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Abstract. In this paper a relation between artificial immune network
algorithms and coevolutionary algorithms is established. Such relation
shows that these kind of algorithms present several similarities, but also
remarks features which are unique from artificial immune networks. The
main contribution of this paper is to use such relation to apply a formal-
ism from coevolutionary algorithms called solution concept to artificial
immune networks. Preliminary experiments performed using the aiNet
algorithm over three datasets showed that the proposed solution concept
is useful to monitor algorithm progress and to devise stopping criteria.

1 Introduction

Several artificial immune network (AIN) algorithms have been developed based
on Jerne’s idiotypic network theory. They have been applied with success to
several problems, including clustering, classification, optimization, and domain
specific problems [3]. These algorithms present several similarities with evolu-
tionary algorithms: an AIN is a population based meta-heuristic which uses
variation and selection mechanisms over a population of individuals. Moreover,
an AIN has elements in common with coevolutionary algorithms, a branch of
evolutionary algorithms in which individuals interact between them. In an AIN,
the stimulation of a cell is influenced not only by the antigens it detects, but
also by other cells of the AIN.

Therefore, analyzing the relation between AINs and coevolutionary algorithms
may provide interesting insights to each domain. Coevolution has been subject of
theoretical analysis [4], which could provide AINs with effective stopping criteria,
performance metrics, and a strong theoretical background. Also, coevolutionary
algorithms may be improved by taking elements from AINs, such as diversity
introduction (metadynamics), memory mechanisms, and dynamic regulation of
population size. Some works have already successfully explored the relation be-
tween such models[10].

In this work AIN algorithms are analyzed from a coevolutionary point of
view, by identifying common elements in both models, and also examining the
differences between AIN algorithms and coevolutionary algorithms. Later, the
solution concept formalism from coevolutionary algorithms is applied to AIN
models, in order to characterize the expected result of the AIN dynamics. In
addition, preliminary experimentation is performed on an existing AIN algorithm
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(aiNet), in order to test the potential use of the proposed solution concept to
define stopping criteria and performance metrics.

The rest of the paper is organized as follows. Section 2 presents a background
of coevolutionary algorithms. Section 3 analyzes artificial immune networks from
a coevolutionary point of view, showing similarities and differences between such
two models. In section 4, the solution concept formalism from coevolutionary al-
gorithms is applied to AINs, and a solution concept is defined for AINs. Results
of exploratory experimentation are shown in section 5, which suggests the po-
tential use of the proposed solution concept to monitor the behavior of AIN
algorithms . Finally, some conclusions are devised in section 6.

2 Coevolutionary Algorithms

An evolutionary process leads to an increase on the average fitness of a popu-
lation. The main mechanisms of evolution are variation and selection; selection
is performed according to a fitness measure, favoring better fit individuals, i.e.,
fittest individuals have a higher probability to survive.

Coevolution occurs when a change in individuals from one species induces
evolution on individuals of another species. For example, suppose that a plant
is subject to attack by an insect. The plant population may undergo evolution
to develop toxins to defend itself from insects. Then, such toxins can induce
evolution on the population of insects, for them to develop resistance to the
toxin. Thus, the evolution of the plants induces a selection pressure over the
insects population, which results in the evolution of the population of bugs.

From a computational viewpoint, a coevolutionary algorithm is characterized
by a fitness function that changes as the population evolves, and is usually
defined based on interaction with other individuals whom are also evolving.

2.1 One vs Many Populations

Coevolutionary algorithms usually involve more than one population of individ-
uals. Each population represents a species, and the individuals of one population
are evaluated according to their interaction with individuals of other populations.

It is also considered that coevolution arises when an individual is evaluated
according to its interaction with individuals of its own population.

2.2 Competitive vs Cooperative Coevolution

The interaction between individuals can have different purposes, which can be
mainly classified in two kinds of interaction: competitive and cooperative.

In competitive coevolution, each individual represents one solution to a prob-
lem, and the interaction between individuals is used to test individuals’ features:
the solution obtained is said to be test-based. An example of this interaction is
when players for games are evolved: individuals receive fitness according to the
results of their games against other individuals.
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In cooperative coevolution, the output of the algorithm is composed of sev-
eral individuals, which together represent a solution to the problem. Individuals
interact in order to measure not only their features, but also their synergy. Here,
the solution is said to be compositional. A very simple example of this approach
is the optimization of a two variables function f(x,y): the solution can be decom-
posed into two elements (x and y coordinates) and each value is evolved in its
own population. Individuals are evaluated by selecting a random mate from the
other population and evaluating the target function f(x,y).

It is important to notice that in some cases the interaction presents charac-
teristics from both categories: then, the interaction is said to be mixed.

2.3 Interaction Between Individuals

In most coevolutionary algorithms the interaction between individuals is direct:
individuals meet each other and obtain fitness from such encounter. But, in
some coevolutionary models, the interaction between individuals is not direct:
their interaction occurs through their relation with a common environment, for
instance, by consuming resources in a common environment. An example is the
Lotka-Volterra model, in which predators interact directly with preys (by eating
them), but they also interact by competing for a scarce resource: when a predator
eats a pray, the remaining amount of prays for other predators diminishes.

Some well-known techniques in evolutionary algorithms which involve indirect
interaction can be considered coevolutionary. An example is a niching technique
known as competitive fitness sharing[4], used in multi-objective optimization. In
this technique, the fitness produced by satisfying an objective is distributed among
the individuals that are able to fulfill it. Thus, individuals that satisfy objectives
that others do not are rewarded, promoting diversity in the population.

2.4 Generational vs Steady State Algorithms

In generational evolutionary algorithms, all individuals of the population are re-
placed by their descendants. In contrast, in steady state evolutionary algorithms,
some individuals are added to the population and then some are removed, al-
lowing an individual to remain in the population for several generations.

2.5 Spatially Embedded Algorithms

Usually, the interaction between individuals happens by choosing other indi-
viduals at random from their respective population. However, in some cases,
individuals are embedded in a space, and the interaction only occurs between
individuals located in a neighborhood. Frequently, such space corresponds to a
lattice, and a local rule only allows individuals to interact with a limited amount
of their neighbors [8].

The interaction space does not need to be explicit: it can be implicitly defined
by a metric that represents a similarity measure between individuals. For in-
stance, a niching technique known as similarity based fitness sharing [4] involves
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interaction between individuals of the population, and, therefore, it can be con-
sidered coevolution. In this technique, the fitness of an individual decreases as the
number of similar individuals in the population increases. It should be empha-
sized that in this case individuals interact according to locality in the genotype
space.

In general, spatial embedding has been used to improve diversity in coevo-
lutionary algorithms. Thus, spatiality does not represent any feature in the
problem domain, but it is simply a convenient tool to improve an algorithm’s
performance[11].

2.6 Solution Concepts

A solution concept is a set of criteria used to determine which elements of a
search space can be considered as solutions to a particular search problem. A so-
lution concept partitions the search space into solution regions and non-solution
regions. Therefore, a population-based algorithm should be designed in such a
way that the population converges to solution regions. It is important to notice
that a solution concept is specific to a particular search problem.

Every search problem defines a solution concept, which characterizes what
is being searched. Also, each search algorithm implements a solution concept,
which corresponds to what it actually searches. Sometimes, coevolution dynam-
ics generates unexpected behavior. According to Ficici [4], this is related to a
mismatch between the intended solution concept and the algorithm’s solution
concept. Therefore, solution concepts are a formalism useful in the design of
proper algorithm dynamics, performance measures, and stopping criteria.

3 Immune Networks and Coevolution

Idiotypic network theory (also known as immune network theory) was developed
by Jerne [6,9] in order to explain the memory and distributed self regulated be-
havior of the immune system. Such theory states that immune system cells are
able to react not only to pathogens, but also to other elements of the immune
system. During antigen exposure, clones (groups of identical cells) which recog-
nize the antigen increase their size. When the antigen disappears, most of those
cells would die and the clones would shrink or even disappear if not stimulated.
Immune network theory states that a B cell can be stimulated by other cells of
the immune system, and that this feedback mechanism can maintain the cells
that were created during exposure to an antigen.

3.1 Artificial Immune Networks

An artificial immune network (AIN) is a computational model built upon Jerne’s
idiotypic network theory. It is a population based meta-heuristic, which develops
a set of detectors (B cells1) that interact with data (antigens) and with each
1 As each B cell express only one kind of antibody, some models consider antibodies

directly, instead of B cells.
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other. AINs perform unsupervised learning; they have been typically used for
clustering, but have also been adapted to optimization, classification and domain
specific applications [5].

AIN dynamics include interaction with antigens and between detectors. As
a result of those interactions detectors become stimulated. Highly stimulated B
cells undergo cloning and somatic hypermutation. Somatic hypermutation is a
genetic operator in which the mutation rate depends on the affinity of the cell
with the current stimulating antigen. This process is regulated by the interac-
tion between B cells, which can stimulate them in order to create a memory of
observed antigens, or suppress them, in order to control the immune response.

AIN algorithms also posses a metadynamics, which includes natural death of
unstimulated detectors and addition of new random detectors to the population.

3.2 A Comparison Between AINs and Coevolution

Here, similarities between AIN and coevolutionary algorithms are presented by
elicitating a correspondence between their elements, which is summarized in
Table 1.

In an AIN, the population of individuals is the set of B cells, and every B cell
is usually represented as a real valued vector or a binary string. These individuals
are stimulated by antigens and by other individuals, and the resulting stimulation
level correspond to the subjective fitness of a coevolutionary algorithm.

Table 1. Parallel between coevolutionary algorithms and artificial immune networks.
Notice that there is no equivalence in coevolutionary algorithms for the antigens and
for the addition of new random cells to the population.

Coevolution Immune networks

Individual B cell

Population Set of B cells (variable size)

- Antigens

Subjective fitness B cell stimulation level

Selection Selection for cloning according to stimulation
Natural death (metadynamics)

Reproduction Cloning

Genetic operators Somatic hypermutation

Competitive interaction Suppression between B cells
Competition for resources (in models with limited resources)

Cooperative interaction The output of the algorithm is a set of detectors that
cooperatively solve a problem

Coestimulation between B cells

Spatiality There is a notion of space (shape space), defined by the
affinity measure. Detectors interact directly only with

elements on their neighborhood in the shape space

- B cell born (metadynamics)

Solution concept Depends on the problem to be solved
Not explicitly specified
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An AIN’s dynamics is similar to a steady state genetic algorithm, as a B cell
can survive through several generations. A B cell may be selected for removal
in metadynamics if it has a very low level of stimulation. Also, if it has a high
level of stimulation, it undergoes cloning (asexual reproduction), and descendant
cells suffer a mutation inversely related to the affinity with the current antigen
(somatic hypermutation).

An AIN presents a mixed interaction between individuals; first, B cells interact
in a cooperative way to solve a problem, that is, the result of the algorithm is the
whole set of cells, rather than a single cell. Also, in models that consider limited
resources, the B cells compete between them for such resources. Additionally, B
cells interact between them to suppress or stimulate each other, which can be
considered cooperative and competitive behavior respectively. Artificial models
usually define a stimulation function and a suppression function, both of which
depend on the affinity of a detector with its neighbors.

Individuals interact with each other and with antigens according to their affin-
ity, which correspond to their similarity (in most cases) or complementarity. In
other words, they interact with each other if they are neighbors in the shape
space2. For real valued vectors the affinity metric is typically the Euclidean dis-
tance or a function of it . In the case of strings the Hamming distance, the edit
distance, or a function of them could be used.

3.3 Differences Between AINs and Coevolution

Although AINs present several similarities with coevolutionary algorithms, they
also present some particularities that make them different from coevolutionary
algorithms.

In AINs, interaction is defined spatially, not as a way to improve an algo-
rithm performance or to promote diversity, but because the model is inher-
ently spatial. Also, a memory mechanism is inherent to immune networks as
a result of its dynamics, while several coevolutionary algorithms implement
some kind of memory in order to avoid cyclic dynamics, but as a external
mechanism.

Additionally, immune network models are self regulatory, which means that
they are free to vary population size, but this has to be done in a reasonable
way, since there has to be an equilibrium state instead of an explosion in the
number of cells.

Regarding solution concepts, there is no clear solution concept related to im-
mune networks. Though the purpose of the algorithm is usually described, the
properties a solution should have are rarely specified. Given the output of an
AIN algorithm, clustering of the data is usually accomplished by connectivity of
the detectors [7](each connected component of the network is a cluster), or by
applying MST algorithm to the detector set[2].

In the next section, a solution concept for artificial immune network algo-
rithms is proposed.

2 A physical space in which B cells move (such as the blood torrent) is never considered.
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4 A Solution Concept for Artificial Immune Networks

As discussed above, the solution concept formalism may be useful for charac-
terizing AINs. Specifically, it could help to define performance measures, devise
stopping criteria, and to refine algorithm dynamics in order to reach a desired
solution. Therefore, here the purpose of the immune network model, its input
and its output are characterized.

4.1 Characterization of the Solution Concept

Although AIN models have been adapted to perform a variety of tasks, here the
purpose of AINs will be restricted and stated in machine learning terminology, in
order to provide a precise definition of the algorithm and a unified framework to
compare different algorithms. This solution concept is based on some concepts,
such as probability density estimation, which will be specified later. An AIN
algorithm is restricted to fit these criteria:

– An AIN algorithm performs unsupervised learning: The algorithm does not
receive information about the labels of incoming data.

– An AIN algorithm performs semi-parametric probability density estimation:
The output of the algorithm provides a model of the data, by representing
the probability distribution of the training data.

Therefore, for a set of antibodies produced by an algorithm to be considered a
solution, it must satisfy the following criteria:

– Equilibrium: An AIN is in equilibrium if it keeps its structure without change
(or with a small change) indefinitely (or for a given period of time), given
that there is not external stimuli. This criterion is related to the AIN memory
mechanism.

– High antigen set modeling capability: AIN’s cells should represent the dis-
tribution of antigens in the shape space. In other words, the probability
distribution that it estimates should be as close as possible to the one that
generated the antigens.

Therefore, the solution concept is defined as a subset of equilibrium states which
satisfy these criteria.

Next, a characterization of AINs as probability density estimators is presented,
as well as the construction of such probability density function, and measures
associated to the proposed solution concept.

4.2 AINs as Semi-parametric Probability Density Estimators

Probability density estimation methods try to estimate a probability distribution
P based on a set of samples of it. These methods can be classified into three
categories: parametric, non-parametric and semi-parametric methods [1].
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In parametric learning the data is supposed to be generated from some prob-
ability distribution, and the learning algorithm tries to find suitable values for
the parameters of such distribution in order to fit the data.

In contrast, in non-parametric models an a priori distribution is not assumed.
The model is built by associating a kernel function (usually Gaussian) to each
point of the training data. Then, the model is constructed as a sum of such
kernels. These methods rely on the fact that any probability distribution can be
approximated as a mixture of Gaussians (see Fig.1). However, they require to
store all the training data, and their use is computationally demanding.

In semi-parametric methods a set of kernels is obtained, but they do not
correspond to the whole set of the training data. Only a few kernels are generated,
which represent a model of the data. In this case as in the parametric case,
parameters of the kernels are selected in order to fit the data in a better way.

AIN algorithms aim to obtain a set of B cells located in regions with high
concentration of antigens. Then, if each B cell is assigned a Gaussian kernel, the
generated probability distribution mimics the probability density of appearance
of new antigens in a given region. Therefore, AINs algorithms can be considered
semi-parametric density estimation methods, which try to model the probability
density distribution of the antigens in the shape space, using a few number of
kernels, each one associated to a B cell.

Fig. 1. Mixture of Gaussian kernels: The set of kernels generate the probability function
shown. Notice that all Gaussian kernels have the same standard deviation and the same
weight. However, in general, they can have different values for the standard deviation,
and each kernel can have a different weight.

4.3 Antibody Set as a Model of Input Data

Input data will be assumed to be a set (training set TS) of n-dimensional real
valued vectors (agi, i ∈ {1...N}), which are assumed to come from an unknown
probability distribution P . The data is unlabeled, and may include noise.

After antigen exposure, the population of antibodies reaches a configuration
(not necessarily static), which is the output of the algorithm. Such output is a
set of detectors (antibodies abi, i ∈ {1...M}), along with the number of cells
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or concentration of each clone (ci, i ∈ {1...M}), for the algorithms that use the
ARB representations), or the stimulation, for algorithms that consider individual
antibodies. The detectors are also n-dimensional real valued vectors.

An antibody set is interpreted as a probability distribution in this way:

– Each detector abi is the center of a Gaussian kernel ki(x) ∼ N(μi, σ
2), where

μi = abi

– The standard deviation of the Gaussian kernel is the radius associated with
the detector.

– The weight of each kernel is either the concentration (number of resources, for
ARBs) or the stimulation level (for models representing individual B cells)

Accordingly, an antibody set is then interpreted as a probability distribution as
follows:

P̂ (x) = (
∑M

i=1 ki(x)ci)/C, where C = (
∑M

i=1 ci)

4.4 AIN Modeling Capability

A measure used to calculate how well a probability distribution fits the data is
the Likelihood. The likelihood expresses the probability that a dataset had been
generated by a given probability distribution.

Therefore, the likelihood of P̂ over the antigens will be used as a measure of
how well a set of antibodies models the antigen set. For numerical reasons, it is
better to consider the log-likelihood, which is defined as

L =
∑N

j=1 ln(P̂ (agj)) =
∑N

j=1 ln(
∑M

i=1 ki(agj)ci)

A high likelihood implies that the difference between the distributions P (the
probability distribution from which antigens are sampled) and P̂ (the estimated
probability distribution) is expected to be minimum. Therefore, an AIN will be
required to present a high likelihood over the antigens in order to be considered
a solution.

4.5 Equilibrium

Memory requires that once a pattern is found in the data, it will not vanish later.
Therefore, equilibrium is a requirement for memory.

Equilibrium implies that the likelihood of the network over the training data
and the number of detectors do not vary significantly through time.

Thus, equilibrium can be tested by letting the AIN iterate without antigen
presentation, and monitoring the number of network’s cells and its likelihood
over the data.

5 Exploratory Experimentation

Some preliminary experimentation was carried out in order to evaluate the anti-
gen set modeling capability requirement of the solution concept.
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The aiNet model, proposed by de Castro [2], was used to measure likelihood
of the network using two synthetic datasets (the two spiral dataset and a two
cluster dataset), and the IRIS dataset. Results are shown in figures 2, 3 and
4, respectively. In all cases, the parameters of the algorithm were set as follows:
suppression threshold was set to 0.7, n=4, N=10, and qi=0.1. For the probability
estimation, the standard deviation was taken as the suppression threshold, and
all the kernels were assigned the same weight.

Fig. 2. Output and Likelihood evolution of the aiNet algorithm over the two spirals
dataset (190 items)

Fig. 3. Output and Likelihood evolution of the aiNet algorithm over the two clusters
dataset (1018 items)

Results for the two spiral and the IRIS dataset show how the likelihood of
the network increases along iterations, which indicates that it is a good measure
of the algorithm progress. Also, results from the IRIS dataset show that the
likelihood reaches a stable value about iteration 20, and later there is no further
improvement in the likelihood. This suggest the use of the likelihood as a measure
of convergence, and, therefore, as a stopping criterion: a stable value after several
iterations suggest that the algorithm has converged.



A Solution Concept for AIN: A Coevolutionary Perspective 45

Fig. 4. Likelihood evolution of the aiNet algorithm over the IRIS dataset (150 items)

In the case of the two cluster dataset, the resulting configuration of the net-
work does not resemble the distribution of input data. Therefore, the algorithm
has failed to find an appropriate model of the data. It should be mentioned that
the parameters of the AIN were set to provide such output. It is important to
notice that the likelihood of the network does not increase throughout time, in-
stead it shows an erratic behavior. Such behavior is an indicator of problems in
the learning process, and suggest that the likelihood can be used to monitor the
algorithm’s performance.

6 Conclusions

In this paper, a formal relation between coevolutionary algorithms and artificial
immune networks was established. It was shown that coevolutionary algorithms
and AINs have many elements in common, but also that AINs present some
characteristics that are not present in coevolutionary algorithms, such as variable
size population, self regulatory behavior, inherent memory and spatiality.

Following Ficici’s observations about coevolutionary dynamics, a solution con-
cept for AINs was defined. Particularly, AINs are considered as a semi-parametric
technique for probability density estimation: they estimate the probability func-
tion from which antigens are assumed to be sampled.

The proposed solution concept required the probability function estimated by
the algorithm to have optimal likelihood over the training data; it also expects
that the structure of the network remain stable in absence of antigens.

Network’s likelihood was tested in the aiNet algorithm, and preliminary exper-
imental results showed that it increased as the learning process took place, sug-
gesting its use to monitor the algorithm’s progress. Additionally, highly oscillatory
likelihood over time was shown to indicate problems in the learning process.

A solution concept is useful to analyze the behavior of an AIN algorithm:
results showed that it can be used to monitor algorithm’s performance, and
accordingly, to formulate stopping criteria. In addition, a solution concept may
help to develop new algorithms or to improve existing ones.
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As semi-parametric probability estimators, AINs have the advantage that they
implicitly find the suitable number of required kernels.

Future work will focus on analyzing convergence properties of current AIN
algorithms based on the proposed solution concept. Also, analytic work will be
undertaken in order to relate immune network dynamics to the regularization
theory, which attempts to limit the complexity of machine learning algorithms
in order to achieve better generalization.
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