we obtain a running time of Õ(n2�+δε−k),
where � = 1 − 1/(�k/2�+ 2) and δ is any positive constant.

In the case when all the balls have the same radius (unit ball graphs), we re-
place halfspace range searching problems by bichromatic closest pair problems.
Therefore we get a running time of Õ(nε−2) for k = 2. In higher dimensions
using the currently best algorithm of Agarwal et al. [6] for solving the bichro-
matic closest pair problem, we get Õ(n4/3ε−3) expected time for k = 3, and
O(n2−2/(�k/2	+1)+δε−k) expected time for k ≥ 4.

The spanners constructed have an O(n1−1/kε−k+1/2 + ε−2k+1 log ρ(D)) vertex
separator, which can be found in O(n log n) time. Using this separator we obtain
fast algorithms for approximately answering distance queries in ball graphs. We
show that the spanner can be preprocessed in Õ(nf(n, ε)) time and space, such
that subsequent distance queries under the dG metric can be answered with
(1 + ε)-stretch in O(f(n, ε)) time and with (2 + ε)-stretch in O(log n) time. Here
f(n, ε) = n1−1/kε−k+1/2 + ε−2k+1 log ρ(D).
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We now present an overview of some of the ideas that we use to obtain these
results. All missing proofs and details, can be found in the full version [12].

2.2 Modified Yao Graph

A Yao graph [5] construction involves partitioning the space around each point
into cones with a fixed opening angle and connecting the point to its nearest
neighbor in each cone. Even though constructing the original Yao graph is costly
(to the best of authors knowledge the currently best running time is from [6]),
a variant of it called the θ-graph can be constructed in Õ(nε−k) time [13]. In a
θ-graph points inside a wedge are projected onto the angle bisector of a cone and
the closest point in this distorted metric is used to add an edge. Even though
θ-graphs are spanners of the complete Euclidean graphs, they fail to be spanners
even for unit ball graphs due to the distortion.

It is well known that, for unit disk (ball) graphs the Yao graph with long edges
removed is a spanner [14]. We now define a modified Yao graph, which forms a
spanner of the general disk (ball) graph. Let C(p) = {co1(p), . . . , coε−1(p)} be a
collection of ε−1 cones such that (i) each cone has its apex at p ∈ P , (ii) each
cone has an opening angle of 2πε, and (iii) the union of these cones covers R2.
We define a modified Yao graph Y in the following way. The vertices of Y are
the points of P . For each p ∈ P and 1 ≤ i ≤ ε−1, add an edge from p to the
point q contained in coi(p) if: (i) rq ≥ rp, (ii) the edge (p, q) exists in G, and (iii)
q is the closest point in coi(p) to p satisfying (i) and (ii).

Lemma 1. Let (u, v) be an edge in the disk graph G and ε < 1/6. Then there
exists a path in the spanner Y such that dY (u, v) ≤ (1 + ε)d(u, v).

From the above lemma by summing over all edges of a path in G we also get
that graph Y is a (1 + ε)-spanner of the disk graph G. For ball graphs in Rk,
the number of edges in Y can be bounded by O(nε−k+1) using the results of
Lukovszki [15]. We use the following ideas to efficiently construct a variant of
the modified Yao graph.

2.3 Partitioning the Plane

A well-separated pair decomposition (introduced by Callahan and Kosaraju in
[16]) for a given parameter s is a set of nonempty subsets of P , {{A1, B1}, . . . ,
{Am, Bm}}, such that: (i) the sets Ai and Bi are disjoint, (ii) for any pair
p, q ∈ P , there is an unique pair {Ai, Bi} such that p ∈ Ai and q ∈ Bi, and
(iii) for each pair {Ai, Bi}, there is a length r such that Ai and Bi can be
enclosed by two r-balls, separated by a distance of at least sr. For a point set in
the Euclidean space it is known that a well-separated pair decomposition with
almost linear many pairs exists [16]. Given such a pair decomposition it can be
easily converted into a (1+ε)-spanner by picking a representative edge (an actual
edge of the graph) from each pair into the spanner [17,18].

However, the disk graph metric being more general doesn’t have the same nice
properties as the complete Euclidean graph metric. For unit disk graphs, Gao
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and Zhang [7] have recently given a construction of a well-separated pair decom-
position with O(n logn) pairs. They have also shown that for unit ball graphs
in Rk at least Ω(n2−2/k) pairs are needed. Therefore a spanner constructed us-
ing such a pair decomposition has a super-linear number of edges. With disk
graphs, the situation is even worse, as disk graphs do not have a sub-quadratic
well-separated pair-decomposition [7].

Loosely speaking, we alter the notion of well-separated pair decomposition in
two ways, (a) we relax the condition (ii) in the definition such that only pairs
p, q ∈ P that needs to be covered are those that have an edge in the graph, and
(b) we restrict the sets to only those that form a clique in G. Even though under
this new notion we don’t save on the number of pairs, but for constructing the
spanner when combined with ideas of modified Yao graph, one can eliminate all
but linear number of pairs. The final challenge is minimizing the time for finding
the representative edges between set pairs.

3 Spanners of Disk Graphs

We first describe a high level idea of our algorithm and prove the claimed stretch
factor, and then define an algorithmic version of the construction. Each disk is
associated with a level, a disk Du is of level l iff 2−l ≤ ru < 2−l+1. Let lm denote
the largest level among disks in D, i.e., lm = �log ρ(D)�.

Quad-dissection: Our spanner construction involves recursively partitioning
the plane using a simple variant of quadtrees. The input to quad-dissection is
a set of disks in R2. Let P be the set of their centers. Define the bounding box
to be the smallest axis-parallel rectangle enclosing P . The left bottom corner of
the bounding box is assumed to be the origin. An L-grid is defined by horizontal
and vertical line segments drawn at y ∈ LZ and x ∈ LZ within the bounding
box. A quad-dissection of the L-grid is a recursive partition into smaller squares.
We view the resulting structure as a 4-ary forest with the root nodes as the non-
empty squares in the L-grid. Each square is partitioned into four equal squares,
which form its children. We continue partitioning all the non-empty squares until
each disk center is contained in a separate square of size ε2−lm or smaller. See
Figure 1.

Constructing the forest: Let Γ denote the forest from the quad-dissection
of the ε-grid. Let Roots initially be the non-empty squares of the ε-grid. Γ is a
collection of disjoint trees, each of which is rooted at a node belonging to Roots.
Note that the set of nodes at depth l in the forest corresponds to the set of
non-empty squares defined by the ε2−l-grid. We introduce a disk of level l only
at depth l. For a node t ∈ Γ of depth dt, define D(t) as the set of disks which
are of level dt or less and have their centers are contained in t. Let C(t) be the
set of disk centers of disks in D(t). Note that if u ∈ C(t) for an internal node t,
then there exists a node t′ with t = p(t′) and u ∈ C(t′).

We also add to Roots any node t ∈ Γ with C(t) 	= ∅ whereas C(p(t)) = ∅.
A node t of the forest is called interesting if C(t) 	= C(p(t)). By definition all
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Fig. 1. The quad-dissection procedure for a set of disk centers and the corresponding
forest Γ . Assume all the disks have the same radius. The donut shaped nodes are the
interesting nodes in Γ .

nodes in Roots are interesting. It immediately follows that Γ has at most 2n
interesting nodes.

Choosing the representatives: For every leaf node t ∈ Γ we choose the disk
center in C(t) as its representative Rt. For an internal node t with non-empty
C(t), pick a child ts satisfying Rts ∈ C(t) and set Rt = Rts .

Neighborhood of nodes: For every interesting node t, define its close neigh-
borhood (Nc(t)) as the set of all nodes at depth dt which are within a distance
of 2−dt from t.

t

S([5, 5], t)

S([5, 5], p(t))
We also define a far neighborhood (Nf (t)) for the

nodes in Roots. To do so, we introduce some new def-
initions. For a node t ∈ Γ and integers α, β define its
[α, β]-shift, (S([α, β], t)) with −2ε−1 ≤ α, β ≤ 4ε−1

and max(|α|, |β|) ≥ (2ε)−1, as the square t′ obtained
by shifting the x- and y-coordinates of all points in t by
εα2−dt and εβ2−dt respectively. Informally, α tells the
number of squares moved over in the horizontal direction and β does the same
in the vertical direction. The bounds of α, β are chosen such that at least one of
them is big. For every t ∈ Roots, construct O(ε−2) ordered buckets, where

bucket([α, β], t) = {S([α, β], t), S([α, β], p(t)), S([α, β], p(p(t))), . . .},
Bucket(t) =

⋃

α,β

bucket([α, β], t).

Now for every t ∈ Roots and every α, β-pair scan through bucket([α, β], t) to find
the first node t′ ∈ bucket([α, β], t) such that there exists u ∈ C(t) and v ∈ C(t′)
with edge (u, v) in G. Add t′ to Nf (t).

Edges in spanner G′: For every interesting node t, we add an edge between
Rt and Rt′ , where t′ ∈ Nc(t). Additionally, for every node t ∈ Roots, we pick an
edge of G between a vertex in C(t) and another in C(t′) into the spanner, where
t′ ∈ Nf(t).

Lemma 2. The graph G′ has O(nε−2) edges and is a subgraph of the graph G.
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The idea behind creating the bucket is: (i) to ensure that for every α, β-pair
there exists lines passing through all the nodes of bucket([α, β], t) and t, and
(ii) to ensure that disks that intersect any disk centered in t, have their centers
either close to t or inside a node of Bucket(t). The first fact easily follows from
the construction. The second fact is proved in the following lemma.

Lemma 3. Let u be a disk center contained in a node t ∈ Γ . Then for every
edge (u, v) in G, v is contained in Bucket(t) ∪Nc(t).

Lemma 4. (Spanner Property). Let (u, v) be an edge in the disk graph G.
Then there exists a path in the spanner G′ such that dG′(u, v) ≤ (1 + c1ε)d(u, v)
for some constant c1.

Sparsifying the spanner: Consider the set of cones C(p) for a point p ∈ P (as
in Section 2.2). For each cone coi(p) ∈ C(p), scan through all edges added to the
spanner from p to a point contained in coi(p) and retain only the shortest such
edge in the spanner. Since there are only ε−1 cones in C(p), we conclude that
the number of edges in the spanner is O(nε−1). Using the analysis of Lemma 1
along with Lemma 4, it follows that the graph is a (1 + ε)-spanner. Henceforth,
G′ denotes this sparsified spanner.

3.1 Algorithmic Version

Constructing the forest: We construct a compressed forest in which we only
introduce the interesting nodes of Γ and shortcut the degree one internal nodes.
The construction of the compressed forest is omitted here, as it follows from sim-
ple modifications of known algorithms (like [19,16,20]) for generating compressed
quadtrees. For details see [12].

Let Γ ′ denote this compressed forest. During the construction of Γ ′, we also
maintain at every node a disk of the largest radius whose center is contained in
the node. For any node t ∈ Γ ′, if among the disks whose centers are contained in
t the largest radius is greater than 2−dt, then the representative Rt is defined as
the disk center of a largest radius disk. Additionally, if among the disks whose
centers are contained in t the largest radius is less than 2−dt, then add nodes t′

satisfying t = p(t′) and Rt′ 	= ∅ to Roots.

Finding the close neighborhood: Finding the close neighborhood for nodes
at depth 0 is straight-forward. Because we work with Γ ′ we construct a close
pseudo-neighborhood (N ′

c(t)) for a node t. A node r ∈ Γ ′ is in N ′
c(t) if (i) r

belongs to Nc(t) or, (ii) in Γ the node r is the maximal depth ancestor of a node
r′ ∈ Nc(t) with r′ /∈ Γ ′.

Now assuming that we have constructed N ′
c(t), we describe the construction

of N ′
c(ts) for a child ts of t in Γ ′. We access all the nodes in N ′

c(t). We do a
level-order traversal from these nodes with a modification that the subtree of
any node b is accessed only if db ≤ dts and Rb is at most (1 +

√
2ε)2−db distance

away from Rts . The nodes at which the traversal ends and whose representatives
are at most (1 +

√
2ε)2−dts away from Rts define N ′

c(ts).
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Any node g ∈ Γ ′ accessed during the traversal has a node f ∈ Γ such that:
(i) f is an ancestor of ts in Γ , (ii) dg = df , and (iii) the distance between f
and g is O(2−dg). We charge the access of node g to the node f (f needn’t be
in Γ ′). For this entire procedure we can charge all the accesses of node g to
different nodes which are at the same depth as g and only O(2−dg) away (note
there are only O(ε−2) such nodes). This implies that the time for finding close
pseudo-neighborhoods for all nodes is O(nε−2).

Far neighborhood for small global scale: If ρ(D) is small, we use the ob-
servation from Gupta et al. [21] that maps the problem of reporting the inter-
section of a collection of disks with a query disk into halfspace range searching
in two dimensions higher. For simplicity, we use a dynamic data structure for
halfspace range searching. Agarwal and Matoušek [11] construct a data struc-
ture for Rk which for any parameter n ≤ m ≤ n
k/2� and any positive con-
stant δ, after O(m1+δ) space and time preprocessing answers halfspace queries
in Õ(n/m1/
k/2�) time, and has O(m1+δ/n) amortized update time. We con-
struct this data structure bottom-up. The data structure for any node t ∈ Γ ′

stores the points in C(t). Among the children of t, let tm be the node having the
most number of points in its data structure. We update the data structure of
tm to construct a data structure for t. This is done by first deleting points from
the data structure that are not in C(t) and then by using siblings of tm to insert
the remaining points of C(t). We then query the data structure with every disk
in C(t′) with t ∈ Bucket(t′) to check for intersection.

If ρ(D) is the global scale factor, then each bucket([α,β], t) is of size O(log ρ(D)).
Therefore |Bucket(t)| = O(ε−2 log ρ(D)) and the representation of Bucket(t) in
Γ ′ can be found as achieved for the close neighborhood. Each disk acts as a
query disk O(ε−2 log ρ(D)) many times, so total number of queries is at most
O(nε−2 log ρ(D)).

To balance the total time for setting up the data structure at every node
and the total query time, we assume the parameter m of [11] to be nc for some
c ≥ 1. As we work in two dimensions higher, each query can be answered in
Õ(n1−c/2) time. The total time for answering queries is Õ(n2−c/2ε−2 log ρ(D)).
The total time for setting up all the data structures of [11] by the procedure
described above is O(nc+δ), where δ is any positive constant. On eliminating c,
by balancing the query and construction times, we get a space and time bound
of O(n4/3+δε−2 log2/3 ρ(D)) for finding the far neighborhood of all nodes.

Far neighborhood for large global scale: In this case we use the adjacency
list to place the edges into the right bucket. For a node t ∈ Roots, we only
consider an edge (u, v) if it satisfies: (i) u ∈ C(t), v /∈ C(t), and (ii) ru ≤ rv. If
this is the case, then we find points v′ and v′′ on the line segment connecting
u to v such that 2d(u, v′) = d(u, v′′), v′ is contained in

⋃
α,β S([α, β], t), and

v′′ is not contained in
⋃
α,β S([α, β], t). Let α′, β′ be such that v′ is contained

in S([α′, β′], t). We put the edge (u, v) in bucket([α′, β′], t). Once all edges have
been put into their respective bucket, we pick the shortest edge in each bucket
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and add it to the spanner. The entire procedure can be implemented in O(|E|)
given the adjacency list.

3.2 Extension to Ball Graphs

The quadtrees become 2k-trees in Rk. The close neighborhood and far neigh-
borhood of any node is of size O(ε−k), but again one can sparsify to get it to
O(ε−k+1). Therefore the total number of edges is O(nε−k+1). The sparsifica-
tion can be done in O(nε−k) time. In case of small global scale using results
of range-searching from [11] we get a running time of O(n2�+δε−k log� ρ(D)),
where � = 1 − 1/(�k/2� + 2). In case of large global scale the running time is
O(|E| + nε−k) given the adjacency list of G.

We can summarize these results as follows:

Theorem 1. Let G be a k-dimensional ball graph defined on D. A (1+ε)-spanner
of G with O(nε−k+1) edges can be constructed in O(min{n2�+δε−k log� ρ(D),
Adj(D) + nε−k}) time, where δ is any positive constant, � = 1 − 1/(�k/2�+ 2),
and Adj(D) is the time for constructing the adjacency list for G.

3.3 Speeding up on Unit Ball Graphs

If G was defined on unit balls (disks) we can speed up the construction consider-
ably. The algorithm remains the same until the part where we compute the far
neighborhood. Here the set Roots contains only the non-empty squares of the
ε-grid. For finding the far neighborhood of nodes in Roots, we solve a collection
of bichromatic closest pair problems. If the disks corresponding to the closest
pair intersect, we add the corresponding edge into the spanner. See Figure 2.

Let f(n) be any function satisfying log f(n) = o(log n), i.e., f grows slower
than polynomial. We assume in the rest of discussion that for some c ≥ 1, ncf(n)
is an upper bound on the time for computing a bichromatic closest pair for a
total of n points.

close neighborhood: Nc(t)

far neighborhood: Nf (t)
t

Fig. 2. The close and far neighborhood of a node t in Roots for a unit disk graph. All
the squares within the circle are at most 2−dt distance away from t. Far neighborhood
is determined by using bichromatic closest pair tests.
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Lemma 5. For unit ball graphs in Rk, the worst case running time for finding
the far neighborhood for all nodes in Roots is O(ncf(n)ε−k).

It is well known that the bichromatic closest pair problem in R2 can be solved
in O(n logn) by using post-office queries [5]. The currently best algorithm of
Agarwal et al. [6] for finding a bichromatic closest pair between points sets P
and Q in Rk runs in O((PQ logP logQ)2/3 +P log2 Q+Q log2 P ) expected time
for k = 3 and in O((PQ)1−1/(�k/2	+1)+δ + P logQ + Q logP ) expected time for
k ≥ 4, where δ is any positive constant.

Theorem 2. Let G be a unit ball graph in Rk. A (1 + ε)-spanner of G with
O(nε−k+1) edges can be constructed in O(ncf(n)ε−k) time.

Corollary 1. The spanner G′ can be constructed in Õ(nε−2) time for k = 2,
in Õ(n4/3ε−3) expected time for k = 3, and in O(n2−2/(�k/2	+1)+δε−k) expected
time for k ≥ 4, where δ is any positive constant.

The above result shows that finding a spanner of a unit ball graph in Rk is not
much harder than computing a bichromatic closest pair for n points in Rk. In
the other direction from the results of Eppstein [1] and Chan [22], we know that
the randomized expected time bounds for constructing a spanning forest of a
unit ball graph in Rk and a Euclidean minimum spanning tree (or a bichromatic
closest pair) in Rk are within constant factors. Once we have the spanner any
graph traversal can be used to construct a spanning forest. To make this relation
precise, define the exponent of a problem A with respect to input size n to be

inf{c | there exists an algorithm for solving A with a running time of O(nc)}.

Since the bichromatic closest pair and Euclidean minimum spanning tree prob-
lems have asymptotically same complexities [6,23], their exponents are also equal.
The following theorem follows as a consequence of Theorem 2, and the above
discussion.

Theorem 3. The exponent of a (1 + ε)-spanner of a graph on n unit balls in
Rk is the same as the exponent of a bichromatic closest pair for n points in Rk.

4 Separators in Spanner Graph

We show that G′ has an O(
√
nε−3/2 + ε−3 log ρ(D))-vertex separator, whose

removal leaves two sets with each having at most 7/9 of the original vertices
(called 7/9-split) with no edges going across sets. Furthermore, this separator
can be found in O(n log n) time. The algorithm uses a similar approach to that
used in [10], in that it uses line segments for partitioning the rectangles. But
unlike the spanners, the graphs considered in [10] don’t have short edges, and
handling these short edges require significantly new approaches and insights. For
lack of space we only provide the sketch of the algorithm. Missing details can be
found in the full version [12].
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We say a vertex crosses a line segment if any edge incident on it in G′ crosses
the line segment. During each step, the algorithm focuses on one rectangle, called
the active rectangle. An active rectangle R has at least 2/3 of the total vertices
inside it and there exists a set of O(

√
nε−3/2 + ε−3 log ρ(D)) vertices which when

removed ensures that no remaining vertex has an edge in G′ that crosses the
boundary of R.

At every step, the algorithm uses two line segments (called double line separa-
tors) to divide the currently active rectangle. A horizontal double line separator
of an active rectangle is a set of at most two horizontal line segments that parti-
tions the active rectangle such that there exists a set ofO(

√
nε−3/2+ε−3 log ρ(D))

vertices which when removed ensures that no remaining vertex crosses either of
the vertical line segments (similarly define vertical double line separator). The
algorithm recursively partitions an active rectangle alternatively with a horizon-
tal or a vertical double line separator and stops when none of the new rectangles
created contain enough vertices to become active. The initial active rectangle is
the bounding box.

We now summarize the main result of this section in the following theorem.

Theorem 4. Let G be a k-dimensional ball graph defined on D and G′ be a
(1 + ε)-spanner of G constructed as described above. An O(n1−1/kε−k+1/2 +
ε−2k+1 log ρ(D)) vertex separator of G′ with 7/9-split can be found in O(n log n)
time.

4.1 Approximate Proximity Problems Using Spanner

Gao and Zhang [7] discuss many approximate proximity problems for unit disk
graphs. Using a well-separated pair decomposition, they show that a unit disk
graph can be preprocessed in O(n

√
n lognε−3) time, such that subsequent dis-

tance queries can be answered with (1 + ε)-stretch in constant time.
We note that other than the standard advantages of using a sparse spanner for

solving approximate proximity problems, the separator helps us to also support
fast answering of distance queries in ball graphs. The idea is to use the algorithm
of Arikati et al. [24] (originally used for answering distance queries in planar
graphs) on the spanner G′. Using the same techniques we get the following

Corollary 2. Let G be a k-dimensional ball graph defined on D and G′ be a (1+
ε)-spanner of G constructed as described above. The graph G′ can be preprocessed
in Õ(nf(n, ε)) time and space such that subsequent distance queries under the dG
metric can be answered with (1 + ε)-stretch in O(f(n, ε)) time and with (2 + ε)-
stretch in O(log n) time, where f(n, ε) = n1−1/kε−k+1/2 + ε−2k+1 log ρ(D).
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On Generalized Diamond Spanners�
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Abstract. Given a set P of points in the plane and a set L of non-
crossing line segments whose endpoints are in P , a constrained plane
geometric graph is a plane graph whose vertex set is P and whose edge
set contains L. An edge e has the α-visible diamond property if one
of the two isosceles triangles with base e and base angle α does not
contain any points of P visible to both endpoints of e. A constrained
plane geometric graph has the d-good polygon property provided that
for every pair x, y of visible vertices on a face f , the shorter of the two
paths from x to y around the boundary has length at most d · |xy|. If a
constrained plane geometric graph has the α-visible diamond property
for each of its edges and the d-good polygon property, we show it is a

8d(π−α)2

α2 sin2(α/4) -spanner of the visibility graph of P and L. This is a general-
ization of the result by Das and Joseph[3] to the constrained setting as
well as a slight improvement on their spanning ratio of 8dπ2

α2 sin2(α/4) . We
then show that several well-known constrained triangulations (namely
the constrained Delaunay triangulation, constrained greedy triangula-
tion and constrained minimum weight triangulation) have the α-visible
diamond property for some constant α. In particular, we show that the
greedy triangulation has the π/6-visible diamond property, which is an
improvement over previous results.

1 Introduction

A graphG whose vertices are points in the plane and edges are segments weighted
by their length is a t-spanner (for t ≥ 1) provided that the shortest path in G
between any two vertices x, y does not exceed t|xy| where |xy| is the Euclidean
distance between x and y. The value t is the spanning ratio or stretch factor of
the graph. The spanning properties of various geometric graphs has been studied
extensively in the literature (see [7,14,10,13] for several surveys on the topic).
Our work is a generalization of the result by [3] to the constrained setting. [3]
showed that any graph possessing the diamond property and the good polygon
property is a t-spanner where the constant t depends on parameters of each of
the two properties.

Before we can state our results precisely, we outline what these properties
are, what we mean by the constrained setting and how the spanning ratio of a
geometric graph is measured in this setting. Throughout this paper, a graph will
� Research supported in part by NSERC.
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refer to a geometric graph whose vertex set is a set of points in the plane, and
whose edge set is a set of line segments joining pairs of vertices. The edges are
weighted by their length. Let P denote a set of points in the plane and L be a set
of non-crossing line segments whose endpoints are in P . Two points p and q of P
are visible with respect to L provided the segment pq does not properly intersect
any segment of L. Two line segments intersect properly if they share a common
interior point. The visibility graph of P constrained to L, denoted Vis(P,L), is
a geometric graph whose vertex set is P and whose edge set contains L as well
as one edge for each visible pair of vertices (See Figure 1). A spanning subgraph
of Vis(P,L) whose edge set contains L is a geometric graph constrained to L.
In such a graph, the set L is referred to as the constrained edges and all other
edges are referred to as unconstrained edges or visibility edges.

Fig. 1. The visibility graph Vis(P, L) where segments of L are shown in bold

Definition 1. Let t≥1 be a real number. A constrained geometric graph G(P,L)
is a constrained t-spanner provided that for every visibility edge [pq] in Vis(P,L),
the length of the shortest path between p and q in G(P,L) is at most t times the
Euclidean distance between p and q. We refer to t as the spanning ratio or the
stretch factor of G(P,L).

Note that if G(P,L) is a constrained t-spanner, then for every pair of points
p, q in P (not just visible edges), the shortest path from p to q in G(P,L) is at
most t times the shortest path from p to q in Vis(P,L). We now define the two
essential properties.

Definition 2. Refer to Figure 2. Fix α ∈ (0, π/2). A constrained graph G(P,L)
is said to have the visible α-diamond property if, for every unconstrained edge
e in the graph, at least one of the two isosceles triangles, with e as the base and
base angle α, does not contain any points of P visible to the endpoints of e. We
label this empty triangle as �(e), and the apex of �(e) as a(e).

Definition 3. A constrained plane graph G(P,L) has the d-good polygon prop-
erty if for every visible pair of vertices a and b on a face f , the shortest distance
from a to b around the boundary of f is at most d times the Euclidean distance
between a and b.
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e

α

α

α

α

�(e)

a(e)

Fig. 2. The edge e has the visible α-diamond property

Our main results are the following:

Theorem 1. Given fixed α ∈ (0, π/2) and d ≥ 1, if a constrained plane graph
G(P,L) has both the visible α-diamond property and the d-good polygon property,
then its stretch factor is at most 8(π−α)2d

α2 sin2(α/4)
.

This is a generalization of the result in [3] to the constrained setting as well as
a slight improvement on the spanning ratio from 8dπ2

α2 sin2(α/4) to 8d(π−α)2

α2 sin2(α/4) .

Theorem 2. The Constrained Greedy Triangulation has the visible π
6 -diamond

property.

This is an improvement over the results of [3], [4] and [6] on this problem.
In [3], they showed that the Greedy Triangulation has the π/8-diamond prop-
erty. The results in [6], which is an extension of the results in [4], imply that
the Greedy triangulation has the arctan(1/

√
5)-diamond property. Note that

arctan
(
1/
√

5
)
≈ 24.1◦.

2 Constructing Spanner Paths

The proof of the main result is constructive. Consider a constrained plane graph
G(P,L) that has the visible α-diamond property and the d-good polygon prop-
erty. Given a pair of points a, b ∈ P that are visible with respect to L, we show
how to construct a path from a to b in G(P,L) whose length is at most 8d(π−α)2

α2 sin2(α/4)

times the Euclidean distance between a and b.
If [ab] is an edge of G(P,L) then such a path trivially exists. Therefore, as-

sume that [ab] is not an edge of the graph. In this case, either [ab] intersects some
edges of the graph or intersects no edges of the graph. In the latter case, this
means that the segment [ab] is a chord in a face of G(P,L). The d-good polygon
property ensures that the required path exists in this case. In the remainder of
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a b
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e2
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u2 uk

a(e1)

l1

l2

lk

a(ek)

a(e2)

U0

U1
Uk

Lk

L1

L0

Fig. 3. Illustration of Structures

this section, we show that when [ab] intersects some edges of G(P,L), we can
construct a spanner path from a to b.

Re-orient the coordinate systemsuch that [ab] lies on thex-axis.Lete1, e2, . . . , ek
be the edges ofG(P,L) that cross [ab] in order from a to b. For simplicity of exposi-
tion, assume that none of these edges share a common endpoint. Sharing endpoints
is a degenerate situation that only makes the proof simpler. Label the endpoint of
ei above [ab] as ui and the endpoint below [ab] as li. The fact that a and b are vis-
ible with respect to L ensures that each of these edges is an unconstrained edge.
Moreover, the visible α-diamond property implies that each of these edges is the
base of a visibly empty triangle�(ei) with apex a(i), 1 ≤ i ≤ k. SinceG(P,L) is a
plane graph, ei and ei+1 lie on a common face f . Let Ui be the shortest path from
ui to ui+1 in the face f . Since a and b are visible, this implies that Ui is a convex
path. Similarly, letLi be the shortest path from li to li+1 in f . Note that the d-good
polygon property ensures that there is path inG(P,L) fromui to ui+1 whose length
does not exceed d times the length ofUi.DefineU0 (resp.Uk) to be the shortest path
from a to u1 (resp. uk to b). L0 and Lk are defined symmetrically. See Figure 3.

We have two different construction methods depending on where the apices of
the empty triangles are with respect to [ab]. If all of the apices lie on the same side
of the line through [ab], we construct a path called a one-sided path, otherwise,
we construct a two-sided path. We first show the construction of one-sided paths
and bound their length.

2.1 One-Sided Paths

In this case, we assume that all the apices of the empty triangles lie below [ab].
The construction of the one-sided path starts with the union of the Ui. Now, each
edge e in Ui can be approximated by a path in G(P,L) whose length is at most
d·e. Therefore, the length of the one-sided path is at most d(|U0|+|U1|+. . .+|Uk|).
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What remains to be shown is that this is a good approximation of |ab| since a
and b are visible. Let h be the line through [ab] and h− be the closed half-plane
below h. To obtain a bound on |U0|+ |U1|+ . . .+ |Uk|, we consider the following
structure T = h− ∪

⋃k
i=1 �(ei) (See Figure 4). Denote by T (a, b) the portion of

the boundary of T between a and b. The fact that each of the triangles �(ei)
is empty of points visible to both endpoints of the edge ei, all the apices of the
empty triangles are below [ab] and each of the Ui is formed by a shortest path
imply that no edge of T (a, b) can intersect any of the upper chains Ui. Since
each of the upper chains Ui is a shortest path, we conclude the following:

Lemma 1.
∑k
i=0 |Ui| ≤ |T (a, b) |

Before proceeding, we need a simple property about triangles that essentially
follows from the sine law.

a b

T

Fig. 4. Using the shaded region T to approximate the length of the upper chains

Lemma 2. Given a triangle �(u, v, w) such that angle at vertex v is α, we have
that |uv|+ |vw| ≤ |uw|/ sin(α/2).

We now show how to bound the length of the one-sided path in terms of |ab|.

Lemma 3. The length of a one-sided path from a to b in G(P,L) is at most
|ab| 2(π−α)d

α·sin(α/4) .

Proof: By Lemma 1, and the d-good polygon property, it suffices to show that
|T (a, b)| ≤ 2(π−α)|ab|

α·sin(α/4) . Note that since the apex a(ei) of every empty triangle
�(ei) is below [ab], only two sides of �(ei) lie in the upper half-plane h+.
Hence, there is a well-defined left edge and right edge for the portion of �(ei)
that lies above [ab].

To simplify the exposition, we assume that π is a multiple of α (a condition
that can be easily removed). Partition the empty triangles�(e1),�(e2), . . . ,�(ek)
into 2(π−α)

α groups labelled G0, Gα/2, · · · , Gθ, · · · , Gπ−3α/2, such that the left
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edges of the empty triangles in group Gθ make an angle in the range
[
θ, θ + α

2

]

with the x-axis. Since the base angle of the empty triangles is α, we see that the
right edges will be in the range

[
θ + α, θ + 3α

2

]
with the x-axis. This is why the

last group ends at π − 3α/2.
Let Tθ be the union of all the triangles in Gθ with the half-plane h− below

the x-axis. Recall T from Lemma 1. Note that T = T0 ∪ Tα/2 ∪ · · · ∪ Tπ−3α/2.
Hence, it follows that the length of the boundary of T from a to b is bounded
by |T0 (a, b)|+

∣
∣Tα/2 (a, b)

∣
∣+ · · ·+

∣
∣Tπ−3α/2 (a, b)

∣
∣

a b

p

α
2

θ + α
2

α

α

α

α

θ + α

xl

xryl

yr

x

y

Fig. 5. The triangles of Gθ

Consider the group Gθ, as shown in Figure 5. The edges of the boundary
Tθ (a, b) are shown in bold. Let p be the point such that �apb = α

2 , �pab = θ+ α
2 ,

and p ∈ h+. By construction, the portion of the triangles in Gθ that lie above
the x-axis (and thus Tθ (a, b)) are completely contained inside �pab.

Tθ (a, b) is a polygonal chain consisting of portions of left edges of empty tri-
angles, portions of right edges of empty triangles, and portions of [ab]. Note that
the angle restriction implies that the chain is monotone both in the direction
pa and the direction pb. To bound the length of an edge xy of Tθ (a, b), project
x and y onto pa by translating in a direction parallel to pb and denote the
projected vertices on pa by xl and yl, respectively. Similarly, project xy onto pb
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by translating in a direction parallel to pa resulting in projected vertices xr and
yr, respectively. The triangle inequality guarantees that |xy| ≤ |xlyl| + |xryr|.
Monotonicity guarantees that none of the projected edges of Tθ (a, b) overlap.
Therefore, we have that |Tθ (a, b)| ≤ |pa|+ |pb|.

Using Lemma 2, it follows that |pa| + |pb| ≤ |ab|
sin(α/4) , regardless of the angle

θ. Therefore, since there are 2(π−α)
α many groups, |T (a, b) | ≤ 2(π−α)|ab|

α·sin(α/4) . �

2.2 Two-Sided Paths

We have seen that if every apex a(e1), a(e2), . . . , a(ek) lies on the same side of
the x-axis, then a one-sided path from a to b can be constructed, whose length
is 2(π−α)d
α sin(α/4) times the length |ab|. We now outline the process of constructing a

short path from a to b in the case where some apices a(ei) lie above the x-axis,
while others lie below. The one-sided paths either followed the upper chain or
the lower chain. In two-sided paths, we may need to cross over from upper chains
to lower chains. Recall that Ui is the shortest path from ui to ui+1 and Li is the
shortest path from li to li+1. For each pair of upper and lower chains, Ui and Li,
respectively, we add the unique edge on the shortest path from ui to li+1 that
is not on either chain and the unique edge on the shortest path from li to ui+1

that is not on either chain. We refer to these two edges as tangents between the
upper and lower chains.

Divide the set of edges e1, e2, . . . , ek into two disjoint groups, U and L. U con-
tains the edges that have their apex below [ab], and L contains the edges whose
apex is above [ab]. For the first group, define the region TU = h− ∪

⋃
e∈U �(e).

Correspondingly, define the region TL = h+ ∪
⋃
e∈L�(e). Let TU (a, b) denote

the upper boundary of TU between a and b and similarly TL (a, b) for the lower
boundary. Note that the length of TU (a, b) and TL (a, b) are each less than
|ab| 2(π−α)d

α·sin(α/4) as shown in Lemma 3. The two-sided path from a to b is constructed
using disjoint portions of TU , TL and tangents. Since |TU (a, b) | + |TL (a, b) | ≤
2|ab| 2(π−α)d

α·sin(α/4) , we only need to bound the length of the tangents used.
The two-sided path from a to b is constructed as follows. Without loss of

generality, assume that e1 has its apex below [ab]. Let ei+1 be the first edge
whose apex is above [ab]. If no subsequent edge has an apex below [ab], then the
path follows the upper chains from a to ui, follows the path from ui to li+1 and
follows the lower chains to b. This path has length at most |TU (a, b) |+ |TL (a, b) |
since each of the two paths is one-sided and the length of the tangent is subsumed
by the unused portions of the upper and lower chain.

The situation where a decision needs to be made on how to proceed is when
there are two edges ei and ej (with j > i+1) having apices a(ei) and a(ej) below
the x-axis and at least one edge ek (with i < k < j) with apex a(ek) above the
x-axis. We show how to construct a short path from ui to uj in this case. There
are two possibilities in this case, either the path from ui to uj follows the upper
chain, or it follows the path from ui to li+1, continues on the lower chain until
lj−1 and follows the path from lj−1 to uj .
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The decision whether or not to cross over from the upper chain to the lower
chain depends on the tangents. Let ta = [ua, la] be the tangent on the path from
ui to li+1 and tb = [ub, lb] be the tangent on the path from lj−1 to uj. Extend
the tangents ta and tb until they intersect. Label their intersection point as C.
Note that C may be below or above the x-axis. Label the smaller of the two
angles between the two extended tangents as θ. If ta and tb are parallel, then C
is a point at infinity, and θ = 0. There are two cases to consider depending on
the angle θ.

C

�

ua

ub

lb

la

T1

T2

J

E K

N

F
M

h

θ

li+1

lj−1

ui

uj

ta

tb

θ
2

Fig. 6. Case 2: Construct an empty region

Case 1: θ ≥ α. In this case, the angle between the tangents is relatively wide.
Follow the path from ui to li+1 using the tangent ta. Continue on the lower
convex chains Li+1 · · ·Lj−1 from la until lb, and cross back up along tb to uj .

Case 2: θ < α. Refer to Figure 6 for this case. Label the portion of TU (a, b)
between the upper vertices ua and ub of the tangents as T1. Similarly, label the
portion of TL (a, b) between la and lb as T2. Consider the region bounded by the
tangents ta and tb and the boundaries T1 and T2. By definition, this region is
empty of vertices of G. Bisect the angle θ at C with a line labelled �. (If ta and tb
happen to be parallel, then � is defined as the line parallel to the tangents, and
halfway between them.) Let E be the point on T1 whose orthogonal projection
onto � is lowest, and let F be the point on T2 whose orthogonal projection onto
� is highest. Define h to be the distance between the orthogonal projections of
E and F onto �. Define points J and M on ta, and K and N on tb, with JEK
and MFN perpendicular to �. Let w = max (|JK| , |MN |).
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a) If h ≤ w
2 tan(α/2) , then follow the same path from ui to uj as in Case 1.

b) If h > w
2 tan(α/2) , then simply follow the upper chains Ui, Ui+1, . . . , Uj−1 from

ui and uj .

We now bound the lengths of the paths constructed in the context of the
different cases stated above. Note that the main difficulty is in bounding the
length of the tangents since we have a bound on the length of the upper and
lower chains.

Lemma 4. If θ ≥ α, the length of the portion of the two-sided path from a to b
that is between ua and ub is at most 2

sin(α/2)

(
|T1| + |T2|

)
.

Proof: Consider the triangle �(ua, C, ub). The path follows the two tangents
and the lower chain. The length of the lower chain is |T2|. We want to bound the
length of the two tangents in terms of |T1| and |T2|. If C is below [ab], by Lemma
2, we have that |uaC| + |Cub| ≤ |T1|/ sin(α/2). If C is above [ab], by Lemma
2, we have that |uaC| + |Cub| ≤ |T2|/ sin(α/2). Note that these above bounds
on the tangents only hold when C does not lie on one of the tangents. Should
C land on one of the tangents then an extra |T1| or |T2| term can bound the
portion of the tangent that lies outside the triangle by the triangle inequality.
Putting all the inequalities together completes the proof. �

Lemma 5 (Case 2a). If θ < α, and h ≤ w
2 tan(α/2) , then the length of the

portion of the two-sided path from a to b that is between ua and ub is at most
3

sin(α/2)

(
|T1| + |T2|

)
.

Proof: (Sketch): The path constructed in this case is identical to the path
constructed in Case 1. The path follows the two tangents and the lower chains.
The length of the lower chains is |T2|. We need to bound the length of the
tangents. Refer to Figure 6.

Note that the tangent ta is decomposed into three segments: [uaJ ],[JM ],[Mla].
Similarly tb is decomposed into three segments: [ubK], [KN ], [Nlb]. Since the
angle at J in triangle �(uaJE) is obtuse, we have that |uaJ | is shorter than the
portion of T1 from ua to E. By this argument, we have that |uaJ | + |ubK| <
|T1| + |T2|. To bound |JM | and |KN |, we use the fact that h ≤ w

2 tan(α/2) . This
allows us to show that |JK|+ |KN | ≤ 2h/ cos(α/2) ≤ |T1|/ sin(α/2). Finally, by
elementary trigonometry, we have that |laM |+|lbN | ≤ (|laF |+|lbF |)/ sin(α/2) ≤
|T2|/ sin(α/2). Combining the inequalities, we have that the length of the two-
sided path is at most 2(|T1| + |T2|)/ sin(α/2).

Note that this bound only holds when C does not lie on one of the tan-
gents. However, C may lie on one of the two tangents. In this case, an ex-
tra |T1|/ sin(α/2) or |T2|/ sin(α/2) term needs to be added giving the stated
bound1. �
A fairly lengthy argument along the same lines allows us to bound the path when
h > w

2 tan(α/2) .

1 This is one of the cases that was omitted from the original proof by [3].
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Lemma 6. If θ < α, and h > w
2 tan(α/2) , then the length of the portion of the two-

sided path from a to b that is between ua and ub is at most 2(π−α)
α sin(α/4)

(
|T1|+ |T2|

)
.

2.3 The Final Spanning Ratio

We now have all the pieces to prove Theorem 1. From the above lemmas, we
have that the maximum length of the path between ua and ub is at most:

max

(
2

sin
(
α
2

) ,
3

sin
(
α
2

) ,
2(π − α)
α sin

(
α
4

)

)

·
(
|T1|+ |T2|

)
=

2(π − α)
α sin

(
α
4

) ·
(
|T1|+ |T2|

)

Since |TU (a, b) | + |TL (a, b) | ≤ 2|ab| 2(π−α)d
α·sin(α/4) , we have that the path from a

to b has length at most:

2(π − α)
α sin

(
α
4

) ·
(∣
∣TU (a, b)

∣
∣+

∣
∣TL(a, b)

∣
∣
)

≤ 2(π − α)
α sin

(
α
4

) · 2
(

2(π − α)d|ab|
α sin

(
α
4

)

)

=
8(π − α)2d|ab|

α2 sin2 (α
4

)

proving Theorem 1.

3 Triangulations That Have the Diamond Property

In this section, we note that three constrained versions of classical triangulations
have the visible α-diamond property, namely the constrained Delaunay triangu-
lation, the constrained minimum weight triangulation and the constrained greedy
triangulation. Since they are all triangulations, they satisfy the requirements for
the d-good polygon property, for d = 1. Therefore, all three triangulations are
constant spanners where the constant depends on α.

The first constrained triangulation considered is the constrained Delaunay
triangulation (CDT ), also called the Generalized Delaunay triangulation [11],
and the Obstacle triangulation [2]. One of the important properties of the con-
strained Delaunay triangulation is that for every unconstrained edge e in the
graph, there exists a circle Ce such that the endpoints of e lie on the boundary
of this circle, and there are no vertices of S that are visible to both endpoints of
the edge e [11] [2]. For such an edge e, we refer to Ce as its visibly empty circle.
The existence of the visibly empty circle for each unconstrained edge implies
that the edge has the visible π

4 -diamond property.

Theorem 3. The Constrained Delaunay Triangulation (CDT ) has the visible
π
4 -diamond property.

We note that techniques exploiting additional properties of the Delaunay trian-
gulation have been used to reduce the spanning ratio from the one implied by
the visible π

4 -diamond property (see [5], [9] for the unconstrained setting, and
[8], [1] for the constrained setting). Currently, the best known spanning ratio
for the Constrained Delaunay triangulation is 4π

√
3

9 as shown by [1]. It is con-
jectured that the spanning ratio for the Delaunay and Constrained Delaunay
triangulation is π/2.
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The second constrained triangulation that we consider is the constrained
Greedy triangulation (CGT ), which is a generalization of the standard Greedy
triangulation [12]. The algorithm for computing such a triangulation is as fol-
lows: Sort the edges of Vis(P,L) by length. First insert all the constrained edges
to CGT . Next insert the unconstrained edges in sorted order into CGT as long as
they do not introduce a crossing. In order to prove the result for the Constrained
Greedy Triangulation (CGT ), we make extensive use of the following.

Lemma 7. Let x and y be points of P such that xy ∈ Vis(P,L), but xy is not
an edge of CGT (P,L). Let e be the edge of CGT (P,L) of shortest length that
properly intersects the segment xy. Then |e| ≤ |xy|.
Proof: Recall that the CGT is constructed by considering all possible edges of
Vis(P,L) in non-descending sorted order; an edge is inserted only if it does not
intersect any previously inserted edge. If the lemma were false, then at the point
in the algorithm when xy would be considered for insertion, none of the edges
that intersect it would have been considered yet since they are all longer than
xy. Hence, with no edges yet crossing xy, the segment joining x and y would be
inserted CGT , which is in contradiction to the assumption that xy is not in the
triangulation. �
Using this simple lemma, we can show that the Constrained Greedy Triangu-
lation has the visible π

6 -diamond property. The main approach to proving this
theorem is by contradiction. If an edge xy of CGT does not have the visible
π
6 -diamond property, then both visible triangles adjacent to xy contain at least
one point visible to both x and y. We use those points to show that the greedy
process would have inserted a shorter edge intersecting xy, thereby contradicting
that xy is part of the greedy triangulation. The analysis is similar in approach
to the one presented in [3], however, by carefully reviewing each of the 6 cases
in their analysis, we are able increase the angle from π/8 to π/6.

Theorem 4. The Constrained Greedy Triangulation (CGT ) has the visible π
6 -

diamond property.

The size of the diamond in the above proof is an improvement over the original
value of π8 shown by [3]. It is also an improvement over the values shown by [4]
and [6]. [4], prove that every edge e of the Greedy triangulation has a disc-shaped
exclusion region centered at the midpoint of e, of radius |e|√

5
≈ 0.447|e|. The size

of this region is extended in [6] to include the tangents to the region. By basic
trigonometry, it can be shown that the largest visible diamond inscribed in this
region has α = arctan

(
1/
√

5
)
. Therefore, π6 is currently the largest diamond for

the Greedy and constrained Greedy triangulations. If a circle is inscribed inside
the diamond of an edge e, its radius is |e|

2 = 0.5|e|, an improvement on the size
of a disc-shaped exclusion region for the Greedy triangulation.

An argument similar to the one for Theorem 4 shows that the constrained
minimum weight triangulation has the visible π/8-diamond property.

Theorem 5. The Constrained Minimum Weight Triangulation has the visible
π
8 -diamond property.
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Abstract. We define a natural generalization of the prominent k-server
problem, the k-resource problem. It occurs in metric spaces with some
demands and resources given at its points. The demands may vary with
time, but the total demand may never exceed k. The goal of an online
algorithm is to satisfy demands by moving resources, while minimizing
the cost for transporting resources.

We give an asymptotically optimal O(log(min{n, k}))-competitive
randomized algorithm and an O(min{k, n})-competitive deterministic
one for the k-resource problem on uniform metric spaces consisting of
n points. This extends known results for paging to the more general set-
ting of k-resource. Basing on the results for uniform metric spaces, we
develop a randomized algorithm solving the k-resource and the k-server
problem on metric spaces which can be decomposed into components
far away from each other. The algorithm achieves a competitive ratio of
O(log(min{n, k})), provided that it has some extra resources more than
the optimal algorithm.

1 Introduction

In our work we define an extension of k-server, the k-resource problem. We
introduce the definition of both problems for general metric spaces, whereas later
we are addressing specific finite metric spaces, like the uniform or decomposable
metric.

The k-server problem [7] is defined on a metric space (X , ξ), where ξ(·, ·)
is a function measuring the distance between two points of space X . An input
consists of sequence of requests to points from X . Upon seeing a request to point
x ∈ X , an algorithm has to move its servers, so that at least one server is placed
at x. The costs of transports are defined by the distance function ξ. The goal
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of an algorithm solving the k-server problem is to minimize the total distance
travelled by its servers in the runtime.

The setting of the k-server problem is powerful enough to model many appli-
cations in computer science, as well as in many other aspects of everyday life.
On the other hand, the model has also some deficiencies. The k-resource prob-
lem, a very natural extension defined in this paper, has the advantage of dealing
additionally with two of those: we allow requests to have different durations
(whereas in k-server a request is regarded as processed after one unit time step)
and we allow to request more than one server to a point of the metric. An ap-
plication example for the k-resource could be a robotic scenario, where tasks
appearing dynamically in a terrain impose certain demands (for some periods)
on the number of robots that have to be sent to handle them.

We define the k-resource problem to be, similarly to k-server, based on a finite
metric space (X , ξ). In each point of X we have some demand for resource
units. The resources can be thought of as workers or computational resources.
The demands are arbitrary integers, but their sum is guaranteed to be at most
some fixed integer k. Time is slotted and divided into time steps. The input
sequence contains changes of demand: in every time step, at exactly one place
the demand decreases or increases by 1. Such assumption is typical also for other
problems and models the scenarios in which demands may vary, but the pace of
changes is restricted. At the end of any time step, the algorithm has to cover all
the demands by its resource units, which means that the number of resources
available at any node has to be at least the demand at this node. In order to
do that, the algorithm may move the units between the points of X , paying the
sum of distances travelled by the units.

More formally, let the resource vector Xt−1 denote the algorithm’s distribu-
tion of resources to points in the metric space at the beginning of step t. In
step t, the algorithm is given a demand vector dt, which describes the demand
for resources in all points of the metric. We allow only input sequences, for which∑n
i=1 |dt−1[i] − dt[i]| = 1 and |dt| ≤ k for all time steps t. Additionally, we as-

sume that at the very beginning of the input sequence, X0 is any but fixed and
|d0| = 0. At the end of a time step, an algorithm has to move resources between
metric points, so that Xt ≥ dt, where Xt is the new resource vector. The al-
gorithm pays ξ(i, j) for moving a resource unit from i to j; its cost in step t is
summed over all movements performed.

We consider the k-resource problem for two types of finite metrics. In the
uniform metric space, the distances between two different points of the space
are equal to 1. A metric space (X , ξ) is uniformly decomposable if it can be par-
titioned into a set Λ of disjoint components, each being a uniform metric space.
We require that for any two distinct points x and y, ξ(x, y) = 1 if they belong to
the same component, and ξ(x, y) = Θ(Γ ) if they belong to different components.
We will impose some restrictions on the separation between components given
by Γ . Uniformly decomposable metrics are a natural extension of the uniform
metric, capable of capturing some aspects of locality. In the following we will
use the notions metric space and graph interchangeably. Whenever we speak of
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a graph, we mean a complete graph with nodes corresponding to points of X ,
and with edge weights given by function ξ.

In this paper we are interested in online algorithms, i.e. the ones that have
to make decisions in time step t solely on the basis of the input sequence up to
time step t, and without any information about future requests. To analyze the
efficiency of our algorithms we use competitive analysis [9], and — on any input
sequence — compare the cost of our algorithm and the optimal offline schedule.
For any algorithm A and any input sequence σ, we denote the cost of A by
CA(σ). We say that a deterministic algorithm A is α-competitive if there exists a
constant β, such that for all sequences σ, it holds that CA(σ) ≤ α · COPT(σ) +β,
where Opt denotes the optimal offline algorithm. If A is a randomized algo-
rithm, then in the definition above we replace CA(σ) by its expected value. The
c-resource augmented version of the k-resource problem allows an online algo-
rithm to use (1 + c) · k resources, whereas the offline schedule has to fulfill the
same task using only k resource items.

Our contribution. We start our investigation of the k-resource problem by
presenting its relation to the k-server problem. This yields lower bounds on the
competitiveness of any algorithm solving k-resource, as shown in Section 2. The
main results of the paper are divided into two parts. In Section 3, we consider the
k-resource problem on uniform metric spaces consisting of n points. We present
a deterministic and a randomized algorithm, both achieving asymptotically op-
timal competitive ratios: O(min{n, k}) and O(log(min{n, k})), respectively. In
fact, our algorithms are able to solve some instances of a more general problem,
the so-called dynamic-resource problem, where the number of available resources
can change in each step.

The results above allow us to solve the k-resource problem on uniformly de-
composable metric spaces with Γ ≥ k. The key issue for this kind of metrics is
to use resources available locally in the component and transport new ones from
other components only rarely. In Section 4 we give a randomized algorithm with
a competitive ratio (1+1/c)·O(log(min{n, k})), where n is the size of the largest
component of the metric space and c denotes the resource augmentation factor
(see Theorem 3). By the relations between the k-resource and k-server problems,
the same result holds for k-server. The competitiveness does not depend on the
number of components in the decomposition.

Due to space limitations some proofs are only sketched and technical ones are
omitted. All the proofs are available in the full version of the paper.

Related work. The k-server problem, introduced by Manasse et al in [7], has
been prominent in the research on online problems from the advent of com-
petitive analysis. Currently the best algorithm for general metrics, WFA [6], is
(2k − 1)-competitive, which nearly matches the lower bound of k by [7].

Much effort was put in the search for randomized algorithms which could
perform better. The results for general metric spaces are unsatisfactory: whereas
there exists a lower bound on the competitive ratio of Ω(log k/ log log k) [1,2],
currently there is no randomized algorithm better than k-competitive. There are,
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however, several results for specific metric spaces that break the o(k) barrier. A
classical result [5] shows a randomized O(log k)-competitive algorithm for the
uniform metric space. Recently, results on other metric spaces were obtained: the
work by Csaba and Lodha [4] provides an O(n2/3 logn)-competitive algorithm
for n equally spaced points placed on a line; Bartal and Mendel [3] generalized
this work for growth-rate bounded graphs. Seiden [8] has related the k-server
problem on decomposable metric spaces to unfair metrical task systems.

Our uniformly decomposable metric is a specific case of the metrics consid-
ered by Seiden [8]. The difference is that Seiden is dealing with non-uniformly
recursively decomposable metrics with a restriction ξ(x, y) ≥ Γ for points x, y
from distinct components. Additionally, his results do not require resource aug-
mentation. On the other hand, for his general setting the presented competitive
ratio is approximately O(z log2(k + z)) where z = |Λ|.

Our result for k-server on uniformly decomposable metric spaces is one of the
few, which relies on resource augmentation. Another successful applications are
due to Young [10] for the weighted caching problem and Sleator and Tarjan [9]
for paging.

2 Lower Bounds

It is quite straightforward that the k-resource problem is capable of modelling
k-server instances.

Lemma 1. Fix any metric space (X , ξ) and integers k′ ≤ k. If there exists an
α-competitive (randomized) algorithm A for k-resource problem on (X , ξ), then
there exists an α-competitive (randomized) algorithm A′ for k′-server problem
on (X , ξ).

We may now apply known lower bounds for k-server mentioned in the introduc-
tion by relating the k-resource problem to the (min{k, n − 1})-server problem,
where n is the number of points in X .

Corollary 1. Fix any space (X , ξ) consisting of n points, any integer k, and any
α-competitive algorithm A for the k-resource problem. Let f = min{k, n− 1}. If
A is deterministic, then α ≥ f ; if A is randomized, then α = Ω(log f/ log log f).
Moreover, if (X , ξ) is a uniform metric, then for a randomized A, α = Ω(log f).

3 Uniform Metric Spaces

In this section we investigate the k-resource problem on a uniform graph of n ≥ 2
nodes. First, we present some definitions and notations. Then, we specify a very
general class of phase-based algorithms and prove crucial properties about them.
It appears that any (deterministic) algorithm from this class is O(min{n, k})-
competitive. Finally, we show that by carefully using randomness, we are able to
substantially reduce this factor to O(log(min{n, k})). By Corollary 1, our results
are asymptotically optimal.



The k-Resource Problem on Uniform 341

Preliminaries. Formally, by a vector we understand a vector of n integers. For
any vector A, let |A| =

∑n
i=1 A[i]. We say that a vector A covers B (we write

A ≥ B) if A[i] ≥ B[i] for all 1 ≤ i ≤ n. For any two vectors A and B we define
the distance between them as δ(A,B) := 1

2 ·
∑n
i=1 |A[i] −B[i]|. In these terms,

in step t, we require that Xt ≥ dt and the cost of the algorithm on the uniform
metric is equal to δ(Xt−1, Xt). In the following we omit subscript t if it can be
deduced from the context.

Dynamic-resource (DR) problem. Since we want to use our algorithms for
the uniform spaces as building blocks in the construction for more complicated
spaces, we have to slightly generalize the model. Precisely, at the beginning of
each step t, the number of resources available may change. If it increases, the
algorithm may choose where to place the resources; if it decreases, the algorithm
may choose which units are removed. We also generalize the competitive analysis
for this problem: the number of units available to the online algorithm in step t
(denoted by kt) is not necessarily equal to the number of units at optimal offline
algorithm’s disposal (kOPT

t ). Naturally, in each step |dt| ≤ kt and |dt| ≤ kOPT
t .

We call such extended problem the dynamic-resource problem (DR). In gen-
eral, it seems to be much harder than k-resource, and we do not aim at con-
structing competitive algorithms for it. Instead, we construct algorithms which
perform well on some instances of DR, in particular when kt ≥ kOPT

t , kOPT
t is

non-increasing, and kt is non-decreasing. Note that the setting kt ≡ kOPT
t ≡ k

corresponds to the original k-resource problem.

Division of input into phases. First, we show how to deterministically par-
tition the whole input sequence σ into phases; each phase consist of several time
steps. The procedure is described in Figure 1. In each phase we track the max-
imum demand occurring at any node, and we store this information in vector
Dt. Within one phase, D is non-decreasing and since the change of d is re-
stricted, only one entry of D can change, and only by 1. At the beginning of the
phase Pq we store the current number of units, kt, in the variable κq. Note that
a phase Pq may end because either kt < κq or |Dt| > κq. If the former condition
holds, we call such Pq unfair, otherwise Pq is fair. Note that any k-resource in-
stance consists only of fair phases. As a byproduct, we get that within a phase
|dt| ≤ |Dt| ≤ κq. Note that the partitioning into phases depends only on the
input sequence and can be computed online.

3.1 Phase-Based Algorithms for the DR Problem

In this section we construct a class of phase-based algorithms. Although the
algorithms will always produce a feasible solution for the DR problem, we prove
their their competitiveness in fair phases only. This immediately yields their
competitiveness on k-resource instances.

The proof consists of two parts: in the first one we relate the cost of the
optimal offline algorithm in each two consecutive phases Pq−1 and Pq to the
difference of the values of D at the end of these phases; in the second one we
relate the cost of our algorithm to the same amount.
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subroutine StartPhase (q, t)
Pq ← {t}; κq ← kt; Dt ← dt

q ← 1; StartPhase (q, 1) /* Pq = current phase */
for t ← 2 to |σ| do

for each node i let Dt[i] ← maxt′∈Pq dt′ [i]
if kt < κq or |Dt| > κq

then q ← q + 1; StartPhase (q, t) /* new phase starts now */
else Pq ← Pq ∪ {t}

return (P1, P2, . . . , Pq)

Fig. 1. Division of input into phases

Algorithm construction. A phase-based algorithm PB bases its choices solely
on the contents of vector D, namely it always tries to maintain an invariant
X ≥ D. This simplifies the analysis, as we may assume that the adversary
manipulates vector D directly, instead of changing the demands. Moreover, in
phase Pq, the algorithm uses only κq units, and we explicitly assume it in the
analysis, i.e. |X | = κq. The surplus of units is left untouched by the algorithm
and is stored in a fixed node vS. If the real number of units decreases, the surplus
decreases, and if surplus diminishes below zero, it implies the end of the phase
because of the condition kt < κq.

First, we describe the behavior of PB in the first step of a phase Pq. If the
preceding phase was fair, then κq ≥ κq−1. If this inequality is strict, then the
algorithm has to increase the number of resources it is actually using. We simply
assume that at the very beginning of Pq, the vector X increases by the surplus
units, so that |X | = κq. This introduces no additional cost to the algorithm. If the
preceding phase was unfair, then the situation is a little bit more complicated,
because κq < κq−1, and the algorithm has to remove some units. In such case, in
the first step a reorganization is performed, i.e. PB moves all the units, so that
the demand is fulfilled exactly: X [i] = d[i] for each node i but vS, where all the
remaining units are stored.

To precisely describe the behavior of PB within a phase, we divide the nodes
into three groups. A node i is called saturated when X [i] = D[i], unsaturated
when X [i] > D[i], and infringing when X [i] < D[i]. It usually makes a difference,
when these conditions are checked: before or after the algorithm’s decision in
step t. In the former case, Dt is compared with Xt−1, and in the latter with Xt.

Phase-based algorithms are lazy (as introduced earlier for the k-server problem
in [7]). It means that if the invariant holds at the beginning of time step t, i.e. if
Xt−1 ≥ Dt, the algorithm does nothing (Xt = Xt−1). Otherwise, note that
Xt−1 covers Dt−1 and since D may change only at one node, say j, there is
at most one infringing node j. The algorithm may not move any of the units
from saturated nodes without further violating the invariant, and therefore it
considers the set of unsaturated nodes Ut = {i ∈ V : Xt−1[i] > Dt[i]}. Since
throughout the phase |Dt| ≤ κq = |Xt| and there exists one infringing node,
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Ut is non-empty. PB chooses now one node i ∈ Ut, according to some rule called
U-rule, and moves one unit from node i to j (we write that j borrows one unit
from i). Note that PB is not fully defined, as we have some freedom in choosing
the U-rule. It appears that we may show some properties of PB and the bounds
on its performance which hold for any U-rule.

Basic observations and lower bound on OPT. We start with an easy
observation on the structure of Ut sets and node saturation process.

Lemma 2. For any two consecutive steps t and t+1 from one phase, Ut+1 ⊆ Ut.
Additionally, at the very end of a fair phase all nodes are saturated.

Now fix any phase Pq. For the sake of analysis, if reorganization of X occurs
at the end of the first step of Pq, we assume that it is performed at the very
beginning of Pq, before the demands are presented to the algorithm in the first
step. This assumption simplifies the notations below.

Let Fq be the resource vector X at the very beginning of Pq (but after the
reorganization step, if any) and let F ′

q be the resource vector at the very end
of Pq. Obviously, it holds that |Fq| = |F ′

q| = κq. If at some node we need
a resource unit, we borrow it from a node which has too many units compared
to its current demand. If we always borrowed from a “correct” node (one that
will not need this unit anymore in this phase), we would pay exactly δ(Fq, F ′

q).
It appears that on fair phases no algorithm which uses few resources can perform
asymptotically better.

Lemma 3. For any two consecutive fair phases Pq−1 and Pq, any algorithm for
the DR problem, which has at most min{κq−1, κq} units in these phases, has to
pay at least δ(Fq, F ′

q)/2.

Tokens and cost in one phase. In an online setting it is usually not possible
to borrow units in an optimal way. If — to fulfill the demand — node i borrows
from some node j, which will need this unit in the future, we only get rid of the
deficiency for a while and when the demand at node j increases appropriately,
it will have to borrow from some other node.

To analyze the performance of our algorithm we introduce a concept of tokens.
One may think of a token as a kind of currency used to pay for units sent from
remote nodes. The phase begins with no tokens in the graph; at the end of a
phase all tokens are removed. Whenever node i borrows a unit from node j it
has to pay j, i.e. give j a token in exchange. If i has no tokens, then prior to
the exchange it has to produce one. In effect, the cost paid by the algorithm in
one phase is equal to the number of node changes of all the tokens produced in
this phase. We denote the number of tokens at node i at the end of time step t
by Tt[i]. On the basis of the description above, one can deduce that only at most
δ(Fq, F ′

q) tokens are produced during any phase Pq.

Bounds for the PB algorithms. The following lemma shows an essential
upper bound on the cost of the PB algorithm in one phase.



344 M. Bienkowski and J. Kuty�lowski

Lemma 4. Let unfq be a binary indicator variable denoting whether phase Pq
was unfair. For any phase Pq, it holds that CPB(Pq) ≤ min{n−1, κq}·δ(Fq, F ′

q)+
κq · unfq−1.

Proof. If the previous phase was unfair, then the cost of the reorganization is at
most κq. By our earlier observation, the number of produced tokens is at most
δ(Fq, F ′

q) and therefore it is sufficient to show that each token is moved at most
min{n− 1, κq} times.

Fix any time step t. First, note that if node i borrows a unit from node j,
then i /∈ Ut and j ∈ Ut. Therefore a token is sent from the node outside Ut to the
node inside Ut. Let y denote the size of set Ut when the first borrowing of the
phase takes place. We have y ≤ n−1 and y ≤ κq. Since, by Lemma 2, Ut+1 ⊆ Ut,
a token can be sent only y times. This concludes the proof. ��

When we combine Lemmas 3 and 4, we can relate the cost of the optimal algo-
rithm in two consecutive fair phases Pq−1 and Pq to the cost of the algorithm
PB in Pq. We can extend this relation to whole contiguous sequences of fair
phases. In particular, we get the following result.

Theorem 1. Any (deterministic) phase-based algorithm PB is O(min{n, k})-
competitive for the k-resource problem.

3.2 Randomized Phase-Based Algorithm for DR Problem

In this section we show a randomized phase-based algorithm for the DR problem,
which — on k-resource instances — is O(log(min{k, n}))-competitive. We only
have to specify the U-rule: the algorithm chooses a node with the smallest number
of tokens. If there is more than one such node, it is chosen uniformly at random.
We denote the resulting algorithm by PBR.

Distribution of tokens. Our goal is to define the whole game between the
adversary and the algorithm in terms of changes in token positions. For each
time step t we introduce the notion of set U ′

t = {i ∈ V : Xt[i] > Dt[i]}, i.e. the set
of all nodes which are unsaturated after the algorithm moves its unit. Similarly
to the Lemma 2, we get that U ′

t+1 ⊆ Ut+1 ⊆ U ′
t. Let �t denote the minimum

number of tokens at a node from U ′
t. By a straightforward induction, we may

show that each node from U ′
t has either �t or �t + 1 tokens.

The key to the analysis is the set At = U ′
t∪{i ∈ V : Tt[i] = �t+1}. Obviously,

each node from At contains �t or �t+1 tokens. The following lemma redefines the
whole game between the algorithm and the adversary in terms of token shifting.

Lemma 5. In step t + 1, there are two possible actions concerning tokens and
set A that can be incurred by the adversary.

A. A token is moved from i /∈ At to j ∈ At. If i had no tokens, then one token
was produced at i.

B. A node i is removed from set At. If i had �t + 1 tokens, �t tokens remain at
i and one is moved to j ∈ At.
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In both actions, node j is chosen uniformly at random amongst these nodes of At
which have �t tokens. Additionally, as a result of Action A, set A may decrease.

The adversary can compute the set At, but it does not know which nodes have
�t tokens and which �t+ 1. Let rt be the number of At nodes with �t+ 1 tokens;
it is possible to show that such nodes are distributed uniformly in At.

Number of token movements. In order to bound the expected number of
token movements in one phase, we construct a potential function Φ, which relates
this amount to the current distribution of tokens.

We fix any phase Pq and any time step t ∈ Pq. Let Lt =
∑
i/∈At

Tt[i], the
number of tokens outside set At. Let

Φt = |Tt| − δ(Fq, F ′
q) ·H|At| − Lt ,

where Hi =
∑i
j=1 1/j. Below we show that the expected cost of PBR in one

step is bounded by the change in the potential.

Lemma 6. In time step t + 1, E[CPBR(t + 1)] ≤ E[Φt+1 − Φt].

Proof. By Lemma 5, we have to consider two types of events.
Assume that Action A occurs. If a token is produced at node i /∈ At, both |T |

and L increase by 1, which does not change the potential. The cost of moving
a token is paid by the decrease of L by 1. Finally, set A may decrease, but this
can only increase the change in the potential.

Assume that Action B occurs. Then At+1 = At\{i} and �t tokens are removed
from set A. E[CPBR(t+1)] = rt/|At| because rt/|At| is the probability of moving
a token. Therefore, the expected change in the potential is equal to

E[Φt+1 − Φt] = δ(Fq, F ′
q) · [H|At| −H|At+1|]− �t =

δ(Fq, F ′
q)

|At|
− �t ≤

rt
|At|

,

where the last inequality holds because the number of tokens in At, �t · |At|+ rt,
is at most δ(Fq , F ′

q). ��
Since it always holds that |At| ≤ min{n, κq} and |Tt| ≤ δ(Fq, F ′

q), the absolute
value of Φ is bounded by O(log(min{n, κq})) · δ(Fq , F ′

q). By Lemma 6, the same
bound holds for the expected number of token movements in phase Pq, and thus
we get the following lemma.

Lemma 7. For any phase Pq, E[CPBR(Pq)] = O(log(min{n, κq})) · δ(Fq, F ′
q) +

κq · unfq−1.

Theorem 2. PBR is O(log(min{n, k}))-competitive for the k-resource problem.

4 Uniformly Decomposable Metric Spaces

Up to this point we have been considering the k-resource problem for uniform
metric spaces. We now turn our attention to a metric space (X , d) which is
uniformly decomposable into a set Λ of components, each being a uniform metric
space. The distances between components are denoted by Γ and z = |Λ|.
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Outline of the solution. To solve the k-resource problem on a uniformly
decomposable metric space, we have to care about an appropriate resource as-
signment on two levels: the available resources must be split accordingly between
the components of the metric space and they must be assigned to single points
of the metric space within each of the components.

The resource assignment in each of the components is managed by separate
instances of algorithms for the dynamic-resource problem (we use the algorithm
PBR introduced in the previous section). Note that if we look only at the higher
level and we treat each component as one point of the space, we have a usual
k-resource game on a uniform metric. However, if we solve it naively, neglecting
what really happens inside of particular components, we obtain an inefficient
algorithm. For example, if the whole activity takes place in one component,
but the total demand in this component is constant, the naive algorithm on
higher level does nothing and may assign much fewer resources to this component
than the optimal algorithm. Therefore, the algorithm PBR working inside this
particular component has no chance to be competitive.

Thus, the PBR algorithms running inside the components have to give the
higher level assignment algorithm hints in which components the resource de-
mand changes in a significant manner. Nevertheless, even with these hints, the
problem seems to be difficult and therefore we give to our algorithm a little
bit more resources than to the optimal one (i.e. we use resource augmentation).
This guarantees that there will be many phases in which PBR algorithms have
at least as many resources as Opt. By the previous section, we know that the
ratio between their costs in such phases is at most logarithmic in k and in the
number of nodes in the specific component.

Upper level of DMR. We introduce an algorithm DMR. It works by using
separate instances PBRλ of the algorithm PBR in each component λ ∈ Λ.
After the adversary changes the demands in component λ, the algorithm DMR

checks whether more resources must be moved to component λ. If necessary, this
movement is performed and afterwards algorithm PBRλ is used to handle that
request with the resources available locally in λ.

Let Fq(λ), Dt(λ), Iq(λ), and kt(λ) denote, respectively, the variables Fq, Dt,
Iq, and kt for the algorithm PBRλ (as introduced in the analysis of PBR). For
any step t belonging to phase q we define a padding gt(λ) as

gt(λ) =
∑

i:Dt(λ)[i]>Fq(λ)[i]

(Dt(λ)[i] − Fq(λ)[i]) . (1)

Let w[λ] denote the total demand for resources in a component λ, i.e. wt[λ] =∑
p∈λ dt[p]. The assignment of resources to components is performed by an al-

gorithm which depends on changes of the padding g. In particular, we construct
the following sequence of vectors:

Wt[λ] =

{
max{Wt−1[λ] + 1/Γ,wt[λ]} if t > 2 and gt−1(λ) > gt−2(λ),
max{Wt−1[λ], wt[λ]} otherwise.
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This recursive definition is still incomplete, since we have to give some start
conditions. Note that by this definition only two elements of W can increase
per time step. Using the values of W the algorithm DMR divides the input
sequence σ into epochs E1, E2, . . . The first epoch starts with the first time step.
At the beginning of each epoch we set W = w. An epoch ends at the end of
a step t (after PBR executed all its actions in t) in which |Wt| ≥ (1 + c) · k− 2.
Since |W | can increase by at most 1+1/Γ per step, at the very end of the epoch
|W | ≤ (1+ c) ·k when the epoch ends in t. For convenience we call each increase
of W due to the condition gt−1(λ) > gt−2(λ) a hit in component λ.

Let a vector Bt denote the number of resources available in the components.
Obviously |Bt| = (1 + c) · k. In step t we assign exactly �Wt[λ]� resources to
component λ by setting kt(λ) = �Wt[λ]�. If there are too few resources in λ (i.e.
�Wt[λ]� > Bt−1[λ]), then a resource item is moved from another component.
This is always possible since we have (1 + c) · k resource units available and∑
λ∈Λ�Wt[λ]� ≤ (1 + c) · k by the way epochs are constructed.
In effect, DMR constructs a part of the input sequence for the dynamic-

resource problem solved by PBRλ by changing the number of assigned resources.
In any time step, the DMR algorithm moves resources between components prior
to the algorithms PBRλ. This assures that each PBRλ has �Wt[λ]� ≥ wt[λ]
resources available to fulfill the demand. The PBRλ algorithm may only use the
assigned resources to fulfill the demand, and not all the resources really available
in the component. Such construction implies that not all resources are always
used; this appears counterproductive at first glance, but it keeps the division
into epochs deterministic and dependent only on the input sequence.

Analysis of DMR. Using Lemma 7 and observing that with each hit |W |
increases by 1/Γ , we may bound the cost of DMR in each epoch. A lower bound
on the cost of Opt relies on the notion of fair timespans. In such a timespan,
the algorithm PBRλ has at least the same number of resources as Opt, and
therefore the phases in this timespan are fair. Since DMR has (1+c)·k resources
available, we can guarantee that there exist fair timespans of appropriate length
during an epoch. In a fair timespan, the PBRλ algorithm is competitive against
Opt, and thus each hit implies that Opt has incurred some cost. This leads
to an appropriate lower bound on the cost of Opt during the whole epoch, as
shown in the following lemma.

Lemma 8. Let z ≤ c · Γ/4 and Γ ≥ k. Then for any epoch Ey,

E[CDMR(Ey)] ≤ (1 + c) · k · Γ · O(log(min{n, k})) ,

where the expectation is taken w.r.t. all random choices made by the algorithms
PBRλ. On the other hand, COPT(Ey) = Ω(c · k · Γ ).

The following theorem follows easily since each input sequence is deterministi-
cally partitioned into epochs and DMR is competitive for every finished epoch
by the former lemma. The last potentially unfinished epoch contributes only
an additive term.
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Theorem 3. Let (X , ξ) be a uniformly decomposable metric space with com-
ponent set Λ. Then DMR is O((1 + 1/c) · log(min{n, k}))-competitive for the
k-resource problem on (X , ξ) with c-resource augmentation, |Λ| ≤ c · Γ/4 and
Γ ≥ k. The same result holds for the k-server problem.
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Abstract. While standard parallel machine scheduling is concerned with
good assignments of jobs to machines, we aim to understand how the qual-
ity of an assignment is affected if the jobs’ processing times are perturbed
and therefore turn out to be longer (or shorter) than declared. We focus
on online scheduling with perturbations occurring at any time, such as
in railway systems when trains are late. For a variety of conditions on the
severity of perturbations, we present upper bounds on the worst case ratio
of two makespans. For the first makespan, we let Graham’s algorithm as-
sign jobs to machines, based on the non-perturbed processing times. We
compute the makespan by replacing each job’s processing time with its
perturbed version while still sticking to the computed assignment. The
second is an optimal offline solution for the perturbed processing times.
The deviation of this ratio from Graham’s competitive ratio (of slightly
less than 2) tells us about the “price of perturbations”. For instance, we
show a competitive ratio of 2 for perturbations decreasing the process-
ing time of a job arbitrarily, and a competitive ratio of less than 2.5 for
perturbations doubling the processing time of a job.

1 Introduction

The input to the parallel machine scheduling problem is a sequence of processing
times of n jobs, each of which needs to be processed later on one of m identical
machines. The objective is to minimize the completion time of the job termi-
nating last (the makespan) [16]. A feasible solution is an assignment of jobs
to machines; an optimal solution minimizes the makespan. The underlying as-
sumption is as usual for all kinds of (offline or online) optimization problems:
The input values accurately reflect the reality for which the planning takes place.
In online parallel machine scheduling, the planning decision for each job, i.e.,
to which machine this job shall be assigned, must be made when the job is pre-
sented, before the next processing time (if any) is shown, and cannot be revoked
later. Note that there is a clear distinction between the presentation of the pro-
cessing times of the jobs for the purpose of planning, and processing the jobs
on the planned machines. Therefore, the planned processing time of a job can
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sometimes be dramatically different from its real processing time, when process-
ing takes place. For instance, this happens when a train ride turns out to take
much longer than planned due to an engine breakdown.

In this paper, we aim at understanding to what extent a limited number of spe-
cific kinds of perturbations of the input affect the performance of online parallel
machine scheduling. We assume that a probability distribution of perturbations
is either not available, or does not tell a lot (as for engine breakdowns, which
with very small probability may occur everywhere), and focus on a worst-case
analysis. We make just a first step by studying the behavior under perturba-
tions of the well-known algorithm by Graham [6] for online scheduling, the List
scheduling algorithm. Graham’s algorithm assigns the next presented job to the
machine that will terminate earliest for the job sequence seen so far. While de-
terministic online algorithms have improved the competitive ratio for parallel
machine scheduling to 1.9201 [5], and randomized algorithms such as [2] even
more than that, Graham’s algorithm remains, in its simplicity and with its com-
petitive ratio of 2− 1

m , a prime example of a good online algorithm.
The perturbations of the processing times are disclosed after the entire so-

lution has been determined. The impact of perturbations is measured by the
worst-case ratio of two makespans. The first is the makespan that we get by
taking, for the original instance, Graham’s assignment of jobs to machines, and
by replacing, within this assignment, all original processing times with the per-
turbed ones. The second is the makespan of an optimal offline solution of the
perturbed instance. This ratio tends to be larger than Graham’s competitive
ratio; the larger it is, the more Graham’s algorithm suffers from perturbations.

A related but different question has been addressed in sensitivity analysis,
asking for the amount of perturbation that can be tolerated before the structure
of an optimal solution changes. Sensitivity analysis has been studied predom-
inantly for linear programming [4], but also for many combinatorial problems
such as network flows [1] and scheduling [8]. In this paper, we allow a small
number of processing times to be perturbed a lot, but we will not change the
structure of a solution and merely observe its change in quality, because the
perturbation happens after the irrevocable assignment decision.

Related work. Robustness has been defined in a variety of ways in optimization
theory. Exact input values have been replaced by probability distributions [18]
in a probabilistic approach, or by intervals of possible values in a worst case
scenario [13,9], or by uncertainty sets [3]. We are most interested in a notion of
robustness that takes a worst-case view, but limits the number of perturbations
that can actually happen. This view is motivated by everyday experience: A
severe disturbance such as a locomotive breakdown can happen at any train
ride, but we do not need to fear many such events simultaneously.

The effect of perturbations in offline scheduling algorithms has been studied
under many different points of view, see [8,11] for an overview. These include
sensitivity analysis for different parameters [8] and uncertainty in communication
delays between inter-depending jobs scheduled on different machines [14,17].
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The effect of perturbed processing times has also been addressed in different
ways. Parallel machine scheduling where all jobs’ processing times are accurate
up to a factor (1 ± ε′) of a declared value was analyzed in [15]. The quality of
any algorithm deteriorates by a factor (1 + ε) for the makespan, and by

√
1 + ε

for the sum of completion times. We provide a better bound for the makespan,
since our analysis exploits the structure of Graham’s schedule. The performance
of online scheduling algorithms where the processing times are drawn from a
distribution, and the scheduling algorithm needs to schedule the jobs with the
knowledge of the distributions only, has also been addressed in terms of average
case analysis for the completion times [18] and of minimization of an objective
in expectation, as in [12].

The tolerance to perturbations of Graham’s List scheduling algorithm has
been addressed both in terms of decrease in quality of the objective [6,7] and
in the number of different (offline) schedules that arise from perturbing the
processing time of one job and for different input sequences [10]. Graham [6,7]
analyzed the effects of relaxations in a number of instance-defining parameters.
For each parameter, he analyzed the worst-case ratio of the makespans of the
relaxed instance with respect to the non-relaxed instance, for both instances
scheduled with List. He showed a worst-case ratio of 2 − 1

n for decreasing the
processing times, and similar results were derived for the relaxation of other
parameters.

Our contribution. We derive bounds on the competitive ratio of Graham’s
algorithm on m machines for the following scenarios. For integer r and arbitrary
increase of the processing times of r ≤ n jobs, we show a competitive ratio
of 2 + r − r+1

m ; for arbitrary decrease of the processing times of any number
of jobs that turn out to be scheduled on r ≤ m machines in an optimal offline
schedule, we show a competitive ratio of 2 + r−1

m−r ; for dividing the processing
times of r jobs by a factor at most x > 1, x ∈ Q+

0 , we show a competitive
ratio of 2 + r(x−1)−1

m ; and for either dividing or multiplying (but not both) the
processing times of an arbitrary number of jobs by a factor at most x > 1, we
show a competitive ratio of 1+x− 1

m . We also give (infinite families of) examples
where these bounds are tight or come close.

Problem setting and notation. An instance is specified as a 3-tuple (J, P, P̃ ),
where J is the sequence of jobs to be scheduled, P and P̃ specify the original
processing time pj ∈ Q+

0 and the perturbed processing time p̃j ∈ Q+
0 of each job

j ∈ J , respectively. Graham’s algorithm schedules the original instance, that is,
the job sequence J with processing times P , and produces a schedule List(J, P ).

Each instance is characterized by the perturbation against which we analyze
robustness. The effect of the perturbation is reflected in the processing times
P̃ , which may increase or decrease; the perturbation may be of arbitrary size,
or bounded for each job by a factor x of the job’s original processing time.
The latter setting is motivated by project scheduling, where the extent of the
misjudgment of a task’s processing time is often linked to the task’s difficulty.
We refer to the jobs J with processing times P̃ as the perturbed instance.
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We denote by OPT(J, P̃ ) the optimal offline schedule of the sequence of
jobs J with processing times P̃ . In the offline setting, the order in J is ir-
relevant. We denote by L(S, P ) the makespan of the schedule S with pro-
cessing times P . In this setting, we measure the robustness of Graham’s on-
line algorithm by computing the makespan of the schedule List(J, P ) obtained
with the original instance, but evaluated on the perturbed processing times P̃ ,
that is, by evaluating L(List(J, P ), P̃ ). We compare this makespan with the
makespan L(OPT(J, P̃ ), P̃ ) of the optimal offline schedule OPT(J, P̃ ). Note that
comparing L(List(J, P ), P̃ ) with L(List(J, P ), P ) does not provide any useful
information, since the total processing time is different for P and P̃ : If the pro-
cessing time of a job increases arbitrarily, any algorithm needs to process this
job.

In this model, each machine processes its assigned jobs without pausing in
between. The sum of the processing times of a machine is called load. When
machine i ∈ M is finished, it remains idle up to the makespan. We refer to the
idle time as si, i ∈M . We call the set of machines which process some perturbed
jobs the affected machines, and denote them by M �=. Similarly, we call the set
of machines which do not process any perturbed jobs unaffected machines, and
denote them by M=.

For perturbations increasing the jobs’ processing times, we denote the per-
turbed processing times as p↑j , j ∈ J , and the set of all increased processing times
as P ↑. Similarly, for decreases we use p↓j , j ∈ J and P ↓. Changing the processing
times of the jobs in a schedule also influences the idle times. Therefore, we refer
to the idle time resulting after the perturbation as s↑i for increased processing
times and as s↓i for decreases. In the analysis, we look at the perturbations of
the jobs sequentially, in any order. In this way, we can specify the impact of the
perturbation of each job on the idle time of each machine. When a job changes
its processing time, the subsequent jobs shift accordingly in the schedule. This
shift may shorten or lengthen the idle time of various machines. We denote the
increase or decrease in idle time on machine i ∈ M caused by perturbing job j
by δij ∈ Q, which may be positive or negative.

For a makespan L, the processing times of the jobs and the idle times of the
m machines satisfy mL =

∑
j∈J pj +

∑m
i=1 si. For the sake of completeness, we

revise some of the known lower bounds on the optimum for the classical paral-
lel machine scheduling and for Graham’s algorithm. Let LOPT be the optimal
makespan. First, pj ≤ LOPT, ∀j ∈ J , since each job must be scheduled non-

preemptively. Furthermore, LOPT ≥
∑

j∈J pj

m , since no schedule can do better
than distribute the total processing time evenly across all machines. Finally,
consider an arbitrary job j̄ finishing at the makespan of Graham’s schedule.
Then, si ≤ pj̄, ∀i ∈ M , since otherwise Graham’s algorithm would have sched-
uled job j̄ on the machine not satisfying the inequality. Finally, if we consider
the instances where the perturbation increases the processing times, we have
LOPT ≤ L(OPT(J, P ↑), P ↑), since the total processing time increases and the
maximum processing time of the jobs can also only become larger.
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2 Arbitrary Perturbations

In the following, we analyze robustness for arbitrary size perturbations of the
processing times of jobs. First, we analyze the case of arbitrary decreases in
processing times and then of arbitrary increases.

2.1 Arbitrary Decreases in Processing Time

First, we bound the best-possible quality of the solution of any online algorithm
if the processing times may decrease arbitrarily.

Theorem 1. No algorithm for online scheduling on m identical parallel ma-
chines on instances where the processing time of one job may decrease arbitrarily
can have a competitive ratio smaller than 2.

Proof. Assume such an algorithm exists, and consider the following sequence
of jobs, all with processing time 1. First, the adversary sequentially presents m
jobs. To be strictly better than 2–competitive, any algorithm must schedule each
job on a different machine. Then, the adversary presents a final job, which may
be scheduled on any machine. Now, the perturbation affects one job which is
scheduled alone on a machine, and decreases its processing time to 0. Thus, the
computed schedule has an empty machine, and a makespan of 2. The offline op-
timal perturbed schedule assigns each of the now m jobs on a different machine,
and has a makespan of 1. ��

We now focus on Graham’s algorithm, and analyze the case where the perturbed
jobs are scheduled on r out of the m available machines by Graham’s algorithm.
We have the following theorem:

Theorem 2. Consider the instances of online scheduling on m identical parallel
machines where perturbations may decrease the processing times of some jobs
arbitrarily. Restricted to these instances, if Graham’s algorithm schedules the
perturbed jobs on r machines, Graham’s algorithm is 2 + r−1

m−r–competitive, and
this bound is best possible. For r = 1, Graham’s algorithm is optimal.

Before proving this theorem, we introduce a compact notation for the makespans
to improve readability. We write LOPT for L(OPT(J, P ), P ), and L↓

OPT for
L(OPT(J, P ↓), P ↓). Similarly for Graham’s algorithm, we write L↓

List instead
of L(List(J, P ), P ↓). The notation for increases in processing times is obtained
accordingly.

Proof. Consider Graham’s schedule List(J, P ). We refer to the jobs scheduled
on the unaffected machines M= as J=. Hence, by definition, these jobs do not
change their processing time. To estimate the makespan after the perturbation
we analyze the schedule of the unaffected m − r machines M=. We distinguish
two cases: in the first, the makespan L↓

List is attained by at least one machine in
M=, while in the second no machine in M= attains it.
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For the first case, we let j̄μ be a job attaining the makespan after the pertur-
bation on an unaffected machine μ ∈ M=. In this case, the time spent by the
machines M= up to the makespan is given by:

(m− r) · L↓
List =

∑

j∈J=

p↓j +
∑

i∈M=

s↓i

≤
∑

j∈J
p↓j + (m− r − 1)p↓j̄μ ≤ mL↓

OPT + (m− r − 1)L↓
OPT,

since J= ⊆ J and at most (m− r− 1) machines have some idle time, which due
to Graham’s algorithm is smaller than p↓j̄μ . Thus, the bound follows:

L(List(J, P ), P ↓) ≤
(
2 + r−1

m−r
)
· L(OPT(J, P ↓), P ↓)

For the second case, let j̄μ be a job attaining the makespan after the pertur-
bation on an affected machine μ ∈ M �=. Because of Graham’s algorithm, when
j̄μ was originally scheduled, μ was a machine with least load, say with load �.
Since the processing times on unaffected machines M= remain unchanged, the
latter machines have load at least � after the decreases. Thus, their idle time is
s↓i ≤ p↓j̄μ , i ∈ M=, since j̄μ attains the makespan. Note that this bound holds
both if j̄μ is perturbed or it remains unchanged. Thus, the time spent by the
machines in M= up to L↓

List can be represented as follows:

(m− r) · L↓
List =

∑

j∈J=

p↓j +
∑

i∈M=

s↓i ≤
∑

j∈J
p↓j − p↓j̄μ + (m− r) · p↓j̄μ

≤ m · L↓
OPT + (m− r − 1) · L↓

OPT,

since by the case analysis j̄μ is not scheduled on a machine in M=. The bounds
lead to the same expression as in the previous case, thus concluding the first
part of the proof.

A worst-case instance for r ≤ m − 2 machines has the following structure,
illustrated in Figure 1. First, the adversary presents r huge jobs with processing
time C > 1 + r−1

m−r each. Next, the adversary presents m − r big jobs with
processing time one. Then, the adversary presents (r−1)·(m−r) small jobs with
processing time 1

m−r . Finally, a big job with processing time one is presented.
Now, the perturbation decreases the processing time of all huge jobs from C
to zero and the achieved makespan is 2 + r−1

m−r . The optimal offline algorithm
achieves a makespan of 1. Simple examples show worst-case behaviors for m−1 ≤
r ≤ m according to the stated bound. Note that the analysis is nevertheless not
suited for r = m. The optimality of Graham’s algorithm for r = 1 follows from
Theorem 1. ��

Intuitively, this proof shows that the worst-case scenario happens if the affected
machines are blocked with jobs whose processing time decreases to zero. Hence,
the adversary and the perturbation force the online algorithm to work with
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1
m−r
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1

Fig. 1. A worst-case example matching the bound of Theorem 2. Left, Graham’s sched-
ule on the original instance; the perturbed jobs have a dotted outline. Right, the optimal
schedule of the perturbed instance.

r machine less than initially stated. Surprisingly, this affects the competitive
ratio only with an additive term of r

m−r .

2.2 Arbitrary Increases in Processing Time

We now consider arbitrary increases in the job’s processing times. For clarity, we
first analyze the perturbation where r jobs increase in processing time arbitrarily.
Then, we give a similar analysis for the case where any number of jobs may be
perturbed, and the perturbed jobs are scheduled on r machines of an optimal
offline schedule of the perturbed instance.

Theorem 3. Consider the instances of online scheduling on m identical par-
allel machines where perturbations may increase the processing times of r jobs
arbitrarily. Restricted to these instances, Graham’s algorithm has a competitive
ratio of 2 + r − r+1

m , and this bound is best possible for r ≤ m− 2.

Proof. Let J↑ ⊂ J, |J↑| = r be the arbitrarily ordered list of jobs whose process-
ing times increase and let ψj = p↑j − pj be the increase of job j ∈ J↑. Recall
that for the analysis we assume the perturbations to occur sequentially. Thus,
ψj ≤ p↑j ≤ L↑

OPT, j ∈ J↑, and −ψj ≤ δkj ≤ ψj , k ∈ M, j ∈ J↑. Furthermore,
at least one machine μ ∈ M attains the makespan before the perturbation,
and has idle time sμ = 0. The idle times of the remaining machines satisfy
si ≤ LOPT ≤ L↑

OPT, i ∈ M . Furthermore, the increase of job j ∈ J↑ does not
increase the idle time of the machine the job is scheduled on (although it may
decrease it). The new makespan of the machines is thus given by:

m · L↑
List =

∑

j∈J
pj +

∑

i∈M
si +

∑

j∈J↑

ψj +
∑

j∈J↑,k∈M
δkj

=
∑

j∈J
p↑j +

∑

i∈M
si +

∑

j∈J↑,k∈M
δkj

≤ m · L↑
OPT + (m− 1) · L↑

OPT + (m− 1) · r · L↑
OPT,

L(List(J, P ), P ↑) ≤
(

2 + r − r + 1
m

)

· L(OPT(J, P ↑), P ↑).

To see that the analysis is best possible for r ≤ m − 2, we give an example,
illustrated in Figure 2, where this bound is achieved up to an arbitrarily small
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1 − (r + 1)/m

1m7

1

A=1/m

C=r/ε− ε2 → 1

r jobs, each from ε/r − ε2 to 1

m7

Fig. 2. A worst-case instance for arbitrary increase of r jobs. Left, Graham’s schedule
before the perturbation, and the affected machine m7 after the perturbation. Right,
the optimal schedule of the perturbed instance.

ε ∈ Q+
0 , 0 < ε < 1

m . First, the adversary presents m − r − 1 big jobs with
processing time 1− (r+1)

m . Next, the adversary presents m ·(r+1)·(1− r+1
m )−1 =

(r+1)·(m−r−1)−1 small jobs with processing time 1
m , followed by one small job

with processing time 1
m − ε, for ε arbitrarily small. Now, the adversary presents

r tiny jobs with processing time ε
r − ε2 and a last job with processing time 1.

The perturbation increases the processing times of tiny jobs from ε
r − ε2 to 1.

The makespan of Graham’s schedule is 2 + r− r+1
m − ε. On the other hand, the

optimal offline algorithm on the perturbed instance has a makespan of 1. ��

Theorem 3 can be generalized as follows. Let J↑
i be the arbitrarily ordered list

of perturbed jobs which are scheduled on machine i ∈ M in an optimum offline
solution OPT(J, P ↑). Let M �= = {i ∈ M |J↑

i 	=∅} be the set of machines in the
considered optimal offline solution which process at least one job with perturbed
processing time, and define r = |M �=|. Note that here the perturbed machines
are defined with respect to OPT(J, P ↑), and not to Graham’s schedule.

Theorem 4. Consider the instances of online scheduling on m identical paral-
lel machines with the following properties: first, the processing times of some
jobs may increase arbitrarily; second, the perturbed jobs are scheduled on r
machines of an optimal offline solution. For these instances, Graham’s algo-
rithm has a competitive ratio of 2 + r − r+1

m , and this bound is best possible for
r ≤ m− 2.

The proof follows the lines of the previous one. The additional ingredients are
bounding the sum of the variations in processing time of all perturbed jobs
within J↑

i , i ∈ M by L↑
OPT and noting that for each perturbed job j ∈ J there

is a machine k ∈M with δkj ≤ 0.

3 Bounded Perturbations

In the following, we bound the perturbation of each job to a constant factor of
the job’s original processing time. Thus, the perturbed processing times are of
the form p̃ = αp for some α.
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Fig. 3. The example of Theorem 5 for x = 2. Left, the Graham’s schedule on the
original instance. The perturbed jobs are shown as dotted with their original processing
time, and with solid lines in their perturbed state. Right, OPT(J, P ↓).

3.1 Bounded Decreases in Processing Times

In this section, we analyze the behavior of the makespan given that jobs may
decrease by a bounded factor.

Theorem 5. Consider the instances of online scheduling on m identical parallel
machines where the processing times of an arbitrary number of jobs may decrease
to a factor at least 1

x of their original processing time, for x > 1, x ∈ Q+
0 .

Restricted to these instances, Graham’s algorithm has a competitive ratio between
1+x− x2

m−1+x − ε and 1+x− x
m , for a small ε ∈ Q+

0 , 0 < ε < x
m−1 (1− x

m−1+x).

Proof. Consider a machine μ attaining the makespan after the perturbation.
Let j̄μ be the last job scheduled on μ, and let � be the load of μ on the original
instance when j̄μ was presented. Hence, the total load of μ before the pertur-
bation is � + pj̄μ . Because j̄μ was scheduled on μ, all machines have at least
load � with the original processing times. Therefore, m� ≤

∑
j∈J\{j̄μ} pj . Since

at most all jobs are perturbed and decrease to a factor at least 1
x ,
∑
j∈J\{j̄μ} pj ≤

x
∑
j∈J\{j̄μ} p

↓
j ≤ xm · L↓

OPT − x · p↓j̄μ , hence � ≤ xL↓
OPT − x

mp↓j̄μ . Thus:

L(List(J, P ), P ↓) ≤ � + p↓j̄μ ≤ x · L↓
OPT − x

m
p↓j̄μ + p↓j̄μ = x · L↓

OPT +
(
1 − x

m

)
p↓j̄μ

≤
(
1 + x− x

m

)
L(OPT(J, P ↓), P ↓).

An example which comes close to this upper bound is the following sequence of
jobs, illustrated in Figure 3 for the case x = 2. The adversary presents m − 1
big jobs with processing time x− x2

m−1+x , m− 2 small jobs with processing time
x

m−1 (1 − x
m−1+x ), one small with processing time x

m−1 (1 − x
m−1+x ) − ε, for a

small ε ∈ Q+
0 , 0 < ε < x

m−1 (1 − x
m−1+x), followed by a last job with processing

time 1. The perturbation affects the m− 1 big jobs, decreasing their processing
time to 1− x

m−1+x . Graham’s schedule on the perturbed instance has makespan

of 1 + x− x2

m−1+x − ε, whereas L(OPT(J, P ↓), P ↓) = 1. ��

Theorem 6. Consider the instances of online scheduling on m identical parallel
machines where the perturbations may decrease the processing times of r jobs to
a factor at least 1

x of their original processing time, for x ∈ Q+
0 , x > 1. Restricted

to these instances, Graham’s algorithm has a competitive ratio of 2 + r·(x−1)−1
m .
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The proof is similar to the one of Theorem 7 and is omitted.
Similar to Theorem 4, this theorem can also be stated with respect to the

number r of affected machines M �= in an optimal offline solution OPT(J, P ↓).

Theorem 7. Consider the instances for online scheduling on m identical par-
allel machines with the following two properties: first, the perturbations may de-
crease the processing times of some jobs to a factor of at least 1

x of their original
processing time, for x ∈ Q+

0 , x > 1; second, the perturbed jobs are scheduled on r
machines in an optimal offline solution. Restricted to these instances, Graham’s
algorithm has a competitive ratio of 2 + r·(x−1)−1

m .

Proof. Let J↓
i be the set of perturbed jobs scheduled on machine i ∈ M in

OPT(J, P ↓), and let M �= = {i ∈ M |J↓
i 	=∅}, r = |M �=|. Let J̃ = ∪i∈M �=J↓

i be the
set of all perturbed jobs. Consider a machine μ attaining the makespan after the
perturbation, let j̄μ be the last job scheduled on μ, and let � be the load of μ in the
original instance when j̄μ was presented. Therefore, L(List(J, P ), P ↓) ≤ �+ pj̄μ .
Now:

m� ≤
∑

j∈J\{j̄μ}
pj ≤

∑

j∈J̃
pj +

∑

j∈J\J̃
pj − pj̄μ ≤ x

∑

j∈J̃
p↓j +

∑

j∈J\J̃
p↓j − pj̄μ

≤
∑

j∈J
p↓j + (x− 1)

∑

j∈J̃
p↓j − pj̄μ =

∑

j∈J
p↓j + (x− 1)

∑

i∈M �=

∑

j∈J↓
i

p↓j − pj̄μ

≤ mL↓
OPT + (x− 1)rL↓

OPT − pj̄μ = L↓
OPT (m + (x− 1)r) − pj̄μ .

where the last inequality follows because
∑
j∈J↓

i
p↓j ≤ L↓

OPT. Thus,

L↓
List ≤ L↓

OPT +
(x− 1)r

m
L↓

OPT +
(

1 − 1
m

)

pj̄μ ≤
(

2 +
(x− 1)r − 1

m

)

L↓
OPT.

��

3.2 Bounded Increases in Processing Times

Now, we focus on the case where the perturbation increases the processing times
of some jobs to a factor x ≥ 1, x ∈ Q+

0 of the job’s original processing times.
Special results hold if the perturbation affects a single job. For this case, we can

show that the competitive ratio of Graham’s algorithm is 3 − 1
x −

(2− 1
x )

m , and
this bound is best possible for m ≥ 3 and x ≥ m−1

m−2 . Furthermore, for x = 2, a
very simple example with 3 jobs and 2 machines gives a lower bound of 1.5 for
the competitive ratio of any online algorithm.

We do not prove these results here, since our focus is on bounded increases of
many jobs.

Theorem 8. Consider the instances of online scheduling on m identical paral-
lel machines where perturbations may increase the processing times of many jobs



On the Robustness of Graham’s Algorithm for Online Scheduling 359

A= 1
x −

1
m−1+x − ε

B= 1
x −

1
m−1+x

C=1 − x
(m−1+x)

1
x·(m−1+x)

C

C
C

A B B

B×x B×x

A×x

A×x

B×x
B×x

C
C
C

11
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m2
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m7

m7

Fig. 4. The example of Theorem 8 for x = 3. Left, Graham’s schedule on the original
instance with the schedule of the affected machine at the bottom. Right, the optimal
offline schedule OPT(J, P ↑).

to a factor x ≥ 1, x ∈ Q+
0 of their original processing time. Restricted to these

instances, Graham’s algorithm is 1+x− 1
m–competitive. For x ∈ N and x ≤ m−1,

the competitive ratio of Graham’s algorithm is at least 1 + x − x2

m−1+x − ε, for
arbitrarily small ε ∈ Q+

0 , 0 < ε < 1
x·(m−1+x) .

Proof. We omit the proof of the upper bound, which is similar to proof of The-
orem 9. An example achieving a bad competitive ratio for x ≤ m− 1, x ∈ N, has
the following structure, shown in Figure 4. First, the adversary presents m−x−1
big jobs with processing time 1 − x

m−1+x . Next, the adversary presents the fol-
lowing sequence of jobs: one medium job with processing time 1

x −
1

m−1+x − ε,
with ε ∈ Q+

0 , 0 < ε < 1
x·(m−1+x) , and (m − 1) · x small jobs with processing

time 1
x·(m−1+x) . The same sequence is repeated x − 1 times with the difference

that the medium jobs have processing time 1
x −

1
m−1+x . At last, the adversary

presents a big job with processing time 1. Now, the perturbation affects the
medium jobs, which increase to 1 − x

m−1+x (except for the first medium job,

which is εx smaller than that) and enforce a makespan of 1 + x − x2

m−1+x − xε.
The optimal offline algorithm, on the other hand, achieves a makespan of 1. In
this example, it is sufficient to perturb x jobs to get this bad behavior. ��

In the following, we consider increases in processing times which may be different
for all jobs, but where the impact on the schedule is bounded. To that end,
consider Graham’s schedule List(J, P ). For each machine i ∈ M , we partition
its assigned jobs as follows: let j̄i be the last job scheduled on i, Pi be the set of
jobs, excluding j̄i, which are not perturbed, and P̃i the set of jobs, excluding j̄i,
which are perturbed.

Theorem 9. Graham’s algorithm for online scheduling on m identical parallel
machines, applied to an instance where perturbations may increase the processing
times many jobs, and where the perturbed jobs assigned to a machine μ attain-
ing the makespan L↑

List satisfy
∑
j∈P̃μ

p↑j = x
∑
j∈P̃μ

pj and p↑j̄i = ypj̄i , has a
competitive ratio of 1 + x− x

ym , for x ≥ 1, x ∈ Q+
0 , y ≥ 1, y ∈ Q+

0 .

Proof. Consider a machine μ attaining the makespan L↑
List as it was in the

original instance. Because of Graham’s algorithm, when j̄μ was presented, each
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machine had a load of at least
∑
j∈P̃μ

pj +
∑
j∈Pμ

pj ≤ LOPT − pj̄μ

m . Thus,
∑
j∈P̃μ

pj ≤ LOPT − pj̄μ

m −
∑
j∈Pμ

pj . Because the processing times increase,

LOPT ≤ L↑
OPT. Finally, ypj̄μ ≤ L↑

OPT, since j̄μ must be scheduled. Thus,

L↑
List =

∑

j∈Pμ

pj + x
∑

j∈P̃μ

pj + ypj̄μ ≤
∑

j∈Pμ

pj + xLOPT − x
pj̄μ
m

− x
∑

j∈Pμ

pj + ypj̄μ

≤ (1 − x)
∑

j∈Pμ

pj + xLOPT + ypj̄μ(1 − x

ym
) ≤ (1 + x− x

ym
)L↑

OPT.

Therefore, L(List(J, P ), P ↑) ≤
(
1 + x− x

ym

)
L(OPT(J, P ↑), P ↑). ��
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Abstract. We consider a memory allocation problem that can be mod-
eled as a version of bin packing where items may be split, but each bin
may contain at most two (parts of) items. This problem was recently
introduced by Chung et al. [3]. We give a simple 3/2-approximation al-
gorithm for it which is in fact an online algorithm. This algorithm also
has good performance for the more general case where each bin may
contain at most k parts of items. We show that this general case is also
strongly NP-hard. Additionally, we give an efficient 7/5-approximation
algorithm.

1 Introduction

A problem that occurs in parallel processing is allocating the available memory
to the processors. This needs to be done in such a way that each processor has
sufficient memory and not too much memory is being wasted. If processors have
memory requirements that vary wildly over time, any memory allocation where
a single memory can only be accessed by one processor will be inefficient. A
solution to this problem is to allow memory sharing between processors. However,
if there is a single shared memory for all the processors, there will be much
contention which is also undesirable. It is currently infeasible to build a large,
fast shared memory and in practice, such memories are time-multiplexed. For n
processors, this increases the effective memory access time by a factor of n.

Chung et al. [3] studied this problem and described the drawbacks of the
methods given above. Moreover, they suggested a new architecture where each
memory may be accessed by at most two processors, avoiding the disadvantages
of the two extreme earlier models. They abstract the memory allocation problem
as a bin packing problem, where the bins are the memories and the items to be
packed represent the memory requirements of the processors. This means that
the items may be of any size (in particular, they can be larger than 1, which is
the size of a bin), and an item may be split, but each bin may contain at most
two parts of items. The authors of [3] give a 3/2-approximation for this problem.
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We continue the study of this problem and also consider a generalized problem
where items can still be split arbitrarily, but each bin can contain up to k parts
of items, for a given value of k ≥ 2.

We study approximation algorithms in terms of the absolute approximation
ratio or the absolute performance guarantee. Let B(I) (or B, if the input I is clear
from the context), be the cost of algorithm B on the input I. An algorithmA is an
R-approximation (with respect to the absolute approximation ratio) if for every
input I, A(I) ≤ R·opt(I), where opt is an optimal algorithm for the problem.
The absolute approximation ratio of an algorithm is the infimum value of R such
that the algorithm is an R-approximation. The asymptotic approximation ratio
for an online algorithm A is defined to be

R∞
A = lim sup

n→∞
sup
I

{
A(I)

opt(I)

∣
∣
∣
∣
∣
opt(I) = n

}

.

Often bin packing algorithms are studied using this measure. The reason
for that is that for most bin packing problems, a simple reduction from the
partition problem (see problem SP12 in [6]) shows that no polynomial-time
algorithm has an absolute performance guarantee better than 3

2 unless P=NP.
However, since in our problem items can be split, but cannot be packed more
than a given number of parts to a bin, this reduction is not valid. In [3], the
authors show that the problem they study is NP-hard in the strong sense for
k = 2. They use a reduction from the 3-Partition problem (see problem [SP15]
in [6]). Their result does not seem to imply any consequences with respect to
hardness of approximation.

Independently of our work and simultaneous with it, Graham and Mao [7]
analyzed the asymptotic approximation ratio of several algorithms, giving upper
bounds of 1.498 for k = 2, 3/2 for k = 3 and 2−2/k for k ≥ 4. They also showed
an upper bound of 2− 1/k for NEXT FIT and a lower bound of 1+ (k+ 1

k+1 )−1

for online algorithms.
A related, easier problem is known as bin packing with cardinality constraints.

In this problem, all items have size at most 1 as in regular bin packing, and the
items cannot be split, however there is an upper bound of k on the amount
of items that can be packed into a single bin. This problem was studied with
respect to the asymptotic approximation ratio. It was introduced and studied
in an offline environment as early as 1975 by Krause, Shen and Schwetman
[10,11]. They showed that the performance guarantee of the well known FIRST
FIT algorithm is at most 2.7− 12

5k . Additional results were offline approximation
algorithms of performance guarantee 2. These results were later improved in
two ways. Kellerer and Pferschy [9] designed an improved offline approximation
algorithm with performance guarantee 1.5 and finally a PTAS was designed in
[2] (for a more general problem).

On the other hand, Babel et al. [1] designed a simple online algorithm with
asymptotic approximation ratio 2 for any value of k. They also designed improved
algorithms for k = 2, 3 of asymptotic approximation ratios 1 +

√
5

5 ≈ 1.44721
and 1.8 respectively. The same paper [1] also proved an almost matching lower
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bound of
√

2 ≈ 1.41421 for k = 2 and mentioned that the lower bounds of [14,13]
for the classic problem hold for cardinality constrained bin packing as well. The
lower bound of 1.5 given by Yao [14] holds for small values of k > 2 and the
lower bound of 1.5401 given by Van Vliet [13] holds for sufficiently large k. No
other lower bounds are known.

Finally, Epstein [4] gave an optimal online bounded space algorithm (i.e., an
algorithm which can have a constant number of active bins at every time) for this
problem. Its asymptotic worst-case ratio is an increasing function of k and tends
to 1 + h∞ ≈ 2.69103, where h∞ is the best possible performance guarantee of
an online bounded space algorithm for regular bin packing (without cardinality
constraints). Additionally, she improved the online upper bounds for 3 ≤ k ≤ 6.
In particular, the upper bound for k = 3 was improved to 7

4 .
Another related problem was studied recently by Shachnai et al. [12]. They

considered an offline bin packing problem where items may be split arbitrarily.
However, to make the problem non-trivial, there are some restrictions. In one
model, each part of a split item increases by a constant additive factor. Another
variant gives an upper bound on the number of split items. They showed that
both these problems do not admit a PTAS unless P = NP. They designed a
dual PTAS and an AFPTAS for both problems. Their problem is different from
our problem since in their case all items have size at most 1. In their case it is
possible to exploit the existence of simple structures of optimal solutions, which
are more complicated in our case.

Our results. In the current paper, we begin by showing that this problem is
NP-hard in the strong sense for any fixed value of k. This generalizes a result
from Chung et al. [3]. We also show that the simple NEXT FIT algorithm has an
absolute approximation ratio of 2 − 1/k. Note that Graham and Mao [7] prove
only an asymptotic upper bound of 2− 1/k for NEXT FIT. Finally, we give an
efficient 7/5-approximation algorithm for k = 2.

2 NP-Hardness of the Problem (in the strong sense)

Theorem 1. Packing splittable items with a cardinality constraint of k parts of
items per bin is NP-hard in the strong sense for any fixed k ≥ 3.

Proof. Given a fixed value of k, we show a reduction from the 3-Partition problem
defined as follows (see problem [SP15] in [6]). We are given a set of 3m positive
numbers s1, s2, . . . , s3m such that

∑3m
j=1 sj = mB and each si satisfies B4 < si <

B
2 . The goal is to find out whether there exists a partition of the numbers into
m sets of size 3 such that the sum of elements of each set is exactly B. The
3-Partition problem is known to be NP-hard in the strong sense.

Given such an instance of the 3-Partition problem we define an instance of
the splittable item packing with cardinality constraints as follows. There are
m(k− 3) items, all of size 3k−1

3k(k−3) (for k = 3, no items are defined at this point).
These items are called padding items. In addition, there are 3m items, where
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item j has size sj

3kB (for k = 3 we define the size to be sj

B ). These items are called
adapted items. The goal is to find a packing with exactly m bins. Since there
are mk items, clearly a solution which splits items must use at least m+ 1 bins.
Moreover, a solution in m bins contains exactly k items per bin. Since the sum
of items is exactly m, all bins in such a solution are completely occupied with
respect to size.

If there exists a partition of the numbers into m sets of sum B each, then
there is a partition of the adapted items into M sets of sum 1

3k each (the sum is
1 for k = 3). Each bin is packed with k − 3 padding items and one such triple,
giving m sets of k items, each set of sum exactly 1.

If there is a packing into exactly m bins, as noted above, no items are split
and each bin must contain exactly k items. If k = 3, this implies the existence
of a partition. Consider the case k ≥ 4. We first prove that each bin contains
exactly k − 3 padding items.

If a bin contains at least k − 2 padding items, their total size is at least
(3k−1)(k−2)

3k(k−3) = 3k2−7k+2
3k2−9k = 1 + 2k+2

3k(k−3) . For k ≥ 4 this is strictly larger than 1
and cannot fit into a bin. If there are at most k− � ≤ k− 4 padding items, then
there are � additional items of size at most 1

6k (� ≥ 4). The total size is therefore
at most (3k−1)(k−�)

3k(k−3) + �
6k = 6k2−2k−5�k−�

6k(k−3) . This value is maximized for the smallest

value of � which is � = 4. We get the size of at most 6k2−22k−4
6k(k−3) = 1 − 4(k+1)

6k(k−3) .
For k ≥ 4 this is strictly less than 1, which as noted above does not admit a
packing into m bins.

Since each bin contains exactly k− 3 padding items, it contains exactly three
adapted items, whose total size is exactly 1

3k . The original sum of such three
items is B, we get that a solution in m bins implies a partition. �

3 The NEXT FIT Algorithm

We can define NEXT FIT for the current problem as follows. This is a straight-
forward generalization of the standard NEXT FIT algorithm. An item is placed
(partially) in the current bin if the bin is not full and the bin contains less than k
item parts so far. If the item does not fit entirely in the current bin, the current
bin is filled, closed, and as many new bins are opened as necessary to contain
the item.

Note that this is an online algorithm. The absolute approximation ratio of
NEXT FIT for the classical bin packing problem is 2, as Johnson [8] showed.
Surprisingly, its approximation ratio for our problem tends to this value for large
k. The two problems are different, and the two results seem to be unrelated.

We show that the approximation ratio of NEXT FIT is exactly 2−1/k. Thus,
this extremely simple algorithm performs as well as the algorithm from [3] for
k = 2.

Theorem 2. The approximation ratio of NEXT FIT is 2 − 1/k.

Proof. We first show a lower bound. The instance contains an item of size Mk−1
followed by M(k− 1)k items of size ε, where M is large and ε = 1/(Mk(k− 1)).
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Then the first item occupies Mk − 1 bins, and the rest of the items are k per
bin, in M(k− 1) bins. OPT has Mk bins in total. This proves a lower bound of
(M(2k − 1)− 1)/(Mk), which tends to 2 − 1/k for M →∞.

Now we show a matching upper bound. We define a block as a maximal set
of bins which were consecutively filled by NEXT FIT (NF) in which each pair
of consecutive bins contains parts of the same item. A block may contain only
one bin. Denote the number of blocks by m. Let u1, u2, . . . , um be sizes of the
blocks 1, . . . ,m of NF. In each block, all bins are full except perhaps the last
one, which contains k parts of items (except for block m, perhaps). We assign
weights to items. Let the size of item i be si. Then wi = �si�/k. Note that in
any packing, there are at least �si� parts of item i. Since there can be at most
k parts in a bin, this means

opt ≥ 1
k

∑

i

�si� =
∑

i

�si�
k

. (1)

This explains our definition of the weights. This generalizes the weight definition
from Chung et al. [3].

Consider the last bin from a block i < m. Since NF started a new bin after this
bin, it contains k parts of items. Thus it contains at least k − 1 items of weight
1/k (the last k − 1 items are not split by the algorithm). If ui = 1, there are k
such items. If ui > 1, consider all items excluding the k− 1 last items in the last
bin. We do not know how many items there are in the first ui−1 bins (where the
last item extends into bin ui). However, for a fixed size s, the weight of a group
of items of total size s is minimized if there is a single item in the group (since
we round up the size for each individual item to get the weight). This implies
the total weight in a block of ui bins is at least ui/k+(k−1)/k = (ui+k−1)/k.

Now consider block m. If ui = 1, the weight is at least 1/k since there is at
least one item. Else, as above the weight is at least ui/k, since the last bin of
this block has at least one item or a part of an item.

We have nf =
∑

ui. Therefore

opt ≥
∑

i

wi ≥
∑m
i=1(ui + k − 1) − (k − 1)

k
=

nf + (m− 1)(k − 1)
k

. (2)

Also by size, opt > nf−m and thus opt ≥ nf−m+1. Multiply this inequality
by (k − 1)/k and add it (2) to get

2k − 1
k

· opt ≥ nf

(
1
k

+
k − 1
k

)

+ (m− 1)
k − 1
k

− (m− 1)
k − 1
k

= nf.

We conclude nf ≤ (2 − 1/k)opt. �

4 The Structure of the Optimal Packing for k = 2

Before we begin our analysis, we make some observations regarding the packing
of opt. A packing can be represented by a graph where the items are nodes and



Improved Results for a Memory Allocation Problem 367

edges correspond (one-to-one) to bins. If there is a bin which contains (parts
of) two items, there is an edge between these items. A bin with only one item
corresponds to a loop on that item. The paper [3] showed that for any given
packing, it is possible to modify the packing such that there are no cycles in the
associated graph. Thus the graph consists of a forest together with some loops.
We start by analyzing the structure of the graph associated with the optimal
packing. Items of size at most 1/2 are called small.

Lemma 1. There exists an optimal packing in which all small items are leaves.

Proof. Consider a small item that has edges to at least two other items. Note
that if two small items share an edge, the packing can be changed so that these
two items form a separate connected component with a single edge. Thus we
may assume that all neighbors are (parts of) medium or large items.

Order the neighbors in some way and consider the first two neighbors. Denote
the small item by s and the sizes of its neighboring parts by w1 and w2. In bin
i, wi is combined with a part si of the small item s (i = 1, 2).

We have s1 + s2 ≤ 1/2. If s1 ≤ w2, we can cut off a part of size s1 from w2

and put it in bin 1, while putting s1 in bin 2. This removes neighbor w1 from the
small item s. Otherwise, w2 < s1 ≤ 1/2, which means that we can put s1 into
bin 2 without taking anything out of bin 2: we have w2 < 1/2 and s1 +s2 ≤ 1/2.
Again, w1 is no longer a neighbor of s (or even connected to s).

Thus we can remove one neighbor from s. We can continue in this way until
s has only one neighbor left. �

Due to space constraints, we omit the proof of the following lemma.

Lemma 2. An item of size in ((i − 1)/2, i/2] has at most i neighbors for all
i ≥ 2.

5 A 7/5-Approximation for k = 2

Let k = 2. We call items of size in (1/2, 1] medium and remaining items large.
Our algorithm works as follows. We present it here in a simplified form which
ignores the fact that it might run out of small items in the middle of step 2(b) or
while packing a large item in step 4. We will show later how to deal with these
cases while maintaining an approximation ratio of 7/5. See Figure 1.

We begin by giving an example which shows that this algorithm is not optimal.
For some integer N , consider the input which consists of 4N small items of size
2/N , 2N medium items of size 1 − 1/N , 3N medium items of size 1 − 2/N .

ALG packs the items of size 1 − 1/N in 4N bins, together with 4N small
items. It needs 3N(1 − 2/N) = 3N − 6 bins for the remaining medium items.
Thus it needs 7N − 6 bins in total. OPT places 3N small items in separate bins
(one per bin), and N small items are split into two equal parts. This gives 5N
bins in which there is exactly enough room to place all the medium items.

Theorem 3. This algorithm achieves an absolute approximation ratio of 7/5.
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1. Sort the small items in order of increasing size, the medium items in order
of decreasing size, and the large items in order of decreasing size.

2. Pack the medium items one by one, as follows, until you run out of
medium or small items.
(a) If the current item fits with the smallest unpacked small item, pack

them into a bin.
(b) Else, pack the current item together with the two largest small items

in two bins.
3. If no small items remain unpacked, pack remaining medium and large

items using Next Fit and halt. Start with the medium items.
4. Pack all remaining small items in separate bins. Pack the large items one

by one into these bins using Next Fit (starting with the largest large item
and smallest small item).

5. If any bins remain that have only one small item, repack these small items
in pairs into bins and halt.

6. Pack remaining large items using Next Fit.

Fig. 1. The approximation algorithm for k = 2

The analysis has three cases, depending on whether the algorithm halts in
step 3, 5 or 6. The easiest case among these is without a doubt step 5, at least
as long as all bins packed in step 5 contain two small items.

5.1 Algorithm Halts in Step 5

Based on inequality (1), we define weights as follows.

Definition 1. The weight of an item of size wi is �wi�/2.

In our proofs, we will also use weights of parts of items, based on considering
the total weight of an item and the number of its parts. By Definition 1, small
and medium items have weight 1/2. Therefore, we have the following bounds on
total weight of bins packed in the different steps:

2.(a) 1/2 + 1/2 = 1
2.(b) We pack three items of weight 1/2 in two bins, or 3/4 weight per bin on

average.
4. Consider a large item which is packed in g bins, that is, together with in

total g small items. Its size is strictly larger than g−1
2 and thus its weight

is at least g/4. Each small item has a weight of 1/2, so we pack a weight
of at 3g/4 in these g bins.

5. 1/2 + 1/2 = 1

This immediately proves an upper bound of 4/3 on the absolute approximation
ratio. There is, however, one special case: it can happen that one small item
remains unpaired in step 5. Since this case requires deeper analysis, we omit it
due to space constraints.
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5.2 Critical Items

Definition 2. A critical item is a medium item that the algorithm packs in Step
2(b).

From now on, for the analysis we use a fixed optimal packing, denoted by OPT.
We consider the critical items in order of decreasing size. Denote the current
item by x. We will consider how OPT packs x and define an adjusted weight
based on how much space x occupies in the bins of OPT. Denote the adjusted
weight of item i by Wi. The adjusted weights will satisfy the following condition:

n∑

i=1

�wi�
2

≤
n∑

i=1

Wi ≤ opt. (3)

Specifically, we will have Wi ≥ �wi�/2 for i = 1, . . . , n. Thus the numbers Wi will
generate a better lower bound for opt, that we can use to show a better upper
bound for our algorithm. This is the central idea of our analysis. We initialize
Wi = �wi�/2 for i = 1, . . . , n. There are four cases.

Case 1. OPT packs x by itself. In this case we give x adjusted weight 1, and
so our algorithm packs an adjusted weight of 1 in each of the (two) bins that
contain x.

Case 2. OPT packs x with part of a small item. Again x and the bins with x get
an adjusted weight of 1. This holds because when OPT splits a small item (or a
medium item), it is as if it packs two small items, both of weight 1/2. Therefore
such an item gets adjusted weight 1. We can transfer the extra 1/2 from the
small item to x.

Case 3. OPT combines x with a complete small item y. Since our algorithm
starts by considering the smallest small items, y must have been packed earlier
by our algorithm, i.e. with a larger medium item x′ (which is not critical!). If
OPT packs x′ alone or with part of a small item, it has an adjusted weight of
1 (Cases 1 and 2). Thus the bin with x′ has an adjusted weight of 3/2, and we
transfer 1/2 to x. If OPT packs x′ with a full small item y′, then y′ is packed
with a larger non-critical item x′′ by our algorithm, etc. Eventually we find a
non-critical medium item x∗ which OPT packs alone or with part of a small
item, or for which Case 4 holds. The difference between the weight and the
adjusted weight of x∗ will be transferred to x. Note that the bin in which our
algorithm packs x∗ has a weight of 1 since x∗ is non-critical. All intermediate
items x′, x′′, . . . have weight 1/2 and are non-critical as well, and we change
nothing about those items.

Case 4. OPT packs x with a split medium or large item, or splits x itself.
Since there might be several critical items for which Case 4 holds, we need to
consider how OPT packs all these items to determine their adjusted weight. We
are going to allocate adjusted weights to items according to the following rules:



370 L. Epstein and R. van Stee

1. Each part of a small item (in the OPT packing) gets adjusted weight 1/2.
2. A part of a large item which is in a bin by itself gets adjusted weight 1.
3. Other parts of large items get adjusted weight 1/2.

We do not change the weight of non-critical items. The critical items receive
an adjusted weight which corresponds to the number of bins that they occupy
in the packing of OPT. As noted above, this packing consists of trees and loops.
Loops were treated in Case 1. To determine the adjusted weights, we consider
the non-medium items that are cut into parts by OPT. Each part of such
an item is considered to be a single item for this calculation and has adjusted
weights as explained above. We then have that the optimal packing consists only
of trees with small and medium items, and loops. It can be seen that each part
of a non-medium item (for instance, part of a large item) which is in a tree has
weight 1/2.

Consider a tree T in the optimal packing. Denote the number of edges (bins)
in it by t. Since all items in T are small or medium, there are t+1 items (nodes)
in T by Lemmas 1 and 2. Any items that are small (or part of a small item) or
medium but non-critical have adjusted weight equal to the weight of a regular
small or medium item which is 1/2. Denoting the number of critical items in
T by c, we find that the t + 1 − c non-critical items have weight t+1−c

2 . All
items together occupy t bins in the optimal packing. This means we can give
the critical items each an adjusted weight of (t− t+1−c

2 )/c = 1
2 + t−1

2c while still
satisfying (3). This expression is minimized by taking c maximal, c = t+ 1, and
is then t/(t+ 1). We can therefore assign an adjusted weight of t/(t+ 1) to each
critical item in T .

Since the algorithm combines a critical item with two small items of weight
(at least) 1/2, it packs a weight of 1 + t/(t+ 1) = 2t+1

t+1 in two bins, or 2t+1
2t+2 per

bin. This ratio is minimized for t = 2 and is 5/6.
However, let us consider the case t = 2 in more detail. If the OPT tree with

item x (which is now a chain of length 2) consists of three critical items, then
the sum of sizes of these items is at most 2. Our algorithm packs each of these
items with two small items which do not fit with one such item. Let the sizes
of the three medium items be m1,m2,m3. Let the two small items packed with
mi be si,j for j = 1, 2. We have that m1 + m2 + m3 ≤ 2 but mi + si,j > 1 for
i = 1, 2, 3 and j = 1, 2. Summing up the last six inequalities and subtracting the
one before, we get that the total size of all nine items is at least 4. Thus the area
guarantee in these six bins is at least 2/3.

If one of the items in the chain is (a part of) a small or large item, or a medium
non-critical item, it has adjusted weight 1/2. This leaves an adjusted weight of
3/4 for the other two items. In this case we pack at least 3/4 + 1 = 7/4 in two
bins, or 7/8 per bin. For t ≥ 3, we also find a minimum ratio of 7/8.

Thus we can divide the bins with critical items into two subtypes: A with an
adjusted weight of 5/6 and area 2/3, and B with an adjusted weight of (at least)
7/8 and area 1/2.
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5.3 Algorithm Halts in Step 3

We divide the bins that our algorithm generates into types. We have

1. groups of two small items and one medium item in two bins
2. pairs of one small item and one medium item in one bin
3. groups of four or more medium items in three or more bins
4. groups of three medium items in two bins
5. one group of bins with 0 or more medium items and all the large items

Note that bins of type 4 contain a total weight of at least 3/4 (3/2 per two bins),
as well as a total size of at least 3/4 (3 items of size more than 1/2 in two bins).
Thus, whether we look at sizes or at weights, it is clear that these bins can be
ignored if we try to show a ratio larger than 4/3.

Furthermore, in the bins of type 5 we ignore that some of the items may be
medium. The bounds that we derive for the total size and weight packed into
these bins still hold if some of the items are only medium-sized.

The bins of type 1 contain the critical items. We say the bins with sub-
type A are of type 1a, and the bins with subtype B are of type 1b. Define
x1a, x1b,x2, x3, x4 as the number of bins with types 1a, 1b, 2, 3, and 5, respec-
tively.

Consider the bins of type 3. Let k be the number of groups of medium items.
Let ti ≥ 3 be the number of bins in group 1 ≤ i ≤ k. The items in group i have
total size more than ti − 1/2, since the last bin contains a complete medium
item. The total weight of a group is ti+1

2 , since it contains ti + 1 items, each
of weight 1

2 . We get that the total size of items in bins of type 3 is at least
∑k
i=1(ti− 1

2 ) = x3− k
2 , and the total weight of these items is

∑k
i=1

ti+1
2 = x3+k

2 .
We find two different lower bounds on OPT.
Adjusted weight:

OPT ≥ 5
6
x1a +

7
8
x1b + x2 +

x3

2
+

k

2
+

x5

2
. (4)

Size:
OPT ≥ 2

3
x1a +

x1b

2
+

x2

2
+ x3 −

k

2
+ max(x5 − 1, 0). (5)

Multiplying the first inequality by 4
5 and the second one by 3

5 we get

7
5
OPT ≥ 16

15
x1a + x1b +

11
10

x2 + x3 +
k

10
+

2
5
x5 +

3
5

max(x5 − 1, 0). (6)

If x5 = 0 we are done. Else, (5) is strict and we get

OPT >
2
3
x1a +

x1b

2
+

x2

2
+ x3 −

k

2
+ x5 − 1. (7)

This means x3 and x5 occur with the same fractions in (4) and (7). Thus we can
set x3 := x3 + x5 and x5 := 0. Adding (4) and (7) and dividing by 2 gives

opt >
3
4
(x1a + x2 + x3) +

11
16

x1b −
1
2
.
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This implies we are done if x1a + x2 + x3 ≥ 3
4x1b + 14. Clearly, this holds if any

of x1a, x2 or x3 are at least 14. Finally, by (4) we are also done if

5
6
x1a +

7
8
x1b + x2 +

x3

2
+

k

2
≥ 5

7
(x1a + x1b + x2 + x3).

This holds if
5
42

x1a +
9
56

x1b +
2
7
x2 +

k

2
≥ 3

14
x3.

Since we may assume x3 < 14, we are in particular done if x1b ≥ 18 or k ≥ 6.
This leaves a limited set of options for the values of x1a, x1b, x2, x3 and k that

need to be checked. It is possible to verify that for almost all combinations, we
find opt ≥ 5

7alg. One exception is x3 = 3, k = 1. However, going back to the
original variables, this means x3+x5 = 3 and k = 1. But x3 is either 0 or at least
3. If k = 1, we must have x3 = 3 and x5 = 0, so we treated this case already.
Two other cases require special attention and are described below.

Special cases. Step 2(b) requires two small items. If only one is left at this point,
and there is also no remaining medium item with which it could be packed, we
redefine it to be a medium item and pack it in step 3. This leads to it being
packed in a bin of type 3 (or 4). Note that in this case, this small item and any
medium item we tried to pack with it in Step 2 have total size more than 1. Thus
if the small item ends up in a group of type 4 (a group of two bins), the total
size of the items in these bins (as well as the total weight) is still at least 3/2,
and we can ignore these bins in the analysis. Therefore the analysis still holds.

There are two cases where opt < 5
7alg is possible. If x2 = 1 and x5 = 2, a

packing into two bins could exist in case there is only one large item. (If the bins
counted in x5 contain two medium items, then we have that the three medium
items require (at least) two bins and the small item requires an extra bin.) If such
a packing exists, it works as follows: pack first the medium item, then the large
item (partially in the second bin), then the small item. If this gives a packing
into two bins, this is how our algorithm packs the items. Otherwise we already
have an optimal packing.

If x1b = 4, x2 = 1 and x5 = 5, it is a simple matter to try all possible packings
for the items in 7 bins and check if one is valid. (We can try all possible forests
on at most 13 nodes and at most 7 edges.) If there is no packing in 7 bins, then
our algorithm maintains the ratio of 7/5. If there is one, we use it.

5.4 Algorithm Halts in Step 6

In this case we have the following bin types.

1. groups of two small items and one medium item in two bins
2. pairs of one small item and one medium item in one bin
3. groups of large items with small items
4. one group of large items

The analysis in this case is similar to the one in the previous case. We omit it
due to space constraints.
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6 Conclusions

In this paper, we gave the first absolute upper bounds for general k for this
problem. Furthermore we provided an efficient algorithm for k = 2. An inter-
esting question is whether it is possible to give an efficient algorithm with a
better absolute approximation ratio for k = 2 or for larger k. In a forthcoming
paper [5] we will present approximation schemes for these problems. However,
these schemes are less efficient than the algorithms given in this paper already
for ε = 2/5.
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Abstract. Boundary approximation of planar shapes by circular arcs
has quantitive and qualitative advantages compared to using straight-
line segments. We demonstrate this by way of three basic and frequent
computations on shapes – convex hull, decomposition, and medial axis. In
particular, we propose a novel medial axis algorithm that beats existing
methods in simplicity and practicality, and at the same time guarantees
convergence to the medial axis of the original shape.

1 Introduction

The plain majority of algorithms in computational geometry have been designed
for processing linear objects, like lines, planes, or polygons. On the one hand,
this is certainly due to the fact that many interesting and deep computational
and combinatorial questions do arise already for inputs of this simple form.
Again, the pragmatic reason is that algorithms for linear objects are usually both
easier to develop and simpler to implement. To make things work for nonlinear
objects, which arise frequently in practical settings, such objects are usually
approximated in a piecewise-linear manner and up to a tolerable error. Existing
approaches [10] to directly extending polygonal algorithms to curved objects are
rare and, due to their generality, of limited practical use.

In its simplest form, the input object is a single planar shape, A, with curved
and connected boundary ∂A. Frequent tasks to be performed on A – each being
prior to a variety of more involved computations – include constructing the
convex hull of A, decomposing A into primitives, and calculating the medial axis
of A. These tasks are well investigated in the case of polygonal shapes. In certain
situations, however, the number of line segments required for approximating ∂A
with high accuracy may be prohibitively large. Even more seriously, making a
piecewise-linear approximation of ∂A and invoking a polygonal-shape algorithm
may generate results that are topologically incorrect; the medial axis is a well-
known example.
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The intention of the present paper is to highlight the use of circular arcs for
boundary representation. It is well known that for nonlinear curve segments the
approximation order increases in comparison to using straight-line segments. In
particular, if a given accuracy ε is achieved by using N line segments, then as
few as n = Θ(N2/3) circular arcs can accomplish the same. This has been an
issue in approximation theory, but in computational geometry this gain seems
to have been less valued than eliminating small factors in the complexity of the
subsequently applied algorithm. Boundary approximation by circular arcs may
be of advantage also in a qualitative respect. For instance, it avoids the men-
tioned topological inconsistencies in medial axis computations, and it supports
the computation of shape offsets, as the class of shapes bounded by circular arcs
is closed under offset operations.

We will show that for the three basic problems mentioned above – convex
hull, triangulation, and medial axis – simple and practical, though still efficient
algorithms exist that work for circular arc inputs. The first two problems are
less demanding; we treat them mainly to point out the respective favorable (in
our opinion) approach, whose practicality shall encourage the use of circular arc
boundary representation. Nevertheless, substantial differences to the polygonal
case occur; see below. For computing the medial axis, we propose a novel and
extremely simple algorithm that is based on a known (though less recognized)
decomposition lemma. After having computed a purely combinatorial description
of the medial axis using tailored shape splitting, its individual parts (conics and
line segments, like in the polygonal case) are reassembled without the need of
merging.

Suitable circular arc approximations of shapes can be found in linear time. In
summary, the obtained shape processing algorithms are superior in runtime and
output volume to their line segment based counterparts, retain much (if not all)
of their simplicity, and are even more natural in some cases.

1.1 Outline and Background

We briefly describe the contributions of this paper and relate them to existing
literature.

Section 2 deals with approximating general curves by suitable primitives. This
is a topic of importance in geometric modeling and in CAD and NC applica-
tions, and many quite recent results are available [24,25,27,33,17,31]. Our aim is
to approximate a parametric curve c(t) by circular arcs. We assume that c(t) is
piecewise-polynomial of constant degree, and we use biarcs (pairs of smoothly
joined circular arcs) [30,25,31] as primitives. A straight-forward bisection algo-
rithm for biarc generation already fits our purposes. It uniquely assigns biarcs
to parameter intervals, which facilitates the error evaluation. An approximating
spline curve b of size n is computed in O(n) time. It fits the input curve c(t) in
slope at biarc endpoints, and can be tuned to match c(t) in curvature at certain
points (a fact being important in subsequent medial axis computations). Though
not being optimal in the number of arcs, the approximation order of b is still
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three [24,31]. In contrast, with line segments one cannot exceed order two, and
a polyline of size N = Θ(n3/2) is needed to arrive at the same precision.

The remaining sections propose algorithms for circular arc shapes A, where
the boundary ∂A of A is given as a simple curve composed of n circular arcs.
Choice is guided by efficiency as well as by reducibility to basic operations that
have robust implementations [11]. Due to lack of space, we had to skip two
sections from this version of the paper. Let us nevertheless provide here a short
description of the material they contain.

The first topic is computing the convex hull of a circular arc shape A. This
task is one of the most basic to be performed for a given shape, and has a variety
of applications including shape fitting, motion planning, shape separation, and
many others. At least four linear-time algorithms have been developed for polyg-
onal shapes [4,16,23,26]. The incremental method by Melkman [26] stands out
by its simplicity, and it is this candidate we generalize for circular arc shapes.
Compared to the original setting, two difficulties arise. Deciding inclusion for a
currently inserted arc in the convex hull constructed so far is no trivial test, and
the convex hull cannot be described by a sequence of input vertices of the shape.
We show that a runtime of O(n) is still possible. The basic subroutine of the
algorithm computes the convex hull of only two circular arcs.

The second topic is shape triangulation, a fundamental building block in algo-
rithms for decomposition, shortest path finding, and visibility – to name a few.
Most existing algorithms are meant for polygonal shapes. They partition a given
(simple) n-vertex polygon into triangles without introducing Steiner points. Ef-
ficient candidates are [14,22,3,18,7] which all show an O(n log n) runtime. The-
oretically more efficient methods do exist, but when aiming at simplicity, choice
should be made from the list above. When trying to generalize to shapes A
bounded by circular arcs, we face two problems. First of all, if the use of Steiner
points is disallowed, then a partition of A into primitives bounded by a constant
number of circular arcs need not exist. Also, not all triangulation methods are
suited to generalization. This applies, for instance, to the extremely simple ear
cutting method in [20] which runs in time O(r·n), where r is the number of reflex
vertices of A. The triangulation algorithm we propose is closest to Chazelle’s [7].
It manages with an (almost) worst-case minimal number of Steiner points on ∂A,
runs in O(n logn) time, and uses a dictionary as its only nontrivial data struc-
ture. The produced primitives are arc triangles with at least one straight edge.
The most complex geometric operation is intersecting a circle with a line.

Section 3 is devoted to the medial axis, a frequently used structure associated
with a given input shape. Its main applications include shape recognition, solid
modeling, pocket machining, and others. Interest in mathematical properties of
the medial axis for general shapes found renewal in recent years [9,28,5,6,2]. In
our case, where the shape A is simply connected and ∂A consists of n circular
arcs, its medial axis M(A) is known to be a tree composed of O(n) conic edges.
Algorithmic work on the medial axis either concentrated on the case where A is
a polygon [21,7,8], or on general sets of curved arcs [33,19,28,1] (and their Voronoi
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diagram) without, however, exploiting the fact that the input arcs define a simple
curve. (The various existing methods for computing digital versions of the me-
dial axis are not considered here.) Though theoretically efficient as O(n log n)
or better, these algorithms suffer from involved merge or insertion steps which,
even for straight arcs as input, are difficult to implement. In addition, numer-
ical stability issues arise heavily; intersections of conics have to be determined
repeatedly which, when not calculated exactly, are bound to cumulate the error.

We present a simple randomized divide-and-conquer algorithm for comput-
ing M(A) that overcomes these drawbacks. In contrast to comparable algo-
rithms, the costly part is delegated to the divide step. The basic subroutine
there is an inclusion test for an arc in a circle. The merge step is trivial: it con-
catenates two medial axes. The expected runtime is bounded by O(n3/2), but is
provably better for most types of shape. For example, O(n log n) expected time
suffices if the diameter of M(A) is Θ(n). No nontrivial data structures are used.

To guarantee applicabiliy of our methods to approximating the medial axes
of general shapes B, a convergence result is needed. We prove in Section 4 that,
for a suitable approximation of ∂B by biarcs, M(B) is the limit of M(A) when
the approximating arc shape A converges to B. Related results exist, but either
presuppose C2 conditions on ∂A not attainable by circular arcs [6], or concern
subsets of the medial axis [5] that survive after pruning the Voronoi diagram of
point samples from ∂B. (As a negative side effect, the medial axis approximation
obtained from a point sample is not C1.) It is well known [2] that medial axis
convergence is not given for polygonal approximations of B. In conclusion, cir-
cular arcs are the simplest possible tool for boundary conversion that guarantees
a stable medial axis approximation.

2 Circular Arcs

In order to represent a general shape A in a form suitable for geometric compu-
tations, we discuss methods for approximating ∂A by circular arcs. We assume
that ∂A is given as a polynomial spline curve of constant degree. Attention is
restricted to degree 3, as every free-form curve can efficiently and with any de-
sired precision be converted into cubics [29], and in many applications the input
will already be available in this common form [12].

Several approaches to generating circular arc splines exist; see [24] for a review.
We consider a simple bisection algorithm consisting of two steps, approximation
and error measurement. A geometric primitive b (an arc or a biarc) is fitted
to a segment s of the given cubic curve c(t), and the distance from b to s is
computed. The algorithm is relatively easy to implement and still adapts the
degrees of freedom to the input data. As a slight disadvantage, the number of
primitives (the resulting data volume) is minimal only in the asymptotic sense.

Define the one-sided Hausdorff distance from a primitive b to a segment
s ⊆ c(t) as δ(b, s) = maxp∈b minq∈s ||p − q||. (We consider b and s as closed
sets.) Let ε denote the error tolerance to be met by the algorithm.
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Algorithm BISECT(t0, t1)

Construct b
Compute δ = δ(b, c[t0, t1])

If δ ≤ ε then return {b}
Else return BISECT(t0, t0+t1

2 ) ∪ BISECT( t0+t1
2 , t1)

Depending on the primitive b used, Algorithm BISECT produces splines of dif-
ferent quality: merely continuous (C0) circular arc splines, or tangent continuous
(C1) arc splines. When being content with the former type, we can simply choose
for b the unique circular arc passing through the three points c(t0), c( (t0+t1)

2 ),
and c(t1). To obtain C1 arc splines, so-called biarcs [30] are utilized.

A biarc b consists of two circular arcs with common unit tangent vector at
their joint. Usually, b is described by its source x with associated unit tangent
vector vx, and its target y with unit tangent vector vy. Given these data, there
exists a one-parameter family of interpolating biarcs. All possible joints are lo-
cated on the circle σ passing through x and y and having the same oriented angles
with vx and vy. Several ways for choosing the joint m have been proposed; see
e.g. [25,31]. For many applications, taking m = σ ∩ c[t0, t1] is appropriate. To
calculate m, a polynomial of degree 4 has to be solved (where a closed-form
solution is still available). The output is a C1 arc spline with all arc endpoints
sitting on c(t).

In view of subsequent stable medial axis computations, the choice of m has to
be made more carefully. Define an apex of c(t) as a local curvature maximum.
The apices split the curve c(t) into pieces of monotonic signed curvature, so-
called spirals . Following [25], we aim at approximating spirals of c(t) by circular
arc spirals. To this end, we split c(t) at its apices. These points can be found
by solving polynomials of degree 5. Now, we exploit that spiral biarcs can be
constructed that connect two given points x and y, match unit tangents there,
and assume a predefined curvature in one of them. Let kx and ky be the curvature
of c(t) at x and y, respectively, and suppose kx < ky. To match curvature at x, we
choose the radius of the first arc, b1, equal to rx = 1/kx. The joint m is obtained
by intersecting the circle supporting b1 with the joint circle σ. According to [25],
the radii and curvatures satisfy rx > ry > 1/ky. When starting the next biarc
from y with ry = 1/ky (unless y is an apex), monotonicity of signed curvature
will be preserved.

Each arc is found in O(1) time, where the constant depends on the degree of
the polynomial to be solved. Concerning the error measurement, each produced
circular arc bi has to be matched to its corresponding segment s on the curve c.
We then compute an upper bound for the one-sided Hausdorff distance δ(bi, s) by
substituting the parametric representation of s into the implicit equation of the
circle supporting bi. A simpler upper bound can be calculated (without polyno-
mial solving) by using Bernstein-Bézier representations [13]. In summary, when
algorithm BISECT spans a binary recursion tree with n leaves (the returned n
primitives), any of the described arc splines can be constructed in O(n) time.

Let us discuss the asymptotic behaviour of the number n for decreasing toler-
ance ε. For a given curve c(t) with domain [t0, t1], which is assumed to contain
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neither inflections nor apices, we consider primitives having approximation or-
der k. Adapting the analysis in [24,31], we get δ = Θ(hk) for the one-sided Haus-
dorff distance δ, provided that c(t) is approximated with (small) parameter step
size h, and that k is considered a constant.

This relation implies a general lower bound. For any approximation of c(t)
by n primitives of order k, the largest step size satisfies Δt ≥ t1−t0

n . Thus from
ε ≥ δ, which is to be achieved by the approximation, and from δ = Θ((Δt)k),
we get n = Ω(1/ε1/k). On the other hand, the smallest step size Δt taken by
algorithm BISECT satisfies Δt ≤ t1−t0

n . When doubling the step size we have
δ=Θ((2Δt)k) but ε < δ, as the tolerance is not yet achieved. Thus n=O(1/ε1/k).

In conclusion, for sufficiently small tolerance ε, the number n of primitives
constructed by algorithm BISECT is asymptotically optimal. This is also true in
the general case where c(t) contains inflections and apices, because the resulting
number of spirals of c(t) is independent of n. In conclusion, to arrive at toler-
ance ε, Algorithm BISECT needs n = Θ(1/ 3

√
ε) cicular arcs (order 3), whereas

N = Θ(1/
√
ε) line segments (order 2) have to be invested by any polygonal

approximation method.

Lemma 1. Compared to approximating c(t) with a polyline, the data volume
drops from N to Θ(N2/3) when circular arc splines are used.

It should be observed that, the other way round, when approximating c(t) with
a point sample (as commonly done for medial axis computations [2]), the data
volume increases to Θ(n3) compared to n circular arcs.

3 Medial Axis

Let A be the circular arc shape under consideration. (All objects are considered
to be closed sets in the sequel). Call a disk D ⊆ A maximal if there exists no
disk D′ different from D such that D ⊂ D′ and D′ ⊆ A. The medial axis, M(A),
of A is defined as the set of all centers of maximal disks.

As the boundary of A is a connected and simple curve with n circular arcs,
M(A) is finite, connected, and cycle-free [9] and thus forms a tree. M(A) can
be decomposed into O(n) edges , which are maximal pieces of straight lines and
(possibly all four types of) conics. Endpoints of edges will be called vertices
of M(A).

The contribution of this section is a simple and practical randomized algo-
rithm for computing M(A). It works by divide-and-conquer and accepts as in-
put any description of ∂A by circular arcs and/or line segments. The costly
part is delegated to the divide step, which basically consists of inclusion tests
for arcs in circles. The merge step is trivial; it just concatenates two partial
medial axes. The expected runtime is bounded by O(n3/2), and will be proved
to be O(n polylog n) for several types of shape. A qualitative difference to ex-
isting medial axis algorithms is that a combinatorial description of M(A) is
extracted first, which can then be directly (and robustly) converted into a ge-
ometric representation. We base our algorithm on the following simple though
elegant decomposition lemma [9].
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*p

e

Fig. 1. Walk (dashed) and cut (dotted)

Lemma 2. Consider any maximal disk D for A. Let A1, . . . , At be the connected
components of A \D, and denote with p the center of D. The following holds.

(1) M(A) =
t⋃

i=1

M(Ai ∪D) (2) {p} =
t⋂

i=1

M(Ai ∪D)

In plain words, having at hands some maximal disk one can compute the medial
axes for the resulting components recursively, and then glue them together at a
single point. However, the desired efficiency of this strategy calls for a balanced
decomposition. Its existence is given below.

Lemma 3. There exists a maximal disk D for A such that at most n
2 arcs

from ∂A are (completely) contained in each component of A \D.

Proof. Each point p ∈M(A) corresponds to a unique maximal disk Dp for A.
Let f(Dp) be the number of arcs from ∂A in the largest component induced
by Dp. As long as f(Dp) > n

2 , the component that realizes f(Dp) is unique,
and we can decrease f(Dp) by continuously moving p on M(A) such that Dp
enters into this component. This process terminates at some point p∗ where
f(Dp∗) ≤ n

2 . We never move back the way we came, as the component we move
out never exceeds a size of n2 .

We are left with the algorithmic problem of finding some maximal disk that
yields a well-balanced partition. Observe that the optimal point p∗ above may
be not unique, because the number f(Dp) is invariant under motion of p within
the relative interior of any fixed edge e ⊂M(A). Let us define Walk(e) as the
path length in M(A) from e to p∗. Further, define Cut(e) as the size of the
smaller one among the two subtrees which constitute M(A) \ {e}. See Figure 1.
Any tree with small ’cuts’ tends to have short ’walks’, in the following respect.

Lemma 4. Let e be an edge of M(A), chosen uniformly at random. Then
E[Walk(e)] = Θ(E[Cut(e)]).
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Proof. Orient all the paths in M(A) away from the point p∗. This defines a
partial order ≺ on the edges of M(A). We have the set equality

⋃

e∈M(A)

{(a, e) | a ≺ e} =
⋃

e∈M(A)

{(e, b) | b ! e}

because either set contains each pair of the relation exactly once. The (disjoint)
subsets united in the left set, L, represent all the paths in M(A) between its
edges e and p∗. Thus we have E[Walk(e)] = 1

m · |L|, where m is the number
of edges of M(A). The (disjoint) subsets united in the right set, R, represent
those subtrees defined by the edges e of M(A) which avoid p∗. If we neglect
subtrees of sizes larger than m

2 , then the cardinality of the set drops by a constant
factor (of at most 4, if ≺ would be a total order, hence less). This implies
1
m · |R| > E[Cut(e)] > 1

m · |R|
4 . The lemma now follows from |R| = |L|.

Lemma 4 motivates the following disk finding algorithm which combines ran-
dom cutting with local walking. Its main subroutine, MAX(b), selects for an
arc b ⊂ ∂A its midpoint x and returns the unique maximal disk for A with x on
its boundary. For the ease of description, we assume that this disk splits A into
exactly two components. Let c ≥ 3 be a (small) integer constant.

Procedure CUT(A)

Put A′ = A
Repeat
Choose a random arc b of ∂A′

Compute D=MAX(b) and let A0 be the
larger component of A induced by D

Assign A′ = A′ ∩ A0

Until A0 contains less than n − n
c

arcs

Report D

Procedure WALK(A)

Choose a random arc b of ∂A
Compute D=MAX(b)
Put A0 =larger component induced by D

While A0 contains > n − n
c

arcs do
Let b1 (b2) be the first (last) complete
arc of ∂A in A0

Find D1=MAX(b1) and D2=MAX(b2)
Put A0 = smallest of the respective lar-

ger components of A for D1 and D2

Let D∈{D1, D2} be the respective disk

Report D

The disk finding algorithm now runs CUT(A) and WALK(A) in parallel and
terminates as soon as the first disk is reported. To analyze its runtime, let us first
consider the assignment of arcs on ∂A to edges of M(A), as done in subroutine
MAX. Namely, if MAX(b)=D then arc b is mapped to the edge e that contains
the center of D. Observe that either 0, 1, or 2 arcs are mapped to a fixed edge.
Moreover, no two unaddressed edges and no two doubly addressed edges are
neighbored. This assignment is sufficiently uniform to convey randomness from
arcs to edges. So Lemma 4 applies, and in the worst case of walk length being
balanced with cut number, a bound of O(

√
n) on the expected number of loop

executions in at least one of CUT(A) and WALK(A) holds.
The costly part in both procedures is their subroutine MAX, whose expected

number of calls obeys the same bound. D=MAX(b) has a simple implementation
which runs in O(n) time: We initialize the disk D as the (appropriately oriented)
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halfplane that supports b at its midpoint x and, for all remaining arcs bi ⊂ ∂A
that intersect D, we shrink D so as to touch bi while still being tangent to b
at x. The most complex operation needed for shrinking D is an inclusion test of
a point in a circle. In particular, and unlike previous medial axis algorithms, no
conics take part in geometric operations.

In summary, the randomized complexity for computing the medial axis is
given by T (n) = T (1

cn) + T ((1 − 1
c )n) + O(n3/2) = O(n3/2). In many cases,

however, will the algorithm perform substantially better. Let d be the graph
diameter of M(A). Then the loop in WALK(A) is executed less than d times.
So, for example, if d = Θ(log n) then an overall runtime of O(n log2 n) is met.
For the other extreme case, d = Θ(n), our strategy is even faster. With constant
probability, an edge on the diameter is chosen, and Θ(n) such edges e have
Cut(e) = Θ(n). The expected number of loop executions in CUT(A) now is
only O(1), and an O(n log n) algorithm results. We conjecture that the latter
situation is quite relevant in practice. In many applications, for typical shapes
their medial axes will not branch extensively. Even if so, the branching will be
independent of n, because each branch will be approximated by a large number
of circular arcs in order to achieve the necessary precision.

The output of the algorithm is a list of O(n) points on M(A), namely, the
centers of the splitting disks, plus a list of O(n) edges connecting them. Each edge
is given implicitly by its defining two arcs on ∂A. To make sure that the reported
point list includes all the vertices of M(A), base cases that involve constantly
many (pieces of) original arcs from ∂A have to be solved directly. (The constant
equals 2 or 3 if ∂A is C1.) Note that the algorithm works exclusively on ∂A
except for a final step, where the conic edges of M(A) are explicitly calculated
and reassembled. This gives rise to increased numeric stability in comparison to
existing approaches.

Opposed to approximating ∂Awith the same accurracy by a polyline of size N ,
our circular arc algorithm takes O(n3/2) = O(N) time; see Lemma 1 in Section 2.
Thus, even for (probably rare) worst-case inputs, our simple algorithm competes
asymptotically well with previous methods. Another advantage over polygonal
approximation is described in Section 4.

4 Convergence

A well-known unpleasant phenomenon of the medial axis is its instability under
perturbations of the shape boundary. Several papers discussing this issue have
been published recently. A result in [6] shows that stability is, in general, not
given unless perturbations are C2. To deal with general shapes, the so-called
λ-medial axis has been introduced as a tool in [5]. After drawing a point sample
from the shape boundary, the Voronoi diagram of these points is constructed
and pruned appropriately. The λ-medial axis converges to the original for van-
ishing sample distance. Drawbacks are the large sample size for a close (and
homotopy-equivalent) approximation, the lack of its C1 behavior, and the need
of computing a general planar Voronoi diagram.
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We prove in this section that medial axis convergence under the Hausdorff
distance comes as a byproduct of the careful (though, of course, still C1) biarc
boundary conversion described in Section 2. We start with two technical lemmas,
whose proofs are omitted due to lack of space.

For some shape A and a point p ∈ M(A), let Dp denote the unique maximal
disk with center p. Recall that M(A) is defined as the union of the centers of all
maximal disks. Define ξp ≤ π as the largest angle at p spanned by two points in
the set Dp ∩ ∂A. The assertion below does not assume any regularity condition
for the shape boundaries.

Lemma 5. Let A and B be two shapes whose (two-sided) Hausdorff distance
satisfies H(∂A, ∂B) = ε. Define k = 4

1−cos(ξp/2)
and let Dp denote any maximal

disk for A whose radius r fulfills r > k · ε > 0. Then there exists a maximal
disk Dq for B such that ‖p− q‖ < k · ε.

Define a leaf of the medial axis as a vertex with a single incident edge. The
following lemma describes the behavior of M(A) in the vicinity of its leaves.
Recall that an apex of ∂A is a point of maximal curvature.

Lemma 6. For an apex x of ∂A, consider the unique maximal disk Dp that
avoids a segment of ∂A through x with fixed (small) length �. Further, consider
the maximal disk Dq osculating at x. If ∂A is piecewise analytic C2 in the
neighborhood of x then

‖q − p‖ → 0 as O(�2).

We are now prepared to prove the claimed convergence result. Slightly more
general than in Section 2, we assume that ∂A for the original shape A is C2 and
piecewise analytic. (These requirements are fulfilled if ∂A is a cubic spline.) The
proof generalizes easily to the case where ∂A is an arbitrary concatenation of
analytic pieces, and thus, in particular, is allowed to contain ’sharp’ vertices.

Let Bn denote some circular arc shape that comes from approximating ∂A by
a suitable biarc spline; see Section 2. For sufficiently large n, each leaf of M(A)
is also a leaf of M(Bn), and all leaves of M(Bn) are contained in M(A). This is
because the spline preserves not only spirals, but also position, normal vector,
and curvature at each apex x of ∂A. All leaves are centers of osculating disks at
some apex x.

Let us remove from ∂Bn the containing circular arc bx for each apex x whose
osculating disk is included in Bn (and hence is maximal for Bn). This decom-
poses ∂Bn into components. The lengths of the arcs bx shrink to zero as Ω(n−1)
by construction of Bn, as does their minimum dn. Apart from disks for leaves,
each maximal disk Dp for Bn has contact to at least two different components.
(Otherwise, there would be a supplementary leaf of M(Bn).) For such a disk Dp,
we have the angle inequality ξp ≥ ξn, for ξn = 2 arcsin(dn/2L), and L denoting
the geometric diameter of Bn. Because dn → 0 as Ω(n−1) and since L is a con-
stant, we have 1 − cos(ξn/2) = Ω(n−2). Moreover, H(∂A, ∂Bn) → 0 as O(n−3)
by construction. That is, the condition in Lemma 5 holds for almost all maxi-
mal disks Dp for Bn when n is sufficiently large. Consequently, for each point
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p ∈M(Bn) there exists a point q ∈M(A) such that ‖p− q‖ → 0 as O(n−1). That
is, the one-sided Hausdorff distance δ(M(Bn),M(A)) converges at this speed.

The other direction can be proved similarly. For each apex x of A, we define
a neighborhood cx on ∂A of length n−3/4. Removal of the segments cx leads us
to two types of maximal disks Dq for A, depending on whether Dq touches a
single segment cx (q is then close to x), or not. For the latter type, the analysis
is the same as above, and shows that q approaches the center of some maxi-
mal disk for Bn at speed O(n−3/2). For the former type, due to Lemma 6, the
distance ‖q − p‖ between q and the leaf p ∈M(Bn) associated with cx behaves
as Θ(n−3/4)2, i.e., the same. The one-sided Hausdorff distance δ(M(A),M(Bn))
thus converges at that speed.

Note that the global convergence speed of the medial axis with respect to the
Hausdorff distance is Θ(n−1), whereas the error of the boundary approximation
improves as Θ(n−3). This is due to the behavior of the medial axis close to its
leaves. When we restrict ourselves to the λ-medial axis [5] for any λ > 0, then dn
in the formula for ξn becomes a constant, and the approximation speed is Θ(n−3)
by Lemma 5. This well compares to using a size-n point sample on ∂A and
pruning its Voronoi diagram, as the approximation speed then is only Θ(n−1).

Acknowledgements. Thanks go to Raimund Seidel for discussions on Section 3.
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Abstract. Building on the work of Martinetz, Schulten and de Silva,
Carlsson, we introduce a 2-parameter family of witness complexes and
algorithms for constructing them. This family can be used to determine
the gross topology of point cloud data in Rd or other metric spaces. The
2-parameter family is sensitive to differences in sampling density and thus
amenable to detecting patterns within the data set. It also lends itself to
theoretical analysis. For example, we can prove that in the limit, when
the witnesses cover the entire domain, witness complexes in the family
that share the first, scale parameter have the same homotopy type.

1 Introduction

The analysis of large data sets is a paradigm of growing importance in the sci-
ences. Broad advances in technology are leading to ever larger data sets capturing
information in unprecedented detail. Examples are micro-arrays that probe gene
activity for entire genomes and sensor networks that challenge our ability to
integrate time-series of distributed measurements. After distilling such data and
giving it a geometric interpretation as a point cloud in possibly high-dimensional
ambient space, we are faced with the problem of extracting properties of that
cloud, such as its gross topology, various patterns within it, or its geometric
shape. We see the study of these point clouds as an extension of the reconstruc-
tion of surfaces from point clouds in R3; see [1].

In this paper we adopt the point of view that the goal is not the reconstruction
of a unique shape but rather a hierarchy that captures the data at different scale
levels. In this we are inspired by the work on alpha shapes where scale is captured
by the radius of the spherical neighborhoods defined around the data points [2].
Our point of departure is in the method of reconstruction. Instead of appealing
to the metric of the ambient space we use the data itself to drive the formation
of the family of complexes. Specifically, we distinguish data points by the way
we use them: the landmarks form the vertices of the complexes we build and the
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witnesses provide support for simplices we add to connect the vertices. This idea
can be traced back to the topology adapting networks of Martinetz and Schulten
[3], who draw an edge between two landmarks if there is a witness for which
they are the two nearest. We may interpret the witness as a proof for the edge
to belong to the Delaunay triangulation of the landmark points. Unfortunately,
a witness is not proof for its three nearest landmarks forming a triangle in
the Delaunay triangulation. The resulting impasse was overcome for ordinary
Delaunay triangulations by de Silva [4]. He proved that if for every subset of
p+1 landmarks there is a witness for which the points in the subset are at least
as close as any other landmarks, then this is a proof for the p + 1 landmarks to
form a p-simplex in the Delaunay triangulation. This insight motivated de Silva
and Carlsson to introduce a generalization of the Martinetz-Schulten networks
to two- and higher-dimensional complexes [5]. They used their new tool to study
the picture collection of van Hateren and van der Schaaf [6], also considered
by Lee, Pedersen and Mumford [7]. The main insight from their work is that a
majority of small pixel subarrays can be parametrized on a (two-dimensional)
Klein bottle in 7-dimensional ambient space [8].

If the witness complex is patterned after the Delaunay triangulation, why do
we not just construct the latter? There is a variety of reasons, including

– the size of the complex can be controlled by choosing the landmarks while
not ignoring the information provided by the possibly many more sample
points;

– distances are easier to compute than the primitives required to construct
Delaunay triangulations;

– extending the definition of witness complexes to metric spaces different from
Euclidean spaces is comparatively straightforward;

all already mentioned in [5]. There are also significant drawbacks, such as the
locally imperfect reconstruction caused by the finiteness of the witness set. The
main purpose of this paper is to present methods that cope with the mentioned
drawback of witness complexes. Our main contributions are theoretical, in un-
derstanding the family of witness complexes and its algorithms. Specifically,

(i) we introduce a 2-parameter family that contains prior witness complexes as
sub-families;

(ii) we generalize de Silva’s result for Delaunay triangulations to witness com-
plexes in the limit;

(iii) we analyze the structure of the family of witness complexes by subdividing
its parameter plane;

(iv) we give algorithms to construct this subdivision, compute homology within
it, and visualize the result.

Outline. Section 2 presents the complexes after which we model our witness
complexes. Section 3 introduces the 2-parameter family of witness complexes.
Section 4 studies the family through subdivisions of the parameter plane. Sec-
tion 5 describes algorithms constructing alpha-beta witness complexes. Section
6 concludes the paper.
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2 Complexes

In this section, we introduce the family of complexes that provide the intuition
for our witness complexes. The family contains the 1-parameter families of Čech
and alpha complexes and uses a second parameter to interpolate between them.
We begin with definitions from algebraic topology.

Simplicial Complexes. The geometric notion of a simplex, σ, is the convex hull
of a collection of affinely independent points in Rd. We say the points span the
simplex. If there are p + 1 points in the collection, we call σ a p-simplex and
p = dim σ its dimension. Any subset of the p+1 points defines another simplex,
τ ≤ σ, and we call τ a face of σ and σ a coface of τ . A simplicial complex
is a finite collection of simplices, K, that is closed under the face relation and
satisfies the extra condition that any two of its simplices are either disjoint or
their intersection is a face of both. A subcomplex is a simplicial complex K ′ ⊆ K.
It is full if it contains all simplices in K exclusively spanned by vertices in K ′.
We often favor the abstract view in which a p-simplex is just a collection of
p+1 points, a face is simply a subset, and a simplicial complex is a finite system
of such collections closed under the subset relation. For every finite abstract
simplicial complex, there is a large enough finite dimension, d, such that the
complex can be realized as a simplicial complex in Rd. For example, d equal
to one plus twice the largest dimension of any simplex is always sufficient. The
primary use of a simplicial complex is to construct or represent a topological
space. Its underlying space is the subset of Rd covered by the simplices, together
with the topology inherited from Rd. Finally, K triangulates a topological space
if its underlying space is homeomorphic to that topological space.

A computationally efficient approach to classifying topological spaces is based
on homology groups [9]. For a given space, there is one group for each dimension
p capturing, in some sense, the holes with p-dimensional boundaries. We use
modulo-2 arithmetic and thus get homology groups isomorphic to Z/2Z to some
non-negative integer power. That power is the rank of the group and the p-th
Betti number of the topological space. The classification of spaces by homology
groups is strictly coarser than by homotopy type. It follows that two spaces with
the same homotopy type have isomorphic homology groups, of all dimensions.
Building a simplicial complex incrementally and writing down the result at every
stage, we get a nested sequence of complexes, ∅ = K0 ⊂ K1 ⊂ . . . ⊂ Kn = K,
which we refer to as a filtration of K. The inclusion Ki ⊂ Kj induces a ho-
momorphism from the p-th homology group of Ki to the p-th homology group
of Kj , for every p ≥ 0. We refer to the image of the homomorphism as a per-
sistent homology group and to its rank as a persistent Betti number. For more
information on these groups we refer to [10, 11].

Čech and Alpha Complexes. There are but a few complexes that have been used
to turn a finite set of points into a multi-scale representation of the space from
which the points are sampled. Perhaps the oldest construction is the nerve of a
collection of spherical neighborhoods, one about each data point. To formalize
this idea, let L ⊆ Rd be a finite set of points.
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Definition. For any real number α ≥ 0, the Čech complex of L, Čech(α), con-
sists of all simplices σ ⊆ L for which there exists a point x ∈ Rd such that
‖x− k‖ ≤ α, for all vertices k ∈ σ.

The Nerve Lemma implies that Čech(α) has the same homotopy type as the
union of the balls with radius α and centered at points in L [12]. A similar
construction requires, in addition, that x be closest to and equally far from the
relevant data points [2].

Definition. For any real number α ≥ 0, the alpha complex of L, Alpha(α),
consists of all simplices σ ⊆ L for which there exists a point x ∈ Rd such that
‖x− k‖ ≤ α and ‖x− k‖ ≤ ‖x− �‖, for all k ∈ σ and all � ∈ L.

Equivalently, Alpha(α) is the nerve of the collection of balls of radius α, each
clipped to within the Voronoi cell of its center. The Nerve Lemma implies that
Alpha(α) also has the homotopy type of the union of balls. In summary, Alpha(α)
is a subcomplex of Čech(α) and the two have the same homotopy type, for every
α ≥ 0. Alpha complexes are more efficient than Čech complexes but require the
evaluation of a more complicated geometric primitive. For α = ∞, we have the
nerve of the collection of Voronoi cells, also known as the Delaunay complex of
L, Delaunay = Alpha(∞) [13].

Almost Alpha Complexes. We interpolate between Čech and alpha complexes
using a second parameter, β.

Definition. For any real numbers α, β ≥ 0, the almost alpha complex, AA(α, β),
consists of the simplices σ ⊆ L for which there exists a point x ∈ Rd such that
‖x− k‖ ≤ α and ‖x− k‖2 ≤ ‖x− �‖2 + β2, for all k ∈ σ and all � ∈ L.

As suggested by the name, these complexes are similar to but different from the
almost Delaunay complexes introduced in [14]. For β ≥ α, the second constraint
is redundant, and for β = 0, it requires that x be equidistant from all k ∈ σ. In
other words, AA(α, α) = Čech(α) and AA(α, 0) = Alpha(α).

Let ak(α) be the closed ball with center k and radius α, and write aσ(α) for
the common intersection of the balls ak(α), for k ∈ σ. Similarly, let bk,�(β) be the
closed half-space of points whose square distance to k exceeds that to � by at most
β2, and write bσ,υ(β) for the common intersection of the half-spaces bk,�(β), for
k ∈ σ and � ∈ υ. Then σ belongs to AA(α, β) iff regionσ(α, β) = aσ(α) ∩ bσ,L(β)
is non-empty. But this region is the intersection of the regions of its vertices,
regionσ(α, β) =

⋂
k∈σ regionk(α, β). Hence, AA(α, β) is the nerve of the regions

of the vertices. Independent of β, the union of these regions is the union of balls of
radius α, same as for the Čech and the alpha complexes. Indeed, β only controls
the amount of overlap between the regions, which increases with increasing β.
Since the regions are convex, the Nerve Lemma implies that the homotopy type
of AA(α, β) is the same as that of the union of balls. We summarize,

Alpha(α) ⊆ AA(α, β) ⊆ Čech(α), (1)
Alpha(α) , AA(α, β) , Čech(α), (2)

for all α, β ≥ 0.
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3 Alpha-Beta Witness Complexes

The almost alpha complexes have witness versions obtained by collecting all
simplices whose regions contain at least one of a finite set of sampled points.
This construction is problematic for small values of β, for which the regions of
the vertices have only small overlap. Following de Silva [4], we introduce the
concept of a weak witness and show that the resulting witness complexes are
better approximations of the complexes than the mentioned witness versions.

Weak and Strong Witnesses. The general set-up consists of a finite set X ⊆
Rd of witnesses and another, usually smaller finite set L ⊆ Rd of landmarks.
We consider complexes over L consisting of simplices that have the backing of
witnesses in X . Specifically, we call x ∈ X a weak (α, β)-witness of σ ⊆ L if

[I] ‖x− k‖ ≤ α, for all k ∈ σ, and
[II] ‖x− k‖2 ≤ ‖x− �‖2 + β2, for all k ∈ σ and all � ∈ L− σ.

Equivalently, x belongs to aσ(α) ∩ bσ,L−σ(β). We call a weak (α, β)-witness a
strong (α, β)-witness if the inequality in Condition [II] holds for all k ∈ σ and
all � ∈ L or, equivalently, if x ∈ aσ(α) ∩ bσ,L(β). The difference is in the set
of landmarks that compete with the vertices of σ. For a weak witness this set
excludes the vertices of σ which therefore do not compete with each other. This
subtle difference has important consequences.

Definition. For any real numbers α, β ≥ 0, the alpha-beta witness complex,
Witness(α, β), consists of the simplices σ ⊆ L such that every face τ ≤ σ has a
weak (α, β)-witness in X .

Condition [II] is redundant unless α exceeds β so we restrict the 2-parameter
family to 0 ≤ β ≤ α ≤ ∞. With increasing value of α and, independently, of
β, the requirements for being a weak witness get more tolerant, which implies
Witness(α, β) ⊆ Witness(α′, β′) whenever α ≤ α′ and β ≤ β′.

Witness Complexes in the Limit. Similar to almost alpha complexes, the alpha-
beta witness complexes have a nice geometric interpretation. We describe it in
the full version of the paper, where we also show how to extend de Silva’s result
on Delaunay triangulations to almost alpha complexes. In particular, we prove
that the existence of a weak (α, β)-witness for each face implies the existence
of a strong (α, β)-witness for the simplex. In other words, if X = Rd then the
alpha-beta witness complex is the same as the almost alpha complex.

Weak Almost Alpha Theorem. If X = Rd then Witness(α, β) = AA(α, β).

For finite sets X , the alpha-beta witness complex can only be smaller than
for X = Rd, which implies Witness(α, β) ⊆ AA(α, β). This should be con-
trasted with the fact that a strong witness for a simplex is a weak witness for
all faces of the simplex. Hence, the witness version of the almost alpha complex,
which collects all simplices with strong (α, β)-witnesses in X , is a subcomplex
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of Witness(α, β). By (2), the homotopy type of the almost alpha complex does
not depend on β. Any variation in the homotopy type of the alpha-beta witness
complex for fixed value of α must therefore be attributed to insufficient sampling.

4 2-Parameter Family

In this section, we focus on the family of witness complexes, describing properties
in terms of subdivisions of the parameter plane. In this plane of points (α, β)
the balls grow from left to right and the Voronoi cells grow from bottom to top.
Potentially interesting sub-families arise as horizontal and vertical lines but also
as 45-degree lines along which the balls and cells grow at the same rate.

Comparison with Prior Notions. Several versions of witness complexes have been
defined in [5]. We compare them with the 2-parameter family, limiting ourselves
to Čech-like constructions. We start with the first version introduced by de Silva
and Carlsson.

Definition. The strict witness complex, W∞, consists of the simplices σ ⊆ L
whose faces belong to W∞ and for which there exists a witness x ∈ X such that

[S] ‖x− k‖ ≤ ‖x− �‖, for all k ∈ σ and all � ∈ L− σ.

Condition [S] is the same as Condition [II] for β = 0. There is no counterpart
to [I] but we can make this condition redundant by setting α = ∞. In other
words, W∞ = Witness(∞, 0) in our family, as indicated in Fig.1. To introduce
the other three constructions in [5], let p be the dimension of σ and distj(x)
the distance of x ∈ X from its j-nearest landmark point. Using a non-negative
real parameter R, we get three 1-parameter families of witness complexes, each
obtained by substituting one of

[0] ‖x− k‖ ≤ R, for all vertices k ∈ σ;
[1] ‖x− k‖ ≤ R + dist1(x), for all vertices k ∈ σ;
[Δ] ‖x− k‖ ≤ R + distp+1(x), for all vertices k ∈ σ;

for Condition [S] in the definition of W∞. Following [5], we denote the members
of the three families as W (R, 0), W (R, 1), and W (R,Δ). The members of the first
family are the witness versions of the Čech complex, W (R, 0) = Witness(R,R).
For R = 0 in the second family, we get a p-simplex σ iff there is a witness in the
intersection of the p+ 1 Voronoi cells of its vertices, which happens with proba-
bility 0 unless p = 0. As R increases, we get more tolerant about the precise loca-
tion of the witness. Equivalently, we can think of growing the Voronoi cells and
adding a simplex whenever we find a witness in the common intersection of the
enlarged cells. The effect of increasing R is therefore similar to that of increasing
β in Condition [II], although the enlarged cells have different shape. Condition
[Δ] is less restrictive than Condition [1] so we have W (R, 1) ⊆ W (R,Δ). We
can interpret [Δ] in terms of growing order-(p+1) Voronoi cells. This makes the
complexes in the third family rather similar to alpha-beta witness complexes
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for α = ∞, although the geometric details are again different. The growth pre-
scribed by Condition [II] is milder and more controlled than that prescribed by
Condition [Δ]. Indeed, we have Witness(∞, R) ⊆ W (R,Δ) , for all R ≥ 0. To
see this, consider Conditions [II] and [Δ] for a witness x and a p-simplex σ. If
the p + 1 vertices of σ are the p + 1 closest landmarks then x and σ satisfy
both conditions for all values of β and R. Otherwise, the smallest distance from
x to a landmark � not in σ is at most distp+1(x). For β = R, Condition [II]
is equivalent to ‖x− k‖2 ≤ R2 + ‖x− �‖2 for all � ∈ L − σ. It follows that
‖x− k‖2 ≤ R2 + dist2p+1(x) which implies Condition [Δ]. The containment re-
lation cannot be reversed, meaning there is no positive constant c such that
W (R,Δ) is necessarily a subcomplex of Witness(∞, cR).
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Birthline Subdivision. We decompose the parameter plane into maximal regions
within which the alpha-beta witness complexes are the same. For this purpose,
we introduce two collections of functions, Aσ, Bσ,υ : Rd → R, defined by

Aσ(x) = max
k∈σ

‖x− k‖2;

Bσ,υ(x) = max
k∈σ

‖x− k‖2 −min
�∈υ

‖x− �‖2
.

Both are convex. It follows that their sublevel sets are convex regions, namely
the intersections of balls and half-spaces used earlier, A−1

σ (−∞, α2] = aσ(α) and
B−1
σ,υ(−∞, β2] = bσ,υ(β). Hence, a point x ∈ X is a weak (α, β)-witness for σ iff

Aσ(x) ≤ α2 and Bσ,L−σ(x) ≤ β2. The two conditions are independent implying
the set of points (α2, β2) whose coordinates satisfy them form an upper right
quadrant which we denote Q(σ, x). Since σ can have more than one weak witness,
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we consider the union of quadrants they define, and since we require all faces of
σ to have weak witnesses, we take the intersection of these unions,

Q(σ,X) =
⋂

τ≤σ

(
⋃

x∈X
Q(τ, x)

)

,

calling its boundary the birthline of σ. It decomposes the parameter plane into
two regions such that σ belongs to Witness(α, β) iff the point (α2, β2) lies on or
to the upper right of the birthline; see Fig.2.

The birthlines decompose the parameter plane into the birthline subdivision
consisting of maximal regions within which the alpha-beta witness complexes are
the same. Neighboring regions are separated by curves, each belonging to one
or more birthlines. Curves meet at common endpoints where birthlines merge
or cross. Curves that belong to two or more birthlines are common, even in the
generic case. In a typical example, the witness complexes in two neighboring
regions differ by a collapse, which consists of all faces of a simplex that are
cofaces of a proper face of that simplex. A collapse does not affect the homotopy
type of the complex, implying that we get isomorphic homology groups in the
two regions, for all dimensions.

5 Algorithms

We focus on algorithms that construct the family rather than individual alpha-
beta witness complexes. We begin by constructing the birthline subdivision of
the parameter plane, which we use as a representation of the family. We then
discuss an algorithm for computing the homology of the complexes in the fam-
ily. To extract patterns we consider classes that persist while we vary the two
parameters.

Constructing Birthlines. Recall that a p-simplex σ and a witness x define a
quadrant above and to the right of its corner point. The first coordinate of
the corner is Aσ(x) = maxk∈σ ‖x− k‖2. To get the second coordinate, we find
the set of p + 1 landmarks closest to x and distinguish between two cases. If
this set is σ then x is a weak witness of σ for all values of β so the second
coordinate of the corner is zero. Else this set contains a closest landmark � not
in σ and we get the second coordinate as Bσ,L−σ(x) = Aσ(x)−‖x − �‖2. Clearly
these computations benefit from a data structure that provides fast access to the
landmarks near a query point. There are many data structures available for this
task and we refer to Indyk [15] for a recent survey of this literature. The union of
the quadrants Q(σ, x), over all witnesses x, is the lower staircase of their corner
points. Constructing this staircase is another classic problem in computational
geometry [16]. There are many fast methods including a plane-sweep algorithm
that constructs the staircase from left to right. This algorithm is convenient
for our purposes since it can be reused to compute the birthline of σ as the
upper envelope of the staircases of all faces of σ. Finally, we use the plane-sweep
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algorithm a third time to convert the collection of birthlines into the birthline
subdivision. Alternatively, we can do all three plane-sweeps in one, constructing
the birthline subdivision directly from the corner points of the quadrants.

What we described is hardly the most efficient method to construct the birth-
line subdivision. In particular, we expect that most of the quadrants are redun-
dant. It would be interesting to prove bounds on the output size, the number of
edges in the birthline subdivision, and to find an algorithm that avoids looking
at redundant quadrants and achieves a running time sensitive to the output size.

Computing Homology. We now describe an algorithm that computes the p-th
Betti number for each region in the subdivision. It does this for all values of
p. The main idea is to explore the parameter plane in a topological sweep that
advances a directed path connecting the start-point, (0, 0), with the end-point,
(∞,∞), while remaining monotonically non-decreasing in both parameters at
all times. Initially, the path follows the lower edge of the parameter plane, from
(0, 0) to (∞, 0), and then the right edge, from (∞, 0) to (∞,∞). We represent
this combinatorially by the sequence of simplices labeling the birthlines the path
crosses. If m denotes the number of landmarks, we go from the empty complex
at (0, 0) to the m-simplex at (∞,∞), which implies that the sequence contains
all M = 2m simplices spanned by the landmark points. An elementary move
pushes the path locally across a vertex of the subdivision. This corresponds
to locally reordering the simplices, which we do one transposition at a time.
After processing all transpositions, we arrive at the final path, which follows
the diagonal from (0, 0) to (∞,∞). The purpose of the sweep is to compute the
Betti numbers of the regions, which we do using the algorithm in [10] for the
initial sequence and the algorithm in [17] to update the information for each
transposition. In the worst case, the initialization takes time cubic in M and
each transposition takes time linear in M .

The algorithm’s biggest impediment is the large size of the complex at (∞,∞).
To make it feasible for landmark sets that are not very small, we choose an upper
bound b for β. Shrinking the parameter domain this way seems appropriate since
α and β play fundamentally different roles. The first parameter, α, controls the
resolution of the reconstruction, allowing small features to form for small α and
letting gross features take over for large α. The second parameter, β, controls how
tolerantly we interpret witnesses. The strict interpretation at β = 0 combined
with occasional gaps in the distribution of witnesses leads to holes caused by
sporadically missing simplices. The findings in [5] suggest that small non-zero
values of β suffice to repair these holes. Although our mathematical formulation
of tolerance is different from that paper, we expect the same holds for alpha-beta
witness complexes.

Persistence. We now address the question of how to read the Betti numbers of
the family represented by the birthline subdivision. We are not after finding the
“best” complex since we cannot expect that a single complex would contain all
interesting patterns in the data. Since these patterns are expressed at different
scale levels a simultaneous representation may indeed be impossible. Instead,



Alpha-Beta Witness Complexes 395

we are looking for homology classes that persist while α and β vary. Ideally, we
would like to define a notion of two-parameter persistence but there are algebraic
difficulties [18]. We therefore fall back on the one-parameter notion introduced in
[10] which measures the length of the interval in a path along which a homology
class persists. Since the scale level is controlled solely by α it makes sense to draw
the path horizontally in the parameter plane so that persistence captures scale.
In other words, the directed path used in the computation of homology sweeps
the parameter plane from bottom to top. More precisely, we gradually increase
β from 0 to b and restrict the path to two turns, one at (β2, β2) and the other at
(∞, β2), with a horizontal line in between. To simulate monotonicity, which is
necessary to reduce the sweep to transpositions, we advance the horizontal line
by processing the simultaneous elementary moves from right to left. For each
value of β we can visualize the persistence information in a two-dimensional
diagram as defined in [19]. Each homology class is represented by a point whose
first coordinate marks its birth and whose second coordinate marks its death.
Since birth occurs before death this point lies above the diagonal and its vertical
distance from the diagonal is its persistence.

As proved by Cohen-Steiner et al. [19], small changes in the function cause
only small changes in the diagram. In the case at hand, the function is the value
of α at which a simplex is added to the witness complex. As β increases the
value of α at which the simplex enters stays the same or decreases. The changes
correspond to the steps in the birthlines and are therefore not continuous. Most
of the time the steps are small but not always. In particular the first step at
which a simplex is introduced can be large. Nevertheless it is useful to stack
up the persistence diagrams and to describe the evolution of a homology class
as a possibly discontinuous curve in three-dimensional space. In a context in
which these curves are continuous they have been referred to as vines forming
a collection called a vineyard [17]. The vineyard of the family of alpha-beta
complexes enhances the visualization of persistent homology classes by showing
how the persistence changes with varying β, the amount of tolerance with which
we recognize a witness of a simplex.

6 Questions and Extensions

We conclude this paper with a list of open questions and suggestions for further
research motivated by our desire to improve the algorithms.

Can we take advantage of the hole repairing quality of β without paying
the high price of exploding numbers of simplices? Evidence in support of this
possibility is that an overwhelming majority of changes caused by increasing β
are collapses, which preserve the homotopy type. This is consistent with our
observation that in the limit, for X = Rd, the homotopy type of Witness(α, β)
is independent of β.

Under reasonable assumptions on the distribution of witnesses and landmarks,
what is the expected size of the alpha-beta witness complex as a function of α
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and β? Similarly, what is the expected number of corners per birthline and what
is the expected size of the birthline subdivision?

There are strong parallels between work on witness complexes and on surface
and shape reconstruction. Are there versions of witness complexes analogous to
the Wrap complex [20], which may be viewed as following Forman’s theory of
discrete Morse functions [21]? Similarly, are there relaxations of the alpha-beta
witness complexes akin to the independent complexes studied in [22]?

Data sets are often contained in subspace of Euclidean space. Recent work
in this direction proves that every smoothly embedded compact manifold of di-
mension 1 or 2 in Rd has sufficiently fine samplings of landmarks and witnesses
such that Witness(∞, 0) is homeomorphic to the manifold [23]. A counterexam-
ple to extending this result to manifolds of dimension 3 or higher is described
in [24]. The counterexample is based on slivers, very flat tetrahedra in the De-
launay triangulation, suggesting the use of sliver exudation methods to remedy
the situation [25]. It would be interesting to extend these results to samplings of
submanifolds in which density variations encode important information about
the data.
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Abstract. In this paper we explore, from an algorithmic point of view,
the extent to which the facial angles and combinatorial structure of a
convex polyhedron determine the polyhedron—in particular the edge
lengths and dihedral angles of the polyhedron. Cauchy’s rigidity theo-
rem of 1813 states that the dihedral angles are uniquely determined.
Finding them is a significant algorithmic problem which we express as
a spherical graph drawing problem. Our main result is that the edge
lengths, although not uniquely determined, can be found via linear pro-
gramming. We make use of significant mathematics on convex polyhedra
by Stoker, Van Heijenoort, Gale, and Shepherd.

1 Introduction

Cauchy proved that convex polyhedra are rigid in the sense that if the faces were
metal plates, and the edges were hinges, no flexing would be possible. Although
most presentations (e.g. see [6,1]) don’t point this out, Cauchy actually proved a
stronger result: that the dihedral angles of a convex polyhedron are completely
determined by the facial angles and the combinatorial structure (the list of faces,
edges, vertices, and their containments). In other words, Cauchy’s proof makes
no use of the edge lengths. See [26] or [3] for presentations where this is explicit.

In this paper we examine the relationships among these four attributes of
convex polyhedra: the facial angles and combinatorial structure, which we con-
sider as givens; and the dihedral angles and the edge lengths, which we consider
as unknowns. Dihedral angles are uniquely determined, by Cauchy’s Theorem;
edge lengths are not, as the family of boxes demonstrates. This paper addresses
the question: Are there efficient algorithms to find dihedral angles/edge lengths
for given facial angles and combinatorial structure?

Our main result is an algorithm for the case of edge lengths (see Section 4).
We give a linear system expressing the edge lengths in terms of facial angles
and combinatorial structure. Correctness depends on a new characterization (in
Section 3) of the edge lengths, facial angles, and dihedral angles of convex poly-
hedra. This is related to recent work on “local” or “easily checkable” conditions
for convex polyhedra [17,10,20].

It is a major open question to devise an efficient algorithm to find the dihedral
angles corresponding to given facial angles and combinatorial structure—i.e. to
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devise an algorithm for Cauchy’s theorem. It is usually assumed that edge lengths
are given as well. Such an algorithm can be used to find the unique polyhedron
formed by “folding up” a surface satisfying Alexandrov’s conditions [3]. (See [9]
for further explanation.) In 1998 Sabitov ([21], or see the sketch in [9]) gave a
finite algorithm for Cauchy’s theorem. His algorithm uses the edge lengths heav-
ily and crucially, and involves trying out all roots of the “volume polynomial”.
The algorithm takes an exponential number of steps, where solving a high-degree
polynomial is counted as one step. Recently Bobenko and Izmestiev ([5], see also
[19]) gave an algorithm for the more general Alexandrov’s problem that, although
it is not polynomial time, is effective in practice and has been implemented.

As noted, both these algorithms assume edge lengths are given—an assump-
tion that Cauchy did not make. Our work fills in this gap: it is possible to
compute edge lengths from facial angles and combinatorial structure and then
proceed with these algorithms.

The present work falls under the general topic of reconstructing polyhedra.
For other results and open problems in this area see [14,8,15].

We assume standard definitions about convex polyhedra and graphs, see
e.g. [6]. By the “combinatorial structure” of a convex polyhedron we mean the
list of faces, edges, and vertices and their containments. Equivalently, the com-
binatorial structure is a 3-connected planar graph, from which we can uniquely
determine a combinatorial embedding, i.e. a cyclic list of the edges around each
vertex that can be used to draw the graph in the plane without edge crossings.

2 The Spherical Dual

In this section we describe the spherical dual of a convex polyhedron, which we
will use in the next section for our characterization of the edge lengths, facial
angles, and dihedral angles of convex polyhedra.

In a 1968 paper Stoker [26] gave some generalizations of Cauchy’s rigidity
theorem. He pointed out explicitly that Cauchy’s proof does not use edge lengths,
and transformed Cauchy’s problem in a way that abolishes edge lengths. This
transformation is known as the spherical dual or “Gauss map” (see, e.g. [2]).

Given a convex polyhedron P , map it to the unit sphere as follows. Translate
the sphere so that the origin is an interior point. Consider any point p on the
unit sphere as a vector. Because the origin is inside the polyhedron, this vector p
is the outward normal to a unique supporting plane πp of the polyhedron. Label
the point p on the sphere according to the vertex/edge/face of the polyhedron
that lies in the plane πp. Thus each face f of P , having a single supporting
plane, maps to a single point s(f) on the sphere. Each edge e of P has a one-
dimensional space of supporting planes and maps to a geodesic arc s(e); if f and
g are the two faces on either side of e, s(e) is the shorter arc of the great circle
though s(f) and s(g). Each vertex v of P maps to a convex spherical polygon
bounded by the arcs corresponding to the edges incident to v. See Figure 1.
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Fig. 1. The Gauss map and the correspondence of facial angles, β = π − α

Let G be the skeleton graph of the polyhedron P . Mapping P to the sphere
produces an embedded graph s(G) with vertices {s(f) : f a face of P}, and edges
{s(e) : e an edge of P} and the cyclic order of edges around vertices induced by
the order of edges around faces in G. Clearly s(G) is the dual graph of G.

We now consider what the Gauss map does to facial and dihedral angles. Let
e and e′ be two incident edges of a face f of P . Let α be the facial angle between
them. Let β be the angle between s(e) and s(e′) at the point s(f). Then, as
Stoker [26] shows, β and α are supplementary angles, i.e. β = π − α. Let f and
g be two faces of P joined at edge e. Let γ be the dihedral angle between f and
g, and let δ be the length of the arc s(e) (measured in radians as an angle from
the origin). Then γ and δ are supplementary angles [26].

In our situation, we know the embedded graph G and the facial angles. Ap-
plying the Gauss map, we know the embedded graph s(G) and its facial angles.
Dihedral angles of the original map to edge lengths in the spherical dual, and
Cauchy’s theorem says that these edge lengths are unique. Under this transfor-
mation the algorithmic form of Cauchy’s theorem becomes: Given an embedded
3-connected planar graph and an angle between each consecutive pair of edges
incident on a vertex, find a drawing of the graph on the sphere with non-crossing
geodesic arcs for the edges, and with the specified angles. Supplements of arc
lengths in the drawing provide the dihedral angles for the original problem.

No efficient algorithm is known for this problem, but it is connected to quite a
body of work in graph drawing. The problem of drawing a graph in the plane with
specified angles was first considered by Vijayan [27] and later proved NP-hard by
Garg [12]. Drawing on the sphere might be harder, but all our angles are convex,
which should be easier. See also [4] and [23] for the case of triangulated graphs.
Spherical drawing of triangulated graphs has been addressed in the graphics
community in the context of spherical parameterization, see in particular [24].
A closely related problem is to efficiently represent a 3-connected planar graph
as the skeleton graph of a convex polyhedron [7].



Cauchy’s Theorem and Edge Lengths of Convex Polyhedra 401

3 Conditions for Existence of a Convex Polyhedron

In this section we give conditions on the edge lengths, facial angles, and dihedral
angles that are necessary and sufficient for the existence of a convex polyhedron.
In some sense this is solved by the “local” or “easily checkable” conditions for
convex polyhedra [17,10,20] (see below for more details); however, our goal is to
give conditions that separate the role of edge lengths and dihedral angles.

Theorem 1. A 3-connected planar graph (with its unique combinatorial embed-
ding) and given edge lengths and convex facial and dihedral angles are those of
a convex polyhedron iff

(1) the edges around every face form a simple convex polygon
(2) in the spherical dual, the arcs of the edges around every face form a simple

convex spherical polygon

We will prove Theorem 1 using a 1952 result of Van Heijenoort [13] on locally
convex manifolds. We first discuss algorithmic ramifications for computing edge
lengths and/or dihedral angles. Note that Condition (1) depends on facial angles
and edge lengths; Condition (2) depends on facial angles and dihedral angles—
recall that dihedral angles correspond to arc lengths in the spherical dual. We
were unable to use the conditions to help us find dihedral angles, but we can use
them to find edge lengths. We separate Condition (1) into a part (1a) depending
only on facial angles, and a part (1b) depending on both facial angles and edge
lengths and expressible via linear inequalities. Facial angles determine edge di-
rections. More precisely, if we choose a unit vector in the plane for the direction
of one edge of face f , then the facial angles determine unit direction vectors
d(e) ∈ R2 for each edge e as we go around f from the initial edge. Condition
(1b) is that the sum of these unit vectors times the appropriate edge lengths is
the zero vector, i.e. that the sequence of edges closes up to form a polygon.

What are the conditions on facial angles? It is not sufficient that every facial
angle be convex, i.e. in the interval (0, π): the polygon in Figure 2, from [17],
has only convex angles, but is not a simple convex polygon, nor would any other
choice of edge lengths make it so. To guarantee a simple convex polygon, we
impose Condition (1a): that the facial angles around a face of k edges sum to
π(k − 2). We therefore arrive at the following conditions:

(1a) for each face f of k edges, π(k − 2) =
∑
{α : α a facial angle of f}.

(1b) for each face f ,
∑
e∈f l(e)d(e) = (0, 0) where l(e) is the length of edge e

and d(e) is its direction, relative to some initial choice for one edge.

Lemma 1. Condition (1) is equivalent to Conditions (1a) and (1b).

Proof. The main part of this is proved by Vijayan [27]. The proof is easy; we
outline it for completeness. Clearly (1) implies (1a) and (1b). For the other
direction, (1b) implies that we have a sequence of line segments that closes up
to form a cycle. We prove by induction on k, the number of segments, that a
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Fig. 2. Convex angles do not always make a simple polygon (left), or a simple polyhe-
dron (right)

simple convex polygon is formed. This is obvious for k = 3, and easy for k = 4.
Consider k > 4. If there are two consecutive angles with sum greater than π we
can eliminate the edge between them by extending the two neighbouring edges,
and apply induction. If all pairs of consecutive angles have sum at most π then
2
∑

α ≤ kπ. Applying condition (1a), 2π(k − 2) ≤ πk, so 2k − 4 ≤ k, so k ≤ 4.

Translated to the sphere, Condition (2) seems symmetric with Condition (1)
except that it involves arc lengths (corresponding to dihedral angles) in place of
edge lengths. It seems tantalizing to express Condition (2) using subconditions
analogous to those above, and thus obtain an algorithm to find dihedral angles.

Condition (1b)—that following the sequence of edges around a face “closes
up” the polygon—can be transferred to the spherical situation, though it is
computationally more difficult for the following reason. In the plane the edges
around a face provide successive translations, so we get a linear system for the
edge lengths; however, on the sphere the edges around a face provide successive
rotations, so we get a non-linear system. This is not the main difficulty. In the
plane, the remaining condition (1a) did not depend on edge lengths, but on the
sphere it does, as we now show. Recall that condition (1a) precluded a polygon
“wrapping around” more than once as in Figure 2 (left). The same issue arises
on the sphere. As described by Mehlhorn et al. [17], the example of Figure 2 can
be extended to three dimensions by adding two vertices, one above the plane and
one below, with triangular faces joining each of these vertices to each edge of
the polygon. Figure 2 (right) shows the new upper vertex. The resulting object
is combinatorially a bipyramid with a 7-sided base; each face is a triangle; and
each facial angle and each dihedral angle is in the range (0, π). In the spherical
dual the face corresponding to the upper vertex is a spherical polygon that wraps
around twice and intersects itself.

In the plane, condition (1a) excluded such “wrapping around” by requiring
that the sum of facial angles be π(k − 2) for any face of k edges. On the sphere
no condition on facial angles alone will suffice: we give an example (prior to the
Gauss map) of two spherical polygons with the same facial angles, exactly one
of which is simple. Consider the example of Figure 2 with the upper vertex far
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away from the plane of the rest of the Figure, and with many acute triangles
incident to it. With these same acute angles we can instead make the dihedral
angles larger and connect to a simple polygon—see Figure 3.

Fig. 3. The same facial angles at a vertex can form a simple or non-simple cone

In the remainder of this section we give a proof of Theorem 1 using the fol-
lowing result of Van Heijenoort. The terms used in the theorem are defined just
below. Our situation is more specialized in that we have a piece-wise linear man-
ifold, which, as we shall see, makes the topological conditions straightforward.

Theorem 2. [13] If a 2-dimensional manifold M is

(i) mapped into R3 by a locally topological mapping f
(ii) locally convex under f

(iii) absolutely convex at a point
(iv) complete under f

then f(M) is the boundary of a 3-dimensional convex set.

Van Heijendoort defines the manifold M to be complete if “every bounded infinite
subset of M has an accumulation point in M”. “Bounded” in this case means
that the distances are bounded, using the metric induced by the mapping of M
into R3. M is locally convex under f if every point p of M has a neighbourhood
N s.t. f(N) lies on the boundary of a convex body K. Absolute convexity means
that, in addition, there is a support plane of K at f(p) that contains no other
point of K.

Proof (of Theorem 1). The forward direction is clear. For the other direction, as-
sume conditions (1) and (2) hold. We need to prove Van Heijenoort’s conditions.
The embedded 3-connected planar graph drawn on the surface of a sphere pro-
vides a manifold. We begin by assigning vertex coordinates. Arbitrarily choose
coordinates for one vertex v and directions for two consecutive edges incident
with that vertex, forming the correct facial angle for face f between them. The
plane of face f is now determined. So are the coordinates of the vertices around
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face f . From these, and the dihedral angles, we get the planes of the faces adje-
cent to face f . Continuing in this way, we obtain coordinates for all the vertices
as we expand outward from the initial choices. We claim that these coordinates
are well-defined—i.e. that they are independent of the order in which we expand
outward. Two paths to a vertex provide a cycle, so it suffices to show that every
cycle closes up. Conditions (1) and (2) give this for facial cycles in the graph
and its dual, and any other cycle is a sum of facial cycles, which gives the result.

This gives us a mapping of the vertices to points, and the edges to line seg-
ments in R3. By condition (1) every face of the graph is mapped to a simple
planar convex polygon in R3. We thus have a piece-wise linear mapping of a man-
ifold into R3, and conditions (i) and (iv) of Van Heijenoort’s theorem follow.

We turn to conditions (ii) and (iii). Our Condition (2) ensures local convexity
at every vertex. Local convexity at an interior point of an edge follows from the
fact that no dihedral angle is larger than π. Local convexity at an interior point
of a face is obvious. Thus condition (ii) holds. Finally, only an unbounded object
can be locally convex at every point but not absolutely convex anywhere, giving
condition (iii). Thus by Van Heijenoort’s Theorem we have the boundary of a
piece-wise linear 3-dimensional convex set—i.e. a convex polyhedron.

3.1 Background: Local Conditions for Convexity

Although we found Van Heijenoort’s conditions most useful, there is more recent,
more algorithmic work on conditions for a polyhdron to be convex. In this section
we briefly describe such work by Mehlhorn et al. [17], Devillers et al. [10], and
Rybnikov [20]. The conditions of Mehlhorn et al. involve checking if a ray from
a point that lies on the “inside” of the plane through every face intersects only
one face. The conditions of Devillers et al. are that all dihedral angles be convex
and that the projection of the seam to the x-y plane be a convex polygon. The
seam consists, roughly speaking, of the edges that are extreme with respect to
some plane perpendicular to the x-y plane.

The idea of specializing Van Heijenoort’s conditions to piece-wise linear mani-
folds is due to Rybnikov. In 3-dimensions it is clear that it suffices to check local
convexity at vertices. Rybnikov’s result [20], which he proves using Van Hei-
jenoort’s higher dimensional extension [13], is that to check convexity of piece-
wise linear hypersurfaces in n dimensions, it suffices to check local convexity at
the (n− 3)-dimensional faces. Rybnikov gives a convexity-testing algorithm; the
main step is to transform the local convexity test at an (n− 3)-dimensional face
to a convexity test for a [possibly self-intersecting] polygon, for which he gives a
straight-forward algorithm (Devillers et al. [10] also give an algorithm for this.)

4 Determining Edge Lengths

In this section we consider the following problem: given the combinatorial struc-
ture of a convex polyhedron and given the facial angles, find edge lengths for
the polyhedron. The edge lengths are not unique, even discounting scaling. For
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example, a cube can be stretched along any of its three axes. Non-uniqueness is
discussed in section 4.4. It turns out to be equivalent to “indecomposability”, a
notion introduced by Gale [11], and studied by Shephard [25], Meyer [18], and
McMullen [16] among others.

We will make use of the conditions for the existence of a convex polyhedron
from the previous section, which were expressed in terms of facial angles, dihedral
angles, and edge lengths. Recall that the only condition involving edge lengths
was Condition (1b); we will express that condition in terms of linear inequalities.

In section 4.2 we consider the version of the problem where the dihedral angles
are known, and we apply duality to give a characterization of when a polyhedron
exists with given facial and dihedral angles.

4.1 An LP Formulation

Let V , E and F be the vertices, edges and faces of the graph, respectively.
For each face f , choose one edge e0 and choose a unit-length direction vector
df (e0) ∈ R2 for it. Based on this choice, the facial angles determine unit direction
vectors df (e) for all the edges e in clockwise order around the face f . Note that
an edge is in two faces, and may be assigned totally different edge direction
vectors in those two faces. The question of whether there exist edge lengths
satisfying condition (1b) is equivalent to feasibility of the following linear system
in variables λ(e), e ∈ E.

∀e ∈ E λ(e) > 0

∀f ∈ F
∑

e∈f
λ(e)df (e) = (0, 0) (1)

Theorem 3. Suppose a convex polyhedron exists with given facial angles and
combinatorial structure. Then its edge lengths satisfy (1) and any solution to (1)
gives edge lengths of such a polyhedron.

The problem of finding edge lengths is thus solvable via linear programming
algorithms [22]. Note that we need an algebraic model of computing to go from
facial angles to d(e). Linear programming, however, is only solvable in polyno-
mial time in the bit complexity model, so we cannot claim a polynomial time
algorithm to find edge lengths. Still, the simplex method should be practical.
Note also that solving the linear system says nothing about whether the input
facial angles and combinatorial structure are those of a convex polyhedron.

4.2 With Dihedral Angles

The above method computes direction vectors for edges within the plane of each
face. If we have dihedral angles, we can compute true 3-D direction vectors for
edges. We make an initial choice of coordinates for one vertex, and direction
vectors for two edges consecutively incident at the vertex, ensuring that the
angle between the two vectors matches the required facial angle. Based on these
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initial choices, we can compute direction vectors for all edges in 3-D. For edge
e = (u, v) ∈ E, let d(e) ∈ R3 be the direction vector of the edge from u to v.
Note that we (arbitrarily) choose an order (u, v) or (v, u) to do this. For face
f ∈ F , distinguish cw(f), the edges of face f whose vector d(e) is directed
clockwise around f , and ccw(f), the edges of face f whose vector is directed
counter-clockwise around f . The linear system becomes:

∀e ∈ E λ(e) > 0

∀f ∈ F
∑

e∈cw(f)

λ(e)d(e) −
∑

e∈ccw(f)

λ(e)d(e) = (0, 0, 0) (2)

Theorem 4. There exists a convex polyhedron with given face and dihedral an-
gles and given combinatorial structure iff conditions (1a) and (2) hold, and the
linear system (2) is feasible.

Our purpose in this section is to give duality conditions for feasibility of (4), but
we mention first that it is possible to test conditions (1a) and (2) in polynomial
time—see the work referenced in section 3.1.

Duality theory gives a characterization of when the linear system (2) is feasi-
ble. The linear system has the form Ax = b, x > 0. By Stiemke’s Transposition
Theorem (see Schrijver [22, p. 95]), there is a solution x iff for any y, yA ≥ 0 im-
plies yA = 0. Translating into our situation, we have a dual variable ν(f) ∈ R3

for each face f ∈ F . For edge e = (u, v) let fr(e) be the face to the right of e
and let fl(e) be the face to the left of e. The dual linear system is:

∀e ∈ E d(e) · (ν(fr(e)) − ν(fl(e))) ≥ 0 (3)

A change of variables gives more intuitive conditions. For each edge e let
ν(e) = ν(fr(e) − ν(fl(e)). Formula (3) becomes d(e) · ν(e) ≥ 0. We can recover
the ν(f) vectors from the ν(e) vectors so long as the sum of the ν(e)’s is 0 around
any dual cycle. Let F be the faces of the dual graph. We obtain:

Theorem 5. Given an embedded 3-connected planar graph with specified facial
and dihedral angles s.t. conditions (1a) and (2) hold, either there exists a corre-
sponding convex polyhedron OR there are vectors ν(e) ∈ R3, e ∈ E s.t.

∀e ∈ E d(e) · ν(e) ≥ 0 (4)

∀f ∈ F
∑

e∈F
ν(e) = 0 (5)

with strict inequality in (4) for at least one edge e. Furthermore, NOT BOTH
the polyhedron and the vectors can exist.

Proof. Straightforward: If there is no convex polyhedron then there are vectors
ν(f) ∈ R3, f ∈ F s.t. (3) holds and with strict inequality for at least one edge e.
Performing a change of variables as described above, gives vectors ν(e) ∈ R3, e ∈
E s.t. (4) and (5) hold, and with strict inequality in (4) for at least one edge.
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Conversely, if vectors ν(e) ∈ R3, e ∈ E exist s.t. (4) and (5) hold, and with
strict inequality in (4) for at least one edge, then define vectors ν(f) ∈ R3 for
each f ∈ F as follows. Begin by choosing one f0 ∈ F and setting ν(f0) = (0, 0, 0).
Then use the formula ν(e) = ν(fr(e)− ν(fl(e)) to define ν : F → R3. Note that
ν is well-defined by (5). From (4) we obtain (3), so there is no convex polyhedron
satisfying the requirements.

4.3 Example

Recall that in Section 3 we gave conditions (1a), (1b) and (2) for the existence
of a convex polyhedron with specified combinatorial structure, edge lengths, and
facial and dihedral angles. That section contained an example to show that the
“convexity” condition (1a) was necessary. In this section we show that condition
(1b) is necessary by giving an example where Conditions (1a) and (2) hold but
the linear system (1) is not feasible.

The construction starts with an octahedron, which has facial angles of π3 = 60◦

and dihedral angles of cos−1(− 1
3 ) ≈ 109.47◦. Split one vertex and add a new edge

e as shown in Figure 4. The four new facial angles are 2
3π = 120◦. All other facial

and dihedral angles stay the same. Consistent edge direction vectors exist, and
all convexity conditions are satisfied. The linear system (1) is not feasible: in
order for edge e to have positive length while maintaining the specified angles,
the square visible in Figure 4 as the silhouette of the octahedron must become
a rectangle—but this destroys the bottom half of the octahedron.

Fig. 4. An octahedron (left) and the addition of one new edge (right) making an
example where angle convexity conditions hold, but no feasible edge lengths exist

4.4 Relation to Decomposability of Polyhedra

The current Section 4 has been about the existence of a convex polyhedron
with specified combinatorial structure and facial and dihedral angles. There is
a considerable body of work on the related uniqueness question: given a convex
polyhedron, can we preserve all facial and dihedral angles but alter edge lengths
(other than by scaling). In this subsection we briefly summarize this work.
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For polytopes P and Q, Gale [11] defined Q ≤ P if for every direction u, the
extreme set of Q in direction u has dimension less than or equal to the dimension
of the extreme set of P in direction u. In particular, this means that any face of Q
has a corresponding face of P with the same normal; however, the combinatorial
structure may be different in that a face of P may have shrunk to an edge or
vertex of Q, and an edge of P may have shrunk to a vertex. Thus this concept
seems at first glance to be more general than the uniqueness of edge-lengths
question mentioned above. But in fact the notions are equivalent.

Gale [11] defined a convex polyhedron P to be decomposable if P can be
expressed as a Minkowski sum, P = R+ S where neither R nor S is homothetic
to (i.e. a scaled translated version of) P . Shephard [25] proved that a convex
polyhedron P is decomposable iff there is a convex polyhedron Q ≤ P that is
not homothetic to P . In fact he proved a stronger thing, that such a Q can be
used in a decomposition of P . We will use Shephard’s result to relate uniqueness
of edge lengths to the relation ≤.

Lemma 2. For convex polyhedron P , the following are equivalent:

(i) P is decomposable
(ii) there is a convex polyhedron Q ≤ P that is not homothetic to P

(iii) there is a convex polyhedron R with the same combinatorial structure as P
and the same facial and dihedral angles, but with different non-zero edge
lengths (not just re-scaled)

Proof. Equivalence of (i) and (ii) is Shephard’s result. Clearly, (iii) implies (ii).
Suppose (ii). By Shephard’s result P = Q + S where neither Q nor S is homo-
thetic to P . Then Q + 1

2S satisfies (iii).

Meyer [18] followed up on Shephard’s work, giving a characterization of de-
composable polyhedra, and McMullen [16] later reproved Meyer’s results—they
consider the space of polyhedra Q ≤ P , parameterizing in terms of the face
offsets for the specified face normals and prove that this space is a cone, whose
extreme rays correspond to the indecomposable polyhedra ≤ P .
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Abstract. We consider the problem of computing non-crossing span-
ning trees in topological graphs. It is known that it is NP-hard to decide
whether a topological graph has a non-crossing spanning tree, and that
it is hard to approximate the minimum number of crossings in a span-
ning tree. We consider the parametric complexities of the problem for
the following natural input parameters: the number k of crossing edge
pairs, the number μ of crossing edges in the given graph, and the number
ι of vertices in the interior of the convex hull of the vertex set. We start
with an improved strategy of the simple search-tree method to obtain an
O∗(1.93k) time algorithm. We then give more sophisticated algorithms
based on graph separators, with a novel technique to ensure connectivity.
The time complexities of our algorithms are O∗(2O(

√
k)), O∗(μO(μ2/3)),

and O∗(2O(
√

ι)). By giving a reduction from 3-SAT, we show that the
O∗(2

√
k) complexity is hard to improve under a hypothesis of the com-

plexity of 3-SAT.

1 Introduction

A topological graph is a graph with an embedding of its edges as curve segments
in the plane such that each pair of edge curves intersects at most once. We refer
to the embeddings of the vertices also as vertices, and to the geometric curve seg-
ments as curves. A topological graph is said to be non-crossing if none of the edge
curves cross. We consider non-crossing subgraph problems that involve finding
a non-crossing subgraph satisfying some property: spanning tree, s–t path, and
cycle. All of these problems are known to be NP-hard [10,6]. In this article we fo-
cus on the non-crossing spanning tree problem (NCST). The corresponding min-
imization problem may be of interest when focusing on finding structures in the
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drawing of an embedded graph. Removing as many edges and crossings as possi-
ble makes it easier to recognize the structure of the graph in terms of connectivity.

Let G be a topological graph on n vertices and m edges. A crossing is a pair of
edges that meet in a non-vertex point, and a crossing edge is one that participates
in some crossing. A crossing point is a non-vertex point that is contained in at
least two edge curves. Note that if d edges intersect in a crossing point, they
create

(
d
2

)
= d(d − 1)/2 crossings. Let X be the set of crossings in G, and let

EX be the set of crossing edges. Let k = |X | be the number of crossings and let
μ = |EX | be the number of crossing edges. Observe that μ/2 ≤ k ≤ μ(μ− 1)/2.
We assume without loss of generality that the curves intersect only in individual
points, not in curve segments. Note that sometimes [8], a topological graph is
allowed to have multiple crossings between a pair of edges, and our theory can
be easily modified to that definition as long as the number of multiple crossings
between each pair of edges is bounded by a constant.

A very naive method for a noncrossing subgraph problem is to exhaustively
check the noncrossing properties for all subgraphs with the requested properties.
This needs exponential time in the number m of edges of the graph. However, if
k is small and the problem is polynomial time solvable without the noncrossing
condition (e.g., spanning tree, cycle and s-t path), we have the following better
strategy: For every crossing pair of edges, we delete one of the crossing edges to
have a non-crossing subgraph. We have 2k possible combinations of deletions,
and it takes polynomial time for each fixed combination to find a spanning tree
(for example) in the subgraph if it is connected. We can see that if G has a
noncrossing spanning tree, we can find one by the above method. Thus, it is
clear that the problem is computed in O∗(2k) time, where the O∗-notation hides
polynomial terms. Recently, Knauer et al. [8] gave algorithms for NCST with
improved time complexity of O∗(1.9999992k). This left the question of how far
down the complexity can be brought down.

Our results. We give a number of results that answer many of the open questions
about the fixed-parameter tractability of non-crossing subgraph problems.

We first give an improved O∗(1.928k)-time algorithm for NCST. This is based
on a compact kernel for the problem, and on a new set of reduction rules that
takes advantage of limited recurrences for low-degree vertices. This approach
actually applies to a generalized problem, involving arbitrary pairwise conflicts
on the edges.

One of the main contributions of this paper is an algorithm for NCST with an
asymptotic improvement in the time complexity to 2O(

√
k) (we ignore polynomial

time preprocessing), see Section 3. This is based on finding a cyclic separator in
a related planar graph. Thus turns out to be best possible, under the exponential
time hypothesis that 3-SAT does not have a 2o(n)-time algorithm (where n is the
number of variables), as shown in Section 5.

We also present fixed-parameter algorithms for two further parameters. For
the parameter μ, the number of crossing edges, we give a μO(μ2/3)-time algorithm.

A geometric graph is a topological graph whose edges correspond to the
straight-line segments that connect their endpoints. For geometric graphs, we
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use another measure to design a fixed-parameter algorithm. Consider the vertex
set of the embedded graph as a set of points in the plane. Then we can refer
to the points that lie in the interior of the convex hull of the point set as inner
points. The number ι of inner points has been used successfully to parameter-
ize some hard geometric problems on points in the plane, including Minimum
Weight Triangulation problem (MWT) [4,13]. For this parameter, we give an
algorithm that solves NCST for geometric graphs in O∗(ιO(

√
ι)) time. Note that

it is easy to come up with geometric graphs where ι is small but k is large. We
also show that it is unlikely that a 2o(

√
ι)-time algorithm exists.

2 Improved Search-Tree Algorithm

We first give a simple search-tree method to find a non-crossing spanning tree
in a topological graph with k crossings in time 1.9276k (plus polynomial time
preprocessing) if one exists. This improves on the previous bounds of 1.99999k, as
well as on the 1.968k bound for a Monte-Carlo algorithm [8]. Although it will be
greatly improved asymptotically to 2O(

√
k) in Section 3, we feel the above result

is valuable since the search-tree algorithm is preferable in practice for the range
of k that the problem is solvable in real feasible time, and our improved method
gives little additional burden to programmers who want to implement a search-
tree method. We reduce the original problem to a compact kernel problem, and
then introduce some simple rules for a naive search-tree algorithm to obtain the
improved time complexity.

Kernel. A kernel is a reduced problem instance, whose solution can be “easily”
turned into a solution of the original instance. To form a kernel for NCST we
use edge contractions, where contracting the edge uv in a graph G results in the
graph where the vertices u and v have been merged into a single vertex that has
all the neighbors of that either of its original vertices had.

Edges that cross are said to be crossing edges ; if they share an endpoint v,
we say they are tangled, more specifically, they are tangled at v.

To form a small kernel, we contract all non-crossing edges of the graph G
yielding a new topological graph G′. More precisely, for each connected com-
ponent of the induced subgraph of G by the non-crossing edges, we select any
spanning tree, and contract it. The other edges in the connected component are
deleted. It is clear that the kernel is obtained in polynomial (indeed, linear) time.

Note that this does not affect the crossing properties of the crossing edges.
However, it can lead to non-tangled pairs to become tangled. A planar subgraph
H ′ of G′ maps to a subgraph H of G; adding the contracted edges to H still
retains planarity. Hence, there is a bijective mapping between maximal planar
subgraphs of G and G′.

Every edge in G′ is crossing, thus the number of edges in G′ is at most μ. Since
the graph G′ is necessarily connected and non-acyclic, the number of vertices in
G′ is at most its number of edges. We further delete all loop edges in G′ even if
they are crossing. This resolves some crossings, but does not affect the problem
solution because of the property of a spanning tree.
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Proposition 1. A kernel for NCST with at most μ edges and vertices can be
computed in linear time.

Search-tree approach. We give reduction rules that result in an efficient search
tree for a non-crossing connected spanning subgraph. A non-crossing spanning
trees can then be easily found.

In most nodes of the search tree we select an edge e for branching: either a
solution contains e or it does not. If it contains e it cannot contain the edges Ce
crossing e. Hence, we obtain two subproblems: G−{e} and G−Ce. In either of
the subproblems, we eliminate all crossings incident on e, and apply the available
contractions. The measure, T (k), of a subproblem is the number of search tree
leaves in terms of the number k of crossings. In subproblem G−Ce, the number
of crossings is reduced by one, for a measure of T (k− 1). We want to show that
the measure of G− {e} is less.

We select branching edges in the following order of preference:

1. If there is an edge crosses two or more edges, then we choose such an edge.
Crossing number k is reduced by at least two in G− {e} (also in G− Ce).
2. For tangled parallel edges, we can pick either of them, yielding the same sub-
problem, since neither is twice-crossing (otherwise, we should apply the rule 1).
This allows us to contract both edges, reducing k by one.
3. Consider a node v of degree ≤ 3. At least one edge e incident on v is not
tangled with either of the other incident edges; otherwise, one of them would
be twice-crossing. We branch on e and obtain on one branch a degree-2 node.
For a degree-2 node with two incident tangled edges, branching on either edges
yields the same subproblem after contractions. Otherwise, we branch on one of
the incident edges, obtaining on one branch a degree-1 node. A degree-1 node
must be connected in a spanning tree, thus only one choice is then possible.
Hence, a problem with a node of degree at most 3 has a measure of at most
T (k − 1) + T (k − 2) + T (k − 3).
4. Consider a degree-4 node v with an edge untangled at v. Let e be an edge
incident on v that is not tangled with the other edges incident on v. When we
branch on e, the non-included case leaves us with v being of degree-3. We then
apply the degree-3 case above.
5. When none of the above rules apply, we branch on an arbitrary edge.

In each case, except when we reach the last rule, we measure the decrease in
the number of crossings. This allows us to bound the size of the search tree.

Let us first consider what happens when we reach the last rule. In that case,
all nodes are of degree at least four. Further, only nodes that have two tangled
incident edge pairs have degree 4, while the others are of degree at least 5. Thus,
each edge that is tangled at node v appears untangled at the other endpoint,
since there are no tangled parallel edges and no twice-crossing edges. Thus, no
two degree 4 nodes are adjacent to each other. We claim that the number of
nodes, n, is at most 9μ/20. Let a denote the number of degree 4 nodes, and note
that all neighbors of degree-4 nodes are of degree at least 5. Therefore, counting
edge incidences, μ ≥ 4a+5(n−a)

2 = 5n−a
2 . But clearly, μ ≥ 4a. Combining the
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two inequalities, we have that μ ≥ (20/9)n. We contract an edge, eliminating
a vertex, in each round. Hence, the depth of the recursion is at most n − 1 ≤
(9/20)μ = (9/10)k, for a time complexity of 20.9k.

Let us now evaluate the effects of the other branching rules. In each rule, we
perform one or more branches, yielding a set of subproblems measured in terms
of the number of crossings remaining. We express each case as a recurrence
relation:

T (k)≤max

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2T (k − 2), Twice-crossing edge
T (k−1), Tangled parallel edges
T (k − 1) + T (k − 2) + T (k − 3), Degree-3 case
T (k − 1) + T (k − 2) + T (k − 3) + T (k − 4), Degree-4 case
20.9k. Dense case

The worst case is the degree-4 case, which yields T (k) ≤ 1.9276k ≈ 20.9468k.1

Generalized structures. Our arguments do not use planarity in any way, except
indirectly as prescribing conflicts between edges. Thus, the approach works more
generally for finding spanning forests of graphs with conflicts between edges.
More generally, we can formulate the Conflict-Free Spanning Tree (CFST) prob-
lem, where we are given a graph G and a conflict graph H defined on the edge
set E(G). We are to determine whether there exists a subset of mutually non-
conflicting edges forming a spanning tree. In NCST, the conflicts are given by the
crossings, and |E(H)| = k. For another example, the algorithm can be applied
to layouts of graphs on surfaces of higher genus.

Theorem 1. Given graphsGandH, CFST can be solved in timeO∗(1.9276|E(H)|).

3 Separator-Based Algorithm

We describe here our algorithm for the non-crossing spanning tree problem. The
approach bears some similarity to the algorithm of Deineko et al [1] for the
Hamilton cycle problem in planar graphs. that has complexity O∗(2O(

√
n)). Our

method is based on a cycle separator theorem of Miller.

Proposition 2. (Miller [12]) Let G′ be an embedded triangulated planar graph
on n vertices. Then, there is a linear time algorithm that finds in G′ a simple
cycle C of at most

√
8n vertices that partitions G′ − C into a vertex set A that

lies within the region inside of C, and a vertex set B that lies outside of C, with
|A| ≤ 2n/3 and |B| ≤ 2n/3.

Before applying the above theorem, we resolve the multiplicities of the ker-
nel. The multiplicity of a crossing is the number of pairs of edges that meet
in the same point. Large multiplicity can confuse good algorithms, especially
those based on separators, and the same can be said of high-degree vertices.

1 1.9276 represents the positive-valued solution of the equation x4 = 1 + x + x2 + x3.
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Fortunately, we can assume without loss of generality that crossings are of unit
multiplicity and vertices of maximum degree 3. We omit details, but the basic
idea is to clip edges at high-degree vertices and to replace the clipped stars by
binary trees and to wiggle edge curves in order to avoid degenerate crossings.
We have the following theorem:

Theorem 2. Suppose there is an algorithm that solves NCST on degree-3 graphs
with unit crossing multiplicity in time T (k, μ, n). Then, there is an algorithm for
NCST for general topological graphs running in time O(T (k, μ, n)).

Given a topological graph H , we form an associated triangulated plane graph
P = PH as follows. We replace each crossing point of H by a vertex and the curve
of each crossing edge by line segments connecting the vertices and the crossing
points. Finally, we arbitrarily triangulate the graph. The edges of the resulting
graph P are therefore of three kinds: non-crossing edges from H , segments of
crossing edges (connected a crossing point to either another crossing point or
to an original vertex), and newly introduced “dummy” edges. Observe that the
number n(PH) of vertices in H equals μ+ k.

The idea of our algorithm is as follows. In the preprocessing step, we find a
kernel, as guaranteed by Proposition 1, and apply the multiplicity reduction of
Theorem 2 to ensure each crossing point involves exactly two crossing edges.

The main algorithm finds a cycle separator in the derived plane graph PH ,
and solves the two resulting subgraphs of H recursively, under all possible ways
of constraining one subsolution to contribute to the connectedness of the whole
solution. More precisely, if C is a cycle separator of PH , we partition its nodes
into Cv, a set of vertices ofH , and Cc, a set of crossing points in H . The algorithm
tries all 2|Cc| ways of breaking the crossings of Cc. Consider one such decision
vector D, and let Dv be the set of vertices of the chosen crossing edges that are
on the inside of the cycle C. Consider now the set S = Cv ∪Dv. This set can be
topologically arranged on a circle C′, such that no edges cross the circle. Let HA
be the subgraph of H induced by vertices on the inside of or on the circle C′,
and HB the subgraph on the outside of or on C′. Thus, V (HA) ∩ V (HB) = S.

Given HA and HB, the algorithm examines all the ways that the vertices of S
can be connected inside C′ (i.e. within HB) while maintaining planarity. Namely,
if we view S as being an ordered set, we seek, in combinatorial terminology, a
non-crossing partition of S. A partition of an ordered set is non-crossing if no
two blocks “cross” each other, i.e. whenever a and b belong to one block and
x and y to another, they are not arranged in the order axby. For each non-
crossing partition Π , we form a star forest X = XΠ with the leaves of each star
corresponding to a block of the partition and a new node as the root of the star.
Let H ′

B = HB ∪X . The algorithm recursively solves H ′
B, yielding a non-crossing

forest FB in HB. By induction, crossing edges in G have either all of its segments
in H in FB or none. The algorithm then recursively solves H ′

A = HA∪FB , giving
a non-crossing spanning tree in G.

Theorem 3. The algorithm solves NCST in time 2O(
√
k)+O(m) and polynomial

space.
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Proof. We first show that the correctness of the algorithm. Suppose that the
input graph G contains a non-crossing spanning tree T . Let TA (TB) be the
restriction of T to HA (HB). Each tree of the forest TA contains some nodes of
S; for the purpose of the solution of HB, all that matters is that it connects those
vertices together. Thus, if we replace each tree U of TA by a star with nodes
in S ∩ U as leaves, the resulting union, joined with TB, induces a connected
tree spanning all the nodes. Hence, by induction, the first recursive call of the
algorithm returns a spanning tree of H ′

B , whose restriction to HB is the forest
FB. Now, FB ∪TA is connected and spans FB ∪HA. Hence, the second recursive
call will also result in a non-crossing spanning tree T ′ of H ′

A = HA ∪ FB . The
nodes of FB are the nodes of HB; hence, we have spanned all of G. Thus, the
algorithm correctly computes a non-crossing spanning tree. On the other hand,
if G does not contain a non-crossing spanning tree, the second recursive call
never finds a non-crossing spanning tree.

Next, we analyze the complexity. Let ν = n(PH) = μ+k to be the measure of
the problem. By Proposition 2, the algorithm finds a cycle separator in P of size
at most z =

√
8ν. We have at most 2z ways of resolving the crossing edges on the

separator. The size of S and the cycle C′ is still z. The number of non-crossing
partitions of S equals the Catalan number Cz = 1

z+1

(
2z
z

)
< 4z.Thus, there are

less than 8z cases considered by the algorithm.
Each case involves two subproblems. The larger of the subproblems is of mea-

sure M of at most 2ν/3+ z. A more careful analysis actually shows that most of
the cases involve smaller subproblems. The measure of the smaller subproblem
is at most (ν −M) + 2z. The time complexity for any subproblem, aside from
recursive calls, is linear in the size of the graph. Thus, the complexity of the
algorithm is bounded by T (ν) = O(8z/z3/2) · (T (2ν/3+ z)+T (ν/3+ z))+O(ν).
This leads to T (ν) = O(218

√
ν). Since ν = μ+ k ≤ 3k, T (ν) = 2O(

√
k). QED.

The parameter μ. A straightforward O∗(2μ) algorithm for NCST follows by
considering all subsets of the set of crossing edges, and O∗(20.552μ) can be ob-
tained by the search-tree method (omitted in this version). We further give the
following asymptotic improvement by combining the search method and the
separator-based method:

Theorem 4. NCST can be solved in μO(μ2/3)+O(m) time and polynomial space.

Proof. We split the computation into two cases, depending on the size of μ
relative to ν = μ + k. Let R(μ) be the number of subproblems in an instance
with μ crossing edges. If ν < 2μ4/3 (Case 1), then the separator-based algorithm
gives R(μ) < 2c

√
ν < 22cμ2/3

. Otherwise (Case 2), ν ≥ 2μ4/3. Then there exists
an edge that participates in at least 2μ1/3 crossings. We branch on that edge,
resulting in two subproblems: one without that edge, and the other without all
the edges crossing it. This gives the recurrenceR(μ) ≤ R(μ−1)+R(μ−2μ1/3)+1.
The time complexity follows from this recurrence using Case 1 as the induction
basis.
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Fig. 1. A geometric graph, the polygon Pπ and the subgraph Gπ

4 Dynamic Programming Approach for the Parameter ι

A necessary prerequisite to successfully parameterize a problem with the number
of inner points is that we can solve the problem in polynomial time for sets of
points in convex position. For geometric graphs whose vertices are in convex
position, it is easy to see that NCST can be solved using dynamic programming
in O(n3) time. So this parameter could be viewed as a measure that tries to
capture for each input its “distance from triviality” [3]. The key observation that
provides a unified view on many of the problems mentioned in the introduction
is that we can reformulate them as the search for a certain kind of triangulation.
For NCST, we are given a geometric graph G = (V,E) and the goal is to find a
triangulation T of V such that the graph formed by those edges of G contained
in the triangulation T is connected. Then, we can easily find a noncrossing
spanning tree by using only those edges.

We describe the subproblem considered in our dynamic programming algo-
rithm to solve NCST. The subproblem is defined by a crossing-free path π that
starts at an outer vertex u, visits some inner vertices and ends at another outer
vertex v. Such a path π splits the convex hull of V into two polygonal regions.
Note that π is not necessarily a path in the input graph, but any noncrossing
path connecting vertices by line segments is fine; indeed, it is a path in the
(unknown) triangulation we are searching for. By Pπ we denote the polygonal
subregion to the left of π. An example is given in Figure 1(b), where Pπ is shaded.
The subgraph Gπ induced by π consists of all those vertices and edges of G that
are contained in Pπ . This is illustrated in Figure 1(c).

We now describe what we actually want to compute for each Pπ . It is not
enough to decide whether or not there is a crossing-free spanning tree in Gπ .
Intuitively, we need a list of those crossing-free spanning forests of Gπ where
each tree in the forest shares at least one vertex with the path π. However, it is
costly to consider the complete list of such spanning forests. Instead, it suffices
to know which vertices on π belong to the same tree in the spanning forest. We
can handle this by considering partitions of the set of vertices of the path π. For
each such path π we have a collection of subproblems: one for each partition of
the vertices of π. For such a subproblem we must decide whether or not there is
a spanning forest of Gπ such that every tree in the forest has at least one vertex
on π and vertices on π in a component of the partition belong to the same tree
in the forest.
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The key fact for the analysis is that the existence of small simple cycle sep-
arators in planar triangulated graphs implies that we can restrict ourselves to
subproblems defined by paths with O(

√
ι) vertices [9]. Thus, the number of

polygonal regions Pπ considered in the algorithm is bounded by n2ιO(
√
ι) (se-

lecting two outer vertices and O(
√
ι) inner vertices), and there are ιO(

√
ι) possible

partitions for the vertices of the path π of each region. In the DP table we record
whether there is a triangulation containing a feasible forest for each partition of
each such polygonal region. Thus, the table size is O(n2ιO(

√
ι)).

It remains to sketch how we process a subproblem in Pπ by using information
for smaller polygons stored in the dynamic programming table. We check every
triangle Δ that is contained in Pπ, shares an edge with the path π, and does
not contain a vertex of V in its interior. Checking Δ means to decide whether
a suitable triangulation for the subproblem containing Δ exists. By removing
Δ from Pπ we have one or two subpolygons, and this leads us to one or two
smaller subproblems. We remark that we discard the choice of Δ if it generates
a subpolygon with too many interior points on its boundary. It is routine to
see that we can now solve the subproblem for Pπ by referring the dynamic
programming table. Thus, we have the following theorem:

Theorem 5. Given a geometric graph G with n vertices we can decide in
O∗(ιO(

√
ι)) time and O∗(ιO(

√
ι)) space whether or not G admits a crossing-free

spanning tree.

The time and space complexities are O(n3ιO(
√
ι)) and O(n2ιO(

√
ι)) if we consider

polynomial factors of n. We can also compute a crossing-free spanning tree (not
only decision) if exists in the same time and space complexities.

5 Hardness Results

We show here that the results of Section 3 are in some sense best possible, assum-
ing the well-known Exponential time hypothesis, which is that 3-SAT cannot be
solved in sub-exponential time. This hypothesis was formalized by Impagliazzo,
Paturi, and Zane [5]. Evidence was given there and in later papers for support
of the hypothesis. We are interested in the NCSTκ problem, where we decide
whether an input geometric graph G = (V,E) with k crossings has a crossing
free spanning tree, and we use κ(G) = �

√
k� as the parameter. We want to re-

late the question of whether there is an algorithm solving NCSTκ in O∗(2o(κ(G)))
time to an open question concerning the 3SATν (3-SAT with the parameter ν):

Instance: Exact 3-SAT formula (CNF formula with exactly three literals
per clause) F .
Parameter: The number ν(F ) of variables occurring in F .
Problem: Decide whether F is satisfiable.

The exponential time hypothesis is that 3SATν cannot be solved in time
O∗(2o(ν(F ))). If we take the closure of 3SATν under so called subexponential
reduction families (serf) (cf. [2]) we obtain the class S[1]. Our goal is to show
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that NCSTκ is S[1]-hard. S[1]-hardness can be also shown for the parameter
√
ι,

but we omit it because of space limitation.
To achieve the S[1]-hardness, it suffices to give a parameter preserving poly-

nomial time reduction from 3SATν to NCSTκ . Such a reduction transforms a
given instance F of 3SATν in polynomial time into a instance G of NCSTκ such
that κ(G) ∈ O(ν(F )). We can give such a reduction through some intermedi-
ate problems. The first is 3SATμ , which has the same instance and problem as
3SATν but the parameter is the number μ(F ) = 3m where m is the number of
clauses of F . 3SATμ is known to be S[1]-complete (cf. [2]).

With every 3-CNF formula F we can associate a bipartite graph H(F ) =
((V,C), E). The vertices in V represent the variables occurring in F . The vertices
in C represent the clauses of F . A variable is connected to a clause by an edge in
E iff the variable occurs in this clause. Lichtenstein [11] gives a polynomial time
algorithm that computes for every 3-CNF formula F a 3-CNF formula F ′ such
that (1) formula F is satisfiable iff formula F ′ is satisfiable, (2) the associated
bipartite graph H(F ′) is planar, and (3) Formula F ′ has O((μ(F ))2) clauses.

This immediately gives a parameter preserving polynomial time reduction
from 3SATμ to the following planar 3SATμ′ .

Instance: Exact 3SAT formula F such that the graph H(F ) is planar.
Parameter: μ′(F ) = �

√
m� where m is the number of clauses of F .

Problem: Decide whether F is satisfiable.

Moreover, it is shown in [11] that we can restrict to instances F of planar 3SATμ′

where the bipartite graph H(F ) has a drawing satisfies the following conditions:
Every vertex of H(F ) that represents a variable in F lies on a horizontal line,
no edge crosses the horizontal line, and no vertex representing a clause lies on
the horizontal line. Hence planar 3SATμ′ with these properties is S[1]-hard.

Thus, it suffices to give a polynomial time reduction from this restricted ver-
sion of planar 3SATμ′ to NCSTκ . We remark that this reduction was also given
in [7] in the context of NP-hardness and approximation hardness.

Our reduction maps a given instance F of planar 3SATμ′ to a geometric graph
GF such that GF has a crossing-free spanning tree iff F is satisfiable. The overall
structure of GF is indicated in the left picture of Figure 2 for F = (x1 ∨ x2 ∨
x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4).

x2x1 x3 x4

x1 ∨ x2 ∨ x4

x2 ∨ x3 ∨ x4
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Fig. 2. Overall structure of GF (left), and a part of a variable gadget (right)
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true false

x x x x

x x x x

Fig. 3. Spanning trees encoding true and false for a variable

We have a gadget for every variable occurring in F . These gadgets are arranged
along a horizontal line �. We further have a gadget for every clause in F which
is connected with every variable occurring in the clause. This gadget looks like
a three-legged comb.

Now let’s have a closer look at the gadgets. The leftmost part of the gadget for
a variable x is shown as the right picture in Figure 2. The gadget for x consists
of at most twice as many boxes as there are clauses in F that contain x. Three
of these boxes are drawn with solid edges in Figure 2. The dotted edges that
emanate from the boxes fulfill three tasks. First they connect consecutive boxes
within one variable gadget. Second they connect the first and last box of variable
gadgets that are consecutive on the line �. Third they connect boxes to clause
gadgets. Each dotted edge that connects a variable gadget to a clause gadget is
associated with a literal. This literal will be true if the dotted edge is part of the
spanning tree of GF .

The intended way of simulating the truth assignment of the variable x is
indicated in Figure 3. The Boolean values of x correspond to the two ways in
which a crossing-free spanning tree can be chosen among the edges of the gadget
of x. Note that only every other box can be connected to a clause gadget above
(below) �. This way we ensure that according to the value of x either only the
dotted edges associated to positive literals or only the dotted edges associated to
negative literals can connect x to clause gadgets. Not all points of type ci or c′i in
a variable gadget are used—only those where the variable is in fact connected to
a clause gadget in GF . A clause gadget is just a vertex of degree three connecting
to the corresponding literals.

It remains to argue that our reduction is parameter preserving. We charge the
crossings in one box of a variable gadget to a clause that is connected to this box
or its predecessor or its successor. At least one of these boxes must be connected
to a clause, otherwise we could omit them. This way a clause is charged only a
constant number of times and every time we charge the clause we charge it only
with a constant number of crossings. Hence, the number of crossings in GF is in
O(m) where m is the number of clauses of F . But this gives κ(GF ) ∈ O(μ′(F )),
as desired.
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6 Concluding Remarks

As we have claimed in the introduction, we can apply our method to several
other problems such as non-crossing s–t paths and cycles. We can also deal with
the optimization problems, minimizing either the number of components in a
non-crossing spanning forest or the number of crossing edges in a spanning tree.
These extensions will be given in the full paper.

Acknowledgement. The authors gratefully acknowledge Alexander Wolff for
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Abstract. We present improved parameterized algorithms for the Feed-
back Vertex Set problem on both unweighted and weighted graphs. Both
algorithms run in time O(5kkn2). The algorithms construct a feedback
vertex set of size bounded by k (in the weighted case this set is of mini-
mum weight among the feedback vertex set of size at most k) in a given
graph G, or reports that no such a feedback vertex set exists in G.

1 Introduction

Let G be a graph. A feedback vertex set (FVS) F in G is a set of vertices in
G whose removal results in an acyclic graph (or equivalently, every cycle in G
contains at least one vertex in F ). The problem of finding a minimum feedback
vertex set in a graph is one of the classical NP-complete problems [13] and
has many applications. The history of the problem can be traced back to the
early ’60s. For several decades, many different algorithmic approaches were tried
on this problem, including approximation algorithms, linear programming, local
search, polyhedral combinatorics, and probabilistic algorithms (see the survey
of Festa et al. [9]). There are also exact algorithms finding a minimum FVS in
a graph on n vertices in time O(1.9053n) [16] and in time O(1.7548n) [10].

An important application of the FVS problem is deadlock recovery in operation
systems [18], in which a deadlock is presented by a cycle in a system resource-
allocation graph G. Therefore, in order to recover from deadlocks, we need to
abort a set of processes in the system, i.e., to remove a set of vertices in the
graph G, so that all cycles in G are broken. Equivalently, we need to find an
FVS in G. The problem also has a version on weighted graphs, where the weight
of a vertex can be interpreted as the cost of aborting the corresponding process.
In this case, we are looking for an FVS in G whose weight is minimized.
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In a practical system resource-allocation graph G, it can be expected that
the size k of the minimum FVS in G, i.e., the number of vertices in the FVS,
is fairly small. This motivated the study of parameterized algorithms for the
FVS problem that find an FVS of k vertices in a graph of n vertices (where
the weight of the FVS is minimized, in the case of weighted graphs), and run in
time f(k)nO(1) for a fixed function f (thus, the algorithms become practically
efficient when the value k is small).

This line of research has received considerable attention, most are on the
FVS problem on unweighted graphs. The first group of parameterized algo-
rithms of running time f(k)nO(1) for the FVS problem on unweighted graphs
was given by Bodlaender [3] and by Downey and Fellows [7]. Since then a chain
of dramatic improvements was obtained by different researchers (see Figure 1 for
references.)

Bodlaender, Fellows [3,7] O(17k4!nO(1))
Downey and Fellows [8] O((2k + 1)kn2)
Raman et al.[15] O(max{12k, (4 log k)k}n2.376)
Kanj et al.[12] O((2 log k + 2 log log k + 18)kn2)
Raman et al.[14] O((12 log k/ log log k + 6)kn2.376)
Guo et al.[11] O((37.7)kn2)
Dehne et al.[6] O((10.6)kn3)

Fig. 1. The history of parameterized algorithms for the unweighted FVS problem

Our results. In this paper we use the technique of iterative compression that
was already applied for several similar problems including the FVS problem
[6,11,17]. The novel part of our approach is the new recursive procedure and its
analysis which allow us to reduce the running time of the algorithm significantly.
We show that the problem of finding an FVS of size k of minimum weight in a
weighted graph G of n vertices can be solved in time O(5kkn2). This improves
and generalizes a long chain of results in parameterized algorithms.

We remark that randomized parameterized algorithms have also been stud-
ied in the literature for the FVS problem, for both unweighted and weighted
graphs. The best known randomized parameterized algorithms for the FVS prob-
lems are due to Becker et al. [2], who developed a randomized algorithm of
running time O(4kkn2) for the FVS problem on unweighted graphs, and a ran-
domized algorithm of running time O(6kkn2) for the FVS problem on weighted
graphs. Compared to these results, the running time of our (deterministic) algo-
rithm comes close to that of the best randomized algorithm for the FVS prob-
lem on unweighted graphs, while our (deterministic) algorithm has been better
than the previous best randomized algorithm for the FVS problem on weighted
graphs.

Due to space limitations the proofs of Lemmas 4, 5 and Theorem 2 have been
omitted. For a full version see [4].



424 J. Chen et al.

2 On Feedback Vertex Sets in Unweighted Graphs

In this section, we consider the FVS problem on unweighted graphs.
We start with some terminologies. A forest is a graph that contains no cycles.

A tree is a forest that is connected (therefore, a forest can be equivalently defined
as a collection of disjoint trees). Let W be a subset of vertices in a graph G. We
will denote by G[W ] the subgraph of G that is induced by the vertex set W . A
pair (V1, V2) of vertex subsets in a graph G = (V,E) is a forest bipartition of G
if V1 ∪ V2 = V , V1 ∩ V2 = ∅, and both induced subgraphs G[V1] and G[V2] are
forests.

Let G be a graph and let F be a subset of vertices in G. The set F is a feedback
vertex set (shortly, FVS) of G if G−F is a forest (or equivalently, if every cycle
in G contains at least one vertex in F ). The size of an FVS F is the number of
vertices in F .

Our main problem is formally defined as follows.

feedback vertex set: given a graph G and an integer k, either find
an FVS of size bounded by k in G, or report that no such an FVS exists.

Before we present our algorithm for the feedback vertex set problem, we
first consider a special version of the problem, defined as follows:

f-bipartition fvs: given a graph G, a forest bipartition (V1, V2) of G,
and an integer k, either find an FVS of size bounded by k for the graph
G in the subset V1, or report that no such an FVS exists.

Note that the main difference between the f-bipartition fvs problem and the
original feedback vertex set problem is that we require that the FVS in the
f-bipartition fvs is contained in the given subset V1.

A bypass operation will be used heavily in our process. Let w be a degree-2
vertex with two neighbors u and v in a graph G. We say that a graph G′ is
obtained from G by bypassing the degree-2 vertex w if G′ is obtained from G by
first removing the vertex w then adding a new edge between u and v.

The algorithm, Feedback(G, V1 , V2, k), for the f-bipartition FVS problem
is given in Figure 2. We first discuss the correctness of the algorithm. The cor-
rectness of step 1 and step 2 of the algorithm is obvious. Now consider step 3.
Let w be a vertex in V1 that has at least two neighbors in V2.

If the vertex w has two neighbors in V2 that belong to the same tree T in
the induced subgraph G[V2], then the tree T plus the vertex w contains at least
one cycle. Since we are restricted to find an FVS in the vertex subset V1, the
only way to break the cycles in T +w is to include the vertex w in the objective
FVS. Moreover, the objective FVS of size bounded by k exists in G if and only
if the remaining graph G−w has an FVS of size bounded by k− 1 in the subset
V1 −w (note that (V1 −w, V2) is a valid forest bipartition of the graph G− w).
Therefore, step 3.1 correctly handles this case.

If no two neighbors of the vertex w belong to the same tree in the induced
subgraph G[V2], then the vertex w is either in the objective FVS or not in the
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Algorithm-1 Feedback(G,V1, V2, k)
Input: G = (V, E) is a graph with a forest bipartition (V1, V2), k is an integer
Output: An FVS F of G such that |F | ≤ k and F ⊆ V1; or report “No” (i.e.,

no such an FVS)
1. if (k < 0) or (k = 0 and G is not a forest) then return “No”;
2. if (k ≥ 0) and G is a forest then return ∅;
3. if a vertex w in V1 has at least two neighbors in V2 then
3.1. if two of the neighbors of w in V2 belong to the same tree in G[V2]

then F ′ = Feedback(G − w, V1 − w, V2, k − 1);
if F ′ = “No” then return “No” else return F ′ + w;

3.2. else F1 = Feedback(G − w, V1 − w, V2, k − 1);
F2 = Feedback(G, V1 − w, V2 + w, k);
if F1 �= “No” then return F1 + w
else if F2 �= “No” then return F2

else return “No”;
4. else pick any vertex w that has degree ≤ 1 in G[V1];
4.1. if w has degree ≤ 1 in the original graph G

then return Feedback(G − w, V1 − w, V2, k)
4.2. else let Gw be the graph obtained from G by bypassing w;

return Feedback(Gw, V1 − w, V2, k)

Fig. 2. Algorithm for unweighted FVS problem

objective FVS. If w is in the objective FVS, then we should be able to find an
FVS F1 in the graph G − w such that |F1| ≤ k − 1 and F1 ⊆ V1 − w (again
note that (V1 − w, V2) is a valid forest bipartition of the graph G− w). On the
other hand, if w is not in the objective FVS, then the objective FVS for G must
be contained in the subset V1 − w. Also note that in this case, the subgraph
G[V2 +w] induced by the subset V2 +w is still a forest since no two neighbors of
w in V2 belong to the same tree in G[V2]. In consequence, (V1 − w, V2 + w) still
makes a valid forest bipartition for the graph G. Therefore, step 3.2 handles this
case correctly.

Now we consider step 4. At this point, every vertex in V1 has at most one
neighbor in V2. Moreover, since the induced subgraph G[V1] is a forest, there
must be a vertex w in V1 that has degree bounded by 1 in G[V1] (note that V1

cannot be empty at this point since otherwise the algorithm would have stopped
at step 2). If the vertex w also has degree bounded by 1 in the original graph G,
then removing w does not help breaking any cycles in G. Therefore, the vertex
w can be discarded. This case is correctly handled by step 4.1. Otherwise, the
vertex w has degree bounded by 1 in the induced subgraph G[V1] but has degree
larger than 1 in the original graph G. Observing also the fact that w has at most
one neighbor in V2, we can easily derive in this case that the degree of w in the
original graph G must be 2, and that w has two neighbors u1 and u2 such that
u1 is in V1 and u2 is in V2. Therefore, if w is in the objective FVS F , then the set
F ′ = F − w + u1 will also make a valid solution to the given problem instance.
Thus, by bypassing the degree-2 vertex w in G, we obtain a graph Gw, with the
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forest bipartition (V1 − w, V2), such that Gw has an FVS of size bounded by k
in V1 − w if and only if the original graph G has an FVS of size bounded by k
in V1. In conclusion, step 4.2 correctly handles this case.

Now we are ready to present the following lemma.

Lemma 1. The algorithm Feedback(G, V1 , V2, k) solves the f-bipartition fvs

problem correctly. The running time of the algorithm is bounded by O(2k+ln2),
where n is the number of vertices in the graph G, and l is the number of connected
components (i.e. trees) in the induced subgraph G[V2].

Proof. The correctness of the algorithm has been verified by the above discus-
sion. Now we consider the complexity of the algorithm.

The recursive execution of the algorithm can be described as a search tree
T . We first count the number of leaves in the search tree T . Note that only
step 3.2 of the algorithm corresponds to branches in the search tree T . Let
T (k, l) be the total number of leaves in the search tree T for the algorithm
Feedback(G, V1, V2, k), where l is the number of trees in the forest G[V2]. Induc-
tively, the number of leaves in the search tree T1 corresponding to the recursive
call Feedback(G−w, V1 −w, V2, k− 1) is bounded by T (k− 1, l). Moreover, we
assume at step 3.2 that w has at least two neighbors in V2 and that no two neigh-
bors of w in V2 belong to the same tree in G[V2]. Therefore, the vertexw “merges”
at least two trees in G[V2] into a single tree in G[V2 +w]. Hence, the number of
trees in G[V2+w] is bounded by l−1. In consequence, the number of leaves in the
search tree T2 corresponding to the recursive call Feedback(G, V1−w, V2+w, k)
is bounded by T (k, l− 1). This gives the following recurrence relation:

T (k, l) ≤ T (k − 1, l) + T (k, l− 1)

It is easy to derive from this relation that T (k, l) = O(2k+l). Finally, observe that
along each root-leaf path in the search tree T , the total number of executions
of steps 1, 2, 3.1, and 4 of the algorithm is bounded by O(n) because each of
these steps either stops immediately, or reduces the input graph size by at least
1. Moreover, it is also easy to verify that each of these steps takes time O(n).

Therefore, the computation time along each root-leaf path in the search
tree T is bounded by O(n2). In conclusion, the running time of the algorithm
Feedback(G, V1, V2, k) is bounded by O(2k+ln2). This completes the proof of
the theorem. ��

Following the idea of iterative compression proposed by Reed et al. [17], we
formulate the following problem:

fvs reduction: given a graph G and an FVS F of size k + 1 for G,
either construct an FVS of size bounded by k for G, or report that no
such an FVS exists.

Lemma 2. The fvs reduction problem can be solved in time O(5kn2).

Proof. We use the algorithm Feedback to solve the fvs reduction problem.
Let F be the FVS of size k + 1 in the graph G = (V,E). Every FVS F ′ of size
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bounded by k for G is a union of a subset F1 of at most k− j vertices in V − F
and a subset F2 of j vertices in F , for some integer j, 0 ≤ j ≤ k. Note that since
we assume that no vertex in F − F2 is in the FVS F ′, the induced subgraph
G[F − F2] must be a forest. Therefore, for each j, 0 ≤ j ≤ k, we enumerate all
subsets of j vertices in F . For each such a subset F2 in F such that G[F −F2] is
a forest, we seek a subset F1 of at most k− j vertices in V −F such that F1∪F2

makes an FVS for the graph G.
Fix a subset F2 in F , where |F2| = j. Note that the graph G has an FVS

F1 ∪ F2 of size bounded by k, where F1 ⊆ V − F , if and only if the subset F1

of V − F is an FVS for the graph G − F2 and the size of F1 is bounded by
k − j. Therefore, to solve the original problem, we can instead consider how to
construct an FVS F1 for the graph G−F2 such that |F1| ≤ k−j and F1 ⊆ V −F .

Since F is an FVS for G, we have that the induced subgraph G[V −F ] = G−F
is a forest. Moreover, by our assumption, the induced subgraph G[F −F2] is also
a forest. Note that (V − F )∪ (F −F2) = V −F2, which is the vertex set for the
graph G′ = G−F2. Therefore, (V −F, F −F2) is a forest bipartition of the graph
G′. Thus, an FVS F1 for the graph G′ such that |F1| ≤ k − j and F1 ⊆ V − F
can be constructed by the algorithm Feedback(G′, V − F, F − F2, k − j).

Since |F | = k + 1 and |F2| = j, we have that |F − F2| = k + 1− j. Therefore,
the forest G[F − F2] contains at most k + 1 − j trees. By Lemma 1, the run-
ning time of the algorithm Feedback(G′, V − F, F − F2, k − j) is bounded by
O(2(k−j)+(k+1−j)n2) = O(4k−jn2). Now for all integers j, 0 ≤ j ≤ k, we enumer-
ate all subsets F2 of j vertices in F and apply the algorithm Feedback(G′, V −
F, F − F2, k − j) for those F2 such that G[F − F2] is a forest. As we discussed
above, the graph G has an FVS of size bounded by k if and only if for some
F2 ⊆ F , the algorithm Feedback(G′, V −F, F −F2, k− j) produces an FVS F1

for the graph G′. The running time of this process is bounded by

k∑

j=0

(
k + 1
j

)

·O(4k−jn2) =
k∑

j=0

(
k + 1

k − j + 1

)

O(4k−j+1n2) = O(5kn2).

This completes the proof of the lemma. ��

Finally, by combining Lemma 2 with iterative compression, we obtain the main
result of this section.

Theorem 1. The feedback vertex set problem is solvable in time O(5kkn2).

Proof. To solve the feedback vertex set problem, for a given graph G =
(V,E), we start by applying Bafna et al.’s 2-approximation algorithm for the
minimum feedback vertex set problem [1]. This algorithm runs in O(n2)
time, and either returns an FVS F ′ of size bounded by 2k, or verifies that
no FVS of size bounded by k exists. If no FVS is returned, the algorithm is
terminated with the result that no FVS of size bounded by k exists. In the
case of the opposite result, we use any subset V ′ ⊆ F ′ of k vertices, and let
V0 = V ′ ∪ (V − F ′). Of course, the induced subgraph G[V0] has an FVS of
size k, since G[V0 − V ′] is a forest. Let F ′ − V0 = {v1, v2, . . . , v|F ′|−k}, and let
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Vi = V0 ∪ {v1, . . . , vi} for i = 0, 1, . . . , |F ′| − k. Inductively, suppose that we
have constructed an FVS Fi for the graph G[Vi], where |Fi| = k. Then the set
F ′
i+1 = Fi + vi+1 is obviously an FVS for the graph G[Vi+1] and |F ′

i+1| = k + 1.
Now the pair (G[Vi+1], F ′

i+1) is an instance for the fvs reduction problem.
Therefore, in time O(5kn2), we can either construct an FVS Fi+1 of size k for the
graph G[Vi+1], or report no such an FVS exists. Note that if the graph G[Vi+1]
does not have an FVS of size k, then the original graph G cannot have an FVS
of size k. In this case, we simply stop and claim the non-existence of an FVS of
size k for the original graph G. On the other hand, with an FVS Fi+1 of size k
for the graph G[Vi+1], our induction proceeds to the next graph G[Vi+1], until
we reach the graph G = G[V|F ′|−k]. Clearly, this process runs in time O(5kkn2)
since |F ′| − k ≤ k, and solves the feedback vertex set problem. ��

3 On Feedback Vertex Sets in Weighted Graphs

In this section, we discuss the fvs problem on weighted graphs. A weighted
graph G = (V,E) is an undirected graph, where each vertex u ∈ V is assigned
a non-negative weight. The weight of a vertex set A ⊆ V is the sum of the
vertex weights of all vertices in A. We denote by |A| the size of, i.e., the number
of vertices in, the set A . The (parameterized) feedback vertex set problem on
weighted graphs is formally defined as follows:

weighted-fvs: given a weighted graph G and an integer k, either find
an FVS F of minimum weight for G such that |F | ≤ k, or report that
no FVS of size bounded by k exists in G.

Our algorithm for the weighted case has several similarities with the un-
weighted case, but also has a significant difference. The difference is that the
bypass operation for unweighted graphs can no longer be used in the weighted
case. Indeed, a degree-2 vertex in a weighted graph may be necessarily included
in the objective FVS if its weight is very small.

On the other hand, if two degree-2 vertices v and w are adjacent, then we
can always bypass the one with a larger weight. This is because every cycle in
the graph either contains both v and w or contains neither of them, so we can
always assume that the one with a larger weight is not included in the objective
FVS. We call this operation that bypasses the vertex of a larger weight in two
adjacent degree-2 vertices in a weighted graph the restricted bypass operation.

However, since the restricted bypass operation cannot guarantee to eliminate
all degree-2 vertices in a weighted graph, step 4.2 in the algorithm Feedback
is not always possible. To overcome this difficulty, we introduce a new partition
structure of the vertices in a weighted graph.

A triple (V0, V1, V2) is a independent-forest partition (briefly, an IF-partition)
of a graph G = (V,E) if (V0, V1, V2) is a partitioning of V such that (1) G[V1] and
G[V2] are forests; (2) G[V0] is an independent set; and (3) every vertex u ∈ V0 is
of degree 2 in G, and all neighbors of u are in V2.

We consider the following problem on weighted graphs that is similar to the
f-bipartition fvs problem on unweighted graphs.
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weighted if-partition fvs: given a weighted graph G, an IF-partition
(V0, V1, V2) of G, and an integer k, either find an FVS F of minimum
weight for G that satisfies the conditions |F | ≤ k and F ⊆ V0 ∪ V1, or
report that no such an FVS exists.

To study weighted if-partition fvs, we introduce the following concept.

Definition 1. Let (G, k) be an instance of weighted if-partition fvs, where
an IF-partition (V0, V1, V2) of G is given. The deficiency of (G, k) is defined by

τ(k, V0, V1, V2) = k − (|V0| −#c(V2) + 1)

where #c(V2) is the number of connected components in the subgraph G[V2].

Intuitively, the deficiency τ(k, V0, V1, V2) of the instance (G, k) is the maximum
number of vertices in the objective FVS that are in the set V1 (this will be-
come clearer during our discussion below). Our algorithm for the weighted

if-partition fvs problem is based on the following observation: once we have
correctly determined all vertices in the objective FVS that are in the set V1,
the problem will become solvable in polynomial time, as shown in the following
lemma.

Lemma 3. Let (G, k) be an instance of weighted if-partition fvs, with an
IF-partition (V0, V1, V2) of G. If V1 = ∅ or τ(k, V0, V1, V2) ≤ 0, then the solution
to the instance (G, k) can be constructed in time O(n2).

Proof. Construct a new graph H = (V , E), where each vertex μ in V corresponds
to a connected component in the induced subgraph G[V2], and each edge [μ, ν]
in E corresponds to a vertex v in the set V0 such that the two edges incident
to v in G are connected to the connected components in G[V2] that correspond
to the two vertices μ and ν, respectively, in H. Equivalently, the graph H can
be obtained from the induced subgraph G[V0 ∪ V2] by shrinking each connected
component in G[V2] into a single vertex and bypassing each degree-2 vertex in
V0. Moreover, we give each edge in H a weight that is equal to the weight of the
corresponding vertex in V0. Thus, the graph H is a graph with edge weights.

First consider the case of V1 = ∅. If k < 0 then the solution to (G, k) is
“No”: we cannot remove a negative number of vertices. Assuming k ≥ 0. Then
we need to find a minimum-weight subset of at most k vertices in the set V0

whose removal from G = G[V0 ∪ V2] results in an acyclic graph. Note that
removing vertices in V0 in the graph G corresponds to removing edges in the
graph H. Therefore, this problem is equivalent to finding a minimum-weight
subset of at most k edges in the graph H whose removal from H results in an
acyclic graph (note that each connected component in G[V2] is a tree). Let H1,
. . ., Hs be the connected components of the graph H, where for each i, the
component Hi has ni vertices and mi edges. In order to get an acyclic graph
from H, it is necessary and sufficient to remove mi − ni + 1 edges from Hi for
each i (i.e., to make each connected component in H a tree). In consequence, in
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order to get an acyclic graph from H, it is necessary and sufficient to remove∑s
i (mi − ni + 1) = |E| − |V|+ s edges from the graph H.
Correspondingly, in case V1 = ∅, a minimum-weight FVS in V0 for the graph

G contains exact |E| − |V| + s vertices. Note that |E| = |V0|, and |V| is equal
to the number #c(V2) of connected components in the induced subgraph G[V2].
Thus, every FVS in the graph G contains at least |V0| − #c(V2) + s vertices.
Therefore, if τ(k, V0, V1, V2) = k− (|V0|−#c(V2)+1) < 0, or τ(k, V0, V1, V2) = 0
but s > 1, then we have k < |V0|−#c(V2)+ s. That is, the graph G has no FVS
of size bounded by k and the solution to the instance (G, k) is a “No”.

The remaining case is that s = 1, and τ(k, V0, V1, V2) = k − (|V0| −#c(V2) +
1) = 0. In this case, to find a minimum-weight FVS of k vertices in V0, we
construct a maximum-weight spanning tree in the graph H (this can be done by
a modified minimum spanning tree algorithm of time O(n2) [5]). The remaining
|E|− |V|+1 = |V0|−#c(V2)+1 = k edges in H then correspond to k vertices in
the set V0 that make a minimum-weight FVS for the graph G. Summarizing the
above discussion, we conclude that if V1 = ∅, then the solution to the instance
(G, k) can be constructed in time O(n2).

Now consider the case τ(k, V0, V1, V2) ≤ 0. As shown above, even to break
all cycles in the induced subgraph G[V0 ∪ V2] requires removing at least |V0| −
#c(V2) + 1 vertices in the set V0. Therefore, if τ(k, V0, V1, V2) ≤ 0, then k ≤
(|V0| − #c(V2) + 1), and all k vertices in the objective FVS must be in the
set V0 in order to break all cycles in the induced subgraph G[V0 ∪ V2], and no
vertex in the objective FVS can be in the set V1. Hence, if the induced subgraph
G[V1 ∪ V2] contains a cycle, then the solution to (G, k) is a “No”. On the other
hand, suppose that G[V1 ∪ V2] is a forest, then the graph G has another IF-
partition (V ′

0 , V
′
1 , V

′
2), where V ′

0 = V0, V ′
1 = ∅, and V ′

2 = V1 ∪ V2. It is easy to
verify that in this case the instance (G, k) with the IF-partition (V ′

0 , V
′
1 , V

′
2) has

the same solution set as the same instance with the IF-partition (V0, V1, V2).
Now since V ′

1 = ∅, by the first part of this lemma, the solution to (G, k) with
the IF-partition (V ′

0 , V
′
1 , V

′
2) can be constructed in time O(n2). This completes

the proof of the lemma. ��

Now we are ready for our main algorithm, which is given in Figure 3 and solves
the weighted if-partition fvs problem. As explained for the unweighted
case, vertices of degree less than 2 cannot contribute to the objective FVS, thus
can be directly deleted. Moreover, each restricted bypass operation takes time
O(n) and eliminates a degree-2 vertex in a pair of adjacent degree-2 vertices.
Therefore, we can perform a preprocessing of time O(n2) and assume that the
input graph G of the algorithm contains no vertex of degree less than 2, and no
two adjacent degree-2 vertices. Moreover, for each tree in the forest G[V1], we
fix a root so that we can talk about the “lowest leaf” in a tree in G[V1].

We first discuss the correctness of the algorithm. Step 1 of the algorithm
is justified by Lemma 3. Justifications for steps 2, 3.1, and 3.2 are exactly the
same as those for the unweighted case. Now consider step 4. When the algorithm
reaches step 4, the following conditions hold: (1) every vertex in G has degree
at least 2; (2) there are no two adjacent degree-2 vertices in G; (3) V1 	= ∅; and
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Algorithm-1 W-Feedback(G,V0, V1, V2, k)
Input: G = (V, E) is a graph with an IF-partition (V0, V1, V2), k is an integer
Output: a minimum-weight FVS F of G such that |F | ≤ k and F ⊆ V0 ∪ V1;

or report “No” (i.e., no such an FVS).
1. if V1 = ∅ or τ (k, V0, V1, V2) ≤ 0 then solve the problem in time O(n2);
2. if (k < 0) or (k = 0 and G is not a forest) then return “No”;
3. if a vertex w in V1 is incident to 2 edges whose other ends are in V2 then
3.1 if 2 edges incident to w have their other ends in the same tree in G[V2]

then return w + W-Feedback(G − w, V0, V1 − w, V2, k − 1);
3.2 else F1 = w + W-Feedback(G − w, V0, V1 − w, V2, k − 1);

F2 = W-Feedback(G, V0, V1 − w, V2 + w, k);
return the one of F1 and F2 that has a smaller weight;

4. else pick a lowest leaf w1 in any tree T in G[V1];
4.1 let w be the parent of w1 in T , and let w1, . . ., wt be the children

of w in T , where for each i, wi has a neighbor vi in V2;
4.2 if w has a neighbor v in V2 then
4.2.1 if for some i, v and vi are in the same tree in G[V2]
4.2.2 then F1 = w + W-Feedback(G − w, V0, V1 − w, V2, k − 1);

F2 = wi + W-Feedback(G − wi, V0, V1 − wi, V2, k − 1);
return the one of F1 and F2 that has a smaller weight;

4.2.3 else F1 = w + W-Feedback(G − w, V0, V1 − w, V2, k − 1);
4.2.4 F2 = W-Feedback(G, V0 + w1 + · · · + wt, V1 − w, V2 + w, k);

return the one of F1 and F2 that has a smaller weight;
4.3 else F1 = w + W-Feedback(G − w, V0, V1 − w, V2, k − 1);

F2 = W-Feedback(G, V0 + w1 + · · · + wt, V1 − w, V2 + w, k);
return the one of F1 and F2 that has a smaller weight;

Fig. 3. Algorithm for weighted FVS problem

(4) every vertex in V1 is incident to at most one edge whose other end is in V2.
Conditions (1) and (2) hold because of our assumption on the input graph G;
condition (3) holds because of step 1; and condition (4) holds because of step 3.

By condition (3) and because the induced subgraph G[V1] is a forest, step
4 can always pick the vertex w1. By conditions (1) and (4), the vertex w1 is
adjacent to a unique vertex v1 in V2. Then by condition (1) again, w1 must have
a parent w in the tree T in G[V1]. In consequence, the vertex w1 has degree
exactly 2 in the graph G. Finally, since w1 is the lowest leaf in the tree T , all
children w1, . . ., wt of w in T are also leaves in T . By conditions (1) and (4)
again, each child wi of w has a unique neighbor vi in the set V2, and every child
wi of w has degree exactly 2 in the graph G.

If the vertex w has a (unique) neighbor v in V2, and the vertices v and vi for
some i belong to the same tree T ′ in G[V2], as given in step 4.2.1, then this tree
T ′ plus the edges [vi, wi], [wi, w], and [w, v] must contain a cycle, and in this
cycle all vertices are in V2 except wi and w. Therefore, to break this cycle using
vertices not in V2, one of the vertices w and wi must be included in the objective
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FVS. Thus, step 4.2.2 correctly handles this case. On the other hand, suppose
that the vertex v is in a tree in G[V2] that does not contain any of the vertices
v1, . . ., vt. Then we simply branch on the vertex w: step 4.2.3 includes w in the
objective FVS, and step 4.2.4 excludes w from the objective FVS, by moving
w from V1 to V2. Note that in case of step 4.2.4, each of the degree-2 vertices
w1, . . ., wt now is incident to two edges whose other ends are in V2. Thus, we
can correctly move these vertices from V1 to V0. Moreover, it is easy to verify
that the new partition in each of the cases still makes a valid IF-partition of the
graph G.

Finally, suppose that the vertex w has no neighbor in V2. By condition (2)
and because the vertex w1 has degree 2 in G, the vertex w must have at least
two children in the tree T (i.e., t ≥ 2). Again we branch on w by either including
or excluding w in the objective FVS, as given by step 4.3.

Since all possible cases are covered in the algorithm, we conclude that when
the algorithm W-Feedback stops, it must output a correct solution to the given
instance (G, k).

Lemma 4. The algorithm W-Feedback(G, V0, V1, V2, k) solves the weighted

if-bipartition fvs problem correctly, and runs in time O(2τ(k,V0,V1,V2)n2),
where n is the number of vertices in the graph G.

With Lemma 4, we can now proceed the same way as for the unweighted case
to solve the original weighted-fvs problem. Consider the following weighted
version of the fvs reduction problem.

weighted fvs reduction: given a weighted graph G and an FVS F
of size k + 1 for G, either construct an FVS F ′ of minimum weight that
satisfies |F ′| ≤ k, or report that no such an FVS exists.

Note that in the definition of weighted fvs reduction, we do not require
that the given FVS F ′ of size k + 1 have the minimum weight.

Lemma 5. The weighted fvs reduction problem is solvable in time
O(5kn2).

Now using Theorem 1 and Lemma 5, we obtain the main result of this paper.
Theorem 2. The weighted-fvs problem is solvable in time O(5kkn2).
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11. Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression-based
fixed-parameter algorithms for feedback vertex set and edge bipartization. J. Com-
put. Syst. Sci. 72(8), 1386–1396 (2006)

12. Kanj, I.A., Pelsmajer, M.J., Schaefer, M.: Parameterized algorithms for feedback
vertex set. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS,
vol. 3162, pp. 235–247. Springer, Heidelberg (2004)

13. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of com-
puter computations, pp. 85–103. Plenum Press, New York (1972)

14. Raman, V., Saurabh, S., Subramanian, C.R.: Faster fixed parameter tractable al-
gorithms for finding feedback vertex sets. ACM Trans. Algorithms 2(3), 403–415
(2006)

15. Raman, V., Saurabh, S., Subramanian, C.R.: Faster fixed parameter tractable al-
gorithms for undirected feedback vertex set. In: Bose, P., Morin, P. (eds.) ISAAC
2002. LNCS, vol. 2518, pp. 241–248. Springer, Heidelberg (2002)

16. Razgon, I.: Exact computation of maximum induced forest. In: Arge, L., Freivalds,
R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 160–171. Springer, Heidelberg (2006)

17. Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res.
Lett. 32(4), 299–301 (2004)

18. Silberschatz, A., Galvin, P.: Operating System Concepts, 4th edn. Addison-Wesley,
London (1994)



Kernelization Algorithms for d-Hitting Set
Problems�

Faisal N. Abu-Khzam

Division of Computer Science and Mathematics
Lebanese American University

Beirut, Lebanon
faisal.abukhzam@lau.edu.lb

http://www.csm.lau.edu.lb/fabukhzam

Abstract. A kernelization algorithm for the 3-Hitting-Set problem is
presented along with a general kernelization for d-Hitting-Set problems.
For 3-Hitting-Set, a quadratic kernel is obtained by exploring proper-
ties of yes instances and employing what is known as crown reduction.
Any 3-Hitting-Set instance is reduced into an equivalent instance that
contains at most 5k2 + k elements (or vertices). This kernelization is an
improvement over previously known methods that guarantee cubic-size
kernels. Our method is used also to obtain a quadratic kernel for the Tri-
angle Vertex Deletion problem. For a constant d ≥ 3, a kernelization of
d-Hitting-Set is achieved by a generalization of the 3-Hitting-Set method,
and guarantees a kernel whose order does not exceed (2d − 1)kd−1 + k.

1 Introduction

For a given collection C of subsets of a finite set S, a hitting set is a subset
of S that has a nonempty intersection with every element of C. Identifying
small hitting sets proved to have a wide range of applications in a variety of
domains that include Bioinformatics, Computer Networks as well as Software
Testing [14,10,9]. Formally, the decision version of the Hitting Set problem can
be defined as follows:

Given: A collection C of subsets of a set S and a parameter k.

Question: Does C have a hitting set of size k or less?

Hitting Set is NP -complete, even if the cardinality of every element of C is
bounded by 2 [8], in which case it coincides with the Vertex Cover problem. From
the viewpoint of parameterized complexity, Hitting Set is W [2]-hard. However,
the problem becomes fixed-parameter tractable (FPT ) when the cardinality
of every element of C is upper-bounded by a fixed number d. In this latter
case, the problem is called d-Hitting-Set (henceforth dHS). Many fixed-parameter
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algorithms appeared that address dHS problems. 3HS, in particular, has been
a focal point of attention in recent Hitting Set algorithms [12,7]. This paper
is concerned mainly with kernelization methods for the parameterized search
version of dHS.

Kernelization has become a major pre-processing tool for solving problems
that fall in the class FPT . For an arbitrary instance of an FPT problem, a
kernelization procedure is a polynomial-time pre-processing algorithm that could
result in one of the following outputs:

– An early detection of failure;
– An early solution;
– An equivalent instance whose size is bounded by a function of the input

parameter.

In the third case, the function is often polynomial in the input parameter(s).
The reduced instance is called a problem kernel.

3HS has a cubic-size kernel that was achieved by a clever use of the pigeon
hole principle [12]. In this paper, we show how to obtain a quadratic kernel for
3HS. Our method relies on crown reduction, a fairly new method introduced by
the authors of [6] and developed further in [1,2]. Our kernelization can be used
to obtain a quadratic kernel for the Triangle Vertex Deletion problem. We also
show how our method extends to a d-Hitting Set kernelization.

2 Background

We shall treat the input, (S,C), of a hitting set instance as a hypergraph whose
vertices and edges are the elements of S and C respectively. This allows us to
use a few known graph-theoretic terminologies. In particular, we use NH(A) to
denote the set of neighbors of A in H , where A is a set of vertices and H is a
graph or subgraph. We use the term order to denote the number of vertices (or
elements of S). An independent set of a hypergraph is a set of vertices that are
pairwise non-adjacent, in the sense that no two of them belong to an element
of C. Moreover, a hitting set of (S,C) is a vertex cover of the corresponding
hypergraph. We shall say that a subset A of S hits a subset C′ of C if every
element of C′ has a non-empty intersection with A. For each vertex x ∈ S, we
denote by E(x) the set of all edges containing x. For E ⊂ C, V (E) denotes the
set of all vertices that are elements of elements of E.

The first cubic-size (and cubic order) kernelization algorithm for 3HS is due
to Niedermeier and Rossmanith [12]. Their algorithm starts by employing the
following two pre-processing rules, dubbed domination rules, that are due to
Weihe [16].

– Vertex Domination Rule: If x, y ∈ S are such that E(x) ⊂ E(y), then
delete x.

– Edge Domination Rule: If e1, e2 ∈ C are such that V ({e1}) ⊂ V ({e2})
then delete e2.
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For two vertices x, y of S, the co-occurrence of x and y, denoted co(x, y) is
the number of edges in E(x) ∩ E(y). This function plays an important role in
the kernelization algorithms that appeared in [12] and [3]. In particular, the
following pair of “successive” reduction rules were used in [12] to obtain the
cubic-size kernel.

1. If x, y ∈ S are such that co(x, y) > k, then delete all elements of E(x)∪E(y)
and add {x, y} to C.

2. After applying the above rule, if |E(x)| > k2 for some x ∈ S, then add x to
the hitting set, decrement k, and delete all elements of E(x).

These two rules are enough to reduce any arbitrary instance into one whose
size is bounded by k3. We refer the reader to [12] for further details.

2.1 Crown Decomposition

Our kernelization will be based on the notion of crown decomposition, a recent
FPT technique that was introduced by Fellows et al. in [6] and was further
studied in conjunction with the Vertex Cover problem in [1] and [2]. In short, a
crown decomposition (or just crown) of a simple undirected graph G is a triple
(H, I,M) such that:

– I is an independent set of G.
– H is the neighborhood of I in G.
– M is a matching in G that satisfies:

(i) Every edge of M joins a vertex from H to a vertex of I.
(ii) Every vertex of H is matched, under M , to a vertex of I.

The set H is called the head of a crown (H, I,M) and |H | is the crown width.
Figure 1 illustrates the notion of a crown decomposition.

Fig. 1. A crown decomposition of width 5. Bold edges are elements of M .

Deciding whether a graph has a crown decomposition is solvable construc-
tively in polynomial time [2]. The following lemma, adopted from [6], provides
a necessary and sufficient condition for a graph to have a crown.
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Lemma 1. A graph G has a crown decomposition of positive width if and only
if G has an independent set I that satisfies |NG(I)| < |I|.

Once an independent set I that satisfies the condition of Lemma 1 is found
in G = (V,E), a crown can be constructed in time O(|V |2.5) by a procedure
provided also in [6]. We shall refer to this procedure by Construct Crown in
this paper. Construct Crown starts by constructing a maximum matching M1

of the bipartite subgraph (I ∪ N(I), {e = uv ∈ E : u ∈ I}), then identifying a
crown (H, I ′,M) such that H ⊂ N(I), M ⊂ M1, I ′ ⊂ I and (most importantly)
(I − (V (M) ∩ I)) ⊂ I ′.

Remark 1. The condition (I − (V (M) ∩ I)) ⊂ I ′ plays a very important role in
crown reductions, and it is the main reason behind the statement of Lemma 1.
In fact, Construct Crown starts by placing all vertices of (I − (V (M)∩ I)) (the
vertices of I that are not matched under M1) in I ′ to make sure that the number
of elements of I − I ′ is equal to the number of edges in M1 that are not added
to M .

2.2 Crown Reduction for Vertex Cover

Let (G, k) be an instance of the Vertex Cover problem and let (H, I,M) be
a crown decomposition in G. The crown reduction rule consists of placing all
vertices of H in the potential vertex cover of G, thus deleting all elements of
H ∪ I. This rule is sound because of the following observations:

– Every edge of M must be covered by at least one distinct vertex. Therefore,
the subgraph Gc induced by (I∪H) has a vertex cover of size bounded below
by |M |.

– H is a vertex cover of size |M | of Gc, so H is an optimal cover for the
subgraph Gc.

– Using vertices from H ∪ I in a global vertex cover is not better than using
all vertices of H as the latter ones may also be used to cover other edges of
G.

It was shown in [6] that crown decompositions can be used to obtain a linear
kernel for Vertex Cover. The reader can verify this easily as follows. Let A be an
approximate vertex cover of G. If (G, k) is a yes instance, then the size of A can
be guaranteed not to exceed 2k [11]. If the complement, Ā, of A has more than
|A| vertices, then a crown (H,M, I) can be constructed with H ⊂ A, I ⊂ Ā and
M ⊂ M1 where M1 is a maximum matching in which every edge joins a vertex
from A to one from Ā (see above discussion of Construct Crown). If a solution
of size k exists, then |M1| ≤ k. Moreover, by Remark 1, |Ā− I| ≤ |M1−M | ≤ k.
Finally, after applying the crown reduction rule, the resulting vertex set of G is
(A−H) ∪ (Ā− I).
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3 A Quadratic Kernel for 3-Hitting Set

Our kernelization algorithm is based on an extension of the notion of crowns to
hypergraphs. A crown in a hypergraph is defined as a tripe (H, I,M) such that:

– I is an independent set.
– H = {A ⊂ S : A ∪ {x} ∈ C for some x ∈ I}
– M is a matching in the bipartite graph (I ∪H,E) where E = {(x,A) : x ∈ I

and A ∈ H and ({x} ∪A) ∈ C}.
– Every element of H is matched under M .

The crown reduction rule for 3HS consists of deleting all elements of I without
making any further changes to C and k. The elements of H will automatically
become edges of C. The soundness of this rule is based on the following lemma.

Lemma 2. Let (S,C, k) be an instance of 3HS and let (H, I,M) be a crown of
(S,C). Then (S,C, k) is equivalent to the instance (S − I, (C − E(I)) ∪H, k).

Proof. Let A be a hitting set of size k of (S,C) and let B be the subset of H
that consists of pairs that have non-empty intersection with A. Then every pair
{y, z} of H − B is a subset of an edge {x, y, z} of M , where x ∈ A ∩ I is used
to hit {x, y, z}. Replacing every such x by an element of its matched pair {y, z}
produces another hitting set whose size is bounded above by |A|. (It could be
smaller than A when the pairs of H −B have common elements that belong to
a solution of (S,C, k)). Q.E.D.

In addition to the use of hypergraph crowns, our kernelization algorithm makes
use of the following new reduction rule, which generalizes the high-degree rule
used in the Vertex Cover kernelization of [4].

High-degree rule: If x ∈ S has more than k edges whose pairwise intersection
is {x}, then:

– add x to any potential solution of (S,C, k),
– delete all elements of E(x), and
– decrement k.

We shall see that a crown can be constructed in any 3HS instance as long
as its order exceeds 5k2 + k. In such cases, Lemma 2 is applied to produce the
desired kernel.

Throughout this section, our main focus is on how to obtain an upper bound
on the order of our 3HS kernel. It should be clear that exact 3HS algorithms
take exponential time. Therefore, we shall omit the details of efficiency analysis
whenever it is clear that the run time is polynomial in the input size.

3.1 Weakly Related Edges

Let (S,C, k) be a 3HS instance. Two elements of C are said to be weakly related
if they don’t share more than one common vertex. A subset W of C is a maximal
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collection of (pair-wise) weakly related edges if every edge of C is either in W
or shares at least two vertices with at least one element of W .

Constructing maximal sets of weakly related edges is simple and can be done
by starting with a singleton subset W of C and greedily filling it with elements
of C as long as it satisfies the above condition. The construction can be made
more efficient by keeping a list of pairs that co-occur in an edge of W . The length
of this list does not exceed 3|W |. We shall assume that edges of size 2 are placed
in W before any edge of size 3. Weekly related edges play a central role in our
algorithm, mainly due to the following lemma.

Lemma 3. Let (S,C, k) be a yes instance of 3HS and let W be a collection of
weakly related edges of (S,C), then |W | ≤ k2.

Proof. At most k vertices hit all elements of W . By the high-degree rule and the
definition of W , each such vertex belongs to at most k edges of W .

3.2 A Crown Kernelization of 3HS

Again, we assume that (S,C, k) is a yes instance of 3HS. Let W be any maximal
set of weakly related edges, I = {x ∈ S : x /∈ V (W )}, and H = {{x, y} : {x, y} ⊂
e for some edge e ∈ W}. Then we observe the following:

– All elements of C whose cardinality is less than three belong to W .
– I is an independent set.

To see this, note that any edge e that contains two elements of I qualifies
for membership in W . This would violate the assumed maximality of W .

– V − I has at most 2k2 + k elements.
This is guaranteed by the existence of a solution A of size ≤ k that hits
all the elements of W . Each element x of A belongs to at most k edges
of W . So the restriction of E(x) to W comprises at most 2k vertices. In
addition to the ≤ k vertices of A, there are at most 2k2 vertices that
belong to ∪x∈AE(x).

– Every edge e of size three that contains an element x of I consists of x
and a pair from H .
Otherwise, e could be added to W , violating W ’s maximality.

– |H | ≤ 3k2.
Each edge of size three in W gives rise to three (unique) pairs of H .

Consider the simple bipartite graph GI,H = (H ∪ I, EI) where edges of EI
are treated as simple edges connecting an element x of I to an element {y, z} of
H whenever {x, y, z} is in E (or just EI).

Lemma 4. The graph GI,H has a crown (H ′, I ′,M) such that: H ′ ⊂ H , I ′ ⊂ I,
and (I − (V (M) ∩ I)) ⊂ I ′.

Proof. If |I| > H , then I satisfies the condition of Lemma 1 and the promised
crown (H ′, I ′,M) can be constructed using Construct Crown (the procedure
described in [6]).
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By the crown reduction rule, if the original instance (S,C, k) of 3HS has a
solution, then some hitting set contains at least one element of every pair of
H ′ and excludes all elements of I ′. Therefore, we can delete all I ′ but we have
to keep the elements of H ′, which replace their corresponding edges in C (those
that contain elements of I ′).

To summarize, our 3HS kernelization algorithm is the following:

Algorithm 3HS-Kernel
Input: Instance (S,C, k) of 3HS.
Output: Either NO if (S,C) has no hitting set of size ≤ k, or an
instance (S′, C′, k′) and a partial solution A such that k′ = k− |A|
and |S′| ≤ 5k2 + k.

Begin

While C contains a singleton edge {x}
add x to A, delete {x} from C and decrement k.

Apply the high-degree rule
Construct W
If |W | > k2 return NO
Construct the simple bipartite graph GI,H
If |I| > |H |

Call Construct Crown on GI,H to obtain a crown
(H ′, I ′,M).
Remove all elements of I ′

Return the (possibly) new instance

End

Finally, we can state our kernelization theorem.

Theorem 1. 3HS has a kernel of order 5k2 + k.

Proof. Based on the above discussion, the number of elements that remain in I
cannot exceed the number of pairs that belong to H −H ′. The theorem follows
from the facts that H has at most 3k2 pairs and the vertex set of W has at most
2k2 + k elements.

Note that our 3HS kernelization focused only on reducing the order of the input
hypergraph. If the number of edges is not reduced below some large multiple
of k2, then we obtain an instance with high degree vertices. This is a favorable
condition for subsequent exact search algorithms, as illustrated in [7] where the
algorithm starts by branching at vertices of high degree. The hard instances for
the algorithm of [7] are those with small vertex degrees (about 3), which are
guaranteed to have quadratic order and size after applying our kernelization.
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3.3 Vertex Inducedness and the Triangle Vertex Deletion Problem

A vertex-induced kernel of a graph problem is a reduced instance whose cor-
responding subgraph is induced. This property is of great importance in appli-
cations where edges of a Hitting Set instance model constraints like forbidden
correlations or co-existence.

Vertex Inducedness of kernels was studied in [3] where a cubic-size (and cubic-
order) vertex-induced kernel of 3HS was obtained. We could force our quadratic
kernel to be vertex-induced, simply by making sure that no edge is deleted
without deleting at least one of its elements. In fact, the only reduction that
deletes edges is the edge domination rule which we may opt not to use (as we
already did).

Theorem 2. 3HS has a vertex-induced kernel of order 5k2 + k.

An application of Theorem 2 is a quadratic kernel for the Triangle Vertex Dele-
tion Problem (TVD), which takes a simple undirected graph G and a positive
integer k as input and asks whether G has a set of k or less vertices whose com-
plement induces a triangle-free subgraph. A kernelization algorithm for TVD
consists of the following main steps.

– Enumerate all triangles of the input graph G = (V,E). This take time
O(|Δ(G)||E|)).

– Use the list of triangles as the set C of a 3HS instance (V,C, k).

– Apply the 3HS kernelization detailed in this section to produce a new list
C′ ⊂ C and a new vertex set V ′ ⊂ V such that |V ′| ≤ 5k2 + k. In this
application, we avoid adding sets of size two to C′. Therefore, we modify
the last step in the crown reduction by keeping only the matching edges
in the crown of the graph GI,H . In other words, we keep those elements
of I that are matched under M .

The change in the last step does not affect the solution since each vertex x
of the independent set I (of the crown) is forced to belong to only one triangle,
say Tx: the one that corresponds to a matching edge of the crown. If a solution
is later found that contains x ∈ I, then it must be changed by replacing x
with any of its two neighbors in Tx. (Operations of this type are common in
kernelization algorithms. An example is the vertex folding rule, used in Vertex
Cover kernelization [5]).

Note the importance and necessity of vertex inducedness in this case. If, for
example, the edge domination rule were applied, we could have a triangle deleted
without deleting any of its vertices. This could lead to wrong answers in the sub-
sequent search algorithm. Of course, a subsequent 3HS solver does not produce
wrong results as it would make sure that at least one of the three vertices belongs
to any solution. However, TVD may have another search algorithm that is to be
used after kernelization.
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Our argument here has to do with a proper definition of kernelization. A prob-
lem kernel is defined as an instance of the same problem. In order to guarantee
this in the case of TVD, we have to cease the usage of the edge domination rule.

Another important remark about the TVD kernelization is the fact that post-
kernelization exact algorithms would benefit from the presence of high degree
vertices that belong to a large number of triangles. Again, this highlights the
importance of this particular kernelization, in which the reduction targets the
number of vertices only.

4 d-HS Kernelization

A kernelization algorithm for dHS can be obtained by a careful generalization of
our 3HS approach. We discuss this generalization briefly in this section, keeping
our main focus on how to obtain an upper bound on the kernel size. Therefore,
we omit the details of efficiency analysis whenever it is clear that the run time is
polynomial in the input size. Yet, we assume a dHS instance is represented by a
data structure that allows us to perform efficient search, insertion and deletion.
Moreover, the reader should keep in mind that d is a small constant, since the
parameterized complexity of the problem gets higher as the value of d increases.

Again, we deal with an instance (S,C, k) of dHS. The concept of a subedge
plays a central role in this section. As the name suggests, a subedge of (S,C) is a
non-empty subset of S that is contained in an element (edge) of C. A j-subedge
is a subedge of cardinality j. For an edge e ∈ C, we shall use the expression “e′

occurs in e” when e′ is a subedge of e.

4.1 The High-Degree Rule for dHS

Our high-degree rule for dHS generalizes its 3HS homonym, as well as the first
reduction rule used in [12] (discussed in section 2). The rule is stated as follows:

If a subedge e ⊂ S satisfies:

(i) |e| < d− 1, and
(ii) e is the pair-wise intersection of more than k edges.

Then add e to C and delete all elements of C that contain e (as a subset).

The soundness of this rule is obvious. if a subedge e satisfies (i) and (ii) and
does not contain any element of some solution, A, then each of the edges that
intersect at e has a distinct element of A. This is not possible, unless (S,C, k)
is a no instance. Note the implicit application of the edge domination rule in
the edge deletion part. Therefore, the resulting instance is not vertex-induced.
This did not happen in the 3HS case since e was a singleton, which allowed us
to delete e by placing its unique element in a potential solution.

If the high-degree rule does not apply to a dHS instance (S,C, k), then we
shall say that (S,C, k) is reduced. This could be the result of applying the rule
iteratively until it cannot be applied.
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4.2 Weakly Related Edges

Two edges are weakly related if their intersection contains at most d−2 elements
and neither of them is a subset of the other. Again, our kernelization algorithm
proceeds by constructing a maximal set, W , of weakly related edges. An iterative
greedy construction can be performed by adding edges to W in order of increasing
size and keeping track of a sorted list L of all edges of size d− 2 or less, as well
as all subedges of size d − 1. At each stage of this construction, an edge e of C
is selected and checked against the elements of L. If none of the elements of L
is a subset of e, then e is added to W and L is updated accordingly. Note that
|L| ≤ d|W |, since each element of W whose size is d has d (d− 1)-subedges (also
note the analogy with the 3HS case).

Let A be a solution of a reduced instance (S,C, k) of dHS, and let W be as
described above. We observe that any (d − 2)-subedge is contained in at most
k edges of W . This follows from the high-degree rule since a (d− 2)-subedge of
W is the (pairwise) intersection of all edges (of W ) that contain it. To achieve
our sought upper bound, we need to generalize this observation. This is possible
after applying the following reduction algorithm.

The High Occurrence Rule:
For i = d− 2 downto 1 do

For each i-subedge e of W do
if e is a subedge of more than kd−1−i edges of W , then

Add e to W
Delete (from C and W ) all edges containing e

Knowing that every (d − 2)-subedge of W occurs in at most k edges (of W ),
we prove the soundness of each iteration of the above rule as follows.

Assume that every i-subedge occurs in at most kd−1−i edges of W , and let e
be an (i− 1)-subedge occurring in more than kd−i edges. Denote by We the set
of edges of W that contain e properly. If e contains an element of A, then it is
safe to add e to W (and C) and delete all elements of We. Otherwise (e ∩ A is
empty), each element of We must have (in addition to elements of e) at least one
element from A. Since |A| ≤ k, some element x of A must appear in more than
kd−1−i edges of We. It follows that e ∪ {x} is an i-subedge occurring in more
than kd−1−i edges of W . This is a contradiction.

Lemma 5. Let (S,C, k) be a reduced yes instance of dHS and let W be a max-
imal set of weakly related edges that result from applying the high-occurrence
rule. Then |W | ≤ kd−1.

Proof. Follows immediately from the high-occurrence rule since any 1-subedge is
contained in at most kd−2 edges and the elements of A form at most k singleton
subedges that occur in every element of W .

Every edge of W has at most d elements. Thus |V (W )| ≤ dkd−1. However, one
can prove a tighter bound just as in the 3HS case. In fact, at most k vertices
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hit all edges of W , and each hits at most kd−2 such edges. In addition to the
k hitting elements, each edge has at most d − 1 non-hitting vertices. It follows
that there are k + (d− 1)kd−1 vertices in V (W ).

4.3 Crown Reduction

Let I be the complement of V (W ) in S, and let H be the set of all (d − 1)-
subedges of W . Then we observe the following:

– Elements of C whose cardinality is less than d are placed in W .
– I is an independent set.
– Every edge e of size d that contains an element x of I consists of x and

a (d − 1)-subedge H . Otherwise, e could be added to W , violating W ’s
maximality.

– |V (H)| ≤ dkd−1: each edge of size d of W gives rise to d (d− 1)-subedges.

Again, we consider the bipartite graph GI,H as in the 3HS case. The rest of
the work is identical to the crown construction and reduction that was used in
the 3HS case. The number of vertices in the resulting instance is bounded above
by |V (H)| + |V (W )| ≤ dkd−1 + (d− 1)kd−1 + k. To conclude:

Theorem 3. dHS has a kernel of order (2d− 1)kd−1 + k.

5 Concluding Remarks

We presented an algorithm that produces quadratic-order kernels for 3HS. Pre-
viously known kernelization strategies could guarantee cubic-order kernels only.
An attempt for improving the kernel size appeared also in [13] by local usage of
the NT kernelization of Vertex Cover [11]. However, it was observed that such
technique does not always produce correct kernels [15].

We generalized our kernelization approach to work for any dHS problem.
For d > 3, our dHS kernel is not necessarily vertex-induced, in the sense that
the resulting hyper-subgraph could have vertices that share edges in the original
instance. Any vertex-induced version has to cease the use of the edge domination
rule, which is also part of the general high-degree rule (when d > 3). It would
thus be challenging, but interesting, to find a general vertex-induced kernel.

Finally, an important feature of our 3HS method is its isolation of a subgraph
that is almost simple in the input hypergraph: the subgraph formed by the set
W of weakly related edges. We are investigating the potential use of this pre-
processing step in improved exact and approximate 3HS algorithms.

Acknowledgment. We would like to thank Daniel Raible for his valuable com-
ments.
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Abstract. Imprecise points are regions in which one point should be
placed. We study computing the largest and smallest possible values of
various basic geometric measures on sets of imprecise points, such as
the diameter, width, closest pair, smallest enclosing circle, and smallest
enclosing bounding box. We give efficient algorithms for most of these
problems, and identify the hardness of others.

1 Introduction

Given a set of points in the plane, various measures exist that try to capture
certain properties of that point set. Examples of such measures include the di-
ameter : the largest distance between any pair of points, the smallest distance
between any pair of points, the width: the smallest distance between two parallel
lines with all points between them, the smallest circle containing all points, or
the smallest axis-aligned bounding box containing all points. All these measures
have been well studied and optimal algorithms to compute them are known.

When dealing with real-world data, however, locations of input points are of-
ten not known exactly. If we know for each point that it lies inside some region,
but not where in that region, it becomes interesting to compute bounds on the
possible values of these basic geometric measures. To make this more precise, we
are given a set of regions L and a measure μ that takes a set of points an gives
a real number, an we want to place one point in each region of L such that the
resulting point set maximises or minimises μ.

We study five basic measures both for maximisation and minimisation, when
the imprecise points are modelled as squares or discs, possibly overlapping and
of different sizes. Some of these problems have already been studied in other con-
texts, and efficient algorithms or hardness results are known. For most remaining
problems, we present efficient algorithms here. Table 1 summarises all previous
and new results. For the problem of computing the largest possible width we
have not found any satisfying result, although we can prove NP-hardness when
the points are modelled as line segments. For the smallest diameter of a set of
discs, we have no exact algorithm but a polynomial time approximation scheme.
� This research was partially supported by the Netherlands Organisation for Scientific

Research (NWO) through the project GOGO.

F. Dehne, J.-R. Sack, and N. Zeh (Eds.): WADS 2007, LNCS 4619, pp. 446–457, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Largest Bounding Box, Smallest Diameter, and Related Problems 447

Table 1. New and known results

problem model largest smallest
smallest bounding box squares O(n) O(n)

discs O(n) O(n2)
smallest enclosing circle squares O(n) O(n) [7]

discs O(n) O(n) expected
diameter squares O(n log n) O(n log n)

discs O(n log n) (1 + ε)-approx. in O(ncε
− 1

2 )
width squares O(n log n) [13]

discs O(n log n)
line segments NP-hard O(n log n) [13]

closest pair squares NP-hard [5] O(n log n)
discs NP-hard [5] O(n log n)

Related work. Data imprecision in computational geometry is often considered
in stochastic or fuzzy models. Recently, interest in exact imprecision models has
been rising. Espilon geometry [6] is a framework for robust computations on
imprecise points, and the tolerance [1] of a geometric structure is the largest
perturbation of the vertices such that the topology remains the same.

Colley et al. [4] compute the smallest area axis-aligned rectangle that inter-
sects a set of convex polygons in O(n log n) time. Fiala et al. [5] consider the
problem of finding distant representatives in a collection of subsets of a given
space. In particular, they prove that maximizing the smallest distance in a set of
n imprecise points, modeled as circles or squares, is NP-hard. Cabello [3] gives
approximation algorithms for this case. Jadhav et al. [7] consider the intersection
radius of a set of objects: the smallest circle that intersects them all. Robert and
Toussaint [13] develop an algorithm for computing the smallest strip that inter-
sects a set of convex regions, while surveying several facility location problems.
Such stabbing and facility location problems are related to the minimisation
variants of the problems we study.

Averbakh and Bereg [2] also consider imprecise points. Where we compute
the point set for which the smallest enclosing circle is worst, they compute the
smallest circle that encloses the worst case point set. They study this problem
in a facility location context, and they also consider weighted points and dif-
ferent metrics. Nagai and Tokura [10] compute the union and intersection of
all possible convex hulls to obtain bounds on the area. As imprecision regions
they use discs or convex polygons, and they give an O(n log n) time algorithm.
They also compute (possibly non-obtainable) lower and upper bounds for the
diameter.

In [8], we also study another classical geometric problem, the convex hull, in
an imprecise context. Results for the different variants of this problem range
from O(n log n) time to O(n10) time or NP-hardness.
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(a) (b) (c)

Fig. 1. (a) The axis-aligned bounding box of a set of points in the plane. (b) The
largest possible AABB of a set of imprecise points. (c) The smallest possible AABB of
a set of imprecise points.

2 Axis-Aligned Bounding Box

We start with a problem that is very simple in the classical case. Given a set
of points P , the axis-aligned bounding box (AABB) is the smallest axis-parallel
rectangle that contains P , see Figure 1(a). In an imprecise context, we are given
a set L of regions, and we want to place a point in each region such that the
bounding box of the resulting point set is as large or as small as possible, see
Figures 1(b) and 1(c). We will measure the size of a rectangle by its area, but
the algorithms we describe work for the perimeter as well.

2.1 Largest Possible AABB

The largest possible AABB can be computed in linear time for both the square
and disc model (or any other constant complexity model). Let L′ ⊂ L be the set
of the four topmost regions from L (that is, the four regions with the topmost
highest points), the four bottommost, the four leftmost and the four rightmost
regions. We can find L′ in linear time.

Lemma 1. The largest possible AABB of L′ is equal to the largest possible
AABB of L.

Proof. Suppose this is not the case. Then there is a region l in L \ L′ that
contributes to the AABB of L, say, to the top boundary. However, there are
at least four regions in L that extend higher than l, of which only three can
contribute to another boundary. That means we can place the point of the fourth
at its topmost position and get a larger AABB. Contradiction. �

The AABB of L′ can be determined by four points each lying on one of the sides
of the bounding box, or by only three or two points when one or two points lie
on corners. Since L′ has only constant size, we can try all possibilities and report
the largest one.
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R

(a) (b)

Fig. 2. (a) The discs that intersect the rectangle R (bounded by the extreme lines) are
always accounted for. (b) The remaining discs form four chains of circular arcs.

2.2 Smallest Possible AABB

The smallest possible AABB is the smallest rectangle that contains at least
one point of each region, so it is actually the smallest rectangle that intersects
all regions. Let the left extreme line be the leftmost of the lines through the
rightmost points of all regions. Similarly we define the right, top and bottom
extreme lines. When the left extreme line is to the right of the right extreme
line, or the top extreme line is below the bottom extreme line, there exists a zero
area solution. Otherwise, they define a rectangle R. For the square model, when
there is no zero area solution, R is the smallest possible AABB.

Discs. When the imprecise points are modelled as convex polygons, the problem
can be solved in O(n log n) time [4]. When the points are modelled as discs, we
can use a similar transformation to obtain an O(n2) algorithm. In this case R
does not necessarily intersect all discs, see Figure 2(a), but it needs to be enclosed
by the smallest AABB, so we only need to consider the discs that do not intersect
R. The centre points of these discs lie outside the two strips between the extreme
lines; this divides them in four groups. The four corners of the smallest AABB
must lie inside or behind all discs of their respective groups. We define a border
between valid and invalid corner placements; these borders are convex chains of
circular arcs, see Figure 2(b), and can be computed in O(n log n) time.

Either the top left and bottom right corners of the smallest AABB lie on their
respective chains, or the bottom left and top right corners. Suppose the former
is the case. We try all possibilities by keeping the top left point on a fixed arc,
and moving the bottom right point over the opposite chain. While doing this, we
keep track of the projections of those two points on the bottom left and top right
chains. When the projection of the top left point is to the left of the projection
of the bottom right point, on both other chains, a solution is valid, otherwise it
is invalid. In quadratic time we can try all combinations and keep track of the
smallest valid solution. There are some subtleties involved with the fact that the
top left point is not really fixed; more details are in the full paper.
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(a) (b) (c)

Fig. 3. (a) The smallest enclosing circle of a set of points in the plane. (b) The largest
SEC of a set of imprecise points. (c) The smallest SEC of a set of imprecise points.

3 Smallest Enclosing Circle

We proceed with another relatively simple problem. Given a set of points P ,
the smallest enclosing circle (SEC) is the smallest circle that contains P , see
Figure 3(a). When we are given a set L of imprecise points, we want to place a
point in each region such that the SEC of the resulting point set is as large or
as small as possible, see Figures 3(b) and 3(c).

3.1 Largest Possible SEC

Squares. The largest smallest enclosing circle of a set of squares (or constant
size convex polygons) can be computed by first computing the smallest enclosing
circle of the set of corners of all squares using any classical algorithm, e.g. Welzl
[14]. If the three points that determine this circle belong to different squares, we
are done. Otherwise, there is one square of which multiple corners contribute to
the smallest enclosing circle, and we know that this square has to contribute to
the optimal solution. So we just try all corners of this square and compute the
smallest enclosing circle of this single point and all other corners of the other
squares. The two remaining contributing points can again belong to the same
square, so we do the same thing once more. We are done in linear time.

Discs. To compute the largest possible smallest enclosing circle of a set of discs,
we observe that there are only two possibilities. Either the largest SEC contains
all discs, or it does not, see Figure 4. If it does, then the largest SEC is just the
smallest circle containing a set of discs, which can be computed in O(n) time [9].
If it does not, there must be one disc D among the input discs that contains all
other discs. In this case, the largest SEC is determined by the point p of all other
discs closest to D, and the point q on D furthest away from p, see Figure 4(b).
This case can clearly be computed in linear time.
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(a)

pq

(b)

Fig. 4. (a) All discs are completely within the LSEC. (b) One disc contains all others.

3.2 Smallest Possible SEC

The smallest possible SEC for a set of imprecise points is the smallest circle
that intersects all regions. This is also called the intersection radius of a set of
regions. When the regions are modelled as squares (or other convex polygons),
it can be computed in linear time [7]. When the points are modelled as discs,
we can use an adapted version of the randomised incremental construction al-
gorithm by Welzl [14]. The adaptation is straightforward; details are in the full
paper.

4 Closest Pair

The closest pair is the smallest distance between any two points in a given set.
Figure 5 shows examples of the precise and imprecise instances of this problem.

Computing the largest possible closest pair is also known as spreading points,
which is NP-hard for both the square and the circle model [5], but it can be
approximated within a constant factor [3]. The smallest possible closest pair is
the smallest distance between any pair of regions. We can find this in O(n log n)
time by computing the Voronoi diagram of a set of convex objects [15].

(a) (b) (c)

Fig. 5. (a) The closest pair of a set of points in the plane. (b) The largest possible
closest pair of a set of imprecise points, reached by many pairs simultaneously. (c) The
smallest possible closest pair of a set of imprecise points.
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(a) (b) (c)

Fig. 6. (a) The diameter of a set of points in the plane. (b) The largest possible diameter
of a set of imprecise points. (c) The smallest possible diameter of a set of imprecise
points, determined by three pairs simultaneously.

5 Diameter

Given a set of points P , the diameter is the largest distance between any pair of
points in P , see Figure 6(a). When the points are imprecise, we are given a set
L of regions, and we want to place a point in each region such that the diameter
of that point set is as large or small as possible, see Figures 6(b) and 6(c).

5.1 Largest Possible Diameter

The largest diameter is formed by the pair of points among the input regions
that are furthest away from each other, unless they belong to the same region.

Squares. When the points are modelled as squares, the two points forming the
largest diameter must be among the corners of the squares. This means we can
just compute the diameter of the set of all corners using a conventional diameter
algorithm in O(n log n) time. If the two points found belong to different regions,
we are done. Otherwise, they are diagonally opposite corners of one square s,
and there are two options. Either the largest diameter is formed by one corner
of s and one point among the other corners; we can check all these in O(n) time.
Or the largest diameter is formed by two points among the other squares, see
Figure 7(a). If that is the case, they must belong to two different squares, and
we find them by computing the diameter of the corners of all squares except s.

Discs. Compute the convex hull of the set of discs [12] in O(n logn) time, and
use rotating calipers to find the diameter of this structure. If the points found
belong to different discs, we are done. Otherwise, the disc that we find must
contain all others, and we are looking for the point closest to the boundary of
the big disc again, see Figure 4(b), just like in the SEC problem. We can find
this in linear time.

5.2 Smallest Possible Diameter

The smallest possible diameter d can be determined by multiple pairs of points
simultaneously, as in Figure 6(c). Moving any of the four points involved would
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(a) (b) (c)

Fig. 7. (a) The largest possible diameter is formed by the two single points, even
though the largest diameter among all corners is a diagonal of the square. (b) Four
extreme squares and four chains. (c) A star with two bends.

increase the distance between at least one pair of them. In general, this could
happen arbitrarily often, see Figure 8(a) where none of the points can be moved
without increasing the diameter. Note that these situations are not degenerate.
This makes computing the smallest possible diameter a difficult problem.

In the optimal solution, there will be some points that are exactly d away
from each other. In general, this will not occur at two different places, unless
they depend on each other: there may be a point p that has distance d to two
other points, and if we would move it closer to one of the other points, it would
move away from the other. If this is the case, we call p a bend. Note that the
two other points cannot be more than d away from each other, so the angle at p
is at most 60◦. In the optimal solution, there can be many bends that together
form a star.

For any subset L′ ⊂ L, let d′ be the value of the smallest possible diameter
of L′. We define the star of L′ to be the sequence of points that have distance
exactly d′ from each other in the optimal solution for this subset. This star
consists of a startpoint, zero or more bends, and an endpoint, or it is cyclic with
only bends. Every connection between two consecutive points in the sequence
must intersect all others. Examples of stars are in Figures 6(c), 7(c) and 8(a).
We call the star of L the optimal star.

Let l ∈ L be a region. We call l an extreme region if there exists a line
that has l completely on one side, but no other region of L completely on the
same side. We call a point p ∈ l an extreme placement if such a line exists that
goes through p. All points of the optimal star must be on extreme placements in
extreme regions. Furthermore, if p and q are adjacent points on the optimal star,
then no region is entirely on the other side of the line through p perpendicular
to pq.

Squares. When the points are modelled as squares, we can solve the problem in
O(n log n) time. Among the extreme squares, there are only four with infinitely
many extreme placements, being the squares with the topmost bottom side, the
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bottommost top side, the leftmost right side and the rightmost left side. We call
these squares axis-extreme. The other extreme squares can only have extreme
placements at their corners. These placements form four chains: the top left
chain connects all bottom right extreme placements, etc., see Figure 7(b). Note
that these chains are convex. The extreme squares and chains can be computed
in O(n logn) time [8].

The optimal star cannot have bends at corners of squares. If there would be
a bend at a corner, it would not be possible to move the point closer to both
of its neighbours, making this in fact a degenerate case and not a real bend.
Therefore, the optimal star can have at most two bends, as in Figure 7(c). This
implies that we can find it efficiently.

Lemma 2. We can find the optimal star by computing the star of every set of
four extreme squares, of which two are axis-extreme, and reporting the largest
among these.

We can compute all of these stars in O(n2) time. However, after precomputing
the chains we can also find the optimal star in linear time, by using a careful
case analysis and using the structure of the chains. For every placement of an
axis-extreme point, there is one vertex of a chain that is furthest away from it,
and this determines the best possible diameter in this case. As the axis-extreme
point moves over its region, this furthest vertex can move only in restricted ways,
which saves us a linear factor. The details of this refinement are omitted here,
due to lack of space.

We have now computed the value d of the smallest possible diameter. If
needed, we can also compute a placement of the points in their regions that re-
alises this diameter. We first compute valid placements of the four axis-extreme
points, and then observe that all other points should be placed ‘as far inward’
as possible.

To compute a valid placement for an axis-extreme point, note the following.
If we find a placement such that any star that includes this point has at most
length d, then this placement is valid for a global solution of diameter d. This
means we can check for all possible stars in which interval the point is allowed
to lie if that star must be at most d long, and then place the point somewhere
in the intersection of all these intervals. This can trivially be done in quadratic
time, but again we can improve that to linear time using the same case analysis
as above.

For the rest of the points, if a point is to the left of the lines through the
topmost and bottommost axis-extreme points, moving it to the right can only
decrease the diameter, and the same for the other directions. Because the regions
are squares, every point will end either in a corner of its region or somewhere in
the middle of the whole construction.

Discs. When the points are modelled as discs, stars can have up to n bends,
see Figure 8(a). This leads to algebraic difficulties: even if we would know the
combinatorial structure of the optimal star, computing it exactly would not be
possible.
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(a) (b) (c)

Fig. 8. (a) A cyclic star that visits seven regions. (b) Circular arcs that are extreme
in some direction. (c) Three consecutive angles of at most α give a diameter of cos α.

We can make some observations about the combinatorial structure. We can
still define the extreme discs, that is, discs that have a tangent line with no
other disc completely at the same side. These discs form a chain of arcs with
this property, see Figure 8(b). Any bend in the star still needs to be on such an
extreme arc. However, it is possible that all discs have extreme arcs.

Since we cannot compute the optimum efficiently, we approximate. A factor
2
3

√
3 ≈ 1.15 approximation can be computed in linear time by computing the

smallest smallest enclosing circle of the imprecise points. Details are in the full
paper. We can also compute a (1 + ε)-approximation of the smallest diameter

in O(ncε
− 1

2 ) time, where c = 1 1
2

√
2π ≈ 6.66. The idea of this algorithm is to

consider only stars of at most k bends, for k chosen suitably.

Lemma 3. Suppose the optimal solution is given by a star of at least k bends.
Then there exists a star with only one bend that approximates it.

Proof. Suppose that the optimal diameter is 1. The sum of the angles that the
star makes in the bends is at most π. That means that there are three consecutive
bends a, b and c somewhere that together make an angle of at most α = 3π

k .
Therefore the individual angles are also at most α, see Figure 8(c). The regions
of a, b and c are convex and do not intersect the lines perpendicular to ab and
bc, otherwise they were not optimal. This means that in the worst case they
are arbitrarily close to those lines, and in that case the best possible diameter
of a, b and c would be cosα, which is more than 1 − 1

2α
2. Thus, if we take

k = 1 1
2

√
2πε−

1
2 this gives a (1 − ε)-approximation. �

So, if the optimal star has more than k bends, we find an approximation in cubic
time. Otherwise, we find the optimum in O(nk) time.

6 Width

Given a set of points P , the width is the smallest distance between any pair of
parallel lines that contains P , see Figure 9(a). Examples of the imprecise case
are in Figures 9(b) and 9(c).
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(a) (b) (c)

Fig. 9. (a) The width of a set of points in the plane. (b) The largest possible width
of a set of imprecise points, reached at two different locations simultaneously. (c) The
smallest possible width of a set of imprecise points.

(a) (b)

Fig. 10. (a) A set of n points, such that the width changes when any of them is
removed. (b) Many triples of points define the width simultaniously.

The problem of computing the largest possible width seems to be hard. When
the points are modelled as line segments, it is even NP-hard; the proof is in the
full paper. The width of a set of points has the property that there can be points
that do not contribute to the width, but are needed to make the width valid, see
Figure 10(a). Removing any point here would result in a smaller width. In an
imprecise context, this means that the placement of all points is important, and
we cannot look only at subsets of the regions. Furthermore, it can happen that
many points are simultaneously involved in the optimal width, see Figure 10(b),
in a similar way as the stars in the smallest diameter problem.

The smallest width of a set of squares, or any other convex polygonal regions,
can be computed in O(n log n) time [13]. The smallest possible width of a set of
discs can be computed by using the structure of Figure 8(b) again. For circles,
this can be computed in O(n log n) time [11]. We use rotating calipers to find
the smallest possible width between two extreme lines.

7 Conclusions

We have given a structured overview of the imprecise variants of several ba-
sic geometric measures, reusing known results from various other contexts and
designing efficient algorithms for the remaining cases. Most problems can be
computed efficiently, while some are NP-hard. One remaining open problem is
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that of computing the largest possible width for the square or disc model. Also,
the 3D versions of most problems are still open.
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Attila Pór4, Francisco Santos5, Bettina Speckmann6, and Birgit Vogtenhuber1

1 Institute for Software Technology, Graz University of Technology
{oaich,thackl,bvogt}@ist.tugraz.at

2 Institute for Theoretical Computer Science, ETH Zürich
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Abstract. Let G = (S, E) be a plane straight-line graph on a finite
point set S ⊂ R2 in general position. The incident angles of a point
p ∈ S in G are the angles between any two edges of G that appear
consecutively in the circular order of the edges incident to p. A plane
straight-line graph is called ϕ-open if each vertex has an incident angle
of size at least ϕ. In this paper we study the following type of question:
What is the maximum angle ϕ such that for any finite set S ⊂ R2 of
points in general position we can find a graph from a certain class of
graphs on S that is ϕ-open? In particular, we consider the classes of
triangulations, spanning trees, and paths on S and give tight bounds in
most cases.

1 Introduction

Conditions on angles in plane straight-line graphs have been studied extensively
in discrete and computational geometry. It is well known that Delaunay tri-
angulations maximize the minimum angle over all triangulations, and that in a
(Euclidean) minimum weight spanning tree each angle is at least π3 . In this paper
we address the fundamental combinatorial question, what is the maximum value
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α such that for each finite point set in general position there exists a (certain
type of) plane straight-line graph where each vertex has an incident angle of size
at least α. In other words, we consider min−max−min−max problems, where
we minimize over all finite point sets S in general position in the plane, the
maximum over all plane straight-line graphs G (of the considered type), of the
minimum over all p ∈ S, of the maximum angle incident to p in G. We present
bounds on α for three classes of graphs: spanning paths, (general and bounded
degree) spanning trees, and triangulations. Most of the bounds we give are tight.
In order to show that, we describe families of point sets for which no graph from
the respective class can achieve a greater incident angle at each vertex.

Background. Our motivation for this research stems from the investigation
of “pseudo-triangulations”, a straight-line framework which apart from
deep combinatorial properties has applications in motion planning, collision de-
tection, ray shooting and visibility; see [3,12,13,15,16] and references therein.
Pseudo-triangulations with a minimum number of pseudo-triangles (among all
pseudo-triangulations for a given point set) are called minimum (or pointed)
pseudo-triangulations. They can be characterized as plane straight-line graphs
where each vertex has an incident angle greater than π. Furthermore, the number
of edges in a minimum pseudo-triangulation is maximal, in the sense that the
addition of any edge produces an edge-crossing or negates the angle condition.

In comparison to these properties, we consider connected plane straight-line
graphs where each vertex has an incident angle α—to be maximized—and the
number of edges is minimal (spanning trees) and the vertex degree is bounded
(spanning trees of bounded degree and spanning paths). We further show that
any planar point set has a triangulation in which each vertex has an incident
angle which is at least 2π

3 . Observe that perfect matchings can be described as
plane straight-line graphs where each vertex has an incident angle of 2π and the
number of edges is maximal.

Related Work. There is a vast literature on triangulations that are optimal
according to certain criteria, cf. [2]. Similar to Delaunay triangulations which
maximize the smallest angle over all triangulations for a point set, farthest point
Delaunay triangulations minimize the smallest angle over all triangulations for
a convex polygon [9]. If all angles in a triangulation are ≥ π

6 then it contains
the relative neighborhood graph as a subgraph [14]. The relative neighborhood
graph for a point set connects any pair of points which are mutually closest
to each other (among all points from the set). Edelsbrunner et al. [10] showed
how to construct a triangulation that minimizes the maximum angle among all
triangulations for a set of n points in O(n2 logn) time.

In applications where small angles have to be avoided by all means, a De-
launay triangulation may not be sufficient in spite of its optimality because
even there arbitrarily small angles can occur. By adding so-called Steiner points
one can construct a triangulation on a superset of the original points in which
there is some absolute lower bound on the size of the smallest angle [7]. Dai et al.
[8] describe several heuristics to construct minimum weight triangulations
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(triangulations which minimize the total sum of edge lengths) subject to ab-
solute lower or upper bounds on the occurring angles.

Spanning cycles with angle constraints can be regarded as a variation of the
traveling salesman problem. Fekete and Woeginger [11] showed that if the cycle
may cross itself then any set of at least five points admits a locally convex
tour, that is, a tour in which the angle between any three consecutive points is
positive. Arkin et al. [5] consider as a measure for (non-)convexity of a point
set S the minimum number of (interior) reflex angles (angles > π) among all
plane spanning cycles for S. Aggarwal et al. [4] prove that finding a spanning
cycle for a point set which has minimal total angle cost is NP-hard, where the
angle cost is defined as the sum of direction changes at the points. Regarding
spanning paths, it has been conjectured that each planar point set admits a
spanning path with minimum angle at least π6 [11]; recently, a lower bound of π9
has been presented [6].

Definitions and Notation. Let S ⊂ R2 be a finite set of points in general
position, that is, no three points of S are collinear. In this paper we consider
plane straight-line graphs G = (S,E) on S. The vertices of G are the points in
S, the edges of G are straight-line segments that connect two points in S, and
two edges of G do not intersect except possibly at their endpoints. The incident
angles of a point p ∈ S in G are the angles between any two edges of G that
appear consecutively in the circular order of the edges incident to p. We denote
the maximum incident angle of p in G with opG(p). For a point p ∈ S of degree
at most one we set opG(p) = 2π. We also refer to opG(p) as the openness of p
in G and call p ∈ S ϕ-open in G for some angle ϕ if opG(p) ≥ ϕ. Consider for
example the graph depicted in Fig. 1. The point p has four incident edges of G
and, therefore, four incident angles. Its openness is opG(p) = α. The point q has
only one incident angle and correspondingly opG(q) = 2π.

Similarly we define the openness of a plane straight-line graph G = (S,E)
as op(G) = minp∈S opG(p) and call G ϕ-open for some angle ϕ if op(G) ≥ ϕ.
In other words, a graph is ϕ-open if and only if every vertex has an incident
angle of size at least ϕ. The openness of a class G of graphs is the supremum
over all angles ϕ such that for every finite point set S ⊂ R2 in general position
there exists a ϕ-open connected plane straight-line graph G on S and G is
an embedding of some graph from G. For example, the openness of minimum
pseudo-triangulations is π.

Observe that without the general position assumption many of the questions
become trivial because for a set of collinear points the non-crossing spanning tree
is unique—the path that connects them along the line—and its interior points
have no incident angle greater than π.

The convex hull of a point set S is denoted with CH(S). Points of S on
CH(S) are called vertices of CH(S). Let a, b, and c be three points in the plane
that are not collinear. With ∠abc we denote the counterclockwise angle between
the segment (b, a) and the segment (b, c) at b.

Results. In this paper we study the openness of several well-known classes
of plane straight-line graphs, such as triangulations (Section 2), (general and
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Table 1. Openness of several classes of plane straight-line graphs. All given values
except for paths on point sets in general position are tight.

Triangulations Trees Trees with maxdeg. 3 Paths (convex sets) Paths (general)
2π
3

5π
3

3π
2

3π
2

5π
4

bounded degree) trees (Section 3), and paths (Section 4). The results are sum-
marized in Table 1 above.

2 Triangulations

Theorem 1. Every finite point set in general position in the plane has a trian-
gulation that is 2π

3 -open and this is the best possible bound.

Proof. Consider a point set S ⊂ R2 in general position. Clearly, opG(p) > π for
every point p ∈ CH(S) and every plane straight-line graph G on S. We recur-
sively construct a 2π

3 -open triangulation T of S by first triangulating CH(S);
every recursive subproblem consists of a point set with a triangular convex hull.

Let S be a point set with a triangular convex hull and denote the three
points of CH(S) with a, b, and c. If S has no interior points, then we are done.
Otherwise, let a′, b′ and c′ be (not necessarily distinct) interior points of S such
that the triangles Δa′bc, Δab′c and Δabc′ are empty (see Fig. 2). Since the sum
of the six exterior angles of the hexagon ba′cb′ac′ equals 8π, the sum of the three
angels ∠ac′b, ∠ba′c, and ∠cb′a is at least 2π. In particular, one of them, say
∠cb′a, is at least 2π

3 . We then recurse on the two subsets of S that have Δb′bc
and Δb′ab as their respective convex hulls.

The upper bound is attained by a set S of n points as depicted in Fig. 3.
S consists of a point p and of three sets Sa, Sb, and Sc that each contain n−1

3
points. Sa, Sb, and Sc are placed at the vertices of an equilateral triangle Δ and
p is placed at the barycenter of Δ. Any triangulation T of S must connect p

p q
α

β
γ

δ

Fig. 1. The inci-
dent angles of p

a b

c

a′
b′

c′

Fig. 2. Constructing a 2π
3 -open

triangulation

Sa Sb

p

Sc

Fig. 3. The openness of
triangulations of this point
set approaches 2π

3
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with at least one point of each of Sa, Sb, and Sc and hence opT (p) approaches
2π
3 arbitrarily close. ��

3 Spanning Trees

In this section we give tight bounds on the ϕ-openness of two basic types of
spanning trees, namely general spanning trees and spanning trees with bounded
vertex degree. Consider a point set S ⊂ R2 in general position and let p and q
be two arbitrary points of S. Assume w.l.o.g. that p has smaller x-coordinate
than q. Let lp and lq denote the lines through p and q that are perpendicular
to the edge (p, q). We define the orthogonal slab of (p, q) to be the open region
bounded by lp and lq.

Observation 1. Assume that r ∈ S \ {p, q} lies in the orthogonal slab of (p, q)
and above (p, q). Then ∠qpr ≤ π

2 and ∠rqp ≤ π
2 . A symmetric observation holds

if r lies below (p, q).

Recall that the diameter of a point set is the distance between a pair of points
that are furthest away from each other. Let a and b define the diameter of S and
assume w.l.o.g. that a has a smaller x-coordinate than b. Clearly, all points in
S \ {a, b} lie in the orthogonal slab of (a, b).

Observation 2. Assume that r ∈ S \ {a, b} lies above a diametrical segment
(a, b) for S. Then ∠arb ≥ π

3 and hence at least one of the angles ∠bar and ∠rba
is at most π3 . A symmetric observation holds if r lies below (a, b).

3.1 General Spanning Trees

Theorem 2. Every finite point set in general position in the plane has a span-
ning tree that is 5π

3 -open and this is the best possible bound.

The upper bound is attained by the point set depicted in Fig. 6. Each of the sets
Si, i ∈ 1, 2, 3 consists of n3 points. If a point p ∈ S1 is connected to any other
point from S1 ∪ S2, then it can only be connected to a point of S3 forming an
angle of at least π3 − ε. As the same argument holds for S2 and S3, respectively,
any connected graph, and thus any spanning tree on S is at most 5π

3 -open.
The proof for the lower bound strongly relies on Observation 2 and can be

found in the full paper.

3.2 Spanning Trees of Bounded Vertex Degree

Theorem 3. Let S ⊂ R2 be a set of n points in general position. There exists
a 3π

2 -open spanning tree T of S such that every point from S has vertex degree
at most three in T . The angle bound is best possible, even for the much broader
class of spanning trees of vertex degree at most n− 2.
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c

d

a ba b

S+
c

S−
c

Sa

Sb

Sd

Fig. 4. Constructing a 3π
2 -open spanning tree with maximum vertex degree four

Proof. We show in fact that S has a 3π
2 -open spanning tree with maximum vertex

degree three. To do so, we first describe a recursive construction that results in
a 3π

2 -open spanning tree with maximum vertex degree four. We then refine our
construction to yield a spanning tree of maximum vertex degree three.

Let a and b define the diameter of S. W.l.o.g. a has a smaller x-coordinate than
b. The edge (a, b) partitions S \ {a, b} into two (possibly empty) subsets: the set
Sa of the points above (a, b) and the set Sb of the points below (a, b). We assign
Sa to a and Sb to b (see Fig 4). Since all points of S \ {a, b} lie in the orthogonal
slab of (a, b) we can connect any point p ∈ Sa to a and any point of q ∈ Sb to b
and by this obtain a 3π

2 -open path P = 〈p, a, b, q〉. Based on this observation we
recursively construct a spanning tree of vertex degree at most four.

If Sa is empty, then we proceed with Sb. If Sa contains only one point p then we
connect p to a. Otherwise consider a diametrical segment (c, d) for Sa. W.l.o.g.
d has a smaller x-coordinate than c and d lies above (a, c). Either ∠adc or ∠dca
must be less than π

2 . W.l.o.g. assume that ∠dca < π
2 . Hence we can connect d via

c to a and obtain a 3π
2 -open path P = 〈d, c, a, b〉. The edge (d, c) partitions Sa

into two (possibly empty) subsets: the set Sd of the points above (d, c) and the
set Sc of the points below (d, c). The set Sc is again partitioned by the edge (a, c)
into a set S+

c of points that lie above (a, c) and a set S−
c of points that lie below

(a, c). We assign Sd to d and both S+
c and S−

c to c and proceed recursively.
The algorithm maintains the following two invariants: (i) at most two sets are

assigned to any point of S, and (ii) if a set Sp is assigned to a point p then p
can be connected to any point of Sp and opT (p) ≥ 3π

2 for any resulting tree T .

c

d

a b

p

q

c

d

a b

p

q
S+

c ∪ S−
c

Fig. 5. Constructing a 3π
2 -open spanning tree with maximum vertex degree three
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We now refine our construction to obtain a 3π
2 -open spanning tree of maxi-

mum vertex degree three. If S+
c is empty then we assign S−

c to c, and vice versa.
Otherwise, consider the tangents from a to Sc and denote the points of tangency
with p and q (see Fig. 5). Let lp and lq denote the lines through p and q that
are perpendicular to (a, c). W.l.o.g. lq is closer to a than lp. We replace the edge
(a, c) by the three edges (a, p), (p, q), and (q, c). The resulting path is 3π

2 -open
and partitions Sc into three sets which can be assigned to p, q, and c while
maintaining invariant (ii). The refined recursive construction assigns at most
one set to every point of S and hence constructs a 3π

2 -open spanning tree with
maximum vertex degree three.

The upper bound is attained by the set S of n points depicted in Fig. 7.
S consists of n− 1 near-collinear points close together and one point p far away.
In order to construct any connected graph with maximum degree at most n− 2,
one point of S1 has to be connected to another point of S1 and to p. Thus any
spanning tree on S with maximum degree at most n− 2 is at most 3π

2 -open. ��

S3

S1

S2

Fig. 6. Every spanning
tree is at most 5π

3 -open

p

S1

Fig. 7. Every spanning tree
with vertex degree at most
n − 2 is at most 3π

2 -open

Fig. 8. A zigzag path

4 Spanning Paths

Spanning paths can be regarded as spanning trees with maximum vertex degree
two. Therefore, the upper bound construction from Fig. 7 applies to paths as
well. We will show below that the resulting bound of 3π

2 is tight for points in
convex position, even in a very strong sense: There exists a 3π

2 -open spanning
path starting from any point.

4.1 Point Sets in Convex Position

Consider a set S ⊂ R2 of n points in convex position. We can construct a
spanning path for S by starting at an arbitrary point p ∈ S and recursively
taking one of the tangents from p to CH(S \ {p}). As long as |S| > 2, there
are two tangents from p to CH(S \ {p}): the left tangent is the oriented line t�
through p and a point p� ∈ S \ {p} (oriented in direction from p to p�) such that
no point from S is to the left of t�. Similarly, the right tangent is the oriented
line tr through p and a point pr ∈ S \ {p} (oriented in direction from p to pr)
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such that no point from S is to the right of tr. If we take the left and the right
tangent alternately, see Fig. 8, we call the resulting path a zigzag path for S.

Theorem 4. Every finite point set in convex position in the plane admits a
spanning path that is 3π

2 -open and this is the best possible bound.

Proof. As a zigzag path is completely determined by one of its endpoints and
the direction of the incident edge, there are exactly n zigzag paths for S. (Count
directed zigzag paths: There are n choices for the startpoint and two possible di-
rections to continue in each case, that is, 2n directed zigzag paths and, therefore,
n (undirected) zigzag paths.)

Now consider a point p ∈ S and sort all other points of S radially around p,
starting with one of the neighbors of p along CH(S). Any angle that occurs at p
in some zigzag path for S is spanned by two points that are consecutive in this
radial order. Moreover, any such angle occurs in exactly one zigzag path because
it determines the zigzag path completely. Since the sum of all these angles at p
is less than π, for each point p at most one angle can be ≥ π

2 . Furthermore, if p
is an endpoint of a diametrical segment for S then all angles at p are < π

2 . Since
there is at least one diametrical segment for S, there are at most n − 2 angles
> π

2 in all zigzag paths together. Thus, there exist at least two spanning zigzag
paths that have no angle > π

2 , that is, they are 3π
2 -open.

To see that the bound of 3π
2 is tight, consider again the point set shown in

Fig. 7. ��

A constructive proof for Theorem 4 is given in the full paper. There we also
prove the following stronger statement.

Corollary 1. For any finite set S ⊂ R2 of points in convex position and any
p ∈ S there exists a 3π

2 -open spanning path for S which has p as an endpoint.

4.2 General Point Sets

The main result of this section is the following theorem about spanning paths
of general point sets.

Theorem 5. Every finite point set in general position in the plane has a 5π
4 -open

spanning path.

Let S ⊂ R2 be a set of n points in general position. For a suitable labeling of
the points of S we denote a spanning path for (a subset of k points of) S with
〈p1, . . . , pk〉, where we call p1 the starting point of the path. Then Theorem 5 is
a direct consequence of the following, stronger result.

Theorem 6. Let S be a finite point set in general position in the plane. Then

(1) For every vertex q of the convex hull of S, there exists a 5π
4 -open spanning

path 〈q, p1, . . . , pk〉 on S starting at q.
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(2) For every edge q1q2 of the convex hull of S there exists a 5π
4 -open spanning

path starting at either q1 or q2 and using the edge q1q2, that is, a spanning
path 〈q1, q2, p1, . . . , pk〉 or 〈q2, q1, p1, . . . , pk〉.

Proof. For each vertex p in a path G the maximum incident angle opG(p) is the
larger of the two incident angles (except for start- and endpoint of the path).
To simplify the case analysis we will consider the smaller angle at each point
and prove that we can construct a spanning path such that it is at most 3π

4 .
We denote with (q, S) a spanning path for S starting at q, and with (q1q2, S)
a spanning path for S starting with the edge connecting q1 and q2. The outer
normal cone of a vertex y of a convex polygon is the region between two half-
lines that start at y, are respectively perpendicular to the two edges incident at
y, and are both in the exterior of the polygon.

We prove the statements (1) and (2) of Theorem 6 by induction on |S|. The
base cases |S| = 3 are obviously true.

Induction for (1): Let K = CH(S \ {q}).

Case 1.1. q lies between the outer normal cones of two consecutive vertices y
and z of K, where z lies to the right of the ray −⇀qy.

Induction on (yz, S\{q}) results in a 5π
4 -open spanning path 〈y, z, p1, . . . , pk〉

or 〈z, y, p1, . . . , pk〉 of S \ {q}. Obviously ∠qyz ≤ π
2 < 3π

4 and ∠yzq ≤
π
2 < 3π

4 , and thus we get a 5π
4 -open spanning path 〈q, y, z, p1, . . . , pk〉 or

〈q, z, y, p1, . . . , pk〉 for S (see Fig. 9).
Case 1.2. q lies in the outer normal cone of a vertex of K.

Let p be that vertex and let y and z be the two vertices of K adjacent to p,
z being to the right of the ray −⇀py. The three angles ∠qpz, ∠zpy and ∠ypq
around p obviously add up to 2π. We consider subcases according to which of
the three angles is the smallest, the cases of ∠qpz and ∠ypq being symmetric
(see Fig. 10).

Case 1.2.1. ∠zpy is the smallest of the three angles.
Then, in particular, ∠zpy < 3π

4 . Assume without loss of generality that ∠qpz
is smaller than ∠ypq and, in particular, that it is smaller than π. Since q is
in the normal cone of p, ∠qpz is at least π2 , hence ∠pzq is at most π2 < 3π

4 .
Let S′ = S \ {q, z} and consider the path that starts with q and z followed
by (p, S′), that is 〈q, z, p, p1, . . . , pk〉. Note that ∠zpp1 ≤ ∠zpy.

Case 1.2.2. ∠ypq is the smallest of the three angles.

y

z

q

Fig. 9. Case 1.1

y

z

q
p

Fig. 10. Case 1.2

T

c

q1

q2

l1

l2

b

α

ω

Fig. 11. Case 2
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q1

q2

c
z

l2

l1

b

y

p

Fig. 12. Case 2.2.1

α1

α2

α
γ1

γ2
γ

β2

β

δ

ε η

q1

q2

p

z

y
b

c
ω

Fig. 13. Case 2.2.1.[1,2]

q1

q2

c
z

l2

l1

b

y

Fig. 14. Case 2.2.2

Then ∠ypq < 3π
4 . Moreover, in this case all three angles ∠qpz, ∠ypq and

∠zpy are at least π2 , the first two because q lies in the normal cone of p, the
latter because it is is not the smallest of the three angles. We have ∠qyp < π

2
because this angle lies in the triangle containing ∠ypq ≥ π

2 , and ∠ypq < 3π
4

by assumption. We iterate on (py, S \ {q}) and get a 5π
4 -open spanning path

on S \ {q} by induction, which can be extended to a 5π
4 -open spanning path

on S, 〈q, p, y, p1, . . . , pk〉 or 〈q, y, p, p1, . . . , pk〉, respectively.

Induction for (2): Let b and c be the neighboring vertices of q1 and q2 on
CH(S), such that CH(S) reads . . . , b, q1, q2, c, . . . in ccw order (see Fig. 11).

Case 2.1. α < 3π
4 or ω < 3π

4 (see Fig. 11).
Without loss of generality assume that α < 3π

4 . By induction on (q1, S\{q2})
we get a 5π

4 -open spanning path 〈q1, p1, . . . , pk〉 on S \ {q2}. As ∠q2q1p1 ≤
α < 3π

4 we get a 5π
4 -open spanning path 〈q2, q1, p1, . . . , pk〉 on S.

Case 2.2. Both α and ω are at least 3π
4 .

Let l1 and l2 be the lines through q1 and q2, respectively, and orthogonal
to q1q2. Further let K = CH(S \ {q1, q2}) and with T we denote the region
bounded by q1q2, l1, l2 and the part of K closer to q1q2 (see Fig. 11).

Case 2.2.1. At least one vertex p of K exists in T.
If there exist several vertices of K in T , then we choose p as the one with
smallest distance to q1q2 (see Fig. 12). Obviously the edges q1p and q2p
intersect K only in p and the angles α1 and β are each at most π

2 (see
Fig. 13).

Case 2.2.1.1. γ2 >
π
2 (see Fig.13).

By induction on (p, S\{q1, q2}) we get a 5π
4 -open spanning path 〈p, p1, . . . , pk〉

for S\{q1, q2}. Moreover the smaller of ∠q2pp1 and ∠p1pq1 is at most 2π−π
2

2 =
3π
4 . Thus we get a 5π

4 -open spanning path 〈q1, q2, p, p1, . . . , pk〉 or 〈q2, q1, p,
p1, . . . , pk〉 for S.

Case 2.2.1.2. γ2 ≤ π
2 (see Fig.13).

Let y and z be vertices of K, with y being the clock-wise neighbor of p and z
being the counterclockwise one (b might equal y and c might equal z). At least
one of α1 or β is ≥ π

4 . Without loss of generality assume that β ≥ π
4 , the other

case is symmetric. Then q1, q2, p, y form a convex four-gon becauseα ≥ 3π
4 and
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β ≥ π
4 imply that ∠bpq2 in the four-gon b, q1, q2, p is less than π.Therefore also

γ ≤ ∠bpq2 < π. We will show that all four angles α1, γ1, β2 and δ are at most
3π
4 . Then we apply induction on (py, S \ {q1, q2}) and get a 5π

4 -open spanning
path on S \ {q1, q2}, which can be completed to a 5π

4 -open spanning path for
S, 〈q2, q1, p, y, p1, . . . , pk〉 or 〈q1, q2, y, p, p1, . . . , pk〉, respectively.
– Both α1 and β2 < β are clearly smaller than π

2 , hence smaller than 3π
4 .

– For γ1, observe that the supporting line of yp must cross the segment
q1b, so that we have α2 + γ1 < π (they are two angles of a triangle).
Also, α2 = α− α1 ≥ 3π

4 − π
2 = π

4 , so γ1 <
3π
4 .

– Analogously, for δ, observe that the supporting line of yp must cross the
segment q2c, so that we have ω−β2 +δ < π. Also ω−β2 ≥ π

4 , so δ < 3π
4 .

Case 2.2.2. No vertex of K exists in T .
Both, l1 and l2, intersect the same edge yz of K (in T ), with y closer to l1
than to l2 (see Fig. 14). We will show that the four angles ∠yzq1, ∠q2q1z,
∠yq2q1 and ∠q2yz are all smaller than 3π

4 . Then induction on (yz, S\{q1, q2})
yields a path that can be extended to a 5π

4 -open path 〈q2, q1, z, y, p1, . . . , pk〉
or 〈q1, q2, y, z, p1, . . . , pk〉. Clearly, the angles ∠q2q1z and ∠yq2q1 are both
smaller than π

2 . The sum of ∠q2yz + ∠cq2y is smaller than π because the
supporting line of yz intersects the segment q2c. Now, ∠cq2y is at least π4 by
the assumption that ∠cq2q1 ≥ 3π

4 . So, ∠q2yz < 3π
4 . The symmetric argument

shows that ∠yzq1 < 3π
4 . ��

Note that for Theorem 6 it is essential that the predefined starting point of a
5π
4 -open path is an extreme point of S, as an equivalent result is in general not

true for interior points. As a counter example consider a regular n-gon with
an additional point in its center. It is easy to see that for sufficiently large n
starting at the central point causes a path to be at most π + ε-open for a small
constant ε. Similar, non-symmetric examples already exist for n ≥ 6 points,
and analogously, if we require an interior edge to be part of the path, there
exist examples bounding the openness by 4π

3 +ε [17]. Despite these examples we
conclude this section with the following conjecture.

Conjecture 1. Every finite point set in general position in the plane has a 3π
2 -

open spanning path.
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André Schulz. We thank Sarah Kappes, Hannes Krasser, David Orden, Günter
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sions. We also thank Sonja Čukić and Günter Rote for helpful comments on the
manuscript.

References

1. Aichholzer, O., Hackl, T., Hoffmann, M., Huemer, C., Santos, F., Speckmann, B.,
Vogtenhuber, B.: Maximizing Maximal Angles for Plane Straight Line Graphs -
Extended Abstract. In: Abstracts 23rd European Workshop Comput. Geom. 98–
101 (2007)



Maximizing Maximal Angles for Plane Straight-Line Graphs 469

2. Aurenhammer, F., Xu, Y.-F.: Optimal Triangulations. Encyclopedia of Optimiza-
tion 4, 160–166 (2000)

3. Aichholzer, O., Aurenhammer, F., Krasser, H., Brass, P.: Pseudo-Triangulations
from Surfaces and a Novel Type of Edge Flip. SIAM J. Comput. 32(6), 1621–1653
(2003)

4. Aggarwal, A., Coppersmith, D., Khanna, S., Motwani, R., Schieber, B.: The
Angular-Metric Traveling Salesman Problem. SIAM J. Comput. 29(3), 697–711
(1999)

5. Arkin, E., Fekete, S., Hurtado, F., Mitchell, J., Noy, M., Sacristán, V., Sethia, S.:
On the Reflexivity of Point Sets. In: Discrete and Computational Geometry: The
Goodman-Pollack Festschrift, Springer, Heidelberg, Algorithms and Combinatorics
25, 139–156 (2003)
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Abstract. We present new asymptotically tight bounds on cuttings, a
fundamental data structure in computational geometry. For n objects in
space and a parameter r ∈ N, an 1

r
-cutting is a covering of the space

with simplices such that the interior of each simplex intersects at most
n/r objects. For n pairwise disjoint disks in R3 and a parameter r ∈ N,
we construct a 1

r
-cutting of size O(r2). For n axis-aligned rectangles in

R3, we construct a 1
r
-cutting of size O(r3/2).

As an application related to multi-point location in three-space, we
present tight bounds on the cost of spanning trees across barriers. Given
n points and a finite set of disjoint disk barriers in R3, the points can be
connected with a straight line spanning tree such that every disk cuts at
most O(

√
n) edges of the tree. If the barriers are axis-aligned rectangles,

then there is a straight line spanning tree such that every rectangle cuts
O(n1/3) edges. Both bounds are the best possible.

1 Introduction

Divide-and-conquer strategies are omnipresent in computer science. In problems
involving multivariable reals, one of the most successful methods over the last
two decades has been the partition technique (in particular, cuttings) in com-
putational geometry. They are indispensable for optimal data structures that
support range searching, point location, motion planning, among others, and
they are also used in currently best combinatorial bounds for hard Erdős-type
discrete geometry problems [7,24]. For a set of n objects in Rd and a parameter
r ∈ N, a 1

r -cutting is a finite collection of simplices that cover Rd and such that
the interior of each simplex intersects at most n/r objects. Even though the def-
inition of cuttings allows overlapping simplices, all cuttings we construct consist
of interior-disjoint simplices, which form subdivisions of Rd.

Optimal size cuttings are known for hyperplanes and (d − 1)-dimensional
simplices in Rd. In this paper, we present new tight bounds on the minimum
size of cuttings for disjoint 2-dimensional objects in three-space. Our main result
is an optimal size cutting for disjoint disks in three-space. For brevity, we write
disk for any planar set of constant description complexity (that is, a set in R3

F. Dehne, J.-R. Sack, and N. Zeh (Eds.): WADS 2007, LNCS 4619, pp. 470–482, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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that lies in a plane and is described by a constant number of algebraic inequalities
of constant degree).

Theorem 1. For every set of n pairwise disjoint disks in R3 and every r, 1 ≤
r ≤ n + 1, there is a 1

r -cutting of size O(r2). This bound is the best possible.

Similar bounds were previously known only for disjoint triangles in R3. Note
that a subdivision of R3 into O(r2) cells, each bounded by a constant number of
algebraic surfaces (rather than simplices bounded by hyperplanes), easily follows
from known techniques. In some applications, such pseudo-cuttings (with curved
boundaries) are satisfactory, others require partitions into convex simplices (e.g.,
Theorems 3 and 4 below). The challenge, that we partially resolve in this pa-
per, is to construct optimal size cuttings (with “straight” simplices) for curved
objects. We also give a randomized algorithm that computes, for an input of n
disjoint disks, an 1

r -cutting of size O(r2) in polynomial expected time. It can be
derandomized with standard techniques [21].

For disjoint axis-aligned rectangles, we can construct substantially smaller
cuttings. This is the first sub-quadratic bound for a family of 1- or 2-dimensional
objects in R3.

Theorem 2. For every set of n pairwise disjoint axis-aligned rectangles in R3

and every r, 1 ≤ r ≤ n + 1, there is an 1
r -cutting of size O(r3/2). This bound is

best possible.

An application: Spanning trees across barriers. A (d − 1)-dimensional
object b cuts a line segment e (equivalently, e stabs b) in Rd if the relative
interiors of e and b intersect but the hyperplane spanned by b does not contain
e. Chazelle and Welzl [11] showed that a set S of n points (sites) in Rd, d ≥ 2,
can be connected by a straight line spanning tree such that every hyperplane
cuts at most O(n1−1/d) edges of the tree. This bound is tight apart from the
constant factor (e.g., for any spanning tree on n points in the �n1/d� × . . . ×
�n1/d� integer grid in Rd, there is an axis-aligned hyperplane that cuts Ω(n1−1/d)
edges). In particular, for n points in the plane, there is a spanning tree that
stabs every line O(

√
n) times. Interestingly, if we replace the lines by a set of

disjoint line segments, there is a spanning tree that stabs every segment only a
constant number of times. This constant is between 3 and 4 in the worst case by
recent results of [2] and [15]. We address analogous problems involving disjoint
barriers in R3, which have applications on multi-point location data structures in
three-space [29].

Theorem 3. Given a set S of n points and a finite set B of pairwise disjoint
disk barriers in R3, there is a straight line spanning tree T on the vertex set S
such that every barrier in B cuts at most O(

√
n) edges of T . There are n points

and 2
√
n disjoint circular disks in R3 such that for every spanning tree T on S,

a disk cuts Ω(
√
n) edges of T on average.

Theorem 4. Given a set S of n points and a finite set B of pairwise disjoint
axis-aligned rectangles in R3, there is a straight line spanning tree T on the vertex
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set S such that every rectangle in B cuts at most O(n1/3) edges of T . There are
n points and O(

√
n) disjoint axis-aligned rectangles in R3 such that for every

spanning tree T on S, a rectangle cuts Ω(n1/3) edges of T on average.

It follows that the total cost of such a spanning tree is bounded by O(|B| ·n1/3)
for disks and by O(|B| ·

√
n) for axis-aligned rectangles in the worst case, which

are also best possible bounds. Note, however, that for computing a minimum cost
spanning tree for given sets S and B, one can use a min-max weight spanning
tree algorithm by Camerini [5]. Compute the number of barriers stabbed by
each of the

(
n
2

)
edges of a complete straight line graph on S, which gives an

integer weight on each edge. Camerini’s algorithm computes a spanning tree, for
which our combinatorial bounds apply, in O(n2) time. A randomized linear-time
algorithm of Krager et al. [16] can compute the minimum weight spanning tree
for a given configuration.

Related previous work on cuttings. Cuttings were introduced in the late
eighties by Clarkson and Shor [12], and their ideas were later gradually improved
and simplified [7,8,22,30]. For an arrangement of hyperplanes in Rd, there is a
1
r -cutting of size O(rd) [20]. For disjoint (d − 1)-dimensional simplices in Rd,
there is an 1

r -cutting of size O(rd−1). Pellegrini [28] combined these results and
showed that if the arrangement of n (d − 1)-simplices in Rd has K vertices,
there is an 1

r -cutting of size O(rd−1 + (K/nd)rd), which is best possible. Simi-
lar arguments show that there is a 1

r -pseudocutting of size O(rd polylog r) for
(d−1)-dimensional semi-algebraic surfaces of constant maximal degree [9]; how-
ever, pseudo-cuttings typically produce a covering with nonconvex regions. Two
essentially different methods have been developed for constructing optimal cut-
tings: one is based on vertical decompositions and the other on a sparse ε-nets.
We briefly compare them with our proof strategies.

One method is a delicate construction by Chazelle and Friedman [10,22]
based on the following components: (i) the Clarkson-Shor random sampling tech-
nique [12]; (ii) a vertical decomposition algorithm; (iii) and a certain locality
property of the decomposition that allows using tail estimates (for more details
and examples, see [22]). The bottleneck for this technique is often the vertical
decomposition, which is the partition of the space into vertical cylinders (often
called trapezoids in the plane) of bounded complexity such that each cylinder
has at most two nonvertical sides. For example, Mulmuley [23] showed that r
disjoint triangles in R3 have a vertical decomposition into O(r2) trapezoids (see
also [4] 1). A straightforward application of this method, for instance, gives an
1
r -cutting of size O(r2) for m disjoint triangles in R3.

Vertical decompositions exists for several types of objects in space, although
tight bounds are known only in very few cases. Chazelle et al. [9] showed that
there is a vertical decomposition of size O(r2) for r disjoint disks, and this
bound is sharp. An almost sharp upper bound on cuttings for hypersurfaces

1 De Berg, Guibas, and Halperin [3] extended this result and showed that m not
necessarily disjoint triangles in R3 have a vertical decomposition of size O(n2+ε +K)
for every ε > 0, where and K is the complexity of the arrangement of the triangles.
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in four-space was recently proved by Koltun [17,18]. The cells of such vertical
decompositions, however, are bounded by semi-algebraic surfaces, and may not
be convex. This explains why the technique of Chazelle and Friedman [10] cannot
produce optimal size 1

r -cuttings (with “straight” simplices) for disks in R3.
The other method known for constructing optimal cuttings for hyperplanes

in Rd is due to Chazelle [6] (following earlier work by Agarwal [1]). It is a
hierarchical decomposition based on so-called sparse ε-nets (a multi-purpose
random sample related to ε-nets—a combinatorial tool introduced by Haussler
and Welzl [14]). We adapt this method to disjoint disks in R3 by combining it
with techniques from binary space partitions. Two recent results also followed
an argument reminiscent of [6]: a construction of almost optimal pseudocuttings
“sensitive” to a collection of algebraic curves (which means that a curve intersects
few pseudo-simplices on average [19]); and an algorithm for counting the number
of intersecting pairs in a set of triangles in 3-space [13]. Prior to our work,
Pellegrini [27] has combined binary space partition methods with sparse ε-nets
when he constructed optimal cuttings for triangles in R3.

Binary space partitions. The binary space partition (for short, BSP) is a
data structure produced by a simple hierarchical partition scheme, called BSP
algorithm: Given a set B of disjoint (d−1)-dimensional objects in the interior of
a convex cell σ, σ ⊂ Rd, a BSP algorithm partitions σ along a hyperplane into
two convex subcells σ1 and σ2 (while fragmenting the input objects as well), and
recurses on the objects clipped in σ1 and σ2, independently, until the interior of
each resulting cell is empty of input objects. The size of a BSP is the number of
fragments of the input objects; intuitively, it measures the fragmentation caused
by the partition. Paterson and Yao [25,26] constructed a BSP of size O(r2) for r
disjoint triangles and a BSP of size O(r3/2) for r disjoint axis-aligned rectangles
in R3; they also showed that these bounds are best possible.

Notice that our bounds on the size of 1
r -cuttings match Paterson and Yao’s

bounds on the size of the BSPs of r disjoint objects. A BSP naturally constructs
a subdivision of the input cell σ into convex subcells. A convex cell in R3 with
k vertices can be partitioned into O(k) simplices, so a BSP leads to a subdivi-
sion of σ into simplices whose number is proportional to the complexity of the
subdivision (which is the total number of faces of dimensions 1, 2, and 3 over
all cells). Note, however, that the size of a BSP may be much smaller than the
complexity of the resulting subdivision (for example, a BSP of size O(n2) can
produce a subdivision of the space into O(n2) convex cells of Θ(n3) total com-
plexity). For disjoint axis-aligned rectangles, we devise a deterministic BSP-like
partition scheme for constructing a 1

r -cutting of size O(r3/2) in the full version
of this paper.

2 Preliminaries

Overview of our construction of cuttings. We construct an optimal size
cutting for disjoint disks in R3 by combining several layers of hierarchical space
decompositions. We introduce a binary relation between disks (a avoids b), and



474 E. Rafalin, D.L. Souvaine, and C.D. Tóth
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Fig. 1. Disks a and b clipped within a cube σ. The (relative) boundaries ∂a and ∂b
clipped within σ are bold. In (i) a and b do not avoid each other; in (ii) b avoids a, but
a does not avoid b; in (iii) a and b avoid each other but πa ∩ b ∩ σ �= ∅; and in (iv) a
and b avoid each other and πa ∩ b ∩ σ = πb ∩ a ∩ σ = ∅.

call a configuration sparse if the disks mutually avoid each other. For k mu-
tually avoiding disks, we subdivide the space into k + 1 convex polytopes, the
interior of each of which is disjoint from the disks. For mutually avoiding disks,
we use this algorithm recursively to build an 1

r -cutting of size O(r1+δ) for every
fixed δ > 0. Our main algorithm for arbitrary disjoint disks is reminiscent of
a scheme originally introduced by Agarwal and Chazelle [1,6] to construct op-
timal size cuttings for hyperplanes. We partition R3 into simplices recursively
using planes spanned by so-called sparse ε-nets of a constant number of disks.
The size of the resulting 1

r -cutting is bounded by O(r2), which is shown by a
charging scheme. The basis for our charging scheme is that the total number of
nonavoiding pairs cannot increase when the problem in split into subproblems
(even though a disk may be fragmented into many pieces, which can occur in
several subproblems).

Full and sparse configurations. We define a binary relation between disks in
R3. Consider a set B of n disjoint disks in R3. Let πb denote the plane containing
disk b ∈ B, and let ∂b denote the (relative) boundary of b. For two disks a, b ∈ B,
we say that a avoids b with respect to a convex cell σ if πa ∩ ∂b ∩ int(σ) = ∅
(Fig. 1). This relation is not symmetric: It is possible that a avoids b but b does
not avoid a in a cell σ. Note, also, that even if a avoids b in σ, the plane πa may
intersect b ∩ σ (but then, πa intersects ∂b outside of σ).

The multiplicity of a nonavoiding pair (a, b) ∈ B2 with respect to σ is the
number of intersection points of πa ∩ ∂b that lie in int(σ). We measure the
complexity of a set B of disjoint disks relative to the interior of a convex cell
σ by τ(B, σ), which is the sum of multiplicities of all nonavoiding pairs with
respect to σ.

For a convex cell σ, we define Bσ = {b ∈ B : b ∩ int(σ) 	= ∅} to be the
set of disks that intersect the interior of σ, and B̂σ = {b ∩ σ : b ∩ σ 	= ∅} to
be the portions of the disks of Bσ clipped within σ. Letting nσ = |Bσ|, it is
clear that τ(B, σ) = O(n2

σ), since the multiplicity of every pair is bounded by
a constant (depending on their description complexity). We use the following
crucial property of the measure τ .
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Proposition 1. For any subdivision Ξ of a convex cell σ into convex subcells,
we have

∑
ξ∈Ξ τ(B, ξ) ≤ τ(B, σ).

Proof. Every intersection point p ∈ πa∩∂b∩ int(σ) lies in the interior of at most
one subcell ξ ∈ Ξ. Even if p ∈ int(ξ) for some ξ ∈ Ξ, it is counted in τ(B, ξ)
only if disk a intersects int(ξ). ��

The technically most difficult part of the proof of Theorem 1 is the construction
of a subquadratic 1

r -cutting for a set of mutually avoiding disks. It uses sparse
ε-nets and a randomized incremental subdivision scheme. In particular, it uses
two randomized constructions: (1) it chooses a random sample of disks (which
is a sparse ε-net) and (2) it subdivides a cell incrementally along sample disks
in a random order. Our incremental subdivision scheme produces convex cells,
but the benefits of ε-nets hold for simplices only: our construction maneuvers
between convex and simplicial subdivisions.

ε-nets. We use a few basic facts about ε-nets and range spaces in Sections 3 and
4. (For an in-depth overview, refer to [8] or [22]) A range space is a set system
(P,Q) on a ground set P and some subsets Q ⊂ 2P . The VC-dimension of a
range space is the size of the largest subset S ⊂ P such that all 2|S| subsets of S
can be written as S ∩ q for some range q ∈ Q. In this paper, we consider range
spaces (B,Q) where B is the set of geometric objects in Rd and every simplex
σ defines a range qσ = {b ∈ B : b ∩ int(σ) 	= ∅}. It is not difficult to see that if
B is a set of objects of bounded description complexity, then the corresponding
range space (B,Q) has bounded VC-dimension [8,22].

Haussler and Welzl [14] introduced the concept of ε-nets in range spaces. An
ε-net of a finite range space (P,Q), for a constant ε > 0, is a set S ⊂ P such that
for every q ∈ Q with |P ∩q| ≥ ε · |P |, we have S∩q 	= ∅. For every range space of
VC-dimension δ, a Bernoulli sample S ⊂ P , that contains every element p ∈ P
independently at random with probability ( cdε log dε )

−1 for an absolute constant
c > 0, is an ε-net with constant probability [8].

Sparse ε-nets. Chazelle [6] noticed that a random sample drawn from a
bounded VC-dimensional range space (P,Q), |P | = n, is not only an ε-net,
but it may also preserve other properties of P with constant probability. He
considered the range space of hyperplanes intersecting a simplex σ in Rd. We
state this result in broader terms. Assume that we are given a t-uniform hyper-
graph G with e hyperedges2 on the vertex set P . The random sample S ⊂ P
that contains every element p ∈ P independently at random with probability
p = ( cdε log dε )

−1 is expected to span e · pt hyperedges of G. Chazelle showed
that (i) S is an ε-net, (ii) it has size Θ(n · p), and (iii) it spans at most 2e · pt
hyperedges of G with constant probability. We use this observation for t = 2
(that is, when G is a graph defined on B) in Section 4.

2 A t-uniform hypergraph, t ∈ N, is a set system on a ground set (vertex set) where
every set (hyperedge) has t elements. A 2-uniform hypergraph, for instance, is a
simple graph.
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3 Subdivisions for Mutually Avoiding Disks

In this section, we construct in three steps an O(r1+δ) size 1
r -cutting for mutu-

ally avoiding disks for every δ > 0. First, we present a simple algorithm that
subdivides a convex cell into k + 1 convex subcells along k mutually avoiding
disks. Second, we extend this scheme to a randomized algorithm that subdivides
a simplex into k+1 convex subcells along k disks drawn randomly from a set of n
mutually avoiding disks, and partitions the n disks into O(n log k) pieces. Third,
we apply this subdivision hierarchically to construct an 1

r -cutting of size O(r1+δ)
for mutually avoiding disks, where δ > 0 is an arbitrary but fixed constant.

Lemma 1. For k mutually avoiding disks w.r.t. a convex polytope σ in R3, there
is a subdivision of σ into k + 1 convex cell such that the interior of every cell is
disjoint from the disks and every cell is bounded by planes spanned by the disks
and sides of σ.

Extend incrementally every disk bi, i = 1, 2, . . . , k, to a planar polygon wi (wall)
in the plane πi spanned by bi so that the (relative) interior of wi is disjoint from
other disks and previous walls; and its boundary ∂wi lies on the boundary of σ,
another disk, or a previous wall. See the full version of the paper for a detailed
proof.

Subdivision for a subset of disks. Next we subdivide a simplex σ along
the elements of a random sample S ⊂ B of disks. If we compute a subdivision
described in Lemma 1 for cell σ and the k disks in S, then some of the disks
b ∈ B \ S may be split into several fragments. We can deduce an upper bound
on the number of fragments with the following lemma.

Lemma 2. Given a set B of n mutually avoiding disks w.r.t. a simplex σ and
a random sample S ⊂ B of size k. With probability at least 3/4 there is a
subdivision of σ into k + 1 convex cells such that the interior of every cell is
disjoint from every sample disk in S, every cell is bounded by planes spanned by
disks of S and sides of σ, and the total number of fragments of disks of B is
O(n log k).

Proof. Let (B,R) be the range space over B where every planar quadrilateral
domain q defines a range {b ∈ B : b ∩ q 	= ∅}, containing all disks in B that
intersect q. The range space (B,R) has finite VC-dimension. This implies that
with probability at least 3/4, the sample S is an ε-net for (B,R) with some
ε = Ω((log k)/k). In what follows, we assume that S is an ε-net for (B,R).

Label the k sample disks of S by a random permutation as b1, b2, . . . , bk; and
apply the subdivision algorithm described in Lemma 1. It subdivides σ along
polygonal walls, each lying in a plane spanned by a disk of S, into k + 1 convex
cells such that the interior of each cell is disjoint from the sample disks. It remains
to bound the expected number of fragments of disks of B \ S.

We show that the wall erected in plane πi in step i of the incremental sub-
division algorithm is expected to cut at most O(n/i) disks. This implies that
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the expected number of fragments over k steps is O(n log k), and so there is a
permutation where the number of fragments is O(n log k).

Consider the set Bi ⊂ B of disks that intersect the plane πi spanned by bi ∈ S.
Let Li = {b∩ πi : b ∈ Bi} be the set of intersection segments of these disks with
the polygon Δi = σ ∩ πi. Since bi avoids every disk in Bi, every segment in Li
connects two points on the boundary of the polygon Δi = σ∩ πi. We introduce
a partial order on the segments of Li: we say that �1 ≺ �2 if �1 separates bi and
�2 in Δi. Note that Δi is a triangle or a quadrilateral (since σ is a simplex),
and each segment in L connects two sides of Δi. Select O(1/ε) = O(k/ log k)
quadrilaterals in πi, each containing at least εn segments of Li. Since S is an
ε-net for (B,R), every quadrilateral contains a segment bj ∩Δi, bj ∈ S.

At step i, a disk b ∈ B \ S is split into two fragments if the segment b ∩Δi
lies in a quadrilateral that is not separated from bi by any previous sample disk
bj, j < i. Each of the O(1/ε) = O(k/ log k) quadrilaterals contains a sample
disk bj , j < i, with probability at least (i − 1)/k. The expected number of
quadrilaterals not separated from bi is O((1/ε)/i)) = O(k/(i log k)). Hence, the
expected number of disks fragmented in step i is O(1/(εi)) ·O(εn) = O(n/i). ��

Cuttings for mutually avoiding disks in a simplex. We are now ready to
prove the main result of this section.

Lemma 3. For every δ > 0, there is a constant c(δ) with the following property.
Given a set B of n mutually avoiding disks w.r.t. a simplex σ0 in R3, there is a
subdivision of σ0 into c(δ)n1+δ simplices such that the interior of every simplex
is disjoint from any disk of B.

Proof. We show that the following algorithm computes a required subdivision.
The input is a simplex σ0 and a set B of mutually avoiding disks w.r.t. σ0. Let
k > 0 be a constant to be specified later. Put i := 0 and C0 := {σ0}. For every
i ∈ N, Ci will be a subdivision of σ0 into convex cells (not necessarily simplices).
Repeat the following step until all cells in Ci are disjoint from any disk in B for
some i ∈ N.

We compute a subdivision Ci+1, which is a refinement of Ci. Cells of Ci that
are already disjoint from the disks are not refined. Refine every convex cell σ ∈ Ci
where Bσ 	= ∅ as follows. With probability at least 3/4, a random sample Sσ
of size c1k log k drawn from Bσ is an 1

k -net for the range space (Bσ, Q) defined
in Section 2, where c1 > 0 is an absolute constant (which depends only on the
VC-dimension of the range space). Apply Lemma 2 for the disks Bσ and the
initial simplex σ0. With probability at least 3/4, we obtain a subdivision Dσ of
σ0 into at least |Sσ| = c1k log k convex cells such that the interior of every cell
is disjoint of the sample disks, and the disks of B̂σ are fragmented into at most
c2nσ log k pieces, with another absolute constant c2 > 0.

We say that a cell σ′ ∈ D0, σ′ ⊂ σ0, is heavy if it intersects more than
nσ/(c2 log k)α disks of B̂σ, where α satisfies (c2 log k)α ≤ k (or, equivalently,
α ≤ log k/ log(c2 log k)). At most (c2 log k)α+1 cells of D0 are heavy, since there
are at most c2nσ log k fragments of B̂σ over all cells of Dσ. Triangulate every
heavy cell σ′ ∈ D0. Since Sσ is an 1

k -net for Bσ, each simplex in the triangulation
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of σ′ intersect at most nσ/k ≤ nσ/(c2 log r)α disks of Bσ. Since every cell of Dσ is
bounded by at most c1k log k+4 faces (by Lemma 2), its triangulation consists of
at most 4c1k log k simplices. (Here we use Euler’s polyhedron theorem pertaining
to the surface of a polytope in 3-space.) We obtain a subdivision of σ0 into at
most c1k log k+(c2 log k)α+1(4c1k log k) ≤ c1(4cα+1

2 +1)k log3 k = O(k logα+1 k)
convex cells, each containing at most nσ/(c2 log k)α fragments of B̂σ. By clipping
these cells in σ, we have a subdivision Eσ = {σ ∩ σ′ : σ ∈ Dσ} of σ into
O(k logα+1 k) convex cells. This completes the description of the refinement of
a cell σ ∈ Ci with Bσ 	= ∅.

The recursion terminates with a subdivision C = Ci of σ0 into convex cells,
each of which is empty of disks. Triangulate each convex cell of C. Return the
resulting subdivision F of σ0. This completes the description of our algorithm.

Next, we bound the number of simplices in F . We can represent the convex
cells in all subdivisions Ci by a rooted tree: The root corresponds to σ0; and
if our algorithm subdivides a cell σ ∈ Ci, then the children of σ correspond to
the cells of Eσ. Notice that for every σ ∈ Ci, we have nσ ≤ n/(c2 log k)iα. This
implies that the depth of the recursion tree is at most logn/ log(c2 log k)α. Each
convex cell in C is bounded by at most c1k log k · logn/ log(c2 log k)α = O(log n)
planes. The triangulation of a cell of C creates at most O(log n) simplices, and
so F consists of O(|C| logn) simplices. It remains to bound the size of C. Since
we subdivide cells hierarchically until every cell is empty of disks of B, the size
of C is proportional to the total number of fragments of B produced during the
algorithm.

Consider a recursion step. A subdivision along disks of an 1
k -net Sσ of a cell

σ ∈ Ci increases the number of fragments by a factor of at most c2 log k (c.f.,
Lemma 2). The triangulation of heavy cells also increases the number of frag-
ments: There are up to (c2 log k)α+1 heavy cells, each heavy cell is triangulated
into at most 4c1k log k simplices, and each simplex contains at most nσ/k frag-
ments. This gives an upper bound of

(c2 log k)α+1 · 4c1k log k · nσ
k

= nσ · 4c1cα+1
2 logα+2 k

on the number of fragments in the resulting simplices. That is, the refinement of
Ci into Ci+1 increases the number of fragments by a factor of at most c3 logα+2 k,
where c3 > 0 is an absolute constant. Throughout the algorithm, the total
number of fragments produced in logn/ log(c2 log k)α recursive steps is at most

n · (c3 logα+2 k)
log n

log(c2 log k)α = n · n
log(c3 logα+2 k)
log(c1 log k)α ≤ n1+

log c3+(α+2) log log k
log c1+α log log k ≤ n1+δ,

if α is sufficiently large. We can set α, α ≤ log k/ log(c2 log k), to be arbitrarily
large, if k is a sufficiently large integer. This completes the proof of Lemma 3. ��

Corollary 1. For every δ > 0, there is a constant c(δ) with the following prop-
erty. For every set B of n mutually avoiding disks and every r ∈ N, there is a
1
r -cutting of size c(δ)r1+δ .
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Proof. Perform the recursive algorithm in the proof of Lemma 3 until the interior
of every cell intersects at most n/r disks. The result follows by an analogous
argument. �

4 Optimal Cuttings for Disjoint Disks

In this section, we prove Theorem 1 and construct an 1
r -cutting of size O(r2)

for a set B of m mutually disjoint disks in R3 and an r ∈ N. We use a hierar-
chical partition scheme of Agarwal [1] and Chazelle [6], originally designed for
hyperplane arrangements.

Let σ0 be a bounding simplex of all input disks in R3. We construct a sub-
division recursively, in stages. In stage k ∈ N, we have a subdivision Dk of a
bounding volume into simplices, initially D0 = {σ0}. Recall that in Section 2,
we defined τ(B, σ) =

∑
a,b∈B |πa ∩ ∂b ∩ int(σ)|, the total number of points in

the interior of σ that lie on a boundary of one disk and in the plane spanned by
another disk; and it is at most quadratic in the number nσ of disks that intersect
σ, that is, τ(B, σ) = O(n2

σ). For a small constant c0 > 0, to be specified later
we distinguish three types of cells:

– σ ∈ Dk is dormant if nσ < n/rk+1
0 (ie, it intersects less than n/rk+1

0 disks of
B);

– σ ∈ Dk is full if nσ ≥ n/rk+1
0 and τ(B, σ) ≥ c0 · n2

σ;
– σ ∈ Dk is sparse if nσ ≥ n/rk+1

0 and τ(B, σ) < c0 · n2
σ.

Our algorithm proceeds as follows. In stage k, we leave every dormant cell intact
and refine the full and sparse cells of Dk to obtain the next subdivision Dk+1.
Consider every full or sparse simplex σ ∈ Dk, and define the (undirected) graph
Gσ on Bσ that has an edge between two disks a, b ∈ Bσ if they do not avoid each
other. By our remarks on sparse ε-nets in Section 2, if we pick every element of
Bσ independently at random with probability p = cdr0 log(dr0)/nσ, then with
positive probability we obtain a 1

r0
-net Sσ ⊂ Bσ of size Θ(dr0 log(dr0)) such

that τ(Sσ, σ) = Θ(p2τ(Bσ, σ)).
If σ is full, then compute the full arrangement of the planes spanned by Sσ

within σ and triangulate the resulting convex cells. We obtain a subdivision of σ
into O(r30 log3 r0) simplices. If σ is sparse, we can apply Lemma 2 for Bσ and σ.
Indeed, if c0 < 1/r20, then τ(Sσ, σ) = 0 with constant probability. By Lemma 3,
we obtain a subdivision of σ into O((r0 log r0)1+δ) simplices, for some δ < 1.
Note that O((r0 log r0)1+δ) is less than r20/2 if r0 is a sufficiently large constant.
This is the refinement of σ into simplices in Dk+1. Iterate until the resulting
subdivision is a 1

r0
-cutting. The analysis of this algorithm is based on a charging

scheme, reminiscent of [6,7,8].

Lemma 4. Dk is an O(r2k0 ) size 1/rk0 -cutting for B.

Proof. Consider the subdivision Dk, for k ∈ N. It is easy to show (by induction
on k) that every simplex σ ∈ Dk intersects at most n/rk0 and at least n/rk+1

0
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disks in B, and so Dk is an 1/rk0 -cutting for B. It remains to estimate the size
of Dk.

First, consider the full simplices of Dk and those dormant simplices of Dk
produced by subdividing a full simplex of Dj , for some 1 ≤ j ≤ k. A full
simplex σ ∈ Dj intersects at least n/rj+1

0 disks, and since it is full, we have
τ(B, σ) ≥ c0(n/r

j+1
0 )2. Since we initially have τ(B, σ0) = O(n2), at stage j at

most n2/(c0(n/r
j+1
0 )2) = r

2(j+1)
0 /c0 full simplices of Dj are partitioned, and

each of them produces O(r30 log3 r0) dormant simplices. In the first k stages,
the total number of dormant simplices produced by full simplices is at most
∑k
j=1(r

2(j+1)
0 /c0)O(r30 log3 r0) = O(r2k+5

0 log3 r0/c0).
Next, consider the sparse simplices of Dk and those dormant simplices of Dk

produced by subdividing some sparse ones. We charge every sparse simplex to
its closest full ancestor or to σ0 (even if σ0 is sparse). A full simplex σ ∈ Dj
(and σ0) may produce O(r30 log3 r0) offsprings, but every sparse simplex produces
at most r20/2 offsprings. So each sparse simplex σ ∈ Dj (resp., σ0) leads to at
most O(r30 log3 r0) ·

∑∞
i=0(r

2
0/2)i = O(r50 log3 r0) sparse simplices and dormant

simplices produced by sparse ones. Hence Dk is a 1/rk0 -cutting and it consists of
r2k0 · O(r50/c0 log3 r0) simplices. Since r0 and the constant of proportionality do
not depend on k, we can consider O(r50/c0 log3 r0) as a constant. We conclude
that Dk is a 1

r -cutting of size O(r2) for k = �log r/ log r0�. We give a matching
lower bound in the full version of the paper. ��

5 Open Problems

In our proof, we assumed that the disks are pairwise disjoint. For possibly in-
tersecting planar objects in R3, the smallest 1

r -cutting may have Θ(r3) size, the
size of a 1

r -cutting for a plane arrangement in R3. However, if just a few pairs
of disks intersect, our results are likely to extend in the sense of Pellegrini [28]:
we conjecture that for n disks in R3 and a parameter r, there is an 1

r -cutting of
size O(r2 + (K/n3)r3), where K is the number of vertices of the arrangement of
the disks.

We leave higher dimensional generalizations as an open problem: what is the
minimum value fd(r) such that any finite set of disjoint objects in Rd, each
having bounded description complexity and lying in a hyperplane, (e.g., disjoint
(d− 1)-balls in Rd) admits a 1

r -cuttings of size fd(r)?
We do not know if our results hold if we drop the condition that each object

in R3 is planar: is there an 1
r -cutting of size O(r2) for any finite set of disjoint

objects in R3, each having constant description complexity and lying in a 2-
dimensional algebraic variety (e.g., disjoint spherical caps)? We do not even
know if there is an 1

r -cutting of size O(r3) for any finite set of 2-dimensional
algebraic varieties of constant description complexity (it is known only that a
pseudo-cutting of size O(r3 polylog r) always exists).
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15. Hoffmann, M., Tóth, Cs.D.: Connecting points in the presence of obstacles in the
plane. In: Proc. 14th Canadian Conf. Comput. Geom, pp. 63–67 (2002)

16. Karger, D.R., Klein, P.N., Tarjan, R.E.: A randomized linear-time algorithm to
find minimum spanning trees. J. ACM 42, 321–328 (1995)

17. Koltun, V.: Almost tight upper bounds for vertical decompositions in four dimen-
sions. J. ACM 51(5), 699–730 (2004)

18. Koltun, V.: Sharp bounds for vertical decompositions of linear arrangements in
four dimensions. Discrete Comput. Geom. 31(3), 435–460 (2004)

19. Koltun, V., Sharir, M.: Curve-sensitive cuttings. SIAM J. Comput. 34(4), 863–878
(2005)
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Abstract. Connectivity augmentation problems ask for adding a set of
at most k edges whose insertion makes a given graph satisfy a speci-
fied connectivity property, such as bridge-connectivity or biconnectivity.
We show that, for bridge-connectivity and biconnectivity, the respective
connectivity augmentation problems admit problem kernels with O(k2)
vertices and links. Moreover, we study partial connectivity augmentation
problems, naturally generalizing connectivity augmentation problems.
Here, we do not require that, after adding the edges, the entire graph
should satisfy the connectivity property, but a large subgraph. In this set-
ting, two polynomial-time solvable connectivity augmentation problems
behave differently, namely, the partial biconnectivity augmentation prob-
lem remains polynomial-time solvable whereas the partial strong connec-
tivity augmentation problem becomes W[2]-hard with respect to k.

1 Introduction

Connectivity augmentation problems on undirected and directed graphs have as
input a graph G = (V,E), a set E′ of edges, and a non-negative integer k, and
ask for a set E′′ of at most k edges from E′ such that (V,E ∪ E′′) satisfies a
specified connectivity property. The edges in E′ are called the links. Eswaran
and Tarjan [2] introduced connectivity augmentation problems and described
their numerous applications.

We use G = (V,E) and D = (V,A) to denote undirected and directed graphs.
A path from vertex u1 to vertex ul in G = (V,E) (or D = (V,A)) is a sequence of
edges {u1, u2}, {u2, u3}, . . ., {ul−1, ul} (or arcs (u1, u2), (u2, u3), . . ., (ul−1, ul)).
A cycle is a path with u1 = ul.

A vertex u in an undirected graph is called a cut-vertex if there are two ver-
tices v, w with v 	= u and w 	= u such that every path from v to w contains u.
If an undirected graph G is connected and has no cut-vertex, then G is bicon-
nected. A bridge in an undirected graph is an edge {u, v} such that every path
� Supported by the Deutsche Forschungsgemeinschaft (DFG), Emmy Noether research
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between u and v contains {u, v}. If G is connected and has no bridge, then G
is bridge-connected. A directed graph D = (V,A) is strongly connected if, for
all pairs of vertices u and v, there is a path from u to v. The connected (bicon-
nected, bridge-connected, strongly connected) components of a graph are its max-
imal connected (biconnected, bridge-connected, strongly connected) subgraphs.
We consider here two connectivity augmentation problems, namely, Bridge-

Connectivity Augmentation (BCA) and Biconnectivity Augmentation

(BIA), where we are asked to add at most k links to make the given graph bridge-
connected or biconnected.

There is a long history of research dealing with BCA and BIA starting in
1976 with the work of Eswaran and Tarjan [2]. They showed that, in the case
that E′ is complete, that is, graph (V,E′) is a complete graph, both problems
are polynomial-time solvable. In 1981, Frederickson and JáJá [4] proved the
NP-completeness of both problems if E′ is incomplete. Motivated by the NP-
completeness, the approximability of the optimization versions of these problems
has been extensively studied in the literature. Frederickson and JáJá [4] gave
polynomial-time factor-2 approximation algorithms for both problems. For BCA,
Nagamochi [8] improved the approximation factor to 1.875. Later, Even et al. [3]
presented a factor-1.5 approximation algorithm for BCA. In case of BIA, Khuller
and Thurimella [5] improved the running time of the factor-2 approximation
algorithm in [4]. In an unpublished manuscript, Kortsarz and Nutov [7] claimed
a polynomial-time factor- 12

7 algorithm for BIA. On the negative site, Kortsarz et
al. [6] proved that there exists an ε > 0 for which it is NP-hard to approximate
BCA and BIA within a factor of 1 + ε.

Concerning the parameterized complexity of these problems, we are only
aware of one result due to Nagamochi [8]. Since the bridge-connected components
of a graph form a tree, we may assume that the input graph of a BCA-instance is
a tree by contracting these components. Nagamochi [8] showed that BCA is fixed-
parameter tractable with respect to the number of leaves � in the given tree. More
precisely, there is an algorithm solving this problem in O(��+1 log � · (|V |+ |E′|))
time. Since the number of leaves provides a lower bound on the solution size k,
BCA is fixed-parameter tractable with respect to k. Nothing has been known
concerning the kernelization of these problems. Problem kernelization is one of
the most important contributions of fixed-parameter algorithmics to practical
computing [1,9]. A kernelization is a polynomial-time algorithm that transforms
a given instance I with parameter k of a problem P into a new instance I ′

with parameter k′ ≤ k of P such that the original instance I is a yes-instance
with parameter k iff the new instance I ′ is a yes-instance with parameter k′

and |I ′| ≤ g(k) for a function g. The instance I ′ is called the problem kernel. We
complement the result of Nagamochi with a problem kernel with O(k2) vertices
and links for BCA and BIA.

Furthermore, we study partial connectivity augmentation problems, a nat-
ural generalization of the connectivity augmentation problems, where we have
as input a graph G = (V,E), a set E′ of links, and two non-negative integers k, Φ
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and ask for a subset E′′ of E′ with |E′′| ≤ k such that graph (V,E ∪ E′′) has
a subgraph that contains at least Φ vertices and satisfies the given connectiv-
ity property. Clearly, if Φ = |V |, then we have the connectivity augmentation
problems. We consider two partial connectivity augmentation problems, Par-

tial Bridge-Connectivity Augmentation and Partial Strong Connec-

tivity Augmentation. For both connectivity properties, their corresponding
non-partial connectivity augmentation problems are solvable in polynomial-time
if E′ is complete [2]. We show in Sect. 5 that Partial Bridge-Connectivity

Augmentation with a complete link set remains polynomial-time solvable but
Partial Strong Connectivity Augmentation with a complete link set
is W[2]-hard, that is, it is very unlikely that this problem is fixed-parameter
tractable with respect to the parameter k.

Most proofs are deferred to a long version of this paper.

2 Preliminaries

Parameterized complexity is a two-dimensional framework for studying the com-
putational complexity of problems [1,9]. One dimension is the input size n (as
in classical complexity theory) and the other one the parameter k (usually a
positive integer). A problem is called fixed-parameter tractable (fpt) if it can be
solved in f(k)·nO(1) time, where f is a computable function only depending on k.
A core tool in the development of fixed-parameter algorithms is polynomial-time
preprocessing by data reduction rules, often yielding a kernelization. Herein, the
goal is, given any problem instance I with parameter k, to transform it in poly-
nomial time into a new instance I ′ with parameter k′ such that the size of I ′ is
bounded from above by some function only depending on k, k′ ≤ k, and (I, k)
is a yes-instance iff (I ′, k′) is a yes-instance. A data reduction rule is correct if
the new instance after an application of this rule is a yes-instance iff the original
instance is a yes-instance. Throughout this paper, we call a problem instance
reduced if the corresponding data reduction rules cannot be applied anymore.
A formal framework to show fixed-parameter intractability was developed by
Downey and Fellows [1] who introduced the concept of parameterized reduc-
tions. A parameterized reduction from a parameterized language L to another
parameterized language L′ is a function that, given an instance (I, k), computes
in f(k) · nO(1) time an instance (I ′, k′) (with k′ only depending on k) such that
(I, k) ∈ L ⇔ (I ′, k′) ∈ L′. The basic complexity class for fixed-parameter in-
tractability is W[1] as there is good reason to believe that W[1]-hard problems
are not fixed-parameter tractable [1].

Throughout this paper, we set n := |V | and m := |E′| for a given graph G =
(V,E) and a given link set E′. For a graph G, we also use V (G) and E(G)
to denote its vertex and edge set, respectively. The neighborhood N(v) of a
vertex v ∈ V is the set of vertices that are adjacent to v. The degree of a
vertex v, denoted by deg(v), is the size of N(v).
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Fig. 1. Example of contracting bridge-connected components of a given graph. The
links are drawn as dashed lines.

3 The Bridge-Connectivity Augmentation Problem

The main result of this section is a data reduction for Bridge-Connectivity

Augmentation that leads to a quadratic-size problem kernel. Given an instance
of BCA, we can assume that the input graph G is a tree [2,4,3]: Each bridge-
connected component of G = (V,E) can be contracted into a single vertex by
contracting all edges in this component, resulting in a tree. The set of links has
to be adapted accordingly. The contraction of the bridge-connected components
can be done in O(|V | + |E|) time [11]. See Fig. 1 for an example. Hence, in the
following, the input instance is always denoted by T .

In contrast to the tree edges, denoted by {u, v}, we denote links by (u, v).
We use pu,v to denote the uniquely determined path between two vertices u
and v in T . In the course of the data reduction process, if a link (u, v) ∈ E′

is added to a solution E′′, then the vertices from the path pu,v form a bridge-
connected component and we contract all edges in this component, obtaining
a tree again. We say a link (u, v) covers an edge e if e lies on pu,v. For an
edge e ∈ E, we use l(e) to denote the set of links covering e. A link (u, v) ∈ E′

is called a shadow if there exists a link (u′, v′) ∈ E′ with V (pu,v) � V (pu′,v′).
Let NE′(u) := {v | (u, v) ∈ E′}. For a vertex v ∈ V and an edge e ∈ E, we
use Tv,e to denote the subtree of (V,E \ {e}) that contains v.

The following observation provides the starting point for our kernelization:

Lemma 1 ([2]). Let L(T ) be the set of leaves of the tree T of a BCA-instance.
Every solution of this instance contains at least |L(T )|/2 many links, that is,
k ≥ |L(T )|/2.

We can conclude that every yes-instance of BCA contains at most 2k leaves and,
also, at most 2k − 1 internal vertices with degree at least three. It remains to
upper-bound the number of internal vertices of degree two. If we can bound the
maximum length of the paths that consist solely of degree-2 vertices, then we
can achieve an upper bound on the number of degree-2 vertices. To this end, we
apply four data reduction rules. We begin with three data reduction rules that
are also used in [3,8] and whose correctness is easy to verify.
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Shadow Deletion: Delete all shadows in E′.
Unit Link: If there is an edge e ∈ E with l(e) = {(u, v)}, then contract pu,v
and decrease the parameter k by one.
Covered Edge: If l(e1) ⊆ l(e2) for two edges e1, e2 ∈ E, then contract e2.

Lemma 2. The above three rules can be executed in O(n ·m3 + n3 ·m) time.

Before we present the fourth data reduction rule, we show some structural prop-
erties of a BCA-instance that is reduced with respect to the above three rules. In
particular, we show that, in a reduced instance, the links over a path consisting
solely of degree-2 vertices have some “consecutiveness” property, which provides
the basis for the fourth data reduction rule.

Lemma 3. Let (T = (V,E), E′, k) be a reduced instance with respect to the
above three rules, let v ∈ V be a degree-2 vertex in T , and let e, e′ be the edges
incident to v. Then, there exists at least one link (v, x) in E′ with x ∈ V (Tv,e)
and at least one link (v, y) in E′ with y ∈ V (Tv,e′).

Lemma 4. Let (T = (V,E), E′, k) be a reduced instance with respect to the
above three rules. Then, for every link (u, v) ∈ E′, it holds that |E(pu,v)| ≥ 2.

Lemma 5. Let (T = (V,E), E′, k) be a reduced instance with respect to the above
three rules. Consider a path P = {u, v1}, {v1, v2}, . . . , {vl, w} in T with deg(vi) =
2 for all 1 ≤ i ≤ l, deg(u) ≥ 3, and deg(w) ≥ 3. Let E′

v denote the set of links
with both endpoints in {v1, v2, . . . , vl}. If E′

v 	= ∅, then there exists an integer N
with 1 ≤ N ≤ l − 1 such that E′

v = {(vi, vi+N ) | 1 ≤ i ≤ l −N} and there exists
no link (x, y) with x ∈ V (Tu,{u,v1}) and y ∈ V (Tw,{vl,w}).

The fourth data reduction rule restricts the length of paths that consist solely
of degree-2 vertices. By Lemma 5, the links with both endpoints from such a
path admit a “consecutiveness” property. By making use of this property, the
next data reduction rule replaces a long degree-2 path by a shorter “equivalent”
degree-2 path.

Degree-2-Path: Let (T = (V,E), E′, k) be a reduced instance with respect
to the above three rules. Let P = {u, v1}, {v1, v2}, . . . , {vl, w} be a path in T
such that deg(vi) = 2 for all 1 ≤ i ≤ l, deg(u) ≥ 3, and deg(w) ≥ 3 and
let E′

v denote the set of links with both endpoints from v1, v2, . . . , vl. If there
exists an integer N with l ≥ 2N such that E′

v = {(vi, vi+N ) | 1 ≤ i ≤ l − N},
then proceed as follows: Let c := � lN � − 1 and d := (l mod N). Replace P by
a path P ′ = {u, x1}, {x1, x2}, . . . , {xN+d, w}. Remove all links in E′

v from E′

and add the links (xi, xi+N ) for 1 ≤ i ≤ d to E′. Replace every link (vi, y)
with y ∈ V (Tu,{u,v1}) by the link (xi, y) and replace every link (vi, y) with y ∈
V (Tw,{vl,w}) by the link (xN+d−(l−i), y). Finally, decrease parameter k by c.

See Fig. 2 for an example of the application of the Degree-2-Path rule.

Lemma 6. The Degree-2-Path rule is correct and can be executed in O(n2+nm)
time.
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Fig. 2. Example for the Degree-2-Path rule for N = 3, l = 11, c = 2, and d = 2

Proof. Let (T = (V,E), E′, k) be a BCA-instance reduced with respect to the
first three rules and let (Ta, E′

a, ka) be the resulting instance after one application
of the Degree-2-Path rule. Let P = {u, v1}, {v1, v2}, . . . , {vl, w} be the path for
which the conditions of the Degree-2-Path rule are fulfilled and let E′

v be the
set of links with both endpoints from v1, . . . , vl. By Lemma 5, either E′

v = ∅
or there is an integer N with E′

v = {(vi, vN+i) | 1 ≤ i ≤ l − N} and there is
no link between a vertex in V (Tu,{u,v1}) and a vertex in V (Tw,{vl,w}). Since the
Degree-2-Path rule is applicable to P , we know E′

v 	= ∅ and l ≥ 2N . Then, we
have c = � lN � − 1, d = (l mod N), and ka = k − c. We show that (T,E′, k)
is a yes-instance if and only if (Ta, E′

a, ka) is a yes-instance. The correctness of
the Degree-2-Path rule then follows by induction on the number of applications
of the rule. Here, we give only the proof of “⇒”-direction. The proofs of “⇐”-
direction and the running time are omitted due to lack of space.

“⇒”: Let E′′ ⊆ E′ with |E′′| ≤ k be a solution for the original instance. We
first show some properties of E′′ ∩ E′

v and then construct a solution E′′
a for the

new instance with |E′′
a | ≤ ka from E′′.

We can assume that E′′ ∩E′
v contains only pairwise “non-overlapping” links,

that is, there are no two links (vi, vi+N ), (vj , vj+N ) ∈ E′′∩E′
v with i < j < i+N :

If there are two links (vi, vi+N ), (vj , vj+N ) ∈ E′′ ∩ E′
v with i < j < i + N , then

we construct another solution from E′′ by replacing (vj , vj+N ) by (vi+N , z),
where z = vi+2N or z is a vertex from Tw,{vl,w}. Link (vi+N , z) exists due to
Lemma 3. Obviously, this yields a solution of the same size (or even of smaller
size if (vi+N , z) is already part of the solution).

Next, we show that c ≤ |E′′ ∩ E′
v| ≤ c + 1. On the one hand, since every

link in E′
v covers exactly N edges and the links in E′′ ∩ E′

v are pairwise non-
overlapping, there can be at most � l−1

N � = � (c+1)N+d−1
N � = c + 1 pairwise non-

overlapping links in E′′ ∩ E′
v. On the other hand, all edges of path P which

lie between vertex vN and vertex vl−N+1 have to be covered by links in E′
v.

This means that E′′ has cardinality at least � l−2N+1
N � = � (c+1)N+d−2N+1

N � =
(c− 1) + �d+1

N � = c.
In the following, let il := max{i | (y, vi) ∈ E′′ ∧ y ∈ V (Tu,{u,v1})} and ir :=

min{i | (vi, z) ∈ E′′ ∧ z ∈ V (Tw,{vl,w})}. We distinguish two cases, namely,
|E′′ ∩ E′

v| = c and |E′′ ∩ E′
v| = c+ 1, and construct in both cases a solution for

the new instance.
In the first case, we can assume that E′′ ∩E′

v = {(vil , vil+N ), (vil+N , vil+2N ),
. . ., (vil+(c−1)N , vil+cN )}. We construct the new solution E′′

a from E′′ as fol-
lows: We replace every link (y, vi) ∈ E′′ by a link (y, xi). Note that, since the
given instance is reduced with respect to the first three rules, the existence
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of the link (y, vi) implies that i < N ≤ N + d and, thus, the link (y, xi)
exists in E′

a. The links (vi, z) ∈ E′′ with z ∈ V (Tw,{vl,w}) are also replaced
by links (xN+d−(l−i), z). With the same reason as above, links (xi, z) exist
in E′

a. Finally, we remove all links in E′′ ∩ E′
v from E′′. The resulting set E′′

a

is then a solution for the new instance. Since |E′′ ∩ E′
v| = c in this case, we

have |E′′
a | ≤ ka. Obviously, all edges of Ta that are not between the new ver-

tices x1, . . . , xN+d are covered. To show that the edges between the new ver-
tices are also covered, observe that the edges on the path between x1 and xil
and the edges on the path between xN+d−(l−ir) and xN+d are covered by the
links (y, xil) with y ∈ V (Tu,{u,v1}) and (xN+d−(l−ir), z) with z ∈ V (Tw,{vl,w})
that replace the links (y, vil) and (vir , z), respectively. Then, it suffices to show
that N + d− (l− ir) ≤ il. Since E′′ is a solution of the non-reduced instance, we
get il+ cN ≥ ir. This is equivalent to il ≥ ir− cN = N + d− cN −N − d+ ir =
N + d− (l − ir).

In the second case, we assume that E′′ ∩ E′
v = {(vil , vil+N ), (vil+N , vil+2N ),

. . ., (vil+cN , vil+(c+1)N )}. We construct the solution E′′
a for the new instance

from E′′ as follows: We replace every link (y, vi) ∈ E′′ with y ∈ V (Tu,{u,v1}) by
a link (y, xi). The links (vi, z) ∈ E′′ with z ∈ V (Tw,{vl,w}) are also replaced by
links (xN+d−(l−i), z). We remove all links in E′′ ∩ E′

v from E′′. Finally, we add
link (xil , xil+N ) to E′′. With a similar argument, we can show that the resulting
set is a solution of the new instance. ��

Next, we show that a BCA-instance reduced with respect to the four data re-
duction rules has O(k2) vertices and O(k2) links. The key point in the following
is to upper-bound the number of the internal vertices with degree two. Herein,
we consider the paths formed by degree-two vertices. The next two lemmas are
used to show the upper bounds on the number and the length of such paths.
The first one is due to Even et al. [3] and shows that there is no such degree-two
vertex path between a leaf and an internal vertex of degree at least three.

Lemma 7 ([3]). Let (T,E′, k) be a BCA-instance to which the Shadow Deletion
rule, the Unit Link rule, and the Covered Edge rule cannot be applied. Let v be
a leaf of T and u be the parent of v. Then, deg(u) ≥ 3.

In the next lemma, we upper-bound the length of a path in a reduced instance
that consists of degree-two vertices. Herein, we use L(T ) to denote the set of
leaves in tree T .

Lemma 8. Let (T,E′, k) be a reduced BCA-instance and let P ={u, v1}, {v1, v2},
. . ., {vl, w} be a path in T with deg(u) ≥ 3, deg(w) ≥ 3, and deg(vi) = 2 for
all 1 ≤ i ≤ l. Let Lu := L(Tu,{u,v1}) and Lw := L(Tw,{vl,w}). Then,

(1) there are at most 2|Lu|+2|Lw| links that have exactly one endpoint in VP :=
{v1, v2, . . . , vl}.
(2) l ≤ 4 ·min(|Lu|, |Lw|).
Proof. In the following, we use Tu and Tw to denote Tu,{u,v1} and Tw,{vl,w},
respectively, and consider them as two rooted trees with roots u and w, respec-
tively. For a vertex x in Tu or Tw, we use Tx to denote the subtree of Tu or Tw
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rooted at x. Moreover, we use Au and Aw to denote the set of internal vertices
of degree at least 3 in Tu and Tw.

The key for proving the lemma is the following observation: There exist at
most |Au| + |Lu| links in E′ with one endpoint in Tu and one endpoint in VP
and there exist at most |Aw| + |Lw| links in E′ with one endpoint in Tw and
one endpoint in VP . Here, we prove this observation for Tu. Consider a degree-2
vertex x in Tu. By Lemma 3, there exists a link (x, y) ∈ E′ with y ∈ V (Tx).
The existence of the link (x, y) then excludes any link (a, b) with a ∈ V (Ty)
and b ∈ VP , since, otherwise, (x, y) would be a shadow and the Shadow Deletion
rule would be applied. In this way, every degree-2 vertex x in Tu “blocks” at
least one vertex from Tx from building links with the vertices in VP . Thus, by
a simple calculation, we arrive at the |Au|+ |Lu|-bound on the number of links
between the vertices in Tu and the vertices in VP .

From the above observation, we know that there are at most |Au| + |Lu| +
|Aw| + |Lw| links with exactly one endpoint in VP . Since |Au| ≤ |Lu| − 1
and |Aw| ≤ |Lw| − 1, the first part of the lemma follows.

To prove the second part of the lemma, we distinguish two cases. First, sup-
pose that there exists at least one link (x, y) ∈ E′ with x ∈ V (Tu) and y ∈ V (Tw).
Then, since the instance is reduced with respect to the Shadow Deletion rule,
there is no link in E′ between two vertices in VP . By Lemma 3, for every ver-
tex vi in VP , there are at least two links (vi, a), (vi, b) ∈ E′ with a ∈ V (Tu)
and b ∈ V (Tw). According to the above observation, there are at most 2|Lu| − 1
(or 2|Lw| − 1) links between VP -vertices and the vertices in V (Tu) (or V (Tw)).
Therefore, |VP | ≤ min(2|Lu| − 1, 2|Lw| − 1).

In the second case, there is no link (x, y) ∈ E′ with x ∈ V (Tu) and y ∈ V (Tw).
Let vil be the vertex in VP such that there exist a link (vil , z) ∈ E′ with z ∈
V (Tu) and, for all il ≤ i ≤ l, there is no link (vi, z) ∈ E′ with z ∈ V (Tu). From
the above observation, we know il ≤ 2|Lu|−1. By Lemma 3 and the fact that the
instance is reduced with respect to the Degree-2-Path rule, for every vertex vi
with il ≤ i ≤ l, there is a link (vi, vj) ∈ E′ with 1 ≤ j ≤ il. Since the instance is
reduced with respect to the Shadow Deletion rule, there cannot be two vertices
from {vil+1, . . . , vl} which form two links with one vertex from {v1, . . . , vil}, we
can conclude l ≤ 2il ≤ 4|Lu| − 2. Obviously, the same argument can also be
applied to obtain l ≤ 4|Lw| − 2. The second part of the lemma follows. ��

Now, we prove the size bound of the problem kernel for BCA.

Theorem 1. Bridge-Connectivity Augmentation admits a problem ker-
nel with O(k2) vertices and O(k2) links.

4 The Biconnectivity Augmentation Problem

In this section, by studying Biconnectivity Augmentation (BIA), we deal
with a more general problem setting than in the previous section. Hence, based on
the previous section, we extend and refine our kernelization technique introduced
there. As shown by Frederickson and JáJá [4], we can assume that the input
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Fig. 3. A graph together with its block tree. The cut-vertices are colored gray and the
block-vertices are drawn as rectangles.

graph is a so-called block tree. A block tree T = (VT , ET ) is a tree over the
vertex set VT := B∪C with B ∩C = ∅ where the leaves of T form a subset of B
and the edges in ET have one endpoint from B and one endpoint from C.

We can easily compute a block tree from a given undirected and connected
graph G = (V,E): Identify B as the set of biconnected components of G and C
as the set of cut-vertices of G. Insert an edge between a biconnected component
and a cut-vertex into ET if the cut-vertex belongs to the biconnected component.
In the following, the vertices in B are called block-vertices and the vertices in C
are called cut-vertices. See Fig. 3 for an example of a graph and its block tree.

Eswaran and Tarjan [2] gave a lower bound on the size of the solutions of a
BIA-instance.

Lemma 9 ([2]). If (T,E′, k) is a yes-instance of BIA, then k ≥ �|L|/2� where L
is the set of leaves of T .

By Lemma 9, the number of leaves and the number of internal vertices of degree
at least three of a given block tree can be easily bounded from above by 2k
and 2k − 1. Again, we focus on the internal vertices of degree two of T . The
decisive difference between a BIA-instance and a BCA-instance lies in the parti-
tion of the tree vertices into two subsets, the block-vertices and the cut-vertices.
A block-vertex can only have cut-vertices as neighbors and vice versa. In the
following, we present first a preprocessing, which ensures that the links in E′ are
all between block-vertices.

Preprocessing: While there exists a link (u, v) ∈ E′ with u ∈ C and v ∈ B∪C,
replace (u, v) by the link (w, v) where w ∈ B is the neighbor of u that lies on
the path between u and v in T . Finally, for all u ∈ B ∪C, remove all links (u, u)
from E′.

To see the correctness of the preprocessing, the following equivalent formula-
tion of BIA is helpful: Given a block tree T = (B ∪C,ET ), a set of links E′, and
a non-negative integer k, find a subset E′′ of links with |E′′| ≤ k such that, for
every c ∈ C, if c is removed from the graph (B ∪C,ET ∪E′′), then the resulting
graph is still connected.

Lemma 10. The preprocessing is correct and can be executed in O(n ·m) time.
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Fig. 4. An illustration of the modification made after adding a link (u, v) to the solution
set

Next, we present the data reduction rules for BIA which generalize the data
reduction rules in Sect. 3. Herein, if we add a link (u, v) to the solution E′′,
then, following Rosenthal and Goldner [10], we modify the instance as follows:
Let P denote the path in T between u, v, let C be the set of cut-vertices on P
that have degree at least three, and let N be the set of cut-vertices which are
neighbors of the block-vertices in P and do not lie on P . Replace P by a single
block-vertex K. Every link (u, v) with at least one endpoint being in P , say u,
is replaced by link (K, v). For every vertex v ∈ N , add edge {K, v} and, for
every c ∈ C, add edge {K, c}. An illustration is given in Fig. 4.

The data reduction rules use the following terms and notations: For a vertex u,
we use E′

u to denote the links inE′ which cover u or have u as one of its endpoints.
We call a path between two cut vertices a degree-2-cut-path if all vertices on this
path are degree-two vertices. A degree-2-cut-path is maximal if it is not a proper
subpath of another degree-2-cut-path.

Shadow Deletion: Delete all shadows.
Unit Link: If there exists a cut-vertex u with E′

u = {(x, y)}, then add (x, y)
to E′′ and decrease the parameter k by one.
Covered Cut-Vertex: If there are two cut-vertices u and v with E′

u ⊆ E′
v

and N(v) = {w1, w2}, then add a new block-vertex w and make it adjacent to
the vertices in (N(w1)∪N(w2)) \ {v} and replace every link of the form (w1, x)
or (w2, x) by a link (w, x). Finally, remove v, w1, w2 from T .
Degree-2-Cut-Path: Let (T,E′, k) be a BIA-instance to which the first three
rules do not apply, let P = {c1, b1}, {b1, c2}, {c2, b2}, . . ., {cl, bl}, {bl, cl+1} be a
maximal degree-2-cut-path in T with {b1, . . . , bl} ⊆ B and {c1, . . . , cl+1} ⊆ C,
and E′

b be the set of links with both endpoints from {b1, . . . , bl}. If there exists
an integer N with 2N ≤ l such that E′

b = {(bi, bi+N ) | 1 ≤ i ≤ l − N},
then proceed as follows: Let c := � lN � − 1 and d = l mod N . Replace P by a
path P ′ = {c′1, b′1}, . . . , {c′N+d, b

′
N+d}, {b′N+d, c

′
N+d+1}. Remove all links in E′

b

from E′ and add links (b′i, b
′
i+N ) for 1 ≤ i ≤ d to E′. Replace every link (bi, y)

with y ∈ V (Tb1,{b1,c1}) by link (b′i, y) and replace every link (bi, y) with y ∈
V (Tbl,{cl−1,bl}) by link (b′N+d−(l−i), y). Finally, decrease the parameter k by c.

Due to the similarity of the four rules to the ones in Sect. 3, the running time
follows from Lemmas 2 and 6.
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Lemma 11. The four data reduction rules are correct and can be executed
in O(n ·m3 + n3 ·m) time.

Theorem 2. Biconnectivity Augmentation admits a problem kernel
with O(k2) vertices and O(k2) links.

5 Partial Augmentation Problems

In this section, we study partial augmentation problems. Here, given a graph, a
set of links, and two non-negative integers Φ, k, one asks for a set of at most k
links whose insertion in the graph results in a graph that has a subgraph with
at least Φ vertices that satisfies a given connectivity property. We show that, in
the case that the link set is complete, that is, it contains all possible edges or
arcs, Partial Bridge-Connectivity Augmentation (PBCA) is polynomial-
time solvable and Partial Strong Connectivity Augmentation (PSCA) is
W[2]-hard. Note that the non-partial versions of both problems are polynomial-
time solvable if the link set is complete.

5.1 Partial Bridge-Connectivity Augmentation

The Partial Bridge-Connectivity Augmentation problem (PBCA) we
study here is defined as follows: Given an undirected and connected graph G =
(V,E), a set of links E′, and two non-negative integers Φ, k, find a set E′′ of
at most k links such that the graph (V,E ∪ E′′) contains a bridge-connected
component with at least Φ vertices. Note that in the case that E′ is incomplete,
Bridge-Connectivity Augmentation is NP-complete, which implies that
PBCA is also NP-complete in this case. We show here that PBCA becomes
polynomial-time solvable if E′ is complete. This extends a result by Eswaran
and Tarjan [2] saying that BCA is polynomial-time solvable in the case of a
complete link set. Our solving strategy consists of two steps: The first step
reduces the augmentation problem to a special subtree problem and the second
step applies a dynamic programming approach to solve the subtree problem. The
special subtree problem, Maximum d-Leaves Subtree (MLST), is defined as
follows: Given a tree T = (VT , ET ), two non-negative integers N, d, and a weight
function w : VT → N, find a subtree of T with at most d leaves such that the
total weight of the vertices in this subtree is at least N .

Theorem 3. Maximum d-Leaves Subtree can be solved in O(|VT | ·d2) time.

Theorem 4. In the case of a complete link set, Partial Bridge-Connectivity

Augmentation is solvable in O(|V | · k2) time.

5.2 Partial Strong Connectivity Augmentation

Now, we show that Partial Strong Connectivity Augmentation (PSCA)
is W[2]-hard, which is defined as follows: Given a directed graph D = (V,A), a
set of links A′ ⊆ V ×V , and two non-negative integers Φ, k, find a subset A′′ of A′
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with |A′′| ≤ k such that (V,A ∪ A′′) contains a strongly connected component
with at least Φ vertices. We give a parameterized reduction from the W[2]-hard
Set Cover problem [1].

Theorem 5. In both incomplete and complete link set cases, Partial Strong

Connectivity Augmentation is W[2]-hard.

6 Open Problems

The most interesting open problem is to study the parameterized complexity of
the Strong Connectivity Augmentation problem, where we are given a di-
rected graph D = (V,A), a set of links A � V ×V , and a non-negative integer k
and ask for a subset A′′ of links such that graph (V,A∪A′′) is strongly connected.
We conjecture that this problem is fixed-parameter tractable with respect to k.
Improving the size bounds of the problem kernels for Bridge-Connectivity

Augmentation and Biconnectivity Augmentation to a linear function in k
is another interesting open problem. Further opportunities for future work in-
clude investigating the approximability and fixed-parameter tractability of the
Partial Bridge-Connectivity Augmentation and Partial Biconnec-

tivity Augmentation problems for the case that the link set E′ is incomplete.
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Abstract. The parameterized node multiway cut problem is for a
given graph to find a separator of size bounded by k whose removal sepa-
rates a collection of terminal sets in the graph. In this paper, we develop
an O(4knO(1)) time algorithm for this problem, significantly improving
the previous algorithm of time O(4k3

nO(1)) for the problem. Our result
also gives the first polynomial time algorithm for the minimum node

multiway cut problem when the separator size is bounded by O(log n).

1 Introduction

The multiterminal cut problem is a well-known problem, and has been ex-
tensively studied ([2,9,12]). Applications of this problem are found in distributed
computing [13], VLSI [4], computer vision [1], and many other fields. The prob-
lem is defined as follows: given an undirected graph G = (V,E) and a set of l
vertices {t1, . . . , tl} in G (the vertices ti are called terminals), find an edge set
E′ of minimum size in G such that after the deletion of E′, no two terminals are
in the same connected component. This problem is NP-hard for general graphs
for any fixed integer l ≥ 3, and is also NP-hard for planar graphs when l is not
fixed [6].

A generalization of the multiterminal cut problem is the minimum node

multiway cut problem, which, for a given graph and a given set of terminals,
is to find a vertex set S of minimum size such that after the deletion of S, no two
terminals are in the same connected component. The minimum node multiway

cut problem is at least as hard as the multiterminal cut problem, since the
latter can be reduced to the former in time O(|V | + |E|), if we require that no
terminal be in S [5]. Therefore, the minimum node multiway cut problem is
also NP-hard for l ≥ 3.

When there are only two terminals s and t, the multiterminal cut problem
and the minimum node multiway cut problem become the edge version and
the vertex version of the minimum s-t cut problem, respectively. According
to the max-flow min-cut theorem [8], the minimum s-t cut problem, for both
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the edge version and the vertex version, can be solved via algorithms for the
maximum s-t flow problem. For an undirected graph G of n vertices and m
edges, the maximum s-t flow problem can be solved in time O(n7/6m2/3)
[10]. In consequence, the multiterminal cut problem and the minimum node

multiway cut problem can also be solved in time O(n7/6m2/3).
A natural extension of the minimum node multiway cut problem is to

have a collection of terminal sets, instead of a collection of individual terminals.
Formally, let G = (V,E) be an undirected graph, and let {T1, . . . , Tl} be a
collection of terminal sets where each Ti is a subset of vertices in G. A separator
S for {T1, T2, . . . , Tl} is a subset of vertices in G such that no vertex in S is in any
terminal set, and after deleting S from the graph G, no connected component
in the resulting graph contains vertices from more than one terminal set.

In certain real world applications, one may expect that the size of the separator
be small. For example, suppose that we are given a network (i.e., a graph)
G = (V,E) and a collection of network node groups {T1, . . . , Tl} in G, and
we want to monitor the message communication among the node groups. A
separator for {T1, . . . , Tl} in the network G will well serve for this purpose: any
communication path between any two node groups must pass through at least
one node in the separator. Therefore, if we set up a monitor process in each of
the nodes in the separator, then we can monitor all communications among the
node groups. Naturally, we may want to limit the cost of this monitoring system
by using only a small number of “monitor nodes” in the network G.

This motivates a parameterized version of the minimum node multiway cut

problem, which will be called the parameterized node multiway cut prob-
lem and is defined as follows: given an undirected graph G = (V,E), a collection
of pairwise disjoint terminal sets {T1, . . . , Tl} (where each Ti is a subset of ver-
tices in G), and a parameter k, either construct a separator of at most k vertices
in G, or report that no such a separator exists. Our goal is, for the parame-

terized node multiway cut problem, to develop a fixed-parameter tractable
algorithm [7], i.e., an algorithm whose running time is of the form f(k)nc with
a function f independent of the input size n and a constant c. In particular,
when the parameter value k is small, such a fixed-parameter tractable algorithm
will be practically effective. In fact, the study of fixed-parameter tractable algo-
rithms for a variety of parameterized problems has drawn considerable attention
recently and has direct impact on real word applications where the selected
parameter varies in a small range of values [7].

It can be derived from the graph minor theory of Robertson and Seymour
[7] that there is a fixed-parameter tractable algorithm for the parameterized

node multiway cut problem. However, the proof is not constructive. An ex-
plicit constructive algorithm for the problem was given by Marx [11], who de-
veloped an algorithm of running time O(n54k

3
) for the parameterized node

multiway cut problem for its original version (i.e., in which each terminal set
is restricted to contain a single terminal). To our knowledge, it is the only known
fixed-parameter tractable algorithm for the problem.
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In this paper, we present an algorithm of running time O(n3lk4k) for the
parameterized node multiway cut problem, which significantly improves
the algorithm given in [11]. In the real world of computing, this improvement
makes it become possible to practically solve the problem for some reasonable
values of the parameter k. For example, for the case of k = 10, our algorithm has
running time O(n3l410), which is practically feasible using the currently available
computation power. On the other hand, the algorithm in [11] in this case has
running time O(n522000), which is totally infeasible from the practical point of
view. Theoretically, our result gives the first polynomial time algorithm for the
minimum node multiway cut problem when the size of the optimal separator
is of order O(log n).

2 On Minimum Cuts Between Two Terminal Sets

We start with some terminology.
Let G = (V,E) be a graph and let u and v be two vertices in G. A path

between u and v is a simple path in G whose two ends are u and v, respectively.
For a subset V of vertices in G, we say that there is a path between a vertex u
and V if there is a vertex v in V such that there is a path between u and v.
For two vertex subsets V1 and V2, we say that there is a path between V1 and
V2 if there exist a vertex u in V1 and a vertex v in V2 such that there is a path
between u and v. Two paths are internally disjoint if there is no vertex that is
an internal vertex for both the paths.

Let G be a graph, and let {T1, . . . , Tl} be a collection of pairwise disjoint
terminal sets (each terminal set is a subset of vertices in G). A subset S of
vertices in G is a separator for {T1, . . . , Tl} if S contains no vertex in any of the
sets T1, . . ., Tl, and if after deleting all vertices in S from G, there is no path
between any two different subsets Ti and Tj in the resulting graph. In particular,
a separator S for two terminal sets T1 and T2 is also called a cut between the
two sets T1 and T2.

Let T be a subset of vertices in the graph G = (V,E). By merging T (into
a single vertex), we mean the operation that first deletes all vertices in T then
creates a new vertex w adjacent to each v of the vertices in V − T where v is a
neighbor of a vertex in T in the original graph G.

Finally, for a subset V ′ of vertices in the graph G, we will denote by G(V ′)
the subgraph of G that is induced by the vertex subset V ′.

We start with an undirected vertex form of Menger’s Theorem, whose proof
can be found in [3].

Proposition 1. [3] (The Undirected Vertex Form of Menger’s Theorem) Let u
and v be two distinct and nonadjacent vertices in a graph G. Then the maximum
number of internally disjoint paths between u and v in G is equal to the size of
a minimum cut between u and v in G.

Proposition 1 can be generalized from the case for two vertices to the case of
two vertex subsets, as given in the following lemma.
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Lemma 1. Let T1 and T2 be two disjoint vertex subsets in a graph G such that
no vertex in T1 is adjacent to a vertex in T2. Then the maximum number h
of internally disjoint paths between T1 and T2 in G is equal to the size of a
minimum cut between T1 and T2 in G. Moreover, for any set π of h internally
disjoint paths between T1 and T2 in G, every minimum cut between T1 and T2

in G contains exact one vertex in each of the paths in π.

Proof. Let G′ be the graph obtained from the graph G by merging the two vertex
subsets T1 and T2 into two vertices t1 and t2, respectively. Note that t1 and t2
are not adjacent in G′.

By the definition of the merge operation, it is easy to verify that a vertex
subset S is a cut between the vertex subsets T1 and T2 in the graph G if and
only if S is a cut between the vertices t1 and t2 in the graph G′. In particular, the
size of a minimum cut between T1 and T2 in G is equal to the size of a minimum
cut between t1 and t2 in G′. Moreover, it is also easy to verify that for any integer
h′, from a set of h′ internally disjoint paths between T1 and T2 in G, we can
construct a set of h′ internally disjoint paths between t1 and t2 in G′, and vice
versa. Therefore, the maximum number of internally disjoint paths between T1

and T2 in G is equal to the maximum number of internal disjoint paths between
t1 and t2 in G′. Now the first part of the lemma follows by applying Proposition 1
to the graph G′.

To prove the second part of the lemma, let S be a minimum cut, of size
h, between T1 and T2 in G, and let π be a set of h internally disjoint paths
between T1 and T2. The vertex set S must contain at least one vertex from each
of the paths in π: otherwise there would be a path between T1 and T2 in G− S,
contradicting the assumption that S is a cut between T1 and T2. Moreover, the
set S cannot contain more than one vertex in any path in π: otherwise S would
not be able to contain at least one vertex for each of the paths in π (note that
the paths in π are internally disjoint). ��

Lemma 1 provides an efficient algorithm that constructs the maximum number
of internally disjoint paths and a minimum-size cut between two given vertex
subsets in a graph.

Lemma 2. Let T1 and T2 be two disjoint vertex subsets in a graph G = (V,E)
such that no vertex in T1 is adjacent to a vertex in T2. Then in time O((|V | +
|E|)k), we can decide if the size h of a minimum cut between T1 and T2 is
bounded by k, and in case h ≤ k, construct h internally disjoint paths between
T1 and T2.

Proof. Let G′ be the graph obtained from the graph G by merging the two vertex
subsets T1 and T2 into two vertices t1 and t2, respectively. As discussed in the
proof of Lemma 1, it suffices to show how to decide if the size h of a minimum
cut between t1 and t2 in G′ is bounded by k, and in case h ≤ k, how to construct
h internally disjoint paths between t1 and t2.

This can be done based on the standard approach to the maximum t1-t2
flow problem [3]. For this, we first transform the undirected graph G′ into a
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directed graph by replacing each edge by two reverse arcs. Then we modify the
new directed graph by replacing each vertex u (except the vertices t1 and t2) by
two vertices u1 and u2 with an arc from u1 to u2, connecting all u’s incoming arcs
to the vertex u1 and connecting all u’s outgoing arcs to the vertex u2. Finally
we set all edges to have capacity 1. Let the resulting flow graph be G′′.

Applying Ford-Fulkerson’s standard approach using augmenting paths, in
time O((|V | + |E|)k), we can either construct a t1-t2 flow of value larger than
k in G′′, or end up with a maximum t1-t2 flow of value h bounded by k. In the
former case, we conclude that the size of a minimum cut between t1 and t2 in G′

is larger than k, which implies that the size of a minimum cut between T1 and
T2 in G is larger than k. In the latter case, h internally disjoint paths between
t1 and t2 in G′ can be easily constructed from the maximum t1-t2 flow of value
h in G′′, from which h internally disjoint paths between T1 and T2 in G can be
constructed. ��

3 The Main Algorithm

Now we return back to the parameterized node multiway cut problem.
Formally, an instance (G, {T1, . . . , Tl}, k) of the parameterized node multi-

way cut problem consists of an undirected graph G, a collection {T1, . . . , Tl}
of pairwise disjoint terminal sets (each terminal set is a vertex subset in G),
and a parameter k. The objective is to either construct a separator of at most k
vertices for {T1, . . . , Tl}, or conclude that no such a separator exists.

Before we formally present our algorithm, we give a less formal but intuitive
explanation on the basic idea of the algorithm. For each i, 1 ≤ i ≤ l, let the size of
a minimum cut between Ti and

⋃
j �=i Tj be mi. Define m = max{mi | 1 ≤ i ≤ l}.

Without loss of generality, assume m = m1.
Pick a vertex u that is not in any terminal set and has a neighbor in T1. If

u also has a neighbor in another terminal set Ti, i 	= 1, then we can directly
include u in the separator (this is necessary because the separator must separate
T1 and Ti), and recursively find a separator of size k−1 in the remaining graph.
On the other hand, if u has no neighbor in other terminal sets, then we compute
the size m′ of a minimum cut between the sets T ′

1 = T1 ∪ {u} and
⋃
i�=1 Ti. It

can be proved that we must have m ≤ m′. Note that by Lemma 2, the values m
and m′ can be computed in polynomial time.

In the case m = m′, we will show that the instance (G, {T1, T2, . . . , Tl}, k) has
a separator of size bounded by k if and only if the instance (G, {T ′

1, T2, . . . , Tl}, k)
has a separator of size bounded by k. Then we recursively work on the new
instance (G, {T ′

1, T2, . . . , Tl}, k). Thus, in the case of m = m′, we can reduce the
number of vertices that are not in the separator by 1.

On the other hand, suppose m < m′. Then we branch on the vertex u in
two cases, one includes u in the separator and the other excludes u from the
separator. In the case of including the vertex u in the separator, we recursively
work on the instance (G − {u}, {T1, T2, . . . , Tl}, k − 1), in which the parameter
value is decreased by 1; and in the case of excluding the vertex u from the
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separator, we recursively work on the instance (G, {T ′
1, T2, . . . , Tl}, k), in which

the size of the minimum cut between T ′
1 and

⋃
i�=1 Ti is increased by at least 1.

Therefore, for the given instance (G, {T1, T2, . . . , Tl}, k), we can either (1)
apply a polynomial time process that either decreases the parameter value by
1 or reduces the number of vertices not in the separator by 1, or (2) branch
into two cases, of which one decreases the parameter value by 1 and the other
increases the value m by at least 1 (see the definition of m given in the second
paragraph in this section). Note that all these generated new instances will be
“simpler” than the original given instance: (i) reducing the number of vertices
not in the separator will narrow down our search space for the separator; (ii)
an instance of parameter value bounded by 1 can be solved in polynomial time;
and (iii) an instance in which the value m is larger than the parameter value k
obviously has no separator of size bounded by k.

To present our formal discussions, we fix an instance (G, {T1, . . . , Tl}, k) of the
parameterized node multiway cut problem, where G = (V,E) is a graph,
and {T1, . . . , Tl} is a collection of terminal sets in G. For each i, 1 ≤ i ≤ l, let
the size of a minimum cut between Ti and

⋃
j �=i Tj be mi. Define m = max{mi |

1 ≤ i ≤ l}, and assume, without loss of generality, that m = m1. Moreover,
fix a vertex u that is not in any of the terminal sets but has a neighbor in the
terminal set T1. Let T ′

1 = T1 ∪ {u}.

Lemma 3. Let m′ be the size of a minimum cut between the two sets T ′
1 and⋃

j �=1 Tj. Then m′ ≥ m.

Proof. The lemma follows from the observation that every cut between the sets
T ′

1 and
⋃
j �=1 Tj is also a cut between the sets T1 and

⋃
j �=1 Tj. ��

The following theorem is the most crucial observation for our algorithm.

Theorem 1. If the minimum cuts between the sets T1 and
⋃
j �=1 Tj and the

minimum cuts between the sets T ′
1 and

⋃
j �=1 Tj have the same size, then the

instance (G, {T1, T2, . . . , Tl}, k) has a separator of size bounded by k if and only
if the instance (G, {T ′

1, T2, . . . , Tl}, k) has a separator of size bounded by k.

Proof. If the instance (G, {T ′
1, T2, . . . , Tl}, k) has a separator S of size bounded

by k, then it is obvious that S is also a separator of the instance (G, {T1, T2, . . . ,
Tl}, k). Now we consider the other direction. To simplify the discussion, let
Tother =

⋃
j �=1 Tj .

Suppose that Sm is a minimum cut between T ′
1 and Tother, then Sm is also a

cut between T1 and Tother. In fact, by the assumption of the theorem, Sm is also
a minimum cut between T1 and Tother. Let C(T1) be the set of vertices x such
that either x ∈ T1 or there is a path between x and T1 in the induced subgraph
G(V −Sm). In particular, u ∈ C(T1). Moreover, let C(Tother) = V −C(T1)−Sm.

By Lemma 1, there exist |Sm| internally disjoint paths between T1 and Tother,
each contains exactly one vertex in the set Sm. Therefore, each of these |Sm|
paths is cut into two subpaths by a vertex in Sm, such that one subpath is in the
induced subgraph G(C(T1)) and the another subpath is in the induced subgraph
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G(C(Tother)). From this, we derive that there are |Sm| internally disjoint paths
between T1 and Sm in the induced subgraph G(C(T1) ∪ Sm), each contains a
distinct vertex in the set Sm.

Let Sk be a separator of the instance (G, {T1, T2, . . . , Tl}, k) of size bounded
by k. Define A = Sk ∩C(T1), B = Sk ∩Sm, and C = Sk ∩C(Tother). Finally, let
S′
m be the set of vertices x in Sm such that there is a path between x and Tother

in the induced subgraph G(C(Tother) ∪ Sm − Sk) (see Figure 1 for an intuitive
illustration of these sets).

Fig. 1. Decomposition of Separators

We first prove that |A| ≥ |S′
m|.

From the fact that there are |Sm| internally disjoint paths between T1 and Sm
in the induced subgraph G(C(T1) ∪ Sm) in which each path contains a distinct
vertex in the set Sm, we derive that there are |S′

m| internally disjoint paths
between T1 and S′

m in the induced subgraph G(C(T1)∪S′
m). If |A| < |S′

m|, then
there must be a path P1 between T1 and a vertex v′ in S′

m in the subgraph
G(C(T1) ∪ S′

m − A) = G(C(T1) ∪ S′
m − Sk). Moreover, by the definition of the

set S′
m, there is also a path P2 between v′ and Tother in the induced subgraph

G(C(Tother)∪Sm−Sk). The concatenation of the paths P1 and P2 would give a
path between T1 and Tother in the induced subgraphG(V −Sk), which contradicts
the assumption that Sk is a separator of the instance (G, {T1, T2, . . . , Tl}, k).
Therefore, we must have |A| ≥ |S′

m|.
Define a set S′

k = S′
m ∪B ∪C. We now prove that the set S′

k is a separator of
the instance (G, {T ′

1, T2, . . . , Tl}, k). Suppose that the set S′
k is not a separator

of the instance (G, {T ′
1, T2, . . . , Tl}, k), then there are two vertices v1 and v2 that

are in two different terminal sets in {T ′
1, T2, . . . , Tl} and there exists a path P

between v1 and v2 in the induced subgraph G(V − S′
k). We discuss this in two

possible cases.
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Case 1: There is a vertex w in the path P such that w ∈ C(T1). Because (1) at
least one of the vertices v1 and v2 is in the set Tother, (2) there is a path between
T1 and w in the induced subgraph G(C(T1)), and (3) Sm is a cut between T1 and
Tother, we conclude that there must be a vertex s ∈ Sm that is also on the path
P . Without loss of generality, we can suppose that the vertex v1 is in the set
Tother, and that the subpath P ′ of P that begins from v1 and ends at s has no
vertices from C(T1) – for this we only have to pick the first vertex s in Sm when
we traverse on the path P from v1 to v2. Then the path P ′ is in the induced
subgraph G(C(Tother)∪Sm−S′

k), which is a subgraph of the induced subgraph
G(C(Tother) ∪ Sm − Sk). Now by the definition of the set S′

m, the vertex s is in
the set S′

m, thus in the set S′
k. But this is impossible because we assumed that

the path P is in the induced subgraph G(V − S′
k).

Case 2: All vertices of the path P come from the induced subgraph G(V −S′
k−

C(T1)). Then neither of the vertices v1 and v2 can be from the set T1. Moreover,
since G(V −S′

k−C(T1)) is a subgraph of the induced subgraph G(V −Sk), this
implies that the path P is between two different terminal sets in {T2, . . . , Tl}
and contains no vertex in Sk. But this again contradicts the assumption that Sk
is a separator of the instance (G, {T1, T2, . . . , Tl}, k).

Combining the discussions in Case 1 and Case 2, we conclude that the set S′
k

is a separator of the instance (G, {T ′
1, T2, . . . , Tl}, k).

Since |A| ≥ |S′
m|, Sk = A ∪ B ∪ C, and S′

k = S′
m ∪ B ∪ C, and A does

not intersect B ∪ C, we conclude that |Sk| ≥ |S′
k|. In particular, if the instance

(G, {T1, T2, . . . , Tl}, k) has the separator Sk of size bounded by k, then the in-
stance (G, {T ′

1, T2, . . . , Tl}, k) has the separator S′
k of size also bounded by k. ��

The proof of Theorem 1 becomes complicated partially because the vertex u
may be included in a separator for the instance (G, {T1, T2, . . . , Tl}, k). If we
restrict that the vertex u is not in the separators for the instance (G, {T1, T2, . . . ,
Tl}, k), then a result similar to Theorem 1 can be obtained much more easily,
even without the need of the condition that the minimum cuts between T1 and⋃
j �=1 Tj and the minimum cuts between T ′

1 and
⋃
j �=1 Tj have the same size. This

is given in the following lemma. This result will also be needed in our algorithm.

Lemma 4. Let S be a vertex subset in the graph G such that S does not include
the vertex u. Then S is a separator for the instance (G, {T1, T2, . . . , Tl}, k) if and
only if S is a separator for the instance (G, {T ′

1, T2, . . . , Tl}, k).

Proof. IfS is a separator for the instance (G, {T ′
1, T2, . . . , Tl}, k), then as explained

in Theorem 1, S is also a separator for the instance (G, {T1, T2, . . . , Tl}, k).
For the other direction, suppose that the set S is a separator for the instance

(G, {T1, T2, . . . , Tl}, k). We show that S is also a separator for the
instance (G, {T ′

1, T2, . . . , Tl}, k). Suppose that S is not a separator for the in-
stance (G, {T ′

1, T2, . . . , Tl}, k). Then there is a path P in G − S between two
different terminal sets in {T ′

1, T2, . . . , Tl}. Let one of these two terminal sets in
{T ′

1, T2, . . . , Tl} be Ti, where i 	= 1. The path P must contain the vertex u (recall
that S does not contain u) – otherwise the path P in G − S would be between
two different terminal sets in {T1, T2, . . . , Tl}, contradicting the assumption that
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S is a separator for (G, {T1, T2, . . . , Tl}, k). However, this would imply that the
path from T1 to u (recall that u has a neighbor in T1) then following the path
P to the terminal set Ti would give a path in G − S between T1 and Ti, again
contradicting the assumption that S is a separator for (G, {T1, T2, . . . , Tl}, k).
Therefore, S is also a separator for the instance (G, {T ′

1, T2, . . . , Tl}, k). ��

Now, we are ready to present our algorithm. For an instance (G, {T1, . . . , Tl}, k)
of the parameterized node multiway cut problem, a vertex in the graph G
that does not belong to any terminal sets will be called a “non-terminal”.

The algorithm is given in Figure 2.

Algorithm NMC(G, {T1, T2, . . . , Tl}, k)
input: an instance (G, {T1, T2, . . . , Tl}, k) of the parameterized node

multiway cut problem
output: a separator of size bounded by k for (G, {T1, T2, . . . , Tl}, k),

or report “No” (i.e., no such a separator)
1. If an edge has its two ends in two different terminal sets

then return “No”;
2. if a non-terminal w has two neighbors in two different terminal sets

then return w + NMC(G − w, {T1, . . . , Tl}, k − 1);
3. for i = 1 to l do

let mi be the size of a minimum cut between Ti and
⋃l

j �=i Tj ;
(suppose m1 = max{mi | 1 ≤ i ≤ l});

4. If m1 > k then return “No”;
5. else if m1 = 0 then return ∅;
6. else pick a non-terminal u that has a neighbor in T1; let T ′

1 = T1 + u;
6.1 if the size of a minimum cut between T ′

1 and
⋃

j �=1 Tj is equal to m1

then return NMC(G, {T ′
1, T2, . . . , Tl}, k);

6.2 else S = u + NMC(G − u, {T1, T2, . . . , Tl}, k − 1);
If S is not “No” then return S;

6.3 else return NMC(G, {T ′
1, T2, . . . , Tl}, k).

Fig. 2. New algorithm for the k-node multiway cut problem

Theorem 2. The algorithm NMC(G, {T1, T2, . . . , Tl}, k) in Figure 2 solves the
parameterized node multiway cut problem in time O(n3lk4k).

Proof. We first prove the correctness of the algorithm. Let (G, {T1, T2, . . . , Tl}, k)
be an input to the algorithm, which is an instance of the parameterized node

multiway cut problem, where G = (V,E) is a graph, {T1, T2, . . . , Tl} is a
collection of terminal sets, and k is the upper bound of the size of the separator
we are looking for.

If there is an edge whose two ends are in two different terminal sets, then we
have no way to separate these two terminal sets since all vertices in a separator
are supposed to be non-terminals. Step 1 handles this case correctly.
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If a non-terminal w has two neighbors that are in two different terminal sets,
then w must be in the separator because otherwise the two terminal sets will not
be separated. Thus, we can simply include the vertex w in the separator, and
recursively find a separator of size bounded by k − 1 for the same collection of
terminal sets {T1, T2, . . . , Tl} in the remaining graph G−w. This case is correctly
handled by step 2.1

Step 3 computes the size of a minimum cut between the sets Ti and
⋃
j �=i Tj for

each i, 1 ≤ i ≤ l. By Lemma 2, each mi can be computed in time O((|V |+|E|)k).
Thus, step 3 takes time O((|V | + |E|)kl).

If m1 > k, then the size of a minimum cut between T1 and
⋃
j �=1 Tj is larger

than k, which implies that even separating the set T1 from the other sets
⋃
j �=1 Tj

requires more than k vertices. Thus, no separator of size bounded by k can exist
for the terminal sets T1, T2, . . ., Tl. This is handled by step 4.

In step 5 we handle the case m1 = 0. Note that m1 is the largest mi we
computed in step 3. Thus, m1 = 0 implies that for every i, there is no path
in the graph G from the terminal set Ti to any other terminal sets. Therefore,
the terminal sets T1, T2, . . ., Tl have already been separated, and we can simply
return an empty set ∅ as a separator of size 0 (note that because of step 4, here
we must have k ≥ 0).

When the algorithm reaches step 6, the following conditions hold true: (1) no
edge has its two ends in two different terminal sets (because of step 1); (2) no
non-terminal has two neighbors in two different terminal sets (because of step
2); (3) 0 < m1 ≤ k (because of steps 4-5). In particular, by condition (3), there
must be a non-terminal u that has a neighbor in T1.

Let m′ be the size of a minimum cut between the sets T ′
1 and

⋃
j �=1 Tj . If

m′ = m1, then by Theorem 1, the instance (G, {T1, T2, . . . , Tl}, k) has a separa-
tor of size bounded by k if and only if the instance (G, {T ′

1, T2, . . . , Tl}, k) has a
separator of size bounded by k. In particular, as shown in the proof of Theorem 1,
a separator of size bounded by k for the instance (G, {T ′

1, T2, . . . , Tl}, k) is actu-
ally also a separator for the instance (G, {T1, T2, . . . , Tl}, k). Therefore, in this
case, we can recursively work on the instance (G, {T ′

1, T2, . . . , Tl}, k), as given in
step 6.1. On the other hand, if m′ 	= m (m′ > m), then we simply branch on the
vertex u in two cases: (1) one case includes u in the separator and recursively
works on the remaining graph for a separator of size bounded by k− 1, as given
by step 6.2; and (2) the other case excludes u from the separator thus looks for
a separator that does not include u and is of size bounded by k for the instance
(G, {T1, T2, . . . , Tl}, k). By Lemma 4, the second case is equivalent to finding a
separator of size bounded by k for the instance (G, {T ′

1, T2, . . . , Tl}, k). This case
is thus handled by step 6.3.

This completes the proof of the correctness of the algorithm. Now we analyze
the complexity of the algorithm.

1 To simplify the expression, we suppose that “No” plus any vertex set gives a “No”.
Therefore, step 2 will return a “No” if NMC(G − w, {T1, . . . , Tl}, k − 1) returns a
“No”.
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The recursive execution of the algorithm can be described as a search tree
T . We first count the number of leaves in the search tree T . Note that only
steps 6.2-6.3 of the algorithm correspond to branches in the search tree T . Let
D(k,m) be the total number of leaves in the search tree T for the algorithm
NMC(G, {T1, T2, . . . , Tl}, k), where m = max{mi | 1 ≤ i ≤ l}, and mi is the
size of a minimum cut between the sets Ti and

⋃
j �=i Tj. Then steps 6.2-6.3 induce

the following recurrence relation:

D(k,m) ≤ D(k − 1,m′′) + D(k,m′′′) (1)

where m′′ = max{m′′
i | 1 ≤ i ≤ l}, and m′′

i is the size of a minimum cut between
Ti and

⋃
j �=i Tj in the graph G − u as given in step 6.2, and m′′′ is similarly

defined based on the instance (G, {T ′
1, T2, . . . , Tl}, k) as given in step 6.3. Note

that m−1 ≤ m′′ ≤ m because removing the vertex u from G cannot increase the
size of a minimum cut between two sets, and can decrease the size of a minimum
cut between the two sets by at most 1. Moreover, by Lemma 3 and because of
step 6.1, the size m′ of a minimum cut between T ′

1 and
⋃
j �=1 Tj in step 6.3 is at

least m+ 1. By the definition of m′′′, we have m′′′ ≥ m′ ≥ m + 1. Summarizing
these, we have

m− 1 ≤ m′′ ≤ m and m′′′ ≥ m + 1 (2)

Introduce a new function D′ such that D(k,m) = D′(2k − m), and let t =
2k − m. Then by Inequalities (1) and (2), the branch in step 6.2-6.3 in the
algorithm becomes

D′(t) ≤ D′(t1) + D′(t2)

where when t = 2k−m then t1 = 2(k−1)−m′′ ≤ t−1, and t2 = 2k−m′′′ ≤ t−1.
Our initial instance starts with t = 2k −m ≤ 2k. In the case t = 2k −m = 1,
because we also have the conditions k ≥ m > 0, we can derive m = 1 and k = 1,
in this case the algorithm can solve the instance without further branching.
Therefore, we have D′(1) = 1. Combining all these, we derive

D(k,m) = D′(2k −m) ≤ 22k = 4k,

and the search tree T has at most 4k leaves.
Finally, it is easy to verify that along each root-leaf path in the search tree

T , the running time of the algorithm is bounded by O(n3lk), where n is the
number of vertices in the graph. In conclusion, the running time of the algorithm
NMC(G, {T1, T2, . . . , Tl}, k) is bounded by O(n3lk4k). ��

4 Conclusion

We developed an algorithm of running time O(n3lk4k) for a more general pa-

rameterized node multiway cut problem. Our algorithm finds a separator
that has no vertices in any terminal set. We call such a separator a restricted
separator. If a separator is allowed to include vertices from terminal sets, the
separator is called an unrestricted separator. It can be verified easily that the
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instance (G, {T1, . . . , Tl}, k) has an unrestricted separator of size k if and only if
the instance (G′, {{x1}, . . . , {xl}}, k) has a restricted separator of size k, where
the graph G′ is obtained by adding l vertices x1, . . . , xl to the graph G and
connecting xi to each vertex in Ti for all 1 ≤ i ≤ l. Therefore, our algorithm can
also be used to find an unrestricted separator for a given instance.

One related problem is the parameterized node multicut problem [11]
where we look for a separator of size k to separate each of the l given pairs of
terminals. When both k and l are used as parameters, based on the techniques de-
veloped in the current paper, the fixed parameter tractable algorithm presented
in [11] for the parameterized node multicut problem can be improved. On
the other hand, if only k is used as the parameter, or if the graph G is a directed
graph (or even just a directed acyclic graph), it is currently unknown whether
the parameterized node multicut problem has fixed parameter tractable
algorithms, which seem very interesting topics for further research.
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Abstract. Let σ and � be two sets of nonnegative integers. A vertex
subset S ⊆ V of an undirected graph G = (V, E) is called a (σ, �)-
dominating set of G if |N(v)∩S| ∈ σ for all v ∈ S and |N(v)∩S| ∈ � for all
v ∈ V \S. This notion introduced by Telle generalizes many domination-
type graph invariants. For many particular choices of σ and � it is NP-
complete to decide whether an input graph has a (σ, �)-dominating set.

We show a general algorithm enumerating all (σ, �)-dominating sets
of an input graph G in time O∗(cn) for some c < 2 using only polyno-
mial space, if σ is successor-free, i.e., it does not contain two consecutive
integers, and either both σ and � are finite, or one of them is finite and
σ ∩ � = ∅. Thus in this case one can find maximum and minimum (σ, �)-
dominating sets in time o(2n). Our algorithm straightforwardly implies a
non trivial upper bound cn with c < 2 for the number of (σ, �)-dominating
sets in an n-vertex graph under the above conditions on σ and �.

Finally, we also present algorithms to find maximum and minimum
({p}, {q})-dominating sets and to count the ({p}, {q})-dominating sets
of a graph in time O∗(2n/2).

1 Introduction

We consider finite undirected graphs without loops or multiple edges. Thus a
graph is a pair G = (V,E) where V is the (finite) set of vertices and E the set
of edges. The size of G is the number of vertices, and throughout the paper we
reserve n = |V | to denote this quantity. We call two vertices u, v adjacent if they
form an edge, i.e., if uv ∈ E. The open neighborhood of a vertex u ∈ V is the
set of the vertices adjacent to it, denoted by N(u) = {x : xu ∈ E}, and the
closed neighborhood is defined as N [u] = N(u) ∪ {u}. A set of vertices S ⊆ V is
dominating if every vertex of G is either in S or adjacent to a vertex in S, i.e., if
� Part of the research was done when some of the authors were visiting DIMATIA,

Prague, in April 2006.
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V =
⋃
u∈S N [u]. Finding a dominating set of the smallest possible size belongs

to the most important optimization problems on graphs. In some sense the prob-
lem is harder than typical graph invariants such as clique or independent set –
the problem is NP-hard even for chordal graphs (cf. [11]), and the parameterized
version is W[2]-complete [5]. Many generalizations have been studied, such as
independent dominating set, connected dominating set, efficient dominating set,
etc. (cf. [11]).

In [15], Telle introduced the following framework of domination-type graph
invariants (see also [10,12]). Let σ and � be two sets of non negative integers.
A vertex subset S ⊆ V of an undirected graph G = (V,E) is called a (σ, �)-
dominating set of G if |N(v) ∩ S| ∈ σ for all v ∈ S and |N(v) ∩ S| ∈ � for
all v ∈ V \ S. The following table shows a sample of previously defined and
studied graph invariants which can be expressed in this framework (N is the set
of positive integers, N0 is the set of nonnegative integers).

σ � (σ, �)-dominating set σ � (σ, �)-dominating set
N0 N dominating set {0} N0 independent set
N0 {1} efficient dominating set {0} {1} 1-perfect code
{0} {0, 1} strong stable set {0} N independent dominating set
{1} {1} total perfect dominating set N N total dominating set
{1} N0 induced matching {r} N0 r-regular induced subgraph

We are interested in the computational complexity of decision, search and
counting problems related to (σ, �)-domination. Explicitly, we consider the fol-
lowing problems parameterized by σ and �.

∃(σ, �)-DS: Does an input graph G contain a (σ, �)-dominating set?
Enum-(σ, �)-DS: Given a graph G, list all (σ, �)-dominating sets of G.
#-(σ, �)-DS: Given a graph G, determine the number of (σ, �)-dominating sets
of G.
Max-(σ, �)-DS: Given a graph G, find a (σ, �)-dominating set of maximum size.
Min-(σ, �)-DS: Given a graph G, find a (σ, �)-dominating set of minimum size.

Obviously, the enumeration problem Enum-(σ, �)-DS is the most difficult one,
since as soon as we have all (σ, �)-dominating sets in a list, we can quickly see
if the list is nonempty (and hence answer the ∃(σ, �)-DS problem), we can also
compare the sizes of the listed sets to answer the minimization and maximization
questions, and we can quickly count the number of listed sets. However, maybe
slightly surprisingly, the existence problem is NP-complete for many parameter
pairs σ and �, including some of those listed in Table 1 (1-perfect code and total
perfect dominating set). In fact, Telle [15] proves that ∃(σ, �)-DS is NP-complete
for every two finite nonempty sets σ, � such that 0 	∈ �.

There are several ways how to deal with NP-hard problems. One may look for
heuristics or approximation algorithms, or aim at speeding up the (exponential)
running time of exact algorithms. The latter approach is also the goal of the
present paper. We present a O∗(cn)-time1 algorithm for the Enum-(σ, �)-DS

1 As has recently become standard, we write f(n) = O∗(g(n)) if f(n) ≤ p(n) · g(n) for
some polynomial p(n).
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problem, where the constant c < 2 depends on σ and �, for a fairly wide class
of parameter sets σ and �.

The main contribution of the paper is three-fold. First it is the general al-
gorithm for a large class of domination-type problems. Secondly, the technique
used in the running time analysis is a combination of a standard Branching
algorithm with Recharging (motivated by recharging techniques used in many
proofs of especially graph coloring theorems). We call the new technique Branch
& Recharge and we hope it can be found useful for other problems as well.
Thirdly, an upper bound on the running time of an enumeration algorithm im-
mediately implies an upper bound on the number of enumerated objects. Thus
our Branch & Recharge algorithm has a combinatorial corollary that every graph
with n vertices contains at most O∗(cn) (σ, �)-dominating sets (under the same
assumptions on σ and �).

This situation is interesting in its own. For several fast exact algorithms,
the running time analysis is based on combinatorial theorems bounding the
number of certain objects. For example a number of coloring algorithms are based
on bounds on the number of certain maximal independent sets and bipartite
subgraphs in a graph [2,3,6] and the algorithm for domatic number in [1] is
based on a bound for the number of minimal dominating sets.

From the other side, the time analysis of a branching algorithm often yields
the proof of combinatorial upper bounds. The most famous combinatorial result
of this type is the well-known Moon-Moser theorem stating that the maximum
number of maximal cliques (resp. maximal independent sets) of an n-vertex
graph is 3n/3 [13] (while its original proof is combinatorial it can be easily turned
into a branching algorithm enumerating all maximal independent sets). Tech-
niques inspired by the analysis of exact algorithms were later used to obtain the
bounds on the number of minimal dominating sets, minimal feedback vertex sets,
and maximal r-regular subgraphs among others [7,8,9]. In general, exact algo-
rithms and their analysis seem to be useful tools to obtain such combinatorial
results (up to a polynomial factor).

Finally, we use a classical technique for the design of exact algorithms (see
e.g. [14,16]). In his seminal survey paper [16] on exact algorithms Woeginger
describes how to design algorithms using this paradigm to solve the subset sum
problem and the binary knapsack problem in time O∗(2n/2) (instead of time
O∗(2n) by exhaustive search). The basic idea is a clever use of sorting and
searching, and thus we call it Sort & Search. We establish O∗(2n/2) time algo-
rithms for the ∃(σ, �)-DS, Min-(σ, �)-DS, Max-(σ, �)-DS and the #-(σ, �)-DS

problem in the case that σ and � are singletons.

2 Preliminaries and the Main Theorem

We call a set of integers successor-free if it contains no pair of consecutive in-
tegers. In the rest of the paper we use the notation p = maxσ and q = max �
(with p = ∞ if σ is infinite, and q = ∞ if � is infinite). We denote by N the set
of positive integers and by N0 the set of nonnegative integers.
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A graph on n vertices may contain as many as 2n (σ, �)-dominating sets, e.g.,
if 0 ∈ σ∩�, then the edgeless graph does. Another less trivial example is σ = � =
{0, 1, . . . , d}, since then any set of vertices in a graph of maximum degree d is
(σ, �)-dominating. Therefore, if we aim at enumeration algorithms significantly
faster than Θ(2n), some restrictions must be imposed on the parameter sets σ
and �. The crucial condition required by our algorithm is the successor-freeness
of σ. However, simple examples show that this itself is not enough. E.g., if
σ is the set of even integers and � the set of odd integers, then the complete
graph G = Kn contains 2n−1 (σ, �)-dominating sets (every odd subset of vertices
induces one), and yet σ and � are successor-free and disjoint (but both are
infinite). Similarly, for σ = {0} and � = N0 (σ successor-free and finite, but σ
and � are not disjoint), the star K1,n−1 contains 2n−1 +1 (σ, �)-dominating sets.

Another obvious observation concerns disconnected graphs. The number of
(σ, �)-dominating sets in a graph is equal to the product of the numbers of
(σ, �)-dominating sets in its connected components. Hence it would suffice to
consider connected graphs. However, the analysis of our algorithm also works
for isolate-free input graphs (i.e., graphs without isolated vertices), which is
more interesting for the main combinatorial result of our paper:

Theorem 1. If σ is successor-free and either both σ and � are finite, or one
of them is finite and σ ∩ � = ∅, then every isolate-free graph contains at most
cn (σ, �)-dominating sets, where c = cσ,� < 2 is a constant depending on σ and
�. Moreover, all the (σ, �)-dominating sets can be enumerated in time O∗(cn)
(where c is the same constant).

The theorem is proved algorithmically in the next section. As already mentioned
in the Introduction, the algorithm solves not only the enumeration problem
Enum(σ, �)-DS in time O∗(cn), but also the ∃(σ, �)-DS, Max-(σ, �)-DS, Min-

(σ, �)-DS and #-(σ, �)-DS problems (only the polynomial factor in the star-
notation is different). It is worth noting that the constant c depends only on p
and q.

Recent results of Gupta et al. [9] give enumeration algorithms and lower and
upper bounds for the number of maximal r-regular subgraphs in a given graph.
Induced r-regular subgraphs are ({r},N0)-dominating sets, and thus this result
is related to our work. As can be expected for particular (σ, �), their bounds are
better than our general bounds.

3 The Branch and Recharge Algorithm

Throughout the rest of the paper we assume that σ and � satisfy the assumptions
of Theorem 1. The algorithm is based on the Branch & Reduce paradigm and
consists of only one simple branching rule. To guarantee a running time faster
than 2n, the branching is combined with a recharging mechanism. The key idea
of the algorithm is to guarantee that in any branching step on a chosen vertex v
the weight of the input graph decreases by at least 1 when v is discarded, and it
decreases by at least 1 + ε when v is selected into the so far generated candidate
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for a (σ, �)-dominating set. Here ε > 1 is a constant dependent on σ and � (in
fact, on p and q only). The usage of the branching vector (1, 1 + ε) with ε > 0
immediately implies that the running time is faster than 2n.

Initially every vertex v ∈ V of the isolate-free input graph G = (V,E) is as-
signed weightw(v) = 1. The total weight of the graph is w(G) =

∑
v∈V w(v) = n.

The algorithm recursively builds candidate sets S for (σ, �)-dominating sets
in G. It recursively calls procedure SigmaRho which consists of three subrou-
tines: Forcing (which identifies vertices that must or must not be placed in
S), Recharge (which prepares the grounds for the next subroutine by sending
charges of ε along certain edges), and Branch (the core of the algorithm, as it
is responsible both for the exponential running time of the algorithm and for
the base of the exponential function). All these subroutines and the procedure
work with the same graph G and leave it unchanged, and with a global variable
L which is the list of candidate sets S. Their parameters are S, S (containing
the vertices discarded from the candidate set), the weight function w and an
auxiliary directed graph H which is an orientation of a spanning subgraph of G
(H is tracking the recharging moves). Moreover, Forcing, Recharge and Branch
are called on a particular free vertex v. At every stage of the algorithm a vertex
is called free if it does not belong to S ∪ S. Free vertices keep positive weights,
allocated vertices get weight zero. Once a vertex is allocated in S (we say it
is selected) or in S (we say it is discarded) it never changes its status during
further calls. We will now describe the details in pseudocode (the global vari-
able L and the input graph G are not listed in the preamble). The choice of
ε is

ε =

{
1

1+max(p,q) if both σ and � are finite
1

1+min(p,q) if at least one of σ, � is finite and σ ∩ � = ∅.

Procedure SigmaRho(S, S, w, H)
if there is no free vertex then L := L ∪ {S}
else

let v be the last free vertex in the BFS ordering of V
if v = v1 then

/* v1 is the first vertex in the BFS ordering computed in the
preprocessing of the Algorithm Main-EnumSigmaRho (see
below) */

L := L ∪ {S, S ∪ {v}}
else

Forcing(v, S, S, w, H)
if Forcing halted then Halt
if v is still free then

Recharge(v, S, S, w, H)
Branch(v, S, S, w, H)

else SigmaRho(S, S, w, H)
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Subroutine Recharge(v, S, S, w, H)
if w(v) < 1 then

let {w1, . . . , wt} = {x : vx ∈ E(H)}
for i := 1 to t do let ui be another free neighbor (in G) of wi

for i := 1 to t do
w(ui) := w(ui) − ε
E(H) := (E(H) ∪ {uiwi}) \ {vwi}

w(v) := 1

Comment: Note that w1, . . . , wt are distinct vertices, while u1, . . . , ut need not
be. If some u is the chosen free neighbor of several, say k, vertices fromw1, . . . , wt,
then its weight drops by kε and also k edges starting in u are added to H .
Lemma 4 shows that wi always has another free neighbor in G.

Subroutine Branch(v, S, S, w, H)
1. S′ := S; S′ := S ∪ {v}; w′ := w; w′(v) := 0; H ′ := H;
SigmaRho(S′, S′, w′, H ′)
2. let u be a free neighbor of v

S := S ∪ {v}; w(v) := 0; w(u) := w(u) − ε; E(H) := E(H) ∪ {uv};
SigmaRho(S, S, w, H)

The last subroutine depends on σ and � and the choice of ε. If both sets are
finite and ε(1 + max(p, q)) = 1, we define Forcing as the subroutine Forcing-a
(see below). If σ∩� = ∅ and ε(1+min(p, q)) = 1 we define the Forcing subroutine
as Forcing-b (note that at least one of σ, � must be finite in this case).

Subroutine Forcing-a(v, S, S, w, H)
if ∃x ∈ S s.t. v is its unique free neighbor then

case
|N(x) ∩ S| ∈ σ then S := S ∪ {v}, w(v) := 0
|N(x) ∩ S| + 1 ∈ σ then S := S ∪ {v}, w(v) := 0
{|N(x) ∩ S|, |N(x) ∩ S| + 1} ∩ σ = ∅ then Halt

if ∃x s.t. |N(x) ∩ S| > max{p, q} then Halt

Having described the recursive procedure and its subroutines, the entire al-
gorithm named Main-EnumSigmaRho (see below) can be formalized as one call
of the recursive procedure (and necessary preprocessing and final check of the
items in the candidate list).

The correctness of the algorithm follows from the following lemmas, and from
the fact that it branches on each vertex whose membership to S or S is not forced.

Lemma 1 (Loop invariant). At the time of each call of the SigmaRho proce-
dure, the following invariants are fulfilled:

1. if x is free then w(x) = 1 − dε, where d is the outdegree of x in H,
2. H is the disjoint union of out-oriented stars, and xy ∈ E(H) implies that

y ∈ S,
3. w(x) = 0 for every x ∈ S ∪ S,
4. w(x) ≥ 0 for every free vertex x, and moreover w(x) > 0 after the execution

of the Forcing subroutine.
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Subroutine Forcing-b(v, S, S, w, H)
while (∃x s.t. x is free and |N(x) ∩ S| > min{p, q}) or
(∃y ∈ S with a unique free neighbor z) or (∃ a free vertex u with no free
neighbor) do

let x or y, z or u be such vertices
case

|N(x) ∩ S| > max{p, q} then Halt
|N(x) ∩ S| > p then S := S ∪ {x}; w(x) := 0
|N(x) ∩ S| > q then S := S ∪ {x}; w(x) := 0
|N(y) ∩ S| ∈ σ then S := S ∪ {z}; w(z) := 0
|N(y) ∩ S| + 1 ∈ σ then S := S ∪ {z}; w(z) := 0
{|N(y) ∩ S|, |N(y) ∩ S| + 1} ∩ σ = ∅ then Halt
|N(u) ∩ S| ∈ σ then S := S ∪ {u}; w(u) := 0
|N(u) ∩ S| ∈ � then S := S ∪ {u}; w(u) := 0
|N(u) ∩ S| �∈ σ ∪ � then Halt

Algorithm Main-EnumSigmaRho(G)
Preprocessing : Choose an arbitrary vertex v1 and order the vertex set of G
in a BFS ordering starting in v1

Initialization : L := ∅; S := ∅; S := ∅; H := (V (G), ∅)
for v ∈ V (G) do w(v) := 1
SigmaRho(S, S, w, H)
for S ∈ L do

if S is not a (σ, �)-dominating set in G then L := L \ {S}
output(L)

Proof 1. The weight of free vertices. At the beginning the weight of every vertex
is 1, and also H is edgeless, so the outdegree of every vertex is 0 (in H). The
invariant follows by induction on the number of recursive calls. The weights of
free vertices are changed in the Recharge and Branch subroutines, and in each
case the multiple of ε that is subtracted from (or added to) the weight of the
vertex is the same as the number of oriented edges starting in the vertex that
are added to (deleted from, respectively) H .

2. The shape of H . At the beginning, H is edgeless. It gets modified in the
Recharge and Branch subroutines. When recharging, edges vwi are replaced by
uiwi, and when branching, the edge uv is added. In each case the endpoint is a
vertex allocated in S and every vertex from S is the endvertex of at most one arc
of H . (In the case of branching this follows from the fact that w(v) = 1 before
Branch is called on v, and hence has neither outgoing nor incoming arcs.)

3. The weight of a vertex allocated to S or S becomes 0 at the time of allo-
cation.

4. Weights of free vertices are nonnegative. This is guaranteed by the Forcing
subroutines. We distinguish two cases.
4a. Forcing-a: A free vertex, say x, would have weight 0 or less only if it had
outdegree t > max(p, q) in H . But then x must have t neighbors in S. Certainly
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at the beginning of the first call of SigmaRho, no such vertex exists. The number
of S-neighbors may get raised during the first part of the Forcing-a subroutine,
but that is immediately discovered by the second part of the subroutine and the
execution is halted. The only other possibility is during the second part of the
Branch subroutine, when v is selected into S. In that case the weight of u, the
free neighbor of v, was positive before Branch was called and becomes 0 for just
a short moment – the Forcing-a subroutine of the subsequent call of SigmaRho
discovers that u has too many neighbors in S and halts the execution (unless
this call is one of the final ones and we are in a leaf of the search tree).
4b. Forcing-b: A free vertex, say x, would have weight 0 or less only if it had
outdegree t > min(p, q) in H , and hence at least as many neighbors in S. Again
such a vertex is discovered in the Forcing-b subroutine and allocated in S or S
(or the execution halts). After that the number of S-neighbors of a free vertex
may get raised only in the second part of the Branch subroutine. In that case
the weight of such free vertex, called u in the subroutine, drops only by one ε,
and since it was positive before, it becomes 0, and only for a short while. The
Forcing-b subroutine of the subsequent call of SigmaRho discovers that u has
too many neighbors in S and allocates u (or halts or contributes to the list L of
candidate sets when we are in a leaf of the search tree). ��

Lemma 2 (Halting). If Forcing halted with current values S, S, then G con-
tains no (σ, �)-dominating set M such that S ⊆ M ⊆ V \ S.

Proof a) Forcing-a: If Forcing-a halts because some x has more than
max(p, q) neighbors in S, then such an S cannot be a subset of any (σ, �)-
dominating set M . Indeed, if x ∈M then |N(x)∩M | ≥ |N(x)∩S| > p = maxσ
and |N(x)∩M | cannot be in σ, as well as |N(x)∩M | ≥ |N(x)∩S| > q = max �
and |N(x)∩M | cannot be in � if x 	∈ M . If Forcing-a halts because some x ∈ S
has a unique free neighbor, but neither |N(x) ∩ S| nor |N(x) ∩ S| + 1 are in
σ, then no M containing S is a (σ, �)-dominating set since |N(x) ∩M | equals
|N(x) ∩ S| or |N(x) ∩ S|+ 1, depending on whether v ∈M or not.

b) Forcing-b: The first two reasons why Forcing-b may halt are the same
as above. If the subroutine halts because for some free vertex x, |N(x) ∩ S| is
neither in σ nor in �, then no superset M of S can be a (σ, �)-dominating set
since x can be neither in M nor outside it. ��

Lemma 3 (Necessity). If at some stage, with current values of S, S, Forcing
wants to place x in S (resp. in S), then for every (σ, �)-dominating set in G
such that S ⊆ M ⊆ V \ S, it holds that x ∈ M (resp. x 	∈M).

Proof Again the two cases are distinguished. In both it is assumed that M is a
(σ, �)-dominating set such that S ⊆ M ⊆ V \ S.

a) Forcing-a: Suppose v is the unique neighbor of x ∈ S and |N(x)∩S| ∈ σ.
Then |N(x) ∩ S| + 1 	∈ σ because σ is successor-free. Thus v cannot be in M ,
since then |N(x)∩M | = |N(x)∩S|+1 	∈ σ. Similarly, |N(x)∩S|+1 ∈ σ implies
|N(x) ∩ S| 	∈ σ and v must be in M , since it is the only possible additional
M -neighbor of x.
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b) Forcing-b: If z is the only free neighbor of a vertex y ∈ S, the argument
is as above. If x is a free vertex such that |N(x) ∩ S| > p (and ≤ q since the
subroutine did not halt in the previous step), x cannot be in M because then
|N(x) ∩M | ≥ |N(x) ∩ S| > p = maxσ and |N(x) ∩M | could not be in σ, while
if |N(x) ∩ S| > q, then x cannot be outside M because then |N(x) ∩ M | ≥
|N(x) ∩ S| > q = max � and |N(x) ∩M | could not be in �. Finally, if u is a free
vertex with no free neighbor, then |N(u)∩M | = |N(u)∩S| and the membership
of u in M is uniquely determined since σ ∩ � = ∅. ��

Lemma 4 (Correctness). The subroutines Recharge and Branch can always
be executed.

Proof The Forcing subroutine guarantees that no S-neighbor of v has v as its
only free neighbor. In the Recharge subroutine, vwi is an arc of H and hence
wi ∈ S for every i = 1, . . . , t. But then each wi has another free neighbor and
Recharge does not get stuck.

For the Branch subroutine, we distinguish the two cases again.
Forcing-a: We note that vertices of G get allocated into S or S only when
we attempt to branch on them (in the preceding Forcing-a subroutine, or in
Branch itself). Therefore when we consider v to be the last free vertex in the
BFS ordering of the vertex set of G, either v = v1 is the root (and then we do
not bother checking anything and just add both S and S ∪{v} to the candidate
list L) or v has a predecessor u in the BFS tree of G. This u comes earlier in
the BFS ordering of G, hence was not attempted to branch on yet, and hence is
free at the time when v is processed.

Forcing-b: If v has no free neighbor, then v (renamed as u) gets allocated in
the preceding run of the Forcing-b subroutine or that subroutine is halted, but
in neither case v remains free for branching. ��

Analysis of the running time. The weight of an instance (G,w, S, S,H) is w(G) =∑
v∈V w(v). In each branching on a vertex v the measure of the input decreases

by 1 when discarding v, and it decreases by 1 + ε when selecting v. In the
standard terminology of branching algorithms this implies that the branching
vector is (1, 1 + ε). The running time of each execution of SigmaRho (without
recursive calls) is polynomial, and so the total running time is O∗(T ) where T
is the number of leaves of the search tree. Note that each (σ, �)-dominating set
corresponds to one leaf of the search tree.

Let T [k] be the maximum number of leaves of the search tree that any exe-
cution of our algorithm may generate on a problem instance of weight k. Due
to the branching vector we obtain: T [k] ≤ T [k − 1] + T [k − 1 − ε]. Thus the
number of (σ, �)-dominating sets (which is bounded from above by T [n]) in an
isolate-free graph on n vertices is at most cn, and the running time of our algo-
rithm that enumerates all of them is O∗(cn), where c is the largest real root of
the characteristic polynomial x1+ε − xε − 1 = 0.

The table shows the base of the exponential function bounding the running
time of our algorithm for some particular values of ϕ = 1

ε − 1. Note that ϕ =
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max(p, q) if both σ and � are finite, and ϕ = min(p, q) if at least one of them is
finite and σ ∩ � = ∅.

ϕ 0 1 2 3 4 5 6 7 8 100
c 1.6181 1.7549 1.8192 1.8567 1.8813 1.8987 1.9116 1.9216 1.9296 1.9932

As can be expected, c converges to 2 when ϕ converges to infinity (and ε
converges to 0). This is easily seen from the characteristic polynomial, which
tends to x− 2 = 0.

4 Lower Bounds

The combinatorial consequence of our algorithm shows that (under certain as-
sumptions on σ and �) every isolate-free graph on n vertices contains at most
2n(1−δ) (σ, �)-dominating sets, for some δ > 0.

Taking σ = {0} and � = N we obtain the Independent Dominating Set prob-
lem and the (σ, �)-dominating sets are precisely the maximal independent sets.
Hence our theorem implies that the maximum number of maximal independent
sets is upper bounded by 1.6181n; while Moon and Moser [13] tells us that the
correct value is 1.4423n.

While the upper bound of Moon and Moser is tight, others like the one by
Fomin et al. for the maximum number of minimal dominating sets [8] might
not be tight. Likewise, our upper bounds established by a general approach are
unlikely to be tight for all particular values of (σ, �). Thus it is natural to look
after lower bounds.

Let σ be the set of all even integers from the interval [0, r−1], and � be the set
of all odd integers from this interval, where r ≥ 2 is a positive integer. Consider
G = sKr, the disjoint union of s copies of the complete graph Kr. Clearly, this
graph G has 2(r−1)s = 2

r−1
r n (σ, �)-dominating sets.

Since both σ and � are finite, and σ∩� = ∅, we can use our algorithm in both
variants. The next table compares the bases of the exponential upper bounds
given by our algorithm (with both variants of ε = 1

1+max(p,q) and ε = 1
1+min(p,q) ,

distinguished as cmax and cmin, respectively) with the base ar = 2
r−1

r of the
exponential function giving the lower bound arising from the example above.

r 2 3 4 5 6 7 8 9 101
cmax 1.7549 1.8192 1.8567 1.8813 1.8987 1.9116 1.9216 1.9296 1.9932
cmin 1.6181 1.7549 1.8192 1.8567 1.8813 1.8987 1.9116 1.9216 1.9932
ar 1.4142 1.5874 1.6817 1.7411 1.7817 1.8114 1.8340 1.8517 1.9863

5 A Sort and Search Approach

We use a classical method based on sorting and searching to design exact algo-
rithms. Woeginger’s survey [16] and a paper from 1981 by Schroeppel and Shamir
[14] show how to use such a paradigm to establish moderately exponential-time
algorithms solving some NP-hard problems.
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We study the use of Sort & Search for constructing algorithms for ∃(σ, �)-DS

defined in the Introduction. The task is to decide whether the given graph has
a (σ, �)-dominating set. Those problems are polynomial-time solvable or NP-
complete depending on (σ, �). For more details, we refer to [15].

The NP-complete ∃({0}, {1})-DS problem is called Perfect Code and it can
be solved in time O(1.1730n) [4]. The algorithm is based on solving the exact
satisfiability problem (called XSAT) and the approach has been generalized to
the so-called XiSAT problem. Those algorithms use Sort & Search and their
running time is O∗(2n/2).

Our use of Sort & Search was inspired by the aforementioned algorithms.

Theorem 2 The ∃({p}, {q})-DS problem can be solved in time O∗(2n/2).

Proof Let p, q ∈ N0. Let G = (V,E) be the input graph and let k = �n/2�.
The algorithm partitions the set of vertices into V1 = {v1, v2, . . . vk} and V2 =
{vk+1, . . . , vn}. Then for each subset S1 ⊆ V1, it computes the vector s1 =
(x1, . . . , xk, xk+1, . . . , xn) where

xi =

⎧
⎨

⎩

p− |N(vi) ∩ S1| if 1 ≤ i ≤ k and vi ∈ S1

q − |N(vi) ∩ S1| if 1 ≤ i ≤ k and vi /∈ S1

|N(vi) ∩ S1| if k + 1 ≤ i ≤ n

and for each subset S2 ⊆ V2, it computes the corresponding vector s2 = (x1, . . . ,
xk, xk+1, . . . , xn) where

xi =

⎧
⎨

⎩

|N(vi) ∩ S2| if 1 ≤ i ≤ k
p− |N(vi) ∩ S2| if k + 1 ≤ i ≤ n and vi ∈ S2

q − |N(vi) ∩ S2| if k + 1 ≤ i ≤ n and vi /∈ S2.

After the computation of these 2k+1 vectors, the algorithm sorts those corre-
sponding to V2 in lexicographic order. Then, for each vector s1 (corresponding
to an S1 ⊆ V1) using binary search it tests whether there exists a vector s2

(corresponding to an S2 ⊆ V2), such that s2 = s1. Note that the choice of the
vectors garantees that s2 = s1 iff S1 ∪ S2 is a ({p}, {q})-dominating set. Such
fixed vector s1 can be found in time n log 2n/2 in the lexicographic order of the
vectors of V2. Thus the overall running time is O∗(2n/2). ��

Corollary 1 Max-({p}, {q})-DS, Min-({p}, {q})-DS and #-({q}, {q})-DS

can also be solved in time O∗(2n/2).

Proof The algorithm of the previous theorem only needs to be modified as fol-
lows: Instead of sorting all vectors corresponding to V2 in lexicographic order,
multiple copies are removed and each vector is stored with an entry indicating
its number of occurrences. Furthermore for minimization (resp. maximization),
with each vector we store an Si ⊆ Vi of minimum (resp. maximum) cardinality
that generates this vector. ��

Finally, let us mention that the approach can be extended to certain infinite σ
and �. Let m ≥ 2 be a fixed integer and k ∈ {0, 1, . . . ,m − 1}. We denote by
k + mN0 the set {m · � + k : � ∈ N0}.
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Theorem 3 Let m ≥ 2 and p, q ∈ N0. The problems ∃(p + mN0, q + mN0)-
DS, MIN-(p+mN0, q +mN0)-DS, MAX-(p+mN0, q +mN0)-DS and #-(p+
mN0, q + mN0)-DS can be solved in time O∗(2n/2).

Proof The corresponding algorithms in Theorem 2 and Corollary 1 are to be
modified such that all components of vectors are taken modulo m and the addi-
tion and/or subtraction of vector components is taken modulo m. ��
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On Computing the Centroid of the Vertices of
an Arrangement and Related Problems

Deepak Ajwani, Saurabh Ray, Raimund Seidel, and Hans Raj Tiwary�
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Abstract. We consider the problem of computing the centroid of all the
vertices in a non-degenerate arrangement of n lines. The trivial approach
requires the enumeration of all

(
n
2

)
vertices. We present an O(n log2 n)

algorithm for computing this centroid. For arrangements of n segments
we give an O(n

4
3+ε) algorithm for computing the centroid of its vertices.

For the special case that all the segments of the arrangement are chords of
a simply connected planar region we achieve an O(n log5 n) time bound.
Our bounds also generalize to certain natural weighted versions of those
problems.

1 Introduction

An arrangement of n lines in the plane has up to
(
n
2

)
vertices. However, these

vertices are implicitly specified by only 2n real numbers. Thus it is not neces-
sarily surprising that some functions of this vertex set can be computed in sub-
quadratic time: E.g. the vertex with k-th smallest x-coordinate can be computed
in O(n logn) time [4]. It is an outstanding open problem in computational geom-
etry whether in subquadratic time the true number of vertices can be computed
(in other words, whether in subquadratic time degeneracy can be determined).

In this paper we study the problem of computing the centroid of the vertices in
an arrangement of lines (and also of line segments). In contrast to the problems
mentioned above the centroid function is not combinatorial in the sense that it
does not produce an integer value but it produces real values.

We first show that the centroid of intersection points n lines in the plane can
be computed in O(n log2 n) time. Using this result and employing a segment
query data structure, we show that the centroid of the intersection points of
n line segments in the plane can be computed in O(n4/3+δ) time (δ > 0 arbi-
trarily small). This should be compared with the complexity of the best known
algorithm for counting the number of intersections in the plane by Chazelle [3],
which is Θ(n4/3(logn)1/3). In case the segments have a restricted structure in
that they all are chords of a simply connected region, we can do better: we show
a bound of O(n log5 n) time. We finally show that all the mentioned bounds
continue to hold for a natural weighted generalization of the centroid problem:
� The last author was supported by Graduiertenkolleg der FR Informatik, Universität

des Saarlandes while working on this problem.
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endow each line (or segment) with a real weight and define the weight of an
intersection point to be the sum of the weights of the involved lines.

The main computational ingredient in our approach besides the usual com-
putational geometry machinery is the Fast Fourier Transform.

Our approach does in no way solve the above-mentioned degeneracy problem.
However, in the conclusion we offer a brief discussion why algebraic methods as
used in this paper may be a viable approach towards a subquadratic solution
the degeneracy problem For the sake of presentation we assume non-degeneracy.
Degeneracy in the form of non-intersecting lines can easily be taken care of
explicitly. Degeneracy in the form of of concurrent lines is ignored in the sense
that if an arrangement vertex v is incident to k lines then it is counted

(
k
2

)
times,

once for each pair of lines intersecting in v.
The problem of computing the centroid of the vertices of an arrangement is

admittedly somewhat academic. For readers with a strong need for applications
here is a conceivable scenario where our results would be relevant. Consider the
deployment of wireless devices on road-crossings in a city for the purpose of
traffic monitoring (finding traffic rule violations or updating the people about
overcrowded crossings or traffic jams). These devices need to continously trans-
mit the data to a central base station. An important cost criterion here is the
power consumed by these devices. The power needed by a device is proportional
to the square (assuming free space) of the distance to which it needs to transmit
the data. Thus the location of the central base station should be such that it
minimizes the sum of the squares of the distances to the road crossings. This
location is realized by the centroid of the crossings. Thus our results apply if all
the roads in the city are straight and all intersections are crossings of exactly
two roads.

If you assume that the power consumption of the wireless device at an inter-
section is proportional to the number of cars going by and the average number
wi of cars going along road i per unit of time is independent of the position
along the road, then the weighted versions of our centroid problems apply.

Our results heavily rely on the following two facts from computational algebra
(see Chapter 1 of [9], [5]).

Fact 1 (Fast polynomial multiplication). The product of two univariate
polynomials over the reals of maximal degree n can be computed in time O(n logn).

Fact 2 (Fast multiple evaluation). Let p(x) be polynomial over the reals of
degree at most n and let A be a set of n real number.

The set {(a, p(a)|a ∈ A} can be computed in O(n log2 n) time.

2 Computing the Centroid of the Intersection Points of n
Lines

We are given a set L of n lines li : y = mix − ci (for 1 ≤ i ≤ n) in general
position (no three of them intersect at the same point and no two of them are
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parallel). Let (Xij , Yij) represent the intersection point of lines li and lj . We
want to compute the centroid (XL, YL) of the intersection points (Xij , Yij). By
the definition of centroid,

XL =
(
n

2

)−1 ∑

i,j∈[1...n]
i<j

Xij , YL =
(
n

2

)−1 ∑

i,j∈[1...n]
i<j

Yij

Consider a query line l : y = μx− γ. We would like to compute the sum of
the x-coordinates of the intersection points of l with each of the lines in L. This
is given by

FL(μ, γ) =
∑

1≤i≤n

ci − γ

mi − μ

This function can be represented as:

FL(μ, γ) =
PL(μ) − γQL(μ)

SL(μ)
(∗)

where PL, QL and SL are single variable polynomials of degree at most n.
We assume that the query line is not parallel to any of the lines in L. We do,

however, allow it to be identical to one of the lines in L in which case we want
to compute the sum of the x coordinates of the intersection of l with the other
lines in L. If l is not identical to any of the lines in L, then FL(μ, γ) as defined
above is well defined. If l is identical to one of the lines (lj) in L, then F (μ, γ) is
of the form 0

0 and thus F cannot be evaluated using (*). We therefore evaluate
F at μ = mj , γ = cj applying de l’Hôpital’s rule, which yeilds

FL(mj , cj) =
P ′
L(mj)− cjQ

′
L(mj)

S′
L(mj)

,

where P ′
L, Q

′
L, and S′

L denote the derivatives of PL, QL, and LL with respect to
μ. We will associate the polynomials PL, QL and SL defined above with the set
L of lines.

Lemma 1. Given a set of n lines L, the associated polynomials PL, QL and SL
can be computed in O(n log2 n) time.

Proof. We arbitrarily color half the lines blue and the rest red. Let R and B be
the set of red and blue lines respectively. We then recursively compute PR, QR
and SR for the red lines and PB, QB and SB for the blue lines. Then,

FL(μ, γ) =
PR(μ) − γQR(μ)

SR(μ)
+

PB(μ) − γQB(μ)
SB(μ)

=
(PR(μ) · SB(μ) + PB(μ) · SR(μ)) − γ(QR(μ) · SB(μ) + QB(μ) · SR(μ))

SR(μ) · SB(μ)
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Therefore,

PL(μ) = PR(μ) · SB(μ) + PB(μ) · SR(μ)
QL(μ) = QR(μ) · SB(μ) + QB(μ) · SR(μ)
SL(μ) = SR(μ) · SB(μ)

Since two polynomials of degree at most n can be multiplied in O(n log n)
time using FFT (Fact 1), PL, QL and SL can be computed in O(n log n) time
from PR, QR, SR, PB, QB and SB. Therefore PL, QL and SL can be computed
in O(n log2 n) time (we get one log factor due to recursion).

Theorem 3. Given a set R of n red lines and a set B of n blue lines such that
no red line is parallel (or identical) to any blue line, we can compute the centroid
(XRB, YRB) of red-blue intersection points in O(n log2 n) time.

Proof. We shall treat each of the red lines as a query line and compute the sum
of the x-coordinates of its intersection with the blue lines. We then add the sums
for all the red lines and the divide by the number of red-blue intersections (n2)
to get the x-coordinate of the centroid of the red-blue intersections. Since none
of the red lines are identical to any of the blue lines, the x-coordinate XL of the
centroid of red-blue intersections is

XL = n−2
∑

li∈R
FB(mi, ci) = n−2

∑

li∈R

PB(mi) − ciQB(mi)
SB(mi)

Since the polynomials PB, QB and SB can be computed in O(n log2 n) time using
Lemma 1 and also they can be evaluated at the n mi’s corresponding to the n
red lines in O(n log2 n) time using FFT (See Fact 2), the overall time for the
computation of XL is O(n log2 n). The y-coordinate of the centroid of red-blue
intersections can be computed similarly.

Corollary 1. Given a set R of r red lines and a set B of b blue lines, the
centroid (XRB, YRB) of the red-blue intersections can be computed in O((r +
b) log3 (r + b)) time.

Theorem 4. Given a set L of n lines, we can compute the centroid (XL, YL) of
their intersections in O(n log2 n) time.

Proof. In this case, we treat each of the lines as a query line and compute the
sum of the x-coordinates of its intersections with the lines in L. We know that
each of these query lines is identical to exactly one line in L (i.e. the line itself).
Therefore, the x-coordinate of the centroid of the intersections of the lines is
given by,

XL = n−2
∑

li∈L
FL(mi, ci) =

∑

li∈L

P ′
L(mi) − ciQ

′
L(mi)

S′
L(mi)

Since PL, QL and SL can be computed in O(n log2 n) time, P ′
L, Q

′
L and S′

L can
also be computed in O(n log2 n) time. Also, P ′

L, Q
′
L and S′

L can be evaluated at
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the n mi’s corresponding to the n lines in O(n log2 n) time. Therefore, XL can
be computed in O(n log2 n) time. Similarly, YL can be computed in O(n log2 n)
time.

If each of the lines li ∈ L of n lines is endowed with a weight wi, we define the
centroid of weighted lines to be

(XL, YL) = (
∑

li,lj∈L
i<j

Xij(wi + wj),
∑

li,lj∈L
i<j

Yij(wi + wj))

where (Xij , Yij) is the intersection point of li and lj .
We proceed exactly as in the unweighted case by considering a query line

l : y = μx − γ with weight ω. Then, the weighted sum of the x-coordinates of
the intersections of l with the lines in L is given by

GL(μ, γ, ω) =
∑

1≤i≤n

ci − γ

mi − μ
· (ω + wi)

This function can again be represented as:

GL(μ, γ, ω) = ω · PL(μ) − γQL(μ)
SL(μ)

+
UL(μ) − γVL(μ)

SL(μ)

where PL, QL and SL are as before and UL and VL are some other polynomials
of degree at most n in μ.

We can now apply the same techniques as for the unweighted case to obtain
the following:

Lemma 2. Given a set R of n red weighted lines and a set B of n blue weighted
lines and their associated polynomials the centroid of the red-blue intersections
can be computed in O(n log2 n).

Theorem 5. Given a set L of n weighted lines the centroid (XL, YL) of their
intersections can be computed in O(n log2 n) time.

Corollary 2. Given a set R of r weighted red lines and a set B of b weighted
blue lines, the centroid (XRB , YRB) of the red-blue intersections can be computed
in O((r + b) log2 (r + b)) time.

3 Centroid of Line Segment Intersections

Theorem 6. Given a set R of r red segments and a set B of b blue segments,
if R can be preprocessed into a data structure of size O(s(r)) in time O(p(r))
so that all segments intersecting a query segment t ∈ B can be reported as
the union of O(u(r)) “canonical” prestored subsets in O(q(r)) time, then we
can form sets R1, R2, · · · , Rk of red segments and sets B1, B2, · · · , Bk of blue
segments in O(p(r) + b q(r)) time such that
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1. For 1 ≤ i ≤ k, all segments in Ri intersect all segments in Bi
2. If a red segment ρ intersects a blue segment β, there is a unique i such that

ρ ∈ Ri and β ∈ Bi

3.
n∑

i=1

|Ri| = O(s(r)),
n∑

i=1

|Bi| = O(b u(r))

Proof. We use a method used by Agarwal and Varadarajan in [2]. We construct
the data structure for the red segments. The canonical prestored subsets pro-
duced by the data structure form our sets Ri. With each set Ri we associate
a bucket which is initially empty. We query this data structure for each blue
segment β ∈ B one by one. The output of the query is given as the disjoint
union of O(u(r)) canonical subsets and we put the segment β into the buckets
associated with each of those subsets. The set of segments in the bucket asso-
ciated with Ri forms the set Bi. It is clear that each segment in Ri intersects
each segment in Bi since we put exactly those segments in Bi which intersect
all segments in Ri. Also, since the output to each query is given as a disjoint
union of canonical subsets, whenever a red segment ρ and a blue segment β
intersect, there is a unique i such that ρ ∈ Ri and β ∈ Bi. Since the size of

the data structure is O(s(r)),
n∑

i=1

|Ri| = O(s(r)) and since each query returns

O(u(r)) canonical subsets, each blue segment is contained in at most O(u(r))

buckets and therefore
n∑

i=1

|Bi| = O(b u(r)). The time required to construct the

data structure is O(p(r)) and the time for the b queries is O(b q(r)). So, the
total time complexity is O(p(r) + b q(r)).

Theorem 7. Given a set R of r (weighted) red segments and a set B of b
(weighted) blue segments, if R can be preprocessed into a data structure of size
O(s(r)) in time O(p(r)) so that all segments intersecting a query segment t ∈ B
can be reported as the union of O(u(r)) “canonical” prestored subsets in O(q(r))
time, then we can compute the number of the red-blue intersections and their
centroid in O

(
p(r) + b q(r) + (s(r) + b u(r)) log2 (r + b)

)
time.

Proof. We use Theorem 6 to form the sets Ri and Bi. Since all segments in
Ri intersect all segments in Bi, the total number of intersections between the
segments in Ri and the segments in Bi is mi = |Ri||Bi| and the centroid of those
intersections (Xi, Yi) can be computed in O(ni log2 ni) time (Corollaries 1 and 2)
where ni = |Ri| + |Bi|. So, the total number of intersections is m =

∑

i

mi and

the centroid of all red-blue intersections is m−1
∑

i

miXi and can be computed in

O
(

p(r) + b q(r) +
∑

i

ni log2 ni

)

= O
(

p(r) + b q(r) + log2 (r + b)(
∑

i

ni)

)

=

O
(
p(r) + b q(r) + (s(r) + b u(r)) log2 (r + b)

)
time.
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Theorem 8. If a set S of n (weighted) segments in the plane can be prepro-
cessed into a data structure of size O(s(n)) in time O(p(n)) so that all segments
intersecting a query segment t ∈ S can be reported as the union of O(u(n))
“canonical” prestored subsets in O(q(n)) time, then we can compute the number
of segment intersections and their centroid in O((p(n) + n q(n)) logn + (s(n) +
n u(n)) log4 n) time.

Proof. We color half the segments red and the rest blue and then use Theorem 7
with r = b = n/2 to compute the number mRB of red-blue intersections and
their centroid (XRB , YRB). We recursively compute the number mR of red-red
intersections and their centroid (XR, YR) and also the number mB of blue-blue
intersections and their centroid (XB, YB). The total number of intersections
is m = mRB + mR + mB and their centroid is (m−1(mRBXRB + mRXR +
mBXB), (m−1(mRBYRB +mRYR +mBYB)). The time required for the compu-
tation is O((p(n) + n q(n)) logn+ (s(n) + n u(n)) log3 n) (we get an extra logn
factor due to the recursion).

Corollary 3. The centroid of the intersections of arbitrary (weighted) segments
in the plane can be computed in O(n4/3+ε) time.

Proof. Agarwal and Sharir [1] have shown that given a collection S of segments
in the plane and a parameter n1+ε ≤ s ≤ n2+ε we can preprocess S into a data
structure of size s, in time O(s1+ε) so that we can report all k segments of S
intersecting a query segment in time O(n1+ε/s

1
2 +k). Furthermore, the output to

such a query is given as the disjoint union of O(n1+ε/s
1
2 ) “canonical” prestored

subsets. We put s = n4/3 and apply Theorem 8 and the result follows.

Since the time complexity of the best known algorithm even for computing the
number of intersections among n line segments in the plane is Θ(n4/3(logn)1/3)
[3], it is unlikely that this can be improved.

4 Intersection of Lines Inside a Polygon

If the configuration of the given set of segments allows a better query structure
for segment intersections, we can do better. This for example is the case when
the segments are chords of a simple region.

A region D ⊂ -2 is called simple if any line intersects it at most c(a constant)
times and the intersection of any set of n lines and the boundary of D can be
ordered along the boundary in O(n logn) time [8]. A chord of the region is a
segment joining two boundary points and lying completely in the interior of
the region. Let c1, c2, · · · , cn be chords of a simple region R. We represent a
chord ci with the pair (li, ri) where li and ri are indices of the endpoints of ci
in the sorted order and li < ri. Now given a query chord c, we can do binary
searching of its endpoints in the sorted order of endpoints to compute their
ranks lc and rc in O(log n) time. Denote by I(c) the set of chords intersecting c.
Observe that I(c) = I1(c) ∪ I2(c) where I1(c) = {ci|li < lc & lc < ri < rc} and
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I2(c) = {ci|lc < li < rc & ri > rc}. If we represent ci by the point (li, ri) in the
plane, then I1 and I2 can be computed using orthogonal range queries of the
types [−∞, lc] × [lc, rc] and [lc, rc] × [rc,∞]. We can use range trees [6], which
can be built in O(n log n) time and O(n logn) space, to answer such queries
in O(log2 n) time where the answer to each query is the union of O(log2 n)
pairwise disjoint canonical subsets. We can therefore apply Theorem 8 (with
p(n) = O(n logn), s(n) = O(n logn), u(n) = O(log2 n), q(n) = O(log2 n)) to
show that the centroid of the intersections of the chords can be computed in
O(n log5 n) time.

Corollary 4. The centroid of the intersection points of n (weighted) lines lying
inside a given simple region D can be computed in O(n log5 n) time.

Proof. Since each line intersects D at most c times, the problem can be reduced
to computing the centroid of the intersections of at most �c/2�n chords of D.

5 Computing Higher Moments

The x and y coordinates of the centroid of the intersection points are the aver-
ages of the coorresponding coordinates of the intersection points. We are now
interested in the averages of the higher powers of the x and y coordinates.

As in Section 2, consider a set L of n lines and a query line l : y = μx− γ.
We want to compute the averages of the kth powers, X(k)

L and Y
(k)
L , of the x

and y-coordinates of the intersection points of the line l with the lines in L. The
sum of the the kth powers of the x-coordinates of these intersection points is

F
(k)
L (μ, γ) =

∑

1≤i≤n

(
ci − γ

mi − μ

)k

This function can be represented as:

F
(k)
L (μ, γ) =

∑
0≤j≤k γ

jP
(j)
L (μ)

SL(μ)

where the P
(j)
L ’s and SL are polynomials of degree at most kn in μ.

We can therefore proceed as before and prove that computing the averages of
the kth powers of the coordinates requires at most k2 times the time required
to compute the centroid (We get one k since there are O(k) polynomials to deal
with and another k since the polynomials are of degree kn).

6 Conclusion and Outlook

In this paper we describe subquadratic algorithms for computing certain func-
tions on the set of all intersecting pairs of lines (or segments) in an arrange-
ment. Which functions do admit such subquadratic computations? The most
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outstanding question of this sort akss whether two distinct intersecting pairs
of lines define the same intersection point, in other word, do some three lines
intersect in a point. This is known as the line arrangement degeneracy problem.
At this point this problem seems out of reach. However, we would like to point
out the related problem of 3-Sum may be amenable to an algebraic approach as
used in this paper.

The 3-Sum problem [7] asks whether for three given sets A, B, and C of n
real numbers each, we have (A + B) ∩ C = ∅, where A + B is the Minkowski
sum {a + b|a ∈ A, b ∈ B}. No subquadratic time solutions to this problem are
known, except for the case where the three sets consist of integers in the range
of 0 to K. In that case it suffices to compare C with the support of the product
polynomial

(∑
a∈A x

a
)
·
(∑

b∈B xb
)
. This can be done in O(K logK) time.

Let us consider the simpler question whether we have A∩B = ∅. There is an
obvious O(n log n) solution via sorting and merging. This solution is combinato-
rial in that it relies on order comparisons <,=, >. It may be somewhat surprising
that there is a also subquadratic solution relying solely on equality comparisons:
Consider the polynomial pA(x) =

∏
a∈A(x−a). We have A∩B 	= ∅ iff pA(b) = 0

for some b ∈ B. The polynomial pA can be computed in O(n log2 n) time using
divide-and-conquer and FFT-based polynomial multiplication, and within the
same bound pA can be evaluated for all n elements of B. Thus A ∩ B = ∅ can
be decided in O(n log2 n) time without using order comparisons.

Algebraically maybe more succinct is the formulation A ∩ B = ∅ iff
gcd(pA(x), pB(x)) = 1, where of course pB(x) =

∏
b∈B(x− b). This also leads to

an O(n log2 n) time solution since the gcd of two polynomials of degree n can be
computed within this time (See Section 2.4, Chapter 2 of [9]).

The 3-Sum problem allows the following algebraic formulation:

(A + B) ∩C = ∅ iff gcd( resultant(pA(x), pB(z − x), x) , pC(z)) = 1 .

Here pC(z) =
∏
c∈C(z − c). Note that resultant(pA(x), pB(z − x), x) is nothing

but pA+B(z), i.e. the polynomial whose roots are exactly the elements of A+B.
Current techniques of computational algebra do not seem to allow the evaluation
of gcd( resultant(pA(x), pB(z − x), x) , pC(z)) in subquadratic time. However,
there may be a better chance of success along such an algebraic approach than
along a traditional combinatorial approach.
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Abstract. An optimal linear time algorithm for the unweighted p-center
problems in trees has been known since 1991 [4]. No such worst-case lin-
ear time result is known for the weighted version of the p-center problems,
even for a path graph. In this paper, for fixed p, we propose two linear-
time algorithms for the weighted p-center problem for points on the real
line, thereby partially resolving a long-standing open problem. One of
our approaches generalizes the trimming technique of Megiddo [10], and
the other one is based on the parametric pruning technique, introduced
here. The proposed solutions make use of the solutions of another variant
of the center problem called the conditional center location problem [13].

1 Introduction

In this paper we study the p-center problem for points on the real line L is studied
when p is a fixed constant. The input is a set V of n points lying on L where
each point v ∈ V is associated with a non-negative weight w(v). V is known as
the demand set. Let q(u) denote the coordinate of a point u on L, and let d(u, v)
denote the distance between the points u and v, i.e., d(u, v) = |q(u)− q(v)|. Let
S(X,V ) denote the service cost of a set X = {α1, . . . , αp} on L to the demand
set V , that is,

S(X,V ) = max
v∈V

{w(v) · d(X, v)}, where d(X, v) = min
j=1,...,p

d(αj , v).

The p-center problem is to determine a set X of p points on L such that S(X,V )
is minimized. When all the weights w(v) are the same, the problem is known as
the unweighted p-center problem. When the p centers are restricted to be points
in V , the problem is known as the discrete p-center problem.

As the solution to this problem may be not unique, we settle for computing
one optimal solution. The point in V with the smallest (resp. largest) coordinate
is labeled v1 (resp. vn). It is easy to see that in any optimal solution X∗ =
{α1, . . . , αp}, q(v1) ≤ q(αi) ≤ q(vn), 1 ≤ i ≤ p.

The p-center problem and many of its variants on general graphs have been
shown to be NP-hard [9,12]. Frederickson [4] presented an O(n) algorithm for
� Research was partially supported by MITACS and NSERC.
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locating p facilities in a vertex-unweighted tree. However, no optimal algorithm
for the weighted version of the p-center problem is yet known, even for a fixed
value of p. Megiddo [10] proposed a linear-time algorithm for the 1-center prob-
lem in trees. Very recently it was shown that the weighted 2-center problem in
trees can also be solved in linear time [1]. Also recently, by using the Helly prop-
erty and the generalized linear programming technique, Halman [5,6] proposed
randomized linear time algorithms for the weighted p-center problem and the
discrete unweighted p-center problem for points on the real line for any fixed p.
The above result of Halman is also true for any path graph, an easier case. It
is worth mentioning that Hassin and Tamir [7] devised algorithms for several
coverage location models on the real line.

Efficient algorithms for the weighted p-center problems in trees are known.
Megiddo and Tamir [12] provided an O(n log 2n log logn) procedure to solve
the weighted p-center problem in trees, which can be improved to O(n log 2n)
by applying a result of Cole [3]. This result is true for any arbitrary value
of p. Improved results are known for small p (viz. p = o(log n)). Jeger and
Kariv [8] showed that the weighted p-center problem in trees can be solved in
O(pn logn) time. The discrete weighted p-center problem in trees is also solvable
in O(n log 2n) time for any p [11].

Our problem of computing the weighted p-center problem for points on the
real line is similar to the weighted p-center problem in a path graph. The main
difference is that the path topology provides the ordering of these n points,
whereas no ordering information of the demand points on L is available. The
main results of this paper are worst-case linear-time algorithms for the weighted
p-center problem of points on the real line when p is fixed. Megiddo [10] used a
trimming technique to solve the weighted 1-center problem in linear time. The
problem of generalizing the trimming approach to solve the p-center problem
for p > 1 was open for a long time. In [1], the interactions between the two
centers and split edge guide the trimming of the underlying tree. In this paper,
we generalize the approaches proposed in [1,10], which are then used to solve
the weighted p-center problem, p fixed, for points on the real line L in optimal
linear time.

The paper is organized as follows. Our main idea is discussed in Sect. 2 where we
discussMegiddo’s trimmingmethod and the proposedparametric-pruningmethod
for the 1-center problem in trees. In Sect. 3, we present the main result of this paper
− two optimal linear time algorithms to solve the weighted p-center problem for
points on the real line when p is fixed. Section 4 presents a brief summary.

2 Main Idea of Our Algorithm

In many practical situations there may already exist some facilities in the net-
work, and the problem is to find locations for a specified number of new facilities.
These types of problems are referred to as conditional location problems [13]. In
this paper we define the conditional k-center problem for points on L to be the
problem of locating k new centers on L, where a facility is already located at v1

or at vn, or where two facilities are already located at v1 and vn.



Optimal Algorithms for the Weighted p-Center Problems on the Real Line 531

The proposed linear-time algorithm to solve the p-center problem on L uses
the fact that there exist linear-time algorithms for any k-center problem and any
conditional k-center problem for k < p. Our objective is to solve the p-center
problem incrementally using the solutions of lower-order center problems.

This requires more notations. A link connecting two consecutive points u, v
in V is called an edge e : uv. Let E denote the set of edges constructed from
points in V . Clearly, |E| = n− 1. Given two real values x1, x2 (x1 ≤ x2), [x1, x2]
denotes the interval on L from x1 to x2 (including x1 and x2); x1 (resp. x2) is
called the left (resp. right) endpoint of this interval.

Two subsets, V1 and V2, of V are disjoint if the coordinate of any point in
one subset is smaller than the coordinates of all the points of the other subset.
Let X = {α1, · · · , αp} be a set of p centers on L. A demand point v is called a
dominating demand point of the center set X if w(v)·d(X, v) = S(X,V ). Observe
that, in an optimal solution, its center set always has an equal or smaller service
cost to the dominating demand points of X .

Let Vi ⊆ V denote the set of demand points closest to a particular center
αi ∈ X, i = 1, · · · , p:

Vi = {v ∈ V : d(αi, v) = min
j=1,...,p

d(αj , v)}.

Clearly, these subsets are mutually disjoint. Let v′i be the leftmost point and v′′i
be the rightmost point in Vi, that is, q(v′i) ≤ q(v) ≤ q(v′′i ), v ∈ Vi. The edges
of E whose endpoints belong to different subsets Vi, 1 ≤ i ≤ p, are called split
edges. Thus, locating p centers on L is equivalent to finding a set of p− 1 split
edges which define p regions such that the maximum service cost of the 1-centers
of these regions is equal to the optimal p-center cost of V on L. Clearly, there is
at least one subset Vi in any optimal solution that contains at least n/p demand
points in V .

Discarding one demand point v is called a safe operation for a center α, if v
is served by α, and v is not the weighted farthest demand point to α. Similarly,
discarding one demand point is called a safe operation for an interval [x, y], if
it is a safe operation for any center located in [x, y]. Our main idea here is to
locate one subset of demand points that are served by the same center in some
optimal solution, and then safely pruning a fraction of demand points in this
subset will result in a smaller-size similar problem whose optimal solution is the
same as that of the original problem.

2.1 The Weighted 1-Center Problem in Trees

For a tree graph T , let V (T ), E(T ), A(T ) denote the vertex set, the edge set and
the continuum set of points on the edges of T , respectively. The length of the
simple path between two points x, y ∈ A(T ) is denoted by dT (x, y). Let δT ′(v) be
the degree of vertex v in subtree T ′ of T . A vertex v is called the anchor vertex of
T ′ with respect to T if v ∈ V (T ′), δT ′(v) = 1 and δT ′(u) = δT (u), u ∈ V (T ′)\{v}.
In Fig. 1, T ′ is a subtree (bold part) and o is the anchor vertex of subtree T ′

with respect to T .
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o

T ′ T \ T ′

u′
iui

d(x, o) = t

Fig. 1. Megiddo’s algorithm for the weighted 1-center problem in trees

The centroid vertex of a subtree T , which can be found in linear time, is a
vertex u ∈ V (T ), such that each subtree with the removal of u has a size of
|V (T )|/2 at most.

The weighted 1-center problem in a tree T is to locate a point in A(T ) such
that its maximum weighted distance to the vertices of T (here the demand set
is V (T )) is minimized. Megiddo [10] designed a trimming (also known as prune-
and-search) algorithm for this problem, which is carried out in two phases. The
first phase is to locate a subtree T ′, anchored at o, which contains an optimal
weighted 1-center (refer to Fig. 1). This is determined by computing the weighted
distances of the vertices of T to the centroid vertex o. It is easy to see that
the optimal 1-center provides service to all the demand points outside T ′ (i.e.,
T \ T ′) through the vertex o. Therefore, the topology of the subtree T \ T ′

is not important. For each vertex in T \ T ′, we only need to keep its distance
information to o. We call a subtree of T a big component if it contains a constant
fraction of the vertices of T . Clearly the subtree T \T ′ is a big component, since
|V (T \ T ′)| ≥ n/2.

In the second phase, the following key question is answered: determine whether
there is an optimal 1-center in T ′ within the distance t to o. An appropriate
value of t is determined in the following way. We arbitrarily pair the vertices in
T \T ′. Let (u1, u

′
1), (u2, u

′
2), . . . , (ul, u

′
l) be the pairs where w(ui) ≥ w(u′

i), and if
w(ui) = w(u′

i) then d(ui, o) ≥ d(u′
i, o). For every such pair (ui, u′

i), 1 ≤ i ≤ l let
ti = [w(u′

i)dT (u′
i, o) − w(ui)dT (ui, o)]/(w(ui) − w(u′

i)) if w(ui) 	= w(u′
i), and let

ti = 0 otherwise. Note that when ti ≤ 0, the dominating demand point in T \T ′ of
the 1-center in T ′ cannot be u′

i, and therefore u′
i can be discarded. Without any

loss of generality we assume that ti > 0 for all i. Thus ui and u′
i have the same

weighted distance to a point with the distance ti to o outside T \T ′. Let t be the
median of these positive values. Once the answer to the key question is known,
approximately 1/4 of the vertices in T \T ′ cannot determine an optimal solution,
and therefore can be safely discarded. The algorithm performs O(log n) such it-
erations, and each iteration takes linear time, linear in the size of the current
tree. Thus the weighted 1-center problem in trees can be solved in linear time.

Below we introduce another approach to perform the pruning step. The method
is called parametric pruning, which is a generalization of the Megiddo’s trimming
technique [10].
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For every pair (ui, u′
i), 1 ≤ i ≤ l, w(ui) ≥ w(u′

i), let ci = w(ui) · (dT (ui, o) +
ti) = w(u′

i) ·(dT (u′
i, o)+ti), where ti is the positive weighted equidistant point of

ui, u′
i as described above and ci is called the switch service cost of this pair. If the

optimal service cost is larger (resp. smaller) than ci, then ui (resp. u′
i) dominates

vertex u′
i (ui). Let c be the median of the switch service costs ci, i = 1, 2, . . . , l.

We can find either c∗ > c or c∗ ≤ c after solving the following feasibility decision
problem: does there exist a point x ∈ A(T ) such that S(x, V (T )) ≤ c? Here c∗

denotes the optimal service cost. We know that the feasibility decision problem
in a tree can be solved in linear time [11]. Therefore, the pruning of the vertices
in T \ T ′ can also be performed using this parametric-pruning method. Our
approach is general in the sense that T \T ′ does not have to be connected. When
T \ T ′ is not connected, Megiddo’s trimming technique [10] does not work.

3 The Weighted p-Center Problem on L, for a Fixed p

In this section, we first describe our algorithm for the conditional 1-center prob-
lem. Then we present our algorithm for the weighted p-center problem of V on L.
The algorithm for the weighted p-center problem uses the solutions of weighted
k-center and conditional k-center problems on L for all k < p.

3.1 The Conditional 1-Center Problems on L

In this section, we first describe a linear-time algorithm for the conditional 1-
center problem for points on L with one existing facility located at vn. Then we
describe its extension to the conditional 1-center problem for points on L with
any fixed number of existing facilities.

We divide V into two disjoint subsets of almost equal size: V1 and V2 (|V1| =
�n/2�). Suppose that V1 is served by the new facility and V2 is served by vn. We
first solve the weighted 1-center problem for the demand points of V1 only, and
letting z be the optimal cost. We consider the following situations.

(a) If z ≥ S(vn, V2), then V2 is served by vn in an optimal solution. Let u be
a demand point in V2 such that w(u) · d(u, vn) = S(vn, V2). Clearly, all the
demand points of V2 \ {u, vn} can be safely discarded.

V1

v1 o vn

V2

Fig. 2. The conditional 1-center problem with one existing facility vn

(b) Suppose that z < S(vn, V2). In this case V1 is served by the new facility
in some optimal solution. Refer to Fig. 2. Let o be a median point of V1.
Based on the location of dominating demand points of center set {o, vn}, we
can determine the relative location of the new facility with respect to o in
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some optimal solution. That is, if these dominating demand points of {o, vn}
lie in [q(o), q(vn)], then in an optimal solution the new facility lies within
[q(o), q(vn)], otherwise it lies within [q(v1), q(o)]. Note that if the dominating
points of {o, vn} lie in both [q(o), q(vn)] and [q(v1), q(o)], the o is the optimal
conditional 1-center with an existing facility located at vn.

Without loss of generality, assume that all the dominating demand points
of {o, vn} lie in [q(o), q(vn)]. Then, arbitrarily pair the demand points in
[q(v1), q(o)] and compute the appropriate value of t by using Megiddo’s
method (as in the second phase described in Sect. 2.1). Let u be the point on
L with coordinate q(o) + t. We can determine that in some optimal solution
either the new facility lies in [q(o), q(u)] or the new facility lies in [q(u), q(vn)]
by just computing the dominating demand points of {u, vn} (similar idea is
used above). Approximately 1/4 of the demand points in [q(v1), q(o)] can be
safely discarded.

Therefore, we can prune approximately n/16 of the demand points of V from
further consideration. The algorithm performs O(log n) such iterations, and each
iteration takes linear time, linear in the current size of the demand set. Thus
the conditional 1-center problem with one existing facility at vn can be solved
in linear time.

In fact, a linear-time solution for the conditional 1-center problem with any
fixed number of existing facilities can be similarly developed, described as follows.

LetF be the set of a fixednumber of existing facilities.First of all, it is notdifficult
to design a linear-time computation step to find the distance d(F, v) for each vertex
v ∈ V . After this preprocessing step, it is safe to discard the points of F .

Let o′ be a median point of V . Based on the location of the dominating
demand points of center set {o′} ∪ F , we can determine the relative location of
another new facility with respect to o′ in some optimal solution. Without loss
of generality, assume that all the dominating demand points of {o′} ∪ F lie in
[q(o′), q(vn)]. Then, arbitrarily pair the demand points in [q(v1), q(o′)]. For each
such pair (vi, vj), the new facility x serves them through o′, (see Fig. 3).

Below we show that at most two intersections exist between the two service
cost functions S({x}∪F, vi) and S({x}∪F, vj). If d(o′, v) ≥ d(F, v) for a demand
point in [q(v1), q(o′)], then v will always be served by some existing facility. With-
out loss of generality, assume that d(o′, vi) < d(F, vi), d(o′, vj) < d(F, vj), and
w(vi) ≥ w(vj). Figure 3 shows the service cost functions S({x} ∪F, vi), S({x} ∪
F, vj) with a change of d(x, o′).

– d(F, vi) − d(o′, vi) ≥ d(F, vj) − d(o′, vj): see Fig. 3(a). We fix the function
S({x} ∪ F, vi) and use the dashed lines to represent all possibilities of the
function S({x}∪F, vj). There is at most one intersection between the service
cost functions S({x} ∪ F, vi), S({x} ∪ F, vj).

– d(F, vi) − d(o′, vi) < d(F, vj) − d(o′, vj): see Fig. 3(b). We fix the function
S({x} ∪ F, vj) and use the dashed lines to represent all possibilities of the
function S({x}∪F, vi). In this case, it is possible to have at most two inter-
sections.
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d(x, o′)

S({x} ∪ F, vi)

S({x} ∪ F, vj)

0

d(F, vj) − d(o′, vj)

vi

vj

o′

0d(F, vi) − d(o′, vi) d(F, vj) − d(o′, vj)
d(x, o′)

S({x} ∪ F, vi)tl(vi, vj)
tr(vi, vj)

(b)(a)

d(F, vi) − d(o′, vi)

S({x} ∪ F, vj)

Fig. 3. The number of intersections between the two service cost functions S({x}∪F, vi)
and S({x}∪F, vj) in the conditional model: (a) d(F, vi)−d(o′, vi) ≥ d(F, vj)−d(o′, vj);
(b) d(F, vi) − d(o′, vi) < d(F, vj) − d(o′, vj)

When there are two intersections for (vi, vj), we call the distance d(x, o′) with
smaller value left switch distance, denoted by tl(vi, vj), and call the other one
right switch distance, denoted by tr(vi, vj).

For those pairs having only one switch distance, we can locate the non-
dominating vertices easily by checking the key question with the median switch
distance, similar to Megiddo’s trimming approach [10]. Suppose that (v1, v

′
1),

(v2, v
′
2), · · · , (vk, v′l) are the pairs of demand points with two switch distances,

where w(vi) ≥ w(v′i), 1 ≤ i ≤ l. Select one value tl (resp. tr) such that one
third of left (resp. right) switch distances tl(vi, v′i) > tl (resp. tr(vi, v′i) ≤ cr) and
the remaining ones are no greater than (resp. larger than) it. After answering
the key questions with the distances tl and tr, we can determine at least � l3�
non-dominating demand points for an optimal facility [14].

In this way, we can prune approximately � n12� of the demand points of V from
further consideration, since the number of pairs of demand points in [q(v1), q(o′)]
is at least �n4 �. Therefore, we have the following theorem.

Theorem 1. The weighted conditional 1-center problem of V where any fixed
number of existing facilities on the real line L can be solved in linear time.

3.2 The Weighted p-Center Problem on L (fixed p)

Suppose that the weighted k-center problem and conditional k-center problem
of V on L can be solved in linear time, for all k less than p. We show that for
fixed p the weighted p-center problem of V can also be solved in linear time.

First we determine one region which contains at least �n/p� demand points
of V served by the same center in some optimal solution. Such a region is called
a big region.

Since the ith largest element of a set can be found in linear time [2], it costs
O(n log p) time to divide V into p mutually disjoint subsets: {V1, . . . , Vp} where
�n/p� ≤ |Vi| < �n/p�, 1 ≤ i ≤ p, and the coordinate q(v′′i ) of the rightmost
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point v′′i of Vi is less than the coordinate q(v′i+1) of the leftmost point v′i+1 of
Vi+1, i = 1, . . . , p− 1. Note that v′1 = v1 and v′′p = vn.

Consider the split edge v′′i v
′
i+1, 1 ≤ i < p. Refer to Fig. 4. It is easy to prove

the following lemma.

Lemma 1. Let z1 (resp. z2) be the optimal cost of the weighted i-center (resp.
(p− i)-center) problem for the demand set ∪ij=1Vj (resp. ∪pj=i+1Vj). If z1 ≤ z2,
then, ∃ an optimal solution such that the interval served by the first i centers
contains all the demand points in [q(v′1), q(v

′′
i )], and the interval [q(v′1), q(v

′′
i )]

contains a big region. Otherwise, in some optimal solution, the region served by
the first i centers is contained in [q(v′1), q(v

′′
i )].

v′
1 = v1 v′′

1 v′′
p = vnv′

i+1

VpViV1

v′′
iv′′

i−1 v′
i

v′
p

Fig. 4. Locating p centers of V on the real line

As a consequence of Lemma 1, one of the following cases must be true for the
p-center problem on L.

Case 1. The optimal cost of the 1-center problem with the demand set V1 is
less than the optimal cost of the (p−1)-center problem with the demand
set V \ V1. In this case, the subset V1 is served by the same center in
some optimal solution.

Case 2. The optimal cost of the 1-center problem with the demand set Vp is
less than the optimal cost of the (p−1)-center problem with the demand
set V \ Vp. In this case, the subset Vp is served by the same center in
some optimal solution.

Case 3. There exists an i, 2 ≤ i ≤ p− 1, such that the optimal cost of the i-
center problem with the demand set ∪j=ij=1Vj is no more than the optimal
cost of the (p−i)-center problem with the demand set ∪j=pj=i+1Vj , and the
optimal cost of the (i−1)-center problem with the demand set ∪j=i−1

j=1 Vj
is larger than the optimal cost of the (p − i + 1)-center problem with
the demand set ∪j=pj=i Vj . In this case, there exists some optimal solution
where Vi is served by the same center. The reason is as follows.

In some optimal solution, the first i centers serve all the demand points
lying within [q(v′1), q(v

′′
i )], since the cost of an optimal i-center solution

of ∪j=ij=1Vj is less than the cost of an optimal (p − i)-center solution of
∪j=pj=i+1Vj (Lemma 1). Similarly, all the demand points served by the first
i−1 centers lie within [v′1, v

′′
i−1], since the cost of an optimal (i−1)-center

solution of ∪j=i−1
j=1 Vj is larger than the cost of an optimal (p−i+1)-center

solution of ∪j=pj=i Vj (Lemma 1).
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Thus we can find one big region after considering each split-edge v′′i v
′
i+1, i =

1, . . . , p− 1. Note that we need to solve two weighted center problems for each
split-edge v′′i v

′
i+1: one i-center problem on a demand set ∪j=ij=1Vj and one (p− i)-

center problem on a demand set ∪j=pj=i+1Vj . The total time to solve all these center
problems is linear when p is fixed. Therefore, we have the following result.

Lemma 2. It takes a linear time to locate one big region served by the same
center, in some optimal solution to the weighted p-center problem of V on L
when p is a fixed number.

Actually, one big region can be located using a binary search instead of a linear
search on the edges v′′i v

′
i+1, 1 ≤ i ≤ p−1. Let Vl be the big region thus computed.

Next, we show a method to identify approximately 1/8 of demand points of
Vl that are not dominating, and hence they can be discarded. This method is
very similar to the method described in Sect. 3.1. Let o be the median point of
Vl which can be found in O(n/p) time. Consider a facility (center) located at o
to serve the points of Vl. Let V 1

l (resp. V 2
l ) be the subset of demand points of

Vl lying to the left (resp. right) of o.
We now consider Case 1 described above, i.e., when l = 1. The arguments

for Case 2 (i.e., when l = p) are similar. Refer to Fig. 5(a). For Case 1, the
conditional (p − 1)-center problem of the points of V \ V1 with one existing
center located at o is first solved. All the points of V \V1 lie to the right of o. Let
z be the optimal cost of the conditional (p−1)-center problem with one existing
center located at o.

– If S(o, V 1
1 ) < max {S(o, V 2

1 ), z} then in some optimal solution, the center
serving V1 lies to the right of o.

– If S(o, V 1
1 ) = max {S(o, V 2

1 ), z} then o is the center serving V1 in some
optimal solution, and the optimal cost is S(o, V 1

1 ).
– If S(o, V 1

1 ) > max {S(o, V 2
1 ), z} then in some optimal solution, the center

serving V1 lies to the left of o.

In Case 3 (refer to Fig. 5(b)), where 2 ≤ l ≤ p− 1, we solve the (l− 1)-center
problem of ∪j=l−1

j=1 Vj with one existing center located at o, and also solve the
(p− l)-center problem of ∪j=pj=l+1Vj with one existing center located at o. Let z1
be the optimal cost of the former problem and z2 be the optimal cost of the
latter one. Like Case 1, after comparing the values of max {z1, S(o, V 1

l )} and
max {z2, S(o, V 2

l )}, either we obtain the optimal cost of the p-center problem of
V ; we find that in some optimal solution the center serving Vl lies to the left of
o; or we find that the center serving Vl lies to the right of o.

Now, Megiddo’s trimming method can be applied to prune approximately 1/8
of demand points of Vl, i.e., � n8p� demand points of V . The process is repeated
with the reduced set of demand points. Thus, for fixed p, the algorithm performs
O(log n) such iterations, and each iteration takes linear time, linear in the size
of the current demand set.

Therefore, we have the following theorem.

Theorem 2. For any fixed p, the weighted p-center problem of V on the real
line can be solved in linear time.
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(b) Case 3
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V 2
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v′′
1 = v′′

l
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2o v′′

p = vn
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1 v′′

l−1 v′
l o v′′

l v′
l+1

(a) Case 1

V1

Fig. 5. Case 1 and Case 3

3.3 The Conditional p-Center Problems on L (fixed p)

In this section, we describe a linear-time algorithm for the conditional p-center
problem on L with one existing facility located at vn. The method for this
problem is an extension of the steps described in Sect. 3.1 and Sect. 3.2.

We divide V into p+1 mutually disjoint subsets of almost equal size. One big
region of size no less than �n/(p+1)� can be located in linear time, by using the
steps similar to the ones described in Sect. 3.2. The only difference is that the
subproblems might be conditional center problems here. Still, Megiddo’s method
is applicable to prune approximately 1/8 of the demand points lying in the big
region.

Its extension to the conditional p-center problem with a fixed number of ex-
isting facilities is not difficult to obtain.

Theorem 3. For any fixed p, the weighted conditional p-center problem of V
with any fixed number of existing facilities located on the real line L can be
solved in linear time.

3.4 The Second Approach Using Parametric Pruning

In this section, we show that the weighted p-center problem of V on L can also
be solved in linear time using the parametric pruning technique introduced in
Sect. 2.1.

A value r ≥ 0 is feasible if there exists a set of at most p points X =
{α1, . . . , αp} on L such that S(X,V ) ≤ r. Clearly, the optimal cost is the mini-
mum value of r that is feasible. Next, we show that a feasibility test can be done
in linear time.

Each demand point v in V is bundled with a center region [q(v)− r
w(v) , q(v)+

r
w(v) ] which contains all the points of V with all the weighted distance to v of
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no more than r. A given value r is feasible if there exists a solution (a set of
p points on L) such that at least one center in this solution lies in the center
region of each demand point.

Initially, X = ∅. Among all these center regions, we find a region whose right
endpoint has the smallest coordinate. Let it be a center (insert it into X) and
remove all demand points whose center regions contain it. Repeat this process
on the remaining demand points. Finally, if |X | ≤ p, then r is feasible, and
otherwise r is infeasible. This process takes O(pn) time.

The main difference between this approach and the one in Sect. 3.2 can be
described as follows. Recall that when we consider v′′i v

′
i+1 as a split-edge in the

first phase to locate a big region, one i-center subproblem and another (p − i)-
center subproblem need to be solved. In our second approach, only one center
subproblem with a smaller demand set needs to be solved, i.e., if i ≤ (p − i)
then the i-center subproblem is solved. Let z be its optimal cost. Instead of
solving another center problem, we can test the feasibility of z. We can have the
same effect, as shown in Lemma 3, which is similar to Lemma 1. Assume that
i ≤ (p− i).

Lemma 3. Let z be the optimal cost of the weighted i-center problem of the set
∪ij=1Vj . If z is feasible for V , then ∃ an optimal solution such that the region
served by the first i centers contains all the demand points in [q(v′1), q(v

′′
i )],

and the interval [q(v′1), q(v′′i )] contains a big region. Otherwise, in some optimal
solution, the region served by the first i centers is contained in [q(v′1), q(v

′′
i )].

Similarly, in the second phase, in order to prune demand points in the big region
located in the first phase, we only solve one conditional center problem with a
smaller demand set and then test the feasibility of its optimal cost.

It is worth noting that, in practice, the second approach is faster than the
method in Sect. 3.2. The reason is that the time complexity of our method for
the weighted p-center problem is exponential in p, whereas the feasibility test
can be done in O(pn) time.

4 Conclusion

In this paper, two methods are proposed which solve, for fixed p, the weighted p-
center problem of points on the real line in linear time. The first proposed method
is a generalization of Megiddo’s trimming method [10]. The second method is
based on the parametric-pruning technique. Both of them can be applied to
achieve linear time solutions for the weighted p-center and conditional p-center
problems on the real line when p is a fixed number. We believe that the the main
idea presented in this paper can be generalized to solve the weighted p-center
problem in trees.

Unfortunately, the time complexity of our method is exponential in p. One
challenging task is to design an O(f(p) · n)-time algorithm for the weighted
p-center problem on the real line where f(p) is a polynomial in p.
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Abstract. Let G = (V, E) be a weighted undirected graph on n ver-
tices and m edges, and let dG be its shortest path metric. We present
two simple deterministic algorithms for approximating all-pairs shortest
paths in G. Our first algorithm runs in Õ(n2) time, and for any u, v ∈ V
reports distance no greater than 2dG(u, v) + h(u, v). Here, h(u, v) is the
largest edge weight on a shortest path between u and v. The previ-
ous algorithm, due to Baswana and Kavitha that achieved the same
result was randomized. Our second algorithm for the all-pairs shortest
path problem uses Boolean matrix multiplications and for any u, v ∈ V
reports distance no greater than (1 + ε)dG(u, v) + 2h(u, v). The cur-
rently best known algorithm for Boolean matrix multiplication yields
an O(n2.24+o(1)ε−3 log(nε−1)) time bound for this algorithm. The previ-
ously best known result of Elkin with a similar multiplicative factor had
a much bigger additive error term.

We also consider approximating the diameter and the radius of a
graph. For the problem of estimating the radius, we present an almost
3/2-approximation algorithm which runs in Õ(m

√
n + n2) time. Aing-

worth, Chekuri, Indyk, and Motwani used a similar approach and ob-
tained analogous results for the diameter approximation problem. Addi-
tionally, we show that if the graph has a small separator decomposition a
3/2-approximation of both the diameter and the radius can be obtained
more efficiently.

1 Introduction

Consider the all-pairs shortest path (henceforth, referred to as Apsp) problem.
Given a graph1 G = (V,E) on |V | = n and |E| = m edges, the goal is to compute
the distances between all pairs of vertices. The currently best known upper
bound on the worst case complexity is O(n3 log3 logn/ log2 n) due to a recent
paper by Chan [1]. For the simpler case of unweighted graphs, using fast matrix
multiplication, Galil and Margalit [2,3], and Seidel [4] have obtained algorithms
that run in Õ(nω)2 time, where ω denotes the exponent of (square) matrix
multiplication algorithm used. The currently best known matrix multiplication
algorithm of Coppersmith and Winograd [5] results in ω < 2.376.

We say that an algorithm is a (a, b)-approximation of the Apsp problem if for
any pair of vertices (u, v) ∈ V ×V , the estimate δ(u, v) produced by the algorithm
1 Throughout the paper graphs are undirected unless mentioned otherwise.
2 The notation Õ(f) ≡ O(f poly log f).

F. Dehne, J.-R. Sack, and N. Zeh (Eds.): WADS 2007, LNCS 4619, pp. 541–552, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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satisfies: dG(u, v) ≤ δ(u, v) ≤ adG(u, v)+ b ·h(u, v). Here dG is the shortest path
metric induced by the connected graph G on its vertices and h(u, v) is the weight
of the heaviest edge on a shortest path from u to v. The multiplicative term a is
referred to as the stretch factor and b · h(u, v) denotes the additive error. Note
that for unweighted graphs the additive error is just b.

Over the last decade many algorithms have been designed for this problem
that achieve sub-cubic time and/or sub-quadratic space. Here we state a few of
the relevant results. For a more comprehensive overview of results refer to the
survey by Zwick [6].

For unweighted graphs, Aingworth et al. [7] used an ingenious method to
obtain an Õ(n5/2) time (1, 2)-approximation algorithm. Dor et al. designed an
algorithm which for every even t > 2 runs in Õ(min{n2− 2

t+2m
2

t+2 , n2+ 2
3t−2 })

time and is a (1, t)-approximation. For weighted graphs, Cohen and Zwick [8]
building on the results of Dor et al. [9] provided fast algorithms with stretch
factor 2, 7/3, and 3. In a recent improvement, Baswana and Kavitha [10] provided
faster algorithm for the same stretch factors. They present algorithms that run
in expected Õ(

√
mn3/2) time and expected Õ(n7/3) time for stretch factors of

2 and 7/3 respectively. Furthermore, they designed an expected Õ(n2) time
(2, 1)-approximation algorithm. Also on weighted graphs, Elkin [11] presented
an O(mnρ+n2+ζ) time algorithm that for any u, v ∈ V reports distance bounded
by (1 + ε)dG(u, v)+W ·β(ζ, ρ, ε). Here, W is the ratio between the heaviest and
lightest edge in the graph. The constant β depends on ζ as (1/ζ)log 1/ζ , depends
inverse exponentially on ρ, and depends inverse polynomially on ε.

Diameter and radius are two important parameters of a graph. The eccen-
tricity of a vertex is defined as the maximum distance between the vertex and
any other vertex. The maximum eccentricity is the graph diameter and the min-
imum eccentricity is the graph radius. Both diameter and radius can be found
by solving the Apsp problem. Recently, Chan [12] has shown that diameter of
unweighted directed graphs can be obtained in expected O(mn log2 logn/ logn+
n2 logn/ log logn) time. For general graphs however it is not clear whether these
parameters can be obtained faster than obtaining the whole distance matrix.

On the approximation front, it is easy to estimate both the diameter and
radius within a ratio 2 by performing a single-source shortest path from any
vertex in the graph. No better result was known until Aingworth et al. [7] de-
signed a 3/2-approximation algorithm for the diameter running in Õ(m

√
n+n2)

time. Also recently, Boitmanis et al. [13] gave algorithms for approximating the
diameter and the radius in Õ(m

√
n) time. The results are produced within an

additive error of O(
√
n).

The situation seems no better even if we restrict our attention to the family of
separable graphs (i.e., graphs with a small sized vertex separator). The family of
separable graphs contains planar graphs, graphs with no fixed minor, k-overlap
graphs, bounded tree-width graphs. Even for the generally well-studied planar
graphs the only known result seems to be that Eppstein [14], who has shown that
if the planar graph has a constant bound on diameter, then the exact diameter
can be found in linear time.
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In the following we summarize our contributions and put them into context.
All missing proofs and details can be found in the full version [15].

1.1 Our Contributions

We design two algorithms for the problem of Apsp for weighted undirected
graphs. Our first algorithm runs in Õ(n2) time and is a (2, 1)-approximation.
Earlier, Thorup and Zwick [16] have shown than for any t < 3, a data structure
that answers t-approximate distance query in constant time must occupy Θ(n2)
space. This automatically implies a lower bound of Ω(n2) on the space, therefore
on time complexity of any (2, 0)-approximation algorithm. Compared to the
(2, 1)-approximation algorithm of Baswana and Kavitha [10], our algorithm has
the advantage of being simpler and deterministic (albeit at a cost of logarithmic
factor in the running time).

We extend this result by showing that by relying on fast Boolean matrix mul-
tiplication a better approximation could be achieved at the expense of a small in-
crease in the running time. More specifically, for any ε > 0 we provide a (1+ε, 2)-
approximation algorithm. Using the currently best known matrix multiplication
algorithms yields an O(n2.24+o(1)ε−3 log(nε−1)) time bound for this algorithm.
Moreover, since it is already known that distinguishing between distances 2 and
4 in unweighted graphs is as hard as Boolean matrix multiplication [9], we can’t
hope to obtain a similar running time for (say) a (1 + ε, 2 − 3ε)-approximation
algorithm without improving the current Boolean matrix multiplication bounds.
As discussed earlier, Elkin [11] has another type of two-parameter approxima-
tion, as well as time/quality trade-off. However, it appears that his algorithm
is faster only when the approximation quality is inferior. This is because his
additive error term is,

W ·
(

8c0
εζ(ρ− ζ/2)

)�log1−(ρ−ζ/2) ζ/2	+1

�log1−(ρ−ζ/2) ζ/2��log1−(ρ−ζ/2) ζ/2	,

for a constant c0.
We then turn our attention toward approximating the diameter and the radius

of a graph. We first show that a variant of the algorithm proposed by Aingworth
et al. [7] for approximating the diameter can be used for approximating the
radius of unweighted undirected graphs. The algorithm gives an almost 3/2-
approximation of the radius in Õ(m

√
n + n2) time.

We improve these results for the class of weighted separable graphs. We show
if every subgraph of size k has a kμ-separator, then a 3/2-approximation of the
diameter can be achieved in Õ(n1+μ+n3μ) time. This result also extends to the
case of directed graphs. We also present an algorithm that achieves almost 3/2-
approximation of the radius in Õ(n1+μ + n3μ) time. As a consequence of these
results, the fact that planar graphs have O(

√
n) separator [17], and the fact that

single-source shortest path on planar graphs can be done in O(n) time [18], we
obtain O(n3/2) time algorithms for 3/2-approximation of both the diameter and
the radius of positive weighted planar graphs.
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2 Preliminaries

For a weighted connected graph G = (V,E) we use the following notation. We
use wG : E → R+ to denote the weight function. For a set of vertices U ⊆ V ,
we define dG(u, U) as minv∈U dG(u, v) and cG(u, U) to be a (any, if more than
one) vertex w ∈ U with dG(u,w) = dG(u, U). Similarly we define fG(u, U) to be
a vertex w ∈ U with dG(u,w) = maxv∈U dG(u, v).

We use NG(U) to denote the neighborhood of U in G. For solving the diameter
and radius problems, we also define min_ecc(U,G) = minu∈U dG(u, fG(u, V ))
and max_ecc(U,G) = maxu∈U dG(u, fG(u, V )).

For a graph G, the center of the graph cen(G) is a vertex of the graph with
eccentricity equal to the graph radius. We use rad(G) to denote the radius of
G, and dia(G) to denote the diameter of G. Note that max_ecc(V,G) = dia(G)
and min_ecc(V,G) = rad(G).

In shortest path algorithms, we use a symmetric n × n distance matrix
{δ(u, v)}u,v to hold the currently best upper bound on distance between all pairs
of vertices in G. We use dijkstra((V, F ), δ, u) to denote an invocation of Dijkstra’s
single-source shortest path from vertex u on the graph (V, F ). Every invocation
of the algorithm updates the row and column entries of u in the distance matrix
δ, provided the distance found during this run is smaller than previous estimates.
Initially δ(u, v) = 1, if (u, v) ∈ E and ∞ otherwise. We omit the distance matrix
argument from dijkstra() when not required. We use bfs((V, F ), u) to denote an
invocation of breadth-first search from u on the graph (V, F ).

A subset of vertices S ⊆ V of a graph (V,E) is a λ-separator (λ < 1) if
the largest connected component in V \ S has at most λ|V | vertices. A [λ, μ]-
separator decomposition of G is a recursive decomposition of G using separators,
where subgraphs of size k have λ-separators of size O(kμ) for μ ∈ (0, 1). Studied
in this framework, the planar separator theorem due to Lipton and Tarajn [17]
is a [2/3, 1/2]-separator decomposition. Henceforth, we call a graph separable if
it admits a [λ, μ]-separator decomposition.

2.1 Estimating Distances Using Dominating Sets

A set of vertices D is said to dominate a set of vertices U if every vertex U has
a neighbor in D. The use of dominating sets for solving shortest path problems
was first employed by Aingworth et al. [7]. The idea is based on the simple
observation that there is a small set of vertices that dominates all the high
degree vertices of a graph. Therefore, paths going to high degree vertices can be
efficiently approximated by taking a small detour through the dominating set.

Cohen and Zwick [8] extended this result to the weighted case. For an input s,
they have shown that a dominating set of size O((n log n)/s) can be constructed
such that if u ∈ V has degree at least s in G, then there is an edge (u, v) ∈ E with
v ∈ D, and (u, v) is one of the s lightest edges incident on u. We use ranku(u, v)
and rankv(u, v) to denote the index of (u, v) in the sorted adjacency list of u
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and v respectively. The following observation based on greedy approximation
algorithm for the set cover problem is central to our results.

Lemma 1. (Cohen and Zwick [8]) Let G = (V,E) be a weighted undirected
graph with n vertices and m edges. Let 1 ≤ s ≤ n. A dominating set D of size
O((n log n)/s) that dominate all vertices of degree at least s in the graph can be
found in O(m+ n) time. Furthermore, if u ∈ V is of degree at least s in G then
there is an edge (u, v) with v ∈ D such that ranku(u, v) ≤ s.

We use an algorithm (details omitted) based on Lemma 1, called dom(G, s). The
algorithm receives G = (V,E) and a degree threshold s as inputs, and outputs
a set of vertices D ⊆ V satisfying the properties of Lemma 1.

3 Approximation Algorithms for the Apsp Problem

The idea behind the preprocessing step (function preprocess, Fig. 1) is to split
the vertices into classes based on degree. The ith-class contains vertices with
degrees between n/2i to n/2i+1. We use Lemma 1 to find a dominating set Di
for the vertices of the ith-class. For a vertex u, E|u represents the set of all edges
incident on u in G. The final step involves invoking Dijkstra from all the vertices
in the dominating set Di.

Function preprocess(G = (V,E), k)
for i← 0 to k do si ← n/2i

for i← 1 to k do Ei ← {(u, v) ∈ E | ranku(u, v) < si−1 or rankv(u, v) < si−1}
for i← 1 to k do Di ← dom(G, si)
for i← 1 to k do
∀u ∈ Di call dijkstra((V,Ei ∪ E|u), δ, u)

Fig. 1. Preprocessing function for approximating Apsp

The dominating set Di has a size at most min{(n logn)/si, n} and the graph
on which we run Dijkstra from the vertices in Di has O(nsi−1) edges. Therefore,
the total time for the preprocessing step is Õ(n2).

3.1 (2, 1)-Approximation Algorithm

The algorithm apasp(2,1) uses the distance matrix from the function preprocess
to estimate the distances between every pair of vertices. In the final stages when
the dominating set grows to linear size, the function preprocess just finds all-
pairs shortest path in a graph with linear number of edges.

Theorem 1. The algorithm apasp(2,1) runs in O(n2 log2 n) time, where n is
the number of vertices in the input graph G = (V,E) and for every u, v ∈ V we
have dG(u, v) ≤ δ(u, v) ≤ 2dG(u, v) + h(u, v).
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Algorithm apasp(2,1)(G, δ)
call preprocess(G, �log n�)
for every u, v ∈ V do

for i ← 1 to �logn� do
u′ ← cG(u,Di) and v′ ← cG(v,Di)
δ(u, v) ← min{δ(u, v), δ(u, u′) + δ(u′, v), δ(v, v′) + δ(v′, u)}

Fig. 2. (2, 1)-approximation algorithm for the Apsp problem

3.2 (1 + ε, 2)-Approximation Algorithm

We now describe a simple algorithm that uses fast algorithms for rectangular
matrix multiplication of Boolean matrices to obtain a (1 + ε, 2)-approximation
for Apsp. Let W be largest-edge weight in the graph G, after the edge weights
are scaled so that the smallest non-zero edge weight in 1, i.e, ratio of heaviest to
lightest edge is W . For the sake of simplicity, we will first describe a (1 + ε, 2)-
approximation algorithm with a running time of O(n2.24+o(1)ε−2 log(nWε−1)).
We will later use this algorithm as a sub-routine in the main algorithm.

Preliminary Algorithm: Let j be an integer with 0 ≤ j ≤ �log1+ε nW �. Now
with a dominating set Di, define Boolean matrices of dimensions n× |Di| as

Bi,j [u, v] = 1 iff (1 + ε)j ≤ δ(u, v) < (1 + ε)j+1 for u ∈ V and v ∈ Di.

We can ignore all empty matrices, i.e., which don’t have at least a 1. For a matrix
M , its transpose is denoted by MT .

Theorem 2. If Boolean matrix multiplication of n× � by �× n matrices can be
performed in n2−αβ+o(1)�β time for constants α, β, then for any ε > 0, the algo-
rithm apasp(1+ε,2) runs in Õ(n(2+3β−αβ)/(1+β)+o(1) log2

1+ε(nW )) time, where n

Algorithm apasp(1+ε,2)(G, δ)
p← �((1 + αβ) log n)/(1 + β)�
call preprocess(G, p)
construct matrices Bi,j for integers i, j with i ∈ [1, p] and j ∈ [0, �log1+ε nW �]
for i ← 1 to p do

for j ← 0 to �log1+ε nW � do
for k ← j + 1 to �log1+ε nW � do
Ai,j,k ← Boolean matrix product of Bi,j and BTi,k
for every u, v ∈ V do

δ(u, v) ←
{

min{�(1 + ε)j+1 + (1 + ε)k+1�, δ(u, v)} if Ai,j,k[u, v] = 1,
δ(u, v) otherwise

Ê ← {(u, v) ∈ E | ranku(u, v) < 2p or rankv(u, v) < 2p}
for every u ∈ V call dijkstra((V, Ê), δ, u)

Fig. 3. (1 + ε, 2)-approximation algorithm for the Apsp problem
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is the number of vertices in the input graph G = (V,E). Also for every u, v ∈ V
we have dG(u, v) ≤ δ(u, v) ≤ (1 + ε)dG(u, v) + 2h(u, v).

Remark: The dependence on ε in the running time can be reduced to ε−1 ln ε−1

log1+ε(nW ). The trick is to perform for every index r ∈ {1, 2, . . . , �log1+ε(nW )�}
a “Boolean OR” of matrices Bi,s (s ≤ r − ε−1 ln ε−1). Then we replace many
matrix multiplications of form Bi,r × Bi,s by a single matrix multiplication of
Bi,r with the matrix constructed from the OR operation. The approximation
ratio remains practically unchanged.

Let ω(1, x, 1) be the infimum over all exponents ω′ for which n×nx by nx×n
Boolean matrices can be multiplied in O(nω

′
) time. Let ω = ω(1, 1, 1). The

currently best known algorithm for rectangular matrix multiplication from Cop-
persmith [19] and Huang and Pan [20] provide

ω(1, x, 1) ≤
{

2 if 0 ≤ x < α,
2 + β(x− α) otherwise.

This implies that n×� by �×nBoolean matrices can be multiplied in n2−αβ+o(1)�β

time. The constant α is defined as the supremum over all constants x for which
ω(1, x, 1) = 2. Currently, α > 0.294, β = ω−2

1−α , ω < 2.376. We immediately get
the following corollary from the discussion above.

Corollary 1. There exists an implementation of the algorithm apasp(1+ε,2)

that runs in O(n2.24+o(1)ε−2 log(nWε−1)) time.

Main Algorithm: Let Apsp(Λ) be a (auxiliary) problem in which Apsp the
ratio of the heaviest to lightest edge is bounded by Λ. For an instance of Apsp(Λ)
with n vertices (using apasp(1+ε,2)) we can compute a (1 + ε, 2)-approximation
in O(n2φ(n, ε, Λ)) time, where φ(n, ε, Λ) = n0.24+o(1)ε−2 log(nΛε−1). We will
be needing the fact that φ is a function growing in n. We now describe an
O(n2φ(n, ε, Λ)ε−1 lnn) time algorithm with a ((1 + ε)2, 2(1 + ε))-approximation.

In our method, given an input graph G with n vertices, we produce a set of
instances of Apsp(ε−1n), say G1, . . . , Gd with numbers of vertices n1, . . . , nd such
that ni ≤ n, and SG =

∑d
i=1 n

2
i ≤ n2ε−1 lnn. The time needed to produce these

instances and to combine their results will be O(SG), and the time needed to
approximately solve these instances will be O(

∑
i n

2
iφ(n, ε, Λ)) ≤ SG · φ(n, ε, Λ).

We define instances of Apsp(ε−1n) for distances in the range (1+ε)k to (1+ε)k+1

(k integer) as follows. We assume w.l.o.g. that the minimum edge weight in G is
1, hence we consider only k ≥ 0.

① remove edges with cost larger than (1 + ε)k+1;
② make a separate instance for each connected component;
③ coalesce vertices that are connected by edges shorter than ((1 + ε)kε)/n into

super-vertices. If a vertex u is not coalesced with any other vertex, we view
{u} as a super-vertex of this instance;

④ eliminate instances with one vertex only.
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Estimating SG: We first decompose SG into the sum of contribution of super-
vertices: (a) in an instance Gl with nl super-vertices, each super-vertex con-
tributes nl to n2

l , (b) if super-vertex u in Gl is a set of gl vertices, we decompose
the contribution of u into gl equal parts, nl/gl for each vertex in u.

We say a vertex u is contained in an instance if there exists a super-vertex
of the instance containing u. Now among the instances made for the distance
range [(1+ ε)i, (1+ ε)i+1], we use Gi(u) to denote the instance containing vertex
u (even though we may create many instances for a distance range, only one
of them will contain u). We use gi(u) to denote the number of elements of the
super-vertex of Gi(u) that contains u. We denote the number of super-vertices
of Gi(u) as ni(u). The contribution of u to SG at Gi(u) is κi(u) = ni(u)/gi(u).
We want to show that the sum of all κi(u)’s is bounded by nε−1 lnn. Note that
for some values of i the instance Gi(u) is not created, e.g., because of ④.

Let N = �ε−1 lnn�. The desired inequality holds if for every j < N and every
u ∈ V we have the sum of all κj+iN (u)’s is bounded by n. This will bound the
sum of all contributions to n× n×N .

Let u′ be the super-vertex of u in the instance Gi+N (u). Consider the instance
Gi(u). The key observation is that the union of the set of all super-vertices in
the instance Gi(u) is u′. Therefore, gi+N (u) ≥ ni(u) and thus ni(u)/gi(u) ≤
gi+N (u)/gi(u). Note that gi+N (u) ≥ gi(u), and if gi+N (u) = gi(u) then the
instance Gi+N (u) has one vertex, so it is not created, and thus there is no
contribution to SG.

Therefore, there exists an increasing sub-sequence 1 ≤ ḡ1 ≤ ḡ2 . . . ≤ ḡt ≤ n
of gi(u)’s such that the sum of contributions of u for the distance ranges of
the form [(1 + ε)j+iN , (1 + ε)j+iN+1] is at most ḡ2/ḡ1 + ḡ3/ḡ4 + . . . ḡt/ḡt−1. We
can find the largest possible sum of this form as a function of n, say F (n). By
induction we show, F (n) = n. By considering every possible ĝ for ḡt−1, we have
F (n) = maxĝ{n/ĝ+F (ĝ)}. It is easy to see that for ĝ > 1 we have n/ĝ < n− ĝ,
so the sum is maximal if it consists of one term only, i.e., n/1.

Construction of the instances: The construction uses disjoint sets data-structure
and is omitted in this extended abstract (refer [15] for the details). The time for
the constructing all the instances is O(SG).

Combining the results: If we create an instance for distance [(1 + ε)l, (1 + ε)l+1],
and in that instance we compute, for some u, v a distance approximation larger
than (1 + ε + 2)(1 + ε)l+1, then we know that the true distance between u
and v is above (1 + ε)l+1, and thus it will be properly estimated in another
instance. Similar reasoning applies if the computed distance is smaller than (1+
ε)l. Therefore, when we scan the array of results for such an instance, we perform
updates only for pairs of super-vertices that have computed distances in the range
(1 + ε)l to (3 + ε)(1 + ε)l+1. Given such a pair of super-vertices, say u,v with
computed distance L′ ∈ [(1 + ε)l, (3 + ε)(1 + ε)l+1], for each u ∈ u and v ∈ v we
update (unless a smaller estimate was already present) the distance from u to v
with L′ + (1 + ε)lε. The term (1 + ε)lε is needed to correct for the possible effect
of collapsing edges of length less than ((1 + ε)lε)/n.
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As a result, the time needed to combine the result is the time needed to read
the result matrices, which equals to SG, plus the number of updates in the matrix
of final results, and we perform at most ε−1 ln((1 + ε)(3 + ε)) updates for each
entry. Since the above discussion holds for any ε > 0, we have,

Theorem 3. Let G be a weighted undirected graph on n vertices. For any ε > 0,
there exists an O(n2.24+o(1)ε−3 log(nε−1)) time algorithm that for every u, v ∈ V
produces an estimate δ(u, v) with dG(u, v) ≤ δ(u, v) ≤ (1 + ε)dG(u, v)+ 2h(u, v).

4 Approximating the Radius of Graphs

Aingworth et al. [7] presented a 3/2-approximation algorithm for estimating the
diameter of weighted directed graphs. In this section we extend their algorithm
and show that it can be used to obtain an almost 3/2-approximation of the
radius of unweighted undirected graphs. The algorithm is presented in Fig. 4.
We assume that rad(G) ≥ 2, as rad(G) = 1 can be easily handled separately.

A s-partial breadth-first search is obtained by performing the breadth-first
search from a vertex to the point where exactly s vertices (excluding the starting
vertex) have been visited. A s-partial breadth-first from u on graph (V, F ) is
denoted by s-bfs((V, F ), u). Let PBFS(u) denote the set of vertices which are
visited by an invocation of

√
n logn-bfs(G, u). The size of the dominating set

D constructed in the algorithm rad3/2 is O(
√
n logn) (follows from Lemma 1).

The following theorem completes the analysis of the algorithm.

Algorithm rad3/2(G, δ)
for every u ∈ V call

√
n logn-bfs(G, u)

w ← the vertex having the maximum depth partial breadth-first search tree
for every u ∈ PBFS(w) call bfs(G, u)
Ĝ ← G with additional edges of the form (u, v) where either u ∈ PBFS(v)

or v ∈ PBFS(u)
D ← dom(Ĝ,

√
n logn)

for every u ∈ D call bfs(G, u)
output min{min_ecc(D,G),min_ecc(PBFS(w), G)}

Fig. 4. Almost 3/2-approximation of the radius

Theorem 4. The algorithm rad3/2 runs in O(m
√
n logn + n2 logn), where n

is the number of vertices and m is the number of edges in the input graph G,
and gives an estimate of the radius that is at most � 3

2rad(G)�.

5 Approximating Diameter, Radius of Separable Graphs

In this section we present algorithms for faster estimation of diameter and radius
of graphs having a [λ, μ]-separator decomposition, where the decomposition is
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either provided as part of the input or is quickly obtainable. For most of the
well-known separable graphs, the latter condition holds true. We start by proving
a general statement about the maximum number of edges that a separable graph
can have. Earlier known results had a weaker upper bound of O(n+n2μ) on the
number of edges (see for example Cohen [21]).

Lemma 2. Let G be a graph with n vertices and a [λ, μ]-separator decomposi-
tion. Then number of edges in G is O(n).

We use a rooted binary tree TG to represent a separator decomposition of G (as
in [21]). To avoid ambiguities, we refer to the vertices of a graph as vertices and
vertices of a separator tree as nodes. Let root(TG) be the root node of TG. Each
node t ∈ TG is labeled by two subsets of vertices V (t) ⊆ V and S(t) ⊆ V (t).
Let G(t) = (V (t), E(t)) denote the subgraph induced by V (t). Then S(t) is the
separator in G(t). Then V (root(TG)) = V and S(root(TG)) is a separator in
G. For any t ∈ TG, the labels of its children t1, t2 are defined as follows: Let
V1 ⊂ V (t) and V2 ⊂ V (t) be the components separated by S(t) in G(t). Then
V (t1) = V1 ∪ (S(t) ∩NG(V1)), V (t2) = V2 ∪ (S(t) ∩NG(V2)).

We associate boundary vertices, B(t) with each node t. The boundary of
the root(TG) is ∅. The boundary of every other node t is defined as B(t) =
S(p(t)) ∪ B(p(t)) ∩ V (t), where p(t) is the parent of t in TG. We now describe
the preprocessing stage for the algorithms.

Function sep-preprocess(G, t)
create a weighted graph H(t) = (V (t), E(t) ∪B(t) ×B(t)), where for an edge
(a, b) ∈ B(t) ×B(t), wH(t)(a, b) = dG(a, b) and wH(t)(e) = wG(e) for e ∈ E(t)

for every u ∈ S(t) call dijkstra(H(t), u)
create a related graph Ĥ(t) (from H(t)): merge all vertices of S(t) into a
single vertex ϑ and keep all edges in H(t), including parallel edges

call dijkstra(Ĥ(t), ϑ) to determine fH(t)(ϑ, V (t) \ S(t))

Fig. 5. Preprocessing function for diameter, radius approximation of separable graphs

The algorithm sep-preprocess (Fig. 5) does Dijkstra from the vertices in
S(t) on a weighted graph H(t). The following lemma shows that the graph H(t)
preserves the shortest distance between every pair of vertices from V (t).

Lemma 3. For any t ∈ TG and u, v ∈ V (t), dH(t)(u, v) = dG(u, v).

3/2-approximation of the Diameter: We present an algorithm for weighted
undirected graphs. The extension to the directed case is omitted in this extended
abstract (see [15] for details). Note that a simple consequence of Lemma 2 is that
the diameter approximation algorithm of Aingworth et al. [7] runs in Õ(n2) time
on separable graphs.

We assume that graph is strongly connected. The algorithm sep-dia3/2

(Fig. 6) operates on all nodes in the separator decomposition tree (TG). For
every t ∈ TG, the function sep-preprocess is invoked. One can inductively see
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Algorithm sep-dia3/2(G, TG) (G is a separable graph)
for every t ∈ TG do

call sep-preprocess(G, t)
max1(t) ← max_ecc(S(t), H(t))
max2(t) ← max_ecc(fH(t)(ϑ, V (t) \ S(t)), H(t))
max(t) ← max{max1(t),max2(t)}

output max{max(t) | t ∈ TG}

Fig. 6. 3/2-approximation of the diameter of separable graphs

that weights for constructing the graph H(t) is available. For t = root(TG) it is
true. Now consider an edge (v1, v2) in H(t). If either of v1 or v2 is in B(p(t)),
inductively we know that weights are available. Otherwise, both v1 and v2 are
in S(p(t)) and the weights are again available (refer Lemma 3).

Algorithm sep-rad3/2(G, TG) (G is a separable graph)
t← root(TG)
S ← ∅
while V (t) 	= ∅

call sep-preprocess(G, t)
S ← S ∪ S(t)
choose i such that fH(t)(ϑ, V (t) \ S(t)) ∈ V (ti)
t ← ti

for every u ∈ S call dijkstra(G, u)
output min_ecc(S, G)

Fig. 7. Almost 3/2-approximation of the radius of separable graphs

Theorem 5. Let G be a weighted undirected separable graph. The algorithm
sep-dia3/2 runs in O(n1+μ log n + n3μ logn) time, where n is the number of
vertices in G, and gives an estimate of the diameter which is at least 2

3dia(G).

3/2-approximation of the Radius: The algorithm sep-rad3/2 (Fig. 7) follows
one path down the separator decomposition tree. For every node t in the path,
the function sep-preprocess is invoked. As with sep-dia3/2, we can inductively
show that the weights needed for construction of the graphs H(t) are available.

Theorem 6. Let G be a weighted undirected separable graph. The algorithm
sep-rad3/2 runs in O(n1+μ logn + n3μ logn) time, where n is the number of
vertices in G, and gives an estimate of the radius which is at most � 3

2rad(G)�.

Acknowledgement

The authors would like to thank Martin Fürer for many stimulating discussions.
We would also like to thank Surender Baswana for pointing us to references [10]
and [11], and Timothy Chan for providing us a preliminary copy of [1].



552 P. Berman and S.P. Kasiviswanathan

References

1. Chan, T.M.: More algorithms for all-pairs shortest paths in weighted graphs. In:
STOC ’07, ACM (to appear)

2. Galil, Z., Margalit, O.: All pairs shortest distances for graphs with small integer
length edges. Information and Computation 134(2), 103–139 (1997)

3. Galil, Z., Margalit, O.: All pairs shortest paths for graphs with small integer length
edges. JCSS 54(2), 243–254 (1997)

4. Seidel, R.: On the all-pairs-shortest-path problem in unweighted undirected graphs.
JCSS 51 (1995)

5. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetical progres-
sions. Journal of Symbolic Computation 9, 251–280 (1990)

6. Zwick, U.: Exact and approximate distances in graphs - A survey. In: Meyer auf
der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 33–48. Springer, Heidelberg
(2001)

7. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter
and shortest paths (without matrix multiplication). SIAM Journal on Comput-
ing 28(4), 1167–1181 (1999)

8. Cohen, E., Zwick, U.: All-pairs small-stretch paths. Journal of Algorithms 38(2),
335–353 (2001)

9. Dor, D., Halperin, S., Zwick, U.: All-pairs almost shortest paths. SIAM Journal on
Computing 29(5), 1740–1759 (2000)

10. Baswana, S., Kavitha, T.: Faster algorithms for approximate distance oracles and
all-pairs small stretch paths. In: FOCS ’06, IEEE, pp. 591–602 (2006)

11. Elkin, M.: Computing almost shortest paths. ACM Transactions on Algo-
rithms 1(2), 283–323 (2005)

12. Chan, T.M.: All-pairs shortest paths for unweighted undirected graphs in o(mn)
time. In: SODA ’06, ACM, pp. 514–523 (2006)

13. Boitmanis, K., Freivalds, K., Ledins, P., Opmanis, R.: Fast and simple approxima-
tion of the diameter and radius of a graph. In: Àlvarez, C., Serna, M. (eds.) WEA
2006. LNCS, vol. 4007, pp. 98–108. Springer, Heidelberg (2006)

14. Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. Jour-
nal of Graph Algorithms and Applications 3(3) (1999)

15. Berman, P., Kasiviswanathan, S.P.: Faster approximation of distances in graphs
(2007) Available at http://www.cse.psu.edu/~kasivisw/fadig.pdf

16. Thorup, M., Zwick, U.: Approximate distance oracles. Journal of ACM 52(1), 1–24
(2005)

17. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM Journal
of Applied Mathematics 36, 177–189 (1979)

18. Henzinger, M.R., Klein, P.N., Rao, S., Subramanian, S.: Faster shortest-path algo-
rithms for planar graphs. JCSS 55(1), 3–23 (1997)

19. Coppersmith, D.: Rectangular matrix multiplication revisited. Journal of Complex-
ity 13(1), 42–49 (1997)

20. Huang, X., Pan, V.Y.: Fast rectangular matrix multiplication and applications.
Journal of Complexity 14(2), 257–299 (1998)

21. Cohen, E.: Efficient parallel shortest-paths in digraphs with a separator decompo-
sition. Journal of Algorithms 21(2), 331–357 (1996)

http://www.cse.psu.edu/~kasivisw/fadig.pdf


Approximate Shortest Paths Guided by a Small
Index�

Jörg Derungs, Riko Jacob, and Peter Widmayer

Institute of Theoretical Computer Science, ETH Zurich, Switzerland
ETH Zentrum, CH-8092 Zürich
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Abstract. Distance oracles and graph spanners are excerpts of a graph
that allow to compute approximate shortest paths. Here, we consider the
situation where it is possible to access the original graph in addition to
the graph excerpt while computing paths. This allows for asymptotically
much smaller excerpts than distance oracles or spanners. The quality of
an algorithm in this setting is measured by the size of the excerpt (in
bits), by how much of the original graph is accessed (in number of edges),
and the stretch of the computed path (as the ratio between the length of
the path and the distance between its end points). Because these three
objectives are conflicting goals, we are interested in a good trade-off. We
measure the number of accesses to the graph relative to the number of
edges in the computed path.

We present a parametrized construction that, for constant stretches,
achieves excerpt sizes and number of accessed edges that are both sub-
linear in the number of graph vertices. We also show that within these
limits, a stretch smaller than 5 cannot be guaranteed.

1 Introduction

We study the problem of answering approximate shortest path queries on an edge
weighted, undirected graph G = (V,E) (called the base graph from now on) with
n vertices and m edges, where the vertices are labeled with unique bit strings of
length at most �� logn� for an � ≥ 1. For practical purposes we also assume that
all edge weights are �-limited precision rational numbers whose numerators and
denominators can be stored with �� logn� bits. In our specific setting, we are
allowed to preprocess the (very large) base graph and store information about
it (viewed as a bit string) in a memory of severely limited size; we call this an
excerpt of the graph, and the number of bits the excerpt size. A path query is
specified by the labels of both end vertices; the answer to the query is a path in G,
returned as a sequence of vertex labels. No information can be passed from one
query to the next. For answering a path query, we may read from the excerpt at
no cost. In addition we may access the graph by probing a vertex, which reports
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a single edge incident to this vertex at unit cost. In a sequence of probes of the
same vertex, the incident edges are returned in order of increasing weights, with
equal weight edges in the same order within any probe sequence. A vertex can
be reset at any time to its start state, with the effect that probing starts again
at the adjacent edge with the smallest weight. When a path query starts to be
processed, all vertices are in their start states. The total cost of accessing the
graph for a path query (the total probe cost) is the number of probes for that
query. Because paths with more edges tend to need more probes, we define the
efficiency of probing as the ratio of the probe cost against the number of edges
in the returned path, the probe factor.

We are interested in the trade-off between excerpt size, probe factor, and
approximation ratio of the length of the returned path against the shortest path
length in the base graph (also known as the stretch). While we are interested
in the asymptotic limits of the trade-off in arbitrarily large graphs, we still
give concrete values for the trade-off parameters and their limits. Our focus
is on showing that graph excerpts and path finding algorithms with the desired
properties exist. Still, our proofs are constructive, and the presented and implied
algorithms all run in polynomial time.

We came across problems of this nature in the study of public key authentica-
tion, but we believe our problem is of interest in other domains as well, such as
for external memory and caching. In public key authentication, the certificate of
a public key can be retrieved from the organization that issued that certificate.
These certificates can be interpreted as the edges of a huge implicit graph. An
important and potentially time-consuming part of asserting that a key belongs
to an alleged owner translates into finding a path in this graph.

Short paths by means of small excerpts have attracted attention earlier: Graph
spanners [16] and approximate distance oracles [20] solve the special case where
(expressed in our setting) the allowed probe cost for computing a path is zero,
that is, the path has to be computed from the excerpt alone, without access to
the base graph. Both the graph spanner and the approximate distance oracle
allow for a trade-off between the two conflicting goals of keeping excerpts as
well as stretch small. For graphs on n vertices, O(n logn) bits are sufficient to
store a logn-spanner. On the other hand, any excerpt from which paths (of
arbitrary stretch) need to be computed without further information (such as
base graph accesses) requires at least Ω(n log n) bits, as shown in Section 3.1.
We are therefore interested in trade-offs where the excerpt size is o(n log n) bits.
Without a limit on the probe factor we can easily restrict the excerpt size. Thus,
in our trade-off we limit the probe factor to o(n). This does not even allow the
path finding algorithm to exlore the whole neighbourhood of the returned path
in dense graphs.

To keep our modelling reasonably simple, we do not restrict the path finding
algorithm to be time or space efficient. This strengthens the impossibility results
of Section 3. Our construction based on the index graph is not exploiting this
loophole, it only computes shortest paths on the index graph and on explored
subgraphs with r edges. In particular, for the choice of parameters that achieves
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sublinear index size and sublinear probe factor, this computation time (per edge
in the reported graph) and computation space remain sublinear in the number
of nodes of the base graph.

1.1 Results

In Section 2, we define a path finding algorithm and a corresponding excerpt,
the index graph. We give two trade-off parameters for the construction of the
index graph. The first, r, limits the probe factor to O(r), the second, σ, lim-
its the stretch to O(σ). With these parameters we get an index graph with
ñ ≤ min

(
n logn√

r
, n
)

nodes and m̃ ≤ ñ1+2/σ edges, which can be stored with
O(m̃� logn) bits. As mentioned above, we are interested in trade-offs with both
excerpt size and probe factor sublinear in the number of vertices. And indeed,
for every ε, 0 < ε < 1

2 , we can set r ≥ n2ε and σ ≥ 2
(

1−ε
ε

)
to achieve sublinear

size and probe factor and still guarantee a constant stretch.
Our construction can be seen as a natural extension of graph spanners and

distance oracles. For probe factor 0, it results in a σ-spanner of the base graph.
Beside the index graph construction, we also provide bounds on the trade-

off that can be achieved in different situations. Specifically, we show that for
a stretch smaller than 5 (Section 3.3), or if the order in which the edges are
accessed is independent of their weights (Section 3.2), the probe factor cannot
be smaller than n

8 , even if the excerpt size is in the same order of magnitude as
a graph spanner, namely n logn

8 . Thus, the desired trade-off with sublinear size
and sublinear probe factor cannot be achieved in these cases.

1.2 Related Work

The problem of finding shortest or short paths in a graph received a lot of
attention in the last decades, see for example the recent survey by Zwick [21]. The
role of limited amount of working storage space has been investigated, among
others, for approximate distance oracles, external memory data structures, and
the streaming model, as detailed below.

The approximate distance oracle [20] chooses a k ≥ 1, uses a data structure
of size O(kn1+1/k) and returns an approximate shortest path in constant time
per path edge. The returned path is at most 2k − 1 times larger than the true
distance. The construction of the data structure takes O(kmn1/k) expected time,
which was recently improved to Õ(n2) time [4]. Note that the data structures
in approximate distance oracles are always of size Ω(n logn) bits, whereas our
focus are excerpts that use asymptotically less bits than that.

Another possibility is the relabeling of the entire graph in a preprocessing
step [7]. There, the two labels of the source and the sink are sufficient to answer
(approximate) distance queries. In this setting, the total space usage of the labels
is necessarily Ω(n

√
m) for some graphs, and is always super-linear in the number

of vertices.
Along a different line of thought, external memory algorithms and data struc-

tures have been designed for shortest path computations, among other graph



556 J. Derungs, R. Jacob, and P. Widmayer

problems. See [14] for a recent overview and [15] for one of the latest shortest
path algorithms. For external memory algorithms, the assumption is that main
memory is limited, and external memory accesses to storage blocks are costly.
Distance oracles reduce the required size of main memory, but still they are only
suited for what is known as semi-external memory graph algorithms, namely sit-
uations in which the memory is big enough to store some information about every
node of the graph. In this respect, our approach extends the possibilities since
it uses even less space. In contrast to our model, the general external memory
model has the focus on algorithms for very limited size memory and arbitrar-
ily large graphs, and assumes that the external memory is organized in blocks
(cache-lines). Our setting can be understood as a situation where the algorithm
is not able to change the representation of the graph in external memory but
can extract a small graph excerpt in an expensive preprocessing phase. Then, a
probe corresponds to an access to external memory that retrieves the next block
of edges. Hence, our results can be understood in the external memory set-up,
but are certainly different in focus from the well established external memory
algorithms and data structures.

One of the most recent areas with a strong emphasis on storage efficiency
is the streaming model of computation, where only little information can be
maintained while a long stream of data passes by. While this area started out
with simple statistical and aggregate questions, it has matured to include gen-
eral algorithmic problems, such as computing some graph property when the
huge graph is given as a sequence of edges in arbitrary order. Interestingly, for
many of these properties, such as connectedness, which is at the basis of short
path computations, at least Ω(n) bits need to be stored if streams can only be
read [11]. The W-Stream model [8], where intermediate streams are written in
one pass to be read in the next pass, allows for a trade-off between memory and
number of passes for single source shortest path. Such an intermediate stream
can be viewed as an excerpt of the graph. Nevertheless, one cannot apply these
concepts in our setting, since in the first pass the whole graph is read, the size
of the intermediate streams may be in the order of the number of graph edges,
and the content of the intermediate streams depends on the query and not only
on the graph.

Exact and approximate shortest path acceleration [9] can be regarded as
closely related to our problem. Shortest path acceleration tries to answer several
path queries on the same graph efficiently. To that end, the graph is preprocessed
and some data structure is stored additionally to the graph. This preprocessing
should also be completed with low running time. In contrast to shortest path
acceleration, we try to limit the number of graph edges that need to be exam-
ined to answer path queries, and we do not, at this point, consider the cost or
running time for preprocessing. On the other hand, the data structure generated
in the preprocessing of the shortest path acceleration may be as large as the
graph itself, whereas in our model the size of this data structure should be really
small, i.e., of size o(n). In particular, the techniques used for shortest path ac-
celeration are not directly applicable to our model. For instance, Goldberg and
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Harrelson [13] use a vertex labelling in the preprocessing to be used for trian-
gulation during path queries. This is not feasible in our model since the vertex
labels require Ω(n logn) space. Sanders and Schultes [19] present a different
approach, so called highway hierarchies. While the space needed to store the ad-
ditional data is considerably smaller than the one needed by vertex labelling, the
authors observe that the space is “a small constant factor of the input size” [19].

2 Index Graph and Path Finding Algorithm

In this section, we present an algorithmic solution for the problem of finding ap-
proximate shortest paths guided by a small index, or graph excerpt. We describe
mainly the mathematical structure of our excerpt. The algorithm to construct it
follows directly from this structure. First we describe roughly the path finding
algorithm, and then the undirected weighted index graph, the graph excerpt that
supports such a path finding algorithm. Details on the path finding algorithm
and the index graph are given in Section 2.1 and 2.2, respectively.

Note that because we are interested in trade-offs with sublinear excerpt size,
not all vertices are represented in the index graph. Thus, the path finding algo-
rithm computes a path between two vertices s and t in the following way. First,
it explores the vicinities of s and t in the base graph to find two index nodes,
i.e., graph vertices represented in the index graph, that are closest to s and t,
respectively. Then it computes a preliminary path in the index graph between
the two index nodes. This preliminary path is a path with gaps. Finally, the path
finding algorithm closes the gaps by exploring the base graph and thus obtains
a path between s and t in the base graph.

The two trade-off parameters, r and σ, are not explicitly used in the path
finding algorithm. Instead, the structure of the index graph guarantees that the
probe cost for finding an index node in the vicinity of any vertex, and for closing
a gap in the preliminary path, are bounded by r resp. 2r. The index graph also
limits the stretch of the obtained path to 9σ + 2 (Lemma 9 and Lemma 3).

The main ingredient of constructing the index graph is the selection of the
index nodes. As indicated above, we want enough index nodes such that we
can find a shortest path from any vertex in the graph to an index node while
accessing at most r edges. On the other hand, the limit of the excerpt size imposes
a limit on the number of index nodes. To specify a “good” set of index nodes,
we introduce the relation nearr(u, v) over pairs of vertices that is parametrized
with the probe cost limit r. We postpone the technical definition of this r-near
relation. For now, it is sufficient that if nearr(u, v), then with probe cost at
most r we can find all shortest paths from u to v and to all vertices closer to u
than v. Because every vertex is r-near to at least

√
r other vertices (Lemma 5,

page 560), we can compute a set of at most n log n√
r

index nodes in polynomial
time (Lemma 7) such that every vertex is r-near an index node. In a similar way
as the neighbourhood of a vertex v is the set of vertices to which there is an edge
from v, we call the set of vertices to which v is r-near the vicinity of v; the vertex
v is the center of the vicinity of v. Note that every vertex is in its own vicinity.
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The r-near relation is not only useful to select the index nodes, but also to
construct the index edges, which represent paths in the base graph. We connect
two index nodes v1 and v2 if there is an edge {u1, p2} in the base graph such
that a vertex p1 is r-near v1 and u1, and p2 is r-near v2. Exploring from the
vertices p1 and p2, the path finding algorithm can close the gap between v1 and
u1 and between v2 and p2 with probe cost at most 2r. The weight of the edge is
the length of the path from v1 to v2 that results from closing the gaps, and the
edge is annotated with the vertices p1, u1, and p2. If the path from v1 to v2 has
less than 6 edges, we annotate the index edge with the whole path. Note that p1

may be the same vertex as u1. In particular, with an edge {v1, v2} in the base
graph, p1 = u1 = v1 and p2 = v2.

The limit on the probe cost is not the only feature based on these index
edges. Lemma 9 shows that the distance between two index nodes in the full
index graph, i.e., the graph induced by all index edges, is at most 3 times their
distance in the base graph.

Even if we eliminate multiple edges between index nodes, the full index graph
may still be arbitrarily dense, causing a large excerpt. Therefore, our index graph
Iσr (G) of a base graph G is a greedy σ-spanner [16] of the full index graph.

With Definition 4 (page 560) of the r-near relation, which is based on the
exploration of a shortest path tree, we can give the following upper bounds for
the size of the index graph and the performance of the path finding algorithm:

Theorem 1. For all graphs G = (V,E) on n vertices with unique �� logn� bit
vertex labels and �-limited precision rational edge weights, for all integer val-
ues r ≤ n and σ, 1 ≤ σ ≤ logn, the index graph Iσr (G) and the corresponding
path finding algorithm A with input (s, t, Iσr (G)) that reports a path p(s, t) from
any vertex s to any vertex t in G have the following properties:

1. the index graph Iσr (G) has ñ ≤ min
(
n logn√

r
, n
)

nodes and m̃ ≤ ñ1+2/σ edges
and can be stored with O(m̃� logn) bits

2. the length of the path p(s, t) reported by the algorithm A is less than (9σ + 2)·
dist(s, t)

3. the probe cost of the algorithm A to compute path p(s, t) is at most 2r if
p(s, t) has less than 6 edges; the probe factor is at most r/2 if p(s, t) has at
least 6 edges.

Note that for graphs with positive integer edge weights, the probe factor can
also be limited relative to the length of the returned path.

The remainder of this section gives the details of the path finding algorithm
and the index graph construction, and defines the r-near relation. Theorem 1
follows directly from these details.

2.1 Path Finding Algorithm

In this section, we formalize the details of the path finding algorithm and present
the lemmas used to prove Points 2 and 3 of Theorem 1.
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To find a path from a vertex s to a vertex t, the algorithm starts exploring
from s and t until an index node s̃ and t̃ is reached, respectively. Note that if
nearr(s, t) or nearr(t, s), then the algorithm has already found a shortest path
from s to t. Next, the algorithm computes a shortest path from s̃ to t̃ in the
index graph. For every index edge on that path, the corresponding path in the
base graph is computed by exploring from the annotated vertices p1 and p2, if
it cannot be read directly from the index edge.

We use the term expanding an index edge for computing a path in the base
graph that connects the two index nodes incident to the index edge. Lemma 2,
the limit for the probe factor, is based on the observation that if an index edge
is expanded, the corresponding part of the returned path has at least 6 edges.

Lemma 2 (without proof). The probe factor of the path finding algorithm to
compute a path p between two graph vertices is at most r/2 if p has at least 6
edges; the total probe cost is at most 2r if p has less than 6 edges.

The following lemma is based on the observation that if one end point of the
path query is closer to the other end point than to an index node, the path
finding algorithm will find and return a shortest path.

Lemma 3 (without proof). If the distance between two index nodes in the
index graph Iσr (G) is at most k times their distance in the base graph, then the
length of any path returned by the path finding algorithm is at most 3k+2 times
the distance between the two end points.

It remains to define an r-near relation that allows the path finding algorithm
to find shortest paths from v to all vertices in the vicinity of v, while accessing
at most r graph edges. The properties of r-near suggest that we define r-near
based on the shortest path tree, which can be computed with Dijkstra’s shortest
path algorithm [10]. Note that the shortest path algorithm operates on directed
graphs. This serves our purpose, since any edge {u, v} is reported both by a
probe of u and by a probe of v.

However, the shortest path algorithm in its classical formulation examines all
arcs of one vertex at once. In a high degree graph, this can induce probe costs
higher than any r ∈ o(n). Therefore, we modify Dijkstra’s algorithm slightly to
evaluate edges lazily, that is, to only read those arcs that are really needed to
determine the next vertex to be added to the shortest path tree. Similar methods
to speed up Dijksta’s shortest path algorithm by limiting the number of edges
in the priority queue have been proposed before, see [1] for an example. The
main goal in our case, however, is to limit the number of examined edges. For
every vertex u we only need one out-going arc (u → v) in the priority queue at a
time. Remember that we access the edges incident to one vertex in the order of
increasing weights. Thus, examining and possibly adding an arc (u → w) with
greater or equal weight can be postponed until (u → v) is removed from the
queue. Specifically, when a vertex u (including the root) is added to the shortest
path tree, we add only the first arc reported by a probe of u to the priority
queue. Whenever an arc (u → v) is removed from the queue, we add the next
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Algorithm 1. Shortest path with lazy edge evaluation
procedure Explore(vertex source, vertex dest)

add first outgoing arc of source to priority queue
while dest not in shortest path tree do

(u → v) ← arc on top of priority queue
remove (u → v) from priority queue
if v not in shortest path tree then

add v to shortest path tree with edge {u, v}
quit if v = dest
add first outgoing edge of v to priority queue

end if
add next outgoing edge of u to priority queue

end while
end procedure

arc reported by a probe of u. See Algorithm 1 for a formal description of the
modified shortest path algorithm.

We want the vertices to be added to the shortest path tree in a deterministic
order, for situations in which many vertices have the same distance to the root
of the tree, and we want the root to be r-near some but not all of them. For
simplicity, we use the label of the arc’s target vertex as a tie-breaker, even though
using a deterministic priority queue would suffice.

From here on, Explore(u,v) refers to the modified shortest path algorithm
with source u and destination v. The definition of r-near naturally follows from
Explore.

Definition 4. A vertex u is r-near another vertex v, nearr(u, v), if and only if
Explore(u,v) adds at most r edges to the priority queue.

Based on this definition, we can bound the size of the vicinity of any vertex.

Lemma 5. A vertex is r-near at least �
√
r� vertices, including itself.

Proof. Assume that Explore(u,v) is about to add v as the (k + 1)st node to
the shortest path tree. At that point, at most k2 arcs can have been added to
the priority queue: k(k− 1) arcs between tree nodes, and k arcs from tree nodes
to vertices that are not in the tree yet (including v). For k = �

√
r� − 1 <

√
r we

get k2 < r and therefore nearr(u, v). ��

Lemma 6. A vertex is r-near at most r + 1 vertices, including itself.

Proof. For every edge that is added to the priority queue in Explore, at most
one vertex can be added to the shortest path tree. ��

2.2 Index Graph

In this section, we describe the details of the index graph construction, and
present the lemmas used to prove Point 1 of Theorem 1.
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As outlined at the beginning of Section 2, we first select the index nodes, then
compute the index edges, and lastly build the index graph Iσr (G) as a greedy
σ-spanner [16] of the full index graph induced by the index edges.

Lemma 7. In every graph G on n vertices there is a set Ṽ of at most
min

(
n logn√

r
, n
)

vertices such that every vertex in G is r-near a vertex in Ṽ .

The set Ṽ can be computed in O(rn log n) time.

Proof. The size limit n is trivial because the set Ṽ cannot contain more vertices
than the graph G, and every vertex is r-near itself.

The set Ṽ of vertices can be interpreted as a Set Cover [12] solution. The graph
vertices form the universe of the Set Cover instance, and for every vertex v there
is a set containing all vertices that are r-near to v. This Set Cover instance has
n elements and n sets. Every element is in at least

√
r sets because every vertex

is r-near at least
√
r vertices (Lemma 5). Thus, with Lemma 8, Greedy Set

Cover [6] computes a set Ṽ with at most (log2(
√
r) + 1) n√

r
≤ n logn√

r
vertices.

The sets of the Set Cover instance can be computed in O(r log r) per vertex
using Explore. The upper bound of r + 1 for the sets (Lemma 6) limits the
running time of Greedy Set Cover to O(rn log n). ��

Lemma 8 (Alon, Spencer [2]). Given a universe U with at most n elements
and at most n subsets of U . If every element is in at least k sets, then the number
of sets selected by the Greedy Set Cover algorithm [6] is at most (log2(k) + 1) nk .

This concludes the selection of the index nodes. The structure of the index
edges is already described at the beginning of Section 2. The index edges can
be computed efficiently by considering every vertex as point p1 and creating
an index edge for every edge {u1, p2} with nearr(p1, u1). Lemma 9 limits the
distances in the full index graph.

Lemma 9. The distance between any two index nodes in the full index graph
induced by the set of all index edges is at most three times their distance in the
base graph.

Proof. Let p be a shortest path in the base graph from index node s̃ to index
node t̃. We use a sequence of vertices pi on the path p, with increasing distance
from s̃, to split p into several parts, such that for each part there is an index
edge. These index edges will form a path from s̃ to t̃.

For every pi, let ṽi be the closest index node and di be the distance from pi
to ṽi. Note that pi is r-near ṽi. As p1 we take any vertex on p for which ṽ1 = s̃.
The last vertex pk of the sequence has ṽk = t̃. There must be such a pk because
di ≤ dist(pi, t̃) for every pi.

For a given vertex pi, we set pi+1 as the first vertex on path p with
dist(pi, pi+1) ≥ di. Since the left neighbour ui of pi+1 on the shortest path is
r-near pi, there is an index edge {ṽi, ṽi+1} with weight at most 2 dist(pi, pi+1)+
di+1. These index edges form a path from s̃ to t̃. The weight of this path is at
most

∑
i<k(2 dist(pi, pi+1) + di+1) ≤ dk +

∑
i<k 3 dist(pi, pi+1) ≤ 3 dist(s̃, t̃).
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Note that it does not matter if two index nodes ṽi and ṽj are actually the
same vertex, since this only shortens the length of the path in the full index
graph. ��

To compute the index graph Iσr (G) as a σ-spanner of the full index graph, we use
the Greedy σ-Spanner algorithm [3]. With this algorithm, we can compute the
index graph from the index edges in polynomial time. The Greedy σ-Spanner
also guarantees an upper bound on the edges in the index graph:

Lemma 10 (Regev [18], combined with Bollobás [5]). The Greedy σ-
Spanner of every graph on ñ vertices has at most ñ1+2/σ edges.

3 Impossibility Results for Trade-Offs

In this section, we show various impossibility results for trade-offs between ex-
cerpt size, stretch, and probe factor.

Throughout this section, we allow all operations on vertex labels. This is in
contrast to the path finding algorithm and the index graph construction pre-
sented in Section 2, where we only use comparisons. Additionally, for all impos-
sibility results presented in this section, we restrict the vertex labels to integers
from 1 to n on graphs with n vertices. There is also no assumption on the form
or content of the graph excerpt, except that it can be stored as a bit string.

We use the same technique to prove all three limits presented in this section.
For each limit, we present a family of graphs such that for every pair of graphs
in the family, there is at least one pair of vertices for which the connecting paths
that may be returned by the path finding algorithm differ. Additionally, the
probe cost for distinguishing two graphs of the family is above the allowed limit
of the probe cost (which is zero in Section 3.1).

3.1 Lower Bound for Spanners and Oracles

In this section we show that if the path finding algorithm is not allowed to access
the base graph, then the size of the excerpt needs to be in Ω(n logn).

Lemma 11. There is no path finding algorithm A(s, t, {0, 1}L), with L ≤ n logn
2 ,

that returns a path from vertex s to vertex t for all graphs G on n vertices with
integer labels 1 to n.

Proof. Consider the family of trees with unique vertex labels 1 to n. There are
nn−2 > 2

n log n
2 different trees on the vertices with unique labels 1 through n [17].

Therefore, with L ≤ n log n
2 , at least two different trees T and T ′ are represented

by the same bit string of length L. However, there is one pair of vertices s and t
such that the path from s to t is different in the two trees. Otherwise, all edges
in T must also be in T ′, and the two trees are identical. Hence, it is not possible
for the algorithm A to decide which path to return without accessing the base
graph. ��
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3.2 Edge Orders

In this section we demonstrate that the order in which the edges are reported is
important for achieving good trade-offs between excerpt size, number of accessed
edges and stretch. More precisely, we show that if the order in which the edges
adjacent to one vertex are reported is based on a criterion that is independent
of the edge weights, then the stretch cannot be limited to a value independent
of the base graph’s edge weights, even if the excerpt size is in the same order
of magnitude as a logn-spanner and the probe factor is linear in the number of
vertices. We denote the combination of the orders in which the edges adjacent
to the individual vertices are reported as an edge order.

Lemma 12. For every edge order of the complete graph Gn on n vertices and
every positive integer k, there is a family of weight functions W : V × V → R+

such that there is no path finding algorithm A(s, t, {0, 1}L), with L ≤ n log n
8 , that

returns a path p(s, t) with stretch k and probe factor n
8 for every vertex pain s, t

and every weight function in W.

Proof Idea: We divide the vertices into two sets A and B, with |A| = n/4.
Which vertices are in A depends on the edge order. The set B forms a complete
subgraph with all edge weights 1. Every vertex in A has exactly one edge to a
vertex in B with weight 1, all other edges have weight 2k + 1. Which edge has
weight 1 depends on the specific weight function. The distance between a vertex
a in A and a vertex b in B is thus at most 2, and any path from a to b with
stretch k must start with the one edge adjacent to a that has weight 1. However,
there are more than 2

n log n
8 such weight functions for which the weights of the

first n/8 edges adjacent to every vertex do not differ, which makes it impossible
to distinguish any two graphs with probe factor n/8. ��

3.3 Stretch Limit

In this section we argue for finding only approximate shortest paths instead of
true shortest paths, although the base graph can be accessed while computing a
path. More precisely, we show that even with excerpts whose size is in the same
order of magnitude as a logn-spanner, and with a linear probe factor, no stretch
smaller than 5 can be achieved.

Lemma 13. For every ε > 0 there is a family Gεn of graphs on n vertices with
integer labels 1 to n, such that there is no path finding algorithm A(s, t, {0, 1}L),
with L ≤ n log n

8 , that returns a path from s to t with stretch 5 − ε and probe
factor n/8 for every vertex pair s, t in every graph G ∈ Gεn.

Proof Idea: We divide the graph vertices into four equally sized sets A, B, C,
and D. Sets A and B form a complete bipartite graph with edge weights 1− ε

8 ,
as do sets C and D. Additionally, there is a perfect matching with edge weights
1 between the vertices of A and the vertices of D. The difference between the
graphs in Gn lies only in the matching. The only path between two vertices a ∈ A
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and d ∈ D with stretch 5− ε is {a, d} if that edge exists in the graph. However,
there are more than 2

n log n
8 such matchings, and the probe cost for finding out

if {a, d} is in the graph is larger than n
4 . ��
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Abstract. Assumptions about node density in the Sensor Networks
literature are frequently too strong or too weak. Neither absolutely arbi-
trary nor uniform deployment seem feasible in most of the intended ap-
plications of sensor nodes. We present a Weak Sensor Model-compatible
distributed protocol for hop-optimal network initialization, under the as-
sumption that the maximum density of nodes is some value Δ known by
all of the nodes. In order to prove lower bounds, we observe that all
nodes must communicate with some other node in order to join the net-
work, and we call the problem of achieving such a communication the
Group Therapy Problem. We show lower bounds for the Group Therapy
Problem in Radio Networks of maximum density Δ, regardless of the use
of randomization, and a stronger lower bound for the important class of
randomized fair protocols. We also show that even when nodes are dis-
tributed uniformly, the same lower bound holds, even in expectation and
even for the simpler problem of Clear Transmission.

1 Introduction

Although some papers analyze problems in Radio Networks under the assump-
tion of an arbitrary distribution of nodes, in most applications the layout of
nodes is not the result of an uncontrolled random experiment in which the prob-
ability of some highly undesirable outcome is positive. On the other hand, a
uniform distribution of nodes in the plane, as is customary to assume in the
Sensor Networks literature, may be difficult or impossible to achieve in settings
where the environment is hostile or remote. Furthermore, for any reasonable
model of non-uniform distribution of nodes chosen, a minimum density of nodes
has to be ensured in order to guarantee connectivity, and a non-trivial maximum
density of nodes can indeed be guaranteed. An example of a feasible model for
the distribution of nodes that reflects the random nature of the deployment,
yet excludes highly unlikely pathological cases is a multiple bivariate normal
distribution.

In this paper, we do not limit ourselves to any particular distribution but we
define bounds on the density of nodes for any reasonable model. More specifically,
we define a distribution of nodes as a Smooth Distribution if the maximum
density of nodes in any one-hop neighborhood is some value Δ ≤ n, and for
any constant α > 0, in any disc of radius αr there exists a constant β > 0 such
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that the number of nodes is at least β logn1. The rationale behind the choice
of the lower bound is that, when the nodes are deployed uniformly at random,
with enough density to achieve connectivity, a logarithmic density is guaranteed
w.h.p.2 [5]. Given that deterministic deployment is not possible in hostile or
remote environments, we assume the random deployment to be a process with
the goal of achieving uniform distribution but where nodes are dropped in excess
in some areas.

The Problem. We study the network initialization problem with smooth dis-
tribution of nodes under the restrictions of the Weak Sensor Model [5], a harsh
and comprehensive model that summarizes the literature on sensor node restric-
tions. The initialization of a Sensor Network is the problem of self-organizing
from scratch as a radio-communication network called a sensor network. Even
though communication among sensor nodes is through radio broadcast, it is use-
ful to set up explicit links between nodes in order to establish routing paths and
prevent flooding. In order to prove lower bounds, we observe that to join the
network at least one transmission of each node has to be received by some other
node. In this model, collision detection is not available and a transmission in a
given time slot is successful if only if exactly one node transmits in the one-hop
neigborhood of the receiver. Therefore, achieving non-colliding transmissions fast
without knowledge of the topology is not trivial. The problem of achieving non-
colliding transmissions has been well studied within other problems. For some
problems in multihop networks, such as Sensor Network initialization, the mes-
sages transmitted not necessarily must reach all nodes in the network. If in a
given time slot a node transmits and all nodes in a two-hop neighborhood do
not transmit, we say that a Clear Transmission has been produced and all
nodes in the one-hop neighborhood of the transmitter have received the Clear
Transmission. If all nodes in the network have to either produce or receive a
Clear Transmission the problem is called the Clear Transmission Problem [6].
For settings where all nodes in the network have to receive all the messages
to be transmitted, the various problems studied differ in the number of nodes
that have messages. When some arbitrary number k of nodes have a message
the problem is known as k-selection [10]. If k = 1 the problem is called Broad-
cast [2, 12], and if k = n, it is called Gossiping [4, 13]. As explained before, for
the purpose of proving lower bounds for Sensor Network initialization, we take
as a lower bound the problem of transmitting so that at least one transmission
of each node has to be received by some other node. Given that to solve the
problem all the participants have to be heard, we term this problem the Group
Therapy Problem.3

1 Througout this paper, log means log2 unless otherwise stated.
2 Define with high probability to mean with probability at least 1 − O(n−Ω(1)).
3 In fact, were it not for the extensive literature on gossiping, we would reverse these

terms. After all, it is hardly the point of gossiping to tell everyone your news. Con-
versely, in group therapy one expects to be heard by all. Nonetheless, we use the
current notation for consistency.
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Previous work. The literature on Sensor Networks is vast and includes both
theoretical and empirical research work. Many of the solutions proposed do not
sufficiently handle all the aspects of the problem. The protocol in [21] builds a
flat topology, but it is assumed that there are enough channels to accomodate
each link among neighbors which is not possible under the Weak Sensor Model.
The protocol in [3] builds a network where every node has at most k neighboring
nodes. However, the number of available radii of transmission is a function of n,
and the protocol relies in distance estimation hardware. The protocol in [22] is an
energy efficient topology control scheme. Unfortunately, global synchronization is
necessary and an underlying contention resolution mechanism is assumed. In all
these protocols the memory size is assumed to be in ω(1). Recently, a O(log2 n)
protocol that builds a network under the Weak Sensor Model was presented [5].
This protocol builds a hop-optimal network in settings where the nodes are
deployed uniformly at random. This was the first protocol for network formation
that is implementable in sensor nodes even theoretically. More general informa-
tion about sensor networks can be obtained from the surveys [1, 9, 19, 20, 23].

Regarding lower bounds, Kushilevitz and Mansour [12] proved the first lower
bound of Ω(log n) on the expectation of the running time of any random-
ized algorithm for clear transmissions in radio networks. A lower bound of
Ω(log n log(1/ε)/(log logn + log log(1/ε))) for achieving a Clear Transmission
with probability 1 − ε in a one-hop globally-synchronized Radio Network was
proved in [8]. Recently, this lower bound was improved to Ω(log n log(1/ε)) in [6]
closing the gap for this problem. A simple application of this result gives a lower
bound of Ω(logΔ log(1/ε)) steps in order to solve the Clear Transmission prob-
lem with probability at least 1 − ε in Sensor Networks where the maximum
density is Δ.

Related work. An important building block of the initialization protocol pre-
sented in this paper, which dominates the overall running time, is an algorithm
that guarantees that in a network of size n, each node produces a Clear Transmis-
sion within O(Δ log n) steps w.h.p. A O(h + logn log logn) adaptive algorithm
to solve the problem of realizing arbitrary h-relations w.h.p. was presented in [7].
In an h-relation, each processor is the source as well as the destination of at most
h messages. Also, for the k-selection problem, Martel’s [14] randomized adaptive
protocol operates in expected time O(k + logn). These algorithms could seem-
ingly be used as our building block, thus speeding up the overall running time.
However, they rely on collision detection and global synchronization.

Our results. We use two different problems to prove our lower bounds, both
necessary conditions to solve the Sensor Network initialization problem. We ob-
serve that in order to initialize the network the Group Therapy problem must
be solved. Ω(Δ) steps are required to solve this problem regardless of the use of
randomization. Combining this observation and our previous results [6], a lower
bound of Ω(Δ + logΔ log(1/ε)) for solving the problem with probability 1 − ε
is obtained. Restricting ourselves to the important class of fair protocols, i.e.,
protocols where the probability of transmission of every node is the same in the
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same execution step, we show here a lower bound of Ω(Δ(log(1/ε) + logΔ)),
which we also show to be tight. The analysis for fair protocols is relevant given
that, to the best of our knowledge, asymptotically faster adaptive protocols for
the Group Therapy problem are not known. Finally, we also show that even if
the nodes are distributed uniformly, and thus Δ = Θ(log n), a seemingly simpler
problem such as Clear Transmission, takes Ω(log2 n) expected time using fair pro-
tocols. As for upper bounds, we present a distributed protocol to self-organize a
Sensor Network where the maximum density in any one hop neighborhood is an
arbitrary value Δ. More specifically, we show that, upon waking up, a node joins
the network w.h.p. within O(Δ log n) time steps. A bottleneck of this algorithm
is a local-spanner construction where each node produces a Clear Transmission
within O(Δ log n) steps w.h.p. using a fair protocol. Given that if every node pro-
duces a Clear Transmission, the simpler Group Therapy problem is also solved,
this protocol matches the lower bound showed here. We leave open the question
of how to use adaptive algorithms that work under these conditions to speed up
the overall running time.

Roadmap. In Section 2 we define the models used througout the paper and we
prove our lower bounds in Section 3. Upper bounds are showed in Sections 4
and 5. We include some acknowledgements in Section 5.1.

2 The Model

In Sensor Networks nodes are expected to be deployed at random in large quan-
tities over an area of interest. Therefore, an abstraction frequently used in Sensor
Networks to model the reachability of nodes is the Random Geometric Graph
Model (RGG), where the nodes are assumed to be distributed uniformly at ran-
dom in the plane. In this paper, we relax the assumption about the distribution
and we use the Geometric Graph Model where the nodes are deployed in R2,
and a pair of nodes is connected if and only if they are at an Euclidean distance
of at most a parameter r.

Regarding models of sensor node constraints, Bar-Yehuda, Goldreich and
Itai [2] detailed a formal model of a radio network that specifies many of the
important restrictions on sensor nodes, including limits on contention resolution,
but they make no mention of computational limits such as small memory. After
this model was introduced, some papers [11, 18] have added more restrictions,
although often such restrictions are implicit in the text or algorithms rather than
fully specified. In this paper, we use the Weak Sensor Model [5], a harsh and
comprehensive model that summarizes the literature on sensor node restrictions
taken the most restrictive choices when possible. In this model, the communi-
cation among neighboring nodes is through broadcast on a shared channel. A
node receives a message if and only if exactly one of its neighbors transmits.
There is no collision detection mechanism available and the channel is assumed
to have only two states: single transmission and silence/collision. Sensors nodes
have non-simultaneous reception and transmission. Time is assumed to be slot-
ted and all nodes have the same clock frequency, but no global synchronizing



Initializing Sensor Networks of Non-uniform Density 569

mechanism is assumed. Nodes are woken up by an adversary perhaps at different
times. Sensor nodes may store only a constant number of O(log n) bit words.
We assume that sensor nodes can adjust their power of transmission to only
a constant number of levels. Other restrictions include: limited life cycle, short
transmission range, only one shared channel of communication, lack of position
information and unreliability.

3 Lower Bounds

To solve any problem in a communication network at least one successful trans-
mission is necessary. However, in multihop networks, one non-colliding trans-
mission is not enough to solve most of the problems. For the Radio Network
initialization problem we observe that, in order to join the network, for every
node at least one transmission has to be received by at least one neighboring
node. More precisely, let V be the set of nodes in the network and N(v) ⊆ V
denote the set of nodes adjacent to v ∈ V . Then, for all v ∈ V there is at least
one time slot in which there exists a node u ∈ N(v) such that exactly one node
in N(u) transmits and this node is v. We term this problem the Group Therapy
Problem. In order to provide stronger lower bounds, we relax the Weak Sensor
Model to a minimum set of restrictions, namely, low-information channel con-
tention, local synchronism and adversarial node wake-up schedule. We refer to
this model as the Radio Network model. We begin observing that a lower bound
for the Group Therapy problem, regardless of the use of randomization, is Ω(Δ),
a claim that we formalize in the following theorem.

Theorem 1. In order to solve the Group Therapy problem in a multihop Radio
Network where the maximum density in any one-hop neighborhood is Δ, any
algorithm requires Ω(Δ) time-slots.

Proof. Exploiting the assumption of an adversarial wake-up schedule, let us as-
sume the existence of an adversary that, at a given time, wakes up only a subset
of Δ neighboring nodes, i.e., a set of Δ nodes whose connectivity graph is a
clique. We call them active nodes. Such a subset of nodes exists since the maxi-
mum density is Δ. Upon waking up, the active nodes start the execution of the
protocol. All the other nodes remain non-active and do not participate in the
protocol. In this setting, in order to solve the problem, every node has to achieve
a non-colliding transmission in a different time slot, therefore the claim follows.

Combining Theorem 1 with our lower bound [6] of Ω(log n log(1/ε)) time steps
to solve the Clear Transmission problem with probability 1 − ε in a one-hop
Radio Network of n nodes , the following lower bound for the Group Therapy
problem in Radio Networks is obtained.

Corollary 1. In order to solve the Group Therapy problem with probability 1−
ε in a multihop Radio Network where the maximum density in any one-hop
neighborhood is Δ, any randomized algorithm requires Ω(Δ + logΔ log(1/ε))
time-slots.
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We consider now lower bounds for fair protocols, i.e., protocols where the prob-
ability of transmission of every node in the same time step is the same. The
analysis for fair protocols is relevant given that, to the best of our knowledge,
asymptotically faster adaptive protocols for the Group Therapy problem are not
known. We prove this lower bound under the assumption of the existence of a
weak adversary that, at a given time, wakes up some subset of nodes of size
{2i|0 ≤ i ≤ logΔ}. We call them active nodes. Upon waking up, the active
nodes start the execution of the protocol. All the other nodes remain non-active
and do not participate in the protocol.

We define a randomized fair protocol to be a sequence p1, p2, . . . where each
node transmits with probability p� in the �th time step after waking up. Given our
adversary, this means that all active nodes transmit with the same probability
as each other in each time slot. We further assume that all p� ∈ {2−j|1 ≤ j ≤
logΔ}. If this assumption is not true of a particular algorithm A, we can always
produce an algorithm A′ from A by replacing one attempt in A by a constant
number of attempts in A′ where the probabilities of transmission in A′ have been
rounded off to the closest power of 1/2.

Let pij denote the probability that a given node fails to achieve a non-colliding
transmission when 2i active nodes transmit with probability 2−j. Then, we know
that pij = 1−(1/2j)(1−1/2j)2

i−1. Let tj be the number of time-slots that nodes
are transmitting with probability 2−j. Then, the total probability of failure for
any number of active nodes 2i, needs to be bounded by 2i

∏
j p
tj
ij ≤ ε, or taking

logarithms
∑
j tj ln pij ≤ ln(ε) − ln 2i.

A lower bound can be obtained by minimizing the total number of time-slots
needed to satisfy the previous constraints. Here, we reuse our proof technique
from [6], i.e., we formulate the problem as a linear program and use a feasible
solution of the dual formulation as a lower bound. However, due to the differences
between the problems to be solved, the slack variables of the dual need to be more
carefully defined, which we do below. The function to be minimized together with
the constraints can be formulated as the following primal linear program which
yields the corresponding dual.

Minimize 1T t, Maximize εTu, where:

subject to: subject to: t � [tj ],

Pt ≥ ε PTu ≤ 1 ε � [− ln(ε) + ln 2i],

t ≥ 0, u ≥ 0, P � [− ln(pij)].

The primal linear program has a finite minimum solution, and hence its dual
has a finite maximum solution. The value of the objective function for every
feasible solution of the dual is a lower bound on the minimum value of the
objective function for the primal. Thus any feasible solution for the dual will give
the lower bound sought. We first define the slack variables as ui = 2i(1−1/

√
e)2,

and show that these values satisfy the constraints of the dual.

Lemma 1. For any 1 ≤ j ≤ logΔ,
∑logΔ
i=0 (− ln pij)ui ≤ 1.



Initializing Sensor Networks of Non-uniform Density 571

Proof. We want to prove that

logΔ∑

i=0

(

− ln

(

1 − 1
2j

(

1 − 1
2j

)2i−1
))

2i
(

1 − 1√
e

)2

≤ 1

Using that for 0 < x < 1, e−x/(1−x) ≤ 1−x ≤ e−x [15, §2.68] and maximizing

for j = 1 it is enough to prove
√
e(1 − 1/

√
e)2
∑
i(2
i/
√
e
2i

) ≤ 1. Diferentiating
the arithmetic-geometric series and replacing, the claim follows.

Now, we use the value of the objective function for this feasible solution to show
our lower bound.

Theorem 2. In order to solve the Group Therapy problem with probability 1− ε
in a multihop Radio Network where the maximum density in any one-hop neigh-
borhood is Δ, any fair randomized algorithm requires Ω(Δ(log(1/ε) + logΔ))
time-slots.

Proof. From lemma 1, we know that ui = 2i(1− 1/
√
e)2 satisfies the constraints

of the dual LP, replacing

εTu =
logΔ∑

i=0

(

ln
1
ε

+ ln 2i
)

2i
(

1 − 1√
e

)2

∈ Ω(Δ(log(1/ε) + logΔ)).

As proved in [5], when the nodes are distributed uniformly, the density of nodes
in any disc of radius Θ(r) is in Θ(log n). Therefore, a simple application of
Theorem 2 gives a lower bound of Ω(log n(log(1/ε) + log logn)) for the Group
Therapy problem within uniform density settings. However, it can be proved
that to solve even a seemingly simpler problem such as Clear Transmission in
a Radio Network with uniformly distributed nodes, it takes Ω(log2 n) expected
time, which we do as follows.

The topology of active nodes chosen by the adversary for this proof consists
of a set of disjoint pairs of cliques connected by a single node. One clique of
the pair has node density in Θ(1), the other in Θ(log n) and the intermediate
node connects to all nodes in both cliques . We call this construction a clique-
pair. In order to be disjoint, nodes are woken up so the resulting clique-pairs are
separated by a distance of r, the maximum range of transmission of any node.

We first give the intuition of why this structure gives a good lower bound
on the number of time steps needed to solve the Clear Transmission problem.
Recall that in a multi-hop setting a transmission is a Clear Transmission if no
node within two hops of the transmitter transmits in the same time slot. To
solve the Clear Transmission problem every node has to receive or produce a
Clear Transmission. Hence, in order to solve this problem, a necessary condition
is that each node in the low-density clique either receives or produces a Clear
Transmission. That means that there must exist at least one time slot in which
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exactly one node in the clique pair transmits, that node being the intermediate
node or a node in the low-density clique.

Given the different densities and that the protocol is fair, when the sum of
probabilities of transmission in the low density clique reaches a constant, and
therefore the probability of having a succesful transmission in that clique is
constant, the sum of probabilities of transmission in the 2-hop neighboring high
density clique is asimptotically more than a constant and the probability of
silence is low. On the other hand, when the sum of probabilities of transmission
in the whole clique-pair reaches a constant, and the probability of having a non-
colliding transmission is high, the probability that the transmitting node is in
the low-density clique or it is the intermediate node is low. Then, the probability
that nodes in the low density clique produce or receive a Clear Transmission fast
is low.

Lemma 2. Given a Radio Network with nodes deployed as a connected RGG,
the total number of clique-pairs activated by the adversary is in Θ(n/ log n) w.h.p.

Proof. It follows from the Θ(log n) density bound in any disk of radius Θ(r)
proved in [5].

Theorem 3. Every fair randomized algorithm takes Ω(log2 n) expected time in
order to solve the Clear Transmission problem in a multi-hop Radio Network
where nodes are deployed uniformly at random.

Proof. The proof is based on minimizing the probability of failing to achieve
a Clear Transmission in a low density clique. The details are omitted in this
extended abstract for brevity.

4 An Optimal Upper Bound for the Group Therapy
Problem

A common observation in the literature is that a fair protocol, i.e., a protocol
where all nodes are assumed to use the same probability of transmission in the
same time slot, has a higher probability of achieving a non-colliding transmission
when the probability and the inverse of the number of active nodes agree up
to a constant factor and this probability is lower otherwise. Therefore, a main
challenge for any protocol is to estimate the density accurately and fast. However,
as we show in this section, if all nodes have to achieve successful transmissions
by means of a fair protocol it is enough to know the maximum density to achieve
a running time of O(Δ log n) w.h.p. In achieving a Clear Transmission for all
nodes, the Group Therapy problem is also solved. Thus, given the lower bound
of Theorem 2, it is optimal for the latter problem. We leave open the question of
whether it can be done faster or not using adaptive algorithms. The algorithm
is simple to describe, for a network where the maximum density of nodes in any
disk of radius r is Δ, every node repeatedly transmits with probability 1/Δ.
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Theorem 4. Given a multihop Radio Network where the maximum density in
any one-hop neighborhood is Δ, using the protocol described above every node
achieves a Clear Transmission within O(Δ log n) time steps w.h.p.

Proof. For a given node, consider a circle of radius 2r centered on it. This circle
can be completely covered by a constant number, say β1, of circles of radius r. In
each of these circles there are at most Δ nodes, since Δ is the maximum number
of nodes in any one-hop neighborhood and all nodes within a circle of radius
r are connected. Therefore, β1Δ is an upper bound of the number of nodes in
the 2-hop neighborhood of any node. Hence, the probability of some node not
achieving a Clear Transmission after β2Δ logn steps, where β2 is a constant is

Pr(fail) ≤ n

(

1 − 1
Δ

(

1 − 1
Δ

)β1Δ
)β2Δ logn

∈ O(n−γ), for some constants β2, γ > 0.

Where we used that for all n ≥ 1 and |x| ≤ n, ex(1−x2/n) ≤ (1+x/n)n ≤ ex [16].

5 Non-uniform Density Network Initialization

As proved in [5], under the Weak Sensor Model, an optimal network should have
low hop-stretch while maintaining links to a constant number of neighbors due
to memory constraints. The hop-stretch is the maximum, among all pairs of
nodes, of the ratio between the minimum number of hops in a path connecting
two nodes, and the optimal number of hops given by the Euclidean distance
and the maximum range. In the same paper, it was presented a distributed
protocol that builds from scratch a network with such a topology, under the
assumption that nodes are deployed uniformly at random sufficiently densely to
ensure connectivity w.h.p. We show here that even if the density of nodes is not
uniform, as long as it is Smooth as defined in Section 1, a network with such
a topology can be obtained fast using the same general technique adequately
implemented for this setting.

To model the reachability of nodes we use the Geometric Graph Model or
Gn,r,�, where n nodes are deployed in a space of size [0, �]2, and a pair of nodes
is connected if and only if they are at an Euclidean distance of at most r. An
instance of Gn,r,� is called a Geometric Graph (GG) and noted G(n, r, �). Given
that the network we aim to obtain has to have low hop-stretch and constant
number of neighbors, the graph that models its topology has to have constant
degree and asymptotically optimal path length in terms of number of edges. We
call such a graph a Constant-degree Hop-optimal Spanning Graph (CHSG).

In [5] was proved the existence of a CHSG subgraph of any connected RGG
by means of a dissection technique called bin-covering [17]. Further, in the same
paper was given a Disk Covering Scheme that produces such a subgraph. Given
the smooth distribution assumed here, the minimum density of nodes in any
disc of radius Θ(r) is Ω(log n). Therefore, the same results apply to our setting,
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i.e., given a GG with smooth distribution of nodes, the Disk Covering Scheme
produces a CHSG. The Disk Covering Scheme has four phases, namely, small disk
layout, bridge interconnection, disks expansion and local spanner construction.
The first three phases of the Disk Covering Scheme can be implemented as
detailed in the journal version of [5]. Given that in our setting the maximum
density is Δ, the probabilities of transmission and counters used need to be
changed appropriately. We omit the details in this extended abstract for brevity.
The last phase of spanner construction for smooth distributions is detailed in
the following section.

5.1 Spanner Construction

The last phase of the Disk Covering Scheme is the construction of a constant-
degree spanner within each expanded disk. As shown in [5], the diameter of the
spanner must be logarithmic in order to achieve asymptotically optimal hop-
stretch. In this paper, we consider Sensor Networks where the maximum density
of nodes in any one-hop neighborhood is an arbitrary value Δ bounded only
by n. Thus, a straightforward solution such as a linked list can not be used.
Instead, we simply use a balanced binary tree. To build such a tree, we locally
rank the nodes according with their unique ID and the ID of the bridge node
that covers them. Once unique consecutive labels given by the rank within the
disk are assigned to all nodes, each node can easily compute to which nodes is
connected within the tree.

We give here a description of the distributed algorithm and we omit the
details in this extended abstract for brevity. The spanner construction algorithm
consists of three phases. First, every node broadcasts its ID keeping track of the
ID of its predecessor among the nodes covered by the same bridge for Θ(Δ log n)
steps. As we prove in Theorem 4, at this point all nodes have achieved a Clear
Transmission w.h.p. so, all nodes have received a transmission from their local
predecessor. To obtain their local rank, nodes enumerates themselves one by one
in a second phase as follows. Upon receiving the rank i of its predecessor, a node
defines its rank as i+ 1 and broadcasts it with constant probability for Θ(log n)
steps. As shown in lemma 3, there will be at least one transmission without
collision w.h.p. The first node in this ordering does not have any predecessor so
it starts this phase of the algorithm with rank 1. At this point, all nodes know
their local rank and it only remains to connect them as a balanced tree. A final
phase broadcasting the rank where node i connects to nodes �i�, 2i and 2i + 1,
achieves this. The root of such a tree is therefore the node with the smallest
local rank which connects to the bridge.

In order to avoid conflicts with nodes waking up while building the spanner,
the Sensor Network initialization protocol has to include an initial waiting phase
of βΔ log n time steps, for some constant β. Nodes can be covered by more
than one bridge but, given the geometric restrictions, every node is covered
by a constant number of them. Messages and bookkeeping must be replicated
for each covering bridge as needed. Nodes running other phases may introduce
interference but as long as the sum of their probabilities of transmission is a
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constant, the analysis can be done as if each phase runs in a different channel in
the presence of a source of noise of constant probability of transmission, which
we fold into the constants included in the analysis. The details follow.

Lemma 3. Any node running the second phase of the spanner construction algo-
rithm described above, achieves a transmission without collision within O(log n)
steps w.h.p.

Proof. Let β1 ∈ O(1) denote the maximum number of interfering neighbors also
running the second phase of the spanner construction algorithm. Let 1/β3 ∈
O(1) be the probability of transmission used by a node running such phase. Let
Pr[fail] denote the probability that any node fails to transmit without collision
after β2 logn steps for some constant β2. Using the union bound and for some
constants β1, β2, β3

Pr[fail] ≤ n

(

1 − 1
β3

(

1 − 1
β3

)β1
)β2 logn

∈ O(n−γ), for some constant γ > 0

Theorem 5. Any node running the spanner algorithm joins the spanner within
O(Δ log n) steps w.h.p.

Proof. The first and third phase take O(Δ log n) time by definition of the algo-
rithm. In the second phase, each of the at most Δ nodes in turn transmit for
O(log n) steps. Hence, the overall running time of the algorithm is O(Δ log n). As
shown in Theorem 4, every node achieves at least one non-colliding transmission
within O(Δ log n) steps w.h.p. therefore the claim follows.
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Abstract. We study the presence of obstacles in computing BCP (s, t)
(Best Coverage Path between two points s and t) in a 2D field under
surveillance by sensors. Consider a set of m line segment obstacles and
n point sensors on the plane. For any path between s to t, p is the least
protected point along the path such that the Euclidean distance between p
and its closest sensor is maximum. This distance (the path’s cover value)
is minimum for a BCP (s, t). We present two algorithmic results. For
opaque obstacles, i.e., which obstruct paths and block sensing capabilities
of sensors, computation of BCP (s, t) takes O((m2n2 + n4) log(mn +
n2)) time and O(m2n2 +n4) space. For transparent obstacles, i.e., which
only obstruct paths, but allows sensing, computation of BCP (s, t) takes
O(nm2 + n3) time and O(m2 + n2) space. We believe, this is one of the
first efforts to study the presence of obstacles in coverage problems in
sensor networks.

1 Introduction

In this paper, we study a specific class of problems that arises in sensor networks,
and propose novel solutions based on techniques from computational geometry.
Given a 2D field with obstacles under surveillance by a set of sensors, we are
required to compute a Best Coverage Path (BCP ) between two given points that
avoids the obstacles. Informally, such a path should stay as close as possible to
the sensors, so that an agent following that path would be most “protected” by
the sensors. This problem is also related to the classical art gallery and illumi-
nation research type of problems that has been long studied in computational
geometry [14,15]. However, there are significant differences between the problem
we consider and these other works, which we elaborate later in the paper. More-
over, to the best of our knowledge, ours is one of the first efforts to study the
presence of obstacles in coverage problems in sensor networks.

More formally, let S = {S1, . . . , Sn} be a set of n homogeneous wireless point
sensors deployed in a 2D sensor field Ω. Each sensor node has the capability
to sense data (such as temperature, light, pressure and so on) in its vicinity
(defined by its sensing radius). For the purpose of this paper, assume that these
sensors are guards that can protect any object within their sensing radius, except

F. Dehne, J.-R. Sack, and N. Zeh (Eds.): WADS 2007, LNCS 4619, pp. 577–588, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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that the level of protection decreases as the distance between the sensor and the
object increases. Let P (s, t) be any path between a given source point s and a
destination point t. The least protected point p along P (s, t) is that point such
that the Euclidean distance between p and its closest sensor Si is maximum. This
distance between p and Si is known as the cover value of the path P (s, t). A
Best Coverage Path between s and t, BCP (s, t), is a path that has the minimum
cover value.

A BCP is also known as a maximal support path (MSP). In recent years
there have been several efforts to design efficient algorithms to compute them
[5,9,10]. However, one notable limitation of these works is that they have not
considered the presence of obstacles in the sensor field, i.e., objects that obstruct
paths and/or block the line of sight of sensors. In fact, most papers that deal
with coverage problems in sensor networks have not attempted to consider the
presence of obstacles. This is surprising since obstacles are especially realistic in
a deployment of sensors in unmanned terrain (e.g., buildings and trees, uneven
surfaces and elevations in hilly terrains, and so on).

In this paper we study the presence of obstacles in computing best coverage
paths. However we do not consider the length of the path (i.e., minimizing the
path length) in the computation of a BCP . More formally, assume that in addi-
tion to the n sensors, there are also m line segment obstacles O = {O1, . . . , Om}
placed in the sensor field. Line segments are fundamental building blocks for
obstacles, as more complex obstacles (e.g., polygonal obstacles) can be mod-
eled via compositions of line segments. We consider two types of obstacles: (a)
opaque obstacles which obstruct paths as well as block the line of sight of sensors,
and (b) transparent obstacles which obstruct paths, but allow sensors to “see”
through them. Examples of the former may include buildings - they force agents
to take detours around them as well as prevent certain types of sensors (such as
cameras) from seeing through them - while examples of the latter may include
lakes - agents only have to take detours around them but cameras can see across
to the other side. When obstacles are opaque, we refer to the best coverage path
problem as the BCP (s, t) Problem for Opaque Obstacles, whereas for transpar-
ent obstacles, we refer to the problem as the BCP (s, t) Problem for Transparent
Obstacles. Figure 1 is an example of a BCP (s, t) amidst two sensors and four
opaque obstacles, whereas Figure 2 shows a BCP (s, t) in the same sensor field
but assumes the obstacles are transparent.1

To compute BCP (s, t) without obstacles, existing approaches [5,9,10] leverage
the fact that the Delaunay triangulation of the set of sensors - i.e., the dual of the
Voronoi diagram - contains BCP (s, t). Furthermore, [9] shows that sparse sub-
graphs of the Delaunay triangulation, such as Gabriel Graphs and even Relative
Neighborhood Graphs contain BCP (s, t). However, such methods do not easily
extend to the case of obstacles. Moreover, as should be clear from Figure 1, the
visibility graph [2] is also not applicable to the BCP (s, t) problem for opaque

1 We assume infinite sensing capabilities for our sensors; although sensing intensity
decreases with the increased distance. Generalizing our algorithms for a finite sensing
radius is straightforward and omitted from this paper.
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Fig. 1. A BCP (s, t) for Opaque Obstacles

t

s

S1

O1

O2

O3 O4
S2

two point S1 and S2
Bisector between

(least protected point)

cover

p

Fig. 2. A BCP (s, t) for Transparent
Obstacles

obstacles, as the best coverage paths in this case need not follow edges of the
visibility graph. In fact, to solve the BCP (s, t) problem for opaque obstacles, we
have developed an algorithm that takes quartic-time, based on constructing a
specialized dual of the Constrained and Weighted Voronoi Diagram (henceforth
known as the CW-Voronoi diagram) [13] of a set of point sites in the presence of
obstacles. This type of Voronoi diagram is a generalization of Peeper’s Voronoi
Diagram [6] that involves only two obstacles. These two Voronoi diagrams are dif-
ferent from other Voronoi diagrams involving obstacles studied in papers such as
[3,1,11] - since the latter requires that every obstacle endpoint be a site whereas
in the former the Voronoi sites are distinct from the obstacle endpoints. Unlike
standard Voronoi diagrams for point sets without obstacles, the Voronoi regions
in a Peeper’s Voronoi diagram site may be disconnected [6]. However, for the
BCP (s, t) problem with transparent obstacles, we have shown that a best cover-
age path is contained in the visibility graph (with suitably defined edge weights),
which enables us to develop a more efficient algorithm for it.

As mentioned earlier, the BCP (s, t) problems are also related to art gallery
problems [14,15], which are concerned with the placement of guards in regions to
monitor certain objects in the presence of obstacles. An early result in art gallery
research, due to V. Chvátal, asserts that �n3 � guards are occasionally necessary
and always sufficient to guard an art gallery represented by a simple polygon of n
vertices [14,15]. Since then, numerous variations of the art gallery problems have
been studied, including mobile guards, guards with limited visibility or mobility,
guarding of rectilinear polygon and so on. The main difference between the the
art gallery problems and the BCP problems is that the former problems (such as
Watchman Route, Robber Route [14,15] and so on) attempt to determine paths
that minimize total Euclidean distances under certain constraints, whereas the
metric to be minimized in the latter problems (the cover of the path) is suffi-
ciently different from Euclidean distance, thus requiring different approaches.2

A comprehensive survey of art gallery research is presented in [15].

2 It is easy to prove that the cover is a metric, and holds all metric properties. We
omit the proof from this version of the paper.
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In this work, our contributions may be summarized as follows:

– We have initiated a study of the presence of obstacles and their impact in
the computation of BCP. We have shown that obstacles significantly com-
plicate BCP computations. We have developed two variants of the problem,
the BCP (s, t) problem for opaque obstacles and the BCP (s, t) problem for
transparent obstacles, based on variants of obstacle properties.

– We have designed an O((m2n2 + n4) log(mn + n2)) time and O(m2n2 +
n4) space algorithm for computing BCP (s, t), given n sensor nodes and m
opaque line obstacles.

– We have designed an O(nm2 +n3) time and O(m2 +n2) space algorithm for
computing BCP (s, t), given n sensor nodes and m transparent line obstacles.

The rest of the paper is organized as follows: In Section 2 we describe our
algorithm for the BCP (s, t) problem for opaque obstacles and its correctness. In
Section 3, we propose an algorithm for the BCP (s, t) problem for transparent
obstacles. Running time analysis and proof of correctness are also presented.
Finally, we conclude in Section 4, and give future research directions.

2 The BCP (s, t) Problem for Opaque Obstacles

In this section we study the BCP (s, t) problem for opaque obstacles, defined in
Section 1.

We first discuss why the presence of obstacles make the best coverage problem
difficult. As discussed earlier, the visibility graph, a standard data structure
used for numerous proximity problems in the presence of obstacles, does not
necessarily contain a BCP (recall Figure 1 which clearly shows that a BCP from
s to t, shown as a solid line path, is not contained in the constructed visibility
graph of the 2 sensors and 4 opaque obstacles). Besides the shortcomings of the
visibility graph, the existing solutions for the best coverage path problem without
obstacles [5,9,10] depended on structures such as the Delaunay triangulation,
Gabriel graph, relative neighborhood graph and so on. These structures have no
easy generalizations to the case of obstacles.

Instead, we leverage the constrained and weighted Voronoi diagram (CW-
Voronoi diagram)[13] for our purposes. The outline of our approach is as follows.
We construct the CW-Voronoi diagram of n sensor sites in presence of m line
obstacles (where each of the sites have the same weight, i.e., 1). Next we con-
struct a specific weighted dual graph of this Voronoi diagram, such that the best
coverage path is guaranteed to be contained in this dual graph. We assign edge
weights to each of the constructed edges in the dual graph, where the weight of
each edge is the distance from its least protected point to its nearest sensor. The
dual creation and edge weight assignment is described in Section 2.1. Finally,
using the Bellman-Ford algorithm [4], we compute a path between point s and
t in the constructed weighted dual graph, whose largest edge is smaller than the
largest edge of any other path in the graph.
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2.1 CW-Voronoi Diagram and Its Dual

Here we first discuss the CW-Voronoi diagram [13]. As an example, consider
Figure 3 which shows the CW-Voronoi diagram where S1, S2 are two sensors
and O1, O2, O3, O4 are 4 opaque obstacles. The filled areas are dark regions
which cannot be sensed by either of the two sensors S1, S2. The remaining cells
of the CW-Voronoi diagram are labeled by the sensors to which they are closest.
Note that a Voronoi cell of a point (a sensor in our case) may consists of several
disjoint subcells (as shown in Figure 3 for S1 and S2). The vertex set of this CW-
Voronoi diagram consists of (a) the set of obstacle endpoints, (b) the intersection
of bisectors between sensors and (c) the intersection of extended visibility lines
from sensors passing through the obstacle endpoints. Every Voronoi edge is a
section of the bisector of two sensors (e.g., (x, y) in Figure 3), or a section of a
visibility line determined by a sensor and an endpoint of an obstacle (e.g., (g, b)
in Figure 3), or a section of an obstacle (e.g., (g, h) in Figure 3).
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Fig. 3. CW-Voronoi diagram of sensors and obstacles

We are now ready to define a specific dual of the CW-Voronoi diagram that
will be useful in computing the best coverage path. The dual of the CW-Voronoi
diagram is a weighted graph. The vertices are the union of (a) the set of sensors,
(b) the vertices of the CW-Voronoi diagram, and (c) the points s and t. We next
define the edges of the dual graph.

Consider any edge e = (u, v) of the CW-Voronoi diagram. The edge is one
of three types: (a) it is part of an obstacle, (b) it is part of a perpendicular
bisector between two sensors, or (c) it is part of an extension of a visibility line
from a sensor that passes through an obstacle endpoint. For example, in Figure
3, edge (g, h) is of type(a), edge (x, y) is of type (b), and edge (b, c) is of type (c).
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Let C1(e), C2(e) be two adjacent CW-Voronoi cells on either side of the edge.
Assume that neither of the cells are dark, and let S1 and S2 be the labels on
these cells, i.e., the two sensors to which the cells are respectively closest. Note
that if e is of type (c) then e and one of the two sensors are collinear (e.g., in
Figure 3 the edge (b, c) is collinear with sensor S2).

For each such edge e = (u, v) of the CW-Voronoi diagram, we add edges to
the dual graph as follows:

– We add four dual edges (u, S1), (u, S2),(v, S1), and (v, S2) (see Figure 4).
Each dual edge is assigned a weight equal to the Euclidean distance between
its endpoints.

v

u

S2

S2

S1

S1

Fig. 4. The four dual edges corresponding
to the CW-Voronoi edge e(u, v)

S2S1

u

S2

v

S1

Fig. 5. The additional fifth “direct”
dual edge

– In addition, if the edge e is of type (b) i.e., it is part of a perpendicular
bisector between S1 and S2, and such that the S1 and S2 can see each other
and the line connecting S1 to S2 passes through e, then we place an additional
dual edge (S1, S2). This “direct” dual edge gets weight equal to ||S1S2||/2.
Figure 5 shows one such example.

Next, for each edge of the CW-Voronoi diagram such that one of the adjacent
cells is dark, we place two edges between the sensor associated with the other
cell and the endpoints of the CW-Voronoi edge. Each such dual edge gets weight
equal to its Euclidean length. Finally, we connect s and t to their closest visible
sensors (assuming at least one sensor can see them), and assign weights of these
dual edges as their Euclidean distances. This concludes the construction of the
dual graph.

Lemma 1. The dual graph has O(m2n2 + n4) number of vertices and edges.

Proof. The CW-Voronoi diagram has O(m2n2+n4) number of vertices and edges
[13]. As per the dual definition, the dual also has the same number of vertices.
Since each CW-Voronoi edge contributes a constant number of edges to the dual,
the number of edges in the dual is also O(m2n2 + n4).

We note that way the dual graph has been constructed, at least one endpoint
of each edge is a sensor. Thus there cannot be two or more consecutive vertices
along any path that are not sensors. We shall next show that there exists a
BCP (s, t) that has such a property, hence it can be searched for within this
dual graph.
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2.2 BCP (s, t) Algorithm for Opaque Obstacles

The algorithm to compute BCP (s, t) for opaque obstacles is as follows:

Algorithm 1. Calculate BCP (S,O, s, t) for opaque obstacles
1: Using the technique of [13], construct the CW-Voronoi diagram of all n

sensors and m obstacles (assign each sensor a weight of 1).
2: Construct the dual of the CW-Voronoi diagram as described in Section 2.1.
3: Run Bellman-Ford algorithm on this constructed dual graph starting at

point s and ending at point t, which computes the Best Coverage Path be-
tween s and t.

4: The value of cover = max(weight(e1), weight(e2), . . . , weight(er)) in the
constructed path, where e1, e2, ......, er are the edges in a best coverage path,
BCP (s, t).

Proof of Correctness

Theorem 1. A BCP (s, t) path for opaque obstacles is contained within the con-
structed dual graph.

Proof. The overall idea of the proof is to show that a best coverage path that
lies outside the dual graph can be transformed into one that uses only the edges
of the dual graph, without increasing the cover value. Consider Figure 6, which
shows a best coverage path that does not use the edges of the dual graph. Let us
decompose this path into pieces such that each piece lies wholly within a cell of
the Voronoi diagram. Consider one such piece within a cell labeled Si. Let the
piece start at a point p and end at a point q, where both p and q are along the
cell’s boundary. It is easy to see that each such piece can be replaced by the two
line segments (p, Si) and (Si, q) without increasing the cover of the path. Thus,
any best coverage path can be transformed into one having linear segments that
goes from cell boundary to sensor to cell boundary and so on.

s

t

S1
S2

S3

S2

S3

S2

S1

Fig. 6. Transforming a best coverage path
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v

u

S2

S1
S2

S1

Fig. 7. Moving a BCP (s, t) vertex to a Voronoi vertex

S1

S2

u

v

P

q

Fig. 8. Moving a BCP (s, t) vertex to the middle of the dual edge

We next show that the points along the cell boundaries of this transformed
path can be aligned with Voronoi vertices. To prove this, assume that one such
point is not a Voronoi vertex, i.e, it is a point along an edge of a cell boundary.
Consider Figure 7, which shows a portion of a BCP (s, t) (transformed as dis-
cussed above) that goes from sensor S1 to a point along the Voronoi edge (u, v)
and then to sensor S2. It should be clear that if we replace this portion by two
edges of the dual graph, (S1, v) and (v, S2), we will achieve an alternate path
whose overall cover value will be the same or less.

One final case needs to be discussed. If a BCP (s, t) passes through a point
along a Voronoi edge that is a perpendicular bisector between two sensors S1

and S2, such that there is a “direct” dual edge between S1 and S2, then the
portion of BCP (s, t) from S1 to S2 can be replaced by this direct edge without
increasing the cover value of the path. This situation is shown in Figure 8.

Thus we conclude, for opaque obstacles, there exists a BCP (s, t) that only
follows the edges of the dual graph.

Time and Space Complexity Analysis. Using the techniques in [13], Step 1
of algorithm can be accomplished in O(m2n2+n4) time and space. Likewise, con-
structing the dual is straightforward, as we have to scan each edge of the Voronoi
diagram and insert the corresponding dual edges with appropriate weights. This
also takes O(m2n2 + n4) time and space. Finally, running the Bellman-Ford
Algorithm on a graph with O(m2n2 + n4) number of vertices and edges takes
O((m2n2 + n4) log(mn + n2)) time and O(m2n2 + n4) space (i.e., the overall
running time of the algorithm).
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3 BCP (s, t) Problem for Transparent Obstacles

In this section, we study the BCP (s, t) problem for transparent obstacles. We
note that for transparent obstacles, computing BCP (s, t) is an easier problem
than that for opaque obstacles. In contrast to a BCP for opaque obstacles, in
the case of transparent obstacles we can show that the visibility graph contains
a BCP . However, unlike traditional visibility graph, the edge weights of this
graph are more complex than standard Euclidean distances. Consequently, the
running time of the algorithm is dominated by the edge weight assignment task.

3.1 BCP (s, t) Algorithm for Transparent Obstacles

The outline of the algorithm is as follows. We create the visibility graph of
n sensors and m line segment obstacles, as well as the points s and t. The
graph has O(m2 + n2) edges. We then assign weights to each of the edges of
the constructed visibility graph in a specific manner. Figure 9 explains the edge
weight assignment process. A normal Voronoi diagram of the n sensor points
(i.e., ignoring obstacles) is first overlayed on top of the constructed visibility
graph. Consider the example in Figure 9, where the visibility edge (S1, S2) has
to be assigned a weight. The edge (S1, S2) passes through the Voronoi cells of
sensors S1, S2, S3 and S4. Let us partition (S1, S2) into segments that lie wholly
within these Voronoi cells. For each segment lying inside the Voronoi cell of a
particular sensor, we find out the least protected point. This has to be either of
the two endpoints of this segment - e.g., (S1, S2) intersects the Voronoi cell of
S4 at the points a and b, so either a or b is the least protected point for this
segment, and the cover value of the segment is max{||aS4||, ||bS4||}. We compute
the cover value of all such segments that belong to (S1, S2), and the maximum
of these values is the cover value of (S1, S2), which gets assigned as the weight
of (S1, S2). Once this weighted visibility graph has been constructed, we run the
Bellman-Ford algorithm [4] to compute the best coverage path between s and t.
The algorithm is formally described below.

Algorithm 2. Calculate BCP (S,O, s, t) for Transparent Obstacles
1: Construct the visibility graph of n sensor nodes, m line obstacles, point s

and t.
2: Overlay a (normal) Voronoi diagram of the n sensor nodes on top of the

created visibility graph.
3: Assign weight of each edge e = (u, v) ∈ visibility graph using the procedure

described in Section 3.1.
4: Run the Bellman-Ford algorithm on this weighted visibility graph starting

at point s and ending at point t to compute a BCP (s, t).
5: cover = max(weight(e1), weight(e2), . . . , weight(er)), where e1, e2, . . . , er

are the edges of BCP (s, t).
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a

S1

S2

S4

S3

b

c

Fig. 9. Weight Assignment of a visibility edge S1S2

Next, we validate our proposed solution analytically.

Proof of Correctness

Theorem 2. A BCP (s, t) for transparent obstacles is contained within the con-
structed visibility graph.

Proof. As proved in Theorem 1, the idea here is to show that a BCP that
lies outside the visibility graph can be transformed into one that only uses the
visibility edges. A BCP that does not follow the visibility edges means that the
path makes some bend either:

– Type 1: Inside a Voronoi cell, or
– Type 2: At a Voronoi bisector, or
– Type 3: At a Voronoi vertex

We describe the transformations necessary for bends of the Type 1. Consider
Figure 10(a) showing a best coverage path from s to t, that crosses through
the Voronoi cell of sensor Si but it does not follow visibility graph edges (line
obstacles are solid thick lines, and BCP is shown as a wriggly path).

Consider two points a and b along this path inside the cell. The cover value of
the portion of the path from a to b is at least max{||Sia||, ||Si, b||}. Thus, if we
replace the portion from a to b by the straight line segment (a, b), it is easy to see
that the cover value of the transformed path will not have increased. Applying
this “tightening” operations to a BCP shall eliminate all bends of Type 1. The
resulting portion of a best coverage path within the Voronoi cell for Si will be
eventually transformed to as shown in Figure 10(b). As can be seen, other than
the two points on the boundary of the cell (i.e., vertices of bend Type 2 or 3),
the rest of the vertices of the path in the interior of the cell will be obstacle
endpoints.

If we apply the above transformation to all Voronoi cells, we can eliminate
all vertices of bend Type 1 from the path. The elimination of vertices of bend
Type 2 and Type 3 follow similar arguments and we omit discussing them in this
paper. Thus, we conclude that the visibility graph contains a best coverage path.
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Fig. 10. Applying Type 1 Transformation Inside Voronoi Cells

Time and Space Complexity Analysis. By using the existing algorithm [8]
to compute visibility graph, we incur a running time of O((m+n) log(m+n)+x)
and a space requirement of O(x), where x is the number of edges in visibility
graph. Assigning weight to each visibility edge takesO(n) time. The running time
of this algorithm is dominated by the weight assignment step of all O(m2 + n2)
visibility edges which will take O(nm2 + n3) time. Bellman-Ford algorithm will
take O((m+n) log(m+n)) time to run. The overall running time of this algorithm
is O(nm2 + n3) and the space requirement is O(m2 + n2) .

4 Conclusion

In this work, we have initiated the study of the computation of Best Coverage
Paths in a sensor field in the presence of obstacles. We have shown that obstacles
make the problem significantly difficult, and existing tools and techniques need
to be substantially extended to solve the problem. We propose two algorithms to
compute a BCP (s, t) in the presence of m line segment obstacles. As future work,
we plan to investigate practical techniques such as approximation algorithms and
heuristics for solving these problems efficiently. In addition, we are interested to
consider an alternative problem which finds out the set of sensors that can be
reached in the plane given a source point s and a cover value c (techniques such
as parametric search may be useful). We also plan to investigate other types of
coverage problems in sensor networks in the presence of obstacles.
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Abstract. We describe a new approximation algorithm for the asym-
metric maximum traveling salesman problem (ATSP) with triangle
inequality. Our algorithm achieves approximation factor 35/44 which im-
proves on the previous 31/40 factor of Bläser, Ram and Sviridenko [2].

1 Introduction

The Traveling Salesman Problem and its variants are among the most intensively
researched problems in computer science and arise in a variety of applications.
In its classical version, given a set of vertices V and a symmetric weight function
w : V 2 → R one has to find a Hamiltonian cycle of minimum weight. This prob-
lem is probably the most widely known example of an inapproximable NP-hard
problem. However, there is a lot of research on approximation of several natural
variants of TSP. These variants are still NP-hard, but allow approximation. One
of the most important problems in this category is the maximization version
(maxTSP for short), where w is assumed to have only nonnegative values (oth-
erwise minTSP would reduce to it). There are several variants of maxTSP, e.g.
the weight function can be symmetric or asymmetric, it can satisfy the triangle
inequality or not, etc. (For some results on maxTSP variants see e.g. [3,4,6,8]).

In this paper, we are concerned with the variant, where the weight function
is asymmetric (in other words, the graph is directed) and satisfies the triangle
inequality. This variant is often called the semimetric maxTSP.

The first approximation algorithm for this problem was proposed by Kos-
tochka and Serdyukov [9] in 1985 and had approximation ratio of 3

4 . Quite re-
cently, Kaplan, Lewenstein, Shafrir and Sviridenko [5] provided a very general
and powerful framework for approximating asymmetric TSP variants and gave
improved approximation ratios for 3 different problems: 4

3 log3 n for semimet-
ric minTSP, 10

13 for semimetric maxTSP and 2
3 for asymmetric maxTSP. Using

a different approach, Bläser et. al obtained a 31
40 -approximation algorithm for

semimetric maxTSP.
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We show that in the case of semimetric maxTSP the ideas of Kaplan et al.
can be combined with a new patching procedure yielding a 35

44 -approximation.

Overview of the paper. The semimetric max-TSP approximation algorithm
of Kaplan et al. combines two ideas: Kostochka and Serdyukov’s “patching” algo-
rithm for the same problem and a new framework based on pairs of cycle covers.
In Section 2 we briefly review both ideas and the way they can be combined.
In Section 3 we introduce a new patching procedure based on Kaplan et al.’s
framework. This immediately leads to a relatively simple 11

14 -approximation for
semimetric maxTSP. In Section 4 we describe a more elaborate patching method
which improves the approximation ratio to 35

44 by lowerbounding the weight of
almost every edge used to form a Hamiltonian cycle.

2 Preliminaries

Throughout the remainder of this paper we assume all graphs to be directed and
weighted with a nonnegative weight function w satisfying the triangle inequality.

2.1 Kostochka and Serdyukov’s Algorithm

Many approximation algorithms for TSP problems begin with finding a minimum
(maximum) cycle cover and then patch it to a Hamiltionian cycle. The following
theorem shows how this is done in Kostochka and Serdyukov’s algorithm.

Theorem 1. Let C = {C1, . . . , Ck} be a cycle cover in a directed weighted graph
G with edge weights satisfying the triangle inequality. Let mi be the number of
edges in Ci and let wi = w(Ci) be the weight of Ci. Given the cycle cover C, we
can find in polynomial time a Hamiltonian cycle of weight

∑k
i=2

(
1 − 1

2mi

)
wi.

A slightly weaker version of the above theorem is due to Kostochka and Serdyu-
kov [7]. The version in this paper is taken from Kaplan et al. [5].

Maximum weight cycle cover (possibly containing 2-cycles) can be found in
polynomial time. Such cover has weight at least as large as the maximum weight
Hamiltonian cycle. From Theorem 1 it follows that

Theorem 2. There exists a 3
4 -approximation algorithm for semimetric maxTSP.

2.2 The Algorithm of Kaplan et al.

The 2-cycles are the obvious bottleneck of the above approach. If we could find,
in polynomial time, a maximum weight cycle cover with no 2-cycles, we would
get a 5/6-approximation algorithm. Unfortunately, finding such a cover is an NP-
hard problem (see e.g. [1]). Kaplan et al. [5] proposed the following alternative
approach.
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Theorem 3. Let G = (V,E) be a directed weighted graph. We can find in poly-
nomial time a pair of cycle covers C1, C2 such that (i) C1 and C2 share no 2-cycles,
(ii) total weight w(C1) + w(C2) of the two covers is at least 2OPT, where OPT
is the weight of the maximum weight Hamiltonian cycle in G.

We will call such pairs of cycle covers nice pairs of cycle covers.

Observation 1 (Kaplan et al.). In the above theorem, we can assume that
the graph consisting of all the 2-cycles of C1 and C2 does not contain oppositely
oriented cycles. For if it does contain such cycles, say C and its opposite Ĉ, we
can remove all the 2-cycles forming C and Ĉ from C1 and C2 and instead add C
to C1 and Ĉ to C2.

Theorem 4. There exists a 10
13 -approximation algorithm for semimetric maxTSP.

The proof of the above theorem can be found in [5]. Since our approach extends
that of Kaplan et al., we include it here for completeness. Let us first introduce a
few definitions. A bipath is a pair of oppositely oriented paths, i.e. a path and its
opposite. As a special case, a biedge is a single edge together with its opposite
edge. A bicycle is a pair of oppositely oriented cycles. Finally, a Hamiltonian
bicycle is a pair of oppositely oriented Hamiltonian cycles.

Proof (of Theorem 4). Let C1, C2 be a nice pair of cycle covers. Applying The-
orem 1 to C1 and C2, we get two Hamiltonian cycles H1, H2 with total weight
w(H1) + w(H2) ≥ 3

4W2 + 5
6W3+, where W2 is the total weight of 2-cycles in C1

and C2 and W3+ is the total weight of all the other cycles.
Another way to construct a Hamiltonian cycle using C1 and C2 is to consider

the graph H consisting of all the 2-cycles of C1 and C2. It follows from Observa-
tion 1 that H is a sum of disjoint bipaths. We can patch these bipaths arbitrarily
to get a Hamiltonian bicycle Ĥ of weight w(Ĥ) ≥W2.

Picking the heaviest cycle out of H1, H2 and the two cycles of Ĥ gives a
Hamiltonian cycle of weight at least 1

2 max
{

3
4W2 + 5

6W3+,W2

}
. Since W2 +

W3+ ≥ 2OPT, easy calculation (or solving a corresponding linear program)
shows that the weight of this heaviest cycle is at least 10

13OPT. ��

3 Spanning Bitrees and 11/14-Approximation

Kaplan et al.’s algorithm (see Theorem 4) balances two solutions. The first
one is based on Kostochka and Serdyukov’s algorithm and the second one on
Kaplan et al.’s approach of constructing a nice pair of cycle covers. However, from
these cycle covers they pick only the 2-cycles. The basic idea of our approach is
to partially incorporate longer cycles into this second solution by constructing
additional bipaths and/or extending existing ones.

Remark 1. Cycles of length > 2 do not contain pairs of opposite edges. Hence,
not all the new bipath edges will belong to some cycle.
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Let P be a family of disjoint bipaths. We say that set of biedges S is allowed
w.r.t. P , if S is disjoint from P and the edge sum of P and S is a family of
disjoint bipaths (e.g. adding S does not create a bicycle in P ). A biedge e is
allowed w.r.t P if {e} is allowed w.r.t. P , otherwise e is forbidden.

The following is the skeleton of the algorithm, that we will develop in the
remainder of the paper:

Algorithm 3.1. Main Algorithm

1: Let C1, C2 be a nice pair of cycle covers
2: Let P be the family of bipaths constructed in Kaplan et al.’s Algorithm
3: Mark all 2-cycles as processed
4: for all unprocessed cycles C in C1 and C2 do
5: use C to construct a heavy set S of biedges, allowed w.r.t. P
6: P := P ∪ S
7: mark C as processed
8: arbitrarily patch P to a Hamiltonian bicycle

Let the degree degP (v) of a vertex v in a family P of bipaths be the number
of biedges in P incident with v (and not the number of edges). In the above
algorithm S will always be chosen in such a way that the following is satisfied:

Invariant 1. For any vertex v, degP (v) is not greater than the number of pro-
cessed cycles containing v.

How do we construct a heavy set of biedges S using a cycle C? In this section, S
will contain only a single biedge e with both ends in C. When choosing S = {e},
we could pick e to be any of the biedges allowed w.r.t. P . However, we want e
to have a large weight.

Let bitree be a connected set of biedges with no bicycles. Let C be a cycle and
let the vertices of C be numbered 1, . . . , k along the cycle. A bitree T is plane
w.r.t. C if T does not contain two biedges u1u2, v1v2 such that u1 < v1 < u2 < v2

(intuitively, this means that if we make a planar drawing of C, we can complete
it to a planar drawing of C ∪ T ). We say that T is a plane spanning bitree of C
if T is plane w.r.t. C and connects all vertices of C. Plane spanning bitrees are
interesting because they have large weight.1

Lemma 1. Let T be a plane spanning bitree of a cycle C. Then w(T ) ≥ w(C).

Proof. The proof relies on the triangle inequality. The weight of every edge of C
is upperbounded by the weight of a certain path in T . Figure 1 shows how this
is done. The solid paths incident to a region marked with number i upperbound
the weight of the cycle edge i. ��

1 All the plane spanning bitrees we use in this paper are in fact bipaths. We believe,
however, that the more general setting might be beneficial in attempts to improve
the results of this paper.
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Fig. 1. The proof idea of Lemma 1

Observation 2. Consider an execution of the Main Algorithm and let C be an
unprocessed cycle. If P satisfies Invariant 1, then the set of biedges that have
both endpoints in C and are forbidden w.r.t P forms a matching.

Lemma 2. Consider an execution of the Main Algorithm, let C be an unpro-
cessed cycle, and let P satisfy Invariant 1. Then, there exists T , a plane spanning
bitree w.r.t. C (in fact, a bipath), whose all biedges are allowed w.r.t P .

Fig. 2. Finding a plane bipath avoiding forbidden edges

Proof. The path T is constructed as follows. First, for each edge (u, v) of cycle
C put biedge uv in T whenever it is allowed. Note that at this point T already
contains all vertices of C (because forbidden biedges with endvertices on C form
a matching). Let k be the number of forbidden biedges corresponding to edges
in E(C). If k = 0 we remove any biedge from T and we are done. Otherwise
enumerate the endvertices of the k biedges on C from v1 to v2k along the cycle C.
Finally, for every i = 1, . . . , k − 1 add edge viv2k−i to T . (See Fig. 2). All these
edges are allowed since their endvertices are endvertices of distinct forbidden
edges and forbidden edges with ends on C form a matching. Also, T forms a path,
since all its vertices are of degree 2 except for vk and v2k, which are of degree 1.
Finally, path T is plane: the only edges that may cross are chords of C, however,
for any pair of such distinct chords viv2k−i, vjv2k−j either i < j < 2k−j < 2k−i
or j < i < 2k − i < 2k − j. This proves the claim. ��

Theorem 5. Let C1 and C2 be a nice pair of cycle covers of G. Then, there
exists a Hamiltonian bicycle in G with weight at least

∑∞
i=2

Wk

k−1 , where Wk is
the total weight of k-cycles in C1 and C2.
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Proof. We use the Main Algorithm. When processing a cycle C of length k, we
use Lemma 2 to construct T , a plane spanning bitree w.r.t C, whose all biedges
are allowed w.r.t. P . Then we set S = {e}, where e is the heaviest biedge of T .
By Lemma 1 w(e) ≥ w(C)

k−1 , which proves the claim. ��

Theorem 6. There exists a 11
14 -approximation algorithm for semimetric maxTSP.

Proof. As in the proof of Theorem 4 we construct a nice pair of cycle covers C1,
C2 and use Theorem 1 to get Hamiltonian cycles H1, H2 with total weight

w(H1) + w(H2) ≥
∞∑

i=2

(

1 − 1
2k

)

Wk.

Next, by Theorem 5 to get two more Hamiltonian cycles H3, H4 with total
weight

w(H3) + w(H4) ≥
∞∑

i=2

1
k − 1

Wk.

Picking the heaviest cycle out of all the Hi gives a Hamiltonian cycle H of weight

w(H) ≥ 1
2

max

{ ∞∑

i=2

(

1 − 1
2k

)

Wk,

∞∑

i=2

1
k − 1

Wk

}

.

From
∑∞
i=2 Wk ≥ 2OPT, it follows that w(H) ≥ 11

14OPT. This can be proved
by solving a corresponding LP (details omitted in this extended abstract). ��

4 Making Ends Meet and 35/44-Approximation

In this section we introduce two improvements. First, we will add more than
one biedge to the family P of bipaths, while processing a single cycle C. This is
possible if C is long enough. Moreover, recall that in the last step of the algorithm
from the previous section we construct a Hamiltonian cycle by patching the
bipaths with arbitrary edges. The endvertices of these edges could belong to
distinct cycles and we do not lowerbound their weight in any way. The second
improvement we are going to present here is to partially incorporate the patching
process into the main algorithm in order to be able to lowerbound this weight.
We use this approach for processing short cycles.

4.1 Long Cycles

Lemma 3. Let P be a family of disjoint bipaths satisfying Invariant 1 and let C
be an unprocessed cycle of length at least 5. Then there exists an allowed family of
biedges S, such that (i) after processing C, the family P ∪S satisfies Invariant 1,
(ii) w(S) ≥ 1

4w(C), (iii) if |C| ≤ 7 then w(S) ≥ 1
3w(C), (iv) if |C| = 5 then

w(S) ≥ 1
2w(C).
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Proof. In order to keep Invariant 1 satisfied, we make S a set of vertex-disjoint
allowed biedges with endvertices in C. Let Q be the plane bipath spanning C
with no forbidden biedges, which exists by Lemma 2. We color the edges of Q
with two colors: a and b, so that incident biedges get distinct colors. Adding all
biedges of one color, say a, to P may create one or more bicycles (note that such
a bicycle contains at least two biedges from Q). For each such bicycle we pick
one biedge from Q and we recolor it to a new color c. Similarly, we recolor some
biedges from b to d.

It is clear that each of the four color classes is an allowed family of biedges. Let
S be the heaviest of these four sets. Clearly w(S) ≥ 1

4w(Q). Since w(Q) ≥ w(C)
by Lemma 1, we get (ii).

Now, let |C| ≤ 7. Again, we find the bipath Q and we 2-color it. Suppose that
adding all the biedges of color a to P gives a bicycle. Since there are at most 3
biedges colored a and any bicycle contains at least 2 such biedges, we can only
get one such bicycle. Similarly, at most one bicycle is formed by P and biedges
colored b. Suppose that both bicycles exist (the remaining cases are trivial). We
need to recolor one (colored) biedge from each cycle to a new color, so that the
recolored edges are not adjacent.

Let us start at one end of Q and go along Q until we encounter a colored
cycle biedge. Assume w.l.o.g. that its color is a. Then, we can recolor both this
biedge and the furthest cycle biedge colored b to a new color c. Clearly, each of
the three color classes is an allowed family of biedges. Again, we let S be the
heaviest of them, obtaining w(S) ≥ 1

3w(C).

Fig. 3. Coloring a bipath spanning a 5-cycle. Crossed out edges are forbidden.

Finally, consider the case of |C| = 5. W.l.o.g. we can assume that there are two
forbidden biedges with endvertices on C (if not, we can just “forbid” additional
biedges). Figure 3 shows all three possible configurations of these biedges to-
gether with our choice of the bipath Q in each case. As before, we 2-color Q, and
then set S to be the heavier of the two color classes. This gives w(S) ≥ 1

2w(C).
Observe that in each case both color classes contain a biedge with an endvertex
not adjacent to a forbidden biedge. Such a biedge cannot be a part of a bicycle
in P ∪ S, so S is allowed. ��

4.2 Short Cycles

To get the approximation ratio better than 11
14 we need to extract more weight

from the 3- and 4-cycles when constructing the bipaths in the Main Algorithm.
Unfortunately, it turns out that it is impossible to take more than one edge from
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each such cycle. Note however, that when only a single biedge is put into P
when processing a cycle C, at least one vertex v of C becomes a loose end, i.e.
degP (v) is smaller than the number of processed cycles containing v.

Remark 2. If degP (v) = 0 and both cycles containing v have already been pro-
cessed, we consider v to be two loose ends.

We can link loose ends from distinct cycles without violating Invariant 1. Sur-
prisingly, it is possible to lowerbound the weight of such links. First let us see
how loose ends are created.

Lemma 4. Let P be a family of disjoint bipaths satisfying Invariant 1 and let
C be an unprocessed k-cycle. Then there exists an allowed family of biedges S
such that (i) w(S) ≥ 1

k−1w(C), (ii) after processing C family P ∪ S satisfies
Invariant 1, and (iii) the number of loose ends increases by k − 2.

Proof. We use the approach described in the previous section, i.e. S = {e} where
e is the heaviest biedge of the plane spanning bipath of C. All the vertices of C
except for the two endvertices of e become loose ends. ��

The following two lemmas show how loose ends can be used to extract more
weight from 3-cycles and 4-cycles.

Lemma 5. Let P be a family of disjoint bipaths satisfying Invariant 1 with at
least 2 loose ends and let C be an unprocessed 3-cycle. Then there exists an
allowed family of biedges S such that (i) w(S) ≥ 3

4w(C), (ii) after processing
C, the family P ∪ S satisfies Invariant 1, and (iii) the number of loose ends
decreases by 1.

Proof. Our plan here is to make S contain one biedge with both endvertices
in C and one biedge linking the remaining vertex of C with one of the loose
ends. This obviously satisfies (ii) and (iii). We only need to guarantee that S is
allowed and that it has weight at least 3

4w(C). We consider one of the following
two cases, depending on whether or not there exists a loose end v that is not
connected to C with a bipath in P (this bipath might have length 0 in which
case one of the vertices of C is a loose end).

Case 1. There exists such v. Let a, b, c be the vertices of C and suppose
Q = abc is a plane spanning bipath of C with no forbidden edges. Consider
two possibilities for S: S1 = {ab, cv} (ab and cv denote biedges here) and S2 =
{bc, av}. Both are allowed. For example, if we add S1 to P , cv lies on a bipath
(not a bicycle) because v is not connected with C in P , and ab by itself cannot
form a bicycle because it is allowed as a biedge of Q. Similar argument works
for S2. We also have

w(S1) + w(S2) = w(ab) + w(bc) + w(cv) + w(va) ≥ w(ab) + w(bc) + w(ca) ≥
≥ 1

2 [(w(ab) + w(bc)) + (w(bc) + w(ca)) + (w(ca) + w(ab))] ≥ 3
2w(C),
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where the second inequality follows from the triangle inequality and the last
inequality follows from Lemma 1. Taking S to be the heavier of S1 and S2 we
get the required lower bound of 3

4w(C).

Case 2. Such v does not exists, so we have two loose ends u, v connected to
two different vertices of C, say u connected to a, and v connected to b. Let c
be the remaining vertex of C. Notice that all biedges of C are allowed. For if
any of them, call it xy, were not allowed, then x and y would be connected with
a bipath in P , and that cannot happen, since we know that either the bipath
starting in x or the bipath starting in y ends in a loose end.

Consider the two solutions defined in the previous case: S1 = {ab, cv} and
S2 = {bc, av}. They are both allowed. For example, adding S1 to P forms a
bipath . . . cv . . . ba . . . u ending in a loose end u, so no bicycles are formed. Similar
argument works for S2. The weight argument is the same as in Case 1. ��

Lemma 6. Let P be a family of disjoint bipaths satisfying Invariant 1 with at
least 2 loose ends and let C be an unprocessed 4-cycle. Then there exists an
allowed family of biedges S such that (i) w(S) ≥ 1

2w(C), (ii) after processing C,
the family P ∪ S satisfies Invariant 1, and (iii) the number of loose ends does
not change.

Proof. Our plan is to make S contain two biedges with both endvertices on C
or one biedge with both endvertices on C and one biedge linking a vertex of C
with one of the loose ends. This satisfies (ii) and (iii) and again we only need to
guarantee that S is allowed and that it has weight at least 1

2w(C). We consider
the same two cases as in the previous lemma.

Case 1. There exists a loose end v not connected to C in P .
Let C = abcd and let Q be a plane spanning bipath of C with no forbidden
edges. We consider all solutions of the following form: a biedge of Q and a
biedge connecting one of the remaining vertices of C and v. There a six such
solutions since Q has 3 edges and there are always 2 remaining vertices. All these
solutions are allowed. That is because the bipath edge is allowed by itself, and
the linking edge cannot form a cycle in P since v is not connected with C in P .

Let us now bound the total weight of these six solutions. Consider a pair
of solutions corresponding to a single biedge of Q, say xy. The total weight of
these two solutions is 2w(xy) + w(vz) + w(vw) ≥ 2w(xy) + w(zw) (by triangle
inequality), where z, w are the two remaining vertices. So we get twice the weight
of the bipath biedge and the weight of the complementary biedge. Now, notice
that for any plane spanning bipath Q of a 4-cycle, the complementary biedges
of biedges of Q also form a plane spanning bipath. It follows from Lemma 1 that
the total weight of all six solutions is at least 3w(C). Taking S to be the heaviest
of the six solutions gives the required lower bound of 1

2w(C).

Case 2. Such v does not exists, so we have two loose ends u, v connected to two
different vertices of C. Let C = abcd. We have two cases.

Case 2a. v and u are connected to two successive cycle vertices, say u is con-
nected to a and v is connected to b. Consider two solutions: S1 = {da, bc} and
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S2 = {ab, cv} (here cv is a dummy biedge, added only to keep the number of
loose ends constant for simplicity). Both solutions are allowed, because if we add
any of them to P , each of the added biedges lies on a bipath ending in a loose
end. Also w(S1) + w(S2) ≥ w(C) by Lemma 1, because {da, bc, ab} is a plane
spanning bitree of C.

Case 2b. v and u are connected to opposite cycle vertices, say u is connected to a
and v is connected to c. Consider two solutions: S1 = {ab, cd} and S2 = {ad, bc}.
The rest of the argument is the same as in the previous Case 2a. ��

For technical reasons, that will become clear in the proof of Theorem 7, the very
last cycle needs to be processed even more effectively. This is possible, because
when processing the last cycle we can make P a Hamiltonian bicycle. To deal
with this special case we use the following lemmas (we defer their proofs to the
full version of the paper).

Lemma 7. Let P be a family of disjoint bipaths satisfying Invariant 1 with
exactly 1 loose end. Assume that all cycles have been processed except for one
3-cycle C. Then there exists an allowed family of biedges S such that (i) P ∪ S
is a Hamiltonian bicycle, (ii) w(S) ≥ 3

4w(C).

Lemma 8. Let P be a family of disjoint bipaths satisfying Invariant 1 with
exactly 2 loose ends. Assume that all cycles have been processed except for one
4-cycle C. Then there exists an allowed family of biedges S such that (i) P ∪ S
is a Hamiltonian bicycle, (ii) w(S) ≥ 2

3w(C).

Lemma 9. Let P be a family of disjoint bipaths satisfying Invariant 1 with no
loose ends. Assume that all cycles have been processed except for one 4-cycle C.
Then there is an allowed family of biedges S such that (i) P ∪S is a Hamiltonian
bicycle, (ii) w(S) ≥ 1

2w(C).

4.3 Putting It All Together

Theorem 7. Let C1 and C2 be a nice pair of cycle covers of G. Then, there
exists a Hamiltonian bicycle in G with weight at least W2 + 5

8W3 + 1
2W4 + 1

2W5 +
1
3W6 + 1

3W7 + 1
4W8+, where Wk is the total weight of k-cycles in C1 and C2 and

W8+ is the total weight of cycles of length at least 8 in C1 and C2.

Proof. We use the Main Algorithm and process all the long (i.e. of length at least
5) cycles before the 3- and 4-cycles. Long cycles are processed using Lemma 3.
As a result we get a family P of bipaths satisfying Invariant 1 and such that
w(P ) ≥ W2 + 1

2W5 + 1
3W6 + 1

3W7 + 1
4W8+. Depending on the number of loose

ends in P , we continue in one of the following ways.

Case 1. There are at least 2 loose ends. Then we first process 4-cycles, in any
order, using Lemma 6 for each cycle. Note that w(P ) increases by at least 1

2W4

during this phase. Next we process 3-cycles in order of decreasing weight. The
first 3-cycle A is processed using Lemma 5. As a result the number of loose
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ends drops by 1 and W (P ) increases by 3
4w(A). Then we process the second

3-cycle B using Lemma 4. We get one loose end and W (P ) increases by 1
2w(B).

We process all the 3-cycles in this way, alternating between Lemmas 5 and 4.
Clearly that overall W (P ) increases by at least 5

8W3, hence after patching P to
a Hamiltonian bicycle we get its total weight as claimed.

Case 2. There are no loose ends. Note that, when a cycle C is processed, the
number of loose ends increases by |C| − 2|S|. Hence, at any time, the parity of
the number of loose ends equals the parity of the sum of lengths of the processed
cycles. It follows that if there are no loose ends then the sum of lengths of the
processed cycles is even. On the other hand, the sum of lengths of all cycles in
C1 and C2 is 2n, hence also the sum of lengths of the unprocessed cycles is even.
It implies that the number of 3-cycles is even. Now we will consider subcases
regarding the number of 3-cycles and 4-cycles.

Case 2a. There are at least two 4-cycles. Then we start by processing the lightest
4-cycle using Lemma 4. This gives us 2 loose ends. Next, all 3-cycles and all but
one remaining 4-cycles are processed using the algorithm from Case 1. Again,
since the number of 3-cycles is even, we still have 2 loose ends when this phase is
finished. It follows that the remaining 4-cycle can be processed using Lemma 8.
We see that in total w(P ) increases by 1

3 of the weight of the lightest 4-cycle, 2
3

of the weight of some other 4-cycle, 1
2 of the weight of all the other 4-cycles and

by 5
8W3, which is at least 5

8W3 + 1
2W4, as required.

Case 2b. There are at least four 3-cycles. Then we start by processing the two
lightest 3-cycles using Lemma 4. This gives us 2 loose ends and w(P ) increases
by 1

2 of the weight of these 3-cycles. Next, all 4-cycles and all but two remaining
3-cycles are processed using the algorithm from Case 1. This increases w(P )
by 5

8 of the weight of the triangles processed in this phase and by 1
2W4. Note

that since the number of 3-cycles is even, we still have 2 loose ends after this
phase. The two remaining 3-cycles are processed using Lemma 5 and Lemma 7,
respectively. Then w(P ) increases by 3

4 of their weight. During the processing of
all short cycles w(P ) increases by at least 5

8W3 + 1
2W4, as required.

Case 2c. There are two 3-cycles and one 4-cycle. Then we consider two methods
of processing these cycles and we choose the more profitable one. Method 1:
process the 3-cycles using Lemma 4 and obtaining 2 loose ends, then process
the 4-cycle using Lemma 8. In this case w(P ) increases by 1

2W3 + 2
3W4. Method

2: process the 4-cycle using Lemma 4 and obtaining 2 loose ends, then process
the 3-cycles using Lemma 5 for the first one and Lemma 7 for the second one.
In this case w(P ) increases by 3

4W3 + 1
3W4. Clearly the better method gives us

max{ 1
2W3 + 2

3W4,
3
4W3 + 1

3W4} ≥ 5
8W3 + 1

2W4, as required .

Case 2d. There are no 3-cycles and there is one 4-cycle. We use Lemma 9.

Case 2e. There are two 3-cycles and no 4-cycles. We process the lighter 3-cycle
A using Lemma 4 which gives us 1 loose end. Then the second 3-cycle B can be
processed using Lemma 7. This increases w(P ) by at least 1

2w(A) + 3
4w(B) ≥

5
8W3 as required.
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Case 3. There is exactly one loose end. By the parity argument from Case 2.,
the number of 3-cycles is odd. We can treat the single loose end as an imaginary
3-cycle I of weight 0. This way the number of 3-cycles becomes even and we
again arrive at Case 2. Note that in the algorithms from subcases 2a, 2b and 2e
the imaginary triangle would be processed using Lemma 4. If we just do nothing
while processing I we get the same effect: w(P ) grows by 1

2w(I) = 0 and we get
an additional loose end. Case 2d does not apply since we do have 3-cycles. The
only case left is a counterpart of Case 2c: there is one 3-cycle and one 4-cycle.
Similarly to Case 2c we consider 2 methods and we choose the more profitable
one. Method 1 is: process the 3-cycle using Lemma 4 obtaining the second loose
end and then process the 4-cycle using Lemma 8. Method 2 is: process the 4-
cycle using Lemma 4 obtaining two more loose ends and then process the 3-cycle
using Lemma 5. Performing the same calculations as in Case 2c, we see that w(P )
increases by at least 5

8W3 + 1
2W4, as required. ��

Theorem 8. There exists a 35
44 -approximation algorithm for semimetric maxTSP.

Proof. Similarly to the algorithm in Theorem 6, our algorithm chooses the heavi-
est of the four Hamiltonian cycles: two constructed by Kostochka and Serdukov’s
algorithm and the two cycles of the bicycle from Theorem 7. Again, by simple
LP reasoning, one can show that the resulting cycle has weight ≥ 35

44OPT. ��
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Jan Remy, Reto Spöhel�, and Andreas Weißl

Institute of Theoretical Computer Science, ETH Zurich, 8093 Zurich, Switzerland
{jremy,rspoehel,aweissl}@inf.ethz.ch

Abstract. The (Euclidean) Vehicle Routing Allocation Problem

(VRAP) is a generalization of Euclidean TSP. We do not require that
all points lie on the salesman tour. However, points that do not lie on
the tour are allocated, i.e., they are directly connected to the nearest
tour point, paying a higher (per-unit) cost. More formally, the input is
a set of points P ⊂ Rd and functions α : P → [0, ∞) and β : P →
[1, ∞). We wish to compute a subset T ⊆ P and a salesman tour π
through T such that the total length of the tour plus the total allocation
cost is minimum. The allocation cost for a single point p ∈ P \ T is
α(p) + β(p) · d(p, q), where q ∈ T is the nearest point on the tour. We
give a PTAS with complexity O

(
n logd+3 n

)
for this problem. Moreover,

we propose a O (n polylog (n))-time PTAS for the Steiner variant of this
problem. This dramatically improves a recent result of Armon et al. [2].

1 Introduction

Let P ⊂ R2 denote a set of points in the plane, and let penalty functions α :
P → [0,∞) and β : P → [1,∞) be given. A solution to the (Euclidean) Vehicle

Routing Allocation Problem (VRAP) is a subset of tour points T ⊆ P and
a tour π through T . Each allocation point p ∈ A := P \ T is allocated to the
nearest tour point q ∈ T at a cost of α(p) + β(p) · d(p, q). We wish to minimize
the length of the tour plus the total allocation cost, i.e., we minimize

val (T, π) =
∑

{p,q}∈π
d(p, q) +

∑

p∈A

(

α(p) + β(p)min
q∈T

d(p, q)
)

.

Throughout, let T ∗ ⊆ P and π∗ denote an optimal choice for T and π, i.e.,
val (T ∗, π∗) is minimum.

VRAP is motivated by vehicle routing. For instance, each point represents a
bank and we wish to transport cash to the banks using an armored vehicle. The
vehicle can visit each bank (which would be a shortest salesman tour), but it
might be cheaper to visit only some of the banks while the staff of the other
banks have to pick up the cash at the visited banks. Although the total distance
is smaller, this way of cash transportation is more risky and needs additional
insurance (which can be modeled using the functions α and β).
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Observe that VRAP becomes the well-known Euclidean traveling salesman
problem (TSP) if we have β(p) > 2 for all p ∈ P , since by the triangle inequality
it is always cheaper to include a given point on the tour than to allocate it. As
VRAP includes TSP as a special case, we know that VRAP is NP-hard, even in
the strong sense (cf. [7]). With NP-hardness at hand approximation algorithms
are of interest. A polynomial time approximation scheme (PTAS) is an algorithm
that for any fixed ε > 0 approximates the optimum within a factor of (1 + ε) in
time polynomial in n. Note that the complexity of a PTAS might be exponential
in 1/ε.

In this paper we show that VRAP admits a PTAS. As our main result, we
propose a randomized nearly-linear time approximation scheme.

Theorem 1. There is a randomized PTAS for VRAP with time complexity
O
(
n log5 n

)
.

Moreover, we consider the problem Steiner VRAP where we are allowed to
include additional points on the tour and allocate to these in order to further
reduce the cost. A solution (T, S, π) to Steiner VRAP consists of point sets
T ⊆ P and S ⊂ R2, and a salesman tour π through T

.
∪ S. With A := P \ T as

before, we wish to find T ∗, S∗ and π∗ minimizing

val• (T, S, π) =
∑

{p,q}∈π
d(p, q) +

∑

p∈A

(

α(p) + β(p) min
q∈T .∪S

d(p, q)

)

.

Theorem 2. There is a randomized PTAS for Steiner VRAP with time com-
plexity O

(
n logO(1/ε) n

)
.

Theorem 2 improves a recent result of Armon et al. [2], where the authors give a
randomized PTAS with complexity O

(
nO(1/ε)

)
for a problem called Purchase

Cooperative TSP, which is the special case of Steiner VRAP where α(p) =
0 and β(p) = 1 for all points p ∈ P . Their algorithm seems to extend to Steiner

VRAP as long as β(p) = β(q) for all p, q ∈ P .
Both our algorithms extend to the case when P ⊂ Rd for some fixed dimen-

sion d. The running times increase to O(n logd+3 n), respectively O(n logξ(d,ε) n),
where ξ(d, ε) = O(

√
d/ε)d−1. Moreover, both algorithms can be derandomized,

increasing these complexities by a factor of O
(
nd
)
. Lastly, if β(p) = β(q) for all

p, q ∈ P , the running time of our PTAS for VRAP can be reduced by a factor
of O (logn), yielding a complexity of O

(
n log4 n

)
for the two-dimensional case.

Our Methods. Essentially, we prove Theorem 1 by combining the adaptive
dissection technique due to Kolliopoulos and Rao [9] with dynamic programming
on r-vapid graphs, as proposed by Rao and Smith [11].

The adaptive dissection technique is used for estimating allocation costs. Its
main advantage over the well-known quad tree based methods introduced by
Arora [3] is that it allows us to work with only a constant (instead of logarith-
mic) number of portals per rectangle. This improvement is achieved by two key
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ideas: On the one hand, the location of the tour points is guessed by dynamic pro-
gramming, and if their bounding box is small, the zoom tree – which replaces the
quad tree – zooms directly in the ‘region of interest’, potentially skipping many
levels in between. On the other hand, in the resulting nearly-optimal portal-
respecting solution, a point is not necessarily allocated to its nearest point, but
possibly to a different nearby tour point. This added flexibility turns out to be
of advantage. It is worth pointing out that – in contrast to Arora’s technique
– in the adaptive dissection framework it is necessary to allocate many points
simultaneously to the same tour point, since allocating them individually would
be too time-consuming.

To estimate the tour length, we transfer ideas presented in [11] for Euclidean
TSP from the quad tree setting to the zoom tree setting. To compute a Euclidean
spanner quickly, we use the algorithm by Gudmundsson et al. [8].

In order to prove Theorem 2, we make use of a relatively simple geometric
observation and employ standard quad tree techniques developed in [3] and [4].

Related Work. It is well-known that Euclidean TSP admits a PTAS [3,10],
even one with complexity O (n logn) [11]. VRAP was introduced in 1996 by
Beasley and Nascimento [5] as a network problem, i.e., instead of points in
the plane we have a weighted graph as input. In more recent literature, the
network version of the problem is usually called Median Cycle or Ring Star.
References can be found in [13]. Applications of VRAP in bookmobile routing
[6] and grass-mower scheduling [12] have been reported.

As mentioned above, a related problem called Purchase Cooperative TSP

was recently studied by Armon et al. [2] in both the network and Euclidean
setting. Using methods of Arora [3], they proposed a PTAS with complexity
O
(
nO(1/ε)

)
for this problem. In addition, they studied several variants of the

problem. As those variants are quite different from VRAP and Steiner VRAP,
we refer to [2] for details.

Organization of the Paper. After giving some preliminary remarks in Sec-
tion 2, we introduce the concepts of zoom trees and portal-respecting distances
in Section 3, following Kolliopoulos and Rao [9]. In Section 4, we adapt the no-
tion of r-vapid graphs due to Rao and Smith [11] to our purposes. In Section 5
we describe and analyze our PTAS for VRAP, and in Section 6 we outline how
to improve the PTAS for Steiner VRAP proposed by Armon et al. [2]. In
closing, we discuss the generalization to higher dimensions and explain how our
algorithms can be derandomized in Section 7.

2 Preliminaries

We start with a simple but (throughout this paper) important observation: every
input point p with β(p) > 2 is in every optimal solution a tour point due to the
triangle inequality. With this fact at hand, one can show by standard techniques
that it suffices to consider instances in which the input points have odd integral
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coordinates and the sidelength of the bounding box is a power of 2 and order
of n/ε. We therefore assume throughout this paper that P ⊆ {1, 3, . . . , L− 1}2,
where L = O (n/ε) is a power of two.

3 Zoom Trees and Portal-Respecting Allocations

In this section we mainly simplify concepts appearing in [9], defining a certain
distance measure between an allocated point p and the set of tour points T .
This distance measure is defined with respect to a dissection tree, called a zoom
tree, which adapts to a given solution to VRAP. The main result of this section
is that, in expectation, this distance measure approximates the real allocation
costs quite closely.

For fixed a, b ∈ {0, 2, ..., L− 2}, let Ga,b(i) denote a grid of granularity 2i

with origin (a, b), i.e., the vertical and horizontal grid lines have coordinates{
a + j2i : j ∈ Z

}
and

{
b + j2i : j ∈ Z

}
, respectively. Let i0 denote the smallest

integer such that L = 2i0 ≥ 40n/ε, and let Q0 := (a, b) + [−L,L]2 denote the
square of sidelength 2L with center (a, b). Note that P ⊂ Q0. Throughout this
paper, we denote for any rectangle R ⊂ R2 by |R| its sidelength, that is, the
length of the longer sides of R.

For 1 ≤ i ≤ i0, a rectangle R is said to be i-allowable if and only if it satisfies
the following properties.

– R lies in Q0 and is bounded by lines of Ga,b(i).
– If i ≥ 2 then 7 · 2i ≤ |R| < 7 · 2i+1.

If i = 1 then |R| < 7 · 2i+1 = 28.

We say that i is the level of R. Note that |R| = Θ(2i). R is said to be allowable
if there exists an i, 1 ≤ i ≤ i0, such that R is i-allowable.

It is easily seen that the aspect ratio of an allowable rectangle is bounded
by 14, and that the (non-empty) intersection of two allowable rectangles is an
allowable rectangle. Moreover, we have the following Lemma, which will be useful
when arguing about running times.

Lemma 1

(i) There are O (n logn) allowable rectangles that contain at least one point of P .
(ii) There are O

(
n log2 n

)
pairs of allowable rectangles (R′,R) such that R′

contains at least one point of P and R′ ⊂ R.

Next, we introduce a dissection tree that adapts to a given solution to VRAP.
The idea is to subdivide Q0 recursively by alternately splitting the current rect-
angle and zooming into the ‘area of interest’. We call such a subdivision a zoom
tree. In principle, a zoom tree ZTa,b is defined with respect to a, b and any
fixed subset T ⊆ P . However, in this section, as well as in the other analytical
parts of this paper, we only consider the zoom tree corresponding to the set
T ∗ ⊆ P of tour points in the optimal solution (of course, the actual algorithm
does not know this set in advance and will have to guess T ∗, and therefore also
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the structure of the zoom tree considered here). The root of ZTa,b is Q0, and
the nodes of ZTa,b are the allowable rectangles recursively obtained from the
following parent-child relations. For every rectangle in ZTa,b we either say that
it is split or that it is zoomed, depending on how it is obtained from its parent.

If an i-allowable rectangle R ∈ ZTa,b is zoomed, we obtain its two children R′

and R′′ by cutting R parallel to its shorter side along the line of Ga,b(i) that
minimizes |area (R′)−area (R′′) | (that is, we aim to nearly bisect R). If this cut
is not unique we prefer the leftmost (bottommost) one. We call the line C along
which we split R the cutting line. It is easily seen that the two rectangles we
obtain are j-allowable for some j ∈ {i−2, i−1, i}. R′ and R′′ are split rectangles
(as they are obtained by splitting R).

A split rectangle R has only one child R′, which is constructed as follows:
consider the minimal rectangle B containing all points in R∩ T ∗ (one can show
that a split rectangle always contains a tour point). Choose R̃ as the allowable
rectangle with smallest circumference such that d(∂R̃, ∂B) ≥ |B|/4. If this does
not uniquely define R̃, choose the left- and bottommost candidate.

Let R′ := R∩R̃. As the intersection of two allowable rectangles, the resulting
rectangle R′ is allowable. R′ is a zoomed rectangle.

We stop the subdivision process at R if either R is 1-allowable or if R contains
at most one point of P . Such rectangles become leaves of ZTa,b. We define Q0

to be split, such that the first dissection step is a zoom step. For an allocation
point p ∈ P \ T ∗ and a tourpoint q ∈ T ∗, we say that the rectangle R ∈ ZTa,b
separates p and q if and only if it is the rectangle in ZTa,b closest to the root
such that

– either R is split and p ∈ R and q 	∈ R,
– or R is zoomed and p 	∈ R and q ∈ R (sic!).

One easily checks that this uniquely defines R.
In the sequel, we will introduce the concept of portal-respecting allocations.

For a given (allowable) rectangle R, we place a point on each corner and m− 1
equidistant points subdividing each side. We call these points portals and denote
by Galloc = Galloc(R) the set of portals on ∂R. The portal-respecting distance
dR(p, q) between p ∈ R and q /∈ R is defined as

dR(p, q) := min
g∈Galloc(R)

d(p, g) + d(g, q).

In other words, we detour the line segment pq over the nearest portal on ∂R.
It is easily checked that we have the following bound on the difference between

the Euclidean distance and the portal-respecting distance with respect to some
rectangle R.

Lemma 2. For any rectangle R and points p ∈ R and q /∈ R, we have

dR(p, q) − d(p, q) ≤ |R|
m

.
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The portal-respecting distance dZTa,b
(p, q) between p ∈ P \ T ∗ and q ∈ T ∗ is the

portal-respecting distance w.r.t. the rectangle R ∈ ZTa,b that separates p and q.
The main result of this section is the next lemma, which appears in similar form
already in [9]. It asserts that a constant number m of portals per rectangle suf-
fices to guarantee that, in expectation, the portal-respecting distances are good
estimates for the real distances. Here we denote by dZTa,b

(p, T ∗) the infimum
over all portal respecting distances dZTa,b

(p, q), q ∈ T ∗.

Lemma 3. For given ε > 0, there exists m = m(ε) such that for every allocation
point p ∈ P \T ∗ and for a and b uniformly at random from {0, 2, . . . , L− 2}, we
have

E
[
dZTa,b

(p, T ∗)
]
≤ (1 + ε)d(p, T ∗).

In fact, the proof of Lemma 3 yields a slightly more general statement, which
essentially asserts that the lemma still holds if an arbitrary constant factor is
inserted in Lemma 2. This is needed because our algorithm introduces several
other errors of order O (|R|/m) when estimating allocation costs.

4 VRAP on Straight-Line Graphs

The results in this section extend work by Rao and Smith [11] to the adaptive
dissection setting. Using an algorithm due to Gudmundsson et al. [8], we can
quickly compute a straight-line graph S′ on a superset of P which has few ‘rele-
vant’ crossings with the allowable rectangles introduced in the previous section,
and such that there exists an expected nearly-optimal tour through S′. This will
allow us to quickly find such a tour by dynamic programming.

In the sequel it is of advantage to look at a solution (T, π) from a slightly
different viewpoint. Recall that Q0 has sidelength 2L = O (n) and its center
at (a, b), where a, b ∈ {0, 2, . . . , L− 2} uniformly at random. For any connected
straight-line graph (SLG) G on a vertex set P ′ ⊇ P , we denote the induced
shortest path metric by dG(·, ·). For a given solution (T, π), let

valG (T, π) =
∑

{p,q}∈π
dG(p, q) +

∑

p∈A

(

α(p) + β(p)min
q∈T

d(p, q)
)

. (1)

Note that only the length of the tour is measured in the shortest path metric.
Every solution to VRAP gives rise to a closed walk W = W(T, π) formed by
the shortest paths between subsequent tour points. In principle this walk may
include non-tourpoints, but in order to minimize (1) it is always better to ‘pick
up’ such points and include them in T . Thus a solution minimizing (1) can be
described as a walk W through G, where by definition the tourpoints are exactly
the points TW := T ∩W on the walk, and the remaining points AW := P \ TW
are allocated. Denoting the entire length of the walk W by � (W) we can rewrite
(1) as

valG (W) = � (W) +
∑

p∈AW

(

α(p) + β(p) min
q∈TW

d(p, q)
)

. (2)
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Note that an edge contributes s times to � (W) if we traverse it s times on the
walk. We denote the optimization problem (2) by VRAP(G) in the following.

We say that a crossing of an edge e of a SLG G and a rectangle R is relevant
if e intersects ∂R and exactly one endpoint of e is within R. The graph G is
said to be r-sparse if any allowable rectangle R has at most r relevant crossings
with edges of G. Note that it depends on the choice of a and b whether a fixed
SLG G is r-sparse or not. Adapting concepts of Rao and Smith [11] and using
an algorithm due to Gudmundsson et al. [8], one obtains the following Lemma.

Lemma 4. Let T ∗ denote the set of tour points of the optimal solution to
VRAP. For given ε > 0, there exists r = r(ε) such that for all choices of
a, b ∈ {0, 2, . . . , L− 2}, one can compute in O

(
n log2 n

)
time a point set S

and an r-sparse SLG S′ on the point set P ′ = P
.
∪ S satisfying the following: If

a and b are chosen uniformly at random, the shortest walk W∗ on S′ visiting all
points of T ∗ has expected length

E [� (W∗)] ≤
∑

{p,q}∈π∗

d(p, q) + ε val (T ∗, π∗) .

Moreover, W∗ uses no edge of S′ more than twice.

Since TW∗ ⊇ T ∗, the allocation costs in valS′ (W∗) do not exceed those in
val (T ∗, π∗), and thus Lemma 4 immediately implies that

E [valS′ (W∗)] ≤ (1 + ε) val (T ∗, π∗) .

Together with val (T ∗, π∗) ≤ valS′ (W∗), it follows that W∗ induces an expected
nearly-optimal solution to VRAP.

5 A PTAS for VRAP

We now introduce a PTAS for VRAP. Lemma 4 plays a crucial role in our ap-
proach. In principle, our PTAS chooses a and b at random, computes S′ and
then tries to find an optimal solution W∗

0 to VRAP(S′) by dynamic program-
ming, guessing TW∗

0
and the corresponding zoom tree ZTa,b in the process. By

Lemma 4 we know that this approach should yield an expected nearly-optimal
solution to the original problem VRAP. (Note that W∗

0 does not necessarily equal
W∗, as in Lemma 4 we only minimized the tour length and ignored allocation
costs.)

This approach needs several extra twists to achieve the desired running time.
Most notably, we estimate the allocation costs by the portal-respecting distances.
This means that we will not necessarily find W∗

0 , but an optimal solution to a
slightly modified problem. However, since by Lemma 3 the portal-respecting
distances are good estimates for the real distances in expectation, we can keep
the expected total error caused by this small.

Moreover, it would be too time-consuming to allocate all points individually,
as the same point is considered in many different steps of the dynamic program.
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We overcome this difficulty by partitioning the points that need to be allocated
in a given step into classes and assigning all points of a class to the same tour
point. The errors introduced by this are in the same order of magnitude as the
errors inherent to the idea of portal-respecting allocations.

Lastly, to avoid costly shortest path computations we shortcut between ver-
tices of S′ whenever this does not spoil the sparseness properties of S′ which are
crucial to our algorithm. One can think of these shortcuts as additional edges
that are added to S′. In fact, this causes no problems, as it only decreases the
length of the tour the algorithm will output, and does not change the allocation
costs.

5.1 Dynamic Programming

Throughout this section, consider m = m(ε) and r = r(ε) fixed according to
Lemma 3 and Lemma 4. For any allowable rectangle R containing at least one
point from P , let Galloc = Galloc(R) denote the set of the 4m portals on ∂R as in
Section 3, and let Ecross denote the set of edges of S′ crossing the boundary of R
such that one endpoint is contained in R. As S′ is r-sparse, we have |Ecross| ≤ r.
A configuration C for R is given by

1. a collection Scon of pairs from Ecross, where each element appears at most
twice,

2. functions ζin : Galloc → {1, ..., 2m,∞} and ζout : Galloc → {1, ..., 7m,∞},
and

3. a bit σ ∈ {split, zoomed}.

Since m and r are constant, the total number of configurations for R is
bounded by a constant depending only on the desired approximation ratio ε.

A configuration C describes a subproblem, i.e., a local problem for R which
is interpreted as follows. Firstly, the pairs in Scon determine which of the edges
in Ecross must be connected by walks inside R. As the walk W∗ we are after
might visit edges of S′ twice (cf. Lemma 4), we allow Scon to contain duplicates.
Secondly, the functions ζin and ζout describe the distance from a given portal to
the next point on the tour inside resp. outside of R. More precisely, for every
g ∈ Galloc, the distance from g to the next point on the salesman tour inside
R is within distance (|R|/m)ζin(g). Analogously, the distance to the next point
on the salesman tour outside of R is encoded by ζout(g). One can show that it
suffices to encode these distances up to 7|R| only.

We ask for a best possible local solution for a given configuration C. More
precisely, we try to minimize the length of all tour edges which lie completely
inside R plus the full allocation costs for all non-tour points in R (regardless
of whether they are allocated to a tour point inside or outside R), subject to
the constraints and guarantees given by C. As we do not know the zoom tree
corresponding to the optimal solution in advance, we cannot proceed by a top-
down divide and conquer approach along the zoom tree. Instead, we proceed
bottom-up by dynamic programming, in a much larger structure which can be
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seen as the union of the zoom trees for all possible choices of T ⊆ P . By dy-
namic programming, we calculate close upper bounds T [R, C] for the optimal
solutions to these local optimization problems. The bit σ indicates whether we
look at R as a split or as a zoomed rectangle in a zoom tree, and thus how our
dynamic program calculates T [R, C] from the values previously found for smaller
rectangles.

It is crucial that we consider only the O (n logn) allowable rectangles R con-
taining at least one point of P . We topologically sort those rectangles w.r.t. the
partial order given by normal set inclusion, and process them in this order, going
through all possible configurations for each rectangle.

Let R and C denote the rectangle and the configuration we currently consider.
We now distinguish two cases: if R is 1-allowable or |P ∩ R| = 1 (case A), we
find T [R, C] by exhaustive search. Otherwise, we calculate T [R, C] by dynamic
programming from previously found values in one of two possible ways (case B),
as specified by σ.

Case A. R is 1-allowable or |P ∩ R| = 1. Note that this means that R is a
leaf in any zoom tree it is contained in. Also note that an 1-allowable rectangle
contains at most 132 = 169 input points from P . This allows us to proceed in
brute force fashion.

Let R and C be given. First we choose from P ∩ R the points that lie on the
salesman paths inside R. Let T0 ⊆ P ∩ R denote this point set. The points in
A0 := (P ∩R)\T0 need to be allocated to some tour point either inside or outside
of R. We have O (1) choices of T0. For every such choice, we check whether it
satisfies the restrictions given by ζin and compute optimal walks visiting exactly
the points in T0 subject to the constraints given by Scon. We do not require these
walks to use edges of S′, but calculate them on the complete graph induced by
the (at most 169) points in T0 and the (at most r) endpoints of the edges from
Scon (if these points are not adjacent in S′, we add the needed edges to S′ as
shortcuts). This can be done in constant time.

Moreover, we estimate for each p ∈ A0 its allocation cost, using the function
ζout for allocations to the outside of R. As we have 4m portals and at most 169
points, this can be done in time O (1).

The total cost for this choice of T0 is the total length of all edges on the sales-
man paths that are entirely in R, plus the total allocation cost for all points in
A0. We identify the choice of T0 minimizing this cost and store the corresponding
value in T [R, C]. Thus we can compute T [R, C] in O (1) time.

Case B. Otherwise. In this case we in particular have no upper bound on the
number of input points inside R. Thus it is not longer possible to compute T [R, C]
using brute force search. As we process the rectangles in ascending order, we may
assume that we already have the values T [R′, C′] for all allowable rectangles
R′ ⊂ R and for all configurations C′ to R′.
Case B1. σ = zoomed. We split R into two allowable rectangles R′ and R′′

according to the properties of zoom trees (cf. Section 3).
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We enumerate all choices (C′, C′′) of pairs of configurations for R′ and R′′

with σ′ = σ′′ = split, checking for each choice whether it is consistent in itself
and compatible with C.

For all pairs of configurations which remain, we compute T [R′, C′]+T [R′′, C′′]
and add the total length of the edges in S′

con ∩ S′′
con, which are exactly the

tour edges with one endpoint in R′ and the other in R′′. We choose the pair
(C′, C′′) which minimizes this sum and write its value to T [R, C]. Note that all
computations can be accomplished in O (1) time.
Case B2. σ = split. We enumerate all allowable rectangles R′ ⊂ R containing
at least one point from P and all points p ∈ P ∩ R with β(p) > 2. For any
such rectangle R′, we consider all configurations C′ with σ′ = zoomed that are
compatible with C. For a given choice of R′ and C′, the total cost for R is T [R′, C′]
plus the additional tour costs plus the additional allocation cost. Recall that by
definition of the zoom step, there are no tour points in R \ R′.

To compute the additional tour cost, we proceed similarly as in case A. Com-
puting the additional allocation cost is somewhat tricky. We need to allocate all
input points in R\R′. As we do not have a bound on the number of such points,
doing this for each point separately would be prohibitively expensive. However,
we can quickly approximate these allocation costs close enough for our purposes.
This is achieved by subdividing R\R′ into O (log n) cells and assigning all points
in a cell to the same portal. By orthogonal semigroup range searching (see [1]
for references), we compute for each cell C the values α(C) :=

∑
p∈P∩C α(p) and

β(C) :=
∑
p∈P∩C β(p) in time O

(
log2 n

)
. The resulting total allocation cost is

then computed easily.

Lemma 5. One can preprocess P in O (n logn) time such that one can calculate
in O

(
log3 n

)
time for any pair of allowable rectangles R′ ⊂ R an upper bound

on the (portal-respecting) allocation cost which is tight up to a relative error of
O (1/m) and an absolute error of O (k(|R|/m) + k′(|R′|/m)), where k and k′

denote the number of points that are allocated to a portal of Galloc, respectively
G′

alloc.

We choose the configuration C′ which minimizes the accumulated cost and store
the total cost in T [R, C].

At the end of the dynamic program, we obtain a value T [Q0,©] =: T [Q0] for
Q0 = (a, b)+[−L,L]2 and the configuration © with Scon = ∅, ζin(g) = ζout(g) =
∞ for all portals g ∈ Galloc(Q0), and σ = split.

5.2 Analysis

The complexity of our dynamic program is easily checked as follows. Prepro-
cessing the points as required by Lemma 5 and computing the r-sparse SLG
guaranteed by Lemma 4 takes time O

(
n log2 n

)
. In the dynamic program, by

Lemma 1(i), cases A and B1 apply O (n logn) times and can be computed in
time O (1). By Lemma 1(ii), case B2 applies to O

(
n log2 n

)
pairs of rectangles,
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and can be computed in time O
(
log3 n

)
due to Lemma 5. This yields an overall

complexity of O
(
n log5 n

)
.

It remains to argue why our algorithm produces a nearly-optimal solution.
Due to space restrictions, we only outline the important points. Near-optimality
of the tour found by the algorithm immediately follows from Lemma 4. There
are three sources of error in the calculation of allocation costs. The first one is
the error inherent to the concept of portal-respecting allocations (cf. Lemma 2),
the second one stems from the inaccuracy in the encoding of distances, and the
third one is introduced by Lemma 5. In the calculation of the distance of a given
point p to a (nearby) tourpoint q ∈ T ∗, these errors sum to an absolute error of
O (|R|/m) for the rectangle R separating p and q, and a relative error of O (1/m)
which is easily bounded by ε choosing m large enough. By Lemma 3, it follows
that the absolute errors result in an expected relative error of ε. Adapting ε, we
obtain by linearity of expectation that

E [T [Q0]] ≤ (1 + ε)val (T ∗, π∗) .

Removing all points which are not in P from the walk found by the dynamic
program, we obtain a solution (T, π) to VRAP with val (T, π) ≤ T [Q0], and the
claim follows.

6 Steiner VRAP

The PTAS for Purchase Cooperative TSP proposed in [2] proceeds by
dynamic programming in a shifted quadtree QTa,b, quite similar to Arora’s
O(n logO(1/ε) n) PTAS for TSP [3]. Here, a configuration of a given square
Q ∈ QTa,b is defined by specifying for each of O (logn/ε) portals whether a
tour- and/or an allocation edge runs through it. This results in O

(
nO(1/ε)

)
pos-

sible configurations for Q and the same overall complexity for the algorithm.
The key observation that allows us to improve on this is the following:

Lemma 6. Let (T, S, π) denote a solution to Steiner VRAP crossing a
fixed line segment L of length x five or more times. Then there exists a so-
lution (T, S′, π′) with S ⊆ S′ crossing L not more than four times satisfying
val• (T, S′, π′) ≤ val• (T, S, π) + c · x for some constant c.

Lemma 6 is an extension of Lemma 3 in [3]. With Lemma 6 at hand, one can
show as in [3] that there exists an expected (1 + ε)-approximation crossing each
square of the shifted quadtree QTa,b only r = O (1/ε) times. This makes it
possible to bound the number of configurations per square at O(log nO(1/ε)).
Combining techniques presented in [3] and [4], one obtains a randomized PTAS
for Steiner VRAP with complexity O(n logO(1/ε) n).

7 Concluding Remarks

It is easily checked that our PTAS for VRAP extends to higher dimensions with
minimal modifications. The running time increases to O(n logd+3 n), as the range
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searching in Lemma 5 takes time O(logd n) per cell in dimension d. This can be
reduced by a factor of O (logn) if β(p) = β(q) for all p, q ∈ P , since then it
suffices to count the number of points in a given cell (see [1]).

Our PTAS for Steiner VRAP extends to higher dimensions analogously to
Arora’s PTAS for TSP [3]. In particular, Lemma 6 extends similarly to Lemma 3
in [3] to any dimension d, yielding a complexity of O(n logξ(d,ε) n) with ξ(d, ε) =
O(

√
d/ε)d−1.

Lastly, our algorithms can be trivially derandomized by enumerating all
O
(
nd
)

choices for the initial random shift of the zoom, respectively quad tree.
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Abstract. This article presents our divide-and-conquer optimal algo-
rithms for lightweight suffix array construction for constant alphabets.
These algorithms can efficiently compute the suffix array of a size-n text
T with an alphabet Σ using O(n log Σ) time and (
(T ) + |Σ|�log n +
O(1))-bit working space (excluding the space for the output suffix array),
where Σ is an integer or constant alphabet, and 
(T ) is the length of T
measured in bits. For popular applications in practice with n ≤ 232 and
|Σ| ≤ 256, these results translate into O(n) time and a total space of
5n + O(1) bytes, which are the optimal time and space complexities for
lightweight suffix array construction.

1 Introduction

The suffix array is a fundamental index data structure used in a broad range of
applications such as compression, string matching and computational biology [1].
For a n-character text T , its suffix array SA(T ) is an array of pointers for all
suffixes in T sorted lexicographically, which requires O(n�log n�)-bit space. The
concept of suffix array was initially proposed by Manber and Myers in 1990 [2,3].
Since then, suffix arrays have been employed widely for data indexing, retriev-
ing, storing and processing. For example, the Burrows-Wheeler transform [4] for
building efficient compression solutions can be quickly computed by fast suffixes
sorting based on suffix array construction. In many cases where suffix arrays
are applied, constructing the suffix arrays generally constitutes the basis for
subsequent tasks. Recently, it has been observed that the construction of suf-
fix arrays is needed for large-scale applications where the input texts are huge
with over billions characters (e.g., biology genome database) [5, 6, 7, 8, 9], which
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motivated the currently intensive research on time and space efficient suffix array
construction algorithms (SACAs).

The suffix array is usually known as a space efficient alternative to the suffix
tree. In general, applications built on suffix trees can run times faster than that
using suffix arrays; however, the storage of a suffix tree also consumes a memory
space times more than its suffix array counterpart. To maximize the benefit
from using suffix arrays, it is highly desirable to further reduce the working
space required for constructing a suffix array, where the term of working space
in this context doesn’t include the space for the output suffix array 1. In 2002,
Manzini and Ferragina [11] initially raised the problem of lightweight suffix array
construction, which was informally termed as quickly constructing the suffix
array of a size-n text using 5n+O(1) bytes, for n ≤ 232 and the alphabet |Σ| ≤
256. One year later, Burkhardt and Kärkkäinen [10] presented their algorithm
based on the concept of “difference covers”, with O(n logn) worst-case runtime
and using a working space as the input plus O(n/

√
logn). In the same year,

Hon and Sadakane et al. [7] showed that the suffix arrays can be constructed in
optimal O(n logn) time and O(n log n)-bit space for texts with integer alphabets,
or O(n) time and O(n)-bit working space for texts with constant alphabets.
Later, Na [12] proposed an alphabet-independent linear O(n) time algorithm for
constructing suffix arrays using O(n log |Σ| logα|Σ| n)-bit working space, where
α = log3 2. Very recently, Puglisi and Smyth et al. [1] conducted a thorough
survey on SACAs including [11,10,7,13,14,15,16,17,18,19,20,12], and concluded
that to devise an optimal SACA which is fast, lightweight and linear in the worst
case still remains as a challenge.

What of our particular interest here is the optimal lightweight suffix array
construction for texts with constant alphabets, which we term as to construct
suffix arrays with the known optimal time complexities, and meanwhile, using a
space as small as possible. Specifically, we present here our novel solution with
a set of practical algorithms for optimal lightweight suffix array construction for
constant alphabets, which is optimal in the sense that it can compute the suffix
array of a size-n text of n log |Σ|-bit using O(n log |Σ|) time and (n log |Σ| +
|Σ| logn + O(1))-bit working space (excluding the space for the output suffix
array), where Σ is an integer or constant alphabet. For popular applications in
practice with n ≤ 232 and |Σ| ≤ 256, these results translate into O(n) time
and a total space of 5n + O(1) bytes, which are the optimal time and space
complexities for lightweight suffix array construction termed by Manzini and
Ferragina [11]. We intentionally don’t use the big-O notations for n and |Σ| in
the space complexity formulas, in order to show the accurate space requirement
which is a main concern for lightweight suffix array construction.

The rest of this article is organized as following. Section 2 introduces the
preliminaries including some general notations and assumptions. Our solution for
optimal lightweight suffix array construction is presented in Section 3. Section 4
summarizes the main results. Finally, Section 5 gives the conclusion.

1 In the literature for suffix array construction algorithms, the working space may
exclude both the input text and the output suffix array, for example, in [10].
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2 Preliminaries

2.1 Notations

Let T = t0t1t2 . . . tn−2$ be the input text with n characters arranged as an array,
where the characters are in an alphabet Σ. Two kinds of alphabets are considered
for Σ here: (1) an integer alphabet with characters in the range of [0, nO(1)), and
(2) a constant alphabet of size O(1). Without loss of generality, the characters of
T , from left to right, are indexed starting from 0. The last character $ is called
the sentinel, which is unique in T , not in Σ and lexicographically smaller than
any character in Σ.

For a size-m text X = x0x1x2 . . . xm−2$, we define some notations as below:

– S(X, i): the suffix in X starting at xi and running to the sentinel $, i.e.
S(X, i) = xixi+1 . . . xm−2$, where i ∈ [0,m).

– SA(X): the suffix array of X , which is the pointer array for all the m suffixes
in X sorted in their lexicographically order, i.e., each item in SA(X) contains
an unique pointer to a suffix in X . Without loss of generality, the sorted order
is assumed to be ascending.

– ISA(X): the inverse suffix array of X , defined as SA[ISA[i]] = i, for i ∈
[0,m).

Let ≺ and ! be the lexicographical preceding and succeeding operators, re-
spectively, we define τ(T, i) to be the LS-type function for T , given as:

τ(T, i) =
{

0, for S(T, i) ! S(T, i+ 1) and i ∈ [0, n);
1, for (S(T, i) ≺ S(T, i + 1) and i ∈ [0, n− 1)) or i = n− 1.

For denotation simplicity, a character T [i] is said to be type-L or type-S for
τ(T, i) = 0 or 1, respectively. Moreover, a suffix S(T, i) is said to be a type-L or
type-S suffix if T [i] is type-L or type-S, respectively. Let B be the size-n array
[0..n−1] of integers allocated for storing the output suffix array SA(T ), in which
each item is �logn�-bit. Next, B[i] and T [i] are said to be a pair of siblings, and
an item B[i] is said to be type-L or type-S if its sibling T [i] is type-L or type-S,
respectively. Further, let BS and BL be two sets consisting of the last n0 type-S
and type-L items in B, respectively, where n0 = |T0| ≤ �n/2� and T0 will be
defined in Section 3.1. To denote a substring xixi+1 . . . xj in a text X , a simpler
form of X [i, . . . , j] could be used. In addition, we use �(υ0, . . . , υk) to denote the
total length of all objects υ0, . . . , υk measured in bits.

2.2 Assumptions

Unless otherwise specified, in this article, we have the following general assump-
tions:

– The working space of a computation doesn’t include the space for the output.
In other words, the working space equals to the total space minus the space
for the output. Without explicit specification, the term space implies the
total space.
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– The space is provided in a unit-cost RAM with word size O(logW )-bit,
where n ≤ W . Following this assumption, a standard arithmetic or bitwise
boolean operation on word-sized operands costs O(1) time.

3 Solution

Our divide-and-conquer solution for computing SA(T ) for T is presented in this
section. To solve the problem at hand, we first reduce the problem, next compute
the suffix array for the reduced problem and then based on which, to derive the
suffix array for the original problem.

3.1 Reducing the Problem

First of all, we introduce some basic definitions for reducing the problem. A S-
string in T is: (1) ti . . . tj (0 ≤ i ≤ j < n) for both ti and tj are type-S; or (2) the
sentinel $ itself. In addition, the rank of ti is defined as the number of characters
less than ti in T ; all the ranks of T starts from 0. Further, let Zk(T, i) denote
a substring in T consisting of the k (k > 0) consecutive S-strings starting at a
type-S character T [i], in which fewer S-strings are possible when the sentinel $
is included. Any k consecutive S-strings in T is called a Zk-string.

Let T0 be the text consists of the ranks (also known as the lexicographical
names) of all S-strings in T , and let n0 = |T0|. The Corollary 2 in [16] says that
the sorted order of all suffixes in T0 determines the sorted order of all type-S
suffixes in T . Further, let % denote the modulo operator and T1 be the text
consisting of the ranks for triples in {T0[i, i + 1, i + 2] : i%3 	= 2, i ∈ [0, n0)},
where the ones for {i%3 = 0} are arranged in one consecutive block following
by another block consisting of those for {i%3 = 1}, and let n1 = |T1|. Similarly,
let T2 be the text consisting of the ranks for triples in {T0[i, i + 1, i + 2] : i
mod 3 = 2, i ∈ [0, n0)}; and let n2 = |T2|. Without loss of generality, we as-
sume that there are less 2 type-S characters than the type-L characters in T
and n is even for presentation simplicity, which leads to n1 ≤ �2n0/3� ≤ �n/3�.
Although T1 can be computed by first computing T0 from T and then comput-
ing T1 from T0, doing in this way is too space consuming for our purpose. In
the following, we design a space efficient algorithm for directly computing T1

from T .
To present the algorithm, we continue to introduce some more definitions.

Let P1 be the index array for all ith Z3-strings of T satisfying i%3 	= 2, i.e.,
P1[i] gives the pointers to all these ith Z3-strings in T ; specifically, in P1, the
ones for {i%3 = 0} and {i%3 = 1} are arranged in two consecutive blocks, re-
spectively. Next, let P ′

1 be the result array of sorting all elements in P1 in the
lexicographically ascending order of their corresponding Z3-strings in T , where
ties between any two Z3-strings with different lengths are broken by giving the

2 In case that the type-S characters are more, the same discussion can be conducted
symmetrically on the type-L characters, see [16] for details.
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shorter a higher priority 3. Further, let H1 be an array for recording the lengths
of all Z3-strings in P1. From the definitions of P1, P ′

1 and H1, each of them is
an array with n1 items in the range of [0, n), which means that each item can
be encoded in �logn�-bit.

Because n1 ≤ �2n0/3� ≤ �n/3�, instead of constructing SA(T ) directly, we
can compute SA(T1) and then derive SA(T ) from SA(T1) using the algorithms
developed below. The whole procedure is started by computing T1 from T . In
brief, computing T1 from T consists of three steps: (1) compute P1 from T ; (2)
compute P ′

1 from P1 and T ; and (3) compute T1 from P ′
1 and T . We further to

go through them one-by-one.
First, we have the below lemma for determining the type of a character in T .

Lemma 1. For i ∈ [0, n − 1), we have (1) τ(T, i) = 0 if T [i] > T [i + 1]; (2)
τ(T, i) = 1 if T [i] < T [i+ 1]; and (3) τ(T, i) = τ(T, i + 1) if T [i] = T [i+ 1].

Proof. The correctness of (1) and (2) is obvious from the definition of τ(T, i).
For (3), if τ(T, i+ 1) = 0 or 1, we have S(T, i+ 1) ! S(T, i+ 2) or S(T, i+ 1) ≺
S(T, i + 2), respectively. Given T [i] = T [i + 1], this yields S(T, i) ! S(T, i + 1)
or S(T, i) ≺ S(T, i + 1), respectively, i.e. τ(T, i) = τ(T, i + 1).

We proceed to compute P1 and then sort P1 to obtain P ′
1.

Lemma 2. Given T , P1 can be computed using O(n) time and a working space
of �(T ) + O(1) bits.

Proof. This can be done by simply traversing T once from right to left, to record
in P1 the positions of all type-S characters in T . At each step, the type of the
current character is derived from that of its immediately succeeding character
in O(1) time, using Lemma 1.

Lemma 3. (time bottleneck) Given T , P1 and H1, P ′
1 can be computed using

O(�(T )) time and a total space of at most �(B, T ) + O(1) bits.

Proof. Omitted due to the space limit.

For computing T1 from P ′
1, all the Z3-strings in T need to be sorted. For which,

we have the below lemma for retrieving a S-string from its head in T .

Lemma 4. Given T [i] is type-S, starting from T [i], we can find the first type-
S item T [j] succeeding to T [i] by traversing up to the first type-L item T [k]
succeeding to T [j], where i < j < k.

Proof. If T [i] = T [i + 1], we know that T [i + 1] must be type-S and j = i + 1.
Suppose T [i] < T [i+1], starting from T [i+1], we traverse forward to the first T [k]
(k > i + 1) satisfying T [k − 1] < T [k]. At this moment, we know that T [k − 1]
must be type-S. From T [k], we traverse backward to the first T [j] satisfying
T [j − 1] > T [j] (j < k).
3 The correctness of this tie-breaking scheme is supported by the Lemma 2 in [16],

which states that if T [i] = T [j], T [i] is type-L and T [j] is type-S, then S(T, i) ≺
S(T, j).
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Without the space constraint, T1 can be easily computed from P ′
1 and T using an

auxiliary array as large as B. We design a space efficient algorithm Compute-T1

to avoid using such a large auxiliary array, from which we have the below result,
which proof is omitted due to the space limit.

Lemma 5. Given P ′
1 and T , T1 can be computed using O(n) time and a total

space of �(B, T ) + O(1) bits.

Hence, we have the following result on the complexities for computing T1 from
T .

Lemma 6. Given T , T1 can be computed using O(�(T )) time and a total space
of �(T ) + 3�(T1) + O(1) bits.

Proof. The time and space complexities for the three steps for computing T1

from T are given by Lemma 2, 3 and 5, respectively. Both the maximum time
and the maximum space are observed for computing T1 from P ′

1, H1 and T ,
which dominate the total time and space complexities.

Now, we have successfully reduced the problem size from n to �n/3�. We proceed
to solve the reduced problem, i.e., to compute SA(T1) from T1.

3.2 Solving the Reduced Problems

We design in Fig. 1 the algorithmLightweight-KS-Sort for computing SA(T1)
from T1 in O(n) time and �(B) space, which is a lightweight alternative to the
traditional KS algorithm and described as follows:

– Let U , V and X be 3 arrays [0,m−1] of integers, where each item is �logm�-
bit. Moreover, suppose the buffers for U , V are allocated consecutively. Let
SAx denote SA(X).

– Let X1 and X2 denote the texts consisting of the lexicographical names for
triples in {X [i, i+1, i+2] : i%3 	= 2, i ∈ [0,m)} and {X [i, i+1, i+2] : i%3 =
2, i ∈ [0,m)}, respectively (in X1, the names for triples with {i%3 = 0} are
in a consecutive block and those for {i%3 = 1} are in another.), and X0 =
X1 ⊕X2, where “⊕” denotes the text concatenating operator. Moreover, let
m1 = |X1| and m2 = |X2|. We first to compute X1 and X2 from X into V ,
using bucket sorting with U as the counter array and V as the bucket array.
Then, X1 and X2 are copied to X for later use. This step can be done in
O(m) time.

– (Now, there are two copies of X1, one in the last m1 items of V , and another
in X .) Let V1 denote the size-m1 array immediately right to the X1 in V ,
and U1 be the size-m1 array immediately right to V1. We make the func-
tion call Lightweight-KS-Sort(X1, U1, V1) to recursively compute SAx1,
where SAx1 denotes SA(X1). This step can be done in O(m) time.

– Provided with SAx1 in V and the X2’s copy in X , we use the induced sorting
method in the KS algorithm to compute SAx2 from SAx1 and X2, where
SAx2 denotes SA(X2). This step can be done in O(m) time. As the result,
SAx1 and SAx2 are stored in V .
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– Let SAx0 denote SA(X0). Now, we are going to merge SAx1 and SAx2 to
produce SAx0. From SAx1 and SAx2 in V , we compute ISAx1 and ISAx2
into U , where ISAx1 and ISAx2 are the inverse SAx1 and SAx2, defined as
SAx1[ISAx1[i]] = i (i ∈ [0,m1)) and SAx2[ISAx2[j]] = j (j ∈ [0,m2)). This
can be done in O(m) time.

– Let Y1 and Y2 be defined as SAx1[i]=SAx0[Y1[i]] and SAx2[j] = SAx0[Y2[j]],
respectively, for i ∈ [0,m1) and j ∈ [0,m2). Y1 and Y2 are called the position
index arrays for SAx1 and SAx2, which give the position indices for all items
in SAx1 and SAx2 in the merged suffix array SAx0. Computing Y1 and Y2

can be done by traversing SAx1 and SAx2 once and using the buffers for
SAx1 and SAx2 only, i.e., V is updated with Y1 and Y2. This can be done in
O(m) time.

– Now, U contains ISAx1 and ISAx2, and V contains Y1 and Y2. To compute
ISAx0, which is the inverse SAx0, we simply traverse U once to set U [i] =
V [U [i]], for each i ∈ [0,m). From the definitions of ISAx1, ISAx2, Y1 and
Y2, it is trivially to see that U contains ISAx0 now. This can be done in
O(m) time.

– Given ISAx0 in U , we compute SAx0 into V by traversing U once to set
V [U [i]] = i, for each i ∈ [0,m). This can be done in O(m) time.

– Now, because the original positions of the elements of X1 and X2 in X are
interleaved (every two elements of X1 followed by an element of X2), we
traverse SAx0 once with a complexity of O(m) to compute SAx as

SAx[i] =

⎧
⎨

⎩

3SAx0 [i], for SAx0 [i] ∈ [0, �m1/2�);
3(SAx0 [i]− �m1/2�) + 1, for SAx0 [i] ∈ [�m1/2�,m1);
3(SAx0 [i]−m1) + 2, for SAx0 [i] ∈ [m1,m).

(1)

– Finally, we copy SAx in V to X for returning the result.

Lemma 7. Given a size-n text X with each character encoded in �logn�-bit,
SA(X) can be computed in O(n) time and using a total space of 3�(X)+O(1) bits.

Proof. In the Lightweight-KS-Sort algorithm, The time is governed by the
recurrence T (n) = T (�2n/3�) + O(n) and T (n) = O(1) for n < 3, which leads
to T (n) = O(n). At each iteration, when making the recursion call in line ??,
only X is occupied, and U and V are available for use as the buffer space for
the recursion. Hence, (omitting the space used for the recursion stack which is
O(log n)-bit and commonly neglected in the literature for suffix array construc-
tion algorithms) a total space of �(X,U, V ) = 3�(X) +O(1) bits is sufficient for
the recurrence.

Recalling that each element of T1 is �logn1�-bit and n1 ≤ �n/3�, Lemma 7
immediately suggests the following result.

Corollary 1. Given T1, SA(T1) can be computed using O(n) time and a total
space of 3�(T1) + O(1) bits.

Provided that SA(T1) is know, it is only a routine job for us to induce SA(T2)
from SA(T1) using the KS skew algorithm [15], in two steps as follows:
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– Compute T2 from T , using the method for computing T1. This step can be
done using O(�(T )) time and a total space of �(T ) + 3�(T2) +O(1) bits (see
Lemma 6).

– Compute SA(T2) from SA(T1) and T2, using the KS skew algorithm. This
can be done using O(n) time and a total space of �(T1)+3�(T2)+O(1) bits.

Lightweight-KS-Sort(X , U , V )
� Input: X—array [0..m − 1] of integer, each item is �log m�-bit.
� Output: SAx—the suffix array of X , returned in the buffer of X .
� U , V : array [0..m − 1] of integer, each item is �log m�-bit.
� Assumption: The buffers for U and V are allocated consecutively .

1 if |X | < 3
2 then Directly compute SAx from X and store the result in X .
3 return
4 Compute X1 and X2 from X into V . � X1 is stored in the last m1 items of V .
5 Copy X1 and X2 from V to X . � Save X1 and X2 for computing SAx2 later.
6 m1 ← |X1|; m2 ← |X2|
7 Let U1 and V1 be the two arrays [0..m1 − 1] immediately right to the X1 in V .
8 Lightweight-KS-Sort(X1, U1, V1) � Compute SAx1 into V1.
9 Induced sorting SAx2 from SAx1 into U1.

10 Traverse SAx1 and SAx2 in V once to compute ISAx1 and ISAx2 into U .
� Now, U contains [ISAx1, ISAx2]; V contains [SAx1, SAx2]; X contains [X1, X2].

11 Traverse SAx1 and SAx2 in V once to update V with the position index arrays
Y1 and Y2.

12 For each i ∈ [0, m), U [i] ← V [U [i]]. � Compute ISAx0.
13 For each i ∈ [0, m), V [U [i]] ← i. � Compute SAx0.
14 For each i ∈ [0, m), compute SAx from SAx0 by Eq.(1).
15 Copy V to X . � Return the result in X .
16 return

Fig. 1. The linear lightweight KS sorting algorithm

Recalling that n1 ≤ n/3, n2 ≤ n/6, and B, T1 and T2 have the same item’s
size of �logn�-bit, the maximum space of the above two-step procedure is upper
bounded by �(T,B) + O(1) bits. The complexities for inducing SA(T2) from
SA(T1) is concluded as follows.

Lemma 8. Given SA(T1) and T , SA(T2) can be computed using O(�(T )) time
and a total space of �(T,B) + O(1) bits.

3.3 Inducing the Final Result

Having solved SA(T1) and SA(T2), we proceed to merge SA(T1) and SA(T2) into
SA(T0) in O(n) time and (�(T,B)+O(1))-bit space. If we use the skew method
in the Lightweight-KS-Sort algorithm, a total space of 3�(T1, T2) + O(1) =
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1.5�(B) + O(1) bits is required, which is too space consuming. Notice that in
the algorithm Lightweight-KS-Sort, X is used only for rank comparisons.
Given T , SA(T1) and SA2, we design a more space efficient algorithm for this
job, which performs rank comparisons using Z3-strings in T . This algorithm is
described below:

– Let SA′
1 and SA′

2 be defined as SA′
1 = {P1[SA(T1)[i]] : i ∈ [0, n1)} and

SA′
2 = {P2[SA(T2)[i]] : i ∈ [0, n2)], respectively. An item B[i] is said to in

a set X if B[i] is allocated for storing an item in X . Further, supposed that
SA′

1 and SA′
2 are initially stored in the first n0 (recalling that n0 = n1 +n2)

items of B, and SA′
1 is left to SA′

2.
– First, we move SA′

1 and SA′
2 into the type-L items in BL by traversing B

once from right to left. At this step, we record in h the position of the first
B[i] in SA′

2. This can be done in O(n) time.
– Next, ISA′

1 and ISA′
2 are computed into the type-S items in BS , where

ISA′
1 is defined as for each B[i] in SA′

1, ISA
′
1[B[i]] = i, and similarly, ISA′

2

is defined as for each B[i] in SA′
2, ISA

′
2[B[i]] = i, where i ∈ [0, n).

– Now, BL contains SA′
1 and SA′

2, and BS contains ISA′
1 and ISA′

2. We
proceed to merge-sort SA′

1 and SA′
2. We first traverse BL to compute the

position index of each item in SA′
1 and SA′

2 in the merged set SA0, where
SA0 denotes SA(T0) and the index starts from 0. To determine the order
between an item B[u] in SA′

1 and an item B[v] in SA′
2, let i = B[u] and

j = B[v], we compare Z3(T, i) and Z3(T, j) (these two strings can be re-
trieved utilizing Lemma 4). If they are different, the order is immediately
determined; or else we continue to compare as follows 4:
• Suppose Z3(T, i) is the kth Z3-string in T , k ∈ [0, n0), we say Z3(T, i) is

a residue-0 or residue-1 string if k mod 3 = 0 or 1, respectively.
• In case thatZ3(T, i) is a residue-0 string, compareZ3(T, i′) with Z3(T, j′),

where Z3(T, i′) and Z3(T, j′) are the first S-strings succeeding to Z3(T, i)
and Z3(T, j), respectively. The order of Z3(T, i′) and Z3(T, j′) is deter-
mined by B[i′] and B[j′], for ISA′

1 and ISA′
2 are stored in BS and both

B[i′] and B[j′] are in BS .
• In case thatZ3(T, i) is a residue-1 string, compareZ3(T, i′′)withZ3(T, j′′),

where Z3(T, i′′) and Z3(T, j′′) are the 2nd S-strings succeeding to Z3(T, i)
and Z3(T, j), respectively. Similar to the previous case, the order of
Z3(T, i′′) and Z3(T, j′′) is determined by B[i′′] and B[j′′], for both B[i′′]
and B[j′′] are in BS .

Retrieving the strings, once more, can be done utilizing Lemma 4. Checking
if Z3(T, i) is a residue-0 or residue-1 string can be done in O(1) time by
simply comparing B[i] with h, for all items of SA′

1 are stored before the
item B[h]. Because each S-string in T can be visited at most four times (1
due to locating the terminating character of the S-string preceding to it and
3 due to S-string comparisons) for merging SA1 and SA2, this step is done
in O(n) time.

4 The correctness of this comparison scheme can be trivially seen from the KS skew
algorithm in [15].
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– Let ISA0 denote the inverse SA(T0). ISA0 is computed by first traversing
B once from right to left to set each type-S item B[i] with B[B[i]]; and then
traverse B once more from right to left to move all the items in BS into the
last n0 items of B. This can be done in O(n) time.

– Given ISA0 (in the last n0 items of B), SA0 can be easily computed into
the left half of B in O(n) time.

As a summary for the above algorithm, we have the following lemma.

Lemma 9. Given T , SA(T1) and SA(T2), SA(T0) can be computed using O(n)
time and a total space of �(B, T ) + O(1) bits.

Given SA0 and T , we can compute SA(T ) in two steps, as described below:

– Let P0 be the S-string array for T , which is the index array for all S-strings
in T . In addition, let SAS denote the suffix array for all type-S suffixes in
T , defined as SAS = {SA(T )[i] : T [SA(T )[i]] is type− S, i ∈ [0, n)}. Given
SA0 (stored in the left half of B), SAS can be computed in two steps: (1)
compute P0 into the right half of B by traversing B once from right to left;
and (2) compute SAS by traversing SA0 once to set SA0[i] = P0[SA0[i]].
Now, SAS is contained in the first n0 items of B. This step can be done in
O(n) time.

– Use the KA skew algorithm [16] to induce SA(T ) from SAS and T , which
requires a bucket counter array 5 of |Σ|�logn�-bit in addition to B and T ,
and is done in O(n) time. The maximum total space for the whole procedure
of computing SA(T ) from T is due to this step.

Hence, the complexities for computing SA(T ) from SA(T0) are concluded as
follows.

Lemma 10. (space bottleneck) Given T and SA(T0), SA(T ) can be computed
using O(n) time and a total space of �(B, T ) + |Σ|�logn�+ O(1) bits.

4 Main Results

Theorem 1. For a size-n text T with an integer or constant alphabet Σ, SA(T )
can be computed using O(n log |Σ|) time and a total space of �(T,B)+|Σ|�logn�+
O(1) bits.

Proof. The whole procedure for computing SA(T ) from T consists of the follow-
ing steps in sequence:

1. Compute T1 from T and SA(T1) from T1, see Lemma 6 and Corollary1.
2. Compute SA(T2) from SA(T1) and T , see Lemma 8.
3. Merge SA(T1) and SA(T2) into SA(T0), see Lemma 9.
4. Induce SA(T ) from SA(T0), see Lemma 10.
5 Two bucket counter arrays can be used for higher speed when |Σ| is not large, e.g.,

O(1).
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The bucket sorting function for computing P ′
1 from P1 and T in Step 1, as

well as that for computing P ′
2 from P2 and T in Step 2, dominate the whole

procedure’s time complexity, which is O(�(T )) = O(n log |Σ|) from Lemma 3.
The total space consists of 3 parts: (1) the array T for the input text; (2) the

array B for the output suffix array; and (3) the |Σ|�logn�-bit bucket counter
array for inducing SA(T ) from SA(T0).

From Theorem 1, we have the following two results for texts with integer and
constant alphabets, respectively.

Corollary 2. For a size-n text T with an integer alphabet Σ, where |Σ| ≤ n,
SA(T ) can be computed using O(n logn) time and a total space of at most
3n�logn�+ O(1) bits.

Corollary 3. (optimal lightweight) For a size-n text T with a constant alphabet
Σ, where n ≤ 232 and |Σ| ≤ 256, SA(T ) can be computed using O(n) time and
a total space of 5n + O(1) bytes.

5 Conclusion

A divide-and-conquer solution with a set of practical algorithms has been devel-
oped in this work for optimal lightweight suffix array construction. The crucial
task for developing this solution, as we have shown, is how to reduce the problem
size to be small enough so that the reduced problem can be efficiently computed
and meanwhile, the final suffix array can be augmented from the reduced one
time and space efficiently. Once the problem has been reduced, a number of tra-
ditional suffix array construction algorithms are allowed to be further exploited
to solve the reduced problem. This makes the solution flexible to be further
improved for better average performance.
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Yates, R.A., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp.
200–210. Springer, Heidelberg (2003)

17. Kim, D.K., Jo, J., Park, H.: A fast algorithm for constructing suffix arrays for fixed-
size alphabets. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS, vol. 3059,
pp. 301–314. Springer, Heidelberg (2004)

18. Itoh, H., Tanaka, H.: An efficient method for in memory construction of suffix
arrays. In: Proceedings of String Processing and Information Retrieval Symposium
(1999)

19. Seward, J.: On the performance of BWT sorting algorithms. In: Proceedings DCC
2000 Data Compression Conference, Snowbird, UT, USA, pp. 173–82 (2000)
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Abstract. We present two natural variants of the indexing problem:
In the range non-overlapping indexing problem, we preprocess a given

text to answer queries in which we are given a pattern, and wish to find a
maximal-length sequence of occurrences of the pattern in the text, such
that the occurrences do not overlap with one another. While efficiently
solving this problem, our algorithm even enables us to efficiently perform
so in substrings of the text, denoted by given start and end locations.
The methods we supply thus generalize the string statistics problem [4,5],
in which we are asked to report merely the number of non-overlapping
occurrences in the entire text, by reporting the occurrences themselves,
even only for substrings of the text.

In the related successive list indexing problem, during query-time we
are given a pattern and a list of locations in the preprocessed text. We
then wish to find a list of occurrences of the pattern, such that the ith
occurrence is the leftmost occurrence of the pattern which starts to the
right of the ith location given by the input list.

Both problems are solved by using tools from computational geometry,
specifically a variation of the range searching for minimum problem of
Lenhof and Smid [12], here considered over a grid, in what appears to be
the first utilization of range searching for minimum in an indexing-related
context.

1 Introduction

Given a text string T = t1 . . . tn and a pattern string P = p1 . . . pm, in the pattern
matching problem [11] we wish to report all the occurrences of P in T . Its online
counterpart, the indexing problem, is one of the most important paradigms in
searching: the idea is to preprocess a text and construct a mechanism that will
later provide answers to queries of the form “does a pattern P occur in the
text” in time proportional to the length of the pattern rather than the text.
In addition, if we want to return the occurrences themselves, the time will be
proportional to the length of the pattern and the number of actual occurrences.

The suffix tree [15,14,7,13] has proven to be an invaluable data structure
for indexing, using O(n) space, where n is the text length. Algorithms for the
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construction of a suffix tree enable O(n) preprocess time when |Σ| is constant
(where Σ is the alphabet set), and O(n log min(n, |Σ|)) time when |Σ| is not. In
fact, the suffix tree can be constructed in linear time even for alphabets drawn
from a polynomially-sized range, see [7].

The size of the alphabet also affects the query time of the suffix tree: given
a pattern P of length m, we can find the set of all occurrences of P in T in
O(m log min(n, |Σ|) + tocc) time for unbounded alphabets, where tocc is the
actual number of occurrences of P in T , or accordingly, O(m + tocc) time for
constant-sized alphabets.

While the search for P yields an unsorted set of occurrences in T , some
may overlap others: a specific location i in the text might participate in sev-
eral different occurrences of P in T . However, sometimes only non-overlapping
occurrences are of importance. Such requirement is of interest in fields such as
pattern recognition, computational linguistics, speech processing, bio-molecular
sequence analysis, code optimization and data compression [4]. For instance, we
might want to compress a text by replacing each non-overlapping occurrence of
a substring of it with a pointer to a single copy of the substring.

In the string statistics problem [4,5], we are interested in finding the maximal
number of non-overlapping occurrences of P in the entire text T . The solutions
proposed in [4] and [5] use properties of periodicity in the text and pattern.
However, the methods described there do not report the actual occurrences of
the pattern. In this paper, we present a solution that returns the maximal (sorted
by location) sequence of non-overlapping occurrences of P in T 1. Furthermore,
we generalize it such that it can return the maximal sequence of non-overlapping
occurrences of P in some substring of T , denoted by start and end locations given
alongside the pattern at query time.

In addition, we provide a solution to another problem that incorporates in-
dexing with added location constraints: in the successive list indexing problem,
we are given a list L = 〈i1, . . . , i�〉 of locations in T together with P , and we
wish to find the sequence of occurrences of P in T where the jth occurrence
returned is the leftmost occurrence of P in T that occurs after the ijth location
(if such exists). Other kinds of proximity-related indexing variants (for instance,
finding the single occurrence of the pattern that overlaps the ijth location) can
be solved by using exactly the same method. We also note that the definition of
the matching can be generalized to pattern matching with errors and such [3],
but we leave the discussion for the full version of this paper, and assume for the
rest of the paper the common matching definition.

Solutions to both problems rely heavily on tools taken from the computational
geometry area. In the range searching problem (see survey in [1]), which is com-
mon to this field, we are given a set S of n geometric objects (e.g. points) in
a d-dimensional space, which we store in some data structure. When a query
object Q (e.g. a hyper-rectangle [a1, b1] × · · · × [ad, bd]) is given, we wish to

1 Note that we discuss the indexing variant of this problem. If one would like to solve
non-overlapping pattern matching, then one could use the simple greedy method
discussed in Sect. 5.
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return the result of some sort of query on a subset of the points, usually the
subset S ∩Q. A popular variant of range searching is range reporting, in which
we are asked to report all the points which are included in the query range
Q = [a1, b1] × · · · × [ad, bd], i.e. the set S ∩Q itself (see [2]).

While range reporting has been used before in several indexing-related papers
(e.g. [9,3,8]), to the best of our knowledge, this is the first indexing-related work
using a variant of range searching for minimum of Lenhof and Smid [12], itself a
generalization of a problem presented by Gabow et al. [10]. In Lenhof and Smid’s
variant, we are given a set of n d-dimensional points, and query them with ranges
of type [a1, b1]×· · ·× [ad−1, bd−1]× [ad,∞], wishing to find a single point in range
with minimal dth coordinate. When d = 2, they obtain the following bounds:
O(n log n log logn) expected preprocessing time, O(n logn) space, and O(log n)
query time.

Wemodify the solution from [12] towork on a 2-dimensional grid, which suits our
purposes. We find it more appropriate to call this variant the range successor query
on a grid problem. We obtain the following bounds: O(n logn log logn) expected
preprocessing time, O(n log n) space, and O(log logn) worst-case query time.

The rest of this paper is organized as follows: in Sect. 2 we provide some formal
definitions of our problems. In Sect. 3 we supply an outline of the method we use
for the range successor query on a grid problem. In Sect. 4 we solve the succes-
sive list indexing problem. In Sect. 5 we finally solve the range non-overlapping
indexing problem, and in Sect. 6 we present some concluding remarks.

1.1 Notations

For two integers i ≤ j, denote by [i, j] the set {i, . . . , j}. For an integer u, denote
by [u] the set [0, u− 1].

Given a string S, denote by |S| the length of S. An integer i is a location in
S if i = 1, . . . , |S|. Given a string T = t1 . . . tn (i.e. |T | = n, hereafter the text),
a suffix of T is a string of the form ti . . . tn, for some location i. Given another
string P = p1 . . . pm (hereafter the pattern), a location i in T is an occurrence
of P in T if ti . . . ti+m−1 = p1 . . . pm = P . Two occurrences i, j of P in T are
said to be non-overlapping if |j − i| ≥ m. The suffix tree of T is essentially a
compressed trie of the suffixes of T , used as a data structure to efficiently find
the occurrences of P in T .

2 Problem Definitions

The successive list indexing problem is defined as follows:

Input: a text T = t1 . . . tn over alphabet Σ.
The text will be preprocessed to answer the following:
Query: a pattern P = p1 . . . pm over Σ, and a list L = 〈i1, . . . , i�〉 of locations
in T .
Output: the �-length list of occurrences of P in T where the jth occurrence
is the leftmost (i.e. minimal) occurrence of P in T that appears after the ijth
location (if such exists).
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A simpler version of this problem is the successive indexing problem that is
defined as follows:

Input: a text T = t1 . . . tn over alphabet Σ.
The text will be preprocessed to answer the following:
Query: a pattern P = p1 . . . pm over Σ, and a location i in T .
Output: an occurrence i′ ≥ i of P (i.e. ti′ . . . ti′+m−1 = P ) in T for which i′ is
minimal (if such exists).

The range non-overlapping indexing problem is defined as follows:

Input: a text T = t1 . . . tn over alphabet Σ.
The text will be preprocessed to answer the following:
Query: a pattern P = p1 . . . pm over Σ, and two locations i ≤ j in T .
Output: an ascending sequence L = 〈i1, . . . , ik〉 of non-overlapping occurrences
of P in T for which i ≤ i1 and ik ≤ j (alternatively we can say we require L to
be a subsequence of the sorted set [i, j]) and k is maximal. Formally, we require
that for each j = 1, . . . , k, tij . . . tij+m−1 = P and that for each j = 1, . . . , k− 1,
ij+1 − ij ≥ m.

The (two-dimensional) range successor query on a grid problem is defined as
follows:

Input: a set S = {(x1, y1), . . . , (xn, yn)} of n points on an [n] × [n] grid.
Given this input, we will efficiently preprocess it to answer the following queries:
Query: a triplet (x′, x′′, y).
Output: a specific point (xi, yi) ∈ S ∩ ([x′, x′′]× [y, n− 1]) whose y-coordinate
(i.e. yi) is minimal. In other words, (xi, yi) is the point with minimal value yi
corresponding to the following conditions:

1. yi ≥ y.
2. x′ ≤ xi ≤ x′′.

3 Range Successor Query on a Grid

Both solutions for the successive list indexing and range non-overlapping index-
ing rely heavily on an efficient solution to the range successor query on a grid
problem. As mentioned before, this problem, in its version where the points’
coordinates are not on a grid (meaning, they are not necessarily integers and are
not drawn from a restricted universe [u]), and for which the points can also be
of dimension greater than 2, was solved by Lenhof and Smid [12]. In their defini-
tion, given n points in a d-dimensional space, the query object is a d-dimensional
range [a1, b1] × · · · × [ad−1, bd−1] × [ad,∞] in which we wish to find the point
having the minimal dth coordinate. They issued the problem with the name
“range searching for minimum”, which was used prior by Gabow et al. [10] to
indicate the more particular problem in which the query object is of the form
[a1, b1]× · · · × [ad−1, bd−1]× [−∞,∞]. Again, the goal there is to find the point
in the range having the minimal dth coordinate. As Lenhof and Smid’s problem
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is actually the problem of finding the successor of a value, with added range
restrictions, we find it more appropriate to name it (in our context) the range
successor query on a grid problem.

In the solution presented in [12], they used a rank space reduction in order to
reduce the given point set in IRd to a point set on an [n]d grid. As a result, the
query time for the two-dimensional case suffered from an additive O(log n) time.
However, when we solve the problem on an [n]×[n] grid, we do not need the rank
space reduction. Unfortunately, in [12] there is no complete analysis of the query
time in absence of the rank space reduction. It can be shown that the query
time in such a case is worst-case O(log logn). We leave the full details for the
full version, as it requires a complete description of the solution presented in [12].

We thus obtain the following:

Theorem 1. The range successor query on an [n]×[n] grid problem can be solved
with O(n logn) space and O(log logn) query time, using O(n logn log logn) ex-
pected preprocess time.

4 Successive List Indexing

We now present a solution for the successive indexing problem which applies a
reduction to the range successor query problem. Later, we will explain how to
generalize the solution for solving the successive list indexing problem.

Let T = t1 . . . tn be a text over alphabet Σ. When given a pattern P =
p1 . . . pm over Σ and a location i in T , we wish to find the leftmost occurrence
of P in T that still starts to the right of i. Formally, we wish to find the minimal
i′ ≥ i such that ti′ . . . ti′+m−1 = P , if such exists.

We first construct the suffix tree of T , denoted ST(T ). In order to prevent
the effect of unbounded alphabets on the suffix tree, we can present hashing, as
depicted in the following:

Theorem 2. There exists a randomized suffix tree, which can be constructed in
expected O(n) time (where n is the length of the text), and in which queries can
be made in worst-case O(m + tocc) time (where m is the length of the pattern,
and tocc is the actual number of occurrences of the pattern in text), for general
alphabets.

Proof. Note the construction and query times for constant size alphabets are
O(n) and O(m+tocc) respectively. In addition, note that the number of children
of any node in the suffix tree is bounded by both n+1 and |Σ|. Hence, we obtain
a min(n + 1, |Σ|) bound on the number of children of a given node. Thus, if for
every node in the suffix tree we maintain pointers to its children in a balanced
search tree, the multiplicative O(log min(n, |Σ|)) factor comes from the need to
search or to insert elements to balanced search trees. Substituting this balanced
search tree with a dynamic hash table (e.g. of Dietzfelbinger et al. [6], supporting
worst-case O(1) query time and amortized expected O(1) insertion time), using
as before the symbols of the alphabets associated with the edges as keys, would
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eliminate that factor, thus giving us an expected O(n) construction time, and
worst-case O(m + tocc) query time (worst-case, since in query-time we do not
modify the tree and therefore do not insert elements to those hash tables). ��

Note that besides the obvious disadvantage of introducing randomness, another
disadvantage of the randomized suffix tree is the fact that now, given a node,
the order of its children cannot be efficiently derived from the structure used
to hold the pointers to them. As this order eventually determines the order of
the leaves of the suffix tree, which is crucial to us during preprocess, suffix trees
built throughout this paper will hold the pointers to the children of a given
node in both a balanced search tree and a hash table. During query time, since
the aforementioned order is of no importance to us, we will use the hash tables
option to efficiently navigate through the tree.

4.1 Algorithm Outline

In the suffix tree, each leaf l is associated with a suffix of T and is therefore
marked with an integer y(l) which is the start location of that suffix. Assume
we go over the leaves of ST(T ) in a left-to-right manner linking them to create
a linked list (by using a depth first search). Note that now if we traverse the
list, we actually traverse the leaves according to the lexicographical order of the
suffixes they are associated with. For a leaf l, let x(l) be the position of l in
the linked list. It immediately follows that x(l) is the lexicographical rank of the
suffix associated with l. Equivalently: If we lexicographically sort all suffixes of T
in an ascending order, then the x(l)th suffix is the one associated with l. Setting
x(l) for each l can be done by going over the list, marking each leaf l with its
position in the list.

When given a pattern P = p1 . . . pm, we can find all the occurrences of P in
T , by traversing ST(T ) from the root downwards according to the symbols in P ,
until we either conclude that P does not occur in T (in the case we got ‘stuck’
in the tree, figuratively speaking: this is the case where the next symbol of the
pattern cannot be found in our current location in the tree), or that we conclude
the traversal at a node v in ST(T ). In the latter, all the leaves in the subtree
rooted at v correspond to occurrences of P in T . Denote the subtree rooted at
v as Tv. Hence the set L′ = {y(l) | l is a leaf in Tv} is the set of all occurrences
of P in T .

Note that for the node v mentioned above, the leaves of Tv appear consecu-
tively in the linked list of leaves. Furthermore, since for each leaf l, x(l) is its
position in the list, the leaves of Tv form a range [x(l′v), x(l′′v )] (where l′v and l′′v
are the leftmost and rightmost leaves in Tv, respectively). It immediately fol-
lows that for a leaf l, l is a leaf in Tv iff x(l) ∈ [x(l′v), x(l′′v )]. In other words:
x(l) ∈ [x(l′v), x(l′′v )] iff P appears in T at location y(l).

Consider the leaf f for which x(f) ∈ [x(l′v), x(l′′v )] and y(f) is minimal such
that y(f) ≥ i. By the problem definition, y(f) is exactly what we need to find
and return. Now consider the set {(x(l), y(l)) | l is a leaf in ST(T )}. Clearly, this
is a set of n + 1 points on an [n + 1]× [n + 1] grid. Since the point (x(f), y(f))
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Algorithm 1. Successive indexing preprocess
Input: a text T = t1 . . . tn.
construct ST(T ); /* assume the field y(l) is set for any leaf l by the1

suffix tree algorithm */
traverse ST(T ) and set the field x(l) for each leaf l;2

traverse ST(T ) using DFS :3

foreach node u do4

store the values x(l′u) and x(l′′u) in u; /* l′u and l′′u are the leftmost5

and rightmost leaves of Tu, respectively */

preprocess the set {(x(l), y(l)) | l is a leaf in ST(T )} for range successor queries6

on an [n + 1] × [n + 1] grid;

Algorithm 2. Successive indexing query
Input: a pattern P = p1 . . . pm and an integer 1 ≤ i ≤ n.
traverse ST(T ) starting from the root, according to the symbols in P :1

if stuck then return “no occurrences” else let v be the node we reached (if2

we stopped at a node) or the node immediately below the edge we are at (if
we stopped on an edge);

if the range successor query for (x(l′v), x(l′′v ), i) yields a result (x′, y′) then3

return y′;4

else return “no occurrence”;5

is exactly the y-axis successor of i in the range [x(l′v), x(l′′v )], we can find and
return y(f) by using a single range successor query.

The algorithm for the successive indexing problem thus immediately follows,
and is presented as Algorithms 1 (preprocess) and 2 (query).

4.2 Analysis

We have obtained the following:

Theorem 3. The successive indexing problem can by solved with O(n log n)
storage and O(m+ log logn) query time, using O(n log n log logn) expected pre-
process time.

Proof. The correctness of the proposed algorithm follows immediately from the
discussion above. Note that for the values x(l), y(l) for each leaf l in ST(T ), it
holds that x(l), y(l) ∈ [n + 1]. The space used is therefore:

1. O(n) for the suffix tree itself.
2. O(n log n) for the data structure supporting range successor queries.

We conclude we use overall O(n log n) storage space.
The query time consists of:

1. O(m) in order to find node v.
2. O(log logn) time for the single range successor query.
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Summing up, the query time is worst-case O(m + log logn).
The preprocess time consists of:

1. O(n log min(n, |Σ|)) in order to construct the suffix tree with both a balanced
search tree and a hash table in each node.

2. O(n) for each traversal on the suffix tree.
3. O(n log n log logn) expected time for preprocessing in order to answer future

range successor queries.

We conclude we use overall expected O(n log n log logn) time for preprocess. ��

4.3 Solving the Successive List Indexing Problem

Note that after answering the query for some P and i, if we wish to answer this
query for the same pattern P and a different location j, we can immediately
perform the range successor query and return the result, since we have already
found and thus know the x-axis range associated with P . Thus, we have obtained
the following:

Theorem 4. The successive list indexing problem can be solved with O(n log n)
storage and O(m+� log logn) query time, using O(n log n log log n) expected pre-
process time.

Proof. Given an �-length list L of locations in T , we can use the solution for
the successive indexing problem, but repeat the range successor query for every
location given in the queried list. ��

5 Range Non-overlapping Indexing

We now present a solution for the range non-overlapping indexing problem.
Let T = t1 . . . tn be a text over alphabet Σ. When given a pattern P =

p1 . . . pm over Σ, and two locations i ≤ j in T , denote by L′ the ascending
sequence of locations in T where an occurrence of P in T starts. Denote by L′′

the sequence of locations in T which (1) correspond to occurrences of P in T ,
and (2) are in the range [i, j]. Clearly, L′′ is a subsequence of L′. We wish to
find a subsequence L = 〈i1, . . . , ik〉 of L′′ which corresponds to non-overlapping
occurrences of P in T in the range [i, j], with maximal k. Notice that L is a
subsequence of L′′ which is a subsequence of L′. Formally, we require that:

1. i ≤ i1.
2. ik ≤ j.
3. For each d = 1, . . . , k, tid . . . tid+m−1 = P .
4. For each d = 1, . . . , k − 1, id+1 − id ≥ m.

Consider the following greedy method for constructing L: we go over ti . . . tj+m−1

by using one of the linear pattern matching algorithms (for instance [11]) which
scan the text and return occurrences of P in ti . . . tj+m−1 in an ascending order of
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positions. We choose the first occurrence the algorithm has outputted to be the
first element in L. Note that the occurrence we have just chosen is the leftmost
occurrence of P in ti . . . tj+m−1. We then proceed to choose every first occurrence
outputted by the algorithm that does not overlap with the last occurrence we
have chosen for L. It is easy to see that for the resulting sequence L = 〈i1, . . . , ik〉,
it holds that for each d = 2, . . . , k, id is minimal such that tid . . . tid+m−1 = P
and id − id−1 ≥ m.

Lemma 1. The sequence L is a maximal-length sequence of non-overlapping
occurrences of P in ti . . . tj+m−1.

Proof. Recall that |L| = k and assume by contradiction that L is not maximal,
i.e. there is a sequence of non-overlapping occurrences of P in ti . . . tj+m−1,
denoted H , such that |H | ≥ k+1. For an integer d, denote by Hd the dth element
of H , if such exists. Since the greedy method always chooses the leftmost non-
overlapping occurrence to be included, we can say that for each d = 1, . . . , k,
id ≤ Hd. In particular, ik ≤ Hk. Since H is a sequence of non-overlapping
occurrences, we notice that Hk+1 does not overlap with Hk, and because ik ≤ Hk,
it follows that Hk+1 does not overlap with ik as well. We conclude that the greedy
method should have appended the occurrence Hk+1 to L, which contradicts the
fact that ik is the last element of L. ��

Denote tocc = |L′|, k′′ = |L′′| and recall that |L| = k. The following lemma tells
the relation between the three:

Lemma 2. tocc ≥ k′′ and k′′ ≤ m · k. Furthermore, there exists a text and a
pattern for which k′′ = Θ(m · k).

Proof. tocc ≥ k′′ since L′′ is a subsequence of L′.
L is the maximal set of non-overlapping locations. For two consecutive ele-

ments id, id+1 in L, if there exists an occurrence of P in T at location e such that
id < e < id+1, then the occurrence at e certainly overlaps with the occurrence at
id, otherwise the greedy method would have chosen e instead of id+1. Therefore,
we charge every such occurrence e to id, in order to refrain from counting e twice
(one time for id, and possibly another time for id+1 if it also overlaps with it).
Since for each id there are m− 1 locations id + � (� = 1, . . . ,m− 1) for which if
P appears at, it would overlap with the occurrence at id, the lemma follows.

Finally, if the text is T = an (the symbol a repeated n times), the pattern is
P = am, and the query range is [1, n], it is easy to see that k′′ = Θ(m · k) ��

Assume we first index T by constructing the suffix tree of T , denoted ST(T ). As
described in Sect. 4, the suffix tree of T enables us to find all the occurrences
of P in T . Therefore, a naive approach for solving the problem will be, when
given P , to simply find all occurrences of P in T by using this method, sort
them (thus obtaining the sequence L′), choose only those which are in the range
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[i, j], and then iterate through them, each time outputting the first location not
overlapping with the last location outputted. However, it is clear the the time
for such a method will be dependant on tocc, which can, as lemma 2 suggests,
be Θ(m · k), which is too large.

Another (slightly better) approach would be to transform the leaves of ST(T )
to points on a grid as described in Sect. 4. Assume we have found the node v
which is described there (by using the methods described there). Recall that
x(l) ∈ [x(l′v), x(l′′v )] iff P appears in T at location y(l). We can therefore recover
the exact set of occurrences of P in T that are in the range [i, j] by conducting
a range reporting query (i.e. searching and reporting all the points in range) of
the range [x(l′v), x(l′′v )]× [i, j] (latest results of range reporting due to Alstrup et
al. [2]). Again, we can sort them (thus obtaining L′′) and then iterate through
them, each time outputting the first location not overlapping with the last loca-
tion outputted. However, it is clear that now we still have a dependency on k′′,
which could be Θ(m ·k). Note that the method of representing the lexicographic
order of the suffixes of a text, and the locations in the text, as two axes of a grid,
used in this paper, was used before by Ferragina [8]. The goal of [8] required per-
forming range reporting queries on a grid, while we use range successor queries
on a grid.

We resort therefore to using a similar method to that which was used to
solve the successive indexing problem in Sect. 4: consider the leaf f for which
x(f) ∈ [x(l′v), x(l′′v )], y(f) ≥ i and y(f) is minimal. If y(f) ≤ j, then y(f) is
the leftmost occurrence of P in ti . . . tj+m−1, so according to the greedy scheme,
we can include it in L. It is clear that y(f) is exactly the occurrence of P in
T successive to i, subject to the requirement that y(f) ≤ j. Suppose such f
exists and therefore we included y(f) in L. We now want to choose the leftmost
occurrence of P in T in the range [i, j] not overlapping with the occurrence
we have just chosen. In other words: we wish to find a leaf l for which x(l) ∈
[x(l′v), x(l′′v )] and y(l) is minimal such that y(f) + m ≤ y(l) ≤ j. Luckily, this is
exactly the occurrence of P in T successive to y(f) + m, adding the constraint
that the occurrence is less than or equal to j. Therefore, this can be solved also
by querying for the y-axis successor of y(f)+m in the x-axis range [x(l′v), x(l′′v )].
We can repeat this process in order to obtain the sequence L as it was defined
by the greedy method.

The algorithm for the range non-overlapping indexing problem immediately
follows, and is described as Algorithms 3 (preprocess) and 4 (query).

5.1 Analysis

Theorem 5. The range non-overlapping indexing problem can by solved with
O(n log n) storage and O(m + k log logn) query time (where k is the maximal
number of non-overlapping occurrences of P in T , that are in the range [i, j]),
using O(n log n log logn) expected preprocess time.
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Algorithm 3. Range non-overlapping indexing preprocess
Input: a text T = t1 . . . tn

construct ST(T ); /* assume the field y(l) is set for any leaf l by the1

suffix tree algorithm */
traverse ST(T ) and set the field x(l) for each leaf l;2

traverse ST(T ) using DFS :3

foreach node u do4

store the values x(l′u) and x(l′′u) in u; /* l′u and l′′u are the leftmost5

and rightmost leaves of Tu, respectively */

preprocess the set {(x(l), y(l)) | l is a leaf in ST(T )} for range successor queries6

on an [n + 1] × [n + 1] grid;

Algorithm 4. Range non-overlapping indexing query
Input: a pattern P = p1 . . . pm, and two integers 1 ≤ i ≤ j ≤ n
let L be the empty sequence;1

traverse ST(T ) starting from the root, according to the symbols in P :2

if ‘stuck’ then return “no occurrences”;3

else let v be the node we reached (if we stopped at a node) or the node4

immediately below the edge we are at (if we stopped on an edge);
y ← i;5

while the range successor query for (x(l′v), x(l′′v ), y) yields a result (x′, y′), for6

which y′ ≤ j do
append y′ to L;7

y ← y′ + m;8

return L;9

Proof. The preprocess phase is identical to the one for the successive indexing
problem and therefore the space and preprocess time analysis is omitted.

The query time consists of:

1. O(m) in order to find node v.
2. O(log logn) time for a successor query to find each element of L, therefore

overall O(k log logn) for all k non-overlapping occurrences.

We conclude we use overall worst-case O(m + k log logn) time. ��

6 Conclusions

We have presented solutions for the successive list indexing problem, and the
range non-overlapping indexing problems, by using a tool from computational
geometry — range successor queries on a grid, which, to our best knowledge,
has not been used before in this context. It is conceivable that more indexing
problems can be solved by using the tool of range successor queries on a grid.
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Space-Efficient Straggler Identification in
Round-Trip Data Streams Via Newton’s
Identities and Invertible Bloom Filters

David Eppstein and Michael T. Goodrich

Dept. of Computer Science, Univ. of California, Irvine, 92697

Abstract. We study the straggler identification problem, in which an
algorithm must determine the identities of the remaining members of a
set after it has had a large number of insertion and deletion operations
performed on it, and now has relatively few remaining members.

1 Introduction

Imagine a security guard, who we’ll call Bob, working at a large office building.
Every day, Bob comes to work before anyone else, unlocks the front doors, and
then staffs the front desk. After unlocking the building, Bob’s job is to check in
each of a set of n workers when he or she enters the building and check each
worker out again when he or she leaves. Most workers leave the building by
6pm, when Bob’s shift ends. But, at the end of Bob’s shift, there may be a
small number, at most d << n, of stragglers, who linger in the building working
overtime. Before Bob can leave for home, he must tell the night guard the ID
numbers of all the stragglers. The challenge is that Bob has only a small clipboard
of size o(n) to use as a “scratch space” for recording information as workers come
and go. That is, Bob does not have enough room on his clipboard to write down
all ID numbers of the workers as they arrive and check them off again as they
leave. Of course, he also has to deal with the fact that some of the n workers
may not come to work at all on any given day. The question we address in this
paper is, “How can Bob, the security guard, check workers in and out so as to
identify all d stragglers at the end of his shift, using a scratch space of size only
o(n)?”

Formally, suppose we are given a universe U = {x1, x2, . . . , xn} of unique
identifiers, each representable with O(log n) bits. Given an upper bound param-
eter d << n, the straggler identification problem is to design a data structure
that uses only o(n) bits and efficiently supports the following operations on an
initially-empty subset S of U :

– Insert xi: Add the identifier xi to S.
– Delete xi: Remove the identifier xi from S.
– ListStragglers: Test whether |S| ≤ d, and if so, list all the elements of S.

F. Dehne, J.-R. Sack, and N. Zeh (Eds.): WADS 2007, LNCS 4619, pp. 637–648, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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We assume, without loss of generality, that d is small enough so that d log(n/d)
is o(n), since we need Ω(d log(n/d)) bits just to produce the answer to an List-
Stragglers query, and if d is close to n we might as well just store all the
elements of S explicitly. That is, we are interested in an implicit representation
of S, which can be used to list the contents of S when |S| ≤ d, but makes no
such guarantees when |S| > d.

In addition to our motivating example of Bob, the security guard (which also
applies to other in-and-out physical environments, like amusement parks), the
straggler identification problem has the following potential applications:

– In a high bandwidth multicast data stream, a server sends packets to many
different clients, which send acknowledgments back to the server identifying
each packet that was successfully received. The server then needs to identify
and re-send the packets to clients that did not successfully receive them. This
round-trip data stream application is an instance of the straggler identifi-
cation problem, since we expect most of the packets to be sent successfully
and we would like to minimize the space needed per client at the server for
unacknowledged packet identification.

– In heterogeneous Grid computations, a supervisor sends independent tasks
out to Grid participants, who, under normal conditions, perform these tasks
and return the results to the supervisor. There may be a few participants,
however, who crash, are disconnected from the network, or otherwise fail to
perform their tasks. The supervisor would like to identity the tasks without
responses, so that they can be sent to other participants for completion.

Our Results. In this paper, we study the straggler identification problem, showing
that it can be solved with small space and fast update times. We provide a de-
terministic solution, which uses O(d log n) bits to represent the dynamic set S of
O(log n)-bit identifiers. Our solution is based on a novel application of Newton’s
identities and allows for insertions and deletions to be done in O(d logO(1) n)
time. It allows the ListStragglers operation to be done in time polynomial
in d and logn. This solution does not allow (false) Delete x operations that
have no matching Insert x operations, however. Interestingly, we show that
no deterministic algorithm can guarantee correctness in such scenarios, so this
drawback should come as no surprise. Nevertheless, we provide a simple random-
ized solution to the straggler identification problem that uses O(d log n log(1/ε))
bits and tolerates false deletions, where ε > 0 is a user-defined error probabil-
ity bound. This solution is based on a novel extension to the counting Bloom
filter [3, 14], which itself is a dynamic, cardinality-based extension to the well-
known Bloom filter data structure [1] (see also [5]). We refer to our extension
as the invertible Bloom filter, because, unlike the standard Bloom filter and its
counting extension—which provide a degree of data privacy protection—the in-
vertible Bloom filter allows for the efficient enumeration of its contents if the
number of items it stores is not too large. This might seem like a violation of the
spirit of a Bloom filter, which was invented specifically to avoid the space needed
for content enumeration. Nevertheless, the invertible Bloom filter is useful for
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straggler identification, because it can at one time represent, with small space,
a multiset that is too large to enumerate, and later, after a series of deletions
have been performed, provide for the efficient listing of the remaining elements.

Related Prior Work. Our work is most closely related to the “deterministic k-set
structure” of Ganguly and Majumder [16]. This structure solves the straggler
detection problem, allowing items to have multiplicity greater than one but dis-
allowing false deletions. This solution, like our deterministic algorithm, is based
on finite fields; however the most space-efficient version of their solution uses
roughly twice as many bits as ours, and their decoding times are slower: ignor-
ing logarithmic factors, O(d3) or O(d4) time, compared to O(d2) for ours. An
additional technical difference is that, for the algorithm of Ganguly and Ma-
jumder, the parameter k (analogous to our d) measures the number of distinct
stragglers, while for us it measures the total number of stragglers. Independently
of our work, Ganguly and Majumder added to the submitted journal version of
their paper a lower bound similar to ours proving the impossibility of straggler
detection with false deletions (Ganguly, personal communication). Our deter-
ministic solution is also related to work on set reconciliation in communication
complexity [23].

Some additional existing work can be adapted to solve the straggler identifica-
tion problem. For example, Cormode and Muthukrishnan [8] study the problem
of identifying the d highest-cardinality members of a dynamic multiset. Their so-
lution can be applied to the straggler identification problem, since whenever there
are d or fewer elements in the set, then all elements are of relatively high cardi-
nality. Their result is a randomized data structure that uses O(d log2 n log(1/ε))
bits to perform updates in O(log2 n log(1/ε)) time and can be adapted to an-
swer ListStragglers queries in O(d log2 n log(1/ε)) time (in terms of their bit
complexities), where ε > 0 is a user-defined parameter bounding the probability
of a wrong answer.

Also relevant is prior work on combinatorial group testing (CGT), e.g., see [7,
10,11,12,13,15,18,22], and multiple access channels (MAC), e.g., see [6,17,19,20,
21,25,26,28]. In combinatorial group testing, there are d “defective” items in a set
U of n objects, for which we are allowed to perform tests, which involve forming
a subset T ⊆ U and asking if there are any defective items in T . In the standard
CGT problem, the outcome is binary—either T contains defective items or it
does not. The objective is to identify all d defective items. The CGT algorithms
that are most relevant to straggler identification are nonadaptive, in that they
must ask all of their tests, T1, T2, . . . , Tm, in advance. Such an algorithm can
be converted to solve the straggler identification problem by creating a counter
ti for each test Ti. On an insertion of x, we would increment each ti such that
x ∈ Ti. Likewise, on a deletion of x, we would decrement each ti such that x ∈ Ti.
The tests with non-zero counters would be exactly those containing our objects
of interest, and the nonadaptive CGT algorithm could then be used to identify
them. Unfortunately, these algorithms don’t translate into efficient straggler-
identification methods, as the best known nonadaptive CGT algorithms (e.g.,
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see [11,12]) use O(d2 logn) tests, which would translate into a straggler solution
needing O(d2 log2 n) bits.

The MAC problem is similar to the CGT problem, except that the items of
interest are no longer “defective”—they are d devices, out of a set U , wishing to
broadcast a message on a common channel. In this case a “test” is a time slice
where members of a subset T ⊆ U can broadcast. Such an event has a three-way
outcome, in that there can be 0 devices that use this time slice, 1 device that uses
it (in which case it is identified and taken out of the set of potential broadcasters),
or there can be 2 or more who attempt to use the channel, in which case none
succeed (but all the potential broadcasters learn that T contains at least two
broadcasters). Unfortunately, traditional MAC algorithms are adaptive, so do
not immediately translate into straggler identification algorithms.

Nevertheless, we can extend the MAC approach further [17,25,26,28], so that
each test T returns the actual number of items of interest that are in T . This
extension gives rise to a quantitative version of CGT (e.g., see [11], Sec. 10.5).
Unfortunately, previous approaches to the quantitative CGT problem are either
non-constructive [25], adaptive [17,25,26,28], or limited to small values of d. We
know of no nonadaptive quantitative CGT algorithms for d ≥ 3, and the ones
for d = 2 don’t translate into efficient solutions to the straggler identification
problem (e.g., see [11], Sec. 11.2).

2 Straggler Detection Via Symmetric Polynomials

We now describe a deterministic algorithm for straggler detection using near-
optimal memory. The algorithm is algebraic in nature: it stores as its snapshot of
the data stream a collection of power sums in a finite field, GF [pe]. The decoding
algorithm for this information uses Newton’s identities to convert these power
sums into the coefficients of a polynomial that has the stragglers as its roots,
and finds the roots of this polynomial.

As is standard for this sort of computation, we represent values in GF [pe] as
univariate polynomials of degree at most e−1, with coefficients that are integers
modulo p; the GF [pe] arithmetic operations are the standard polynomial arith-
metic, modulo a primitive polynomial of degree e. Therefore, values in the field
GF [pe] may be represented in space O(e log p) each. Addition and subtraction
of values in GF [pe] may be performed using modulo-p operations independently
over each coefficient, while multiplication of values in GF [pe] may be performed
using a convolution-based polynomial multiplication algorithm, together with re-
duction modulo the primitive polynomial. Our algorithms also involve division
by integers in the range [2, p−1], which may again be done independently on each
coefficient. Therefore, each field operation may be performed in bit complexity
Õ(e log p), where Õ(x) is a convenient shorthand for O(x logO(1) x).

Theorem 1. There is a deterministic streaming straggler detection algorithm
using O(d log n) bits of storage, such that Insert and Delete operations can be
performed in bit complexity Õ(d logn), and such that ListStragglers operations
can be performed in bit complexity Õ(d log3 n+d2 logn+d3/2 log2 nmin(d, log n)).
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Proof. We let p be a prime number, larger than d, and choose e such that pe > n.
We perform all operations of the algorithm in the field GF [pe], and interpret all
identifiers in the straggler detection problem as values in this field. The number
of bits needed to represent a single value in GF [pe] is O(log n), and, with this
choice of p and e, each arithmetic operation in the field may be performed in bit
complexity Õ(logn).

Define the power sums
sk(S) =

∑

xi∈S
xki

(where xi and sk belong to GF [pe], except for s0 which we store as a logn bit
integer). Our streaming algorithm stores sk(S) for 0 ≤ k ≤ d. As s0(S) is the
number of stragglers, we can easily compare the number of stragglers to d.

To update the power sums after an insertion of a value xi, we simply add
xki to each power sum sk; this requires O(d) arithmetic operations in GF [pe].
Similarly, to delete xi, we subtract xki from each power sum sk.

At any point in the algorithm, we may define a polynomial in GF [pe][x],

P (x) =
∏

xi∈S
(x− xi) =

|S|∑

k=0

(−1)kσkx|S|−k,

where σk is the kth elementary symmetric function of S (the sum of the products
of all k-tuples of members of S). These coefficients can be related to the power
sums by Newton’s identities (e.g. see [9]):

sk − k(−1)kak = −
k−1∑

i=1

(−1)iσisk−i.

That is,

s1 − σ1 = 0
s2 + 2σ2 = σ1s1

s3 − 3σ3 = σ1s2 − σ2s1

s4 + 4σ4 = σ1s3 − σ2s2 + σ3s1

s5 − 5σ5 = σ1s4 − σ2s3 + σ3s2 − σ4s1,

and so on. These equations hold over any field, and in particular over GF [pe].
By using these identities, we may calculate the coefficients of P in sequence from
the power sums and the earlier coefficients, using O(d2) arithmetic operations
to compute all coefficients. Note that these calculations involve divisions by the
numbers 2, 3, 4, . . ., d, but all such divisions are possible modulo p. Thus, this
stage of the ListStragglers operation takes bit complexity Õ(d2 logn).

Finally, to determine the list of stragglers, we find the roots of the polynomial
P (x) that has been determined as above. The deterministic root-finding algo-
rithm of Shoup [27] solves this problem in Õ(d log2 n + d3/2 lognmin(d, logn))
field operations; thus, the overall bit complexity bound is as stated. ��
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We note that a factor of d1/2 in Shoup’s algorithm [27] occurs only when p
has an unexpectedly long repeated subsequence in its sequence of quadratic
characters. It seems likely that a more careful choice of p can eliminate this factor,
simplifying the time bound for the ListStragglers operation to Õ(d log3 n +
d2 logn). If this is possible, it would be an improvement when d lies in the range
of values from log2/3 n to log2 n.

For d ≤ 4, the root finding algorithm may be replaced by the usual formulae
for solving low degree polynomials in closed form.

3 Impossibility Results for False Deletions

So far, we have assumed that an element deletion can occur only if a correspond-
ing insertion has already occurred. That is, the only anomalous data patterns
that might occur are insertions that are not followed by a subsequent dele-
tion. What can we say about more general update sequences in which insertion-
deletion pairs may occur out of order, multiple times, or with a deletion that
does not match an insertion? We would like to have a streaming data structure
that handles these more general event streams and allows us to detect small
numbers of anomalies in our insertion-deletion sequences.

Formally, define a signed multiset over a set S to be a map f from S to the
integers, where f(x) is the number of occurrences of x in the multiset. To insert
x into a signed multiset, increase f(x) by one, while to delete x, decrease f(x)
by one. Thus, any sequence of insertions and deletions, no matter how ordered,
produces a well-defined signed multiset. We wish to find a streaming algorithm
that can determine whether all but a small number of elements in the signed
multiset have nonzero values of f(x) and identify those elements. But, as we
show, for a natural and general class of streaming algorithms, even if restricted
to signed multisets in which each x has f(x) ∈ {−1, 0, 1}, we cannot distinguish
the empty multiset (in which all f(x) are zero) from some nonempty multiset.
Therefore, it is impossible for a deterministic streaming algorithm to determine
whether a multiset has few nonzeros.

The signed multisets form a commutative group, which we will represent using
additive notation: (f + g)(x) = f(x) + g(x). Call this group M . Define a unit
multiset to be a signed multiset in which all values f(x) are in {−1, 0, 1}; the
unit multisets form a subset of M , but not a subgroup.

Suppose a streaming algorithm maintains information about a signed multi-
set, subject to insertion and deletion operations. We say that the algorithm is
uniquely represented if the state of the algorithm at any time depends only on
the multiset at that time and not on the ordering of the insertions and deletions
by which the multiset was created. That is, there must exist a map u from M
to states of the algorithm.

Define a binary operation + on states of a uniquely represented multiset
streaming algorithm, as follows. If a and b are states, let A and B be signed
multisets such that u(A) = a and u(B) = b, and let a + b = u(A + B).
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Lemma 1. If a streaming algorithm is uniquely represented, and u(P ) = u(Q),
then u(P + R) = u(Q + R).

Proof. Let s be a sequence of updates that forms R. Then s transforms u(P )
to u(P + R) and u(Q) to U(Q + R). Since u(P ) = u(Q), u(P + R) must equal
u(Q + R). ��

Lemma 2. The operation defined above is well-defined independently of how
the representative multisets A and B are chosen, the states of the streaming
algorithm form a commutative group under this operation, and u is a group
homomorphism.

Proof. Independence from the choice of representation is Lemma 1. Associativ-
ity and commutativity follow from the associativity and commutativity of the
corresponding group operation on M . By Lemma 1, u(A) + u(−A) = u(0) and
u(A) + u(0) = u(A), so u(0) satisfies the axioms of a group identity; therefore,
we have defined a commutative group. That u is a homomorphism follows from
the way we have defined our group operations as the images by u of group op-
erations in M . ��

Theorem 2. Any uniquely represented multiset streaming algorithm for a mul-
tiset on n items, with fewer than n bits of storage, will be unable to distinguish
between the empty set and some nonempty unit multiset.

Proof. Suppose there are k < n bits of storage, so 2k possible states. By the
pigeonhole principle, two different sets A and B, when interpreted as multisets
and mapped to states, map to the same state u(A) = u(B). Then by Lemma 2,
u(A−B) = u(∅). A−B is a nonempty unit multiset that cannot be distinguished
from the empty set. ��

By applying similar ideas, we can prove a similar impossibility result without
assumption about the nature of the streaming algorithm.

Theorem 3. No deterministic streaming algorithm with fewer than n bits of
storage can distinguish a stream of matched pairs of insert and delete operations
over a set of n items from a stream of insert and delete operations that are not
matched in pairs.

Proof. Suppose that we have a deterministic streaming data structure with k < n
bits of storage. For any set A, let f(A) denote the state of the data structure on a
stream that starts with an empty set and inserts the items in A in some canonical
order. By the pigeonhole principle there exist two sets A and B such that A 	= B
but such that f(A) = f(B). Let sPQ (P,Q ∈ {A,B}) be the operation stream
formed by inserting the items in set P followed by deleting the items in set Q.
Then the streaming algorithm must have the same state after stream sAA as
it does after stream sBA, but sAA consists of matched insert-delete pairs while
sBA does not. ��
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4 Invertible Bloom Filters

The standard Bloom filter [1] is a randomized data structure for approximately
representing a set S subject to insertion operations and membership queries.
Given a parameter d on the expected size of S and an error parameter ε > 0, it
consists of a hash table B containing m = O(d log(1/ε)) single-bit cells (which we
denote as a “bit” field), which are initially all 0’s, together with k = Θ(log(1/ε))
random hash functions {h1, . . . , hk} that map elements of S to integers in the
range [0,m − 1]. Performing an insert of element x amounts to setting each
B[hi(x)].bit to 1, for i = 1, . . . , k. Likewise, testing for membership of x in S
amounts to testing that there is no i ∈ {1, . . . , k} such that B[hi(x)].bit = 0.
Setting the constants appropriately, one can make the probability of returning
a false positive to a membership query (that is, an element not in S identified
as belonging to S) to be less than ε (e.g., see [4]).

The counting Bloom filter [3,14] extends the standard Bloom filter by replac-
ing each “bit” cell of B with a counter cell, “count” (initialized to 0 for each
cell). An insertion of item x amounts to incrementing each B[hi(x)].count by
1, for i = 1, . . . , k. Such a structure also supports the deletion of an item x,
by decrementing each cell B[hi(x)].count by 1, for i = 1, . . . , k. Answering a
membership query is similar to that for the standard Bloom filter, amounting to
testing that there is no i ∈ {1, . . . , k} such that B[hi(x)].count = 0.

The invertible Bloom filter extends the counting Bloom filter, in several ways,
and allows us to solve the straggler identification problem even in the presence of
false deletions. It requires that we use three additional random hash functions,
f1, f2, and g, in addition to the k hash functions, h1, . . . , hk, used for B above.
The functions, f1 and f2 map integers in [0, n] to integers in [0,m]. The function
g maps integers in [0, n] to integers in [0, n2]. In addition, we add two more fields
to each Bloom filter cell, B[i]:

– An “idSum” field, which stores the sum of all the elements, x in S, for x’s
that map to the cell B[i]. Note that if B[i] stores m copies of a value x (and
no other values), then B[i].idSum = mx.

– A “hashSum” field, which stores the sum of all the hash values, g(x), for x’s
that map to the cell B[i]. Note that if B[i] stores m copies of a value x (and
no other values), then B[i].hashSum = mg(x).

Moreover, we create a second Bloom filter, C, which has the same number of
(count, idSum, and hashSum) fields as B, but uses only the functions f1 and f2

to map elements of S to its cells. That is, C is a secondary augmented counting
Bloom filter with the same number of cells as B, but with only two random hash
functions, f1 and f2, to use for mapping purposes. Intuitively, C will serve as a
fallback Bloom filter for “catching” elements that are difficult to recover using
B alone. Finally, in addition to these fields, we maintain a global count variable,
initially 0. Each of our count fields is a signed counter, which (in the case of
false deletions) may go negative.
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Since all n ID’s in U can be represented with O(log n) bits, their sum can
also be represented with O(log n) bits. Thus, the space needed for B and C is
O(m log n) = O(d log n log(1/ε)).

We process updates for the invertible Bloom filter as follows.

Insert x:
increment count
for i = 1, . . . , k do

increment B[hi(x)].count
add x to B[hi(x)].idSum
add g(x) to B[hi(x)].hashSum

for i = 1, 2 do
increment C[fi(x)].count
add x to C[fi(x)].idSum
add g(x) to C[fi(x)].hashSum

Delete x:
decrement count
for i = 1, . . . , k do

decrement B[hi(x)].count
subtract x from B[hi(x)].idSum
subtract g(x) from B[hi(x)].hashSum

for i = 1, 2 do
decrement C[fi(x)].count
subtract x from C[fi(x)].idSum
subtract g(x) from C[fi(x)].hashSum

That is, to insert x, we go to each cell that x maps to and increment its
count field, add x to its idSum field, and add g(x) to its hashSum field. Thus, the
methods for element insertion is fairly straightforward. Deletion is similarly easy,
in that we simply decrement counts and subtract out the appropriate summands
to reverse the insertion operation.

Our method for performing the ListStragglers operation is a bit more in-
volved, however. The basic idea is that some cells of B are likely to be pure, that
is, to have values that have been affected by only a single item. If we can find
a pure cell, we can recover the identity of its item by dividing its idSum by its
count. Once a single item and its count are known, we can remove that item
from the data structure and continue until all items have been found.

The difficulty with this approach is in finding the pure cells. Because of
the possibility of multiple insertions and false deletions, we cannot simply test
whether count is one: some pure cells may have larger counts (i.e., have multiple
copies of the same value), and some impure cells may have a count equal to one
(e.g., because of two insertions of a value x followed by a false deletion of a value
y that collides with x at this cell). Instead, to test whether a cell is pure, we use
its hashSum: in a pure cell, the hashSum should equal the count times the hash
of the item’s identifier, while in a cell that is not pure it is very unlikely that the
hashSum, idSum, and count fields will match up in this way.
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The following pseudo-code expresses the decoding algorithm outlined above.

ListStragglers:
while ∃i, s. t. g(B[i].idSum/B[i].count) = B[i].hashSum/B[i].count do

if B[i].count > 0 then {this is a good element}
Push x = B[i].idSum/B[i].count onto an output stack O.
Delete all B[i].count copies of x from B and C (using a method
similar to Delete x above)

else {this is a false delete}
Back out all −B[i].count falsely-removed copies of x from B and C
(using a method similar to Insert x above)

if count = 0 then
Output the elements in the output stack and insert each element back
into B and C.

else {we have mutually-conflicting elements in B}
Repeat the above while loop, but do the tests using C instead of B.
Output the elements in the output stack, O, and insert each element
back into B and C.

There is a slight chance that this algorithm fails. For example, we could have
two or more items colliding in a cell of B, but we could nevertheless have the
condition, g(B[i].idSum/B[i].count) = B[i].hashSum/B[i].count, satisfied (and
similarly for C in the second while loop). Fortunately, since g is a random func-
tion from [0, n] to [0, n2], such an event occurs with probability at most 1/n2;
hence, over the entire algorithm we can assume, with high probability, that it
never occurs (since d << n). More troubling is the possibility that, even after us-
ing the fallback array, C, to find and enumerate elements in the invertible Bloom
filter (in the second while loop), we might still have some mutually-conflicting
elements in C.

Lemma 3. If the number of elements in S, which were inserted but not deleted,
plus the number of false elements negatively indicated in S, corresponding to
items deleted but not inserted, is at most d, then the first while loop will remove
all but εd such elements from S with probability 1 − ε/2, for ε < 1/4.

Proof. Omitted due to space limitations. ��

Let us assume, therefore, that at most εd elements (true and/or false) remain
in S after the first while loop. Let us suppose further that each is mapped to
two distinct cells in C (the probability there is any such self-collision among the
remaining elements in C is at most εd/4dk ≤ ε/4). We can envision each cell in
C as forming a vertex in a graph, and each selected pair of cells as forming an
edge in the graph; thus our data can be modeled as a random multigraph with
x ≤ εd edges and y = 4dk ≥ 8d vertices. Thus, it is a very sparse graph. Let
c = y/x ≥ 8/ε.

Two types of bad event could prevent us from decoding the data remaining
in C after the first loop. First, two items could map to the same pair of cells, so
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that our multigraph is not a simple graph. There are x(x − 1)/2 pairs of items,
and each two items collide with probability 2/(y(y−1)), so the expected number
of collisions of this type is x(x− 1)/(y(y − 1)), roughly 1/c2. Second, the graph
may be simple but may contain a cycle. As shown by Pittel [2, Exercise 8, p.
122], the expected number of vertices in cyclic components of a random graph of
this size is bounded by

∑∞
k=3 kc

−k = O(1/c3). Therefore, the expected number
of events of either type, and the probability that there exists an event of either
type, is O(1/c2). Choosing c = O(

√
1/ε) is sufficient to show that we will fail in

the second while loop with probability at most ε/4.

Theorem 4. If the number of elements in S, which were inserted but not deleted,
plus the number of false elements negatively indicated in S, which correspond to
items deleted but not inserted, is at most d, then the above algorithm correctly
answers a ListStragglers query with probability at least 1 − ε, where ε < 1/4.
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(eds.) WADS 2005. LNCS, vol. 3608, Springer, Heidelberg (2005)

14. Fan, L., Cao, P., Almeida, J., Broder, A.Z.: Summary cache: a scalable wide-area
web cache sharing protocol. IEEE/ACM Trans. Networking 8(3), 281–293 (2000)

15. Farach, M., Kannan, S., Knill, E., Muthukrishnan, S.: Group testing problems
with sequences in experimental molecular biology. In: SEQUENCES, p. 357. IEEE
Press, New York (1997)

16. Ganguly, S., Majumder, A.: Deterministic k-set structure. In: Proc. 25th ACM
SIGMOD Symp. Principles of Database Systems, pp. 280–289 (2006)

17. Georgiadis, L., Papantoni-Kazakos, P.: A collision resolution protocol for random
access channels with energy detectors. IEEE Trans. on Communications COM-
30(11), 2413–2420 (1982)

18. Goodrich, M.T., Hirschberg, D.S.: Efficient parallel algorithms for dead sensor
diagnosis and multiple access channels. In: 18th ACM Symp. on Parallelism in
Algorithms and Architectures (SPAA), pp. 118–127. ACM Press, New York (2006)

19. Greenberg, A.G., Ladner, R.E.: Estimating the multiplicities of conflicts in multiple
access channels. In: Proc. 24th Annual Symp. on Foundations of Computer Science
(FOCS’83), pp. 383–392. IEEE Computer Society Press, Los Alamitos (1983)

20. Greenberg, A.G., Winograd, S.: A lower bound on the time needed in the worst
case to resolve conflicts deterministically in multiple access channels. J. ACM 32(3),
589–596 (1985)

21. Hofri, M.: Stack algorithms for collision-detecting channels and their analysis: A
limited survey. In: Balakrishnan, A.V., Thoma, M. (eds.) Proc. Inf. Sem. Modelling
and Performance Evaluation Methodology, Lecture Notes in Control and Info. Sci.,
vol. 60, pp. 71–85 (1984)

22. Hwang, F.K., Sós, V.T.: Non-adaptive hypergeometric group testing. Studia Scient.
Math. Hungarica 22, 257–263 (1987)

23. Minsky, Y., Trachtenberg, A., Zippel, R.: Set reconciliation with nearly optimal
communication complexity. IEEE Trans. Information Theory 49(9), 2213–2218
(2003)

24. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge (1995)

25. Pippenger, N.: Bounds on the performance of protocols for a multiple-access broad-
cast channel. IEEE Trans. on Information Theory IT-27(2), 145–151 (1981)
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Abstract. The dynamic TCP acknowledgement problem formulated by
Dooly et al. has been intensively studied in the area of competitive anal-
ysis. However, their framework does not consider the sliding window that
restricts the maximum number of packets that the sender can inject into
the network without an acknowledgement in TCP protocol. This paper
proposes a new problem in which the sliding window is realistically inte-
grated. We study how the ability of on-line algorithms change, depending
on whether the receiver knows the window size. We show that a deter-
ministic on-line algorithm extended from the optimal on-line algorithm
for Dooly’s framework achieves the best competitive ratio of 2, if the win-
dow size is given. By contrast, if the window size is not given, the lower
bound of the competitive ratio for an algorithm class which contains
the algorithm by Dooly et al. depends on the peak packet rate from the
sender and the window size. Significantly, our problem models the sit-
uation in which an on-line algorithm involuntarily transforms the input
and processes the modified input without noticing the transformation.

1 Introduction

TCP (Transport Control Protocol) is the most used transport protocol in the
Internet. Thus, there is a strong need to grasp the behavior of TCP protocol
both from theoretical and experimental sides. Among previous works that an-
alyzed TCP theoretically, Dooly et al. [1] focused on the mechanism of TCP
acknowledgement. When a sender S sends packets to a receiver R using TCP
protocol, a packet arriving at R must be acknowledged by R in order to no-
tify S that the transmission was successful. However, each packet need not be
acknowledged individually. Instead, most TCP implementations adopt “delayed
ACK” which admits the receiver to acknowledge multiple packets with a sin-
gle acknowledgement by postponing the acknowledgement. The delayed ACK
mechanism contributes to reducing the overhead of the acknowledgements by
decreasing their frequency. On the other hand, it has the risk to add excessive
latency to the TCP connection. Dooly et al. [1] formulated this trade-off as the
dynamic TCP acknowledgement problem.

In the dynamic TCP acknowledgement problem, a sequence of n packets
σ = (p1, p2, . . . , pn) reach R in order. The arrival time of pi is denoted by ai.
If ii < i2, ai1 ≤ ai2 . An acknowledgment algorithm in R receives the arrival
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time sequence (a1, a2, · · · , an) as the input and divides σ into m subsequnces
σ1, σ2, . . . , σm, where each subsequence end corresponds to a single acknowledg-
ment. All the packets contained in σj (1 ≤ j ≤ m) are acknowledged together
by the j-th acknowledgement at time tj . To assure that all the packets should
be acknowledged, m ≥ 1 and tm ≥ an. In case a packet p is not acknowledged
immediately, an extra latency arises. The purpose of the dynamic TCP acknowl-
edgement problem is to minimize the sum of the cost for generating acknowl-
edgements and the cost for the latency of acknowledgements by choosing the
acknowledgement time sequence (t1, t2, · · · , tm) adequately. Ordinarily, an ac-
knowledgment time is decided in an on-line fashion without knowing the future
packet arrivals. Dooly et al. propose two kinds of cost functions to be minimized.
The first cost function fsum combines the number of acknowledgements with the
sum of delays for all the packets. fsum is described as m+

∑m
j=1

∑
pi∈σj

|tj−ai|.
The second cost function fmax combines the number of acknowledgements with
the sum of the maximum delays of a packet in each subsequence σj and is de-
scribed as m +

∑m
j=1 maxpi∈σj |tj − ai|.

Dooly et al. evaluated on-line algorithms with competitive analysis [2] which
compares an on-line algorithm with the optimal off-line algorithm OPT that
knows σ in advance. Let CA(σ) be the cost of an algorithm A in processing σ.
An on-line algorithm A is called c-competitive if CA(σ) ≤ c · COPT (σ) + β for
any σ, where β is a constant independent of σ. For each of fsum and fmax, they
presented a 2-competitive deterministic optimal on-line algorithm. The best on-
line algorithm for fmax utilizes a timer: When pi reaches R at time ai, the timer
is set to ai + 1. If ai+1 > ai + 1, the timer expires and the acknowledgement is
performed at ai+ 1. Otherwise, the timer is updated to ai+1 + 1 at ai+1. In this
paper, this algorithm is referred to as WAIT(1), because it always waits for 1 unit
time after the last packet arrival before an acknowledgement. This paper deals
with fmax only and we abbreviate the dynamic TCP acknowledgement problem
with fmax simply as DTCP.

We claim that DTCP abstracts the mechanism of TCP acknowledgement only
partially, because it misses the concept of sliding window that plays a crucial role
for congestion control in TCP. The sliding window functions in a TCP sender S
and restricts the maximum number of packets that S can transmit without noti-
fied acknowledgements. See Fig. 1. The sliding window is depicted as a rectangle
and divides the packet sequence into three subsequences. The leftmost subse-
quence presents the packets which have been already acknowledged. Packets on
the right of the left end of the sliding window are still unacknowledged. Among
them, S can inject the packets in the sliding window into the network without
receiving a new acknowledgement. In other words, the width of the sliding win-
dow defines the maximum number of packets that S can inject into the network
without a new acknowledgement. Every time S receives an acknowledgement,
the sliding window slides rightward. The sliding window forces S to stop send-
ing packets when an acknowledgement has not been returned from R for long.
The width of the sliding window is termed window size.
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p1 p2 p3 p4 p5 p6 p10p7 p8 p9

disallowed to send
acknowledged unacknowledged unacknowledged

allowed to send

W=5

Fig. 1. Sliding Window

Our primary contribution is to propose a new realistic problem which inte-
grates the sliding window into DTCP. Because, in the standard TCP, R operates
without knowing if S stops sending packets due to the sliding window, we exam-
ine how the power of on-line algorithms depends on whether R recognizes that
S is kept waiting by the sliding window. This paper assumes that the window
size is a constant integer W (≥ 1). Namely, a packet pi can never reach R before
pi−W is acknowledged by R for i > W . Under this simplification, R has only
to know the value of W so as to judge whether S is waiting or not. Our new
problem is named as DTCPSW (DTCP with Sliding Window). Interestingly,
in DTCPSW, a packet arrival time reflects the advance of the sliding window
which results from how the acknowledgment algorithm in R acknowledged in
the past. Therefore, an on-line algorithm involuntarily changes the original in-
put (the time when a packet becomes ready at S) and processes the modified
input (the time when it arrives at R) without noticing that it is changed from
the original input. As far as we know, there is no previous work that addresses
this intractability in the research area of competitive analysis.

Section 2 defines DTCPSW formally. Section 3 presents the optimal off-line
algorithm for DTCPSW. Section 4 discusses the case in which R knows the
window size. For this case, we construct a 2-competitive deterministic optimal
on-line algorithm by extending WAIT(1). Thus, a result comparable to DTCP is
obtained. Section 5 treats the case in which R does not know the window size.
Here, we pick up an algorithm class WAIT(α) that generalizes WAIT(1) such that
α is arbitrary positive real. We prove that no on-line algorithm in WAIT(α) is
better than T

W+
 T
W �−1

-competitive, even if the number of packets S wishes to
send per unit time never goes beyond T . Thus, Sect. 4 and Sect. 5 contrast, which
reveals the importance of the agreement between the sender and the receiver in
communications. In addition, since the receiver does not grasp the window size
in the real TCP protocol, we suppose that Sect. 5 outputs a more realistic result
than other previous theoretical researches. We also show that one instance of
WAIT(α) becomes (� TW � + 2)-competitive.

1.1 Related Works

The dynamic TCP acknowledgement problem has been intensively studied in
terms of competitive analysis. Karlin et al. [3] studied randomized on-line algo-
rithms for fsum and developed an e

e−1 -competitive randomized on-line algorithm.
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Noga et al. [4] devised the O(n) optimal off-line algorithm for fsum. Recently,
Albers and Bals [5] studied another cost function m+max1≤i≤mmaxpi∈σj |tj −
ai|. Their problem is not like a ski-rental problem and the best competitive ratio
becomes π2

6 . Frederiksen et al. [6] solved the dynamic TCP acknowledgement
problem under the constraint that two successive acknowledgement times must
be one unit time apart. All of these works are different from our paper in that
they do not take the sliding window into account.

2 Problem Statement

In DTCPSW we are given a sequence of packets σ = (p1, p2, . . . , pn) that S shall
send to R in order. DTCPSW differs from the original DTCP in that the next
two sorts of times are associated with each packet pi.

– Ready time ri: the time when S prepares the transmission of pi. pi is called
ready at time t if t ≥ ri.

– Arrival time aAi : the time when pi arrives at R and get eligible to the ac-
knowledgment algorithm A in R. The superscript A indicates that the arrival
time is influenced by the action of A as explained below.

S can send pi at ri unless kept waiting by the sliding window. On the other
hand, the sliding window permits S to send pi only after A acknowledges pi−W
if i > W , where W is a constant integer. Let ackA(p) be the time when A
acknowledges a packet p. In DTCPSW, by assuming that the propagation delay
between S and R equals 0, aAi is described by (1). Here, when i ≤ 0, ackA(pi) is
defined to be −∞. Note that aAi = ri for any i in the original DTCP.

aAi = max{ri, ackA(pi−W )}. (1)

If A acknowledges pi−W with the l-th acknowledgement at time tl, (1) may be
written as aAi = max{ri, tl}. At tl, immediately after A’s l-th acknowledgement,
a group of packets postponed by the sliding window are passed to A. We allow A
to acknowledge them instantly by the (l + 1)-th acknowledgement. In this case,
tl = tl+1. Thus, A can make multiple acknowledgements at a given time. At
most W packets are eligible to A simultaneously because of the sliding window.
Hence, for kW packets that has the same ready time, A may acknowledge k
times at a given time.

Importantly, whereas the ready time sequence (r1, r2, · · · , rn) is the inher-
ent input that has nothing to do with A, A affects the arrival time sequence
(aA1 , aA2 , · · · , aAn ). Thus, we denote the ready time sequence (r1, r2, · · · , rn) by σ
with equating it with the input packet sequence (p1, p2, · · · , pn). A encounters the
arrival time sequence only and serves it without knowing σ. In the subsequence
the name of the acknowledgment algorithm is omitted from variables expressing
arrival times, when clear from the context. In DTCPSW, the latency of a packet
p is naturally defined as the length of the time period between its ready time
and ackA(p). Again, A divides σ into m subsequences σ1, σ2, · · ·σm whose ends
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correspond to acknowledgments. The purpose of DTCPSW is to minimize the
cost function fmax shown in (2).

fmax = m +
m∑

j=1

max
pi∈σj

|tj − ri|. (2)

A cannot know σ even after it finishes the processing of the arrival time sequence,
as long as A does not know W exactly. When W = 1, a trivial on-line algorithm
that acknowledges every packet instantly becomes the optimal for DTCPSW.
Hence, we assume W ≥ 2 in DTCPSW.

DTCPSW opens up a new vista on the research of competitive analysis, be-
cause it models the situation in which an on-line algorithm unconsciously changes
the original input sequence which is the ready time sequence in our case. It is
not rare that an on-line algorithm does not figure out the original input sequence
after changing it involuntarily. For example, consider a scenario in which there
exist a couple of mice in some house and the inhabitant sees one of them by
accident. If he chooses to get rid of the mouse on the spot, the number of mice
cannot increase any more. On the contrary, if he lets the mouse escape, he will
meet a lot of mice (i.e., the changed input sequence) in future, but he will never
become aware that there were only two mice at the beginning.

3 Optimal Off-Line Algorithm

This section presents the optimal off-line algorithm OPT for DTCPSW. OPT
knows σ and W in advance. We start with the necessary condition of OPT.

Lemma 1. Let B be an off-line algorithm. If S has ever defer sending a packet
to R because of the sliding window in B’s running, B is not the optimal.

Proof. Let pi be the first packet which S defers sending to R. Namely, rk =
ak for 1 ≤ k ≤ i − 1 and ri < ai. pi becomes eligible to R at ai just after
some acknowledgement by B. Consider the subsequence of σ that ends with
this acknowledgement. Let this subsequence be σj . Since ri−1 ≤ ri, we have
ai−1 ≤ ri < ai. Therefore, if B acknowledged at ai−1 instead of ai, the latency
cost for σj would have been reduced by ai − ai−1. Since this modification does
not influence the latency for other subsequences, B cannot be the optimal. ��

From Lemma 1, OPT makes an acknowledgement, whenever the number of un-
acknowledged eligible packets increases to W . Therefore, OPT acknowledges at
least once for every W packets. More importantly, ∀i, ai = ri for OPT.

When an acknowledgement algorithm A guarantees ai = ri for any i, we can
proceed the analysis of A by dividing the total cost CA(σ) into CA(pi) that is
the cost incurred for each packet pi in the next manner. Dooly et al. [1] exploited
the similar technique for DTCP.

– When A acknowledges at ai, CA(pi) = 1 which corresponds to the cost for
a single acknowledgement.



654 H. Koga

for 1 ≤ k ≤ q

OPTCOST[k] =
{

r′
k − r′

1 + 1. if k ≤ W
min1≤l≤W OPTCOST[k − l] + r′

k − r′
k−l+1 + 1. if k > W

PREVACK[k] =
{

0 if k ≤ W
argminl OPTCOST[k − l] + r′

k − r′
k−l+1 + 1. if k > W

Fig. 2. Update of OPTCOST and PREVACK

– Suppose pi is not the final packet of σ. When A does not acknowledge at ai,
CA(pi) = ri+1 − ri which corresponds to the latency cost.

Note that any algorithm that acknowledges at a halfway time between ai and
ai+1 cannot be optimal. It is easy to verify that CA(σ) =

∑n
i=1 CA(pi). Similarly,

for a subsequence τ of σ, we define CA(τ) as
∑
pi∈τ CA(pi).

Lemma 2. If ri+1 − ri > 1. OPT acknowledges at ri.

Proof. Recall that ∀i, ai = ri. If OPT does not acknowledge at ri, COPT (pi) =
ri+1 − ri. Else if OPT acknowledges at ai, COPT (pi) = 1. Thus, if ri+1 − ri > 1,
OPT must acknowledge at ri to achieve the optimality. ��

Algorithm OPT: OPT first scans σ = (r1, r2, r3, · · · rn) from its head. When
ri+1 − ri > 1, OPT puts an acknowledgement at ri. As the result, σ is cut into
subsequences. The distance between any two adjacent ready times is at most 1
in each subsequence.

Consider one of these subsequences, say σ′ = (r′1, r′2, · · · , r′q). OPT com-
putes where to put acknowledgements in serving σ

′
with dynamic program-

ming. OPT prepares two arrays OPTCOST and PREVACK. OPTCOST[k] (1 ≤
k ≤ q) stores the minimum cost to serve the prefix of σ

′
, i.e., (r′1, r

′
2, · · · , r′k).

PREVACK[k] remembers the location of the second to last acknowledgment in
the optimal solution for (r′1, r

′
2, · · · , r′k). OPTCOST and PREVACK are up-

dated according to the procedure in Fig. 2. When k ≤ W , the optimal solution
for the prefix of σ

′
has only to acknowledge once at the end. When k > W ,

it must decide where to put the second-to-last acknowledgement. In the end,
OPTCOST[q] holds the cost for processing σ

′
optimally. The times for acknowl-

edgements are acquired by tracing back the array PREVACK.
Since it takes an O(W ) time to perform the min operation which is invoked

for each packet, the computational complexity of OPT becomes O(Wn).

4 Known Window Size

This section studies the case when on-line algorithms know W beforehand. No-
tably our algorithm WAITSW(1) extended from WAIT(1) accomplishes the same
competitive ratio in DTCPSW as the competitive ratio of WAIT(1) in DTCP.
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Algorithm WAITSW(1): At ai (i ≥ 1), the timer is set to ai + 1. In case
ai+1 > ai + 1, the timer expires and WAITSW(1) acknowledges at ai + 1. Other-
wise the timer is updated at ai+1 to ai+1 + 1. In addition, instantly the number
of unacknowledged eligible packets is increases to W , they are immediately ac-
knowledged.

Since the sliding window never obstructs S from sending packets, ai = ri for
any i when WAITSW(1) runs.

Theorem 1. WAITSW(1) is 2-competitive.

Proof. In both of OPT and WAITSW(1), we have ai = ri for any i. Furthermore,
both algorithms make an acknowledgement before ai+1 when ai+1 > ai + 1.
Hence, we may proceed the analysis by decomposing σ into subsequences and
treating them separately. In each subsequence, any two adjacent ready times are
distant by less than 1.

Hence, we only consider ready time sequences σ = (r1, r2, · · · , rn) for which
ri+1 ≤ ri + 1 for any i ≤ n− 1 hereafter. Since ai = ri for any i, ai+1 ≤ ai + 1
for i ≤ n − 1. Therefore, WAITSW(1) acknowledges when W unacknowledged
eligible packets are accumulated at R except the last acknowledgement. Suppose
that WAITSW(1) divides σ into subsequences σ1, σ2, · · · , σm. Given a subsequence
σj = (ai+1, ai+2, . . . ai+l), we need to consider two cases.
Case 1: Suppose that j = m. In this case, WAITSW(1) acknowledges at an + 1 if
|σm| < W and at an if |σm| = W . Thus, we have CWAITSW(1)(σm) ≤ 1 + (an + 1−
ai+1) = an − ai+1 + 2. On the other hand, COPT (σm) = COPT (σm\pn) + 1 ≥
∑n−1
k=i+1 min{1, ak+1 − ak} + 1 = an − ai+1 + 1 because ak+1 − ak ≤ 1. Thus,

CWAITSW(1)(σm)

COP T (σm) ≤ an−ai+1+2
an−ai+1+1 ≤ 2

1 = 2.
Case 2: Suppose that j < m. In this case, σj contains just W packets so that
l = W . Thus CWAITSW(1)(σj) = ai+W −ai+1 +1 because WAITSW(1) acknowledges
at ai+W . Since σj consists of W packets, COPT (σj) ≥ 1. It also holds that
COPT (σj) ≥

∑i+W
k=i+1 min{1, ak+1 − ak} ≥ ai+W − ai+1. Thus, CWAITSW(1)(σj) =

2 ∗ ai+W −ai+1+1
2 ≤ 2 max{ai+W − ai+1, 1} ≤ 2COPT (σj). ��

The proof of the lower bound for DTCP in [1] utilizes an arrival time sequence
such that at most two packet arrivals appear in a single subsequence in the
runnings of on-line algorithms and OPT both. Hence, this lower bound is also
valid for DTCPSW when W ≥ 2. The next theorem is obtained from Theorem
23 in [1]. From this theorem, WAITSW(1) turns out to be the optimal.

Theorem 2. Let A be any deterministic on-line algorithm for DTCPSW that
knows W . Then, there exists a ready time sequence σ s.t. CA(σ) ≥ 2COPT (σ)−ε,
where ε can be made arbitrarily small relatively to COPT (σ).

5 Unknown Window Size

Throughout this section, the window size is unknown to on-line algorithms. We
focus on a class of on-line algorithms WAIT(α) that generalizes WAIT(1).
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Algorithm WAIT(α): Let α is an arbitrary positive real value. At ai (i ≥ 1), the
timer is set to ai + α. In case ai+1 > ai + α, WAIT(α) acknowledges at ai + α.
Otherwise the timer is updated at ai+1 to ai+1 + α.

We show that the competitive ratio of WAIT(α) depends on the peak packet
rate from S whose formal definition is given in Definition 1.

Definition 1 (peak packet rate). For a TCP connection, if at most T ready
times lie in the time interval [t, t + 1) for any time t, the peak packet rate from
the TCP sender is said to be T .

The time interval in this definition is half-open. This admits at most (t2−t1)T+T
ready times to appear in the close time interval [t1, t2] for t1 and t2 such that
t2 − t1 ≥ 1, Throughout this section, we assume that the peak packet rate from
the TCP sender is T .

5.1 Lower Bound

The lower bound on the competitiveness of WAIT(α) depends on T and W .

Theorem 3. For ∀α, WAIT(α) is worse than T
W+
 T

W �−1
-competitive if T > W .

Proof. Let k = � TW �. Since T > W , k ≥ 1. First consider a ready time sequence
σ′ such that kW ready times appear every unit time until time I − 1 where I is
some integer. Namely, r(i−1)kW+1 = r(i−1)kW+2 = · · · rikW = i−1 for 1 ≤ i ≤ I.
OPT acknowledges these kW packets immediately by acknowledging k times at
each time t for 0 ≤ t ≤ I − 1. Since OPT incurs no delay, COPT (σ′) = kI.

WAIT(α) waits for α for each clump of W packets before acknowledging them.
For the first kW packets whose ready times are 0, p(j−1)W+1, p(j−1)W+2, · · · pjW
for 1 ≤ j ≤ k are acknowledged at time jα. Thus, the whole latency costs for
the first kW packets becomes

∑k
i=1(jα− 0) = k(k+1)

2 α.
The next W packets become eligible at akW+1 = max{rkW+1, akW−W+1} =

max{1, kα}. Therefore, they are acknowledged at time max{1, kα} + α. In this
way, the whole latency costs for packets from pkW+1 to p2kW whose ready times
are 1 becomes

∑k
j=1(max{1, kα} + jα− 1) = kmax{0, kα− 1}+ k(k+1)

2 α.
In general, the whole latency costs for the kW packets from p(i−1)kW+1 to

pikW becomes

k∑

j=1

(max{0, (i−1)(kα−1)}+ jα) = kmax{0, (i−1)(kα−1)}+
k(k + 1)

2
α. (3)

By summing up the right-hand term of (3) for 1 ≤ i ≤ I and adding the ac-
knowledgement cost of kI,

CWAIT(α)(σ′) = kI + kmax{0, I(I − 1)
2

(kα− 1)} +
Ik(k + 1)

2
α. (4)
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The competitive ratio CWAIT(α)(σ′)/COPT (σ′) is shown in (5).

1 + max{0, (I − 1)(kα− 1)
2

} +
(k + 1)

2
α. (5)

Since I may be chosen to be arbitrary large, it has to hold that α ≤ 1
k in order

for WAIT(α) to be competitive.
Next, consider another ready time sequence σ” whose length equals W such

that r1 = a1 = 0 and ri+1 is the time immediately after WAIT(α) acknowledges
the i-th packet at ai+α. Therefore, ri = (i− 1)α. Since W < T , σ” satisfies the
condition that the peak packet rate is T . OPT serves σ” by acknowledging only
once at rW . Since the latency of OPT equals (W−1)α, COPT (σ”) = 1+(W−1)α.
WAIT(α) must pay a latency cost of α and one acknowledgement cost for each
packet. Hence, CWAIT(σ)(σ”) = W (1 + α). The cost ratio between WAIT(α) and
OPT becomes W (1+α)

1+(W−1)α . Since W (1+α)
1+(W−1)α decreases with respect to α for W ≥ 2

and we have α ≤ 1
k ,

W (1+α)
1+(W−1)α becomes the minimum when α = 1

k in the next

way: W (k+1)
W+k−1 = W (
 T

W �+1)

W+
 T
W �−1

≥ T
W+
 T

W �−1
. ��

Intuitively, this proof is interpreted as follows. Because the arrival time ai may
fall behind the ready time ri due to the sliding window when W is unknown, an
on-line acknowledgement algorithm cannot wait for so long so as to be compet-
itive. However this impatience becomes harmful when S is not kept waiting by
the sliding window. The peak packet rate T determines the maximum possible
value of ai − ri, that is the maximum extent that the ready time sequence is
transformed. Thus, the competitive ratio depends on T in DTCPSW.

When T ≤W , the lower bound of competitiveness becomes 2 for T ≥ 2.

5.2 Upper Bound

Theorem 4. WAIT( 1
� T

W 	+1
) is (� TW �+ 2)-competitive.

This theorem states that one instance from WAIT(α) attains the nearly tight
competitive ratio, compared with the lower bound in Theorem 3.

Before the proof, we mention two crucial properties of WAIT( 1
� T

W 	+1
).

Lemma 3. When the peak packet rate is T , the number of unacknowledged ready
packets is always at most T + W .

An unacknowledged ready packet may be either eligible or not eligible to the
acknowledgment algorithm. In general, if the number of unacknowledged ready
packets is greater than W , only the first W of them are eligible.

Proof. The proof utilizes contradiction. Assume that the number of unacknowl-
edged ready packets reaches T +W + 1. Let t2 be the first time when this event
takes place and t1 be the last time before t2 such that the number of unacknowl-
edged ready packets increased from W − 1 to W . Thus, T +W + 1−W = T + 1
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packets become ready in the time interval [t1,t2]. Since the peak packet rate is
T , t2 − t1 ≥ 1.

Meanwhile, W unacknowledged packets are always accumulated at R in
[t1, t2]. Therefore, WAIT( 1

� T
W 	+1

) decreases the number of unacknowledged ready

packets by W every 1
� T

W 	+1
time with an acknowledgment, starting from the

time t1 + 1
� T

W 	+1
. The total number of unacknowledged ready packets that are

acknowledged in [t1,t2] grows

�(t2 − t1)(�
T

W
�+ 1)�W > ((t2 − t1)(�

T

W
�+ 1) − 1)W ≥ (t2 − t1)�

T

W
�W

≥ (t2 − t1)T.

After all, (t2− t1)T +(T +W +1−W ) = (t2− t1)T +T +1 packets become ready
in [t1, t2], which contradicts with the fact that the peak packet rate is T . ��

Lemma 4. If ri+1 − ri > 1, ai+1 = ri+1.

Proof. At ri, there are at most T + W unacknowledged ready packets from
Lemma 3. Since WAIT( 1

� T
W 	+1

) decreases these T + W ready unacknowledged

packets by W every 1
� T

W 	+1
time, all of the T + W packets are acknowledged

before ri+(�T+W
W �× 1

� T
W 	+1

) = ri+(� TW �+1) 1
� T

W 	+1
= ri+1 < ri+1. Hence pi+1

is sent at ri+1 without impeded by the sliding window. Thus, ai+1 = ri+1. ��

From Lemma 2, it also holds that ai+1 = ri+1 if ri+1 − ri > 1 for OPT. Hence,
we can proceed the analysis by decomposing σ into subsequences in which any
two adjacent ready times are at most one unit time apart. Thus, consider σ =
(r1, r2, · · · , rn) s.t. ri+1 − ri ≤ 1 for 1 ≤ i ≤ n− 1 in the subsequence.

Proof of Theorem 4: Suppose that WAIT( 1
� T

W 	+1
) acknowledges a subsequence

of σ denoted by τ = (ri+1, ri+2, · · · , ri+k) with a single acknowledgement. Be-
cause of the sliding window, k ≤W . The cost incurred by WAIT( 1

� T
W 	+1

) to pro-

cess τ is obtained as (6), since WAIT( 1
� T

W 	+1
) acknowledges at time ai+k+ 1

� T
W 	+1

.

CWAIT( 1
	 T

W

+1

)(τ) = ai+k +
1

� TW �+ 1
− ri+1 + 1. (6)

Since k ≤ W , OPT acknowledges at most twice in serving τ . Suppose pi+k is
not pn, the last packet of σ. Let d1 = max1≤j≤k{ri+j+1 − ri+j}. Similarly, let d2

be the length of the second maximum interval between two adjacent ready times
in τ . Obviously, d1 ≤ 1 and d2 ≤ 1. If OPT acknowledges two times in serving
τ , COPT (τ) ≥ ri+k+1 − ri+1 − d1 − d2 + 2 ≥ ri+k+1 − ri+1 − d1 + 1. If OPT
acknowledges only once, COPT (τ) ≥ ri+k+1 − ri+1 − d1 + 1 ≥ ri+k+1 − ri+1. If
OPT does not acknowledge at all, COPT (τ) ≥ ri+k+1−ri+1. We need to consider
two cases.
(Case I) ai+k = ri+k: There are two cases depending on whether k = W .
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If k = W , OPT acknowledges at least once. Therefore,

CWAIT( 1
	 T

W

+1

)(τ)

COPT (τ)
≤

ri+k + 1
� T

W 	+1
− ri+1 + 1

ri+k+1 − ri+1 − d1 + 1
≤ 1 +

1
� T

W 	+1
+ d1

ri+k+1 − ri+1 − d1 + 1

≤ 1 + (
1

� TW �+ 1
+ d1) ≤ 2 +

1
� TW �+ 1

. (7)

Even if pi+k = pn, (7) is obtained because COPT (τ) ≥ ri+k − ri+1 − d1 + 1.
If k < W , since OPT may not acknowledge at all, COPT (τ) ≥ ri+k+1 −

ri+1. Because ai+k = ri+k and WAIT( 1
� T

W 	+1
) acknowledges strictly less than W

packets, we have ri+k+1−ri+k ≥ 1
� T

W 	+1
. Hence, COPT (τ) ≥ ri+k−ri+1+ 1

� T
W 	+1

.
Thus,

CWAIT( 1
	 T

W

+1

)(τ)

COPT (τ)
≤

ri+k + 1
� T

W 	+1
− ri+1 + 1

ri+k − ri+1 + 1
� T

W 	+1

≤
1

� T
W 	+1

+ 1
1

� T
W 	+1

= � T
W

�+ 2. (8)

In case pi+k = pn, COPT (τ) ≥ ri+k − ri+1 + 1 and (8) still holds.

(Case II) ai+k > ri+k: We first explain how this case occurs and mention that
multiple subsequences categorized into (Case II) may appear in succession.

The first subsequence τ1 = (pi+1, pi+2, · · · pi+k1) categorized into (Case II) is
constructed as follows: pi is the W -th packets in the subsequence previous to
τ1. As the previous subsequence is categorized into (Case I), ai = ri. Because
of the sliding window, the packets next to pi are not eligible until the previous
subsequence is acknowledged at ai+ 1

� T
W 	+1

. Here, ai+k1 differs from ri+k1 , if and

only if ri+k1 < ai+ 1
� T

W 	 . If k1 < W , the subsequence next to τ1 does not belong
to (Case II). However, if k1 = W , the second subsequence τ2 classified into (Case
II) emerges if and only if ri+W+k2 < (ai+ 1

� T
W 	+1

)+ 1
� T

W 	+1
where k2 is the length

of τ2. Note that (ai+ 1
� T

W 	+1
)+ 1

� T
W 	+1

presents the time when the packets in τ1

are acknowledged. If k2 = W , the third subsequence τ3 classified into (Case II)
may appear after τ2 in the same way. Figure 3 illustrates an example of (Case
II) where 1

� T
W 	+1

is denoted by α. Here, τ4 consists of less than W packets.
Let τ1, τ2, · · · , τX be the series of subsequences categorized into (Case II) (X ≥

1). All of τ1, τ2, · · · , τX−1 contain exactly W packets and the last τX consists of
kX(≤ W ) packets. As τx for 1 ≤ x ≤ X−1 is acknowledged at ai+(x+1) 1

� T
W 	+1

=

ri + (x + 1) 1
� T

W 	+1
and the ready time of the first packet in τx is greater than

ri, the latency cost for τx is less than x+1
� T

W 	+1
. Adding the cost for a single

acknowledgement, CWAIT( 1
	 T

W

+1

)(τx) ≤ 1 + x+1
� T

W 	+1
for 1 ≤ x ≤ X − 1. For τX ,

CWAIT( 1
	 T

W

+1

)(τX) ≤ 1 + ri + X+1
� T

W 	+1
− ri+(X−1)W+1, because pi+(X−1)W+1 is

the first packet in τX . In addition, X ≤ � TW �. Otherwise, since X − 1 ≥ � TW �,
� TW �W + 1 ≥ T + 1 ready times from ri to ri+� T

W 	W lie in [ri, ri + � T
W 	

� T
W 	+1

],
contradicting with the fact that the peak rate is T .
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time
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ai+2α

ack

ack
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ri+3w+k4 ai+3w+k4

ack

ai+5α

τ4

Fig. 3. Example of (Case II)

For 1 ≤ x ≤ X − 1, COPT (τx) ≥ 1 since τx contains W packets. Furthermore,
for x = X , COPT (τX) ≥ 1 if OPT acknowledges in serving τX . In this case

CWAIT( 1
	 T

W

+1

)(τx)

COPT (τx)
≤ CWAIT( 1

	 T
W


+1
)(τx) ≤ 1 +

X + 1
� TW � + 1

≤ 2. (9)

Unless OPT acknowledges in serving τX , COPT (τX) ≥ ri+(X−1)W+kX+1 −
ri+(X−1)W+1 ≥ ri + X+1

� T
W 	+1

− ri+(X−1)W+1, as pi+(X−1)W+kX
is acknowledged

at ri + X+1
� T

W 	+1
. Since ri+(X−1)W+1 ≤ ai+(X−1)W + 1

� T
W 	+1

= ri + X
� T

W 	+1
,

CWAIT( 1
	 T

W

+1

)(τX)

COPT (τX)
≤

1 + ri + X+1
� T

W 	+1
− ri+(X−1)W+1

ri + X+1
� T

W 	+1
− ri+(X−1)W+1

≤
1 + 1

� T
W 	

1
� T

W 	
≤ � T

W
�+ 2.

(10)
Equations (7), (8), (9) and (10) altogether complete the proof. ��
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Jørgensen, Allan Grønlund 127
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