
V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 245–260, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Dynamic Load Balancing of Black-Box Applications
with a Resource Selection Mechanism on Heterogeneous

Resources of the Grid

Valeria V. Krzhizhanovskaya1,2 and Vladimir V. Korkhov1,2

1 University of Amsterdam, Faculty of Science, Section Computational Science
2 St. Petersburg State Polytechnic University, Russia
{valeria,vkorkhov}@science.uva.nl

Abstract. In this paper we address the critical issues of efficient resource man-
agement and high-performance parallel distributed computing on the Grid by
introducing a new hierarchical approach that combines a user-level job schedul-
ing with a dynamic load balancing technique that automatically adapts a black-
box distributed or parallel application to the heterogeneous resources. The algo-
rithm developed dynamically selects the resources best suited for a particular
task or parallel process of the executed application, and optimizes the load bal-
ance based on the dynamically measured resource parameters and estimated re-
quirements of the application. We describe the proposed algorithm for auto-
mated load balancing, paying attention to the influence of resource heterogene-
ity metrics, demonstrate the speedup achieved with this technique for different
types of applications and resources, and propose a way to extend the approach
to a wider class of applications.

Keywords: dynamic load balancing, resource management, high-performance
computing, Grid, heterogeneous resources, parallel distributed application.

1 Introduction and Motivation

Grid-based problem-solving environments (PSEs) play an increasingly more impor-
tant role in a broad range of applications stemming from fundamental and applied
sciences, engineering, industry, medicine and economy. In [1,2] we provide an exten-
sive overview of the Grid-aware problem-solving environments and virtual laborato-
ries for complex applications. A great number of noticeable advances were achieved
as a result of joint efforts of the multidisciplinary research society, such as the devel-
opment of widely acknowledged standards in methodologies, formats and protocols
used within the environments [11]. Another manifesting development concerns the
move from specific one-application PSEs to the high-level generic environments that
provide services, tools and resources to formulate and solve a problem using standard-
ized methods, modules, workflows and resource managers [1]. Our research in this
field has started from porting a Virtual Reactor problem-solving environment to the
Grid [1-5], pioneering the move of fully integrated simulators from a single PC via
computer clusters with a remote user interface [5] to fully distributed heterogeneous

246 V.V. Krzhizhanovskaya and V.V. Korkhov

Grid systems [2,3]. A detailed description of the Virtual Reactor application and our
"gridification" activities can be found in [1-5].

We have implemented and tested several approaches, and adapted an existing in-
teractive distributed application to the peculiarities of the Grid, thanks to the comple-
mentary projects developing Grid middleware, tools and portals [3,9,10]. However a
few things shadow the overall optimistic picture of the major advances in Grid usabil-
ity as observed in our extensive experiments with different Grid implementations.
Among the most prominent and as yet unsolved problems we experienced are effi-
cient resource management at the application and system levels, and optimization of
the workload allocation for parallel and distributed applications on highly diverse and
dynamically changing Grid resources. These two intertwined fundamental issues
hindering the progress of Grid computing have pulled the forces of a vast computer
society that strive to extrapolate an efficient high-performance computing on the Grid
from a single demo test-case to a ubiquitous reality. A huge number of algorithms,
approaches and tools have been developed to bring Grid resource management and
job scheduling issues to a more advanced level of efficiency and, even more impor-
tantly, usability (see for instance [12-21]). In addition to that, an excessive number of
load balancing techniques have been implemented and tested since the times when
heterogeneous cluster computing emerged. We could not find a recent book providing
a good overview of the state-of-the-art in load balancing, and a list of relevant papers
would take at least several pages, so we will give references only to those intimately
related to the technique we propose hereunder.

In a seemingly successful research field teeming with various solutions at hand,
when things came to practice it turned out to be impossible to find a tool/library for
automatic load balancing of a parallel distributed application on heterogeneous re-
sources of the Grid. The first-priority consideration we had in mind was instrumenting
our Virtual Reactor application with a library that would require minimal intrusion
into the code and that would adapt the parallel codes previously developed for homo-
geneous computer clusters to the heterogeneous and dynamically changing Grid re-
sources. Another goal was finding the means to enable "smart" resource selection and
efficient utilization for the whole problem-solving environment, i.e. distributing the
PSE disparate modules wisely, according to their individual requirements. The stum-
bling-block is that these application requirements are not known beforehand in most
real-life complex applications, where only the key developers can embrace the com-
plexity and dependencies of the PSE components. And even the code designers aware
of the numerical methods' particularities can not predict the exact application re-
quirements, which differ in each new computational experiment, depending on initial
conditions, combination of real-life processes to be simulated, numerical schemes
chosen, computational parameters, etc. This uncertainty prompted us to use the term
black-box applications in the title of this article; we certainly do not mean that the
user does not know what application he is running and of what avail. Our extensive
benchmarking and performance assessment of the Virtual Reactor application clearly
showed that even within one solver different trends can exist in the application re-
quirements and parallel efficiency, depending on the problem type and computational
parameters, therefore distinct resource management and optimization strategies shall
be applied, and automated procedures for load balancing are needed to successfully
solve complex simulation problems on the Grid [6-8].

 Dynamic Load Balancing of Black-Box Applications 247

A countless number of parallel and distributed applications have been developed
for traditional (i.e. static homogeneous) parallel computers or cluster systems. Porting
such applications from homogeneous computing environments to dynamic heteroge-
neous computing and networking resources poses a challenge to keep up a high level
of application efficiency. To assure efficient utilization of Grid resources, special
methods for workload distribution control should be applied. An adequate workload
optimization method should take into account two aspects:

− (1) The application characteristics, such as the amount of data transferred be-
tween the processes, logical network topology, amount of floating point operations,
memory requirements, hard disk or other I/O activity, etc.

− (2) The resource characteristics, like computational power and memory of the
worker nodes, network links bandwidth, disk I/O speed, and the level of heteroge-
neity of the resources randomly assigned to the application by the Grid resource
broker.

The method should be (a) self-adapting and flexible with respect to the type of appli-
cation, (b) computationally inexpensive not to induce a large overhead on the applica-
tion performance, and (c) should not require significant modifications in the code. On
top of that, the load balancing shall be (d) dynamic and fully automated since we want
to hide the "ugly" features of the Grid from innocent users.

2 Background: Automated Load Balancing on the Grid

The issue of load balancing in Grid environments is addressed by a number of re-
search groups. Generally studies on load balancing consider distribution of processes
to computational resources on the system/library level with no modifications in the
application code [22,23]. Less often, load balancing code is included into the applica-
tion source-code to improve performance in specific cases [24,25]. Some research
projects concern load balancing techniques that use source code transformations to
speedup the execution of the application [26]. We employ an application-centric ap-
proach where the balancing decisions are taken by the application itself. This is dic-
tated by two arguments: first, the immaturity (or the lack of "intelligence") of the
middleware or system-level resource managers; and second, the complexity of the
problem-solving environments such as our Virtual Reactor, which has a number of
communicating modules, some of which are parallel programs. An important feature
of our approach is that although it is application-centric, the algorithm that estimates
available resources and suggests the optimal load balancing of a parallel job is generic
and can be employed in any parallel application to be executed on heterogeneous
resources by instrumenting it with the load-balancing library.

A detailed description of global load optimization approaches for heterogeneous
resources and adaptive mesh refinement applications can be found for instance in
[29,30,31]. We shall note however, that in [29] and [31] no network links heterogene-
ity was considered and only static resource estimation (initialization) was performed
in [29] and [30]. These two issues are the major challenges of Grid high-performance
computing: 1) the heterogeneity of the network links can be two orders of magnitude
higher that that of the processing power; and 2) Grid resources are inherently

248 V.V. Krzhizhanovskaya and V.V. Korkhov

dynamic. Developing our algorithm, we tried to address specifically these two issues.
The approaches discussed in [29] and [31] are only valid for batch sequential applica-
tions (specifically for the queuing systems and computer cluster schedulers), whereas
our effort is directed towards parallel programs utilizing heterogeneous resources.
A number of semi-automatic load balancing methods have been developed (e.g. diffu-
sion self-balancing mechanism, genetic networks load regulation, simulated annealing
technique, bidding approaches, multiparameter optimization, numerous heuristics,
etc.), but all of them suffer one or another serious limitation, most noticeably the lack
of flexibility, high overheads, or inability to take into consideration the specific fea-
tures of the application. Moreover, all of them lack the higher-level functionality,
such as the resource selection mechanism and job scheduling. In our view, this is an
essential step to be made in order to make Grid computing efficient and user-friendly.
Although some tools are already available for "smart" system-level process-resource
matching and job scheduling on the Grid, none of them is automatic yet, and none is
coupled with a mechanism evaluating the application requirements. We aim to bridge
this gap by building a hierarchical approach that combines a user-level job scheduling
[32,33] with a dynamic load balancing technique that automatically adapts a black-
box distributed or parallel application to the heterogeneous Grid resources.

To summarize, the existing algorithms and tools provide only a partial solution.
Our target is to combine the best achievements and to design a flexible tool for auto-
mated load balancing on the Grid. In this paper we present the results of the ongoing
work in this direction. In Section 3 we introduce the basic ideas and steps of a gener-
alized automated load balancing technique for a black-box application on the Grid.
Section 4 presents the results of implementation of the load balancing algorithm,
describes a synthetic test application developed for experiments, and shows the trends
of the load balancing speedup and the influence of the resource heterogeneity level.
Section 5 concludes the paper with discussion and future plans.

3 Generalized Automated Load Balancing with Resource
Selection

Based on our previous experience [6-8], we developed a load balancing technique that
takes into account the heterogeneity and the dynamics of the Grid resources, estimates
the initially unknown application requirements, and provides the resource selection
and most optimal mapping of the parallel processes to the available resources. In the
most general case we consider that the resources have been randomly assigned to the
application by a Grid resource broker via the User-Level Scheduler [32,33], or that
the application can request the desirable resources with a set of parameters. An impor-
tant feature of the proposed mechanism is that all the functionality described below is
implemented as an external library, and the application is instrumented by linking to
this library. As we mentioned in the introduction, this is a work in progress: The tech-
nique described below has not been fully implemented yet. A part of coupling the
parallel load balancer with the user-level job scheduler is under development now. It
will be published with additional details after deployment and testing.

 Dynamic Load Balancing of Black-Box Applications 249

3.1 The Basic Algorithm of the Automated Load Balancing

The load balancing meta-algorithm includes 8 basic Steps. Below we provide a de-
scriptive explanation of each Step, mentioning special cases to be considered at each
stage. We shall note that this is a conceptual description, rather than a mathematically
strict algorithm. An exact formulation of the core load balancing heuristic is provided
in the next subsection.

Step 1. Benchmarking resources: Measuring the computational power and mem-
ory available on the worker nodes, network links bandwidth, hard disk capacity
and I/O speed. In a more generic sense of "resources", some other metrics can be
added characterizing the equipment and tools associated with a particular Grid
node. These can be various parameters of databases, storages, sensors, scanners,
and other attached devices.

Step 2. Ranking resources: The priority of ranking parameters shall be dependent
on the type of application. For traditional parallel computing solvers, which we
consider as test-case applications in present work, the first ranking parameter shall
be computational power (CPU) of the processor, the second parameter being the
network bandwidth to this processor. For memory-critical applications, memory
shall be the top-priority metric. For a large emerging class of multimedia streaming
applications, the network bandwidth and the disk I/O speed would be the key pa-
rameters. In most cases memory ranking is an essential complimentary operation,
since available memory can be a constraining factor defining if the resource can be
used by the application or not. The same goes for the free disk space parameter that
can constrain the streaming applications that damp data on hard disks.

Step 3. Checking the level of heterogeneity: This parameter is often not consid-
ered in the load balancing heuristics; however it plays a crucial role in the choice
of load balancing approach to be taken. The first and most obvious argument is that
if the resources happen to be almost homogeneous, for traditional parallel applica-
tions no additional load rebalancing is required (and parallel tasks are distributed in
equal chunks). In subsection 3.2, we discuss how the levels of heterogeneity affect
the weighting factors used for calculating the workload per processor. We intro-
duce the heterogeneity metrics and pay special attention to the way it influences
the load balancing performance for our parallel computing test-case application.

Step 4. Testing application components and their interconnections: For that, run
a small subset of the routine operations on the resources given. For a majority of
traditional computational applications, the best is to perform one or a few time
steps, iterations or events (depending on the type of simulation) in order to ensure
that no time is wasted just for the testing, and the simulation is already running,
though not in the most optimal way yet. This Step will measure the application per-
formance on a given set of resources and collect the data needed to calculate the
application requirements.

Step 5. Estimating the application requirements: The idea is to quantitatively
estimate the requirements of the application based on the results of resource
benchmarking (Step 1) and measurements of the application response (Step 4). For
our parallel computing test-case application, the requirements to be calculated are

250 V.V. Krzhizhanovskaya and V.V. Korkhov

the communication to computation ratio and the minimally required memory per
node. An extensive description of the theoretical background and details of the cor-
responding heuristic can be found in [6-8]. In the next subsection we give an ex-
cerpt completing this meta-algorithm.

Step 6. Matching resources I. Constraining factors: This is the first stage of
checking the suitability of the available resources to the given application. It is
based on the analysis of the results of Steps 2 and 5. In our computational applica-
tion example, memory can be the constraining factor: In case of sufficient memory
on allocated processors, the load balancing can be performed further, taking into
account all the other factors. In the unfavourable case of insufficient memory on
some of the processors, they must be disregarded from the parallel computation or
replaced by other, better suited processors. This shall be done on the level of job
scheduling and resource allocation, within the framework of a combined approach
coupling the application-centered load balancing with a system-level resource
management. For this, we consider the User-Level Scheduler [32,33] as a feasible
application-level intermediate resource managing approach.

Step 7. Matching resources II. Selecting resources: This is the second stage re-
quiring a hierarchical approach we are developing. It provides the means to select
the best-suited resources for each of the PSE components. This Step consists of 3
basic functionalities: finding an optimal number of processors for each application
component, the actual resource matching, and rejecting some of the resources and
requesting some others -depending on the approach taken and resource availability.
The resource matching procedure (to be distinguished from process mapping) shall
take into account the application requirements derived in Step 5 and can be imple-
mented using some standard multi-parameter optimization method. In our parallel
computing test-case, selecting resources might look fairly simple: we always want
the fastest processors with the fastest links between them. But with the severe het-
erogeneity of Grid resources, this is not so trivial anymore. What is better, fast
worker nodes connected by the slow links or slower processors with the fast links?
The answer is strongly dependent on the application characteristics: the communi-
cation-bound applications will achieve a better performance on faster links even
with slower processors, and the computation-intensive application will not care
about the network bandwidth. Another open question to be answered is how many
worker nodes shall be assigned to a parallel solver. Again, the answer will be dif-
ferent depending on the solver characteristics: For a majority of "pleasingly" paral-
lel applications (employing the resource farming concept), the more processors the
better, so the actual number of processors to be allocated is an issue of availability
and competition with the other PSE components. On the other hand, for a wide
class of "normal" parallel applications (characterized by a speedup saturation with
a growing number of parallel processors), an optimal number of processors can be
estimated based on the measured resource parameters and the application fractional
communication overhead.

Step 8. Load balancing: After selecting the best suited set of resources, we need to
perform the actual optimization of the workload distribution within the parallel
modules, in order words mapping the processes onto the allocated resources. This
Step is based on the heuristic developed earlier [6-8], which includes a technique to

 Dynamic Load Balancing of Black-Box Applications 251

calculate the weighting factors for each processor depending on the resource char-
acteristics and application requirements established in Step 5. In Section 3.2 we
summarize the methodology, introduce some corrections in the theoretical formula-
tion and discuss the role of the heterogeneity function.

In case of dynamic resources where performance is influenced by other factors (which
is generally the case on the Grid), a periodic re-estimation of resource parameters and
load re-distribution shall be performed. This leads to repeating all the meta-algorithm
Steps except of Step 4 and Step 5. In most cases this can be done by running the ap-
plication with a few consecutive time steps or iterations (see comments to Step 4).
NB: if the selected resources did not change much, Steps 6 and 7 can be omitted not
to incur unnecessary overhead.

If the application is dynamically changing (for instance due to adaptive meshes,
moving interfaces or different combinations of physical processes modeled at differ-
ent simulation stages) then the application requirements must be periodically re-
estimated even on a static set of resources. In this case, the periodic re-estimation loop
stars from Step 4, with the same remark on skipping Steps 6 and 7 if the application
change is not dramatic.

Periodic re-estimations shall be performed frequently during the runtime of the ap-
plication to correct the load imbalance with a reasonably short delay. The minimally
required frequency of rebalancing can be estimated and dynamically tuned by calcu-
lating the relative imbalance introduced during the controlled period of time.

In the next subsection we provide a strict formulation of the most important aspects
essential for understanding the experimental results shown in Section 4. A scrupulous
mathematical description of all the conditions, metrics and algorithms in a complete
meta-algorithm we save for another paper.

3.2 Adaptive Load Balancing on Heterogeneous Resources: Theoretical
Approach

In [6,7] we proposed a methodology for adaptive load balancing of parallel applica-
tions on heterogeneous resources, extending it to dynamic load balancing and intro-
ducing the heterogeneity metrics in [8]. In this section we give a theoretical descrip-
tion of the basic concepts and parameters mentioned in the meta-algorithm, and con-
centrate on the two most important issues: (1) estimating the application requirements
(Step 4 and Step 5) and (2) the actual load balancing of parallel or distributed black-
box applications on heterogeneous Grid resources (Step 8). The load balancing Step
aims at optimizing the load distribution among the resources already selected in pre-
vious Steps (after performing the check against the restricting factors such as the
memory deficiency). Therefore the theory is given under the assumption that the re-
sources are "fixed" for a single load-balancing loop, and that using all these resources
provides a reasonably good performance result (e.g. parallel speedup for traditional
parallel computing applications). Another prerequisite is that the application is al-
ready implemented as a parallel (or distributed) program, and is able to distribute the
workload by chunks of controllable size. Saying this we kept in mind the Master-
Worker model, but the technique is applicable to other communication logical topolo-
gies, given that the measurements are carried out along the links used within the ap-
plication. The load balancing procedure we describe is implemented as an external

252 V.V. Krzhizhanovskaya and V.V. Korkhov

library, and after linking with the application provides a recommendation on how
much work shall be done by each of the assigned processors to ensure the fastest
possible execution time –taking into account the specific parameters of the resources
and the estimated application requirements [6-8]. We designed the algorithm in such a
way that the knowledge of these resource and application characteristics would give
an instant solution to the workload distribution, thus making the procedure very
lightweight and suitable for dynamic load balancing at runtime.

The main generic parameters that define a parallel application performance are:

• An application parameter calccommc NNf = , where Ncomm is the total amount of

application communications, i.e. data to be exchanged (measured in bit) and Ncalc is
the total amount of computations to be performed (measured in Flop);

• The resource parameters iii np=μ , where pi is the available performance of the

ith processor (measured in Flop/s) and ni is the network bandwidth to this node
(measured in bit/s).

The resource characteristics pi and ni we obtain in Step 1 after benchmarking the re-
sources, but the application parameters Ncomm and Ncalc are not known beforehand in
real-life applications. The target is to experimentally determine the value of the appli-
cation parameter fc that provides the best workload distribution, i.e. minimal runtime
of the application mapped to the resources characterized by a parameter set { }iμ=μ .

A natural way to do that is to run through the range of possible values of fc with a
discrete step, calculating a corresponding load distribution and performing one time
step/iteration with a new load distribution. Measuring the execution time of this itera-
tion and comparing it for different values of fc, we find an optimal value fc

*, which
provides the minimal execution time. This idea is implemented in Step 5 and will be
illustrated in the Results section (4.2). A detailed algorithm is described in [8]. There
we suggested estimating the range of possible values of the application parameter fc as
following: The minimal value is fc

min = 0, which corresponds to the case when no
communications occur between the parallel processes of the application. The maximal

possible value was calculated as)min(/)max(max
iic pnf = . Experimenting with this

rough upper bound evaluation, we found that in many cases it gives a too high value
of fc

max , unnecessarily extending the search range and thus reducing the efficiency of
the load balancing procedure. Another approach to search for the optimal value fc

* can
be borrowed from the optimization theory, for instance using an adaptive 1-
dimensional non-linear constrained optimization method with a correction for small
stochastic perturbations in resource performance [34]. This approach can reduce the
number of the load balancing loops needed to find the best load distribution.

To calculate the amount of the work per processor in the load balancing Step 8, we
assign a weight-factor to each processor according to its processing power and net-
work connection. A similar approach was applied in [25] and in [27] for heterogene-
ous computer clusters, but the mechanism for adaptive calculation of the weights -
taking into account the application requirements- was not developed there. Moreover,
the tools developed for cluster systems can not be used in Grid environments without
modifications since static resource benchmarking is not suitable for dynamic Grid
resources.

 Dynamic Load Balancing of Black-Box Applications 253

The weighting factor wi determines the final workload to be assigned to each of N
processors: Wi = wi W, where W is the total workload. The weighting factor wi shall
reflect both the capacity of resources according to the estimated infrastructure pa-
rameters iμ and the application parameter fc. In [8] we derived an expression for

processor weights analogous to that used by other authors [25,27]. Extensive experi-
mentation and analysis of this expression revealed that the optimal balance for com-
putation-intensive applications running on fast network links is not computed cor-
rectly. To correct this, we modified the equation for weights calculation, deriving it
from the first principles of equalizing the time spent by each processor. In the simpli-
fied model of communication that can suite as the first approximation of real commu-
nication topologies, the weights can be calculated as follows:

)1(;
1

icii

N

i
iii fpqqqw μϕ+== ∑

=
 (1)

Here qi is the dimensional weight calculated from the resource parameters pi and iμ ,

and from the guessed application parameter fc. ϕ is the heterogeneity metrics of the

network links that can be expressed as a standard deviation of the set of normalized
dimensionless resource parameters:

∑∑
==

=−
−

=
N

i
iavg

N

i
avgi n

N
nnn

N 11

2 1
,)/1(

1

1ϕ (2)

The purpose of this heterogeneity metrics is to ensure that if the network links are
homogeneous, i.e. ni = navg, then the weighting is done only according to the proces-
sors capacity. In this case 0=ϕ , and the last term in the denominator of Eq.(1) is

nullified, thus providing that the weights wi are linearly proportional to the processing
power pi. Then we can see that in the infrastructure of heterogeneous processors con-
nected by homogeneous network links the value of application parameter fc does not
affect the load distribution, which is exactly the case in the Master-Worker lock-step
synchronous communication model. Generally speaking, in other communication
models this can be different, so a bit more sophistication is needed in order to design a
generic algorithm that would suit well the majority of logical topology models.

To evaluate the efficiency of the workload distribution we introduce the load bal-
ancing speedup %100⋅=Θ − balancedbalancednon TT , where Tnon-balanced is the execution

time of the parallel application without the load balancing (even distribution of the
prosesses), and Tbalanced is the execution time after load balancing on the same set of
resources. This metric is used to estimate the application parameter fc

* that provides
the best performance on given resources, that is the largest value of speedup Θ in a
given range of fc. In a non-trivial case we expect to find a maximum of Θ and thus an
optimal fc

* for some workload distribution, which means that the application require-
ments fit best the resources in this particular workload distribution. The case of fc

* = 0
while 0≠ϕ means that the application is totally computation dominated, i.e. there is

no communication between different processes, and the optimal workload distribution
will be proportional only to the computational power of the processors.

254 V.V. Krzhizhanovskaya and V.V. Korkhov

While deriving Eq. (1), we considered a simple case when memory requirements
only put a Boolean constraint to the allocation of processes on the resources: either
there is enough memory to run the application or not. But memory can be one of the
determining factors of the application performance and play a role in the load balanc-
ing process. This is the case for applications that are able to control memory require-
ments according to the available resources. In this case there will be additional pa-
rameters analogous to fc and iμ , but the idea and the load balancing mechanism re-

main the same. Similar considerations shall be applied for the other types of applica-
tions. For instance, in a widely used class of applications performing sequential
computing with hard disk intensive operations, the network link bandwidth parameter
ni shall be replaced with the disk I/O speed for finding an optimal load distribution in
"farming" computations on the Grid.

4 Performance Results

In this section we provide some details on implementing the load balancing algorithm
and show the results illustrating the load balancing technique for our computational
application case-study and demonstrating the speedup achieved with this technique
for different types of applications and resources. The adaptive load balancing tech-
nique we propose was first applied while deploying the Virtual Reactor parallel com-
ponents on heterogeneous Grid resources [3]. Several simulation types have been
extensively tested on various sets of resources, demonstrating how the algorithm
works. However one application can obviously provide only a limited freedom for
experiments. To be able to examine the behavior of an arbitrary parallel application
(characterized by various values of the application parameter fc and various interproc-
ess communication topologies) on arbitrary sets of heterogeneous resources, we de-
veloped a synthetic parallel application that allowed us to model different combina-
tions and to compare the best theoretically achievable performance results with those
given by our workload-balancing approach.

4.1 Synthetic Application and Experimental Setup

To evaluate the performance of the proposed load balancing technique for generic
cases, we developed a "synthetic" application modeling different types of parallel
applications mapped to the resources of various capacity and levels of heterogeneity.
From a technical point of view, this synthetic application is an MPI program running
on a homogeneous computer cluster system. Flexible configuration capabilities allow
tuning the communication-computation ratio fc within the application, and designing
the communication logical topology (i.e. the patterns of interconnections between the
processes). The latter gives the possibility to model different connectivity schemes,
e.g. Master-Worker, Mesh, Ring, Hypercube etc. The value of the application parame-
ter fc is controlled by changing the total amount of calculations to be performed and
the total amount of data to be sent between the nodes. The underlying heterogeneous
resources are modeled by imposing extra load on the selected processors or links, thus
reducing their capacity available for the application.

 Dynamic Load Balancing of Black-Box Applications 255

The load balancing algorithm was implemented as an external library using the
MPI message passing interface, and the synthetic application (also an MPI program)
has been instrumented with this library as any other application would be. We use this
experimental setup to examine how a specific parallel application defined by a com-
bination of communication/computation ratio fc and communication logical topology
will behave on different types of heterogeneous resources, and what types of applica-
tions can show the best performance on a given set of resources. To validate the syn-
thetic simulator, we modeled and analyzed the performance of the Virtual Reactor
solvers on sets of resources similar to those used in our previous experiments on the
RIDgrid [7,8]. The experiments were carried out on the DAS-2 computer cluster [35],
using MPICH-P4 implementation of MPI.

4.2 Load Balancing Speedup for Different Applications

In this section we illustrate the idea of searching through the space of possible values
of the application parameter fc in order to find the actual application requirement Fc
(see Step 5 of the meta-algorithm and the detailed description of the procedure in
Section 3.2). Figure 1 presents the results of load balancing of our synthetic applica-
tion with the Master-Worker non-lockstep asynchronous communication logical to-
pology (when a Worker node can immediately start calculation while the Master con-
tinues sending data to the other Workers). We show a load balancing speedup for 5
applications with different pre-defined values of Fc (0.1 – 0.5) on the same set of
heterogeneous resources. The value of fc

* corresponding to the maximal speedup
assures the best application performance. We can see that the best speedup in all cases
is achieved with fc

* close to the real application Fc, thus proving the validity of our
approach. Another observation is that the applications characterized by a higher
communication to computation ratio Fc, achieve a higher balancing speedup, which
means that the communication-intensive applications benefit more from the proposed
load balancing technique. It is also worth noticing that the distribution of the work-
load proportional only to the processor performance (fc=0) also gives a significant
increase of the performance (180 % in case of Fc =0.5), but introduction of the

Fig. 1. Dependency of the load balancing speedup Θ on the "guessed" application parameter fc
for 5 synthetic applications with different values of Fc

256 V.V. Krzhizhanovskaya and V.V. Korkhov

dependency on application and resource parameters adds another 35 % percent to the
balancing speedup in this case (up to 217 %). In experiments with a higher level of
resource heterogeneity, this additional speedup contributed up to 150 %.

4.3 Load Balancing for Master-Worker Model: Heuristic Versus Analytically
Derived Load Distribution

To test our load balancing algorithm, we analytically derived the best workload distri-
bution parameters for some specific communication logical topologies of parallel
applications, and compared the speedup achieved with our heuristic algorithm with
that provided by the theoretical method. Here we present the analytically derived
weights and the performance comparison for a widely used Master-Worker non-
lockstep asynchronous communication model. The values of the weighting factors
defining the best (most optimal) load distribution have been derived from the princi-
ple of equalizing the time spent by each processor working on the application, follow-
ing the same idea used for derivation of eq. (1). Omitting the mathematical details,
we present the final recurrence relation for calculating the weights:

∑∑∏
=−

−

−

= = −
==

+
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
+=

N

i
iii

i

ii
ii

N

i

N

ik k

kk
N qqwNi

T

T
qq

T

T
q

11
1

1

2 1

;2...for,1
ττ

(3)

where icommi nN=τ is the time for sending the total amount of application commu-

nications Ncomm from the Master to the ith Worker node over the network link with the
measured bandwidth ni; and icalci pNT = is the time for performing the total amount

of application's calculations Ncalc by the ith processor with the processing power of pi.
We have tested our synthetic applications with different communication to computa-

tion ratios Fc on different sets of resources, with the two different load distributions:
theoretical and heuristic. In Fig. 2 we present an example of comparison of the execu-
tion times achieved with these load balancing strategies on a set of highly heterogeneous

Fig. 2. Comparison of the execution times for different weighting: the best theoretical distribu-
tion versus the generic heuristic load balancing

 Dynamic Load Balancing of Black-Box Applications 257

resources. We can see that the heuristic time is only about 5-15 percent higher than the
best possible for these applications (the larger difference attributed to the very commu-
nication-intensive test). Considering that our approach is generic and suits any type of
communication topology, this overhead is a relatively small impediment.

4.4 Influence of the Resource Heterogeneity on the Load Balancing Efficiency

Thorough testing of the different applications on different sets of resources showed a
strong influence of the level of resource heterogeneity on the results achieved. We
performed a series of targeted experiments varying the resource heterogeneity both in
the processor power and the network links bandwidth. As a sample of these tests, in
Fig. 3 we show the dependency of the load balancing speedup on the processing
power heterogeneity metrics, analogous to that of the networks links heterogeneity
introduced by Eq. (2). As we see, the speedup grows superlinearly with the heteroge-
neity level, thus indicating that our approach is especially beneficial on strongly het-
erogeneous resources, such as the Grid resources.

Fig. 3. Dependency of the load balancing speedup Θ on the resource heterogeneity metrics ϕ

5 Conclusions and Future Work

We introduced a new hierarchical approach that combines user-level job scheduling
with dynamic load balancing technique that automatically adapts a black-box distrib-
uted or parallel application to the heterogeneous resources. The proposed algorithm
dynamically selects the resources best suited for a particular task or parallel process of
the application, and optimizes the load balance based on the dynamically measured
resource parameters and estimated requirements of the application. We studied the
performance of this load balancing approach by developing a synthetic application
with flexible user-defined application parameters and logical network topologies, on
artificially designed heterogeneous resources with a controlled level of heterogeneity.
Some of the conclusions from our methodological experiments are as follows:

258 V.V. Krzhizhanovskaya and V.V. Korkhov

• The proposed algorithm adequately finds the application requirements;
• Based on that, our approach adapts the application to the set of heterogeneous

resources with a very high load balancing speedup (up to 450 %);
• The novelty of our load balancing approach –dependency of the load distribution

on the application and resource parameters– adds up to 150 % to the balancing
speedup compared to the balancing that takes into account only the processors' per-
formance;

• Analysis of the speedup achieved for different types of applications and resources
indicates that the communication-intensive applications benefit most from the pro-
posed load balancing technique.

• The speedup from applying our approach grows superlinearly with the increase of
the resources' heterogeneity level, thus showing that it is especially useful for the
severely heterogeneous Grid resources.

• Comparison of the performance of our heuristic load balancing with the perform-
ance achieved with the analytically derived weights, showed a relatively small dis-
crepancy of 5-15 %, with a larger difference attributed to the very communication-
intensive applications. This overhead is a relatively small impediment, considering
that our approach is generic and suits any type of communication topology.

The results presented here were obtained for traditional parallel computing applications
with the most widespread communication model: a Master-Worker scheme in a non-
lockstep asynchronous mode. At present, we test other connectivity schemes, such as
the different Master-Worker modes, as well as Mesh, Ring and Hypercube topologies.
Another direction of our work is implementation and testing of hierarchical coupling of
user-level job scheduling with the load balancing algorithm presented. The User-Level
Scheduler [32,33] will provide a combined resource management strategy connecting
the application-level resource selection mechanism to the system-level job manage-
ment. In addition to that, it can support resource usage optimization and fault tolerance
[23], as a desirable functionality increasing the usability of the Grid. We also plan to
extend our approach to a wider class of applications, including memory-critical appli-
cations, multimedia streaming applications, and a widely used class of applications
performing sequential computing with hard disk intensive operations.

Acknowledgments. The authors would like to thank Peter Sloot for fruitful discus-
sions of this paper. The research was conducted with financial support from the Dutch
National Science Foundation NWO and the Russian Foundation for Basic Research
under projects # 047.016.007 and 047.016.018, and with partial support from the
Virtual Laboratory for e-Science Bsik project.

References

1. Krzhizhanovskaya, V.V., Korkhov, V.V.: Problem-Solving Environments for Simulation
and Optimization on Heterogeneous Distributed Computational Resources of the Grid. In:
Proceedings of the Third International Conference on Parallel Computations and Control
Problems PACO‘2006, Moscow, Russia, pp. 917–932. Trapeznikov Institute of Control
Sciences RAS, Moscow (2006)

 Dynamic Load Balancing of Black-Box Applications 259

2. Krzhizhanovskaya, V.V., Sloot, P.M.A., Gorbachev, Y.E.: Grid-based Simulation of In-
dustrial Thin-Film Production. Simulation: Transactions of the Society for Modeling and
Simulation International 81(1), 77–85 (2005)

3. Krzhizhanovskaya, V.V., Korkhov, V.V., Tirado-Ramos, A., Groen, D.J., Shoshmina, I.V.,
Valuev, I.A., Morozov, I.V., Malyshkin, N.V., Gorbachev, Y.E., Sloot, P.M.A.: Computa-
tional Engineering on the Grid: Crafting a Distributed Virtual Reactor. In: Second IEEE
International Conference on e-Science and Grid Computing (e-Science’06), p. 101 (2006)

4. Krzhizhanovskaya, V.V., et al.: A 3D Virtual Reactor for Simulation of Silicon-Based
Film Production. In: Proceedings of the ASME/JSME PVP Conference. ASME PVP-vol.
491(2), pp. 59–68, PVP2004-3120 (2004)

5. Krzhizhanovskaya, V.V., Zatevakhin, M.A., Ignatiev, A.A., Gorbachev, Y.E., Sloot,
P.M.A.: Distributed Simulation of Silicon-Based Film Growth. In: Wyrzykowski, R.,
Dongarra, J.J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2001. LNCS, vol. 2328, pp.
879–888. Springer, Heidelberg (2002)

6. Korkhov, V.V., Krzhizhanovskaya, V.V.: Workload Balancing in Heterogeneous Grid En-
vironment: A Virtual Reactor Case Study. In: Proceedings of the Second International
Conference Distributed Computing and Grid Technologies in Science and Education, pp.
103–113. Publ: JINR, Dubna, D11-2006-167 (2006)

7. Korkhov, V.V., Krzhizhanovskaya, V.V.: Benchmarking and Adaptive Load Balancing of
the Virtual Reactor Application on the Russian-Dutch Grid. In: Alexandrov, V.N., van Al-
bada, G.D., Sloot, P.M.A., Dongarra, J.J. (eds.) ICCS 2006. LNCS, vol. 3991, pp. 530–
538. Springer, Heidelberg (2006)

8. Korkhov, V.V., Krzhizhanovskaya, V.V., Sloot, P.M.A.: A Grid Based Virtual Reactor:
Parallel performance and adaptive load balancing. Revised version submitted to the Jour-
nal of Parallel and Distributed Computing (2007)

9. CrossGrid EU Science project: http://www.eu-CrossGrid.org
10. Nimrod-G: http://www.csse.monash.edu.au/~davida/nimrod/
11. Fox, G.: Grid Computing environments. IEEE Computers in Science and Engineering 10,

68–72 (2003)
12. Nabrzyski, J., Schopf, J.M., Weglarz, J. (eds.): Grid Resource Management: State of the

Art and Future Trends. Kluwer Academic Publishers, Boston (2004)
13. Foster, I., Kesselman, C. (eds.): The Grid 2: Blueprint for a New Computing Infrastruc-

ture. Morgan Kaufmann, Seattle (2003)
14. Buyya, R., Cortes, T., Jin, H.: Single System Image. The International Journal of High Per-

formance Computing Applications 15(2), 124–135 (2001)
15. Maghraoui, K.E., Desell, T.J., Szymanski, B.K., Varela, C.A.: The Internet Operating Sys-

tem: Middleware for Adaptive Distributed Computting. The International Journal of High
Performance Computing Applications 20(4), 467–480 (2006)

16. Sonmez, O.O., Gursoy, A.: A Novel Economic-Based Scheduling Heuristic for Computa-
tional Grids. The International Journal of High Performance Computing Applica-
tions 21(1), 21–29 (2007)

17. Boyera, W.F., Hura, G.S.: Non-evolutionary algorithm for scheduling dependent tasks in
distributed heterogeneous computing environments. J. Parallel Distrib. Comput. 65, 1035–
1046 (2005)

18. Collins, D.E., George, A.D.: Parallel and Sequential Job Scheduling in Heterogeneous
Clusters: A Simulation Study Using Software in the Loop. SIMULATION 77, 169–184
(2001)

19. Schoneveld, A., de Ronde, J.F., Sloot, P.M.A.: On the Complexity of Task Allocation.
Complexity 3, 52–60 (1997)

260 V.V. Krzhizhanovskaya and V.V. Korkhov

20. de Ronde, J.F., Schoneveld, A., Sloot, P.M.A.: Load Balancing by Redundant Decomposi-
tion and Mapping. Future Generation Computer Systems 12(5), 391–407 (1997)

21. Karatza, H.D., Hilzer, R.C.: Parallel Job Scheduling in Homogeneous Distributed Systems.
SIMULATION 79(5-6), 287–298 (2003)

22. Barak, A., Wheeler, R.G., Guday, S.: The MOSIX Distributed Operating System. LNCS,
vol. 672. Springer, Heidelberg (1993)

23. Overeinder, B.J., Sloot, P.M.A., Heederik, R.N., Hertzberger, L.O.: A Dynamic Load Bal-
ancing System for Parallel Cluster Computing. Future Generation Computer Sys-
tems 12(1), 101–115 (1996)

24. Shao, G., et al.: Master/Slave Computing on the Grid. In: Proceedings of Heterogeneous
Computing Workshop, pp. 3–16. IEEE Computer Society Press, Los Alamitos (2000)

25. Sinha, S., Parashar, M.: Adaptive Runtime Partitioning of AMR Applications on Hetero-
geneous Clusters. In: Proceedings of 3rd IEEE Intl. Conference on Cluster Computing, pp.
435–442 (2001)

26. David, R., et al.: Source Code Transformations Strategies to Load-Balance Grid Applica-
tions. In: Parashar, M. (ed.) GRID 2002. LNCS, vol. 2536, pp. 82–87. Springer, Heidel-
berg (2002)

27. Teresco, J.D., et al.: Resource-Aware Scientific Computation on a Heterogeneous Cluster.
Computing in Science & Engineering 7(2), 40–50 (2005)

28. Kufrin, R.: PerfSuite: An Accessible, Open Source Performance Analysis Environment for
Linux. In: 6th International Conference on Linux Clusters, Chapel Hill, NC (2005)

29. Lu, C., Lau, S.-M.: An Adaptive Load Balancing Algorithm forHeterogeneous Distributed
Systems with Multiple Task Classes. In: International Conference on Distributed Comput-
ing Systems (1996)

30. Lan, Z., Taylor, V.E., Bryan, G.: Dynamic Load Balancing of SAMR Applications on Dis-
tributed Systems. In: Proceedings of the 2001 ACM/IEEE conference on Supercomputing
(2001)

31. Zhang, Y., Hakozaki, K., Kameda, H., Shimizu, K.: A performance comparison of adap-
tive and static load balancing in heterogeneous distributed systems. In: The 28th Annual
Simulation Symposium, p. 332 (1995)

32. Germain-Renaud, C., Loomis, C., Moscicki, J.T., Texier, R.: Scheduling for Responsive
Grids. Grid Computing Journal (Special Issue on EGEE User Forum) (2006)

33. Moscicki, J.T., Bubak, M., Lee, H.-C., Muraru, A., Sloot, P.: Quality of Service on the
Grid with User Level Scheduling. In: Cracow Grid Workshop Proceedings (2006)

34. Calvin, J.M.: A One-Dimensional Optimization Algorithm and Its Convergence Rate un-
der the Wiener Measure. Journal of Complexity N 17, 306–344 (2001)

35. http://www.cs.vu.nl/das2/

	Dynamic Load Balancing of Black-Box Applications with a Resource Selection Mechanism on Heterogeneous Resources of the Grid
	Introduction and Motivation
	Background: Automated Load Balancing on the Grid
	Generalized Automated Load Balancing with Resource Selection
	The Basic Algorithm of the Automated Load Balancing
	Adaptive Load Balancing on Heterogeneous Resources: Theoretical Approach

	Performance Results
	Synthetic Application and Experimental Setup
	Load Balancing Speedup for Different Applications
	Load Balancing for Master-Worker Model: Heuristic Versus Analytically Derived Load Distribution
	Influence of the Resource Heterogeneity on the Load Balancing Efficiency

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

