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Abstract. This paper is a position paper on the nature of dynamic systems. While
there is an agreement on the definition of what a static distributed system is, there
is no agreed definition on what a dynamic distributed system is. This paper is a
first step in that direction. To that end, it emphasizes two orthogonal dimensions
that are present in any dynamic distributed system, namely the varying and possi-
bly very large number of entities that currently define the system, and the fact that
each of these entities knows only a few other entities (its neighbors) and possibly
will never be able to know the whole system it is a member of. To illustrate the
kind of issues one has to cope with in dynamic systems, the paper considers, as
a “canonical” problem, a simple data aggregation problem. It shows the type of
dynamic systems in which that problem can be solved and the ones in which it
cannot be solved. The aim of the paper is to give the reader an idea of the sub-
tleties and difficulties encountered when one wants to understand the nature of
dynamic distributed systems.

1 Introduction

The nature of distributed computing. Distributed computing arises when the problem
to solve involves several entities such that each entity has only a partial knowledge of
the many parameters involved in the problem. According to the context, these entities
are usually called processes, nodes, sites, sensors, actors, peers, agents, etc. The en-
tities communicate and exchange data through a communication medium (usually an
underlying network).

While parallelism and real-time can be respectively characterized by the words ”ef-
ficiency” and ”on time computing”, distributed computing can be characterized by the
word ”uncertainty”. This uncertainty is created by asynchrony, failures, unstable behav-
iors, non-monotonicity, system dynamism, mobility, low computing capability, scalabil-
ity requirements, etc. Mastering one form or another of uncertainty is pervasive in all
distributed computing problems. So, a fundamental issue of distributed computing con-
sists in finding concepts and mechanisms that are general and powerful enough to allow
reducing (or even eliminating) the underlying uncertainty.
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Static reliable asynchronous distributed systems. A distributed system (the software
and hardware layer on top of which the distributed applications are executed) can be
characterized by behavioral properties and structural properties. These properties define
a computation model.

The static reliable asynchronous model is the most popular one. Static means that the
number of entities is fixed. Reliable means that neither the entities nor the communica-
tion medium suffer failures. Asynchronous means that there is no particular assumption
on the speed of the processes, or on message transfer delays. Moreover, the underlying
network is usually considered as fully connected: any entity can send messages to, or
receive messages from, any other entity (this means that the message routing is hidden
at the abstraction level offered by this distributed computing model).

An important result associated with this distributed computing model is the deter-
mination of a consistent global state (sometimes called a snapshot). It has been shown
[5] that the “best” that can be done is the computation of a global state (of the upper
layer distributed application) with the following consistency guarantees: the computed
global state is such that (1) the application could have passed through it, but (2) has
not necessarily passed through it. There is no way to know whether or not the actual
execution passed through that global state. This is one of the fundamental facets of the
uncertainty encountered in static distributed systems.

Static unreliable asynchronous distributed systems. The simplest static unreliable asyn-
chronous model is characterized by the fact that processes may crash. The most famous
result for this model is the impossibility to solve the consensus problem as soon as a
process may crash [6] (the consensus problem is a coordination - -or agreement- - prob-
lem. It consists in designing a deterministic protocol in which all the processes that do
not crash reach a common decision based on their initial opinions). The impossibility
to solve this problem comes from the net effect of asynchrony and failures. One way to
solve consensus despite asynchrony and failures consists in enriching the asynchronous
model with appropriate devices called failure detectors [3,10] (so, the resulting com-
puting model is no longer fully asynchronous).

Fortunately, problems simpler than consensus can be solved in this model. Let us
consider the reliable broadcast problem [8] as an example. This problem consists in
providing the processes with a broadcast primitive such that all the processes that do not
crash deliver all the messages that are broadcast (while the faulty processes are allowed
to deliver only a subset of these messages). Let a correct process be a process that never
crash. This problem can easily be solved as soon as any two correct processes remain
forever connected through a path made up of reliable channels and correct processes.

So, when we proceed from the static reliable asynchronous distributed computing
model to its unreliable counterpart, there are problems that can still be solved, while
other problems become impossible to solve if asynchrony is not restricted (e.g., by
using failure detectors, or considering their “ultimate” endpoint, namely, a synchronous
system).

Dynamic distributed systems. Since a recent past, there are a lot of papers (mainly in the
peer-to-peer literature) that propose protocols for what they call dynamic systems. These
protocols share the following: the entities can join and leave the system at will. This
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dynamicity dimension constitutes a new attribute of the uncertainty that characterizes
distributed computing. Unfortunately, (to our knowledge) there is no clear definition
of what a dynamic system is. This paper is a first step in that direction. To that end,
it proposes to investigate two dimensions of dynamicity. The first is on the number of
entities that compose the system: is there an upper bound that is known? How many
entities can coexist at any given time? etc. The second dimension is “geographical”.
More precisely, it is related to the fact that it is not possible to provide the entities with
an abstraction offering a logical point-to-point bidirectional link to each pair of entities.
So, this dimension is on the notion of entity neighborhood (locality) and the fact that
the processes can or cannot know an upper bound on the network diameter.

Content of the paper. The paper is made up of 4 sections. Section 2 proposes parameters
that should be taken into account when one wants to precisely define a dynamic system
model. Considering a very simple dynamic system, Section 3 investigates what can
be computed in this model. To that end a simple aggregation problem is used as a
“canonical” problem. Section 4 provides a few concluding remarks.

The spirit of the paper is more the spirit of a position paper with a pedagogical flavor
than the spirit of a traditional research paper. We do think that a precise definition of
what a dynamic distributed system is (or maybe what families of dynamic distributed
systems are) is hardly needed. This paper is a very first endeavor towards this goal.

2 Elements for Defining a Dynamic Distributed System

Informally, a dynamic system is a continually running system in which an arbitrarily
large number of processes are part of the system during each interval of time and, at any
time, any process can directly interact with only an arbitrary small part of the system.
This section proposes and investigates two attributes that should be part of the definition
of any dynamic distributed system.

2.1 Modeling the Dynamic Size of the System in Terms of Number of Entities

In a dynamic system, entities may join and leave the system at will. Consequently, at
any point on time, the system is composed of all processes (entities) that have joined and
have not yet left the system. We call system run (or simply a run) a total order on the join
and leave events (issued by the processes) that respect their real time occurrence order.

In order to model entities continuously arriving to and departing from the system, we
assume the infinite arrival model (as defined in [9]), where, in each run, infinitely many
processes P = {. . . , pi, pj, pk . . .} may join the system. However, several models can
be defined, that differ in the assumptions on the number of processes that can concur-
rently be part of the system [7,9]. Using the notation introduced in [1], the following
infinite arrival models can be defined:

– M b: The number of processes concurrently inside the system is bounded by a con-
stant b in all runs.

– Mn: The number of processes concurrently inside the system is bounded in each
run, but may be unbounded when we consider the union of all the runs.
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– M : The number of processes that join the system in a single run may grow to
infinity as the time passes.

In the first model, the maximum number of processes in each run is bounded by a
constant b that is the same for all the runs. When it is known, that constant can be used
by the protocols defined for that system.

In the second model, the maximum number of processes in each run is bounded, but
that bound may vary from one run to another. It follows that no protocol can rely on
such a bound as a protocol does not know in advance the particular run that will be
produced.

In the third model, the number of processes concurrently inside the system is finite
when we consider any finite time interval, but may be infinite in an infinite interval of
time. This means that the only way for a system to have an infinite number of processes
is the passage of time.

2.2 Modeling the Dynamic Size of the System in Terms of Geography

The previous models [7,9] implicitly assume that, at any time, the communication net-
work is fully connected: any process knows any other process that is concurrently in the
system, and can send it - -or receive from it- - messages directly through a point-to-point
channel.

Our aim is here to relax this (sometimes unrealistic) assumption, and take into ac-
count the fact that, at any time, each process has only a partial view of the system, i.e.,
it can directly interact with only a subset of the processes that are present in the sys-
tem (this part is called its neighborhood). So, we consider the following geographical
attributes for the definition of a dynamic distributed system.

– At any time, the system can be represented by a graph G = (P, E), where P is
the set of processes currently in the system and E is a set of pairs (pi, pj) that
describe a symmetric neighborhood relation connecting some pairs of processes.
(pi, pj) ∈ E means that there is a bidirectional reliable channel connecting pi and
pj .

– The dynamicity of the system, i.e., the arrivals and departures of processes, is mod-
eled through additions and removals of vertices and edges in the graph.

• The addition of a process pi to a graph G brings to another graph G′ obtained
from G by including pi and a certain number of new edges (pi, pj) where the
pj are the processes to which pi is directly connected.

• The removal of a process pi to a graph G brings to another graph G′ obtained
from G by suppressing the vertex pi and all the edges involving pi.

• Some new edges can be added to the graph, and existing edges can be sup-
pressed from the graph. Each such addition/deletion brings the graph G into
another graph G′.

– Let {Gn}run denote the sequence of graphs through which the system passes dur-
ing a given run. Each Gn ∈ {Gn}run is a connected graph the diameter of which
can be greater than one for all runs.

As we have seen, an infinite arrival model allows capturing a dynamicity dimension
of dynamic distributed systems. Making different assumptions on the diameters of the



Looking for a Definition of Dynamic Distributed Systems 5

graphs in the sequences {Gn}run allows capturing another dynamicity dimension re-
lated to the “geography” of the system. More specifically, we consider the following
possible attributes. In the following {Dn}run denotes the set of the diameters of the
graphs {Gn}run.

– Bounded and known diameter. In this case the diameter is always bounded by b,
i.e., for each Dn ∈ {Dn}run we have Dn ≤ b for all the runs, and that bound is
known by the protocols designed for that model.

– Bounded and unknown diameter. In this case all the diameters {Dn}run are finite
in each run, but the union of {Dn}run for all runs can be unbounded. In that case,
as an algorithm cannot know in which run it is working, it follows that the maximal
diameter remains unknown to the protocol. So, in that model, a protocol has no
information on the diameter.

– Unbounded diameter. In this case, the diameter is possibly growing indefinitely in
a run, i.e., the limit of {Dn}run can go to infinity.

2.3 Dynamic Models Definition

A model is denoted as MN,D where N is on the number of processes and D is on
the graph diameter, both parameters can assume the value b, n, ∞ to indicate respec-
tively a number of entities/diameter never exceeding a known bound, a number of en-
tities/diameter never exceeding an unknown bound and a number of entities/diameter
possibly growing indefinitely (in the following, if a parameter may indifferently assume
any value, we denote that as ∗). Possible models are M b,b, Mn,b, M∞,b (1), Mn,n,
M∞,n and M∞,∞.

Note that the previous models characterize only the dynamicity of the system without
considering other more classical aspects such as the level of synchrony or the type of
failures. Clearly, any of these models can be refined further by specifying these addi-
tional model attributes as usually done in static systems.

To be able to establish the impact of geographical assumptions on a problem solving
in dynamic distributed systems, we only consider, in this paper, synchronous systems
or asynchronous system completed with perfect failure detectors. In other words, we
assume that a node can have reliable information about nodes in its neighborhood.

3 An illustrating Example: One-Time Query

3.1 The One-Time Query Problem

To illustrate and investigate the previous attributes of a dynamic distributed system, we
consider the One-Time Query problem as defined in [2]. This problem can informally
be defined as follows. A process (node) issues a query in order to aggregate data that
are distributed among a set of processes (nodes). The issuing process does not know (i)
if there exist nodes holding a value matched by the query, (ii) where these nodes are,
(iii) how many they are. However, the query has to complete in a meaningful way in
spite of the uncertainty in which the querying node works.

1 An instance of the model M∞,b is M∞ of [1] where the diameter is implicitly set to 1.
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The One-Time Query problem, as stated in [2] requires that the query, issued by a
node pi aggregates at least all the values held by the nodes that are in the system and
are connected to pi during the whole duration of the query (query time interval).

Unfortunately, this specification has been intended for a model slightly different from
the more general model proposed in the previous section. In fact, the system is intended
to be monotonous in the sense that it can be represented by a graph G defined at the
beginning of the computation (query) and from which edges can be removed as time
passes, but to which no new edges can be added as time passes. Differently, in the
previous models, the system is dynamic in the sense that nodes/edges additions and
nodes/edges deletions are allowed. As we are about to see, while the One-Time Query
problem -as defined above- cannot be solved in a dynamic system, a weaker version of
it can be. It is also important to notice (as we will show later) that this weaker version
cannot be solved in M∞,∞.

One-Time Query specification. The specification that follows is due to [2]. Let query(Q)
denote the operation a process invoke to aggregate the set of values V = {v1, v2, . . .}
present in the system and that match the query. The aim for the process that issues the
query is to compute v = Q(V ). Given that setting, the problem is defined by the fol-
lowing properties (this means that any protocol solving the problem has to satisfy these
properties):

– Termination: query(Q) completes in a finite time.
– Validity: The set V of data obtained for computing query(Q) includes at least the

values held by processes that are member of the system during the whole query
time interval.

3.2 The WILDFIRE Algorithm

In [2] the following algorithm (called WILDFIRE) to solve the problem is proposed.
This algorithm relies on the following assumptions:

– synchronous channels with a known upper bound δ,
– a known upper bound on the network diameter D.

Algorithm description. The principle of this algorithm is simple. Each process which
receives a so-called query-update message updates its current value to a new one, com-
puted by aggregating the current value and the received value, then it spreads the new
value to its neighbors.

The initiator of the query just sends its initial value to its neighbors in a query-update
message and waits for at least 2 ∗D ∗ δ time before returning its value. D ∗ δ is the time
required to inform all nodes in the network about the query, and the same duration is
required to transmit values to the initiator.

As the initiator, all nodes which receive a query-update message for the first time,
initiate a timeout and when this timeout expires, they stop to process all new query-
update messages.

In [2], the authors propose to reduce the number of messages exchanged by sending
a query-update message only when there is new information: (i) if the remote value
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doesn’t change the local value, then the node doesn’t send any message (except for the
first reception of the query-update message), (ii) if the aggregate value is equal to the
remote one, then the node transmits the new value to its neighbors except the sender of
the remote value.

INITIALIZATION

1 active← false;
2 v ← initial value;

LAUNCH(Q)
3 active← true;
4 d← D; % D is the upper bound on the network diameter. %
5 send [QUERY-UPDATE (Q, d− 1, v)] to neighbors;
6 set timeout T ← 2d ∗ δ;
7 when (T elapses) do
8 active← false;
9 return (v);

RECEPTION

10 when (receive [QUERY-UPDATE(Q, d, rv)] from pj) do
11 if (¬active)
12 then set timeout T ← 2d ∗ δ; % We consider negligible process step’s executions w.r.t. message delays. %
13 if (T not yet elapsed)
14 then temp← aggregate(v, rv);
15 if (temp! = v or ¬active)
16 then active← true; v ← temp;
17 send [QUERY-UPDATE,(Q, d− 1, v)] to neighbors − pj ;
18 if (v! = rv)
19 then send [QUERY-UPDATE,(Q, d− 1, v)] to pj

Fig. 1. The WILDFIRE Algorithm

3.3 The One-Time Query Problem for Dynamic Models

One-Time Query problem solvability. The WILDFIRE algorithm solves the one-time
query problem in a monotonous network but does not solve it in a dynamic network (in
none of the models presented in the previous section, neither in M∗,b). More generally,
the one-time query specification introduced so far is too strong, and cannot be satisfied
by any algorithm if the network graph can change by adding edges during the query
completion 2. However, if an edge is added during a query, the following bad scenario
can happen.

Description on a bad scenario. Let us consider the querying process pA and a process
pE (i) inside the system when the query starts and (ii) connected to pA through a given
path. Let us suppose that an edge joining pA and pE is added after the query started and
remains up until the query ends. Let us also suppose that the path previously connecting
pA and pE is removed (due to a crash of some process in the path) before the query ends.
Formally, pA is always connected to pB throughout the entire duration of the query (as
herein assumed by all dynamic models), but its value could not be retrieved as described
in Figure 2 where tq is the time the query starts.

2 The addition of edges during the query completion is reasonable as the query takes an arbitrary
long time spanning the entire graph and in order to maintain connectivity edges addition may
be needed in spite of edges removals occurring at arbitrary times.
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ED

(c) time: tq2>tq1; E,D send 
their value back 

A

B C

ED

(d) time tq3>tq2; the message is still 
in transit towards C and a new link 

is added: A.neighbors={B,C,E}

A

B C

ED

(e) time: tq4>tq3; the message is still 
in transit towards C, and two links 

are removed by the crash of C. The 
message is lost

Fig. 2. Bug Example

The problem lies in the fact that the process pE replies to the query but the mes-
sage containing the reply is exchanged through a path that is removed before the query
completes, and is consequently lost before it reaches the querying process.

Then, to retrieve this value, pE should be forced to send again the reply back (this
can be done by assuming a detection of the path removal that triggers a new sending
on the new path). However, by the nature of the infinite arrival model, the substitution
of a path with a new one during the query could happen infinitely often in all dynamic
models in which the diameter is not bounded by one (see Fig. 3). In all these models
the query may never complete violating termination.

One-Time Query specification for dynamic models. The specification of the one-time
query problem in case of a dynamic model is here refined bringing to the definition
of the Dynamic One-Time Query Specification. This new specification states that the
values to include in the query computation are at least those coming from nodes that
belong to the graph G defined at time the query starts, and remain connected, during the
whole query interval, to the querying process through a subgraph of G. More formally,
the Dynamic One-Time Query specification satisfies the following two properties:

– Termination: query(Q) completes in a finite time.
– Dynamic Validity: For each run, query(Q) will compute the result including in

V at least the values held by each process that, during the whole query interval,
remains connected to the querying process through a subgraph of the graph G that
represents the network at the time the query is started.
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Fig. 3. Bad Pattern of Graphs Changing

It is important to note (and easy to see) that the dynamic one-time query specification
is satisfied by the WILDFIRE algorithm in the model M∗,b with b > 1. In the following
we will explore if there exist solutions without assuming a known upper bound on the
diameter.

3.4 The DEPTHSEARCH Algorithm

The algorithm that follows (called DEPTHSEARCH) solves the one-time query problem
as defined just previously. That protocol relies on the following assumptions.

– asynchronous model enriched with a perfect failure detector (the faulty processes
are deleted from the set neighborhood),

– unique process identifiers,
– a finite diameter of the network (not known in advance).

Algorithm description. This algorithm works in a different way than WILDFIRE. In
WILDFIRE, many query-update messages are exchanged all over the network at the
same time. In the DEPTHSEARCH algorithm only one message (query or reply) is trans-
mitted at one time. The only case, in which two different queries co-exist, is the conse-
quence of a disconnection between two nodes, but in any case only one query is taken
into account.

This algorithm manages several sets:

– The set values that contains all values currently collected,
– The set replied that contains the identifiers of the nodes that have provided their

value,
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– querying contains the identifiers of the nodes that have sent a querying message
and are waiting for replies from their neighborhood. These nodes (except the query
initiator) are also nodes that have to provide their value to some other querying
process.

This algorithm works similarly to a depth-first tree traversal algorithm (it traverses
the nodes that compose the system). When a node pi receives a query message, it checks
if some of its neighbors have not yet received the query message yet by checking the
querying and replied set. If some of them have not yet received a query message, then
pi sends to the first of them (say pj) a query message and waits until it receives a reply
from pj .

When the node pi receives a reply message from pj , or if pj is no more in the pi’s
neighborhood (pi is failed or is disconnected), the node pi sends a query message to the
next neighbor that has not yet received a query message. When all pi’s neighgbors have
received a query message or are no longer in the pi’s neighborhood, then pi sends back
a reply message with the values and replied set updated or, if pi is the query initiator, it
returns the set of values.

INITIALIZATION

1 querying ← ∅; % set of processes forwarding the query %;
2 replied ← ∅; % set of processes replied to the query %;
3 targets← ∅; % set of processes to query by the local process %;
4 values← {local value}; % set of processes to query by the local process %;
5 neighborhood % set of correct neighbors provided and updated by the perfect failure detector %

REQUEST(Q)
6 targets← neighborhood; % This line freezes the neighbor set %;
7 querying ← querying ∪ {local id};
8 for each i := 1 to |targets|
9 if (targets[i] �∈ {querying} ∪ {replied})

10 then send [QUERY,(Q, querying, replied)] to n[i];
11 wait until (receive [REPLY,r values, r replied] from n[i] ∨ n[i] �∈ neighborhood);
12 if (n[i] ∈ neighborhood)
13 then values ← values ∪ r values;
14 replied ← replied ∪ r replied

LAUNCH(Q)
15 REQUEST(Q);
16 return (values)

RECEPTION

17 when (receive [QUERY,(Q, r querying, r replied)] from pj) do
18 querying ← r querying;
19 replied ← r replied;
20 REQUEST(Q);
21 replied ← replied ∪ {local id};
22 send [REPLY,(values, replied)] to pj ;

Fig. 4. The DEPTHSEARCH Algorithm

Algorithm illustration. To illustrate the protocol behaviour, let us consider the com-
putation related to a query initiated by a node pA in the network shown in Figure 5.
In this scenario pA starts to query the first process in the pA.targets = (B, C, D)
set, pB does the same with its pB.targets = (A, C, E) set where pB.querying =
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A

B C D

E

Fig. 5. Graph Representing the Network during the A’s Query

pA.querying = {A}. Then pB queries pC , piggybacking the list of querying processes,
that now is {A,B}. Then, pC does not query anyone and gives back a reply to pB ,
with a list of replied processes equal to {C}. At this point, pB queries pE . Let us
consider the case in which the edge (pB, pE) breaks, then pB ends and becomes part
of replied giving back to pA the value come from pB , vb, and the value from pC , vc.
Then, pA avoids to query pC as part of replied and queries directly pD, piggybacking
the list of pA.querying still containing only A and the list of replied equal to {B,C}.
Then pD avoids to query pC and it queries only pE . pE receives the query with the
following information: querying processes {A,D}, replied processes {B,C}. Then, the
process pE terminates the querying phase and sends back a reply to pD containing vE .
pD terminates the querying phase also as its pending list is empty (targets-querying-
replied) and sends back the reply containing vE , vD. pA terminates the querying phase,
computes the result on the values of all nodes, and returns.

DEPTHSEARCH correctness proof. In the following we formally prove that the DEPTH-
SEARCH algorithm solves the dynamic one time query problem in any model with a
bounded but unknown diameter (Theorem 1). In particular, Lemma 1 proves that the
DEPTHSEARCH algorithm satisfies Dynamic Validity while Lemma 2 proves that the
algorithm satisfies Termination.

Lemma 1 (Dynamic Validity). DEPTHSEARCH satisfies the Dynamic Validity prop-
erty in the M∞,n model.

Proof. (Sketch) Let G be the graph representing the network when the query starts and
let us consider the maximal connected subgraph G′ of G at the time the query ends
which includes the query initiator pA. Let us assume by contradiction that when the
query ends, pA does not comprise in its values set the value of one node pX in the
graph G′.

Since pX belongs to G′, then there exists a non-empty set of paths (generally non-
independent) which connect pA and pX belonging to G′ (and G). Without loss of gen-
erality let us suppose that there exists only one of such paths P = {pA, ..., pX}.

Let us first observe that when a process pi receives a query q, the query has actually
traversed a sequence of processes which are in the querying state and always comprising
the initiator pA. Let us call this sequence as the query path for the received query. By
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construction (line 9) no process in the sequence is in the replied set of any process of
the sequence. Then, if pi replies back to the query, its value starts to flow back on the
query path, and each processes which receives it, stores pi in the replied set and the
pi’s local value in the values set. On the other hand, if the query path breaks, then the
flowing of the value towards pA could block. All nodes which did not receive the value
back are a prefix of the broken query path and are still in their querying phase (a node is
in the querying phase at least the time its succesor in the path is in the querying phase).
None of these processes have pi in the replied set then, a new query path reaching pi

with this prefix is still possible. Moreover, even disconnected nodes which have pi in
the replied set, will renew this set excluding pi when they receive a new query (line 19)
from one of the querying nodes of this prefix.

Let us now consider the case of pX . pX will have the path P connecting it to pA

which is up for the whole time interval. However, it could receive a query from another
query path which breaks before pA gets the value of pX . This could happen more than
once, depending on the graph G topology and changes while the algorithm work. With-
out loss of generality let us suppose that only two paths connect pA to pi, i.e. P and a
path F which shares with P a non-empty prefix pfx , and the F is the first explored by
the algorithm. Let us also suppose that the path F breaks leaving nodes of pfx without
the value of pX . In this case the last node of pfx , let’s say pl, once revealed the discon-
nection explores another path with the same prefix pfx . Without loss of generality we
can now suppose it will explore P . In fact we can assume that all other explored paths
before P could complete correclty bringing then the pl to query its successor in P (by
the accuracy property of the failure detector no nodes in the path P can be excluded),
this successor does the same as each process between pl and pX , leading then to query
pX . By contradiction we assumed that pX was not in the pA values when pA stops to
be querying, however when pA stops to be querying the value of pX has been surely
flowed on the path P leading to a contradiction. �Lemma 1

Lemma 2. The DEPTHSEARCH algorithm satisfies Termination in the model M∞,n.

Proof. The only statement blocks the protocol is the wait statement at line 11. Let us
call as querying process a process which sent the query message to some node and is
waiting for a reply, i.e. a process blocked at statement 11. By the completeness property
of the failure detector no querying process can block due to a failure of a node in its
neighborhood. Then, let us suppose that no failures happen during the query interval,
this also implies that the graph representing the network when the query starts can only
grow during this time. By the pseudo-code, a querying node waits a reply from each
neighbor which was in the neighborhood when the query is received (line 6). Then,
even if in the model M∞,n, a node could have an always growing neighborhood, the
neighborhood to wait from never grows, i.e. each querying node pi has to wait a reply
from a bounded number of neighbors ni. Starting from pA (the initiator) the query
message starts to flow in the graph involving the first neighbor of pA, which in turn
involves its first neighbor and so on. Let us denote as {p1

1, p
2
1, p

3
1...} the sequence of

processes in which pi
1 is the first neighbor of the process pi−1

1 . A first observation on
the diameter of the graph which is bounded as the model implies, leads to conclude
that this sequence is bounded when all these processes are one different to the other.
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On the other hand, since the querying set, sent along with the query, includes all the
sequence {p1

1, ...p
i−1
1 } when arrives at pi

1, the query stops to flow when (i) either the
last process is reached (in the case it contains all different processes) (ii) the first time a
process is repeated in the sequence (which means that the sequence contained a loop).
Let us denote as pi

1 this last node, it will reply back by letting the process pi−1
1 to query

its second neighbor. A second observation about the arbitrary order of neighbors in the
neighborhoods which make indistinguishable a sequence of processes through where a
query flows from another leads to assume ni = 1 for each pi without lossing generality.
This means that each querying process starting from pi−1

1 will unblock pi−2
1 by replying

back its value. All querying processes in the system will eventually unblock preserving
Termination. �Lemma 2

Theorem 1. The DEPTHSEARCH algorithm solves the dynamic one time query prob-
lem in the model M∞,n.

Proof. It immediately follows from Lemma 1 and Lemma 2. �Theorem 1

3.5 Impossibility of Solving the Dynamic One-Time Query Problem in M∞,∞

This proof is simple. It is based on the race among the message that arrives at a process
pi just a moment before a new process pi+1 joins linking to pi. The race is infinite as a
diameter always growing makes possible stretching the path by one infinitely often.

Theorem 2. The dynamic one-time query problem cannot be solved in the model
M∞,∞.

Proof. Let us suppose by contradiction that given any operation query(), (i) query()
will take a finite time Δ, (ii) the operation gathers values from all processes inside the
graph for the whole time duration and which are connected to the querying process
through the graph defined at the time the query starts or its subgraphs.

Let consider a process pi invoking a query() operation at some point of time tq .
Let us suppose that a time t0 (initial time) the network graph consists of a finite path
of processes denoted as {pi, . . . pk}. Then, let us suppose that this path infinitely grows
along the time, without loss of generality, let us suppose that the path length is increased
by 1, by adding a process pi

h, each δ time interval. Then after t0 +nδ the graph consists
of the path {pi . . . pk, p1

h, p2
h . . . pn

h}.
Let us now consider a run R in which tq = kδ + t0. In this case all processes

{pi . . . pk, p1
h, p2

h . . . pk
h} must necessarily receive the query message in order to be in-

volved in the query() operation as the specification requires. This also implies that the
process pk−1

h must send the query message to pk
h. By construction pk

h belongs to pk−1
h ’s

neighborhood before the time tr in which pk−1
h receives the query message.

Now we consider a run R′ with the same scenario as R but with tq = (k − 1)δ + t0
and the time at which pk−1

h receives the query message is again tr where tr > kδ + t0;
As pk−1

h cannot determine tq, then R and R′ are indistinguishable for pk−1
h . This means

that in R′, pk−1
h will relay the message to pk

h.
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This implies that, each process receiving a query message must relay it to the neigh-
borhood defined at the time the query message has been received. Each query() opera-
tion can terminate only when a reply has been gathered by all these processes.

Then, consider a run in which each process pi
h receives the query message at time

tir > (i + 1)δ. The number of processes will receive the query message will be infinite
and Δ is infinite as well, getting a contradiction. �Theorem 2

4 Conclusion

The aim of this position paper was the investigation of two attributes that character-
ize dynamic distributed systems, namely the varying size of the system (according to
process joins and departures), and its “geography” captured by the notion of process
neighborhood. In order to illustrate these notions, the paper has considered the One-
Time query problem as a benchmark problem. It has been shown that (1) the traditional
definition of this problem has to be weakened in order the problem can be solved in
some dynamic models, and (2) it cannot be solved in all dynamic models. The quest for
a general definition of what a “dynamic distributed system” is (a definition on which
the distributed system and network communities could agree) still remains a holy grail
quest.
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