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Abstract. Since Swanson’s introduction of literature-based discovery in
1986, new hypotheses have been generated by connecting disconnected
scientific literatures. In this paper, we present the general discovery
model and show how it can be used for drug discovery research. We
have developed a discovery support tool that employs Natural Language
Processing techniques to extract biomedical concepts from Medline titles
and abstracts. Using semantic knowledge, the user, typically a biomedi-
cal scientist, can efficiently filter out irrelevant information. This chapter
provides an algorithmic description of the system and presents a poten-
tial drug discovery. We conclude by discussing the current and future
status of literature-based discovery in the biomedical research domain.

1 Introduction

The amount of scientific knowledge has grown immensely during the past cen-
tury. Science expands constantly because scientists continue to be curious about
the world that surrounds them. If a scientist has found something new, he imme-
diately wonders what its implications are, and tries to formulate new hypotheses
that he subsequently tests, which leads to new insights and discoveries. The fact
that Nobel prizes, the most prestigious appraisals for scientists, are awarded to
people who make breakthrough scientific discoveries, shows that discovery is at
the heart of science.

The study of discovery in science, characterized by Valdés-Pérez as the “gen-
eration of novel, interesting, plausible, and intelligible knowledge about the ob-
jects of study” (Valdés-Pérez, 1999), is an interesting one. Questions arise as
to what the prerequisites are for discovery in terms of existing knowledge and
data gathering. How does a scientist recognize patterns in data and how does he
define generalizations or even laws? Also, once new facts have been discovered,
how does he disseminate and communicate these to other researchers, and how
do his colleagues react and integrate this new knowledge?

Research into artificial intelligence has tried to analyze and mimic these pro-
cesses. Some computer systems are able to simulate the discoveries of natural
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laws based on a database of observations, see (Simon et al., 1997) for a short
overview. Also, computer systems have been developed that assist the human sci-
entist in the scientific discovery process. Both Valdés-Pérez and Langley discuss
a wide variety of systems such as MECHEM (catalytic chemistry), ARROW-
SMITH (biomedicine), GRAFFITI (graph theory), DAVICCAND (mettalurgy),
and MPD/KINSHIP (anthropological linguistics) that have successfully been
used to assist in the creation of new scientific knowledge (Valdés-Pérez, 1999;
Langley, 2000).

One of the characteristics of increasing scientific knowledge is that individ-
ual scientists have to interpret vast amounts of existing knowledge and acquire
specialist skills before they are able to contribute to their scientific domain by
discovering new knowledge. Additionally, keeping abreast of the latest develop-
ments in order to integrate newly created knowledge with his own research is
not a trivial task for a scientist. Simon et al. (1997) state that scientific publi-
cations, as a public blackboard, is the principal instrument for the cumulation
and coordination of scientific knowledge. Swanson has shown that it is possi-
ble to use scientific publications to generate new knowledge in the context of
literature-based discovery.

This chapter describes our reseach in literature-based discovery (Weeber,
2001). Our goals are three-fold. First, we integrate Swanson’s generic discovery
model (Swanson, 1986) with Vos’s drug discovery model (Vos, 1991). Second, we
use advanced natural language processing (NLP) to efficiently analyze the scien-
tific literature, and third, we develop a tool that may assist researchers in their
scientific discovery process. In this paper we will discuss the discovery models,
NLP techniques, and the tool in a case study on discovering new applications
for the forty year-old drug thalidomide.

2 Models of Discovery

Since 1986, Swanson and his colleague Smalheiser have continuously made dis-
coveries in biomedicine by connecting disconnected knowledge structures, see
(Smalheiser & Swanson, 1998) for an overview. The premise of their approach is
that there are two bodies, or structures of scientific knowledge that do not com-
municate. However, part of the knowledge of one such a domain may complement
the knowledge of the other one.

Suppose that one scientific community knows that B is one of the character-
istics of disease C. Another scientific group (discipline, or knowledge structure)
has found that substance A affects B. Discovery in this case is making the im-
plicit link AC through the B -connection. Figure 1 depicts this situation, see also
(Swanson & Smalheiser, 1997).

Vos’s model of discovery uses the concept of drug profiles interacting with dis-
ease profiles. A profile of a particular drug consists of all the effects it has in the
human body. Some of them are intended, or wished for, i.e. the drug has specif-
ically been developed with these characteristics in mind, others are not wished
for. Vos calls all effects the operational functional characteristics of a drug.
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Fig. 1. Swanson’s ABC model of discovery. A, B, and C are general concepts. The
relationships AB and BC are known and reported in the literature. The implicit rela-
tionship AC is a putative new discovery.

Standard drug development involves the optimization of the wished for char-
acteristics together with a minimization of the negative operational functional
characteristics, or adverse effects. However, the not wished for characteristics
can be viewed positively in a different context (Vos, 1991; Rikken & Vos, 1995;
Rikken, 1998).

A well-known example is the anti-hypertensive drug minoxidil. Some patients
developed extra hair growth as a not wished for result. Women, for instance, may
value this negatively, especially if it concerns facial hair growth. In the different
context of baldness, stimulation of hair growth is beneficial. Interestingly, the
manufacturers of minoxidil did register male pattern baldness as a new indication
for minoxidil. Consequently, hair growth became a new wished for characteristic.

A disease profile consists of a cluster of relevant signs and symptoms, or in
other words, the characteristics of the disease. Vos defines the process of drug
discovery as the rapprochement of the drug and the disease with respect to their
profiles. The more characteristics are relevant to both, the more promising the
drug is for treating the disease (Vos, 1991).

Figure 2 shows how Vos’s model can be considered as a specification of Swan-
son’s general model in a drug discovery context. The characteristics of the profiles
in Vos’s model are the intermediate Bs in Swanson’s model. The profile for drug
A, for instance, may include the therapeutic characteristic (B) of “reduction of
oxygen demand” whereas “increase of oxygen demand” may be a characteristic
of disease C (Vos, 1991). Or, patients with Raynaud’s disease (C ) have the char-
acteristic of elevated blood viscosity (B). One of the characteristics of dietary
fish oil (A) is blood viscosity reduction (Swanson, 1986).

3 Discovery Space

There are two approaches to discovery that we have named as open and closed
(Weeber et al., 2001). The closed discovery starts with known A and C. This may
be an observed association, or an already generated hypothesis. The discovery
in this situation concerns finding novel Bs that may explain the observation.
In the model, the letters A, B, and C refer to general scientific concepts that
researches use.
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Fig. 2. Vos’s and Swanson’s model of discovery combined. The linking of a disease
profile to a drug profile may be used to find the therapeutic application (disease) C
for the drug A through pathways (therapeutic characteristics) B4 and B5.

The open discovery process starts in the knowledge structure in which the
scientist takes part (A). The first step is to find potential B -connections. These
will likely be found within his domain. The crucial step, however, is from B to
C which is most likely outside the scientist’s scope, and might therefore be in
any point of the knowledge space of science. Or even outside that space.

We can illustrate this with the similarity of a person’s social life. In a contin-
uously growing world population (total science), our main character (A) knows
an increasing but limited number of persons (B). Keeping up to date with his
social structure is not a trivial task for A. Knowing the social structure (C ) of
any B -person included in his own structure is impossible. Our main character
will not know all his friends’ friends.

A closed discovery process starts with an initial hypothesis that A has some
association to C. The nature of this association is unknown or not fully under-
stood. The goal of the closed approach is first to unveil new possible explanations
for an AC association, and second to provide an evaluation of the strength of the
association. The likely outcome of the closed approach is to either strengthen or
to reject the AC association.

Similar to Swanson, we define discovery in biomedicine as connecting dis-
connected structures (or disciplines or domains) of biomedical scientific knowl-
edge in biomedicine. Note that just any science can be selected, the discovery
model holds true for any discovery space. The literature of the selected disci-
pline, biomedicine in our case, is the most comprehensive and accessible format
of scientific knowledge in which experimental results, facts, theories, models,
and hypotheses are reported. Discovery by connecting different structures im-
plies connecting different (collections of) scientific texts. We therefore pursue
literature-based discovery.
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A system that supports literature-based discovery should have the potential of
exploring the complete knowledge space. Because we have selected biomedicine
as our scientific discipline, we use MEDLINE, the most comprehensive biomedi-
cal bibliographical database with over 11,000,000 citations as the representation
of the knowledge universe in which discoveries may be made. Each citation con-
sists of at least a title. In many cases, an abstract is available as well. Also, other
bibliographic information is included, such as authors, journal, date of publica-
tion, and keywords (called Medical Subject Headings, or MeSH). Using PubMed
(http://www.pubmed.gov), the online interface to MEDLINE, and using NLP
techniques, we have developed a discovery support tool called Literaby to explore
this vast space.

The definition of the discovery space allows us to specify the model letters
A, B, and C used in the model. Swanson uses MEDLINE titles, therefore, the
model letters are (combinations of) title words. As our implementation of the
model is concept based, the letters are represented by biomedical concepts (see
next section).

Literaby implements both the open and the closed approach to discovery.
In the open discovery, it first analyzes the literature of the starting point: A.
Selecting interesting terms, the literature on these B -terms is downloaded and
analyzed to find the final C -term. In the closed discovery, both the literatures
on A and C are downloaded and analyzed to search for interesting overlapping
B -terms to strengthen (or reject) the initial AC -hypothesis. In most cases, an
open discovery concerns generating a hypothesis that is evaluated in a closed
process.

4 Text Analysis

Swanson’s first discovery of the probable therapeutic effects of fish oil on patients
with Raynaud’s disease (Swanson, 1986) was a coincidence (Swanson, personal
communication). He was asked to study the literature on the Inuit diet. Fish is
a main ingredient of this diet, and the effects of fish oil on the the cardiovascular
system in Inuit has been studied. Reduced blood viscosity and blood platelet
aggregation, and certain vasoreactive characteristics were observed in Inuit.

In another context, Swanson had been studying the literature on Raynaud’s
disease. From this literature he had learned that patients with this disease have a
relatively high blood viscosity and increased platelet aggregation function. Also,
they were characterized by certain vasoreactive phenomena.

Combining the knowledge from two contexts, he hypothesized that the ac-
tive ingredients of fish oil, omega-3 fatty acids, may help Raynaud’s patients.
With this hypothesis in mind, he studied the literatures both on fish oil and on
Raynaud’s disease to find out that there was no overlap at that time (1986).
Using the model of disconnected bodies of biomedical knowledge, he published
a second hypothesis that magnesium insufficiency is involved in migraine. No
one had pointed this out in the literature, while Swanson found eleven indirect
connections in the literature (Swanson, 1988).

http://www.pubmed.gov
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The first two discoveries were done by extensive manual searching in litera-
ture databases and reading many titles and abstracts of scientific publications.
Since 1988, Swanson has used computational text analysis tools to assist him in
studying the literature. These tools have evolved into a discovery support tool
called ARROWSMITH (Swanson & Smalheiser, 1997).

In ARROWSMITH, the user can upload a file of Medline titles on A and
on C (an implementation of the closed approach). The tool provides a list of
overlapping Bs. Additionally, the context of the Bs can be viewed in a juxtaposed
(AB next to BC -sentences). The list of B -terms is potentially very long, and
filtering is needed. The current analytic approach is to use an extensive stop
list, a list of words such as determiners and adverbs that are considered non-
relevant. Also, words with a too general biomedical meaning are included in
this list. The stop list has mainly been compiled during rediscovering his first
discoveries, incorporating expert knowledge from users.

Gordon and Lindsay used a more principled analytic approach based on word
frequency (lexical) statistics used in Information Retrieval (IR) research (Gordon
& Lindsay, 1996; Lindsay & Gordon, 1999). In addition to MEDLINE titles, they
use the abstracts of citations as well. Gordon and Lindsay emply the statistics to
find a rank-ordered list of potentially relevant words. They use the most highly
ranked words to walk through their open discovery approach.

Gordon and Lindsay are able to replicate Swanson’s first two discoveries. Gor-
don and Lindsay (1996) use specific measures and provide a likely explanation
why these techniques work in the Raynaud–fish oil case. However, when applied
to the migraine–magnesium case, the same statistics fail and different ones had
to be used (Lindsay & Gordon, 1999). Therefore, there still does not exist a
unifying, principled lexical statistical approach.

Our approach to the analysis of titles and abstracts of scientific publications
is to use advanced NLP techniques to identify biomedical concepts in text. The
Unified Medical Language System (UMLS)® (Lindberg et al., 1993) provides
the largest biomedical thesaurus to date: the Metathesaurus®. The Metathe-
saurus provides a uniform, integrated distribution format from over 60 biomed-
ical source vocabularies and classifications, and links many different names for
the same concept. Over 700,000 biomedical concepts are represented with over
1,500,000 text strings.

The use of concepts has several advantages. First, different textual representa-
tions, i.e., spelling variants, synonyms, derivations, and inflections are all linked
to one concept. For instance, IL-12, IL12, interleukin 12, CLMF, cytotoxic lym-
phocyte maturation factor(s), and natural killer cell stimulatory factor(s) refer
to the same concept: Interleukin-12. Second, many biomedical ideas or concepts
are expressed by more than one word. Finding meaningful multi-word terms in
text is non-trivial in NLP. Different word statistical strategies may be employed
(Weeber et al., 2000b), and results always include noise. By using concepts,
we select only existing, biologically meaningful, ones. We employ the MetaMap
program (Rindflesch & Aronson, 1994; Aronson, 1996; Aronson, 2001) to find
UMLS concepts in natural language text.
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The most important reason to use concepts, however, is the availability of the
UMLS semantic classification scheme. Each concept has been assigned to one
or more semantic categories. There is a total of 134 categories including ”Dis-
ease or Syndrome”, ”Gene or Genome”, ”Amino Acid, Peptide, or Protein”.
The concept Thalidomide, for instance, has been assigned the semantic types
”Organic Chemical”, ”Pharmacologic Substance”, and ”Hazardous or Poisonous
Substance”. At different stages of the discovery process, we can select only cer-
tain semantic types to filter the output of the text analysis. For instance, if we
are looking for diseases in text, we select only the semantic type ”Disease or
Syndrome” which will result in a list of disease concepts extracted from natural
language sentences. Figure 4 on page 300 provides a part of the interface to
semantic filter in our discovery system. We provide a more extensive overview
of the our text analysis techniques in (Weeber et al., 2001).

Hristovski et al. (2001) also use a concept-based approach. They use MeSH
keywords added to Medline citations. The UMLS provides co-occurrence tables
of major MeSH keywords. Using these frequency data, Hristovski et al. (2001)
apply association rules to compute the most interesting associations. In an in-
teractive interface, the user, typically a biomedical scientist, can quickly assess
these associations. In this book, Hristovski and his collegues show how their
system can be used.

5 Literaby

Literaby, our current, web-based, discovery support tool has evolved from our
first tool called the DAD -system (Weeber et al., 2000a). The acronym DAD
expands to Disease – Adverse Drug Reaction – Drug, or the other way around.
It represents our interest in drug discovery. The new version, Literaby, shows
that our analytic approach can be generalized. Other changes are that the query
generation phase is now fully automated, and the interface for presenting the
bibliographic evidence has been overhauled.

The underpinnings, however, have not been changed. This section provides
an algorithmic overview of the semi-automated discovery process. The high level

Table 1. High level description of the Literaby system

GIVEN: Current version of Medline, Metathesaurus
INPUT: text string A

1. open discovery phase: generating a hypothesis
a. From A to B using the Algorithm 1 (automatic)
b. User selects most promising B -concepts based on computer output and literature
c. From B to C using Algorithm 2 (automatic)
d. User selects most promising C -concepts:these are the putative new discoveries
2. closed discovey phase: evaluating a hypothesis (Algorithm 2)

OUTPUT: Set of concepts C that have likely new connections to A through B
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Table 2. Literaby Algorithm 1: one step in the open process

GIVEN: Current version of Medline, Metathesaurus
INPUT: text string A

1. Find set of concepts SA for text string A in Metathesaurus
2. Find textual variants SA-VAR for SA using MetaMap
3. Find titles and abstracts A-CIT in Medline query composed of SA-VAR
4. Find ALL-B concepts in titles and abstracts of A-CIT using MetaMap
5. Select set of concepts SEN-B from ALL-B that co-occur in sentences with SA
6. User forms a semantic filter FILT-B by subsetting the 134 semantic categories
7. Apply semantic filter FILT-B to SEN-B to retrieve set of concepts SB

OUTPUT: Set of concepts SB

Table 3. Literaby Algorithm 2: closed process

GIVEN: Current version of Medline, Metathesaurus
INPUT: text string A, text string C

1. Find set of concepts SA for A, SC for C in Metathesaurus
2. Find textual variants SA-VAR for SA and SC-VAR for SC using MetaMap
3. Find citations A-CIT and C-CIT in Medline using SA-VAR and SC-VAR, respectively
4. Find ALL-AB concepts in titles and abstracts of A-CIT using MetaMap
5. Find ALL-BC concepts in titles and abstracts of C-CIT using MetaMap
6. Select set of concepts SUB-AB from ALL-AB that co-occur in sentences with SA
7. Select set of concepts SUB-BC from ALL-BC that co-occur in sentences with SC
8. Select potential concepts POT-B such that SUB-AB = SUB-BC
9. User forms a semantic filter FILT-B by subsetting the 134 semantic categories
10. Apply semantic filter FILT-B to POT-B to retrieve set of concepts SB

OUTPUT: Set of concepts SB

description is presented Table 1. The user starts with an open discovery process.
He starts with his term of interest, for instance, a drug. The system then tries
to find concepts that are in some way related to this drug using algorithm 1
(Table 2).

Algorithm 1 maps the initial query string to biomedical concepts, and ”back-
translates” this concept to all synonyms and textual varians that are available in
the natural language text of Medline. Literaby formulates the query to PubMed,
the online version of Medline and retrieves the citations that matched the query.
Literaby also takes care of finding concepts in these citations through MetaMap,
and finally assists the user in selecting a semantic filter (or use a predefined
one).

The output of Algorithm 1 is a set of concepts that have some (user defined
semantic) relationship with the starting text string. In case of a drug, typical



298 M. Weeber

B -concepts are processes that are a likely biologic actions of this drug. The user
selects a few most promising ones, basing his selections on expert knowledge,
and assessing the bibliographic evidence provided by Literaby.

The next step is a replay of Algorithm 1, but now with the B -concepts as
input, and likely C -concepts as output. Typical C -concepts in the case of drug
discovery are diseases or pathological processes. Again using the available biblio-
graphic information, the user selects the most interesting C -concepts to start the
second phase of the discovery process, the CLOSED discovery using Algorithm 2
(Table 3).

With this algorithm, the user tries to evaluate the generated hypotheses in the
open discovery process. The main idea is that the more relations (Bs) there are
between A and C, the more plausible the association AC is. In the next section,
we illustrate the use of Literaby to assist scientists by following the discovery of
new potential therapeutic applications for the drug thalidomide (Weeber et al.,
2003).

6 Literaby and Thalidomide

Between 1959 and 1961, thalidomide was a popular over the counter sedative.
Devastating teratogenic effects led to withdrawal from the market only a few
years after its introduction. In recent years, however, interest in thalidomide
has intensified based on its reported anti-inflammatory and immunomodulatory
properties. In 1998, the FDA approved thalidomide for the indication of ery-
thema nodosum leprosum, an inflammatory manifestation of leprosy. Addition-
ally, thalidomide seems to have beneficial effects on ulcers and wasting associated
with HIV infection.

The first step (A in the discovery model) is to identify concepts in the UMLS
that are related to thalidomide. Entering the string thalidomide results in a
list of 33 concepts that map to this string. Figure 3 depicts part of this list.

By using the hierarchy of the thesaurus we not only find the concept Thalido-
mide, which is the generic name of the drug, but also the brand names, which
are children concepts in the thesaurus, and the chemical description of the com-
pound. The user has the option to (de)select these concepts, and then proceeds.
Employing MetaMap, Literaby maps the concepts back to their textual variants
to automatically generate and execute a query to PubMed. For instance, the text
string thalidomide maps to the concept Thalidomide. The UMLS provides us
the drug brand name, among other ”thalidomid”, ”supidimide” and ”sedoval”.
These brand names are included in the PubMed query.

The resulting citations are downloaded and analyzed to extract concepts from
the titles and abstracts, if available. After this step, the user is involved again;
the B -concepts have to be selected. For this, the user’s expert knowledge is
needed. In this case, we collaborated with an immunologist, because the newly
registered application involves the immune system. We hypothesized that we
might find new therapeutic applications through thalidomide’s apparently suc-
cessful immunologic pathway modulation. Literaby presents the semantic filter
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Fig. 3. The search string thalidomide in the UMLS Metathesaurus resulted in 33
concepts, for instance, different chemical names for the substance, but also brand names
for the drug

to the user, where he can choose from a the list of the 134 categories or semantic
types (Fig. 4).

At this stage, we only select the semantic type of ”Immunologic Factor”,
and Literaby returns a list of 93 immunologic factors that co-occur in sen-
tences mentioning a textual representation of the concept Thalidomide. Figure 5
shows the twelve most frequent ones. The domain expert selected Interleukin-12
(IL-12) as the B -concept of potential interest. Clicking on the button before the
concept, the user may see the sentences in which this B -concept co-occurs with
thalidomide. For Interleukin-12, we observe sentences such as:

– Inhibition of IL-12 production by thalidomide.
– Thalidomide potentially suppressed the production of IL-12 by PBMC [. . . ].
– Thalidomide-induced inhibition of IL-12 production [. . . ].

Indeed, it appears that thalidomide’s inhibitory effects on IL-12, together with
the reported stimulatory effect on IL-10 production, seems to be the mechanism
of how thalidomide favors the differentiation of T-helper 0 (Th0) immune system
cells into T-helper 2 (Th2) cells by blocking differentiation of Th1 cells. Our
hypothetical model of action (Weeber et al., 2003) suggests that patients with,
in particular, auto-immune diseases may benefit from thalidomide treatment.

Using Interleukin-12 as the selected B -concept, we downloaded all citations
from PubMed that include (variants of) IL-12 in either title or abstract. The
resulting citations were MetaMapped to UMLS concepts, and Literaby provides
the user again with the semantic filter. At this stage, we looked for C -concepts,
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Fig. 4. The semantic filter of the discovery support tool Literaby. There are 134 se-
mantic types that the user may select.

disease concepts in our case. We selected the semantic type ”Disease or Syn-
drome”, which resulted in a list of 420 diseases that co-occur with IL-12. After
a partly automated filtering process, (see Weeber et al. 2003), we studied the
sentences that related IL-12 to the reduced set of diseases. Examples are:

– IL-12 [. . . ] expression in mononuclear cells in response to acetylcholine
receptor is augmented in myasthenia gravis.

– Possible involvement of IL-12 expression by Epstein-Barr virus in Sjögren
syndrome.

– Acute pancreatitis patients had serum concentrations of total IL-12,
IL-12p40, and IL-6 significantly higher (p < 0.05) than those of the healthy
subjects.

– Expression of B7-1, B7-2, and IL-12 in anti-Fas antibody-induced pulmonary
fibrosis in mice.

The previous sentences indicate that IL-12 is overexpressed in these diseases.
Studying the sentences, their complete abstracts, and sometimes even the online
full text papers, we hypothesized for twelve diseases that thalidomide might be
a useful therapy through its inhibitory effects of IL-12. These twelve hypotheses
were the starting point of twelve closed discovery processes Literaby downloaded
and analyzed each of these C -literatures. The discovery process consisted of
finding (a lack of) overlapping immunologic B -concepts to strengthen (or reject)
the initial hypotheses.

Using chronic hepatitis C (CHC) as an example, the semantic filter, again
set to ”Immunologic Factor”, provided us with a list of 60 immunologic factors,
presented in a similar way as Fig. 5. We find additional citations in the CHC
literature that IL-12 is augmented in patients with this disease. Figure 6 provides
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Fig. 5. Top of the list of immunologic factors that co-occur in sentences with the
Thalidomide

the interface in which the bibliographical information on thalidomide–IL-12 and
IL-12–CHC is juxtaposed. In one overview the user can assess the AB and BC -
information to infer the hypothesis AC .

In addition to IL-12, we also find the concept Tumor Necrosis Factor (TNFα).
It is widely known that thalidomide inhibits TNFα through mRNA degradation.
It turns out that CHC is characterized by increased levels of TNFα. Thus, we
have strengthened our initial hypothesis that thalidomide may be used in CHC
by elucidating an additional potential pathway.

In the closed discovery processes, we were able to find strong bibliographical
evidence that supports the hypotheses that thalidomide may be a therapeutic
drug for helicobacter pylori-induced gastritis, acute pancreatitis, chronic hep-
atitis C, and myasthenia gravis. For the latter three serious diseases, there is
no known cure or therapy. The bibliographical findings merit experimental and
clinical studies that should provide information on the cost/benefit trade-off of
effects and side effects of thalidomide in these diseases.

7 Discussion

In the presented example, the discovery was made by human scientists supported
by a tool for analyzing huge amounts of text. We do not regard, or pursue,
literature-based discovery as an automatic process. The reason for this is that
expert knowledge is indispensable in studying the output of the support system,
not only to filter out non-interesting information but also to assess potentially
contradicting information.



302 M. Weeber

Fig. 6. Bibliographic information that suggests that chronic hepatitis C may benefit
from thalidomide through IL-12 inhibition. The left column shows sentences in which
A (thalidomide) and B(interleukin 12) concepts co-occur, the right column shows the
relevant sentences for B and C (chronic hepatitis C).

For instance, there is one MEDLINE citation that co-mentions thalidomide and
myasthenia gravis and it claims that thalidomide is not effective in Lewis rats
with myasthenia gravis. This information potentially refutes our hypothesis that
thalidomide may be benefical for patients with this disease. However, the expert
provided the knowledge that Lewis rats have an altered immune system. Conclu-
sions based on these experiments may therefore not be transferred to a human
context. We think it impossible to model such domain knowledge in a discovery
system. Even if it is possible to model knowledge to such detailed extent, one has to
consider that the model should comprise the total biomedical knowledge available,
as this is the knowledge space in which literature-based discovery takes place.

The second reason why we do not pursue automated discovery is that it will
result in just another database, in this case one of hypotheses. How to make a
decision as to what hypothesis to test experimentally? Again, human experts are
needed to decide. Some bibliographically well founded hypotheses may not be
interesting to test. For instance, since thalidomide has some severe side effects,
a clinical application may only be interesting in severe diseases or diseases for
which there is no treatment at all. We concur with Smalheiser (2002) who views
a literature-based discovery approach not as a replacement but as an added
value to current hypothesis driven experimental research. Smalheiser envisions a
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research environment in which informatics tools make hypothesis-driven research
more efficient and productive.

There is some scepticism towards literature-based discovery and its potential
for scientific research. Results are considered too obvious and once a hypothesis
is proposed, people might say “it’s logical” or “of course”, and the hypothesis
may have activated existing knowledge that was already available in one person.
We have also encountered remarks such as “but then you can also hypothesize
that. . . ” originally intended to downplay the discovery, but actually resulting
in yet another plausible hypothesis. This can be seen as a kind of activation of
dormant knowledge in the mind of a scientist.

We can counter these criticisms with two facts. First, Swanson and his col-
league Smalheiser have made eight literature-based discoveries that have been
published in relevant, peer-reviewed, scientific journals. Swanson’s first two dis-
coveries have even been corroborated experimentally and clinically. A paper
describing the new potential uses of thalidomide resulting from literature-based
discovery is currently under review for a biomedical journal.

Second, no one has denied the premise of the model, i.e., that there are dis-
connected structures in science that may benefit from connection. This is shown
by the relative ease with which we have discovered new hypothetical applications
for the controversial and well-known drug thalidomide. This is not surprising,
because biomedical scientists work in widely varying and highly specialized dis-
ciplines and contexts.

For instance, we observe a distinction between in vivo, or clinical research in
humans, in vitro, preclinical research in laboratory and animal experiments, and
in silico, computer-based research. The transfer of knowledge from one domain
to the other is non-trivial. The research interests and goals of both domains are
very different. Also, educational background of the scientists diverges largely,
being clinical (medicine), experimental (biology, pharmacy, biochemistry), or
computational (computer science, mathematics), respectively.

Current literature-based discoveries have mainly been made in biomedicine.
Both Swanson and Spasser (Spasser, 1997) have noted that the biomedical bib-
liography is particularly suited for this because of the explicit titles that often
state the main outcome of the research, for instance:

– Inhibition of IL-12 production by thalidomide.
– Thalidomide treatment in chronic constrictive neuropathy decreases

endoneurial TNFα, increases IL-10 and has long-term effects on spinal cord
dorsal horn met-enkephalin.

– Inhibition of TNFα synthesis with thalidomide for prevention of acute exac-
erbations and altering the natural history of multiple sclerosis.

However, not only titles are interesting. In the thalidomide case, there are
only two titles mentioning IL-12 together with the drug. There were ten more
sentences in MEDLINE abstracts that provided additional useful information.
Of course, using abstracts also introduces more noise, but the employed filter-
ing techniques were able to suppress this. More importantly, Cory showed that
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literature-based discovery is possible in humanities, a scientific discipline that is
not famous for its explicit titles (Cory, 1997).

This suggests that the presented approach to generating scientific hypotheses
is valid for science in general. As long as there are comprehensive bibliographic
databases, reported knowledge can be combined to generate new, hypothetical
knowledge. Additionally, it would be interesting to combine databases from dif-
ferent disciplines. Biomedicine may profit from more chemically and biologically
oriented databases, such as Biological and Chemical Abstracts. Even wider gaps
between disciplines may result in interesting new insights.

Research in literature-based discovery has been acknowledged as important
in information and library sciences, but unfortunately, it has received little atten-
tion in biomedicine. In seems that the disconnection between biomedicine and in-
formation science prevents further developments and use of the ideas of Swanson
(Spasser, 1997). Recently, however, a substantial National Institutes of Health
grant has been awarded to Dr. Smalheiser (University of Illinois at Chicago) in
the context of The Human Brain Project and neuroinformatics (Smalheiser,
personal communication, see also http://arrowsmith.psych.uic.edu). The
goal of this project is to use informatics tools to optimize communication be-
tween neuroscientists and to connect individual research projects, data, and re-
sults. Researchers in five neuroscience laboratories will use a further developed
version of ARROWSMITH to generate new hypotheses that they will test ex-
perimentally. This research is the first step in transferring literature-based
discovery support tools from the computer and information science lab into the
wet lab.
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Valdés-Pérez, R.E.: Principles of human computer collaboration for knowledge discov-
ery in science. Artificial Intelligence 107, 335–346 (1999)

Vos, R.: Drugs looking for diseases. Kluwer Academic Publishers, The Netherlands,
Dordrecht (1991)

Weeber, M.: Literature-based discovery in biomedicine. Doctoral dissertation, Univer-
sity of Groningen, The Netherlands (2001)

Weeber, M., Klein, H., Aronson, A.R., Mork, J.G., de Jong-van den Berg, L.T.W., Vos,
R.: Text-based discovery in biomedicine: The architecture of the DAD-system. In:
Proceedings of the Annual Symposium of American Medical Informatics Association
AMIA-00, Los Angeles, CA, pp. 903–907 (2000a)

Weeber, M., Vos, R., Baayen, R.H.: Extracting the lowest-frequency words: Pitfalls
and possibilities. Computational Linguistics 26, 301–317 (2000b)



306 M. Weeber

Weeber, M., Vos, R., Klein, H., de Jong-van den Berg, L.T.W.: Using concepts in
literature-based discovery: Simulating Swanson’s Raynaud – fish oil and migraine
– magnesium discoveries. Journal of the American Society for Information Science
and Technology 52, 548–557 (2001)

Weeber, M., Vos, R., Klein, H., de Jong-van den Berg, L.T.W., Molema, G.: Generating
hypotheses by discovering implicit associations in the literature. a case report of a
search for new potential therapeutic uses for thalidomide. Journal of the American
Medical Informatics Association 10, 254–262 (2003)


	Drug Discovery as an Example of Literature-Based Discovery
	Introduction
	Models of Discovery
	Discovery Space
	Text Analysis
	Literaby
	Literaby and Thalidomide
	Discussion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




