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Abstract. This paper presents two approaches of Artificial Immune System for 
Pattern Recognition (CLONALG and Parallel AIRS2) to classify automatically 
the well drilling operation stages. The classification is carried out through the 
analysis of some mud-logging parameters. In order to validate the performance 
of AIS techniques, the results were compared with others classification meth-
ods: neural network, support vector machine and lazy learning.  
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1   Introduction 

Offshore petroleum well drilling is an expensive, complex and time-consuming opera-
tion and it demands a high qualification level from the drilling executors.  One of the 
trends of the oil industry is the application of real-time measurements and optimiza-
tion of production operations with the purpose of guaranteeing a safe and effec-
tive/low cost drilling execution. The concept of digital fields has been widely used in 
current works to denote continuous optimization of production [1]. This trend has also 
been seen in drilling, as real-time measurements and control are as well gaining atten-
tion in this particular area. In the last two decades, the technological advances in drill-
ing techniques have notably contributed to the lowering of costs and to the expansion 
of exploration areas.  

Technological progress in the petroleum engineering area was partly motivated by 
the evolution in instrumentation techniques, which affected not only the exploration 
segment but also the production one. As a result of the increasing instrumentation 
level, today, there is a lot of data being measured and recorded.  But the techniques of 
data interpretation and evaluation have not developed at the same speed, and there is a 
lack of tools able to make an efficient use of all the data and information available. 

This work presents the development of a system that intends to make better use of 
the information collected by mud-logging techniques during well drilling operations. 
The mud-logging techniques collected a great amount of data, and these data nowa-
days, are being used in a superficial way. The proposed system aims to take advan-
tage of some of the information potential that is still not being used. 
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The proposed methodology is able to generate a precise report of the execution 
stages during an operation through the interpretation of mud-logging data. There are 
two possible applications. The first one is related to the performance analysis and 
normality investigations. In this sense, this tool could be used to carry out the latter 
analysis of the time spent drilling each well in a field and to investigate how much of 
the total operation time each stage consumed and based on this statistics to plan the 
drilling of other wells. The second one is related to the production of an on-line log-
ging of the executed stages. The methodology could be used on-line in the rig, so the 
system would be able to produce a report of the execution stages, and this report will 
present the same time precision as that of the mud-logging data. 

The main idea of this work is that there is a great amount of information that has 
not been properly used, and this information could be used to provide a process feed-
back and to produce performance enhancements. There are initiatives of development 
of automatic monitoring systems in other areas like the work presented by Yue et al. 
[2] in Mining Engineering. 

Information concerning individual drilling performance can also be used to build 
benchmarking analysis. In this sense, a petrol company could use this information to 
compare the performance of different divisions. On a minor scale, the company could 
compare performance of rented rigs and identify weak points as part of ongoing im-
provement process. The results produced by an automatic classification system may help 
in the design of new wells. The information about the time spent to execute a determined 
stage could be used for planning new wells in the same region providing cost estimates. 

Artificial Immune Systems (AIS) are a new class of algorithms inspired by how the 
immune system recognizes attacks and remembers intruders [3]. The recognition and 
learning capabilities of the natural immune system have been an inspiration for re-
searchers developing algorithms for a wide range of application. In this paper we are 
interested in applicability of artificial immune systems for real world data mining, and 
classification is one of the most important mining tasks, so we focus on the Clonal 
Selection Algorithm (CLONALG) and on the Artificial Immune Recognition System 
(AIRS) algorithm for that task.  

CLONALG was proposed in 2000 [4] and is based on the clonal selection princi-
ple, which is used by the immune system to describe the basic features of an immune 
response to an antigenic stimulus. It establishes the idea that only those cells that 
recognize the antigens proliferate, thus being selected against those that do not. The 
selected cells are subject to an affinity maturation process, which improves their affin-
ity to the selective antigens. The computational implementation of the clonal selection 
algorithm takes into account the affinity maturation of the immune response [5]. 

AIRS was introduced by in 2001 as one of the first immune systems approaches to 
classification. It is a supervised learning paradigm based on the principles of resource-
limited artificial immune systems [6], [7]. In 2002 Watkins and Timmis [8] suggest 
improvements to AIRS algorithm that are capable of maintaining classification accu-
racy, whilst improving performance in terms of computational costs and an increase 
in the data reduction capabilities of the algorithm. This algorithm is here named 
AIRS2. A new version for a parallel AIRS2 was present in 2004 to explore ways of 
exploiting parallelism inherent in an artificial immune system for decreased overall 
runtime [9]. This algorithm was used in the present paper. 
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The classification results using those two immune techniques were compared with 
classification elaborated by a Petroleum Engineering expert [10] and with others 
automated methods in solving of drilling operation stages identification problem. 
These methods are neural networks [11], Support Vector Machines (SVM) [12] and 
Locally Weighted Learning (LWL) [13]. 

2   Mud-Logging System  

During the petroleum well drilling operation many mechanical and hydraulic parame-
ters are measured and monitored in order to perform the drilling in a safe and opti-
mized manner. There are many systems that work together in a rig to accomplish this 
task. One of these systems is called a mud-logging system and it is responsible for 
measuring and monitoring a set of mechanical and geological parameters. 

Mud-logging system techniques were introduced in Brazil in the 80’s. At that time, 
only a reduced number of parameters were monitored. Since the 80s, with the devel-
opments in instrumentation techniques, the number of measured parameters has in-
creased and the use of mud-logging systems became a common practice in the oil 
industry. 

Another aspect that contributed to the progress of mud-logging techniques in Bra-
zil was the development of deep and ultra-deep water drilling technologies. The deep 
and ultra-deep-water environments require a more controlled drilling operation [14]. 
Any failure or inattention may cause great human and economic losses. In order to 
have a more controlled process, the information supplier systems needed to be im-
proved. In this context, the mud-logging systems were enhanced to become an impor-
tant information supplier system. 

Nowadays, mud-logging systems have two distinctive dimensions, the first one is 
responsible for collecting and analyzing formation samples (shale-shaker samples), 
and the second one is responsible for measuring and monitoring mechanical parame-
ters related to the drilling operation. Considering only the second dimension, the mud-
logging system could be characterized as a complete instrumentation system. 

To accomplish its mission, the mud-logging systems rely on a wide range of sen-
sors distributed in the rig operative systems. One important characteristic of this tech-
nique is that there is no sensor inside the well, and all measurements are taken on the 
rig. The data collect by the sensors are sent to a central computer system, where the 
data are processed and displayed in real time through screens installed in the mud-
logging cabin and in the company-man office. The checking of the parameter evolu-
tion is carried out using the monitors; the system not only permits the selection of the 
displayed parameters but also the selection of their presentation appearance (numbers 
or graphics). Throughout the whole drilling operation, there is a worker watching the 
parameters for any kind of abnormality. If an observed parameter presents an unusual 
behavior, the worker has to immediately communicate this to the driller that will carry 
out the appropriate procedures to solve the problem. In fact, the system permits the 
programming of alarms that will sound in the mud-logging cabin, alerting the mud-
logging worker, always when the value of the observed parameter is not within the 
programmed range. 
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The number of observed parameters may vary according to the particular character-
istic of the drilling operation. The most common measured parameters are: Well 
Depth (Depth), True Vertical Depth (TVD), Bit Depth, Rate of Penetration (ROP), 
Hook Height, Weight on Hook (WOH), Weight on Bit (WOB), Vertical Rig Dis-
placement (Heave), Torque, Drillstring rotation per minute (RPM), Mud Pit Volume, 
Pump Pressure, Choke Line Pressure, Pump Strokes per minute (SPM), Mud Flow, 
Total Gas, Gas Concentration Distribution, H2S concentration, Mud Weight in/out, 
Drilling Fluid Resistivity, Drilling Fluid Temperature, Flow Line, LAG Time, and 
Stand Length. 

It is important to mention that just some of the listed parameters are really meas-
ured using sensors. Some of them are calculated using the measured parameters. The 
WOB, for instance, is a calculated parameter. It is calculated using the WOH (a meas-
ured parameter) and the knowledge of the weight of drill string elements. 

The mud-logging monitoring services are generally provided by a specialized com-
pany that, at the end of the drilling operation, makes a report relating the occurrences 
associated to the completed operation. During the drilling monitoring, a huge amount 
of data is generated, and due to difficulties of data storage, the data are summarized to 
make up smaller files. The common practice is to reduce measurements made on a 
second basis to measurements made on a minute basis. Although it solves the problem 
of the files volume, on the other hand it represents the loss of a large amount of in-
formation. There are some events that may occur and last only a few seconds, like the 
drag occurrence in tripping out. When the data is summarized, the information about 
the drag occurrence is partially lost. 

Considering all the measured parameters, it can be noted that the parameters re-
lated to the gas invasion in the well (Mud Pit Volume and Total Gas) are used more 
often than the others, it indicates that there is still a great information potential that 
has not been properly used. 

Another important question related to the mud-logging system is the redundancy in 
parameter measuring. Besides hook height, other parameters have been measured by 
more than one instrument system. It is common to find rigs where the same parameter 
is being measured by the mud-logging company, by the MWD company and by the 
rig itself. And it is not rare to observe cases where the three measurements taken do 
not present the same absolute value. This behavior has caused some questioning about 
the future of mud-logging systems. 

The general tendency is that more modern rigs will have a higher level of instru-
ments on their working systems, and maybe in the future the rig will be in charge of 
measuring and monitoring all drilling parameters while the mud-logging services will 
be restricted to shale-shaker sample analyses. 

3   Individual Stages Associated to the Drilling Operation for the 
Classification System  

The drilling of petroleum well is not a continuous process made up of one single op-
eration. If one looks at in a minor scale, it is possible to note that the petroleum well 
drilling operation is made up of a sequence of discrete events. These minor events 
comprised into the drilling operation will be called drilling operation stages. Six  
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basics stages associated to the drilling operation were identified to build the proposed 
classification system. A brief description of each considered stage is presented below: 

• Rotary Drilling: in this stage the drilling itself occurs, the bit really advances 
increasing well depth. The drill string is rotating and there is mud circulation. 
The drill string is not anchored to the rotary table causing a high hook weight 
level. 

• Rotary Reaming: in this stage despite the high hook weight level, mud circula-
tion and drillstring rotation, the bit does not advance increasing the final well 
depth. In this situation, there is a back-reaming of an already drilled well  
section. 

• Oriented Drilling (“Sliding Drilling”): in this stage, the bit really advances 
increasing the well depth. The difference here is that the drillstring is not rotat-
ing and the drilling occurs due to the action of the downhole motor. There is 
mud circulation and a high hook weight level. 

• Back-reaming or Tool adjusting: in this stage, the bit does not advance in-
creasing the final well depth. There is circulation and a high hook weight level. 
This condition indicates that back-reaming is being carried out or that the  
tool-face of the downhole tool is being adjusted. 

• Tripping: this stage corresponds to the addiction of a new section to the drill-
string. The drillstring is anchored causing a low hook weight level. The drill 
string dos not rotate. 

• Circulating: in this stage there is no gain in the well depth. It is characterized 
by fluid circulation, a high hook weight level and a moderated rotation of the 
drillstring. 

These six stages represent a first effort to individualize the basic components of a 
drilling operation. The stages were detailed considering the drilling phases with mud 
return to the surface. The drilling technology considered was the drilling using mud 
motor and bent housing. This classification may not be satisfactory for the initial 
drilling phases and for special operations, such as fishing, in the well. In the same 
way, if other drilling technologies are considered, like the rotary steerable systems, 
small adjustments in the definition of the stages will be required. For instance, when 
using rotary steerable systems, it makes no sense to make a distinction between rotary 
drilling and oriented drilling stages as they were defined in this work, because these 
systems are supposed to drill all the time using drillstring rotation. 

4   Artificial Immune Systems  

The immune system guards our bodies against infections due to the attacks of anti-
gens. The natural immune system offers two lines of defense, the innate and adaptive 
immune system. The innate immune system consists of cells that can neutralize a 
predefined set of attackers, or ‘antigens’, without requiring previous exposure to 
them. The antigen can be an intruder or part of cells or molecules of the organism 
itself. This part of the immune system is not normally modeled by AIS systems. 

Vertebrates possess an adaptive immune system that can learn to recognize, elimi-
nate and remember specific new antigens. This is accomplished by a form of natural 
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selection. The adaptive immune response in biological systems is based on two kinds 
of lymphocytes (or self-cells) in the body: T-cells, so named because they originate in 
the thymus gland, and B-cells, which originate in bone marrow [3]. 

The major responsibility of the T-cells and B-cells is the secretion of the receptors 
called the antibodies (Ab) as a response to the antigens that enter the body (Ag)  
(nonself-cells). The role of these receptors on the surface of the lymphocytes is to 
recognize and bind the antigen.  An individual T-cell or B-cell responds like a pattern 
matcher - the closer the antigen on a presenting cell is to the pattern that a T-cell or B-
cell recognizes, the stronger the affinity of that T-cell or B-cell for the antigen. T-cells 
are sometimes called helper T-cells because in nature, although the B-cells are the 
immune response mechanism that multiplies and mutates to adapt to an invader, it is 
only when a T-cell and B-cell respond together to an antigen that the B-cell is able to 
begin cloning itself and mutating to adjust to the current antigen (‘clonal expansion’ 
or ‘clonal selection’) [15]. 

Once a B cell is sufficiently stimulated though close affinity to a presented antigen, 
it rapidly produces clones of itself. At the same time, it produces mutations at particu-
lar sites in its gene which enable the new cells to match the antigen more closely. 
There is a very rapid proliferation of immune cells, successive generations of which 
are better and better matches for the antigens of the invading pathogen. B cells which 
are not stimulated because they do not match any antigens in the body eventually  
die [16]. 

The immediate reaction of the innate and adaptive immune system cells is called the 
primary immune response. A selection of the activated lymphocytes is turned into 
sleeper memory cells that can be activated again if a new intrusion occurs of the same 
antigen, resulting in a quicker response. This is called the secondary immune response. 
Interestingly, the secondary response is not only triggered by the re-introduction of the 
same antigens, but also by infection with new antigens that are similar to previously 
seen antigens. That is why we say that the immune memory is associative.  

Artificial Immune System (AIS) are inspired in many aspects of the natural im-
mune systems, such as adaptivity, associative memory, self/non-self discrimination, 
competition, clonal selection, affinity maturation, memory cell retention, mutation and so 
on.  These artificial immune system algorithms (also known as immunocomputing algo-
rithms) have been applied to a wide range of problems such as biological modeling,  
computer network security, intrusion detection, robot navigation, job shop scheduling, 
clustering and classification (pattern recognition). We are interested in this last kind of 
application for our problem of classifying the well drilling stages. We have consid-
ered the two most known classification algorithms based on immune systems to carry 
out this task: CLONALG and AIRS2. 

4.1   Clonal Selection Algorithm (CLONALG) 

The clonal selection algorithm, CSA, was first proposed by de Castro and Von Zuben 
in [4] and was later enhanced in their 2001 paper [5] and named CLONALG. It uses 
the clonal selection principle to explain the basic features of an adaptive immune 
response to an antigenic stimulus. It establishes the idea that only those cells that  
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recognize the antigens are selected to proliferate. The selected cells are subject to an  
affinity maturation process, which improves their affinity to the selective antigens. 
The algorithm takes a population of antibodies and by repeated exposure to antigens, 
over a number of generations, develops a population more sensitive to the antigenic 
stimulus. The basic algorithm for pattern recognition is [5]: 

1. Randomly generate an initial population of antibodies Ab. This is composed 
of two subsets Abm (memory population) and Abr (remaining population): 
Ab = Abm ∪ Abr (m + r = N). 

2. Create a set of antigenic patterns Ag. 
3. Randomly choose an antigen Agi from the population Ag. 
4. For all the N antibodies in Ab calculate its affinity ƒi to the antigen Agi using 

some affinity function (Hamming Distance). 
5. The n selected antibodies will be cloned (reproduced) independently and 

proportionally to their antigenic affinities, generating a repertoire Ci of 
clones: the higher the antigenic affinity, the higher the number of clones gen-
erated for each of the n selected antibodies. 

6. The repertoire Ci is submitted to an affinity maturation process inversely 
proportional to the antigenic affinity, generating a population Ci

* of matured 
clones: the higher the affinity, the smaller the mutation rate. 

7. Re-apply the affinity function ƒi to each member of the population Ci
* and 

select the highest score as candidate memory cell Abm. If the affinity of this 
antibody with relation to Agi is greater than the current memory cell Abmi, 
then the candidate becomes the new memory cell. 

8. Remove those antibodies with low affinity in the population Abr. Finally, re-
place the d lowest affinity antibodies from Abr, with relation to Agi, by new 
randomly generated individuals. 

9. Repeat steps 3-8 until all M antigens from Ag have been presented. 
 

A generation is completed after performing the steps 3-9 above. The rate of clone 
production is decided using a ranking system. Mutation can be implemented in many 
ways, such as multi-point mutation, substring regeneration and simple substitution.  

4.2   Parallel Artificial Immune Recognition System – Version 2 (Parallel AIRS2) 

AIRS2 is a bone-marrow, clonal selection type of immune-inspired algorithm. AIRS2 
resembles CLONALG in the sense that both algorithms are concerned with develop-
ing a set of memory cells that give a representation of the learned environment. 
AIRS2 also employs affinity maturation and somatic hypermutation schemes that are 
similar to what is found in CLONALG. AIRS2 has used population control mecha-
nisms and has adopted use of an affinity threshold for some learning mechanisms. 

AIRS2 is concerned with the discovery/development of a set of memory cells that 
can encapsulate the training data. Basically, this is done in a two-stage process of first 
evolving a candidate memory cell and then determining if this candidate cell should 
be added to the overall pool of memory cells [8]. This process can be outlined from 
[9] as follows: 
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1. Initialization: Create a random base called the memory cells pool. 
2. Clonal expansion. Compare a training instance with all memory cells of the 

same class and find the memory cell with the best affinity (Euclidian distance) 
for the training instance. We will refer to this memory cell as mcmatch. 

3. Affinity maturation.  Clone and mutate mcmatch in proportion to its affinity to 
create a pool of abstract B-Cells. 

4. Metadynamics of B-Cells. Calculate the affinity of each B-Cell with the training 
instance. 

5. Allocate resources to each B-Cell based on its affinity. 
6. Remove the weakest B-Cells (lowest affinity) until the number of resources re-

turns to a preset limit. 
7. Cycle. If the average affinity of the surviving B-Cells is above a certain level, 

continue to step 8. Else, clone and mutate these surviving B-Cells based on their 
affinity and return to step 4. 

8. Metadynamics of memory cells. Choose the best B-Cell as a candidate memory 
cell (mccand). 

9. If the affinity of mccand for the training instance is better than the affinity of 
mcmatch, then add mccand to the memory cell pool. If, in addition to this, the affin-
ity between mccand and mcmatch is within a certain threshold, then remove mcmatch 
from the memory cell pool. 

10. Cycle. Repeat from step 2 until all training instances have been presented. 
 

Once this training routine is complete, AIRS2 classifies instances using k-nearest 
neighbor (k-NN) with the developed set of memory cells. 

Comparing with a data mining approach, AIRS2 is a cluster-based procedure to 
classification. It first learns the structure of the input space by mapping a codebook of 
cluster centers to it and then uses k-nearest neighbor on the cluster centers for classi-
fication. The attractive point of AIRS2 is its supervised procedure for discovering 
both the optimal number and position of the cluster centers. 

Algorithmically, based on the above description, the parallel version of AIRS2 be-
haves in the following manner [9]: 

a) Read in the training data at the root process. 
b) Scatter the training data to the np processes. 
c) Execute, on each process, steps 1 through 9 from the serial version of AIRS2 

on the portion of the training data obtained. 
d) Gather the developed memory cells from each process back to the root. 
e) Merge the gathered memory cells into a single memory cell pool for classifi-

cation. 

5   Results  

The classification problem consists in identifying the drilling operations described 
above as Rotary Drilling (RD), Rotary Reaming (RR), Oriented Drilling (“Sliding 
Drilling”) (SD), Back-reaming or Tool adjusting (TA), Tripping (TR) and Circulating 
(CI). 

In order to identify a given drilling stage in execution, the system needs some of 
the information monitored by the mud-logging system. This work uses: Bit Depth, 
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Weight on Hook (WOH), Stand Pipe Pressure (SPP), Drillstring Rotation (RPM) and 
Weight on Bit (WOB) for this task, as in the previous works [11], [12]. 

Real records of mud-logging data consisting of 3784 samples of three days well 
drilling were used for the training and evaluation of the implemented immune classi-
fier. A Petroleum Engineering expert classified previously these data [10]. When 
training AIS classifier, the whole data set (3784 samples) was randomly separated 
into two subsets: 75% as training set (2838 samples) and 25% as testing set (946 sam-
ples) after training. These sets were the same used in the others related classification 
methods for this problem [11], [12]. Table 1 shows the data distribution according to 
pre-defined classes for the training and test sets. The table clearly indicates the data 
imbalance issue among the classes, mainly for the Circulating (CI) and Tripping (TR) 
stages, which are the less usual operation in the drilling activity. 

Table 1. Distribution of data per class in the training and test sets 

Drilling operations Number of 
samples CI TR TA SD RR RD Total 

Training Set 14 75 795 753 343 858 2838 

Test Set 2 22 266 253 114 289 946 

The application of CLONALG with 20 generations for the proposed task produced 
400 incorrectly identified instances of the training set and 104 misclassified instances 
of the test set. The classification accuracy for training and test sets are 85.9% and 
89.0%, respectively. Table 2 shows the correctness rate for the training and test sam-
ples for each evaluated method. 

Parallel AIRS2’s experiments are undertaken with the k-value for the k nearest 
neighbor approach is set to 7. The value for number of threads is 5. The learning 
evaluation of this approach has shown a reasonable performance, obtaining 2587 
instances correctly classified (91.2%) for the training data and 879 instances (92.9%) 
for the test data. The performance of the Parallel AIRS2 is higher than of CLONALG. 

A Multi-Layer Perceptron (MLP) neural network (NN) with backpropagation (BP) 
learning algorithm, which is widely used in numerous classification applications, has 
been investigated for this problem in our previous work [11] and its results are com-
pared with the immune classifier systems CLONALG and Parallel AIRS2. MPL-BP 
has a better performance among all method, reaching an accuracy of 96.3% and 
94.9% for the training and test sets, respectively. 

Support Vector Machine (SVM) was used also to develop the automatic classifica-
tion system of well drilling stages [12]. SVM correctly classified 2660 samples of the 
training set, reaching a reliability of 93.73%. For the testing set, 876 samples were 
well classified, with 92.6% of success. 

Locally weighted learning (LWL) is a class of statistical learning techniques (lazy 
learning) that provides useful representations and training algorithms for learning 
about complex phenomena [13]. LWL uses locally-weighted training to combine 
training data, using a distance function to fit a surface to nearby points. It is used in 
conjunction with another classifier to perform classification rather than prediction.  
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Table 2. Correctness rate for each classification method  

Method Training Set Test Set 
MLP-BP 96.3% 94.9% 
SVM 93.7% 92.6% 
CLONALG 85.9% 89.0% 
Parallel AIRS2 91.2% 92.9% 
Lazy LWL 80.5% 81.3% 

Table 3. Classification accuracy for each class in the training data 

Drilling operations 
Method 

CI TR TA SD RR RD 

MLP-BP 100% 100% 97.5% 98.1% 89.2% 96.0% 

SVM 100% 100% 96.6% 95.8% 83.1% 92.8% 

CLONALG 0% 98.7% 85.0% 93.5% 45.5% 96.5% 

Parallel AIRS2 57.1% 100% 90.1% 95.6% 69.7% 96.6% 

Lazy LWL 0% 0% 91.7% 0% 91.5% 100% 

Table 4. Classification accuracy for each class in the test data 

Drilling operations 
Method 

CI TR TA SD RR RD 
MLP-BP 100% 100% 96.2% 98.4% 86.0% 93.8% 

SVM 100% 100% 96.6% 94.1% 83.3% 90.7% 

CLONALG 0% 100% 89.5% 96.0% 72.8% 97.2% 

Parallel AIRS2 100% 100% 91.7% 97.6% 75.4% 98.3% 

Lazy LWL 0% 0% 91.7% 0% 93.3% 100% 

The four components that define LWL are: a distance metric, near neighbors, 
weighting function, and fitting the local model. In this application it is the technique 
with the worst result: precision of 80.5% for training set and 81.3% for test set.  

In order to understand the difficulties of pattern discrimination of each method in 
the learning process, Tables 3 and 4 present the classification accuracy for each class 
related to each learning technique for both training and test data. Ten trial runs were 
performed for each method using a 10-fold cross-validation procedure. 

It is important to mention that the circulating (CI), tripping (TR), rotating mode 
(consisted of rotary drilling (RD) and rotary reaming (RR) stages) and non-rotating 
mode (consisted of back-reaming or tool adjustment (TA) and sliding drilling (SD) 
stages) operations are linearly separable classes. However, RD and RR are non-
linearly separable classes. The same for TA and SD classes. 

Close examination of the Tables 3 and 4 revels that, as expected, for MLP-BP and 
SVM the accuracy on the non-linearly separable data set is less than the classification 
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accuracy on the linearly separable dada set. The classification is well successful either 
for classes with a little amount of samples or a large one. 

When CLONALG and Parallel AIRS2 algorithms use the imbalanced data set for 
training, antigens from the majority class may generate more memory cells than the 
ones from the minority class. If all the memory cells are represented in a high dimen-
sional space, one minority class cell may be surrounded by many majority class cells; 
so taking votes (k-NN classification) from several memory cells closest to a test anti-
gen may cause biased decisions. That explains the fact of CLONALG is unable to 
learn the CI class and Parallel AIRS2 has a low performance to this class.  Neverthe-
less, even for complex mud-logging data sets CLONALG and Parallel AIRS2 algo-
rithms are able to perform fairly well as a classifier.  

LWL does not learn the minority classes and its behavior for SD class is unclear. 

6   Conclusion  

The classification systems presented can be used either to classify stored mud-logging 
data of a database of drilled wells or to classify mud-logging data on-line and online 
in a rig. Due to the detailed level regarding each executed stage provided by the clas-
sification systems, it can help to analyze the individual drilling performance of each 
well. Information about the total time spent on each stage combined with related eco-
nomic costs can be used to assess the real cost reduction benefit caused by optimized 
drilling programs and introduction of new technologies. 

The imbalanced real mud-logging data has a large impact on the classification per-
formance of the AIS classifiers, since they can achieve high precision on predominant 
classes but very low correct classification on classes with a few samples, in contrast 
with the neural network and SVM, which recognize efficiently all patterns of the 
minority classes. The results suggest that Parallel AIRS2 could achieve a similar per-
formance than MLP-BP and SVM do on data sets of others applications or problems 
with a better class’s distribution. 

This paper demonstrates that the development of a classification system for real 
multi-class problems using immune system inspired approaches is feasible. 
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