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Preface

The field of artificial immune systems (AIS) is one of the most recent natural
computing approaches to emerge from engineering, computer science and the-
oretical immunology. The immune system is an adaptive system that employs
many parallel and complementary mechanisms to maintain homeostasis and de-
fend the organism against pathological agents. It is a distributed system, capable
of constructing and maintaining a dynamical and structural identity, learning to
identify previously unseen invaders and remembering what it has learnt. Nu-
merous immune algorithms now exist, based on processes identified within the
vertebrate immune system. These computational techniques have many potential
applications, such as in distributed and adaptive control, machine learning, pat-
tern recognition, fault and anomaly detection, computer security, optimization,
and distributed system design.

The International Conference on Artificial Immune Systems (ICARIS) started
in 2002 with the goal of bringing together a number of researchers investigating
forms of using ideas from the immune system to do engineering and comput-
ing and to solve complex problems. Some theoretically oriented researchers also
joined this effort with ambitious goals such as modeling the immune system.
There is a continued effort to strengthen the interaction among distinct research
areas, aiming at supporting the multidisciplinary outline of the field. Table 1
indicates the number of submissions versus the number of published papers for
each of the six ICARIS conferences up to now. From 2004 to 2007 the number of
submissions and accepted papers has varied little with a slight increase in 2005,
although one would probably expect these numbers to have increased more over
time, due to the existence of mature textbooks and survey papers in the litera-
ture. Despite that, the submissions this year came from 24 countries (Lithuania,
Switzerland, Luxemburg, Chile, Taiwan, Japan, Malaysia, Morocco, Iran, Por-
tugal, Belgium, Algeria, Turkey, Poland, India, Pakistan, Colombia, USA, Hong
Kong, Germany, Republic of Korea, P. R. China, UK and Brazil), and the range
of innovative and well-succeeded applications of immune-inspired algorithms is
increasing significantly. As we are with the field almost from its inception, we
noticed that ICARIS conferences are playing a great role in bringing newcomers
to the field. It is a challenge for us as a community to stimulate these newcomers
and encourage others, so that the field may face sustainable growth and progress.

Concerning the event organization, for us it was a great pleasure to host
ICARIS in Santos/SP, Brazil. This is a particularly interesting city in Brazil,
for it contains the largest port in Latin America, it is surrounded by paradisi-
acal beaches and dense Atlantic forests, and it is the house of one of the most
traditional Brazilian soccer teams: Santos Futebol Clube, the soccer team where
Pele, the most famous soccer player around the world, developed his splendid
career.
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Table 1. Number of submissions versus number of accepted papers for each ICARIS
conference

Year Submissions Acceptance (Rate%)

2002 — 26 (—%)

2003 41 26 (63%)

2004 58 34 (59%)

2005 68 37 (54%)

2006 60 35 (58%)

2007 58 35 (60%)

ICARIS 2007 provided a number of activities for its attendees, from lectures,
to tutorials, software demonstrations, panel discussions, and paper presentations.
We had the pleasure of bringing Rob de Boer (University of Utrecht, Nether-
lands), Jorge Carneiro (Instituto Gulbenkian de Ciências, Portugal), Hugues
Bersini (IRIDIA, Brussels), and Uwe Aickelin (University of Nottingham, UK),
for the event.

The organization of ICARIS 2007 would not have been possible without the
support of a number of committed institutions and people. We are particularly
indebted to our home institutions and company, UniSantos, Unicamp and Nat-
Comp, respectively, and to all the collaborators and sponsors that helped to
make ICARIS 2007 a success.

August 2007 Leandro Nunes de Castro
Fernando Von Zuben

Helder Knidel
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Marcos Zuñiga, Maŕıa-Cristina Riff, and Elizabeth Montero

A Solution Concept for Artificial Immune Networks: A Coevolutionary
Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Oscar Alonso, Fabio A. Gonzalez, Fernando Niño, and Juan Galeano

Classification and Clustering

Artificial Immune Systems for Classification of Petroleum Well Drilling
Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
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A Gradient-Based Artificial Immune System  
Applied to Optimal Power Flow Problems   

Leonardo de Mello Honório, Armando M. Leite da Silva, and Daniele A. Barbosa 

Federal University of Itajubá, Minas Gerais, Brazil 
{demello,armando,danieleb}@unifei.edu.br 

Abstract. Mathematically, an optimal power flow (OPF) is in general a non-
linear, non-convex and large-scale problem with both continuous and discrete 
control variables. This paper approaches the OPF problem using a modified 
Artificial Immune System (AIS). The AIS optimization methodology uses, 
among others, two major immunological principles: hypermutation, which is 
responsible for local search, and receptor edition to explore different areas in 
the solution space. The proposed method enhances the original AIS by 
combining it with a gradient vector. This concept is used to provide valuable 
information during the hypermutation process, decreasing the number of 
generations and clones, and, consequently, speeding up the convergence 
process while reducing the computational time. Two applications illustrate the 
performance of the proposed method.     

Keywords: Artificial immune system, gradient-based algorithms, optimal 
power flow, transmission loss reduction.  

1   Introduction 

One of the most important areas in electric power systems is the study of optimal 
power flow problems. There are several relevant applications of this tool for planning 
the power network expansion, operation, maintenance and, most recently, for solving 
different problems in the emerging electricity markets [1]-[11]. Moreover, many 
applications in power system reliability use OPF as the major tool of their analyses 
[12], [13]. In general, an OPF is a non-linear, non-convex and large-scale problem 
involving several sets of continuous and discrete variables. This diversity makes the 
OPF problem to be divided, according to solution space, convexity, and types of 
control variables, into several broad categories such as linear, non-linear, 
combinatorial, dynamic, probabilistic, and others. In order to deal with these 
categories, different optimization concepts or methods have been employed [1]-[11], 
[14]-[19]: Simplex, Interior-Point, Conjugate Gradient, Hill Climbing, Tabu Search, 
Genetic Algorithm, Ant Colony, Particle Swarm Optimization, Artificial Immune 
System, etc. 

These methodologies can further be divided into two major groups: numerical  
and intelligent-based. Regarding numerical-based methodologies, reference [5]  
shows a comparison among three interior-point-based methods, primal-dual (PD), 
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predictor-corrector (PC) and multiple-centrality-correction (MCC). The results show 
good performance for all methods especially the MCC, although it needs accurate 
parametric adjustments to improve the convergence performance. Reference [9] uses 
the PC and PD to test different control actions and objective functions in order to 
enhance systems loadability.  

Although these conventional methods have presented good results, some 
drawbacks have appeared in actual power system applications. Reference [7] shows 
that handling discrete variables as continuous ones, until they are close to the optimal 
solution, and then rounding them off to the nearest corresponding values, may provide 
significant higher cost results than the one present by the actual optimal solution. It 
also suggests that techniques capable of working properly with mixed-integer 
programming models may suffer from scalability and, therefore, are unsuitable for 
large-scale power systems. On the other hand, intelligent-based methodologies are 
interesting alternatives for some of the discussed OPF problems, as it can be seen 
recently in the power system literature: e.g., Particle Swarm [4], [10], Genetic-
Algorithm [11], Greedy search [6], and many others. Several advantages can be 
linked to those methods; the software complexity is simple; they are able to mix 
integer and non-integer variables, and also present very appealing computational 
performance. However, the problem with many of these methodologies is the 
difficulty in establishing the Karush-Kuhn-Tucker conditions [3], [5], at the end of the 
optimization process. One method able to deal with this problem is the Artificial 
Immune System. Although very few AIS applications in power flow optimization can 
be found in the literature [14]-[16], results in other engineering fields [20]-[23] are 
very promising, and must encourage power engineers to further explore these 
techniques.  

The AIS method is based on the biological principle of bodies’ immune systems 
[20], [21]. An immunological system has major characteristics that can be used in 
learning and optimization [22]. For optimization problems, three topics are especially 
interesting: proliferation, mutation, and selection. While proliferation is the capability 
of generating new individuals making the optimization process dynamic, mutation is 
the ability of searching through the solution space for sub-optimum points. The 
selection is responsible for eliminating low-affinity cells. These three features make 
AIS a powerful optimization tool, enabling the search for several local-optima. 

There are several variants among AIS methodologies, available in the literature, 
used to implement optimization algorithms. Reference [22] shows a very interesting 
approach by embedding a useful property of evolutionary algorithms, niching, which 
drives individuals to the most promising points in the solution space. Although this 
algorithm has exhibited very good results, the number of individuals used in the 
simulation processes is very high bearing in mind OPF problems. Since the purpose 
of this paper is to demonstrate the effectiveness of AIS concepts in OPF problems, 
some modifications in the referred algorithm are being proposed by adding more 
relevant information to individuals. In an electric power system, an individual can be 
related to an operating condition, which is characterized by the corresponding power 
flow equations that describes its electrical behavior [24], [25]. Therefore, when a 
modification in any control variable is performed, it is possible to predict the 
associated operating point by analyzing the behavior of the power flow equations. 
Mathematically, by using the information given by the tangent/Jacobian vector  
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(i.e. gradient) associated with these equations, it is possible to lead the mutation 
process, which in the original AIS algorithm was made through a completely random 
approach, to generate better individuals, making the optimization much faster and 
more reliable. In order to demonstrate the effectiveness of the proposed Gradient-
Based AIS, an optimal power flow aiming to minimize network transmission losses is 
implemented. 

This paper is organized as follows. Section 2 describes the optimal power flow 
problem and formulation. Section 3 shows the implementation of the proposed 
Gradient-Based AIS and some tests using as benchmark reference [22]. Section 4 
illustrates and discusses the OPF results, obtained with an IEEE standard test system.    

2   The Optimal Power Flow Problem 

It is not the purpose of this work to present a full explanation on electric power 
system static and dynamic behaviors; for that references [24] and [25] are much more 
appropriate. Instead, the main concepts and the corresponding mathematical models 
are summarized as follows. 

An electric power system is composed of several electrical equipment such as 
generators, transmission lines, transformers, shunt capacitors, etc. Its main goal is to 
generate, transmit, and distribute electric power to costumers, through a high quality 
service at minimum cost. There are several constrains linked to this aim. The most 
important one is that it is not possible to store electrical power and, therefore, the 
amount of generated energy at any given time must be the same as the amount 
consumed, duly discounted the transmission losses. In order words, the power flow 
balance must be null. To fulfill these conditions, human operators must handle 
hundreds, sometimes thousands, of variables in order to control the system driving 
energy flow from sources to consumers. Moreover, during this process, the system 
must remain physically stable, from both static and dynamic points of view, 
technically reliable, and economically interesting for all market agents involved in 
this process.  

The previously described balance conditions can be mathematically stated as 
follows: 

      
0=+−

=

LGcbI

cl

gg)x,y,,V(g

)x(My

θ
 (1) 

where: y is the system admittance matrix; xcl is the control variables related to the 
models of the transmission elements (e.g. lines and transformers); xcb the control 
variables related to the models of the buses (i.e., power stations); gI, gG and gL are the 
vectors of power injections, power generations and power loads at each bus, 
respectively. If any change happens in the control variables, the system is driven into 
a different operating point, changing values of several measures such as voltage 
magnitudes V and angles θ (named as state variables), and also active/reactive flows, 
etc., spread along the power network. This leads to a condition where finding the best 
operation point under a desirable scenario is challenging. This problem is named as 
optimal power flow or simply OPF.  
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As previously stated, an OPF is a non-linear, non-convex and large-scale problem, 
mathematically described as follows: 

cscscs

cs

cs

cs

x,xx,xx,x

H)x,x(hH

)x,x(g

)x,x(f

to  Subject

Minimize

≤≤
≤≤

= 0  (2) 

where: xs is a ns×1 vector of state variables (voltage magnitudes and angles at load 
buses, etc.); xc is a nc×1 vector of control variables (voltage magnitudes at generation 
buses, power generation, shunt capacitor allocation, transformer taps, load in buses, 
etc.); f is an scalar function representing a power system quantity to be optimized (e.g. 
economic dispatch, transmission loss reduction, transmission equipment overflow, 
loadability, load shedding); g is the active and reactive power balance equations; and 
h is a m×1 vector of constraints associated with the limits of some network power 
values such as transmission lines flows, reactive generation, etc. 

As previously stated, the literature shows several approaches to solve (2), and these 
can be divided into two major groups; numerical- and intelligent-based methods. The 
most commonly used numerical-based methods change the original problem into a 
Lagragean function and try to minimize it. In a different way, most intelligent-based 
methods use brute force computation associated with metaheuristics in order to 
narrow the search. This is related to population-based methods that generate several 
individuals, being each one a feasible or unfeasible system solution. The optimization 
process continues through interactions among those individuals, where the form of 
those interactions depends on the chosen methodology.     

For an OPF problem, a feasible solution is a set of control actions that fulfill all 
constrains shown in (2). However, to find a feasible solution demands the execution of a 
numerical iterative method in order to solve (1), usually the Newton-Raphson [24]-[25]. 
Thus, the solution design of a population-based method is shown in Figure 1, where: (a) 
New Population – is the set of control actions that defines the individuals; (b) Newton 
Raphson – uses this solution process to, given a set of controls, define the system 
operating point; (c) Validate Limits – checks if the solution provided by each individual 
obeys the operation constraints and invalidates the out-of-range ones; (d) Evaluate - 
validates individuals according to (2); (e) End – if it is the end of the optimization 
process, pick up the best individual, otherwise, evolve the population and return  
to step (b). 
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POPULATION
NEWTON 
RAPHSON

VALIDATE 
LIMITS

EVALUATE 
OBJECTIVE 
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POPULATION

y

n

 

Fig. 1. Diagram Solution of a Population-Based Method 



 A Gradient-Based Artificial Immune System 5 

3   Gradient-Based Artificial Immune System 

The natural immune system (NIS) is responsible for defending the body against 
dysfunctions from its own cells, and actions from substances and infectious foreign 
cells, known as non-self elements. The body identifies these non-self elements by 
using two related systems: the innate immune system and the adaptive immune 
system. The innate immune system is inborn and unchanging. It ensures resistance to 
a variety of Antigens (Ag’s) during their first exposition to the body, by providing a 
set of initial Antibodies (Ab’s). This general defense operates mostly during the early 
phase of an immune response. When the body is exposed to a given Ag, the NSI 
identifies the highest affinity Ab (hAb), and starts the proliferation process. This 
process is responsible for dividing the hAb, and then generating clones. Many of these 
clones present somatic mutation from the original cell, generating a new level of 
affinity to the Ag. The new Ab’s, with the highest level of affinity, pass through a 
process of maturation and become either Plasma cells, which are responsible to attack 
the Ag’s, or Memory cells, which store characteristics of the successful Ab’s, 
providing a faster immunological response, when further expositions to the same Ag 
occurs. Figure 2 illustrates this process.  

 

 

Fig. 2. Natural Immune System Diagram 

The Artificial Immune System (AIS) intends to capture some of the principles 
previously described within a computational framework. The main purpose is to use 
the successful NIS process in optimization and learning. As every intelligent-based 
method, the AIS is a search methodology that uses heuristics to explore only 
interesting areas in the solution space. However, unlike other intelligent-based 
methods, it provides tools to perform simultaneously local and global searches. These 
tools are based on two concepts: hypermutation and receptor edition. While 
hypermutation is the ability to execute small steps toward a higher affinity Ab leading 
to local optima, receptor edition provides large steps through the solution space, 
which may lead into a region where the search for a hAb is more promising.  

The technical literature shows several AIS algorithms with some variants. One of 
the most interesting is the CLONALG algorithm presented in [22]. The main 
statement of CLONALG is that progressive adaptive changes can be achieved by 
cumulative blind variation, based only upon an affinity increase caused by random 
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mutation and individual selection. It also states that, through these principles, it is 
possible to generate high-quality solutions to complex problems.  

Although the CLONALG algorithm has shown good results to different types of 
problems, the solution is entirely provided by computational brute force; hundreds of 
individuals are partially generated by random. The straightforward application of 
these concepts to OPF problems, where each individual represents a possible 
operating condition assessed by solving the power flow equations, would demand a 
huge amount of computational effort. Thus, instead of using only brute force, 
numerical information of the system, obtained as a by-product of the power flow 
solution assessments, will lead to a significant reduction in the number of clones and, 
consequently, in computing effort. Simple numerical information to be used is the 
first order derivatives or gradient, also known as the Tangent Vector (TV), which is 
presented as follows: 
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where: nc is the number of control variables or actions; f(x1,..,xnc) is the objective 
function to be optimized; x1,…,xnc are control variables; and ∆xk is a random and 
limited increment applied to xk.  

Under the AIS taxonomy, the set of control variables represents the Ab’s, and the 
applied increments yields the hypermutated clones. Under the OPF taxonomy, the TV 
represents the system sensitivities, given a minor disturbance, around a certain 
operating point. These sensitivities are assessed for each control variable, and the 
final result defines a vector pointing to the most likely direction to achieve the 
optimization objective. Observe that if the objective function (or affinity) has an 
explicit mathematical expression, the TV can be substituted by the Jacobian vector 
(JV), which provides a more effective evaluation for the hypermutation process. The 
number of hypermutated clones must be equal to the number of control actions, i.e. 
nc, since this number is sufficient to ensure that the sensitivities of all space 
dimensions are being duly captured. In case the JV is being used, only one 
hypermutated clone is necessary, nc =1. Fig. 3 shows the adaptation of these concepts 
to the original AIS algorithm [22]. 

 
Generate/Hypermute Calculate Calculate

Ab΄= Ab + λTV

Select
Ab = Best(Ab,Ab’)

TV(q)

Receptor Edition
Ab{re} = Abn{re}

q = Hyp(Clones{w})
CalculateGenerate

1 2 3

6

4

5

w ={Ab1,...,Ab,...,Abr} f (w)

 

Fig. 3. Gradient-Based AIS Block Diagram 
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Each step or block of the previous diagram is detailed as follows: 

1. Randomly choose a population w = {Ab1,…,Abi,…,Abn}, with each 
individual defined as Abi = {x1,…,xj…,xnc}, where nc represents the 
number of control variables or actions; 

2. Calculate the value of the objective function for each individual; this 
result provides the population affinity for the optimization process; 

3. For each individual Abi, a new subpopulation of hypermutated clones qi = 
{Abi,1,…,Abi,j…,Abi,nc} is generated, where Abi,j = {xi,1,…, xi,j + Δxi,j,…, 
xi,nc}, where nc represents the number of control variables or actions, 
which are equal to the number of hypermutated clones. The hypermutated 
clones are then used to evaluate the TVi according to eq. (3). 

4. A new individual '
iAb  is assessed through eq. (4), where λ means a 

random step size:  

ii
'
i TVAbAb ×+= λ ; (4) 

5. Calculate the affinity of this new individual '
iAb  and check if it has a 

higher affinity compared to the original Abi; and if it does, the 
hypermutated clone takes its position in the population w; 

6. The bests nb individuals among the original w population are selected to 
stay for the next generation. The remaining individuals are replaced by 
randomly generated new Ab’s. This process simulates the receptor edition 
and it helps in searching for better solutions into different areas.   

 

In the previous proposed algorithm, if the JV can be assessed, step 3 is slightly 
changed, and only the evaluation of the JV at Abi is necessary. Consequently, TVi is 
substituted by JVi in step 4. This new calculation process will further reduce the 
computing effort. 

To evaluate the proposed algorithm, named as GbCLONALG, an optimization 
problem represented by equation 5, described in [22], is performed: 

Maximize 144 221121 ++⋅−⋅= )xsin(x)xsin(x)x,x(f πππ . (5) 

Figure 4 shows the solution achieved by the GbCLONALG considering the TV 
option and the simulation parameters defined by Case 4 of Table 1. Table 1 shows the 
results of the proposed (GbCLONALG) and original (CLONALG) algorithms using 
different parameter simulations regarding: population size (Pop), number generations 
(Gen), and the number of fixed individuals (not selected for receptor editing). The 
outputs are the CPU time, in seconds (s), and the success rate, in percent (%), for a 
given configuration to find the global optimum. The number of clones was fixed in 2 
for the GbCLONALG and round(0.1×Pop) for the CLONALG. The number of 
simulations to evaluate the success rate was 500. A Pentium 4 personal computer with 
2.6 GHz is used for all simulations in a Matlab platform. 

The simulations presented in Table 1 have demonstrated that the GbCLONALG 
reached better results considering both CPU time and success rate. For instance, using 
60 Ab’s and 10 generations (i.e. Cases 17-20), it is possible to achieve almost 100% 
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Fig. 4. Maximizing f(x1,x2) = x1sin(4πx1)-x2sin(4πx2+π) + 1: Case 4 

Table 1. GbCLONALG and CLONALG Simulation Results 

GbCLONALG GLONALG 
Case 
No. 

Pop. Gen. 
Fixed 
Pop. Success  

Rate (%) 
Mean  

Time (s) 
Success  
Rate (%) 

Mean  
Time (s) 

1 20 5 15 41 0.06 13 0.06 
2 20 5 20 35 0.06 5 0.06 
3 40 5 15 68 0.11 58 0.13 
4 40 5 20 71 0.12 46 0.13 
5 40 5 25 70 0.11 46 0.13 
6 40 5 30 65 0.10 51 0.13 
7 60 5 15 88 0.16 86 0.25 
8 60 5 20 82 0.16 81 0.25 
9 60 5 25 86 0.16 80 0.25 

10 60 5 30 84 0.16 79 0.25 
11 20 10 15 59 0.11 42 0.09 
12 20 10 20 51 0.10 30 0.09 
13 40 10 15 86 0.20 81 0.26 
14 40 10 20 91 0.20 88 0.25 
15 40 10 25 87 0.20 85 0.26 
16 40 10 30 85 0.19 76 0.26 
17 60 10 15 100 0.29 93 0.46 
18 60 10 20 100 0.29 96 0.46 
19 60 10 25 99 0.29 91 0.46 
20 60 10 30 100 0.29 97 0.47 

 
success rate using the GbCLONALG, with a CPU time of 0.27 seconds. Considering 
the same cases, the CLONALG has reached, in average, 94% of success rate, with a 
CPU time of 0.46 seconds. Observing the CPU time performance of both algorithms, 
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as the number of population increases so do the differences, due to fact that the 
number of clones generated by the CLOANALG depends on the population size, 
while the GbCLONALG has it unchanged (i.e. nc=2). Moreover, GbCLONALG also 
achieved better success rate performance, as compared to the original CLONALG, 
due to the higher quality information captured by the TV. Finally, although the TV 
technique has been used in this simple application, the JV option would be much more 
appropriate since the analyzed function is well defined. 

4   AIS Applied to Optimal Power Flow Problems 

In order to apply the GbCLONALG to a typical OPF problem, the objective function  
f to be considered in this work will be the minimization of the total transmission 
losses, using shunt capacitor as control actions. This OPF problem can be 
mathematically described as follows: 

∑ ∈ +=
)Ll,k( k,ll,ksh PP)b,f(V, Min θ  (6) 

where: L represents the set of transmission equipment (i.e. lines and transformers); Pk,l 
and Pl,k are the active flow from bus k to bus l; bsh, V and θ are vectors containing the 
shunt capacitors, voltage magnitudes and angles associated with the system buses.  

The six-step algorithm, described in Section 3, is now applied to the OPF problem 
with some adaptation or reinterpretation. In Step 2, for instance, each individual (i.e. 
an Ab) represents a set of control actions xc, also associated with the operating point 
represented by the state vector xs. The value of the objective function fold (i.e. Abi) is 
then calculated for this individual as follows: 

)x,x(ff cs
old = . (7) 

In fact, equation 7 is to be performed for all individuals of the population. Now, in 
Step 3, hypermutated clones are generated according to equations (8) and (9):  

)x',g(xg' cs=  with ,...,0}x{0,...,}x,...,x,...,{xx' cicncic1c Δ+= , (8) 

ci
oldnew

i x)ff(tv Δ−=  with )'x,'x(ff cs
new =  and 'gJx'x ss

1−−=  (9) 

where: g’ is the corresponding vector of power injections for a given hypermutated 
clone x’c; x’s represents the consequences of this hypermutation process on the state 

vector; f new (i.e. '
iAb ) is also the consequence of the whole hypermutation process 

regarding the value of the objective function; finally, tvi is the ith component of TV. 
Observe that equations (8) and (9) described a combination of the TV and JV 
concepts. The remaining steps (4, 5 and 6) follow the previously described 
GbCLONALG in Section 3.  

The electric power network used to test the methodology was the standard IEEE 
14-bus test system. A slight modification is carried out, where loads and generations 
are multiplied by a factor of 1.4, in order to stress the transmission system, and,  
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consequently, to enhance system non-linearity. Figure 5 shows the used system, 
where the arrows indicate the consumers (i.e. loads). As discussed in reference [9], 
to install shunt capacitors in every bus in the system may cause several problems, 
and, therefore, it indicates buses 14, 11, 13 and 12 as the best locations for such 
controls.  

 

 

Fig. 5. IEEE 14-Bus Test System 

Table 2 shows the results with both algorithms, i.e. GbCLONALG and the original 
CLONALG, considering different population sizes and number of generations. The 
output results are final transmission loss, in Megawatts (MW), and the CPU time in 
seconds (s). As it can be seen, the results demonstrated the very good performance 
achieved by proposed the GbCLONALG, which obtained speed-ups always greater 
than 2.  

Table 2. GbCLONALG and CLONALG Simulation Results 

GbCLONALG GLONALG 
Case 
No. 

Pop. Gen. Final 
Loss (MW) Time (s) 

Final 
Loss (MW) Time (s) 

1 10 5 17.93 9 17.95 22 
2 30 5 17.92 29 17.93 70 
3 50 5 17.92 51 17.93 120 
4 10 10 17.93 17 17.94 44 
5 30 10 17.92 55 17.93 140 
6 50 10 17.92 99 17.93 233 
7 10 20 17.92 26 17.95 67 
8 30 20 17.92 90 17.94 207 
9 50 20 17.92 151 17.92 346 
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5   Conclusions 

In this paper, a Gradient-Based Artificial Immune System algorithm has been 
proposed. It combines AIS and gradient concepts in order to improve both computing 
effort and searching robustness. The gradient numerical information, brought by the 
tangent vector and/or Jacobian, leads to a more efficient hypermutation process, and, 
consequently, to a faster approaching to local optima.  The proposed GbCLONALG 
has been successfully implemented to minimize transmission system losses of a small 
standard test system. Other objective functions can be easily used following the same 
steps of the general proposed algorithm. Finally, the GbCLONALG is now being 
implemented in actual large-scale power networks, with thousands of variables being 
handled, in order to confirm the algorithm feasibility.  
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Abstract. Multimodal Dynamic Optimisation is a challenging prob-
lem, used in this paper as a framework for the qualitative compari-
son between Evolutionary Algorithms and Artificial Immune Systems.
It is argued that while Evolutionary Algorithms have inherent diversity
problems that do not allow them to successfully deal with multimodal
dynamic optimisation, the biological immune system involves natural
processes for maintaining and boosting diversity and thus serves well as
a metaphor for tackling this problem. We review the basic evolutionary
and immune-inspired approaches to multimodal dynamic optimisation,
we identify correspondences and differences and point out essential com-
putation elements.

1 Introduction

The domain of Artificial Immune Systems (AIS) has only recently emerged
within the broader discipline of Bio-inspired Computing. There have been doubts
on the necessity of yet another biologically inspired approach, especially given the
perceived similarity to the well established Evolutionary Algorithms (EAs). Both
use a population of simple representational units, antibodies and chromosomes
respectively, that are matched/evaluated against a certain antigenic/solution
space. Other than introducing a new set of theories and concepts from Immunol-
ogy in Bio-inspired Computing, AIS have been treated as another algorithmic
variation of Evolutionary Algorithms.

With this paper we wish to contribute to the argument stating that despite
some common computational elements, AIS can be fundamentally different to
EAs. We will use Multimodal Dynamic Optimisation (MDO) as a framework
for comparing the two approaches at the algorithmic level to highlight their
essential differences. In MDO there is no single and static optimum, but instead,
a varied number of optima that continuously change their position and shape in
the solution space. Changes can be both local or global, modest or radical, slow
or fast, but they are not chaotic. MDO poses challenging requirements that are
going to be identified and used to characterise and compare EAs and AIS.

Although life and many real world problems are inherently dynamic, research
in Evolutionary Computation, focuses traditionally on optimisation of static
problems, or problems treated as static, with only one global optimum. Recently
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there has been a growing interest for tackling non-stationary problems with
rugged landscapes, where the various optima have to be found and tracked over
time. It has already been recognised, that standard EAs suffer when applied to
MDO, because they eventually converge to one optimum and loose the diversity
necessary for covering multiple peaks and for adapting to changes in them.

The literature on Evolutionary Computation is already rife with methods for
making EAs comply with the requirements of MDO. A comprehensive review of
existing evolutionary approaches to MDO is outside the scope of this paper. We
will concentrate on the basic techniques and will argue that these are at large
ad hoc remedies without always biological foundations. It will be put forward
that the drawbacks of EAs in the case of MDO derive from their fundamental
algorithmic components and so existing remedies are only patches to intrinsic
diversity problems. Furthermore, the proposed remedies point explicitly or im-
plicitly towards the direction of AIS. The immune system deals with a varied and
constantly changing pathogenic environment from within a developing organism.
As such, it has inbuilt mechanisms for preserving and boosting the diversity of
the immune repertoire. In AIS these mechanisms are translated into algorithmic
processes that control a system’s diversity and allow it to deal naturally with
MDO. While there is some correspondence with the effects achieved with algo-
rithmic remedies in the case of EAs, in AIS the diversity controlling mechanisms
are both inherent and biologically grounded.

In the rest of this paper we first set out the requirements of MDO. We then
use these requirements to critically review evolutionary (sec. 3) and immune-
inspired approaches (sec. 4) to MDO. Finally we discuss their similarities and
differences and point out directions for future work.

2 Requirements for Multimodal Dynamic Optimisation

A generalised MDO problem can be expressed as a multidimensional space where
specific regions correspond to the current solutions, or collectively to an overall
solution to a problem. The underlying problem is dynamic, but not chaotic,
and hence its solutions constantly change over time. Therefore, it is at least
impractical to treat the problem’s solutions as points in the multidimensional
space, since any point in the space only momentarily becomes a local, or global
optimum. It is more appropriate to consider solution regions that change in
shape, area and position due to the problem’s dynamics. The latter can have
different scales. At the lower level, short-term dynamics moves a solution region
locally or modifies its shape. At a higher level, long-term dynamics causes new
solution regions to emerge and others to disappear. In the extreme case, the
space itself can have dynamics that modify its dimensions.

An example problem that demonstrates the characteristics of MDO is Adap-
tive Information Filtering (AIF). AIF seeks to provide a user with information
relevant to the user’s multiple and changing interests. Here the user’s interests
define regions in a multidimensional information space. Changes in the user’s
interests can be short-term variations in the level of interest in certain topics,
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or even more radical long-term changes like the emergence of a new topic of
interest, or loss of interest in a certain topic.

To tackle MDO a system has to be able to trace, represent and track the so-
lution regions. This is a challenging task with specific requirements. As already
mentioned, both EAs and AIS use populations of simple units that are typically
expressed according to the dimensions of the underlying space. Diversity – i.e.
the presence of a wide range of variation in the qualities or attributes of the indi-
viduals involved in a population – is crucial for biological processes like evolution
and immunity. Regarding MDO, diversity ensures that the population covers the
various solution regions and remains spread around the space in anticipation of
changes in them. The diversity problems of EAs have already been recognised
and as we will further discuss in the next section, most proposed remedies focus
on administering diversity into the population. There are however additional
requirements for MDO that have been generally ignored.

As the number and area of solution regions varies in time the number of indi-
viduals that are required to represent them should vary accordingly. For example,
in the case of AIF, whenever new topics of interest emerge additional individ-
uals are needed to cover the new interesting areas in the information space. In
contrast, when the user looses interest in a specific topic the corresponding in-
dividuals are no longer required, or it is at least inefficient to maintain them in
the population. The cardinality of the population should be adjusted according
to the problem characteristics.

Finally, the algorithmic processes should reflect the problem’s dynamics. This
implies that each individual should be able to move locally, or that the interac-
tions and relative importance of individuals can be modified. At the global level
new individuals are required to cover emerging solution regions and no longer
competent individuals should be removed.

3 EAs and MDO

The insight behind EAs is that the fundamental components of biological evolution
can be used to evolve solutions to problems within computers. They are stochastic
search techniques that have been traditionally applied to optimisation problems.
A GA starts with a problem and a population of random solutions. Each individ-
ual in the population, is called a chromosome, and is represented as a string over
a finite alphabet. The population evolves through iterations, called generations.
At each generation, each chromosome in the current population is evaluated using
some appropriate fitness function, which measures how good the solution embod-
ied in a chromosome is. Chromosomes are selected for reproduction according to
their relative fitness. Two chromosomes mate using the crossover operation that
combines parts of each parent chromosome to produce possibly better offspring
that replace the less fit individuals in the current population. Occasionally, to ran-
domly explore the solution space, chromosomes are slightly modified with the mu-
tation operation. The evolutionary process is iterated until a certain condition is
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met. In static optimisation problems for example, the iterations terminate once
the observed improvements drop below a certain level.

EAs suffer in the case of MDO because they tend to converge to a single opti-
mum. They progressively lose diversity as the optimum proliferates and spreads
over the population. The remedies proposed in the literature attempt to over-
come this drawback by artificially maintaining and/or injecting diversity in the
population. Four types of remedies have been identified [1]:

1. explicit action is taken to increase diversity whenever changes are detected.
2. convergence is avoided by spreading out the population.
3. the GA is supplied with memory of past chromosomes that are reused when-

ever the optimum returns to a previous location.
4. multiple subpopulations are used to represent the solution regions and to

search for new ones.

The most straightforwardway for increasing the diversity of a population in EAs
is through mutation, which places new offspring randomly in the solution space.
Of course the effect of high mutation rates on adaptation can be unpredictable and
should be controlled. One solution is to drastically increase the mutation rate only
after a change in the solution space has been detected [2]. Alternatively, the range
of mutation can be adjusted according to the detected changes [3].

To avoid convergence and maintain diversity in the population one has to
assure that the population remains spread through out the solution space. In [4],
the author describes the random immigrants method that in every generation
replaces part of the population with randomly generated individuals, which are
not the product of the genetic operations. Another solution is to take into account
the similarity between individuals during selection and replacement. For example
in [5], the first parent is selected based on its fitness and the second parent
according to its similarity with the first. Furthermore, a method called “worst
among most similar” is employed to identify the individual to be replaced by the
new offspring. In [6], “direct replacement” is proposed, which avoids convergence
by enforcing direct replacement of parents by their offspring after crossover.

Supplying a GA with memory has been suggested as a way of dealing with dy-
namic environments, especially in those cases where there is a fixed number of
optima, or the optima tend to return to the same positions in the solution space.
Memory can be either explicit or implicit. In the first case, individuals from past
generations are externally stored and reused whenever it is deemed necessary. Eli-
tist strategies that periodically store the best individuals in the population for fu-
ture use belong to this category. For instance, [7] extends the random immigrants
approach described above using an elitist strategy. The best individuals from past
generations are stored and used to generate the immigrants. A similar approach to
the open shop scheduling problem is described in [8]. How to best store and reuse
individuals has not been yet clarified. [9] compares various strategies for storing
and retrieving individuals from the external memory and his experiments indicate
that memory is only advantageous when the optimum repeatedly returns to the
exact previous location and not to a slightly different one.
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Rather than being external, implicit memory is encoded in the genotype itself.
Diploidy is a characteristic example of implicit memory. Each individual has a
pair of chromosomes and a separation exists between genotype and phenotype.
During evaluation an individual’s diploid genotype is first mapped into a hap-
loid phenotype by some dominance mechanism. The dominance mechanism can
be modified in response to changes in the environment, e.g. by reversing the
dominance relation [10]. Nevertheless, experiments show that a simple haploid
GA with an appropriate mutation rate performs comparably to the diploidy ap-
proach. More importantly, the diploid mechanism is able to learn a problem with
two changing optima, but fails completely in the case of more that two optima.

Instead of memory that becomes obsolete if the environment does not change in
such a way that specific solution regions are revisited, another remedy is to main-
tain subpopulations that cover the solution regions and track their changes. In [11]
the “self-organising-scouts” approach is described, which divides the search space
into regions and assigns a small scout subpopulation whenever a new promising
region is detected. Similarly, the “multinational” GA structures the population
into subpopulations (“nations”) based on a method for detecting valleys in the so-
lution space [3, 12]. Selection is performed at both national and global level and
in the latter case special care is taken so that nations can not easily go extinct.
The algorithm also includes processes for migration to new promising regions and
for merging nations that converge to the same region. A similar approach, called
the “shifting balance GA”, which maintains a “core” population and “colonies”
exploring different regions in the environment is described in [13].

The above is only a sample of the techniques that appear in the literature
for tackling MDO with EAs. For a more comprehensive review see [1] and the
proceedings of the workshop on Evolutionary Algorithms for Dynamic Optimiza-
tion. MDO is clearly a significant problem that has attracted a lot of interest,
yet, the proposed techniques are to a great extent ad hoc remedies without clear
biological correspondence. To our knowledge there is no biological evidence show-
ing that mutation rate can vary based on changes in the environment1, or that
it can be encoded in the genome itself. It is also unclear how evolution could
produce individuals at specific, non random, phylogenetic regions. The lack of
biological correspondence is further reflected in the terminology used to describe
these techniques, which adopts concepts from sociology and politics, but without
being firmly grounded in some specific theory. Of course, from an engineering
point of view, moving away from biological metaphors is not necessarily inade-
quate, but nevertheless it hinders the constructive interplay between computing
and biology. Research in evolutionary computation should look more thoroughly
into the biological evolutionary processes that produce extremely diverse species.

Moreover, we argue that the problems EAs face in the case of MDO are intrin-
sic in nature and the suggested remedies are treating the symptoms rather than
the source of the problem. In particular, we believe that the diversity problems
of EAs derive from the way the principle of the “survival of the fittest” is imple-
mented. According to evolutionary theory the fittest an organism is, the higher

1 Other than changes in radiation levels.
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the probability of reproduction. This is typically translated into an algorithmic
process for choosing parents to mate according to their relative fitness. For ex-
ample, in [14] a fixed percentage of the fittest individuals is selected. To more
accurately reflect natural evolution, one may use roulette wheel selection that as-
signs to each individual reproduction probability proportional to its fitness [15].
As a consequence of selection based on relative fitness, individuals covering the
region of the space that corresponds to the best current solution are more likely
to mate and reproduce. Crossover, combines the parent chromosomes to pro-
duce offspring with genotypes made out of genes inherited from the parents.
The offspring are thus bound to regions in proximity to their parents. Since a
developmental process capable of inducing large phenotypic differences out of
small genotypic differences is typically excluded, the crossover operation can not
generate diversified offspring. It is up to mutation, which randomly introduces
diversity in the genotype of offspring, to produce radical new solutions in new
previously unexplored space regions. Even so, in multidimensional spaces, only
mutation with a high rate affecting multiple loci in the genotype, could generate
diversified enough offspring. Last but not least, the offspring replace the less
fit individuals in the population. In other words, it is typically assumed that
the population has a certain fixed capacity, predefined as a system parameter.
Combined with selection based on relative fitness, this leads to the spread of the
best individuals in the population, and the progressive loss of diversity. Individ-
uals covering the best current solution region multiply at the cost of individuals
covering other, possibly promising or even essential, solution regions. A fixed
population capacity, does not comply with the requirements of the MDO prob-
lem. The population’s cardinality should reflect the current problem needs: in
spaces with a few solution regions less individuals are required2 and more indi-
viduals are necessary for spaces with multiple solution regions. There is a lack
in EAs of a mechanism that controls the size of the population in response to
changes in the environment.

Overall, diversity problems in EAs derive from their basic algorithmic pro-
cesses and their interaction. Selection based on relative fitness causes the fittest
individuals to proliferate, creating similar offspring that can only be diversified
with intense mutation, and which replace the least fit, but possibly important
individuals in the population. The reviewed remedies are external processes that
treat the effects of the intrinsic diversity problems of EAs. They unnecessarily
increase the parameters involved. For example in the Multinational GA [12],
the parameters involved include in addition to the population size, mutation
probability and crossover probabilities, the ratio between global and national
selection, and mutation variance for individuals close to and distant from the
nation’s centroid. In dynamic environments however, the number of system pa-
rameters should be minimised because it is difficult to tune them as they most
likely change along with the landscape. How to best control the parameters of
EAs during adaptation and according to the problem is a research question in
its own right [16]. One solution is to encode the additional parameters in the

2 Or can be sustained.
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genome, but experimental results show that this causes a lag in the algorithms
ability to keep up with changes in the environment [12].

4 AIS and MDO

AIS are not meant to be accurate models of the biological immune system,
but use relevant processes and concepts. Common components of AIS include:
a representation of the cell (e.g. antibody) structure, a measure of the affinity
between cells and an algorithm that simulates immune processes such as negative
selection, clonal selection and idiotypic effects. Currently, various AIS exist with
many and diverse applications3.

The biological immune system serves well as a computational metaphor for
tackling MDO, due to its ability to maintain and boost diversity. This is achieved
in two ways: with heterostasis, the preservation of diversity and heterogenesis,
the introduction of diversity. On one hand, the diversity of the immune reper-
toire is preserved due to the way immune cells (lymphocytes in particular) are
triggered to clone. According to clonal selection, a lymphocyte is triggered to
clone when its antibodies recognise an antigen. The cloning rate is analogous to
the affinity between antibody and antigen and is usually high. This is a local
selection scheme that chooses cells to proliferate not according to their relative
fitness, but rather according to the absolute value of their affinity to an invading
antigen. So even lymphocytes that have not been successful so far in recognis-
ing antigens can be triggered to clone when the antigenic environment changes
and new matching antigens invade the organism. In addition, long-lived memory
cells that have been successful in the past and idiotypic effects [19], due to the
ability of antibodies to recognise each other and form chains of suppression and
reinforcement, contribute further to heterostasis.

Heterogenesis on the other hand is achieved in two ways. When a lympho-
cyte is triggered to clone the cloning process is not perfect, but is subjected to
intense mutation, called somatic hypermutation, that results in slightly different
lymphocytes and hence antibodies, which can be a better match to the invading
antigen. Further diversity is introduced with the recruitment of new lymphocytes
manufactured in the bone marrow. Hypermutation and cell recruitment cause
new antibody types to be added to the immune repertoire, and play the role of
local and global search respectively. Finally, it should be noted that the clones
and the recruited cells do not necessarily replace existing immune cells. Indi-
vidual cells die through natural decay processes (like apoptosis), independently
of how successful they have been in recognising antigens. Hence, the size of the
immune repertoire is not fixed. This implies that some mechanism exists for
controlling repertoire size. For example, in self-assertion models of the immune
antibody network, endogenous selection, according to which the network itself
selects which recruited cells are going to survive in the repertoire, plays this role.
Using a computational self-assertion model, De Boer and Perelson have shown
that the immune system can control both its size and connectivity [20].
3 Textbooks in AIS include [17, 18].
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Overall, by combining heterostatis with heterogenesis, and more specifically,
through affinity maturation (i.e. the combined effect of clonal selection and hy-
permutation), memory, idiotypic effects, cell death and recruitment, the immune
system succeeds in maintaining and boosting its diversity. Compared with EAs,
this is a significant property that invites the application of AIS to MDO. AIS
have already been applied to optimisation problems (see [21] for a survery). Here
we concentrate on immune-inspired approaches to MDO in particular.

The ability of immune processes to maintain and boost diversity has been
recognised by researchers in evolutionary computation. Many hybrid algorithms
that introduce immune inspired elements in EAs have been proposed. In [22],
the authors describe the Immunity based Genetic Algorithm, which incorpo-
rates in addition to genetic operations, clonal selection and idiotypic effects. [23]
proposed another hybrid that includes clonal selection and somatic hypermu-
tation performed using gene libraries. A secondary memory population stores
individuals that have proved successful in the past and redeploys them when-
ever a degradation in performance is detected. These hybrids are only partial,
engineered solutions that do not fully exploit the computational capabilities of
the immune system. They typically exclude a local selection schema and use a
fixed population size.

The Simple Artificial Immune System (SAIS) [24] was one of the first attempts
to fully exploit immunity as a metaphor for tackling dynamic optimisation. SAIS
encodes cells as binary strings, and comprises clonal selection, cell decay, recruit-
ment and idiotypic effects. Although K-tournament selection on the best than
average cells is adopted rather than a local selection schema, the repertoire size
is not fixed, but is controlled through recruitment, idiotypic effects and cell de-
cay. In comparative experiments on changing environments with a single opti-
mum, SAIS demonstrated improved reactiveness and robustness in comparison
with EAs. However, SAIS performed worse than a GA with Lamarckian local
search and had unstable dynamics. This latter finding is representative of the dif-
ficulty involved in devising a mechanism for appropriately controlling the number
of immune cells in an adaptive manner. To deal with this issue, in [25] the authors
simplify the system’s dynamics by dropping idiotypic effects and instead grouping
cells into a predefined number of gatherings that play the role of diversity preserv-
ing memory. They found however, that the system became sensitive to the number
of gatherings.

opt-aiNet is a multimodal function optimisation algorithm that exhibits dy-
namic allocation of repertoire size [26]. It comprises affinity maturation, recruit-
ment of new random cells and idiotypic effects that cause similar cells to be
removed. A modified version, called dopt-aiNet, that deals with dynamic en-
vironments is described in [27]. It extends opt-aiNet with a separate memory
population, a search procedure for controlling decay, new mutation operators
and a different measure of affinity. It also includes a maximum population size
for avoiding the unnecessary escalation in the number of cells in opt-aiNet, when
multiple optima have to be captured. According to the authors these additions
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improve opt-aiNet’s ability to quickly find optimal solutions and to maintain
diversity when dealing with dynamic environments.

Nootropia is an immune-inspired model applied to adaptive information fil-
tering [28, 29]. It is a self-assertion model that follows Varela’s autopoietic view
of the immune system [30]. Rather than being antigen driven it uses a self-
organising network of antibodies to define and preserve the organism’s identity,
which in the case of adaptive information filtering corresponds to a user’s multi-
ple interests. Antibodies correspond to features describing information items and
the affinity between antibodies is statistically measured. It has been argued and
supported experimentally that the nonlinearity that results from the interaction
of antibodies is beneficiary for capturing multiple regions of interest in the infor-
mation space [31]. Adaptation is achieved through a process of self-organisation
that renders the system open to its environment. New antibody types produced
by the bone marrow are recruited and incompetent antibodies are eventually
removed from the repertoire. The combination of dynamics that reinforces and
suppresses existing antibody types and metadynamics that controls recruitment
and removal of cells, allow the system to drift, constantly following changes in
user interests. Experiments have demonstrated Nootropia’s ability to adapt to
a variety of interest changes [29], while yet unpublished results show that, in
accordance with [20], the system can control both its size and connectivity.

5 Discussion and Future Directions

MDO is a challenging problem and how to best deal with it remains an open re-
search question. It has already been recognised that EAs face diversity problems
when dealing with MDO and various ad hoc remedies for artificially maintaining
or injecting diversity have been proposed in the literature. However, we put for-
ward that the diversity problem’s of EAs are intrinsic in nature. They are mainly
due to the combined effect of selecting parents for reproduction based on their
relative fitness and using a fixed population size, which implies that offspring
replace existing individuals and typically the less fit. On the contrary, the bio-
logical immune system involves natural processes for maintaining and boosting
diversity. It exhibits both dynamics at the level of individual cell concentration
and metadynamics at the level of antibody types. These control the repertoire’s
diversity, but also its size, and allow the immune system to adapt both locally
and globally to changes in the antigenic space. Immune-inspired algorithmic ele-
ments have been used to hybridise EAs for MDO, but there are also fully fledged
AIS for tackling the MDO problem.

There is clearly a plenitude of approaches, but no agreement yet on which one is
the best and why. There have been experiments showing the benefits of maintain-
ing and boosting diversity for MDO, but they don’t compare the different mech-
anisms for doing so. Furthermore, the terminology used is either just descriptive
(e.g. “random immigrants”), or reflects the biological phenomenon being modelled
(e.g. “fitness” and “affinity”), rather than the underlying computational elements,
thus obscuring essential similarities or differences. As already proposed in [32], a
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common computational framework for making correspondences and transferring
mathematical results across disciplinary boundaries is required. Before any
performance comparisons between different approaches to MDO, common com-
putational elements should be distilled. For example, there appears to be a corre-
spondence between the remedies used to overcome the diversity problems of EAs
(section 3) and immune processes for maintaining and boosting diversity
(section 4). Introducing diversity by increasing the rate of mutation in EAs, is
achieved with hypermutation in AIS. Adding random individuals (“immigrants”)
is analogous to the generation of new lymphocytes by the bone marrow based on
gene libraries. Suppression of similar individuals, which is accomplished in EAs
with ad hoc methods like replacing the “worst among most similar”, is the effect of
idiotypic interactions between antibodies in AIS. Memory in AIS is either achieved
explicitlywith long-lived cells, or implicitlydue to idiotypic effects. Subpopulations
(“nations”) of cells can also emerge in AIS due to interactions between antibodies.
Without doubt there are common computational elements despite differences in
describing them, but there are also essential differences in the way these elements
are implemented and combined.

A local selection schema, rather than selection based on relative fitness, was
deemed essential for maintaining diversity. Interactions between individuals
function as another diversity controllingmechanism through suppression and exci-
tation. In self-assertionmodels they also affect the recruitment and removal of indi-
viduals. Furthermore, they give rise to non-linear (developmental) processes that
can be crucial for adaptation. A dynamically controlled population/repertoire size
that reflects the environment’s characteristics is also essential, but has only been
adopted by a fraction of the reviewed approaches. Dynamically controlling the size
of the population/repertoire is still an open research question. It is also yet unclear
how to best track changes in the environment, which requires an appropriate com-
bination of dynamics for local and metadynamics for global adaptation. To tackle
these issues, we should pursue an abstraction of the various approaches according
to these fundamental computational elements and a mapping from computational
elements to the requirements of MDO. We will then be able to draw justifiable con-
clusions about the behaviour of different systems and how it is affected by their
elementary processes. We further expect that such an analysis will raise questions
about the underlying biological processes like: What is the role of development
in evolution? Is evolution really a competitive process of “survival of the fittest”,
or the result of the ongoing interaction between adaptive individuals in changing
environments?

Finally, we believe that existing experimental settings do not fully reflect the
requirements of MDO (section 2). The common practice is to use simulated ex-
periments like pattern tracking [24], dynamic gaussian [4] and dynamic knapsack
problems [23]. These experiments have the advantage of being controlled and re-
producible, but in most cases they lack in complexity, since they are based on low
dimensional spaces. More importantly, changes in the environment are simulated
by periodically relocating one or more optima. Changes are thus discrete rather
than continuous and the evaluated systems have to be able to re-converge to the
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new positions of the optima, instead of being required to constantly track changes
in time. MDO is simplified to the task of reinitialising the convergence process
every time the environment changes, starting with a population that is hopefully
better than random. There is a need for controlled and reproducible experimen-
tal settings that simulate continuous changes in multidimensional spaces. These
could be based on real world data like the genomics data of the Text Retrieval
Conference (TREC)4 and the data for the International Challenge to create and
train computationally intelligent algorithms on clinical free-text5. The experi-
mental methodology described in [29] is a first step towards this direction. MDO
can form the experimental test bed for the comprehensive analysis of EAs, AIS
and possibly other biologically-inspired algorithms and for further constructive
interaction between biology and computing.
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Abstract. We propose in this paper an artificial immune system to
solve CSPs. The algorithm has been designed following the framework
proposed by de Castro and Timmis. We have calibrated our algorithm
using Relevance Estimation and Value Calibration (REVAC), that is a
new technique, recently introduced to find the parameter values for evo-
lutionary algorithms. The tests were carried out using random generated
binary constraint satisfaction problems on the transition phase where are
the hardest problems. The algorithm shown to be able to find quickly
good quality solutions.

1 Introduction

Constraint satisfaction problems (CSPs) involve finding values for problem vari-
ables subject to constraints on which combinations are acceptable. Over the
few years, many algorithms and heuristics were developed to find a solution of
CSPs. Following these trends from the constraint research community in the bio-
inspired computation community, some approaches have also been proposed to
tackle CSP with success such that evolutionary algorithms [4], [8], [10], [12], [11],
[14], ants algorithms [13]. Given that recent publications indicate that artificial
immune systems offer advantages in solving complex problems [1], [3], our goal
here is to propose an efficient immune inspired algorithm which can solve CSPs.
Immune artificial systems as well as evolutionary algorithms are very sensitive
to the values of their parameters. Garret in [18] proposed a parameter-free clonal
selection using adaptive changes.

In this paper, we focalize our attention in a new method proposed for tuning,
that is a method that uses statistical properties to determine the best set of
parameter values for an evoltuionary algorithm.
The contributions of this paper are:
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– An immune inspired algorithm which can solve hard CSPs,
– A new application of the tuning method Relevance Estimation and Value

Calibration (REVAC) proposed for evolutionary algorithms, [15],

The paper is structured as follows. In the next section, we define the Con-
straint Satisfaction Problem. In section 3 we introduce our new approach NAIS.
The results of tests and a comparison with other incomplete method are given
in section 4. In our summary, we give some conclusions and future works.

2 Binary Constraint Satisfaction Problems

For simplicity we restrict our attention here to binary CSPs, where the con-
straints involve two variables. Binary constraints are binary relations. If a vari-
able i has a domain of potential values Di and a variable j has a domain of
potential values Dj , the constraint on i and j, Rij , is a subset of the Cartesian
product of Di and Dj . A pair of values (a, b) is called consistent, if (a, b) satisfies
the constraint Rij between i and j. The variables i and j are the relevant vari-
ables for Rij . The constraint network is composed of the variables, the domains
and the constraints. Thus, the problem is [9], [12] given a set of variables, a
domain of possible values for each variable, and a conjunction of constraints, to
find a consistent assignment of values to the variables so that all the constraints
are satisfied simultaneously. CSP’s are, in general, NP-complete problems and
some are NP-hard [7]. Thus, a general algorithm designed to solve any CSP will
necessarily require exponential time in problem size in the worst case.

3 NAIS: Network Artificial Immune System

We called our algoritm NAIS which stands for Network Artificial Immune Sys-
tem. The algorithm uses three immune components: antigen, antibody and B-
cells. Basically, the antigen represents the information for each variable given by
the constraint graph. This information is related to the number of connections of
each variable, that is the number of constraints where each variable is a relevant
one. Thus, it is a fixed information and not depends on the state of the search
of the algorithm. On the contrary, the antibody strongly depends on the state of
the search of the algorithm. It has two kinds of information: the variable values
and the constraints violated under this instantiation. Finally, a B-cell has all the
antibody information required by the algorithm to its evolution.

3.1 Immune Components for CSP

The immune components in our approach are defined as follows:

Definition 1. (Antigen)
For a CSP and its constraint graph we define the antigen Ag of the n-tuple of
variables (Ag1, . . . , Agn), such that the Agi value is the number of constraints
where Xi is a relevant variable, ∀i, i = 1, . . . , n.
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The algorithm needs to know for each pre-solution its variable values and the
constraints satisfied under this instantiation. For this reason, the antibody has
two segments: a structural and a conflicting segment.

Definition 2. (Structural antibody)
A structural antibody Abs is amapping from a n-tuple of variables (X1, . . . , Xn) →
D1 × . . .× Dn, such that it assigns a value from its domain to each variable in V.
Remark: The structural segment corresponds to an instantiation I of the CSP.

Definition 3. (Conflicting antibody)
For a CSP and its constraint graph we define the conflicting antibody Abc of the
n-tuple of variables (Abc1 , . . . , Abcn), such that the Abci value is the number of
violated constraints where Xi is a relevant variable, ∀i, i = 1, . . . , n.

A solution consists of a structural antibody which does not violate any con-
straint, that is, whose conflicting antibody complements the antigen.

Before defining the B-cell we need to introduce the idea of affinity in the
context of our problem.

3.2 Affinity Measure

In our approach we are interested in two kinds of affinity. The affinity between
the antigen and a conflicting antibody, and the affinity between two structural
antibodies.

– Affinity between the antigen and a conflicting antibody
It is an estimation of how far an antibody is from being a CSP solution.
It is related to the number of satisfied constraints by an antibody. The key
idea is that a solution of the CSP corresponds to the biggest value of the
affinity function between Abc and Ag. This occurs when all the constraints
are satisfied. We define the function Acsp to measure this affinity as the
euclidean distance computed by:

Acsp(Ag,Abc) =

√√√√ n∑
i=1

(Agi − Abci)
2 (1)

The function Acsp prefers a pre-solution with a minimal number of violated
constraints as it is usual for guiding the search of incomplete techniques.

– Affinity between two structural antibodies
Two structural antibodies has a high affinity level when they are quite similar
in terms of the values of these variables. The idea of using this measure,
named HAs, is to quantify how similar two pre-solutions are. To compute
this interaction our algorithm uses the Hamming distance. The algorithm
uses this measure to obtain a diversity of pre-solutions.
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3.3 B-Cell Representation

A B-cell is a structure with the following components:

– An Antibody Ab = (Abc, Abs)
– The number of clones of Ab to be generated for the clonal expansion proce-

dure. This number is directly proportional to the Acsp value.
– The hypermutation ratio used in the affinity maturation step. This ratio is

inversely proportional to the Acsp value.

3.4 The Algorithm - Network Artificial Immune System

The algorithm NAIS is shown in figure 1. NAIS works with a set of B-cells, fol-
lowing an iterative maturation process. Some of these B-cells are selected, doing
a clonal selection, prefering those with bigger affinity values Acsp, that is, those
that satisfy a greater number of constraints. It uses a Roulette Wheel selection,
[17]. The algorithm generates a number of clones of the B-cells selected, that is
done by the clonal expansion procedure. These clones follow a hypermutation
process in the affinity maturation step.

The new set of B-cells is composed of a selected set of hypermutated B-cells.

Algorithm NAIS(CSP) returns memory B-cells
Begin

Ag ← Determine constraint graph connections(CSP, n);
Initialize B-cells
For i ← 1 to B − cells NUM do

Compute affinity value Acsp(B-cells[i])
End For
j ← 1;
While (j ≤ MAX ITER) or (not solution) do

Select a set of B-cells by Roulette Wheel
Generate Clones of the selected B-cells
Hypermutate Clones
For k ← 1 to CLONES NUM do

Compute affinity value Acsp(Clones[k])
End For
B-cells ← build network(CLONES);
B-cells ← metadynamics(B-cells);

End While
Return B-cells;

End

Fig. 1. NAIS Pseudocode

This selection is done in the build network using the HAs values in order to
have a diversity of B-cells. A hypermutated B-cell could belong to the new set of
B-cells if the hypermutated B-cell is quite different from the B-cells in memory.
This difference is measured using the hamming distance, controlling the minimal
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degree of required diversity by the ε parameter value. Thus, a B-cell be accepted
to be a new memory member when (1 − HAs

n ) > ε. The ε value is known as the
threshold of cross reactivity.

Finally, the algorithm adds new B-cells randomly generated in the metady-
namics procedure to this set of B-cells. This procedure allows the algorithm to
do more exploration of the search space.

Hypermutation procedure: The hypermutation is a hill-climbing procedure
that repairs the conflicts in the conflicting antibody. This procedure is inspired
on min-conflicts algorithm proposed in [16]. Figure 2 shows the hypermutation
procedure.

Hypermutation(B-cell)
Begin
Repeat
V = Select randomly a variable to be changed

If Abc(V ) > 0 then
Repeat

Choose v a new value for V from its domain

NAbc(V ) = Number of conflicts for V using v
If NAbc(V ) < Abc(V ) then

Abs(V ) = v
Re-compute Abc

End If
Until (NAbc(V ) < Abc(V )) or (Max tries)

End If
Until Num hyper

returns(B-cell)

End

Fig. 2. Hypermutation Procedure

Given a B-cell, a variable of its structural antibody is randomly selected to be
changed. In case of the selected variable does not participate in any constraint
violation (i.e. Abc(V ) = 0), the procedure tries to modify another variable that
could be involved in a conflict. The value of this variable is modified, such that,
this value allows to reduce the number of conflicts recorded on the corresponding
conflicting antibody. Thus, this procedure changes the structural antibody and
also, as a consequence, the conflicting antibody.

The procedure Re-compute(Abc) does a partial evaluation of the conflicting
antibody, only considering the variables related to the variable V . That is, just
those variables which are relevants with V for a specific constraint. This kind of
partial evaluation is quite useful in the constraint research community in order
to reduce the computational time spent evaluating the constraints satisfaction
for a new instantiation of the variables.

The hypermutation procedure uses two parameters: Max tries and Num iter.
The parameter Max tries corresponds to the maximum number of values to
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be tried for a given variable V . The parameter Num iter corresponds to the
maximum number of the B-cell variables that could be mutated.

4 Tests

The goal of the following benchmarks is to evaluate the performance of NAIS
for solving CSP. The algorithm has been tested with randomly generated binary
CSPs, [5]. The tests are to evaluate the NAIS behaviour when it is calibrated
using the technique REVAC for tuning. We compare NAIS calibrated with GSA
[4] that is a sophisticated evolutionary algorithm that solves CSPs and which
strongly uses knowledge coming from the constraints research community. We
also compare NAIS with SAW, [14]. SAW has been compared with both complete
and incomplete well-known algorithms for CSP obtaining better results in most
of the cases tested.

The hardware platform for the experiments was a PC Pentium IV Dual Core,
3.4Ghz with 512 MB RAM under the Mandriva 2006 operating system. The algo-
rithm has been implemented in C. The code for NAIS is available in a web page.1

4.1 Problems Tested on the Hard Zone

The idea of these tests is to study the behavior of the algorithm solving hard
problems. We use two models to generate binary CSPs. That is because GSA
has been reported using model B proposed in [5] and SAW has been reported
using model E, [14].

Model B: The binary CSPs belonging to the hard zone are randomly generated
using the model proposed by B. Smith in [5]. This model considers four param-
eters to obtain a CSP. That is, the number of variables (n), the domain size for
each variable (m), the probability that exists a constraint between two variables
(p1), and the probability of compatibility values(p2). This model exactly deter-
mines the number of constraints and the number of consistent instantiations for
the variables that are relevant for a given constraint. Thus, for each set of prob-
lems randomly generated the number of constraints are p1n(n−1)

2 and for a given
constraint the number of consistent instantiations are m2p2. Given (n, m, p1) B.
Smith defines a function to compute critical p2 values, those values that allow
to obtain CSPs on the transition phase, that is the problems that are harder to
be solved.

p̂2crit(n,m,p1) = m− 2
(n−1)p1 (2)

Model E: This model also considers four parameters (n, m, p, k). The param-
eters n and m have the same interpretation than in model B. For binary CSPs
whose constraints have two relevant variable k = 2 in model E. The higher p the
more difficult, on average, problem instances will be.
1 http://www-sop.inria.fr/orion/personnel/Marcos.Zuniga/CSPsolver.zip
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4.2 REVAC

The Relevance Estimation and Value Calibration has recently been proposed in
[15]. The goal of this algorithm is to determine the parameter values for evolu-
tionary algorithms. It is also able to identify which operators are not relevant
for the algorithm. Roughly speaking, REVAC is a steady-state evolutionary al-
gorithm that uses a real-value representation, where each value corresponds to a
parameter value of the algorithm to be tunned. Each chromosome in REVAC is
evaluated by the performance obtained by the algorithm (to be tunned) using its
parameter values. A new individual is randomly created, however the value for
each variable is obtained only considering the values that are in the population
for this variable. It does 1000 evaluations.

In order to apply REVAC for calibrating NAIS, we have selected 14 problems,
two from each category < 10, 10, p1, p2 > using model B. The performance for
each chromosome is computed as the number of satisfied constraints by the
solution obtained by NAIS using these parameter values. The parameter values
found by this tuning procedure were:

– n1 = 0.3, rate of cells to be expanded,
– n2 = 0.4, rate of cells to be incorporated on the memory
– ε = 0.40, threshold reactivity between clones
– B − cells = 5
– Number of clones = 100

That means that NAIS requires to do more exploration than it does using a
hand-made calibration. In the hand-made calibration the hypermutated cell is
accepted if it differs at least in a 54% (ε = 0.46) from the memory cells. Now, it
must differ at least in a 60% to be accepted. Furthermore, the number of cells to
be expanded has been reduced in 0.2. The procedure required around 14 hours,
computational time, to determine these parameter values.

4.3 Tests with Calibration

Comparison between NAIS and GSA using Model B: Because the
reported results of GSA, [4] has been evaluated with the problems in the hard-
est zone as they have been generated in [5], we run the calibrated NAIS using

Category
GSA NAIS

50.000 ev. time [s] 10.000 ev. time [s] 50.000 ev. time [s] 75.000 ev. time [s]

c0.3 t0.7 93.33 2.18 87.5 0.68 93.75 1.85 97.5 1.98
c0.5 t0.5 84.4 2.82 91 0.61 98.33 1.08 99.33 0.98
c0.5 t0.7 100 2.76 84 0.61 83.33 2.79 84.33 3.91
c0.7 t0.5 16.7 10.35 87 0.77 87 2.09 90.67 3.34
c0.7 t0.7 100 2.51 80.67 0.66 80.33 2.15 82 4.52
c0.9 t0.5 3.3 13.77 83.67 0.52 86.33 2.15 87.33 4.19
c0.9 t0.7 99.0 1.58 75.33 0.82 75.33 3.92 75.67 6.03

Fig. 3. Success rate and CPU time for NAIS and GSA
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problems generated using the parameters (n, m, p1, p2). We consider the prob-
lems with n = m, where n = 10. The p1 and p2 values are those belonging
to the hardest zone. In figure 3 c0.3 t0.7 means p1 = 0.3 and p2 = 0.7. The
following table shows the percentage of problems solved and the time required
for GSA and those obtained by NAIS considering 10.000, 50.000 and 75.000
evaluations.

NAIS has a higher satisfaction rate than GSA, moreover it converges very
quickly to good solutions. Furthermore, considering just 10.000 evaluations the
average succes rate for NAIS was around 83% instead of 72% for GSA. However,
in some categories GSA outperforms NAIS.

p
SAW NAIS

100000 ev. 10000 it. 50000 it. 75000 it.
succes time [s] succes time [s] succes time [s] succes time [s]

0.24 100 0.74 100 0.32 100 0.33 100 0.3

0.25 100 2.33 100 0.44 100 0.43 100 0.4

0.26 97 6.83 100 0.56 100 0.6 100 0.61

0.27 60 11.39 100 1.2 100 1.1 100 1

0.28 25 18.66 98.4 2.06 100 2.26 100 2.05

0.29 17 20.57 84 4.11 99.6 5.24 100 5.41

0.3 5 22.27 47.6 6.99 84.4 17.17 90 21.02

0.31 1 22.47 16.8 8.62 38.4 35.1 46.8 48.91

0.32 0 22.39 24 8.22 59.6 27.64 63.6 37.95

0.33 1 22.38 24.4 8.3 59.6 27.4 68.4 34.85

Fig. 4. Success rate and CPU time for NAIS and SAW
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Comparison between NAIS and SAW using Model E: We have generated
250 problem instances in the hard zone using Model E. Figure 4 shows the success
rate and the time in seconds for both algorithms.

We can observe that NAIS outperforms SAW in both time and success rate.
Moreover, the average success rate for SAW is 40.6% instead of a 69.2% for
NAIS, just considering 10.000 iterations. NAIS required, for these number of
iterations, in average, just 4.1 seconds.

Figure 5 shows the results for NAIS and SAW. We can observe in NAIS the
transition phase in p = 0.31.

5 Conclusions

The artificial immune systems have some interesting characteristics from the
computational point of view: pattern recognition, affinity evaluation, immune
networks and diversity. All of these characteristics have been included in our
algorithm. The B-cell structure is useful to determine both the solution of the
problems and also to identify conflicts. The conflicting antibody is used by the
algorithm to guide the reparation of the solutions (hypermutation process), giv-
ing more priority to the variables involved in a higher number of conflicts. For
the problems in the hardest zone NAIS just using 10.000 iterations (avg. 4.1 sec-
onds) solved, on average, 28% more problems than SAW, one of the best known
evolutionary algorithm. The calibrated NAIS solved more problems than GSA,
that is a sophisticated genetic algorithm which incorporated many constraints
concepts to solve CSP. Artificial Immune Systems is a promising technique to
solve constrained combinatorial problems.

6 Future Work

A promising research area is to incorporate some parameter control strategies
into the algorithm. The tuning process to define the parameter values for NAIS
has been a time consuming task.
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Abstract. In this paper a relation between artificial immune network
algorithms and coevolutionary algorithms is established. Such relation
shows that these kind of algorithms present several similarities, but also
remarks features which are unique from artificial immune networks. The
main contribution of this paper is to use such relation to apply a formal-
ism from coevolutionary algorithms called solution concept to artificial
immune networks. Preliminary experiments performed using the aiNet
algorithm over three datasets showed that the proposed solution concept
is useful to monitor algorithm progress and to devise stopping criteria.

1 Introduction

Several artificial immune network (AIN) algorithms have been developed based
on Jerne’s idiotypic network theory. They have been applied with success to
several problems, including clustering, classification, optimization, and domain
specific problems [3]. These algorithms present several similarities with evolu-
tionary algorithms: an AIN is a population based meta-heuristic which uses
variation and selection mechanisms over a population of individuals. Moreover,
an AIN has elements in common with coevolutionary algorithms, a branch of
evolutionary algorithms in which individuals interact between them. In an AIN,
the stimulation of a cell is influenced not only by the antigens it detects, but
also by other cells of the AIN.

Therefore, analyzing the relation between AINs and coevolutionary algorithms
may provide interesting insights to each domain. Coevolution has been subject of
theoretical analysis [4], which could provide AINs with effective stopping criteria,
performance metrics, and a strong theoretical background. Also, coevolutionary
algorithms may be improved by taking elements from AINs, such as diversity
introduction (metadynamics), memory mechanisms, and dynamic regulation of
population size. Some works have already successfully explored the relation be-
tween such models[10].

In this work AIN algorithms are analyzed from a coevolutionary point of
view, by identifying common elements in both models, and also examining the
differences between AIN algorithms and coevolutionary algorithms. Later, the
solution concept formalism from coevolutionary algorithms is applied to AIN
models, in order to characterize the expected result of the AIN dynamics. In
addition, preliminary experimentation is performed on an existing AIN algorithm
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(aiNet), in order to test the potential use of the proposed solution concept to
define stopping criteria and performance metrics.

The rest of the paper is organized as follows. Section 2 presents a background
of coevolutionary algorithms. Section 3 analyzes artificial immune networks from
a coevolutionary point of view, showing similarities and differences between such
two models. In section 4, the solution concept formalism from coevolutionary al-
gorithms is applied to AINs, and a solution concept is defined for AINs. Results
of exploratory experimentation are shown in section 5, which suggests the po-
tential use of the proposed solution concept to monitor the behavior of AIN
algorithms . Finally, some conclusions are devised in section 6.

2 Coevolutionary Algorithms

An evolutionary process leads to an increase on the average fitness of a popu-
lation. The main mechanisms of evolution are variation and selection; selection
is performed according to a fitness measure, favoring better fit individuals, i.e.,
fittest individuals have a higher probability to survive.

Coevolution occurs when a change in individuals from one species induces
evolution on individuals of another species. For example, suppose that a plant
is subject to attack by an insect. The plant population may undergo evolution
to develop toxins to defend itself from insects. Then, such toxins can induce
evolution on the population of insects, for them to develop resistance to the
toxin. Thus, the evolution of the plants induces a selection pressure over the
insects population, which results in the evolution of the population of bugs.

From a computational viewpoint, a coevolutionary algorithm is characterized
by a fitness function that changes as the population evolves, and is usually
defined based on interaction with other individuals whom are also evolving.

2.1 One vs Many Populations

Coevolutionary algorithms usually involve more than one population of individ-
uals. Each population represents a species, and the individuals of one population
are evaluated according to their interaction with individuals of other populations.

It is also considered that coevolution arises when an individual is evaluated
according to its interaction with individuals of its own population.

2.2 Competitive vs Cooperative Coevolution

The interaction between individuals can have different purposes, which can be
mainly classified in two kinds of interaction: competitive and cooperative.

In competitive coevolution, each individual represents one solution to a prob-
lem, and the interaction between individuals is used to test individuals’ features:
the solution obtained is said to be test-based. An example of this interaction is
when players for games are evolved: individuals receive fitness according to the
results of their games against other individuals.
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In cooperative coevolution, the output of the algorithm is composed of sev-
eral individuals, which together represent a solution to the problem. Individuals
interact in order to measure not only their features, but also their synergy. Here,
the solution is said to be compositional. A very simple example of this approach
is the optimization of a two variables function f(x,y): the solution can be decom-
posed into two elements (x and y coordinates) and each value is evolved in its
own population. Individuals are evaluated by selecting a random mate from the
other population and evaluating the target function f(x,y).

It is important to notice that in some cases the interaction presents charac-
teristics from both categories: then, the interaction is said to be mixed.

2.3 Interaction Between Individuals

In most coevolutionary algorithms the interaction between individuals is direct:
individuals meet each other and obtain fitness from such encounter. But, in
some coevolutionary models, the interaction between individuals is not direct:
their interaction occurs through their relation with a common environment, for
instance, by consuming resources in a common environment. An example is the
Lotka-Volterra model, in which predators interact directly with preys (by eating
them), but they also interact by competing for a scarce resource: when a predator
eats a pray, the remaining amount of prays for other predators diminishes.

Some well-known techniques in evolutionary algorithms which involve indirect
interaction can be considered coevolutionary. An example is a niching technique
known as competitive fitness sharing[4], used in multi-objective optimization. In
this technique, the fitness produced by satisfying an objective is distributed among
the individuals that are able to fulfill it. Thus, individuals that satisfy objectives
that others do not are rewarded, promoting diversity in the population.

2.4 Generational vs Steady State Algorithms

In generational evolutionary algorithms, all individuals of the population are re-
placed by their descendants. In contrast, in steady state evolutionary algorithms,
some individuals are added to the population and then some are removed, al-
lowing an individual to remain in the population for several generations.

2.5 Spatially Embedded Algorithms

Usually, the interaction between individuals happens by choosing other indi-
viduals at random from their respective population. However, in some cases,
individuals are embedded in a space, and the interaction only occurs between
individuals located in a neighborhood. Frequently, such space corresponds to a
lattice, and a local rule only allows individuals to interact with a limited amount
of their neighbors [8].

The interaction space does not need to be explicit: it can be implicitly defined
by a metric that represents a similarity measure between individuals. For in-
stance, a niching technique known as similarity based fitness sharing [4] involves
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interaction between individuals of the population, and, therefore, it can be con-
sidered coevolution. In this technique, the fitness of an individual decreases as the
number of similar individuals in the population increases. It should be empha-
sized that in this case individuals interact according to locality in the genotype
space.

In general, spatial embedding has been used to improve diversity in coevo-
lutionary algorithms. Thus, spatiality does not represent any feature in the
problem domain, but it is simply a convenient tool to improve an algorithm’s
performance[11].

2.6 Solution Concepts

A solution concept is a set of criteria used to determine which elements of a
search space can be considered as solutions to a particular search problem. A so-
lution concept partitions the search space into solution regions and non-solution
regions. Therefore, a population-based algorithm should be designed in such a
way that the population converges to solution regions. It is important to notice
that a solution concept is specific to a particular search problem.

Every search problem defines a solution concept, which characterizes what
is being searched. Also, each search algorithm implements a solution concept,
which corresponds to what it actually searches. Sometimes, coevolution dynam-
ics generates unexpected behavior. According to Ficici [4], this is related to a
mismatch between the intended solution concept and the algorithm’s solution
concept. Therefore, solution concepts are a formalism useful in the design of
proper algorithm dynamics, performance measures, and stopping criteria.

3 Immune Networks and Coevolution

Idiotypic network theory (also known as immune network theory) was developed
by Jerne [6,9] in order to explain the memory and distributed self regulated be-
havior of the immune system. Such theory states that immune system cells are
able to react not only to pathogens, but also to other elements of the immune
system. During antigen exposure, clones (groups of identical cells) which recog-
nize the antigen increase their size. When the antigen disappears, most of those
cells would die and the clones would shrink or even disappear if not stimulated.
Immune network theory states that a B cell can be stimulated by other cells of
the immune system, and that this feedback mechanism can maintain the cells
that were created during exposure to an antigen.

3.1 Artificial Immune Networks

An artificial immune network (AIN) is a computational model built upon Jerne’s
idiotypic network theory. It is a population based meta-heuristic, which develops
a set of detectors (B cells1) that interact with data (antigens) and with each
1 As each B cell express only one kind of antibody, some models consider antibodies

directly, instead of B cells.
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other. AINs perform unsupervised learning; they have been typically used for
clustering, but have also been adapted to optimization, classification and domain
specific applications [5].

AIN dynamics include interaction with antigens and between detectors. As
a result of those interactions detectors become stimulated. Highly stimulated B
cells undergo cloning and somatic hypermutation. Somatic hypermutation is a
genetic operator in which the mutation rate depends on the affinity of the cell
with the current stimulating antigen. This process is regulated by the interac-
tion between B cells, which can stimulate them in order to create a memory of
observed antigens, or suppress them, in order to control the immune response.

AIN algorithms also posses a metadynamics, which includes natural death of
unstimulated detectors and addition of new random detectors to the population.

3.2 A Comparison Between AINs and Coevolution

Here, similarities between AIN and coevolutionary algorithms are presented by
elicitating a correspondence between their elements, which is summarized in
Table 1.

In an AIN, the population of individuals is the set of B cells, and every B cell
is usually represented as a real valued vector or a binary string. These individuals
are stimulated by antigens and by other individuals, and the resulting stimulation
level correspond to the subjective fitness of a coevolutionary algorithm.

Table 1. Parallel between coevolutionary algorithms and artificial immune networks.
Notice that there is no equivalence in coevolutionary algorithms for the antigens and
for the addition of new random cells to the population.

Coevolution Immune networks

Individual B cell

Population Set of B cells (variable size)

- Antigens

Subjective fitness B cell stimulation level

Selection Selection for cloning according to stimulation
Natural death (metadynamics)

Reproduction Cloning

Genetic operators Somatic hypermutation

Competitive interaction Suppression between B cells
Competition for resources (in models with limited resources)

Cooperative interaction The output of the algorithm is a set of detectors that
cooperatively solve a problem

Coestimulation between B cells

Spatiality There is a notion of space (shape space), defined by the
affinity measure. Detectors interact directly only with

elements on their neighborhood in the shape space

- B cell born (metadynamics)

Solution concept Depends on the problem to be solved
Not explicitly specified
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An AIN’s dynamics is similar to a steady state genetic algorithm, as a B cell
can survive through several generations. A B cell may be selected for removal
in metadynamics if it has a very low level of stimulation. Also, if it has a high
level of stimulation, it undergoes cloning (asexual reproduction), and descendant
cells suffer a mutation inversely related to the affinity with the current antigen
(somatic hypermutation).

An AIN presents a mixed interaction between individuals; first, B cells interact
in a cooperative way to solve a problem, that is, the result of the algorithm is the
whole set of cells, rather than a single cell. Also, in models that consider limited
resources, the B cells compete between them for such resources. Additionally, B
cells interact between them to suppress or stimulate each other, which can be
considered cooperative and competitive behavior respectively. Artificial models
usually define a stimulation function and a suppression function, both of which
depend on the affinity of a detector with its neighbors.

Individuals interact with each other and with antigens according to their affin-
ity, which correspond to their similarity (in most cases) or complementarity. In
other words, they interact with each other if they are neighbors in the shape
space2. For real valued vectors the affinity metric is typically the Euclidean dis-
tance or a function of it . In the case of strings the Hamming distance, the edit
distance, or a function of them could be used.

3.3 Differences Between AINs and Coevolution

Although AINs present several similarities with coevolutionary algorithms, they
also present some particularities that make them different from coevolutionary
algorithms.

In AINs, interaction is defined spatially, not as a way to improve an algo-
rithm performance or to promote diversity, but because the model is inher-
ently spatial. Also, a memory mechanism is inherent to immune networks as
a result of its dynamics, while several coevolutionary algorithms implement
some kind of memory in order to avoid cyclic dynamics, but as a external
mechanism.

Additionally, immune network models are self regulatory, which means that
they are free to vary population size, but this has to be done in a reasonable
way, since there has to be an equilibrium state instead of an explosion in the
number of cells.

Regarding solution concepts, there is no clear solution concept related to im-
mune networks. Though the purpose of the algorithm is usually described, the
properties a solution should have are rarely specified. Given the output of an
AIN algorithm, clustering of the data is usually accomplished by connectivity of
the detectors [7](each connected component of the network is a cluster), or by
applying MST algorithm to the detector set[2].

In the next section, a solution concept for artificial immune network algo-
rithms is proposed.

2 A physical space in which B cells move (such as the blood torrent) is never considered.
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4 A Solution Concept for Artificial Immune Networks

As discussed above, the solution concept formalism may be useful for charac-
terizing AINs. Specifically, it could help to define performance measures, devise
stopping criteria, and to refine algorithm dynamics in order to reach a desired
solution. Therefore, here the purpose of the immune network model, its input
and its output are characterized.

4.1 Characterization of the Solution Concept

Although AIN models have been adapted to perform a variety of tasks, here the
purpose of AINs will be restricted and stated in machine learning terminology, in
order to provide a precise definition of the algorithm and a unified framework to
compare different algorithms. This solution concept is based on some concepts,
such as probability density estimation, which will be specified later. An AIN
algorithm is restricted to fit these criteria:

– An AIN algorithm performs unsupervised learning: The algorithm does not
receive information about the labels of incoming data.

– An AIN algorithm performs semi-parametric probability density estimation:
The output of the algorithm provides a model of the data, by representing
the probability distribution of the training data.

Therefore, for a set of antibodies produced by an algorithm to be considered a
solution, it must satisfy the following criteria:

– Equilibrium: An AIN is in equilibrium if it keeps its structure without change
(or with a small change) indefinitely (or for a given period of time), given
that there is not external stimuli. This criterion is related to the AIN memory
mechanism.

– High antigen set modeling capability: AIN’s cells should represent the dis-
tribution of antigens in the shape space. In other words, the probability
distribution that it estimates should be as close as possible to the one that
generated the antigens.

Therefore, the solution concept is defined as a subset of equilibrium states which
satisfy these criteria.

Next, a characterization of AINs as probability density estimators is presented,
as well as the construction of such probability density function, and measures
associated to the proposed solution concept.

4.2 AINs as Semi-parametric Probability Density Estimators

Probability density estimation methods try to estimate a probability distribution
P based on a set of samples of it. These methods can be classified into three
categories: parametric, non-parametric and semi-parametric methods [1].
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In parametric learning the data is supposed to be generated from some prob-
ability distribution, and the learning algorithm tries to find suitable values for
the parameters of such distribution in order to fit the data.

In contrast, in non-parametric models an a priori distribution is not assumed.
The model is built by associating a kernel function (usually Gaussian) to each
point of the training data. Then, the model is constructed as a sum of such
kernels. These methods rely on the fact that any probability distribution can be
approximated as a mixture of Gaussians (see Fig.1). However, they require to
store all the training data, and their use is computationally demanding.

In semi-parametric methods a set of kernels is obtained, but they do not
correspond to the whole set of the training data. Only a few kernels are generated,
which represent a model of the data. In this case as in the parametric case,
parameters of the kernels are selected in order to fit the data in a better way.

AIN algorithms aim to obtain a set of B cells located in regions with high
concentration of antigens. Then, if each B cell is assigned a Gaussian kernel, the
generated probability distribution mimics the probability density of appearance
of new antigens in a given region. Therefore, AINs algorithms can be considered
semi-parametric density estimation methods, which try to model the probability
density distribution of the antigens in the shape space, using a few number of
kernels, each one associated to a B cell.

Fig. 1. Mixture of Gaussian kernels: The set of kernels generate the probability function
shown. Notice that all Gaussian kernels have the same standard deviation and the same
weight. However, in general, they can have different values for the standard deviation,
and each kernel can have a different weight.

4.3 Antibody Set as a Model of Input Data

Input data will be assumed to be a set (training set TS) of n-dimensional real
valued vectors (agi, i ∈ {1...N}), which are assumed to come from an unknown
probability distribution P . The data is unlabeled, and may include noise.

After antigen exposure, the population of antibodies reaches a configuration
(not necessarily static), which is the output of the algorithm. Such output is a
set of detectors (antibodies abi, i ∈ {1...M}), along with the number of cells
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or concentration of each clone (ci, i ∈ {1...M}), for the algorithms that use the
ARB representations), or the stimulation, for algorithms that consider individual
antibodies. The detectors are also n-dimensional real valued vectors.

An antibody set is interpreted as a probability distribution in this way:

– Each detector abi is the center of a Gaussian kernel ki(x) ∼ N(μi, σ
2), where

μi = abi

– The standard deviation of the Gaussian kernel is the radius associated with
the detector.

– The weight of each kernel is either the concentration (number of resources, for
ARBs) or the stimulation level (for models representing individual B cells)

Accordingly, an antibody set is then interpreted as a probability distribution as
follows:

P̂ (x) = (
∑M

i=1 ki(x)ci)/C, where C = (
∑M

i=1 ci)

4.4 AIN Modeling Capability

A measure used to calculate how well a probability distribution fits the data is
the Likelihood. The likelihood expresses the probability that a dataset had been
generated by a given probability distribution.

Therefore, the likelihood of P̂ over the antigens will be used as a measure of
how well a set of antibodies models the antigen set. For numerical reasons, it is
better to consider the log-likelihood, which is defined as

L =
∑N

j=1 ln(P̂ (agj)) =
∑N

j=1 ln(
∑M

i=1 ki(agj)ci)

A high likelihood implies that the difference between the distributions P (the
probability distribution from which antigens are sampled) and P̂ (the estimated
probability distribution) is expected to be minimum. Therefore, an AIN will be
required to present a high likelihood over the antigens in order to be considered
a solution.

4.5 Equilibrium

Memory requires that once a pattern is found in the data, it will not vanish later.
Therefore, equilibrium is a requirement for memory.

Equilibrium implies that the likelihood of the network over the training data
and the number of detectors do not vary significantly through time.

Thus, equilibrium can be tested by letting the AIN iterate without antigen
presentation, and monitoring the number of network’s cells and its likelihood
over the data.

5 Exploratory Experimentation

Some preliminary experimentation was carried out in order to evaluate the anti-
gen set modeling capability requirement of the solution concept.
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The aiNet model, proposed by de Castro [2], was used to measure likelihood
of the network using two synthetic datasets (the two spiral dataset and a two
cluster dataset), and the IRIS dataset. Results are shown in figures 2, 3 and
4, respectively. In all cases, the parameters of the algorithm were set as follows:
suppression threshold was set to 0.7, n=4, N=10, and qi=0.1. For the probability
estimation, the standard deviation was taken as the suppression threshold, and
all the kernels were assigned the same weight.

Fig. 2. Output and Likelihood evolution of the aiNet algorithm over the two spirals
dataset (190 items)

Fig. 3. Output and Likelihood evolution of the aiNet algorithm over the two clusters
dataset (1018 items)

Results for the two spiral and the IRIS dataset show how the likelihood of
the network increases along iterations, which indicates that it is a good measure
of the algorithm progress. Also, results from the IRIS dataset show that the
likelihood reaches a stable value about iteration 20, and later there is no further
improvement in the likelihood. This suggest the use of the likelihood as a measure
of convergence, and, therefore, as a stopping criterion: a stable value after several
iterations suggest that the algorithm has converged.
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Fig. 4. Likelihood evolution of the aiNet algorithm over the IRIS dataset (150 items)

In the case of the two cluster dataset, the resulting configuration of the net-
work does not resemble the distribution of input data. Therefore, the algorithm
has failed to find an appropriate model of the data. It should be mentioned that
the parameters of the AIN were set to provide such output. It is important to
notice that the likelihood of the network does not increase throughout time, in-
stead it shows an erratic behavior. Such behavior is an indicator of problems in
the learning process, and suggest that the likelihood can be used to monitor the
algorithm’s performance.

6 Conclusions

In this paper, a formal relation between coevolutionary algorithms and artificial
immune networks was established. It was shown that coevolutionary algorithms
and AINs have many elements in common, but also that AINs present some
characteristics that are not present in coevolutionary algorithms, such as variable
size population, self regulatory behavior, inherent memory and spatiality.

Following Ficici’s observations about coevolutionary dynamics, a solution con-
cept for AINs was defined. Particularly, AINs are considered as a semi-parametric
technique for probability density estimation: they estimate the probability func-
tion from which antigens are assumed to be sampled.

The proposed solution concept required the probability function estimated by
the algorithm to have optimal likelihood over the training data; it also expects
that the structure of the network remain stable in absence of antigens.

Network’s likelihood was tested in the aiNet algorithm, and preliminary exper-
imental results showed that it increased as the learning process took place, sug-
gesting its use to monitor the algorithm’s progress. Additionally, highly oscillatory
likelihood over time was shown to indicate problems in the learning process.

A solution concept is useful to analyze the behavior of an AIN algorithm:
results showed that it can be used to monitor algorithm’s performance, and
accordingly, to formulate stopping criteria. In addition, a solution concept may
help to develop new algorithms or to improve existing ones.
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As semi-parametric probability estimators, AINs have the advantage that they
implicitly find the suitable number of required kernels.

Future work will focus on analyzing convergence properties of current AIN
algorithms based on the proposed solution concept. Also, analytic work will be
undertaken in order to relate immune network dynamics to the regularization
theory, which attempts to limit the complexity of machine learning algorithms
in order to achieve better generalization.
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Abstract. This paper presents two approaches of Artificial Immune System for 
Pattern Recognition (CLONALG and Parallel AIRS2) to classify automatically 
the well drilling operation stages. The classification is carried out through the 
analysis of some mud-logging parameters. In order to validate the performance 
of AIS techniques, the results were compared with others classification meth-
ods: neural network, support vector machine and lazy learning.  

Keywords: Petroleum Engineering, mud-logging, artificial immune system, 
classification task. 

1   Introduction 

Offshore petroleum well drilling is an expensive, complex and time-consuming opera-
tion and it demands a high qualification level from the drilling executors.  One of the 
trends of the oil industry is the application of real-time measurements and optimiza-
tion of production operations with the purpose of guaranteeing a safe and effec-
tive/low cost drilling execution. The concept of digital fields has been widely used in 
current works to denote continuous optimization of production [1]. This trend has also 
been seen in drilling, as real-time measurements and control are as well gaining atten-
tion in this particular area. In the last two decades, the technological advances in drill-
ing techniques have notably contributed to the lowering of costs and to the expansion 
of exploration areas.  

Technological progress in the petroleum engineering area was partly motivated by 
the evolution in instrumentation techniques, which affected not only the exploration 
segment but also the production one. As a result of the increasing instrumentation 
level, today, there is a lot of data being measured and recorded.  But the techniques of 
data interpretation and evaluation have not developed at the same speed, and there is a 
lack of tools able to make an efficient use of all the data and information available. 

This work presents the development of a system that intends to make better use of 
the information collected by mud-logging techniques during well drilling operations. 
The mud-logging techniques collected a great amount of data, and these data nowa-
days, are being used in a superficial way. The proposed system aims to take advan-
tage of some of the information potential that is still not being used. 
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The proposed methodology is able to generate a precise report of the execution 
stages during an operation through the interpretation of mud-logging data. There are 
two possible applications. The first one is related to the performance analysis and 
normality investigations. In this sense, this tool could be used to carry out the latter 
analysis of the time spent drilling each well in a field and to investigate how much of 
the total operation time each stage consumed and based on this statistics to plan the 
drilling of other wells. The second one is related to the production of an on-line log-
ging of the executed stages. The methodology could be used on-line in the rig, so the 
system would be able to produce a report of the execution stages, and this report will 
present the same time precision as that of the mud-logging data. 

The main idea of this work is that there is a great amount of information that has 
not been properly used, and this information could be used to provide a process feed-
back and to produce performance enhancements. There are initiatives of development 
of automatic monitoring systems in other areas like the work presented by Yue et al. 
[2] in Mining Engineering. 

Information concerning individual drilling performance can also be used to build 
benchmarking analysis. In this sense, a petrol company could use this information to 
compare the performance of different divisions. On a minor scale, the company could 
compare performance of rented rigs and identify weak points as part of ongoing im-
provement process. The results produced by an automatic classification system may help 
in the design of new wells. The information about the time spent to execute a determined 
stage could be used for planning new wells in the same region providing cost estimates. 

Artificial Immune Systems (AIS) are a new class of algorithms inspired by how the 
immune system recognizes attacks and remembers intruders [3]. The recognition and 
learning capabilities of the natural immune system have been an inspiration for re-
searchers developing algorithms for a wide range of application. In this paper we are 
interested in applicability of artificial immune systems for real world data mining, and 
classification is one of the most important mining tasks, so we focus on the Clonal 
Selection Algorithm (CLONALG) and on the Artificial Immune Recognition System 
(AIRS) algorithm for that task.  

CLONALG was proposed in 2000 [4] and is based on the clonal selection princi-
ple, which is used by the immune system to describe the basic features of an immune 
response to an antigenic stimulus. It establishes the idea that only those cells that 
recognize the antigens proliferate, thus being selected against those that do not. The 
selected cells are subject to an affinity maturation process, which improves their affin-
ity to the selective antigens. The computational implementation of the clonal selection 
algorithm takes into account the affinity maturation of the immune response [5]. 

AIRS was introduced by in 2001 as one of the first immune systems approaches to 
classification. It is a supervised learning paradigm based on the principles of resource-
limited artificial immune systems [6], [7]. In 2002 Watkins and Timmis [8] suggest 
improvements to AIRS algorithm that are capable of maintaining classification accu-
racy, whilst improving performance in terms of computational costs and an increase 
in the data reduction capabilities of the algorithm. This algorithm is here named 
AIRS2. A new version for a parallel AIRS2 was present in 2004 to explore ways of 
exploiting parallelism inherent in an artificial immune system for decreased overall 
runtime [9]. This algorithm was used in the present paper. 



 Artificial Immune Systems for Classification of Petroleum Well Drilling Operations 49 

The classification results using those two immune techniques were compared with 
classification elaborated by a Petroleum Engineering expert [10] and with others 
automated methods in solving of drilling operation stages identification problem. 
These methods are neural networks [11], Support Vector Machines (SVM) [12] and 
Locally Weighted Learning (LWL) [13]. 

2   Mud-Logging System  

During the petroleum well drilling operation many mechanical and hydraulic parame-
ters are measured and monitored in order to perform the drilling in a safe and opti-
mized manner. There are many systems that work together in a rig to accomplish this 
task. One of these systems is called a mud-logging system and it is responsible for 
measuring and monitoring a set of mechanical and geological parameters. 

Mud-logging system techniques were introduced in Brazil in the 80’s. At that time, 
only a reduced number of parameters were monitored. Since the 80s, with the devel-
opments in instrumentation techniques, the number of measured parameters has in-
creased and the use of mud-logging systems became a common practice in the oil 
industry. 

Another aspect that contributed to the progress of mud-logging techniques in Bra-
zil was the development of deep and ultra-deep water drilling technologies. The deep 
and ultra-deep-water environments require a more controlled drilling operation [14]. 
Any failure or inattention may cause great human and economic losses. In order to 
have a more controlled process, the information supplier systems needed to be im-
proved. In this context, the mud-logging systems were enhanced to become an impor-
tant information supplier system. 

Nowadays, mud-logging systems have two distinctive dimensions, the first one is 
responsible for collecting and analyzing formation samples (shale-shaker samples), 
and the second one is responsible for measuring and monitoring mechanical parame-
ters related to the drilling operation. Considering only the second dimension, the mud-
logging system could be characterized as a complete instrumentation system. 

To accomplish its mission, the mud-logging systems rely on a wide range of sen-
sors distributed in the rig operative systems. One important characteristic of this tech-
nique is that there is no sensor inside the well, and all measurements are taken on the 
rig. The data collect by the sensors are sent to a central computer system, where the 
data are processed and displayed in real time through screens installed in the mud-
logging cabin and in the company-man office. The checking of the parameter evolu-
tion is carried out using the monitors; the system not only permits the selection of the 
displayed parameters but also the selection of their presentation appearance (numbers 
or graphics). Throughout the whole drilling operation, there is a worker watching the 
parameters for any kind of abnormality. If an observed parameter presents an unusual 
behavior, the worker has to immediately communicate this to the driller that will carry 
out the appropriate procedures to solve the problem. In fact, the system permits the 
programming of alarms that will sound in the mud-logging cabin, alerting the mud-
logging worker, always when the value of the observed parameter is not within the 
programmed range. 
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The number of observed parameters may vary according to the particular character-
istic of the drilling operation. The most common measured parameters are: Well 
Depth (Depth), True Vertical Depth (TVD), Bit Depth, Rate of Penetration (ROP), 
Hook Height, Weight on Hook (WOH), Weight on Bit (WOB), Vertical Rig Dis-
placement (Heave), Torque, Drillstring rotation per minute (RPM), Mud Pit Volume, 
Pump Pressure, Choke Line Pressure, Pump Strokes per minute (SPM), Mud Flow, 
Total Gas, Gas Concentration Distribution, H2S concentration, Mud Weight in/out, 
Drilling Fluid Resistivity, Drilling Fluid Temperature, Flow Line, LAG Time, and 
Stand Length. 

It is important to mention that just some of the listed parameters are really meas-
ured using sensors. Some of them are calculated using the measured parameters. The 
WOB, for instance, is a calculated parameter. It is calculated using the WOH (a meas-
ured parameter) and the knowledge of the weight of drill string elements. 

The mud-logging monitoring services are generally provided by a specialized com-
pany that, at the end of the drilling operation, makes a report relating the occurrences 
associated to the completed operation. During the drilling monitoring, a huge amount 
of data is generated, and due to difficulties of data storage, the data are summarized to 
make up smaller files. The common practice is to reduce measurements made on a 
second basis to measurements made on a minute basis. Although it solves the problem 
of the files volume, on the other hand it represents the loss of a large amount of in-
formation. There are some events that may occur and last only a few seconds, like the 
drag occurrence in tripping out. When the data is summarized, the information about 
the drag occurrence is partially lost. 

Considering all the measured parameters, it can be noted that the parameters re-
lated to the gas invasion in the well (Mud Pit Volume and Total Gas) are used more 
often than the others, it indicates that there is still a great information potential that 
has not been properly used. 

Another important question related to the mud-logging system is the redundancy in 
parameter measuring. Besides hook height, other parameters have been measured by 
more than one instrument system. It is common to find rigs where the same parameter 
is being measured by the mud-logging company, by the MWD company and by the 
rig itself. And it is not rare to observe cases where the three measurements taken do 
not present the same absolute value. This behavior has caused some questioning about 
the future of mud-logging systems. 

The general tendency is that more modern rigs will have a higher level of instru-
ments on their working systems, and maybe in the future the rig will be in charge of 
measuring and monitoring all drilling parameters while the mud-logging services will 
be restricted to shale-shaker sample analyses. 

3   Individual Stages Associated to the Drilling Operation for the 
Classification System  

The drilling of petroleum well is not a continuous process made up of one single op-
eration. If one looks at in a minor scale, it is possible to note that the petroleum well 
drilling operation is made up of a sequence of discrete events. These minor events 
comprised into the drilling operation will be called drilling operation stages. Six  
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basics stages associated to the drilling operation were identified to build the proposed 
classification system. A brief description of each considered stage is presented below: 

• Rotary Drilling: in this stage the drilling itself occurs, the bit really advances 
increasing well depth. The drill string is rotating and there is mud circulation. 
The drill string is not anchored to the rotary table causing a high hook weight 
level. 

• Rotary Reaming: in this stage despite the high hook weight level, mud circula-
tion and drillstring rotation, the bit does not advance increasing the final well 
depth. In this situation, there is a back-reaming of an already drilled well  
section. 

• Oriented Drilling (“Sliding Drilling”): in this stage, the bit really advances 
increasing the well depth. The difference here is that the drillstring is not rotat-
ing and the drilling occurs due to the action of the downhole motor. There is 
mud circulation and a high hook weight level. 

• Back-reaming or Tool adjusting: in this stage, the bit does not advance in-
creasing the final well depth. There is circulation and a high hook weight level. 
This condition indicates that back-reaming is being carried out or that the  
tool-face of the downhole tool is being adjusted. 

• Tripping: this stage corresponds to the addiction of a new section to the drill-
string. The drillstring is anchored causing a low hook weight level. The drill 
string dos not rotate. 

• Circulating: in this stage there is no gain in the well depth. It is characterized 
by fluid circulation, a high hook weight level and a moderated rotation of the 
drillstring. 

These six stages represent a first effort to individualize the basic components of a 
drilling operation. The stages were detailed considering the drilling phases with mud 
return to the surface. The drilling technology considered was the drilling using mud 
motor and bent housing. This classification may not be satisfactory for the initial 
drilling phases and for special operations, such as fishing, in the well. In the same 
way, if other drilling technologies are considered, like the rotary steerable systems, 
small adjustments in the definition of the stages will be required. For instance, when 
using rotary steerable systems, it makes no sense to make a distinction between rotary 
drilling and oriented drilling stages as they were defined in this work, because these 
systems are supposed to drill all the time using drillstring rotation. 

4   Artificial Immune Systems  

The immune system guards our bodies against infections due to the attacks of anti-
gens. The natural immune system offers two lines of defense, the innate and adaptive 
immune system. The innate immune system consists of cells that can neutralize a 
predefined set of attackers, or ‘antigens’, without requiring previous exposure to 
them. The antigen can be an intruder or part of cells or molecules of the organism 
itself. This part of the immune system is not normally modeled by AIS systems. 

Vertebrates possess an adaptive immune system that can learn to recognize, elimi-
nate and remember specific new antigens. This is accomplished by a form of natural 
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selection. The adaptive immune response in biological systems is based on two kinds 
of lymphocytes (or self-cells) in the body: T-cells, so named because they originate in 
the thymus gland, and B-cells, which originate in bone marrow [3]. 

The major responsibility of the T-cells and B-cells is the secretion of the receptors 
called the antibodies (Ab) as a response to the antigens that enter the body (Ag)  
(nonself-cells). The role of these receptors on the surface of the lymphocytes is to 
recognize and bind the antigen.  An individual T-cell or B-cell responds like a pattern 
matcher - the closer the antigen on a presenting cell is to the pattern that a T-cell or B-
cell recognizes, the stronger the affinity of that T-cell or B-cell for the antigen. T-cells 
are sometimes called helper T-cells because in nature, although the B-cells are the 
immune response mechanism that multiplies and mutates to adapt to an invader, it is 
only when a T-cell and B-cell respond together to an antigen that the B-cell is able to 
begin cloning itself and mutating to adjust to the current antigen (‘clonal expansion’ 
or ‘clonal selection’) [15]. 

Once a B cell is sufficiently stimulated though close affinity to a presented antigen, 
it rapidly produces clones of itself. At the same time, it produces mutations at particu-
lar sites in its gene which enable the new cells to match the antigen more closely. 
There is a very rapid proliferation of immune cells, successive generations of which 
are better and better matches for the antigens of the invading pathogen. B cells which 
are not stimulated because they do not match any antigens in the body eventually  
die [16]. 

The immediate reaction of the innate and adaptive immune system cells is called the 
primary immune response. A selection of the activated lymphocytes is turned into 
sleeper memory cells that can be activated again if a new intrusion occurs of the same 
antigen, resulting in a quicker response. This is called the secondary immune response. 
Interestingly, the secondary response is not only triggered by the re-introduction of the 
same antigens, but also by infection with new antigens that are similar to previously 
seen antigens. That is why we say that the immune memory is associative.  

Artificial Immune System (AIS) are inspired in many aspects of the natural im-
mune systems, such as adaptivity, associative memory, self/non-self discrimination, 
competition, clonal selection, affinity maturation, memory cell retention, mutation and so 
on.  These artificial immune system algorithms (also known as immunocomputing algo-
rithms) have been applied to a wide range of problems such as biological modeling,  
computer network security, intrusion detection, robot navigation, job shop scheduling, 
clustering and classification (pattern recognition). We are interested in this last kind of 
application for our problem of classifying the well drilling stages. We have consid-
ered the two most known classification algorithms based on immune systems to carry 
out this task: CLONALG and AIRS2. 

4.1   Clonal Selection Algorithm (CLONALG) 

The clonal selection algorithm, CSA, was first proposed by de Castro and Von Zuben 
in [4] and was later enhanced in their 2001 paper [5] and named CLONALG. It uses 
the clonal selection principle to explain the basic features of an adaptive immune 
response to an antigenic stimulus. It establishes the idea that only those cells that  
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recognize the antigens are selected to proliferate. The selected cells are subject to an  
affinity maturation process, which improves their affinity to the selective antigens. 
The algorithm takes a population of antibodies and by repeated exposure to antigens, 
over a number of generations, develops a population more sensitive to the antigenic 
stimulus. The basic algorithm for pattern recognition is [5]: 

1. Randomly generate an initial population of antibodies Ab. This is composed 
of two subsets Abm (memory population) and Abr (remaining population): 
Ab = Abm ∪ Abr (m + r = N). 

2. Create a set of antigenic patterns Ag. 
3. Randomly choose an antigen Agi from the population Ag. 
4. For all the N antibodies in Ab calculate its affinity ƒi to the antigen Agi using 

some affinity function (Hamming Distance). 
5. The n selected antibodies will be cloned (reproduced) independently and 

proportionally to their antigenic affinities, generating a repertoire Ci of 
clones: the higher the antigenic affinity, the higher the number of clones gen-
erated for each of the n selected antibodies. 

6. The repertoire Ci is submitted to an affinity maturation process inversely 
proportional to the antigenic affinity, generating a population Ci

* of matured 
clones: the higher the affinity, the smaller the mutation rate. 

7. Re-apply the affinity function ƒi to each member of the population Ci
* and 

select the highest score as candidate memory cell Abm. If the affinity of this 
antibody with relation to Agi is greater than the current memory cell Abmi, 
then the candidate becomes the new memory cell. 

8. Remove those antibodies with low affinity in the population Abr. Finally, re-
place the d lowest affinity antibodies from Abr, with relation to Agi, by new 
randomly generated individuals. 

9. Repeat steps 3-8 until all M antigens from Ag have been presented. 
 

A generation is completed after performing the steps 3-9 above. The rate of clone 
production is decided using a ranking system. Mutation can be implemented in many 
ways, such as multi-point mutation, substring regeneration and simple substitution.  

4.2   Parallel Artificial Immune Recognition System – Version 2 (Parallel AIRS2) 

AIRS2 is a bone-marrow, clonal selection type of immune-inspired algorithm. AIRS2 
resembles CLONALG in the sense that both algorithms are concerned with develop-
ing a set of memory cells that give a representation of the learned environment. 
AIRS2 also employs affinity maturation and somatic hypermutation schemes that are 
similar to what is found in CLONALG. AIRS2 has used population control mecha-
nisms and has adopted use of an affinity threshold for some learning mechanisms. 

AIRS2 is concerned with the discovery/development of a set of memory cells that 
can encapsulate the training data. Basically, this is done in a two-stage process of first 
evolving a candidate memory cell and then determining if this candidate cell should 
be added to the overall pool of memory cells [8]. This process can be outlined from 
[9] as follows: 
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1. Initialization: Create a random base called the memory cells pool. 
2. Clonal expansion. Compare a training instance with all memory cells of the 

same class and find the memory cell with the best affinity (Euclidian distance) 
for the training instance. We will refer to this memory cell as mcmatch. 

3. Affinity maturation.  Clone and mutate mcmatch in proportion to its affinity to 
create a pool of abstract B-Cells. 

4. Metadynamics of B-Cells. Calculate the affinity of each B-Cell with the training 
instance. 

5. Allocate resources to each B-Cell based on its affinity. 
6. Remove the weakest B-Cells (lowest affinity) until the number of resources re-

turns to a preset limit. 
7. Cycle. If the average affinity of the surviving B-Cells is above a certain level, 

continue to step 8. Else, clone and mutate these surviving B-Cells based on their 
affinity and return to step 4. 

8. Metadynamics of memory cells. Choose the best B-Cell as a candidate memory 
cell (mccand). 

9. If the affinity of mccand for the training instance is better than the affinity of 
mcmatch, then add mccand to the memory cell pool. If, in addition to this, the affin-
ity between mccand and mcmatch is within a certain threshold, then remove mcmatch 
from the memory cell pool. 

10. Cycle. Repeat from step 2 until all training instances have been presented. 
 

Once this training routine is complete, AIRS2 classifies instances using k-nearest 
neighbor (k-NN) with the developed set of memory cells. 

Comparing with a data mining approach, AIRS2 is a cluster-based procedure to 
classification. It first learns the structure of the input space by mapping a codebook of 
cluster centers to it and then uses k-nearest neighbor on the cluster centers for classi-
fication. The attractive point of AIRS2 is its supervised procedure for discovering 
both the optimal number and position of the cluster centers. 

Algorithmically, based on the above description, the parallel version of AIRS2 be-
haves in the following manner [9]: 

a) Read in the training data at the root process. 
b) Scatter the training data to the np processes. 
c) Execute, on each process, steps 1 through 9 from the serial version of AIRS2 

on the portion of the training data obtained. 
d) Gather the developed memory cells from each process back to the root. 
e) Merge the gathered memory cells into a single memory cell pool for classifi-

cation. 

5   Results  

The classification problem consists in identifying the drilling operations described 
above as Rotary Drilling (RD), Rotary Reaming (RR), Oriented Drilling (“Sliding 
Drilling”) (SD), Back-reaming or Tool adjusting (TA), Tripping (TR) and Circulating 
(CI). 

In order to identify a given drilling stage in execution, the system needs some of 
the information monitored by the mud-logging system. This work uses: Bit Depth, 
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Weight on Hook (WOH), Stand Pipe Pressure (SPP), Drillstring Rotation (RPM) and 
Weight on Bit (WOB) for this task, as in the previous works [11], [12]. 

Real records of mud-logging data consisting of 3784 samples of three days well 
drilling were used for the training and evaluation of the implemented immune classi-
fier. A Petroleum Engineering expert classified previously these data [10]. When 
training AIS classifier, the whole data set (3784 samples) was randomly separated 
into two subsets: 75% as training set (2838 samples) and 25% as testing set (946 sam-
ples) after training. These sets were the same used in the others related classification 
methods for this problem [11], [12]. Table 1 shows the data distribution according to 
pre-defined classes for the training and test sets. The table clearly indicates the data 
imbalance issue among the classes, mainly for the Circulating (CI) and Tripping (TR) 
stages, which are the less usual operation in the drilling activity. 

Table 1. Distribution of data per class in the training and test sets 

Drilling operations Number of 
samples CI TR TA SD RR RD Total 

Training Set 14 75 795 753 343 858 2838 

Test Set 2 22 266 253 114 289 946 

The application of CLONALG with 20 generations for the proposed task produced 
400 incorrectly identified instances of the training set and 104 misclassified instances 
of the test set. The classification accuracy for training and test sets are 85.9% and 
89.0%, respectively. Table 2 shows the correctness rate for the training and test sam-
ples for each evaluated method. 

Parallel AIRS2’s experiments are undertaken with the k-value for the k nearest 
neighbor approach is set to 7. The value for number of threads is 5. The learning 
evaluation of this approach has shown a reasonable performance, obtaining 2587 
instances correctly classified (91.2%) for the training data and 879 instances (92.9%) 
for the test data. The performance of the Parallel AIRS2 is higher than of CLONALG. 

A Multi-Layer Perceptron (MLP) neural network (NN) with backpropagation (BP) 
learning algorithm, which is widely used in numerous classification applications, has 
been investigated for this problem in our previous work [11] and its results are com-
pared with the immune classifier systems CLONALG and Parallel AIRS2. MPL-BP 
has a better performance among all method, reaching an accuracy of 96.3% and 
94.9% for the training and test sets, respectively. 

Support Vector Machine (SVM) was used also to develop the automatic classifica-
tion system of well drilling stages [12]. SVM correctly classified 2660 samples of the 
training set, reaching a reliability of 93.73%. For the testing set, 876 samples were 
well classified, with 92.6% of success. 

Locally weighted learning (LWL) is a class of statistical learning techniques (lazy 
learning) that provides useful representations and training algorithms for learning 
about complex phenomena [13]. LWL uses locally-weighted training to combine 
training data, using a distance function to fit a surface to nearby points. It is used in 
conjunction with another classifier to perform classification rather than prediction.  
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Table 2. Correctness rate for each classification method  

Method Training Set Test Set 
MLP-BP 96.3% 94.9% 
SVM 93.7% 92.6% 
CLONALG 85.9% 89.0% 
Parallel AIRS2 91.2% 92.9% 
Lazy LWL 80.5% 81.3% 

Table 3. Classification accuracy for each class in the training data 

Drilling operations 
Method 

CI TR TA SD RR RD 

MLP-BP 100% 100% 97.5% 98.1% 89.2% 96.0% 

SVM 100% 100% 96.6% 95.8% 83.1% 92.8% 

CLONALG 0% 98.7% 85.0% 93.5% 45.5% 96.5% 

Parallel AIRS2 57.1% 100% 90.1% 95.6% 69.7% 96.6% 

Lazy LWL 0% 0% 91.7% 0% 91.5% 100% 

Table 4. Classification accuracy for each class in the test data 

Drilling operations 
Method 

CI TR TA SD RR RD 
MLP-BP 100% 100% 96.2% 98.4% 86.0% 93.8% 

SVM 100% 100% 96.6% 94.1% 83.3% 90.7% 

CLONALG 0% 100% 89.5% 96.0% 72.8% 97.2% 

Parallel AIRS2 100% 100% 91.7% 97.6% 75.4% 98.3% 

Lazy LWL 0% 0% 91.7% 0% 93.3% 100% 

The four components that define LWL are: a distance metric, near neighbors, 
weighting function, and fitting the local model. In this application it is the technique 
with the worst result: precision of 80.5% for training set and 81.3% for test set.  

In order to understand the difficulties of pattern discrimination of each method in 
the learning process, Tables 3 and 4 present the classification accuracy for each class 
related to each learning technique for both training and test data. Ten trial runs were 
performed for each method using a 10-fold cross-validation procedure. 

It is important to mention that the circulating (CI), tripping (TR), rotating mode 
(consisted of rotary drilling (RD) and rotary reaming (RR) stages) and non-rotating 
mode (consisted of back-reaming or tool adjustment (TA) and sliding drilling (SD) 
stages) operations are linearly separable classes. However, RD and RR are non-
linearly separable classes. The same for TA and SD classes. 

Close examination of the Tables 3 and 4 revels that, as expected, for MLP-BP and 
SVM the accuracy on the non-linearly separable data set is less than the classification 
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accuracy on the linearly separable dada set. The classification is well successful either 
for classes with a little amount of samples or a large one. 

When CLONALG and Parallel AIRS2 algorithms use the imbalanced data set for 
training, antigens from the majority class may generate more memory cells than the 
ones from the minority class. If all the memory cells are represented in a high dimen-
sional space, one minority class cell may be surrounded by many majority class cells; 
so taking votes (k-NN classification) from several memory cells closest to a test anti-
gen may cause biased decisions. That explains the fact of CLONALG is unable to 
learn the CI class and Parallel AIRS2 has a low performance to this class.  Neverthe-
less, even for complex mud-logging data sets CLONALG and Parallel AIRS2 algo-
rithms are able to perform fairly well as a classifier.  

LWL does not learn the minority classes and its behavior for SD class is unclear. 

6   Conclusion  

The classification systems presented can be used either to classify stored mud-logging 
data of a database of drilled wells or to classify mud-logging data on-line and online 
in a rig. Due to the detailed level regarding each executed stage provided by the clas-
sification systems, it can help to analyze the individual drilling performance of each 
well. Information about the total time spent on each stage combined with related eco-
nomic costs can be used to assess the real cost reduction benefit caused by optimized 
drilling programs and introduction of new technologies. 

The imbalanced real mud-logging data has a large impact on the classification per-
formance of the AIS classifiers, since they can achieve high precision on predominant 
classes but very low correct classification on classes with a few samples, in contrast 
with the neural network and SVM, which recognize efficiently all patterns of the 
minority classes. The results suggest that Parallel AIRS2 could achieve a similar per-
formance than MLP-BP and SVM do on data sets of others applications or problems 
with a better class’s distribution. 

This paper demonstrates that the development of a classification system for real 
multi-class problems using immune system inspired approaches is feasible. 
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Abstract. This article proposes a new classifier inspired on a biolog-
ical immune systems’ characteristic. This immune based predictor also
belongs to the class of k-nearest-neighbors algorithms. Nevertheless, its
main features, compared to other artificial immune classifiers, are the
assumption that training set is the antibodies’ population and a sup-
pression mechanism that tries to reduce the training set into a smaller
subset. This subset is supposed to contain the most significative sam-
ples, without loosing much capability of generalization. It is known that
in prediction problems, the choice of a good training set is crucial for the
classification process. And this is the focus of this research. Experiments
using some benchmarks and the analysis of the results of our ongoing
work are presented.

1 Introduction

Classification [1] and pattern recognition are important tasks in all knowledge
fields [2]. To classify means to categorize into a finite number of classes elements
defined by a group of attributes. There are many types of statistical and artifi-
cially intelligent classifiers, as it can be seen in [3,4]. One of the main issues in
classification problems involves the choice of good samples to train a classifier.
A training set capable to represent well the characteristics of a class has better
chances to establish a successful predictor.

This article proposes a new classifier inspired on biological immune systems’
characteristics. The model belongs to the class of k-nearest-neighbors algorithms.
Its main features, compared to other artificial immune classifiers
[5,6,7,8,9,10,11,12,13,14,15,16,13,17,18,19,20,21,22], are the assumption that the
training set constitutes the initial antibodies’ population of the system, and a
suppression mechanism that tries to reduce this training set into a smaller sub-
set. This subset is supposed to contain the most significative samples, without
loosing much capability of generalization.

In this proposal, the inspiration came from the self-regulation mechanism
from the biological immune systems. Clones of B cells that are no longer needed

L.N. de Castro, F.J. Von Zuben, and H. Knidel (Eds.): ICARIS 2007, LNCS 4628, pp. 59–70, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



60 G.P. Figueredo, N.F.F. Ebecken, and H.J.C. Barbosa

in the organism suffer apoptosis. Therefore, another feature of the algorithm
that distinguish it from the others mentioned, is its simplicity. There are no
mechanisms such as affinity maturation, clonal selection [23,24], its not based
on imune network models or kohonen networks [19].

1.1 The Behavior of Biological Immune Systems

According to the IS self regulation mechanism, clones no longer needed by the
organism, or those that self attack, do not receive signals to keep alive and suffer
apoptosis. Those signals came from the lymph nodes or T helper cells [25]. This
self-regulation characteristic allows the organism to save energy and keep only
the repertory of lymphocytes really needed for self defense. These concepts are
the inspiration of the presented model.

Basically, the algorithm presented here draws from a concept in which the
model for the system should evolve to produce antibodies to recognize the train-
ing data and be capable to identify new presented antigens. Instead of working
with a system that generates and evolves clones of B cells until the antibodies
recognize the training group, this paper proposes the training data to be the
very same antibodies’ repertory of the system.

The suppression concept is employed in the training set to eliminate very
similar antibodies. For suppression, the antigens, or test data, are divided into
two subgroups. The first will be responsible for testing the model and eliminating
redundant antibodies. The second subgroup is used to validate the efficiency of
the remaining antibodies after suppression.

This article is organized as follows. Section 2 presents a detailed description
of the algorithm proposed together with the suppression mechanism. Experi-
ments and results obtained from standard databases found in the literature are
presented. Finally, the last section presents the final remarks on the model and
propose some suggestions for further research.

2 The Proposed Algorithm

The algorithm starts with the idea that the system’s model must evolve to create
antibodies that recognize the training set and be able to identify new presented
antigens. Therefore, instead of the system generating and evolving B cells clones
until the antibodies recognize the training set and establish a cellular memory, it
is proposed that the training set itself constitutes the repertory of antibodies of
the system. It means that the immunological memory represented by Artificial
Recognition Balls (ARBs), which are mathematical metaphors for antibodies
or B-cells [26,27,24], (see Figure 1), will be ready for generalization from the
moment training data is placed in the system. In the presented figure, S is the
shape space where • are the antibodies, × are the antigens and ε denotes the
radius of each antibody [27,24].

The set of attributes is normalized to belong to the same scale of values. In
this case, the data was transformed to fit in the interval [0,1]. At the present
moment of this research, only real or integer data are considered.
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Fig. 1. The shape space model

To proceed the system’s learning, the database is divided into three subsets,
training representing the antibodies, testing and validating as antigens. The
initial proportion of samples adopted for each group, respectively, was 60%, 20%
and 20% and then, another experiment with the proportions 70%, 20% and
10%.These proportions were adopted empirically. Both antigens and antibodies
are represented by an array containing the attributes. The antigens, or test data,
are classified according to the closest antibody. It means that in this case, instead
of a shape space with variant ε, the model uses the Voronoi diagram [28], that
can be seen in Figure 2. In the figure, dots are the centroids of the ARBs and
represent the antibodies that cover a certain group of nearest antigens.

Fig. 2. Voronoi diagram: a representation of the classification process

The closest antibody is determined by a measure of distance. In the experi-
ments, the adopted ones were the Euclidian and Manhattan distances, described
respectivelly by the equations 1 and 2.

distance =

√√√√TotalAttributes∑
i=1

(Antibody[i] − Antigen[i])2 (1)

distance =
TotalAttributes∑

i=1

|Antibody[i] − Antigen[i]| (2)
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The reason why antigens have been split into two subsets is to provide the
suppression mechanism. The suppression concept is used among the training
set, so that very similar antibodies are eliminated and the best ones are kept,
following the theories of self-regulation and affinity maturation of biological im-
mune systems, described in section 1.1. In other words, those antibodies able to
recognize antigens from the test set remain while the others are eliminated from
the population.

In this artificial classifier, these signals for survival are represented by a
counter variable for each antigen recognized by an antibody, independently if
the classification is correct or not. It is known that some databases have limits
on the percentage of correctly classified samples. This is the reason why antibod-
ies that classify incorrectly are still maintained on the suppressed population.
These antibodies could be viewed as cross-reactive ones.

The schematic algorithm can be seen in Algorithm 1, called SUPRAIC.1

Algorithm 1. Algorithm SUPRAIC
�Read the database file;
�Normalize data between the interval [0,1];
�Determine antibodies and antigens by dividing the data (in a uniform distribution)
into, for example, 60% antibodies and 40% antigens;
�For each antibody, set its counter variable = 0;
�Divide antigens into test and validation subgroups. Generally, it is used the same
proportion for each one, 20%;
�Determine the inicial antibodies as the training set.
�Train the model via test subset by finding the nearest antibody for each antigen.
The nearest antibody is measured by the Euclidian distance among attributes;
�For each antigen recognized by the antibody, increase its counter variable by one;
�Suppress the remaining antibodies not capable to recognize (counter = 0) antigens.
Eliminate them from the antibodies population.
�Validate the final predictor, already suppressed by the previous step, by using the
remaining antibodies to recognize the validation set;
�Calculate the accuracy of the final predictor.

3 Experiments and Results

This section presents experiments using some benchmark examples of databases
extracted from the UCI machine learning repository [29]. The metrics adopted
to evaluate the efficiency of the classifier were extracted from [2].

For two classes problems, the metrics are based on confusion matrix, a tool
which informs the sorts of hits and errors made by a classifier [2]. The classes are
named positive and negative and the confusion matrix has four values computed
in terms of real and predicted classes, namely:

– TP (true positives): the amount of positive elements predicted as positive;
– TN (true negatives): the amount of negative elements predicted as negative;

1 Suppressor Artificial Immune Classifier.
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– FP (false positives): the amount of negative elements predicted as positive;
– FN (false negatives): the amount of positive elements predicted as negative;

With the values above determined, the most common metrics that will be
used to determine the efficiency of the proposed predictor are:

– Accuracy (acc) and Validation (val): they are the ratio of correct decisions
made by a classifier. The difference between both is that the first one is used
to train the predictor and the second one is to validate it:

acc(val) =
TP + TN

TP + TN + FP + FN
(3)

– Sensitivity (sens): it measures how much a classifier can recognize positive
examples:

sens =
TP

TP + FN
(4)

– Specificity (spec): it measures how much a classifier can recognize negative
examples:

spec =
TN

TN + FP
(5)

– Precision (prec): it is the ratio of predicted positive examples which really
are positives:

prec =
TP

TP + FP
(6)

– F-measure (FMea): it is the harmonic mean of sensitivity and precision. In
this study, the parameter β was set to zero:

prec =
(β2 + 1) × sens× prec

sens + β × prec
(7)

– G-mean (GSP): it is the geometric mean of sensitivity and precision:

GSP =
√

sens × prec (8)

– G-mean2 (GSS): it is the geometric mean of sensitivity and specificity:

GSS =
√

sens × spec (9)

In all the experiments that follow, β was set to zero, which means that sensi-
tivity and precision have the same importance.
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Table 1. Results from the predictor without suppression mechanism for Breast Cancer
Database with 419 antibodies

percentage split distance acc val sens spec prec Fmea GSP GSS

60-20-20 Euclidian 0.96 0.97 0.94 0.99 0.98 0.48 0.96 0,96

60-20-20 Manhattan 0.96 0.98 0.94 1 1 0.47 0.95 0.95

70-20-10 Euclidian 0.97 0.97 0.93 1 1 0.48 0.96 0.96

70-20-10 Manhattan 0.98 0.94 0.85 1 1 0.46 0.92 0.92

Table 2. Results from the predictor with suppression mechanism for Breast Cancer
Database with 56 antibodies

percentage split distance acc val sens spec prec Fmea GSP GSS

60-20-20 Euclidian 0.96 0.94 0,85 0.99 0.98 0.45 0,91 0,91

60-20-20 Manhattan 0.98 0.96 0.88 1 1 0.47 0.94 0.94

70-20-10 Euclidian 0.97 0.96 0.89 1 1 0.47 0.94 0.94

70-20-10 Manhattan 0.98 0.96 0.88 1 1 0.47 0.94 0.94

Table 3. Results from other classifiers to cancer database

classifier acc

J48 (Decision Tree) 0.95

Multi-Layer Perceptron 0.97

Naive Bayes 0.98

Fig. 3. The total amount of antibodies (training set) for the Cancer database

3.1 Breast Cancer Database

The purpose of this work was to reduce training sets without loosing significantly
the accuracy of the predictor. The first experiment of this new proposal was made
on the breast cancer database. The breast cancer database is characterized for
having 699 registers, 9 attributes and 2 classes.
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Fig. 4. Antibodies from Cancer database after suppression and 60-40% split

Table 1 shows the results with the previously mentioned metrics, but using
the classifier without the suppression mechanism. In Table 2, the suppression
mechanism was applied.

As it can be seen, comparing the two results in Tables 1 and 2, there was not
too much difference between the metrics. Nevertheless, the amount of antibodies
was reduced from 419 to 56. That means a reduction of almost 87% of training
data. Figure 3 shows training data before suppression and Figure 4 shows the
final suppressed classifier using star coordinates.

3.2 Pima Indians Diabetes Database

Database diabetes is characterized by 768 registers, 8 attributes and 2 classes.
As in the first database studied, it also can be seen that the results from Ta-
bles 4 and 5 are not very different, except for the value specificity. Even though,
the reduction of the antibodies by the suppression was from 460 to 80. Fig-
ures 5 and 6 shows, respectively, the training data before suppression and data
already suppressed with the most significant antibodies. Table 6 shows results
obtained from other common classifiers: Naive Bayes, Multi-Layer Perceptron
and Decision Tree [3].

Table 4. Results from the predictor without suppression mechanism for Pima Indians
Diabetes Database with 460 antibodies

percentage split distance acc val sens spec prec Fmea GSP GSS

60-20-20 Euclidian 0.74 0.67 0.7 0.62 0.77 0.36 0.73 0.66

60-20-20 Manhattan 0.71 0.69 0.71 0.65 0.79 0.37 0.75 0.68

70-20-10 Euclidian 0.70 0.69 0.74 0.61 0.74 0.37 0.74 0.67

70-20-10 Manhattan 0.73 0.71 0.74 0.68 0.77 0.38 0.76 0.71
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Table 5. Results from the predictor with suppression mechanism for Pima Indians
Diabetes Database with 80 antibodies

percentage split distance acc val sens spec prec Fmea GSP GSS

60-20-20 Euclidian 0.74 0.65 0.77 0.45 0.71 0.37 0.74 0.59

60-20-20 Manhattan 0.71 0.65 0.8 0.4 0.7 0.37 0.74 0.56

70-20-10 Euclidian 0.70 0.65 0.72 0.55 0.70 0.35 0.71 0.63

70-20-10 Manhattan 0.73 0.66 0.80 0.45 0.68 0.37 0.74 0.60

Table 6. Results from other classifiers to diabetes database

classifier acc

J48 (Decision Tree) 0.76

Multi-Layer Perceptron 0.75

Naive Bayes 0.70

Fig. 5. The total amount of antibodies (training set) for the Diabetes database

3.3 Iris Database

The following database is characterized for having more than two classes. Iris
database has 150 registers, 4 attributes and 3 classes. Although there are some
other metrics to evaluate multi-class problems [2], in this work it will be adopted
only accuracy on test and validation sets. As a continuation of this work, it is
intended to use metrics proposed by [2].

In Tables 7 and 8 are shown the results for the iris database. Although in the
first case the accuracy and validation test are classified, respectively, as 97% and
100% correct and in Table 8 shows an inferior performance, the decrease of the
antibodies is significant – from 90 to 10.
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Fig. 6. Antibodies from Diabetes database after suppression and 60-40% split

Table 7. Results for the Iris Database with 90 antibodies without suppression

percentage split distance acc val

60-20-20 Euclidian 0.97 1

60-20-20 Manhattan 0.97 1

70-20-10 Euclidian 1 1

70-20-10 Manhattan 1 1

Table 8. Results for the Iris Database with 10 antibodies with suppression

percentage split distance acc val

60-20-20 Euclidian 0.96 0.97

60-20-20 Manhattan 0.97 0.97

70-20-10 Euclidian 1 1

70-20-10 Manhattan 1 1

Table 9. Results from other classifiers to iris database

classifier acc

J48 (Decision Tree) 0.95

Multi-Layer Perceptron 0.97

Naive Bayes 0.95
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Fig. 7. The total amount of antibodies (training set) for the Iris database

Fig. 8. Antibodies from Iris database after suppression and 60-40% split

4 Conclusions

This article proposed a new k-nearest-neighbor deterministic data classifier
method using a suppression mechanism inspired on the behavior of biological
immune systems. Particularly, the idea came from the way lymph nodes and
T-helper cells behave towards lymphocytes no longer needed in the organism or
those who self attack.

Basically, the predictor works with a database divided into three parts. The
first one represents the antibodies and have the great proportion of the studied
database, so that it can cover all the space. The second is the test set, respon-
sible to help the system to eliminate those antibodies that were not used . The
principle is, basically, those antibodies who recognized presented antigens re-
main on the population. The other ones are suppressed – taken away from the
population. The third set is the validation one. Its role is to make sure that the
suppression mechanism worked, retesting the system.
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Experiments were made using benchmarks with two or more classes and the
results were satisfactory. There was just a little proportion of mistakes between
test and validation set. As next steps of this work, it would be necessary to fur-
ther investigate multi-class problems and databases with unbalanced examples.
Also, apply some hybrid techniques, such as fuzzy logic [30] or support vector
machines [31] to try to reduce cross-reaction and improve performance.
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Abstract. This paper has three main goals: i) to employ an immune-based  
algorithm to train multi-layer perceptron (MLP) neural networks for pattern 
classification; ii) to combine the trained neural networks into ensembles of clas-
sifiers; and iii) to investigate the influence of diversity in the classification per-
formance of individual and ensembles of classifiers. Two different classes of 
algorithms to train MLP are tested: bio-inspired, and gradient-based. Compari-
sons among all the training methods are presented in terms of classification  
accuracy and diversity of the solutions found. 

Keywords: multi-layer perceptrons, bio-inpired algorithms, ensembles. 

1   Introduction 

There are currently a large number of computational techniques to solve data analysis 
and pattern recognition problems. Statistical and computational intelligence tech-
niques are largely applied to these areas. Part of the efforts to design new computa-
tional algorithms to solve complex problems are based on the understanding of 
mechanisms, behaviors and dynamics of natural (biological, chemical and physical) 
systems, and implementations of methods inspired by these natural phenomena, sys-
tems, and processes. The research area that follows these principles has been called 
bio-inspired or natural computing [11]. Among the main natural computing ap-
proaches, artificial immune systems [9] have gained particular importance as a feasi-
ble alternative to solve complex problems.  

The present paper investigates the use of bio-inspired algorithms to train MLPs, with 
particular emphasis on the application of an immune-based algorithm, named opt-aiNet 
[10], to adjust MLP network weights. Other algorithms, such as particle swarm optimi-
zation (PSO) [5], [6], an evolutionary algorithm (EA) [20], [21], [1] and the first-order 
backpropagation with momentum (BPM) [19] are also employed to the same task. The 
core issue to be discussed is how the diversity of the solutions found by the bio-inspired 
algorithms, which correspond to the weight sets determined for the MLP nets, influence 
the classification performance of the neural networks. To deepen the investigation, the 
neural classifiers trained are combined into ensembles so as to provide a better assess-
ment of the influence of diversity of individual classifiers when combined.  

A number of classification problems are used to evaluate the performance of the 
algorithms, which is measured by their classification accuracy and the diversity of the 
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classifiers generated. The results show that most bio-inspired algorithms generate sets 
of very similar solutions that do not contribute significantly to an increase in perform-
ance of the ensembles of classifiers. The results of opt-aiNet are, by contrast, natu-
rally more diverse, thus leading to improved performance of the ensembles. 

2   Algorithms Used to Train MLPs 

MLP network training can be viewed as a function approximation problem in which 
the network parameters (weights and biases) are adjusted, during training, in an effort 
to minimize (optimize) an error function between the network output and the desired 
output. Thus, virtually any search and optimization algorithm can be used to train this 
type of neural network. The error function utilized in the present work is the Mean 
Square Error (MSE): 
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where δij(t) is the error for output neuron i and input pattern j at time instant t; o is the 
number of network outputs, and N is the number of input patterns. 

2.1   opt-aiNet 

The term opt-aiNet stands for optimization version of an artificial immune network 
and corresponds to an adaptation procedure to perform search and optimization based 
on some immune principles [10]. It emphasizes the clonal selection and affinity matu-
ration principles, together with the immune network theory [9].  

Some features and metaphors of opt-aiNet: 

• It is a multi agent system in which the individuals of the population are the 
immune cells that recognize the antigens (candidate solutions); 

• Each cell corresponds to a real-valued vector in an Euclidean space; 
• The affinity between two cells or individuals is quantified using their Euclid-

ean distance; 
• Clones are identical copies of the parent cell, but all clones are subjected to a 

controlled mutation that corresponds to a perturbation in their attributes; 
• Selection is performed within each clone and including the parent cell; 
• The fitness of each cell is the value of the objective function when evaluated 

for the cell; and 
• Network stimulation is not accounted for, but suppression is mimicked by 

removing all the worst cells among those whose Euclidean distance is 
smaller than a pre-defined threshold σs. 

The controlled mutation takes into account the fitness of the parent cell that gener-
ated the clones: the higher the fitness, the smaller the mutation rate, and vice-versa, as 
follows: 

c' = c + α N(0,1)                                                   (2) 
                                                   α = (1/β) exp(−f*) 
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where c is the vector that corresponds to the clone, c' is the mutated clone, f* is the 
fitness of the parent cell normalized in the interval [0,1].  

The opt-aiNet algorithm is summarized below. 
 

Algorithm = opt-aiNet(β,σs,d) 
. Randomly initialize a number of cells taking into account 
the variables’ domains 
while population-not-stabilized 

 while average-fitness-does-alter 
. Generate a fixed number of clones for each cell 
. Mutate the clones following Eq. (1) 
. Determine the fitness of each clone 
. Select among the clones 
. Determine the average fitness 

 End while 
. Determine the affinity among all cells 
. Suppress cells according to the threshold σs  
. Introduce new cells randomly generated. The number of 

new cells is d% the total number of cells. 
End while 

End algorithm 

Algorithm 1. Code for the opt-aiNet algorithm 

Roughly, the computational cost of the algorithm is quadratic in relation to the num-
ber n of cells in the network at a given time instant: O(n2). The convergence criterion 
of the outer loop is based on a stabilization of the number of cells in the network after 
suppression; that is, if the number of cells does not change from one iteration to the 
other, then the network has converged. From a behavioral perspective, a distinguish-
ing feature of opt-aiNet is its capability of locating and maintaining a memory of mul-
tiple optima solutions. 

In order to apply opt-aiNet to train multi-layer perceptron neural networks, few 
modifications have to be introduced in the algorithm. As the MLP error surface is a 
function of the weights and biases, training the network becomes the problem of 
searching for the most suitable weight set that minimizes the error. Therefore, a net-
work cell will correspond to the weight vector of the whole network, including the 
bias terms for the hidden and output neurons. The objective function of opt-aiNet is 
the MLP error. Assuming networks with a fixed, user-defined, number of hidden units 
in a single hidden layer, the errors that remain to be evaluated are the optimization 
and the generalization errors. These errors can be estimated, for instance, by using 
cross-validation [14], [15]. The network error for the training set is the optimization 
error and the error for the test set estimates the generalization error. 

For the use of opt-aiNet to train MLPs three modifications were introduced. In the 
original opt-aiNet algorithm, when the number of cells in the network stabilizes and 
there is no significant change in the average network fitness, evolution stops. These 
criteria allow opt-aiNet to suppress useless cells (those that do not recognize any input 
pattern), include new cells in the network and keep searching. The first modification 
is related to the stopping criterion, which is now a fixed number of iterations. 
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Mutation 

Preliminary tests with the use of opt-aiNet to train multi-layer perceptrons suggested 
that parameter β (Eq. (2)) exert an important influence on the behavior of the algo-
rithm. It was noted that values (much) less than 10 promote a large perturbation in the 
candidate solutions and, consequently, the saturation of the sigmoidal MLP network 
neurons. When β is approximately 10, however, the algorithm converges more 
quickly; that is, the weight adjustment process stabilizes faster, but is more subject to 
local optima solutions due to premature convergence. Greater values of β promote a 
finer adjustment in the weights, because they will result in smaller step sizes, but at 
the expense of a higher computational cost. It was noted that β = 100, for instance, is 
a value that results in a sufficiently fine adjustment in the weights. Based on these 
observations, a simple heuristics is proposed here to adjust the value of β during  
evolution: 

• 0 ≤ 1−f* < 0,2 → β = 100 
• 0,2 ≤ 1−f* < 0,4 → β = 75 
• 0,4 ≤ 1−f* < 0,6 → β = 50 
• 0,6 ≤ 1−f* < 0,8 → β = 25 
• 0,8 ≤ 1−f* ≤ 1 → β = 10 

where f* is the normalized fitness. Note that, in this heuristics, the higher the fitness 
value, the smaller the perturbation in Eq. (1). 

Suppression 

The preliminary tests performed with opt-aiNet to train MLPs also showed that the 
suppression mechanism depends on the dimension of the problem to be solved, in this 
case the number of weights and biases to be adjusted. This is because suppression in 
opt-aiNet considers the Euclidean distance among solutions and, for non-normalized 
vectors, the greater the number of dimensions, the larger the distance is allowed to be. 
As the problems to be studied here require varying neural network dimensions, it is 
relevant to make suppression independent of this parameter. Thus, the following steps 
are proposed to perform suppression: 

• The weight vectors are normalized in the [0,1] interval; 
• The maximal distance between the normalized solutions is determined; 
• The distance matrix among solutions is divided by the maximal distance. 

Parameter σs is now determined as proportional to the normalized distances, for in-
stance, 0.1 times the normalized distance. 

2.2   Other Algorithms to MLP Training 

In this paper two bio-inspired algorithms, namely the standard particle swarm optimi-
zation (PSO) algorithm and an evolutionary algorithm, were implemented for per-
formance comparisons with opt-aiNet in the training of MLP neural networks. These 
will be briefly described in the following. 

The particle swarm optimization algorithm, based on sociocognition, has been 
largely used for solving search and optimization problems [6]. In PSO each individual 
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is a candidate solution (weight set for the MLP) that has an associated performance 
index that allows it to be compared with the other particles. The version utilized here 
has global neighborhood and the inertia weight term [6]. 

The evolutionary algorithm used here combines ideas from genetic algorithms [1], 
[20], [21] and evolution strategies [1], [20], [21]. Operators typical of genetic algo-
rithms, such as uniform recombination, point mutation and roulette wheel selection, 
are used, together with the self-adaptation of evolution strategies. The encoding 
scheme employed was floating point numbers due to the nature of the task to be per-
formed – train MLP neural networks. An elitist strategy is used to save the best indi-
vidual in the population. Specifically, the following operators used were: 

• Uniform crossover [1]; 
• Tournament selection; and 
• Self-adaptive Gaussian mutation [20], following Eq. (3): 

σi
t+1= σi

t exp(τ’.N(0,1) + τ.Ni(0,1))                                          (3) 
                  wi

t+1= wi
t + σi

t+1.Ni(0,1) 

The last algorithm utilized here for comparison is a first-order method. Each minimi-
zation step is given in the opposite direction of the gradient vector and is controlled 
by the learning rate α. An additional term (β) usually avoids oscillation in the error 
behavior, because it can be interpreted as the inclusion of an approximation of a  
second-order information [19]. The resulting algorithm is called the standard back-
propagation with momentum (BPM). 

3   Ensembles of Classifiers 

Ensembles are aimed at using a finite collection of independent components (classifi-
ers or regressors), such that a single response is provided to the problem by the whole 
ensemble. The application of this idea to neural networks was introduced by [12], 
when they showed that the generalization capability can be improved when the  
outputs of various networks are combined after individual trainings. Building an en-
semble involves, basically, three steps: 1- Component generation, 2- Component  
selection, 3- Combination of components. 

Although the ensemble may present substantial gains in performance when com-
pared with the best component in isolation, its performance may still be unsatisfactory 
[7]. Every ensemble component must present a good individual performance and they 
must be uncorrelated with each other. The correlation among components is related to 
their diversity; the higher the diversity, the smaller their correlation. Two components 
(classifiers) are uncorrelated if they present different classification errors for the same 
data. Techniques for pre-processing data, such as boosting and bagging will not be 
used [22], [8] and the component generation step will be restricted to MLP training 
because one of the main goals of this work is to investigate the original diversity  
generated by each algorithm. 



76 R. Pasti and L.N. de Castro 

3.1   Component Selection 

Two component selection methods were used in this work: i) constructive selection; 
and ii) pruning selection. In the constructive selection method, a non-decreasing or-
dering of the components is made based on the classification error for the test set. The 
component with the smallest error is inserted into the ensemble. In the sequence, the 
second-best component in inserted, and, if the ensemble performance is improved, 
then this component is maintained, else it is removed from the ensemble. The process 
is repeated until all the components have been evaluated. In the selection by pruning, 
a non-increasing ordering of the components is made based on the classification error 
for the test set, and the ensemble starts will all classifiers included. Then, the first 
classifier (the one with worst individual performance) is removed from the ensemble, 
and, if the ensemble performance improves, then it is kept out of the ensemble, else it 
is maintained in the ensemble. This process is repeated until all classifiers have been 
evaluated. 

3.2   Component Combination 

Three methods to combine classifiers were tested in this work: i) voting; ii) simple 
average; and iii) optimal linear combination. In the voting method, the result sup-
ported by most components is defined as the ensemble output. Although this method 
has a low computational cost, if there are many components performing poorly, then 
the ensemble output may be negatively influenced. The simple average, as the name 
implies, determines the ensemble output ye(⋅) by taking the average of all outputs pro-
vided by the individual classifiers yi(⋅), i = 1,…,p, where p is the number of classifi-
ers. The optimal linear combination consists of weighting the outputs of all compo-
nents based on their individual performances assuming that a linear combination of 
components is used [17], [18].  

3.3   Diversity Measures 

The diversity measures aim at evaluating the decorrelation level among the classifiers, 
and most of them are derived from statistics. The most common diversity measure 
consists of using the oracle output of the classifier; that is, given a certain input pat-
tern, the oracle output simply says if the classifier presented a correct classification or 
not. In this work two diversity measures were investigated [13]: i) disagreement 
measure; and ii) entropy measure. 

Disagreement Measure 

This measure evaluates the classifiers pairwise and then takes the average of the dis-
agreement values. It is the ratio between the number of observations in which one 
classifier is correct and the other is incorrect to the total number of observations. For 
two classifiers Ci and Ck: 
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where Nab is the number of elements yj ∈ Y in which yj,i = a and yj,k = b, according 
with Table 1 
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Table 1. Relationship between a pair of classifiers 

 Ck correct (1) Ck incorrect 
(0) 

Ci correct (1) N11 N10 
Ci incorrect 

(0) 
N01 N00 

 
For the set of all L classifiers, the total diversity is: 
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Entropy Measure 

The highest diversity among classifiers for a particular sample xi ∈ X corresponds to 
⎣L/2⎦ of the votes in X with the same value (0 or 1) and the other L − ⎣L/2⎦ with the 
alternative value. If all classifiers are 0 or 1, then there is no disagreement among 
them and, consequently, no diversity. Let us denote l(xj) the number of classifiers that 
correctly classify xj: 
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A possible entropy measure is 
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which varies over the interval [0,1], being 0 the smallest diversity and 1 the largest. 

4   Performance Evaluation 

To assess the performance of each algorithm in the process of MLP weight adjust-
ment, four data sets from the repository of machine learning data sets of the Univer-
sity of California at Irvine [3] were chosen. 

4.1   Materials and Methods 

The k-fold cross-validation method [14], [15], [19] with k = 10 was used in the ex-
periments to be reported here. It consists of dividing the data set into k folders, train-
ing the network with the data from k − 1 folders and testing it with the data from the 
other folder not used for training. After that, the average classification (optimization 
and generalization) errors are calculated.  

The population-based approaches (EA, PSO and opt-aiNet) all provide a number n 
of distinct solutions (individuals). Each of the n solutions is tested with the k folders 
and those that present the best performance are taken and combining in an ensemble. 



78 R. Pasti and L.N. de Castro 

For the BPM algorithm, a number n of trainings, thus solutions, was performed such 
that an even number of solutions is available for all methods. In the particular case of 
opt-aiNet, it automatically defines the number of cells in the network and, thus, to 
perform the comparisons, opt-aiNet was run first and the resultant number of cells 
was used for all other algorithms. The following ensembles were investigated: Best: 
the best solution among the n generated ones is selected (without combining the clas-
sifiers). Ensemble 1 (WS+V): without selection plus voting. Ensemble 2 (WS+SA): 
without selection plus simple average. Ensemble 3 (SS+OLC): without selection plus 
optimal linear combination. Ensemble 4 (C+V): constructive method plus voting. 
Ensemble 5 (C+MS): constructive method plus simple average. Ensemble 6 
(C+OLC): constructive method plus optimal linear combination. Ensemble 7 (P+V): 
pruning method plus voting. Ensemble 8 (P+MS): pruning method plus simple aver-
age. Ensemble 9 (P+OLC): pruning method plus optimal linear combination. 

The attributes of all data were normalized within the [−1, 1] interval due to the use 
of MLP with hyperbolic tangent in the hidden units and with linear outputs. The data 
sets and network architectures [n. inputs, n. of hidden units, n. of outputs] used for 
evaluation can be summarized as follows: Wine: 178 samples divided into three 
classes, and with 13 attributes. Architecture: [13,10,2]. Wisconsin Breast Cancer: 
699 samples divided into two classes, and with 9 attributes. Network architecture: 
[9,10,1]. Ionosphere: 351 samples divided into two classes, and with 34 attributes. 
Architecture: [34,10,1]. The parameters used for all algorithms are described in  
Table 2.  

Table 2. Training parameters for the algorithms evaluated 

PSO opt-aiNet EA BPM 
ϕ1 : 2.05 
ϕ2 : 2.05 
k: 0.729 
vmax: 2 
Np: 10 

Max-it: 
104 

d: 50% 
σs = 20* 
N: 10 
Nc: 10 

Max-it : 
104 

pr = 0.5 
Max-it = 

104 

α = 0.0001 
β = 0.5 
Max-it = 

104 

      * For the Wine dataset σs = 30. 
 

To evaluate the statistical significance of the difference between the averages of all 
errors the t-test [4] was employed pairwise. It is assumed that the samples are inde-
pendent and normally distributed. The independence of the samples can be verified 
due to the random initialization in each algorithm, and normality could be observed in 
preliminary experiments. The following analyses and comparisons will be made: 

• Opt-aiNet will be compared pairwise with all other techniques used. The 
averages that do not present a statistically significant difference (to a 5% 
level) will be marked in bold. 
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• Comparisons of the average of the best solutions and the ensembles. If the 
ensemble results in a smaller classification error that is statistically less 
than the best average, best, then this value will be detached with a ‘*’. 

• The best solutions of all are shadowed. 

4.2   Experimental Results 

Wine Dataset 

Table 3 shows that opt-aiNet obtained results significantly better than the other algo-
rithms in terms of the best solution found and ensemble generated. In some cases the 
results of BPM had no statistical difference to those of opt-aiNet. It is also interesting 
to note that, sometimes, the use of ensembles led to a worst performance than the best 
solution, which is due to the presence of very poor solutions in isolation. The diver-
sity of each algorithm is presented in Table 4. 

 

Table 3. Classification error for the test set of all algorithms for the Wine dataset. Best: best 
solution found by each method; WS: without selection; C: constructive method; P: pruning 
method; V: voting, SA: simple average; OLC: optimal linear combination; bold: indicates the 
absence of statistical different in relation to opt-aiNet; star (*): significant improvement with 
the use of ensembles; and shadow: best solution of all. 

 opt-aiNet PSO AE BPM 
Best 0.11 ±0.23 2.72 ±1.07 2.02 ±0.73 1.89 ±3.25 
WS + V 1.54 ±0.55 3.27 ±1.25 2.58 ±1.14 41.33 ±8.36 
WS + SA 1.74 ±0.26 3.44 ±1.40 2.63 ±1.10 23.43 ±6.77 
WS + OLC 1.15 ±0.48 3.27 ±1.35 2.58 ±1.08 2.89 ±3.32 
C + V 0.11 ±0.23 2.72 ±1.07 2.02 ±0.73 1.89 ±3.25 
C + SA 0.11 ±0.23 2.72 ±1.07 2.02 ±0.73 1.89 ±3.25 
C + OLC 0.11 ±0.23 1.99 ±0.85 1.63 ±0.74 1.72 ±3.33 
P + V 1.31 ±0.48 3.27 ±1.25 2.58 ±1.14 39.01 ±6.75 
P + SA 1.51 ±0.39 3.33 ±1.29 2.52 ±1.11 21.15 ±7.39 
P + OLC 0.99 ±0.55 3.27 ±1.35 2.52 ±1.11 2.65 ±3.19 

Table 4. Diversity of solutions for the Wine dataset 

 opt-aiNet PSO AE BPM 

Entropy measure 0.0581 0.0072 0.0043 0.6093 

Disagreement measure 0.0469 0.0050 0.0034 0.4030 

 

Ionosphere Dataset 

Table 5 shows that opt-aiNet performed better in almost all cases, and almost all algo-
rithms improved their performances when their solutions were combined into ensem-
bles, with the exception of the evolutionary algorithm. The opt-aiNet showed the 
greatest diversity (Table 6). 
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Table 5. Classification error for the test set of all algorithms for the Ionosphere dataset. Best: 
best solution found by each method; WS: without selection; C: constructive method; P: pruning 
method; V: voting, SA: simple average; OLC: optimal linear combination; bold: indicates the 
absence of statistical different in relation to opt-aiNet; star (*): significant improvement with 
the use of ensembles; and shadow: best solution of all. 

 opt-aiNet PSO AE BPM 
Best 4.50 ±0.38 11.59 ±0.94 10.57 ±0.84 10.97 ±0.24 
WS + V 9.19 ±0.63 13.42 ±1.33 11.19 ±1.10 12.39 ±0.24 
WS + SA 9.48 ±0.59 13.56 ±1.32 11.19 ±1.10 12.36 ±0.15 
WS + OLC 0.17 ±0.46* 11.20 ±2.10 11.19 ±1.10 12.81 ±0.23 
C + V 4.19 ±0.39 11.59 ±0.94 10.57 ±0.84 10.83 ±0.30 
C + SA 4.42 ±0.39 11.56 ±0.95 10.57 ±0.84 10.97 ±0.24 
C + OLC 4.39 ±0.41 10.83 ±0.88 10.05 ±1.07 10.63 ±0.33* 
P + V 8.60 ±0.78 13.28 ±1.21 11.10 ±1.02 12.33 ±0.23 
P + SA 8.91 ±0.66 13.48 ±1.29 11.16 ±1.08 12.30 ±0.18 
P + OLC 0.15 ±0.37* 9.92 ±2.17* 11.16 ±1.08 12.50 ±0.21 

Table 6. Diversity of solutions for the Ionosphere dataset 

 opt-aiNet PSO AE BPM 

Entropy measure 0.1489 0.0247 0.0053 0.0377 

Disagreement measure 0.1082 0.0182 0.0039 0.0311 

Breast Cancer Dataset 

Table 7 present the best isolated performances opt-aiNet. The use of ensembles led to 
improvements for BPM, but for no bio-inspired training algorithm. For this problem 
the best results were determined by the opt-aiNet approach, which also presented the 
highest diversity (Table 8).  

 

Table 7. Classification error for the test set of all algorithms for the Breast Cancer dataset. 
Best: best solution found by each method; WS: without selection; C: constructive method; P: 
pruning method; V: voting, SA: simple average; OLC: optimal linear combination; bold: indi-
cates the absence of statistical different in relation to opt-aiNet; star (*): significant improve-
ment with the use of ensembles; and shadow: best solution of all. 

 opt-aiNet PSO AE BPM 
Best 2.56 ±0.17 2.88 ±0.13 2.98 ±0.27 3.01 ±0.00 
WS + V 3.11 ±0.07 3.42 ±0.14 3.09 ±0.30 3.18 ±0.06 
WS + SA 3.12 ±0.06 3.39 ±0.17 3.09 ±0.30 3.25 ±0.12 
WS + OLC 2.72 ±0.00 3.35 ±0.15 3.09 ±0.30 3.21 ±0.07 
C + V 2.53 ±0.14 2.88 ±0.13 2.98 ±0.27 3.01 ±0.00 
C + SA 2.56 ±0.17 2.88 ±0.13 2.98 ±0.27 3.01 ±0.00 
C + OLC 2.53 ±0.15 2.88 ±0.13 2.95 ±0.25 2.92 ±0.10* 
P + V 3.11 ±0.07 3.40 ±0.15 3.08 ±0.28 3.18 ±0.06 
P + SA 3.12 ±0.06 3.38 ±0.15 3.09 ±0.30 3.22 ±0.12 
P + OLC 2.72 ±0.00 3.30 ±0.17 3.09 ±0.30 3.19 ±0.07 
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Table 8. Diversity of solutions for the Breast Cancer dataset 

 opt-aiNet PSO AE BPM 

Entropy measure 0.1052 0.0208 0.0178 0.1449 

Disagreement measure 0.0783 0.0153 0.0128 0.1021 

5   Discussion 

By focusing on the use of bio-inspired and gradient-based algorithms to train multi-
layer perceptron neural networks it is possible to remark: 

• The solutions found by opt-aiNet were in general better than those of the 
other bio-inspired algorithms. This is observed in the isolated (best) solutions 
and in the ensembles of MLP classifiers trained by opt-aiNet as well. 

• The quality of the ensembles may be associated with the diversity of the 
components, for almost invariably more diverse solutions led to improved 
ensembles when compared with the isolated best solutions. 

• There seems not to be an ensemble method (selection plus combination) that 
is more adequate to all classification problems. However, the techniques 
WS+OLC (without selection + optimal linear combination) achieved good 
results in some cases for many algorithms. 

• The results obtained by the diversity measures indicate that, as expected, 
decorrelated classifiers tend to result in improved ensembles. In the particu-
lar case of PSO and the EA implemented, the ensembles performed poorly, 
probably because most of the individuals generated by these methods tend to 
cluster around the best solution found, thus compromising the diversity. 
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Abstract. With the rapid development of information technology, computers 
are proving to be a fundamental tool for the organization and classification of 
electronic texts, given the huge amount of available information. The existent 
methodologies for text mining apply standard clustering algorithms to group 
similar texts. However, these algorithms generally take into account only the 
global similarities between the texts and assign each one to only one cluster, 
limiting the amount of information that can be extracted from the texts. An 
alternative proposal capable of solving these drawbacks is the biclustering 
technique. The biclustering is able to perform clustering of rows and columns 
simultaneously, allowing a more comprehensive analysis of the texts. The main 
contribution of this paper is the development of an immune-inspired 
biclustering algorithm to carry out text mining, denoted BIC-aiNet. BIC-aiNet 
interprets the biclustering problem as several two-way bipartition problems, 
instead of considering a single two-way permutation framework. The 
experimental results indicate that our proposal is able to group similar texts 
efficiently and extract implicit useful information from groups of texts. 

Keywords: Artificial Immune System, Biclustering, Two-way Bipartition, Text 
mining. 

1   Introduction 

With the popularization of the web and the collaboration of users to produce digital 
contents, there was an expressive increase in the amount of documents in electronic 
format. Therefore, several text mining tools have been proposed to organize and 
classify these documents automatically, since a personal manipulation is becoming 
more and more prohibitive. 

The main difficulty associated with automated analysis of documents is that textual 
information is highly subjective. Although there are many efficient data mining tools 
available in the literature, converting such information into a rather objective and 
computer-interpretable codification is far from being straightforward. Invariably, this 
scenario imposes several limitations to the performance of the analytical tools. On the 
other hand, while this conversion step is still not entirely satisfactory, there must be 
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an effort to enhance the clustering and classification techniques in order to handle the 
noisy and incomplete information generated by methods for semantic interpretation. 

Most of the text mining tools reported in the literature represent the documents by 
a vector of attributes [6]. After submitting the text to a filter capable of extracting 
irrelevant words and particles of composed words (filters may differ a lot and may 
present very distinct degrees of sophistication), each position of the vector is related 
to a word or textual expression of the preprocessed text, and each entry of the vector 
contains a number which says how many times the corresponding word or expression 
appears in the text. Therefore, the text mining tools performs several types of data 
analysis based on statistical properties presented by the attributes extracted from 
preprocessed texts. 

In the context of text clustering, although standard clustering algorithms such as k-
means, Self Organized Maps, and Hierarchical Clustering have been successfully 
applied to text mining, they present a well- known limitation when dealing with large 
and heterogeneous datasets: since they group texts based on global similarities in their 
attributes, partial matching cannot be detected. For instance, if two or more texts 
share only a subset of similar attributes, the standard clustering algorithms fail to 
identify this specificity in a proper manner. Besides, they assign a text to only one 
category, even when the texts are involved in more than one category. 

A recent proposal to avoid these drawbacks is the so-called biclustering technique, 
which performs clustering of rows and columns simultaneously, allowing the 
extraction of additional information from the dataset [2]. Biclustering may be 
implemented considering a two-way permutation problem or performing several two-
way bipartitions of the whole dataset, as will be clarified in Section 2. 

The objective of this paper is twofold. The first one is to apply a biclustering 
technique to the text mining problem, centered on the two-way bipartition framework. 
To do that, a very flexible methodology is considered to implement multiple two-way 
bipartitions, characterized by the possibility of discarding an arbitrary number of rows 
(texts) and columns (attributes of the corresponding texts) of the original matrix. This 
methodology is in contrast with the ones that are capable of finding all biclusters in a 
matrix [12]. So, if we have a large matrix, the computational cost to generate the 
biclusters using the latter approach becomes prohibitive. 

Aiming at proposing a feasible solution, the second objective is to present a novel 
heuristic-based methodology to generate the multiple two-way bipartitions. Once the 
generation of biclusters can then be viewed as a multimodal combinatorial 
optimization process, we will explore the already attested ability of immune-inspired 
algorithms to deal with this challenging scenario. 

We evaluate the proposed methodology by applying it to a dataset which contains 
60 texts classified into 3 different categories. The results indicate that our algorithm is 
able to group similar texts correctly. Besides, the biclusters present the more relevant 
words to represent a certain category. This information is useful when composing an 
intelligent search engine for guiding a user on its search for related documents on 
different areas. 

The paper is organized as follows. Section 2 presents a brief introduction to the 
biclustering technique and its applications. Section 3 describes in details the proposed 
approach to generate biclusters. In Section 4, the experimental results are presented 
and analyzed. Finally, in Section 5 we conclude the paper and provide directions for 
further steps in the research. 
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2   A Brief Overview of Biclustering 

In data mining, biclustering is referred to the process of simultaneously find clusters 
on the rows and columns of a matrix [2]. This matrix may represent different kinds of 
numerical data, such as objects and its attributes (comprising the rows and columns of 
the matrix, respectively). 

There are several approaches to deal with the biclustering problem 
[8][10][11][13][14]. The most traditional one is to interpret biclustering as a two-way 
permutation problem, so that the purpose is to simultaneously reorder rows and 
columns of the original matrix, in an interactive manner, toward the production of 
multiple clusters in different regions of the obtained matrix, as illustrated in Fig. 1. 

 

Fig. 1. The original matrix is reordered (rows and columns) to generate the biclusters 

Another possibility, which will be explored in this paper, is to create several sub-
matrices from the original matrix aiming at maximizing some index designed to 
measure similarity, or alternative clustering aspects, in these sub-matrices. As the 
construction of the sub-matrices involves defining which rows and columns of the 
original matrix will be included and which ones will be excluded, we may interpret 
the biclustering as multiple two-way partition problems, as illustrated in Fig. 2. 

 

Fig. 2. Two biclusters extracted from the original matrix 

Additional aspects may be considered to distinguish biclustering techniques. They 
can be classified by: (i) the type of biclusters they find; (ii) the structure of these 
biclusters; and (iii) the way the biclusters are discovered. 

The type of the biclusters is related to the concept of similarity between the 
elements of the matrix. For instance, some algorithms search for constant value 
biclusters, while others search for coherent values of the elements or even for 
coherent evolution biclusters. 

The structure of the biclusters can be of many types. There are single bicluster 
algorithms, which find only one bicluster in the center of the matrix; the exclusive 
columns and/or rows, in which the biclusters cannot overlap in either columns or rows 
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of the matrix; arbitrary positioned, overlapping biclusters and overlapping biclusters 
with hierarchical structure. 

The way the biclusters are discovered refers to the number of biclusters discovered 
per run. Some algorithms find only one bicluster, others simultaneously find several 
biclusters and some of them find small sets of biclusters at each run. 

Besides, there are nondeterministic and deterministic algorithms. Nondeterministic 
algorithms are able to find different solutions for the same problem at each execution, 
while deterministic ones produce always the same solution. The algorithm used in this 
paper is nondeterministic. 

The biclustering approach covers a wide scope of different applications. The main 
motivation is to find data points that are correlated under only a subset of the 
attributes. Usual clustering methods cannot identify this type of local correlation. 
Some examples of biclustering applications are dimensionality reduction [1], 
information retrieval and text mining [5], electoral data analysis [9], and biological 
data analysis [1]. 

3   An Immune-Inspired Algorithm for Biclustering 

Since the generation of biclusters can be viewed as a multimodal combinatorial 
optimization problem, we have considered an immune-inspired algorithm to generate 
them. The first attempt to synthesize an immune-inspired method for biclustering has 
taken copt-aiNet (Artificial Immune Network for Combinatorial Optimization) as the 
search engine [4]. Our approach is another extension of the aiNet algorithm, which 
was proposed by de Castro and Von Zuben [3], to deal with biclustering and is 
denoted BIC-aiNet, an artificial immune network for biclustering. Though copt-aiNet 
and BIC-aiNet are both derived from aiNet to deal with combinatorial optimization, 
BIC-aiNet considers the biclustering problem as multiple two-way bipartitions, and 
copt-aiNet has adopted the two-way permutation framework. 

When compared with alternative approaches, immune-inspired algorithms present 
distinguishing characteristics that proved to be specially interesting for solving 
multimodal problems, such as: (i) the multi-population paradigm, where several 
populations are evolved at the same time (in contrast with usual population 
algorithms, where there is just one population that converges to only one solution); 
(ii) the dynamic control of the population size, which allows the automatic definition 
of the number of candidate solutions based on the characteristics of the problem; and 
(iii) the diversity maintenance property, which enhances the searching ability of the 
algorithm by allowing the coexistence of multiple alternative solutions in the  
same run. 

Next, we present how the biclusters are represented in BIC-aiNet as well as its 
functioning. 

3.1   Coding 

Given a data matrix with n rows and m columns, the structure chosen to represent a 
bicluster (an individual in the population) on the algorithm for this data matrix is by 
using two ordered vectors. One vector represents the rows and the other one 
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represents the columns, with length n’ < n and m’ < m, respectively. Each element in 
the vectors is an integer representing the index of row or column that is present at the 
bicluster. This representation tends to be more efficient than the binary representation 
(two vectors of length n and m, where the number 1 represents the presence of a given 
row/column and 0 the absence) once the biclusters are usually much smaller than the 
original data matrix.  

Each individual in the population represents a single bicluster and may have a 
distinct value for n’ and m’. Figure 3 shows an example of coding 

  
row: 2 3 

col: 1 3 4 

   
        (a) (b) (c) 

 

Fig. 3. Example of coding: (a) the original data matrix; (b) an individual of the population; (c) 
the correspondent bicluster 

3.2   Fitness Function 

The fitness function used to evaluate a given bicluster is given as follows: 
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where N and M are the set of rows and columns, respectively, in the bicluster, R is 
called the residue of a bicluster and is calculated as in Eq. 2, λ is a residue threshold 
(the maximum desired value for residue), wc is the importance of the number of 
columns, and wr the importance of the number of rows. The operator |.| provides the 
number of elements on a given set. The residue of a bicluster assumes the form: 
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where rij is the value of the element (i,j) on the original data matrix, rIj is the mean 
value of row i, riJ represents the mean value of column j, and rIJ is the mean value 
considering all the elements in the bicluster. 

With this fitness function we have a ratio between two conflicting objectives: 
minimizing the residue (variance of elements in the bicluster) and maximizing its 
volume. Notice that, for a bicluster to be meaningful, it should contain a reasonable 
number of elements so that some knowledge can be extracted. Also, it is important to 
maintain some cohesion between its elements. 

3.3   The Algorithm 

The main algorithm begins by generating a random population of biclusters consisting 
of just one row and one column, that is, just one element of the data matrix will be 
used as a “seed” to promote the growth of a local bicluster. 
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After the initialization, the algorithm enters its main loop. Firstly, the population is 
cloned and mutated as it will be described later, then if the best clone has a better 
fitness than its progenitor, it will replace it in the population. 

Every sup_it iterations the algorithm performs a suppression of very similar 
biclusters and then inserts new cells. This procedure causes a fluctuation in population 
size and helps the algorithm to maintain diversity and to work with just the most 
meaningful biclusters. 

The main algorithm of BIC-aiNet is given by the following pseudo-code: 
 

Cells = initial_population(); 
For it=0..max_it do 
 For each cell do 
 
  C = clone(cell); 
  C = mutate(C); 
  If best(C) better than cell 
   cell = C; 
  End If 
 End For 
 If it mod sup_it 
  Suppress (cell); 
  Insert_new_cells(); 
 End If  
End For 

3.4   Mutation 

The mutation operation consists of simple random insertion/removal procedures 
applied to the bicluster. Given a bicluster, the algorithm first chooses between 
insertion or removal operation with equal probability. After that, another choice is 
made, also with the same probabilities: it will perform the operation on a row or a 
column. On the insertion case, an element that does not belong to the bicluster is 
chosen and inserted on the row/column list in ascending order. If the removal case is 
chosen, it generates a random number that represents the position of the element to be 
removed from the vectorial representation of the bicluster. 

The mutation operator is given as follows: 
 

If rand1 < 0.5 

 If rand2 < 0.5 
  Insert_new_row(); 
    Else 
  Insert_new_column(); 
 End If 
  Else 
 If rand2 < 0.5 
  Remove_row(); 
   Else 
  Remove_column(); 
 End If 
End If 
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3.5   Suppression 

The suppression step is given by: 
 

For each pair i,j of biclusters do 
If |celli ∩ cellj| > ε*max(size(celli, cellj)/100 

  destroy worst cell 
End If 

End For 

 
The suppression operation is a straightforward procedure. For each pair of 

biclusters on the population, it generates the intersection of both sets and counts the 
number of elements on it, that is, the number of common elements. If this number is 
greater than a certain threshold ε, it removes the bicluster presenting the worse fitness. 
After every suppression, the algorithm inserts new cells trying to create biclusters 
with elements (rows or columns) that still does not belong to any existing bicluster. 

4   Experimental Results 

This section describes the experiments carried out to evaluate the proposed 
methodology and to show that interesting information can be extracted from the 
generated biclusters. 

We have applied the methodology to a dataset containing 60 texts and the objective 
is to group similar documents into one or more categories. Instead of considering the 
frequency of the attributes, we will represent only presence or absence of a given 
attribute in the text under analysis. Also, though textual expressions could be 
considered as a single attribute, we will be restricted to words in their radical form. 

Moreover, analyzing the generated biclusters, we will be able to extract the 
relevant words for each category, extending the usefulness of the methodology. By 
extracting these keywords, conventional search engines in the internet can be used to 
find related texts in additional databases. 

Considering these two objectives, we show the advantages of biclustering 
techniques over standard clustering algorithms for text mining. 

4.1   Dataset Description and Its Vectorial Representation 

The dataset used during the experiments is composed of 60 documents divided into 
three main categories of 20 texts, and each of these contains two subcategories of 10 
texts. Notice that the labels of the texts will not be provided to the biclustering tool, 
but will be used for further analysis, after concluding the biclustering. The documents 
were taken from the Brazilian newspaper Folha de São Paulo and the categories 
chosen correspond to sections of the newspaper: Money, Sport and Informatics. Sport 
news are labeled S and contain two subclasses: Car Racing (S1) and Soccer (S2). 
Money reports are labeled M and its subcategories are Oil (M1) and International 
Commerce (M2). The last class, Informatics, is labeled I and is divided into the 
subcategories Internet (I1) and Technology (I2). 
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In order to build this dataset, each document had its words extracted and only the 
radical of each word was taken. After that, a matrix was generated in which each line 
represents a document and each column presents binary values representing the 
absence (0) or presence (1) of the related word in the document. Finally, the words 
that appear in only one document are eliminated from the matrix. After filtered, a total 
of 1007 words were used as attributes of the 60 documents. 

4.2   Parameters Values 

This subsection describes the parameters adopted during the experiments as well as 
their values. Table 1 summarizes these values. 

Table 1. Parameters values  

Parameter values 
# biclusters 300 
# iterations 3000 
Residue threshold (R) 1 
Row weight (wr) 5 
Column weight (wc) 19 
Suppression Threshold (ε) 80 

The algorithm was set to generate up to 300 biclusters during 3000 iterations. As 
we are dealing with binary data, the residue threshold chosen has a value of “1”. The 
row importance weight and the column importance weight were set empirically in 
order to achieve a balance between the high volume and the low residue scores. The 
column importance weight, in this particular case, controls how many words will be 
used on each bicluster. When the number of columns is high, the results tend to be 
closer to the ones produced by traditional clustering algorithm. 

4.3   Analysis of the Obtained Biclusters 

The generated biclusters have residue values in the range between 0.98 and 3.19, 
meaning that the grouped texts exhibit high coherence among each other. Every 
document on the dataset belongs to at least one bicluster (though this is not an 
imposition or necessary condition).  

We have observed during the experiments that our algorithm is able to group 
similar documents efficiently. After the generation of the biclusters, we verified the 
labels of the texts of a same bicluster and most of them are of the same category. 
Next, we describe the most significative obtained biclusters and the interesting 
features that can be extracted from them.  

The first bicluster, the one which has the smaller residue value, comprises six out 
of nine documents belonging to M1 category, indicating the capability of BIC-aiNet 
to group texts with the same subject. From this bicluster we may extract some 
dominant words, i.e., words that appear in every document of the bicluster, in order to 
categorize these texts. The words are: “Brasil” (Brazil), “derivado” (derived), 
“energia” (energy), “exportação” (exporting), “hipoteses” (hypothesis), “Petrobras”, 
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“petróleo” (oil) and “refinaria” (refinery). With these keywords, popular search 
engines may be able to categorize on the fly other documents associated with this 
subject or suggest some “tag words” in order to refine a user search. 

The next bicluster has a residue value of 1.19 and contains seven out of nine 
documents belonging to category M1 and 1 belonging to M2. The same dominant 
words found on the previous biclusters were found on this one with the addition of the 
word “economia” (economy). The reason for an M2 document being part of this 
bicluster was that this document was about “steel refinery” and “rationing of energy”, 
closely related to most documents having “oil” as the main subject. 

A bicluster referring to the topic I1 is formed by six out of eleven documents, and 
it has the following dominant words: “cadastro” (filling a form), “digitar” (to type), 
“golpe” (scam), “instalar” (to install), “google”, “orkut”, “internet”, 
“relacionamento” (relationship), “mail”, “roubo” (robbery), “malicioso” (malicious). 
It is interesting to notice that an intelligent system could present those words to a user, 
and the user would point out which subject he is looking for, leading to a more refined 
search. 

Other analyzed bicluster refers to six documents belonging to subclass I1 and one 
document of M1. The “connection words”, i.e., the words that connected the two 
subjects were: “Brasil”, “programa” (program - can refer to a software or an 
economic planning), “público” (public - as a State service or a free software license), 
“serviço” (service -system service or State service). Here we must point out that the 
algorithm is sensitive to ambiguous words, which can also become useful as, for 
example, when a user performs a search on any of these words, an intelligent system 
may detect that they are ambiguous and ask which of the possible subjects the user is 
really searching for. 

The topic S2 had nine out of its ten texts on a same bicluster connected with the 
words: “atleta” (athlet), “Brasil” (Brazil), “domingo” (Sunday, the soccer games are 
usually on Sundays), “equipe” (team), “impulsionamento” (impulse), “jogo” (game), 
“segunda” (second league). 

Considering the I2 topic, we could extract significant words as: “computador” 
(computer), “tecnologia” (technology), “software”, ”companhia” (company), 
“milhões” (millions), “versão” (version), “Brasil” (Brazil), “US” and “Americana” 
(American). The four last dominant words are also connected to two documents on 
M2 category, as most economy related article refers to them. 

Words found as dominant of M2 group on its bicluster are: “bilhões” (billions), 
“milhões” (millions), “importação” (importing), “mercadoria” (products), “recorde” 
(record), “vendas” (sells), “US” and “Americana” (American). 

So far, it can be seen from these examples that the BIC-aiNet successfully clusters 
documents strictly belonging to the same subject, documents that have some 
information in common, and extracts useful information that can be used by 
intelligent systems in order to refine a search, recommend other readings, finding 
ambiguities, relating topics on a newsgroup. 

In order to visualize the quality of the generated biclusters, a bicluster grouping 
documents belonging to M1 category is shown on Fig. 4. Each line represents one 
document and each column a word, the black spots means that the word is present on 
a given document, the white spots means the absence of a word. 
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Fig. 4. Example of a bicluster of 7 documents belonging to M1 connected by 28 words 

Figure 4 highlights an important aspect of a bicluster algorithm: data compression. 
In Fig. 5 we can see the original data matrix. As it can be seen, the original matrix is 
very sparse and of high dimension. Using a biclustering technique, only specific 
aspects of the whole dataset is taken into account, leading to a more functional 
clustering outcome. 

 

Fig. 5. Original dataset with 1007 words and 60 documents 

4.4   Comparative Results 

While more rigorous comparisons with other clustering algorithms are still in 
progress, we present in this subsection the results obtained from a preliminary 
comparison between BIC-aiNet and the classical K-means clustering algorithm when 
applied to the same text mining problem. Again, the labels of the texts were not 
provided to the algorithms. The amount of clusters generated by K-means varied 
along the experiments. We set K-means to generate 3, 6 and 10 clusters.  For all 
cases, the clusters generated by K-means presented very poor results. By observing 
the labels of the texts grouped together, we can note that K-means did not separate 
them efficiently. In all tests, there was one cluster with more than 80% of the texts, 
while the remaining of the texts was divided into very small clusters.  

This outcome suggests that, although the dataset is composed of only 60 
documents, it is far from being simple; otherwise, a standard technique such as K-
means would have obtained a considerable better performance.  

5   Concluding Remarks 

This paper introduced a new immune inspired algorithm for biclustering called BIC-
aiNet. The proposed biclustering technique is not directly related to the conventional 
clustering or biclustering paradigm, characterized by the use of the whole dataset, 
mandatory correlation of all attributes, and the assumption that one item must belong 
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to just one cluster. Instead, we interpret the biclustering problem as multiple 
bipartition problems. With this flexibility, it is possible to use just some attributes per 
cluster, making the whole process not only more efficient but also capable of 
generating information considering several alternative perspectives, possibly useful 
for classification or decision making in further analysis. 

Most texts refer to more than one subject, and “off-topics” happen with some 
frequency in texts generated by forums or newsgroups. Also some additional 
information can be extracted from the texts, such as: words that commonly refer to a 
given subject, words that may refer to more than one subject, how to differentiate 
ambiguous words, how to classify texts in sub-topics, how to guide a search by using 
the biclusters to narrow the choices, and so on. 

The BIC-aiNet algorithm produces several diverse and high quality solutions 
simultaneously. Diversity happens when there is little overlap among a set of 
biclusters, but this overlap is useful when there is several groups that have some 
features in common. High quality on a bicluster happens when there is little variance 
on its values (coherent groups). 

A dataset of 60 documents extracted from a Brazilian newspaper was generated in 
order to perform some studies on the information generated by BIC-aiNet. As it was 
outlined, BIC-aiNet produced coherent clusters and extracted the relevant words 
belonging to a given subject. BIC-aiNet also correlated different subjects by 
indicating which words connected them. 

As further steps in the research, the experiments will be performed on larger 
datasets and the information gathered from the experiments will be used to created an 
intelligent system that will automatically tag a given document and estimate the 
degree of membership to the subject it was related to, also creating a follow-up list in 
order to suggest further reading to a user. Also, some post-processing techniques, like 
variable selection, will be created in order to remove irrelevant words left on the 
bicluster and eventually include relevant documents left out, making the biclusters 
even more consistent. 
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Abstract. In this paper we present an Artificial Immune System (AIS)
based security framework, which prevents a number of serious Denial
of Service (DoS) attacks. The proposed security framework can counter
de-authentication and disassociation attacks. The results of our experi-
ments clearly demonstrate that the proposed framework approximately
achieved 100% detection rate with negligible false positive rate. One can
conclude from the ROC (Receiver Operating Characteristics) plots of
our AIS that its performance approaches ‘perfect classification point’ at
a suitable matching threshold value.

Keywords: 802.11, Network Intrusion Detection, Artificial Immune
System.

1 Introduction

Artificial Immune Systems (AISs) are inspired from Biological Immune System
(BIS) in vertebrates [1]. BIS protects the body of an organism from foreign
antigens. BIS has the remarkable ability to distinguish non-self from self. AIS
maps this feature of BIS to distinguish an anomalous behavior from a normal
behavior. AIS learns the normal behavior of a system by tuning an appropriate
group of detectors. These detectors are used to discriminate the non-self anti-
gens from the self antigens. Antigens and detectors (antibodies) can be mapped
to a n-dimensional real shape-space, where antigen and detector represent two
points [1]. The detectors utilize the concept of affinity (affinity between antigen
and detector is measured in terms of distance between these points) to differen-
tiate non-self from self. During the initialization phase detectors are generated
in a random fashion. However, they are later tuned to self using the process of
negative selection [3]. The malicious nodes in communication networks can sig-
nificantly disrupt the normal operations of the networks. AIS based frameworks
are ideally suited for NID systems which differentiate the malicious behavior
from the normal behavior in the network.

AIS based NIDs have been successfully deployed at the Network layer in wired
networks [2,3]. But, to the best of our knowledge, little attention has been paid
to the vulnerability analysis of wireless networks. The shared communication
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medium and the open connectivity policy of wireless networks introduce novel
security threats that are not experienced in the wired networks. A number of
serious security threats have been discovered at the MAC layer of 802.11b net-
works.

IEEE 802.11 has become the popular standard for wireless networks in recent
years [5]. Most wireless standards deployed today use IEEE 802.11b standard
and it is the oldest (launched in July 1999) [5]. With the increasing popularity
and usage, several security loopholes and vulnerabilities have been discovered.
IEEE 802.11b has been identified for vulnerabilities at Media Access Control
(MAC) layer. WEP (Wired Equivalent Privacy) is a classical framework that
is deployed at the MAC layer to provide security [5]. In this approach, MAC
frame is encrypted using WEP algorithm. Open source tools are available that
can break 802.11b WEP. The researchers have also proposed a number of other
schemes such as WPA (WiFi Protected Access) and WPA2 (in 802.11i) to cater
for security threats in 802.11. These schemes have also failed to provide a satis-
factory security level [16,17].

AISs have been used for misbehavior detection in wireless networks [6,8,21].
But almost all these works have focused on routing misbehavior. In this paper we
present our comprehensive AIS framework for intrusion detection at the MAC
layer. This work is a cardinal step towards the development of a meta-NID based
on AIS for misbehavior detection at multiple layers of the protocol stack.

The rest of the paper is organized as follows. In Section 2, we provide a
brief introduction to 802.11b wireless networks and discuss different types of
vulnerabilities that a malicious node can easily exploit to disrupt the network’s
operations. In Section 3, we provide a brief review of related work in which AIS
has been utilized in NID. We then introduce our AIS based security framework
for 802.11b networks in Section 4 and then discuss the experimental results in
Section 5. Finally we conclude our work with an outlook to our future research.

2 802.11b Networks

Different wireless standards have emerged to cater for the rapid growth of wire-
less networks. But IEEE 802.11b is the most popular standard that is deployed
in the real world. IEEE 802.11b covers the Media Access Control (MAC) and
the physical layer [5].

2.1 Topologies of 802.11b Networks

MAC layer of 802.11b defines two access schemes:

Point Coordination Function (PCF). This scheme is also called infra-
structured networks where the complete network is managed by an Access Point
(AP). The AP acts as the coordinator in the network. The clients connect to the
AP using an authentication and association mechanism.
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Distributed Coordination Function (DCF). This scheme is also called ad-
hoc networks which are without coordinator (an AP in case of PCF). In DCF,
the clients communicate with each other through the shared channel. The clients,
however, have to compete for getting access to the channel. This challenge is not
present in PCF in which a station only transmits if it is scheduled a time slot
by the AP [5].

2.2 Types of Frames

Three types of frames are exchanged by the communicating nodes at the MAC
layer of an 80211b network.

1. Data Frames are used for data transmission.
2. Control Frames are used to control access to the shared medium.
3. Management Frames are only used to exchange management information

and hence are not forwarded to the upper layers [5].

2.3 Vulnerabilities in 802.11b Networks

Several vulnerabilities of 802.11b Networks are reported by the authors in [16]
which include Passive Eavesdropping, Active Eavesdropping, Message Deletion,
Malicious AP, Session Hijacking, Man-in-the-Middle and De-authentication &
Disassociation attacks.

A malicious node is able to successfully launch the attacks because 802.11b
networks provide an attacker the ability to sniff and interpret wireless traffic and
spoof the MAC addresses of the AP and the clients. IEEE 802.11b utilizes crypto-
based protocols such as WEP and WPA for providing security at the MAC layer.
But the authors of [17] have shown that these crypto based solutions are subject to
vulnerabilities. As a result, they are unable to provide an adequate security level.

In this paper we have focused on two specific types of DoS attacks which are
launched by manipulating management frames :

De-authentication Attacks. As already discussed, an attacker can spoof the
MAC address of a victim client provided that it has the ability to sniff and inter-
pret the wireless traffic. In de-authentication attacks, an attacker spoofs the MAC
address of a victim client and then uses it to send de-authentication frames to the
AP (see Figure 1). This attack can significantly degrade the performance of the
communication channel between the client and the AP (DoS) because the client,
once de-authenticated, must restart authentication/association process again.

A number of schemes have been proposed and implemented for detection
and prevention of de-authentication attacks. SNORT uses a ‘threshold value
of the number of de-authentication frames per unit time’ as a metric for de-
tecting malicious attacker [14]. This scheme applied to bio-inspired techniques,
such as genetic programming, results in significantly less detection rates [9,10].
In [18], the authors have used the strategy of delaying the response to de-
authentication and disassociation requests. The receiver of the de-authentication
frames waits for data frames in the subsequent frames. Valid data frames after
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Fig. 1. De-authentication and Disassociation Attacks

the de-authentication frame is an indication of malicious de-authentication at-
tack. This approach, however, results into a number of new vulnerabilities [19].
Another approach utilized the fact in 802.11b networks that the Sequence Num-
bers of the frames vary linearly in case of a normal activity. If an attacker
launches the malicious de-authentication attack, then non-linear variations of
large magnitudes are observed [6]. The variation in sequence numbers is an
important parameter that can act as an indicator to detect de-authentication
attack. Fuzzy rules in agent based schemes have also been utilized to detect these
random variations in the sequence numbers [7]. In [10,11], the authors have used
Genetic Programming to detect de-authentication attacks using such scheme.

Disassociation Attacks. The philosophy behind disassociation attacks is the
same as in case of de-authentication attacks. An attacker spoofs the MAC ad-
dress of a victim node, and then on its behalf sends the disassociation frames
to the AP (see Figure 1). Disassociation attacks are less effective in reducing
the performance of 802.11b networks because a victim node still remains au-
thenticated with the AP. As a result, it only needs to restart the association
process again. Nevertheless, disassociation attacks do cause the disruption in
communication (DoS) between victim and AP.

3 AIS for Network Intrusion Detection

AISs have been used for network intrusion detection. The authors in [3] utilized
the concepts of AIS such as clonal selection and negative selection for network
intrusion detection. Hofmeyr et. al. presented a framework for AIS called AR-
TIS [2]. This framework was specialized for network intrusion detection in Light
Weight Intrusion Detection Systems (LISYS ). LISYS (for wired networks) op-
erated at the Network layer of the OSI Stack [4].
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In [6], the authors used a hybrid approach involving AIS for misbehavior de-
tection in wireless ad-hoc networks. Their work is focused on detecting routing
misbehavior in DSR (Dynamic Source Routing) due to malware or compromised
nodes. In [8], the authors have used AIS exclusively to cater for similar rout-
ing misbehavior. In [20], the authors have employed AIS for securing a nature
inspired routing protocol, Beehive. Recently they have also proposed an AIS
based security framework for a nature inspired wireless ad hoc routing proto-
col, BeeAdHoc [21]. These works have set the ground for the use of AIS for
misbehavior detection in wireless networks.

4 AIS Framework

Our AIS framework consists of two phases: learning/training and detection phase.
During learning/training phase AIS tunes/tolerizes the detectors (antibodies) to
the normal behavior of the network utilizing negative selection (extended thymus
action) [22,23]. This learning/tuning phase takes approximately 30 seconds. Dur-
ing this phase, it is assumed that the system is under normal operating conditions
(traffic is training traffic) and any type of anomalous behavior is not experienced
during this phase. After learning phase, AIS enters into the detection phase in
which it also counters the malicious traffic. During this phase the system detects
the malicious traffic and takes countermeasures to neutralize its impact.

Table 1. AIS mapping to 802.11b-MAC

AIS AIS for 802.11b-MAC

Self-Set Training traffic set

Non-self Set Test traffic set

Antigen-1 Antigen consisting of fields from de-authentication frame

Antigen-2 Antigen consisting of fields from disassociation frame

Antibody-1 Detector for de-authentication attacks

Antibody-2 Detector for disassociation attacks

Matching Technique Euclidean distance matching

As already mentioned in the previous section, we utilized the same scheme
that is based on the observation that the variation in sequences numbers in
frames is significantly large in an attack scenario. The AIS mapping used in our
AIS model for 802.11b networks is given in Table 1. A MAC frame is mapped
on to one of the two types of antigens: type-1 consists of the fields extracted
from the de-authentication frame and type-2 consists of the fields taken from
the disassociation frame. The Euclidean distance matching technique is used to
match antigens to antibodies (detectors). The formula for Euclidean distance is
given below [1]:

D =

√√√√ L∑
i=1

(Abi − Agi)2
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We have defined two types of antibodies, type-1 and type-2, to cater for two
types of attacks. The type-1 detectors are utilized to counter de-authentication
attacks whereas type-2 detectors are used to counter disassociation attacks. Their
epitope model is essentially the same but type-1 and type-2 detectors are tuned
using separate sets of training traffic.

Figures 2 and 3 show the MAC frame format and frame control field respec-
tively. The sub-fields which are used to vulnerability analysis are:

Type - 00 indicates that it is a management frame (2 bits)
Subtype - 1100 indicates that the management frame is a de-authentication
frame, and 1010 indicates that the management frame is disassociation frame
(4 bits)
toDS - 0 for management and control frames (1 bit)
fromDS - 0 for management and control frames (1 bit)
Sequence Control - subfield sequence number (12 bits)

Fig. 2. MAC frame format [5]

Fig. 3. Frame Control Field [5]

Figure 4 shows the antigen model for our AIS to counter attacks in 802.11b
networks. First four fields of the antigen ensure that the appropriate management
frame, de-authentication in case of type-1 antigen and disassociation in case of
type-2 antigen, is encoded as an antigen. 12 bit sequence control field contains the
sequence number field of 802.11b MAC frame. The detectors model the average
difference in the sequence numbers for every client. It is worth mentioning that
difference in the sequence numbers is 1 only in the case when consecutive frames
reach the AP without any drops. In case of a lossy environment, the difference in
the sequence number even for a client operating under normal conditions will be
more than one. There the system needs to learn a threshold value under which
the network operation are considered normal. If the distance between the antigen
and the detector (antibody) is greater than this threshold value, then a successful
match is made. As a result, this match will detect the malicious activity.
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Fig. 4. Antigen Model

5 Results

5.1 Attack Scenario

De-authentication attack (Type-1). Consider the attack scenario, in which
5 clients are authenticated and associated to the Access Point (AP) (see Figure
5). The attacker node spoofs the MAC address of the victim node (node-2) and
starts sending the de-authentication frames to the AP with random frequencies.
AP will receive the de-authentication frame, and will consider this to be from the
victim node. As a result, the connection of the victim node will be invalidated
by the AP. In order to communicate again with the AP, node-2 will again have
to undergo authentication and association phases (see Figure 1). Hence, the
communication between the victim node and AP will be disrupted that might
result into poor data transfer rates between the nodes. The level of disruption
depends on the frequency of malicious de-authentication frames. In the most
severe form of the attack, the victim node will never be able to reach the data
transmission phase because as soon as it re-authenticates, next malicious de-
authentication frame arrives. The victim node will again be de-authenticated
and this malicious cycle repeats itself again. Hence, there is a need to identify
and discard the malicious de-authentication frames from the attacker node at the
AP. Our AIS will discriminate between the legal and malicious de-authentication
frames on the basis of the difference in the sequence numbers of consecutive
frames in case of attack.

Fig. 5. Attack 1: De-authentication Attack
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Disassociation attack (Type-2). Consider the similar attack scenario as
shown in Figure 5. The attack node spoofs the MAC address of the victim
node (node-2) and starts sending the disassociation frames to AP at random
frequencies. AP will disassociate the victim client. In order to communicate vic-
tim client would have to undergo association process again, even if it remains
authenticated. The reconnection overhead in this case is lesser than the de-
authentication attacks as the victim client only has to undergo the association
process before being able to enter data sending phase (see Figure 1). Still, dis-
association attacks can cause significant disruption and therefore need to be
countered. Our AIS will distinguish between legal and malicious disassociation
frames on the basis of the difference in sequence numbers of consecutive frames
in case of the attack.

5.2 Dataset Collection

The data-sets (both training and testing) were collected using the tools that are
available on the internet such as Ethereal [12] and SMAC 2.0 [13]. Similar tools
have also been used in [7] to collect the real traffic. As discussed earlier, the
important thing to note in the attack part of testing data-sets is the difference
in the sequence numbers when the the attack is launched.

The data-sets which are representatives of the captured traffic were processed
by the proposed AIS. AIS requires the training data-set, which is free of at-
tacks, to capture the notion of ‘normal’. This training data-set is used to to-
lerize detectors to normal (self ) so that they should not detect self-antigens
which can result in high number of false alarms. AIS is then exposed to test
data-set for detection of malicious de-authentication frames. Using these data-
sets, we tested our AIS based NID system. Each run started with a differ-
ent seed that is used to generate initial detector population randomly. The
reported results are an average of the results obtained from 10 independent
runs.

5.3 Performance Metrics

Figure 6 shows the 2x2 confusion matrix for the binary classifiers. Four possi-
ble outcomes of a classifier are True Positive (TP), True Negative (TN), False
Positive (FP) and False Negative (FN). The metrics considered for the evaluation

Fig. 6. 2x2 ROC Confusion Matrix (Redrawn from [15])
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Fig. 7. True Positive Rate for testing data-set (type-1)

Fig. 8. Accuracy for testing data-set (type-1)

Fig. 9. The performance of our AIS system in the ROC space (type-1)

of AIS are false positive rate (fp rate), true positive rate (tp rate) and accuracy.
These metrics are defined as,

tp rate =
TP

P
fp rate =

FP

N
accuracy =

TP + TN

P + N

5.4 Discussion on Results

De-authentication attack. An important parameter of an AIS is a threshold
for the match between an antigen and an antibody (detector). We made an in-
teresting observation when we analyzed the effect of varying matching threshold
values on the value of false positive rate. We noticed that even for low values
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of matching thresholds the value of false positive rate was significantly small
(as low as 0.001%). Figures 7 and 8 show the plots for true positive rate and
accuracy while varying matching threshold value. If we map the values of true
positive rate and false positive rate for the type-1 attacks to Receiver Operat-
ing Characteristics (ROC) space (see Figure 9) then the performance of our AIS
based system approaches the performance of perfect classification point [15]. The
point at the top-right corner in Figure 9 where system approaches 100% true
positive rate is at the threshold value of 4. Therefore, optimal threshold value
for matching type-1 antigens and antibodies (detectors) is set to 4.

Disassociation attack. A low value of false positive rate can also be seen for
disassociation attacks. This is essentially due to the similar nature of challenges

Fig. 10. True Positive Rate for testing data-set (type-2)

Fig. 11. Accuracy for testing data-set (type-2)

Fig. 12. The performance of our AIS system in the ROC space (type-2)
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in both types of attacks. Figure 10 and 11 show the plots for tp rate and accuracy
while varying the value of matching threshold. Figure 12 shows the ROC plot for
type-2 attack. One can again see that our AIS based system has the performance
of a perfect classifier even for type-2 attacks. The optimal matching threshold
value for type-2 attacks was found to be 3.

6 Conclusion and Future Work

We have presented a security framework on the basis of principles of AIS for
prevention of DoS attacks at the MAC layer. We focused on two specific attacks:
de-authentication and disassociation. The results of extensive evaluation of our
AIS show that our security framework is able to counter both types of attacks
successfully and it has significantly small value of false positive rate. The memory
overhead of our AIS based security framework is 3 bytes per detector that is
significantly small. Our future objective is to develop a meta-security framework
on the basis of AIS for misbehavior detection and prevention in wireless networks
at multiple layers.
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Abstract. This paper presents a novel immune inspired algorithm,
named DERA (Dynamic Effector Regulatory Algorithm), aimed at fault
detection and other anomaly detection problems. It integrates immuno-
logical research results, pointing out the importance of a special breed of
cells (regulatory T cells) in the control of various aspects of the immune
system, and includes a mechanism for signalling between cells. Prelimi-
nary results of the application of the proposed model to the DAMADICS
fault detection dataset are presented, indicating that the proposed ap-
proach can attain good results when properly tuned.

Keywords: Fault detection, DAMADICS project, Artificial Immune
System, regulatory T cells.

1 Introduction

On an attempt to explore some mechanisms and characteristics of the natural
immune system, Artificial Immune Systems [1] (AISs) have been proposed as a
novel computing paradigm. An special area of applications of AISs are anomaly
detection, or novelty detection, problems (reviewed in [2,3]). These problems
are characterized by the availability of data on a single class (or an extreme
imbalance between the two classes), usually denominated normal class. Using
this data, it is expected that a learning system is capable of determining if a
given instance is normal or not. One of the reasons for the special interest of
immune inspired systems in this area arises from the direct analogy with the
ability of the natural immune system to react against external, harmful agents
(nonself or pathogens), while, in most of the cases, remaining unresponsive to
internal and harmless components (self). In Immunology, this is referred to as
the problem of self/nonself discrimination.

Due to the recent demands for safety monitoring and an ever increasing com-
plexity of the installed industrial plants, fault detection and isolation (FDI) has
become a major research area in the last decades [4]. Anomaly detection-based
methods can be applied to this area with the special advantage that training re-
quires only data collected during normal operating plant conditions. This is an
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important feature in most industrial processes, because the introduction or simu-
lation of faults can be extremely costly and time consuming, or even impossible.

The paper is organized in the following way: section 2 briefly discusses some ba-
sic immunological concepts, followed by comments on related work in section 3.
The novel approach proposed, named DERA (Dynamic Effector Regulatory Al-
gorithm) is presented in section 4 and applied to a fault detection benchmark in
section 5. Finally, section 6 presents the main conclusions and future directions of
this work.

2 The Immune System

The immune system is a complex set of cells and molecules responsible for the
maintenance of the host’s integrity. An important concept is the self/nonself
discrimination, defined as the system’s ability to react against external, harmful
agents (nonself or pathogens) and spare internal and harmless components (self).
This last property, also referred to as self-tolerance, is extremely important,
because the immune system has at its disposal destructive mechanisms that
must be properly controlled to prevent harm to the host itself.

The immune system can be considered in two parts, the innate and the adap-
tive systems. The former is composed of cells such as macrophages, dendritic cells
and NK (Natural Killer) cells, immediately available to respond to a limited vari-
ety of pathogens. The adaptive system, on the other hand, is capable of identify-
ing antigens (molecules that can be recognized by cell receptors and antibodies)
never encountered before. This ability is due to the fact that the adaptive system
employs a somatically random process to generate cell receptors, allowing the gen-
eration of a virtually unlimited number of different receptors. Some of the main
cells of this system are B and T lymphocytes. The former are capable of secret-
ing antibodies, whilst the latter are responsible for regulating (regulatory T cells)
and stimulating immune responses (helper T cells) and also eliminating host cells
infected by intracellular pathogens (cytotoxic T cells). The initial stimulation of
B or T lymphocytes happens if the cell receptors bind with sufficient “strength”
(affinity) to antigenic features. Unlike B cells, T lymphocytes require that anti-
genic peptides, coupled to MHC (Major Histocompatibility Complex) molecules,
are presented by antigen presenting cells (APCs). Although originated from the
same precursors, B lymphocytes develop in the bone marrow, while T cells acquire
immunocompetency in the thymus. In addition, cytokines [5] (such as IL-2, IL-10,
IFN-γ, among others) are important signalling proteins secreted by various cells
of the immune system in response to microbes, antigens and even other cytokines,
and play an important role in the control of various aspects of the system. They
provide, therefore, means for “communication” between cells, in analogy to the
nervous system, where neurotransmitters connect different neurons.

Because the adaptive system randomly generates receptors, mechanisms that
would prevent the activation of self-reactive lymphocytes are extremely
important. According to the Clonal Selection Theory, proposed by Burnet [6] and
that remained as the central idea in Immunology for years, the only mechanism
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that would assert self-tolerance is a process denominated Negative Selection. Dur-
ing their development, B and T cells would be eliminated if their interaction with
self-antigens, presented in the bone marrow and the thymus, respectively, was suf-
ficiently strong (a high affinity interaction). However, it has been known that neg-
ative selection is not complete, in the sense that some self-reactive cells eventually
escape from deletion, e.g. [7,8], and couldn’t, per se, ensure self-tolerance [9].

The role of regulatory T cells (formerly known as suppressor T cells) in the
prevention of autoimmune diseases has been known for more than three decades
(see, e.g., [10]), and has been an intense field of research [11,12]. These cells
act as a decentralized self-tolerance mechanism (in contrast to a centralized
mechanism, such as negative selection), controlling the activation of other T
cells (helper or cytotoxic T cells). So far, experimental evidences point towards
regulatory functions based on cytokine secretion and direct cell contact [13].

3 Immune Inspired Approaches to Anomaly Detection

Immune inspired approaches to anomaly detection are usually based on a popu-
lation of cells (detectors) that analyze an antigen and will be said to recognize it
if an affinity measure exceeds a given threshold. For such, data instances are rep-
resented as antigens, with a given codification of the attributes. During training,
only self antigens (normal data) are presented to the system. One of the pioneer-
ing approaches is the Negative Selection Algorithm (NSA), originally proposed
by Forrest et al. [14] to monitor changes in binary encoded sequences. By anal-
ogy to the process of negative selection that occurs in the thymus and the bone
marrow, it generates detectors (analogous to T cells) that will be eliminated if
activated by the presented self antigens. After generating the detectors, classi-
fication is conducted by presenting an antigen to the generated detectors. If a
match between the detector and the antigen occurred, characterized by an affin-
ity greater than the detector’s threshold, an anomaly was said to be detected.

Based on this work, the NSA was extended by Dasgupta et al. [15] to deal with
real-valued vectors, using the Euclidean distance as affinity measure. Using the
real-valued representation, Ji and Dasgupta have proposed the V-Detector algo-
rithm [16], which generates detectors with variable thresholds, so as to maximize
the number of nonself antigens that can be recognized. This constitutes the main
line of investigation currently, with the proposal of new methods for generating
detectors and estimating the coverage of the nonself space (e.g. [17,18,19,20]).
Due to fact that some algorithms use normal (self) points to generate nonself
detectors, these approaches have been denominated negative detection-based.
On the other hand, other approaches will generate self detectors, that have to
be capable of matching the self antigens. These positive detection approaches
will flag an anomaly if the system is unable to recognize a given antigen. For a
detailed discussion of positive and negative detection, see [17,21].

In parallel, there has been work dedicated to incorporating clonal selection
in immune inspired anomaly detection systems. Kim and Bentley [22] have
proposed the dynamic clonal selection algorithm (DynamicCS) for intrusion
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detection, where three T cell populations are used: immature detectors, that
have to go through a negative selection process, mature detectors, that mon-
itor antigens derived from network traffic, and memory detectors, which have
received a confirmation signal by a human expert as being capable of detecting
anomalies. Branco et al. [23] have proposed an approach based on selection and
mutation to detect faults in induction motors, using modules similar to B and T
cells. Ayara et al. [24] developed an adaptive error detection (AED) system for
automated teller machines, where immature detectors need feedback supplied by
a human expert to become competent. Finally, Dasgupta et al. [25] have devel-
oped MILA (Multilevel Immune Learning Algorithm), which incorporates innate
APCs, B cells, helper and suppressor T cells. The signal supplied by suppressor
T cells is extremely important, as all the stimulated B and helper T cells will
be suppressed if at least one suppressor T cell has been activated. At the end of
the analysis, the activated cells are cloned.

It can be observed that all of these approaches rely on the principle that,
in order for a nonself instance to be detected, it is necessary that a detector
capable of recognizing it, per se, is available. In addition, with the exception of
MILA [25], there’s no interaction between the detectors in the system. In order
to be able to detect all nonself antigens, these systems will rely on covering the
shape space [26], a representation of the input space used to distribute the de-
tectors. However, in these cases, the number of detectors tends to be very large,
especially for high-dimensional shape spaces. In addition, Stibor et al. [27] have
reported that using the Euclidean distance as affinity measure is troublesome in
such spaces, making the nonself space coverage problematic. This occurs because
the detection region of each detector decreases as the radius is kept constant and
the number of dimensions is increased. Based on other arguments, the applica-
bility of the NSA to anomaly detection problems has been questioned [28,29,30].
One of the problems identified is that it is simply a random search procedure,
because of the generate-and-test procedure for covering the nonself space [30].
In parallel, some researchers have recently been attracted by Matzinger’s Dan-
ger Model, and new methods that exploit some of its most important concepts
have been developed [31,32]. These methods have been proposed mainly for in-
trusion detection applications, due to scaling problems previously observed with
negative selection algorithms.

4 The Dynamic Effector Regulatory Algorithm (DERA)

The system proposed in this paper, named DERA (Dynamic Effector Regulatory
Algorithm) is inspired by the work developed in [33], where a simplified model
was developed to study a hypothesis for the control of an immune response
by regulatory T cells. An interesting point of DERA is that it incorporates
additional components of the immune system, such as cytokines and regulatory
cells. This comes in agreement with a recent work by Stepney et al. [34], which
discuss a conceptual framework for bio-inspired algorithms, advocating the use
of more detailed biological models. In fact, the consideration of cytokines, an
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aspect usually overlooked in most AISs, is especially interesting. For example,
in the multi-class learning structure inspired by a cytokine network, proposed
by Tarakanov et al. [35], interesting results have been obtained in an intrusion
detection dataset.

The algorithm proposed uses a population of regulatory and effector cells,
combining both “positive” and “negative” detection, and two counters, storing
the concentrations of two cytokines in the environment. The underlying principle
is that there must be an interaction between the cells in the population before
determining if an antigen is self or nonself. In addition, the system is dynamic,
possessing a memory, represented by the current cytokine concentrations, so that
the classification of an antigen depends on the responses against recently classi-
fied instances. Because it doesn’t currently include clonal selection, this memory
is not antigen-specific. During the training phase, depicted in figure 1, an ini-
tial data pre-processing is performed, such as a clustering algorithm, potentially
discarding a large number of redundant antigens. This is an important feature,
because in anomaly detection problems there’s usually a large number of training
instances. While this could be used in a positive detection scheme (e.g. [15]), it
must be carefully applied, due to the introduction of additional regions that are
covered by the self detectors and could be characteristic of anomalies. Using the
resultant antigens, the populations are generated and the cytokine counters are
initialized to zero. The interactions between cells that take place during classifi-
cation are described by a set of equations discussed in the following paragraphs.

Fig. 1. Training in the Dynamic Effector Regulatory Algorithm

For the classification of an antigen, illustrated in figure 2, the cytokine concen-
trations are updated, representing their decay in the environment. The updated
cytokine concentrations are given by equation 1, where ψ(k+1) and ψ(k) are the
updated and current concentrations, respectively, and ζ is a constant, represent-
ing the cytokine decay rate. Obviously, the greater the decay rate, the smaller the
influence of the excitations introduced in the system by the previously presented
antigens.

ψ(k + 1) = ψ(k) · (1 − ζ), 0 ≤ ζ ≤ 1 (1)

When the antigen is presented to the population, the cells receive an stimulus
equals to the affinity for the antigen, denoted by α, given by a normalized affinity
measure. After the antigen presentation, the n cells with the greatest affinities
are selected. If no effector T cell has been selected, no anomaly is detected, and
the analysis is finished. Otherwise, the selected cells secrete a stimulatory (in
the case of effector cells) or suppressor cytokine (regulatory cells). The selection
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Fig. 2. Classification in the Dynamic Effector Regulatory Algorithm

by the most stimulated cells accounts to an analogy with the natural immune
system, where only some of the most stimulated lymphocytes have access to
growth factors such as IL-2. Currently, the secretion process is modelled by
equation 2, where ψsec

c is the amount to be secreted by a cell c, α is the affinity
and τ is the secretion constant, a positive value that controls the process.

ψsec
c (α) = τ · α, τ > 0 (2)

The secreted cytokines are then accumulated in the respective counters. The
concentration of the two cytokines determines the system’s condition, indicating
the predominance of either stimulatory or suppressing effects. This is represented
by a coefficient, named stimulation factor (β), that combines the effects of these
cytokines. When this factor is negative, suppressor effects are predominant, and
only highly stimulated effector cells tend to be activated. When positive, stimu-
lation is dominant, and most effector cells are likely to be activated. This consti-
tutes the framework for DERA, where regulatory and effector T cells interact,
leading to the ultimate regulating of the activation threshold of the latter cells.
The stimulation factor is calculated as a linear combination of the current cy-
tokine concentrations in the system and the amounts secreted in the iteration,
according to equation 3, where ψs and ψr are the concentrations of stimulatory
and regulatory cytokines, respectively, and ψsec

s and ψsec
r are the concentrations

of stimulation and regulatory cytokines secreted in the current iteration. Besides,
ks, kds, kr, and kdr are positive constants that have to be adjusted.

β = ks · ψs + kds · ψsec
s − (kr · ψr + kdr · ψsec

r ), ks, kds, kr, kdr > 0 (3)

After determining the stimulation factor, the population of effector cells is
analyzed to see which cells will be activated, by comparing the cell-specific ad-
justable threshold with the affinity for the antigen. For each effector cell, the
activation threshold for the current iteration is given by the sigmoid function in
equation 4, where Γ0 is the default, constant activation threshold, β is the stimu-
lation factor and σ is a constant, used to control the steepness of the function. An
important feature of equation 4 is that, if the stimulation factor is null, equiva-
lent to an equilibrium between stimulatory and regulatory effects, the activation
threshold will be equals to the default threshold. However, if β is positive (neg-
ative), the threshold will be decreased (increased). By determining the relative
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number of effector cells activated by the antigen, which can be considered as a
measure of the magnitude of the ingoing artificial immune response, the algo-
rithm outputs the abnormality of a given fault or anomaly. This is an important
feature in anomaly detection problems, because the severity of a fault can be
used, for example, in an industrial plant, to determine if the process should be
interrupted for maintenance. Dasgupta and Gonzalez [36] have proposed a neg-
ative selection approach that also outputs the degree of abnormality, but based
on the distances from self regions. An special advantage of using equations 2
and 3 in the dynamic model is that it can be shown that the secretion parame-
ters for stimulatory and suppressor cytokines need not be specified, because the
stimulation factor depends on the product between the secretion constants and
the constants in equation 3. Therefore, it suffices to set the secretion constants
as one, and adjust the constants in equation 3.

Γ (β) =
1

1 + 1−Γ0
Γ0

· exp(σ · β)
, 0 < Γ0 < 1, σ > 0 (4)

It should be noted that, unlike most of the negative detection schemes, DERA
doesn’t rely on the complete coverage of the nonself space. This is due to the
fact that the classification of an antigen depends on the interactions between
the selected cells, summarized by the stimulation factor, and the affinities of the
effector cells. Due to the selection of the most stimulated cells, the detection
capabilities of the proposed algorithm depend on the location of the detectors
(their receptors), i.e. how close the effector cells are, in the shape space, to
the antigen. Finally, the initial selection phase bears some similarity with the
k-nearest neighbors (k-NN) algorithm [37]. However, a comparative analysis of
DERA and k-NN is not included in this paper, and will be investigated later on.

5 Empirical Evaluation

To evaluate the proposed approach, the DAMADICS (Development and Appli-
cation of Methods for Actuator Diagnosis in Industrial Control Systems) bench-
mark, proposed by Bartys et al. [38], was selected. It was developed for evaluating
and comparing fault detection and isolation (FDI) methods, considering indus-
trial actuators as monitored systems. For testing purposes, the real process data
[39] available in the benchmark was selected. It is composed of 33 variables col-
lected during an entire day, with a sampling rate of 1 Hz. The real fault injection
has been conducted in three actuators in a sugar factory in Poland, and has been
carefully controlled to keep the process operation within acceptable production
quality limits. Real data is available for 25 days, ranging from October 29th,
2001 to November 22th, 2001. In this paper, the results obtained when analyz-
ing the data on October 30th, actuator 1, are reported, considering only some of
the process variables (namely, P51-06, T51-01, F51-01, LC51-03CV, LC51-03X
and LC51-03PV, as in [39]), because these are affected by the occurrence of the
fault during this date. The available data was downsampled using a factor of
10, so that every 10th value was used, resulting in 8640 instances per day. The
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data used for training and analysis was initially pre-processed, using min-max
normalization, using the first 4270 instances for training, and the following 4370
instances, for testing. It is important to mention that this procedure was used
because it resembles a method for applying anomaly detection methods for fault
detection, where the algorithm is initially trained on normal data, e.g. during
the beginning of each day, and then used to monitor the plant during the rest
of the day. Therefore, the argument of Freitas and Timmis [30] regarding the
evaluation of anomaly detection approaches doesn’t apply in this case.

For comparison, the V-Detector algorithm [18] was used, using a target cov-
erage of 99%, hypothesis testing with a significance level of 5% and a maximum
of 20000 detectors. Results of simply using the data obtained by the application
of a clustering algorithm, which is used to generate the population of regulatory
cells in DERA, are also reported, in a positive detection scheme. The well-known
K-Means clustering algorithm [40] was used, executed for a maximum of 1000
iterations. In all the simulations, the Euclidean distance was used as affinity
measure. While this can be considered as inappropriate, due to the recent dis-
cussions regarding the use of this measure [27,30], in the case of the V-Detector
algorithm, the data is low-dimensional. Additionally, and other affinity measures
were used, with no clear distinction on the obtained results. Therefore, due to
manuscript length restrictions, the authors have chosen to report only the results
obtained when using the Euclidean distance.

The effector cell population in DERA was randomly generated, with the con-
straint that, for a new individual to be added, the maximum affinity for the
effector cells currently present in the population should be smaller than a given
normalized threshold (equals to 0.8). This procedure was used to allow a proper
distribution of the effector cells throughout the shape space. Although it is rec-
ognized that using such approach is far from ideal, as it constitutes a random
search procedure (see [30]), it was used both for simplicity and the unavailability
of a more appropriate method, which is still under development. After generat-
ing the effector cells, the default threshold (Γ0 in equation 4) was set so that
each cell would not be activated by the self antigens when β = 0. If this would
result in an invalid threshold (Γ0 /∈ (0, 1)), the cell would be removed from the
population. While this amounts, in a certain way, to covering the shape space,
because the thresholds are set to the minimum possible values for each effector
cell, it doesn’t ensure that the entire space is covered, as required by negative se-
lection algorithms. In the present simulations, 200 effector cells were used, along
with 100 regulatory cells (obtained with the K-Means algorithm). The parame-
ters for the dynamic model discussed in section 4 have been selected empirically,
with the values ζs = 0.9, kr = ks = 2, kdr = 3, kds = 4 and σ = 1. In the posi-
tive detection scheme, obtained as the output of the clustering algorithm, the self
threshold of cells in the population was varied, obtaining the classifier’s ROC (Re-
ceiver Operating Characteristic) curve. In the case of the V-Detector algorithm,
the self radius (which determines the threshold of the generated detectors) was
also varied. Finally, in the case of DERA, the number of selected cells (n) was var-
ied (notice that there’s no need to set the activation threshold for regulatory cells).
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In addition, the effects of the suppressing cytokine decay rate (ζr) have been ver-
ified. The ROC curves indicating the performance of each classifier are shown in
figure 3, after execution of each test 100 times, including the mean and standard
deviation (indicated by the error bars) of the true positive (TP) and false posi-
tive (FP) rates. In these curves, the rates for DERA are calculated without the
application of a threshold in the fault severity to determine if a fault is present.
This has been done because the results obtained without thresholding are close
to the (TP, FP) pair closest to perfect detection (i.e. (TP = 1, FP = 0)). In doing
so, it is possible to plot each ROC curve as the number of selected cells is varied,
which allows one to identify how the detection performance varies as a function
of the number of selected cells (equals to 2, 4, 6, 8 and 10 cells, in figure 3). In
the presented results, increasing the number of selected cells decreases both de-
tection rates, so that the upper-most points in each curve in figure 3 correspond
to selecting the two most stimulated cells per iteration.

Fig. 3. ROC curves obtained considering the data on October 30th, actuator 1

It can be noticed that the false positive rates tend to be relatively large for
most classifiers, reaching 20% for true positive rates of approximately 90%, in
this dataset. This is due to a subtle deviation from the normally expected system
behavior in the end of the day, which is not characteristic of a fault, according to
the dataset. When it comes to the K-Means algorithm, it is clear that increasing
the number of clusters leads to better results, at the expense of an increase in the
classification time. In terms of number of detectors, the V-Detector algorithm
achieved, in the configuration tested, a minimum average number of 516 detec-
tors, with a standard deviation equals to 12, at a normalized self radius equals
to 0.001, resulting in the highest true positive and true negative rates. However,
as the self radius is increased, the number of detectors needed quickly increases,
eventually reaching the maximum number of detectors (20000).In this case, it
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would not be possible to achieve the desired coverage of the shape space, leading
to an increase in the standard deviation in the results. In the case of DERA, it
can be seen that by decreasing ζr, the false positive rate also decreases. The rea-
sons for this behavior are due to a characteristic of the dataset, where the fault is
manifested between instances 1611 and 1710 in the testing data. Around instance
number 3421, the process starts to deviate from the condition characterized by the
system as normal. During this initial phase, some regulatory cells are still among
the most stimulated cells, and will secrete suppressing cytokines. Due to the ex-
tremely low decay rate of this cytokine, the effect of the secreted cytokines tends
to last for a long time, even several periods after the initial deviation, when the
process exhibits a large deviation from the initial condition. In this situation, if a
fault occurred relatively close to the instants where regulatory cells secrete regu-
latory cytokines, it could go undetected during an initial period. In other words,
the cytokine decay rates, if set to low values, may block the system from quickly
responding to a fault. On the other hand, high values may tend to make the sys-
tem reactive to noise. Therefore, it is expected that there’s a value that balances
well the ability to quickly respond to faults while remaining unresponsive to noise.
Finally, the large standard deviations observed are due to the random generation
of effector cells.

6 Conclusions

This paper presented a novel immune-inspired approach to fault detection named
DERA (Dynamic Effector Regulatory Algorithm), based on a previously
modelling work. Unlike negative selection algorithms, that require a complete
coverage of the nonself space, the proposed algorithm relaxes this constraint,
requiring, instead, an appropriate distribution (but not the coverage) of effector
and regulatory cells throughout the space. In addition, it incorporates additional
immune system components and dynamics, such as regulatory T cells and cy-
tokines. By combining both regulatory and effector cells, that recognize normal
and abnormal operation, respectively, the proposed algorithm possesses a dy-
namic behavior, mediated by cytokines, and is able to indicate the severity of a
fault. An implementation of the proposed classifier was tested on the well-known
DAMADICS fault detection benchmark problem as application. The obtained
results indicate that, due to a dataset-specific feature, the proposed approach
has been capable of attaining considerably lower false positives than other ap-
proaches evaluated. This occurred because the regulatory cells would suppress
the activation of effector cells. However, if the system is tuned in this way, a
slowly growing fault could take a long time to be detected.

The system, as presented in this paper, still has several improvement points.
Future work will be conducted to develop an efficient method for generating
effector cells, using, for example, evolutionary strategies. In addition, automatic
determination of the model parameters is being studied, based on the formulation
of an optimization problem. Finally, additional experiments on standard datasets
will be conducted to compare the proposed system with other approaches.
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Abstract. In this conceptual paper, we report on studies and initial def-
initions of an immune-inspired approach to temporal anomaly detection
problems, where there is a strict temporal ordering on the data, such as
intrusion detection and fault detection. The inspiration for the develop-
ment of this approach comes from the sophisticated mechanisms involved
in T-cell based recognition, such as tuning of activation thresholds, re-
ceptor down-regulation, among others. Despite relying on low affinity
and highly degenerate interactions, the recognition of foreign patterns
by T cells is both highly sensitive and specific. Through a proper under-
standing of some of these mechanisms, this work aims at developing an
efficient computational model using some of these concepts.

Keywords: Artificial Immune Systems, Tunable activation threshold
hypothesis, T cells, Temporal anomaly detection.

1 Introduction

The immune system is a complex set of cells, antibodies and signalling molecules.
It employs several mechanisms to maintain the integrity of the host with a great
efficiency. Some of its interesting features, from a computational point of view,
is its distributed characteristic, along with learning and self-organizing abilities.
Based on such defining features, it has inspired the development of Artificial Im-
mune Systems (AISs), a novel soft computing paradigm [1], by exploring certain
mechanisms of this system.

In this paper, we present initial steps towards a novel approach to temporal
anomaly detection. The difference in regard to the more general anomaly detec-
tion problems (surveyed in [2,3]) is that there is a temporal relationship between
data instances collected during a given time interval. In other words, there’s a
strict temporal ordering in the data being analyzed. Some examples of temporal
anomaly detection problems are intrusion detection (recently reviewed in depth
in [4]) and fault detection in dynamic systems [5], problems that have been of
particular interest to the application of AISs. For the development of this model,
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there has been motivations to understand in greater details the aspects involved
in the recognition of foreign peptides by T cells, such as the processing of antigens
for presentation in MHC molecules (as peptide/MHC, or pMHC complexes), the
intricate signalling machinery of T cells, and the tunable activation threshold
hypothesis, proposed by Grossman and colleagues [6,7,8,9], according to which
T cells would adjust their responsiveness during the developmental stage in the
thymus and in the periphery.

This paper is organized in the following way: section 2 describes some of
the mechanisms involved in T-cell recognition of antigens, also briefly surveying
some modelling studies in this area, while section 3 comments on related work
on the area of AISs. In sequence, section 4 presents the initial steps towards a
coherent T-cell inspired anomaly detection approach, followed by the conclusions
and future directions in section 5.

2 Inspirations from Immunology

2.1 αβ T Cells

In the adaptive immune system, T cells play a major role. These cells are di-
vided in two subsets: αβ and γδ T cells, where the latter are still not very well
understood, despite recent advancements. For this reason, this paper focuses on
αβ T cells, which will be referred to as simply “T cells”.

Helper T cells activate stimulated B cells, while cytotoxic T cells eliminate
host cells infected by intracellular pathogens, and regulatory T cells regulate
the activation of other B and T cells. Each T cell has, on average, 30000 re-
ceptors (TCRs) [10], expressed on the membrane, which are capable of recog-
nizing antigen-derived peptides coupled to class I (expressed by almost all cells
in the body) or class II MHC (Major Histocompatibility Complex) molecules,
the latter being presented by antigen presenting cells (APCs). In general, MHC
molecules are not able to discriminate between self-derived and foreign peptides
[11], resulting in a small number of foreign peptides being presented in conjunc-
tion with a large number of abundant self peptides. These cells are produced in
the bone marrow, and acquire immunocompetency in the thymus, after being
submitted to two selection processes. The first process, denominated positive
selection, assures that the developing thymocytes are MHC restricted (capable
of recognizing peptides coupled to a single MHC isoform); negative selection, on
the other hand, eliminates T cells that sustain a high affinity interaction with
self ligands [12] presented in the thymus.

Binding between a TCR and a peptide/MHC (pMHC) leads to the trans-
duction of a signal, and subsequent triggering of the receptor. An interesting
aspect is that triggered receptors are internalized (TCR down-regulation) which
is thought to allow efficient interaction with ligands expressed in low concentra-
tions [11]. The immunological synapse, a structure that mediates the interaction
between a T cell and an APC, has been reported to allow T cells to commu-
nicate with several APCs at the same time, and select the one providing the
strongest stimulus [13]. Another important aspect that has emerged is the need
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for sustained signalling [14], and maintaining serial encounters with several APCs
[15], related to the stochastic nature of TCR triggering (see, e.g. [16]).

Based on the ability to detect small amounts of foreign peptides and do not
respond to a large number of self peptides, Davis et al. [17] classify T cells as
sensory cells. In fact, this sensory characteristic has interesting similarities with
the nervous system, such as the coupling between sensitivity and environmental
conditions [18]. George et al. [16] review how specificity (recognition of small
variations in the pMHC complex presented) and sensitivity (detecting low con-
centrations of foreign pMHCs) are achieved in T cell recognition, despite the
generally low affinity interaction and its degeneracy. At the TCR level, the se-
rial engagement model [19] (in which a single pMHC is capable of triggering
several receptors) explains the sensitivity, while the kinetic proofreading model
[20] (the need for an interaction between the TCR and the pMHC to last longer
than a receptor triggering threshold in order for the TCR to be triggered [21,16])
explains the specificity.

Due to the major role played by T cells in adaptive immune responses, it
has motivated the development of several theoretical studies, some of which are
summarized in [22,23,24]. Noest [25] analyzed the requirements for optimal de-
tection performance, based on the signal detection theory, assuming that APCs
allow T cells to sample a variety of ligands. In that study, it was observed that
T cells possess various characteristics that would allow optimal detection, such
as clonal diversity, receptor specificity, serial triggering and tuning of activa-
tion thresholds, among others. Using the concept of activation curves, van den
Berg et al. [26] have studied how the T cell repertoire is able to respond to
low concentrations of foreign peptides coupled to MHC molecules, while min-
imizing the responsiveness to self peptides, based on minimizing (maximizing)
the probability of initiating a response in the absence (presence) of foreign pep-
tides. In that model, the TCR triggering rate was considered as a measure of
avidity (a combination of ligand concentration and binding affinity). They have
concluded that a repertoire satisfying these conditions is possible, even though
being based on low affinity and highly degenerate recognition. In that model,
negative selection would allow the recognition of foreign peptides in lower con-
centrations. Following this, they have analyzed the effects of presenting peptides
that are variants of a foreign peptide [21], which can act as agonists (capa-
ble of evoking the full range of cellular responses) or antagonists (that inhibit
the effects of other ligands). An interesting conclusion was that, by varying
the number of receptors expressed, a T cell could be tuned to different lig-
ands, being capable of distinguishing between the ligand’s triggering rate and
its presentation level. Later on, van den Berg and Rand [27] studied the role
of MHC presentation. It was concluded that immune efficacy (represented by
the separation between triggering rate distributions in the absence and in the
presence of foreign ligands) is maximized when each T cell clonotype is capable
of interacting with a single MHC isoform, presenting a low diversity of foreign
peptides.
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2.2 The Tunable Activation Threshold Hypothesis

The tunable activation threshold (TAT) hypothesis was proposed by Grossman
and colleagues [6,7,8,9], discussing the possibility of T cells (and also B cells)
dynamically tuning their thresholds in response to recently experienced stim-
uli. It, therefore, proposes the idea of a T cell as an adaptive signal integrator,
where the inputs are the signals registered by the TCRs, and the output can
be characterized as a cellular state. Tuning would allow the cell to measure rel-
ative, instead of absolute, changes in the input signal magnitude, and would
act so that a cell under persistent stimulus should not be activated [28]. As
commented by Grossman and Paul [8], a controlled degree of autoreactivity is
essential in the immune system. In this sense, self recognition could be a way
for the immune system to “tune” its sensitivity (e.g. [11,29]). In fact, a similar
feature has been described in the nervous system: in the mammalian neocortex,
Stetter [30] analyzes the presence of a continuous background neuronal activity
that would allow the dynamic tuning of neocortical circuits. An important pro-
posal of the hypothesis is that cellular anergy (a particular state where the cell
remains unresponsive to stimuli) would be characterized by an elevated activa-
tion threshold, and may have important roles in the control of autoimmunity
and immune responses against foreign antigens. In addition, tuning would entail
each T cell with a short-term memory, which has been suggested to facilitate
long-term memory at both cell and population level [6].

In the hypothesis, two modes of response are considered [6]. Supra-threshold
responses are characterized by a rapid increase in the antigen concentration, lead-
ing to a complete elimination of the antigen. On the other hand, sub-threshold
responses would be invoked in the case of a chronic or residual infection, and
could lead to several cellular outcomes, such as tuning the activation threshold,
promoting the viability and excitability of the cell, among others. Later on, pos-
sible roles for negative and positive selection within this hypothesis have been
discussed [7]. The former would lead to the elimination of unnecessary cells,
which would not be activated in the periphery, due to the extremely high acti-
vation thresholds. Therefore, negative selection would not be responsible for the
elimination of auto-reactive cells. Positive selection, on the other hand, is related
to a viability maintenance threshold, indicating that a cell under development
must be capable of receiving signals from the environment.

Due to its inherent dynamical nature, the TAT hypothesis has inspired several
modeling investigations. Sousa [28] studied the implications of threshold tuning
on the homeostasis of T cells. It was concluded that tuning is unable, per se, to
allow the persistence of autoreactive cells, requiring additional mechanisms to
accomplish this, but is able to prevent such cells from expanding and inflicting
autoimmunity in the periphery if the thymic output rate of such cells is relatively
small. An additional requirement would be that these cells were pre-adapted to
self antigens presented in the thymus. A more recent study of this model has been
presented by Carneiro et al. [31], which have introduced simplifications to ob-
tain analytic expressions. It was used to study the effects of an adoptive transfer
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of peripheral T cells, and concluded that it tolerance would have to be induced
by some interaction between populations not considered in that model.

In another line of investigation, van den Berg and Rand [32] have analyzed the
biochemical plausibility of the hypothesis, proposing two mechanisms through
which threshold tuning could take place. They have suggested that threshold
tuning may only take place in the absence of danger signals [33], because if a
T cell, once activated by a ligand, were allowed to adapt to the received stimu-
lation, it would become less sensitive to that ligand. In addition, an important
conclusion was that threshold tuning would allow the immune system to max-
imize the sensitivity to nonself antigens uniformly across the T cell repertoire
and the lymphoid tissues.

Scherer et al. [34] compared a model where the threshold is set for each cell
individually, instead of using a constant value for all cells, assumed to have evolved
to an optimal value. In that model, the activation threshold for each cell was given
by the maximum affinity for self ligands presented during negative selection, so
that the resultant cells would not be activated by such ligands. It is important that
such model is a special case (with dα(t)/dt ≥ 0, ∀t, where α(t) is the threshold at
time instant t) of the TAT hypothesis, as Grossman and colleagues proposed that
the threshold is tuned depending on the recent stimulation history of the cell. It
was verified that tuning is more flexible, allowing the generation of repertoire that
are more reactive to nonself peptides than those generated by constant threshold
mechanisms, provided that the repertoire size is large.

3 Related Work

This section comments on related immune-inspired approaches, that incorporate
some of the biological mechanisms previously discussed. Readers interested in
more details should consult recent reviews, such as [35,36,37].

Despite being a fundamental aspect of T cell recognition in the biological
immune system, the analogy of antigen processing and presentation coupled
to MHC molecules hasn’t been employed in most artificial immune systems, in
which T cells bind directly to antigens. Hofmeyr and Forrest [38] have introduced
the concept of a permutation mask, to decrease the number of undetectable pat-
terns in negative selection algorithms, inspired by MHC-coupled presentation of
peptides. Dasgupta et al. [5] have proposed MILA (Multilevel Immune Learning
Algorithm), where T cells are defined as low-level recognition entities, attempt-
ing to model MHC processing. However, the pseudocode available in [5], aimed
at anomaly detection problems, does not consider this aspect, allowing B and T
cells to bind in the same way, where the affinity is based on the Euclidean dis-
tance. In addition, more sophisticated aspects of T-cell based recognition, such
as the expression of multiple receptors and receptor down-regulation, are yet to
be incorporated into an immune inspired algorithm.

In regard of the TAT hypothesis, there does not seem to be any algorithm
designed to directly explore it. Most immune-inspired algorithms employ the
concept of a threshold, which is compared with some state of each cell or the
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system, to determine if a given procedure, such as cell activation, proliferation or
updating the system will take place. Among such approaches, some are capable of
adapting such thresholds based on the features of the target application, instead
of including them as user set parameters.

An algorithm aimed at extracting fuzzy classification rules, named IFRAIS
(Induction of Fuzzy Rules with an AIS) has been proposed by Alves et al. [39].
In that case, the affinity is given by the degree of matching between a rule
(antibody) and an example (antigen), and the latter satisfies the relation implied
by the former if this degree is greater than an affinity threshold. The system
employs an adaptive mechanism that adjusts each affinity threshold, so as to
maximize the fitness of each rule. The Artificial Immune Recognition System
(AIRS) [40] initially determines a threshold based on the data, given by the
average affinity for the antigens (the training data). This threshold is then kept
constant during the training phase. In some immune network based approaches,
e.g. [41,42] (reviewed in [43]), a threshold for cloning some network nodes is
determined, in each iteration, based on the responsiveness of the nodes.

Finally, some negative selection algorithms have incorporated, intuitively,
thresholds adjusted during the detector generation phase, depending on the de-
tector’s affinity for the self antigens. Gonzalez and Dasgupta [44] have proposed
an anomaly detection algorithm based on the generation of detectors in the
non-self space. The threshold for each detector is generated based on the me-
dian of the distances to the k-nearest self points. In the V-Detector algorithm
[45], another negative selection based approach, the distance, analogous to the
threshold, is determined based on the distance between a candidate detector and
the closest normal (self) point. Therefore, the activation threshold is determined
for each detector, depending on the affinities with the normal data, so that the
detector is unable to be activated by these points. In fact, this approach is very
similar to the model studied by Scherer et al. [34], with an additional constraint
on the maximum value of the threshold (related to the self radius in [45]).

This brief listing of variable threshold algorithms is not extensive, but primar-
ily aimed at indicating that some approaches incorporate some form of adjustable
threshold, on an intuitive basis. In the network based approaches, threshold
tuning asserts the continuous learning capabilities of the network. Finally, one
should notice that, out of the aforementioned algorithms, with the exception of
[41,42,39], the threshold is determined during the training phase and remains
constant thereafter.

4 Initial Architecture for a T-Cell Inspired Anomaly
Detection System

In this section, the first steps towards the architecture for an immune-inspired
model including some of the features discussed in section 2 are presented. The
development of this model is motivated by three aspects. First, the wide use of
several computational and engineering terms in describing some aspects of T-cell
based recognition (e.g. decision making, noisy environments [11]). In addition,
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the remarkable ability of these cells to achieve high specificity and sensitivity,
even though based on low affinity and highly degenerate interactions, to detect
low amounts of foreign peptides in a vast sea of self ligands (analogous to noise).
Finally, because, there does not seem to exist, to the knowledge of the authors,
any work in the area of AISs dedicated to using more detailed models of T cells.
It is important to notice that, in contrast, in the area of neural networks, there
are several researchers investigating more realistic neuron models [46,47].

Recently, Stepney et al. [48] have presented a conceptual framework for bio-
inspired algorithms, suggesting the use of more detailed biological models to
develop algorithms. Because AISs are still a relatively new area of research,
there is a lot of unexplored potential, especially regarding the incorporation
of additional theories and concepts from Immunology. In recent years, several
efforts in this line have emerged [49,50,51,52]. One promising example is the
Dendritic Cell Algorithm, proposed by Greensmith et al. [51], inspired by the
Danger Model [33]. The model presented in this paper can be considered as
yet another attempt to incorporate additional features of the natural immune
systems in AISs. However, due to the fact that this work is still in an initial phase,
this section reports on some of the aspects incorporated so far. The architecture
presented here is initially aimed at temporal anomaly detection problems, where
there is an strict temporal relationship between data. The starting point is that
the operating conditions are sampled from a given process (e.g. a computer
network, an industrial plant) as an antigen xk, as illustrated in figure 1.

Fig. 1. Representation of sampling data (antigens) from the process being monitored

The model adopted for each T cell attempts to consider a more biologically
plausible representation, incorporating multiple receptors and, therefore, extend-
ing the notion of a cell as a multi-input processing unit combining various signals
received from the environment. In addition, as will be presented in sequence, this
is related to the temporality of the target problem. Thus, T cells can be consid-
ered as depicted in figure 2. The TCR triggering rate experienced by the i-th T
cell at time instant k, denoted as Wi(k), is given by equation 1, based on the
generalization of a model developed by van den Berg et al. [26], where Tij is the
mean dwell-time of the interaction between the cell’s TCR and the j-th pMHC,
TR is a receptor threshold, nT (i, k) is the number of TCRs expressed by the i-th
cell at time instant k (therefore, taking TCR down-regulation into consideration,
according to some yet unspecified kinetics) and fi is a binding function, to be
chosen so that the signal enlicited by a pMHC is maximum when Tij = TR.

Wi(k) =
nT (i,k)∑

j=1

fi(Tij , TR) (1)
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Fig. 2. T Cell Model

In this model, allowing multiple thresholds (W th ∈ 	nS , where nS is the
number of states considered) reflects the fact that there are different thresholds
for some cellular responses, ranging from the induction of self-renewal division
through cytokine secretion, as extensively discussed by Grossman and colleagues
[6,7,8,9]. In considering that T cells feature a highly adjustable and flexible
signalling machinery, TR, Tij and W th can be adapted, depending on some
conditions.

An important feature of T-cell recognition is MHC restriction, which can be
considered as a feature selection or extraction process. In the proposed model,
MHC restriction is modelled by considering a given number of separate T cell
sub-populations, where each sub-population is allowed to interact with only a
single feature (a peptide) of an antigen, ignoring all the remaining peptides.
Therefore, in this model, the presentation of antigen-derived peptides coupled to
MHC molecules is represented by the application of feature selection/extraction
algorithms [53]. Although it does not consider the competition between peptides
for loading in MHC molecules, as in the biological immune system, it is believed
that it captures the essence of the process: having segregated T cell populations,
that can recognize only a certain feature of an antigen. Also, it entails an addi-
tional degree of parallelism, at the level of sub-populations, in addition to that
at the detector level.

The basic architecture for the model is presented in figure 3. By introducing
the abstraction of separate T cell sub-populations that process a feature derived
from an antigen, the model does not incorporate positive selection, as it is as-
sumed that each sub-population is generated separately, and there is no need to
enforce MHC restriction. Feature selection/extraction is applied to an antigen
xi, and generates ni peptides X1

i , X
2
i , . . . , X

ni

i , where ni is the number of MHC
isoforms considered. In introducing a step where the cells in the population inter-
act among themselves, the model incorporates the inherent connectivity among
cells in the immune system. For example, in the tunable activation threshold
hypothesis, it has been suggested that some cells may be capable of raising the
thresholds of other cells in the neighborhood [6].

The temporality in the anomaly detection problem is captured, on one side,
from the retention of the w most recently injected antigens in the system, through
the application of a non-overlapping window. Therefore, the patterns analyzed
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Fig. 3. Architecture of the proposed approach

by the system at a time instant k are a total number of niw peptides, derived
from antigens xk−w+1, xk−w+2, . . . , xk. The advantage of focusing on temporal
problems arises from the possibility of the system reacting to features which,
even though being derived from different antigens, show a time correlation that
could be interesting. As an overly simplified example, if peptides, representing
the temperature of a system, are derived from consecutive antigens, and indicate
a subtle increase in the monitored temperature, then the system could find this
information indicative of a fault. The use of this window has some similarities
with the approach used by Gonzalez and Dasgupta [44] and Dasgupta et al. [5]
to detecting anomalies in time series, where, differently from the model discussed
here, each antigen is generated by the application of the window. The difference
in the presented model is that, due to the fact that T cells have multiple re-
ceptors, they are capable of receiving stimuli from different pMHC at each time
step, depending on criterion used to determine which of the pMHCs will bind to
which T cells. The characteristic of receiving multiple signals correlates better,
in the view of the authors, to how natural T cells receive environmental signals,
instead of the single receptor model considered in most AISs. In addition, an ad-
ditional parameter that needs to be specified is the concentration of each ligand,
i.e. how many copies of each peptide are introduced in the system by feature
selection/extraction.

Finally, one last aspect must be commented on. Considering the mechanisms
considered so far (namely, MHC presentation, multiple receptors, receptor down-
regulation and tunable thresholds), and, based on the architecture depicted in
figure 3, the novelty of the model discussed (when compared, e.g., with a neu-
ral network with tunable thresholds) arises from two main features. The first is
not present in neurons: by varying the number of receptors, each T cell would
be capable of receiving signals from a different number of sources at each time
instant. Another feature is the fact that each cell has several possible responses
(such as proliferation, activation, or cytokine secretion), each one character-
ized by a threshold, where each response could affect other cells in different
ways.
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5 Conclusions and Future Work

In this paper, the initial steps toward the development of a novel anomaly de-
tection model, inspired by T-cell recognition mechanisms, were presented. So
far, the model incorporates MHC processing of antigens presented to the sys-
tem, through the application of feature selection/extraction algorithms [53]. This
leads to the generation of a number of peptides equals to a parameter analogous
to the number of MHC isoforms, along with an antigen windowing approach,
where the most recently analyzed antigens are retained in the system. Finally,
an initial description of a biologically more plausible model of a T cell was pre-
sented, to be incorporated in the proposed approach, including multiple receptors
and thus allowing these cells to receive several signals.

Future work will be conducted to the incorporation of tunable cellular thresh-
olds, which, along with the definition of mechanisms for interactions between
cells, will constitute the starting point to an implementation.
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Abstract. In this paper we articulate the idea of utilizing Artificial Immune 
System (AIS) for the prediction of bankruptcy of companies. Our proposed AIS 
model considers the financial ratios as input parameters. The novelty of our 
algorithms is their hybrid nature, where we use modified Negative Selection, 
Positive Selection and the Clonal Selection Algorithms adopted from Human 
Immune System. Finally we compare our proposed models with a few existing 
statistical and mathematical sickness prediction methods. 
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negative selection, clonal selection, accounting variables, bankruptcy, sickness 
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1   Introduction 

The vertebrae Immune System (IS) is a highly complex system which is tuned to the 
problem of detecting and eliminating infections. The main task of the Immune System 
is to detect any foreign infectious element (antigen) and trigger an immune response 
to eliminate them. The immune system generates antibodies that detect and eliminate 
these antigens. This problem of detecting antigens is often described as a problem of 
distinguishing between the ″self″ and the ″non-self″, where we describe a ″self″ to be 
synonymous to that cell that it is not harmful for the body, while a ″non-self″ is one 
which is harmful for the body and which should be destroyed [12, 13]. 

If one concentrates on the problem of bankruptcy prediction from a set of 
companies in a given environment, then sick companies can be considered as the 
antigens that need to be detected in the system. Many statistical models have been 
proposed which take into account some financial ratios or accounting variables whose 
values apparently demonstrate good predictive power. Most models take a linear 
combination of these variables to arrive at a “score” or a probability of bankruptcy in 
the near future, giving higher weightage to those ratios that are believed to possess 
higher discriminating power. 

Due to the popularity of some financial ratios amongst analysts, they have widely 
been used for predicting the health of a company, with no proof of their superiority as 
an evaluating criterion. Professional attitudes and practice in this area are dominated 
by ‘conventional wisdom’ rather than scientific theory [11]. 
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Statistical models may not prove to be reliable under every circumstance. There is 
no single model which is equally reliable for all economic environments in which 
companies exist. A model prepared for sickness prediction of private companies may 
not accurately predict sickness of a public company [6]. Similarly a model prepared 
using data of companies in the United States may not accurately predict sickness of 
companies in India, the economic structure of these two countries being very 
different. Hence there is a need for a model which is flexible enough to incorporate 
environmental variability.  

 We propose a methodology for modeling an Artificial Immune System (AIS) for 
sickness prediction of a company. A set of accounting variables are used to represent 
a company. The values of these set of ratios provide a unique signature of a company 
– it is the property of the company and each company will have a different signature. 
This signature can be used to classify companies in the AIS context as either self or 
non-self. 

We have selected a sample consisting of both sick and non-sick Indian companies, 
status known a priori. This is used for both training (generation of detectors), and 
validation of our model.  

2   Statistical Methods in Sickness Prediction 

The history of credit scoring model dates back to the seminal work of Altman [1], 
where the author uses Multivariate Discriminant Analysis to arrive at a linear 
combination of five financial ratios, called the Z-score, for predicting whether a 
company is credit worthy or not. Following Altman′s [1] work, many different models 
have been proposed, like Altman et al. [2, 3], Ohlson [14], Zavgren [15], Zmijewski 
[16], and Griffin and Lemmon [10]. 

For all these models the underlying notion has been to use the different accounting 
and financial figures to arrive at a score or a probability of failure. Depending on the 
score or the probability of failure we arrive at a decision whether a particular 
company is doing well or not and whether it is credit worthy or not.  

2.1   Altman’s Z-Score 

Altman [1] proposes a quantitative metric, called the Z-Score, for predicting the 
bankruptcy or sickness of industrial companies in USA. The author considers a sample 
of sixty-six corporations divided equally into two groups – bankrupt and non-bankrupt. 
Using twenty-two financial variables (which were important in prediction the financial 
performance of any corporate) for the period 1946-1965, Multivariate Discriminant 
Analysis was carried out to arrive at the Z-Score, the formula for which is: 

Z = 1.2*X1 + 1.4*X2 + 3.3*X3 + 0.6*X4 + 0.999*X5 (1) 

where, 
Z = Overall Index 
X1 = Working Capital/Total Assets 
X2 = Retained Earnings/Total Assets 
X3 = Earning before Interest and Income Tax/Total Assets 
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X4 = Market value of Equity/Book value of Total Liabilities 
X5 = Sales/Total Assets 
 

Apart from the above mentioned general formula for the Z-Score, variants of the 
score have also been modeled for two different types of companies, namely the public 
industrial companies and the private industrial companies.  

2.2   ZETATM–Score1 

The ZETATM-Score proposed in [2] is a modification of the Z-Score. Changes in 
accounting standards and government rules regarding bankruptcy, and focus on much 
larger firms led to this modification. The different variables which were considered to 
be important for calculating the ZETATM-Score are: 

 

1.  X1 = Return on Assets (ROA) = EBIT/Total Sales 
2.  X2 = Stability of Earnings. It measured the normalized standard error of estimate in 

X1 
3.  X3 = Debt Service = Interest Coverage Ratio = EBIT/Total Interest Payments 
4.  X4 = Cumulative profitability = Retained Earnings. It gives a picture about the of 

the age of the firm, about the dividend policy of the firm and about the 
profitability of the firm over time 

5.  X5 = Liquidity = Current Ratio = (Current Assets/Current Liabilities) 
6.  X6 = Capitalization = (Common Equity/Total Capital) 
7.  X7 = Size = loge(Total Assets) 

2.3   O-Score 

The prediction models developed till 1980 did not consider the probabilistic nature of 
operations of corporate, hence the element of uncertainty was absent in all the models. 
To incorporate the concept of probability in formulating the bankruptcy prediction 
scores Ohlson [14] put forward the following score, called the O-Score: 

O = -1.32 - 0.407*Y1 + 6.03*Y2 - 1.43*Y3 + 0.076*Y4 - 2.37*Y5 - 1.83*Y6 + 
0.285*Y7 - 1.72*Y8 - 0.521*Y9 (2) 

where, 
O = Overall Index used to calculate the probability of failure 
Y1 = log(Total Assets/GNP Price Index) 
Y2 = Total Liabilities/Total Assets 
Y3 = Working Capital/Total Assets 
Y4 = Current Liabilities/Current Assets 
Y5 = One if total liabilities exceeds total assets, zero otherwise 
Y6 = Net Income/Total Assets 
Y7 = Fund from Operations/Total Liabilities 
Y8 = One if net income was negative for the last two years, zero otherwise 
Y9 = ((Net Income (t) - Net Income (t-1)/|Net Income (t) - Net Income (t-1)|)  
t = current year 

                                                           
1 This is a proprietary model for subscribers to ZETA Services, Inc. (Hoboken, NJ), so the 

detailed model is not presented here. 
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2.4   Emerging Market (EM)-Score 

Due to increasing globalization and more international trade and commerce, it became 
imperative to include the effects of countries, foreign currencies, industry 
characteristics, environment, political climate, economic climate, lack of credit 
experience in some economies etc., in formulating the sickness prediction scores. This 
resulted in the EM-Score model [3]. 

EM-score = 6.56(X1) + 3.26(X2) + 6.72(X3) + 1.05(X4) + 3.25 (3) 

where, 
X1 = working capital/total assets 
X2 = retained earnings/total assets 
X3 = operating income/total assets 
X4 = book value of equity/total liabilities 

3   Data Collection 

The sample consists of two groups of companies, viz. the bankrupt and the non-
bankrupt manufacturing units. The bankrupt group consists of companies that file a 
petition under the Sick Industrial Companies (Special Provision) Act 1985 at the 
Board for Industrial & Financial Reconstruction (BIFR)2 India. There was no 
restriction placed on size of the company to be selected for our dataset, but only those 
were considered for the experiment for which all the data required was available and 
consistent. 

The data collected for all companies was taken from Prowess, Indian Corporate 
Database, provided by CMIE3. This database consists of the data for all those 
companies that are listed either on Bombay Stock Exchange (BSE)4 or on National 
Stock Exchange (NSE)5. 

Data was collected over three years – 2002 to 2004. In our data set, the non-
bankrupt group for each year consists of those companies which did not file a 
sickness petition between 2003 and 2006. The year of bankruptcy of a company was 
taken to be the year when it first filed the petition, and the data of bankrupt group was 
dated one financial year prior to the date of filing of bankruptcy (see Table 1).  

Table 1. Description of data set 

Year Total No. of 
Companies 

No. of companies in 
non-bankrupt group 

No. of companies in 
bankrupt group 

2002 126 94 32 
2003 147 98 49 
2004 144 121 23 

                                                           
2 http://www.bifr.nic.in/ 
3 http://www.cmie.com/ 
4 http://www.bseindia.com/ 
5 http://www.nseindia.com/ 
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4   An Artificial Immune System for Sickness Prediction 

An AIS system is designed for distinguishing between self and non-self entities. In 
the sickness prediction context, the self is defined as a financially healthy company, 
while the non-self is defined as a company that is sick. The AIS maintains a set of 
detectors for recognizing non-self companies.  

In literature different algorithms can be found that have successfully been used to 
engineer AIS. Some of these are the negative selection [9], positive selection [7], and 
the Clonal selection algorithm CLONALG [8]. Some attempts have been made for the 
bankruptcy prediction and the bond rating of companies using the negative selection 
algorithm [4]. 

We have attempted to use the hybrid of these algorithms to engineer our Artificial 
Immune Sickness Prediction System. This is discussed below in detail. 

4.1   Development of the Model 

Antibodies, Antigens, and Detectors. The set of non-bankrupt companies in our 
training set serve as the self set, while the bankrupt set are treated as antigens/non-
self. Using these two data, a set of antibodies/detectors is generated, which will be 
used for classifying the test data as either sick or non-sick. 

In our study an antibody is represented as a string of G elements. Each element is a 
real-valued financial variable. These variables and the string length may be varied 
according to different economic scenarios. The same scheme is used for representing 
self and antigens. 

Matching Function. The matching of a self or an antigen with the generated detector 
is done by calculating the Euclidean distance between them. It is done by using the 
following formula: 

 

(4) 

 (5) 

Where, 
x = the self/non-self, represented as {x1, x2 … xg …xG};  
y = the detector, represented as {y1, y2 … yg …yG};  
G= number of elements in the string 

 

Many other distance measures can be found in literature [5]. However, our model 
is fairly simple: it uses real-valued representation, there is no overlap between the 
elements of a string, and the data can be ordered according to their value. Hence, and 
for simplicity, the Euclidean distance measure has been used effectively in our model 
without introducing any unintended bias. 
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4.2   Algorithms and Procedures 

The AIS algorithms that we use in our model build upon the negative selection, 
positive selection and the Clonal selection algorithm CLONALG. We have used these 
basic algorithms as the building blocks of our procedures. 

We have divided our work into two phases viz. training of the system, i.e., 
generation of the detector set, and monitoring or classification of test data.  

Our basic procedure (Procedure-1) for training uses the negative selection 
algorithm to generate the detector set, which will be used for classifying test data. We 
further refine the detector set using either positive selection or clonal selection 
(Procedure-2 and Procedure-3). Finally, we compare the performance of these three 
procedures.  

The negative selection algorithm [9] (Table 2) takes as input a set of self-strings 
that define the set of healthy companies in our application, and generates n detectors 
that are not capable of recognizing any self-string. To achieve this, random strings are 
generated and matched with each self-string to get the Euclidean distance.  If a 
mismatch occurs, i.e. the distance when matched with all self-strings is greater than 
the cross reactivity threshold, r, the random string is taken to be a detector. 

The positive selection algorithm [7] (Table 3) takes as input a set of strings M, and 
matches them against a set of non-self strings, NS. If a match occurs, i.e. the distance 
when matched with any self-string is lesser than the cross reactivity threshold, r, the 
random string is selected for the optimized set A.  The rest of the strings in M are 
rejected. 

Table 2. Negative Selection Algorithm 

Algorithm: Negative Selection 
Input: self set S, cross reactivity threshold  r, no. of detectors required 

n, and length of string L 
Output: Detector Set A 
Begin  

 j ← 0 
While j <= n do 

m  random(1, L) 
for each s of S do 
 dis  match (m, s); 
 if dis >= r then 

            insert (A, m) 
            breakFor 

 endif 
  endFor 

 j  j+1 
 endWhile 
 return A 

end 
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Table 3. Positive Selection Algorithm  

Algorithm: Positive Selection 
Inputs: set of non-self strings NS, cross-reactivity threshold r2, string-

set M to be optimized 
Outputs: optimized set A 
Begin  

for each m of M do  
for each ns of NS do 
 dist  match (m, ns); 
 if dist <= r2 then 

 insert (A,m) 
 breakFor 

 endif 
endFor 

endFor 
 return A 

end 

Procedure 1: This procedure is based on the basic negative selection algorithm alone 
for generating the detector set. The self-set is the set of non-bankrupt companies for a 
given year and each detector has the property that it is unable to detect at least one 
self-string within the cross-reactivity threshold.  

Procedure 2: Here we use a hybrid of the negative selection and positive selection 
algorithms. In this procedure, the detector-set generated by the negative selection 
algorithms is further refined by ensuring that each detector is able to detect at least 
one non-self-string used for training the system.  

Procedure 3: Similarly, a hybrid of negative selection followed by clonal selection 
algorithm can also be used to refine the detector set.  

5   Experiments 

The above-mentioned procedures were tested using simulations on Matlab 7.0.1. For 
representing each company, we have taken nine financial ratios which have been 
shown to represent the state of a company with high fidelity [11, 16]. These ratios are 
the most commonly used balance sheet ratios used in current bankruptcy prediction 
systems. The values of these ratios are normalized between 0 and 100 to increase the 
precision while matching. 

The data collected was partitioned into two – the training set and the test set. The 
details of the data set, parameters and experimental results are discussed below. 

5.1   Test Sets 

We used 30 companies from the non-bankrupt group and 15 from our bankrupt group 
as the self-set and non-self-set respectively for training our model for each year. The  
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Table 4. Test sets 

Year Total No. of 
Companies 

No. of companies in 
non-bankrupt group 

No. of companies in 
bankrupt group 

2002 96 64 32 
2003 127 68 49 
2004 124 91 23 

remaining non-bankrupt companies and all of the bankrupt companies were used as 
the test set. The characteristics of the test set are described in Table 4. 

5.2   Parameters 

There are three parameters that must be chosen – the number of detectors in the 
detector set, n, the cross-reactivity threshold for negative selection, r1, and the cross-
reactivity threshold for positive selection, r2. 

We have chosen n to be 100 for procedure-1 and 300 for procedure-2. The 
rationale behind taking a larger number for procedure-2 is that the optimized set after 
positive selection algorithm contains less than half the original number of detectors. 

The r1 and r2 values must vary between 0 and 100 since the values of each string 
element is normalized on this scale. For choosing the optimum value, we conducted 
exhaustive tests for each possible combination of these two parameters on the 2004 
data-set. For each test we computed the Type-I (8) and Type-II (9) errors for the 
following hypothesis: 

H0 = All the companies detected by the detector set are bankrupt (6) 

H1 = No companies detected by the detector set are bankrupt (7) 

number of bankrupt companies not classified as bankrupt Type-I 
Error 

percentage 
= total number of bankrupt companies (8) 

number of non-bankrupt companies classified as bankrupt Type-II 
Error 

percentage 
= total number of non-bankrupt companies (9) 

 
We chose five r1 - r2 combinations for which the average sum of Type-I and Type-

II error was the minimum for further analysis. 

5.3   Results and Discussions 

For each of the five r1 - r2 combinations chosen above, we performed 20 sets of 1000 
runs each for the three data sets corresponding to the three years. These experimental 
runs were done for both procedures-1 and -2. We again computed the Type-I and 
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Type-II errors, as mentioned above, and found the average and the standard deviation 
of the sum of these errors for the 20 sets, averaged over the 1000 results. 

Our results shown in Table 5 & 6 are for the best r1 - r2 combination, that came out 
to be r1=47 and r2=30. 

Table 5. Classification results for procedure-1 with r1=47 and r2=30 

Type-I Error (%) Type-II Error (%) 
Year 

average St. error average St. error 

2002 0.01890 0.00845 39.8175 0.47202 

2003 11.3277 0.33707 1.75147 0.02333 

2004 3.8786 0.25307 2.71593 0.04419 

Table 6. Classification results for procedure-2 with r1=47 and r2=30 

Type-I Error (%) Type-II Error (%) 
Year 

average St. error average St. error 

2002 0 0 25.1207 0.221 

2003 5.4432 0.0902 1.5318 0.0099 

2004 0.0943 0.028 3.0158 0.03788 

Upon examination of the above results, we can conclude that the results obtained 
through procedure-2 exhibit higher accuracy rates than those obtained by procedure-1, 
consistently for all the years. Thus we can claim that by using positive selection for 
improving the detector set, the overall classification accuracy can be enhanced. 

We observe a marked difference between the accuracy achieved in 2003 and 2004, 
and that achieved in 2002. This difference can be attributed to the fact that the non-
bankrupt groups for 2003 and 2004 did not contain any company that filed for 
bankruptcy over a span of three years – i.e. the non-bankrupt group for a particular 
year contains companies that had maintained a good record for at least three 
consecutive years. This was not possible for the year 2002 due to unavailability of 
data for the years 2000 and 2001. In spite of this shortcoming, there is a significant 
improvement in the accuracy level of the results obtained for year 2002 through using 
procedure-2 over those obtained by using procedure-1.  

5.4   Comparison with Other Sickness Prediction Models 

To compare our test results obtained above we classified our data set using three 
statistical methods viz. the Altman Z-score , the Emerging Market score, and the 
Ohlson Score, and then calculated the errors for the classification results obtained. 

It can be seen from Table 7 that for the year 2002 the accuracy of our AIS 
classification is far better than any of the results obtained by both the statistical 
methods. For the other two years our Type-1 error percentage is slightly higher than 
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that of the Z-score. As far as the Type-II error rate for all the three years is concerned, 
both our proposed models always yield far better results than the Z-score model.  

Upon comparison of the result of our AIS models with the EM-score results, we can 
see that although we have obtained a slightly higher Type-II error, we obtain a 
marked improvement in Type-I error rate. 

Table 7. Classification results obtained by statistical models 

Z-score EM-score 

Year Type-I Error 
(%) 

Type-II Error 
(%) 

Type-I Error 
(%) 

Type-II Error 
(%) 

2002 9.375 36.56 53.125 0 

2003 4 39.79 32.653 0 

2004 0 43.8 30.434 0 

The O-score results are not shown as it classified all the companies in our dataset 
as bankrupt giving a probability of bankruptcy for each one of them to be greater  
than 0.5. 

The high error obtained in classification by the statistical methods can be attributed 
to the fact that these methods have constraints on the size, market and the economic 
environment of the companies which are not imposed in selection of our dataset. 

6   Conclusion and Future Scope 

In this paper, we explored the possibility of using the Artificial Immune Systems 
framework for predicting the sickness of a company over a period of one year. We 
have compared two different procedures using the basic negative selection and 
positive selection algorithms; and our results clearly show the advantage of using 
positive selection algorithms to optimize the detector set generated by the negative 
selection. However, both our techniques demonstrate very high accuracy.  

Our method uses only two parameters, r1 and r2 which can be determined easily 
after a few simulations and statistical tests. The results, however exhibit high 
accuracy over a range of combinations of these parameters, regardless of the data set 
used for training. This offers us the opportunity of using different data sets for 
training depending on economic environment of the companies that we would like to 
classify. There is also a possibility of using more advanced distance measures or data-
mining techniques for improving the detector set. 

We also compared our results with classification results obtained by statistical 
methods and noted a marked difference in performance on the three data sets we have 
used.  

These models can also be used for Credit Rating with slight modifications in data 
representation and can be easily designed to suit different economic environments by 
incorporating some macro-economic variables in the antigen/antibody representation. 



 Bankruptcy Prediction Using Artificial Immune Systems 141 

There is also scope for finding the optimal set of financial variables to be used in our 
model which may exhibit enhanced results.  
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Abstract. The problem of generating r-contiguous detectors in nega-
tive selection can be transformed in the problem of finding assignment
sets for a Boolean formula in k-CNF. Knowing this crucial fact enables
us to explore the computational complexity and the feasibility of find-
ing detectors with respect to the number of self bit strings |S|, the bit
string length l and matching length r. It turns out that finding detectors
is hardest in the phase transition region, which is characterized by cer-
tain combinations of parameters |S|, l and r. This insight is derived by
investigating the r-contiguous matching probability in a random search
approach and by using the equivalent k-CNF problem formulation.

1 Introduction

Theoretical immunologists have proposed the r-contiguous matching function
to abstract the affinity between an antibody and an antigen in immune system
models [1]. In the field of artificial immune systems, the r-contiguous matching
function is applied as a matching rule for change detection [2] or more generally
for anomaly detection problems. In these domains, antibodies (called detectors)
and antigens are abstracted as bit strings and the r-contiguous matching rule
is applied for detecting (anomalous) antigens. More specifically, in this immune
inspired anomaly detection approach, the problem is to find detectors, such that
no detector match with any self antigen. This form of detector generation for
the complementary space is called negative selection [3].

In recent years, many attempts were made (see [4,5] for an overview) to gen-
erate detectors efficiently, i.e. in polynomial time and with polynomial space
occupation with regard to the matching length r and number of self antigens
|S|. All attempts in designing efficient algorithms for generating r-contiguous
detectors were limited successful. The proposed algorithms either have a time or
a space complexity which is exponential1 in the matching length r, i.e. O(2r) or
in the number of self elements |S|, i.e. O(e|S|). Stibor et al. [6] proved that the
1 There exists a linear time detector generating algorithm [2], however this algorithm

still requires O(2r) time and space occupation. It is termed linear, because it runs lin-
ear in |S| under the assumption that |S| = O(2r). For real-world problems however,
the assumption |S| � 2r is justifiable.

L.N. de Castro, F.J. Von Zuben, and H. Knidel (Eds.): ICARIS 2007, LNCS 4628, pp. 142–155, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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problem of generating r-contiguous detectors can be transformed in a k-CNF
satisfiability problem and argued that at least Ω(2r) bit string evaluations are
required to find all r-contiguous detectors.

In this paper we go one step further and explore the computational complexity
of generating detectors with the Davis-Logemann-Loveland algorithm. Further-
more, we rigorously analyze, when detectors can be generated with respect to
the number of self bit strings |S|, the bit string length l and matching length
r. It will turn out that generating r-contiguous detectors is computationally
not equally “hard”. More specifically, it is relatively cheap computationally, to
verify that no detectors can be generated or that a large number of detectors
can be generated. However, there also exists a phase transition region which is
characterized by certain combinations of parameters |S|, l and r where finding
detectors is hardest. This insight will be derived from two directions, namely
by investigating the r-contiguous matching probability in a random search ap-
proach and by using the problem transformation of generating detectors into the
k-CNF satisfiability problem.

2 Bit String Matching Rule and Generating Detectors
Randomly

Let U be a universe which contains all 2l distinct bit strings of length l.

Definition 1. A bit string b ∈ U with b = b1b2 . . . bl and detector d ∈ U with
d = d1d2 . . . dl, match with r-contiguous rule, if a position p exists where bi = di

for i = p, . . . , p + r − 1 and p ≤ l − r + 1.

Loosely speaking, two bit strings, with the same length, match if at least r
contiguous bits are identical. In the remaining sections the expression “detectors”
will refer to r-contiguous detectors. Sets are denoted in calligraphic letters, e.g.
S and |S| denotes the cardinality. Throughout the paper, we will assume that S
contains pairwise distinct bit strings randomly drawn from U .

2.1 Randomly Generating Detectors in Negative Selection

Given U and its partition into distinct subsets S and N . In negative selection
one has to find detectors such that no detector matches (see Def. 1) with any bit
string from S. Detectors which satisfy this property match with — not neces-
sarily all — bit strings from the complementary space U \ S. Algorithm (1) is a
straightforward random search to generate, i.e. to find detectors. A bit string d
is randomly sampled from U and matched against all bit strings in S. When no
r-contiguous match occurs, d is added to the detector set D. This random sam-
pling is repeated until a certain number of detectors is found. It is obvious that
this straightforward random search is not an efficient search technique. How-
ever, a thorough probabilistic analysis of algorithm (1) reveals valuable insights,
whether detectors can or can not be generated.
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Algorithm 1. Random search for detectors in negative selection
input : l, r, t ∈ N where 1 ≤ r ≤ l and S ⊂ U
output: Set D ⊂ U of r-contiguous detectors
begin1

D := ∅2

while |D| < t do3

Sample randomly a bit string d ∈ U4

if d does not match with any bit string of S then5

D := D ∪ {d}6

end7

2.2 Probability of Matching in Random Detector Generation

The probability that two randomly drawn bit strings from U are not matching
with the r-contiguous rule can be determined with approaches from probability
theory, namely recurrent events and renewal theory [7]. In Feller’s textbook [7]
on probability theory an equivalent2 problem is formulated as follows:

“A sequence of n letters S and F contains as many S-runs of length r
as there are non-overlapping uninterrupted blocks containing exactly r
letters S each”.

Given a Bernoulli trial with outcomes S (success) and F (failure), the probability
of no success running of length r in l trials is according to Feller

PWF =
1 − px

(r + 1 − rx)q
· 1
xl+1

(1)

where
p = q =

1
2

and x = 1 + qpr + (r + 1)(qpr)2 + . . .

A simpler approximation — however only valid for r ≥ l/2 — is provided by
Percus et al. [1]:

PJP = 1 − 2−r [(l − r)/2 + 1] . (2)

From (1) one can straightforwardly conclude that the probability of finding t
detectors when given l, r and |S| results in:

Prob[find t detectors] = t−1 · (PWF )|S|. (3)

2 The Link between recurrent events, renewal theory and the r-contiguous matching
rule was discovered originally by Percus et al. [1] and rediscovered by Ranang [8].
Percus et al. presented in [1] the approximation (2) which is only valid for r ≥ l/2,
but mentioned the full approximation for 1 ≤ r ≤ l indirectly by mentioning the
name de Moivre and citing Uspensky’s textbook (see pp. 77 in [9]).
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Moreover, from (3) one can conclude how often on average step 4 in algorithm
(1) is executed when given t, or in other words how many bit strings one has to
sample before finding t̂ detectors.

t̂ =
1

t−1 · P |S|
WF

. (4)

Result (4) is equivalent to an earlier result on negative selection [3], when PWF

is replaced by PJP .
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Fig. 1. Coherence between the probability of finding a detector randomly and the
parameters l, r and |S|. There exists a sharp transition boundary where the probability
rapidly changes from 0 to 1.

2.3 Probability Transition in r-Contiguous Matching

Knowing the probability PWF enables us to investigate the combinations of
parameters |S|, l and r where, with high probability detectors can be generated
(i.e. exist) or with high probability can not be generated. The graphs in figure 1
show the probability for finding a detector for fixed l and variable r and |S|
according to term (3). One can see, that the larger the cardinality of S, the
larger the interval for r where the resulting probability is nearly 0 to find a
detector, or in other words where no detectors exist. On the other hand, the
smaller the cardinality of S, the larger the interval for r where the resulting
probability is nearly 1 to find a detector. In figure 1(b) the same graph, but only
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for |S| = 1000 is highlighted. One can see in detail that three different intervals
(i1, i2, i3) exist. One can either find with high probability a detector in interval
i1, or find with high probability no detector in interval i3. Moreover there exists
a third interval i2 where the probability rapidly changes from 0 to 1. For the
sake of conformity with the subsequent sections, we denote the interval i2 as
phase transition region. We will later see, that finding detectors in this region,
which is characterized by certain combinations of parametes |S|, l, r is hardest
from the perspective of computationally complexity.

To summarize this section, if parameters |S|, l and r are chosen such that
term (3) results in a value very close to 0, then in the worst case no detectors
can be generated, never mind which algorithms, i.e. search techniques are applied
to generate detectors, because there exist no detectors. On the other hand, if
term (3) is close to 1, then a large number of detectors exist.

2.4 Coherence of Matching Length r, Self Set S and Random
Detector Search

In the artificial immune system community seems to exist some confusion re-
garding the time complexity of algorithm (1). More specifically, authors in [3]
argued that generating detectors when applying the random search approach can
be performed linearly in |S|. Their argument is based on the observation that t̂
in (4) is minimized by choosing 1− PJP ≈ 1/|S|. In other words, the number of
bit strings one has to sample before finding t detectors is linear proportionally
to |S|, when using algorithm (1). This observation implies that the matching
threshold r purely depends on the cardinality of S when l is fixed. To be more
precise, suppose r ≥ l/2, then

2−r [(l − r)/2 + 1] ≈ |S|−1 ⇐⇒ r ≈ l + 2 − W (8 ln(2)2l/|S|)
ln(2)

(5)

where W (x) is the Lambert W -function which can be expressed as the series
expansion

W (x) =
∞∑

k=1

(−1)k−1kk−2

(k − 1)!
xk. (6)

Practically speaking, once |S| and l are fixed, the matching length r is such
chosen that it will fall in interval i3 (see Fig. 1(b)) and consequently this implies
that a large number of detectors can be generated.

With regards to anomaly detection problems, it is known [10,11,12] that the
r-contiguous matching rule is a positional biased detection rule. That means
that the value of r is inextricably linked to the underlying data being analyzed.
The assumption 1 − PJP ≈ 1/|S| however, implies that r grows with |S| (see
term (5)), and does not consider the positional bias. On the other side, if l and r
are fixed3 and |S| is considered as the variable parameter then t̂ = O(e|S|), that
3 To capture the semantical representation of the data being analyzed.
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is, r will lie within interval i1 for some large |S| and this consequently implies
that a random search for detectors results in an exponential time complexity —
when detectors exist.

2.5 Average Number of Detectors and Holes

For the sake of completeness, we present results on the average number of de-
tectors that can be generated and the resulting holes. The results are straight-
forward conclusions from the previous section 2.2.

Recall, algorithm (1) fails to find any detector when a certain parameter
combination of S, l and r exists. More specifically, the universe U is not only
composed of sets S,D and N , but also of set H. Recall, the set N contains all
bit strings which are detectable by the detectors from D and hence D ⊂ N . The
set H, termed hole set contains all bit strings which are not detectable by any
detector, however, H does not contain any bit strings from S, i.e. H∩S = ∅ and
hence, |H| is directly linked with interval i1 (see Fig.1(b)). More specifically, if
a parameter combination of l, r and S is chosen such that term (3) is very close
to 0, then |N | � |H| or in the extreme case |N | = 0, i.e. the universe U is only
composed of sets S and H.

Knowing this coherence between term (3) and the universe composition, the
average number of detectors that can be generated results in

E[|D|] = 2l · (PWF )|S|. (7)

As the universe is composed of U = S ∪ N ∪ H when applying the negative
selection, the number of holes results in

|H| = |U| − |N | − |S| (8)

where

E[|N |] = 2l − 2l · (PWF )E[|D|]︸ ︷︷ ︸
Number of bit strings
not detected by E[|D|]
detectors

(9)

and hence the average number of holes results in

E[|H|] = 2l · (PWF )E[|D|] − |S|. (10)

3 Link Between r-Contiguous Detectors and k-CNF
Satisfiability

Stibor et al. [6] proved that the problem of generating detectors in negative se-
lection can be transformed in an equivalent problem of finding assignment sets
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for a Boolean formula in k-CNF. Satisfying a Boolean formula in k-CNF is an
instance of the satisfiability problem [13], where one has to decide if there is
some assignment of true and false values that will make a Boolean formula in
conjunctive normal form true. For the sake of clarity, we summarize the trans-
formation steps presented in [6].

Let b ∈ {0, 1} and L(b) a mapping defined as:

L(b) →
{

x if b = 0
x otherwise

where x, x are literals. Moreover, let k, l ∈ N, where k ≤ l and s ∈ U , where s[i]
denotes the bit at position i of bit string s. A mapping from bit string s into the
l-k-CNF4 is defined as follows:

C(s, k) → (L(s[1]) ∨ L(s[2]) ∨ . . . ∨ L(s[k])) ∧
(L(s[2]) ∨ L(s[3]) ∨ . . . ∨ L(s[k + 1])) ∧

...
(L(s[l − k + 1]) ∨ . . . ∨ L(s[l])) .

The resulting Boolean formula is constructed by an AND-combination of all bit
strings in S, i.e.

φ̂rcb := C(s1, k) ∧ C(s2, k) ∧ . . . ∧ C(s|S|, k) for si ∈ S, i = 1, . . . , |S|

Proposition 1 (Stibor et al. [6]). Given a universe U which contains all 2l

distinct bit strings of length l, a set S ⊂ U and the set D which contains all
generable r-contiguous detectors, which do not match any bit string from S. The
Boolean formula φ̂rcb which is obtained by C(s, r) for all s ∈ S is satisfiable only
with the assignment set D.

To summarize, instead of searching for detectors e.g. by means of algorithm (1),
one can use SAT-Solvers [14] to find assignments sets of φ̂rcb. This crucial fact can
be exploited for quantifying the computational complexity of finding detectors.
However, one must estimate the average number of distinct clauses after applying
the transformation steps, otherwise one would consider equal clauses several
times — and this consequently would make the problem “harder” then it is.

3.1 Average Number of Distinct Clauses

Let S be a subset of U which contains pairwise distinct bit strings s1, s2, . . . , s|S|
which are randomly drawn from U . The constructed Boolean formula φ̂rcb does
not necessarily contains pairwise distinct clauses. Two clauses are distinct from
each other, if they differ in at least one literal.

4 The Boolean formula is denoted as l-k-CNF, because it is a special type of a k-CNF.
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Example 1. Let S := {0101, 1101} and r = 3, hence φ̂rcb results in

(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4).

Example 1 shows that the second and the fourth clause are equal, because the
last three bits of 0101 and 1101 are equal.

Proposition 2. Given bit string length l, matching length r and let S be a subset
of U which contains pairwise distinct bit strings s1, s2, . . . , s|S| randomly drawn
from U . The average number of pairwise distinct clauses is

E[|φ̂rcb|] = 2r (l − r + 1) −
(

1 − 1
(l − r + 1) 2r

)|S|(l−r+1)

(l − r + 1) 2r. (11)

Proof. Construct a lookup table T which contains all 2r · (l− r +1) clauses with
label T and is of the form

clause label
(x1 ∨ x2 ∨ . . . ∨ xr−1 ∨ xr) T
(x2 ∨ x3 ∨ . . . ∨ xr ∨ xr+1) T

...
...

(xl−r+1 ∨ xl−r+2 ∨ . . . ∨ xl−1 ∨ xl) T
(x1 ∨ x2 ∨ . . . ∨ xr−1 ∨ xr) T
(x2 ∨ x3 ∨ . . . ∨ xr ∨ ∨ xr+1) T

...
...

(xl−r+1 ∨ xl−r+2 ∨ . . . ∨ xl−1 ∨ xl) T
...

...
(x1 ∨ x2 ∨ . . . ∨ xr−1 ∨ xr) T
(x2 ∨ x3 ∨ . . . ∨ xr ∨ xr+1) T

...
...

(xl−r+1 ∨ xl−r+2 ∨ . . . ∨ xl−1 ∨ xl) T

Transform S into the corresponding Boolean formula φ̂rcb and set the label to
F whenever a clause in T is member of φ̂rcb. As S is randomly drawn without
replacement from U , the F and T labels are binomially distributed in T. The
probability of finding no clauses which are labeled with F when randomly drawn
|S| · (l − r + 1) clauses from T results in(

1 − 1
(l − r + 1) 2r

)|S|(l−r+1)

and hence, the total number of clauses with label F results in

2r (l−r+1)−
(

1 − 1
(l − r + 1) 2r

)|S|(l−r+1)

(l−r+1) 2r. ��
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4 Computational Complexity of Generating Detectors

A common approach to quantify the computational “hardness” of an instance of
a Boolean formula in k-CNF is to count the number of backtracking attempts
in the Davis-Logemann-Loveland (DLL5) algorithm. The DLL algorithm [17] is
based on the elimination rules proposed by Davis and Putnam [18] and termi-
nates either with result unsatisfiable (empty clause) or satisfiable (empty φ).
More specifically, the algorithm is a depth-first search technique and uses recur-
sive backtracking for guiding the exploration. The algorithm constructs a deci-
sion tree, where assignments of the variables coincide with paths from the root
to the leafs. If a path leads to an unsatisfiable result, then the algorithm backs
up to a different branch. This recursive search is reiterated until it terminates
with a satisfiable or unsatisfiable result. In the worst case the whole decision
tree has to be inspected, i.e. it will take an exponential number of evaluations
— similar to an exhaustive search. However on average the DLL algorithm is
much faster because it can prune whole branches from the decision tree without
exploring the leaves.

Given a Boolean formula φ in CNF, a literal l in φ and the reduction function
R(φ, l) that outputs the residual formula of φ by:

– removing all the clauses that contain l,
– deleting l from all the clauses that contain l,
– removing both l and l from the list of literals.

A clause that contains one literal is called unit clause, and a literal l is called
monotone, if l appears in no clause of φ.

In lines 2-7 the reduction function is applied whenever a unit clause or a
monotone literal is found. The subsequent recursive call is performed in lines
11, 13 respectively. “Easy” input instances imply that the DLL algorithm re-
quires few backtracking attempts because clauses and literals can be efficiently
eliminated by means of R(φ, l) without executing many subsequent recursive
calls. On the other hand, “hard” instances imply that many recursive calls or
backtracking attempts are required. In the next section, the terms “easy” and
“hard” are clarified. More specifically, it will be shown that parameters |S|, l
and r specify the ratio of the number of clauses to variables of the φ̂rcb ins-
tances and therefore characterize the computational complexity of the DLL
algorithm.

4.1 Phase Transition in k-CNF Satisfiability

The k-CNF satisfiability problem is NP-complete for k > 2, however, this fact
does not imply that all instances of the k-CNF satisfiability problem are in-
tractable to solve. In point of fact, there exists many problem instances which
are “easy” to solve, i.e. one can efficiently decide whether the instance is satis-
fiable or is unsatisfiable. On the other hand there also exists problem instances

5 The DLL algorithm is sometimes also called DPL or DPLL algorithm [15,16].
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Algorithm 2. Davis-Logemann-Loveland algorithm (DLL(·))
input : φ (Boolean formula in CNF)
output: SATISFIABLE or UNSATISFIABLE
begin1

forall unit clauses {l} in φ do2
φ ← R(φ, l)3
if φ includes empty clause then4

return UNSATISFIABLE5

forall monotone literals l in φ do6
φ ← R(φ, l)7

if φ is empty then8
return SATISFIABLE9

choose a literal l in φ10
if DLL(R(φ, l)) = SATISFIABLE) then11

return SATISFIABLE12

if DLL(R(φ, l)) = SATISFIABLE) then13
return SATISFIABLE14

return UNSATISFIABLE15

end16

which are “hard”, i.e. one can not efficiently decide whether the instance is satis-
fiable or is not satisfiable. The computational “hardness” of finding assignments
sets for randomly generated instances is characterized by the ratio [19]

rk =
number of clauses

number of variables
. (12)

If the Boolean formula φ has many variables and few clauses, then φ is under-
constrained and as a result it exists many assignment sets. The DLL algorithm
requires for under-constrained problem instances few backtracking attempts and
therefore “easily” deduces the satisfiability. On the other hand, if the ratio of the
number of clauses to variables is large, then φ is over-constrained and almost has
no satisfying assignment set. Such over-constrained instances are likewise “easily”
deducible for the DLL algorithm. However, there also exists a transition from
under-constrained to the over-constrained region. In such a phase transition re-
gion the probability of the instances being satisfiable equals 0.5 and thus one has
the largest uncertainty whether the instances are satisfiable or are unsatisfiable.

For the 3-CNF satisfiability problem, the ratio (phase transition threshold) is
experimentally approximated by ≈ 4.24 [15,20]. That means, when r3 is close6

to 4.24, the DLL algorithm has to backtrack most frequently to determine the

6 It is still an open problem to prove where the exact phase transition threshold
is located. Latest theoretical work showed that the threshold rk lies within the
boundary 2.68 < rk < 4.51 for k = 3 [21].
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final result. If the Boolean formula is under-constrained (r3 < 4.24) or over-
constrained (r3 > 4.24), then the algorithm prunes whole branches from the
decision tree without exploring the leaves and terminates after few recursive
calls.

5 Experiment with φ̂rcb Instances

The computational complexity of finding detectors is experimentally investigated
with the DLL algorithm. More specifically, the parameters l = 75, r = 3 are
chosen and |S| is varied from 1 to 25, i.e. for each cardinality value from 1
to 25, S contains distinct bit strings which are randomly drawn from U . As a
result, one obtains Boolean formulas φ̂rcb in 75-3-CNF with 75 variables and
(75 − 3 + 1) · |S| clauses, E[|φ̂rcb|] distinct clauses, respectively. To obtain a
large number of different φ̂rcb instances, for each value of |S|, 300 instances are
randomly generated. The DLL algorithm is applied on each instance and the
results: satisfiable/unsatisfiable and the number of backtracking attempts are
noted. The result is depicted in figure 2. The abscissa denotes the ratio of the
average number of distinct clauses to variables. The ordinate denotes the number
of backtracking attempts (computational costs). The resulting ordinate values
are colored gray if the DLL algorithm outputs satisfiable, otherwise it outputs
unsatisfiable and the values are colored black.
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Fig. 2. Number of backtracking attempts (computational costs) of the DLL algorithm
to decide whether a φ̂rcb instance is satisfiable or unsatisfiable. The gray points denote
satisfiable instances whereas black points denote unsatisfiable instances. The “hardest”
instances are lying in the interval 4 to 5, termed phase transition region.
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One can see in figure 2 that for (r3 < 4) a large number of satisfiable instances
exist. Or to say it the other way around, for small values of |S| the resulting
Boolean formula φ̂rcb is under-constrained and therefore a large number of satis-
fiable instances exist. The DLL algorithm hence “easily” deduces a satisfiability
result. The number of satisfiable and unsatisfiable instances is nearly equal for
(4 < r3 < 5). These instances have the largest uncertainty for the DLL algo-
rithm. As a consequence, the DLL algorithm requires the most backtracking
attempts to determine whether the instances are satisfiable or are unsatisfiable.
A ratio (r3 > 5) implies that a large number of over-constrained instances exist
and hence, the DLL algorithm “easily” deduces the unsatisfiable result. Another
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Fig. 3. Coherence between the percentage of satisfiable instances and the ratio of
E[|φ̂rcb|]/l. The “hardest” instances live in the region where the number of satisfiable
and unsatisfiable instances is equal, or in other words, the probability of instances being
satisfiable equals 0.5.

way to visualize this “easy-hard-easy” pattern, is to plot the percentage of satis-
fiable instances on the ordinate (see Fig. 3). One can see that the probability of
the instances being satisfiable equals 0.5 when (4 < r3 < 5) and rapidly changes
to 1 for (r3 < 4) and to 0 for (r3 > 5).

6 Conclusion

We have rigorously analyzed the feasibility of generating detectors with respect
to the number of self bit strings |S|, the bit string length l and matching length r.
With high probability detectors either can be generated or in contrast, can not
be generated. However, there also exists a region where the probability rapidly
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changes from 0 to 1. This behavior can be explained by transforming the prob-
lem of finding detectors into the k-CNF satisfiability problem. If a large number
of self bit strings exist and r is close to 0, then the resulting Boolean formula
is over-constrained and no assignment sets exist. In contrast, if a small number
of self bit strings exist and r is close to l, then the resulting Boolean formula
is under-constrained and as a result a large number of assignment sets exist.
Moreover we exploited the problem transformation to investigate the computa-
tional complexity of finding detectors by means of the DLL algorithm. Finding
detectors is “easy” for under-constrained Boolean formulas. It is also “easy” to
determine for over-constrained Boolean formulas that no detectors exist. How-
ever, for parameter combinations of |S|, l and r where the resulting ratio of the
average number of distinct clauses to variables is close to the phase transition
threshold, finding detectors is “hardest”. For such “hard” instances the DLL al-
gorithm requires the most backtracking attempts, because the probability of the
instances being satisfiable equals 0.5 and thus one has the largest uncertainty
whether the instances are satisfiable or are unsatisfiable.
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Abstract. A new scheme for detector generation for the Real-Valued Negative 
Selection Algorithm (RNSA) is presented. The proposed method makes use of 
genetic algorithms and Quasi-Monte Carlo Integration to automatically generate 
a small number of very efficient detectors. Results have demonstrated that a 
fault detection system with detectors generated by the proposed scheme is able 
to detect faults in analog circuits and in a ball bearing dataset.  

Keywords: Negative Selection, Detector Generation, Genetic algorithms, 
Quasi-Monte Carlo. 

1   Introduction 

The development of test strategies for detecting and diagnosing faults is still severely 
dependent on engineers' expertise and on the knowledge they have about the system’s 
operational characteristics. As a result, fault detection and identification is still an 
interactive and time-consuming process. A survey of research in the area shows that, 
in the last decades, a good amount of research on fault diagnosis has concentrated on 
the development of intelligent tools to make the task of fault diagnosing easier. 
Although there have been several important developments, these new technologies 
have not been widely accepted [1]. This should motivate the researchers to look for 
other paradigms and to develop new strategies for fault diagnosis. 

Artificial immune systems [2] take their inspiration from the operation of the 
human immune system, which is capable of recognizing virtually any pathogenic 
agent. This is done by distinguishing the body’s own cells and molecules (self) from 
foreign antigens (nonself). Despite the fact that this is a relatively new topic of 
research, applications in many areas already exist [2], e.g., computer security, virus 
protection, anomaly detection, process monitoring, pattern recognition, robot control 
and software fault tolerance. The behaviors (normal operation or different types of 
faults) of each system can be associated with a unique set of features, i.e., a signature. 
The method proposed assumes that similar system' behaviors present similar 
signatures. The immune algorithm links the signatures that correspond to the normal 
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behavior to the concept of self, so that this can be used to identify abnormal behavior. 
Therefore the proposed immune-based fault detection system is capable of 
determining if the system under test is faulty. An important feature of the proposed 
method is that it can automatically generate very efficient detectors by genetic 
algorithms. 

The material in this paper is arranged in the following order. In section 2 artificial 
immune systems are briefly reviewed, with emphasis on the Negative Selection 
Algorithm (NSA). In section 3 Genetic Algorithms are briefly reviewed. In section 4 
the proposed method for generating a small and efficient number of detectors for the 
NSA is described. The results obtained for fault detection in a Sallen-Key bandpass 
filter, in a continuous-time state variable filter and in ball bearing dataset are 
discussed in section 5. Finally, section 6 concludes this work.  

2   Negative Selection Algorithm 

Artificial immune systems take their inspiration from the operation of the human 
immune system to create novel solutions to problem solving. Some algorithms have 
been presented as successful implementations of artificial immune systems: the 
immune network, the Clonal Selection Algorithm and the Negative Selection 
Algorithm [2]. The Negative Selection algorithm can be applied to several areas and 
is especially useful in fault detection.  This algorithm makes use of the immune 
system's property of distinguishing any foreign cells (nonself) from the body’s own 
cells [3]. This characteristic can be used for distinguishing normal systems patterns 
from abnormal ones, thus providing a fault detection mechanism. It is important to 
identify situations where this characteristic could be an advantage [4]: when the 
normal behavior of a system is defined by a set of complex patterns, where it is very 
difficult to obtain their relations – it may be easier to look at the abnormal patterns 
instead of the normal ones – and when the number of possible abnormal patterns is 
much larger than that of normal ones. Since training a fault detection system with a 
large number of fault situations becomes unpractical, it is a good strategy to first 
detect any abnormal behavior and then try to identify its cause. 

The negative selection algorithm – NSA [3] is inspired by the mechanism used by 
the immune system to train the T-cells to recognize antigens (nonself) and to prevent 
them from recognizing the body’s own cells (self). It generates a set of (binary) 
detectors by randomly creating candidates and then discarding those that correspond 
to the notion of self. These detectors can later be used for detecting anomalies. In the 
original proposal, the NSA algorithm has three basic steps: Self Definition – a 
collection of binary strings S of limited length that needs protection or monitoring; 
Detector Generation – set of detectors that fail to match any strings in S; Monitoring – 
monitor S for changes by continually matching the detectors against S; if any detector 
ever matches it, then an anomaly must have occurred, since the detectors are designed 
to never match any of the strings in S. The drawbacks found in the NSA with binary 
representation have encouraged the development of a Real Valued Negative Selection 
Algorithm (RNSA) [5], which has the same three basic steps of the original NSA but 
employs real-valued encoding for the characterization of self and nonself. The 
detectors and self points can be seen as hyperspheres; the self points represent normal 
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behavior and the detectors are responsible for finding anomalies. The detector’s 
radius determines the threshold for the matching rule, which in this case is the 
Euclidean distance. This algorithm takes the self samples, which are represented by n-
dimensional points, and tries to evolve detectors (another set of n dimensional points) 
to cover the nonself space. This is performed through an interactive process aiming at 
two main goals: keep the detectors away from the self set and maximize the nonself 
space coverage by keeping the detectors apart. The hyperspace covered by each 
detector can be set through a parameter r (radius). Once detector generation is 
completed, the detectors can be employed in the third phase (Monitoring). Figure 1 
shows a two dimensional example of the Detector Set and of the self points. The gray 
area represents the self region. The circles identified by “+” represent the detectors.  
Assuming that the point indicated by “o” represents the system’s current state, no 
anomaly is detected, since it is not covered by the detector. However, the point 
indicated by “∗” is reported as an anomaly (fail) since it is located in the space 
covered by the detectors.  

The RNSA [5] can also be used to generate detectors that work as nonself samples, 
which, together with the self samples, are taken as inputs to a classification algorithm. 

 

Fig. 1. Detector Coverage 

In the original RNSA, the number of detectors to be used has to be chosen 
beforehand, there is no way to determine if the algorithm is really improving the 
placement of the detectors in order to provide the best possible distribution. In an 
improved version of the algorithm [6], the number of detectors can be estimated 
beforehand and their positions are determined by the minimization of a function that 
represents the overlap between the detectors themselves and between them and the 
points that represent the self. In these implementations of RNSA, all detectors have 
the same radius, which may pose a scalability limitation: if a small radius is chosen, a 
large number of detectors will be needed to cover the space; if a large radius is 
chosen, parts of the nonself space may be left uncovered. This limitation encouraged 
the development of new detector representations – allowing variable geometry – and 
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of new detector generation schemes. As examples of such schemes, the V-Detectors 
[7], the boundary-aware negative selection algorithm [8] and the Quadtree automatic 
detector generation [9] can be mentioned.    

3   Genetic Algorithms 

Genetic Algorithms [10] provide an adaptive searching mechanism inspired on 
Darwin's principle of reproduction and survival of the fittest. The individuals 
(solutions) in a population are represented by chromosomes; each of them is 
associated to a fitness value (problem evaluation). The chromosomes are subjected to 
an evolutionary process that takes several cycles (generations). Basic operations are 
selection, reproduction, crossover and mutation. Parent selection gives a higher 
probability of reproduction to the fittest individuals. During crossover some 
reproduced individuals cross and exchange their genetic characteristics. Mutations 
may occur in a small percentage and cause a random variation in the genetic material, 
thus contributing to introduce variety in the population. The evolution process guides 
the genetic algorithm through more promising regions in the search space. Some of 
the advantages of using genetic algorithms are: it is a global search technique, can be 
applied to the optimization of ill-structured problems and do not require a precise 
mathematical formulation for the problem. Genetic algorithms are robust, applicable 
to a number of problems and efficient, in the sense that either a sub-optimal or 
optimal solution may be found within reasonable time and computational effort. 

4   Proposed Method 

The proposed method makes use of genetic algorithms to generate the detector set. 
The success of this method depends on how the solution is coded in the chromosome 
and on the fitness function chosen for evaluation of the solution. The next two 
subsections explain each of these implementations. 

4.1   Chromosome 

In the proposed method, each chromosome represents a possible detector set where 
each gene represents a pointer (index) to a certain point in a sequence of samples that 
represents a probability distribution. Therefore, each chromosome determines which 
points from the sequence should be used as detectors' centers. The main idea behind 
this representation is to reduce the chromosome size, especially in high dimension 
problems. Irrespective of the problem's dimension, the chromosome size is equal to 
the maximum number of detectors desired. A possible example of this representation 
is shown in Fig. 2, where the circles represent the self set; the points identified by '+' 
are candidates to be detectors' centers. In the chromosome shown on the right the five 
genes indicate that points 3, 6, 10, 4 and 8 are the candidates. 
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Fig. 2. Circles represent the self set; points identified by  "+" represent possible detectors' 
centers; the chromosome (on the right) indicates the points that will be used as detectors' 
centers 

In this work, detectors' centers were placed by using quasi-random sequences, 
since these show a high level of uniformity in multidimensional spaces. Some of well 
known quasi-random sequences are Faure, Sobol and Halton [11]. An example of the 
advantage of using quasi-random distributions can be seen in Fig. 3, which shows the 
volume (area) covered by a detector set in a hypercube as a function of the number of 
detectors for three different distributions. All detectors have the same radius (0.05), 
and the detectors' centers are taken the following distributions: pseudo-random (1), 
Faure quasi-random (2) and Sobol quasi-random (3). The volume (area) covered 
when detectors' centers are taken from quasi-random distributions (2 and 3), is larger 
than the volume (area) covered when detectors' centers are taken from a pseudo-
random distribution (1). 

 

Fig. 3. Volume covered by a detector set versus no. of detectors 

Once the detectors' centers have been determined, a decoding function computes 
the largest possible radius, taking into consideration that the Detector Set cannot 
“attack” the self set and that there should be a certain amount of overlap between the 
detectors. If one of the chosen centers is inside the self set, it is discarded. For 
example, in Fig. 2, the detector center with label (3) would be discarded. After the 
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decoding function has calculated the largest possible radius that does not “attack” the 
self set, the radius could be adjusted to have a certain degree of overlap. The 
parameter α controls the amount of overlap. If α = 0, the calculated radius is equal to 
the distance between the detectors; if α = 1 there is no overlap between the detectors. 
The calculated radius for a detector based on the value of α is shown in Fig. 4. 

 

Fig. 4. Detector radius as a function of the parameter α: circles identified by "+" represent the 
detectors; remaining circles represent the self set 

The process of detectors placement after the radius has been calculated by the 
decoding function is shown in Fig. 5 (from the upper left, clockwise).  Initially, the 
decoding function establishes the radius of the first detector so that it will not overlap 
with any of the circles that represent the self set. A second detector is placed with a 
certain amount of overlap with the first one. This rule – a certain overlap with other 
detectors and no overlap at all with the self set – is observed in further placements. 

 

Fig. 5. Detector Placement: circles identified by "+" represent the detectors; remaining circles 
represent the self set 
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4.2   Fitness Function Computation by Monte Carlo Integration 

The fitness function used to evaluate the quality of the solution coded in the 
chromosome is the volume of the detector set.  If the volume of the self set Vs can  
be computed, the volume Vns that should be covered by the detector set can easily be 
calculated as Vns = 1 - Vs, since the self/nonself space corresponds to a unit hypercube 
[0,1]n. Therefore, the closer the volume of the detector set represented in the 
chromosome is to the value of Vns, the better the solution. The volume of the detector 
set and the volume of the self set can be calculated by means of a Monte Carlo 
Integration. This technique is used for evaluating the integral I of a function f(x) 
[11][12], in the n-dimensional unit cube. 

Here, since the volume is to be calculated, f(Xi) is 0 if the point Xi is outside the 
volume,  and 1 if  Xi is inside the volume. 

In its basic form [12], the Monte Carlo Integration samples N independent random 
points X1, X2, ..., XN with uniform distribution in the unit cube to compute an 
estimation I' of the integral I, i.e.  E(I') = I,  as: 
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Assuming that the variance of  I'  is σ2 , the mean square error can be written as: 
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It can therefore be concluded that the estimated integral has a standard error of 
21Nσ . This means that the estimated error of the integral will decrease at the rate of 

21N  (convergence rate). In order to get a better convergence, quasi-random 
distributions are employed again. As opposed to pseudo-random ones, in quasi-
random distributions samples are deterministic and calculated in a way that “spaces” 
left between previous samples are filled by the new ones. This reduces the standard 
deviation and speeds up a Monte Carlo simulation [11] [12].  

5   Case Studies  

In order to evaluate the ability of the detector set generated by the proposed method in 
detecting faults, three experiments were made. The first and second case studies are 
related to fault detection in analog circuits and the third is related to fault detection in 
ball bearings. 

To assess the efficiency of the detectors, a test set with normal and abnormal 
behavior was created for each experiment. The test set was presented to the detector 
set as proposed in the negative selection algorithm [3] (Monitor). The test set was also 
presented to a set of classifiers that were trained and validated by using points that 
represent the normal behavior of the case studies (self) set and points taken from a 
quasi-random distribution that lay in the detector set range, in the fashion proposed in 
[5]. The idea behind using these points is not to bias the classifiers towards specific 
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types of faults, so that normal behavior can be distinguished from any faulty one. The 
classifiers used were: K-Nearest Neighbors (KNN), Probabilistic Neural Networks 
(PNN), Multilayer Perceptrons trained by the Levemberg-Marquardt method 
(MLP_LM) and neural networks with Radial Basis Functions (RBF). 

5.1   Fault Detection in Analog Circuits 

The analog circuits used in these experiments are: the Sallen Key bandpass circuit and 
the universal filter (Fig. 6) – a continuous-time state variable filter that incorporates 
high pass, band pass and low pass filters whose outputs are denoted by HPO, BPO 
and LPO respectively. Both circuits have been used in several publications 
[13],[14],[15],[16],[17] and the universal filter is considered a benchmark in fault 
detection, diagnosis and testing of analog circuits [16]. 

In this work, the circuits' step responses are applied to a differentiation circuit, 
which generates their impulse responses [17].  The presence of a fault or variations in 
circuit or device parameters may cause the impulse response (IR) to be different from 
that of a "golden circuit" in terms of amplitude or shape characteristics. A technique 
based on cross-correlation operations is employed to quantify that difference. The 
location of the cross-correlation peak (amplitude and time) of the two waveforms 
expresses the similarity between the IR of the circuit under test and of the "golden 
circuit". In order to evaluate the efficiency of the detectors, a test set with normal and 
abnormal circuits was created for each experiment.  

 

Fig. 6. The Sallen Key Bandpass circuit and the Universal Filter 

The self sets were created by calculating the locations of the correlation peak 
(amplitude and time) for circuits exhibiting normal behavior, i.e., those where all 
components meet tolerance specifications. It was considered that radius of each 
element of the self set was the distance to its nearest neighbor. This relates the 
employed radius to the self set distribution. 

 The test set used for evaluating the generated detectors consisted of several normal 
and faulty circuits. In these, for the Sallen-Key circuit, a deviation of 50% of the 
components' nominal value was considered as a fault, as in [13], [14], [15]. The faults 
for the universal filter were catastrophic (short circuit or open circuit), as in [17]. 
The detector generation was performed by the proposed method (see Section 4). The 
genetic algorithm has been configured as: population = 100; generations = 50; 
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crossover = 65% and mutation = 0.8%. Table 1 shows the nonself coverage and the 
number of detectors for the Sallen-Key filter and for the universal filter.  It is worth 
noting that the number of detectors required to provide near full coverage of the 
nonself is much smaller than the one that would be needed by the original RNSA. The 
estimation of the number of detectors for RNSA is done by assuming that all detectors 
have the same radius and that it is equal to the maximum distance between a self point 
and the nearest neighbor. This relates the employed radius for the detectors to the self 
set distribution.  

Table 1. Nonself coverage and number of detectors  

Circuit Nonself  coverage Number of detectors Number of detectors 
estimated for  RNSA  

Sallen Key 99.91 % 27 5602 
Universal 99.97 % 18 19,521,484 

 
Results for each of the classifiers are shown in Table 2. Parameters used in the test 

of the Sallen Key were:  KNN – no. of neighbors = 1; PNN – spread = 0.0314192; 
MLP-LM – number of neurons = 4; RBF – number of units = 20. All classifiers 
presented a very good performance, especially the Monitor, which agrees with the 
excellent coverage achieved by the detectors. The results shown here are better then 
those found in [13], which reports an error of 11%, and agrees to those reported in 
[14], [15] (0%). It is worth mentioned that those classifiers were based only on the 
knowledge of the normal behavior. Regarding the universal filter the parameters 
were: KNN – no. of neighbors = 1; PNN – spread = 0.03148; MLP-LM – number of 
neurons = 3; RBF – number of units = 40. The very good performance of all 
classifiers agrees with the excellent coverage achieved by the detectors. The results 
shown here match those found in [17]. It is worth mentioning that the classifiers were 
based solely on the knowledge of the normal behavior.  

Table 2. Test results for the  Sallen-key filter and for the Universal Filter 

Circuit Sallen Key Universal 
Classifier Training 

Error 
Validation 

Error 
Test 
Error 

Training 
Error 

Validation 
Error 

Test 
Error 

Monitor 0 0 0 0 0 0 
KNN 0 0.39% 0 0 0.15% 0.11% 
PNN 0 0.79% 0 0 0 0 
MLP_LM 0 0 0 0 0 0.3% 
RBF 0 0 0 0 0 0 

5.2   Ball Bearing Data 

Fault detection in ball bearings has been the subject of works on negative selection [7] 
[8]. Experimental data are the times series of measured acceleration of ball bearings 
[18].  The two preprocessing techniques are described in [7]. The first is basically 
DFT, and the second, which was used to produce the results, uses statistical moments 
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to represent the property of each segment of 128 points. The moments of the first 
(mean), second (variance), third, four and fifth order are used.  

Detector generation was performed by the proposed method (see Section 4). The 
genetic algorithm has been configured as follows: population = 100; generations = 
100; crossover =65% and mutation =0.8%. Table 3 shows the nonself coverage and 
the number of detectors. Once again, the number of detectors is much smaller than 
that estimated for the RNSA and the achieved coverage is near 100%.     

Table 3. Nonself coverage and number of detectors – Sallen-Key 

Nonself coverage Number of detectors Number of detectors estimated 
for RNSA 

99.99 % 100 14,824,841 

 
The test set for evaluation of the generated detector consists of data representing 

normal bearings (self) and outer race completely broken (nonself). Table 4 shows the 
results. Parameters used in the classifiers were:  KNN – no. of neighbors = 1; PNN – 
spread =0.019435; MLP-LM – number of neurons = 6; RBF – number of units = 20.  

Table 4. Test results for the ball bearing 

Condition Point 
Wise 

Boundary-
Aware 

Monitor KNN PNN MLP-LM RBF 

New 0 0.15% 0 0 0 0 0 
Broken 
race 

74.82% 93.4% 93.4% 84.69% 83.59% 86.77% 90.75% 

 
The results achieved by the Monitor match the boundary-aware algorithm [8] and 

are better than those obtained by the point wise algorithm [7], which agrees with the 
excellent coverage achieved by the detectors. Although the trained classifiers did not 
perform as well as the Monitor in this case, they perform better than the point wise 
algorithm; the RBF classifier in particular has shown a competitive detection rate.  

5   Conclusions 

A new detector generation scheme has been proposed which employs genetic 
algorithms and Quasi-Monte Carlo Integration. One of the important features of this 
generation scheme is that is suited to high dimension problems. The size of the 
chromosome is related only to the maximum number of detectors and not to the 
problem dimension. The error in a Quasi-Monte Carlo integration, which computes 
the nonself coverage, is related to the number of points used and not to the problem 
dimension. This addresses the issue of scalability and allows the use of the Negative 
Selection Algorithm in more complex situations. 

It is possible to implement two different fault detection systems with the detectors 
generated by the new scheme: the detectors may be used either as proposed in the 
Negative Selection Algorithm or for generating nonself samples; classifiers can then 
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be trained to perform fault detection. This is especially useful when there is scarce or 
no information about the possible abnormal behavior of the system. One important 
feature is that the fault detection systems are based only on the knowledge of the 
system's normal behavior; there is no assumption about the kind of fault that is 
expected.  

Currently, other feature extraction methods are under investigation, with the aim of 
developing more general preprocessing steps. Besides, there are some aspects of this 
detector generation scheme that need further investigation such as: other Quasi- 
Monte Carlo algorithms, the influence of the α parameter and generation of the 
nonself samples to train classifiers.  
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Abstract. Negative Selection Algorithm is widely applied in Artificial Immune 
Systems, but it is not fast enough when there are mass data need to be pro- 
cessed. Multi-pattern matching algorithms are able to locate all occurrences of 
multi-patterns in an input string by just one scan operation. Inspired by the 
multi-pattern matching algorithm proposed by Aho and Corasick in 1975 [1], a 
novel fast negative selection algorithm is proposed for the “r-contiguous-bits” 
matching rule in this paper. The algorithm constructs a self state graph and a 
detector state graph according to the self set and the detector set respectively, and 
processes input strings using partial matching algorithm based on the state graph. 
The time complexity of this algorithm when processing an input string of length l 
is O(l). Experiments are carried out to make comparisons on the time and space 
costs between this new algorithm and the traditional negative selection 
algorithm. 

1   Introduction 

Negative Selection Algorithm (NSA) is a change-detection algorithm, inspired by the 
negative selection mechanism in the course of T-Cells maturation in biological immune 
system [2]. It has been widely applied in many Artificial Immune Systems recently. 

Inspired by the multi-pattern matching algorithm proposed by Aho and Corasick in 
1975 [1], a novel fast negative selection algorithm is proposed in this paper. This new 
algorithm is presented for the “r-contiguous-bits” partial matching rule, i.e. two strings 
match each other if and only if they have identical symbols in at least r contiguous 
positions. For convenience, this novel algorithm is named as G-NSA as it is based on a 
graph data structure. Comparisons between G-NSA and traditional NSA are conducted 
according to the results of the experiments carried out in this paper. The experimental 
results demonstrated that, compared to traditional NSA, G-NSA has much lower time 
complexity of processing an input string. 

The rest of this paper is organized as follows. A brief review of multi-pattern 
matching algorithms is given in section 2. The G-NSA is introduced in section 3. 
Section 4 includes the experiments and the results. Section 5 briefly discusses related 
works and G-NSA. A brief conclusion of this paper is given in section 6. 
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2   Multi-pattern Matching Algorithms 

Multi-pattern matching algorithms are able to locate all occurrences of a finite number 
of patterns in an input string by just one scan operation. The first multi-pattern 
matching algorithm based on a finite state string pattern matching machine was 
proposed by Aho and Corasick in 1975 [1]. The algorithm consists of two phases: (1) 
Constructing a finite state pattern matching machine from the keywords set. (2) 
Applying the pattern matching machine to recognize the occurrences of the keywords 
in an input text string. 

The pattern matching machine is the most important data structure in the 
multi-pattern matching algorithm. The pattern matching machine in [1] is composed of 
three kinds of functions as follows: (1) The goto function, denoted by g. (2) The failure 
function, denoted by f. (3) The output function, denoted by output. 

Because of the page limits, the details of these functions are omitted in this paper. In 
Fig. 1, these functions in the pattern matching machine constructed for the set of 
keywords {he, she, his, hers} are illustrated [1].  

(a) Goto and failure functions 

i 2 5 7 9 
output (i) {he} {she, he} {his} {hers} 

(b) Output functions  
Fig. 1. The pattern matching machine constructed for the set of keywords {he, she, his, hers}. 
This example is extracted from [1]. The state nodes of this machine are numbered as from 0 to 9. 
The state 0 is designated as the start state. The goto and failure functions are illustrated in Fig. 1 
(a), and the output functions are given in Fig. 1 (b). 

Aho and Corasick have proved that the goto, failure and output functions 
constructed from a given set of keywords K are valid for K. The time complexities of 
constructing these functions of the pattern matching machine are proportional to the 
sum of the lengths of the keywords. And the number of state transitions made by  
the pattern matching machine is fewer than 2n when processing an input string with 
length of n. 

Moreover, in [1], Aho and Corasick improved the pattern matching machine by 
eliminating all failure transitions, and using the next move function δ of a deterministic 
finite automaton instead of the goto and failure functions. A deterministic finite 
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automaton makes just one state transition for each symbol of the input string. In this 
way, the pattern matching machine makes no more than n state transitions in processing 
an input string of length n [1]. 

Based on the algorithm proposed by Aho and Corasick, some improved algorithms 
have been introduced. Wu and Manber proposed an efficient and flexible algorithm for 
approximate string matching in [3] to support searching with errors, and a fast 
multi-pattern matching algorithm in [4]. Wang and his colleagues presented faster 
multi-pattern matching algorithms that can skip as many characters as possible by 
making full use of the information in the matching failure when process an input string 
[5]. Tuck and his colleagues proposed a modified algorithm that drastically reduced the 
amount of memory required and improved its performance on hardware 
implementations [6]. 

3   A Novel Fast NSA Based on State Graphs 

The efficient multi-pattern matching algorithm proposed by Aho and Corasick [1] is 
adopted to develop a novel negative selection algorithm, namely G-NSA, for the 
“r-contiguous-bits” matching rule in this paper. In general, G-NSA has the followings 
phases: 

 

(1) The self set is converted to a state graph, namely, the self graph.  
(2) Based on the self graph, the detectors are generated efficiently. Here two 

different approaches for generating candidate detectors can be adopted. One is 
to generate the candidate detectors randomly, and the other is to generate the 
candidate detectors with a heuristic algorithm (given as Algorithm C in the later 
part of this section). If the candidate detector is matched by the self graph, it will 
be deleted. Otherwise, it will be added into the detector set. 

(3) The detector set is converted to a state graph, namely, the detector graph.  
(4) For each string to be detected, the partial matching operation is performed base 

on the detector graph. If matched, the string is asserted to be an abnormal one. 
 

Some symbols frequently used in the following sections are defined here: 

  A: the coding alphabet. 
  m: size of A, namely the number of coding symbols. 
   l : coding length of the self strings and detector strings. 
  r: partial matching length threshold, namely the least number of contiguous  

     matching bits required for a match. 
  S: the set of self strings. 

      NS: the number of self strings in S. 
 R: the set of detectors. 
NR: the number of detectors in R. 
 d: a detector string. 

The Algorithm 2, Algorithm 3 and Algorithm 4 in [1] are adopted to construct a state 
graph from a set of strings, i.e. the self set or detector set. However, the negative 
selection algorithm is different from traditional multi-pattern matching algorithms. The 
main differences are given as follows. 



 A Novel Fast Negative Selection Algorithm Enhanced by State Graphs 171 

(1) Generally, in NSA, when an anomaly string is matched by the detector set, it is 
not necessary to indicate which detector has matched the string. Consequently, the 
output function in [1] is not needed by G-NSA. In this paper, the output function is not 
considered. Anyway, if the detector is need, the output functions still can be reserved. 

(2) When “r-contiguous-bits” matching rule is adopted in NSA, the positions of the 
r-bit patterns in a detector should be recorded in the graph state nodes. Therefore, the 
Algorithm 2 in [1] should be modified to satisfy this change. That is to say, the index of  
 

 
begin 
        newstate := 0 
        for (every input string x) do  enter(x) 
        for (all a with g(0, a)=fail) do  g(0, a) := 0 
        perform Algorithm 3 in [1] to construct the failure function f 
        perform Algorithm 4 in [1] to construct the next move function δ 
end 
 
procedure enter(x), x={a1, a2, … , al}: 
begin 
       i := 1 
       while i <= l-r+1 do 
              begin 
                     state := 0 
                     j := i 
                    while g(state, aj) ≠ fail and j < i+r do 
                           begin 
                                  state := g(state, aj) 
                                  j := j+1 
                          end 
                   while j < i+r do 
                           begin 
                                  newstate := newstate + 1 
                                  g(state, aj) := newstate 
                                  state := newstate 
                                  layer(state) := j-i+1 
                                 j := j+1 
                         end 
                 if j∉endposition(state)     then     endposition(state)    ∪  {j} 
                 i := i+1 
           end 
end 

Fig. 2. Algorithm A: Constructing a state graph from a set of strings. This algorithm is designed 
by improving the Algorithm 2 in [1] according the requirements of G-NSA. The Algorithm 3 and 
Algorithm 4 in [1] are also adopted here. 
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the last position of every r-bit pattern in a detector should be recorded in an end position 
array in the corresponding state node of a graph. 

(3) Moreover, to simplify the process of the heuristic detector generating 
algorithm introduced in this paper, a layer function is added to every state node of a 
graph, which is used to indicate the shortest distance from the current state node to 
the start state. 

Therefore, the pattern matching machine for G-NSA is composed of three kinds of 
functions as follows: the next move function, the endposition function, and the layer 
function. 

The Algorithm A given in Fig. 2 is used for constructing a state graph from a set of 
strings (the self set or the detector set). In Algorithm A, the next move function and the 
layer function are constructed for each node, and the endposition function is 
constructed only for each node on layer r. 

In Fig.3, the partial matching algorithm based on a state graph is described, i.e. the 
Algorithm B. The Algorithm B is not only used for filtering the randomly generated 
candidate detectors in the phase of generating the detector set, but also used for 
monitoring the anomaly strings. 

 
begin 
       state := 0 
       for i := 1 until l do 
               begin 
                      state := δ(state, ai) 
                      if layer(state) = r    then 
                           if state∈endposition(state)    then    return Matched 
               end 
       return Unmatched 
end 

Fig. 3. Algorithm B: The “r-contiguous-bits” partial matching algorithm based on a graph. An 
input string x (a1, a2, … , al) is traced in the graph to search for a match. 

Based on a self graph, a simple approach to the detector set generating can be given 
as follows: (1) Generating some random strings as candidate detectors. (2) Performing 
the Algorithm B between the candidate detectors and the self graph, and deleting the 
candidate detectors that get the Matched result. And then the rest of the candidate 
detectors are mature detectors. 

Based on the self graph, a heuristic algorithm also can be developed to generate the 
detector set, as shown in Fig. 4, namely Algorithm C. In this heuristic algorithm, the 
symbols of a new detector are generated one by one, and every symbol is randomly 
selected from the coding alphabet or a subset of the coding alphabet that does not result 
in matching with the self patterns stored in the self graph. 
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begin 
       state := 0 
       i := 1 
        while i <= l do 
               begin 
                       if layer(state) >= r-1  then  do 
                             begin 
                                    avoidArray := empty 
                                    for a := every symbol in A do 
                                             begin 
                                                     if i∈endposition( δ(state, a) ) then  

add a to avoidArray 
                                        end 

                                     if size of avoidArray ≠ m  then  do 
                                             begin 
                                                    d[i] := a random symbol from A - avoidArray 
                                                    state := δ(state, d[i]) 
                                                    i := i+1 
                                             end 
                             end 
                    else 
                             begin 
                                     d[i] := a symbol randomly selected from A 
                                    state := δ(state, d[i]) 
                                    i := i+1 
                            end 
                end 
         enter(d)  /*Output d as a mature detector and add d into the detector graph*/ 
end 

Fig. 4. Algorithm C: The heuristic detector generating algorithm based on the self graph. This 
algorithm describes the flow of generating a new detector. The symbols in all position of a new 
detector are generated one by one, and randomly selected from a subset of the coding alphabet 
that does not result in matching with the self patterns stored in the self graph. 

4   Comparative Experiments and Results 

In this section, the comparative experiments are carried out to make comparisons 
between the G-NSA and traditional NSA in different coding spaces. For convenience, 
the traditional NSA is indicated by T-NSA in the following sections. The random 
algorithm and the heuristic algorithm for generating the detector set are also compared 
in the following experiments. In the following comparisons, the G-NSA with the 
random detector set generating algorithm is indicated with G-NSA-r, and the G-NSA 
with the heuristic detector set generating algorithm is indicated with G-NSA-h. 

The experimental procedure is outlined as follows: 



174 W. Luo, X. Wang, and X. Wang 

(1) Fix Pf (the possibility that the detector set fails to detect an anomaly string) to a 
given value. 

(2) Compute Pm according to equation (1) [7, 8] 

]1/)1)([( +−−≈ − mmrlmP r
m  (1) 

(3) Compute NR based on Pf and Pm using equation (2) [2] 

m

f
R P

P
N

ln−≈  (2) 

(4) Repeat the following steps for 100 times independently. 
a) Generate NS random strings to make up the self set S. 
b) T-NSA generates random strings as candidate detectors, until NR mature 

detectors are found. 
      G-NSA-r generates random strings as candidate detectors until NR mature 

detectors are found, and its detector graph is constructed. 
 G-NSA-h generates NR mature detectors, and its detector graph is 

constructed. 
c) Generate NT random strings to make up a test set T. 

Detecting T by the detector set of T-NSA, the detector graph of G-NSA-r, 
and the detector graph of G-NSA-h, respectively. 

(5) Compute the statistic values of SpaceS, SpaceR, Candidates and TimeCost for 
T-NSA, G-NSA-r and G-NSA-h. 

Four parameters, namely SpaceS, SpaceR, Candidates and TimeCost, are selected to 
make the comparison between T-NSA, G-NSA-r and G-NSA-h. These parameters are 
compared by their average values and standard deviations. 

SpaceS: The space cost of the self set. For T-NSA, it is NS*l. For G-NSA, it is the size 
of the self graph, which consists of two parts. The one is (m+1) times of the number of 
state nodes in the self graph. This is because each node in the self graph includes a next 
move function and a layer function. Note that the next move function stores the state 
transitions for all possible symbols with an array of size m, and the layer function stores 
the layer information of each node with one number only. The other part is the total size 
of the endposition arrays in the nodes at the last layer, and note that the lengths of the 
arrays can be different. 

SpaceR: The space cost of the detector set. For T-NSA, it is NR *l. For G-NSA, it is the 
size of the detector graph, which is calculated in the same way as the size of the self graph. 

Candidates: The number of candidate detectors tried by the detector generating 
algorithm. 

TimeCost: For T-NSA, TimeCost means the average number of detectors used by the 
detection algorithm for detecting a string. For the G-NSA-r or G-NSA-h, TimeCost 
means the average number of state transitions in the detector graph when applying the 
partial matching algorithm. In fact, for fair comparisons, because the partial matching 
operations are conducted between the detector and the string to be detected, the 
TimeCost of T-NSA should be the average number of matching operations performed 
by the detection algorithm. Since the TimeCost of G-NSA-r and G-NSA-h is much 
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lower than T-NSA, as demonstrated in the following experimental results, only the 
average number of detectors used by the detection algorithm is adopted here. 

4.1   Binary Space Experiments 

In this subsection, the coding alphabet A={0 ,1}, and m is 2. The Pf is fixed as 0.05. 
In the first experiment, the coding length l is set as 16, the matching threshold r is set 

as 12. Then the NR is 4090 according to formula (2). The NS is 1000, and the NT is 
60000. The average results over 100 independent runs are listed in Table 1. The 
standard deviations of the average values are also given in the table. 

In the second experiment, the coding length l is set as 24, the r is set as 14. And 
consequently the NR is 8180 according to formula (2). The NS is set as 5000, and the NT 
is 100000. The average results are listed in Table 2. 

Table 1. The comparison results in binary space when l=16, r=12 and NS=1000. The average 
values over 100 independent runs and the corresponding standard deviations of the four 
parameters are listed in this table. 

 SpaceS SpaceR Candidates TimeCost 
Ave. 16000.00 65440.00 8510.31 1576.71 

T-NSA 
Std. 0.00 0.00 125.00 15.63 
Ave. 24814.23 34271.49 8474.19 13.29 

G-NSA-r 
Std. 115.89 101.18 108.39 0.02 
Ave. 24814.23 34534.20 4529.15 13.16 

G-NSA-h 
Std. 115.89 89.92 27.12 0.02 

Table 2. The comparison results in binary space when l=24, r=14 and NS=5000. The average 
values over 100 independent runs and the corresponding standard deviations of the four 
parameters are listed in this table. 

 SpaceS SpaceR Candidates TimeCost 
Ave. 120000.00 196320.00 51068.54 3013.53 

T-NSA 
Std. 0.00 0.00 689.75 17.88 
Ave. 143950.26 158055.26 51069.98 17.45 

G-NSA-r 
Std. 177.67 233.99 724.30 0.03 
Ave. 143950.26 161283.25 10760.84 17.06 

G-NSA-h 
Std. 177.67 202.48 71.15 0.02 

 
Table 1 and Table 2 show that, in the two experiments, the space costs for storing the 

self set of both G-NSA-r and G-NSA-h are greater than that of T-NSA, while the space 
costs for storing the detector set of both G-NSA-r and G-NSA-h are lower than that of 
T-NSA. 

During the detector set generating process, the number of candidates tried by 
G-NSA-h is evidently less than those of T-NSA and G-NSA-r.  
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Compared to T-NSA, the most obvious improvement of G-NSA-r and G-NSA-h lies 
in the time cost when perform partial matching between an input string and the detector 
set. The time costs of G-NSA-r and G-NSA-h are less than l. 

4.2   A-Z Space Experiment 

In this subsection, an experiment is carried out in the alphabet of {A, B, …, Z}, and m is 
set as 26. As the A-Z coding space is far lager than the binary coding space, the coding 
length l is set as a smaller value 6 here, and r is set as 3. The Pf is fixed to 0.01, and the 
NR is 20836 in accordance with formula (2). In this experiment, NS=10000, NT=100000. 
The average results over 100 independent runs are listed in Table 3. 

Table 3. The results in the (A-Z) coding space when l=6, r=3 and NS=10000. The average values 
over 100 independent runs and the corresponding standard deviations of the four parameters are 
listed in this table. 

 SpaceS SpaceR Candidates TimeCost 
Ave. 60000.00 125016.00 189781.56 5742.28 

T-NSA 
Std. 0.00 0.00 1916.68 25.83 
Ave. 472605.71 491654.97 189749.24 3.92 

G-NSA-r 
Std. 964.36 858.47 1745.00 0.01 
Ave. 472605.71 486142.11 20836.00 3.95 

G-NSA-h 
Std. 964.36 927.28 0.00 0.01 

 
In the A-Z space experiment, Table 3 shows that the space costs of G-NSA-r and 

G-NSA-h are much greater than that of T-NSA. This is because the next move function 
for each node should store the 26 possible states. However, the number of candidates 
used by G-NSA-h is obviously less than those of both T-NSA and G-NSA-r. When 
perform partial matching between an input string and the detector set, the time costs of 
G-NSA-r and G-NSA-h are less than the coding length 6. 

4.3   Classification Problem Experiments 

In this subsection, two experiments are carried out to compare the T-NSA and the 
G-NSA with two classification problems. The Tic-Tac-Toe Endgame data set and the 
SPECT heart data set [9] are used as the classification data sets in the experiments. The 
experimental procedure applied in this subsection is the same as that in subsection 4.1 
and 4.2. 

4.3.1   Experiments on the Tic-Tac-Toe Data Set 
The tic-tac-toe data set contains 958 instances, and these instances are partitioned into 2 
classes, a positive class with 626 instances and a negative class with 332 instances. 
Every instance has 9 attributes in a 3-dimension space. Consequently, this subsection 
takes A={a, b, c}, m=3, and l=9. 
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In the following experiments, the negative class is considered as the self set, i.e.  
NS= 332. The whole data set is used as the test set, i.e. NT =958. In the test phase, all 
instances in the data set will be classified as self or non-self. 

In the first experiment, the r is set to 6, the Pf is fixed to 0.01, and the NR is set to 
1119 by formula (2). The results of the first experiment are listed in Table 4. The 
classification results are also listed in Table 4 by the last column named “MatchCount”. 
Here the column MatchCount lists the average numbers of the instances of the test set T 
matched by the detector set of T-NSA or the detector graph of G-NSA-r or G-NSA-h. 

In the second experiment, the r is set to 7, the Pf is fixed to 0.01, and the NR is set to 
4316 by formula (2). The results of the first experiment are listed in Table 5. 

In the third experiment, the r is set to 8, the Pf is fixed to 0.05, and the NR is set to 
11792 by formula (2). The results of the first experiment are listed in Table 6. 

In these simple classification problem experiments, the comparison results are 
similar to the results of the experiments in subsection 4.1. The column SpaceS and 
SpaceR in Table 4, Table 5 and Table 6 reveal that the space costs for storing the self set 
of G-NSA-r and G-NSA-h are greater than that of T-NSA, while the space costs for 
storing the detector set of G-NSA-r and G-NSA-h are less than that of T-NSA.  

Table 4. Taking the negative class of the tic-tac-toe data set as the self set, this experiment is 
performed with parameters m=3, l=9, r=6 and Pf=0.01. The whole data set is used as the test set. 
The average values over 100 independent runs and the corresponding standard deviations of the 
four parameters are listed in this table. Column MatchCount lists the average numbers of the 
positive instances of the test data set matched by the detector set of T-NSA or the detector graph 
of G-NSA. 

 SpaceS SpaceR Candidates TimeCost MatchCount 
Ave. 2988.00 10071.00 2415.40 618.73 538.62 

T-NSA 
Std. 0.00 0.00 47.22 11.07 9.16 
Ave. 3398.00 5060.21 2408.47 7.58 538.03 

G-NSA-r 
Std. 0.00 38.67 52.93 0.03 7.93 
Ave. 3398.00 5111.46 1300.40 7.52 565.99 

G-NSA-h 
Std. 0.00 31.90 14.26 0.03 5.19 

 

Table 5. Taking the negative class of the tic-tac-toe data set as the self set, this experiment is 
performed with parameters m=3, l=9, r=7 and Pf=0.01. The whole data set is used as the test set. 
The average values over 100 independent runs and the corresponding standard deviations of the 
four parameters are listed in this table. Column MatchCount lists the average numbers of the 
positive instances of the test date set matched by the detector set of T-NSA or the detector graph 
of G-NSA. 

 SpaceS SpaceR Candidates TimeCost MatchCount 
Ave. 2988.00 38844.00 5664.38 2217.54 588.35 

T-NSA 
Std. 0.00 0.00 42.87 28.93 6.09 
Ave. 5515.00 14383.87 5665.33 7.88 589.65 

G-NSA-r 
Std. 0.00 44.99 44.66 0.02 4.90 
Ave. 5515.00 14404.97 4423.29 7.84 612.17 

G-NSA-h 
Std. 0.00 43.90 10.59 0.02 3.49 
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Table 6. Taking the negative class of the tic-tac-toe data set as the self set, this experiment is 
performed with parameters m=3, l=9, r=8 and Pf=0.05. The whole data set is used as the test set. 
The average values over 100 independent runs and the corresponding standard deviations of the 
four parameters are listed in this table. Column MatchCount lists the average numbers of the 
positive instances of the test date set matched by the detector set of T-NSA or the detector graph 
of G-NSA. 

 SpaceS SpaceR Candidates TimeCost MatchCount 
Ave. 2988.00 106128.00 12807.05 6425.49 598.19 

T-NSA 
Std. 0.00 0.00 31.00 78.36 4.86 
Ave. 6612.00 39933.35 12809.78 8.44 597.58 

G-NSA-r 
Std. 0.00 66.85 32.21 0.01 5.62 
Ave. 6612.00 39925.52 11844.39 8.45 595.62 

G-NSA-h 
Std. 0.00 65.57 7.09 0.01 5.14 

 
In the column Candidates, G-NSA-h used less candidate detectors than G-NSA-r 

and T-NSA to generate the detector set. The column TimeCost indicates that G-NSA-r 
and G-NSA-h require shorter time than T-NSA to process an input string. 

Moreover, according to the column MatchCount in Table 4 and Table 5, the 
classification result of G-NSA-h is better than those of T-NSA and G-NSA-r. 

4.3.2   Experiments on the SPECT Heart Data Set 
The SPECT heart data set describes diagnosing of cardiac Single Proton Emission 
Computed Tomography (SPECT) images [9]. The data set consists of 267 instances of 
patients, and these instances are partitioned into 2 categories: normal (55 instances) and 
abnormal (212 instances). Every instance has 22 binary attributes. Therefore, this 
subsection takes A={a, b}, m=2, and l=22. 

In the following experiments, the normal class is used as the self set, i.e. NS= 55. The 
whole data set is used as the test set, i.e. NT =267, the Pf is fixed to 0.05. 

In the first experiment, the r is set as 12, and the NR is 2045 by formula (2). The 
results of the first experiment are listed in Table 7. The classification results are also 
listed in the table by the last column named “MatchCount” just as in subsection 4.3.1. 

In the second experiment, the r is set to 13, and the NR is set as 4462 by formula (2). 
The results of the first experiment are listed in Table 8. 

In the last experiment, the r is set to 14, and the NR is set as 9816 by formula (2). The 
results of the first experiment are listed in Table 9. 

In this subsection, the comparison results are also similar to the results in subsection 
4.1. The column SpaceS and SpaceR in Table 7, Table 8 and Table 9 reveal that the 
space costs for storing the self set of G-NSA-r and G-NSA-h are greater than that of 
T-NSA, while the space costs for storing the detector set of G-NSA-r and G-NSA-h are 
less than that of T-NSA.  

The column Candidates indicates that the time cost of G-NSA-h is a little lower than 
G-NSA-r and T-NSA in the detector set generating process. The column TimeCost 
shows that G-NSA-r and G-NSA-h have far lower time costs than that of T-NSA in 
processing an input string. And it can be also found out that the classification result of 
G-NSA-h is better than those of T-NSA and G-NSA-r in the three experiments for the 
SPECT heart data set. 
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Table 7. Taking the normal instances of the SPECT heart data set as the self set, this experiment 
is performed with parameters m=2, l=22, r=12 and Pf=0.05. The whole data set is used as the test 
set. The average values over 100 independent runs and the corresponding standard deviations of 
the four parameters are listed in this table. Column MatchCount lists the average numbers of the 
abnormal instances of the test data set matched by the detector set. 

 SpaceS SpaceR Candidates TimeCost MatchCount 
Ave. 1210.00 44990.00 2111.13 1150.47 167.66 

T-NSA 
Std. 0.00 0.00 7.42 50.98 6.18 
Ave. 2564.00 42165.29 2110.14 17.27 168.23 

G-NSA-r 
Std. 0.00 78.22 9.15 0.27 7.00 
Ave. 2564.00 42188.52 2048.75 17.11 174.33 

G-NSA-h 
Std. 0.00 90.89 1.79 0.24 4.97 

Table 8. Taking the normal instances of the SPECT heart data set as the self set, this experiment 
is performed with parameters m=2, l=22, r=13 and Pf=0.05. The whole data set is used as the test 
set. The average values over 100 independent runs and the corresponding standard deviations of 
the four parameters are listed in this table. Column MatchCount lists the average numbers of the 
abnormal instances of the test data set matched by the detector set. 

 SpaceS SpaceR Candidates TimeCost MatchCount 
Ave. 1210.00 98164.00 4532.12 2439.16 172.19 

T-NSA 
Std. 0.00 0.00 8.22 96.89 4.58 
Ave. 2930.00 83382.20 4530.99 17.55 172.73 

G-NSA-r 
Std. 0.00 106.46 8.59 0.22 5.26 
Ave. 2930.00 83398.81 4467.50 17.42 176.32 

G-NSA-h 
Std. 0.00 131.49 2.39 0.17 3.64 

Table 9. Taking the normal instances of the SPECT heart data set as the self set, this experiment 
is performed with parameters m=2, l=22, r=14 and Pf=0.05. The whole data set is used as the test 
set. The average values over 100 independent runs and the corresponding standard deviations of 
the four parameters are listed in this table. Column MatchCount lists the average numbers of the 
abnormal instances of the test data set matched by the detector set. 

 SpaceS SpaceR Candidates TimeCost MatchCount 
Ave. 1210.00 215952.00 9887.84 5272.57 174.41 

T-NSA 
Std. 0.00 0.00 7.83 210.35 5.64 
Ave. 3208.00 164357.73 9886.77 17.93 174.37 

G-NSA-r 
Std. 0.00 159.57 9.89 0.17 4.30 
Ave. 3208.00 164393.56 9818.41 17.85 177.52 

G-NSA-h 
Std. 0.00 168.01 1.45 0.18 4.16 

5   Discussions 

Some works have been done to improve the performance of the traditional NSA. 
Helman and Forrest proposed a linear algorithm for generating antibody strings under 
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the “r-contiguous-bits” matching rule [10]. Based on the work in [10], a greedy 
algorithm to generate smaller detector set with better coverage of non-self space was 
proposed by D'haeseleer and Forrest [11, 12]. A real-valued NSA with variable sized 
detectors was presented by Zhou and Dasgupata in [13, 14]. Zhang and his colleagues 
introduced a r-adjustable NSA in [15]. In [16], a novel NSA named as r[]-NSA was 
proposed, which uses an array to store multiple partial matching lengths for each 
detector. Aiming at improving the detection performance of NSA, a state graph 
approach to storing the self set and the detector set is proposed in this paper, and the 
“r-contiguous-bits” partial matching rule is adopted in the graph data structure. 

According to theorems in [1], the time costs of constructing the functions of the 
pattern matching machine (i.e. the self graph or detector graph) is proportional to the 
sum of the lengths of the keywords (i.e. the self strings or detector strings). 

The experimental results indicate that the time cost of G-NSA is much lower than 
T-NSA in processing an input string. In fact, when processing an input string, the 
G-NSA makes no more than l state transitions. Therefore, the time complexity of the 
G-NSA is O(l). However, the time complexity of the T-NSA is O(NR·l).  

In the T-NSA, the space used by all the symbols of the detector set is NR·l. Thus the 
space complexity of the T-NSA is O(NR·l). G-NSA may have a larger space complexity 
that T-NSA. For example, Table 3 demonstrates that the space costs of both G-NSA-r 
and G-NSA-h are much greater than that of T-NSA, especially for SpaceS. This is 
because the next move function for each node should store the m possible state 
transitions. In addition, the self data used in Table 3 are generated randomly. So these 
self individuals often have no identical prefixes. When G-NSA is used for practical 
applications, and the self individuals have similar prefixes, the number of the total 
states in the self graph of G-NSA will decrease. And then the space cost of G-NSA will 
decrease somewhat. Anyway, this should be verified in the future works. 

6   Conclusions 

Negative Selection Algorithm is widely applied in Artificial Immune Systems. Taking 
the multi-pattern matching algorithm proposed by Aho and Corasick in 1975 [1] as an 
inspiration, a novel negative selection algorithm, i.e. G-NSA, is introduced in this 
paper. This algorithm constructs a state graph from strings of the self set or the detector 
set, and processes input strings using the “r-contiguous-bits” partial matching rule 
based on the state graph. 

The G-NSA is compared with the traditional NSA in the experiments conducted in 
this paper. The results confirmed that the G-NSA has obviously lower time complexity 
when process an input string. 

Further works should be done to improve the performance of G-NSA, especially the 
detector set generating algorithm based on the self graph. And more detailed 
comparisons should be done, including the comparative experiments and analyses 
between the G-NSA and the improved negative selection algorithms in [10, 12-16].  
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Abstract. Autonomous underwater vehicles(AUVs) have been drawing 
increasing interests in various marine applications such as coastal structure 
inspection, sea floor exploration, and oceanographic monitoring. Due to the 
complexity of underwater stream dynamics and the prevalence of unexpected 
underwater obstacles, it is imperative to develop self-adjustable, intelligent 
navigation control functions for AUVs. Among various control techniques, we 
focus on the proportional-integral-derivative(PID) controller since it is still one 
of the dominant techniques in actual underwater vehicle control systems. We 
propose to apply the Clonal Selection Algorithm to determine optimal 
combination of three gain coefficients, KP, KD, KI of the PID controller. Our 
simulation shows that the proposed technique provides better responses than the 
existing Ziegler-Nichols technique with respect to the settling time, overshoot 
and an affinity in submerging under water and turning the yaw angle through 
simulation. We expect that AUVs could autonomously regulate three 
coefficients of six degree-of-freedom(DOF) PID controllers through real-time 
onboard processing. 

Keywords: Autonomous Underwater Vehicles, 6-DOF PID controller, Clonal 
Selection Algorithms (CSA), Ziegler-Nichols technique. 

1   Introduction 

Autonomous underwater vehicles(AUVs) have become an important tool for various 
underwater tasks because they have greater speed, endurance, and depth capability as 
well as a higher factor of safety than human divers. However, most vehicle control 
system designs have been based on a simplified vehicle model, which has often 
resulted in poor performance because the nonlinear and time-varying vehicle 
dynamics have coefficient uncertainty. It is desirable to have an advanced control 
system with the capability of learning and adapting to changes in the vehicle 
dynamics and parameters [1]. Thus, AUVs need the autonomous coefficient tuning 
due to the complexity of underwater stream dynamics and the prevalence of 
unexpected underwater obstacles. There have been a few advanced control techniques 
of AUVs. Autonomous diving and steering of unmanned underwater vehicles can be 
controlled by multivariable sliding mode control [2]. Discrete-time Quasi-sliding 
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mode systems have been adapted for control of autonomous underwater vehicles [3]. 
Recently, the revised precision controller is tested through model parameters 
optimization using the Nelder-Mead Simplex Technique [4]. Although a few control 
techniques have been suggested, they have some difficulties to apply autonomous 
underwater vehicles. We utilize the classical control technique which is the PID 
controller to determine the attitude and position of AUVs. They have been 
successfully applied to many different problems in control fields and have achieved 
valuable results [5]. Basically, the classical Ziegler-Nichols technique has been used 
for tuning PID controllers [6]. The modified Ziegler-Nichols technique has been 
suggested to improve the performance and efficiency of the classical Ziegler-Nichols 
technique [7]. Recently, the PID neural network is used for the temperature control 
system [8]. The purpose of this work is to ascertain the effect of using Clonal 
Selection Algorithms for 6-DOF PID controllers of AUVs. 

2   Dynamic for 6-DOF of Autonomous Underwater Vehicles 

For Autonomous Underwater Vehicles(AUVs) in 6 Degrees of Freedom(DOF) the 
dynamic equations of motion are usually separated into the translational and rotational 
motions. The position is specified by three vectors which are surge, sway and heave. 
On the other hand various representations of an attitude have been discussed. Between 
them, the most frequently applied representations of it are Euler angle conventions 
which are minimal three parameter representations. The roll, pitch and yaw 
convention dominate in the context of mobile vehicles [9]. There are significant 
coupling problems between the rotational and translational motion for the 6 DOF 
underwater vehicles control. Therefore, several mathematical models have been 
proposed to solve these problems. Among them, we used underwater robotic vehicle 
dynamics model proposed by T. I. Fossen, 1994 [10]. It contains kinematic equations 
of motion, rigid-body dynamics, added inertia, hydrodynamic damping, and restoring 
forces.  

 

Fig. 1. Body fixed coordinate system and 6-DOF of AUVs 
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3   6-DOF PID Controllers of AUVs Applied Clonal Selection 
Algorithms 

3.1   PID Controllers 

A proportional-integral-derivative(PID) controller is a general feedback loop 
component in control systems. Each coefficient of a PID controller works three 
common requirements of control problems. The proportional part works to handle an 
immediate error, the error is multiplied by a constant(KP). The integral part works to 
learn from the past, the error is integrated and multiplied by a constant(KI). The 
derivative part works to predict the future, the first derivative is calculated and 
multiplied by a constant(KD). The PID controller can change outputs adequately based 
on the history and rate of change of the error, which gives more accurate and stable 
systems. 

Table 1. The effect of increasing coefficients 

 Rise time Overshoot Settling time 
KP Decrease Increase Small change 
KI Decrease Increase Increase 
KD Small change Decrease Decrease 

3.2   Rigid Body Dynamics of AUVs 

Newton’s equations of the motion for rigid-body with constant mass are written [11]: 

∑=++−++−+− Xqprzrpqyrqxwqvrum GGG )]()()([ 22 &&& . (1) 

∑=++−++−+− Yrqpxpqrzprywpurvm GGG )]()()([ 22 &&& . (2) 

.)]()()([ 22 ∑=++−++−+− Zprqyqrpyqpzvpwqwm GxGG &&&  (3) 

∑=−+−−+ KwpurvmzqrIIpI Gyxx )()( && . (4) 

∑=+−−+−+−+ MvpwqwxwpvruzmprIIqI GGzxx )]()([)( &&& . (5) 

∑=+−+−+ NurwpvmxpqIIrI Gxyx )()( && . (6) 

where GGG zyx ,, is the center of gravity, m is the constant mass, zyx III ,, is the 

inertia matrix of AUVs, TB wvu ],,[=υ is the velocity of the origin of body axis 
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relative to fluid, TB rqp ],,[=ω is the angular velocity component about each axis 

relative to fluid,  ZYX ,, and NMK ,, are vectors of external applied forces and 

moments, respectively. 

3.3   6-DOF PID Controllers for AUVs 

The closed-loop system is guaranteed by using standard stability analysis [12]. The 
error is calculated as the difference between the actual distance, Euler angle and target 
distance, Euler angle.  

Ta εεε −=~ . (7) 

∫++=
t
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where IDP KKK ,, are gain coefficients and Ta εε , is the actual distance, Euler angle 

and the target distance, Euler angle. According to gain coefficients, the system 

responds differently. We calculate moderate IDP KKK ,, gain coefficients by using 

the classical Ziegler-Nichols technique. 

 

Fig. 2. Block diagram of the 6-DOF PID controller 

3.4   Clonal Selection Algorithms for Tuning PID Controller of AUVs 

The immune system is capable of learning, memory, and pattern recognition. By 
employing genetic operators on a time scale fast enough to observe experimentally, 
the immune system is able to recognize novel shapes without preprogramming [13]. 
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Artificial immune systems(AIS) use ideas gleaned from immunology in order to 
develop adaptive systems capable of performing a wide range of tasks in various areas 
of research. The general algorithm, named CLONALG, is derived primarily to 
perform machine-learning and pattern-recognition tasks and then it is adapted to solve 
optimization problems, emphasizing multimodal and combinatorial optimization [13]. 
The Clonal Selection Algorithm(CSA) is based on the artificial immune system. The 
CSA is used in the field of optimization and pattern recognition [15]. 

The movement of AUVs can be optimally controlled by selecting its PID gain 
coefficients. Usually, the gain coefficients for the PID controller are measured by 
empirical experiments. Therefore, it is appropriate to apply the CSA to get the optimal 
gain coefficients. First, generate a population of PID gain values randomly and 
compute all the affinity values for that. The affinity measures are computed by the 
equation (9). After that, the select gain values with high affinity. And then, they are 
identically copied, and mutated with high rates. These are replaced with the gain 
values in the initial population which have lower affinity. These processes are 
iteratively performed until CSA gives converged, optimal gains. Finally, all PID gain 
coefficients are optimally selected by CSA. This allows the control system of AUVs 
to operate without high-overshoot or longer-settling time. 

error
Affinity

+
=

1
1

. (9) 
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iA : The actual distance and Euler angle against each axis(x, y, z),  

iT : The target distance and Euler angle against each axis(x, y, z) 

(10) 

4   Simulation Position and Attitude of AUVs 

We determined some parameters and surroundings for simulation. 
 

- Weight of the AUVs : 120 kg 
- Shape of the AUVs : Sphere type with six thrusters for 6 DOF 
- Buoyancy : Neutral / Place : An indoor swimming pool 
- Target depth : 5 meters, Target yaw angle : 90 degree 
- Population size : 50 / Clone per antibody : 6  
- Generation : 30 / Number of bits : 16 
- Hypermutation rate : 0.05 
- Simulation time : 120(s) for depth control, 30(s) for yaw angle control 



 Clonal Selection Algorithms for 6-DOF PID Control of AUVs 187 

4.1   Experiment 1. The Depth Control of AUVs 

The first simulation is to keep 5 meters under water. We do not need to consider an 
external force because we assume the place an indoor swimming pool. Results are 
compared to the classical Z-N technique. 

 

 

Fig. 3. The depth control of AUVs between CSA and classical Z-N technique 

We know that proportional coefficient KP and derivative coefficient KD are larger 
than the integral coefficient KI. Although the CSA has larger KP coefficient, the 
overshoot is less than the classical Z-N technique. 

Table 2. The comparison of PID controller efficiency for depth control of AUVs 

 Classical Ziegler-Nichols Clonal Selection Algorithm 

KP 41.7 65.53 

KI 4.04 0.12 

KD 107.37 65.50 
Maximum 
overshoot 

6.5 (m) 5.8 (m) 

settling time 28.4 (s) 19.2 (s) 

affinity 0.0064 0.0110 

4.2   Experiment 2. The Yaw Angle Control of AUVs 

The second simulation is turning 90 degrees the yaw angle while AUVs keep the 
depth under water. Similar to the experiment 1, we assume that the external force 
does not exist. 
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Fig. 4. The yaw angle control of AUVs between CSA and classical Z-N technique 

Compared to the experiment 1, the settling time is reduced. It means that the PID 
controller has the different gain according to the 6 DOF of the AUVs. Thus, we have 
to check each coefficient KP, KD, KI through the previous simulation. 

Table 3. The comparison of PID controller efficiency for yaw angle control of AUVs 

 Classical Ziegler-Nichols Clonal Selection Algorithm 

KP 61 65.53 

KI 43.5 0.018 

KD 21.57 0.005 
Maximum 
overshoot 

99.1 (degree) 90.1 (degree) 

settling time 7.8 (s) 4.8 (s) 

affinity 0.0014 0.0017 

5   Discussion 

In the experiment 1, we easily find that the settling time of the CSA is shorter than the 
classical Z-N technique. The overshoot of the CSA is less than the classical Z-N 
technique. As the proportional coefficient KP and the integral coefficient KI increase, 
the overshoot of the response is decreased. However, the overshoot of the response is 
increased as the derivative coefficient KD increase. This means that each coefficient of 
the PID controller gain KP, KI, KD is mutually affected to the response. In addition, the 
affinity of the CSA is approximately two times comparing to the classical Z-N 
technique. As a result, we know that CSA is the more efficient technique and 
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guarantees the excellent performance. In addition, results of the experiment 2 are 
similar comparing to those of the experiment 1. The settling time of CSA is shorter 
than the classical Z-N technique and the overshoot of CSA is less than the classical Z-
N technique. On the other hand, the affinity of the CSA is similar to the Z-N 
technique. 

We assume the place an indoor swimming pool. However, AUVs are utilized to 
navigate under sea. They could encounter unpredictable situations and be affected the 
density of water and the current along the depth of water. Thus, they should easily 
change PID coefficients along situations to enhance performance. AUVs have the 
threshold of settling time, overshoot and affinity of PID controller. If they exceed the 
threshold value, AUVs could recalculate PID coefficients based on their trace. 

We should consider many factors in developing AUVs with mechanical and 
electrical views. For example, the external hull is important because buoyancy is 
different along with the body shape. After AUVs are made, we test them through the 
simulation to maximize the performance and efficiency of AUVs. First of all, attitude 
and position control of AUVs are important to execute their missions. Thus, we could 
get a valuable improvement of AUVs through simulation. 

6   Conclusion 

It is important to keep the body of AUVs stable during missions. Several technicians 
have suggested control systems for AUVs control. Among them, we adapt the 
classical control technique PID controller. Our present study evaluates the 
performance and efficiency of 6-DOF PID controllers through the CSA comparing to 
the classical Z-N technique. We verify that the CSA is more efficient than the Z-N 
technique in submerging and turning yaw angle through the simulation. We expect 
that AUVs could autonomously regulate three coefficients of six degree-of-freedom 
(DOF) PID controllers through real-time onboard processing for undersea 
exploration. 
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Abstract. The unprecedented number and scales of natural and human-induced 
disasters in the past decade has urged the emergency search and rescue 
community around the world to seek for newer, more effective equipment to 
enhance their efficiency. Tele-operated robotic search and rescue systems 
consist of tethered mobile robots that can navigate deep into rubbles to search 
for victims and to transfer critical on-site data for rescuers to evaluate at a safe 
spot outside of the disaster affected area has gained the interest of many 
emergency response institutions. To fully realize the promising characteristics 
of robotics search and rescue systems, however, mobile robots must first be free 
from their tether and be granted the ability to navigate autonomously even when 
wireless control commands from the operator cannot reach them. For search 
and rescue robots to go autonomous in exceedingly unstructured environment, 
the control system must be highly adaptive and robust to handle all exceptional 
situations. 

This paper introduces the control of a low-cost robotic search and rescue 
system based on an immuno control framework, GSCF, which was developed 
under the inspiration of the suppression mechanism of the immune 
discrimination theory. The robotic system can navigate autonomously into 
rubbles and to search for living human body heat using its thermal array sensor. 
Design and development of the physical prototype and the control system are 
described in this paper. 

Keywords: Artificial Immune Systems, Emergency Logistics, Humanitarian 
Search and Rescue, USAR, Robotics. 

1   Introduction 

Humanitarian search and rescue operations can be found in most large-scale 
emergency operations. Search and rescue technology to-date rely on search dogs, 
camera mounted probes, and technology that has been in service for decades. With the 
increasing demand for scapegoats to go into dangerous environment to carry out 
reconnaissance and into hazardous environments to perform inspection, robots are 
being identified as good candidates to step in for their creator – human. Robots 
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equipped with advanced sensors have therefore become more and more popular in the 
search and rescue theatre. To navigate autonomously, search and rescue robots require 
robust and adaptive fail-soft systems that can ensure calculable reliability desired for 
operations under unstructured environment. 

Human immune system is a robust and adaptive decentralized system; the function 
of its components and their interactions offer inspiring analogies for solving problems 
in different disciplines. General Suppression Control Framework (GSCF) based on 
the suppression mechanism between immune cells was designed to take advantage of 
the adaptability and robustness of its biological counter part. This research 
demonstrates the possibility to implement GSCF on a decentralized search and rescue 
robot system. The goals of the research is to design and develop a decentralized 
control system based on GSCF to assist a search and rescue robot system to 
communicate and to navigate in unstructured disaster-affected areas. 

This paper begins with an introduction to humanitarian search and rescue and 
robotics search and rescue systems. Then the paper moves on to describe the 
mechatronic design of the newly developed robot prototype and its control strategies. 
An introduction to AIS and the implementation of GSCF into the new search and 
rescue system is also included in the second half of the paper. Recommendations and 
conclusions is given at the end of the paper. 

2   Humanitarian Search and Rescue 

Over the past decade, natural and human-induced disasters claimed millions of lives 
and demolished astronomical sum of assets around the world. Natural disasters such 
as the Hurricane Marilyn in 1995 [Centers for Disease Control and Prevention 1995], 
the Oklahoma Tornado in 1999 [National Severe Storms Laboratory 1999], the Indian 
Ocean Earthquake [Zubair 2004] and Hurricane Katrina in 2005 [Federal Emergency 
Management Agency 2005], and the Pakistan Earthquake in 2005 [Birsel 2005], all 
claimed deadly and costly tolls to the affected communities. Human-induced disasters 
such as the civil war between Uganda government and the LRA (Lords Resistance 
Army) that dragged on for nearly two decades since 1987, the long-running Somali 
civil war since 1986, and the never-ending Palestinian conflict in Hebron and the 
Gaza Strip caused much more causalities than nature has ever claimed. Natural 
disasters usually inflict one-off damage to the community. Human-induced disasters 
continue to inflict damage well after the “main” conflicts have ceased. The Kosovo 
crisis between Albanians and Serbs as well as the crisis at Timor-Leste (formerly 
known as East Timor) in 1999, took place for a relatively short period of time but 
landmines deployed during the conflicts continue to claim lives well after the crises 
settled. Searching and removing landmines during and after the war can reduce 
civilian casualty and sooth local tension. De-mining and defusing landmines after the 
settlement of a war is a humanitarian responsibility that war parties should bear. 
However, until today, yet-cleared minefields still scatter in countries like Vietnam and 
Cambodia, claiming lives of ill-fated civilians. 

Collapsed buildings are common field environment for humanitarian search and 
rescue operations. Earthquakes, typhoons, tornados, weaponry destructions, and 
catastrophic explosions can all generate damaged buildings in large scales. The use of 
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heavy machinery is prohibited because they would destabilize the structure, risking 
the lives of rescuers and victims buried in the rubble. Only by hand should the 
pulverized concrete, glass, furniture and other debris be removed (see Figure 1). 

Rescue specialists use trained search dogs, cameras and listening devices to search 
for victims from above ground. Though search dogs are effective in finding human 
underground, they are as limited as human in the depth they can reach below the 
surface of rubbles and are unable to provide a general description of the physical 
environment the victim locates. Camera mounted probes can provide search 
specialists a visual image beyond voids that dogs cannot navigate through, however 
their effective range is no more than 4-6 meters along a straight line below ground 
surface. 

 

Fig. 1. Left: Pakistan earthquake 2005, locals making attempts to search for survivors in a 
collapsed girl’s college. The structure was in unstable condition; excavation and lifting 
machineries were prohibited from the site. Right: Indian Ocean Earthquake 2004. Most 
buildings were collapsed and roads were blocked by debris. (Pictures taken on site by author 
during the two relief missions). 

3   Search and Rescue Robots 

Mobile robots designed for search and rescue operations are rugged in design and 
offer many features to address current technology constraints. Search and rescue 
robots can navigate through voids and crevices that are too small for search dogs, and 
can zigzag between obstacles to reach areas where straight camera mounted probes 
cannot reach. Search and rescue robots equipped with camera and two way voice 
communications allows the operator to get a visual image of the victim’s surrounding 
and to speak to the victim to provide psychological support. Moreover, once the 
location of the victim is identified, another robot can deliver water and food to 
prolong the victim’s life. 

Robots for search and rescue had been discussed in scientific literature since the 
early 1980’s [Kobayashi and Nakamura 1983]; however, no actual systems had been 
developed or fielded until 2001. With the advancement in sensor miniaturizations and 
exponential increment in the speed and capability of microcontrollers, rescue robots 
small enough to thread through rubbles are rolling out of experimental laboratories 
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into the catastrophic areas. The first real research on search and rescue robot began in 
the aftermath of the Oklahoma City bombing in 1995 [Murphy 2004a].  Robots were 
not used at the bombing response, but suggestions as to how robots might have been 
applied were taken. In 2001, the first documented use of urban search and rescue 
robots took place during the 9/11 World Trade Center (WTC) disaster. Mobile robots 
of different sizes and capacities were deployed. These robots range from tethered to 
wireless operated, and from the size of a lunch box to the size of a lawnmower 
[Snyder 2001]. Their primary functions are to search for victims and paths through 
the rubble that would be quicker to excavate, perform structural inspection and 
detection of hazardous material. 

4   Mechatronic Design 

At present, search and rescue robots are typically stand-alone unit focused in obstacle 
avoidance and object discovery. In real world operations, when these robots are 
deployed into rubbles to search for victims or into muddled mine fields to locate 
bombs, they are often deterred by narrow passages. Smaller robots can often reach 
deeper into rubble pile than larger, bulkier robots; however, smaller robots are more 
likely to report lost if they drop themselves into large openings. Since search and 
rescue robots are typically deployed to work in highly unstructured environment, 
damaging and losing of robots due to uncontrollable external factors should not be 
considered as failures; instead, all loses should be considered as calculable risk and 
incorporate the risk into normal operation cost. Following this line of thought, to 
minimize operation cost, small low-cost search and rescue robots that can be deployed 
in high volume are more suitable for search and rescue missions in unstructured 
environment than large complex single unit. 

 

Fig. 2. Left: Custom designed control board for general AIS robot controls. Right: The 
physical prototype of the newly developed robot. The battery pack on top of the robot serves as 
a scale to show the robots’ dimension. 
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The search and rescue robot system being discussed in this paper consists of an 
operation console and two autonomous robots. The robots are essentially two 
mechatronically loaded aluminum cases, each fitted with two tread-belts driven by 
two separate gear-motors. Each of these robots is equipped with a Thermal Array 
Sensor (TAS), a camera for transmitting visual image to the operator, a microphone 
for picking up sound under the rubble, an accelerometer to tell the orientation of the 
robot in respect to gravitational pull, a sonar range finder for obstacle avoidance, a 
high intensity LED for lighting, 6V rechargeable battery, a custom designed micro 
controller board designed for general AIS robot controls, and a ZigBee wireless 
network module for establishing a network between the operator and the robots. The 
board has two channels for motors up to 2A, 6 servo controllers, one 5V regulator, 
two LED indicators, one I2C port and a serial port for programming (Figure 2). The 
prototype has the camera, TAS, and high-intensity LED encased in the aluminum 
case. Sonar is to be encased in the second prototype. 

The operation console consists of a mini-monitor for displaying video images 
obtained from the robots, a ZigBee wireless network module for communication and a 
remote control unit for interfacing human inputs to the mechatronic system. Basic 
layout of the system is illustrated in Figure 3. 
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Fig. 3. Mechatronic layout of the system 

The designated function of the robots is to navigate autonomously into rubble to 
search for living bodies using the TAS equipped in front of the robot. The TAS is a 
thermopile array that detects infrared in the 2µm to 22µm range. The unit has eight 
thermopiles arranged in a row and can measure the temperature of 8 adjacent points 
simultaneously. These thermopiles are identical to those used in non-contact infrared 
thermometers, and can detect heat generated from a human body from 2 meters away 
regardless of the lighting condition. The robots can avoid obstacles and find passage 
under rubble autonomously using its sonar range finder, but the operator can, at 
anytime, choose to control each robot individually using the remote controller with 
the assistant of the control console’s mini-monitor. This alternative control scheme 
enables the human operator to assist the robot to solve navigation problems based on 
real-time visual images. Without this alternative control scheme, the robots would 
require many more onboard sensors and higher computational power to achieve 
barely comparable results, which in turn adds to the weight and cost of the robots. 

The robots are designed with two separate communication channels to minimize 
power consumption. The A/V channel for audio and video uses 2.4GHz transmission, 
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and is by default turned off to save power. When the robot detects an object with 
human-body-like temperature or when it has difficulty to navigate out of a trap, it will 
generate a request for the operator to turn on the A/V channel and assist it to navigate 
or to determine if the object is a human being. The data channel is for sharing data 
and transmitting command between robots and the operator. This is done through the 
second channel using the ZigBee (http://www.freescale.com/ZigBee) communication 
modules installed in the robots and in the control console. ZigBee is a low-power, 
short-distance wireless standard based on 802.15.4 that was developed to address the 
needs of wireless sensing and control applications. ZigBee supports many network 
topologies, including Mesh. Mesh Networking can extend the range of the network 
through routing, while self-healing increases the reliability of the network by re-
routing a message in case of a node failure. This unique feature is highly desirable for 
search and rescue robots operating in unstructured environment. The ZigBee 
communication channel can also be turned off to save power, and can be waken 
wirelessly with a single command. In fact, it is programmed to stay in standby mode 
when it is not transmitting or receiving data. 

To effectively achieve the designated function, the robots are instructed to behave 
in two distinct modes in respond to external stimulations. These two distinct modes 
govern the robots’ actions in victim searching and in exception handling. When the 
robot is behaving in search mode, it uses its sonar to identify open passages and 
navigates autonomously into the rubble to look for possible victims using its TAS. 
While in this mode, the robot shuts down all onboard devices that are not directly 
related to its objective to conserve energy for navigation and exploration. In practice, 
the A/V system and the high intensity LED for illumination are deactivated under 
exploration mode. When the robot identifies a possible victim based on data obtained 
from the TAS, or when the robot believes it has trapped itself in the rubble, it will 
switch to the exception-handling mode to request for operator assistance. While in 
exception-handling mode, the robot would first send all data related to its current 
situation (i.e. the most current set of data from TAS and sonar) plus its current status 
(i.e. possible victim identified or trapped) to the operation console. Then it shuts 
down all energy consuming devices, put the ZigBee communication module to 
standby mode and wait for the operator’s assistance. The human operator can 
reactivate the robot wirelessly by responding to the console. Once the robot is 
reactivated in exception-handling mode, it would reinitiate the A/V device, the LED, 
the sonar, the TAS, and the motor controllers to assist the human operator to 
determine whether the object identified is a living human body. The human operator 
can also remotely control the robot to navigate out of a trap with the assistant of the 
video feedback. The robot can switch back to exploration mode at the operator’s 
command. External interruptions (operator commands or help requests) received 
through ZigBee communication module can also cause the robot to enter exception-
handling mode.  

5   Biological and Artificial Immune Systems  

Human immune system is a robust, efficient, and adaptive system. The immune 
system continuously acquires new knowledge of non-self cells, adjusts its responses 
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against foreign antigens, scales up defense mechanism to foil foreign attacks, 
suppresses destructive actions against self cells, converts emergent behaviors into 
organized memories, and stores distributed memories for global access. Artificial 
Immune Systems (AIS) [de Castro and Timmis 2003] is a new computational 
intelligence paradigm built around inspirations from its biological counterpart. This 
new computational paradigm, in general, focuses to exploit and mimic the four main 
functions in the biological immune system by embedding various computational 
techniques and algorithms. These artificial functions are further integrated to form 
decentralized systems with specific advantages to meet application needs. Many of 
these systems had successfully implemented to decentralized systems to perform 
learning, data manipulation, abnormality detection, object classification and pattern 
matching. Though AIS is still in its infancy when compared to other well-established 
computational intelligence paradigms such as, evolutionary algorithms, artificial 
neural network and fuzzy systems; its promising underlying biological principles has 
attracted many researchers from different field. 

Scientists and engineers have applied AIS to solve a wide variety of problem. [Lau 
& Wong 2004] developed a control framework to improve the efficiency of a 
distributed material handling system. [de Castro & Timmis 2002] presented the 
application of AIS in computer network security, machine learning, and pattern 
recognition. [Sahan et. al 2005] applied attribute weighted AIS to diagnosis heart and 
diabetes diseases. [Dasgupta et al. 2004] exploited negative selection algorithm to 
detect abnormalities in aircrafts. [Cserey et al. 2004] developed an AIS real-time 
visual analysis system for surveillance based on the behavior of T-cells. [Oda & 
White 2005] developed AIS for detecting junk e-mail and achieved accuracy close to 
and even exceeded commercial products in certain aspects. In an effort to develop 
robust and decentralized control systems for modular robots, [Ko et al. 2004a] 
developed a General Suppression Control Framework (GSCF) for designing control 
systems for modular robots based on the suppression mechanism in AIS. The 
framework has also been applied to design control systems for controlling a two-
wheeled self-balancing robot in heterogeneous-connected mode [Ko et al. 2005]. This 
paper, continuing from previous works, describes the application of GSCF in 
designing robust decentralized control systems for a small platoon of search and 
rescue robots. 

6   General Suppression Control Framework 

The General Suppression Control Framework (GSCF) [Ko et al. 2005a] is based 
around the analogy of the immunological suppression hypothesis in the discrimination 
theory [Aickelin et al. 2003]. The major recognition and reaction functions of the 
acquired immunological response are performed by T-lymphocytes (T-cells) and B-
lymphocytes (B-cells) which exhibit specificity towards antigen. B-cells synthesize 
and secrete into the bloodstream antibodies with specificity against the antigen, the 
process is termed Humoral Immunity. The T-cells do not make antibodies but seek out 
the invader to kill; they also help B-cells to make antibodies and activate 
macrophages to consume foreign matters. Acquired immunity facilitated by T-cells is 
called Cellular Immunity. 
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When a T-cell receptor binds to a peptide with high affinity presented by an APC 
(Antigen Presenting Cells), such as macrophages, the T-cell recognized the antigen 
become mature and it has to decide whether to attack the antigen aggressively or to 
tolerate it in peace. An important decision factor is the local environment within 
which the T-cell resides. The present of inflammatory cytokine molecules such as 
interferon-gamma (INF-γ) [Sharon 1998] in the environment tend to elicit aggressive 
behaviors of T-cells, whereas the anti-inflammatory cytokines like IL-4 and IL-10 
tend to suppress such behavior by blocking the signaling of aggression. In brief, a T-
cell matured after recognizing an antigen does not start killing unless the environment 
also contains encouraging factors for doing so. In addition, after a mature T-cell 
developed the behavior, it will emit humoral signals that have slower transmission 
speed but longer lasting effect than cellular signals to convert others to join. 
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Fig. 4. The General Suppression Control Framework. Dashed lines represent humoral signal 
transmissions, where solid lines represent cellular signals. The suppression modulator can host 
any number of suppressor cells. 

Our analogy infers each module of the modular robot is an autonomous T-cell that 
continuously reacts to the changing environment and affects the functioning of other 
cells through the environment. The framework consists of five major components. 
The most notable mechanism shown in Figure 4 is that the T-cell’s functions are 
divided into three separate components, the Affinity Evaluator, Cell Differentiator and 
the Cell Reactor. Delegating the three unique functions into separate components 
enables the system to be organized in a modular manner and that when programming 
for an application, the result and effect of each component can be observed easier. 
There are five main components in GSCF; they are Affinity Evaluator, Cell 
Differentiator, Cell Reactor, Suppression Modulator, and the Local Environment. 
Their functions are explained below. 

Affinity Evaluator – evaluates information in the Local Environment against the 
objective and output an affinity index. 

Cell Differentiator – evaluates inputs from the Affinity Evaluator and Suppression 
Modulator to determine the type of behavior to react.  

Cell Reactor – reacts to the cellular signal from the Cell Differentiator and executes 
the corresponding behaviors that take effect in the Local Environment. 
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Suppression Modulator – is a collection of Suppressor Cells that are sensitive to 
predefined external stimulants. 

Local Environment – is where interactions between different components take place 
and a theoretical space to integrate the physical objects and the abstract system in 
an analyzable form. 

7   Control Design and System Integrations 

The search and rescue robot control system presenting in this paper is based on the 
GSCF [Ko et al. 2004b] developed for controlling decentralized systems. In general, 
the first step in designing a GSCF based control system is to identify the system 
objective and system constraints. For the search and rescue robots in this research, the 
primary objective is to search for human body under rubbles using their TAS. 
Therefore searching for human-body-temperature-like heating object is the system 
objective. Next, for the robot to navigate through rubbles to search for heat, the robots 
must be able to avoid obstacles and to ask for help when it is stuck. Therefore 
avoiding obstacle is a crucial condition that the robots must satisfy before pursuing 
the system objective; hence obstacle avoidance is a system constraint. In addition, 
operator commands and help requests, made by other robots within the system, 
received through ZigBee communication module are also treated as external 
constraints. 

With system objective and constraints identified, the next step is to organize these 
conditions into system solvable form. For GSCF, the fundamental idea is to let 
Affinity Evaluator to decide whether there is a problem to solve (an system objective 
to pursue), and then consult the Cell Differentiator to decide whether the system has 
the resources to solve the problem under imposed constraints. For the search and 
rescue robot, the Affinity Evaluator is responsible for monitoring the status of the 
system objective. The system objective is said to have achieved when a human-body-
temperature-like heating object is detected. The Affinity Evaluator would produce a 
high affinity index when the system object is achieved to encourage the system to 
behave aggressively. When a robot is in aggressive mode, it would remain in its 
position and perform a series of actions to alarm the operator for assistant. Otherwise, 
the Affinity Evaluator would produce a low affinity index to allow the system to 
continue exploring the surrounding to search for heating objects. When the affinity 
index is low, Cell Differentiator would actively evaluate various system constraints to 
see how the robot should behave. These constraints being evaluated may be 
predefined system constraints or newly developed constraints due to changes in the 
environment. GSCF define these constraints as suppressor cells (SC), these cells may 
evolve to adapt to new changes and may proliferate to increase their sensitivity to 
specific stimulants. The search and rescue robots under discussion have two main 
sensors that determine the robots’ behaviors. The sonar range finder helps the robot to 
avoid obstacles, and the TAS helps to locate heating objects. Suppressor cells that 
have high sensitivity to these sensors are situated in the Suppression Modulator. 

Suppression Modulator is a very important component in GSCF; it contains 
suppressor cells that are sensitive to particular sensors and can be viewed as 
representations of external constraints reacting inside the control system. The function 
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of Cell Differentiator, on the other hand, is similar to the biological cell differentiation 
mechanism, in which cells develop aggressive or tolerant behavior in response to the 
type of cytokines present in the immune system. Similar to Suppression Modulator, 
Cell Differentiator is also an important component of GSCF; it is responsible for 
integrating complex information from different sources into simple instructions and 
converts intricate problems into quantitative outputs. The decision flow of the Cell 
Differentiator can be summarized in a flow chart as shown in Figure 5. 

 

Fig. 5. Decision scheme in the Cell Differentiator of each modular fireguard 

The suppression indices from the suppressor cells have priority over all others, it is 
being evaluated first to see whether the robot is blocked by obstacles or has found a 
heating body. If the suppression index is high, meaning the system has detected 
something unusual; the suppressor modulator can force the robot to behave in 
aggressive mode instantly. On the other hand, when the suppression index is low, the 
system will check the affinity index and follow the normal procedures to determine 
how the robot should behave. 

Since the Cell Differentiator in GSCF is only responsible for producing high-level 
behavioral instructions such as “sound the alarm”, “stand fast”, “search for heat”, etc. 
There has to be a component to interpret these high level commands into lower level 
commands for the mechanical controllers. This component is called Cell Reactor. 
Since mechanical control schemes varies greatly between different operation 
platforms, GSCF delegates this work to Cell Reactor, so the high level design of other 
components can remain platform independent. 
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8   Observation Test 

To evaluate the performance of a field system and to determine points of 
improvement, the GSCF-based search and rescue robot system is put to test in a semi-
unstructured environment. The test environment is a dumpsite for old furniture and 
equipment; the piling of chairs, broken pallets, and construction debris resembles a 
condition close to an earthquake-affected indoor environment. The purpose of this test 
is to observe how GSCF handles the robots’ different behaviors based on simple 
suppression mechanism. The robots ability to transform between aggressive and 
tolerant behavior in response to the external condition is also of the experiment’s 
main focus. 

The robot deployed into the test environment performed as designed. The robot 
navigates autonomously into the rubble to search for heat emitting objects that are 
close to the temperature of heat emitted from a living human body. The robot stopped 
and switched into tolerant mode after it detected the operators hand. The operator then 
took over the control of the robot, navigated it to a different location, and let the robot 
resume its patrolling. Mobility of the robot is biased towards certain terrain. The small 
size of the robot inherently handicapped its mobility over terrains with large holes, as 
the robots would simply fall through them as it strolls over. When in front of narrow 
passages, the robot demonstrated good mobility. The equipped accelerometer helped 
the robot to determine if it is flipped over and allow the control system to change its 
motor directions accordingly, so the robot can continue to move in the same direction 
after being flipped in an accidental event. This feature proves to be very useful over 
rough terrain and narrow passages, as the operator does not need to know which side 
of the robot is up to drive the robot forward. 

Since this is only a prototype for testing the concept of controlling low-cost 
autonomous search and rescue robots with GSCF based system, it is fair to say the 
performance of the robot is inline with design expectation and the GSCF based 
control system works well as the backbone of the system. To further develop the 
current prototype system, certain improvements can be made. Suggestions and 
recommendations derived from this research are discussed in the concluding section. 

9   Recommendations and Conclusions 

This paper presented a low-cost search and rescue robot system that can navigate into 
voids in rubbles, avoid obstacles, detect living human body temperature, transfer 
video image, and communicate in a low-power ZigBee network. The robot system 
consists of two robots and one operator console and can be expended to consist any 
number of robots. The GSCF based control system enables the system to be 
controlled in decentralized manner using very simple commands and limited 
communication power. 

In spite of the technological challenges and mistrust of new technologies in human 
nature, search and rescue robots will become an indispensable tool in future rescue 
operations. Starting to develop and field search and rescue robots with regular rescue 
teams can help scientists to better understand the strength and weaknesses of different 
robot designs under different situations. Having robots working in parallel with 
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regular rescue team can also help scientists to investigate how robots should behave to 
comply with their operators’ instructions and to best assist the rescue effort in general. 

Simple user control interface allows amateur rescuers to be trained to operate the 
robot in a short period of time, eliminating the need to occupy limited professionals to 
look after each robot. Low manufacturing cost allows robots to be deployed in mass 
quantity to increase the chance of finding survivors. Battery is the heart of robots; it 
keeps electricity pumping inside the robots. Lighter, smaller and more powerful 
battery is also an important constituent of effective search and rescue robots. 
Emergency wireless network for communication is also important for coordinating 
actions between robots, collecting visual image from the robots, and to communicate 
with the victim when the robot finds one. 
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Abstract. The dendritic cell algorithm is an immune-inspired technique
for processing time-dependant data. Here we propose it as a possible so-
lution for a robotic classification problem. The dendritic cell algorithm
is implemented on a real robot and an investigation is performed into
the effects of varying the migration threshold median for the cell popula-
tion. The algorithm performs well on a classification task with very little
tuning. Ways of extending the implementation to allow it to be used as
a classifier within the field of robotic security are suggested.

1 Introduction

Technologies and protocols designed to enforce security are now pervasive in
society. Most houses now have burglar alarms, CCTV is common-place in towns
and cities and the private security industry is estimated to provide products and
services up to the value of £4 billion in the UK alone [1]. It is possible to group
most existing solutions as either ‘manned guarding’ or static-sensor networks.

Manned guarding (bouncers, private security guards etc.) is a popular tech-
nique for providing additional security to buildings containing expensive or sen-
sitive items. Human security systems are difficult to pre-empt and can adapt to
new circumstances. However, human performance varies greatly and is heavily
reliant on rest periods. People are also susceptible to prejudices and preferences
depending on gender, race and age. Guarding is a potentially hazardous occu-
pation as it places an individual between a criminal and their goal.

Static sensor networks (CCTV, standard burglar alarms etc.), can be stored
and replayed as and when required. They do not require rest and react pre-
dictably to all situations. If damaged, static sensors are easy to replace and in
systems with centralised data storage, evidence is not compromised. However,
criminals can plan around static sensors; as they can be obscured and cannot
negotiate obstacles. Static sensor networks cannot effectively use short-range
sensor-types, unless deployed in bottle-necks, such as entry and exit points. The
limiting factor for many static sensor networks is the volume of information gen-
erated. Very few sensors can be monitored by an individual effectively. Tickner
et al. estimated that the number of feeds that a single operator can effectively
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monitor is approximately 16, with the detection rate falling from 83% for a four
camera system, to 64% for a 16 camera system, [2].

Robotic systems have many properties to make them a useful tool for security
applications. They have the advantages of static sensor networks and are capable
of moving around obstructions to gain a better line of sight. Short range sensors
are more effective when mounted on a robot, as the sensor can be taken to the
target. Whilst it is possible for an automated sentry to become predictable, intel-
ligent routing algorithms could make evasion challenging. The key disadvantage
of a robotic system is the volume of data. The camera mounted to the front of
a robot is likely to be even more difficult to monitor than a static camera, as
both the background, and items of interest will be moving on the screen. This
disadvantage could potentially be overcome if the robots could autonomously
recognise events of interest and report them to the operator.

Artificial immune systems (AIS) have had numerous successes in the field
of anomaly detection. A newly developed AIS algorithm, the dendritic cell al-
gorithm (DCA), is a promising technique for the processing of time-dependant
data [3]. The DCA is based on recent developments in immunology regarding the
role of dendritic cells (DCs), as a major control component within the immune
system. The DCA is based on an abstraction of DC behaviour and performs
fusion of data from disparate sources. Successful applications of the DCA have
focussed on solving intrusion detection problems in computer security, a field
which shares properties with problems in both robotics and physical security.

The potential benefits of applying the DCA to a robotic security solution
are numerous. It is hoped that the DCA will have a resilience to the noise
associated with real-world signals due to its ability to fuse information from
disparate sources via a population of artificial cells. The aim of this investigation
is to explore the applicability of the DCA to a robotic system. In section 2 we
present work relevant to the areas of security robotics and the DCA. In section
3 the implementation of a general robotic DCA is discussed. Section 4 outlines
an investigation into the effects on the performance of altering the dendritic cell
migration threshold when applied to a trivial robotic classification problem. The
results of this investigation are presented, analysed and discussed in sections 4.1
to 4.6. In section 5 conclusions are drawn about the applicability of the algorithm
to robotic security and possible extensions of this work are outlined.

2 Related Work

2.1 Robotic Systems

Developing a robotic system is a demanding task as robust, real-time control
is difficult to achieve. Brooks’ “subsumption architecture” (first proposed in
[4]), has been shown to be an effective way of designing robotic control sys-
tems [5]. Such architectures rely on the development of a family of simplistic
“behavioural modules” that interact to produce more complex behaviour. For
example, the complex behaviour of wandering through a dynamic environment,
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without hitting obstacles can be achieved through the interaction of two simplis-
tic behavioural modules. Figure 1 illustrates a simple subsumption architecture.
The lower priority behaviour simply moves the robot forwards at a constant ve-
locity. In the event of a higher priority behaviour detecting an obstacle, it can
subsume the output of the low priority behaviour and steer the robot away or,
in emergencies, stop. The interaction between the two modules ensures that the
robot is always moving when possible, without hitting obstacles.

Fig. 1. A simple subsumption architecture for implementing a wandering behaviour

2.2 Autonomous Security Systems

Whilst the robotic security problem is yet to be rigorously formalised, an archi-
tecture using robots as autonomous scouts which report ‘interesting’ events to
a human operator has precedent [6][7][8]. Using this approach, the robotic secu-
rity problem can be viewed as two, well-researched problems: path planning and
classification. Massios et al. [9] define patrol route planning as an optimisation
problem, minimising the probability of missing a “relevant event”.

The classification problem is the discrimination of important events from nor-
mal events. The “mobile detection assessment and response system” [8] is an
American military project aimed at producing a collection of robots for interior
and exterior security. These systems use basic motion-detection algorithms on
data from an on-board camera [7]. The movement detection algorithm is simpli-
fied by keeping the robot base stationary during classification. When movement
is detected other sensors are employed in conjunction with the camera to assess
if the observed object is human or not. In [6], a more intelligent classification
technique is proposed using colour analysis and clustering to compare a room’s
current state with its previously observed state. This algorithm has applications
for identifying erroneous objects, e.g. unattended luggage, and recognising the
theft of objects that were present in the test image.

2.3 The Dendritic Cell Algorithm

The DCA was conceptualised and developed by Greensmith et al. [10]. The al-
gorithm is based on the behaviour of DCs, which are the antigen presenting
cells of the immune system. DCs are natural anomaly detectors and data fusion
agents, responsible for controlling and directing appropriate immune responses.
The fusion of ‘signals’ across a population of DCs and the asynchronous cor-
relation of signals with ‘antigen’ provides the basis of the DCA’s classification.
DCs exist in one of three states, immature, semi-mature and mature. Immature
DCs perform signal fusion and process antigen. Semi-mature and mature DCs
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present antigen with a context value derived from the fused signals. Antigen
presented by semi-mature DCs are ‘normal’ and the antigen presented by mature
DCs are ‘anomalous’. The biological theory is beyond the scope of this paper,
but the interested reader can refer to [10] and [11] for the relevant immunological
details. A formal description of the DCA is provided in [3].

The DCA is a population-based algorithm, with each agent in the system
represented as a cell. Each cell can collect data items to classify forming antigen
for use within the DCA. The DCA used in this paper relies on a ‘3-signal’ model
where three categories of input signal are used to produce three output signals.
Signals and antigen are read into a signal matrix and antigen vectors. Antigen is
sampled by DCs and removed from the tissue antigen vector and transferred to
the DC’s own antigen storage facility. Once antigen is sampled, the DC copies
the values of the tissue signal matrix to its own signal matrix. These values
are processed by the DC during the update to form cumulative output signal
values. Equation 1 is the function used to process the signals, where O are output
signals, S are input signals, i is the number of output signals, j is the number
of input signals and Wij is the weight used for Oi and Sj .

Oi =
3∑

j=1

WijSj ∀i (1)

Input and output signals are termed after their biological counterparts:

PAMPs (S1): A signature of abnormal behaviour e.g. number of errors per
second. This signal is proportional to confidence of abnormality.

Danger Signal (S2): A measure of an attribute which increases in value to
indicate an abnormality e.g. an increase in the rate of a monitored attribute.
Low values of this signal may not be anomalous, giving a high value a mod-
erate confidence of indicating abnormality.

Safe Signal (S3): A measure which increases value in conjunction with ob-
served normal behaviour e.g. a high value of S3 is generated if the standard
deviation of a monitored attribute is low. This is a confident indicator of
normal, predictable or steady-state system behaviour. This signal is used
to counteract the effects of PAMPs and danger signals and is assigned a
negative weight in the weighted sum.

CSM (O1): The costimulatory signal which is increased as a result of high
values of all input signals. This value is used to limit the duration spent by
DCs in the data sampling stage.

IL-10 (O2): This value is increased upon the receipt of the safe signal alone.
IL-12 (O3): This value is increased upon the receipt of PAMP and danger sig-

nals, and is decreased by the safe signal.

The processing of signals and antigen is distributed across the DC population
to correlate disparate data sources to perform the classification of the algorithm.
The DCA does not perform antigen pattern matching, unlike other AIS algo-
rithms which perform antigen classification through analysis of the the structure
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of an antigen. Instead, the signals received by a DC during its antigen collection
phase are used to derive an antigen context which is used to perform the ba-
sis of classification. This algorithm can be applied to problems where multiple
antigens of identical structure i.e. antigens of the same type, are to be classified,
such as the classification of anomalous processes [12].

Each DC is randomly assigned a migration threshold value which is compared
against the cumulative O1 value. The details of the migration threshold value
generation for this experiment can be found in section 4.4. If the value of O1
exceeds the migration threshold, the DC is removed from data sampling and
enters the maturation stage. At this point the values for output signals O2
and O3 are assessed. If O2 > O3, the DC is termed ‘semi-mature’. Antigen
‘presented’ by a semi-mature cell is assigned a context value of 0. Conversely, if
O2 < O3 the cell is termed ‘mature’ and antigen presented by this cell is assigned
a context value of 1. Once the DC has presented its antigen-plus-context values,
it is reset and returned to the DC population. Data sampling by DCs continues
for the duration of the experiment, or until a specified stopping condition is met.

After a specified number of antigen are presented by the DCs, analysis is
performed. As mentioned, antigen do not have unique values representing their
structure, with antigen of identical values termed as a ‘type’. The MCAV co-
efficient (mature context antigen value) is calculated as the fraction of antigen
presented in the mature context, per type of antigen. MCAVs close to 1 indicate
that a type of antigen is potentially anomalous. A threshold is applied to the
MCAV values to discriminate between anomalous and normal types of antigen.

Thus far, the majority of problems presented to the DCA are related to com-
puter security, specifically the detection of port scans [3] it is also applied to
a static machine learning dataset [10] and the detection of intrusions in sensor
networks[13]. Work performed by Greensmith et al. [12] has indicated that the
DCA performs well for time-dependent real-valued data, such as that seen in
robotics applications. Following the interesting ideas proposed in [14], it is fath-
omable that the DCA, also based on innate immunity, could be incorporated
into the field of mobile robotics. As the DCA has a history of good performance
for illegal scan detection in computer security, it may be a useful algorithm for
the purpose of physical robotic security applications.

3 The Robotic Dendritic Cell Algorithm

The DCA is applied to a general robotics problem to support the suitability of the
algorithm for mobile robotic security. The platform used for this investigation is a
Pioneer 3DX. This robotic system has a broad variety of sensors, including a laser
range finder (LRF), an array of sonar sensors and a pan-tilt-zoom camera. On-
board processing is performed using an 850MHz Pentium III processor running
Debian Linux, (kernel version 2.6.10). The manufacturer’s “Aria” library is used
to control the device. The Aria control system is an object-orientated (C++)
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library which is structured to support the implementation of subsumption control
architectures. All compilation was carried out using g++ version 4.0.2.

The robotic DCA is implemented as a stand-alone behavioural module for
compatibility with a subsumption architecture. Figure 2 illustrates the archi-
tecture which implements a simultaneous wandering and DCA classifying
behaviour. This extension of the Aria library’s ‘wander’ architecture has an
additional module for image processing and an additional module for execut-
ing the DCA. By making these additions part of the subsumption architecture,
the fundamental behaviour of moving around safely within the environment can
be prioritised above all other actions. In addition to the wandering and classi-
fying behaviour, there is also a tele-operation, (remotely controlling the robot
from a networked machine) and classifying behaviour. The DCA module out-
puts MCAV coefficients (as described in section 2.3), approximately once per
second.

Fig. 2. The subsumption architecture used to implement the robotic DCA

The DCA used on the robot is a streamlined version of the algorithm which
does not require any additional software libraries, unlike the implementation used
in [12]. Verification of the streamlined implementation’s functionality against
that of the original DCA has been achieved. This was performed by attaching
‘virtual’ signals and antigen to the inputs of the module and processing the data
used in [12]. The signal weightings specified for the anomaly detection algorithm
in [12] were used for all experiments.

4 Experimental Validation

It is thought that the DCA is capable of processing real-time sensor data. It is
further hypothesised that the migration threshold will have a noticeable effect
on the false positive rate for this classification task. The following experiment is
designed to test these ideas.
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4.1 Experimentation

This experiment uses the “simultaneous wander and classify” behaviour dis-
cussed in section 3. The DCA classifies its current location as either ‘anomalous’
or ‘normal’ from the application-specific input signals. For this simple test, pink
coloured objects with a height less than 330mm are considered anomalous whilst
other obstacles are considered to be normal. The colour pink is used as it is eas-
ily distinguished from other objects within the robot’s environment. A height
of 330mm is used as objects below that height are unobservable by the LRF’s
planar field of view (FOV), but can still be detected by the sonar sensors’ conic
FOV. This means objects classified as ‘pink’, detectable by the sonar but not
detectable by the laser, are classified as anomalous.

The starting conditions for the experiments are illustrated by figure 3. Ob-
stacle A is a pink cylinder, with a height less than 330mm which is an example
of an anomalous object. Obstacle B is a pink cylinder, with a height greater
than 330mm which is an example of a normal object. It is expected that the
DCA will not react to the taller cylinder as the algorithm will prevent full mat-
uration of the cells. By maintaining the starting position of the robot and the
positions of the obstacles, it is possible to calculate the ideal classification for all
points within the enclosure. The error between the theoretical response and the
algorithm output can then be used as a metric to assess the performance of the
algorithm.

Fig. 3. The starting conditions for each experiment. Cylinder A is the ‘dangerous’
obstacle, cylinder B is the ‘safe’ obstacle.

4.2 Signal Sources

As described in section 2.3, three signals are used as inputs to the DCA inclusive
of a safe signal, a danger signal and a PAMP signal. The former acts to suppress
the full maturation of the dendritic cells, whilst the other two stimulate the
maturation. All signals contribute to the migration of the cells.

The PAMP is sourced from the image processing module. The input from
the camera is transferred into the HSV, (Hue, Saturation, Value) colour space
and the histogram back-projection algorithm is applied to the data [15]. The



The Application of a Dendritic Cell Algorithm 211

back-projection algorithm uses a single training image to identify the colour
properties of an object of interest. All pixel groups within the image that share
the same statistical properties are identified and contours are drawn around those
clusters. The final output from the image processing library is the area of the
largest region which matches the properties of the test image. Intel’s “OpenCV”
library was used to perform all image processing. The output from the image
processing module is scaled down before being used as the PAMP signal. The
scaling factor used was calculated from test data generated by a seven minute
random walk around the pen.

The LRF is used as the source for the safe signal so objects taller than 330mm
will produce high values of the inhibitory signal. The FOV of the LRF extends
from -90◦ to +90◦ (where 0◦ is directly in front of the robot). A 44◦ FOV is
used, ranging from -22◦ to +22◦. A narrow FOV reduces the risk of erroneous
classification from walls. The distance to the closest object within the safe FOV
is returned to the signal processor. The signal processor calculates the magnitude
of the safe signal. This is performed using a look up table which relates distance
to signal strength. For values that lie between those specified in the look up
table, linear interpolation is used to calculate the signal strength. The values
used are given in Table 1.

Table 1. Object Distance and Signal Strength for Ranged Sensors

Distance (mm) Safe Signal Strength

0 100
300 90
600 50
900 20

1200 0

The danger signal is sourced from the sonar array which has a 360◦ FOV.
The danger signal FOV coincides with the safe signal FOV. The same look up
table (see Table 1) used to normalise the laser output for the safe signal is used
to normalise the sonar output for the danger signal.

4.3 Antigen Source

In a practical robotic security solution, the antigen could be a vector based on
the estimated location of the anomalous situation. Object-based approaches for
antigen generation within a robot system have been put forward by by Kraut-
macher et al. in [16]. For this simple implementation antigen is an integer number
which uniquely identifies a segment of the test pen. This encapsulates a small
range of positions and orientations of the robot. The actual position and orienta-
tion of the robot is estimated using a ‘dead reckoning’ algorithm. Dead reckoning
estimates the position and orientation of the robot from encoders mounted on
the wheels, the fixed starting position of the robot and the diameter of the tyres.
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The antigen generated enumerates a 300mm grid square within the pen and a
30◦ segment within that square. Generating antigen based on the current loca-
tion of the robot is more practical than object-based antigen, which requires a
deeper knowledge of the environment to compute.

As the antigen is generated based on a specific robot location, it is possible
that an ineffective amount of antigen will be generated. One solution for this is to
add multiple copies of each antigen to the DCA environment as suggested in [17].
A novel extension to the DCA for this application is an antigen multiplication
function. This function adds varying amounts of each antigen depending on the
speed of the robot. Areas passed through slowly are made to contribute more
antigen than areas passed through quickly. This is done because areas passed
through quickly contribute less signal to the DCA environment, as less time is
physically spent within that area. The weighting function is given in equation 2.

W (v, θ̇) = 75
(

1 −
∣∣∣∣ v

vmax

∣∣∣∣
)

+ 1 + 25
(

1 −
∣∣∣∣∣ θ̇

θ̇max

∣∣∣∣∣
)

+ 1 (2)

In equation 2 v is the velocity of the robot, θ̇ is the rotational velocity of the
robot and W is the amount of antigen added to the environment.

The smallest amount of antigen that can be added is 2, when the robot is at
maximum velocity and maximum rotational velocity. The maximum amount of
antigen that can be added is 102, when the robot is totally stationary.

A simple program written in Java calculates the theoretical MCAVs for every
antigen, from the properties of the test pen. This is an unrealistic mathematical
model of the experiment but provides a way of analysing the true and false
positive rates for each run of the experiment.

4.4 Experiment Parameters

Each run of the experiment allowed the robot to wander around the test pen
for ten minutes. The classification experiment was repeated three times for each
value of migration threshold median. The experiments used the migration medi-
ans 15, 30, 60, 120 and 240. The range of allowed values is ±50% of the migration
median in each case. Each DC was assigned a random migration threshold within
the specified range, using an equi-probable distribution.

A naming convention is used referring to the first experiment as M15, the
second as M30 etc. A threshold of 0.6 is applied to the MCAV values from the
algorithm. Values less than or equal to 0.6 are counted as a negative or ‘safe’
classification, values above are counted as a positive or ‘dangerous’ classification.

4.5 Results

Figure 4 shows the false positive and false negative rates from the experiments.
The rates are calculated by comparing the classification from the algorithm with



The Application of a Dendritic Cell Algorithm 213

the theoretical classification. Each point on the chart shows the misclassified
antigen rate from the beginning of the experiment up to the time indicated on
the x-axis. Each series is the average classification error from three runs with
the specified migration rate.

Fig. 4. The classification error rates from the experiments. The false positive rate is
shown on the left and the false negative rate is shown on the right.

4.6 Analysis

The classification error rates rise throughout the experiments. Analysis of the
robot’s telemetry showed that the error in localisation from the dead-reckoning
algorithm was drifting over time. As the measure used to assess the robot’s
performance relies upon the location of the robot, it is theorized that the clas-
sification errors from the first 1-2 minutes are closer to the “true” classification
errors, as they will not be as significantly affected by the localisation drift. The
use of a theoretical model as a baseline for the experiment could also introduce
a constant error offset as the model may not be totally accurate. However, the
performance of the algorithm is still high. The highest recorded rate of classifi-
cation error for the entire experiment is a 0.16 false-positive rate, for the M240
experiment. The higher amount of antigen absorbed before migration increases
the occurrence of cases when a DC collects both dangerous and safe antigen,
making attributing ‘blame’ more difficult. The false positive rates all start be-
low 0.14. M30 demonstrated the best performance overall, and appears to give
the optimum performance for this particular experiment. It is intuitive to see
higher error rates from experiment M15 as a low migration threshold will cause
DC’s to migrate after only sampling a small amount of signal. This would result
in the classifier being more prone to noise within the system. M120 has amongst
the highest false negative rates and the lowest false positive rates. More work
will have to be done to understand why this should be the case. One potential
cause may be the high range of possible migration thresholds with a tolerance
of ±60. M60 yields the lowest false negative rate, but one of the highest false
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positive rates. The rates of error presented in 4 are lower than expected for this
problem, indicating that the DCA is suitable for some robotic applications.

5 Conclusions

The misclassifications caused by the dead reckoning errors lead to the results
being difficult to judge against the chosen metric. This could be a problem
for future applications, as antigen generation for this application is intrinsically
location specific. It is proposed that this issue could be resolved by adding a more
advanced localisation algorithm based on using sensor readings to compensate
for the integration errors.

It has been shown that it is possible to implement the DCA on a real robotic
system. Whilst the problem was trivial, the low false positive and false negative
rates are promising, especially considering that very little tuning or training has
been performed. The implementation did not require any processing to be shared
by another machine, so the DCA is scalable for an n-robot system and is us-
able in circumstances when the robot enters a region with poor communications
coverage.

The next intended step for this project is to apply the DCA to a harder clas-
sification problem and compare its results with a fuzzy or neural classifier. This
will provide an insight into the general performance of the DCA as a robotic
classifier. Extending this work to a security system will require two key steps.
Firstly the DCA will need to be modified to handle vector antigen instead of inte-
ger antigen. This will allow a more extendible representation of the environment
to be used by the classifier. Secondly, the signal sources for a security system
will need to be more complex than those used for this experiment. A possible
source for the PAMP signal would be the error from a trained, non-linear model,
correlating physical position to a normal scenario. Large error rates would im-
ply an anomalous situation. The safe and danger signals could be controlled by
the robot’s physical location and the time of day. It would be advantageous to
make the robot less sensitive during office hours and around busy public areas
and more sensitive out of office hours and around high-security areas. A more
generic anomaly detection system could be achieved through the introduction
of a training-data based algorithm. The error rate between what the trained
system expects to see and what its current sensor readings tell it, could be used
as a source for PAMP signals.

Ultimately a multi-robot system, with dynamically changing routes and
shared anomaly information could be developed, each using a DCA to assess
the threat level for a given location.
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Abstract. Many electronic systems would benefit from the inclusion of
self-regulatory mechanisms. We strive to build systems that can predict,
or be aware of, imminent threats upon their specified operation. Then,
based on this prediction, the system can alter its operation or configu-
ration to circumvent the effects of the threat. In this position paper, we
discuss the role of the immune system can play in serving as inspiration
for the development of homeostatic engineered systems, through the de-
velopment of an immune inspired extensible architecture. We outline the
major requirements for such an architecture, and discuss issues that arise
as a result and propose possible solutions: things are never as simple as
they first appear.

1 Introduction

The biological term Homeostasis coined by Cannon [1] refers to an organisms
ability to maintain steady states of operation in a massively changing internal
and external environment. Engineering homeostasis in electronic systems is a
challenging endeavour. There have been many attempts at employing various
mechanisms to endow certain systems with homeostasis, for example the Unix
operating system [4] and robotics [5]. Within a biological context, it is generally
accepted that organism homeostasis is an emergent property of the interactions
between the immune, neural and endocrine system. Taking this view, work in
[6] discussed mechanisms inspired by the neural and endocrine systems and how
these might be exploited in the context of robotic systems. However, there is a
great deal of complexity issues when one examines the interactions of these three
systems, therefore we have decided to focus on a single subsystem, the immune
system, in an attempt to get a handle on the inherent complexity. In practice, and
as it will be seen in this paper, it is almost impossible to draw lines between each
of these systems, in particular the immune and endocrine systems, as there are
so many types of interactions at so many different levels. In this position paper
we examine the issues involved in creating a general extensible architecture for
homeostasis for use in electronic systems that will endow homeostatic properties
on engineered system. However, this is not a simple task and this position paper
serves as a discussion on the issues regarding designing such an architecture.
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2 Biological Homeostasis and Biological Homeostatic
Control Systems

The processes that encompass homeostasis are best understood by looking to
the original definition [1]:

The coordinated physiological processes which maintain most of the
steady states in the organism are so complex and so peculiar to living
beings involving, as they may, the brain and nerves, the heart, lungs,
kidneys and spleen, all working cooperatively that I have suggested a
special designation for these states, homeostasis. The word does not im-
ply something set and immobile, a stagnation. It means a condition a
condition which may vary, but which is relatively constant.

A present day reference on homeostasis, Vander’s Human Physiology [2] ac-
knowledges the stability provided by homeostasis is due to interactions of the
immune, neural and endocrine systems; and that homeostasis also occurs in-
dividually within each one of these systems. Vander [2] opens with a chapter
on homeostasis to provide a context to the whole book, the chapter describes
homeostasis in terms of homeostatic variables and set points of those variables.
Examples of homeostatic variables in the human body are blood glucose lev-
els, or body temperature. The set points are the steady states (not necessarily
equilibria) at which the system attempts to maintain these variables. Vander
notes that over a given time period there may be massive variability in homeo-
static variables, there is a rise in blood glucose after a meal, for example. But,
if a time-averaged mean across that time period is taken and compared with
consecutive time periods the behaviour is far more predictable. The control of
the of homeostatic variables and set points is performed by homeostatic control
systems. They are predominantly feedback systems, most often negative feed-
back, but positive feedback does also occur. Vander [2] supplies a list of general
properties homeostatic control systems, which is reproduced here.

1. Stability of an internal environmental variable is achieved by balancing in-
puts and outputs. It is is not the absolute magnitudes of the inputs and
outputs that matter, but the balance between them.

2. In negative feedback systems, a change in the variable being regulated brings
about responses that tend to move the variable in the direction opposite the
original change — that is, back toward the initial value (set point).

3. Homeostatic control systems cannot maintain complete constancy of any
given feature of the internal environment. Therefore, any regulated variable
will have a more-or-less narrow range of normal values depending on the
external environmental conditions.

4. The set point of some variables regulated by homeostatic control systems
can be reset — that is, physiologically raised or lowered.

5. It is not always possible for homeostatic control systems to maintain con-
stancy in every variable in response to an environmental challenge. There is
a hierarchy of importance, so that the constancy of certain variables may be
altered markedly to maintain others at relatively constant levels.
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Vander [2] discusses a number of other issues and examples of homeostatic control
systems in context of the human body, we abstract these to produce a further
list of desirable properties of homeostatic control systems.

1. Prediction. Vander [2] determines this as feed-forward regulation. In response
to an environmental change the homeostatic control system manipulates the
internal environment in order to avoid a deviation from a set point before it
has happened.

2. Innate and Adaptive Response. The homeostatic control system is built up of
innate and adaptive reflexes which are used to bring homeostatic variables
back to set points. The innate reflexes are involuntary, unpremeditated and
unlearned, and are instigated in response to a particular stimulus, internal
or external. As one would imagine, adaptive reflexes are learned to correct
unforeseen deviations from set points. Vander also states that all reflexes,
innate or adaptive, are subject to further learning.

3. Acclimatisation. Although encompassed by both adaptive responses and re-
setting of set points, it is an important enough property in its own right. It
represents the ability for a set point to semi-permanently change in response
to semi-permanent change in the environment. To aid explanation we take
the analogy in [2] of a runner who is asked to run for 8 consecutive days in
a hot room (a room hotter than the runner’s normal environment). Details
of the runner’s sweating are recorded. By the 8th day the runner starts to
sweat earlier and in far greater quantities than the 1st day, this allows to
the runner to limit the deviation of the temperature homeostatic variable
from its set point. The ’sweating’ homeostatic set point has acclimatised to
the new environment. When the runner returns to running in the original
environment the set point will, over a number of days, acclimatise back to
the original.

3 The Immune System for Homeostasis

First, it is worth noting why we are attempting to construct artificial homeostatic
systems using solely the immune system, apparently ignoring the neural and
endocrine systems. All three systems are necessary for human homeostasis and
none of the systems are singularly sufficient. When one investigates the immune
system, it is clear that the endocrine system is inextricably linked to the immune
system. Immune cytokine networks share many of the same functional properties
of the endocrine system, and are in effect considered part of the endocrine system:
therefore we are not ignoring the role of the endocrine system. There is clear
evidence to suggest immune, neural and endocrine interactions [3], however, as
previously mentioned we have excluded the neural system from our studies, as
by doing so reduces the level of complexity that we are dealing with and allows
us to focus our efforts at exploring the role of the immune system in body
maintenance, a view held by some theoretical immunologists [7] and [9].
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3.1 Cohen’s Immune System

Cohen believes the role of the immune system is to repair and maintain the body.
As the removal of pathogen is beneficial to the health of the body, defence against
pathogen can be seen as just a special case of body maintenance. In order to
achieve body maintenance, the immune system must select and regulate the in-
flammatory response according to the current condition of the body. This con-
dition is assessed through the Co-respondence of both the adaptive and innate
immune agents, which are required to recognise both the presence of pathogen
(non-self antigen) and the state of the bodys own tissues (self antigen). The speci-
ficity of the immune response, therefore, is not just the discrimination of danger
[11] or the distinction of self/non-self, but the diagnosis of varied situations, and
the evocation of a suitable response. Degeneracy is a concept central to Cohen’s
ideas and is discussed in terms of immune receptors and cytokine networks. De-
generacy is defined as [20]: “The ability of elements that are structurally differ-
ent to perform the same function of yield the same output.” Cohens maintenance
role of the immune system requires it to provide three properties: Recognition:
to determine what is right and wrong, Cognition: to interpret the input signals,
evaluate them, and make decisions. Action: to carry out the decisions.

3.2 Grossman’s Tunable Responses

Grossman [8] sees the immune system as a system which reacts to perturba-
tions, to changes in the environment rather than the specificity of any particular
pathogen. Grossman’s view is constructed around immune cells having with tun-
able activation thresholds, which control proliferation, differentiation and choice
of effector function. The activation thresholds are tuned to a cell’s recent ex-
citation history (its interactions and interaction affinity) [8], a change in the
environment will cause a change in the cells excitation. The rate and size of
perturbation with respect to the cell’s history is what ultimately determines the
response of the cell. Grossman believes control of immune response (e.g. severity
of attack, tolerance and memory) emerges out of the dynamics of a population of
tunable cells [9]. Grossman provides a simple mathematical model for the tuning
of cells in [8] and outlines potential biological evidence for the tuning in [10].

3.3 Appropriateness of Immune Inspiration

Cohen’s and Grossman’s theories concern the immune system as a whole, their
arguments relate to interactions producing behaviour rather than analysis of
immune machinery. They view the immune system in terms of maintenance and
tolerance rather than attack and defence of invading pathogens. The concepts
of Cohen and Grossman have commonalities with the concepts of biological
homeostasis and homeostatic control systems, section 2. They provide immune
theories that would seem to provide excellent inspiration for construction of a
homeostatic control system. There are certainly conflicts between the two models
of the immune system, Grossman requires some immune receptor specificity [8],
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and Cohen prefers to do away with specificity altogether [12]. However there is
definitely common ground and opportunity to combine the two, in fact Cohen
does precisely this in [12] to produce a model to describe T Cell behaviour.

4 An Architecture for Artificial Homeostasis

We will now discuss some of the issues that arise in attempting to construct
an architecture for homeostasis based the notion of homeostatic control systems
provided. Again, it should be noted that this is a position paper, we discuss
potential problems and propose some tentative solutions.

It is our intention that if this architecture can be developed then systems
built adhering to the rules of the architecture will then have the properties of
a homeostatic system. Consequently the system should have an innate level of
homeostasis and then adapt and acclimatise to the environment it is placed
within. We now define some terms within our system, and say that the system
is comprised of:

1. Sensors. These can sense from the environment.
2. Homeostatic Variables and Set Points. For the system to maintain home-

ostasis we must define what it means for the system to be homeostatic. The
intention is that homeostatic variables are evaluated by functions on the sen-
sors, and other internal variables of the system. Each of these are associated
with a priority, to represent the importance of certain variables over others
as mentioned in section 2.

3. Actuators. These can act to manipulate the environment.
4. Homeostatic Responses. Similar to the homeostatic variables and set points,

the system requires innate methods to correct deviations from homeostatic
set points. The responses would make use of the systems actuators.

5. Tasks. These describe the behaviour of our system.
6. Homeostatic Control System. This maintains the homeostatic variables at

their set points, while allow the system to complete its tasks.

4.1 Splitting the Problem: Breaking into a Homeostatic System

Imagine that we have constructed a homeostatic control system, which is able
to maintain homeostasis given the Sensors; Actuators; Homeostatic Variables,
Set Points and Responses; and Tasks. The problem now is: can we sensibly and
tractably split up a system into these components? Although choice of sensors,
actuators and tasks are ultimately specific to problem domain of the system,
there are still general considerations. It is important to understand the purpose
of the system, this may seem obvious, but it raise some interesting issues. For
example: is it more important for the system to complete its task, or is survival of
the system (it not becoming irreparably damaged) more important? Is there only
a single system performing a given task, or are there many systems? Therefore, is
losing one or two systems an acceptable cost in order to complete the task? If this
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is the case the homeostatic control system could be a little more cavalier with
the choices of homeostatic response, this should be reflected in innate definitions
of the system.

Similarly there are some general points on choice of innate homeostatic vari-
ables, set points and responses. An interesting way to split the problem is to
observe how the problem is split in biological systems. There is a natural hier-
archy to biological systems, the homeostasis of an individual is maintained by
the immune, neural and endocrine systems. The homeostasis of these systems
is maintained by systems internal to them, and then the homeostasis of those
systems is maintained by systems internal to them, and so on.

The homeostasis of artificial systems can be broken up in a similar manner.
At the population; at the individual; at the tasks; the physical components of
a system. Problem splits can be both logical and physical, clearly splitting by
tasks represents a logical split whereas by components represents a physical split.
There is no constraint on splits being entirely logical or entirely physical, one
can imagine a system split both logically and physically with the split problem
represented as a graph. Nodes in the graph would represent homeostatic units,
and edges of the graph represent a communication of homeostasis information
between homeostatic units of the system. This raises the questions: what infor-
mation should be shared between homeostatic units and how should this infor-
mation be shared? It is reasonable to envisage homeostatic variable deviation in-
formation propagating through this graph, but sharing of homeostatic responses
and correlations is less obvious. Imagine a 4-wheeled robot with a homeostatic
architecture split so that each of the four is controlled by four homeostatic units.
Each wheel is mechanically identical and has identical sensors. One of the four
discovers a correlation or response that is useful in predicting and avoiding flat
tyres, how can this information be propagated to the other three wheels? The
difficulty arises that each homeostatic unit is by intention self-organising; there is
a black box element to these homeostatic units. We don’t not know what coding
scheme has be adopted in each of the four homeostatic units, to communicate
the information we would have to isolate the information that deals with new
discovery along with the other information it depends upon. Then a mechanism
would be required to translate from the coding scheme of the discovering unit to
the coding scheme of the other three units. We should note that we are not sug-
gesting these steps be literally implemented, but that they hopefully can emerge
as part of an appropriately immune inspired algorithm.

We return, briefly, to discussing logically splitting the problem and suggest a
temporal heuristic may be useful. Systems are required to operate over a vari-
ety of time scales, it is a property of general systems including computational,
psychological and social [17]. For example, parts of our system may need to re-
spond on time scale t1 and other parts may need to respond on timescale t2.
The difference between t1 and t2 may be so pronounced that from the point of
view of t1 operations on timescale t2 occur instantly and atomically, and from
the point of view of t2, t1 looks constant. This property is noted in Burns et al.
[17] who take inspiration from psychology and real time systems to develop a
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formal framework of timebands. It can be used to describe and prove relation-
ships between entities interacting at different timescales. No proof or analysis of
interactions between timescales is needed here, in fact such analysis flies in the
face of the purpose of our architecture. However, these time scales still provide
a natural way to break up the system into homeostatic variables with timescales
in common sharing hierarchical levels. It is worth noting that this hierarchy does
not necessarily impose a order of importance, or that lower levels in the hierar-
chy must be completed before higher levels. It is just an intuition with which to
split the problem and to characterise interactions between homeostatic variables
and responses.

There is an issue concerning the granularity with which homeostatic set points
are defined. The intention is to allow the architecture to discover an emergent
method of maintaining homeostasis, as a consequence we do not want the set
points to be defined with too fine a granularity. For example, homeostatic vari-
ables could be represented by a real numbers and if the set points are set at
specific real target values, then the homeostasis of the system is very prescrip-
tive. The solution to maintaining homeostasis reduces to an error minimisation
problem, and biologically inspired techniques, although still useful, are no longer
necessary. However, this overlooks the fact that it may be very hard to assign
fixed target values to the set points to achieve the desired behaviour. Moreover,
systems where this is a straight forward task are not the systems we are inter-
ested in bestowing with homeostatic properties. Set points should be defined in
a fuzzier sense: intervals, minimisations, maximisations etc. For example a com-
ponent in the system may have an operational temperature range in [−10, 50]
degrees Celsius, this range is an obvious choice for a set point.

A final point of discussion in the choice and the assignment of homeostatic
variables is their priorities. In section 2 it is noted that there is a hierarchy of
importance of homeostatic variables and the homeostasis of some variables may
be sacrificed to maintain the homeostasis of others. Homeostatic variable prior-
ities are a natural way to represent this property. The assignment of priorities
to homeostatic variables will necessarily constrain the behaviour of the system.
An incorrect intuition about priorities may lead to system failure in the worst
case and unnecessarily restrictive behaviour in the best case. We suggest that
priorities are assigned very carefully and potentially sparingly, perhaps assigning
many homeostatic variables the same priority. The concept of the homeostatic
control system sacrificing certain homeostatic variables in favour of others can
still exist in a system with many homeostatic variables sharing the same prior-
ity. Many homeostatic variables can be allowed to deviate slightly from their set
points to avoid a large deviation on a separate homeostatic variable.

Choosing innate responses to correct deviations from homeostatic set points
is subject to similar issues as that of choosing homeostatic variables. We would
like the homeostatic control system to discover good choices for homeostatic re-
sponses, so we do not necessarily need sophisticated innate responses, the hope
being the homeostatic control system will discover them. A simple heuristic for
choice, then, is all that is needed. We suggest a greedy response: each homeostatic
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variable is associated with the response that will best correct that variable, if per-
turbed, regardless of effect of that response on the rest of the system. For example
in an autonomous robot system, the temperature homeostatic variable may be as-
sociated with a response to turn on the fan (pull the variable back towards its set
point) and to turn off all motors (eliminate a potential source of the perturbation).

4.2 Homeostatic Control System

Before discussing how an immune inspired homeostatic control system may be
constructed, it is useful to examine the issues that arise in attempting to maintain
homeostasis on our new definition of a system. Immune inspiration or not our
system is beginning to fit into Cohen’s [7] three stage system: Recognition, sensors
sense the environment which position the homeostatic variables. Cognition, based
on the sensor values and homeostatic variables in relation to their set points we
must decide on homeostatic responses to take. Action, the homeostatic responses
act to move homeostatic variables back towards set points.

It is worth noting that linking a homeostatic response to the correction of a
homeostatic variable is perhaps sufficient for an innate response, but it is defi-
nitely not sufficient for adaptive responses. To ease discussion we will define a
new term: homeostatic error for a homeostatic variable, this is simply the dis-
tance (by whatever distance metric we care to choose) of a homeostatic variable
from its set point. To reiterate, now with the new parlance, it is not sufficient
to link adaptive homeostatic responses to homeostatic error. The homeostatic
error is only a context with which to understand the sensor values.

We return to the properties of homeostatic systems given in section 2, and
determine what our system must do given our current definitions:

1. Arbitration — given homeostatic variables with homeostatic error and the
system’s current understanding of the homeostatic responses, the control sys-
tem must arbitrate between the possible responses to best maintain home-
ostasis.

2. Correlation of Sensor and Homeostatic Error — The system must correlate
the sensor conditions under which homeostatic errors tend to arise.

3. Response Learning — The system must improve on innately supplied home-
ostatic response choices, by learning responses for the correlations learned in
the previous step. This includes recovery from the failure of responses, if an
actuator used in a response fails the system must use a different combination
of actuations to achieve the desired response.

4. Prediction — Using the correlations and responses learned the system should
predict the movement of homeostatic variables to avoid homeostatic error
wherever possible.

5. Acclimatisation — This represents the systems ability to change its correla-
tions and learned responses as the environment changes. This highlights the
issue of overspecificity, the system becoming too specific to a given environ-
ment and failing when the environment changes. We want our environments
change and so the system must be able to acclimatise to any new environ-
ment that arises.
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An interesting way to think of the acclimatisation and the avoidance of over-
specificity is in terms of robustness. Specifically robustness to changes in the
environment, this can be examined in information theoretic terms using the
mutual information [18], I, between the system S and the environment E:

I(S : E) = H(S) − H(S|E) (1)

H(S) is the entropy of the system and H(S|E) is the conditional entropy of the
system with respect to the environment. This conditional entropy term can be
thought of as the amount information that is in the system that is not correlated
to anything in the environment [18]. This represents an information excess, it
allows the system to change neutrally (a change that does not effect the mutual
information) without changing the systems behaviour. By a similar argument
the environment can change neutrally, without the system noticing, if E changes
in a way not correlated in S. The system and its behaviour can be robust to
both internal and external changes. The problem now becomes one of striking
the appropriate level of mutual information, to allow for acclimatisation but
not overspecificity. This can be answered by examining the rate of change of the
environment with the rate of change of the mutual information, that is the ability
of the system to keep up with a changing environment. Insight is given observing
by the specificity of the system to the environment at a given time, if the system
too specific (overspecificity, or overtraining) a change in the environment will
seem large from the point of view of the system, and so a large rate of change
and the system may not be able to keep up. If the system is unspecific for the
environment a change in the environment will seem small, there will be a small
rate of change. However if the system is too unspecific changes in the environment
will not cause appropriate acclimatisation and incorrect system behaviour.

Artificial systems have considerations of homeostatic control beyond the those
that are obvious from biology. Sensors can fail and their ability to sense the en-
vironment to a specified range and resolution can degrade. The consequence
of sensor degradation could cause an incorrect calculation of homeostatic error
which in turn could cause an incorrect homeostatic response. Catastrophe can
occur, a failure of the system to fulfil its purpose, in our terms: either failure of
system survival or failure of the system to complete its task. Imagine a situation
where the homeostatic response caused by an incorrect error perpetuates the
true homeostatic error, which causes positive feedback and dramatic increases
of homeostatic error to the point of catastrophe. Sensor failure is a far more
malicious failure than response failure. Although it is impossible to completely
eliminate the possibility catastrophe, with appropriate system design it is pos-
sible to reduce the probability of a catastrophic collapse. There is a natural
physics provided by the environment, for example in a robot, it may be possible
to estimate robot temperature as a function of motor speeds rather than using
a thermometer. This highlights a need for multiple methods of evaluating the
same homeostatic variable, this is an extension of an already identified desir-
able property of our system. Currently our system must correlate sensor data
and homeostatic errors to better identify when homeostatic errors occur and
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when they are likely to occur. Now, we would like our system to correlate sensor
data and homeostatic error in order to produce multiple methods of evaluat-
ing homeostatic variables. This is providing degenerate methods of evaluating
homeostatic variables, this turns out to be exactly what we want.

Degeneracy and Redundancy. We have defined degeneracy in section 3.1. In
contrast redundancy is characterised by multiple identical structures performing
the same function [20]. A further important distinction is that although under
certain conditions degenerate structures can perform the same function, under
different conditions they can perform different functions. Degeneracy and re-
dundancy are analysed in information theoretic terms in [19], the formulation
is in terms of mutual information between subsets of inputs and outputs. They
establish that [19]:

A degenerate system, unlike a fully redundant one, is thus extremely
adaptable to unpredictable changes in circumstances.

They stress that a degenerate system must have a degree of functional redun-
dancy,there is scale between a fully redundant systems (everything performs the
same function) and fully independent systems (a one to one mapping, every-
thing performs different functions), degeneracy lies in the middle. Tononi et al.
[19] also comment that degeneracy and complexity go hand in hand, and sys-
tems with high degeneracy have the potential for high complexity. Appropriate
degenerate structures would seem to provide precisely the robustness for the
balance between specificity and acclimatisation discussed earlier. Consequently
degeneracy is a property that we would like at many levels of our systems. It
makes a case for our systems being sensor rich (mimicking biology), and not just
sensor redundant, to allow for sensor noise, degradation and failure; and to be
able to represent the complex relationships between degenerate sensors.

Returning to the more general topic of our homeostatic control system; bio-
logical systems develop their homeostatic control through evolution species over
many generations. Similar ideas are possible artificially if there have a popula-
tion of identical systems maintaining homeostasis and sharing information on
homeostasis. But, in the case of a single system how is performance evaluated?
Imagine all homeostatic variables are at or within homeostatic set points, but a
more efficient and preferred system operation exists and to get to this operation
requires movement into homeostatic error. Is this movement ever possible? The
movement clearly requires a homeostatic variable or task linked with a concept
of efficiency, however it is likely that this will have a lower priority than other
homeostatic variables. A lower priority than the homeostatic variables that are
required to briefly delve into error to allow the efficiency error to drop. We
do not provide an answer here, more a comment from Cohen [7] ”what works,
works.”, if the total homeostatic error is at zero the system is successful, if the be-
haviour is not the desired one then the homeostatic variable definitions must be
changed.
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5 Towards an Immune Inspired Solution

There are themes that arise in the discussion of artificial homeostasis which
clearly link to the immunological theories. The co-respondance of [7] and [9]
combined with the tuning of [8] and the cytokine networks of [14], to provide the
arbitration. The degeneracy of [7] providing the robustness through appropriate
mutual information between the environment and the system. The population
dynamics of [7] and [10] giving rise to necessary decisions, proliferation and
memory.

Although there are many conflicting theories on the immune systems op-
eration and function, there is less argument to the immune system’s function
on a basic mechanical level. We demonstrate analogies between the function of
components of our homeostatic system and the function of some immune com-
ponents. To begin with, there is analogy between the lymphatic system, and
our homeostatic unit graph, the units and the lymph nodes being distributed
locations in which the problem and the solution is determined. Clearly both
systems have an innate/adaptive divide. At the innate level there are analogies
between antigen presenting cells (APCs), macrophages, the context they present
and the the innate variable evaluations and response. At the adaptive level there
is analogy between the T Cells, B Cells and there proliferation and differenti-
ation decisions and the adaptive recognition and response of the homeostatic
system. These analogies serve little purpose in the design of an immune inspired
solution, but are used to demonstrate that inspiration is needed from the whole
immune process, not one individual part or concept.

5.1 Moving from Inspiration to Algorithms

Much of our inspiration is born from the arguments made Cohen [7] and Gross-
man [8], however a number of the arguments are neither scientifically verified
nor their workings fully understood. We suggest taking a principled approach in
the form of the conceptual framework [13], which may allow us to build immune
algorithms which are correctly biologically grounded, better theoretically under-
stood and ultimately more successful. The first step is to model mathematically
and computationally the biology as it is explained by [7] and [8], to gain a bet-
ter understanding of the biological processes and interactions involved. Distance
along this road has already been travelled with modelling of degeneracy in both
biological and artificial immune systems [19], [15] and [16]; with mathematical
modelling of cytokine networks [14]; and with model combining some of the out
of Cohen and Grossman [12]. This leaves much of the work in understand to the-
ories put forward by Grossman: [8], [9], [10], which we believe has the potential
to be some of the most fruitful immune inspiration we have outlined.

6 Conclusions

We feel that it is indeed possible to build an immune inspired architecture for
homeostasis. The greatest chances of success lie through: proper understand of
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the homeostasis problem; appropriate choice of immunological inspiration; and
considered understanding of the biology behind the inspiration.
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Abstract. The migration of lymphocytes through secondary lymphoid
organs was believed to be mainly controlled by chemokine gradients.
This theory has recently been called into question since naive lympho-
cytes observed in vivo by two-photon microscopy show no evidence of
directed migration. We have constructed a simple mathematical model
of naive T cell migration in lymph nodes that is solely based on local
mechanisms. The model was validated against findings from histological
analysis and experimentally determined lymphocyte recirculation kinet-
ics. Our results suggest that T cell compartmentalization in lymph nodes
can be explained without long-range chemokine gradients. However, the
T cell residence time predicted by our model is significantly lower than
observed in vivo, indicating the existence of a mechanism which alters
the T cell random walk over time.

1 Introduction

Immune responses are mounted and supervised in secondary lymphoid organs
(SLOs). These functions are crucial: loss of all secondary lymphoid organs leads
to death. Among the several kinds of SLOs, i.e. lymph nodes, Peyer’s patches
and the spleen, the mass of lymph nodes makes up about 60% [1].

Unlike many other organs which consist mainly of resting cells, SLOs mostly
contain highly motile cells: Lymphocytes perpetually enter, move within, and
exit from SLOs. This restlessness is important because a previously unseen anti-
gen is sometimes only recognizable by a few dozen out of several millions of
lymphocytes. Since infections are usually local, the right cell being at the wrong
place may mean that the immune response is mounted too late. Additionally,
many essential functions of lymphocytes are contextual, i.e. restricted to a certain
environment. For instance, somatic hypermutation of B cells is mainly restricted
to germinal centers. Thus, in order to understand lymphocyte function, it is
essential to study their migration [2].

On their endless journey, lymphocytes are often guided by chemotaxis [3,4,5].
For example, chemokines control the recruitment of circulating lymphocytes
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Fig. 1. Cortex and paracortex in slices of an uninfected lymph node of a rat (source:
own work) with colored T cells (left) and colored B cells (right). High endothelial
venules appear as “holes” in the paracortex.

into SLOs. Knowledge of these mechanisms has important clinical implications:
chemokine receptors controlling lymphocyte migration have repeatedly proved
to be excellent targets for the inhibition of inflammatory diseases like atopic
dermatitis or multiple sclerosis [6]. Unsurprisingly, it has been proposed that
chemokines also control the migration of lymphocytes within lymph nodes and
other SLOs (e.g. [4]).

However, this theory has recently been called into question [7]: By two-photon
microscopy, it has become possible to observe individual cells in the intact lymph
node in vivo [8,9]. It was found that naive T cells show no sign of directed
migration, as they would under the influence of chemokine gradients. Rather,
their motion is best described as a random walk [7,10,11,12,13].

Our goal is a better understanding of these new results. In particular, we are
interested in three aspects: (i) migration of naive T cells within lymph nodes; (ii)
compartmentalization (see Fig. 1) of the constantly moving cells and; (iii) exit of
naive T cells from the lymph node. We know that the entry of lymphocytes into
SLOs is controlled by chemokine gradients – does the same apply to migration,
compartmentalization and exit?

To address these questions, we have constructed a simple mathematical model
that does not use chemotaxis, but is solely based on local mechanisms. Compart-
mentalization is explained by assuming that naive T cells prefer to walk along
the fibers of the FDC network which makes up the paracortex, but retain their
normal motility when outside of this network. Entry and exit are modelled as
uniformly distributed processes in the paracortex and the medulla, respectively.
We have found that these minimal assumptions give rise to dynamics that reason-
ably match recirculation dynamics and compartmentalization observed in vivo.
Our results suggest that chemotaxis is not necessary to explain the forming of
the lymph node compartments. However, the T cell residence time predicted by
our model is significantly lower than in reality. This may indicate the existence
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of a mechanism which alters the motility of naive T cells over time, as it was
shown to be the case for T cells which are stimulated by antigen [13].

2 Background

The basic structure of a lymph node is shown in Fig. 2. Both B and T cells enter
through the high endothelial venules in the paracortical area. These capillary
vessels bear molecules which “recruit” circulating lymphocytes from the blood
stream. Presentation of processed antigen to T cells by dendritic cells takes place
in the paracortex. In this densely packed environment, T cells and dendritic cells
have frequent, short-lasting contacts. B cells, on the other hand, migrate to the
cortex where they screen follicular dendritic cells for native antigen. The exis-
tence of designated lymph node compartments for B and T cells thus makes the
search for antigen of both subpopulations more efficient. Upon activation, both
B and T cells migrate towards the border between cortex and paracortex. Here,
they exchange the costimulatory signals that initiate germinal center formation
and with it the Th2 immune response [14]. This is why the existence of a real
physical barrier between the two compartments is neither likely nor desirable:
upon antigen challenge, it would stand in the way of germinal center formation.

Due to the absence of a physical barrier, it was long unclear how the separation
between T and B cell areas in lymph nodes is established and maintained. Visu-
ally, the two areas are not distinguishable. Most likely, paracortex and cortex are
defined by different types of stromal cells. In the paracortex, the fibroblastic retic-
ular cells (FRCs) dominate. The best defined stromal cell subset in the cortex are
the follicular dendritic cells (FDCs) that present native antigen to B cells [5,15].
Bajénoff et al. [10] have recently demonstrated in vivo that T cells move along the
fibers of the FRC network while B cells walk along the FDC network.

B
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Fig. 2. Schematic representation of lymphocyte migration through the lymph node: (1)
Lymphocytes enter the lymph node through high endothelial venules in the paracortex.
(2) T cells remain in this compartment, while B cells migrate to the cortex. (3) B and
T cells exit the lymph node via efferent lymphatic vessels which drain the medulla.
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Still, these findings do not completely rule out the possibility that chemokines
play a role in defining cortex and paracortex. First of all, the mentioned mi-
gration of activated T and B cells towards the cortex/paracortex boundary is
controlled by chemokines made by the FRCs and FDCs [4]. These gradients
might also affect naive lymphocytes. Due to technical issues, two-photon imag-
ing experiments are limited to a timeframe of about 1-2 hours [8]. This is short
compared to the 24 hours lymphocytes typically spend in lymph nodes. Weak
chemokine gradients that only create a small bias in lymphocyte motility might
not be detected by this method. Such gradients might have an important effect
on the long-term dynamics, especially on the exit process. Formal modeling is
helpful to shed light on these contradicting theories.

Our starting point was a simple hypothesis on how cortex and paracortex
are formed: It makes no difference if T cells are released in the cortex or in the
paracortex. They retain their normal motility pattern (this has been confirmed
by Miller et al. [11]) and, when inside the cortex, do not use chemotaxis to
find back to the paracortex. When approaching the cortex from the paracortex,
the FRC network becomes more sparse. Under these circumstances, T cells will
preferentially, but not exclusively, move along the remaining FRC fibers. This
simple effect should already give rise to compartmentalization.

This gave rise to the idea of constructing a simple model which does not
include chemotaxis, but is only based on local mechanism as the one described
above, and validate it against experimental results from histological analysis
and recirculation experiments. We hoped that this model would give us a better
understanding of the nature of the boundary and compartments generated by the
defined mechanism. Moreover, it would show whether the kinetics of lymphocyte
recirculation could really be the result of a simple uniform random walk.

3 The Model

Several authors (e.g. [16,17]) proposed agent-based models of cellular interactions
in the lymph node. These models are very useful to study the complex emergent
aspects of the immune response like affinity maturation. However, they are too
complex for our purpose, since we are focusing on naive cells. Beltman et al.
[18,19] studied the dynamics of naive T cell migration using a cellular Potts
model which focuses on the paracortex. This model is impressively consistent
with experimental results from two-photon microscopy. Yet, we found it too
complicated to incorporate medulla and paracortex into this model and decided
to start with a simpler approach. Stekel et al. [20,21] studied the dynamics of
lymphocyte recirculation using differential equations, but they did not model
the lymph node compartments explicitly.

Compared to these approaches, our model is situated on an intermediate
(mesoscopic) scale. We abstract from the individual cells and use scale-free con-
centrations instead, but represent the lymph node compartments explicitly. We
have deduced the sizes and shapes of the compartments from the literature (see
table 1) and from our own experiments and archived microtome slices. However,
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Table 1. Parameters of our model with their respective meanings, default values and
sources. Microtome sections from our own archives were used for estimating σ and e.

Symbol Space Default Meaning Sources

rM R
+ 300μm Base radii of medulla, cortex and

paracortex
[10,15,25]

rC 450μm
rP 500μm

ax [0, 1] 1 Relative sizes of ellipsoid main
axes

[15,26]
ay [0, 1] .8
az [0, 1] .5

σ [0, 1] 0.88 “Stickiness” of T cells to paracor-
tex, related to T cell concentra-
tions by 7

Cell counting
on microtome
sections

e(t, v) [0, 1] 1/|P| Spatiotemporal distribution of T
cell entry in paracortex

n/a

m [0, 1] 67Δs2 min
Δt μm2 T cell random walk motility [11,12,7]

l [0, 1] 0.005 Speed of exit process in medulla Visual match-
ing to micro-
tome sections

Δs R
+ 20μm Spatial grid resolution, cor-

responds to mean length of
FRC/FDC fibers

[10]

Δt R
+ 1min. Temporal resolution

it must be taken into account that lymph node morphology varies considerably.
For example, many lymph nodes show a concave boundary from medulla to
paracortex (see e.g. [15]) instead of the convex one used in our model.

We focus on T cells since the available data on their motility patterns is
much more detailed and reliable than that of B cells. This is partially due to
technical difficulties with unambiguously monitoring B cells in the paracortex
[10]. We plan to gradually incorporate B cells into our model as more reliable
experimental results become available.

Our model is based on a three-dimensional grid. The edges of this grid rep-
resent the network of FRC and FDC processes in the lymph node. As shown in
Fig. 3, the grid is subdivided into three zones, which represent the cortex, the
paracortex and the medulla. The T cells are not represented individually, but
as abstract, scale-free concentrations, which allows for larger-scale simulations,
but sacrifices stochasticity. Our assumption that T cells migrate only by uniform
random motion, except on the border from paracortex to cortex where they are
more likely to remain in the paracortex, then corresponds to a diffusion process
of the T cell concentration.

In the next two sections, we give a detailed formal definition of the model.
It is primarily aimed at those who wish to reproduce our results and is thus
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written in a rather condensed form. Readers who are unfamiliar with lattice
diffusion models should consult additional literature. For example, a similar two-
dimensional model has been used to simulate the spread of Influenza infections
on a cell monolayer [22]. A general introduction to models of diffusion which also
covers reaction-diffusion and chemotaxis is given in Murray [23], Chap. 11.

3.1 Basic Structure and Evolution Equations

Let LN ⊂ R3 be a simply-connected smoothly bounded region (e.g. an ellipsoid)
that is subdivided into three pairwise disjoint regions M,P , C. We discretize LN
by an isotropic cubic lattice L = (V, E) with vertices V = {(nxΔs, nyΔs, nzΔs) :
nx, ny, nz ∈ Z} and edges E = {(v, v′) ∈ V × V : ||v − v′|| = 1}. The set of
neighbours of v ∈ LN is written as v+(v) = {w ∈ V : (v, w) ∈ E ∧ w ∈ LN}.
We additionally define c+(v) = v+(v) ∩ C. The interval {x ∈ R : 0 ≤ x ≤ 1} is
denoted by [0, 1].

An edge coloring f(v, w) : E �→ {0, 1} represents the network of stromal
follicular dendritic cells in the paracortex and fibroblastic reticular cells in the
cortex: f(v, w) = 1 ⇔ v ∈ C ∨ w ∈ C. The boundary between the compartments
is denoted by B = {v ∈ P : c+(v) �= ∅}.

The distribution of T cells across the lymph node at time t is given by the
function T : R × V �→ R

+
0 . Our model evolves in discrete time steps nΔt, n ∈ N.

Entry, random walk, and exit of T cells are modeled by evolution equations,
analogous to finite difference approximations of differential equations.

Three kinetic parameters apply during each time step t: e(t, v) ∈ R
+
0 denotes

the unitless amount of new T cells that enter a vertex v ∈ P from HEVs, which
are not modeled explicitly. From every v ∈ V , a fraction m ∈ [0, 1] out of T (t, v)
moves to one of the neighbouring vertices. For v ∈ M, a fraction l ∈ [0, 1] of
(1 − m)T (t, v) exits (leaves) from v. The structural parameter σ ∈ [0, 1] is a
measure of the “stickiness” of T cells to FRC fibers. Altogether, the evolution
equation of T (t, v) for v ∈ P is defined as follows:

T (t + Δt, v) = e(t, v) + (1 −m) T (t, v) +
∑

w∈v+(v)\B

m

|v+(w)|T (t, w)

+
∑

w∈v+(v)∩B

|v+(w)| − (1 − σ)|c+(w)|
|v+(w) \ c+(w)|

m

|v+(w)|T (t, w)

(1)

On v ∈ M, we use:

T (t + Δt, v) = l (1 −m) T (t, v) +
∑

w∈v+(v)\B

m

|v+(w)|T (t, w)

+
∑

w∈v+(v)∩B

|v+(w)| − (1 − σ)|c+(w)|
|v+(w) \ c+(w)|

m

|v+(w)|T (t, w)

(2)
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And for v ∈ C, we obtain:

T (t + Δt, v) = (1 −m) T (t, v) +
∑

w∈v+(v)\B

m

|v+(w)|T (t, w)

+
∑

w∈v+(v)∩B
(1 − σ)

m

|v+(w)|T (t, w)
(3)

Setting e(t, v) = l = 0 for all v and t, (1) to (3) reduce compartment-wise to
a discrete version of the continuous diffusion equation

∂T

∂t
= D∇2T where D

Δs2

Δt
= m

which describes a discrete random walk. On the boundary of LN , the random
walk is “myopic”: Since the fraction of T that is transferred to the neighbouring
nodes is always m, a higher relative amount is transferred along each adjacent
edge. Thus, in equilibrium, boundary vertices v′ hold a fraction of v+(v′)/6 of
the concentration of non-boundary cells. This must be taken into account when
calculating region-wise mean concentrations.

From numerical analysis, it is known that a finite difference approximation
of the diffusion equation where DΔt/Δs2 > 0.5 is unstable. In our model, m >
0.5 could lead to a periodic random walk (“chessboard pattern”) and thus to
meaningless results. Thus, for explicit simulations, Δt must be sufficiently small.

The lattice spacing Δs may be set to the mean stromal cell network spacing
of 20μm [10], but other sufficiently small values are also valid as long as m
is scaled to reproduce the motility coefficient of T cells of about 67μm2/min
[11,12]. Reasonable values for l and σ will be derived in Sec. 4.

3.2 Lattice Topology

Size, shape and structure of LN are characterized by the 6 parameters rM <
rP < rC ∈ R

+
0 , ax, ay, az ∈ [0, 1]. M,P and C are each delimited by regular

ellipsoids as follows:

M =
{

(x, y, z) ∈ R
3 :

(
x2

a2
x

+
y2

a2
y

+
z2

a2
z

)
≤ rM

}
(4)

P =
{

(x, y, z) ∈ R
3 :

(
x2

a2
x

+
y2

a2
y

+
(z − rP + rM)2

a2
z

)
≤ rP

}
\M (5)

C =
{

(x, y, z) ∈ R
3 :

(
x2

a2
x

+
y2

a2
y

+
(z − rC + rM)2

a2
z

)
≤ rC

}
\ P (6)

This basic structure is illustrated in Fig. 3. Note that cortex and medulla are
not connected, which is not always the case [15].
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Fig. 3. Structure of our lymph node model. Medulla (innermost region), paracortex
and cortex (outermost region) are delimited by ellipsoids as defined in Sec. 3.2. Left:
2D planar section. Right: 3D structure. Parameters are given in table 1.

3.3 Assumptions and Limitations

The model presented here is still extremely simplified. The standard random
walk is not a realistic model of cell migration, as pointed out by Beltman et
al. [18]: “abrupt directional changes are not possible because it takes time to
displace the complicated internal structure that brings about motion”. Indeed,
histograms of T cell turning angles generated from intravital microscopy data
show a significant deviation from a true random walk [19,13]: smaller turning
angles are favoured. Moreover, T cells move in rhythmic patterns where phases
of high velocities alternate with pauses.

However, from statistics, we know that most processes that behave “roughly”
like a random walk and have a finite mean square step size will spread out like
normal diffusion. This follows from the central limit theorem [24]. Since we are
focusing on the mesoscopic to macroscopic scale, approximating the motility of
T cells by a standard random walk should suffice as long as the T cell motility
coefficient [11] is reproduced.

The absence of B cells is problematic for the analysis of compartmentalization.
Effects like expulsion of T cells from the cortex are not taken into account.
However, assuming a standard random walk, the tracks of individual cells are
independent. Thus, adding B cells would not change the resulting dynamics.

Finally, entry and exit are modelled in a too simple manner. High endothelial
venules are not explicitly represented, new lymphocytes just “appear” in the
lymph node. We accept this for now since HEVs only make up about 1% of the
paracortical area [25]. The exit process has not been modelled more explicitly
since the amount of time T cells spend in the medulla is rather small [6]. All
these simplifications have to be taken into account when interpreting our results.

4 Results

The default parameters used in our simulations are given in table 1 along with
the corresponding literature references. However, some of the parameters could
not be inferred from literature. The choice of the entry term e(t, v) depends on
the distribution of high endothelial venules (HEVs) across the paracortex. Even
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though it is generally assumed that HEVs tend to lie close to the cortex, we are
not aware of any reliable data on this. So we initially assume that the HEVs are
uniformly distributed and set e(t, v) = 1/|P|. Values for σ and l will be derived
in the next section.

4.1 Compartmentalization

In order to investigate the influence of the stickiness parameter σ on the concen-
trations of T cells in cortex and paracortex, we have calculated the equilibrium
concentration T̄ where for all v ∈ V : T̄ (t+Δt, v) = T̄ (t, v). This can be done by
combining 1 to 2 with the equilibrium condition into a system of linear equations
with the unique solution T̄ . We have found that if e(t, v) is sufficiently small with
respect to T̄ (t, v) and the variance of T̄ (t, v) is sufficiently small across C, the
paracortex/cortex ratio of T cell concentration is approximately∑

v∈C T̄ (t, v)/v+(v)∑
v∈P T̄ (t, v)/v+(v)

≈ 1
|B|

∑
v∈B

|v+(v)| − (1 − σ)|c+(v)|
(1 − σ)|v+(v) \ c+(v)| (7)

Note that 7 depends only on σ and, to a lesser extent, on the shape of B.
Generally, the structure of LN is not important. This makes sense biologically
since compartmentalization is still observed in morphologically degenerate lymph
nodes [26]. Based on the approximation, the paracortex/cortex concentration
ratio of T cells of about 11 (estimation based on counting cells on 2D microtome
sections) should be reproduced by setting σ to about 0.88. Using our default
parameters, this is indeed the case (see Fig. 4). Based on this result, we estimated
l by visually matching slices of T̄ to 2D microtome sections from entire lymph
nodes ([15], own archives). l = 0.995 generated both a sufficiently homogeneous
concentration in the paracortex and a reasonable decrease of concentration in
the medulla.

Fig. 4. Equilibrium concentration of 1 to 3 with default parameters (table 1). Left: 3D
arrangement of xy,yz and xz slices. Center: Section similar to the one shown in Fig. 1,
with sharply bounded compartments ([P ]/[C] ratio: 10.54; 7 gives 11.88). Right: 3-fold
enlargement of the cortex (rC = 0.6mm) hardly influences the boundary ([P ]/[C] ratio:
10.62; 7 gives 11.98).
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Fig. 5. Rates at which injected lymphocytes leave the lymph node plotted as a function
of time. Top left: percentages of injected lymphocytes reappearing in thoracic duct
(dashed: [27], collected in 2h-intervals; solid: [28], collected in 6h-intervals) plotted vs.
the exit rate of our model with default parameters. Top right: The entire lymph node
was scaled by d. Lymph node diameters between 1 and 2 mm are typical for mice,
rats and humans; setting d = 10mm would reduce the peak to 0.2%. Bottom left:
Modification of the T cell motility coefficient to 50% and 200% of its original value
of 67μm2/min [11]. Bottom right: The kinetics are highly sensitive to modifications of
the radius of the medulla (legend units are given in μm).

4.2 Recirculation Kinetics

Upon exit from lymph nodes, lymphocytes enter lymphatic vessels which drain
into the thoracic duct. In a common experimental setup, labelled lymphocytes
are injected into the blood. The reappearance of these lymphocytes in the tho-
racic duct is then measured as a function of time. The characteristics of these
recirculation kinetics have been independently confirmed by many authors (see
[20] for various sources) and are thus suitable for the validation of our model.

To be able to do this, we have included the process of lymphocyte recruitment
in HEVs. Upon injection, the lymphocyte labelling index in the blood decreases
exponentially. 50% of the initial value are reached after about 30 min [25,27].
After 2 hours, 50% of lymphocytes have migrated through the wall of the HEV
into the paracortex [6]. We combined these two processes by setting e(v, t) =
exp(− ln(2)(t)/150(t + 1)) (since Δt = 1min).

Results are shown in Fig. 5: Our results are comparable to those obtained in vivo,
but the mean T cell residence time is significantly lower. There are several possible
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reasons for this: (i) a fraction of the injected lymphocytes have long-lasting contacts
with DCs and thus remain longer in the lymph node, which is not accounted for in
our model; (ii) T cell migration might be non-uniform in time, e.g. the cells start
slowly upon lymph node entry, accelerating their movement after some time
when no matching antigen is found; (iii) T cells could be retained in the lymph
node by chemokines; however, this is unlikely, since the S1P chemokine gradient
which exists between blood and SLOs rather seems to guide T cells out of the
lymph node [29]. Our estimation for now is that (ii) and (iii) are responsible for
the difference in residence time, since T cell priming by dendritic cells has been
shown to occur in three distinct phases with different motilities [13].

5 Conclusions and Future Work

We have created a simple mesoscopic-scale model of naive T cell entry, migration
and exit in the lymph node. We have shown how a simple local mechanism may give
rise to compartmentalization into cortex and paracortex. Explicit simulations of
recirculation experiments have yielded results that are comparable to those found
by experiments, but show a significantly lower T cell residence time. This indicates
the existence of a mechanism which alters the T cell random walk over time.

The next steps will be to model the exit process more explicitly and to grad-
ually incorporate B cells as more reliable results on their migratory patterns
become available. But most importantly, a profound mathematical understand-
ing of the proposed model has to be gained.
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Abstract. The idiotypic network has a long and chequered history in
both theoretical immunology and Artificial Immune Systems. In terms of
the latter, the drive for engineering applications has led to a diluted inter-
pretation of the immunological models. Research inspired by theoretical
immunology has produced compelling models of self-organised tolerance
and immunity, but currently fail to have any practical engineering ap-
plicability. In this paper, we briefly discuss the engineering applicability
of “self-affirming” idiotypic networks, leading to a suggestion that the
“Third Generation” network models represent a way forward in this re-
spect. Results obtained by implementing and extending a discrete model
of this type of network suggest that the extended prototype is capable
of two context-dependent modes of immune response, readily applicable
to unsupervised machine-learning.

1 Introduction

The idiotypic network has received much attention in both theoretical immunol-
ogy and Artificial Immune Systems (AIS) over many years. Leaving questions
of full biological validity aside, it remains one of the most mature and cogent
theories of how the immune-system may perform its seemingly cognitive tasks1

without recourse to immunological or engineering anthropomorphism – arguably,
an essential feature of any authentic “biologically-inspired” technique.

In an engineering context, any such technique must be able to accommo-
date some form of application-specific meaning, with subsequent structural and
behavioural dynamics that are also meaningful in that context. This necessity
for meaningfulness has, in the past, led to a diluted interpretation of the idio-
typic network, built around traditional engineering measures and practices [12].
Recent research has shown that these interpretations, which account for a signif-
icant portion of existing AIS applications [16], fail to produce a network dynamic
that could be considered “immune-like” [15] and further fail to produce solutions
that could not already be engineered by traditional methods [1].

There is a certain tension between (and among) engineers and immunologists
over the interpretation of the Shape-Space and measures of Affinity (e.g. see [9]).
From a biological perspective, it is clear that such abstractions are crude at
1 Such as discrimination, learning and regulation.
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best [8]. We would also question the utility of these abstractions in an engineer-
ing context: What can “immunological inspiration” contribute to the assumption
that geometric proximity of points in an n-dimensional space reflects underly-
ing relationships in the data? And how much of this inspiration is driven by
immunological insight?

Research that continues to be inspired by the work of theoretical immunolo-
gists has produced some compelling models of self-organised tolerance and im-
munity. In [15], Hart and Bersini show that affinity measures defined in terms of
Euclidean similarity produce networks that, because of their topological proper-
ties, fail to induce tolerant and intolerant regions of the space. Affinity measures
defined in terms of Euclidean complementarity result in a bipartite topology
that does indeed produce immune and tolerant regions of high and low field.
However, it is not necessarily obvious how such complementarity can be applied
in general; particularly in more abstract spaces, where the relationship between
components is not strictly geometric.

Several other difficulties arise when trying to interpret and adapt theoretical
models into an engineering context. In theoretical immunology, the issues sur-
rounding these models has been discussed extensively (c.f. [5,2,3,4]). In the next
section, we outline some of these problems from an engineering perspective.

1.1 Complements Will Not Get You Everywhere

As the complementary idiotypic network develops, it naturally produces regions
of high field (leading to intolerance) and low field (leading to tolerance). B-Cells
can only survive on the boundaries of such regions [15]. The B-Cell repertoire
will therefore expand until it completely fills these boundary regions, resulting
in an apparently stable network – the steady-state. In fact, the network has
reached a ceiling it cannot progress beyond and the state is not steady at all:
cell populations on these boundaries continue to proliferate unrestrained. From
an engineering perspective, this presents no opportunity to extract meaning from
the network’s nodes.

Perhaps more awkward, is the overwhelming symmetry of the resultant com-
partments (for example, see [14]). It is difficult to justify an engineering task
that involves stochastically partitioning the space into equal-sized regions of tol-
erance and immunity. Again, the opportunity to exploit the function of tolerance
and immunity is limited, this time by lack of meaning in the network structure.

If a small amount of antigen are present during development, the network will
attempt to organise around these antigen in a tolerant way. However, the success
of this tolerance is entirely dependent on the location of the antigen: should one
appear in the complementary region of another, then only one can be tolerated.
Clearly, somatic antigen will be complementary, in order to form the physiology
of the organism [21].

In the next section, we explore how Carneiro et al. approached such issues in
the pursuit of biological meaningfulness.
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2 Revisiting the Central and Peripheral Immune System

The Central and Peripheral Immune System was first suggested by Coutinho et
al. [10,22]. Exploiting the strengths of both Burnet’s Clonal Selection Theory
and Jerne’s Idiotypic Network Theory, they proposed a “Second Generation”
immune network (SGIN) consisting of the Central Immune System (CIS) – a
self-sustaining idiotypic network, providing a constant suppressive force on any
potential response to antigenic patterns that have been integrated into its reper-
toire – and the Peripheral Immune System (PIS) – the majority of naive and
less competitive lymphocytes responsible for classical adaptive immune response
outside of the CIS influence. Only if PIS clones become integrated into the CIS
repertoire can tolerance be achieved, and this tolerance is active and dominant
(i.e. self-affirming) over the immune response [19].

B-Cell only models were never able to realistically induce these compartments
and the idea remained largely descriptive until Carneiro et al. were able to break
the symmetry of these models by including the co-operative interactions with
T-Clones [20]. These two modes of B-T interaction are presented in Fig. 1.

Fig. 1. Two modes of B-T interaction. (i) B1 perform MHC-Presentation. The resulting
Ig having little affinity with the TCR and both clones proliferate in a positive feedback
loop (ii) B2 interacts via direct BCR recognition of the TCR. The resulting secreted
Ig can directly suppress T in a stable, negative feedback loop.

Herein lies the crux of the “Third Generation” Immune Network (TGIN)
model: B-Clone activation (and thus secretion) is constrained by available T-
Help. Available T-Help is constrained by the antigenic stimulation and the sup-
pressive effects of secreted immunoglobulin. The resultant waves of idiotope-anti-
idiotope etc. form a self-regulating negative feedback loop, during which only the
most competitive B-Clones can fully exploit T-Help – relegating weaker clones
back to the PIS and “focussing” the CIS repertoire to best reflect its antigenic
stimulus [6].

The original TGIN model implements a probabilistic, multi-point shape-space
to reflect the “continuous epitope” nature of ligand binding. In [8] the authors
make a convincing case for the inadequacy of single-point shape-spaces and the
inherent difficulty of extracting generalised affinity measures from empirical anal-
ysis of protein-binding data. We find these comments ring true in a machine-
learning context, and consider the capacity of the model to perform without
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any implied underlying topology an opportunity for engineering applications of
the idiotypic network that do not simply re-interpret classical data-analysis and
clustering methods.

However, the motivation for the TGIN was the mechanism of distinct CIS/PIS
compartments during the ontogenesis of the immune-system; when the only anti-
genic presence is somatic antigen. In general, it is the ontogeny of the system
in the presence of pathogenic and benign antigen that is of interest – particu-
larly in the case of on-line, unsupervised learning. Over the system’s ontogeny,
clone lifecycle and interactions become much more exquisite. The remainder of
this paper addresses original modelling simplifications that fail to hold in this
situation; necessary modifications; and any additional considerations that must
be accounted for.

3 Implementation of a Third Generation Network Model

In principle, the TGIN model is a straight-forward extension of Varela’s earlier
model [22]: it adds T-Cells and differentiates between induced and activated
B-Cells. In fact, the model is complex and suffers from many parameters and
simplifying assumptions. We only sketch an outline here to avoid excessive com-
mentary and direct the reader to [6] for the full details.

Both B-Clone and T-Clone population dynamics are described with differen-
tial equations of the form:

dxi

dt
= (−Xdecay × xi) + (Xprolif × xi.activation) (1)

i.e. clones decay exponentially by a constant decay rate and increase propor-
tionally to their level of activation. For T-Clones, activation is a function of
the stimulatory effects of Antigen and the suppressive effects of anti-TCR Im-
munoglubulin. For B-Clones, activation is a function of (i) the number of induced
cells (itself a function of recognised Immunoglobulin and Antigen) and, (ii) the
competitive fitness of the clone to exploit available T-Help (a function of the
B-Clone’s interaction strength with the T-Clone).

Transforming the differential equations to difference equations was done using
Euler’s Method:

dx

dt
= f(x, · · · ) ≈ xt+1 = xt + Δf(xt, · · · ) (2)

where Δ approaches zero. In all cases it was set to 0.1. Experimentation with
this parameter had little qualitative effect on the dynamics, other than adjusting
the window of time for new clones of low population to survive unstimulated. In
all cases, parameters remain as in the original simulations.

In its original form, the model is computationally prohibitive. We make ex-
tensive use of caching intermediate non-linear terms between time-steps. Tech-
nically, this introduces some slight synchronicity into the model, although no
qualitative difference in the dynamics was observed. The algorithm now runs
comparatively with other SGIN models.
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Fig. 2. The TGIN prototypical models: (I) and (II) represent the two modes of B-
T Co-operation discussed earlier. (III) shows the mutual induction of B-Clones via
their (antigenic) Ig and the suppression of independent activated T-Clones. (IV) shows
the mutual suppression of each others co-operating T-Clone. The bold dashed line
represents a hypothetical boundary between complementary regions.

3.1 An Augmented Prototype

In [6], Carneiro et al. present four prototypical models, intended to illustrate
minimal but representative interactions in the full simulation (see Fig. 2). In
studying these we note that, with the exception of one, all are directly inter-
pretable in a complementary shape-space. The exception is prototype II, which
fails to translate as it requires a triangular affinity relationship, which is gener-
ally impossible in a complementary space. However, given the other prototypical
modes of interaction, it is possible to augment this second prototype to achieve
a similar mechanism (see Fig. 3).

Fig. 3. Translating Carneiros model to a complementary shape-space. The original
model (left) is slightly modified to explicitly incorporate the to-and-fro interactions
between idiotype and anti-idiotype. This defines the minimal stable network and is
our augmented prototype. (right) Ig secretions from the antigen-specific cell invoke a
second wave of immune response. The anti-B-Clone, induced by the Ig, necessarily has
affinity with the TCR. Once activated via T-Clone co-operation, anti-TCR Ig secretion
will suppress the T-Clone and indirectly suppress the original antigen-specific clone,
thus stabilising the network.
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3.2 Antigen Lifecycle

The most obvious departure from the original model is the time-varying presence
of antigen, their opsonisation and its dynamical effect on the network. To remain
as faithful to the original model as possible we apply the same function as T-
Clone suppression to antigen population dynamics, as both are suppressed by
soluble Ig.

dAk

dt
= −Aopsonise

∑
i=0

affinity(Ak, Fi) × Fi (3)

In the experiments discussed here, antigen concentrations are either decreasing
or constant. Antigen do not decay naturally. Aopsonise represents the success rate
of soluble Ig (F ) in opsonisation. We explored the ranges of 0.1, 0.5 and 1.0 for
this parameter.

3.3 T-Cell Lifecycle

In the original model, the only suppressive force on T-Clones is from anti-TCR
immunoglobulin. In fact, the behaviour is more subtle: given the original sim-
plifying assumptions, a solitary T-Clone will proliferate exponentially without
any other influence acting upon it. Without tracing the full dependencies that
result in this behaviour, we state that this is a result of the simplification that
a T-Clones level of stimulation can be replaced with a unitary constant [7]. In
the original model, this simplification could be justified. In our model, it fails to
hold and the T-Clones invariably explode.

Leon et al [18] modelled T-Clone stimulation as a log-normal curve of the
antigen concentration. While we do not run under the same parameters as that
later model, we have verified that using such a function produces qualitatively
better T-Clone dynamics over the ontogeny of the system.

However, there is now another scenario to contend with: T-Clones can die,
either by excessive anti-TCR Ig suppression or lack of antigenic stimulation. In
the original model, for each antigenic input a dedicated T-Clone is created with
maximal affinity. If this T-Clone dies in the current model, then the immune-
system becomes blind to the antigen – no induced B-Clone can receive T-Help to
further secrete immunoglobulin. While this is certainly a crude form of tolerance,
we consider the mechanism undesirable as it results in a system that cannot
adapt over time. To offset this effect, we consider the random creation of T-Cells
in the meta-dynamics of the model.

3.4 B-T Interaction Strength

In a maximal simplification, the original model assumed that the interaction
strength between B-Clones and T-Clones could be replaced with a unitary con-
stant, regardless of their mode of interaction [6]. Given that B-T interaction is
the key to repertoire selection – and thus, exploitable meaning – this simplifi-
cation is highly undesirable. A side-effect of employing a constant interaction
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strength is that all B-Clones receive some positive interaction with T-Clones;
achieve a level of activation; secrete; and are artificially sustained in the idio-
typic repertoire. This is inevitable as a constant term does not take account of
the possibility of no interaction. Carneiro et al. do however provide equations
for the two modes of interaction:

SBCR(Bi, Ti) = affinity(Bi, Ti) (4)

SMHC(Bi, Ti) = s ·
∑
k=1

affinity(Ti, Ak) · affinity(Bi, Ak) · Ak (5)

Although the latter equation was justified on biological grounds, we found the
antigen concentration term produced unintuitive behaviour. In the case of con-
stant (somatic) antigen, MHC-Presentation is exponentially more competitive
– exactly the opposite behaviour of that desired for a suppressive tolerant re-
sponse. In the case of variable antigen, the MHC interaction-strength decreases
to zero as the antigen population drops, leaving only the BCR-TCR interaction
in a possible stable-state – again, the opposite type of‘ “memory” than would
be expected for immunity. The constant scaling-factor s is less meaningful under
variable antigen concentrations2.

Additionally, how to resolve which equation to apply for a specific clone was
not elaborated and such branching is inherently problematic for static numer-
ical analysis. The complementary space provides a clear manner to make this
distinction:

S = max(affinity(Ti, Bi), affinity(Ti, Bi.complement)) (6)

If a T-Clone has high affinity to the complement of a B-Clone, both recognise
overlapping regions of the space and their respective receptors have a low affinity
by virtue of their similarity – interaction is via MHC-Presentation. In the case
that both appear in each other’s recognition region, their receptors have high
affinity, they cannot recognise similar antigen and interaction is via BCR-TCR
binding. The remainder of the space has no possible interactions. While a crude
simplification of the biology, Eq. 6 does produce desirable values between 0.0
and 1.0, keeping MHC and BCR interactions in the same scale and also in scale
with the original unitary simplification. As a result, the constant scaling-factor
s can be meaningfully re-employed to weight MHC interactions.

4 Simulation Results

Here we present simulation results of the qualitative behaviour of our extended
prototype. The combinations of configurations explored is quite large. Given the
forum, we only present major results and outstanding issues; saving a detailed
analysis for a more appropriate text.
2 In order to induce tolerance, interactions via MHC must be less effective than TCR-

BCR interactions. This is biologically plausible as there are significantly more BCR
than MHC-Peptide complexes on the cell surface. s represents this proportionality.
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Fig. 4. Stabilising network behaviour in the augmented prototype: Given a constant
antigenic presence, the clone populations reach a fixed point between T-Clone activa-
tion and anti-Ig suppression. The anti-Ig (f) offsets the T-Clone activation and actively
suppresses responding B-Clones.

The Augmented Prototype. Here we validate that the minimal network
does indeed stabilise to an appropriate configuration (see Fig 4). We note that
this stabilising process is quite prolonged, however it was our intention to avoid
adjusting the original model parameters until we had validated our changes.

Repertoire Management. One of the key benefits of the TGIN is that during
an immune response, the CIS repertoire is pruned to only the most competitive
cells. This avoids the tendency to “repertoire completeness” and is the essential
distinction between the CIS and the PIS. Following the original analysis [7,19],
we plot the expansion of the idiotypic repertoire over time (see Fig. 5).

For comparison, we plot Bersini and Hart’s algorithm in (a). Without anti-
gen, the repertoire expands and settles at a massively inflated value. This is
the ceiling of repertoire completeness discussed earlier – there is no more room
in the space for B-Clones. With antigen, the repertoire overflows the bound-
aries and completely fills the tolerant regions, ultimately populating half of the
space – Pr × Nb ≈ 160 (not shown). In (b) we plot the extended TGIN model,
showing the characteristic repertoire expansion then compression to ≈ 1 per
antigen for all values of s < 1.0. In (c) we plot the same extended model running

Fig. 5. Expansion of the idiotypic repertoire over time. The x-axis represents time. The
y-axis represents NB×Pr – the number of B-Clones times the probability of recognising
another clone. The number of presented antigen (Na) is set to Na×Pr ≈ 1.0. (a) plots
several runs of Hart & Bersini’s algorithm with and without antigen. For (b) and (c),
we plot our TGIN implementation for different values of the scaling factor s.
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Fig. 6. Effect of antigen opsonisation on the extended model: (Top) Constant antigen
and the typical stabilising oscillations between the activated T-Cell and the suppressive
anti-Ig. (Center) At an opsonisation rate of 0.1 we see an initially strong auto-immune
response followed by progressively weaker intermittent responses. At an opsonisation
rate of 1.0 we see an intolerant response – tolerance is attempted but ultimately fails.

Fig. 7. Two modes of antigenic response during the full ontogeny. For somatic anti-
gen, responding clones are kept under a blanket of suppressive anti-TCR Ig. For non-
regenerating antigen, stable tolerance never gains full dominance and can only regu-
late the inevitable immune response. Crucially, there is no mechanism for memorising
cleared antigenic disturbances, resulting in the collapse of the antigen-specific clones.

with additional T-Clone meta-dynamics which (because more than one T-Clone
can respond to an antigen and thus sustain B-Clones) accommodates a slightly
elevated, but still low and stable level of B-Clones for all s < 0.5.
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Two Modes of Response. Figure 6 plots three different responses under
different opsonisation rates. Of particular interest is the center plot, showing
an antigen population approaching a fixed-point with the stabilising augmented
prototype. This suggest that a correctly parameterised network may not only be
capable of tolerance but also maintaining somatic antigen populations, as has
often been suggested by Cohen, Coutinho and others.

When translating to the ontogeny simulation (Fig. 7), qualitative analysis
and visualisation becomes significantly less intuitive. Here we present aggregate
population plots of the extended model running with full meta-dynamics. Even
from such a coarse-grained view, it seems clear that the behaviour is qualitatively
similar to the augmented prototype in the case of constant antigenic presence.
In the case of variable antigen, the behaviour is much more erratic as the clones
compete to fulfill their function.

5 Discussion

We have presented a prototype immune-network model that appears capable
of two context-dependent modes of antigenic response. However the context of
response is not cognised by the network per se, but a result of a regenerat-
ing (effectively constant) “self” that is able to reach a stable equilibrium despite
brief autoimmune episodes. The idiotypic network provides the regulatory mech-
anism to minimise the effects of any single autoimmune response and maintain
a suppressive field over autoreactive clones.

Under the complementary shape-space the “Central Immune System” is not
a fully connected idiotypic network, but rather a federation of isolated networks.
This is a necessary outcome of optimising the repertoire in a single-point space,
and somewhat contradicts the original idea of tolerance as an emergent global
property of the network [10]. As a result, a key mechanism missing from this
single-point model is memory. For an idiotypic network to be maintained, se-
cretion must continue, which fails if either the Antigen or T-Clone are removed
from the network. In the original TGIN model, both were impossible.

These issues may only affect single-point shape-spaces, where connectivity
depends on the overlapping recognition regions of redundant clones. In a multi-
point space, clones can receive stimulation from several locations and do not need
to be contiguous to maintain connectivity and co-stimulation. However, memory
is not the immediate concern of a self-affirming network, and furthermore, such
idiotypic memory has little biological support. There are other elegant mech-
anisms that can be exploited (c.f. [13]) without the computational burden of
maintaining a growing network of co-stimulatory dominant and recessive clones.

This paper re-introduced the TGIN in a single-point space, to place it in
context with existing AIS research. Future applications of the model will remove
this topological limitation, in which case we will be better able to appreciate
the full relation between topology and function. Even under such constraints,
the current model is free from anthropomorphism and directly interpretable in
a machine-learning context: habituation. If there is any credibility in the idea
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of the immune system as a cognitive network, we consider this an appropriate
starting point for integrating meaningful association and memory into networks
in a multi-point space. We consider this future work.

A self-affirming network is an entirely different beast from early idiotypic
models in AIS proposed by e.g. [17,11]. The latter are loosely concerned with
immunological memory and assume that the topology of the idiotypic network
represents some underlying topology in the antigenic data. The TGIN is con-
cerned with the functions of immunity and tolerance. It is not bound to any
specific topological space and does not cognise-by-clustering. As such, we feel it
provides a compelling opportunity for tackling problem domains beyond vecto-
rial data-analysis.
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Abstract. Previous studies have shown that there is an intricate rela-
tionship between the topology of an idiotypic network and its resulting
properties. However, empirical studies can only be performed by pre-
selecting both a shape-space and affinity function. This introduces a
number of simplifications into any model and makes it subsequently dif-
ficult to abstract the underlying contribution made by the topology from
the particular instantiation of the model. In this paper, we introduce the
concept of the potential network as a method in which abstract network
topologies can be directly studied which allows us to bypass any defini-
tion of shape-space and affinity function. By using ideas from complex
network theory to study a variety of homogeneous and heterogeneous po-
tential networks, we show that bi-partide and heterogeneous topologies
are able to tolerate antigens in certain regions, where as those show-
ing high levels of clustering are unable to do so. It is also shown that
the equilibrium topology resulting from traditional immune dynamics
depends dramatically on the potential topology of a network.

1 Introduction

In recent years, it has been experimentally observed that real-world biological,
social and technological networks are not structured in a random way [1]. In-
stead, most of these networks are organized in such a way that a few nodes are
able to interact with a many others, whereas many others only interact with
a few. The extreme case is often referred to as a scale-free network in which
the degree distribution follows a power-law [3]. However, other configurations
showing lower levels of heterogeneity are also common [2]. Dissections of real
world networks have produced evidence for single-scale networks, characterized
by a fast Gaussian decaying tail in the degree distribution, broad-scale distribu-
tions, defined by a power-law with an abrupt truncation for large connectivities
[21] and, finally, the previously referred scale-free class. The ubiquity of such
classes of networks raises many questions of which one is on the origin of these
topological properties. Moreover, in the context of understanding complex so-
cial and biological phenomena, it is useful, and in many cases mandatory, to
understand the topology of the underlying networks of interactions [1,11,4]. The
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global properties of a system rely extensively upon the underlying network and
different dynamical outcomes emerge from different topologies [16,17,12,19].

One of the major goals of modeling in immunology, which we shall focus here
in a very minimal fashion, is to deduce macroscopic properties of the system
from the dynamics of its elementary components. Thus, nodes in a network can
be considered to correspond to the different cells that constitute the basis of
the immune machinery, and a link in a network is analagous with the reaction
obtained when one antibody (or antigen) reacts with complementary/similar re-
ceptors of another cell. When such high-level abstractions of the immune system
are considered, analogies with the nervous system become apparent. While in the
nervous system we can identify a sensorial part and a motor part, in immunol-
ogy we can also assign two main functions to the entire system: recognition and
effector function. However, due to the great diversity of possible cells and to the
fact that only one in 105 cells reacts to a specific cell, it is hard to extract exper-
imentally the real topology associated with an immune network, and it therefore
remains a completely open question as to how to determine a realistic topology
for such networks.

One of the most common approaches in theoretical studies has been to retro-
spectively examine the topologies that arise in networks after specifying a way
in which to define cells and a specific manner in which cells can interact to
form a network. This was greatly facilitated by the introduction of the concept
of shape-space by Perelson in [18] which offered the possibility of representing
cells in some low-dimensional space in which properties such as mututal affinity
and similarity of cells could be derived from the relative positions of points in
the space. Mathematically this can be expressed as cij = f(xi, xj) where cij is
the affinity between two molecules i and j, Xi and Xj are N-dimensional vectors
representing the position of the molecules in shape-space and f is an appropriate
function [8]. The function f therefore defines an affinity-matrix which specifies all
interactions among cells. Several models ensue; it is often assumed that cij can
be calculated by a simple Gaussian metric based on the distance ||A−B′|| where
B′ is the symmetrical image of a point B through some point in shape-space
[10,6]; Hamming distance is substituted in a bitstring shape-space; Carneiro et
al define a random affinity-matrix in [9]. However, all of these methods suffer
from a major drawback. In order to be realistic, the dimensionality of N needs
to be very high and it is likely that f is irregular and discontinuous [8]. Indeed
Carneiro at al even go as far as to suggest that ...the danger is that heuristi-
cally stimulating visions of the organisation of the immune system based on the
shape-space concept may be illusions based on little else than wishful thinking.

Therefore, in this paper we present an alternative approach to studying id-
iotypic immune networks; instead of trying to understand the topology which
results from specifying a shape-space and affinity function, we directly study the
topologies of abstract potential networks on which effective networks can evolve,
and apply the complex networks’ formalism to the study of such networks. Ulti-
mately, we show that the choice of affinity function which results in the potential
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network formation is far from being neutral. The remainder of the paper is
organised as follows. We first discuss the topologies of some common shape-
spaces and affinity functions, summarising the results of the previous empirical
studies that we have publihsed. This is followed by an introduction to the concept
of the potential network. We then present results obtained by analysing the
dynamics of an immune model on homogeneous and heterogeneous potential
networks, and show that the topology of a network offers an explanation for one
of the observed functions of an immune network, namely that it can separate
zones of tolerance from zones of immunisation.

2 The Topologies of Some Common Shape-Spaces

2D shape-space One of the most commonly adopted shape-spaces is a 2D shape-
space model, firstly proposed by one of the authors in [5] and subsequently
adopted in further work [13,14] which lends itself naturally to affinity measures
based on Euclidean distances. The network of all possible interactions is defined
on a 2D integer-grid of dimension X, Y . A cell is specified by a position (x, y)
on the grid. The potential network therefore consists of a possible X × Y cells.
Cells can be considered as connected nodes on a graph if one cell is stimulated
by another cell. The manner in which one cell stimulates another depends on the
affinity function defined. If affinity is defined as complementary, then a cell A
stimulates another B if B lies within a circular region of radius r centered on the
point (X−x, Y −y). On the other hand, if affinity is defined between similar cells,
then A stimulates B if B lies within a circular region of radius r centered on A
itself. In this case, each node is a point in a 2D plan, which can potentially interact
with all other cells characterized by a position which is complementary or similar
to its own position. This potential network is almost completely homogeneous in
that every cell in the network can potentially stimulate exactly the same number
of other cells. (The exceptions to this are cells lying closer than r to the edges
of the 2D space whose recognition region will lie partially outside the 2D grid.
No wrap-around effects were implemented). The average degree of any cell in the
network is defined by the area of the stimulation zone surrounding the cell, i.e.
r. The potential degree of any cell is therefore the maximum number of other
cells to which it can potentially connect, governed of course by the area defined
by r and is equal for all cells.

However, depending on the affinity function used, in previous studies we
showed that different potential topologies naturally emerge [15] and suggested
that the network behaviour could be explained by the existence of certain motifs
in the topology; in a network defined by a similarity based affinity function, then
a number of triangles can exist, as if A is close to B, which is also close to C,
then C can also be close to A. On the contrary, if a complementary definition of
affinity is used, then in the majority of the space, is impossible to obtain such tri-
angles: if A stimulates B and B stimulates C, then A cannot stimulate C because
A is similar to C. (The exception is cells lying in the centre of the space where
it is possible to obtain such a motif). Formally, this feature appears naturally if
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we analyse the network topology using the standard tools of complex network
theory. If one compares the cluster coefficient in the first case, it is obvious that
it will be relatively high, while in the second case it must be (almost) zero.

Bitstring Shape-space. In [15], we also examined the emergence of networks in
a bitstring shape-space. Here, instead of a point in a plane, each cell is now
identified by a binary bit-string of N bits and the a cell i will stimulate another
cell j if the Hamming distance among them is higher than a certain threshold T .
This value T plays an equivalent role of the parameter r in the 2D shape-space
model in determining the number of possible interactions any cell may take part
in. Regardless of the value of T, a homogeneous potential network will always be
obtained, where every cell can potentially interact with the same number of cells,
which may be present in the system or not. However, the parameter T also plays
another important role: turning once again to complex network theory, we see
that T influences an important topological feature, the global cluster coefficient
of the network. This is shown empirically in figure 1 in which the average cluster
coefficient of the potential network in which all potential nodes exist is calculated
for bitstrings of length (9,10,11). Furthermore, it is trivial to prove that in fact
the cluster coefficient of any potential network formed from bistrings of length
N will be non-zero in any case in which T < 2N/3. The values plotted represent
the maximum value of the cluster-coefficient of these networks; in reality, not
all nodes will exist in the effective network and therefore empirically measured
cluster coefficients are likely to be less than these values.
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Fig. 1. The graph shows the average cluster coefficient in a potential network created
by a bistring of length L with increasing threshold T

In [15] we showed empirically that the cluster coefficients of networks evolved
in Hamming and 2D shape-spaces do have radically different values, and tenta-
tively suggested that this property was responsible for the ability of the network
to tolerate or reject certain classes of antigens. However, these models clearly rep-
resent a gross simplification of real interactions between immunological cells and
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makes it difficult to come to compelling conclusions. However, focusing explicitly
on the topology of the networks formed as a result of interactions between cells
due function suggests an alternative experimental approach, which is not dogged
by the problems described in section 1. This is elaborated in the next section
in which we show how standard immune dynamics can be studied on abstract
homogeneous potential networks with zero and non-zero values of cluster coeffi-
cient respectively, providing further evidence for the impact of this topological
feature on network functionality.

3 Immune Dynamics and Potential Networks

Let us assume that there exists a plausible representation R in which cells in-
teract via a realistic affinity function A. This gives rise to a network N with a
particular topology which implicitly defines a shape-space (by defining a certain
topology), and affinity function, and even the stimulation area of any cell (by
defining the individual potential degree). Most importantly, this allows us to by-
pass any definitions of these parameters and directly study the effect of network
topology on the emergence of tolerant zones within a shape-space.

Assume a potential, homogeneous graph G which defines a potential network.
We consider graphs in which a cell X stimulates another cell Y if X has concen-
tration different from 0 and if X has a link with Y in the underlying potential
network. All connections are assumed to have the same weighting. The stim-
ulation s(X,Y ) received by a cell X from Y is zero if X does not have a link
with Y in the potential network, and is equal to α ∗ CY otherwise, where α is
simply a pre-defined constant and CY is Y ’s concentration. Depending on the
total amount of stimulation received by X , its concentration will either increase
or decrease, just like in the models presented in [15] and earlier by [5,20]. If the
total stimulation is between a lower and a higher stimulation thresholds its con-
centration will increase by one, and decrease also by one unit otherwise. Every
1000 iterations of the algorithm, a set of 50 antigens is added to the simulation.
Each time, the set is generated completely at random, and excludes duplicates1.
For a potential network of N nodes, at each time-step the algorithm runs as
follows:

– Introduce a new antibody cell by randomly choosing an empty node (Ci = 0)
from the potential network and assign it a concentration Ci > 0.

– Calculate the total stimulation of each cell with non-zero concentration,
summing the stimulation received from each first neighbour in the potential
network.

– Update the concentration of each cell as described above.
– Every 1000 iterations, the number of antigens that remain in the population

of non-zero concentration cells is recorded. These cells are then removed and
a new set of antigens then introduced.

1 Extensive experimentation showed that the results did not depend in any way on
the manner in which antigens were added.



Topological Constraints in the Evolution of Idiotypic Networks 257

4 Homogeneous Potential Networks

We first study the topological effects on the emergence of tolerance, assuming a
homogeneous graph in which all nodes share the same potential degree. To shed
further light on the proposed contribution of the triangular motif to the function-
ality of networks in terms of their ability to produce distinctive and separated
tolerant and intolerant regions, we study two kinds of regular graphs: a regular
ring of size N and a bi-partide regular network made of two rings of size N

2 (see
figure 2) with an average degree < k >. The former case corresponds to an affinity
function based on the similarity between cells. This creates a potential network
where triangles or loops are often present. In the latter case, we create a regular
network that can pictured as two parallel rings of nodes — ring A and B. Nodes
belonging to the first one ring can only be connected with nodes of ring B and
vice-versa. For instance, for an average degree of 4, a node i belonging to the ring
A will be connected to the node at the position i − 1, i − 2, i + 1 and i + 2 of
the ring B. In this way, we produce the bi-partide equivalent of a regular network,
with exactly the same spatial constraints and average degree, but implicitly defin-
ing two groups of interacting cells in a bi-partide fashion. The cluster coefficient
will be trivially equal to zero in this case, where in the normal regular network
will be given by 3z−6

4z−4 , with z standing for the average degree of the network [11].
This bi-partide regular graph corresponds to the complementarity affinity func-
tion, which has been shown to give rise to two perfectly distinct areas in terms of
tolerating antigens, contrary to the similarity rule [15].

Fig. 2. This scheme illustrates a bi-partide equivalent of a regular graph corresponding
to the complementarity affinity rule. In this example the average degree is 4. The ring
made of circles on the top is the complement of the ring formed of square on the
bottom.

4.1 Results

The results for this simplified model using homogeneous networks are shown in
figure 3. In both cases, we consider potential networks of 104 nodes in order to
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provide comparable results to those obtained empirically in [15]. These results
correspond to an average over 50 runs, obtained using an initial antibody con-
centration and initial antigen concentration of 200. In the upper panel we show
the percentage of tolerated random antigens as a function of the average degree
of the underlying regular network for two types of regular networks: a regular
ring and bipartide regular ring. The middle panel shows the dependence of the
equilibrium size of the network in the potential average degree, and the lower
panel represents the relationship between the potential average degree and the
effective average degree of the nodes with concentration different from 0.

These results can be compared directly to previous results obtained in 2D
([15]) in which the recognition radius of a cell was plotted against % tolerated
antigens — the potential average degree is topologically equivalent to the radius
of stimulation. They show that the existence of a bi-partide topology defining
the set of all possible/potential interactions promotes the emergence of high
levels of tolerance for most of the values of < k >. This result corroborates with
results obtained with a 2D-shape space model, validating the simplification and
abstraction introduced here.

Figure 3 shows three regions (in terms of < k >) limited by abrupt transi-
tions. The first one occurs when the potential network doesn’t provide enough
stimulation to maintain the majority of the antibodies inside the window range
(i.e. there is low potential average degree). For a moderate level of potential
links, a second type of behaviour emerges. Here the potential network offers
the ideal conditions for the emergence of a self-sustained system of antibodies,
avoiding both under and over stimulation. In this range the effective size of the
network increases together with the effective average degree. Finally, when the
potential average degree becomes too high, the majority of nodes are able to
become over-stimulated. Under these conditions, the equilibrium size of the net-
work collapses together with the effective average degree. This leads to the first
conclusion of this paper: the existence of a non-zero value for the cluster coeffi-
cient of a network acts as an important deterrent for the emergence of distinct
tolerant zones in the shape space, at least when homogeneous potential networks
are considered.

5 Heterogeneous Potential Networks

The previous paragraphs have used two instantiations of a homogeneous network
model coupled with various affinity measures, and in abstract potential networks.
However, this work, as in the majority of previously published models of idio-
typic models, has made the assumption that the affinity function is defined in
such a way that every cell type has intrinsically the same number of potential
stimulation partners. This disregards a plethora of recent results in the area
of complex biochemical networks showing that the majority of the real-world
network do not share this homogeneous feature. In fact, it has been extensively
shown that most of the biological networks are intrinsically heterogeneous, where
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Fig. 3. Results obtained using homogeneous potential networks. The graphs show
results obtained in regular and bipartide potential networks as the average degree of
the potential network is varied. The graphs show the corresponding change in % of
tolerated antigens, network size and effective average degree.

some nodes, considering their intrinsic chemical properties, are able to stimulate
a large number of cells, contrary to others that stimulates only a few number
of cell types. The first ones are naturally made to connect to a large number
of other cells - they are natural hubs [7]. Moreover, it has been shown that
most of the biochemical networks can be characterised with broad-scale degree
distribution or even by a scale-free degree distribution, recently popularised by
their remarkable robustness properties. Therefore, although our results provide a
novel connection between the topological characteristics of a network (resulting
from the affinity measure) and it’s ability to tolerate or immunise antigens, a
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natural extension to this work would therefore be to consider the emergence of
effective networks on heterogeneous potential graphs, and furthermore, potential
graphs exhibiting scale-free (or nearly scale-free) degree distributions.

Heterogeneity in a network may offer the potential for certain types of antigen
(depending on their degree and position in the global interaction network) to
become topologically protected against antibodies, which are not able to destroy
them, therefore increasing the global level of tolerance. Moreover, heterogeneity
effects also play an important role in determining the equilibrium size of the
repertoire, which in turn influences the capacity of an idiotypic immune network
to tolerate antigens.

5.1 Results

We use the same immune model as before, but consider two heterogeneous po-
tential graphs; a scale-free potential network (similar to the WWW model pro-
posed by Barabasi [3], and a bipartide scale-free potential network, again both
containing 104 nodes. Potential graphs of varying average degree (0 to 1500)
are generated at random, and then the effective network evolved in each graph.
Each experiment is repeated 20 times and the % of tolerated antigens averaged.
Figure 4 shows the % of tolerated antigens and the size of the effective repertoire
for networks of varying average degree for these two heterogeneous PNs, and also
shows the results from the homogeneous PNs described above for reference. The
results are averaged over 50 runs using the same parameters as above. Some
interesting points are worth noting:

– Both classes of scale-free network and the bipartide regular network show a
greater ability to tolerate certain classes of antigens than a regular homoge-
neous network.

– The results obtained with scale-free topologies concur with the previous con-
clusions with homogeneous topologies. Bi-partide topologies, either homoge-
neous or extremely heterogeneous, promote the emergence of high levels of
tolerance for most values of < k >.

– Bipartide scale-free networks give rise to high levels of tolerance over a wider
range of values of < k >. Moreover, contrary to bipartide regular potential
graphs, the heterogeneous network promotes a stable self-sustained effective
network for a very broad range of parameters.

– The ability of the regular bipartide network to tolerate antigens drops by
one order of magnitude when then size of the network increases.

Therefore these results appear to support our suggestion that a heterogeneous
topology offers a mechanism by which antigens can become protected, support-
ing high levels of global tolerance in a network. Two very important physical
characteristics of a network — heterogeneity and cluster coefficient — there-
fore play a very important role in determining the ultimate functionality of a
network, in terms of specifying the network topology. Further research is now
continuing in this vein to add further weight to these conclusions.
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Fig. 4. The graphs show the results of simulation using a number of heterogeneous
and homogeneous potential networks (both regular and bipartide in each case), as the
potential average degree of the networks are varied

6 Conclusion

In this paper introduced the notion of potential networks as a mechanism to
directly study the influence of different topologies on network behaviour. The
concept facilitates study of a number of complex topologies which would be
difficult to replicate through a fixed affinity measure, and allows generic hy-
potheses to be proposed, which are not restricted to a particular shape-space
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or affinity function. This is a significant departure from many previous studies.
The results obtained using these networks confirm suggestions from previous
work that topology plays a key role in influencing the functionality of a network
but crucially, give us new information regarding the properties that a realistic
potential topology (and by implication, affinity function) must exhibit. Results
in the simple homogeneous scenario have shown that small differences in the
underlying potential topology change completely the final outcome of the dy-
namical/topological system, but most importantly, we have shown that network
heterogeneity can drive the topological evolution of a growing immune network,
and provide protection to certain cells resulting in tolerance.

The way that nature has created the set of all possible cells, implicitly defines
a given potential network. This network provide the skeleton of all dynamical
processes that can evolve in a immune system scenario. Studies in other domains
such as the propagation of epidemic [16,17] and evolutionary systems [19] have
already shown that it is essential to study the influence of topology in networks
when trying to understand their functional properties; our results suggest that
this point clearly holds true for studies of immune networks as well. Moreover, as
a result of their chemical and physical properties, some cells interact more than
others because their physical features make such interactions extremely likely.
Thus highly connected nodes arise because they have intrinsic features that allow
them to connect to a higher number of partners. We can describe these nodes
as natural hubs, i.e. nodes that were born to be hubs instead of being hubs just
because of their presence in the network for a long period. These features are
included in the definition of each cell and in its position in the global potential
network. By disregarding the intrinsic heterogeneity of biological systems, one
may lose one of the possible mechanisms that drives the topological evolution of
a growing immune network. The dynamics of the concentration level of a node
often produces the necessary mechanism for the tolerance and appearance of
immune cells, but this in turn must be governed by the constraints imposed by
the underlying potential topology.
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Abstract. In the past there have been several approaches to use Learning Clas-
sifier Systems (LCS) as a tool for modelling the functioning of the immune sys-
tem. In this paper we propose a modification of the classic LCS that can be used 
for modelling the Cognitive Immune System Theory introduced by I. Cohen. It 
has been pointed out before that this alternative view of the immune system and 
its agents provides promising functional perspectives to the field of artificial 
immune systems (AIS). The characteristic features of Cohen's theory, namely 
degeneracy of recognition and context of immune reactions, and how they can 
be realized in our modified LCS are described. Moreover, we introduce the re-
presentations of the immune agents, the interactions that take place among them 
and the applied evolutionary mechanisms. 

Keywords: Cognitive Immune System, Modelling, Learning Classifier  
Systems, Degeneracy, Cytokines. 

1   Introduction 

Most of the computational systems developed in AIS are based on the two leading 
theories in the field of immune system research, namely Burnet's Clonal Selection 
Theory [1] and Jerne's Network Theory [2]. But there have always been divergent 
views on immune activity – even though some of them turned out to be more bio-
logically plausible than others (see [3]). In recent years, I. Cohen has suggested an 
alternative approach to understanding the functioning of the immune system as a 
whole which is based on the Network Theory but goes far beyond it (see [4]). He 
considers the immune system to be a cognitive system as it senses certain molecular 
aspects of its environment, creates an internal representation of it, and makes deci-
sions about the actions that are required to keep the homeostasis of the individual. 
Characteristic features of his theory are the degeneracy of recognition events, which 
contrasts sharply with the assumption of monospecificity, and the emphasis on im-
mune activity that is embedded in a context created by interacting immune agents. It 
has been pointed out that the field of AIS can benefit from computational models that 
are derived from such new immune theories (see [5]). 

Several authors (see [6], [7], [8] and [9]) have demonstrated how LCS can be  
used as a framework for implementing immune-inspired computational models with 
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promising problem solving capabilities. In this paper we present a modification of the 
LCS and show how the important aspects of the Cognitive Immune System Theory 
can be modelled in this computational system. Section 2 summarizes the classic  
form of the LCS. In section 3 a brief introduction to the basics of the Cognitive 
Immune System Theory is given. Section 4 describes how the features of the theory 
are implemented in our modified LCS. The final section 5 contains some remarks 
about possible fields of application and first experiences with the implemented 
computational system. 

2   Learning Classifier Systems 

This section briefly describes the basic components and mechanisms of the machine 
learning paradigm that was introduced by J. Holland and is summarized under the 
term LCS (see [10]). There have been several variations of the underlying architec-
tures and algorithms and so it is difficult to pick out one basic LCS standard form. In 
our modelling approach we focus on a form which is almost identical to the one out-
lined by Holland in [11]. We took this classic LCS as a starting point and modified its 
internal structure and processes according to the principles of Cohen's Cognitive Im-
mune System Theory. Figure 1 shows the overall LCS and its computation loop. 
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Fig. 1. The structure and internal mechanisms of Holland’s classic LCS (based on [12]) 

A LCS consists of a population of binary rule strings called classifiers. A single 
classifier is a compound of two rule parts: the condition and the action. The condition 
part describes a subset of all possible message strings that will potentially trigger the 
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execution of the accompanying action part. Furthermore, to each classifier a strength 
value is assigned that represents an estimate about the respective rule string's average 
performance in selecting appropriate actions in the past. At the beginning of the LCS 
loop, the rule strings of the classifier population are randomly initialized and a pre-
defined strength value is assigned to all classifiers. Then the message list is cleared 
and the system enters the following computation loop: (1) The detectors add binary 
message strings to the message list that describe certain observations on the environ-
ment. (2) Each classifier's condition part is compared to each message located in the 
message list using a matching algorithm. All completely satisfied classifiers are added 
to the match set. (3) Subsequently, for each classifier of the match set a bid is com-
puted that takes into account the classifier's current strength value and the specificity 
of its condition string. Based on these bids an auction round is held that stochastically 
determines the winner set by carrying out a roulette wheel selection among the classi-
fiers of the match set. After that, the message list is cleared and all classifiers of the 
winner set publish their respective action string as a message in the message list. (4) 
The effectors read the relevant messages and perform the accompanying actions in the 
environment. (5) If the LCS receives feedback from the environment, the so-called 
bucket brigade algorithm adapts the strength values of certain classifiers. Thus, rule 
strings that triggered appropriate actions in the past are rewarded with positive feed-
back and become more likely to win an auction round in the future. As a result of this 
reinforcement strategy the LCS is able to learn from experiences in the past. (6) If 
necessary, weak classifiers are replaced by new ones by applying a standard Genetic 
Algorithm (GA) to the classifier population, where a rule string's strength value is 
interpreted as its fitness value. (7) The internal LCS loop is restarted from step 1. 

3   Cognitive Immune System Theory 

In this section a short introduction to Cohen's ideas regarding the cognitive immune 
system is given. In particular, we focus on the relevant concepts for understanding our 
modelling approach presented in section 4. For in-depth information on Cohen's im-
mune theory see [4]. 

The immune system is an embedded biological system that maintains the body and 
protects it from harmful influences. These factors may come from the outside or the 
inside of the organism and are summarized under the term antigens. While operating, 
the immune system incorporates the states of the body tissues and thus provides an 
immune response that is based on context. This differs from the classical point of 
view that the main purpose of the immune system is to defend the body by discrimi-
nating between self and non-self and triggering a monospecific response (see Burnet's 
Clonal Selection Theory in [1]). Cohen characterizes the immune system as a cogni-
tive system on the basis of three features: it is able to make decisions, it creates inter-
nal images of its environment, and it is able to learn in a self-organized manner. 

It is comprised of a multitude of specialized cells and organs. The immune organs 
divide the body into distinct compartments that are flown through by the immune 
cells. Certain compartments of the organism are responsible for producing immune 
cells, others for transporting them, and again others contain the manifold interactions 
between the cells. On their way through the tissues the cells gather information on the 
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tissues' state, the presence of antigens, and the activity of other immune cells. This in-
formation is available through molecular shapes that are presented by all antigens and 
tissue cells. All immune cells bear certain receptor molecules on their surfaces that 
enable them to bind other molecules complementarily. These recognized molecules 
are summarized as ligands. An important statement of Cohen's theory is that a recep-
tor is able to bind more than one single ligand – a property referred to as degeneracy. 
The term affinity describes the specific binding energy between receptor and ligand 
that arises from their degree of molecular complementarity – the higher the affinity 
the higher the probability of a successful binding event. In addition, the cellular rec-
ognition is also influenced by the concentration of the respective ligand. So a relative-
ly low ligand concentration with high affinity already causes the receptor to bind, but 
the low affinity of a ligand can be compensated by a high concentration as well. 

After completing this distributed recognition phase in the body tissues, the immune 
cells gather in the lymph nodes and exchange information by producing interaction 
molecules called cytokines. These molecules provide the context for the immune cells 
to react according to the state of the organism. So on the one hand, the cells react to 
observations in the tissues by producing certain cytokines, and on the other hand, they 
react to the reactions of other immune cells by recognizing their produced cytokines. 
Cohen terms this special interaction between immune cells co-respondence. 

As a result of this second-order decision-making process an apt immune response 
is elicited. Specialized effector cells move back to the body tissues and execute the 
made immune decisions. So despite the degenerate perceptions of its individual cells, 
the immune system is able to produce a specific response as a whole. The three 
phases of immune cell activity (recognition, decision-making, execution) follow each 
other continuously and thus can be described as the functional loop of the immune 
system. In each phase spatial proximity is an important prerequisite for the interac-
tions between immune cells and antigens and between immune cells alone. 

By means of several evolutionary mechanisms the more or less randomly generated 
population of immune cells is structured by sorting out inefficient elements. Only 
those immune cells are selected and included in the repertoire that show an adequate 
level of recognition and response in regard to certain molecular inputs. The cells that 
undermine the immune system's body maintaining function are deleted. As a result of 
this self-organized adaptation process an immunocompetent cell repertoire emerges 
and the immune system learns to handle the antigenic influences efficiently. 

4   Our Modelling Approach 

In the following section, the two systems whose basic elements and mechanisms have 
been introduced before are brought together: we take Holland's classic LCS as a start-
ing point for outlining a computational model of Cohen's immune theory. Due to the 
fact that some of the characteristic features of Cohen’s theory cannot be adequately 
modelled in a classic LCS, we modify the LCS with regard to Cohen’s immunological 
principles. We term this version of a LCS a Cognitive Immune System (CIS). 

At first, the necessary concepts and representations that are used in the CIS  
model are introduced. The interactions between the CIS elements and the resulting 
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dynamics of the computational system are presented afterwards. Then, we describe 
the implementation of the evolutionary mechanisms that are used for adapting the 
system's behaviour. Finally, the whole CIS is summarized by presenting its full 
computation loop and comparing its constituent parts to the classic LCS form. 

4.1   Representations 

Firstly, we assume that the classifier population of the LCS is the counterpart to the 
immune cell repertoire. So an immune cell of the CIS is equivalent to a single classi-
fier rule string. We introduce two necessary symbol sets: the set C that contains the 

cytokines {c1, ..., cl} where +∈  l , and the set A that contains the actions {a1, ..., am} 

where +∈m . The former describes the cytokines that potentially can be produced 
and sensed in the CIS, and the latter describes the actions that can be performed by 
the immune cells. Both sets are determined by the user of the system before starting 
and remain unchanged during the whole computation loop. It is for the user to decide 
which internal coding mechanism is applied to the elements of the sets – so for exam-
ple, symbolic or numerical representations can be used here. 

In order to model the signal processing chain of the CIS according to the principles 
of Cohen's theory, we modify the architecture of a classic LCS as follows: the mes-
sage list is split into three distinct parts. So we obtain an antigen message list, a cyto-
kine message list and an action message list. The main inputs of the immune system 
consist of antigens and cytokines that are produced by tissue cells. These molecules 
can be found in the CIS in form of messages. An antigen is represented by a string 

from the alphabet {0, 1} that has the length +∈k  –  although other representations 
can be used here (e.g. symbolic). Such a binary antigen string can be interpreted as an 
abstract description of a molecular shape. It is placed by the detectors in the antigen 
message list during the computation loop. A tissue-produced cytokine is represented 
by an element of the set C, which has already been defined above. The internal repre-
sentation of a cytokine is published by the detectors into the cytokine message list. So 
the two kinds of messages (antigens and tissue-produced cytokines) can be seen as 
counterparts to the external messages of the classic LCS. The outputs of the CIS con-
sist of elements of the set A, that also has been defined above. These abstract descrip-
tions of actions are published in the action message list. 

In our modelling approach the different classes of immune cells are integrated into 
one hybrid immune cell type. A single CIS immune cell is made of five parts: an anti-

gen receptor string RAntigen ∈  {0, 1}k, where +∈k , that describes the cell's possible 
perceptions; a positive cytokine receptor RCytokine+ C∈ , that describes the type of 
cytokine that stimulates the cell; a negative cytokine receptor RCytokine– C∈ , that 
describes the type of cytokine that inhibits the cell; a cytokine response message 
MCytokine C∈ , that is published by the cell in case of activation; and an action message 
MAction A∈ , that is suggested by the cell for execution. In addition to the receptor and 
the response parts, each CIS immune cell is assigned a lifetime L ∈ , that gives an 
estimate about the respective cell's remaining lifetime in the repertoire. 
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4.2   Interactions 

After the CIS detectors have placed the descriptions of the antigens and the tissue-
produced cytokines in the corresponding message lists, a matching procedure bet-
ween the elements of the immune repertoire and the available immune signals takes 
place. In correspondence with the matching mechanism of the LCS, the elements' 
mutual interaction potential is identified by comparing each element of the CIS popu-
lation to each element of the antigen message list and to the elements of the cytokine 
message list. But the CIS matching procedure differs in important aspects from the 
one of the LCS which only considers completely satisfied rule strings and makes use 
of special wildcard symbols. Since this matching criterion is much too strict to meet 
with the degenerate antigenic perception of Cohen’s theory, we suggest a matching 
mechanism that is based on the concept of a binary Hamming shape-space (see [13]). 
For computing the antigen affinity AAntigen between an available antigen message 
MAntigen and the antigen receptor RAntigen of an arbitrary immune cell, we use: 
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where k is the total number of bits in an antigen message or antigen receptor string. 
The sum yields the number of bits where the antigen message and the corresponding 
antigen receptor differ, and thus describes the strings' ability to match complementa-
rily. The antigen affinity is subsequently obtained by normalizing the value to the 
interval [0, 1]. Since only a pair of identical binary strings has no affinity at all, there 
is a certain degenerate interaction potential between almost all elements of the im-
mune repertoire and the antigen message list. 

Furthermore, the matching mechanism yields the cytokine affinity ACytokine between 
all available cytokine messages and a single cytokine receptor RCytokine (either positive 
or negative) as follows: 
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where n is the total amount of available cytokines in the cytokine message list. The 
matching procedure only takes into account whether a successful recognition event on 
part of the immune cell receptor takes place or not. Instead of testing the degenerate 
matching of complementary molecular shapes, as in the case of the antigen affinity, 
the cytokine matching procedure focusses on the recognition event itself. Hence, each 
of the two cytokine receptors of an immune cell matches only one cytokine message. 

The overall affinity of an immune cell in regard to an actual immune situation is 
the result of integrating three partial affinities: firstly, the antigen affinity is computed 
for the immune cell's antigen receptor (using Eq. (1)), and secondly, the cytokine af-
finities are computed for the immune cell's positive and negative cytokine receptors 
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respectively (using Eq. (2)). In case of an occurring empty message list, the corre-
sponding partial affinity value is set to zero. On account of the degenerate matching 
procedure between antigens and antigen receptors, a selection from all possible anti-
gen-receptor-pairs has to be made to determine the set of potentially active immune 
cells. Since the antigen concentration also influences the interaction potential of the 
pair, we suggest the use of an affinity-based roulette wheel selection like in the auc-
tion round of the classic LCS. By means of this algorithm a single antigen message 
string from the antigen message list is selected. This antigen message is taken as the 
basis for computing the overall affinity AOverall according to: 
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Thus, the term AAntigen describes a basic activity with regard to an antigen, that is 
stimulated or inhibited by the following terms ACytokine+ and ACytokine– respectively. The 
function f maps AOverall to the interval [0, 1]. The overall affinity is computed for each 
cell of the immune repertoire. The resulting values can be interpreted as the potential 
activation of the immune cells in regard to the current immune situation that is repre-
sented by the elements of the message lists. In order to determine from the set of all 
immune cells the subset that actually becomes activated, in accordance to the LCS an 
immune auction round is held. This restriction of potential cell activity can be seen as 
a computational equivalent to the spatial distribution of the immune cells in the body. 
According to this, an immune cell only gets activated if it has the necessary proximity 
to the target molecule (under the assumption that there is sufficient affinity). There-
fore, the auction round can be interpreted as the CIS counterpart to this anatomical 
restraint. In this selection process the immune cells place their respective overall af-
finity AOverall as their bids. Subsequently, the set of auction winners – and thus the set 
of active immune cells – is obtained by turning the virtual roulette wheel. In addition 
to this, the lifetime of the immune cells that remain inactive in this round is reduced 
by a certain predefined amount. If the value of an immune cell's remaining lifetime 
falls below a certain threshold, it is removed from the repertoire. The purpose of this 
automatic reduction of lifetime is to increase the selection pressure in the immune cell 
population (see section 4.3). 

As a result of their activation the immune cells produce co-respondence signals. 
These intercellular signals are modelled in the CIS as internal cytokine messages that 
are published by the active immune cells after completing the auction round. Hence, 
an intercellular cytokine message is the CIS counterpart to an internal LCS message. 
After the cytokine message list has been cleared, all activated immune cells publish 
their accompanying cytokine response messages in the cytokine message list. Thus, 
the immune cells jointly create a new cytokine pattern. In the course of the next CIS 
loop, this existing pattern is supplemented by the tissue-produced cytokines which are 
sensed through the system's detectors. Therefore, an updated cytokine context is  
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created that is able to influence future CIS processing cycles. By means of the 
cytokine message list the immune cells exchange information among each other. 

Besides that, the co-respondence process serves as an internal feedback mechanism 
within the immune repertoire. Through their two cytokine receptors the immune cells 
are able to receive positive and negative feedback at the same time. Therefore, a high 
affinity value alone is not a guarantee for leading to an immune cell's activation. In 
case of a simultaneously occurring inhibiting cytokine message in the cytokine mes-
sage list, the overall affinity of the immune cell would be decreased by a certain 
amount (depending on the cytokine's concentration) and the activation probability of 
the immune cell would be reduced as well. The same applies to the situation where 
certain cytokines can compensate an immune cell's lack of antigen affinity and conse-
quently cause an increase of the cell's activation probability. Even the presence of an-
tigens is not a requirement – the activation of an immune cell can already be achieved 
by the mere influence of a sufficient amount of stimulating cytokines. Generally, in 
the CIS the immune cells' antigenic perceptions arise from the context of currently 
available cytokine messages. 

According to Cohen, the co-respondence process is a joint effort between all active 
immune cells. As a result it yields an immune decision that influences the effector 
cells' subsequent actions. In the CIS this is modelled by the active immune cells that 
publish their respective action message in the corresponding message list and thus 
suggest immune actions. So the support for an arbitrary action is defined as the pro-
portion of messages in the action message list that actually suggest this specific action 
as the next one to be performed by the effectors. In order to determine the next per-
formed action, a support-based roulette wheel selection takes place. The action 
message that is selected by this mechanism is passed to the effectors of the CIS for 
execution in the tissues. 

4.3   Evolutionary Mechanisms 

In order to implement the evolutionary mechanisms of Cohen's immune theory, we 
complement the interaction procedures with an algorithmic component that models 
the bone marrow's function as the immune organ where immature immune cells are 
produced. The constituent parts of a new immune cell are produced as follows: as an 
analogy to the immune cells' ability to manufacture antigen receptors somatically, the 
CIS antigen receptor string is created randomly from the symbols of the binary alpha-
bet; because of the genetic restrictions of the cytokine repertoire, the symbols that are 
assigned to the immune cell's two cytokine receptors and the respective cytokine re-
sponse message are derived from the predefined set C (see section 4.1); accordingly, 
the action message is derived from the set A; the immune cell's lifetime value is set to 
a predefined constant. 

In correspondence to the selection step that takes place in the thymus, all immature 
immune cells are subject to a testing mechanism that determines whether these cells 
are added to the immune repertoire or not. For this test we introduce the user-defined 

set S of self messages {s1, ..., so} where s ∈  {0, 1}k and +∈ok, . These self mes-

sages describe a subset of the potential messages that is regarded to be part of the 
body's self, and thus can be interpreted as a filter that prevents certain new immune 
cells from being inserted into the repertoire. The immunocompetence of an immature 



272 D. Voigt, H. Wirth, and W. Dilger 

 

immune cell is determined by comparing the antigen receptor of the cell to each self 
message and computing their mutual affinity (using Eq. (1)). According to Cohen’s 
immune theory, an immune cell is rejected if its antigen affinity is too high or too 
low. As a result of this selection step, only those cells survive that show a moderate 
affinity to the set of self messages. 

The next selection step of the immune system is implemented by means of the CIS 
auction round that determines the immune cells that actually become activated. If the 
inhibiting effects of the cytokine messages are left aside for a moment, this selection 
mechanism particularly favours the immune cells that have a high antigen affinity. So 
the activated immune cells have the chance to prove their usefulness regarding the 
present immune situation and to increase their respective lifetimes by suggesting ap-
propriate actions (see below). The inactive immune cells do not have this opportunity. 
Because of their low antigen affinity they cannot compete with the high affinity im-
mune cells and as a result are displaced from the repertoire. This selection process is 
boosted by automatically decreasing the lifetime of inactive immune cells. 

As an analogy to the affinity maturation, a subset of the activated immune cells is 
reproduced. This is realized by copying the constituent parts of an immune cell and 
thus obtaining a set of identical cell clones. While the daughter cells' respective anti-
gen receptor string is mutated by inverting random position bits, the other parts of the 
immune cells remain unchanged. So the result of this cellular modification process is 
a set of immune cells that only differ in their antigen receptor string. Subsequently, 
the antigen affinities between the mutated daughter cells and the antigen message that 
caused their mother's activation are computed (according to Eq. (1)). By means of an 
affinity-based roulette wheel selection a single immune cell is selected from the set of 
the mother and the daughter cells. This immune cell replaces the mother cell in the 
immune repertoire; all other cell clones are rejected. As a result of this selection step 
the immune cells' antigenic perceptions may be improved. 

The last selection step (which Cohen describes only allusively) is realized in the 
CIS through the workings of the classic LCS bucket brigade algorithm (for details see 
[11]). By means of the positive or negative feedback that is received from the tissues 
as a result of the performed immune actions, the bucket brigade adjusts the lifetime 
values of the cells in the immune repertoire. An immune cell that is able to gather suf-
ficient amounts of lifetime can be seen as the CIS equivalent to a memory cell. 

4.4   Summary 

The functional components of the resulting CIS and its computation loop are sum-
marized in Fig. 2. The first step of the CIS is to clear all three message lists and to 
produce an initial population of immune cells by means of the bone marrow and the 
thymus components. Apart from certain structural modifications, the sequence of the 
internal CIS computation steps is similar to the classic LCS: (1) The detectors place 
messages in the corresponding message lists that describe the observed state of the 
tissues. (2) Each element of the immune cell repertoire is compared to the available 
messages of the antigen and the cytokine message list. The respective affinities are 
computed. (3) These potential activities are taken as a basis for an auction round that 
selects the immune cells that actually become activated in this round. (4) An affinity 
maturation mechanism is applied to a certain subset of the active immune cells. In this 
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evolutionary step the immune cells' antigenic perception may be improved by cell 
cloning, receptor mutation and affinity-based selection. (5) Furthermore, all activated 
immune cells publish their respective cytokine and action messages in the corre-
sponding message lists. 
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Fig. 2. The structure and internal mechanisms of the resulting CIS 

(6) If there is sufficient action support, the effectors perform the suggested immune 
actions in the body tissues. On the one hand, from these executed actions arise new 
CIS inputs (see step 1), and on the other hand, the tissues react by delivering rein-
forcement information to the system. (7) In order to improve the overall behaviour of 
the CIS this feedback is used by the bucket brigade algorithm to adapt the lifetime 
values of the cells in the immune repertoire. (8) As a result of the several evolutionary 
steps, certain inefficient immune cells are removed from the repertoire. (9) New im-
mune cells are added to the repertoire and the computation loop continues at step 1. 

A comparison between the resulting CIS and the classic LCS shows, that certain 
LCS concepts have been included almost unchanged (e.g. message list and bucket 
brigade algorithm), while others have been partially reworked (e.g. rule syntax and  
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Table 1. Corresponding parts of the classic LCS and the CIS 

Learning Classifier System (LCS) Cognitive Immune System (CIS) 
environment tissues (input/output space) 

message list 
respective message lists for antigens, 

cytokines and actions 

external message 
antigen message, 

tissue-produced cytokine message 
internal message cell-produced cytokine message 

classifier population immune cell repertoire 
classifier rule string immune cell (modified syntax) 

classifier condition part 
antigen receptor, 

cytokine receptors 

classifier action part 
cytokine and immune 

action response 

classifier strength 
affinity (in auction round), 
lifetime (in bucket brigade) 

rule chaining co-respondence 

GA 
bone marrow, thymus, activation, 

lifetime reduction, affinity maturation 

matching procedure), and again others have been completely replaced by immune-
inspired mechanisms (e.g. the GA). A selection of the corresponding parts of the two 
computational systems is shown in table 1. 

5   Conclusion 

In this paper, we have presented a modification of a classic LCS that can be used as a 
computational model of Cohen's Cognitive Immune System Theory. In order to lay 
the foundations for our modelling approach, a short introduction to the basic elements 
and mechanisms of the LCS has been given. Then, we have briefly summarized the 
characteristic features of Cohen's immune theory. After that, the representations of the 
immune agents, their mutual interactions and the evolutionary mechanisms that they 
are subject to have been presented. The resulting computational system CIS has been 
compared to the parts of a classic LCS. 

As in the case of the classic LCS, the possible field of application for the CIS can 
be seen in the domain of machine learning and problem solving. In particular, the CIS 
can be used for all tasks that involve context-based processing of signals (e.g. recog-
nition of noisy patterns). Because of its simple internal representations and mecha-
nisms the system can be easily adapted to a wide variety of computational problems. 

The CIS has been implemented and several test runs with benchmark data sets 
from the LCS domain have been conducted. The preliminary results of these simple 
learning tasks are promising. It could be shown that the CIS is able to learn patterns 
from a presented training set by adapting its immune cell repertoire to the underlying 
structures of the data. But more complex tests regarding the computational system’s 
learning capabilities remain to be done. 
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Abstract. The search for patterns or motifs in data represents an area
of key interest to many researchers. In this paper we present the Mo-
tif Tracking Algorithm, a novel immune inspired pattern identification
tool that is able to identify variable length unknown motifs which re-
peat within time series data. The algorithm searches from a completely
neutral perspective that is independent of the data being analysed and
the underlying motifs. In this paper we test the flexibility of the motif
tracking algorithm by applying it to the search for patterns in two indus-
trial data sets. The algorithm is able to identify a population of motifs
successfully in both cases, and the value of these motifs is discussed.

1 Introduction

The investigation and analysis of time series data is a popular and well studied
area of research. Common goals of time series analysis include the desire to
identify known patterns in a time series, to predict future trends given historical
information and the ability to classify data into similar clusters. These processes
generate summarised representations of large data sets that can be more easily
interpreted by the user.

Historically, statistical techniques have been applied to this problem domain.
However, the use of Immune System inspired (IS) techniques in this field has
remained fairly limited. In our previous work [15] we proposed an IS approach
to identify patterns embedded in price data using a population of trackers that
evolve using proliferation and mutation. This early research proved successful
on small data sets but suffered when scaled to larger data sets with more com-
plex motifs. In this paper we describe the Motif Tracking Algorithm (MTA), a
deterministic but non-exhaustive approach to identifying repeating patterns in
time series data, that directly addresses this scalability issue.

The MTA represents a novel Artificial Immune System (AIS) using principles
abstracted from the human immune system, in particular the immune memory
theory of Eric Bell [16]. Implementing principles from immune memory to be
used as part of a solution mechanism is of great interest to the immune sys-
tem community and here we are able to take advantage of such a system. The
MTA implements the Bell immune memory theory by proliferating and mutat-
ing a population of solution candidates using a derivative of the clonal selection
algorithm [3].

L.N. de Castro, F.J. Von Zuben, and H. Knidel (Eds.): ICARIS 2007, LNCS 4628, pp. 276–287, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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A subsequence of a time series that is seen to repeat within that time series is
defined as a motif. The objective of the MTA is to find those motifs. The power
of the MTA comes from the fact that it has no prior knowledge of the time series
to be examined or what motifs exist. It searches in a fast and efficient manner
and the flexibility incorporated in its generic approach allows the MTA to be
applied across a diverse range of problems.

Considerable research has already been performed on identifying known pat-
terns in time series [9]. In contrast little research has been performed on looking
for unknown motifs in time series. This provides an ideal opportunity for an AIS
driven approach to tackle the problem of motif detection, as a distinguishing fea-
ture of the MTA is its ability to identify variable length unknown patterns that
repeat in a time series using an evolutionary system. In many data sets there is
no prior knowledge of what patterns exist so traditional detection techniques are
unsuitable. In this paper we test the generic properties of the MTA by applying
it to motif identification in two industrial data sets to asses its ability to find
variable length unknown motifs.

The paper is structured as follows, Section 2 provides a discussion of the work
that has been performed in motif detection, then various terms and definitions
used by the MTA are introduced in Section 3. The pseudo code for the MTA is
described in Section 4. Section 5 presents the results of the MTA when applied
to the two industrial data sets before moving on to conclude in Section 6.

2 Related Work

The search for patterns in data is relevant to a diverse range of fields, includ-
ing biology, business, finance, and statistics. Work by Guan [6] addresses DNA
pattern matching using lookup table techniques that exhaustively search the
data set to find recurring patterns. Investigations using a piecewise linear seg-
mentation scheme [7] and discrete Fourier transforms [4] provide examples of
mechanisms to search a time series for a particular motif of interest. Work by
Singh [12] searches for patterns in financial time series by taking a sequence
of the most recent data items and looks for re-occurrences of this pattern in
the historical data. An underlying assumption in all these approaches is that
the pattern to be found is known in advance. The matching task is therefore
much simpler as the algorithm just has to find re-occurrences of that particular
pattern.

The search for unknown motifs is at the heart of the work conducted by Keogh
et al. Keoghs probabilistic [2] and viztree algorithms [8] are very successful in
identifying unknown motifs but they require additional parameters compared to
the MTA. They also assume prior knowledge of the length of the motif to be
found, so the motif is “only partially unknown”. Motifs longer and potentially
shorter than this predefined length may remain undetected in full. Work by
Tanaka [13] attempts to address this issue by using minimum description length
to discover the optimal length for the motif. Fu et al. [5] use self-organising maps
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to identify unknown patterns in stock market data, by representing patterns as
perceptually important points. This provides an effective solution but again the
patterns found are limited to a predetermined length.

A more flexible approach is seen in the TEIRESIAS algorithm [11] able to
identify patterns in biological sequences. TEIRESIAS finds patterns of an ar-
bitrary length by isolating individual building blocks that comprise the subsets
of the pattern, these are then combined into larger patterns. The methodology
of building up motifs by finding and combining their component parts is at the
heart of the MTA. The MTA takes an IS approach evolving a population of
trackers that is able to detect motifs by making fewer assumptions about the
data set and the potential motifs. It focuses on the search for unknown motifs
of an arbitrary length leading to a novel and unique solution.

3 Motif Detection: Terms and Definitions

Here we define some of the terms used by the MTA.

Definition 1. Time series. A time series T = t1,...,tm is a time ordered set of
m real or integer valued variables. In order to identify patterns in T we break
T up into subsequences of length n using a sliding window mechanism.

Definition 2. Motif. A subsequence from T that is seen to repeat at least once
throughout T is defined as a motif. We use Euclidean distance to examine the
relationship between two subsequences C1 and C2, ED(C1, C2) against a match
threshold r. If ED(C1, C2) ≤ r the subsequences are deemed to match and thus
are saved as a motif. The motifs prevalent in a time series are detected by the
MTA through the evolution of a population of trackers.

Definition 3. Tracker. A tracker represents a signature for a motif sequence that
is seen to repeat. It has within it a sequence of 1 to w symbols that are used to
represent a dimensionally reduced equivalent of a subsequence. The subsequences
generated from the time series are converted into a discrete symbol string. The
trackers are then used as a tool to identify which of these symbol strings represent
a recurring motif. The trackers also include a match count variable to indicate
the level of stimulation received during the matching process.

4 The Motif Tracking Algorithm

This Section provides a listing of the MTA pseudo code along with a description
of its main operations. We direct the readers attention to [16] for a more in
depth description of this algorithm, along with a review of the immunological
inspiration behind the MTA, which we do not have time to cover here. The
parameters required in the MTA include the length of a symbol s, the match
threshold r, and the alphabet size a.
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MTA Pseudo Code

Initiate MTA (s, r, a)
Convert Time series T to symbolic representation
Generate Symbol Matrix S
Initialise Tracker population to size a
While ( Tracker population > 0 )
{

Generate motif candidate matrix M from S
Match trackers to motif candidates
Eliminate unmatched trackers
Examine T to confirm genuine motif status
Eliminate unsuccessful trackers
Store motifs found
Proliferate matched trackers
Mutate matched trackers

}
Memory motif streamlining

Convert Time Series T to Symbolic Representation. The MTA takes as
input a univariate time series consisting of real or integer values. Taking the first
order difference of T we look at movements between data points allowing a com-
parison of subsequences across different amplitudes. To further minimise ampli-
tude scaling issues we normalise the time series. In our previous work [15] the
algorithm investigated motifs through consideration of each data point individu-
ally, creating a solution that was not scalable to larger data sets. In the MTA this
problem is resolved as we investigate motifs by combining individual data points
into sequences and comparing and combining those sequences to form motifs.

Piecewise Aggregate Approximation (PAA) [2] is used to discretise the time
series. PAA is a powerful compression tool that uses a discrete, finite symbol
set to generate a dimensionally reduced version of a time series that consists
of symbol strings. This intuitive representation has been shown to rival more
sophisticated reduction methods such as Fourier transforms and wavelets [2].

Using PAA we slide a window of size s across the time series T one point at a
time. Each sliding window represents a subsequence from T. The MTA calculates
the average of the values from the sliding window and uses that average to
represent the subsequence. The MTA converts this average into a symbol string.
The user predefines the size a of the alphabet used to represent the time series T.
Given T has been normalised we can identify the breakpoints for the alphabet
characters that generate a equal sized areas under the Gaussian curve [2]. The
average value calculated for the sliding window is then examined against the
breakpoints and converted into the appropriate symbol. This process is repeated
for all sliding windows across T to generate m-s+1 subsequences, each consisting
of symbol strings comprising one character.

Generate Symbol Matrix S. The string of symbols representing a subse-
quence is defined as a word. Each word generated from the sliding window is
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entered into the symbol matrix S. The MTA examines the time series T using
these words and not the original data points to speed up the search process.
Symbol string comparisons can be performed efficiently to filter out bad motif
candidates, ensuring the computationally expensive Euclidean distance calcula-
tion is only performed on those motif candidates that are potentially genuine.

Having generated the symbol matrix S, the novelty of the MTA comes from
the way in which each generation a selection of words from S, corresponding to
the length of the motif under consideration, are extracted in an intuitive manner
as a reduced set and presented to the tracker population for matching.

Initialise Tracker Population to Size a. The trackers are the primary tool
used to identify motif candidates in the time series. A tracker comprises a se-
quence of 1 to w symbols. The symbol string contained within the tracker rep-
resents a sequence of symbols that are seen to repeat throughout T.

Tracker initialisation and evolution is tightly regulated to avoid proliferation
of ineffective motif candidates. The initial tracker population is constructed of
size a to contain one of each of the viable alphabet symbols predefined by the
user. Each tracker is unique, to avoid unnecessary duplication.

Trackers are created of a length of one symbol and matched to motif candi-
dates via the words presented from the stage matrix S. Trackers that match a
word are stimulated and become candidates for proliferation as they indicate
words that are repeated in T. Given a motif and a tracker that matches part of
that motif, proliferation enables the tracker to extend its length by one symbol
each generation until its length matches that of the motif.

Generate Motif Candidate Matrix M from S. The symbol matrix S con-
tains a time ordered list of all words, each containing just one symbol, that are
present in the time series T. Neighbouring words in S contain significant overlap
as they were extracted via sliding windows. Presenting all words in S to the
tracker population would result in inappropriate motifs being identified between
neighbouring words. To prevent this issue such ‘trivial’ match candidates are
removed from the symbol matrix S in a similar fashion to that used in [2].

Trivial match elimination is achieved as a word is only transferred from S for
presentation to the tracker population if it differs from the previous word ex-
tracted. This allows the MTA to focus on significant variations in the time series
and prevents time being wasted on the search across uninteresting variations.

Excessively aggressive trivial match elimination is prevented by limiting the
maximum number of consecutive trivial match eliminations to s, the number of
data points encompassed by a symbol. In this way a subsequence can eliminate
as trivial all subsequences generated from sliding windows that start in locations
contained within that subsequence (if they generate the same symbol string) but
no others. The reduced set of words selected from S is transferred to the motif
candidate matrix M and presented to the tracker population for matching.

Match Trackers to Motif Candidates. During an iteration each tracker is
taken in turn and compared to the set of words in M. Matching is performed
using a simple string comparison between the tracker and the word. A match
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occurs if the comparison function returns a value of 0, indicating a perfect match
between the symbol strings. Each matching tracker is stimulated by incrementing
its match counter by 1.

Eliminate Unmatched Trackers. Trackers that have a match count >1 in-
dicate symbols that are seen to repeat throughout T and are viable motif can-
didates. Eliminating all trackers with a match count < 2 ensures the MTA only
searches for motifs from amongst these viable candidates. Knowledge of possi-
ble motif candidates from T is carried forward by the tracker population. After
elimination the match count of the surviving trackers is reset to 0.

Examine T to Confirm Genuine Motif Status. The surviving tracker pop-
ulation indicates which words in M represent viable motif candidates. However
motif candidates with identical words may not represent a true match when
looking at the time series data underlying the subsequences comprising those
words. In order to confirm whether two matching words X and Y, containing
the same symbol strings, correspond to a genuine motif we need to apply a dis-
tance measure to the original time series data associated with those candidates.
The MTA uses the Euclidean distance to measure the relationship between two
motif candidates ED(X,Y) [16].

If ED(X,Y) ≤ r a motif has been found and the match count of that tracker is
stimulated. A memory motif is created to store the symbol string associated with
X and Y. The start locations of X and Y are also saved. For further information
on the derivation of this matching threshold please refer to [16].

The MTA then continues its search for motifs, focusing only on those words
in M that match the surviving tracker population in an attempt to find all
occurrences of the potential motifs. The trackers therefore act as a pruning
mechanism, reducing the potential search space to ensure the MTA only focuses
on viable candidates.

Eliminate Unsuccessful Trackers. The MTA now removes any unstimulated
trackers from the tracker population. These trackers represent symbol strings
that were seen to repeat but upon further investigation with the underlying
data were not proven to be valid motifs in T.

Store Motifs Found. The motifs identified during the confirmation stage are
stored in the memory pool for review. Comparisons are made to remove any
duplication. The final memory pool represents the compressed representation of
the time series, containing all the re-occurring patterns found.

Proliferate Matched Trackers. Proliferation and mutation are needed to
extend the length of the tracker so it can capture more of the complete motif. At
the end of the first generation the surviving trackers, each consisting of a word
with a single symbol, represent all the symbols that are applicable to the motifs
in T. Complete motifs in T only consist of combinations of these symbols. These
trackers are stored as the mutation template for use by the MTA.
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Proliferation and mutation to lengthen trackers will only involve symbols from
the mutation template and not the full symbol alphabet, as any other mutations
would lead to unsuccessful motif candidates. During proliferation the MTA takes
each surviving tracker in turn and generates a number of clones equal to the size
of the mutation template. The clones adopt the same symbol string as their
parent.

Mutate Matched Trackers. The clones generated from each parent are taken
in turn and extended by adding a symbol taken consecutively from the muta-
tion template. This creates a tracker population with maximal coverage of all
potential motif solutions and no duplication. This process forms the equivalent
of the short term memory pool identified by Bell [1] and is illustrated in more
detail in [16].

The tracker pool is fed back into the MTA ready for the next generation. A
new motif candidate matrix M consisting of words with two symbols must now
be formulated to present to the evolved tracker population. In this way the MTA
builds up the representation of a motif one symbol at a time each generation to
eventually map to the full motif using feedback from the trackers.

Given the symbol length s we can generate a word consisting of two consec-
utive symbols by taking the symbol from matrix S at position i and that from
position i+s. Repeating this across S, and applying trivial match elimination,
the MTA obtains a new motif candidate matrix M in generation two, each entry
of which contains a word of two symbols, each of length s.

The MTA continues to prepare and present new motif candidate matrix data
to the evolving tracker population each generation. The motif candidates are
built up one symbol at a time and matched to the lengthening trackers. This
flexible approach enables the MTA to identify unknown motifs of a variable
length. This process continues until all trackers are eliminated as non match-
ing and the tracker population is empty. Any further extension to the tracker
population will not improve their fit to any of the underlying motifs in T.

Memory Motif Streamlining. The MTA streamlines the memory pool, re-
moving duplicates and those encapsulated within other motifs to produce a final
list of motifs that forms the equivalent of the long term memory pool.

5 Results

Here we examine the MTA’s performance on two publicly available industrial
data sets. The MTA was written in C++ and run on a Windows XP machine
with a Pentium M 1.7 Ghz processor with 1Gb of RAM.

5.1 Steamgen Data

The steamgen data set was generated using fuzzy models applied to the
model of a steam generator at the Abbott Power Plant in Champaign [10] and
is available from http://homes.esat.kuleuven.be/∼tokka/daisydata.html. The
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Fig. 1. The plot of a motif found in the steamgen data by the MTA. It consists of the
subsequences starting at locations 75 and 883, both of length 60. The X axis refers to
the motif length, whilst the Y axis refers to steam flow.

steamgen data set consists of every tenth observation taken from the steam
flow output, starting with the first observation. This specific data selection was
used by Keogh and has been followed for the purposes of comparison.

The steamgen data set contains 960 items with significant amplitude variation.
Parameters s = 10, a = 6, r = 0.5 were established as suitable after numerous
runs of the MTA. Sensitivity analysis on these parameters can be found in [16].
The MTA identified 104 motifs of lengths varying between ten and 60 data
points. Some of the motifs of length ten are seen to repeat up to 15 times
throughout the data, others of length 20 are noted to repeat up to four times.
One significant motif of length 60, seen to occur twice in the data, at locations
75 and 833, dominates the motif pool. This motif is plotted in Figure 1.

In order to provide some grounding for the MTA, we compared the MTA
result to that of the Keogh’s probabilistic motif search algorithm [2]. Keogh was
kind enough to provide a teaching version of the algorithm which we applied to
the steamgen data, using parameters established by Keogh. Given a predefined
length of 80, the algorithm was able to identify a dominant motif consisting of
sequences starting at points 66 and 874, that is consistent with the motif found
by the MTA, as illustrated in Figure 2.

Comparing Figures 1 and 2 it appears that the MTA has only detected a
subset of the motif found by the probabilistic algorithm, missing off the first
and last ten data points of the longer motif. However, the Euclidean distances
across the first and last ten point sequences are 5.48 and 11.17 respectively.
Given s = 10 and r=0.5 per unit, a match threshold of 5.0 is applied to each
ten point sequence, resulting in the rejection of both omitted subsequences as
non matching. Sensitivity analysis was performed on the MTA to changes in s,
r, and a [16]. The MTA is sensitive to changes in s and r but not a. Reducing
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Fig. 2. The plot of a motif found in the steamgen data by Keoghs probabilistic algo-
rithm. It consists of the subsequences starting at locations 66 and 874, both of length
80. The X axis refers to the motif length, whilst the Y axis refers to steam flow.

s from 20 to 10 and then to 5 increases execution times by 278% and 776%
respectively, the more detailed search takes significantly longer. Reducing r by
50% reduces execution time by approximately 92% as the stricter bind condition
reduces the number of motif candidates investigated.

If the user is aware of the motif length then Keogh’s probabilistic algorithm
produces satisfactory results. It could be run for alternative motifs lengths to
find improved motifs, however this reduces the algorithms effectiveness. Without
knowledge of motif length the MTA provides a successful alternative. It is able
to dynamically build up identification of the motif, symbol by symbol, until the
match threshold is exceeded. The search process is driven by the match criteria
and not a predetermined motif length, leading to better fitting motifs.

5.2 Power Demand Data

Having compared the MTA to an alternative approach we now focus the MTA
on the power demand data set (www.cs.ucr.edu/∼eamonn/TSDMA/index.html)
which contains 35,040 fifteen minute averaged values of power demand (KW)
for the ECN research centre during 1997 [14]. A subset of 5,000 data points
was extracted from data point 5,000 onwards for evaluation. Figure 3 plots this
data subset, the five week day peaks in power demand are clearly evident, with
minimal demand seen to occur over the weekends.

Running the MTA with the previously determined alphabet size a = 6, and
increasing s = 500 and r = 4 given the larger data set and the magnitude of
actual data values, the MTA is able to identify 18 motifs within 798,298ms. The
most frequently repeated motif A is plotted in Figure 3. Motif A represents the
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Fig. 3. Power demand data subset with Motif A of length 500 highlighted in light grey,
with five occurrences (listed 1 to 5) starting at locations 508, 1182, 1854, 2525 and 3869

power demand from Thursday through to Tuesday, including a normal weekend
with minimal demand on Saturday and Sunday, that is seen to occur five times.
The intervals between the first four occurrences of the motif are approximately
675 data points, or seven days given that each data point is a 15 minute interval,
whilst that between the fourth and fifth occurrences is 14 days. This implies a
potential motif is missing from data point 3200 to 3700. However this subse-
quence relates to the period from the 26th to the 31st March 1997 and in the
Netherlands the 28th and 31st of March are bank holidays during which there
was no power demand. The sequence from 3200 to 3700 is therefore not consis-
tent with motif A and was omitted. This simple case shows the MTA has been
able to find a motif that represents all occurrences of a two day weekend that
has no associated bank holidays.

Reducing the symbol size s to 400 for a more detailed search, the MTA identi-
fies 21 motifs in 661,902ms. One Motif B, of length 400, is seen to occur twice at
locations 2880 and 3648, see Figure 4. The MTA found a motif that corresponds
to the two weeks that incorporate a bank holiday.

One could argue that the four day patterns found in motif B should be found
to repeat as a subset of all the other five day working weeks. However the MTA
is able to distinguish between the bank holiday weeks and normal five day work-
ing weeks as it identified another motif C of length 1308, seen to occur twice
in the data at positions 539 and 1884. This motif encapsulated a fortnight of
normal working days that was seen to repeat twice, covering the period up to
the start of motif B. Motif C did not occur for a third time after this due to
the existence of the bank holidays which broke the matching criteria for that
sequence.
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Fig. 4. Power demand data subset with Motif B of length 400 highlighted in light grey,
occurring twice as labelled 1 and 2, at locations 3924 and 3648

6 Conclusion

Motifs and patterns are key tools for use in data analysis. By extracting motifs
that exist in data we gain some understanding as to the nature and characteris-
tics of that data. The motifs provide an obvious mechanism to cluster, classify
and summarise the data, placing great value on these patterns. Whilst most
research has focused on the search for known motifs, little research has been
performed looking for variable length unknown motifs in time series. The MTA
takes up this challenge, building on our earlier work to generate a novel immune
inspired approach to evolve a population of trackers that seek out and match
motifs present in a time series. The MTA uses a minimal number of parameters
with minimal assumptions and requires no knowledge of the data examined or
the underlying motifs, unlike other alternative approaches. Previous issues of
scalability were addressed by using a discrete, finite symbol set to generate a
dimensionally reduced version of the time series for investigation.

The MTA was evaluated using two industrial data sets and the algorithm
was able to identify a motif population for each. In the steamgen data set a
dominant motif was identified and compared to results from an alternative au-
thor. The ability of the MTA to find improved variable length motifs due to it’s
immune memory inspired tracker evolution was also highlighted, a distinguish-
ing feature over other algorithms. In the power demand data set the MTA was
able to identify motifs that had meaningful significance to the user. The MTA
found as motifs i) those periods that correspond to weekends not associated with
bank holidays, ii) the four day working weeks that contain a bank holiday, and
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iii) the normal five day working weeks. From these results we believe the MTA
offers a valuable contribution to an area of research that at present has received
surprisingly little attention.
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Abstract. Speckled Computing offers a radically new concept in infor-
mation technology that has the potential to revolutionise the way we
communicate and exchange information. Specks — minute, autonomous,
semi-conductor grains that can sense and compute locally and commu-
nicate wirelessly — can be sprayed into the atmosphere, onto surfaces or
onto people, and will collaborate as programmable computational net-
works called SpeckNets which will pave the way to the goal of truly
ubiquitous computing. Such is the vision of the Speckled Computing
Project — however, although the technology to build such devices is
advancing at a rapid rate, the software that will enable such networks
to self-organise and function lags somewhat behind. In this paper, we
present a framework for a self-organising SpeckNet based on Cohen’s
model of the immune system. We further suggest that the application of
immune inspired technologies to the rapidly growing field of pervasive
computation in general, offers a distinctive niche for immune-inspired
computing which cannot be filled by another other known technology to
date.

1 Introduction

Advances in micro-electro-mechanical systems technology, wireless communica-
tions, and digital electronics have enabled the development of exceptionally small
mechanical devices that are inexpensive, low-power and capable of sensing phe-
nomena in the physical world [1]. Such devices can be connected together in
large numbers to form wireless sensor networks (WSNs). The concept of WSNs
promises a wide range of new application areas, ranging from environmental ap-
plications [19,20], military applications [22] to structural health [17]. The Speck-
led Computing Consortium [23] is dedicated to the realisation of a new WSN
platform, which promises to create minute semiconductor grains, called specks,
around the size of one cubic millimetre [24]. Moreover, a network of specks differs
from the standard sensor network in that it does not incorporate base stations,
but relies solely on many minuscule nodes, each of which has limited abilities
and resources. Each minute speck contains its own processor, memory, and com-
munication hardware, and can be equipped with one or more sensors to monitor
environmental properties. This promises a new generation of “spray-on comput-
ers” [3], in which dense networks, SpeckNets, consisting of thousands of nodes
can be created.
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Specks may be scattered or sprayed on the person or surfaces, and act as
a “computational aura” [23], opening up a plethora of potential applications,
perhaps using tens to thousands of specks. For example, a few tens of specks may
be attached to rigid object allowing tracking of the position and orientations of
articulated rigid bodies [27]. Normally passive artefacts such as furniture and
appliances might have specks incorporated into their structure, thus enabling
them to interact with users — Wong et al [25] describe a scenario in which specks
integrated into a reading table might detect the removal of a book from a table
and automatically turn on a reading light. On detection of a fire, a speck system
might automatically drop thousands of specks from the ceiling onto the floor,
where they would self-organise in order to light up pathways to the nearest exit.
The technology clearly promises much, yet despite great advances in hardware
and micro technology enabling such devices to be built, the software required to
enable these devices to function in a useful manner lags far behind.

A SpeckNet can be considered as a complex system in which the interactions
of many autonomous, spatially distributed agents result in coherent global be-
haviours, not explicitly planned beforehand, but resulting from the process of
self-organisation. The complexity of the software required to engineer such sys-
tems goes beyond the capabilities of traditional computer science and software
engineering abstractions [28]. Traditional object-oriented and component-based
methodologies are insufficient to model and engineer such behaviours, requir-
ing a paradigm shift in thinking in order to tackle this problem. Increasingly,
research has turned to biological systems in order to provide inspiration, for ex-
ample evolution, ant colonies and the natural immune system. Indeed, a number
of bio-inspired approaches to wireless sensor networks are described in [10,11].
In this paper we describe how the mammalian immune system can be used to
inspire an architecture which will allow the potential of SpeckNets to be realised.

The field of Artificial Immune Systems (AIS) is now well established, and
mechanisms from the immune system have inspired applications in diverse fields
such as optimisation, clustering, fault detection and security. However, Hart and
Timmis [14] point out that much of the work in the field fails to capitalise on
the true potential of this rich metaphor, and instead uses isolated mechanisms
to solve particular tasks. They suggest that the way forward for the AIS field
lies with applications which exhibit a number of key properties: they consist of
multiple, heterogeneous, interacting components which are easily and naturally
distributed, they are embodied, exhibit homeostasis, and are required to perform
life-long learning. In this paper, we describe how the SpeckNet platform exactly
embodies these features, and how one particular immunological perspective, pro-
posed by Cohen [6], can potentially provide the foundation for an architecture
which will allow a SpeckNet to both regulate its operation so that it remains
active as long as it can (i.e. maintain itself) and fulfil its application goals. This
is the first proposal for a software platform for a self-organising SpeckNet. More
generally, we suggest that the type of domain typified by SpeckNet represents a
new direction for AIS research which potentially will create a new generation of
distinctive and effective AIS algorithms.
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The remainder of the paper is organised as follows. Section 2 provides a de-
scription of SpeckNets, their features and limitations that justify their need for
an alternative approach, other than classical computing. Then, Sect. 3 presents
the immune model considered to be exploited for the case of SpeckNets, followed
by Sect. 4 in which the mapping between the immune model is proposed and a
realisable software framework is made explicit.

2 Physical Characteristics of SpeckNets

A SpeckNet is an autonomous computing machine which must achieve some
specified task and simultaneously organise and maintain itself. Although the
ultimate goal of the SpeckNet Consortium is to create minuscule semiconductor
grains around the size of one cubic millimetre [24], the first generation of these
units are aimed to have dimensions of approximately five millimetres cubed. The
main components that constitute the current generation of specks are:

– a computer-on-a-chip, that combines a micro-processor and memory (FLASH
and RAM),

– a radio chipset, which is compatible with the IEEE 802.15.4 standard for
low rate wireless personal area networks [16],

– an antenna that allows communication ranges from a few centimetres to over
a few meters,

– a power supply, such as compact rechargeable batteries, and
– a number of sensors, which vary from heat sensors to accelerometers, de-

pending on the type of application.

Sensors carried by each speck allow data capture, while in-built processing
capabilities permit specks to filter data and extract information from the en-
vironment, and LED components provide specks with a feedback mechanism.
Distributed functioning in SpeckNets is enabled by incorporating communica-
tion capabilities, which allow the constituent devices to interact with each other.
The lack of powerful base station units forces the network to operate in a de-
centralised and asynchronous fashion, by sharing tasks and processes between
its autonomous units. Figure 1 shows the latest version of a speck prototype,
known as ProSpeckz (Programmable Specks over Zigbee Radio), the size of which
is 33×22×8mm excluding battery. In addition, Fig. 2 illustrates a system-level
overview of the ProSpeckz device [24]. All levels are currently in development,
but, at this stage, research primarily concentrates onto hardware and firmware
tiers (SpeckNet Medium Access Control and SpeckNet Network Protocol). Fu-
ture generation of specks may include optics as an extra means of wireless com-
munication, and solar cells in order to provide a renewable power source. Another
possible addition is the connection of actuators to the board (e.g. a motor) to
create a mobile platform for games. However, the current project assumes the
use of the ProSpeckz only.
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Fig. 1. The latest version (June 2005)
of the speck prototype, ProSpeckz IIK
(without battery), built by the SpeckNet
Group; dimensions 33×22×8mm
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Fig. 2. ProSpeckz system-level overview
[24]

Limitations of Specks. The physical characteristics of speck devices inevitably
impose restrictions on the functionality of SpeckNets and of any software which
might control them. First and foremost, the minute dimensions of a speck affects
all constituent parts of a speck node, and the overall performance and efficiency
of SpeckNets consequently. Committing to a small size physically, entails lim-
ited space for providing on board memory and power supply. Therefore, storage
capacity of specks is extremely limited (about less than 10KBytes of FLASH
memory and 1KBytes at most of RAM), and energy alike. Processing power is
also restricted because of the above constraints, especially due to memory con-
straints (physical size is not an issue, as powerful 32-bit processors can be found
at small dimensions of 0.5mm2).1

Furthermore, wireless communication is not only unreliable but is of limited
range too. To minimise the size of the antenna area (13×6mm), operation is
set at high frequencies (2.4GHz), which however incurs high path losses [26].
Yet the most crucial constraint in SpeckNets is to minimise power consumption
on every design level [7], which is also a common problem in many embedded
sensor networks [15]. Technically, the most expensive activity in small sensor
nodes is radio usage. Data transmission and reception usually draw significant
amounts of power, in comparison with processor and sensors [12,24]. Sending
a single bit can consume the same energy as executing 1000 instructions [18].
Energy drain leads to speck “death”, which is also exacerbated by the place-
ment in open environments, where it is not always possible to fully control op-
erating conditions. Thus, unpredictable node failures can occur for a number
of reasons, which has an unpredictable effect on the functioning of the speck
network.

1 Technical information was obtained via discussions with members of the SpeckNet
group.
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2.1 Mapping the Immune System to SpeckNets

The above description of specks at both the physiological and functional level
suggests an immediate analogy with the natural immune system. Millions of
individual cells are distributed throughout the body and communicate asyn-
chronously using various immune molecules. They form local networks via their
cellular interactions, despite the absence of some main organ acting as a co-
ordinator. Similarly, a SpeckNet comprises hundreds of tiny devices which are
spread out on surfaces or within objects, and constitute a wireless network via
optical or radio frequency communication. Moreover, a SpeckNet differs from
the standard sensor network in that it does not incorporate base stations but
relies solely on many minute nodes, each of which has limited abilities.

Individual cells in the immune system can be considered as autonomous agents
that move within the body and can exit the system at any time (by cell death
due to apoptosis or necrosis). Specks are similar to immune cells, in the sense
that they also are structurally basic and autonomous, since they have built-
in renewable energy source. In the case of both specks and immune cells, the
individual resources of any agent are modest and thus are considered “weak”
and unreliable on their own. Immune cells are capable of migrating through the
body; in this respect, they differ from specks which in many of the suggested
applications are essentially static, the specks having no means of self-propulsion.
However, just as immune cells are carried by the blood, one can envisage specks
being placed in flowing liquids (for example in pipelines in order to detect and
plug leaks). Mobile versions of specks have been suggested to provide a generic
technology for mobile toys and robotics [24].

On a functional level, the immune system displays interesting computational
properties [9]. It has developed mechanisms of learning and memory that allow
the system to adapt to changes in its environment. It organises its own function
and self-regulates its responses. In spite of partial cell failures and confrontations
with unknown events, it still manages to cope with problematic situations and
ensures robust operation over a long period of time.

Likewise, SpeckNet is envisaged to be a functional network, even though it
is composed of individually feeble units. It is expected to be tolerant to pertur-
bations that appear within the system (e.g. single specks’ failure), and deal at
the same time with changes in its surroundings. Self-regulation of its resources
(power, processing, memory) is vital, along with the ability to operate without
any external reference point of control. Finally, as mentioned in the introduction,
speckled applications may vary greatly in the number of specks used to form a
SpeckNet, therefore it is crucial that any network behaviour is scalable.

3 An Immune-Inspired Architecture for SpeckNets

The previous section suggests an obvious mapping between both the components
and functionality of the immune system and a SpeckNet. Yet, unfortunately
for the computer scientist, immunology offers a number of disparate and often
conflicting theories as to how these components interact in order to achieve the
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desired functionality. Several “schools of thought” appear in the literature of
AIS [13,8], ranging from the adoption of single immunobiological mechanisms
(e.g. negative selection, clonal selection principle), to more holistic views such
as the immune network hypothesis and danger theory. One view that has not
explicitly inspired any computational practice thus far but has become popular in
immunological circles in recent times, is the cognitive perception of the immune
system first proposed by Cohen in [4,5] and popularised in his book [6]. It has,
however, triggered discussion about the potentiality of the principles it offers,
to be exploited in computational systems, for example by [2], who envision the
next generation of AIS to draw inspiration from Cohen’s model. We present a
brief summary of the relevant concepts from this theory in relation to SpeckNet
— the reader is referred to [6] for a fuller description.

Cohen was one of the first to describe the immune system as cognitive, a
property which is of great interest to SpeckNet development, as such applications
are required to be fully cognisant. Cognition is usually thought of as a conscious
process performed by the brain, but Cohen defines three elements that, when
integrated, make up a cognitive system without consciousness. The first element
is the ability of the system to exercise options, to make decisions based on a
number of choices. The system contains internal images of its environment, which
are updated based on its experience, gained via interactions or self-organisation.
Update implies increase of information which is driven through inputs of energy
and information by the world, and similar outputs generated by the system.
Eventually, these interactions result in choices, and therefore the emergence of
cognition.

Cohen describes three important mechanisms which contribute to the emer-
gence of cognition; co-respondence, pleiotropia and redundancy. The concept of
co-respondence suggests that in order to fulfil its role (maintenance, protection),
the immune systemn maintains different classes of immune cells (macrophages,
T cells, B cells). These cells individually see different aspects (context, P-MHC
complexes, conformation) of any object that may be of immune interest, from
within the body (tissues) or external (antigens). Each class of immune cell in-
forms other immune cells about what it has seen, by expressing co-response
signals (cytokines, processed peptides, interaction molecules, antibodies). The
effect of these signals is that each cell modifies its own response based on the
feedback it receives from the other cells [6] — essentially, although it is impos-
sible for a cell to perceive what another cell perceives of its environment, it can
perceive how another cells responds, and therefore respond to this response. This
is a key point for specks; physical limitations of specks in terms of memory and
limited communication abilities render it impossible for specks to communicate
their perceptions from the environment to other specks in the vicinity, there-
fore they need to rely on minimal message passing in order to achieve a global
response to environmental signals.

Pleiotropia denotes the capacity of a single immune component to produce sev-
eral diverse effects. Depending on existing conditions, immune agents elicit dif-
ferent responses and do different, sometimes contradictory, things. For example,
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in the natural immune system, a T cell can kill a target cell and stimulate the
growth of another. In a SpeckNet, a speck may broadcast a message indicating
to others in its locality to “enter sleep mode” in order to conserve energy. How-
ever, other specks may individually decide to accept or reject this prompting,
based on the importance of the calculations they are processing, at the moment
when receiving the signal. Thus the sleep signal is pleiotropic, depending on the
context of its reception — in case of highly important processing, the speck will
turn off all of its parts but the processor, otherwise the entire speck will enter
sleep mode.

Redundancy is distinguished between simple and degenerate. Simple redun-
dancy designates the existence of multiple copies of the same element (e.g. nu-
merous antibodies are produced during an immune response), while degenerate
redundancy describes the situation in which many different immune components
perform the same action. Both types are relevant to a speck network. For ex-
ample, due to the extreme unreliability of individual specks, multiple copies of
the same species2 of speck will inevitably exist in any application, and in ad-
dition, different species of speck may respond in a similar manner to certain
environmental conditions.

4 Framework

In this section, we present an initial framework based on the Cohen perspective
of the immune system which will provide the basis for experimentation into
an immune-inspired SpeckNet architecture. Figures 3 and 4 provide a mapping
between the Cohen and SpeckNet models, which is discussed in this section.

The overall role of the immune system is to provide maintenance and protec-
tion to a host. Likewise, the role of the underlying SpeckNet in any application
is to regulate its operation, so that it remains active as long as it can, and fulfil
its application goals, namely to capture any interesting stimuli expressed by the
environment and generate the appropriate response. As in the immune system,
specks perform one or more of three basic functions; they can sense information
from their environment; they process information; and they communicate infor-
mation, i.e. carry signals. In both the immune and SpeckNet environments, cells
can be active or resting (corresponding to an idle state in a speck). In addition,
specks can be in a further state which has no direct immunological analogy, of
sleeping in which a particular component is turned off and therefore does not
interact with the system.

In the immune system, processes occurring in the tissues of a host provide a
context for signals received by the immune system, for instance indicating infec-
tion or damage. This can be seen as analogous to the internal state of a speck,
corresponding to the current state of (for example) its battery, malfunction or
failure of any of its components and its relative location to other specks (which
can be calculated by existing algorithms, for example [21]). However, specks exist
2 Where a species refers to a set of specks containing identical sensors and processing

capabilities.
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in dynamic, changing environments which provide them with additional input
data, corresponding to antigen data in an immune system. For example, sen-
sors on a speck may provide information regarding humidity, light, pressure, or
temperature. This can be viewed as external information. External signals may
ultimately affect the internal state of a speck, for example the environment may
renew power supplies of specks (e.g. provide energy captured by solar cells) or
may cause permanent damage to the network, by breaking some nodes.

Internal and external information is continuously gathered by each type of
speck in a network. This information is filtered, integrated and processed by
individual specks according to their designated type — similarly, internal and
external signals are gathered and processed by a number of different types of
cells in the immune system, e.g. macrophages, T cells and B cells. This requires
the reception and generation of signals which are communicated to local specks
and eventually may spread globally. As in the immune system, data is not gen-
erated, sent or received in a sequential or orderly fashion. Communication is
asynchronous, thus the system is independent of signalling time scale. Collec-
tively, specks undertake the responsibility of collating data (collect broadcasts),
filtering signals (accept some, reject others), and processing them (transform
them appropriately, e.g. calculate average value over a specific time window).

The framework allows the system to be continuously active and results in the
emergence of a new state of the SpeckNet. Depending on the current conditions,
this new state can be either of maintenance (e.g. specks work in a power saving
mode), in which the aim of the system is to stay alive for the longest possible
time, or of response, in which a noteworthy change in the environment activates
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the system and if necessary causes a reaction. Ongoing research is now directed
at designing and testing types of specks to fulfil the roles outlined in this frame-
work. Whilst overall functionality is achieved via vast numbers of unique cells
in the natural immune system, this is clearly impractical in a SpeckNet work.
Therefore, we intend to design speck types corresponding to the major classes
(macrophages, T cells, B cells) which will be capable of processing internal and
external information, and sending to, receiving and filtering messages from, other
specks. In this first instance, this development work will be performed in simu-
lation. Therefore, in the next section we outline a simulation tool which can be
used to model and visualise the behaviour of large SpeckNets.

4.1 A SpeckNet Simulator: SpeckSim

Much of the development work of the proposed framework will take place using
as a foundation the SpeckSim simulator developed by the SpeckNet research
team [23]. This freely available Java-based simulator (see Fig. 5), incorporates
several features, such as three-dimensional simulation and visualisation, asyn-
chronous execution and graph file generation among others. Movement models
incorporated in the design allow static or mobile arrangement of SpeckNets on
a 2D plane or within 3D space. We are currently extending this simulator in
order to facilitate the use of different types of specks and to provide a more re-
alistic environment, in which a variety of signals can be generated to reflect the
external environment, and in which individual specks are subject to the same
unreliable events as real specks, e.g. randomly “dying” or becoming unavailable
for extended periods of time. Investigation will then begin into methods of dis-
tributing functionality across different types of specks. For example, some specks

Fig. 5. SpeckSim, a tool for performing algorithm-level simulations on SpeckNets
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may simply relay information (equivalent to cytokines) whereas others may filter
and aggregate information. Simulations corresponding to a number of different
case studies will then allow a range of scientific questions to be studied, regard-
ing the performance and the quality of a SpeckNet, when operating under the
immune-based framework. For example, we wish to establish to what extent the
networked system is robust to failure of individual speck nodes; how sensitive the
SpeckNet appears to be to its parameters, how much tuning it needs in order to
work, and what are the boundaries within which it exhibits sensible behaviours.

5 Conclusion

In this paper we have presented an argument to show that the natural immune
system, and in particular Cohen’s perspective of a cognitive immune system,
offers an appealing metaphor for the design of a framework to enable tiny and
massively networked devices with very specific engineering constraints to self-
organise and function in a reliable manner. A software platform is now being
developed as part of the Speckled Computing project, and will be tested in
simulation over the coming months.

The development work is still in its infancy, and clearly a number of questions
arise that remain to be addressed. For example, the heterogeneity of the speck
platform required, in terms of the distribution of speck types required for a func-
tioning network to emerge is a key area to be investigated. Another area which
raises a number of issues is that of communication between specks. Interactions
in the immune network are without doubt the crucial operation in the ultimate
emergence of a functioning network which maintains and protects the body, yet
in real-world WSNs, communication is expensive and limited in terms of what
can realistically be broadcast. Much of the work in the current project will be
performed in simulation, yet ultimately the real test will lie in the transfer of
the mechanisms to real networks, sometime in the future.

Nevertheless, the field of WSN (and the wider field of pervasive computing
in general) provides an exciting and challenging research agenda for the future,
for Speckled Computing and for the field of ubiquitous computing in general.
Perhaps this domain may finally provide the field of AIS with the “killer appli-
cation” that has remained so elusive over the last decade.
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Abstract. Artificial immune systems (AISs) to date have generally been
inspired by naive biological metaphors. This has limited the effectiveness
of these systems. In this position paper two ways in which AISs could
be made more biologically realistic are discussed. We propose that AISs
should draw their inspiration from organisms which possess only innate
immune systems, and that AISs should employ systemic models of the
immune system to structure their overall design. An outline of plant and
invertebrate immune systems is presented, and a number of contempo-
rary systemic models are reviewed. The implications for interdisciplinary
research that more biologically-realistic AISs could have is also discussed.

1 Introduction

The field of Artificial Immune Systems began in the early 1990s with a number
of independent groups conducting research which used the biological immune
system as inspiration for solutions to problems in non-biological domains. Since
that time artificial immune system (AIS) research has produced a considerable
body of knowledge and a number of general purpose algorithms. AISs based on
these algorithms have been applied to many benchmark and a number of real-
world problems. Currently however, the field is at an impasse [1,2]. While there
have been some success stories on realworld problems, there is still little to differ-
entiate the performance of AISs with other state-of-the-art methods. We concur
with Timmis [2] that this is due to a limited application to challenging problems,
a lack of theoretical advances, and the use of naive biological metaphors. In this
position paper we focus on biological metaphors and discuss the areas of biology
that we believe should be important in inspiring future AISs. Our intention is to
draw the attention of AIS researchers to these areas and to provide references
to key papers which we have found useful in understanding the biology.

This paper argues that AISs can be made more biologically realistic in two
ways. In the first place, we believe that AIS researchers should consider drawing
inspiration from simpler biological systems than humans. A serious evaluation
of the validity and usefulness of building AISs inspired by the adaptive immune
system needs to take place. The vast majority of life survives and flourishes
without an adaptive immune system. The innate immune system mechanisms
employed by the majority of organisms provide robust maintenance of organ-
ism integrity and protection against pathogens. While complex, these purely
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innate immune systems are relatively simpler in organisational terms than im-
mune systems which combine both innate and adaptive arms. Recent research
has also shown that innate immune systems exhibit properties such as speci-
ficity, diversity and memory, previously only associated with adaptive immune
systems. Innate immune systems can and do do everything adaptive immune
systems do, including adapt to rapidly evolving pathogens, albeit using different
mechanisms [3]. It seems only sensible to start with simpler innate-based AISs
before building adaptive immune mechanisms into AISs.

Secondly, AISs need to be based around more contemporary and sophisti-
cated systemic models of the immune system than those currently employed.
As shown by these contemporary models, the view of the immune system as a
protective system driven by adaptive immune system mechanisms of self/nonself
discrimination is at odds with current immunological thinking on how the im-
mune system behaves as a complete system. While self/nonself discrimination is
a characteristic observed in both innate and adaptive immune systems, it is not
the purpose of the immune system. Yet, as a survey of past ICARIS proceed-
ings [4] reveals, the majority of AISs built so far have been built for the purpose
of discriminating self from nonself. This is not just arguing over semantics, but
goes to the heart of the engineering philosophy used to build AISs.

Even if we must build AISs which incorporate adaptive immune system mech-
anisms, it makes little sense to build them based only the adaptive immune sys-
tem. There is no organism in existence with only an adaptive immune system.
Organisms which do possess an adaptive immune system also have innate im-
mune systems. There seems to us to be a very good reason for this. While the
adaptive immune system provides the organism with a diverse set of receptors
which can recognise almost any molecule, it provides very little control over this
recognition. The control of the adaptive immune system is firmly in the hands
of the innate immune system [5]. Building AISs which model only adaptive im-
mune system mechanisms is like building a car without a steering wheel - it will
certainly go somewhere, but you have very little control as to where this is!

In the first part of this paper we discuss current understanding of the immune
systems of plants and invertebrates with the idea that these organisms could
provide simpler biological systems from which to draw inspiration for AISs. In
the second part of this paper we discuss systemic models of the human immune
system. In particular, in light of the first part of this paper and the importance
of the innate immune system, we focus on systemic models which are concerned
with how the innate and adaptive immune systems are integrated. The paper
ends with a brief discussion of the implications for interdisciplinary research that
more biologically-realistic AISs could have.

2 Non-human Immune Systems

The majority of AISs to date have been inspired by vertebrate adaptive immune
system mechanisms. This focus of AIS research on the adaptive immune system
is in some ways similar to Artificial Intelligence’s early focus on the human mind
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and symbolic information processing. Only more recently has the focus of AI been
expanded by the acknowledgement of intelligence in the wider sense of adaptive
behaviour of organisms other than humans. We firmly believe that the field of
AISs also needs to reassess its sources of biological inspiration and focus on the
immune systems possessed by the majority of life on this planet. The adaptive
immune system may be interesting and useful, but is in no way a prerequisite
for a successful immune system, just as playing chess is interesting and useful
but is in no way a hallmark of intelligent behaviour. By studying plant and
invertebrate immune systems, differences and commonalities that exist between
immune systems can also be uncovered. This could well help identify general
principles of immune systems which could be of use to AIS researchers.

2.1 Plant Immune Systems

Plants do not have specialised defender cells and rely on innate immunity pro-
vided by each cell in the plant. Upon infection with a pathogen, plant cells
are induced to produce a range of antimicrobial products which help neutralise
pathogens. Pathogens which survive usually trigger a hypersensitive cell death
response (HR), which causes host cells at the site of infection to die. Both
HR and production of antimicrobial products need to be tightly controlled and
plants have evolved intricate systems to do this. Inducible plant immunity is
provided by two different but interacting systems. The first system is based
around pattern recognition receptors (PRRs) on the surface of plant cells. These
PRRs are activated by molecules produced by pathogens called pathogen- or
microbial-associate molecular proteins (PAMPs or MAMPs). The second sys-
tem, which acts intracellularly, is based around a set of polymorphic proteins
called nucleotide-binding site plus leucine-rich repeat (NB-LRR) proteins. These
NB-LRR proteins are coded for in the genome of the plant by specific disease
resistance (R) genes [6].

Inducible immunity in plants is currently viewed as a four-phase process.
Phase 1 is initiated by the recognition of PAMPs or MAMPs by PRRs and in-
duces a set of responses known as PAMP-triggered immunity (PTI). In Phase
2, pathogens which succeed in overcoming the initial PTI response produce ef-
fector molecules (also known as virulence factors) which enhance the spread of
the pathogen and can also suppress PTI responses. Phase 2 results in effector-
triggered susceptibility of the host to the pathogen. In Phase 3, effectors pro-
duced by the pathogen are recognised by NB-LRR proteins encoded by R genes
and initiate effector-triggered immunity (ETI). The specific effector which is
recognised is termed an avirulence (Avr) protein. ETI responses are amplified
versions of PTI responses and usually result in the death of the infected host
cell. In Phase 4 both host and pathogen undergo a process of selection in which
pathogen variants which do not produce the triggering Avr protein but instead
produce other effectors are selected for. At the same time host R genes which
produce NB-LRR proteins which recognise the new effectors are selected for,
once again resulting in ETI [6,7].
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While direct recognition of Avr proteins by NB-LRR proteins has been ob-
served, indirect recognition of Avr proteins also occurs. In indirect recognition,
NB-LRR proteins are activated by products of the action of Avr proteins on
the host. The ‘guard hypothesis’ has been proposed as a conceptual frame-
work to explain indirect recognition. Pathogen Avr proteins target specific host
molecules in order to increase the spread of the pathogen. Host NB-LRR proteins
guard these molecules and are activated by changes in their guardees caused
by pathogens. NB-LRR proteins either constitutively bind to their guardees
and disengage and are activated when pathogen Avr proteins interact with the
guardee. Alternatively, NB-LRR proteins are activated by the molecular complex
produced when the Avr protein binds with the guardee [6,7].

As well as the protective mechanisms targeted at pathogens such as bacteria,
viruses and fungi just described, plants also possess an array of mechanisms de-
signed to protect them against herbivores such as insects and mammals. These
mechanisms are triggered by wounding of the plant by herbivores which causes
the production of both direct and indirect defences which are often tailored
to the attacking herbivore. Direct defences include the release of antidigestive
proteins which reduce the performance of the herbivore by interfering with its
digestive enzymes, and the release of antinutritive enzymes which decrease the
nutritional value of the plant. Indirect defence mechanisms result in the pro-
duction of volatile organic compounds (VOCs). These VOCs attract herbivore
predators and parasites, and allow top-down control of herbivore populations [8].

Lastly, plants possess systems that are unique among recognition systems in
that they produce responses that are the converse of immune responses. Recogni-
tion of self (the same plant) produces a response, and nonself (a different plant)
does not produce a response [9]. Hermaphroditic plants which produce both pollen
and pistel have developed recognition systems to prevent inbreeding, that is, fer-
tilisation of the plant by itself. These self-incompatibility (SI) systems allow plant
species to maintain genetic diversity. SI systems depend upon a set of highly poly-
morphic genes called the S locus which code for both an S-locus receptor protein
kinase (SRK) and an S-locus cysteine-rich (SCR) ligand. The SRK receptor is
present on the pistel, while the SCR ligand appears on pollen. Binding of SCR
to SRK from the same S locus i.e. the same plant, activates the SRK receptor and
leads to the arrest of fertilisation, whereas SCR derived from S loci of different
plants does not activate the SRK receptor and allows pollination to proceed [10].

2.2 Vertebrate and Invertebrate Immune Systems

Around 97% of all animal species are invertebrates and have no adaptive immune
system. Yet their immune systems have evolved to help make them the most pro-
lific animals on the planet. Invertebrate immune systems are “not homogeneous,
not simple, not well understood” [11]. Studies of invertebrate immune systems
have demonstrated that, while only possessing innate immune systems, their im-
mune systems still exhibit phenomena such as specificity, diversity and memory
which were previously only associated with the adaptive immune system. For
example, in mosquitoes, Down syndrome cell adhesion molecule (Dscam) has
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been identified as having characteristics similar to human immunoglobulin and
is able to produce a diverse set of over 30,000 proteins which enable specific
recognition of bacteria. Diversity of Dscam proteins is produced in a similar way
to vertebrate immunoglobulin through somatic rearrangement of Dscam gene
segments [12,13]. Invertebrates have also been shown to exhibit specific mem-
ory, that is, enhanced protection against the same pathogen upon reinfection.
Long-lasting upregulation of regulatory pathways and production of stable pro-
teins such as fibrogen-related proteins (FREPs) in snails have been proposed as
mechanisms of specific memory in invertebrates [14,15].

Evolution has taken different routes to achieve functionally similar systems.
In other words, both invertebrate and vertebrate immune systems have evolved
different mechanisms which provide antigen-specific memory and protection.
Immunoglobulin-based adaptive immune systems have been identified in almost
all jawed vertebrates, but not in jawless vertebrates or invertebrates [16]. Lam-
preys and hagfish, both jawless vertebrates, do not produce immunoglobulin,
but instead generate their own diverse set of proteins called variable lymphocyte
receptors (VLRs) in response to invading microbes. Lampreys can generate up
to 100 trillion unique VLRs. VLRs are made up of proteins called leucine-rich
repeat (LRR) modules, and their diversity is generated by a process of somatic
rearrangement of LRR modules which surround a single VLR gene [17,18]. This
process of protein rearrangement contrasts with the generation of T cell receptors
by somatic recombination of multiple VDJ gene segments in jawed vertebrates.
For a review of immune system mechanisms from an evolutionary perspective in
invertebrates, protochordates, and jawed and jawless vertebrates see [3].

Thus, while both jawed and jawless vertebrates possess an adaptive immune
system, the underlying components and processes of their systems have evolved
in different ways. And while invertebrates have no adaptive immune system,
they have evolved innate immune systems which provide similar functionality to
vertebrate adaptive immune systems. The end result is the same - the production
of a diverse set of proteins that provide the host with a mechanism of specific
recognition, diversity and memory. The commonalities between Dscam, VLR and
immunoglobulin molecules could provide important insights into the essential
properties which AISs need to reproduce in their artificial T cell receptors. The
differing somatic and germline rearrangement mechanisms which are involved in
the generation of Dscam, VLR and immunoglobulin diversity could, for example,
provide inspiration for new AIS gene library algorithms.

3 Systemic Models of the Human Immune System

Systemic immunologicalmodels explore how systemic properties such as immunity
and tolerance are generated by the immune system as a whole. The immune system
is at this level a system, an assemblage of different interacting entities which com-
prise awhole. Essentially, systemicmodels seek to answer questions aboutwhat the
immune system does and how it does it. Obviously, an understanding of such mod-
els is essential for computer scientists seeking to build AISs which exhibit similar
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systemicproperties to thebiological immune system.However, themajorityofAISs
to date have been based on the assumption that the overall purpose of the immune
system is to protect the host, and that it does so by mechanisms based around self/
nonself discrimination. Adoption of more sophisticated and realistic contemporary
models is necessary if AISs are to prove successful at solving hard realworld prob-
lems. These models are discussed further in relation to AISs in [19,20].

Over the course of several decades immunologists have developed a number
of systemic models of immunity. For a historical overview and comparison of
some of these models see [21,22]. Many of the more contemporary models are
discussed by their protagonists in the internet-based “The Great Debate: The
web debate on self-nonself ” [23], in which, over a period of five days, leading
immunologists debate these models via email and offer some keen insights into
their similarities and differences. These models have reflected and guided exper-
imental research. Sakaguchi [24] characterises immunological research in terms
of two ancient Greek mottos of Delphi: “Gnothi Seauton” (know thyself) and
“Meden Agan” (nothing in excess). He contends that while ‘know thyself’ has
been a favourite slogan of immunologist for many years, the important of ‘noth-
ing in excess’ has received relatively little attention. The latter truth, manifested
in immune homeostasis and self-tolerance, is however, a vital principle of im-
munity. In this section, we briefly overview these various systemic models and
present a categorisation in terms of the way these models view the relationship
of the immune system to the body and to itself. In essence, models can be cate-
gorised as to whether they see the immune system as a protector or maintainer
of the body or of itself. One common feature of contemporary models is the
central role they give to the innate immune system as controller of the immune
system.

3.1 Self/Nonself Discrimination

It has been long been observed that when pathogens, destructive microorganisms
such as viruses or bacteria, enter the body, the immune system removes them
and returns the body to a healthy state. Naturally then, the purpose of the
immune system is often seen as that of a protector or defender of the body.
Since the immune system reacts to pathogens (nonself in immunological terms)
but not to the body (self), it also seems logical to conclude that the immune
system provides this protection by discriminating self from nonself. Defence by
self/nonself discrimination has formed the basis of the majority of immunological
models since the middle of the last century, and this view of the immune system
is still widely accepted by immunologists today [25].

Earlier models of immunity were based around the idea that host constituents
(self) are ignored by the immune system, while other elements (nonself), such
as pathogens, foreign substances or altered self, are reacted to. In these mod-
els, tolerance is largely viewed as immune system silence or nonreactivity to
self. Models such as Burnet’s Clonal Selection Theory [26] and the Associative
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Recognition Model of Bretscher and Cohn [27] rest on a historical mechanism
in which immature receptor-bearing cells of the adaptive immune system are
exposed to a wide range of non-pathogenic material early in the development of
the organism. If this non-pathogenic material is recognised above a certain level,
this leads to the destruction of the cell and its receptors. This results in a set
of mature cells whose receptors only recognise antigen which are not historically
part of the organism. This recognition leads to the initiation of an immune
response and the destruction of the pathogen to which the antigen belongs.

3.2 Infection and Danger

Other models, based on divisions of antigen other than self/nonself, have also
been developed. For these models, the immune system does not partition the
antigenic universe into two groups of self and nonself molecules. Self/nonself
discrimination has been criticised for being applied to the mechanisms which
produce overall immune system behaviour. It has been observed [28] that re-
ferring to self/nonself discrimination of antigen by T cells is a category error.
While the immune system as a whole appears to recognise self from nonself (a
systemic property) this does not imply that individual T cells recognise self anti-
gen. This is making the mistake of attributing the property of a system to its
elements. While preserving the protective purpose of the immune system, models
such as the Infectious Nonself Model and Danger Model have moved away from
self/nonself discrimination as the driving force behind immunity.

The Infectious Nonself Model of Janeway [29] like earlier models, views the
purpose of the immune system as protecting the body. However, the Infectious
Nonself Model proposes that instead of categorising antigen into self and non-
self, the immune system categorises antigen into the classes of infectious nonself
and noninfectious self. Moreover, instead of the adaptive immune system based
historical process of negative selection, detection of pathogens by innate immune
system cells is seen as the principal controller of the immune system. Janeway
proposes that innate immune system antigen presenting cells (APCs), especially
dendritic cells, are the principal controllers of the immune system. In a similar
way to plant cells as discussed in Section 2.1, APCs express a groups of recep-
tors called pattern recognition receptors (PRRs) which respond to pathogen-
associated molecular patterns (PAMPs). Janeway defines PAMPs as “conserved
molecular patterns that are essential products of microbial physiology ... unique
to microbes ... [and] not produced by the host ... [which] are recognized by re-
ceptors of the innate immune system ... [and which] induce the expression of
costimulatory molecules on the cell [APC] surface, which is necessary for the
activation of naive T cells” [30]. Activation of PRRs by PAMPs initiates and
modulates an immune response, and the activation of different subsets of PRRs
tailors the immune response to different classes of pathogens.

The Danger Model of Matzinger [31,32] is similar to the Infectious Nonself
Model, viewing the immune system as a protector, and the innate immune sys-
tem as having a central role in the generation of protection. It also agrees that
APCs have PRR receptors which when bound to certain molecules, activate the
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APC, allowing it to express antigen in a stimulatory fashion. However, instead of
being specific for material associated with pathogens, these receptors are specific
for molecules, termed danger signals, produced when the tissue of the organism
is damaged or stressed. Matzinger defines danger signals as “a set of molecules
elaborated or released by stressed or damaged cells, for which resting APCs have
receptors, and to which resting APCs respond by becoming activated and upregu-
lating costimulatory capacity” [33]. Danger signals are released by cells when they
undergo necrosis, unprogrammed death, but not when they undergo apoptosis,
cell death which occurs as part of the normal functioning of the organism.

Although both models appear similar, their explanations of the origin of the
material which activates APCs, and hence is responsible for the activation of
an immune response, lead to important differences. By proposing host damage
as the main regulator of the immune system the Danger Model expands the
definition of the innate immune system to include the tissue cells of the host
itself. In fact, these tissue cells are the cells that control innate immunity, and
the class of immune response is not determined by the pathogen but rather by
these tissue cells themselves. A key similarity between these models is the shift
in control of the immune system from the T and B cells of the adaptive immune
system to the cells of the innate immune system.

3.3 Maintenance and Homeostasis

Notions of dangerous and harmless are, however, themselves problematic.
Philosophers such as Canguilhem [34] and Haraway [35] have observed how
the concepts of pathological and normal are just as metaphorical and observer-
dependant as those of self and nonself. Is the pathological an overexpression of
the normal (a hyperreaction) or is it a radically different state from the normal?
What exactly does the normal or average state mean? How have wider social
and scientific notions of self and nonself influenced the way the immune sys-
tem is understood? Other models have emerged which challenge the view of the
immune system as a purely defensive and discriminatory system, and widen its
functions to include host-maintenance and self-assertion or homeostasis.

Models such as these generally reject the notion that recognition equals patho-
genicity. Instead, there is constant recognition and reaction by the immune sys-
tem, which leads to a tolerogenic or immunogenic response. In these models, in
place of a defender, the immune system is viewed as a maintenance or homeo-
static system, maintaining the body or itself respectively. Resistance to change,
for example produced by a pathogen, results in behaviour that appears to pro-
tect the body and recognise the pathogen. But it is the maintenance of the body
in a particular state that is really the driving force behind this behaviour. Some
models go further and assert not only that the purpose of the immune system
is maintenance, but that it is self-maintenance or self-assertion, and not body
maintenance. These models view the immune system as a homeostatic system,
an open system which regulates its internal environment and maintains a state
of dynamic equilibrium in the face of changes in its environment.



308 J. Twycross and U. Aickelin

Cohen’s cognitive paradigm [36,37] describes the immune system as a cognitive
systems in which a dialogue is constantly taking place between immune cells and
the body. Interactions between, for example, APCs and T cells can be described
in terms of APCs communicating sentences describing the nature of an antigen to
T cells. The subject of the sentence is the antigen. The predicate is a complex set
of costimulatory molecules and cytokines produced by the surrounding tissue, or
by APCs in response to signalling through germline innate receptors. The immune
meaning of an antigen is defined as how the T cells responds to this sentence, with
the context of the antigenic subject providedby the predicate. Through continuous
dialogue between immune cells and the host, the immune system generates an in-
ternal image of self, which Cohen terms the immunological homunculus. Andrews
and Timmis discuss the cognitive paradigm in relation to AISs further in [38].

The Morphostasis Model of Cunliffe [39,40] is based on the idea that the
function of the immune system is tissue homeostasis. All cells in the body are able
to sense when their normal function is disrupted, for example through co-option
by a virus. When this occurs, cells signal this abnormality to neighbouring cells
and sometimes apoptose. However, many pathogens have developed the ability
to prevent their target cells from apoptosing. Phagocytic innate immune system
cells such as macrophages and neutrophils play a key role in the Morphostasis
Model. Phagocytes are able to sense changes in the normal functioning of cells
and remove these cells. In this model the role of the adaptive immune system is
to accelerate the identification and clearance of non-healthy cells by phagocytes.
The Integrity Model of Dembic [41,42] is similar to the Morphostasis Model
in that it characterises the immune system as maintaining the body through
surveillance of the state of tissue. In the Integrity Model innate immune system
dendritic cells scan tissue and detect changes in signal levels produced by tissue
cells. This induces dendritic cells to initiate an adaptive immune system response.

4 Conclusion

In this paper we have argued for the need for AISs which are based on much more
biologically-realistic models. We argued that, instead of building AISs based on
the extremely complex human adaptive immune system, AISs should draw inspi-
ration from relatively simpler organisms which possess only innate immune sys-
tems. In the first half of this paper we outlined current biological understanding
of plant and invertebrate immune systems. The innate immune systems of these
organisms are capable of self/nonself discrimination, and also exhibit properties
such as specificity, diversity and memory which until recently have only been
associated with adaptive immune systems. Low-level biological models of the
mechanisms which give rise to these properties could provide important sources
of inspiration for future AIS algorithms. If AISs are however to employ adaptive
immune system mechanisms, then we argued that they also need to incorporate
innate immune system mechanisms, which control the adaptive immune system
in biological organisms. In the second half of this paper we outlined a number
of systemic models of the human immune system which deal with how the in-
nate and adaptive immune systems are integrated. These models provide AIS
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designers with a concrete framework for incorporating innate and adaptive im-
mune mechanisms into their artificial systems.

As well as producing more effective AISs, building AISs based on more
biologically-realistic models could have important consequences for biological
research. For a number of years we have had the opportunity to work closely
with immunologists. During this time we have been keen to develop interdisci-
plinary relationships which have benefited these immunologist as much as they
have benefited us. Realistically however, this has proved very difficult, and we
feel that we, and the field of AISs in general, have had very little impact on im-
munological research and thinking. Part of the reason for this is that the naive
models employed by AISs have borne little resemblance to the models of immune
system mechanisms employed by immunologists. Perhaps a more fundamental
reason for this state of affairs is that the focus of immunological and AIS research
often differ. Immunology has been largely focussed on elucidating the cellular
and molecular basis of the immune system using a reductionist methodology.
The field of AISs on the other hand is often concerned with building complete
systems and adopts a more holistic methodology. An exception to this within
Immunology is Systems Immunology, which studies how entities and mechanisms
interact at different system levels to determine immune system behaviour, and
whose domain includes systemic models of the immune system. Here we believe
that AISs, by building artificial systems based on more biologically-realistic sys-
temic models of the immune system, could have a significant impact. Such AISs,
when applied to complex realworld problems, could provide important experi-
mental systems which could be more easily manipulated and from which data
could be more easily gathered than biological systems. These AISs could then
be used to validate systemic immune system models. In this way, AIS research
could have a real impact on Immunology.

AIS research to date has largely been concerned with engineering, that is, build-
ing useful machines or systems which solve practical problems. Whether or not the
immune-inspired principles used reflect any fundamental properties of biological
immune systems is of little consequence. If they are useful in achieving the practi-
cal ends of the engineer then they have served their purpose well. This engineering
approach, in our opinion, while being productive in developing solutions to prac-
tical problems, has further limited the interdisciplinary impact of AIS research.
What is needed to address this limitation is an expansion of the scope of AIS re-
search to address fundamental questions in Immunology and the organisation of
complex systems. This can only be done if, on the one hand, more biologically-
realistic models are adopted and studied specifically to understand the dynamics
of these models, and whether they capture the dynamics of the biological sys-
tems they seek to describe. On the other hand, insights from computer science
into complex systems and techniques for modelling such systems could help im-
munologists to develop better biological models. Perhaps what we will see in the
future is AISs grow into a field which takes its biology as seriously as its engineer-
ing. In this case, a more appropriate definition of the field would be Artificial Im-
munology - the construction and study of immune-systems-as-they-could-be in an
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effort to understand immune-systems-as-they-are and to enhance the construc-
tion of immune systems for artificial organisms.
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Abstract. In this conceptual paper, some features of regulatory T cells
are described. These cells have been receiving an increasing attention in
Immunological research, due to their importance in several aspects of the
immune system. As will be argued, these cells constitute an important
source of inspiration for developing Artificial Immune Systems, compu-
tational tools that attempt to capture some of the characteristics of the
natural immune system. It is expected that the incorporation of these
cells in some immune inspired algorithms may not only lead to more bio-
logically plausible models, but also to algorithms that can achieve better
results in real-life problems.

Keywords: Artificial Immune System, Regulatory T cells, Conceptual
models, Cross-regulation model.

1 Introduction

Recently, Artificial Immune Systems (AISs), have emerged as a novel soft
computing paradigm [1], exploring some of mechanisms and components of the
immune system. Due to the fact that AISs are a relatively new area, it is interest-
ing to pursue a greater understanding of the biological models and mechanisms,
which can serve as inspiration to the development of new algorithms or the
improvement of some of the existing approaches.

There has been several papers dedicated to discussing the current state of
AISs from a critical point of view. Garrett [2] has analyzed how distinct and
effective immune based algorithms are, in comparison with other approaches,
focusing on clonal selection, immune network, negative selection and danger-
theory algorithms. Hart and Timmis [3] have discussed the need to reflect on the
role that AISs can play, and also on the application areas where the potential of
these algorithms can be asserted. Freitas and Timmis [4] have analyzed AISs from
a problem-oriented perspective for data mining applications, focusing on the need
to incorporate application-specific knowledge. In addition, they have commented
on some important aspects of the natural immune system that are considered
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by few or no AISs, such as the two-signal model, and the immunoglobulin class
switching. Dasgupta [5] has commented on the recent advances in AISs, focusing
on some of the models that have inspired their development and applications
tackled by current approaches.

In this work, the focus is on yet another aspect: the natural immune system.
The main objective is to point out the importance of a special type of cell, re-
ferred to as regulatory (or suppressor) T cells, in several aspects of the natural
immune system. As a matter of fact, understanding the role of these cells con-
stitutes an area of intense research in Immunology. In contrast, these cells are
rarely considered in the area of Artificial Immune Systems. By stating what is
currently known about these cells from experimental systems, along with theo-
retical efforts to build mathematical models and hypothesis, this paper suggests
the incorporation of some features of these cells in immune inspired algorithms.

This paper is organized in the following way: section 2 discusses in a moderate
level of detail the roles of regulatory T cells in various aspects of the natural
immune system, presenting some of the experimental systems that have lead
to the affirmation of the importance of these cells. Following this, section 3
reviews some modelling studies that have focused on these cells, while section
4 comments on how some aspects of these cells are being incorporated into two
models under development. Finally, section 5 presents the final conclusions of
this paper and some of the future investigations to be conducted.

2 Regulatory T Cells (Tregs) in Immunological Research

An important aspect of the immune system is its ability to react against exter-
nal, harmful agents (nonself or pathogens), while, most of the times, remaining
unresponsive to self (self-tolerance). The importance of this discrimination by the
immune system is twofold: first, because an immune response initiated against self
components (giving rise to autoimmune diseases, or autoimmunity) could be dev-
astating, and even fatal, for the host; on the other hand, if the system fails to initi-
ate a response against a harmful pathogen, the host’s integrity is under great risk.

The adaptive immune system, composed of B and T lymphocytes, is capable
of identifying a large variety of antigens, molecules that can be recognized by spe-
cific lymphocyte receptors and antibodies. The two types of lymphocytes have
distinctive roles: B cells are responsible for secreting antibodies, while helper
T lymphocytes can activate senescent B cells, cytotoxic T cells eliminate host
cells infected by intracellular pathogens, and regulatory T cells (Tregs) directly
regulate the activation of other B and T cells. In contrast to B cells, which
can bind directly to antigens, T cells require that peptides (small antigenic fea-
tures) coupled to MHC (Major Histocompatibility Complex) are presented by
antigen presenting cells (APCs), in the case of helper T cells, or by most cells
of the body (for cytotoxic T cells) [6]. Because the receptors for B and T lym-
phocytes, which acquire immunocompetency in the bone marrow and thymus,
respectively, are generated through a random gene rearrangement process, it is
necessary to ensure that the produced lymphocytes will not initiate a response
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directed towards self antigens. The Clonal Selection Theory [7] has been, for
almost 50 years, the dominating base to explain how the immune system is able
to differentiate between self and nonself. After subsequent refinements over the
years, the theory assumes that a process denominated negative selection, that
takes place during the production of B and T cells, eliminates all such lympho-
cytes that sustain high affinity interactions with self antigens presented on the
bone marrow and thymus, respectively. In addition, all self-reactive cells that
would eventually escape from this deletion mechanism would be rendered unre-
sponsive to stimuli (anergic), unable to respond to antigenic challenge. In addi-
tion, anergy could also be induced in the periphery (lymphoid and non-lymphoid
tissues) under certain circumstances, as reviewed by Schwartz [8]. Further details
on the historical perspective of these refinements can be found in [9].

However, there are several problems in some of the affirmations of the Clonal
Selection Theory. As commented by Grossman and Paul [10], the concept of
anergy as a mechanism to assert self-tolerance is problematic, as the number of
such cells should be reduced to a minimum, due to the possibility of these cells
being activated and causing autoimmune diseases. This is controversial with ex-
perimental evidence for the abundance of such cells. In addition, Coutinho [11]
comments on two additional problems, referred to as the time and space problem.
The space problem is due to the fact that, to ensure tolerance, it would neces-
sary that every developing lymphocyte met every self antigen during negative
selection, which is not possible, due to the large number of such antigens and the
inability of keeping a copy of every one of them in the thymus or bone marrow.
In addition, the time problem would occur because, as tolerance is mediated
during embryonic life, and lymphocytes are continuously produced, it would be
necessary that lymphocytes under development during, for example, adult life,
had a “memory” of self during the embryonic life, which cannot be claimed to
happen. Therefore, while it is well recognized that negative selection does occur,
its role as the only mechanism to ensure self-tolerance is inappropriate. It is
usually referred to as a recessive mechanism (in analogy to genetics), because it
explains self-tolerance based on the absence of self-reactive cells. In contrast, to
ensure self-tolerance, it is necessary that additional, dominant, mechanisms act
on the system to prevent the activation of the cells not eliminated by negative
selection [11].

Recently, a lot of attention has been directed towards regulatory T cells
(Tregs), whose roles in the control of the immune system have been extensively
analyzed [12,13,14]. One of the reasons for the interest in these cells is that
they actively regulate the activation of self-reactive cells, preventing the occur-
rence of autoimmune diseases. In addition, these cells play an important role
in tumor immunity, recognizing tumor-associated antigens and preventing the
elimination of tumors, and are under investigation as possible targets of clinical
therapies [14]. As reviewed by von Boehmer [15], these cells exert their func-
tions through the secretion of suppressing cytokines (soluble factors that allow
for “communication” between cells), such as IL-10 (bystander suppression), and
direct cell contact during conjugation (i.e. interaction) with an APC (referred
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to as linked suppression [16]). An interesting aspect is that the TCR (T cell
receptor) repertoire of these cells is highly diverse, and more shifted towards
self-reactivity than effector T cells, indicating that Tregs are exported to the pe-
riphery in a primed state [17]. The role of Tregs has gained importance with the
introduction of experimental systems where the manipulation of animals would
lead to the induction of autoimmunity or transplantation tolerance. One such
model has been studied by Sakaguchi and colleagues [18,13], where autoimmune
diseases were induced in lymphopenic rodents (i.e. with very low numbers of T
cells) by transferring a population of CD25−CD4+ T cells. In contrast, trans-
ferring CD25+CD4+ T cells or equal numbers of both cell types would establish
self-tolerance. It is important to emphasize that, as commented by León [9], au-
toimmunity would be induced upon the transfer in the absence of danger signals
[19], posing a problem for recessive tolerance-based theories. Recently, it was
found that these cells, responsible for the maintenance of self-tolerance, can be
identified by the expression of the Foxp3 intracellular marker [20].

Another model has been investigated by Le Douarin, Coutinho and co-workers,
as reviewed in [21,11]. Embryonic tissues transplanted from quails to chick em-
bryos, with approximately the same age, would be rejected once immunological
competence had been acquired. This observation went in clear disagreement with
the beliefs at the time of these experiments, as to the establishment of natural
tolerance during the embryonic period. Using this same experimental system,
it was demonstrated that transplantation of the thymic epithelium (TE) would
establish tolerance to grafts of peripheral tissues from the same donor, even if
tissue-specific antigens were not expressed by the TE. It was demonstrated that
donors contained T cells that could lead to the rejection of the graft, but were
under the “control” of regulatory cells, specifically selected by the TE. Later on,
they have shown that these regulatory cells were capable of “educating”, along
with tissue-specific antigens, peripheral T cells, which would be induced to ex-
press a regulatory phenotype [22]. This process of natural Tregs (that is, those
that are continuously exported from the thymus with a regulatory phenotype,
e.g. [17]) converting peripheral effector T cells into the expression of regulatory
function (induced Tregs) would be later denominated infectious tolerance [23].
Based on these results, a model [22] for the thymus-dependent induction of tol-
erance to central and peripheral antigens was formulated, where the thymocytes
(T lymphocytes under development) would be induced to a regulatory or effec-
tor phenotype depending on the avidity of interactions experienced during their
development. In that model, the fate of a näıve T cell recognizing an antigen
on a peripheral APC would depend on the status of the cell (if it was recently
exported to the periphery or if it has been residing in the periphery for some
time) and if this APC is concomitantly recognized by a Treg.

3 Modelling Studies Considering Regulatory T Cells

In parallel to the increasing number of experimental systems developed for study-
ing regulatory T cells (Tregs), there has been several modelling studies directed
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towards such cells. These studies try, through the introduction of a mathemat-
ical formalism, to gain some insight into how these cells could be involved in
some aspects of the immune system. In this section, some of these models are
summarized. It is important to emphasize that the objective here is not to con-
duct a detailed review of all such studies, but just to highlight some of the main
assumptions and outcomes of each model.

León et al. [24] have proposed a general mathematical model for the sup-
pression of effector T cells by regulatory T cells during conjugation with APCs.
Three particular models have been studied, and it was concluded that the most
plausible suppression mechanism would be based on the active inhibition of ef-
fector T cell growth, where the maintenance of a regulatory population would
be dependent on the effector population. Later on, the model was extended to
account for clonal diversity [25], represented by several sub-populations of regu-
latory and effector cells. In that model, it was suggested that positive selection
would ensure the generation of antigen-specific regulatory T cells, while negative
selection would prevent the exporting of too efficient regulatory cells that could
bar immune responses to foreign antigens. In addition, the possibility of regula-
tory T cells suppressing a response directed against foreign ligands, due to their
co-presentation with self peptides in APCs, was discussed. In this scenario, the
initiation of a response would require the displacement of these self peptides from
the antigens or an increase in APC density. Carneiro et al. [26] have analyzed a
modification of the model proposed in [24] when confronted with the Sakaguchi
[13] experimental system (see section 2). It was verified that, although the new
model would account for the experimental results, it would be more robust to a
fast increase in APC density in terms of inducing autoimmunity, which is not in
accordance with evidence for some autoimmune diseases.

Burroughs et al. [27] have proposed a model to study the consequences of Tregs
inhibiting the secretion of IL-2 by effector T cells. Upon stimulation, effector T
cells secrete IL-2 and divide in the presence of this cytokine, while Tregs also
proliferate in the presence of IL-2, although at lower rates than effector cells,
but are not capable of secreting it. In addition, activated Tregs suppress the
secretion of IL-2, inhibiting T cell growth. In that model, the density of Tregs
would set a threshold on the number of effector cells that have to be activated
(thereby secreting IL-2) so that a response could be initiated. Guzella et al.
[28] have followed a similar line of investigation. An initial version of a model
was presented, aimed at studying the hypothesis that Tregs could control the
magnitude of an immune response (to prevent excessive damage to host tissues).
In contrast to the work by Burroughs et al. [27], this control would be possible
through the secretion of IL-10, in response to the secretion of IFN-γ by effector
T cells. It was concluded that it could be valid, although more work needs to
be done to verify, e.g., the importance of cytokine diffusion, and the relative
numbers of regulatory and effector cells. Although the two models are similar, it
is difficult to compare these two studies, due to the absence of more conclusive
results in the case of [28].
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Kim et al. [29] have proposed a detailed model based on the immune network
[30] to study the response of CD8+ (cytotoxic) T cells, taking into consideration
the regulation of a response by Tregs. The model considered that effector T cells
and Tregs would secrete positive (such as IL-2) and negative cytokines (IL-10 or
TGF-β), respectively. In addition, the regulatory capacity of Tregs was modelled
as a cell contact dependent mechanism for T cells, which could also render APCs
tolerogenic. It was verified that responses in the model were characterized by two
phases. Initially, CD8+ T cells would be stimulated in the lymph nodes to rapidly
expand. In the second phase, Tregs would proliferate and suppress the CD8+ T
cells from further expansion, leading to their migration to the infected tissue. In
that model, Tregs would coordinate the response to foreign antigens by inducing
the migration of CD8+ T cells from the lymph node to the target tissue.

Carneiro et al. [31] have recently proposed the Crossregulation model, on an
effort to incorporate regulatory T cells in a coherent view of the immune system.
In that model, it is assumed that to establish self tolerance, it is sufficient to pre-
vent the expansion of autoreactive T cells, during the formation of multicellular
conjugates between Tregs and effector T cells in APCs. An important prediction
of the model is the partitioning of the peripheral repertoire into three subsets of
lymphocytes, related to the density of APCs presenting cognate antigens. The
first subset would be composed of lymphocytes which persist for a short amount
of time, due to inability to sustain frequent conjugations with APCs. A second
subset would be composed of effector T cells whose proliferation is limited by
the availability of APCs presenting specific antigens, where the maintenance of
Tregs is not sustained, and a third subset, where the APCs can sustain both
Tregs and effector T cells.

Finally, using an extension of the model proposed in [24], León et al. [32] have
studied the role of Tregs on the development of tumors. The model was based on
the assumption that tumor growth induces the presentation of tumor antigens
in the lymph node close to the tumor, which would stimulate the growth and the
migration of effector and Tregs to the tumor site and initiate tumor elimination.
Two tumor growth modes were predicted. In the first mode, characterized by
fast growth rate, low immunogenicity and high resistance to the action of effector
T cells, it would allow effector T cells to escape the control by Tregs, but could
not be eliminated. In the second mode, where the tumor has a low growth rate,
intermediate-high immunogenicity and low resistance to effector functions, it
induces a balanced expansion of both cell types, with Tregs acting to prevent
tumor rejection.

4 Artificial Immune Systems and Regulatory T Cells

At the time of writing and to the knowledge of the authors, the only work in
the area of AISs that incorporates Tregs is the Multilevel Immune Learning Al-
gorithm (MILA), proposed by Dasgupta et al. [33], aimed at anomaly detection
problems, and that includes also helper T cells, B cells and APCs. In that model,
Tregs are generated during a training phase, using self antigens (legitimate or
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normal data). During the recognition phase, the activation of both B and helper
T cells, with no Treg being activated, will lead to the classification of an antigen
as nonself, and as self otherwise. Although that work is an important initial
attempt to incorporate Tregs into a computational algorithm, the approach fol-
lowed is, in the opinion of the authors of the present work, too limited, as it
does not include a proper interaction between Tregs and the remaining lympho-
cytes, simply supposing that the former have infinite suppressive capabilities. It
is exactly the possibility of adding a form of interaction between the cell types,
leading to dynamic computational system that better resembles the natural im-
mune system, that motivates the present work to propose the incorporation of
regulatory cells in AISs. It is expected that, in the case of an algorithm aimed
at anomaly detection problems (such as MILA) incorporating Tregs can lead
to a reduction in false positive rates, considered as analogous to autoimmunity
in the natural immune system, given the extensive involvement of these cells in
mediating self-tolerance.

Recently, there has been a lot of interest in using additional theories and con-
cepts from Immunology to the development and improvement of AISs. Aickelin
et al. [34] have demonstrated particular interest in the application of the Dan-
ger Model [19] to the development of intrusion detection systems. So far, that
work has lead to the proposal of a new and promising approach, the Dendritic
Cell Algorithm (DCA) [35,36]. Twycross and Aickelin [37] have discussed the
incorporation of innate immunity, another area in Immunology that has been
the target of intense research, into AISs. In addition, Andrews and Timmis [38]
point out the disagreement between immunologists in some aspects of the im-
mune system, and discuss the inspiration for incorporating Cohen’s model [39].
In this line of research, Stepney et al. [40] have proposed a conceptual framework
for bio-inspired algorithms, focused on supporting the development of more bio-
logically plausible computational models. It is important to notice that, in that
framework, the construction of models (abstract representations) of the biologi-
cal system plays a major role. In this sense, the availability of several theoretical
models, briefly reviewed in section 3, constitutes a natural source of inspiration
in the context of Tregs.

While a possible approach for describing the inclusion of Tregs in AISs would
involve identifying characteristics of some application areas that could be re-
lated to these cells, in this paper, a different procedure is followed. In order
to consider Tregs in AISs, a similar approach to that of Twycross and Aick-
elin [37] (which have also based the description on the conceptual framework
by Stepney et al. [40]) is taken, by describing two simple abstract models that
incorporate Tregs and are under investigation by the authors . These models are
based on two particular modes of action of these cells, namely through the secre-
tion of cytokines (bystander suppression) and during the formation of conjugates
with APCs (linked suppression), as discussed in section 2, and are presented in
the following subsections. Obviously, these abstractions are neither unique or
definitive, and some of the discussed features may have to be reviewed in the
future. Both models consider a continuous source of both effector and regulatory
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T cells, and also the eventual death of some cells dependent on some criterion.
It must be emphasized that these two models are described with the purpose of
providing a general view of possible roles that could be played by these cells in a
computational system. It is assumed that specific aspects would be modelled ac-
cording to some user-selected criteria, and, therefore, their proper incorporation
into an specific algorithm will require the consideration of application-specific
knowledge. This comes in agreement with a recent work by Freitas and Timmis
[4], that argue on the importance of designing an AIS with the target application
in mind.

4.1 Bystander Suppression Model

In this model, illustrated in figure 1, the inspiration is the nonspecific suppres-
sion of a population composed of nE effector cells (labelled as E1, E2, . . . , EnE )
by nR Tregs (R1, R2, . . . , RnR), mediated through the secretion of cytokines. It
is assumed that an antigenic stimuli (such as the affinity between the cells and
antigenic features) is supplied to these two populations. In response to this stim-
uli, each cell type will secrete a given amount of a typical cytokine, which, for the
sake of simplicity, can be characterized as regulatory (secreted by Tregs) or ef-
fector (secreted by effector T cells). After this step, the total amounts of secreted
cytokines would influence, in a user-defined way, the activation or suppression of
each cell type. In this case, if regulatory cells are able to dominate the process,
the suppression is nonspecific because it is directed towards all effector cells,
independently of the stimuli enlicited in each one of them by the antigen. How-
ever, in general, the net influence on each cell would be given by a combination
of the an individual factor (the affinity for the antigenic features) and a global
response (the total amount of secreted cytokines). In addition, the amounts of
cytokines previously secreted should be kept on the system, after the application
of a decay term, so that sufficiently strong repeated stimuli could allow effector
T cells to escape suppression and initiate a response.

4.2 Linked Suppression Model

In a linked suppression-based model, shown in figure 2, the interplay between
effector and regulatory effects during the conjugation of cells to nA APCs (de-
noted as A1, A2, . . . , AnA in figure 2) is considered, where each conjugate can
accommodate up to a certain number of cells. When conjugated to an APC,
cells would receive stimuli due to the recognition of antigenic features presented
in that APC. This model can be considered as a computational implementation
of a simplified version of Carneiro’s Crossregulation model [31].

In this approach, a set of antigens is distributed throughout the APCs. The
conjugation between APCs and T cells will induce a partitioning of the effector
and regulatory sub-populations, depending on which cells are taking part in
each conjugate at a given time. After each conjugate is established, effector cells
can be induced to certain states, such as death, suppression or conversion to a
regulatory phenotype, as indicated by the double-ended arrows, depending on
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Fig. 1. Bystander suppression-based model

certain conjugate-specific conditions (e.g. the number of Tregs in the conjugate).
For the sake of generality, it is assumed that Tregs can be also influenced by
the outcomes of each conjugation (leading to, e.g., proliferation or death), and
that each cell may take part in more that one conjugate at a time. Finally,
the response of the system could be asserted by the population conditions (e.g.
relative number of effector and regulatory cells) or the status of each conjugate
formed (e.g. in how many conjugates have effector cells proliferated).

In this model, one should notice the introduction of a certain specificity in Treg
functions, which can be only targeted at effector cells conjugated in the same
APCs. Finally, it can be observed that, if the concentrations of previously se-
creted cytokines are not considered, the previously discussed bystander suppres-
sion model can be considered as a special case of this model, when AnA = 1 and
the APC supports a very large number of cells participating in the conjugation.

5 Conclusions

In this paper, some of the basic aspects regarding regulatory T cells have been
highlighted. In contrast to the importance of these cells in Immunological re-
search, especially in the last ten years, few immune inspired algorithms incorpo-
rate these cells. In view of recent suggestions of incorporating more biologically
plausible models in the area of artificial immune systems (e.g. the conceptual
model proposed by Stepney et al. [40]), possible starting models for the incorpo-
ration of these cells in some algorithms were suggested. In the case of the Linked
suppression-based model (section 4.2), it is interesting to notice that it resem-
bles a network-based learning structure, such as a neural network [41], where
the connections between processing units (APCs and T cells) are dynamically
constructed, depending on the criterion used for generating the conjugations
(interactions between APCs and T cells).
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Fig. 2. Linked suppression-based model

It is expected that the incorporation of these cells in some algorithms can
not only lead to more biologically plausible models, but also to better results
obtained when applying these models to real-life problems, given the importance
of these cells in the natural immune system. Future work will be conducted to-
wards implementing initial versions of the Bystander Suppression and Linked
Suppression models discussed in sections 4.1 and 4.2 aimed at specific applica-
tions.
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Abstract. Advances in the Web have eventually arrived at the new
concept of ’Web 2.0’ and the Blog is a representing service of Web 2.0.
Despite the dramatic increase of the Blog users and distinctive charac-
teristics of them, the classical processes of blog creation have difficulties
in taking user’s preference into account without knowledge about Web
programming. Thus, we developed an automated blog design generation
system through a population-based artificial immune algorithm. In the
algorithm, a user’s requirements and a blog design correspond to, re-
spectively, an antigen and an antibody of vertebrate immune system.
A slicing tree layout and the HSV color space model are used to rep-
resent a blog design as a string format of an antibody. Design quality
quantification rules of a blog design and a distance measure between two
different blog designs are devised to compose an affinity function. The
system shows ability to provide new blogs to the user quickly and easily
considering user’s preferences with good algorithmic performance when
it compared with conventional genetic algorithms.

1 Introduction

The World-Wide Web (W3) has been successfully developed as a pool of human
knowledge, in results many of our daily activities are closely related to the Web.
These continual improvements of the Web eventually arrived at the new concept
of ”Web 2.0,” whereas its exact meaning remains open to debate. Briefly, Web 2.0
is a conceptual platform that originally comes to guide common characteristics
of successful internet services such as Google, Wikipedia and Blog [1]. Even
though it does not have a hard boundary, as many emerging concepts, principal
keywords of it can be condensed into involvement and collaboration [2].
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The term ”Blog” is derived from ”Web log.” It generally refers to websites
where entries are made in journal style and displayed in a reverse chronologi-
cal order providing the ability of leaving comments and RSS. Along with basic
roles as personal diary and daily opinion column, Blog is regarded as a personal
media and a basic tool of personal publishing which will possibly lead a media,
communication and online-communities. On that account, Blog is considered as
a fundamental service expressing author’s individualities. In spite of dramatic
increase of Blog users and those characteristics of a Blog service, however, man-
agement and manipulation of a Blog page or design is not easy for common
users. To have own design, the users have to know how HTML pages are com-
posed and how they are written with programming languages. Therefore, a great
number of users rely on Blog hosting services provided by major portal compa-
nies. However, such Blogs are maintained without any considerations about the
fact that a Blog represents the user’s individualities. Namely, Blogs hosted by
major companies have limit number of format and those fixed number of designs
cannot reflect the user’s preferences and desires. Accordingly, many Blogs have
similar designs, and some users who want to have original designs have to spend
time learning design skills or hiring professional designers. Hence we suggest an
automated system for generating Blog design.

Constructing automated Web page design, including blog service, has not
been studied a lot except a system that performs automated design on a limited
number of elements [3]. The main purpose of their work was to generate style
sheet file (CSS) for modifying HTML pages. They focused on finding ”nice” web
page and they decided to leave the decision to the user instead of mathematically
well defined objective functions because, ”nice” is not quantitative measure, lit-
erally. The process is performed by Interactive Genetic Algorithm (IGA). The
system starts with randomly generated individuals as genetic algorithm does
and the results are shown to the user for selection. The features of the selected
individuals are taken into account to compute next generation. Newly generated
individual are presented again, and this process repeated until the user satisfies
with results. They dealt with elements related to a general style of pages, such
as background color, rules, bullets and arrows as well as paragraph and text
style elements. Although users may actively retrieve a new design throughout
the system, it can alter only limited elements rather than overall layout and
composition of a page. In other words, the user is only capable of altering minor
aspects of the design. Furthermore, the population size is limited because of all
individuals have to be presented and evaluated by the user, requiring a long time
until a workable design is obtained.

This paper aims to propose an automated system for generating Blog designs
based on a population-based artificial immune algorithm. Section 2 describes
the problem with system requirements to overcome limitations of previous ap-
proaches. Section 3 shows the system architecture and structure with a whole
work flow diagram. It also provides examples of Blog designs generated by the
proposed system. Section 4 discusses the results, and conclusion will be followed
in Section 5.
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2 Problem Descriptions

Most of classical processes of blog creation have difficulties in taking user’s prefer-
ence into account without knowledge about Web programming. Thus, our system
focuses on both at the same time; diminishing user intervention and reflecting
user preference. Also, we intend to generate overall blog designs including lay-
out and component composition not like previous researches worked on limited
number of attributes.

To achieve these requirements, we regard the design generation process as an
optimization problem of finding best Blog designs by optimizing multiple crite-
ria to gratify users. For this purpose, we applied AIS algorithm based upon the
metaphors of the natural immune system [10]. AIS has been attempted to ex-
ploit theories, principles, and concepts of modern immunology to solve problems
in science and engineering. Indeed, immunological theories had been applied to
produce solutions for complex problem, including optimization [11]. The major-
ity of publications for optimizations are based on the clonal selection principle,
resulting in a number of algorithms such as the Clonalg [12], op-AINET [13] and
B-Cell algorithms [14]. Even though it is certainly true that many of clonal selec-
tion principle based algorithms are familiar with evolutionary algorithms (EA),
diversity mechanisms and a memory mechanism are considered as distinctive
features [11].

Memory mechanism (Reinforcement learning and memory). In wake of
first (primary response) infection involving a particular antigen, the responding
naive lymphocytes proliferate to produce a colony of cells, and some persist as the
memory cells that can survive for years, or indeed even for a lifetime. Memory
cells circulate through the blood, lymph and tissues and when exposed to an
antigen (secondary response), it starts to differentiate and produce high affinity
antibodies. That, using previously remembered antibody rather than ’starting
from the scratch’ every time ensures both the speed and accuracy of the immune
response.

Diversity mechanisms (Somatic hypermutation, receptor editing). The
repertoire of antigen-activated B cell is diversified basically by two mechanisms,
hypermutation and receptor editing [15]. Hypermutation is mutating individuals
with proportional to the affinity and this strategy will lead the algorithm to per-
form a greedy search (exploitation of the surrounding space) [12] [16]. Receptor
editing offers the ability to delete their low affinity receptors and developed en-
tirely new ones through V(D)J recombination [17]. It introduces diversity, lead-
ing to possibly better candidate receptors even though the start affinity might
be lower.

Through the adoption of the memory mechanism and diversity mechanisms,
suggested system behaves dynamically to increase its ability for generating
(optimizing) Blog designs. Table 1 shows simple analogy of design generation
process with artificial immune algorithms. A user’s preference and a blog design
correspond to, respectively, an antigen and an antibody of AIS framework. Ac-
cordingly, affinity is considered as fitness between the design result and user’s
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Table 1. Analogy with artificial immune system

Antibody Blog design(layout and color bit string)
Antigen User preference
Affinity Design evaluation function

satisfaction. Here, we utilized the Clonalg algorithm [12] with our own antibody
encoding scheme. Accordingly, affinity of an antibody is calculated based on
design evaluation measurement which will be explained in next section.

3 System

3.1 Antibody Representation (Blog Design Representation)

In population-based AIS algorithms, a population is defined as a set of antibod-
ies which are candidate solutions. Here, a solution is a blog design which satisfies
given criteria. Therefore, an antibody should contain all the information about
blog design. To design an antibody, we consider a blog as independent functional
modules and a set of decorations for each modules. We divided a blog as sev-
eral components based on its functional ability and characteristics of contents.
Figure 1-a) shows 12 components of a Blog and Figure 2 shows decorative colors
respectively. According to this categorization, an antibody can be represented
by a layout of functional modules and their decorative elements (colors).
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Fig. 1. a) Functional modules of Blog, b) Slicing tree representation, c) Equivalent
string representation

Layout. To encode a blog layout, arbitrary size and location of every com-
ponent in a blog should be represented in a formal way which should be easily
and efficiently handled in AIS. Slicing tree representation, commonly used in the
area of facility layout, is successfully used to represents a blog layout as a string
format by recursive divisions of a given page. For example, it recognizes layouts
of figure 3-a) as a partitioning process [19]. Horizontal and vertical partitions are
represented as slicing trees as figure 3-b) and trees are equivalently converted
to a string based on postfix tree traversal. Tree traversal string has two types
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Fig. 2. Color composition of a Blog design

of elements; one is operand for leaf node in tree, the other is operator for in-
termediate node in tree. Operand corresponds to ID of given area (component
identifier) and operator express the way of how given area is divided - indicating
direction (horizontal or vertical) with a division ratio.

Fig. 3. a) Horizontal and vertical division of given page, b) Tree format of slicing tree
representation

Color. Color is another main feature of blog design. Designs are affected by
the colors used in each element as well as the way of their combinations. Among
3-channel color spaces, such as RGB, HSV, YUV, YIQ, CIE LAB, and CIE
LUV [5], we used HSV color space known to a perceptual color space and most
frequently used color space in color comparison. That is, the three components
H (Hue), S (Saturation) and V (Value) correspond to the color attributes closely
associated with the way that the human eyes perceive the colors [7].

3.2 Affinity

Affinity is a degree of binding between a cell receptor and a antibody (higher
affinity, stronger binding) and it is a standard method to evaluate fitness of each
design with given criteria. We made up affinity function as weighted sum of three
sub-functions corresponding to system requirements.

Design Evaluation. We classify principal calculation methods of sub-functions
into two types of measurements; quantification of a certain design and distance
between two designs. One is a trail to quantify the quality of given design and
the other is focusing on calculating difference between two different designs.
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Design quality quantification. It is aimed to inspect basic web page design rules
for a given page to be a well-formed Blog design. We set up basic rules based on
web page design criteria and see how a given antibody fits. Total about of value
is calculated as below with normalized.

Rule(bdi) =
3∑

j=1

Rulej (bdi is an arbitary blog design, 0 < Rulej < 1) (1)

1. Preferred size(Rule1)
Check the aptness of the size and position of every component. We com-
pare the size of generated components to common range of predefined size.
Distance is defined as amount of deviated size from given range.

2. Readability(Rule2)
Examine readability of the article. This can be done by inspecting difference
of brightness and saturation level between a letter color and a corresponding
background color.

3. Color combination(Rule3)
Calculate average hue distance of all backgrounds color to analyze the ranges
of the average distance. We expect the average hue distance is either short
for harmonic or long for emphasizing.

Distance between two designs. Along with quantification of a single page, calcu-
lating distance between two different designs is another fundamental measure-
ment. We calculate distance by comparing layout and color of the design.

D(bdi, bdj) = w1 × Dlayout(bdi, bdj) + w2 × Dcolor(bdi, bdj) (2)

1. Layout distance (Dlayout)
we should analyze both macroscopic and microscopic difference at the same
time while measuring a distance of two layouts. To see microscopic difference
(Dmicro), we simply compare size and location of every component. In case
of macroscopic difference (Dmacro ), however, we exploit characteristics of
slicing tree layout representation. As mentioned above, it expresses layout
as a recursive partitioning of a given page, which means that given page is
partitioned into horizontal or vertical recursively from the big piece. Thus
macroscopic view of give page can be achieved by regulating (limiting) depth
of recursive partitioning. Figure 4 shows an example. Figure 4-a) originally
represents layout 4-b) and an overall view of layout can be seen as figure 4-
c) by limiting number of tree depth (gray box). Based on this, macroscopic
distance is calculated by comparing size and location of each corresponding
parts.

2. Color distance (Dcolor)
Color histogram is one of the most widely used scheme and it captures the
global color distribution of an image [8]. It is also known as one of the fastest
(simplest) method and contains no spatial information, as we intended (we
already consider spatial information in Dlayout). We take the quantization of



330 K. Ha et al.

Fig. 4. a) Slicing tree representation, b) corresponding detail layout, c) macroscopic
layout (gray box area)

Table 2. Category of color

Color category Huge-range Saturation-range Value-range

White Any < 20 ≥ 85
Black Any Any < 25
Gray Any < 20 [25, 85)
Red [350, 25) 20 25
Red-Yellow [25, 45) 20 25
Yellow [45, 65) 20 25
Yellow-Green [65, 85) 20 25
Green [85, 160) 20 25
Green-Blue [160, 180) 20 25
Blue [180, 270) 20 25
Blue-Purple [270, 290) 20 25
Purple [290, 330) 20 25
Purple-Red [330, 350) 20 25

the bin considering all three color channels together in [9], because the compu-
tational speed of color histogram largely depends on the size of binning. Every
pixel of Blog is categorized based on their H, S and V values as table 2. Color
distance is measured by the Euclidean distance of histogram.

Affinity function. We compose affinity function based on above two design
evaluation measurements. Table 3 illustrates affinity sub-functions and their
purpose. These sub-functions are aimed to achieve system requirements - di-
minishing user intervention and reflecting user preference.

1. Self evaluation affinity
It is usually performed by the user or web page designer by ’trial and error’.
Here we intend to reduce user’s task by checking up the web page design rules
automatically. Design quality quantification measurement exactly matched
to this type of affinity function.

2. User preference affinity
User preference affinity is devised for affecting user’s personal preference
into automated process. For that, system let the user select his (or her)
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Table 3. Affinity functions and their definitions

Affinity function Purpose Definition

Self Evaluation Reduce user intervention by guar-
anteeing minimum design quality

Rule-based quantification

User Preference Reflect user preference by inspect-
ing similarity with user’s selection

Distance with user selected design

Popular Set Consider popular blog design by
calculating distance

Minimum distance among popular blogs

favorite macroscopic layout style and color mood. Then, we compare it with
candidate designs.

3. Popular set affinity
Together with user preference affinity, it is another way of increasing user’s
satisfaction by considering features of existing popular set of blog. New indi-
viduals are affected by the existing blog information and furthermore overall
blog set can be changed according to the changes of each individual. Popu-
lar blogs are dynamically selected based on number of visitors and these will
lead a change.

With three sub-functions, affinity value of a given design (bd) is determine by
weighted sum of each sub-function. These weights can be controlled by the user
in the first step of the generation process.

Affinity(bd) = α × SelfEvaluating + β × UserPreference + γ × PopularSet

= α × Rule(bd) + β × D(bd, bdselected)
+γ × minj∈popular blogs(D(bd, bdj)) (3)

3.3 Systems

Figure 5 shows overall system flow diagram. Generally system is consists of
3 steps and each step corresponds to system structure; get user information,
generate a blog design and return the result to the user.

Fig. 5. Flow diagram of overall system
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4 Result

Outputs of suggested system are new blogs with generated designs as in Figure 6.
It clearly appears that there are various types of color moods and layout
formation.

   

   

   

Fig. 6. Examples of generated blog design

In Figure 7-a), changes of affinity values are recorded along evolution number
according to population size. In this graph, x-axis represents number of evolu-
tion and y-axis is corresponding affinity values. Graph shows that the affinity
value converges to a stable state after around 20 number of evolution. Also maxi-
mum affinity values become similar above 2560 population size. At this condition
(2560 population size and 20 evolutions), indicated by red box, requires only 30
40 seconds (average 37.4 second in 100 runs) and it is fast enough for providing
a new blog design to the user. In this problem, we are dealing with subjective
problem related to artistic view. It obviously consists of many variables such as
layout information and colors information. Furthermore, complex relationships
among these variables are built throughout whole generation processes. This con-
dition usually makes a large number of local optimums and we convinced that
AIS algorithms can perform better in such situation. In fact, the clonal selection
algorithm is known to good at multi-modal optimization by reaching a diverse
set of local optima solutions, while the conventional GA tends to polarize the
whole population of individuals toward to the best candidate solution [12][18].
In figure 7-b) the comparisons of affinity value between Clonalg and genetic al-
gorithms are performed at the same affinity function (fitness function for genetic
algorithms). Y-axis is affinity (fitness) value and it is an average value of 100
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Fig. 7. a) Affinity maturation graph according to number of evolution and population
size, b) Affinity graph of AIS and GA at same condition

experiments. Graph clearly shows that AIS algorithm performs better than GA
at every evolution number even compared with 5120 population size.

5 Concluding Remarks

An automated blog design system is developed through the adoption of the
main feature of vertebrate immune system for solving blog design generation
problem. The system exploits artificial immune algorithms at generation process
by regarding user preference as an antigen and blog design as an antibody. AIS
provide a good metaphor and it also shows good performance. With algorithmic
performance, we tried to achieve two competing requirements at the same time
- diminishing user intervention and reflecting user preference. User interventions
are mainly decreased by AIS that performs automation (optimization) processes
and it filtered out unreasonable designs applying design quality quantification,
named ”self evaluating affinity”. Also customization chance is systematically
provided by letting the user select macroscopic layout and color moods at the
early step of generation and considers the selection in ”user preference affinity”.
We expect to increase user’s satisfaction throughout the comparison process
with current popular blogs based on ”popular set affinity.” Suggested system
adapted and improved various techniques to represent blog design as an antibody
and developed measurements to evaluate blog design quantitatively. Slicing tree
layout representation and HSV color space are proposed to represent blog design
as a string format as well as design quality quantification rules and distance
between two different designs are devised to compose affinity function. At last,
the system is capable of quickly providing new blogs to the user and easily
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considering users preferences. This system is almost new types of application that
automatically generates whole web page design and this sort of web applications
which are based on artificial intelligence will be studying more and more with a
new concept of Web 2.0.
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Abstract. We present an Immune Inspired Algorithm, based on
CLONALG, for software test data evolution. Generated tests are
evaluated using the mutation testing adequacy criteria, and used to direct
the search for new tests. The effectiveness of this algorithm is compared
against an elitist Genetic Algorithm, with effectiveness measured by the
number of mutant executions needed to achieve a specific mutation score.
Results indicate that the Immune Inspired Approach is consistently more
effective than the Genetic Algorithm, generating higher mutation scoring
test sets in less computational expense.

1 Introduction

Software testing can be considered to have two aims [1]. The primary aim is
to prevent bugs from being introduced into code - prevention being the best
medicine. The second is to discover those un-prevented bugs, i.e. to indicate
their symptoms and allow the infection to be cured.

Curing an infection is a two stage process of identifying and then correcting
faults. These continue until all bugs in the code have been found, at which
point a set of tests will have been generated that have reduced the failure
rate of the program. Unfortunately, a tester does not know a priori whether
faults are present in the software, posing an interesting dilemma: how does a
tester distinguish between a “poor” test that is incapable of displaying a fault’s
symptoms, and a “good” test when there are simply no faults to find? Neither
situation provides a useful metric. A heuristic to help aid this problem uses the
notion of test set adequacy as a means of measuring how “good” a test set is at
testing a program [2]. The key to this is that “goodness” is measured in relation
to a predefined adequacy criteria, which is usually some indication of program
coverage. For example, statement coverage requires that a test set executes every
statement in a program at least once. If a test set is found inadequate relative to
the criteria (e.g. not all statements are executed at least once), then further tests
are required. The aim therefore, is to generate a set of tests that fully exercise
the adequacy criteria.

Typical adequacy criteria such as statement coverage and decision testing
(exercising all true and false paths through a program) rely on exercising a
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program with an increasing number of tests in order to improve the reliability of
that program. They do not, however, focus on the cause of a program’s failure,
namely the faults. One criteria does. Known as mutation testing, this criteria
generates versions of the program containing simple faults and then finds tests
to indicate their symptoms. If an adequate test set can be found that reveals the
symptoms in all the faulty program versions, then confidence that the program
is correct increases. This criterion forms an adequacy measure for the cure.

In previous work, we outlined a vision for a software mutation system that
exploits Immune-Inspired principles [3]. In this paper we present a limited set of
our results from our investigations, detailed further in [4]. The remainder of this
paper is organised as follows: Section 2 describes the mutation testing process.
Next, in section 3, the notion of algorithm effectiveness with respect to evolving
test data using mutation testing is introduced. Section 4 details the Immune and
Genetic algorithms, which are compared in section 5.

2 Mutation Testing

Mutation testing is an iterative procedure to improve test data with respect to
a program, as indicated in Figure 1. The initial parameters to the process are
the PUT (Program Under Test), a set of mutation operators (Mutagens), and
a test set population, T. Initially, by using an oracle, the PUT must be shown
to produce the desired outputs when executed with the test set T. If not, then
T has already demonstrated that the PUT contains a fault, which should be
corrected before resuming the process.

Mutagens

Input test
prog, P

FalseTrue
Quit

TrueFalse

Prog

Tests

Create
mutants

Input test
cases, T

Run T on P

Fix P

All
mutants
dead?

Analyse and
mark

equivalent
mutants

correct?
P(T)

Update T

Run test cases
on each live

mutant

Fig. 1. The Mutation Testing process. Diagram reproduced from [4], modified from [5].

The next stage is to generate a set, M, of fault induced variants of the
PUT that correct for simple faults that could have occurred. Each variant, or
mutant, differs from the PUT by a small amount, such as a single lexeme, and
is generated by a mutagen. These mutation operators alter the semantics of the
PUT depending on the faults they classify. For example, the relational operator
mutagen will generate a number of mutants where each one has an instance of
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a relational operator replaced by another. Typically, the 22 mutagens developed
for Fortran-77 programs (listed in [5]) are used.

The generated mutants are then executed with all tests in T and their outputs
compared against the outputs from the PUT. If a mutant produces a different
result from the PUT for any test, then the fault corrected by the mutant is
proven not to occur in the PUT. Subsequently, the tester’s confidence that the
PUT is correct, increases. Furthermore, any such undesirable mutants become
superfluous, as a test exists to distinguish them, and so they are killed (removed)
from the mutant set M. Once all the tests in T have been executed on all
mutants in M, those mutants that remain alive (that still exist in M) are so
far indistinguishable from the original. In other words, there does not exist a
test in T that will cause these living mutants to compute a different output from
P. These mutants become the target for the next iteration, where new test data
will be generated in the attempt to detect them. This process continues until
all mutants in M are killed. Killing mutants, however, is not a trivial task as
some mutants may be semantically the same as the PUT. These mutants are
known as equivalent mutants, and will always produce the same output as the
PUT regardless of the test applied. As a consequence, M can never be completely
emptied when equivalent mutants exist. This has an adverse effect on mutation
testing as the tester does not know whether the tests that remain in M are
equivalent or not. If they are equivalent then no test will kill them; if not, then
a test that will distinguish them has so far not been found.

Reducing the set M to the empty set offers a useful metric for assessing the
quality of T with respect to the PUT. If T manages to kill all non-equivalent
mutants then the tests are capable of identifying that none of the faults the
mutants try to repair are present in the PUT. Before T reaches this adequate
state however, it will only discriminate a proportion of the mutants, indicated
by the number of non-equivalent mutants killed from M. This proportion is the
mutation score (MS) and is more formally defined as:

MS =
|mutantskilled|

|mutants| − |equivalents| (1)

That is, the proportion of mutants killed (identified) out of all non-equivalent
mutants. As this proportion increases (i.e. more non-equivalent mutants are
killed), so does the adequacy of the test data and the tester’s confidence in
the correctness of the PUT. Subsequent iterations therefore involve generating
new tests to improve the adequacy of T.

3 Evolving Test Data

An initial test set for a program undergoing mutation testing can result in 50-
70% of non-equivalent mutants being killed [6]. Improving this figure is the
prime motivation for testers to undertake mutation testing’s cumbersome manual
process. While Genetic Algorithms, amongst other techniques, offer a beneficial
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reduction to the amount of work a tester has to perform, our research has
investigated the use of Artificial Immune Systems to improve these results.

The primary hypothesis of our work is that an Immune Inspired Algorithm
for Mutation Testing (IIA/MT) is consistently at least as effective at evolving
test data as a Genetic Algorithm for Mutation Testing (GA/MT). This is, in
itself, a high level hypothesis that requires explanations of “consistency” and
“effectiveness” in this context. Consistency simply refers to the notion that whilst
an algorithm could be at least as effective for a given program on a given run,
this may not be the case over multiple runs. An algorithm must be at least
as effective on average, in order to be consistent. Effectiveness is a loose term,
given to indicate some measure of performance an algorithm has in improving
test data. Predominantly, the main performance concern with an algorithm is
that every iteration, each new test within the population has to be executed
against the remaining living mutants in order to judge its strength (in identifying
mutants as incorrect). As every mutant executed needs a finite amount of time
to execute1, the more mutants an algorithm executes, the longer it will take to
run. Ultimately, the number of mutant executions needed depends largely on the
algorithm employed and its representation of the problem space, and therefore
is a good measure of an algorithm’s effectiveness.

As an example, consider the situation where a GA/MT requires 5 million
mutant executions to achieve a 95% mutation score for a given program, P . For
an IIA/MT to be at least as effective for the same program P , requires that a 95%
mutation score is achieved in 5 million mutant executions or fewer. Alternately,
at least as effective can be viewed as the IIA/MT achieving a mutation score
greater than or equal to 95% after 5 million executions. Either way, emphasis
is placed on obtaining higher mutation scores in fewer mutant executions, or,
considering the number of executions relates directly to algorithm run times, as
achieving a higher mutation score in less time.

This paper makes a comparison, using the measure of effectiveness specified
above, between two evolutionary algorithms used to automatically evolve software
test data: an Immune Inspired Algorithm and a Genetic Algorithm. This section
outlines the process by which test data is evolved using mutation testing.

3.1 Our Approach to Evolving Test Data

Like all evolutionary algorithms, both the GA/MT and the IIA/MT algorithms
we have developed iteratively optimise a population of individuals in an attempt
to find a good solution - in this case, a set of tests which kill all mutant
programs. The overall process by which an individual is evolved is common
to both algorithms, and presented in figure 2. This is based on the mutation
testing process outlined in figure 1.

Both algorithms have subtly different ways of evolving the population of
tests. Understanding these differences will be useful in explaining any observed
differences in the results. The following section describes the two evolutionary
1 Mutants that enter infinite loops can have their execution times limited by a

multiplication of the original program’s execution time.
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Fig. 2. Test data evolution using mutation testing

algorithms (one genetic, one immune) developed to evolve test data using
mutation testing.

4 Immune and Genetic Systems Developed

4.1 Genetic Algorithm for Mutation Testing

Genetic Algorithms are inspired by Darwinian theories of species evolution
in response to environmental pressures [7]. In terms of mutation testing, the
GA/MT algorithm iteratively evolves a population of individuals in an attempt
to kill the most non-equivalent mutants. Each individual is a set of m tests, for
example, [<1,2,3>, <-1,5,7>, ..., <99,42,8>], for the TriangleSort program. For
any individual, at any iteration, the proportion of non-equivalent mutants killed
by all its tests combined is a measure of its fitness (note: this is not simply
the sum of each test’s mutation score, as indicated by the “T Fitness” input to
the “Evolve Test Set” box in figure 2). Evolution is guided by each individual’s
fitness - fitter individuals are more likely to survive, and therefore more likely
to reproduce than less fit individuals, meaning these solutions (tests) are more
likely to be incorporated into the next generation. At the end of this iterative
process, the best individual (set of tests) is returned to the tester.

Algorithm 1 shows the pseudocode for the GA/MT algorithm (methods used
are described in [4]), which works as follows: Let the population in the i-th
iteration be called Pi, initialised to contain s individuals, with m tests each,
that are either randomly generated or specified by the tester. n iterations are
performed. Every iteration, each individual in Pi has its affinity (or fitness)
calculated (line 6). Each affinity is then normalised (line 8) against the sum of
all the affinities (line 7) in preparation for roulette wheel selection. Next, the
best test is selected and added as the first member of the child population (lines
9-10). Further individuals are added to the child population through a three step
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inputs:

n the number of iterations to perform
s size of main population
m the number of tests in each individual
crossRate the probability of crossover occurring
mutRate the probability of a test being mutated

begin1

i ← 02

Pi ← initPop(s) // initialise main population3

while i < n do4

Ch ← {} // initialise child population5

calculateAffinity(Pi)6

total ← sumAffinities(Pi)7

normaliseAffinities(Pi , total)8

B ← getBestTest(Pi) // get best Test9

Ch ← combine(Ch, B) // and add to child population10

while size(Ch)< s do11

I1 ← rouletteSelection(Pi)12

I2 ← rouletteSelection(Pi) // select 2 Individuals13

Q1,2 ← singlePointCrossover(I1 , I2, crossRate) // crossover14

Q1 ← mutateChild(Q1, mutRate) // and mutate15

Q2 ← mutateChild(Q2, mutRate)16

Ch ← combine(Ch, Q1,2) // add to child population17

end18

Pi+1 ← Ch19

end20

return getBestTest(Pi) // return the highest fitness individual21

end22

Algorithm 1. Genetic Algorithm for Mutation Testing

process of: selecting two parents using roulette wheel selection (higher affinity
individuals have a higher probability of being selected - lines 12-13); performing
single point crossover (the tails of each parent individual, from a randomly chosen
point, are swapped - line 14); and finally, performing mutation on randomly
chosen tests within each crossed-over individual (lines 15-16). These children
are added to the child population (line 17), and the process repeats until it
contains s individuals. The child population then becomes the next iteration’s
parent population, Pi+1.

4.2 Immune Inspired Algorithm for Mutation Testing

The Immune Inspired Algorithm for Mutation Testing is based on the Clonal
Selection theory. More specifically, the IIA/MT was based on the CLONALG
implementation [8], although alterations were made to focus the algorithm on
the mutation testing problem domain, in particular removing the concept of a
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memory individual per antigen, and instead allowing many memory individuals
to contribute to an antigen’s recognition.

The algorithm iteratively evolves a population of antibodies, where each
antibody is a single test (e.g. <1,2,3> for the TriangleSort program), searching
for those which kill at least one mutant program not already killed by an existing
memory test. Those antibodies (tests) that are found to be useful are added to
the memory set to be returned to the tester at the end of the process. The
constraint that an antibody must kill at least one living mutant is an entry
requirement to the memory set itself. Instead the affinity (or fitness) of an
antibody is its mutation score, as calculated by equation 1, allowing tests to
be sought that primarily kill the most mutants. Antibody evolution occurs
through the process of Clonal Selection, guided by the affinity values; high
affinity antibodies generate more clones than low affinity ones, but mutate less
(as they are closer to the desired solution).

Pseudocode for the IIA/MT is shown in Algorithm 2 (methods used are
described in [4]), which works as follows: Let the population in the i-th iteration
be called Pi, initialised to contain s tests, either by randomly generating tests or
by specifying each one. The memory set is initially empty. Every iteration, each
antibody in Pi has its affinity calculated (i.e. its mutation score) with a record
kept of which mutants each antibody kills (line 6). Useful antibodies (those
that kill at least one mutant not killed by any antibody in the memory set)
are added to the memory set, M (line 7). nFittest highest affinity antibodies
are then selected from Pi (line 8). These are combined with nFittest random2

antibodies selected from the memory population (line 9). In neither case are the
selected tests removed from their respective populations. nFittest antibodies
are randomly chosen from this combined set and, together with the useful
antibodies selected earlier, undergo clonal selection (lines 10-13). Antibody
cloning is proportional to its affinity, although a minimum of 1 clone per parent
antibody is created, and all clones undergo mutation inversely proportional to
their affinity (mutation score). Useful cloned antibodies are added to the memory
set (line 14). nFittest cloned antibodies are added to Pi, and a number of worst
affinity antibodies in Pi are removed until Pi size equals s. Finally, nWorst
antibodies in Pi are replaced by new, randomly generated ones (line 15). This
process repeats for n iterations.

4.3 Differences in the Algorithms

Both algorithms evolve a population of individuals in an attempt to find a good
solution to the problem they encode. However, a fundamental difference is that,
in general, a GA aims to find the best individual to encompass the problem
domain as opposed to an IIA which evolves a set of specialist individuals to
encompass the problem. This has an impact on an individual’s representation.
2 Antibodies are selected at random from the memory population because a “useful”

antibody does not necessarily have a high mutation score (e.g. it may only kill a
single mutant). Selecting only high affinity memory antibodies would restrict local
searches from occurring around low scoring antibodies.
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inputs:

n the number of iterations to perform
s size of main population
nFittest number of highest affinity Individuals to select for clonal

selection. Also, in metadynamics, indicates the number of
lowest affinity Individuals replaced by highest affinity clones

nWorst number of lowest affinity Individuals to replace by randomly
generated Individuals

cloneRate a multiplication factor of an Individual’s affinity defining the
number of clones to produce during clonal selection. A
minimum of 1 clone is always produced.

begin1

i ← 02

Pi ← initPop(s) // initialise main population3

M ← {} // reset memory set, M4

while i < n do5

calculateAffinity(Pi)6

L ← addToMemory(Pi, M) // L = individuals added to memory7

B ← selectFittest(Pi , nFittest) // select best Abs from Pi8

R ← randomSelection(M , nFittest) // randomly select Abs9

// from M
B ← combine(B, R) // combine and10

B1 ← randomSelection(B, nFittest) // randomly select Abs11

L ← combine(L, B1)12

C ← clonalSelection(L, cloneRate)13

addToMemory(C, M) // add useful clones to memory14

Pi+1 ← metadynamics(Pi, C, nFittest, nWorst)15

end16

return M // return memory set17

end18

Algorithm 2. Immune Inspired Algorithm for Mutation Testing

In mutation testing, it is unlikely that a single test will kill all mutants. As such,
the best GA/MT individual needs to possess enough tests to kill all mutants.
But how many is enough?.3 The IIA/MT, on the other hand, naturally evolves
a dynamic number of specialist memory individuals, each killing at least one
mutant not killed by anything else. There is no need to predefine how many
tests will be needed.

The evaluation mechanism of each algorithm’s individual is effectively
the same between both algorithms - the number of mutants an individual
kills. Further differences however, occur in the adaptation mechanisms of the
algorithms themselves. Whilst there is an argument that our immune algorithm
is effectively a GA without crossover, there is an important difference between
the purposes of their respective selection and mutation methods. GAs select
3 This is discussed more in [4].
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high fitness individuals because they are good solutions to the problem domain.
Disregarding crossover, they randomly mutate child individuals to add diversity
to the population - to search for new solutions or to escape local maxima.
Our Immune algorithm on the other hand, evolves a set of specialist solutions.
Their form of selection, as part of cloning, produces local populations around
potentially good solutions. These clones are mutated to search around these,
already good, solutions in an attempt to find better (higher affinity) solutions
- local searches. Diversity - breadth searching - is added in a later stage,
called metadynamics, by the death of individuals and the introduction of new,
randomly generated individuals. Consequently, for an IIA, cloning and mutation
are proportional to affinity (high affinity individuals undergo higher cloning rates
and less mutation than low affinity ones), whereas for a GA, although selection
is proportional to fitness, mutation is usually at a fixed rate (typically < 10%).

5 Algorithm Comparison

Four programs have been tested (detailed in [4]): DateRange (DR - McCabe
complexity: 6); TriangleSort (TRI - McCabe complexity: 11); CalDay (CD
- McCabe complexity: 4); and, Select (SEL - McCabe complexity: 19). Each
program was executed at least 30 times per algorithm. The initial population of
either algorithm contains 300 tests (300 1-test individuals for the IIA/MT, 15
20-test individuals for the GA/MT), each initiated to the same value. Test values
were randomly chosen that produced a low starting mutation score, and these
same values (for a given program) were used for each experiment. This method
was chosen over the random generation of each test as it allows the effects of
each algorithm to be easily observed, with each algorithm starting from the
same state - no bias is given to either algorithm from starting with a different
population of tests. In total, 500 iterations of each algorithm were performed.
Table 1 details the (non-optimised) parameter values used, representing typical
values that may be chosen:

Table 1. Parameter values used for each algorithm

IIA/MT GA/MT
Parameter Value Parameter Value

s (initial size of population) 300 s (size of population) 15
nFittest 5 m (#tests per member) 20
nWorst 5 crossRate 0.8

cloneRate 10 mutRate 0.02

The most relevant measure of algorithm effectiveness is determined by the
time taken to generate a test set and the mutation score achieved; a more
effective algorithm will achieve the same mutation score in less time. In this
case however, time is more accurately measured across various algorithms by
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Fig. 3. Mean number of mutant executions
to achieve at least a specific mutation score
for the CalDay program

Fig. 4. Mean number of mutant executions
to achieve at least a specific mutation score
for the DateRange program

Fig. 5. Mean number of mutant executions
to achieve at least a specific mutation score
for the Select program

Fig. 6. Mean number of mutant executions
to achieve at least a specific mutation score
for the TriangleSort program

counting the number of mutant program executions, rather than iterations. Each
algorithm performs differing operations per iteration, and so a single iteration of
each algorithm will not necessarily achieve the same amount of work. However,
each algorithm will need to execute the mutants against a number of tests.
As long as mutant execution is done consistently across all algorithms, the
number of executions to achieve a specific mutation score (regardless of how
many iterations) forms a good measure of each algorithms effectiveness.

Figures 3-6 (Error bars are ± 1 s.d.) show the mean number of mutants
executed to achieve at least a specific mutation score for each of the four
programs (some graphs display drops in mutation score; this is a result of a
decrease in the number of runs achieving that mutation score affecting the overall
mean). The results are similar for all four programs. During the initial stages the
number of mutants executed remains low for both algorithms. As the mutation
score increases, the number of mutants needing to be executed to improve the
mutation score increases dramatically for the GA/MT before increasing for the
IIA/MT. This suggests that in early iterations for both algorithms, weak mutants
are killed by the introduction of new, weak tests - i.e. any test is capable of
killing a mutant, resulting in a large increase in mutation score with few mutants
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executed. As the iterations progress however, the weaker mutants are removed
leaving only the stronger ones. The tests needed to kill these are harder to
generate meaning more mutants are executed before a test is found to improve
the mutation score. The graphs show that an IIA/MT is able to generate more
of these “harder” tests in fewer executions, leading to higher mutation scores for
the same number of executions. Alternatively, an IIA/MT needs fewer executions
to achieve the same mutation score.

The GA/MT execution of CalDay (Figure 3) is distinctive from the other
programs in that at a mutation score of approximately 73%, the mutation
score suddenly increases rapidly to approximately 82% in relatively few mutant
executions, before continuing as is “standard”. This behaviour is different from
that exhibited by the other programs, and although the results coincide with
a decrease in the number of runs achieving these (and higher) mutation scores
(1 run less), it is unlikely this decrease caused the effect seen - if it was the
reason, the effect would more likely have been an increase in mutation score,
with an oscillation in the number of executions, as seen in figures 6 and 5.
A reasonable explanation would be that specific tests are needed to kill 73%
of mutants - possibly they enter a specific portion of code that had not been
reached before. These tests may also kill further mutants, improving upon the
mutation score with no extra executions. Upon further inspection, this effect is
not apparent for the IIA/MT, however the higher granularity graph does show
the same effect, supporting the notion that this is a result of this program’s test
data development, and not some curiosity from the GA/MT algorithm itself [4].

Table 2. T-test (0.05 level) results for the significance between the mean number of
mutants executed for each algorithm, at the highest mutation score obtained by both
algorithms in at least 25 runs. Results are rounded up to the nearest integer to reflect
that a mutant is either executed completely or not at all.

MS IIA/MT mean GA/MT mean tobt tcrit

DR 94.44% 24372 ± 12991 1188082 ± 706193 9.02 2.00
TRI 88.95% 125802 ± 74347 2339044 ± 741550 17.34 2.00
CD 84.63% 27551 ± 4953 2341483 ± 709736 18.78 2.00
SEL 88.97% 1733911 ± 1664843 8920678 ± 2767622 12.16 2.00

T-tests at the 0.05 level, to check the significance of the difference in mean
number of mutants executed, are shown in table 2. They reject the null
hypothesis for all four programs. These tests were performed at the equally
highest mutation score achieved by at least 25 runs4 of both algorithms.

Ultimately then, it would appear that the IIA/MT’s method of generating
tests outperforms (in terms of number of executions) the GA/MT’s. Foremost,
the GA/MT has a finite number of tests, per individual, with which to generate a
4 Comparisons are made where at least 25 runs have achieved the result so that reliable

mean averages (and T-test results) can be calculated. Obviously a higher mutation
score may be possible using an algorithm, just fewer than 25 runs achieve it.



Immune and Evolutionary Approaches to Software Mutation Testing 347

full mutation score. If every one of the 20 tests kills at least one distinct mutant,
then all 20 tests are required. Now, if the individual’s mutation score is less
than 100% then a further test is required. Unfortunately there is no room to
add it into the individual, and so one of the existing tests must be improved
- something which may not be possible. The IIA/MT on the other hand, has
no memory set size restriction, and is free to add additional tests that only
kill a single mutant. This advantage is complemented by the IIA/MT’s local
and global search facilities: local searching occurs through cloning and mutating
tests proportional to their mutation scores, which could be considered as similar
to searching around input boundaries; global searching happens by randomly
introducing a number of tests each iteration.

6 Conclusions

This paper investigates the hypothesis that an Immune Inspired Algorithm for
Mutation Testing (IIA/MT) is consistently at least as effective at evolving test
data as a Genetic Algorithm for Mutation Testing (GA/MT). T-test results
in table 2 reject the null hypothesis for the four programs tested, within
500 iterations, providing evidence to suggest a significant difference in the
mean number of mutants executed to achieve at least a specific mutation
score. Evidence suggests that using the IIA/MT is favourable to the GA/MT,
particularly for higher mutation scores. In particular, a drawback of the GA/MT
is that it has fixed sized individuals which can limit the achievable mutation
score. The IIA/MT does not suffer from this problem.
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Abstract. Grammar checking and correction comprise of the primary problems
in the area of Natural Language Processing (NLP). Traditional approaches fall
into two major categories: Rule based and Corpus based. While the former relies
heavily on grammar rules the latter approach is statistical in nature. We provide a
novel corpus based approach for grammar checking that uses the principles of an
Artificial Immune System (AIS). We treat grammatical error as pathogens (in im-
munological terms) and build antibody detectors capable of detecting grammati-
cal errors while allowing correct constructs to filter through. Our results show that
it is possible to detect a range of grammatical errors. This method can prove ex-
tremely useful in applications like Intelligent Tutoring Systems (ITS) and general
purpose grammar checkers.

1 Introduction

Grammar checking and correction constitute two of the major steps in Natural Language
Processing (NLP). Their importance ranges from base applications, like using a word
processor, to highly specialized tasks like transforming high level natural language com-
mands into machine understandable forms. There are two well-known approaches for
grammar checking namely the Rule-based ones and the pattern-matching-corpus-based
approaches. Existing grammar checking systems, such as those described in [10], [1],
[6], [4], fall into the former category, addressing the issue with a collection of heuristic
rules that approximate a natural language grammar. The other approach is based on the
application of corpus linguistics to the task of language processing [11].

While the rule based approach focuses on understanding the grammar of natural lan-
guage, the corpus based approaches try to statistically analyze the language by taking
the advantage of the abundance of available text. Our approach falls in this second cat-
egory and is unique in the respect that it uses an Artificial Immune System (AIS) based
technique. The motivation for our approach comes from the human immune system
which is able to distinguish every harmful external entity from the self cells of the hu-
man body. We have modeled our grammar checker based on a similar approach so that
it is able to identify any entity outside the corpus (regarded as error). The self in our
case is the corpus itself.

In section 2 we describe briefly the basics of an Artificial Immune System. Section 3
focusses on how we adapt the AIS for the task of natural language processing. Section 4
describes how we generate antibodies for the grammar checker. Section 5 evaluates
our approach on a collection of grammatical errors while Section 6 raises light on the
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limitations of our approach. Finally section 7 portrays the conclusions arrived at and
future enhancements that could be made.

2 Artificial Immune System (AIS)

While the biological immune system generates antibodies to detect and defend the body
of the being, its counterpart the artificial immune system (AIS) works on principles and
algorithms laid down from theoretical immunology to evolve solutions for a range of
problems. A good description of the biological and artificial sides of the immune system
can be found in [3] and [9]. We describe the working of an AIS in brief.

Our human immune system is based on a collection of immune cells called lym-
phocytes. These primarily constitute the B-cells and the T-cells. Both these cell types
present receptor molecules on their surfaces responsible for recognizing the antigenic
patterns displayed by pathogens. The main role of a lymphocyte in an immune system
is encoding and storing a point in the solution space or shape space. The match between
a receptor and an antigen may not be exact and it takes place with a strength termed as
affinity. If this affinity is high the antigen is said to be within the lymphocyte’s recogni-
tion region.

After the successful recognition of the harmful pathogens an adaptive immune re-
sponse is invoked. In this response those cells that were capable of identifying the
pathogens (non self) proliferate by cloning. They may also undergo controlled mutation
(hypermutation)[3] so as to fine tune their receptor molecules resulting in an increase
in affinities. A selective mechanism guarantees that those offspring cells (in the clone)
that better recognize the antigen and which elicited the response have longer life spans.
These cells are called Memory cells. These memory cells are the ones that quickly iden-
tify the disease causing organism in future attacks and thus trigger a faster secondary
immune response. The whole process of antigen recognition, cell proliferation and dif-
ferentiation into memory cells is called clonal selection.

3 Adapting AIS for Language Processing

The idea of adapting an AIS to the field of NLP comes from the commonly observed
fact that a person conversant in a language generally finds it difficult to generate an
incorrect sentence in that language. It is argued here that a person fluent in a natural
language has already built an immune system to detect and reject incorrect sentences in
that language. In short he is immune to an incorrect language generation attack which is
why he experiences difficulty in generating examples of incorrect sentences at the same
frequency as correct ones. Grammar by itself is never talked off in the initial phases of
language learning. A child picks up a language oblivious of grammar. A collection of
sentences, that constitute a corpus, is formed initially and subsequent sentence gener-
ation largely depends on the combinations of words and grammar contained within it.
The corpus thus could be viewed as the collection of correct sentences constituting a
collection of the self cells (cases). Detectors could now be generated by constructs that
do not exist within this corpus. Any form of grammar not found in the corpus could
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be treated as an error and hence could be a candidate to mature into a detector. The
underlying assumption that the corpus is complete, however has to hold.

Based on this we propose an architecture for detecting and modifying grammatical
errors based on applying the anomaly detection capabilities of an AIS. In our approach
we treat the grammatical errors in the sentences as metaphors for the non-self antigens
which in turn elicit a response from the immune system viz. the grammar checker de-
scribed herein. To catch the harmful antigens (grammatical errors) in the system a reper-
toire of antibodies is to be generated. This generation is based on the method described
in [2] with modifications made to suit the language processing scenario. Figure 1 shows
how the antibody and the antigen interact in the domain of languages. In the follow-
ing sections, we describe the definitions of self and non-self followed by the antibody
generation technique for grammar checking.

Fig. 1. Simple case of formation of antibodies, detection and correction of a sentence

3.1 Self

The set of self in our system is an extensively part of speech tagged corpus. Corpus is
analogical to the human body and whatever constitutes the corpus is similar to the body
cells or self cells. It may be possible that a valid grammatical structure be flagged as an
error if it is outside the corpus. Given a sufficiently large corpus our system can perform
satisfactorily covering a large number of grammatical constructs.

The Corpus. We are using the corpus Reuters-21578, Distribution 1.0 text collec-
tion. This corpus is a collection of various news documents appeared on the Reuters
newswire in 1987. We have built a parser that can parse this corpus and extract mean-
ingful text from it. The parser filters out documents in cryptic format like share market
information and other economics related information to produce this meaningful text.

Part of Speech Tagging. The Reuters-21578 corpus is tagged for part of speech by us-
ing MontyLingua parser available at MIT [7]. This parser extracts extracts subject/verb/
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object tuples, extracts adjectives, noun phrases and verb phrases, and extracts people’s
names, places, events, dates and times, and also does part of speech tagging from the
English sentences within the corpus.

Self Structure. The Self is constituted by the bigrams, trigrams and tetragrams from
the POS tagged corpus. The following example makes this process clearer.

Sentence 1. Officials/NNS were/VBD not/RB immediately/RB available/JJ for/IN com-
ment/NN ./.

– Bigrams: <NNS,VBD>, <VBD,RB>...
– Trigrams: <NNS,VBD,RB>, <VBD,RB,RB>...
– Tetragram: <NNS,VBD,RB,RB>, <VBD,RB,RB,JJ>...

The tag-set used has only 36 members and this makes the system very general to prop-
erly model the underlying grammar of language. Therefore to capture more informa-
tion about the actual language we have extended the tag-set by incorporating the use of
some of the regular English words as the tags. By studying the existing tag-set, we have
noticed that a single tag covers many English words. For example the tag DT covers
articles such as a, an, the, these, those etc. To make fine distinction in the grammar
usage we treat all these words as different tags. A list of words which should be treated
differently was made based on the studies carried out on the Penn Treebank tag-set.

Error Detection. The basic units of the sentence which are analyzed are the bigram,
the trigram and the tetragram of the part of speech sequences and of extended tags
sequences in the test sentence. These components were tested against the Antibodies of
our AIS. These Antibodies were generated to capture only the non-self (ungrammatical)
entities. Once the antibodies recognized an antigen (or grammatical error) the system
flags off the corresponding word sequence as one containing an error.

In the following section we describe the antibody generation phase of our AIS.

4 Generating Antibodies for Grammar Checking

This section describes the antibody generation phase. We use the Negative Selection
algorithm [5] which is based on the principles of self-nonself discrimination in the
biological immune system (see figure 2). This negative selection algorithm can be sum-
marized as follows:

– Define self as a collection S of elements in a feature space U, a collection that
needs to be monitored. For instance, if U corresponds to the space of states of a
system represented by a list of features, S can represent the subset of states that are
considered as normal for the system.

– Generate a set F of detectors, each of which fails to match any string in S. An
approach that mimics the immune system generates random detectors and discards
those that match any element in the self set.

– To monitor the new data, continuously check it against the generated set of detectors
and if any detector matches regard it as an anomaly or error.
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F2

F1Self

Self

Fig. 2. The figure illustrates the concept of self and non-self in a feature space. F1 and F2 etc.
indicate different fault condition represented by detectors.

4.1 Real Valued Negative Selection Algorithm (RNS)

The RNS detector generation starts with a population of candidate detectors, which
are then matured through an iterative process. In particular, the center of each detector
is chosen at random and the radius is a variable parameter which determines the size
(in the m-dimensional space) of the detector. The basic algorithmic steps of the RNS
detector generation algorithm are given in Figure 3.

At each iteration, the radius of each candidate detector is calculated, and the ones
that fall inside self region are moved (i.e. its centre is successively adjusted by moving
it away from training data and existing detectors). The set of non-self detectors are then
stored and ranked according to their size (radius). The detectors with larger radii (and
smaller overlap with other detectors) are considered as better-fit and selected to go over
the next generation. Detectors with very small radii, however, are replaced by the clones
of better-fit detectors. The clones of a selected detector are moved at a fixed distance in
order to produce new detectors in its close proximity. New areas of the non-self space
are explored by introducing some random detectors. The whole detector generation
process terminates when a set of mature (minimum overlapping) detectors are evolved
which can provide significant coverage of the non-self space.

A detector is defined as d = (c, rd), where c = (c1, c2, .., cm) is an m-dimensional
point that corresponds to the center of a hyper-sphere with rd as its radius. In our system
we use numeric references for tags, the self-set for our system consists of 2D (for bigram
sequences) points, 3D (for trigram) points and 4D (tetragram) points. The following
parameters are used for the detector generation process:

– rs The threshold value (allowable variation) of a self point; in other words, a point
at a distance greater than or equal to rs from a self sample is considered to be
abnormal. In our case since we want a strict checking for errors, this parameter
would be zero.

– α The variable parameter to specify the movement of a detector away from a self
sample or existing detectors.

– γ The maximum allowable overlap among the detectors, which implicates that al-
lowing some overlap among detectors can reduce holes in the non-self coverage.
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Fig. 3. Flow diagram showing the algorithmic steps for real valued negative selection algorithm

Calculating the Detector Radius. We have used the Euclidean distance to measure the
distance between two points x and y, which is defined as: D(x, y) = (Σ|xi − yi|λ)1/λ

Where x = x0, x1, ..xn and y = y0, y1, ..yn with λ = 2
This approach allows having variable size detectors to cover the non-self space. As

shown in Figure 4(a), if the distance between a candidate detector, d = (c, rd) and its
nearest self point in the training dataset is D, then the detector radius is considered as
rd = (D − rs).

Moving the Detector. Let d = (c, rd) represents a candidate detector and dnearest =
(cnearest, rnearest

d ) is its nearest detector (or a self point), then the center of d is moved
such that

cnew = c + α ∗ dir/(||dir||) (1)

where dir = c − cnearest, and || || denotes the norm of an m-dimensional vector.
Accordingly, if a detector overlaps significantly with any other existing detectors, then
it is also moved away from its nearest neighboring detector.

Detector Cloning and Random Exploration. At every generation, a few better- fitted
detectors are chosen to be cloned. Specifically, let d = (cold, rold

d ) be a detector to be
cloned and, say dclon = (cclon, rclon

d ), is a cloned detector whose centre is located at a
distance rold

d from d and whose radius is the same as that of the detector, d. Accordingly,
the centre of dclon is computed as

cclon = cold + rold
d ∗ dir/(||dir||) (2)

Where dir = cold − cnearest (where cnearest is the center of d’s nearest detector)
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Fig. 4. Steps in detector maturation process

Evaluation of Non-self Detectors. Detectors which do not fall in the self region are
sorted according to their size. A detector with large radius gets selected for the next
generation population, if it has small overlap with existing detectors i.e. less than the
overlapping threshold. The overlapping measure W of a detector is computed as the
sum of its overlap with all other detectors as follows

W (d) =
∑
d �=d′

w(d, d′) (3)

where w(d, d′) is the measured overlap between two detectors d = (c, rd) and d′ =
(c, rd′); and is defined by

w(d, d′) = (exp(δ) − 1)m, m is the dimension of the feature space (4)

and δ = (rd + rd′ − D)/2rd (5)

The value of δ is considered to be bounded between 0 and 1; and D is the distance
between two detector centers c and c’. This overlapping measure seems to favor the
detectors with bigger radii, i.e. detectors having larger coverage of the non-self space
with minimum overlap among them.

5 Experimental Results

We have implemented the grammar checker as described in previous sections in JAVA
and tested the same using test sentences from a book of grammatical errors [8]. The
corpus for our checker is the Reuters-21578, Distribution 1.0 text collection available
freely on the web. The list of these error types is provided below with sample sentences
denoting errors.

We have found out eight categories of grammatical errors which our grammar
checker can detect. However it is to be noted that it may not be able to correct all
sentences of these categories as some of the finer distinction of a construct may be ab-
sent in the corpus. The incorrect constructs in the sentences are caught by the antibodies
in our grammar checker while correct constructs are undetected.
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5.1 Subject Verb Disagreement

Sentence 2. These lines occurs in Shelleys poem. (DT NNS VBZ IN NN .)

– Error These lines occurs in
– Correct These lines occur in Shelleys poem.

5.2 Choice of Tense

Sentence 3. Those boys fight.(DT NNS VBP .)

– Error those boys fight
– Correct Those boys are fighting.

Sentence 4. I am hearing a noise outside. (PRP VBP VBG DT NN IN .)

– Error I am hearing a
– Correct I hear a noise outside.

5.3 Article Misuse

Sentence 5. Are you in hurry? (VBP PRP IN NN .)

– Error you in hurry
– Correct Are you in a hurry?

5.4 Wrong Pronouns

Sentence 6. Who of the two girls look good. (WP IN DT CD NNS VBP JJ .)

– Error Who of the two
– Correct Which of the two girls look good?

5.5 Wrong Numbers

Sentence 7. I lost my baggages in the train. (PRP VBD PRP NNS IN DT NN .)

– Error I lost my baggages
– Correct I lost my baggage in the train.

5.6 Wrong Adverbs

Sentence 8. We reached station timely. (PRP VBD NN JJ .)

– Error reached station timely
– Correct We reached station in time.

5.7 Wrong Adjectives

Sentence 9. This is most unique institution. (DT VBZ RBS JJ NN .)

– Error is most unique institution
– Correct This is unique institution.
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5.8 Missing Verb

Sentence 10. I going home. (PRP VBG NN .)

– Error I going
– Correct I am going home.

6 Limitations

Although our grammar checker catches a variety of constructs, experimentally we found
out that many ungrammatical constructs are passed undetected. This deficiency can be
traced to the limited tag-set being used in this work. Being small, this tag set is incapable
of modeling the entire underlying English grammar. However this is not a shortcoming
of our approach. If we use a more enhanced tag-set like the C7 tag-set used to annotate
the British National Corpus then we can identify the different usage of words like I
and He (treated same in current approach) because these two are assigned different tags
PPIS1 and PPHS1 respectively.

The current system can not detect differences between singular and plural forms of a
word (mostly pronoun). For example word they and He are given same tag PRP. Again
this difficulty can be solved by using a more enhanced tagset.

In addition we still need to have some connection between the actual words used
in the corpus and the part of speech tags. Currently our grammar checker only uses
the N-gram sequences. To make a checker with high precision we would also have to
incorporate these words in our error checking process.

7 Conclusion and Future Work

The motivation for our approach comes from the human immune system which is able
to identify almost every external harmful entity that encroaches the human body. We
have modeled our grammar checker on such an approach so that it is able to identify any
grammatical construct outside the corpus and flag it as an error. The corpus constitutes
the self of our system. Although this grammar checker is not able to trap all the errors,
it may be inferred that the algorithms innately used by the human immune system are
definitely effective as one level of detection.

Being language independent is one major advantage of our approach. Grammar rules
for the language need not be provided a priori. Thus during the error detection phase
no grammar rules are used to generate the antibodies or error detectors. The generation
of antibodies is dependent only on the self set.

A major improvement can be the addition of the ability to record the antibodies or
error detector usage information. This information would help us to identify those anti-
bodies which are used repeatedly and in a way indicative of the most common mistakes
committed by a person. This knowledge about a language learner’s mistakes can pro-
vide valuable tips in many scenarios of pedagogy. Consequently our system can also be
used as a plug-in for an intelligent language tutoring system for Non-Native speakers
of English or for that matter other languages. Once a user interacts with the system
for a sufficient amount of time the detector usage information can easily bring out the
weaknesses of that person.
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Abstract. In this paper, a novel fragile watermarking method based on clonal 
selection algorithm (CSA), CLONALG, is presented. In Discrete Cosine 
Transform (DCT) based fragile watermarking techniques, there occurs some 
degree of rounding errors because of the conversion of real numbers into 
integers in the process of transformation of image from frequency domain to 
spatial domain. In this paper, the rounding errors caused by this transformation 
process are corrected by using CLONALG. Simulation results show that 
extracted watermark is obtained exactly the same as embedded watermark and 
optimum watermarked image transparency is achieved. In addition, the 
performance comparison of CLONALG and genetic algorithm (GA) based 
methods is realized. 

Keywords: Fragile image watermarking, discrete cosine transform, clonal 
selection algorithm, multimedia. 

1   Introduction 

Due to advances in computer and communication networks, digital media including 
audio, image and video can be easily transmitted via the Internet. Transmitted data 
can also be easily altered, copied or even stolen. Therefore, digital media copyright 
protection has become a great challenge. Digital watermarking is one of the methods 
to provide security in copyright protection. 

Digital watermarking is to embed secret information, or the watermark, into digital 
media data. Content providers want to embed watermarks in their digital media data 
(multimedia objects, digital content) for several reasons like content authentication, 
fingerprinting, meta-data insertion, copyright protection, content archiving, broadcast 
monitoring and tamper detection [1]. 

Digital image watermarks can be classified as “visible” and “invisible”. Visible 
watermarks are visual patterns like the logos embedded into one corner of an image 
[2]. Although the logos or watermarks are easily identified, they can be removed or 
destroyed easily. The invisible watermarks are hidden on the unknown places of the 
image and are more robust than the visible watermarks. Only the authorized persons 
can extract the embedded watermark. 
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Furthermore, digital watermarks can also be categorized as “robust”, “semi-fragile” 
and “fragile” [3]. Robust watermarks are designed to resist some image processing 
operations (image scaling, cropping, lossy compression, etc.), called attacks. Semi-
fragile watermarks are capable of tolerating some degree of change of a watermarked 
image, such as the addition of quantization noise from lossy compression [4]. Fragile 
watermarks are designed to detect unauthorized modifications on the watermarked 
images. Therefore, fragile watermarking methods are mainly used for the purpose of 
image authentication in the area of satellite or medical imagery. 

Digital watermarking techniques can be further classified into two categories: 
spatial domain and transform domain. In the spatial domain, watermarks can be 
embedded by modifying the pixel values. In the transform domain, they can be 
embedded by modifying the transformation coefficients of DCT, Discrete Fourier 
Transform (DFT), Discrete Wavelet Transform (DWT), etc.  

In recent years, digital watermarking techniques have been improved using 
optimization algorithms such as GA which is a popular evolutionary optimization 
technique invented by Holland [5]. This algorithm can find the global optimal 
solution in complex multidimensional search spaces. GA is modelled on natural 
evolution in that the operators it employs are inspired by the natural evolution 
process. These operators, known as genetic operators, manipulate individuals in a 
population over several generations to improve their fitness gradually [6]. Kumsawat 
et al.[7] proposed a watermarking technique for optimizing the image watermarking 
using the GA. They applied GA to wavelet transform domain to improve the quality 
of the watermarked image and the robustness of the watermark. Kumsawat [8] also 
proposed the spread spectrum image watermarking algorithm based on the discrete 
multi-wavelet and GA. Similar to their previous technique, parameters consisting of 
threshold values and the embedding strength are searched using GA to improve the 
quality of the watermarked image and the robustness of the watermark. Wang et al. 
[9] presented VQ-based watermarking technique for hiding the gray watermark. They 
applied the VQ coding procedure with GA to compress the original watermark into 
smaller size and embedded the coded results into the cover image in the VQ domain. 
A new watermarking technique based on the DCT and the GA is proposed by Shieh et 
al. [10]. GA is used to search for the optimum frequency bands in the DCT coefficient 
blocks to embed the watermark for the improvement of security, robustness and the 
quality of the watermarked image. Chang et al. [11] proposed a new DCT based 
watermarking method combining ART2 neural network with GA. ART2 neural 
network was used to classify 88 ×  DCT blocks of images in training sets. The 
optimal coefficients for watermark embedding were found by using GA for each 
cluster. Shih et al. [12] proposed a novel fragile watermarking technique based on 
DCT and GA. In this paper, the rounding errors caused by transformation of 
frequency domain to spatial domain are reduced by using GA. Aslantas [13] proposed 
a novel optimal watermarking scheme based on singular-value decomposition  
using GA.          

In DCT based fragile watermarking techniques, the original input image is first 
transformed into its frequency domain. Then, the watermarks are generally embedded 
by modifying the least significant bits (LSBs) of the frequency domain coefficients. 
After embedding process is completed, there occurs some degree of rounding errors  
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because of the conversion of real numbers into integers in the process of 
transformation of image from frequency domain to spatial domain. In this paper, a 
new watermarking method based on CSA CLONALG is developed to reduce these 
rounding errors. CSA was first proposed by de Castro and Von Zuben [14] and was 
later enhanced and named as CLONALG [15]. 

This paper is organized as follows: In Section 2, the fundamental concepts of CSA 
is described. Section 3 demonstrates the CSA based method which reduces the 
rounding errors. In Section 4, simulation results and comparison of the algorithms are 
demonstrated. Finally, Section 5 is the conclusion part of this paper. 

2   Fundamental Concepts of CSA  

The clonal selection principle is used to explain the basic features of an adaptive 
immune response to an antigenic stimulus [16]. In the adaptive immune system, any 
molecule that can be recognized is called as an Antigen (Ag). Lymphocytes are the 
basic immunity cells. They are called “T” and “B” cells. Unlike the “T” cells which 
need the recognition of antigens via other assisting cells, the “B” cells can recognize 
the antigens without restraint in liquid solutions. Antibodies (Ab’s) are molecules 
attached to the surface of B cells the aim of which is to recognize and bind to Ag’s. 
When binding to these Ab’s with a second signal from accessory cells, such as the T-
helper cell, B cell is stimulated by Ag to proliferate and mature into non-dividing Ab 
secreting cells, known as plasma cells. This process of cell division generates a clone 
known as a cell or set of cells that are the progenies of a single cell. 

While proliferating and differentiating into plasma cells, the B cells can also 
differentiate into long-lived B memory cells. When memory cells are exposed to a 
second antigenic stimulus, commence to differentiate into plasma cells capable of 
producing high-affinity Ab’s, pre-selected for the specific Ag that had stimulated the 
primary response, they circulate through the blood, lymph, and tissues. Fig. 1 shows 
the clonal selection principle [17]. 

 

Fig. 1. Clonal selection principle 
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The main features of the clonal selection theory are [17]: 

1) proliferation and differentiation on stimulation of cells with Ag’s; 
2) generation of new random genetic changes, expressed subsequently as diverse Ab 

patterns, by a form of accelerated somatic mutation (a process called affinity 
maturation); 

3) estimation of newly differentiated lymphocytes carrying low-affinity antigenic 
receptors. 

Although it is not an exact copy of the immune system’s behaviour, the 
computational model of the clonal selection principle borrows heavily (largely) from 
immunological theory as well as many other artificial immune system models.  

For the maturation of the immune response, a base population of Ab’s is 
immunized with a training set of Ag’s. In the initial exposure, a set of memory cells 
can respond more quickly to the second construction of the Ag’s. By this way, the 
cells with the Ag’s can recognize both specific immunized cells and structurally 
similar ones, which is known as cross-reactive [18].  

The steps of the clonal selection algorithm, CLONALG, are given below: 

1) Generate a random initial population of antibodies, Ab’s. 
2) Create a set of antigens Ag’s.  
3) Select an antigen iAg  from the population Ag.  

4) Calculate the affinity values of every Ab population to iAg . 

5) Select the n highest affinity antibodies and generate a number of clones ( iC ) for 
them. 

6) Mutate the clone population iC  to produce a mature population *iC . 

7) Apply the affinity function to each member of the population *iC to select the 
best n members which become the new memory cell and remove low affinity 
ones. 

8) Repeat steps 3-7 until all antigens have been presented. This represents one 
generation of the algorithm.  

The algorithm given above can be summarized as follows: Firstly, an initial 
population of Ab’s is generated randomly in a given bounds for the problem (Ag) 
considered. Ab is represented by binary bit arrays. The length of the bit arrays is 
determined by the desired sensitivity. Then, the fitness value of each population 
member is calculated and the Ab’s are ordered according to their fitness values. n 
highest affinity Ab’s are selected and clonned according to fitness value 
proportionately. The number of clones generated for all these selected Ab’s is  
given by; 
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where cN  is the total number of clones generated for each of the Ag’s, β  is a 

multiplying factor, N  is the total number of  Ab’s, and ( ).round  is the operator that 

rounds its argument toward the closest integer. Constructed clones are mutated 
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inversely proportional with the fitness values. The fitness values of the mutated 
(mature) clones are calculated. Each Ab and its clones construct a sub-population. The 
highest fitness valued Ab of each sub-population is selected and permitted to live. d 
low affinity Ab’s of population are altered with the random generated Ab’s. Thus, the 
differentiation of the population is obtained. These steps continue until stopping 
criteria is reached. 

3   CSA Based Watermarking Method  

The watermark embedding and extracting methods used in this paper are similar to 
[12] and are described below. 

Let the original input image be I with size NM ×  and the binary watermark image 
be W with size ww NM × . In order to embed a watermark, the spatial domain pixels 

are needed to be transformed into DCT domain frequency bands. 88 ×  block DCT is 
performed on I and the coefficients in the frequency bands ( DCTI ) are obtained as 
given below.   

)(IDCTI DCT = ,        UU
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For each 88×  block in DCTI , only four coefficients in frequency bands are 
modified for watermark embedding. The watermark embedding positions are 

)3,1(),(

DCT

nmI , )2,2(),(

DCT

nmI , )1,3(),(

DCT

nmI  and )1,4(),(

DCT

nmI , respectively. The embedding method 

is based on the Least Significant Bit (LSB) modification. The watermark is embedded 
into the integer part of absolute real number of DCTI , and WDCTI  is obtained. Next, 
inverse DCT (IDCT) operation is applied to WDCTI  to obtain WRI , which is the 
watermarked real number image. Then, all real numbers in WRI  are translated into 
integers and watermarked image ( WI ) is obtained. 

Watermark extracting method is also based on LSB modification as watermark 
embedding method. In order to extract the watermark, first, watermarked image is 
transformed into DCT domain. Then, the integer parts of absolute values belonging to 
specific positions (where the watermark is embedded) of the DCT domain are 
obtained. Then, these decimal values are translated into binary format. And finally, 
LSBs of the obtained binary values reveal the watermark.  

In the watermarking method described above, there occurs some degree of 
rounding errors because of the conversion from real numbers to integers in the 
process of transformation of image from frequency domain to spatial domain.  

An example of watermark embedding and extracting operation is shown in Fig. 2. 
The figure also illustrates the errors caused by using simple rounding technique in 
translating real numbers to integers. Fig. 2 (a) is original 88 ×  gray-level input image 
in the spatial domain. Fig. 2 (b) is the DCT transformed image of Fig. 2 (a). Fig. 2 (c) 
is a binary watermark. Fig. 2 (d) is obtained by embedding Fig. 2 (c) into Fig. 2 (b) 
based on LSB modification. Fig. 2 (d) is transformed into its spatial domain by IDCT, 
and by this way Fig. 2 (e) is obtained. All pixels of Fig. 2 (e) are real numbers. These 
real numbers are rounded to integers as shown in Fig. 2 (f) which represents the 
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watermarked image. In order to extract the watermark, Fig. 2 (f) is transformed into 
DCT domain and Fig. 2 (g) is obtained. Finally, the watermark is extracted from the 
specific positions of Fig. 2 (g) based on LSB modification as mentioned above. The 
extracted watermark is shown in Fig. 2 (h). As shown in Fig. 2, the embedded 
watermark is [1 1 0 0] and extracted watermark is [0 0 1 1]. The watermarks are 
totally different because of the rounding errors.  

 
(a) Intensity values of the original 88 ×  

input image 

 
(b) DCT transformed image 

 
(c) The binary watermark 

 
(d) Watermark embedding in DCT domain 

 
   (e) IDCT transformed watermarked image 

 
(f) Rounded Watermarked image 

 
(g) DCT transformed watermarked image 

 
(h) Extracted Watermark 

Fig. 2. Watermark embedding and extracting operation by using simple rounding based water-
marking technique 

To solve the problems above, CSA is used to find the suitable solution in 
translating real numbers into integers.  

The novel CSA based watermark embedding method can be described as shown: 

1. Apply DCT to the original input image: 

)(IDCTI DCT =   (3) 

2. Insert Watermark into the coefficients of DCTI  as mentioned above: 
DCTWDCT IWI ⊕=  (4) 
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3. Transform WDCTI  by IDCT to obtain WRI :   

)( WDCTWR IIDCTI =  (5) 

4. Translate the real numbers in WRI  into integers by using CSA, and obtain 
    WCSAI .   

)( WRWCSA ICSAI =  (6) 

The whole procedures of the developed CSA method are illustrated diagrammatically 
in Fig. 3. 

 

Fig. 3. Block diagram of CSA-based watermarking method 

Applying CSA to solve the rounding problem, an antibody (solution set) Ab 
represented as 6421 ,, aaaAb K=  consists of 64 binary bits where 

)641( ≤≤ iai correspond to the pixels shown in Fig. 4. One form of the antibody 

called as translation map is used for rounding operation. An example of the antibody 

1Ab  shown in Fig. 4 is represented as: 

=1Ab [0 0 0 0 1 0 1 1 1 0 1 0 0 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 

1 1 1 1 1 0 1 0 0 1 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0] 
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Fig. 4. The solution set of CSA, 1Ab  (the translation map) 

CSA algorithm tries to find the best solution on the basis of  88 ×  block size. Each 

block has its own solution given by DCT

nmI ),( , where UU
8/

1

8/

1
),(

M

m

N

n

DCT

nm

DCT II
= =

= . 

For each block ),( nm  in I , the resulting 64 ( 88 × ) DCT bands DCT

nmI ),(  can be 

represented by UU
8

1

8

1
),(),( ),(

= =

=
i j

DCT

nm

DCT

nm jiII .  

The binary elements of the translation map are used to represent the policy in 

translating real numbers into integers. When ),(),( jiI DCT
nm is a real number, an integer 

),(),(
* jiI DCT

nm will be obtained using the rules given below: 

1) ( ) 1),(),( ),(),(

* += jiITruncjiI DCT

nm

DCT

nm ,  if the ).,( ji element of the translation map is “1” 

2) ( )),(),( ),(),(

* jiITruncjiI DCT

nm

DCT

nm = ,       if the ).,( ji element of the translation map is “0” 

The function of ( )),(),( jiITrunc DCT

nm  denotes the integer part of DCT

nmI ),( . 

An example is illustrated in Fig. 5. Fig. 5(a) shows an image where all pixels are 
real number. Fig. 5(b) is obtained by translating the real numbers into integer by using 
the translation map shown in Fig. 4.  

 
(a) IDCT transformed watermarked image 

 
(b) Watermarked image rounded by CSA  

Fig. 5. An example of translation operation using CSA  

In this paper, CSA uses a constraint function as given below: 

0
4

1

=−=∑
=i

E

i

O

i WatermarkWatermarkC  (7) 

where, OWatermark  and EWatermark  are the embedded and extracted watermarks of 
each blocks, respectively. Fitness function used by CSA is given below; 
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( ) ∑
=

−=
64

1

____
i

ii blockimageOriginalblockimagedWatermarkegenF  (8) 

where, gen represents the evaluation number. 
By the constraint function, extracted watermark is obtained exactly the same as the 

embedded watermark shown in Fig. 6. In addition, optimum watermarked image 
transparency is also achieved.  

 
(a) DCT transformed watermarked image of  

Fig. 5(b) 

 
(b) Extracted watermark 

Fig. 6. Watermark extraction operation 

4   Simulation Results  

To examine the effect of the control parameter values of CSA, the simulations are 
applied on a particular block with different population sizes and mutation rates. Then 
the mean and standard deviation of fitness values obtained for each 30 runs are given 
in Table 1. As seen from the results, while the population size increases, better fitness 
values are obtained. In the simulation, the best fitness values are obtained for the 
mutation rate of 0.03. The obtained relatively smaller standard deviation values 
confirm the stability of the algorithm. Also the results show that the dependence of 
CSA algorithm to the control parameter values is fairly low. 

Table 1. The effect of the mutation ratio and population size of CSA based novel method on a 
single block 

Mutation Rate 
0.01 0.02 0.03 0.04 0.05 

 

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. 

40 16,73 4,14 15,47 3,93 14,63 3,34 15,47 2,97 16,03 2,51 

60 15 2,98 13 3,50 12,73 3,72 13,17 3,71 13,73 2,83 
80 12,80 3,91 12,27 3,69 11,17 3,67 11,30 3,45 11,60 2,92 

P
op

ul
at

io
n 

Si
ze

 

100 10,87 4,30 11,03 3,51 9,17 3,74 9,53 3,55 9,87 3,08 

The performance comparison of CSA and GA in terms of convergence speed for 
the rounding problem on a particular block is shown in Fig 7. The averaged fitness 
values for both algorithms at each 30 runs represent that CSA is better than GA for 
this problem. The control parameter values of CSA are chosen, 0.03 for mutation rate, 
and 0.1 for multiplying factor. And the control parameter values of GA are chosen 
0.01 for mutation rate, 0.7 for crossover rate. Also for both algorithm the maximum  
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Fig. 7. Averaged fitness value’s of the fitness function over generations obtained by CLONALG 
and GA on a particular block of 30 runs 

 
(a) 

 
(b) 

 
(c) 

Fig. 8. (a) Original Image Lena, (b) Watermark Image, (c) Watermarked Image Lena 

generation number and the population size is taken as 100, 80, respectively. As seen 
from the Fig. 7. CSA has produced better performance than GA.   

The performance of the proposed method is evaluated by using Lena image with 
size 256256 ×  as the original image, which is shown in Fig. 8 (a). The embedded 

6464×  binary watermark image is illustrated in Fig. 8 (b). Hence, the number of bits 
to be embedded in one 88 ×  block is 4. The watermarked image is given Fig. 8 (c). 

The comparison of simple rounding, CSA and GA watermarking methods are 
shown in Table 2. The PSNR values of original and watermarked images are 
calculated as given below:  

( ) ( )[ ] ⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
×

×=
∑ ∑= =

N

i

N

j

WCSA jiIjiI
NN

PSNR

1 1

2

2

10

,,
1

255
log10  (9) 

where, ),( jiI  and ),( jiI WCSA  are the pixel values at position ),( ji  of the original 

input image I and watermarked image WCSAI , respectively. 
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The Normalized Correlation, NC of the extracted watermark is calculated by using 
the equation below:  

( ) ( )
( )[ ]∑ ∑

∑ ∑
= =

= =
×

=
N

i

N

J

e

N

i

N

J

oe

jiW

jiWjiW
NC

1 1

2

1 1

,

,,  (10) 

where, ),( jiW e  and ),( jiW o denote the pixel values at position ),( ji  of the 

embedded watermark eW and extracted watermark oW , respectively. 

Table 2. Comparison of the simple rounding, CSA based and GA based methods 

 By simple rounding By novel CSA By GA 
PSNR values of original and 
watermarked images 

63,4 57,51 54,65 

NC values of embedded and 
extracted watermark 

0,513 1 1 

Fig. 9 (a), (b) are the extracted watermarks obtained by using simple rounding and the 
proposed novel watermarking methods, respectively. 

 
(a) 

 
(b) 

Fig. 9. Extracted watermarks (a) using simple rounding, (b) using CSA-based method 

5   Conclusion  

In this paper, we achieve a novel fragile watermarking method based on CSA to 
correct the rounding errors caused by transforming an image from frequency domain 
to spatial domain. Simple rounding methods can not be so effective as the proposed 
novel CSA based watermarking method to extract the embedded watermarks due to 
rounding errors. Simulation results show that by using the novel CSA-based 
watermarking method, extracted watermark is obtained exactly the same as embedded 
watermark. The proposed novel CSA based watermarking method removes these 
rounding errors completely. In addition, by using this novel method optimum 
watermarked image transparency is achieved, as well. Moreover, the performance 
comparison of the CSA, GA and simple rounding methods is applied. The simulation 
results obtained show that CSA has produced better results than GA. In order to 
enhance transparency, PSNR values of original and watermarked images are needed 
increasing. Therefore, our further research will be based on to increase the values of 
these parameters.   
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Abstract. Artificial Immune Systems (AIS) offer a relatively novel and
promising paradigm to solve the problem of security in Mobile Adhoc
Networks (MANETs). In this paper we address the issue of security in
the challenging MANET environment by developing an AIS based secu-
rity framework to detect misbehavior in a Bio/Nature inspired MANET
routing protocol, BeeAdHoc. To the best of our knowledge, this is the
first attempt to provide AIS based protection in the Bio/Nature inspired
domain of MANET routing. We designed and developed a security frame-
work, BeeAIS, in the network simulator ns-2. We simulated a number of
routing attacks to verify that the AIS based security system can counter
all of them. These attacks, however, were successful in a MANET run-
ning the original BeeAdHoc protocol. We also compared our AIS based
system with a cryptographic security system, BeeSec, developed earlier
for BeeAdHoc. The results of our extensive experiments clearly indicate
the effectiveness of the AIS to provide a similar security level as that of
the cryptographic solution, but at significantly lower energy and com-
munication cost. The efficient utilization of constrained bandwidth and
battery is a key requirement in MANET routing.

1 Introduction

Security in MANETs has fast become an active area of research in recent past.
Several security solutions have been proposed for classical MANET routing pro-
tocols: major ones being ARIADNE [4], which uses symmetric cryptography to
secure Dynamic Source Routing (DSR) protocol [5], and Secure Ad-Hoc On-
demand Distance Vector (SAODV) [14], that utilizes asymmetric cryptography
for securing Ad-Hoc On-demand Distance Vector (AODV) routing protocol [7].
Biological systems have inherent properties of self organization, adaptivity, scal-
ability, robustness and distribution, which are necessary for efficient routing in
the challenging MANET environment. Research in this direction has resulted in
developing state of the art Bio/Nature inspired routing protocols, AntHocNet
[2], Termite [8] and BeeAdHoc [10]. However, security in Nature inspired routing
protocols is still an open issue. Widespread acceptance and adoption of these

L.N. de Castro, F.J. Von Zuben, and H. Knidel (Eds.): ICARIS 2007, LNCS 4628, pp. 370–381, 2007.
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protocols in real world wireless networks would not be possible until their secu-
rity aspects have thoroughly been investigated. The authors of [12][13] propose
two security models for BeeHive [11], a Bio/Nature inspired routing protocol
for fixed networks. For Nature inspired MANET routing protocols, the security
vulnerabilities of BeeAdHoc have been studied in [6] and a security framework
(BeeSec) based on digital signature authentication has been proposed. The au-
thors have demonstrated that it successfully counters a number of attacks on
BeeAdHoc. Misbehavior detection of a classical routing protocol, DSR, using
AIS, was proposed in [9]. We in this paper present the design and implemen-
tation of a security framework by utilizing the principles of Artificial Immune
Systems [3], for misbehavior detection in a Nature inspired MANET protocol,
BeeAdHoc. To the best of our knowledge, this is the first attempt to secure a
Bio/Nature inspired MANET routing protocol using the principles of AIS. The
major contributions of the work proposed in this paper are:

– Development of an AIS based security framework, BeeAIS, for BeeAdHoc
protocol and its implementation in ns-2.

– Comprehensive evaluation of the security features of three protocols: BeeAd-
Hoc, BeeSec and BeeAIS. We developed an attacker framework in ns-2 to
launch a number of routing attacks and then analyzed their impact.

– The simulation results indicate that the inclusion of our AIS based security
framework in BeeAdHoc not only successfully counters the routing attacks
but also provides superior performance compared to cryptographic solution.

The rest of the paper is organized as follows. Section 2 describes the related work
in securing network routing protocols using the AIS approach. Section 3 intro-
duces briefly the BeeAdHoc and BeeSec protocols. Then in Section 4, we discuss
in detail the design of our proposed AIS security framework, BeeAIS, along with
its implementation in ns-2. Section 5 describes the attacker framework used to
launch routing attacks on three protocols: BeeAdHoc, BeeSec and BeeAIS. We
compare the security of BeeAIS with that of BeeAdHoc and BeeSec. Our results
clearly demonstrate that BeeAIS is able to provide the same security level as that
of BeeSec but it has significantly lower energy and control overhead. Moreover,
it does not have the greater processing complexity of asymmetric cryptography.
Finally, we conclude the paper with an outlook to our future research.

2 AIS Related Work

AISs [3] have been extensively used for anomaly detection in communication
networks. An interested reader can refer to [1] for a comprehensive review. In
MANETs, the authors of [9] developed an AIS based security system for misbe-
havior detection in DSR protocol. They successfully detected the packet drop-
ping attacks; non-forwarding of route requests or data packets. The system has
an initial learning phase (200 seconds maximum) when mobile nodes collect self
antigens that consist of sequences of normal DSR protocol events and map them
to a binary antigenic representation of four genes each. The genes are defined
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by the designer so that they can encode the correct functioning of the DSR
protocol. An antigen is collected every 10 seconds and it records the frequency
of the normal protocol events. At the end of the learning phase, negative selec-
tion [3] produces a set of detectors that are used to match and detect non-self
antigens in the subsequent detection and classification phase. If the detectors
match antigens of a node and the probability of that node being a suspicious
one is above a threshold, the node is classified as misbehaving. The system in
its present form does not cater for fabrication and tampering attacks. Moreover,
the system requires significantly large amount of time in order to finally classify
a node as misbehaving.

The security of a Bio/Nature inspired routing protocol for fixed networks,
BeeHive [11], by using the principles of AIS, was proposed in [12]. The system
uses a combination of real, symbolic and binary hamming shape spaces [3] to
encode antigens and antibodies. The operation of BeeHive algorithm requires an
initialization phase (30 seconds) even before the AIS learning could start. It is
followed by the learning (50 seconds) and protection phases to respectively learn
the BeeHive normal behavior and detect the routing attacks. Negative selection
is used for generation of detectors. The system is capable of detecting malicious
nodes that try to artificially change the network topology or modify the route
quality to divert the network traffic. Denial of Service (DOS) attacks can be
detected but the system does not provide protection against dropping attacks.

3 BeeAdHoc and BeeSec Protocols

BeeAdHoc is a source routing protocol, which routes data based on the for-
aging principles of honey bees [10]. When route to a destination is needed, a
forward scout is broadcast for route discovery. All receiving nodes append their
addresses to the source route, until the scout arrives at the destination node.
The destination node then reverses the source route and unicasts the scout back
as a backward scout to the source node, where the discovered route is advertised
to foragers. Foragers use the path to transport data to the destination. On their
journey, foragers collect the routing information to evaluate the dance number,
which represents the quality of the path traversed. The foragers have a higher
probability of using an advertised path if its quality is higher.

BeeAdHoc Vulnerabilities. An attacker can exploit BeeAdHoc agents to
launch fabrication, tampering and denial of service (DOS) attacks. When a scout
or forager is transmitted an intermediate node can partially modify its source
route or insert a completely new route, spoof source/destination addresses and
then retransmit the packet claiming to be from some other node. These packets
cause installation of forged routes in nodes that allows an attacker to divert the
traffic on a path of its own choice. A malicious node can also modify the routing
information to make a certain path desirable or undesirable. An attacker can
thus sniff packets or prevent traffic to pass through itself to conserve battery. It
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can also deplete the battery of another node or launch a DOS attack by having
a large number of packets sent to a particular node.

BeeSec is a security solution for BeeAdHoc, which utilizes public-key cryp-
tograpy to protect its messages [6]. The protocol provides for authenticating
packet header fields in scouts and foragers to counter fabrication and tampering
attacks. A sending node computes digital signatures on the header fields such
as source address, packet ID, destination address, source route, routing informa-
tion, using its private key. The receiving node can then use the public key of
the sending node to verify that the message did originate from the sender and
that the message contents have not been tampered or forged by the nodes it
visited.

Here we provide only brief descriptions of BeeAdHoc and BeeSec protocols.
Interested readers can find details in [10] and [6], respectively.

4 BeeAIS: AIS Based Security Model

The proposed AIS security model for BeeAdHoc protocol operates on the prin-
ciple of anomaly detection. It learns the normal behavior of the system and
then monitors the system for occurrences of abnormal patterns. The system,
therefore, has the ability to detect previously unknown attacks.

4.1 Antigen-Antibody Representations

An AIS requires mapping of the immune system components and quantitative
description of interactions between antigens and antibodies [3]. Since, a malicious
node can launch attacks on BeeAdHoc by manipulating specific packet header
fields, we decided to encode and represent the antigens and antibodies with
system specific attributes expected to change during the attack.

An antigen is represented as Ag = [Ag1, Ag2, ..., AgL] and an antibody as
Ab = [Ab1, Ab2, ..., AbL]. Both are attribute strings of length L in a shape space
S. Now Ag and Ab can be regarded as points in this L-dimensional shape-space
Ag ∈ SL and Ab ∈ SL. These strings may comprise real values, integers, symbols
or bits. Our proposed system operates in the binary hamming shape space with
string length L = 52.

Antigen Formats. We modelled three types of antigens: one scout antigen and
two forager antigens, type-I and type-II. The scout antigen detects abnormalities
in both the forward and backward scouts. However, two separate forager anti-
gens, type-I and type-II, are required to detect tampering of forager source route
and routing information respectively. Figure 1(a) shows the antigen formats. All
antigens are 52 bit long bitstrings (L = 52) with four genes each, having lengths
16,16,4 and 16 bits respectively.

Detectors. Detectors or antibodies are also 52 bit long bitstrings, which are
encoded with the same type of genes as for antigens. To create a detector, each
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gene value is generated randomly within the specified range as shown in Figure
1(b). Genes are then concatenated to form the complete detector bitstring.

Matching Function. The interaction between Ag and Ab can be evaluated as
a distance function, euclidean, manhattan or hamming. Their affinity (or match-
ing) then becomes proportional to the distance D between them. To quantify
detection, the authors of [3] have proposed the concept of a recognition region.
An antigen is considered detected if it lies within the recognition region of volume
Vε around the antibody; ε is the radius of the recognition region (cross reactivity
threshold). In other words, considering similarity measures, an antigen is con-
sidered detected if D ≤ ε. In our system, affinity is measured using hamming
distance, with cross reactivity threshold ε(0 < ε < L), where L = 52.

for all ( received Scout OR Forager at each node ) do

 if ( Learning Phase AND Scout ) then

  if ( Forward Scout AND already seen ) then

   drop Forward Scout and exit 
  end if

  get Scout header fields source, ID, route length, previous hop

  form Scout Self Antigen bitstring 
  determine Hamming Distance of Scout Self Antigen

if ( Self Antigen matches previous collected Self Antigens ) then

   drop Scout Self Antigen

  else

   store Scout Self Antigen in Scout Self Antigen List for this node

  end if

 end if

else if ( Learning Phase AND Forager ) then

  get Hopsforager number of Forager hops uptil now 
  determine Forager JourneyTimelearned

  compute moving average of JourneyTimelearned over 5 Foragers

  store Hopsforager vs JourneyTimelearned for this node 

  get Forager header fields source, dest, route length, previous hop

  form a Forager Self Antigen TYPE-I bitstring 

  get Forager header fields source, dest, route length, route info

  form a Forager Self Antigen TYPE-II bitstring 
if ( Self Antigen matches previous collected Self Antigen ) then

   drop matching Forager Self Antigen

else

   store TYPE-I Self Antigen in TYPE-I Forager Self Antigen List

   for this node

   store TYPE-II Self Antigen in TYPE-II Forager Self Antigen List

   for this node

end if 

 end if

end for

Algorithm 1 :  Learning Phase

Previous Hop 

Address

Route

Length
Scout IDScout Source

Scout Antigen : 

Previous Hop 

Address

Route

Length

Forager

Destination
Forager Source

Forager Antigen  (TYPE-I)  : 

Route

Information

Route

Length

Forager

Destination
Forager Source

Forager Antigen  (TYPE-II) : 

Gene 1 Gene 2 Gene 3 

16 bits 

15…           …0

4 bits 

19  ... 16

16 bits 

35…         …20 

16 bits 

51…         …36

Gene 4 

Gene 4 Gene 3Gene 2Gene 1 

52 bits long Antibody (detector) :

(b)   Genes arrangement and Antibody format

(a)   Antigen format (52 bits long) 

Gene 1 16 bit source address

Gene 2 16 bit destination address 

or scout ID 

Gene 3 4 bit route length

random integer  mod 6553616 bit route information

or previous hop address 
Gene 4

random integer  mod 16

random integer  mod 65536

random integer  mod 65536

Fig. 1. Antigen/Antibody formats and BeeAIS learning phase algorithm

4.2 BeeAIS Operation

The BeeAIS framework consists of two phases: learning and protection.
Learning Phase. In this phase, the network is assumed to be free of non-
self antigens and BeeAIS defines ’self’ by profiling the normal behavior of the
monitored system. BeeAIS has a learning phase of 50 seconds. Figure 1 shows the
algorithm. Each node in the network gathers its own set of self antigens. When
a scout (forward or backward) is received, one scout antigen is formed. In case of
receiving a forager, both the type-I and type-II forager antigens are created. A
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if ( current time == end of Learning Phase ) then

while ( Scout Detectors < Numdetectors ) do

randomly generate all four Gene values
  form an Immature Detector

  retrieve Scout Self Antigen List for this node 
if ( Detector matches a Scout Self Antigen ) then

   discard Immature Detector

else

   store Detector in Scout Detector List for node

end if

end while

while ( Forager Dectectors TYPE-I < Numdetectors ) do

randomly generate all four Gene values
  form an Immature Detector

  retrieve Forager Self Antigen List TYPE-I for this node 
if ( Detector matches a Forager Self Antigen ) then

   discard Immature Detector

else

   store Detector in Forager Detector List TYPE-I 

   for this node

end if

end while 

while ( Forager Dectectors TYPE-II < Numdetectors ) do

randomly generate all four Gene values
  form an Immature Detector

  retrieve Forager Self Antigen List TYPE-II for this node 
if ( Detector matches a Forager Self Antigen ) then

   discard Immature Detector

else

   store Detector in Forager Detector List TYPE-II 

   for this node

end if

end while 

end if 

for all ( received Scout OR Forager at each node ) do

if ( Protection Phase AND Scout ) then

if ( Forward Scout AND already seen ) then

    drop Forward Scout and exit 
end if 

   get Scout header fields source, ID, route length, previous hop

   form a Scout Self Antigen bitstring 
   determine Hamming Distance of Scout Self Antigen

   retrieve Scout Dectector List for this node
if ( Self Antigen matches any Scout Dectector ) then

    drop Scout

end if

  end if

else if ( Protection Phase AND Forager ) then

   get Forager header fields source, dest, route length, previous hop

   form a Forager Self Antigen TYPE-I bitstring 
   determine Hamming Distance of Forager Self Antigen

   retrieve Forager Dectector List TYPE-I for this node
if ( Self Antigen matches any Forager Dectector TYPE-I ) then

    drop Forager

else

    get Forager header fields source, dest, route length, route info

    form a Forager Self Antigen TYPE-II bitstring 
    determine Hamming Distance of Forager Self Antigen

    retrieve Forager Dectector List TYPE-II for this node
if ( Self Antigen matches any Forager Dectector TYPE-II ) then

     get Hopsforager number of Forager hops uptil now 
     replace route info in Forager header with RouteInfoforager

     obtained from JourneyTimelearned against Hopsforager

end if 

   end if

  end if

 end for

Algorithm 3 :  Protection PhaseAlgorithm 2 :  Dectector Generation

Fig. 2. Detector generation (negative selection) and protection phase algorithms

node matches the newly created self antigen with the previously collected ones
and maintains a list of unique self antigens. At the end of learning phase, detector
patterns (antibodies) are generated using the negative selection algorithm of
the thymus model [3]. Figure 2 shows the detector generation algorithm. Three
detectors sets, each having the number of detectors (Numdetectors) as 50, are
generated at each node; there is one scout detector set and two forager type-
I/type-II detector sets. Since each node encounters a different set of traffic during
its learning phase, the detector sets at each node are unique. As a result, our
AIS can operate in a distributed manner.

While forming a type-II forager self antigen, a node also builds a list of tu-
ples of the type {Hopsforager, JourneyT imelearned}. Hopsforager are the hops
between the source node and the current node. Similarly, forager journey time
(JourneyT imelearned) is calculated as follows:

JourneyT imelearned = T imecurrent − T imestart (1)

where T imecurrent and T imestart are the current time and the forager launch
time at the source node respectively. The JourneyT imelearned is maintained as
the moving average of forager journey times over a window of last five foragers.

Protection Phase. In this phase, detectors are used for matching subsequent
profiled patterns of the monitored system. Each node collects antigens (scout
antigens and forager antigens of type-I/type-II) and matches them with its
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own respective detector sets (scout detector set and forager detector sets of
type-I/type-II). If a match is found, it indicates detection of a non-self anti-
gen or occurrence of an anomaly in the system. Figure 2 shows the algorithm
for the protection phase. In the case of foragers, our AIS system first matches
the type-I antigen and drops the forager in case of a match, indicating tam-
pered source route. If forager is not dropped, then type-II antigen is matched. A
match here indicates tampered routing information. The routing information is
then corrected by replacing it with the expected correct route information value
(RouteInfoforager), which is computed from the forager learned journey time
(JourneyT imelearned) collected during the learning phase, as:

RouteInfoforager = T imecurrent − JourneyT imelearned (2)

JourneyT imelearned is obtained from the {Hopsforager, JourneyT imelearned}
tuples generated by the node during learning phase. The value is selected on the
basis of the number of hops in between the source node and the current node.

5 Attack Simulations and Performance Evaluation

We realized the proposed security model, BeeAIS, in network simulator ns-2 and
performed simulations to compare its security and performance characteristics
with that of BeeAdHoc and BeeSec. We also developed an attacker framework
in ns-2 to generate different types of routing attacks, discussed in Section 3,
alongwith a traffic scope to determine the impact of these attacks.

5.1 Simulation Topology

Simulations were performed using a grid of 49 nodes (Figure 3) covering a rect-
angular area of operation (1400× 1100m2). This is considered a relatively large
MANET. Four different attack scenarios were selected; each scenario having one
source node and one destination node, with constant bit rate (CBR) traffic from
the source to destination. The simulation time for each run is 1000 seconds and
the reported results are an average over five independent runs. We decided to
have immobile nodes to make it easier to systematically analyze the impact of
attacks. The analysis, however, is equally applicable to a scenario of mobile nodes
in a network that is smaller or larger than our 49 node MANET.

5.2 Performance Metrics

Performance evaluation of the algorithms was done using the following metrics:
Average Throughput (Tav). The number of data bits delivered to the applica-
tion layer at the destination node in a unit interval of time.
Packet Delivery Ratio (PDR). The ratio of data packets successfully delivered
to destination nodes and total number of packets generated for those destinations.
Average Latency (Latencyav). The average difference in time when a packet
is generated at the source and when it got delivered to the destination.
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Fig. 3. Network topology and attack scenarios

Energy per user data (EPD). Energy consumed in transporting one kilobyte
of data to its destination node.
Transmission efficiency (Transeff ). The number of data bytes delivered to
the application at destination nodes at the cost of a unit control byte.
Average Number of Hops (Hopav). The average number of hops for all the
paths traversed by data packets.
Control Overhead (CtlBytes). Total number of control bytes transmitted by
all nodes in the network.

5.3 Simulating Routing Attacks

The attacks are launched during protection phase of BeeAIS. Before that, a 50
seconds learning phase is allowed to complete so that each node collects its self
antigens and generates detectors, which are then used to match with the traffic
during protection phase. The attacks are launched at time t = 51 seconds.

Attack-1: Forging Forward Scout. We implemented this attack using Node-
21 as the source and Node-9 as destination, Figure 3(a). Malicious Node-10
launched forged forward scouts. In BeeAdHoc protocol, the forged scouts were
returned by the destination (Node-9) and caused installation of the path 21-
22-23-24-17-10-9 at the source (Node-21). We can see the result of the attack
in Figure 4(a). Malicious Node-10 was successfully able to divert data packets
towards itself. The traffic through Nodes 8, 14, 15 significantly decreased while
traffic through Nodes 10, 22, 24 increased. In contrast, the attack had no effect
on BeeSec and BeeAIS routing because both protocols were able to detect and
drop the forged scouts.

Attack-2: Forging Backward Scout. In this attack, Node-18 was taken as the
source and Node-27 as destination, and backward scouts were forged by Node-
32, Figure 3(b). We can see the result of the successful attack on BeeAdHoc in
Figure 4(b). Prior to the attack there was no traffic passing through Node-32.
When the malicious Node-32 launched forged backward scouts directed at the
source Node-18, the forged path 18-25-32-39-40-41-34-27 was established. As a
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(b) Attack-2: forging backward scout

Fig. 4. Attacks: forging forward scout and forging backward scout

result all subsequent data packets followed the newly forged path, which passes
the Nodes 32, 39, 41. However, we can see for BeeSec and BeeAIS protocols that
the attack failed to alter the routing behavior.

Attack-3: Forging Spoofed Forager. For this attack, Node-44 was taken as
the source and Node-28 as destination, Figure 3(b). Attack was launched by
Node-45 by sending spoofed foragers to the source Node-44, claiming to be from
the destination Node-28 and carrying the source route 28-29-30-31-38-45-44.
As a result, in BeeAdHoc protocol, the forged path 44-45-38-31-30-29-28 was
established and subsequent foragers started following the forged path. As can be
seen in Figure 5(a), the malicious Node-45 was successfully able to increase the
traffic passing through it. This is indicated by the number of forgares traversing
Nodes 31, 38 45 before and after the attack. On the other hand, BeeSec and
BeeAIS were both able to counter the attack by detecting the forged foragers.

Attack-4: Modifying Forager Route Information. For each received for-
ager exchanged between the source Node-34 and destination Node-46, Figure
3(a), the malicious Node-40 manipulated the routing information carried in the
forager header by artificially increasing the delay value. This resulted in making
all the paths through Node-40 undesirable. In BeeAdHoc protocol, the attack
was successful and its effect can be seen in Figure 5(b). Node-40 was able to
decrease the traffic passing through it. The traffic then followed other paths
through Nodes 41, 47. Figure 5(b) also shows that both BeeSec and BeeAIS
protocols remained uneffected by the attack.
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Fig. 5. Attacks: forging spoofed forager and modifying forager route information

5.4 Performance Comparison

The performance comparison of three protocols BeeAdHoc, BeeSec and BeeAIS
has been done with and without attacks. The results are summarized in
Table 1. One can see that the AIS based security framework, BeeAIS, in each
of the four simulation scenarios, had nearly the same performance as that of
the original protocol BeeAdHoc. BeeAIS delivered the same number of data
packets as compared to BeeAdHoc, with similar delay values and similar en-
ergy consumption. Moreover, the protocol suffered negligible degradation under
attack and provided security at no additional cost to the system. This is a
major advantage when compared to the cryptographic security system BeeSec.
BeeSec did provide the same security level as BeeAIS (Section 5.3), but its
performance degraded for most of the scenarios when compared to BeeAdHoc.
Even more important is the fact that the performance of BeeSec is significantly
inferior as compared to BeeAIS. If we average out the results over all four sce-
narios for BeeSec and BeeAIS without attacks, we observe that BeeAIS has
30% higher average throughput, 25.5% lower latency, 22.5% lower consumed en-
ergy, 929.6% higher data transmission efficiency and 90.25% lower control over-
head. This is a significant achievement for our AIS based security framework
to provide security comparable to asymmetric cryptography but at a signifi-
cantly smaller energy and bandwidth costs. BeeSec transmitted 930.2% more
control bytes and consumed 30.6% more battery to provide the same security
level.
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Table 1. Performance results of BeeAdHoc, BeeSec and BeeAIS with/without attacks
(column headings are explained in section 5.2)

Attack Algorithms Tav PDR Latencyav EPD Transeff Hopav CtlBytes
(kb/s) (ms) (mJ/kB)

BeeAdHoc 115.120 100.00 25.377 16.226 6.739 3.989 1192832
BeeAdHoc(attack) 76.511 98.16 41.443 26.265 2.304 5.790 3497852

Attack-1 BeeSec 76.688 99.98 39.764 24.767 0.623 5.284 12911320
BeeSec(attack) 75.765 99.98 40.213 25.399 0.611 5.309 13155380
BeeAIS 115.660 100.00 25.288 16.171 6.774 3.976 1186624
BeeAIS(attack) 115.125 100.00 25.426 16.653 5.910 3.976 1360048

BeeAdHoc 172.887 100.00 17.673 11.336 12.207 2.797 658504
BeeAdHoc(attack) 91.123 100.00 39.964 25.832 2.584 6.127 3110664

Attack-2 BeeSec 143.079 100.00 22.589 14.147 1.185 3.060 6782428
BeeSec(attack) 142.652 100.00 22.731 14.796 1.116 3.060 7202428
BeeAIS 187.522 100.00 17.063 10.947 12.478 2.699 644224
BeeAIS(attack) 187.168 100.00 17.115 11.254 10.121 2.699 794224

BeeAdHoc 163.667 100.00 18.513 11.869 11.391 2.930 705720
BeeAdHoc(attack) 87.777 99.96 36.382 22.962 3.528 5.599 2282308

Attack-3 BeeSec 126.497 100.00 24.046 15.063 1.105 3.255 7273564
BeeSec(attack) 126.468 100.00 24.058 15.079 1.105 3.255 7272244
BeeAIS 163.228 100.00 19.053 12.211 10.665 3.013 753760
BeeAIS(attack) 163.204 100.00 19.061 12.225 10.683 3.013 752440

BeeAdHoc 181.701 100.00 17.485 11.207 12.129 2.766 1215020
BeeAdHoc(attack) 158.050 100.00 18.630 11.949 11.464 2.951 1285484

Attack-4 BeeSec 174.326 99.92 20.030 11.936 1.437 2.588 10276404
BeeSec(attack) 182.418 99.59 20.345 11.388 1.515 2.460 9765372
BeeAIS 190.733 100.00 15.972 10.250 14.559 2.535 1012236
BeeAIS(attack) 190.733 100.00 15.972 10.250 14.559 2.535 1012236

6 Conclusion and Future Work

In this paper we have presented an AIS based security model, BeeAIS, for a
Bio/Nature inspired MANET routing protocol, BeeAdHoc, and compared its
security with a cryptographic security framework, BeeSec. The AIS was designed
and implemented in network simulator ns-2. We also realized in ns-2, an attacker
framework that allowed us to launch a number of routing attacks and study their
impact. The results of our extensive attack simulations verify that a malicious
node can seriously disrupt the routing behavior of BeeAdHoc protocol. However,
BeeAIS can successfully detect the non-self antigens and drop them to counter
the attacks. We also find that BeeAIS provides this security at no additional
control or energy costs to the system. Its performance remains nearly the same
as that of its base protocol, BeeAdHoc. In comparison, the cryptographic based
system, BeeSec, also prevents these attacks, but has a high control overhead
(930.2% more control bytes) due to the large size of authentication header fields,
and 30.6% higher battery consumption. This is in addition to the processing load
of asymmetric cryptography. Our work clearly demonstrates that AIS based
security has the potential to offer significantly higher performance in MANETs
due to its significantly less control, energy and computational cost. The efficient
utilization of these resources is a key challenge in MANETs. In future, we intend
to extend our basic AIS to learn and adapt to a changing self through the
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use of danger signal and also to counter dropping attacks, which of course is
not possible through cryptographic security. This would be a cardinal step in
deploying Bio/Nature inspired routing protocols in real world MANETs.
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Abstract. This paper presents a novel and efficient method for solving economic
load dispatch problems with non-smooth cost functions, by combining an Arti-
ficial Immune Systems with Cultural Algorithms. The proposed method, called
Cultural Immune System, uses a real coded AIS that is derived from the clonal
selection principle with a pure aging operator and hypermutation operators based
on Gaussian and Cauchy mutations that are guided by four knowledge sources
stored in the belief space of a Cultural Algorithm. The Cultural Immune System
has a local search stage that is based on a quasi-simplex technique and several
points of self-adaptation. Three test systems with thermal units whose fuel cost
function takes into account valve-point loading effects are used to validate the
proposed method. These test systems constitute complex constrained optimiza-
tion problems. Firstly, Cultural Immune System is compared with his non-cultural
counterpart (the same AIS without knowledge sources guiding the hypermutation
operators). After that both immune-based methods are compared with state-of-
the-art algorithms. The results show that the Cultural Immune System is capable
of outperforming other state-of-the-art algorithms in solving load dispatch prob-
lems with the valve-point effect.

1 Introduction

In the last few years, the use of hybrid methods inspired by Natural Computing [1] has
attracted the attention of many researchers, specially the systems in which two or more
methodologies are joined to enhance the final model. Some of such hybrid approaches
seems to be robust enough to tackle practical hard optimization problems, such as the
economic load dispatch (ELD).

The primary objective of the economic load dispatch problem is to determine the
optimal quantity of energy that must be generated by each unit to meet the required
load demand at minimum operating cost while satisfying system equality and inequal-
ity constraints [20]. Traditionally, the cost of each unit is approximated by a quadratic
function which can be exactly solved using mathematical programming based on the
optimization techniques such as lambda-iteration method, gradient method, and dy-
namic programming [16]. These methods require incremental fuel cost curves, which
should be monotonically increasing, to find a global optimal solution. Unfortunately,
the input-output characteristics of generating units are inherently nonlinear and highly
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non-smooth because of valve-point loadings. Thus, the practical ELD problem with
valve-point effects is addressed as a hard optimization problem with equality and in-
equality constraints that make the problem of finding the global optimum very difficult.
Thus, it normally renders classical optimization methods ineffective.

In the absence of exact methods, the stochastic ones (specially the naturally inspired
methods such as Artificial Immune Systems [18], Genetic Algorithms [26][17], Particle
Swarm [25][20][19] [21] and Differential Evolution [22][23]) have grown in popularity
for this practical engineering problem.

This paper combines an Artificial Immune Systems with Cultural Algorithms. The
interest in AIS is justified by the Cutello’s work [14], that proves the convergence of a
class of AIS, particularly those inspired by the clonal selection principle, to the global
optimum of an optimization problem. Here we try to improve the already known good
performance of AIS by incorporating knowledge sources typical of Cultural Algorithms
[2][4][5] [6][7] and a local search phase based on a quasi-simplex technique [17] to
an AIS based on the clonal selection algorithm (Clonalg) [10] with an aging operator
[11][12][13].

2 Economic Load Dispatch

Economic load dispatch is one of the most important problems to be solved in the
operation and planning of a power system [20]. The objective of the economic dispatch
problem is to minimize the total fuel cost of thermal power plants subjected to the
operating constraints of a power system. The objective function can be formulated as:

Minimize F =
∑n

j=1 Fj(Pj)
subject to

PD =
∑n

j=1 Pj and
Pmin

j ≤ Pj ≤ Pmax
j

(1)

where Fj(Pj) is the fuel cost function of the jth generator (in $/hr), Pj is the power
output of the jth unit, n is the number of generating units in the system, PD is the total
power demand, Pmin

j and Pmax
j are, respectively, the minimum and maximum power

outputs of the jth unit. The equality constraint of Equation 1 is called power balance
constraint while the inequality constraints are called operational constraints.

The fuel cost function, considering valve-point effects, of each generator is given by
a mix of a quadratic approximation and a sinusoidal function [20]:

Fj(Pj) = aj ∗ P 2
j + bj ∗ Pj + cj + |ej ∗ sin(fj ∗ (Pmin

j − Pj))| (2)

where Pj is the power output of the jth unit, aj , bj , cj , ej and fj are the fuel cost
coefficients of the jth unit with valve point effects.

3 Cultural Algorithms

Cultural algorithms (CA) are techniques that add domain knowledge to evolutionary
computation methods and are derived from the cultural evolution process [4]. They
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assume that the knowledge related to the problem being solved can be extracted from
individuals of a population during the evolutionary process and subsequently used to
guide the search.

Cultural algorithms have two main components: the population space, and the belief
space [8]. The population space consists of a set of possible solutions to the problem,
and can be modeled using any population based technique, such as Evolutionary Pro-
gramming [8], Particle Swarm [3] and Differential Evolution [6][7].

The belief space is the information repository in which individuals can store their
experiences that can be indirectly learned by the other individuals [7]. In cultural algo-
rithms, the information acquired by an individual can be shared with the entire
population.

The population space and the belief space are linked through a communication pro-
tocol, which states the rules about the individuals that can contribute to the belief space
with its experiences (the acceptance function), and the way the belief space can influ-
ence the generation of new individuals (the influence function) [6].

The knowledge stored into the belief space can, generally, be divided into five knowl-
edge sources [5][7]: Situational Knowledge, Normative Knowledge, Historical Knowl-
edge, Topographical Knowledge and Domain Knowledge. It is important to note that
these knowledge sources were derived from works in cognitive science and semiotics
that describe the basic knowledge used by human decision-makers [4] and will be de-
tailed in Section 5.

4 Proposed Artificial Immune System

Immune Algorithms are stochastic algorithms inspired by immunology, immune func-
tions and principles observed in nature [14]. In this paper we are particularly interested
in Immune Algorithms inspired by the Clonal Selection Principle, such as the Clonalg
[10] and opt-IMMALG [13] which can be classified as Evolutionary Algorithms [9].
This interest is justified by the recent proof that this class of algorithm (under certain
conditions) is capable of finding the global optimum of an optimization problem [14].

Clonal Selection Algorithms work with a population of candidate solutions (antibod-
ies), composed of a subset of memory cells (the best ones) and a subset of other good
individuals. At each generation a set of best individuals in the population are selected
based on their affinity measures (how good they match the antigens). The selected in-
dividuals are cloned, giving rise to a temporary population of clones. The clones are
submitted to a hypermutation operator, whose rate is proportional (or inversely propor-
tional) to the affinity between the antibody and the antigen (the problem to be solved).
From this process a maturated antibody population is generated. Some individuals of
this temporary population are selected to be memory cells or to be part of the next pop-
ulation. This whole process is repeated until a termination condition is achieved [10].
Recent works related improved performance by adding an aging operator [12][13][15].

In the Immune System proposed in this paper to solve the Economic Load Dispatch
each antibody is a valid combination of power outputs (encoded as real numbers) for
the generator units. The affinity of an antibody with the antigen is given by:

affi = (MaxCostgen − Costi)/(MaxCostgen − MinCostgen) (3)
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where Costi is the total fuel cost of a particular configuration (represented by the ith
antibody), MinCostgen and MaxCostgen are the maximum and minimum fuel cost
of an antibody in generation gen, respectively.

The steps of the implemented Immune System are the same as those presented in
Pseudo-Code 2 (see Section 5) with the following modifications: steps 3, 4.8, 4.9 and
4.10 are eliminated of the algorithm and step 4.2 is substituted by “Apply a Hypermu-
tation to the Clones”.

Each antibody is composed of n components (power generators) that are initialized
at the first generation as anti,j = Pmin

i + U(0, 1) ∗ (Pmax
i − Pmin

i ), where anti,j
is jth component of the ith antibody (i.e., the power output of the jth unit generator),
U(0, 1) is a random variable sampled from an uniform distribution in the interval [0, 1],
Pmin

i and Pmax
i are, respectively, the minimum and maximum power outputs of the jth

unit. This initialization procedure guarantees that no antibody violates the operational
constraints of the generator units.

After the evaluation of the initial generation, the Immune System enters its main loop
(which represents the affinity maturation stage of the algorithm). This loop is repeated
until a termination criterion is satisfied. The termination criterion adopted in this work
is a maximum number of generations.

The affinity maturation process begins by cloning the antibodies of the past gen-
eration. The most common cloning operators are: static cloning operator (where the
number of clones of each antibody is dup, independently of the affinity of the antibody)
and the proportional cloning operator (where the number of clones of each antibody is
proportional to its affinity) [14]. In this work the static cloning operator is used.

The hypermutation operators are subsequently applied. The implemented algorithm
makes use of two hypermutation operators: an Adaptive Gaussian Hypermutation (AGH)
and an Adaptive Cauchy Hypermutation (ACH). This hypermutation operators are given
by Equation 4.

anti,j = anti,j + mult ∗ (Costi/MinCostgen) ∗ R(0, 1) ∗ (Pmax
j − Pmin

j ) (4)

where anti,j is the jth component of the ith antibody, mult is an adaptive multiplier
given by mult = e−gen/ϕ (where ϕ is a parameter that dictates the decrease speed of
the multiplier), Pmax

j and Pmin
j are the maximum and minimum limits of the jth gen-

erator unit, respectively, R(0, 1) is a random number sampled according to a Gaussian
or a Cauchy distribution depending on the hypermutation type (AGH or ACH). In both
cases the distributions have mean equal to zero and variance equal to one.

The term Costi/MinCostgen makes the mutation more intensive in antibodies with
a high fuel cost (low affinity) and smooth in antibodies with low fuel cost (high affinity).
According to [9] Cauchy random numbers allow relatively coarse-grained steps, while
Gaussian random numbers produce fine-grained steps, which in theory is a good bal-
ance. The multiplier tries to make the search in the beginning of the evolution intense
and smooth at the end of the evolution.

The number of mutations applied to each antibody is given by M(i) = e−affi

ρ ∗ n,
where M(i) is the number of mutations applied to the ith antibody, affi is the affinity
of the ith antibody, ρ is a parameter that regulates the number of mutations and n is the
number of generators.
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After hypermutation a quasi-Simplex method is applied as a local search procedure
to the best antibodies of the hypermutated clones. At this point the constraints can be vi-
olated, which could cause infeasible antibodies. To avoid such violation a repair process
is applied to each clone in order to guarantee that the generated antibodies are feasible.
So instead of penalizing infeasible antibodies we repair them. The implemented proce-
dure is shown in Pseudo-Code 1.

Repeat for each component j of an antibody i
If anti,j < P min

j

anti,j = P min
j

Else
If anti,j > P max

j

anti,j = P max
j

End If
End repeat
While

∑n
i=1 Pi �= PD

Randomly select a component j
If

∑n
i=1 Pi < PD

Add an amount to anti,j that doesn’t violate the
operational constraint and minimize the power balance
demand violation

Else
Subtract an amount from anti,j that doesn’t violate the
operational constraint and minimize the power balance
demand violation

End While

Pseudo-Code 1: Repair Procedure

After the application of the repair procedure the affinity given by Equation 3 can be
used to evaluate the goodness of an antibody.

The next step in the implemented algorithm is the application of the aging operator.
In this work the static pure aging operator [12][13] is used. This aging operator elimi-
nates old antibodies in order to maintain the diversity of the population and to avoid the
premature convergence. In this operator an antibody is allowed to survive for at most
τB generations, after this period it is assumed that this antibody corresponds to a lo-
cal optima and must be eliminated from the population. A clone inherits the age of its
parent and is assigned an age equal to zero when it is successfully hypermutated (i.e.,
when the hypermutation improves the affinity of the antibody).

Finally, the last step of the affinity maturation process is the selection of the anti-
bodies that will compose the next population. The scheme used is a (μ + λ)-Selection
operator [13] that is applied to parents and hypermutated clones that survived after the
aging operator.
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5 The Proposed Cultural Immune System

Our second proposed approach uses the previously described Immune System-based
algorithm as the population space of a Cultural Algorithm.Pseudo-Code 2 summarizes
the general steps of the proposed algorithm.

1.Initialize the population of antibodies;
2.Evaluate the Population;
3.Initialize the Belief Space;
gen←0;
4.While the Termination Criterion is not satisfied

4.1.Clone the Population;
4.2.Apply the Influenced Hypermutation to the Clones
selected according to each knowledge source probability;

4.3.Apply the Quasi-Simplex Local Search;
4.4.Apply the Repair Procedure;
4.5.Evaluate the Clones;
4.6.Apply the Aging Operator to the Population and the Clones;
4.7.Apply the (μ + λ)−Selection Operator
4.8.Apply the Acceptance Function;
4.9.Update the Belief Space (knowledge sources) using the
best nAccepted antibodies of the Population;

4.10.Apply the Main Influence Function;
4.11.gen = gen +1;

End While

Pseudo-Code 2: Proposed Cultural Immune System

To the best of our knowledge it is the first time that an Immune System is studied as
the population space of a Cultural Algorithm.

The Cultural Immune System can be considered as an extension of the previous al-
gorithm where the Belief Space and the communication protocols are added to improve
the performance of the original Immune System. The belief space is used to extract in-
formation from the antibodies’ population and uses this knowledge as a guide to gener-
ate new antibodies during the hypermutation operators through the influence functions,
i.e. the hypermutation operators are replaced by the influence functions. The commu-
nication protocols dictates which antibodies will be considered during the update of
the belief space (acceptance function) and the probability of a knowledge stored in the
belief space to influence a hypermutation operator (main influence function).

5.1 Communication Protocols: Acceptance and Influence Functions

In this work a dynamic acceptance function [3][4] is used. This acceptance function is
given by:

nAccepted = popSize ∗ (acceptperc +
acceptperc

gen
) (5)
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where nAccepted are the number of antibodies of the population that will be used to
update the knowledge sources, popSize is the number of antibodies in the population,
acceptperc is a parameter that determines the percentage of accepted antibodies and gen
is the current generation. This acceptance function allows more antibodies to contribute
to the update during the beginning of the evolution (when there is little accumulated
knowledge) and less antibodies at the end of the evolution (when most of the knowledge
have already been acquired).

The main influence function is responsible for choosing (using a Roulette Wheel
method [7]) the knowledge source that will influence the hypermutation operators. At
the beginning, all the knowledge sources have the same probability to be applied (0.25).
During the evolutionary process, the probability of the ith knowledge source influence
a hypermutation operator is given by Equation 6.

probKSk = 0.1 + 0.6 ∗ (
antgbKSk

popSize
) (6)

where probKSk is the probability of selecting the kth knowledge source to influence
a hypermutation operator, antgbKSk

is number of antibodies that were generated by
an influence of the kth knowledge and popSize is the size of the population. Equation
6 favors the application of knowledge sources that are capable of maintaining their
generated antibodies in the population and guarantees that each knowledge source has
at least a 10% chance of being applied.

5.2 Knowledge Sources

The following knowledge sources are utilized in this work:

Situational Knowledge. The Situational Knowledge stores the pbest antibodies found
during the evolutionary process [7]. These antibodies are used as leaders to influence
the hypermutation operators. This influence is similar to the hypermutation operation
(Equation 4) but the term anti,j on the right side is substituted by the term bestk,j ,
where bestk,j is the jth component of the kth best antibody stored in the Situational
Knowledge, and k is an index randomly selected among the best antibodies.

Normative Knowledge. The Normative Knowledge contains the intervals for the power
outputs of the generator units where good solutions have been found, and is used to
move the outputs of the new solutions towards those intervals. The intervals of the
Normative Knowledge are initialized with the lower and upper bounds of the output of
the generator units. The update of the normative knowledge can reduce or expand the
intervals stored on it. An expansion takes place when the accepted individuals do not
fit in the current interval, while a reduction occurs when all the accepted individuals lie
inside the current interval, and the extreme values are associated with individuals with
better fuel cost [6]. It is important to note that the limits of the normative knowledge
can not violate the operational constraints.

The influence of the Normative Knowledge is as follows:
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anti,j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

anti,j + mult ∗ Costi/MinCostgen ∗ Abs(R(0, 1)) ∗ (NUpj − NLoj),
if anti,j < NLoj

anti,j − mult ∗ Costi/MinCostgen ∗ Abs(R(0, 1)) ∗ (NUpj − NLoj),
if anti,j > NUpj

anti,j + mult ∗ Costi/MinCostgen ∗ R(0, 1) ∗ (NUpj − NLoj),
otherwise

(7)
where NUpj and NLoj are, respectively, the upper and lower bounds of the normative
interval associated with the jth component, Abs(x) is a function that returns the absolute
value of x and the other terms are as defined in Equation 4. This influence function is
adaptive: it is intensive when the normative interval is large (the good interval is very
uncertain) and it is smooth when the normative interval is small (the good interval is
known).

Historical Knowledge. This knowledge source was introduced in Cultural Algorithms
as a mean to adapt to environmental changes [5]. It stores a list of the best antibodies
found before the last HistorySize environmental changes. It also stores the average
direction and the average distance (size) of the changes for each component between
the environmental changes. In this work, since there is no environmental change, this
knowledge is adapted and it happens when the algorithm is trapped at a local optimum
(there is no change in the best antibody found during the last p generations). The influ-
ence function of the Historical Knowledge used in this work is:

anti,j =

⎧⎪⎪⎨
⎪⎪⎩

anti,j + mult ∗ Costi/MinCostgen ∗ Abs(R(0, 1)) ∗ (AvDistj),
if AvDirj ≥ 0
anti,j − mult ∗ Costi/MinCostgen ∗ Abs(R(0, 1)) ∗ (AvDistj),
if AvDirj < 0

(8)

where AvDistj is the average distance change in the jth component, AvDirj is the
average direction of the change in the jth component (both are given by Equation 9)
and the other terms are as previously defined.

AvDistj = (
∑HistorySize−1

i=1 Abs(HistoryBesti+1,j − HistoryBesti,j))/
(HistorySize− 1)

AvDirj = (
∑HistorySize−1

i=1 Sign(HistoryBesti+1,j − HistoryBesti,j))
(9)

where HistorySize is the number of antibodies stored in historical knowledge,
HistoryBesti,j is the jth component of the ith best antibody and Sign(x) is a func-
tion that returns +1 if x is positive, -1 if x is negative and 0 otherwise.

This influence tries to increment the jth component of the antibody submitted to
hypermutation if in average the jth component of new best antibody was greater than
or equal to the jth component of the previous best antibody and tries to decrement this
component otherwise. In either case the hypermutation is proportional to the average
distance observed between changes (so if the new best antibodies are found far away
from the previous ones the hypermutation will be intensive and it will be smooth if they
are found near the previous ones).

Topographical Knowledge. The Topographical Knowledge is used to create a map of
the fitness landscape of the problem during the evolutionary process. It consists of a set
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of regions and the best individual found on each region. It also stores a sorted list of the r
best regions (which is sorted according to its best antibody). A region is represented as a
node in a binary tree and stores the upper and lower bounds for each component and the
best antibody found so far in that region. The binary tree is initialized with a root node
that represents the entire feasible space and has the best antibody of the first generation.
If during the update of the Topographical Knowledge an antibody with a better fuel cost
than the best antibody represented in a region is accepted and this antibody belongs to
this region, the node is split (the region is divided in two). The component where the
division is made is the component where there is the highest difference between the
previous best antibody of this region and the new one. The division is made in half
the distance between the value of the split’s component of the new and the old best
antibodies of the region.

SplitPoint =

⎧⎪⎪⎨
⎪⎪⎩

Newj + (Oldj − Newj)/2,
if Oldj ≥ Newj

Oldj + (Newj − Oldj)/2,
otherwise

(10)

where SplitPoint is the value of the jth component where the region will be divided,
Oldj is the jth component of the previous best antibody of the cell being divided and
Newj is the jth component of the new best antibody found in this cell.

It is important to note that only leaf nodes can be stored in the ordered list or split.
The influence function of the Topographical Knowledge is described by Equation 11.

anti,j = anti,j + mult ∗ Costi/MinCostgen ∗ R(0, 1) ∗ (Rupper
k,j − Rlower

k,j ) (11)

where Rupper
k and Rlower

k are the upper and lower bounds for the jth component in the
kth region where is randomly selected according to the affinity of the best antibody of
each region if a uniform random number in the interval [0, 1] is less than pElite (prob-
ability of the best regions be chosen more often) and randomly selected independently
of the affinity otherwise. The other terms of the equation are as previously defined. This
influence function tends to explore good regions of the search space.

6 Experiments and Results

Three test cases were used to validate the proposed Immune Systems: 13 generators
with a load demand of 1800 MW [22], 13 generators with a load demand of 2520 [24]
MW and 40 generators with a load demand of 10500 MW [22].

The algorithms were executed 50 independent times with the following set of parame-
ters (when applicable):popSize=50, terminationcriterion=3000 generations,dup=4,ϕ
= 40, ρ = 4, τB = 100, pbest = 10, HistorySize = 10, p = 200, acceptperc = 0.2. Although
the great number of parameters, the proposed Immune Systems are little influenced by
them. This fact was observed during the experiments realized to find this particular good
set of parameters (the adjustment tests were done using only the first test case).

In order to validate our methodologies, we compared the proposed immune-based
systems with other state-of-the-art approaches. Although it would be better to compare
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Table 1. Results for the Test Cases. Costs are given in US$.

Case with 13 Generators and Load Demand of 1800 MW

Method Minimum Cost Mean Cost Maximum Cost Standard Deviation
IS 17960.91 17983.03 18074.41 24.96

CIS 17960.73 17970.35 17977.90 1.87
DEC-SQP [22] 17963.94 17973.13 17984.81 1.97

IGA [26] 18063.58 18096.40 18293.47 45.79
MPSO [19] 17973.34 - - -

Case with 13 Generators and Load Demand of 2520 MW

Method Minimum Cost Mean Cost Maximum Cost Standard Deviation
IS 24164.80 24223.23 24427.29 52.74

CIS 24164.79 24181.67 24255.84 30.16
SDE [23] 24164.05 24168.28 24200.05 -

DTSA [24] 24169.95 - - -

Case with 40 Generators and Load Demand of 10500 MW

Method Minimum Cost Mean Cost Maximum Cost Standard Deviation
IS 121529.26 121880.13 122283.55 237.09

CIS 121500.43 121735.26 122142.74 149.02
DEC-SQP [22] 121741.97 122295.12 122839.29 386.18

NPSO-LRS [21] 121664.43 122209.31 122981.59 -
CEP-PSO [25] 123670.00 124145.60 124900.00 -

the algorithm with the same set of algorithms for all test cases, it was impossible due to
the fact that the other works were applied to only one or two of the test cases. Table 1
summarizes the results obtained for the three test cases.

For the test case of 13 generators with a load demand of 1800 MW [22]. The table
shows that the best results were obtained with the Cultural Immune System (CIS). The
Immune System algorithm (IS) found the second best result concerning the minimum
cost, outperforming the non-immune algorithms.

Table 1 also presents the comparison of the results obtained by our Immune Systems
and other methods reported in the literature for the test case with 13 generators and a
load demand of 2520 MW. For this test case the SDE algorithm achieved better results
than both Immune Systems. Despite of this, the minimum fuel cost obtained by CIS
and IS are less than one dollar more than the minimum fuel cost of the SDE and when
compared with DTSA it is more than five dollars lower.

The comparison for the test case with 40 generators and load demand of 10500 MW
shows that the proposed CIS was able to attain better values with respect to the statistics
than the other algorithms. For this test case the IS was able to outperform all non-
immune approaches reported in the literature in all statistics, losing only for CIS.

Based on a ranksum test [27] with 95% degree of confiability it is possible to con-
clude that the quality of the results obtained by CIS are better than those obtained by
IS, attesting the superiority of the cultural method. The p-values obtained were 0.013,
7∗10−8 and 0.0041 for the first, second and third test case, respectively. Due to the lack
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of data given by the other compared methods, we were not able to realize statistical
tests comparing these methods and the proposed Cultural Immune System.

7 Conclusions and Future Researches

In this paper we implemented two Immune Systems based on the Clonal Selection
Principle. Both algorithms applied static cloning operator, Gaussian and Cauchy Hy-
permutations, static pure aging, (μ + λ)-selection operator and inversely proportional
mutation potential. This set of operators proved to be very effective in finding good
solutions to the economic load dispatch problem with valve-point effect, which is an
important and complex practical engineering problem.

Although the adjustment of the parameters was done on the first test case, the same
set of parameters was able to tackle the other problem instances successfully, what
corroborates to the robustness of the method.

Our proposed novel approach, the Cultural Immune System (CIS), was capable of
improving the performance of its non-cultural counterpart. CIS compared favorably
with state-of-the-art algorithms for two of the test cases improving the best reported
minimum cost, maximum cost, mean cost and standard deviation of the costs. Although
it was outperformed in the second test case by SDE, the minimum cost found by both
algorithm are comparable. Because of these facts we assume that CIS can be considered
one of the state-of-the-art algorithm for the economic load dispatch problem.

In future works we intend to analyze the behavior of the proposed algorithms in other
engineering problems. We also intend to substitute the adaptive multiplier used on the
hypermutation operators by a chaotic multiplier that has been shown to improve the per-
formance of a differential evolution algorithm [22] and to incorporate new knowledge
sources, especially the probabilistic ones.

References

1. de Castro, L.N.: Fundamentals of Natural Computing: basic concepts, algorithms, and appli-
cations. Chapman & Hall/CRC, Sydney, Australia/Boca Raton, USA (2006)

2. Reynolds, R.G., Peng, B., Brewster, J.: Cultural Swarms II: Virtual Algorithm Emergence. In:
Proceedings 2003 IEEE Proceedings of Congress on Evolutionary Computation, Canberra,
Australia, December 8-12, 2003. IEEE Computer Society Press, Los Alamitos (2003)

3. Iacoban, R., Reynolds, R.G., Brewster, J.: Cultural Swarms: Modeling the Impact of Cul-
ture on Social Interaction and Problem Solving. In: Proceedings 2003 IEEE Proceedings
of Congress on Evolutionary Computation, Canberra, Australia, December 8-12, 2003, pp.
205–211. IEEE Computer Society Press, Los Alamitos (2003)

4. Reynolds, R.G., Peng, B.: Cultural algorithms: Computational Modeling of How Cultures
Learn to Solve Problems: an Engineering Example. Cybernetics and Systems 36(8), 753–
771 (2005)

5. Reynolds, R.G., Peng, B.: Knowledge Integration On-The-Fly in Swarm Intelligent Systems.
ICTAI, 197–210 (2006)

6. Becerra, R.L., Coello, C.A.C.: Optimization with Constraints using a Cultured Differential
Evolution Approach. In: Beyer, H.-G., et al. (eds.) Genetic and Evolutionary Computation
Conference (GECCO’2005), June 2005, vol. 1, pp. 27–34. ACM Press, Washington, DC,
USA (2005)



A Cultural Immune System for Economic Load Dispatch 393

7. Becerra, R.L., Coello, C.A.C.: Cultured Differential Evolution for Constrained Optimization.
Computer Methods in Applied Mechanics and Engineering 195(33-36), 4303–4322 (2006)

8. Saleem, S.M.: Knowledge-Based Solution to Dynamic Optimization Problems using Cul-
tural Algorithms. PhD thesis, Wayne State University, Detroit, Michigan (2001)
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Abstract. This work proposes an Artificial Immune System to find a set of k 
spanning trees with low costs and distinct topologies. The attainment of this set 
of solutions is necessary when the problem has restrictions or when the interest 
is to present good alternative solutions for posterior decision making. Solving 
this problem means to explore an enormous space of solutions that grows as the 
number of graph nodes increases; it becomes impractible using exact or com-
parative methods. However, it is known that bio-inspired algorithms have a 
high capacity of exploration and exploitation of the search space. Moreover, in-
herent characteristics of AIS become the search mechanism more efficient al-
lowing the resolution of this problem in a feasible computational time. 

Keywords: Bio-inspired Computing, Artificial Immune Systems, Spanning 
Trees. 

1   Introduction  

A large number of engineering applications uses graph theory nowadays. This theory 
is used in the most distinct areas as telecommunications, logistics, manufacturing, etc. 
Minimum Spanning Tree (MST) problem shows up in many applications. One exam-
ple is to lay phone or electric lines between a set of localities using the highways 
infrastructure while minimizing material costs. There are efficient algorithms to solve 
this kind of problem, as Kruskal, Prim and Sollin [1]. 

A large number of graph problems, even with finite number of possibilities, can 
not be solved in a feasible computational time [1]. One reason is that these kind of 
problems become more complex as the number of nodes increases.  

When the problem has restrictions or it is necessary to offer good alternative solu-
tions for posterior decision-making, then a set of Spanning Trees (ST) with low costs 
and distinct topologies should be found out. One difficulty is that the number of pos-
sible solutions can be huge, and then the attainment of the solution set composed by 
ST with low costs through precise methods is impracticable. 

Bio-inspired algorithms, like Artificial Immune Systems (AIS), Genetic Algo-
rithms, Evolutive Strategies, Ant Colony Optimization, etc., are attractive methods 
frequently used to solve a large number of optimization problems [6]. The great po-
tential of these algorithms is the integration of the ample search space exploration 
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with a process of located search called exploitation. This integration results in a high 
robustness level that allows the application of the bio-inspired computation in many 
practical problems, which other strategies are inefficient [6].  

According to Dasgupta [5], AIS are computational mechanisms composed by intel-
ligent methodologies, inspired in the biological immune system, to solve problems of 
the real world; many of its properties are advantageous in diverse applications.  

In this paper, it is proposed a bio-inspired algorithm based on AIS to find a solu-
tion set composed by the k-Spanning Trees with low costs and distinct topologies. 
The remainder of this paper is organized as follows. Section 2 introduces the problem. 
In Section 3, related works are presented. In Section 4, concepts of biological immune 
system are introduced. Section 5 proposes an implementation to attain the solution 
set. In Section 6, experiments results are presented. Finally, Section 7 offers the  
conclusions. 

2   Problem Presentation 

Given a graph G, our aim is to find a set of k-spanning trees (k ∈ N+ and k > 1), with 
distinct topologies and low costs associated. Among many possible applications, the 
result can be used in problems with restrictions or when it is necessary to present a set 
of good solutions for a posterior decision-making. Due to the combinatorial nature of 
the problem, where the number of possible solutions grows as increases the number of 
nodes, it is necessary to use an efficient boarding capable to explore the search space 
of solutions in reasonable computational time.  

The number of spanning trees in a complete graph, G: (N, A), where N is the set of 

nodes and A is the set of the edges, is in the order of m
m-2

, m = |N| [13]. For instance, a 

complete graph with 50 nodes spans about 50
48 possible trees. So, it is infeasible to 

perform an exhaustive search, because assuming that 1000 computers analyze 1000 

trees per second, each one, it would take approximately 10
68

 years to evaluate all 

possible solutions (it is estimated that the universe has about 10
13

 years) [3]. How-
ever, AIS based on techniques of clonal selection is considered aiming to find a good 
set of solutions as well as avoiding the complexity issue. Moreover, characteristics 
inherit from immune system, as diversity maintenance, memory, mutation and prolif-
eration proportional to the affinity are important for the attainment of good results [6]. 

3   Related Works 

Some algorithms had been proposed to find all spanning trees of a graph, as Minty 
[10]. However, none of them consider the edge costs for constructing the trees. So, it 
is necessary to classify all possible solutions in an increasing cost sequence, that is, 
there is the necessity of compare all spanning trees with each one; but it is computa-
tional impracticable. Sörensen and Janssens [14], inspired in Murty [11], considered 
an algorithm to find all spanning trees in increasing cost sequence. The algorithm is 

based on partitions sets, where each partition is defined as },...,;,...,{ 11 sr bbaap = , 

that is, the set of all spanning trees contend all edges a1, ..., ar and none of edges of b1, 
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..., bs. It is initiated with the MST and the partitions set {p1, p2 , ... , pm-1}; in period i 
the i-st spanning tree is found. Because of the bottom-up, explore character, from the 
neighborhood of MST and expanding to all the search space, the algorithm becomes 
inefficient for instances that the k best spanning trees are spread in the search space. 
Another difficulty could be found when it would be necessary to obtain a large num-
ber of spanning trees for a graph with many nodes. 

Almeida and Yamakami [3] had considered Evolutive Algorithms to solve the 
problem of minimum spanning tree with fuzzy parameters. In this work, graphs with 
known structure, but with uncertainties associated to the edge costs had been studied. 
The objective of the algorithms is to find the solution set composed by trees that have 
high possibility degree of being the best solution. 

4   Biological Immune System 

This section brings an introduction to basic concepts of biological immune system; 
the presented approach had been inspired in De Castro and Von Zuben [6].  

The natural immune system is complex and possesses a large variety of compo-
nents and functionalities. To develop a computational system inspired in the natural 
one, a simplification of the reality becomes necessary to fit the biological concepts, 
considered more important, for application in the proposed problem.  

 
 

Fig. 1. Multi-layer structure of the Immune System [6] 

Conceptually, Immune System (IS) is a collection of molecules, cells and organ-
isms whose complex interaction in an efficient system is usually capable to protect an 
individual of invaders. The IS is subdivided in Innate Immune System, formed by 
phagocytes cells responsible for a first combat to the pathogens, and Adaptive Im-
mune System, formed for cells (lymphocytes) that evolve to provide more versatile 
defenses ways and a bigger level of protection face to new infections for the same 
agent (Figure 1). The characteristics that foment the AIS theory are based on the func-
tionalities of the Adaptive Immune System. The lymphocytes are submitted to a proc-
ess similar to natural selection [8], where only cells that found an antigen with which 
receptors can interact, will be activated to proliferate generating clones. These clones 
will differentiate in plasma cells, that secrete antibodies with the same receptors char-
acteristics; or memory cells, when the immune system will be exposed again to one 
determined antigen, these cells are activated in order to get a more efficient future 
reply.  



398 P.C. Berbert et al. 

On the processes of proliferation and differentiation of the high affinity cells, the 
somatic hypermutation is realized to refine, through exchanges introduced into the 
variable region genes, the immune reply to the recognized antigen. This mechanism 
allows the creation of antibodies capable to recognize the antigen with more effi-
ciency. Generation and mutation mechanisms provide a powerful antigen recognition, 
because the immune system can produce a practically infinite number of cellular 
receptors from a finite genome. The antibodies perform the main role in Immune 
System. They are capable to adhere to the antigen, to neutralize them and to mark 
them for that other immune system cells eliminate them [8]. 

5   The Proposed Artificial Immune System 

AIS inspired in the concepts presented in Section 4 is proposed. The repertoire is 
formed by antibodies (spanning trees) that generate new heirs (clones) with the same 
characteristics of father-antibody. These clones evolve by means of maturation opera-
tors. An affinity measure is used to privilege the proliferation of the more adapted 
antibodies (clonal selection), that is, only those antibodies that find an antigen with 
which receptor can interact will be activated to proliferate and to differentiate. 

5.1   Representation 

Let a graph G: (N, A), being m = |N|, a spanning tree have m – 1 edges that connect all 
nodes of G without cycles [1]. Due to this characteristic, it was proposed a representa-
tion that makes possible the treatment of each antibody as being a spanning tree, that 
is, only feasible solutions are considered. Given the graph of Figure 2 and its respec-

tive assignment matrix wMDwx ,3 = number of graph edges:  

 

 

Index Node i Node j Cost 
1 1 2 Cost 1 
2 1 3 Cost 2 

. . . . . . . . . . . . 
7 4 5 Cost 7  

Fig. 2. A graph and its respective assignment matrix 

Each antibody has m -1 positions that can contain elements of 1 to w, where each 
position is associated to an edge that is part of the tree in question.   

 

 

 
 

 
 

Fig. 3. Codification example 
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Figure 3 presents an example of codification of the spanning tree in an antibody. 
The repertoire of antibodies is formed by n (user defined parameter) spanning trees; 
ambiguity (different antibodies representing the same ST) and infeasible solutions are 
not allowed. 

5.2   The Initial Repertoire 

The initial repertoire is randomly generated, covering the search space with antibodies 
representing feasible solutions. For this procedure, random costs are attributed to 
graph edges and Kruskal algorithm is executed. The process is repeated to complete 
the repertoire. 

5.3   Affinity Measure 

Let T* the MST obtained by Kruskal algorithm. The measure that evaluates the qual-
ity of antibody iT  in relation to others of the repertoire is defined by: 

)(

)(
)(

*

i
i Tcost

Tcost
TAffinity =  . (1) 

The [ ]1,0)( ∈iTAffinity  and as closer are the costs Ti and T* as greater will be its 

affinity.  

5.4   Proliferation 

Antibodies with λ≥)( iTAffinity  are selected for proliferation, considering the affin-

ity threshold ( )1,0∈λ . Then, )( ic Tn  clones, identical to selected father-antibody Ti, 

are generated (Figure 4). The number of clones produced by each antibody is calcu-
lated by the Equation (2). 

 

Fig. 4. Number of clones for each antibody in function to its affinity 
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5.5   Maturation 

Maturation process is based on Almeida and Yamakami [3] proposal. The immune-
inspired concept of proportional inversely mutation to the affinity is also considered. 
The repertoire of clones C is submitted to the affinity maturation process (mutation) 
generating a new repertoire C'. This mutation occurs choosing an edge that composes 
the clone and changing it for another one that belongs to cut set, as shown in the fol-
low sequence (Figure 5): 

                

Fig. 5. The process of maturation with one edge exchange, 1-opt 

The mutation depends on the father-antibody affinity and varies from 1-opt until β-
opt (Figure 6). 

 

Fig. 6. Mutation realized in the clones 

What characterizes the selected mutation is the amount of edges changed in the tree 
(clone). This number is calculated based on the graph of Figure 6:  
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β ∈ N is the maximum number of edges exchanges. 

(3) 

 

The number of clones generated by the antibody and the number of mutations 
realized in the clones depends on the affinity measure. While the number of mutations is 
inversely proportional to antibody affinity, the capacity for generating clones is directly 
proportional. Antibodies with high affinity generate more clones and they are submitted 
to few mutations, because the interest is to intensify the local search. Note that, this 
characteristic improves the intensity of local search. On the other hand, antibodies with 
low affinity are submitted to many mutations and they generate few clones. Therefore, 
the high number of mutations makes possible a great diversification of the solutions, 
promoting a better exploration of the search space. This is an inherent aspect to the 
immune-based approach. 
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5.6   Selection 

The selection procedure of clones is inspired on principles of biological Clonal 
Selection [6]. The choose method is elitist [9], thus, the clone with highest level of 
affinity is privileged. The most adapted clone (with smallest cost) generated by each 
antibody is selected and compared with its father-antibody; only the best one is 
preserved in the repertoire. 

5.7   Diversity 

The maintenance of high taxes of diversity between the candidate solutions is a strong 
characteristic of the natural immune system [6]. Besides, the performance of the pro-
posed algorithm is directly related with the existence of mechanisms that control and 
keep the diversity between the antibodies. A random initial repertoire attends in part 
this requirement. For diversity control during the algorithm iterations, it was proposed 
a metric based on the number of exchanges among edges necessary to transform a 
spanning tree into another one (see graph example G: (N, A), Figure 7).  

 

Fig. 7. Visualization of edges sharing between two trees 

Trees A and B above share between itself three edges; from A to B, it is necessary 
to change {(3,4), (3,5)} for {(4,6), (5,6)}, and vice-versa. So, to evaluate the distance 
between two solutions A and B, it was defined a metric given by the expression (4): 

).()1(),( edgessharedofnumbermBAD −−=  
(4) 

For trees A and B given by Figure 7, =),( BAD (6 – 1) - 3 = 2. Note that, the 
maximum distance between the trees is Dmax = m - 1. Using this equation is possible 
to identify when the repertoire is losing diversity, that is, when the trees have similar 
topologies. This metric gives subsidy to propose a suppression mechanism to avoid 
that many antibodies concentrate only in few promising regions. 

An example for repertoire evolution is observed in the Figure 8. Initially, the anti-
bodies are spread in the search surface. After some iterations, the tendency is that the 
solutions will concentrate on regions of local optimum. However, the presence of 
many antibodies in these regions is not necessary because the capacity of exploitation 
already is high due to the proliferation mechanism. To identify antibodies to be sup-
pressed, a minimum distance that they must have between themselves is calculated. 
Thus, only one potential antibody to represent a determinate region is kept and all 
others are substituted. 
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Fig. 8. Illustration of the suppression mechanism, * k-best spanning trees, • Antibodies 

However, computational cost to verify the repertoire diversity is high, since each 
antibody must be compared with all other ones. Hence, suppression should be applied 
periodically on resultant antibodies of proliferation; in remaining antibodies, this 
procedure is not necessary because they will be substituted by other ones randomly 
generated. Moreover, the suppression allows that new regions can be explored from 
the insertion of these randomly generated antibodies.  

Other considered mechanism is inspired on Natural Selection, because antibodies 
with low affinity, which never were selected for proliferation, should be replaced for 
other ones. This process is in accordance with the concept of Available Repertoire, 
because antibodies were not activated until the moment, but can be used [6]. The 
procedure of antibodies substitution can be understood as an exploration in the search 
space; and the principle of clonal selection provides a local search in different direc-
tions, the exploitation [4]. 

5.8   Memory 

Memory is necessary when a load of current information is available but it is not 
interesting to carry it along the iterations. However, the information should not be lost 
because its content could be important in the future; in this situation, it must be stored. 
When the initial repertoire is generated, the T* got through Kruskal and the k-1 better 
antibodies are placed on the memory (elitism). At the end of each iteration, the mem-
ory, that already contains k antibodies, receives another group with other k ones. Then 
a mechanism of memory update is applied reducing it again to k distinct antibodies. In 
this way, when a promising father is substituted by a better son, the father still has the 
possibility to remain in the external memory, preventing the loss of information. 

5.9   AIS Pseudocode 

T*  ← Find the minimum spanning tree of G 
T   ← Initialize the repertoire with n antibodies (trees) 
f   ← Calculate the affinity for repertoire T 
generation  ← 1 
while stopped criterion not reached do   
   for each antibody Ti  do 
      if affinity(Ti) ≥  λ then 
         Select the antibody Ti to proliferate 
   Calculate nc(Ti) 
   C ← nc(Ti) clones of Ti 
   Calculate Mut(opt) 
   C’ ← Maturation of clones C, in accordance with Mut(opt) 
   fc ← Calculate the affinity for the clones C’ 
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   c* ← Select the best clone of C’ 
   if affinity(c*) ≥ affinity(Ti) then 
      Ti ← c* 
   end - if 
      end - if 
   end – for 
   *Verify diversity (Suppression) 
   Update the memory 
   Substitute not selected antibodies Ti 
   Update f 
   generation ←  generation + 1 
end - while  

6   Computational Experiments 

The AIS was implemented in MATLAB® 7.0, and all tests was executed in a platform 
Celeron® M, 1.5Ghz and 512Mb RAM.  Through tests realized with randomly gener-
ated initial repertoire, for the instances of TSPLIB1, Okada [12] and Ali et al. [2], it 
was observed that the k-best spanning trees found have many shared edges with T*, 
that is, they were in its neighborhood. Therefore, the vaccines concept was used, as 
proposed by Keko et al. [7], in order to improve the algorithm performance. Some 
considerations about the presented general algorithm in the Section 5 are described 
below.  

The biological immune system is also susceptible to other influences as vaccines 
(artificial way to raise the individual immunity). In AIS, the vaccines can be viewed 
as abstract forms of priori knowledge about the problem. Thus, the initial repertoire 
was created around T* in the following way: some edges of T* are randomly selected 
and they are replaced by other ones in order to construct new spanning trees. Since 
the repertoire always are restricted to the region around T*, the antibodies have many 
shared edges with it. So, the diversity control must take into consideration this charac-
teristic, since an antibody is considered distinct if it possess at least one edge different 
of other ones. The suppression was applied only on accurately equal antibodies, re-
moving them from the repertoire and substituting them for other trees generated from 
T*. This same process was used to replace antibodies that never were selected to pro-
liferate.  

The algorithm parameters were adjusted from these considerations and the values 
presented below referring the best test run. In the total, 30 test runs had been per-
formed, with variation of: iterations number, repertoire size, λ, cmin, cmax and β.   

 

1=β : the repertoire and the k-best solutions are restricted to the neighborhood of 

T*, so it is not interesting a high Mut(opt).   
8min =c and 10max =c : in order to improve the exploration, the number of clones 

should be high and the mutation probability should be low. 
85.0=λ : the repertoire affinity is high because the antibodies are around T*. 

Moreover, it was considered k =10, a repertoire with 50 antibodies and a 
maximum number of 60 iterations. The Instances, the number of Nodes, the cost of  
 

                                                           
1 http://www.iwr.uni-heidelberg.de/groups/comopt/soft/TSPLIB95/TSPLIB.html 
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Table 1. Solution found, in the best test run 

Inst. C(T*) Costs of k-best trees found t(s) 
Bayg29 1319 [1319, 1320, 1323, 1323, 1323, 1324, 1324, 1324, 1324, 1324] 11.9 
Bays29 1498 [1498, 1498, 1498, 1499, 1500, 1502, 1505, 1505, 1506, 1506] 8.2 
Brazil58 17514 [17514, 17516, 17518, 17531, 17541, 17554, 17558, 17561, 17568, 17574] 75.1 
Si175 20762 [20762, 20762, 20762, 20762, 20768, 20773, 20774, 20776, 20779, 20783] 114.3 
Swiss42 1079 [1079, 1079, 1079, 1079, 1079, 1081, 1082, 1082, 1084, 1084] 14.8 
Italy 21 2665 [2665, 2665, 2670, 2670, 2670, 2670, 2670, 2675, 2675, 2680] 24.0 
USA 70 16743 [16743, 16744, 16749, 16755, 16756, 16759, 16760, 16761, 16761, 16765] 53.8 

 
the MST (T*), the group K = {1,…, k} of solutions and the execution time are 
presented in Table 1. 

It is important to stand out that the instances presented in Table 1 were also tested 
with randomly generated initial repertoire and the obtained results were similar. How-
ever, they spent more time of execution. It leads to the conclusion that, for these in-
stances, the k-best trees are in a region around T*, so it justifies the use of the vac-
cines concept.  

6.1   New Application Scene 

For all instances mentioned in Table 1, the k-best solutions have many shared edges 
with T*, thus, it was created a new instance to verify the algorithm exploration poten-
tial. A complete graph composed by 29 nodes (fb29) which have two minimum span-
ning trees that share only one edge (Figure 9).  
 

 

Fig. 9. Construction scheme for fb29 and an example for an instance with 5 nodes 

For the edges in common of these two trees, which were used as base for the in-
stance construction, it was attributed cost 1 and the remains received random costs 
between 5 and 10. It is important to point out that there are a lot of spanning trees 
with minimum cost equal to 28, two induced by the construction and others that share 
edges with low cost.  

Again, 30 test runs had been performed, with variation of: iterations number, reper-
toire size, λ, cmin, cmax and β. The initial repertoire and the diversity control were used 
as defined in Section 5. The parameters of the best test run:  

 

5=β , 3min =c , 7max =c . 

17.0=λ : repertoire affinity is not high because the antibodies are well distributed 

in the search space, so the affinity threshold must be low. Many antibodies 
with high affinity arise with the repertoire evolution. To avoid that many an-
tibodies are selected to proliferate, a maximum limit of 35 antibodies was  
established.  
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Table 2. Solution found for fb29, in the best test run 

Inst. C(T*) Costs of k-best trees T(s) 
fb29 28 [28, 28, 28, 28, 28, 28, 28, 28, 28, 28] 80.09 

 
It was considered k = 10, a repertoire with 100 antibodies and a maximum number 

of 250 iterations. The best solution found are showed in the Table 2. 
The instance fb29 also was tested with the vaccines concept, with the same parameters 

used for the instances of Table 1; in this in case, the k found solutions have cost 28 and 
the computational spent time was 17s. However, in this case, the diversity between all 
found solutions is very low because they were concentrated around the T*. On the other 
hand, when it was used random initial repertoire, the found solutions present good diver-
sity and they shared a low number of edges. Table 3 shows the distance D, defined in 
Section 5.7, between each pair of solutions when random initial repertoire was used and 
when the vaccines concept was used, respectively.  

Table 3. Distance between the solutions, for two cases (random initialization, vaccines) 

 k2 K3 k4 k5 k6 k7 k8 K9 k10 
k1 (16, 1) (17, 1) (17, 1) (11, 1) (14, 1) (14, 1) (14, 1) (15, 1) (14, 1) 
k2  (6, 1) (6, 1) (14, 2) (5, 2) (9, 2) (6, 2) (4, 2) (14, 2) 
k3   (6, 2) (15, 2) (7, 1) (9, 2) (7, 2) (8, 2) (11, 2) 
k4    (15, 2) (6, 1) (12, 2) (8, 2) (8, 2) (14, 2) 
k5     (15, 1) (16, 1) (14, 1) (15, 2) (13, 2) 
k6      (13, 1) (8, 2) (7, 2) (13, 2) 
k7       (7, 2) (8, 2) (14, 1) 
k8        (3, 2) (11, 2) 
k9         (12, 1) 

 
For example, the number of distinct edges between solutions k1 (first line of Table 3) 

and k2 (first column of Table 3) was 16 with the random initialization and only 1 with 
the use of vaccines concept. It is evident that the random initial repertoire provides more 
diversity; in this case, the medium distance between the solutions was 10.91. On the 
other hand, when the vaccines concept was used, the average was 1.57.  

6   Conclusions 

The proposed algorithm was efficient and at the same time promising for solving the 
presented problem. Due to the inherent characteristics of the Artificial Immune Sys-
tem, it becomes in a very attractive approach once it have great mechanisms for ex-
ploration and exploitation.  

Repertoire initialization depends on the kind of desired reply. Random initializa-
tion guarantees more diversity between the solutions, but demand more computational 
time for that good solutions can be found. On the other hand, vaccines concept in-
creases the algorithm performance, but it is necessary to take care with the diversity, 
because the repertoire already is initialized with similar antibodies and they remain 
restricted to a region during all the iterations. Moreover, the instance characteristics 
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also can be considered, if the best solutions are concentrated in a region around T* or 
if they are spread in the search space. 

Mentioned techniques as clonal selection, suppression, number of clones and num-
ber of mutations proportional to the affinity influenced a lot to increase the algorithm 
performance. 

The most recent related works are Sörensen and Janssens [14] and Almeida and 
Yamakami [3]. It was not possible to establish a comparison between our results and 
the first mentioned reference, because the paper is a theoretical work and the authors 
did not present computational experiments. In relation to the second reference, it was 
observed that there is similarity between the modal values of the fuzzy costs and the 
results presented in Table 2.  
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Abstract. This paper presents a new selection algorithm based on artificial 
immunologic systems (AIS) and decision theory. The objective of the algorithm 
it to increase the performance of executive decisions by identifying more 
carefully what can be considered an appropriate executive decision to a given 
specific context. The main idea is to mimic the immunologic system, 
specifically the self & non-self detection mechanism. According to our 
proposition, ‘decision cells’ (analogous to immune-cells) are responsible for 
selection of the appropriate executive decisions. In this paper we present the 
motivation, theoretical approach (i.e. the analogy between biological and 
business models), the proposed algorithm and some simulated experiments 
aiming at real situations. 

1   Introduction 

The human being organism is a complex system and his functions depend greatly on 
the effective participation of several subsystems that ought to work together, in a 
collaborative and harmonious way; this is believed to sustain “life”. Among the 
subsystems that comprise this ingenious machine of well-balanced functionalities, we 
observed deeply the human immunologic system. The human immunologic system is 
mainly specialized in defending our organism against infections cased by pathogenic 
agents (e.g., bacteria, viruses, fungi, etc.), [1], [2]. Further investigations on the 
mechanisms that govern essential actions of the human immunologic system 
constitute a challenging theme of research as well as a source of some new 
approaches for solving real problems; here, the immunologic system was the major 
inspiration for this work. 

Similarly to what was commented above, the principle that governs enterprise 
systems is quick response time. That is, reactions at the right time and in the proper 
manner. But this can only happen in the presence of good information, i.e. quantity as 
well as quality. In competitive situations, expedite decision may represent survival or 
death of the organization, [3], [4], [5], [6]. Sometimes, actually, most of times, the 
high-volume of available information turns out to be very expensive for the decision 
process of companies. This happens because it is time consuming to discard all 
unnecessary information for a given decision task. The current trend is for that 
problem to get worse as Management Information Systems (MIS) are ubiquitous, and 
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increasing in number and functionalities. Meanwhile, executive decisions remain 
deprived of selective intelligent support tools. 

Some properties of the human immunologic system, such as the capacity of 
pathogen memorization, the ability to distinguish self and non-self elements, 
decentralization of actions and learning, [1], [2], were seminal for us to suggest their 
relevance to executive information systems. Actually, in spite of the short history of 
Artificial Immunologic Systems (AIS), they are already very useful for computer 
applications in real world problems, [2], and have an increasing number of published 
papers on practical applications, [1], [2], [7]. 

In brief, this work approach is to consider one executive decision as a homeostatic 
response within a given organization, when information is available. This means that 
‘decision cell’ select appropriate executive decisions when the necessary ‘pieces of 
information’ bind appropriately to their ‘receptors’. In the human immunologic 
system, the same happens when antibodies binds to a pathogens. 

This paper is organized as follows. Section 2 describes briefly the theoretical 
concepts that were used in this work, namely, the human immunologic system, 
decision theory, information and decision systems. Section 3 presents the considered 
analogy between the human immunologic system with decision systems and the 
proposed model for selecting of appropriate executive decisions. Sections 4 and 5 
describe experiments, results and conclusions. 

2   Background 

2.1   The Human Immunologic System 

The defense mechanism of human (and other animal) organisms against pathogenic 
agents is carried out by the innate immunologic system. Its functioning is 
continuously improved by adaptive learning. This adaptive defense mechanism is 
capable of memorizing specific characteristics of pathogenic agents, acting 
preventively in future attacks. Working in an intensive and collaborative way, the 
above mentioned mechanism provides immunity against a great deal of infections. 

The non-trivial task of keeping the body secure is made possible by the 
immunologic response of an efficient layered architecture. The innate immunologic 
mechanism is mainly composed of two processes called: (i) phagocytosis and (ii) 
adaptive immunologic mechanism. Both are mediated by specialized cells. The 
former, engulf non-self particle and cells, and the latter recognize and destroy 
antigens, [1], [2], [7], [8], [9], [10], [11], [12], [13]. 

2.2   Information and Decision 

Searching for more suitable ways of decision making is as old as the pre-historic 
period, when man conducted his decisions by analyzing dreams, animal viscera, 
smoke, among other elements, [14]. This necessity has been increasingly elaborated 
through time. Currently, advances in information technology (IT) are of great support 
for supplying those needs, especially in overcoming human limitations, [15], [16], 
[17], [18]. Namely, IT may help on not having emotional decisions and help on 
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overcoming the human brain shortcoming of not be able of dealing with too many 
alternatives (i.e. solution scenarios), [19]. 

Decision making presents two following dimensions: (i) the process dimension, 
which focus is on decision performance (i.e. efficiency) and (ii) the problem 
dimension, which focus is on decision efficacy, [3]. Problem is the core of the 
decision theory. It can be presented in a structured or unstructured manner, the latter 
characterized by unpredictability, uncertainness, need for innovation, non-uniqueness 
of data, among other characteristics. In turn, these problems make the context of 
programmed decisions less relevant than its counterpart, the non-programmed 
decision. Where qualitative parameters compose the majority of executive decisions, 
[3], [5], [6], [15], [16], [20]. 

An important point that must be taken into account is also the culture of the 
enterprise, [4], [5], since it cannot be inherited, but is developed and is transferred by 
those who comprise the environment, that is, it is unique and innate for each 
organization. Decision can be seen as resolution, determination or deliberation, [10], 
to assume predictable risks with responsibility. According to Chiavenato, [3], decision 
is the action of analyzing alternatives and choosing one among the available ones, 
desirably, in real time, [20]. 

For William Starbuck, resident Professor of the Charles H. Lundquist College of 
Business, University of Oregon, “decision implies the end of deliberation and the 
beginning of action”, [14]. 

2.3   Information Systems 

The quality of a decision is directly proportional to the trustworthiness of its data, [5], 
[21]. Stratification of information inside of an organization, [6], can be represented as 
the model shown in Fig. 1. In this model, quantitative information is gradually replaced 
by qualitative one and structured problems are also gradually replaced by unstructured 
ones, where impact of strategic decisions may be crucial to the fate of the business. 

It is import to highlight that professional skill distribution within the organization 
is directly proportional to the intrinsic capacity of solving more complex problems 
and whose decisions present more risks for the survival of the enterprise as a whole, 
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Fig. 1. Stratification of information within the organization (the tip of the tetrahedron represents 
the executive level) 
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[3],[6],[22]. This becomes easier to understand as we classify decisions in operational, 
tactical and strategic decisions in relation to their short-, medium- and long-term 
effects, respectively. 

Products of information systems are always associated with decisions, [17], and for 
each level of information there are specific systems, as it follows: 

 

• In the operational level, repetitive data are to be treated based on hard 
rules (i.e. transactional systems); 

• In the tactical level, data synthesis deriving from transactional systems, 
such as report form, is usually the fundamental tool. Sometimes, some 
external information about clients, suppliers becomes necessary; 

• In the strategic level, where decisions are predominantly non-repetitive 
and unpredictable, new approaches have to be considered regularly. In 
such level there are a few requirements to be observed, they are flexibility 
and adaptability in the presence of fast scenario changes, and desirably 
intuitive interface, graphic and textual support. These features guide the 
permanent search for modern and adaptive techniques to supporting 
executive decision making. Here is precisely where AISs can contribute 
significantly, [3], [16], [17], [23], [24], [25]. 

 
In general terms, information systems are developed to attend organizational 

objectives and are composed of input, transformation and output components. In this 
framework, a repository for storing-recovering data and information, models of 
representation of real problems, and an intuitive user interface are essential for its 
usability, [5], [17]. 

In this context, simple internal data and those which were transformed on 
information are considered as the knowledge of the enterprise about a specific 
segment, where reutilization of these stored information can be seen as specific 
memory lymphocytes that will perform quickly on future support for decision 
making, [17]. 

The main commercial techniques applied to implementations of decision support 
systems are the following: (i) statistical methods, (ii) decision tree, (iii) artificial 
neural networks and (iv) fuzzy logic. Choosing one of these methods depend, mainly, 
on the problem features. Specifically, fuzzy logic is the closest technique to our 
approach as they present some features centered in man. In general, the mentioned 
techniques are based on quantitative data used to construct executive indicators. Our 
approach uses qualitative data to directly generate appropriate decision cells. In this 
sense, there are not similar works with such a purpose. 

3   The New Approach 

3.1   Analogy Between Biological and Organizational Models 

In this paper we introduce the concept of Immunedecision.1 We define it as the set of 
appropriate responses for information that propitiate the ‘decision-homeostasis’ with 

                                                           
1 Immunedecision is a neologism, created to better illustrate the hidden connection between 

immunology and decision theory. 
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in the enterprise. As decisions are composed by the following six elements, [3]: (i) the 
decision maker; (ii) decision objectives; (iii) preferences of the decision maker; (iv) 
decision strategy; (v) environmental aspects; (vi) decision consequences. Fig. 2 shows 
a macro-vision comparison of biological and organizational systems. We correlate 
them in order to draw some inspirations from biology. Notice that in both systems 
external inputs trigger internal responses. In the proposed approach the immune 
response, as pathogens arrive, is equivalent to the necessity of an appropriate 
decision. 

 

Fig. 2. Domains of the two identified analogous systems: (left) the biological and (right) the 
organizational 

Further issues identified in the analogy between biological immune system and 
information systems and their fundamental characteristics are detailed as it follows: 

 
• In biology as in organizations, systems work normally in harmonious, 

integrated and collaborative way; 
• Immunologic responses (as executive decisions) are unique for each 

individual. Various factors such as environment and market are  decisive 
in each case; 

• Fungi, viruses, bacteria and parasites are pathogenic agents for the 
immune system, such as internal and external information are the external 
element that trigger decision making; 

• Pathogenic agents instantiate immunologic actions, such as information 
instantiate decision actions, that is, homeostatic decisions; 

• Lymphocytes, macrophages and leucocytes correspond to possible actions 
that can be carried out by directors, managers and supervisors; 

• Phagocytosis correspond to the process of knowing, analyzing and 
decompose an information for future decision making; 
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• Immune system performs efficiently against infections avoiding possible 
harms, in the same way appropriate decisions may promote good 
consequences to the organization; 

• Antigens can not trespass through the epidermis, the first defense barrier, 
in the same manner that external information that keep that way (i.e. that 
do not enter the organization) do not trigger any decision action; 

• The work of the innate immunologic mechanism on phagocytosis can 
correspond to specific decisions for structured problems; 

• Multiple antigens detections can occurs in the body simultaneously 
without the need of a central control mechanism. The same happens with 
simple decisions that can be made (i.e. detection, analysis and action) in 
any of the three levels of an organization structure; 

• Detections based on affinity are carried out by the immune system based 
on a number of ‘non-self’ patterns if this number is greater than a 
specified threshold. This corresponds to decision making without 
complete knowledge about all needed aspects of the decision; 

• Generation of diversity of lymphocytes receptors can be seen, in the 
organizational domain, as the use of scenarios creation techniques. This is 
of fundamental importance for supporting decisions; 

• Immune system learns pathogens structures to propitiate future quick 
responses against these agents. The same happens as in new decisions 
opportunities, when the decision maker can make good use of  new 
information and prior knowledge; 

• As ability of recognizing ‘self’ and ‘non-self’ is vital in the immune 
system, selection of relevant information for solving a problem is also 
vital in the business world; 

• Performance in response of the immune system is not attached to any 
particular process such as phagocytosis, affinity maturation, etc., but it is 
due to a well integrated sequence of processes. Decision responses in 
organizations are judge to obey the same rule; 

• Transactional systems are intimately associated with the daily routines of 
an enterprise. This is believed to be similar in innate immune system.   

3.2   Characteristics of the Proposed Model 

The proposed model, introduced in this paper, aims at developing an appropriate 
information selection system for supporting executive decision making. The 
algorithm is based on the negative selection algorithm. This reunites AIS and decision 
theory; the previous section explains why we judge they are complementary.  

Fig. 3 shows a model for the proposed architecture, where the repository database 
(DB) stores quantitative indicators of self performance for an enterprise, those, 
derived from transactional systems and external information. 

A major problem that can be tackled by our approach is to minimize the 
undesirable fact that most other approach requires, that is need of complete 
information [5] [6]. Additionally, our approach tackles another difficult aspect of 
executive decision systems, that is, the ill-posed logic attached to those systems.  
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Fig. 3. Overview of the proposed Architecture 

 

Fig. 4. Information encapsulation according to the hierarchy of concept 

In Fig. 4, the encapsulation of information can be seen as a hierarchy of concepts, 
they are: category (Cg), component (Cp) and element (Et) [26] [27].  According to 
[28], this principle is central to best representing information for decision making. We 
find that, together, these concepts are equivalent to the receptors of an antigen. Here 
we refer to them as ‘decision receptors’. They are needed for the computation of 
affinity (refer to section 3.3).  

We propose that the decomposition of a decision problem into its decision 
receptors is highly necessary for the mapping of solutions to the various decision cells 
(Dc). Each decision cell is then composed of n decision receptors. The higher the 
affinity with the problem the most receptors are matched. In Fig. 5 we shown the 
analogy of lymphocytes and decision cells (refer also to Fig. 4).  

In the repository database (DB) are also stored collections of Cg, Cp, Et and decision 
memory (Dm) that correspond to the decision cell approved by the decision maker. 

Our proposed algorithm is made of two distinct stages (see Fig. 6). In the learning 
stage, strategic information is stored in DB (for instance: consuming market, 
suppliers, technology, etc.). With this information the decision maker will generate 
the first decision cells. Thpese cells make the initial repository of self cells for future 
generalizations that propitiate a secondary answer (similar to immunological system) 
in future company expositions to information that have originated these cells.  
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Fig. 5. Analogy between Lymphocyte and Decision cell (left and right, respectively) 

In the operation stage, the decision maker requests to the system a decision cell of a 
specific type (for instance: to buy, to sell, to transform, etc.). After generation and 
presentation of the most appropriate cell, the decision maker may be requested (not 
always) to decide whether it is self or non-self. In the affirmative case, the generated cell 
is added to the pool of memory cells. Also at this stage, new cells of memory can be 
created. 

The non-linear characteristic of the system emerges from diversity of stored 
decision receptors that propitiates a better generalization through the increasing 
number of memory cells. 
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Fig. 6. Stages of the proposed system 

3.3   Computations Within the Proposed System 

The pseudo-code for execution of Appropriate Executive Decision (AED) is 
presented in Fig. 7 and its principle is based on the negative selection algorithm, 
modified for the real condition of work. Hamming distance is used to evaluate the 
affinity of the cells. Three parameters, predefined by the decision maker, are supplied 
at this stage for generation of cells, where:  

•   a – represents the type of cell that will be created; 
• ε – represents the minimum affinity threshold that n cells generated  

         randomly in the interval [1, n], where n is equal to the number of memory  
         cells, should have in relation to each original memory cell; 
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•  εc – represents the minimum crossed affinity threshold that each cell should  
          have in relation to other original cells; 

The growth of ε represents a larger similarity between the memory cell and n 
generated cells, and the growth of εc represents the similarity level in relation to other 
memory cells. This strategy assures a larger reliability of the cell that will be 
presented to the decision maker, since εc < ε In our proposal, we adopted the values 
of ε and εc in the interval [1,10]. 

The function r, given by (1), represents the reliability of the produced answer, 
defined in function of: nε - number of cells that attend ε, and  nεc – number of cells 
that attend εc (nεc is a subset of nε); r varies in the interval [1-100] and represents the 
degree of the appropriateness of a candidate decision. 

2

2

*2

)(
exp

c

c

n

nn
r

ε

εε −−=  (1) 

AED(a, ε, εc)//Appropriate Executive Decisions(AIS-based) 
a: decision type 

ε: affinity threshold 
εc: cross affinity threshold 
// Learning stage 

While decision maker is not satisfied 

   Input nm decision memory cells (by decision maker)   

// Operation stage 

While decision maker is not satisfied 

    While ε is not satisfied 

        Generate na decision cells in the interval {1, n}  

    End While 

    While εc is not satisfied 

        Present decision cell that satisfies εc  

    End While 

    Evaluation of r   

    If decision cell is approved by decision maker 

       Save decision cell as a decision memory 

    End If 

End While  

Fig. 7. Pseudo-code for the AED-AIS Algorithm 
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4   Experiments and Results 

To illustrate our approach we conceived one application where seven (actual) decision 
makers, responsible for purchases and sales contributed with their views on ‘how to 
decide about good bargains’. Based on that, we have created sound initial decision-
cells, they can be seen in Table 1.  

Table 1. Initial memory cells used as a basis for future purchases (they were provided by real 
people) 

Decision Memory Decision Receptors 

Dm1 Price, stock, cash, quality, support 

Dm2 Price, stock, cash, quality, period 

Dm3 Price, stock, payment, quality, demand, period, supplying 

Dm4 Price, stock, cash, climate, market, seasonality 

Dm5 Price, stock, cash, profit, demand 

Dm6 Price, warranty, service, quality, demand, period, support, attendance 

Dm7 Cost, stock, cash, return, demand  

The algorithm presented in the previous section was implemented and a simple 
graphic interface was prepared for testing our ideas. This application was utilized for 
the insertion of all decision receptors, of all 7 memory cells during the initialization of 
the system. 

In the operation stage, the same decision makers (mentioned above) were invited to 
use the system, which has generated decision cells that could be approved or rejected 
by them. Table 2 contains results produced after intensive use of the system; each line 
is an example of a generated decision (cell) by the AED-AIS. Notice that their 
‘receptors’ were not in any arrangement previously known. However, they are 
organized in such a way that, collectively, they are within boundaries of affinity that 
may be sound to executive users.  

Three examples of generated decisions, presented in Table 2, may now be re-
visited by the decision makers (i.e. they may be customized as appropriate decisions). 
The first one, despite the fact of a very low reliability, an actual decision maker 
considered the generated cell as appropriate. The second one, because of the 
increment of accepted cells, despite of the generated decision cell be of high 
reliability, the consulted decision maker is entitled to consider it as non-appropriate. 
Finally, in the third example, a cell of high reliability was generated and it was in 
deed accepted by the decision maker.  

The column nmemory, represents the number of cells stored and competent for future 
decisions and the column "yes/no” represents the power of personal inference of the 
decision maker on the system. 
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Table 2. Results of generated decision cells after intensive use of the system 

Decision Type εεεε εεεεc nmemory nεεεε nεεεεc r (%) Yes / No 
3 2 7 25 7 4 Yes 

Purchase 
Price, stock, cash, supplying, market, profit 

7 3 8 21 17 97 No 
Purchase 

Price, stock, payment, quality, demand, period, supplying 
3 1 8 32 27 98 Yes 

Purchase 
Price, stock, cash, market, service, seasonality  

The parameters presented in Table 3 were used in the experiments carried out for 
validation of reliability; results are presented in Fig. 8. Notice the slow decay of the 
reliability as cell numbers are increased.  

Table 3. Parameters used experiment 

Parameter Value / range 
a Purchase 
Ε Set [2,7] 
εc Set [1,7]  for εc < ε 

Memory cells [1,7] increased by interaction 
Total of presented samples 111 

 

 

Fig. 8. Evolution of the reliability in function of cell number (x-coordinate is sample number; 
y-coordinate is reliability) 

After analyzing the graph presented in Fig. 8, we highlight: 
 
1. System reliability stays close of 100% at the major part of the experiment,  
     except in intervals where the system does not generate crossed cells, that is,  
     points with high values of  ε e εc; 
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2. For values with reliability less than 100%, (e.g. sample 44, 59, 74) the number 
of crossed cells is smaller than of decision cells, ratifying the low reliability 
presented; 

3. Between sample 1 and 90, number of memory cells were increased in steps of 1 
unit. Notice that the growth of the number of memory cells increases the number 
of crossed cells and propitiate a larger reliability of the system. The growth in 
the number of memory cells acts like the secondary answer supplied by the 
artificial immunological systems. 

5   Conclusion 

This paper presented a new approach for selecting appropriate executive decision. 
The algorithm was inspired upon negative selection. A comprehensive analogy 
between human immune system and decision systems was presented as well.  

The experiments show that the proposed intelligent algorithm is able to produce 
new instances of what we refer to as decision cells (in a clear reference to 
lymphocytes).  The operation of the algorithm relies on a set of primordial decision 
that is kept as memory cells to guide the selection of new appropriate decisions. The 
reliability of generated decision cells, as an indicative of how appropriate information 
is, presented a marked increase growth as a function of number of memory cells. In 
addition to this, reliability values tune-up very quickly according to specific executive 
decisions domains. This is good because as we discussed earlier, decision maker 
preferences vary greatly. 

We understand that some other aspects should be considered and further 
investigated. Namely, (i) how much learning of the system is dependent on the 
decision maker ability to provide good primes (i.e. on make good decisions); (ii) the 
possibility to gather good prototypical good decisions (as in a public repository for 
specific decision domains); (iii) how important is the number of memory cells to drive 
decisions in a more appropriate manner. 

We conclude by highlighting that the fast adaptation and convergence of the 
proposed algorithm are strong indications that such a system can be modified to be 
used in selecting appropriate executive decisions in real organizational environments. 
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Abstract. Contemporary signature-based intrusion detection systems are 
reactive in nature and are storage-limited. Their operation depends upon 
identifying an instance of an intrusion or virus and encoding it into a signature 
that is stored in its anomaly database, providing a window of vulnerability to 
computer systems during this time. Further, the maximum size of an Internet 
Protocol-based message requires a huge database in order to maintain possible 
signature combinations. To tighten this response cycle within storage 
constraints, this paper presents an innovative artificial immune system (AIS) 
integrated with a multiobjective evolutionary algorithm (MOEA). This new 
distributed intrusion detection system (IDS) design is intended to measure the 
vector of tradeoff solutions among detectors with regard to two independent 
objectives: best classification fitness and multiobjective hypervolume size. AIS 
antibody detectors promiscuously monitor network traffic for exact and variant 
abnormal system events based on only the detector’s own data structure and the 
application domain truth set. Applied to the MIT-DARPA 1999 insider 
intrusion detection data set, this new software engineered AIS-MOEA IDS 
called jREMISA correctly classifies normal and abnormal events at a relative 
high statistical level which is directly attributed to finding the proper detector 
affinity threshold. 

1   Introduction  

Signature-based intrusion detection systems (IDS) detect attacks by discovering exact 
matches between incoming data and an anomaly database of known attack string 
signatures. Their reactive nature and storage-limited database allows for example only 
a subset of the 25665535 harmful signature combinations to be catalogued for future 
detection after an attack. Compounding this situation is the trend of exact and variant 
nefarious signatures since 2001 reflecting exponential growth [15]. This situation 
helps to conceptually define an application domain known as the intrusion detection 
problem.  
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Intrusion detection (ID) can be viewed as the problem of classifying network 
traffic as normal (self) or abnormal (non-self). Researchers in this area have 
developed a variety of intrusion detection systems (IDSs) based on statistical 
methods, neural networks, decision trees, and artificial immune systems (AISs). For 
example, various AIS approaches for IDS have been developed and evaluated, and are 
compared [9]. But, more effective and efficient IDS approaches are required. Our 
objective is to develop and evaluate a new innovative IDS approach integrating a 
multiobjective EA (MOEA) with contemporary AIS techniques. Performance of the 
resulting IDS is statistically addressed.   

The intrusion detection method of choice is the artificial immune system (AIS) 
because the IDS architecture is similar to the human biological immune system (BIS): 
a parallel and distributed adaptive system [9] for detecting and destroying antigens. 
An AIS-based IDS attempts to classify network traffic as either self or non-self by 
evolving a population of antigen detectors (antibodies) based upon training data. A 
randomly generated set of immature detectors is created and exposed to normal 
network traffic (self) for a user-specified amount of time.  If a possible detector 
(string) matches within some distance measure a self packet then the detector is 
removed; this is called negative selection [12].  If a detector matches a threshold 
number of non-self packets (antigen) during the learning phase as exposed to self and 
non-self traffic, it can be employed as an intrusion detector; this is called co-
stimulation.  Those detectors that receive co-stimulation are promoted to memory 
detectors in IDS memory space and are assigned a longer life time. Memory detectors 
that invoke stronger (secondary) responses are assigned longer life times when they 
match more memory detectors. Note that this describes a simplified AIS model. Many 
variations exist [9]. 

The IDS method of signature string evaluation is analogous to the consensus string 
problem for a specified error metric. A consensus string of a set by definition is based 
upon the consensus error that minimizes the sum of the distances between it and all 
other strings in the set [14]. This problem defines our IDS problem classification to be 
Nondeterministic Polynomial time (NP)-Hard [4]. This inability to find an optimal 
matching string in polynomial time possibility leads to the inability to solve ID 
problems in real-time IDS operations. Because signature-based IDSs are of this 
combinatoric nature are quite large, it becomes infeasible to find optimal solutions in 
polynomial time. Thus, one should consider a stochastic approximation approach as 
found in an evolutionary algorithm (EA) which possesses an ability to generate 
acceptable solutions in polynomial time. We integrate a multiobjective EA (MOEA) 
with contemporary artificial immune techniques resulting in an innovative and 
validated software engineered IDS [7].  The goal and objectives of this investigation 
are defined in Section 2, the IDS design in Section 3, with experimental results and 
analysis in Section 4. 

2   Goals and Objectives 

With an AIS architecture selected, a MOEA approach was chosen for IDS integration. 
The MOEA is appropriate because the consolidation of information into a single 
aggregated objective tends to lose data granularity and offer the decision-maker only 
one solution versus a set of trade-off solutions. The AIS-MOEA combined IDS 
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reflects a new proof-of-concept algorithm that advances the existing work of two 
AIS-motivated algorithms: Edge, Lamont and Raines’ retrovirus algorithm 
(REALGO) [5,10] for its ability to escape local optima, with regard to string 
matching, and Coello and Cortés’ multiobjective immune system algorithm (MISA) 
[2] for its initial employment of an AIS in a multiobjective EA context. 

Our hypothesis is that the conceptual integration of REALGO and MISA can 
evolve an improved AIS-inspired multiobjective evolutionary algorithm (MOEA) for 
intrusion detection [9,11]. The MOEA should provide a set of tradeoff solutions for 
the decision maker with regard to the measurement of two independent objectives that 
seek a global best: highest network traffic classification fitness and selection of 
MOEA detectors based upon best multiobjective hypervolume1 performance. Thus, 
the specific goal is composed of two objectives: 

 

   1. Attain the highest correct classification rate possible. A heuristic-based positive  
       value is assessed for any outcome, increasing the fitness score based upon the  
       highest classification fitness. The higher a detector’s effectiveness, the lower the  
       value of this objective’s sum score; that is, minimize the classification error rate. 
   2. Maximize a detector’s hypervolume size relative to the affinity threshold. Research  
       shows detector effectiveness is impacted by hypervolume of a particular size [1,18].  
       Detectors are desired that do not stray too far from the pre-determined negative  
       selection affinity threshold; hence, lower deviation scores are desired.  
 

The first objective seeks the highest detection and classification effectiveness rate 
of Intrusion detectors. The methodology can generate two types of errors: false-
positives (referred to as Type-I) or false-negatives (referred to as Type-II) errors. 
False positives are declared conditions or findings that do not exist, such as indicating 
that a normal event as abnormal. False negatives are failures to recognize a condition 
that existed, such as declaring an abnormal event as normal. This results in 
unrecognized and uninhibited harm in a system. Higher scores resulting from false 
detections are heuristically determined based on the type and intensity of the 
detector’s error; hence, we desire the lowest overall score possible for the detector 
population which translates into its highest effectiveness. 

Regarding the second objective, the lower values are directly related to finding the 
smallest number of required detectors. Detector size, should not be too high as to 
react to normal traffic and not too low as to not react to abnormal traffic. Hence, in 
addition to classification fitness, we also desire a detector size deviation value as 
close to zero as possible. 

To support the analysis and tradeoff of the two measurable objectives, the 
combined integration of REALGO and MISA into a Java environment based upon 
sound software engineering principles is required including the development of an 
associated distributed architecture.  

By definition, multiobjective algorithms produce multiple solutions which may not 
be optimal for each individual objective [1]. By adjusting one solution for greater 
optimality, we risk decreasing the desired value of one or more other solutions. Thus, 
we desire a set or subset(s) of nondominated solutions through Pareto Optimality 
(P*). A solution is considered Pareto-optimal (in a global-minimum context) if each 

                                                           
1 Hypervolume: an experimental measure of the quality of Pareto front approximations [1,18]. 
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of its objective’s values is less-than-or-equal to all solution point objective values and 
it has at least one value, in any objective, smaller than any other solution point’s value 
for that objective. This set of Pareto-optimal points represents the Pareto Front (PF*) 
of fittest (non-dominated) detectors that is provided to the decision-maker. This set 
gives that person more options in selecting solution points for future ID domain 
employment based on the classification-to-hypervolume tradeoff depicted by the true 
PF*. Note that a MOEA usually finds only an approximation to PF*. Upon 
termination of the algorithm, two vectors should compose each objective’s score for 
the set of surviving “acceptable” detectors in the entire population, where each 
detector is an approximate P* solution. 

3   High and Low Level Design 

Our IDS algorithm is developed through the methodical integration of a foundational 
AIS framework and a generic MOEA structure with operator modification due to the 
architectures of REALGO and MISA [1,7]. The design approach should employ good 
software engineering practice. Timmis and De Castro define a standardized AIS 
framework where the engineered solution is application domain-specific (see Figure 
1) [3]. This framework can be thought of as a layered approach. The basis for such an 
AIS begins with the pre-defined application (problem) domain, which governs the 
method of representation. Once chromosome data structure representation (e.g., bit 
string, real-valued vector, length, etc.) is decided, one or more affinity measures are 
used to quantify interactions of the system’s elements; e.g., Hamming distance 
measurements applies to bit string representation while Euclidian distance is applied 
to real-valued vectors. The top layer, immune algorithms, encompasses those 
functions that govern the behavior (dynamics) of the system; e.g., method of 
mutation, selection, evaluation, etc. Addressing these layers leads to our engineered 
domain-specific solution. 

AIS

Solution

Application Domain

Immune
Algorithms

Affinity Measures

Representation

 

Fig. 1. Timmis’ AIS framework [3] 

3.1   Application Data Domain 

The application domain is composed of week one and two of the MIT-DARPA (LL) 
1999 insider intrusion detection data set [13] because it currently constitutes the 
largest publicly available benchmark of network traffic [8] and is normally used in the 
literature for evaluating IDS. The first week consists of normal (self)-only traffic, 
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facilitating negative selection. The second week totals 7.2 million packets composed 
of 99.25% self and 0.75% labeled attacks (non-self).  These sets are partitioned for 
training/learning and testing.  

3.2    Antigen and Antibody Representation 

The data structure that composes each antigen (Ag) data set record and antibody (Ab) 
detector chromosome is a fixed integer array with binary allele values that define the 
chromosome’s location in the search space. This data structure was selected due to 
operator efficiency and moreover because it was (conveniently) the same type 
employed by both REALGO and MISA. 

The Abs for network intrusion are generated and trained in the same manner as in 
anti-virus detectors [16]. However, network intrusion Ags are longer and segregated 
because they utilize the IP packet structure for its template. For this reason, we 
constrain our ID domain to encode Ags from network packets wrapped in the three 
most common IP protocols utilized by non-self: TCP, UDP and ICMP. Note that these 
protocols are embodied in the MIT-DARPA data. Decimal-value header information 
from each incoming Ag’s packet header field is encoded into its binary equivalent and 
concatenated to the end of its string. Hence, each Ag’s IP ∪ (TCP ∨ UDP ∨ ICMP) 
header results in a Ag TCP, UDP or ICMP binary DNA chromosome, respectively 
(see Figure 2). The intent is to employ all subfields within a specific protocol. All 
experiments performed involved all possible fields of the TCP, UDP, and ICMP 
headers, to fully evaluate the IDS algorithm’s pattern-matching effectiveness. This 
means each TCP Ag was 240 bits, each UDP Ag was 170 bits and each ICMP Ag was 
138 bits long. 

From a microbiology perspective, Ab chromosomes by design are composed of 
three parts: its DNA (binary), RNA (binary) and seven state attributes (integer) (see 
Figure 3). Its DNA is generated by negative selection and the only portion of the Ab 
to be computed against the Ag. Its RNA is its DNA replica, facilitating the REALGO 
method of escaping local optima through RNA reverse transcription modeling [5,10]. 
If the mutated DNA results in a higher fitness than the previous time, its DNA is 
replicated to its personal memory space called RNA. If the fitness is worse, the DNA 
reverts to its last best fitness RNA to purpose mutation “in a different direction.” 
Finally, there are seven parameters: λ  name, α  number of false detections, ρ  

 (true positive + true negative) fitness score, φ   (false positive + false negative) 

fitness score, η   deviation from negative selection defined affinity threshold 

(determining volume), β   broadcasted (yes/no), ψ   number of Abs that Pareto-

dominate this Ab. 
Because our DNA is composed of a bit string data structure, the affinity measure of 

choice is the Hamming distance (Equation 1). Hamming distance is chosen over the r-
contiguous bit rule, Euclidian, Manhattan, or other measures because the algorithm is 
pattern-matching the entire context of each Ag packet vs. particular contiguous IP 
fields [7,8].   
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Fig. 2. Ag chromosomes are formed through IP (shown), TCP, UDP and ICMP packet header 
field decimal values 

Parameters = 7 array elementsAb DNA = 240 elements
RNA copy of Ab =

240 elements

Random binary values

= 1= 3 = -2= 38 = 126= 20 = 210110010110 α βφ η ψλ ρ

 

Fig. 3.  Ab chromosome (DNA ∪ RNA ∪ parameters) 

Distance measurements such as Hamming may not reflect the total semantical 
representation of IP data [6].  However, their use supports an efficient exploratory 
search of the fitness landscape and in our case the multiobjective landscape, 
attempting to generate “good” detectors of non-self.  

3.3   Immune Algorithm 

Integrating REALGO’s RNA transcription into the evaluation operator and the MISA 
framework, including its evaluation, selection and mutation operators, the pseudocode 
for our algorithm named jREMISA (Java retrovirus-inspired MISA)   was developed 
as shown in Algorithm 1.  Note that REALGO and MISA do not employ crossover 
because of the sufficiency of mutation to move Abs throughout the objective search 
space. Also, crossover can breakup good detector “building blocks.”   

In understanding jREMISA, consider lines 3-7 of Algorithm 1, which consists of 
negative selection where Abs are randomly generated and evaluated against every Ag 
of a self-only day of traffic, given a predefined affinity threshold percentage. If an Ab 
reacts to self, it is discarded without replacement. In doing this, we are assured that 
the remaining population at algorithm termination does not react to a single packet of 
the day’s traffic. Post-negative selection consists of Algorithm 1, lines 8-19. These 
lines are reflected in the diagram of Figure 4, where each Ag entering the evaluation 
window represents a new generation. We partition our primary population (popp) by 
IP protocol for two reasons: efficiency is increased by evaluating the Ag only against 
a subset of popp and pattern-matching becomes more relevant,; that is, TCP, UDP and 
ICMP do not all share the same chromosomal structure, as their IP fields differ; 
hence, it doesn’t make sense to compare a TCP Ab to a non-TCP Ag. 
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1 procedure jREMISA 
2 begin 
3 repeat 
4      Randomly generate initial TCP, UDP, or ICMP Populations (Pp) 
5      Initialize empty secondary Population (Ps) 
6      negative_selection(Pp,data_setclean,threshold)      /* Evaluation 1 */ 
7 until (end of data_setclean) 
8 repeat 
9      fitnessFunction (ag)                                            /* Evaluation_2 */ 
10      mutationCauchy(Pp) 
11      P_optimality()                                                    /* Evaluation_3 */ 
12      clonalSelection(0.05) 
13      mutationUniform(Ps) 
14      Pp  Ps                                 /* copy best of Ps as next gen’s Pp */ 
15      if (networking) 
16           broadcast(Ps)                  /* offer nondominateds to all AISs */ 
17           processReceived()                              /* Any captured Abs? */ 
18      endif 
19 until (end of data_setattack) 
20 end 

Algorithm 1. jREMISA AIS-inspired MOEA 

TCP Antibody Pool UDP Antibody Pool ICMP Antibody Pool

1010101011010001110101

01010101110110101010100101010111011010101010 0101010111011010101010

Data set
stream

Encoded ICMP Antigen Encoded UDP Antigen Encoded UDP Antigen

Random UDP
Antibody

Sliding window

All UDP Abs
(Ag)

Extracted attack
truth set

 

Fig. 4.  Transient (data set) Ags evaluated against its IP protocol-matching Ab 

When the Ag enters the window, the following process occurs (per jIEMISA, 
Algorithm 1): 

•   FITNESS FUNCTION (line 9): Hamming distance H is computed between the 
Ab and Ag DNA signature. Combined with the affinity threshold and truth set 
informing whether this Ag is self or non-self, one of four outcomes results: 

o True negative (Ag Ab self): penalize first objective (obj1) fitness +=  
 H, copy DNA to RNA, reward second objective (obj2) += 1%; 
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o True positive (Ag Ab non-self): penalize obj1 += (Aglength – H),  
 copy DNA to RNA, reward obj2 += 1%; 
o False negative (Ag self, Ab non-self): falseDetections++, revert  

 DNA to RNA, penalize obj2 -= 1%; 
o False positive (Ag non-self, Ab self): falseDetections++, revert  

 DNA to RNA, penalize obj2 -= 1%. 

Both true negative and positive outcomes are penalized because, if true negative, H 
should ideally equal zero. If not, obj1’s value is increased by the number of 
complimentary alleles (H). If true positive, then H should ideally equal the length of 
the Ag. If not, obj2’s value is increased by the number of non-complementary alleles; 

•   CAUCHY MUTATION (line 10): REALGO uses Cauchy mutation to move  
         Abs around the landscape in a more exploratory mode than found with a  
         Gaussian distribution.  Mutation is performed on all penalized Ab alleles; 

•   P*-TEST (line 11): all Abs undergo a Pareto-optimality test to determine the  
         number of Abs each is dominated by. Quicksort then sorts them in ascending  
         order using this number; 

•   MISA’s CLONAL SELECTION PRINCIPLE (lines 12-14): elitist selection  
          copies the top 5% of nondominated Abs from their popp to their respective  
          secondary (or external) population (pops) meant to contain only nondominated  
         Abs. Copied Abs are cloned to 600% the pops size. All copied and cloned Abs  
         are then mutated in n-random allele positions, where n is the number of 
         objectives (two) plus their Pareto-dominance value. Continuing, any popp Abs  
         lost to reaching the max number of false detections is replaced by the fittest Abs  
         from the pops in order to return the popp to its original size. Finally, the pops is  
         culled for only nondominated Abs; 

•   AD-HOC NETWORKING (distributed, but optional): if enabled, newly  
  discovered nondominated Abs copied to the pops are broadcast to the distributed  
  subnet where listening jREMISAs capture and add to their pops only if it  
  dominates their entire pops (see Figure 5).  Since AIS detectors are rewarded for  
  correct classification and detection even in a distributed IDS, an AIS can  
  broadcast its detectors (fittest/elite, random, …) to the other AISs for possible  
  inclusion into their local population. This process defines one generation and  
  recurs for the number of data set packets. Various migration techniques can be  
  employed [1]. 

3.4   Measures 

The number of detectors generated depends upon the “optimal” affinity threshold 
found. Being multiobjective, each of our solutions (Abs) contains a set of two values: 

 1. an integer measure of how effectively they classify between self/non-self; 
 2. an integer measure of their affinity threshold (hypervolume) deviation 
 from the starting affinity threshold defined at negative selection. 

A global minimum is desired because: a) a higher fitness value means more penalties 
have been assessed for incorrect classifications; b) an Ab hypervolume should deviate 
as little as possible from the experimentally derived ideal affinity threshold of 39%  
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Fig. 5. jREMISA distributed communication architecture 

[7]. The hypervolume Pareto compliant indicator is defined as the area of coverage of 
the known Pareto front with respect to the objective space for a two-objective MOP; 
that is, a hyperarea. This equates to the summation of all the rectangular areas, 
bounded by a user-defined reference point in objective space and points on the known 
Pareto front [1]. 

The software engineering of jREMISA in design and implementation used various 
paradigms; Model-View-Controller, UML Class Diagram, and Design Patterns [7]. 
jREMISA was developed in the Eclipse2 open-source Integrated Development 
Environment (IDE) which provides a variety of excellent software design tools. This 
environment provides for ease of use with any application data set, selection of IDS 
algorithm  parameter values, and visualization of IDS analysis.  

4   Experimentation and Analysis 

The Java development of the combined jREMISA Java package was evaluated over 
separate REALGO [6] and MISA [5] test functions which validated proper execution 
[4]. The design and implementation of a friendly user interface permits ease of use for 
application ID data representation, jREMISA parameter selection, experimental 
execution, visualization of results and analysis.   

The detector training process uses the first two weeks of the 1999 corpus: the first 
week of self only traffic to negative-select our Abs and the complete second week of 
insider-only labeled attacks to develop the effectiveness of the trained Abs. The 
reality of jREMISA and based upon the intrusion detection objectives of Section 2, 
indicates that the evaluation experiments can easily be divided into two elements: 

 

1. Compare jREMISA effectiveness measurements against the LL data set in 13 
  scenarios: 10 standalone, involving all days of week two, and 3 distributed 
  island model executions in a two-, three- and four-jREMISA configuration; 
 
                                                           
2 The Eclipse project, www.eclipse.org 
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2. Statistically compare  jREMISA against another IDS algorithm applied to the 
 same data set with experimental details known. 

In the distributed configuration, four computers with Windows XP Professional 2002, 
Service Pack 2 were used: 

•   PC1: Dell Inspiron 710m laptop, 2 GHz Pentium-M, 2 GB of RAM; 
•   PC2: Dell XPS laptop, 3.4 GHz Pentium-4 HyperThreading, 1 GB RAM; 
•   PC3: Dell Precision laptop, 1.8 GHz Pentium-4, 512 MB RAM; 
•   PC4: Dell Optiplex GX270 tower, 2.6 GHz Pentium-4, 512 MB RAM. 

Mapping the LL truth set of labeled-attacks to Ethereal3-analyzed five days of 
labeled attacks, 16 context-based attacks are extracted (Figure 6); attacks are fairly 
distributed in both time of day and day of week, varying in size of packets. Figure 7 
indicates the trend of total event activity to non-self activity for each day. 
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Fig. 6. LL 1999 week-two insider data set landscape with labeled attacks 
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Fig. 7. MIT-DARPA “1999 week-two insider” landscape quantification 

                                                           
3 Ethereal: open-source network protocol analyzer, www.ethereal.com 
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In comparing our results to Williams’ Warthog or CDIS [16, 17], the surviving 
TCP popps should be in the range of Warthog’s experimentally-employed Abs: 
between 32 and 2048. Table 1 shows that this Ab range requires the affinity threshold 
between 37-42%. In Table 2, scenarios 1-6 show our Ab effectiveness based on each 
threshold. Since scenario 4 has the combined highest classification and lowest false 
detection rate, we use that 39% threshold to compare it to the remaining days of the 
week (scenarios 7-10). In Table 3, we employ this same threshold to the distributed 
tests, differing only by the number of partitions in the data set decomposition. Other 
researchers have also analyzed the MIT-DARPA (LL) 1999 insider intrusion 
detection data set with different IDSs, limited viewpoints, and lack of published 
experimental details.  Thus, it is currently difficult to compare results. 

Figure 8(a) represents scenario-four, TCP pops. The PF* is provided for all three 
populations for each MOEA execution. Its intent is to show the tradeoff between each 
Abs fitness score and affinity threshold deviation. For all five days of the week, all 
three pops PF* had Abs in the +(4-5)% range 73% of the time. In addition, Abs are 
concentrated in this same range 87% of the time. Figure 8(b) shows an attack graph 
where each Ab plots its classification declaration for each attack. The x-axis indicates 
the outcome while the y-axis represents the packet number, mapping the attack. Here, 
there are no points on the false positive side for two attacks, indicating a 0% false 
positive rate for LL attack #26 and #29. While not shown, jREMISA also discovered 
LL attacks #7 and #22. 

Table 1. Negative selection results for all popp starting at 4096 for Friday data set (1,467,775 
packets) 

Affinity 
(%) 

Runtime 
(mins) End TCP survived End UDP survived End ICMP survived 

37 186.65 2663 65.015% 3737 91.235% 3707 90.503% 
38 124.20 1563 38.159% 3372 82.324% 3513 85.767% 
39 89.17 935 22.827% 2890 70.557% 3290 80.322% 
40 45.27 357 8.716% 2275 55.542% 2700 65.918% 
41 26.43 126 3.076% 2000 48.828% 2344 57.227% 
42 16.28 34 0.830% 1431 34.937% 1997 48.755% 

Table 2. MOEA run summary: standalone jREMISA 

Self Events Non-self
Events 

Scen-
ario

Day Gener- 
ations

Affinity 
Threshold 

TCP
Pop

UDP
Pop

ICMP
Pop

Runtime True 
Neg%

False
Neg%

True 
Pos%

False
Pos%

1 Thurs 1547710 42% 37 86 248 39.12 m 53.78 46.22 62.6 37.4 

2 “ “ 41% 106 116 284 52.48 m 67.44 32.56 68.33 31.67 

3 “ “ 40% 315 146 341 3.61 hrs 76.10 23.90 76.92 23.08 
4 “ “ 39% 966 361 810 18.21hrs 85.45 14.55 97.66 2.34 
5 “ “ 38% 1580 423 881 2.36 day 86.48 13.52 92.51 7.49 
6 “ “ 37% 2564 462 927 5.83 day 82.52 17.48 99.71 0.29 
7 Mon 1737455 39% 969 349 846 20.02 hr 85.36 14.64 99.90 0.10 
8 Tues 1571748 “ 922 362 882 18.86 hr 84.61 15.39 97.35 2.65 
9 Wed 995235 “ 920 333 798 11.69 hr 83.37 16.63 98.26 1.74 

10 Fri 1347393 “ 964 376 829 13.43 hr 83.59 16.41 96.57 3.43  



 An AIS-Inspired MOEA with Application to the Detection 431 

Table 3. MOEA run summary: distributed jREMISAs against Thursday data set 

Self
Events 

Non-self 
Events 

jREMISA
ID

Packet
range 
(1547709 
total)

TCP
Pop

UDP
Pop

ICMP
Pop

Runtime True 
Neg%

False
Neg%

True 
Pos%

False
Pos%

Scenario 11: 2 jREMISAs, 39% affinity threshold, Thursday attack data set 
PC1 1 – 773854 966 361 810 9.44hr 
PC2 773855 – 

1547709
936 344 854 9.63hr 86.21 13.79 98.10 1.90 

Scenario 12: 3 jREMISAs, 39% affinity threshold, Thursday attack data set 
PC1 1 – 515903 966 361 810 5.09hr 
PC2 515904 – 

1031807
936 344 854 6.35hr 

PC3 1031808 – 
1547709

951 357 826 6.86hr 
84.31 15.69 97.94 2.06 

Scenario 13: 4 jREMISAs, 39% affinity threshold, Thursday attack data set 
PC1 1 – 386927 966 361 810 4.33hr 
PC2 386928 – 

773854
936 344 854 4.63hr 

PC3 773855 – 
1160781

951 357 826 4.86hr 

PC4 1160782 – 
1547709

954 360 822 5.09hr 

84.94 15.06 98.55 1.45 
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Fig. 8. MOEA post-execution: (a) TCP pops PF*; (b) attack graph: two attacks found with 0% 
false positive rate 

Figure 9 graphically depicts Table 2 with classification and false detection ratios 
having 5% variance due to the multiple trials run of the same scenario to maximize 
statistical accuracy. Figure 10 and Figure 11 summarize the results of the distributed 
phase of our experiments. In Figure 10, a graphical depiction of Table 3, one 
discovers that the sharing of nondominated Abs among jREMISAs did not 
conclusively show a synergistic increase in effectiveness when compared to the 
standalone classification ratio, although the two-PC configuration fared better.  Figure 
11 shows the increase in efficiency as more jREMISAs participated. Upon the  
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Fig. 9. jREMISA standalone effectiveness against each day of the week-two insider attack data 
set 

Standalone vs. Distributed Effectiveness: Thursday attack data set
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Fig. 10. Standalone vs. distributed effectiveness against the week-two Thursday insider attack 
data set 

Stand-alone vs. Distributed Efficiency: Thursday attack data set
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Fig. 11. Data decomposition-based distributed execution: efficiency vs. number of executing 
jREMISAs 

completion of either phase—negative selection or MOEA—jREMISA saves the 
resulting population, Pareto Front and attack graph values to a formatted XML file. 
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Figure 12 shows how our algorithm does better than Warthog with regard to the 
false detection rate as the number of Abs are increased for the week-two Thursday 
data set. With Warthog, as the number of Abs increases, so does the false positive 
rate. However, our experiments show that as the Abs are increased, the false positive 
rate decreased. Therefore, jREMISA is relatively more effective than Warthog with 
respect to the same benchmark data set processed in a similar fashion. 
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Fig. 12. False positive error rate trend: (a) Warthog  vs. (b) jREMISA 

5   Conclusion 

REALGO and MISA were successfully migrated to Java and integrated via software 
engineering principles into jREMISA, a distributed computational IDS system. The 
two IDS performance optimality objectives (classification, hybervolume) and thus the 
design goal were validated based on jREMISA experimentation. This integrated 
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algorithm achieved an average 83.37-85.45% self classification and 96.57-99.90% 
non-self classification rate for a 39% affinity threshold. We observed a patterned Ab 
hypervolume between 0-5% above this threshold (making their hypervolume 39-44%) 
and Ab broadcasting and receipt. In addition, jREMISA performed better in at least 
one way over another using the same data set. It detected four attacks, ranging from 
one to 10401 non-consecutive packets, with a 0% false positive rate. From this 
successful effort, the jREMISA IDS development is presented as an initial attempt 
and possibly the first at attempting to validate an AIS-inspired MOEA applied to the 
ID problem domain. The use of MOEAs shows promise regarding improvement to 
contemporary AIS IDS via performance tradeoffs. 

By design, jREMISA is advocated as an open-source software engineered IDS 
permitting collaboration, improvement, modification, and multiple data set testing, 
with performance analysis tools. With appropriate experimental details forthcoming 
from other IDS investigations (using for example an AIS, Neural Network, SVN, 
Bayes decision tree, k nearest neighbor approach, …), comparison to other results 
with the MIT-DARPA data sets is suggested. Other jREMISA possibilities include 
completing the KDD Cup 99 data set facilitation and analysis, integrating Ab 
self/non-self geometric hypershapes, exploring advanced negative selection 
methodologies, using and comparing other affinity measures with jREMISA, adding 
more real-world objective functions and constraints, and analyzing performance 
evaluation using other MOEA metrics. 
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