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Preface

Advances in technology have enabled the collection of data from scientific obser-
vations, simulations, and experiments at an ever-increasing pace. For the scientist
and engineer to benefit from these enhanced data-collecting capabilities, it is be-
coming clear that semi-automated data analysis techniques must be applied to
find the useful information in the data. Techniques from both data mining and
computational discovery can be used to that end.

Computational scientific discovery focuses on applying computational meth-
ods to automate scientific activities, such as finding laws from observational data.
It has emerged from the view that science is a problem-solving activity and that
problem solving can be cast as search through a space of possible solutions. Early
research on computational discovery within the fields of artificial intelligence and
cognitive science focused on reconstructing episodes from the history of science.
This typically included identifying data and knowledge available at the time
and implementing a computer program that models the scientific activities and
processes that led to the scientist’s insight.

Recent efforts in this area have focused on individual scientific activities (such
as formulating quantitative laws) and have produced a number of new scientific
discoveries, many of them leading to publications in the relevant scientific liter-
atures. The discoveries made using computational tools include qualitative laws
of metallic behavior, quantitative conjectures in graph theory, and temporal laws
of ecological behavior. Work in this paradigm has emphasized formalisms used to
communicate among scientists, including numeric equations, structural models,
and reaction pathways.

However, in recent years, research on data mining and knowledge discovery
has produced another paradigm. Data mining is concerned with finding patterns
(regularities) in data. Even when applied to scientific domains, such as astron-
omy, biology, and chemistry, this framework employs formalisms developed by
artificial intelligence researchers themselves, such as decision trees, rule sets, and
Bayesian networks. Although such methods can produce predictive models that
are highly accurate, their outputs are not cast in terms familiar to scientists,
and thus typically are not very communicable.

Mining scientific data focuses on building highly predictive models, rather
than producing knowledge in any standard scientific notation. In contrast, much
of the work in computational scientific discovery has put a strong emphasis
on formalisms used by scientists to communicate scientific knowledge, such as
numeric equations, structural models, and reaction pathways. In this sense, com-
putational scientific discovery is complementary to mining scientific data.

The book provides an introduction to computational approaches to the dis-
covery of communicable scientific knowledge and gives an overview of recent
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advances in this area. The primary focus is on discovery in scientific and engi-
neering disciplines, where communication of knowledge is often a central concern.

This volume has its origins in the symposium “Computational Discovery
of Communicable Knowledge,” organized by Pat Langley, held March 24-25,
2001 at Stanford University. A detailed report on the symposium can be found
in the Proceedings of the DS-2001 Conference (S. Dzeroski, and P. Langley.
Computational discovery of communicable knowledge: Symposium report. In
Proceedings of the Fourth International Conference on Discovery Science, pages
45-49. Springer, Berlin, 2001). Many of the presentations from that symposium
have a corresponding chapter in the book. To achieve a more representative
coverage of recent research in computational discovery, we have invited a number
of additional contributions as well.

The book is organized as follows. The first chapter introduces the field of
computational scientific discovery and provides a brief overview thereof. It also
provides a more detailed overview of the contents of the book. The majority of
the contributed chapters fall within two broad categories, which correspond to
Parts I and II of the book, respectively. The first describes a number of compu-
tational discovery methods for system identification and automated modelling,
while the second discusses a number of methods for computational discovery
developed for biomedical and bioinformatics applications.

In the first part of the book, the focus is on establishing models of dynamic
systems, i.e., systems that change their state over time. The models are mostly
based on equations, in particular ordinary differential equations that represent
a standard formalism for modelling dynamic systems in many engineering and
scientific areas. This is in contrast to the bulk of previous research on equation
discovery, which focuses on algebraic equations. Topics covered in this part in-
clude a reasoning tool for nonlinear system identification, the use of different
forms of domain knowledge when inducing models of dynamic systems (includ-
ing the use of existing models for theory revision, partial knowledge of the target
model, knowledge on basic processes, and knowledge on measurement scales of
the system variables), and applications to Earth sciences.

While the first part of the book focuses on a class of methods and covers a
variety of scientific fields and areas, the second focuses on the field of biomedicine.
The first three chapters are in line with the first part of the book and continue
with the theme of model formation, but use representation formalisms specific to
the biomedical field, such as chemical reaction networks and genetic pathways.
The last two chapters present approaches to forming scientific hypotheses by
connecting disconnected scientific literatures on the same topic. This part also
includes a chapter on using learning in logic for predicting gene function.

We would like to conclude with some words of thanks. Pat Langley organized
the symposium that motivated this volume and encouraged us to edit it. More
importantly, he has pioneered research on computational scientific discovery and
provided unrelenting support to our research in this area. We would also like to
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thank the participants of the symposium. Finally, we would like to thank all the
contributors to this volume for their excellent contributions and their patience
with the editors.

May 2007 Saso Dzeroski
Ljupco Todorovski
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Abstract. This chapter introduces the field of computational scientific
discovery and provides a brief overview thereof. We first try to be more
specific about what scientific discovery is and also place it in the broader
context of the scientific enterprise. We discuss the components of scien-
tific behavior, that is, the knowledge structures that arise in science and
the processes that manipulate them. We give a brief historical review
of research in computational scientific discovery and discuss the lessons
learned, especially in relation to work in data mining that has recently
received substantial attention. Finally, we discuss the contents of the
book and how it fits in the overall framework of computational scientific
discovery.

1 Introduction

This book deals with computational approaches to scientific discovery. Research
on computational scientific discovery aims to develop computer systems which
produce results that, if a human scientist did the same, we would refer to as
discoveries. Of course, if we hope to develop computational methods for scientific
discovery, we must be more specific about the nature of such discoveries and how
they relate to the broader context of the scientific enterprise.

The term science refers both to scientific knowledge and the process of ac-
quiring such knowledge. It includes any systematic field of study that relates
to observed phenomena (as opposed to mathematics) and that involves claims
which can be tested empirically (as opposed to philosophy). We will attempt
to characterize science more fully later in the chapter, but one thing is clear:
Science is about knowledge.

Science is perhaps the most complex human intellectual activity, which makes
it difficult to describe. Shrager and Langley (1990) analyze it in terms of the
knowledge structures that scientists consider and the processes or activities they
use to transform them. Basic knowledge structures that arise in science include
observations, laws, and theories, and related activities include data collection,
law formation, and theory construction.

S. Dzeroski and L. Todorovski (Eds.): Computational Discovery, LNAI 4660, pp. 1007.
© Springer-Verlag Berlin Heidelberg 2007
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There are two primary reasons why we might want to study scientific discovery
from a computational perspective:

— to understand how humans perform this intriguing activity, which belongs
to the realm of cognitive science; and

— to automate or assist in facets of the scientific process, which belongs to the
realm of artificial intelligence.

Science is a highly complex intellectual endeavor, and discovery is arguably
the most creative part of the scientific process. Thus, efforts to automate it
completely would rightfully be judged as audacious, but, as Simon (1966) noted,
one can view many kinds of scientific discovery as examples of problem solving
through heuristic search. Most research in automating scientific discovery has
focused on small, well-defined tasks that are amenable to such treatment and
that allow measurable progress.

Traditional accounts of science (Klemke et al., 1998) focus on the individ-
ual, who supposedly observes nature, hypothesizes laws or theories, and tests
them against new observations. Most computational models of scientific discov-
ery share this concern with individual behavior. However, science is almost al-
ways a collective activity that is conducted by interacting members of a scientific
community. The most fundamental demonstration of this fact is the emphasize
placed on communicating one’s findings to other researchers in journal articles
and conference presentations.

This emphasis on exchanging results makes it essential that scientific knowl-
edge be communicable. We will not attempt to define this term, but it seems
clear that contributions are more communicable if they are cast in established
formalisms and if they make contact with concepts that are familiar to most
researchers in the respective field of study. The research reported in this book
focuses on computational discovery of such communicable knowledge.

In the remainder of this chapter, we first examine more closely the scientific
method and its relation to scientific discovery. After this, we discuss the com-
ponents of scientific behavior, that is, the knowledge structures that arise in
science and the processes that manipulate them. We then give a brief historical
review of research in computational scientific discovery and discuss the lessons
learned, especially in relation to work in data mining that has recently received
substantial attention. Finally, we discuss the contents of the book and how it
fits in the overall framework of computational scientific discovery.

2 The Scientific Method and Scientific Discovery

The Merriam-Webster Dictionary (2003) defines science as: ”a) knowledge or a
system of knowledge covering general truths or the operation of general laws,
especially as obtained and tested through the scientific method, and b) such
knowledge or such a system of knowledge concerned with the physical world and
its phenomena”. The scientific method, in turn, is defined as the ”principles and
procedures for the systematic pursuit of knowledge involving the recognition
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and formulation of a problem, the collection of data through observation and
experiment, and the formulation and testing of hypotheses”.

While there is consensus that science revolves around knowledge, there are dif-
ferent views in the philosophy of science (Klemke et al., 1998; Achinstein, 2004)
about the nature of its content. The ‘causal realism’ position is that scientific
knowledge is ontological, in that it identifies entities in the world, their causal
powers, and the mechanisms through which they exert influence. In contrast, the
‘constructive empiricism’ tradition states that, scientific theories are objective,
testable, and predictive. We believe that both frameworks are correct, in that
they describe different facets of the truth.

The scientific method (Gower, 1996), dedicated to the systematic pursuit of
reliable knowledge, incorporates a number of steps. First we must ask some
meaningful question or identify a significant problem. We must next gather in-
formation relevant to the question, which might include existing scientific knowl-
edge or new observations. We then formulate a hypothesis that could plausibly
answer the question.

Next we must test this proposal by making observations and determining
whether they are consistent with the hypothesis’ predictions. When observations
are consistent with the hypothesis, they lend it support and we may consider
publishing it. If other scientists can reproduce our results, then the community
comes to consider it as reliable knowledge. In contrast, if the observations are
inconsistent, we should reject the hypothesis and either abandon it or, more
typically, modify it, at which point the testing process continues. Hypotheses can
take many different forms, including taxonomies, empirical laws, and explanatory
theories, but all of them can be evaluated by comparing their implications to
observed phenomena.

Most analyses of the scientific method come from philosophers of science, who
have focused mainly on the evaluation of hypotheses and largely ignored their
generation and revision. Unfortunately, what we refer to as discovery resides
in just these activities. Thus, although there is a large literature on normative
methods for making predictions from hypotheses, checking their consistency,
and determining whether they are valid, there are remarkably few treatments of
their production. Some (e.g., Popper (1959)) have even suggested that rational
accounts of the discovery process are impossible. A few philosophers (e.g., Darden
(2006); Hanson (1958); Lakatos (1976)) have gone against this trend and made
important contributions to the topic, but most efforts have come from artificial
intelligence and cognitive science.

Briefly, scientific discovery is the process by which a scientist creates or finds
some hitherto unknown knowledge, such as a class of objects, an empirical law,
or an explanatory theory. The knowledge in question may also be referred to as
a scientific discovery. An important aspect of many knowledge structures, such
as laws and theories, is their generality, in that they apply to many specific situ-
ations or many specific observations. We maintain that generality is an essential
feature of a meaningful discovery, as will become apparent in the next section
when we discuss types of scientific knowledge.
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A defining aspect of discovery is that the knowledge should be new and previ-
ously unknown. Naturally, one might ask 'new to whom?’. We take the position
that the knowledge should be unknown to the scientist in question with respect
to the observations and background knowledge available to him when he made
the discovery. This means that two or more scientists can make the same discov-
ery independently, sometimes years apart, which has indeed happened in practice
many times throughout the history of science. In this view, scientific discovery
concerns a change in an individual’s knowledge, which means that developing
computer systems that reproduce events from the history of science can still
provide important insights into the nature of discovery processes.

3 The Elements of Scientific Behavior

To describe scientific behavior, we follow Shrager and Langley (1990) and use as
basic components knowledge structures and the activities that transform them.
The former represent the raw materials and products of science, while the latter
concern the process of producing scientific knowledge. The account below mostly
follows the earlier treatise, but the definitions of several knowledge structures
and activities have changed, reflecting improvements in our understanding over
the past 15 years.

3.1 Scientific Knowledge Structures

Science is largely about understanding the world in which we live. To this end,
we gather information about the world. Observation is the primary means of
collecting this information, and observations are the primary input to the process
of scientific discovery.

Observations (or data) represent recordings of the environment made by sen-
sors or measuring instruments. Typically, the state of the environment varies
over time or under different conditions, and one makes recordings for these dif-
ferent states, where what constitutes a state depends on the object of scientific
study. We will refer to each of these recordings as an observation.

We can identify three important types of scientific knowledge — taxonomies,
laws, and theories — that constitute the major products of the scientific enter-
prise. The creation of new taxonomies, laws, and theories, as well as revising and
improving existing ones, make up the bulk of scientific discovery, making them
some of the key activities in science.

— Tazonomies define or describe concepts for a domain, along with special-
ization relations among them. A prototypical example is the taxonomy for
biological organisms, which are grouped into species, genera, families, and so
forth, but similar structures play important roles in particle physics, chem-
istry, astronomy, and many other sciences. Taxonomies specify the concepts
and terms used to state laws and theories.

— Laws summarize relations among observed variables, objects, or events. For
example, Black’s heat law states that mixing two substances produces a
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temperature increases in one substance and a decrease in the other until
they reach equilibrium. The law also describes a precise numeric relationship
between the initial and final temperatures. The first statement is qualitative
in form, whereas the latter is quantitative. Some laws may be quite general,
whereas others may be very specific.

— Theories are statements about the structures or processes that arise in the
environment. A theory is stated using terms from the domain’s taxonomy and
interconnects a set of laws into a unified theoretical account. For example,
Boyle’s law describes the inverse relation between the pressure and volume of
a gas, whereas Charles’ law states the direct relation between its temperature
and pressure. The kinetic theory of gases provides a unifying account for
both, explaining them in terms of Newtonian interactions among unobserved
molecules.

Note that all three kinds of knowledge are important and present in the body
of scientific knowledge. Different types of knowledge are generated at different
stages in the development of a scientific discipline. Taxonomies are generated
early in a field’s history, providing the basic concepts for the discipline. After this,
scientists formulate empirical laws based on their observations. Eventually, these
laws give rise to theories that provide a deeper understanding of the structures
and processes studied in the discipline.

A knowledge structure that a scientist has proposed, but that has not yet
been tested with respect to observations, is termed an hypothesis. Note that
taxonomies, laws, and theories can all have this status. As mentioned earlier,
hypotheses must be evaluated to determine whether they are consistent with
observations (and background knowledge). If it is consistent, we say that a hy-
pothesis has been corroborated and it comes to be viewed as scientific knowledge.
If an hypothesis is inconsistent with the evidence, then we either reject or modify
it, giving rise to a new hypothesis that is further tested and evaluated.

Background knowledge is knowledge about the environment separate from
that specifically under study. It typically includes previously generated scientific
knowledge in the domain of study. Such knowledge differs from theories or laws
at the hypothesis stage, in that the scientist regards it with relative certainty
rather than as the subject of active evaluation. Scientific knowledge begins its life
cycle as a hypothesis which (if corroborated) becomes background knowledge.

Besides the basic data and knowledge types considered above, several other
types of structures play important roles in science. These include models, pre-
dictions, and explanations. These occupy an intermediate position, as they are
derived from laws and theories and, as such, they are not primary products of
the scientific process.

— Models are special cases of laws and theories that apply to particular situa-
tions in the environment and only hold under certain environmental condi-
tions. These conditions specify the particular experimental or observational
setting, with the model indicating how the law or theory applies in the set-
ting. By applying laws and theories to a particular setting, models make it
possible to use these for making predictions.
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— Predictions represent expectations about the behavior of the environment
under specific conditions. In science, a model is typically used to make a
prediction, and then an actual observation is made of the behavior in the
environment. Postdictions are analogous to predictions, except that the sci-
entist generates them after making the observations he or she intends to
explain. A prediction/postdiction that is consistent with the respective ob-
servation is successful and lends support to the model (and the respective
law /theory) that produced it.

— Explanations are narratives that connect a theory to a law (or a model
to a prediction) by a chain of inferences appropriate to the field. In such
cases, we say that the theory explains the law. In some disciplines, inference
chains must be deductive or mathematical. If a law cannot be explained by a
theory (or a prediction by a model), we have an anomaly that brings either
the theory or the observation into question.

3.2 Scientific Activities

Scientific processes and activities are concerned with generating and manipulat-
ing scientific data and knowledge structures. Here we consider the processes and
activities in the same order as we discussed the structures that they generate in
the previous subsection.

The process of observation involves inspecting the environmental setting by
focusing an instrument, sometimes simply the agent’s senses, on that setting.
The result is a concrete description of the setting, expressed in terms from the
agent’s taxonomy and guided by the model of the setting. Since one can observe
many things in any given situation, the observer must select some aspects to
record and some to ignore.

As we have noted, scientific discovery is concerned with generating scientific
knowledge in the form of taxonomies, laws and theories. These can be generated
directly from observations (and possibly background knowledge), but, quite of-
ten, scientists modify an existing taxonomy, law, or theory to take into account
anomalous observations that it cannot handle.

— Tazxonomy formation (and revision) involves the organization of observa-
tions into classes and subclasses, along with the definition of those classes.
This process may operate on, or take into account, an existing taxonomy or
background knowledge. For instance, early chemists organized certain chem-
icals into the classes of acids, alkalis, and salts to summarize regularities in
their taste and behavior. As time went on, they refined this taxonomy and
modified the definitions of each class.

— Inductive law formation (and revision) involves the generation of empirical
laws that cover observed data. The laws are stated using terms from the
agent’s taxonomy, and they are constrained by a model of the setting and
possibly by the scientist’s background knowledge. In some cases, the scientist
may generate an entirely new law; in others, he may modify or extend an
existing law.
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— Theory formation (and revision) stands in the same relation to empirical
laws as does law formation to data. Given one or more laws, this activity
generates a theory from which one can derive the laws for a given model by
explanation. Thus, a theory interconnects a set of laws into a unified account.
Theory revision responds to anomalous phenomena or laws that cannot be
explained by an existing theory, producing a revised theory that explains
the anomaly while maintaining the ability to cover existing laws.

While some scientific activities revolve around inductive reasoning, others
instead rely on deduction. Scientists typically derive predictions from laws or
models, and sometimes they even deduce laws from theoretical principles.

— In contrast to inductive law discovery from observations, deductive law for-
mation starts with a theory and uses an explanatory framework to deduce
both a law and an explanation of how that law follows from the theory.

— The prediction process takes a law, along with a particular setting, and pro-
duces a prediction about what one will observe in the setting. Typically,
a scientist derives a model from the law, taking into account the setting’s
particularities, and derives a prediction from the model. The analogous pro-
cess of postdiction takes place in cases where the scientist must account for
existing observations. Prediction and postdiction stand in the same relation
to each other as deductive law formation and explanation.

— The process of explanation connects a theory to a law (or a law to a pre-
diction) by specifying the deductive reasoning that derives the law from the
theory. In the context of evaluation, a successful explanation lends support
to the theory or law. If explanation fails, then an anomaly results that may
trigger a revision of the theory or law. Explanation and deductive law for-
mation are closely related, although explanation aims to account for a law
that is already known. Also, in some fields explanation relies on abductive
reasoning that leads the scientist to posit unobserved structures or processes,
rather than deduction from given premises.

To assess the validity of theories or laws, scientists compare their predic-
tions or postdictions with observations. This produces either consistent results
or anomalies, which may serve to stimulate further theory or law formation or
revision. This process is called evaluation and generally follows experimentation
and observation.

Experimentation involves experimental design and manipulation. Experimen-
tal design specifies settings in which the scientist will collect measurements.
Typically, he varies selected aspects of the environment (the independent vari-
ables) to determine their effect on other aspects (the dependent variables). He
then constructs a physical setting (this is called manipulation) that corresponds
to the desired environmental conditions and carries out the experiment.

Observation will typically follow or will be interleaved with systematic ex-
perimentation, in which case we call it active observation. However, there are
fields and phenomena where experimental control is difficult, and sometimes
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impossible. In such cases the scientist can still collect data to test his hypotheses
through passive observation.

4 History of Research on Computational Discovery of
Scientific Knowledge

4.1 A Brief Historical Account of Computational Scientific
Discovery

Now that we have considered the goals of research on computational discovery
and the elements it involves, we can provide some historical context for the
work reported in this volume. The idea that one might automate the discovery
of scientific knowledge has a long history, going back at least to the writings
of Francis Bacon (1620) and John Stuart Mill (1900). However, the modern
treatment of this task came from Herbert Simon, who proposed viewing scientific
discovery as an instance of heuristic problem solving. In this paradigm, one uses
mental operators to transform one knowledge state into another, invoking rules
of thumb to select from applicable operators, choose among candidate states, and
decide when one has found an acceptable solution. Newell et al. (1958) proposed
this framework as both a theory of human problem solving and an approach to
building computer programs with similar abilities.

Simon (1966) suggested that, despite the mystery normally attached to sci-
entific discovery, one might explain it in similar terms. He noted that scientific
theories can be viewed as knowledge states, and that mental operations can
transform them in response to observations. He even outlined an approach to
explaining creative phenomena such as scientific insight using these and other
established psychological mechanisms. Simon’s early papers on this topic only
outlined an approach to modeling discovery as problem-space search, but they
set a clear research agenda that is still being explored today.

The late 1970s saw two research efforts that transformed Simon’s early pro-
posals into running computer programs. The AM system (Lenat, 1978) redis-
covered a variety of concepts and conjectures in number theory, starting from
basic concepts and heuristics for combining them. The Bacon system (Langley,
1979; Langley et al., 1983) rediscovered a number of numeric laws from the his-
tory of physics and chemistry, starting from experimental data and heuristics for
detecting regularities in them. Despite many differences, both systems utilized
data-driven induction of descriptive laws and were demonstrated on historical
examples. Together, they provided the first compelling evidence that computa-
tional scientific discovery was actually possible. There is no question that these
early systems had many limitations, but they took the crucial first steps toward
understanding the discovery process.

The following decade saw a number of research teams build on and extend
the ideas developed in AM and Bacon. A volume edited by Shrager and Langley
(1990) includes representative work from this period that had previously been
scattered throughout the literature in different fields. This collection reported
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work on discovery of descriptive laws, but it also included chapters on new topics,
including the formation of explanatory models, hypothesis-driven experimental
design, and model revision. On reading this book, one gets the general impression
of an active research community exploring a variety of ideas that address different
facets of the complex endeavor we know as science.

The early work on computational discovery focused on reconstructions from
the history of science that were consistent with widely accepted theories of hu-
man cognition. This was an appropriate strategy, in that these examples let
researchers test their methods on relatively simple problems for which answers
were known, yet that were relevant because they had once been challenging to
human scientists. Such evaluations were legitimate because it was quite possible
to develop methods that failed on historical examples, and many approaches
were ruled out in this manner. However, critics often argued that the evidence
for computational discovery methods would be more compelling when they had
uncovered new scientific knowledge rather than rediscovered existing results.

The period from 1990 to 2000 produced a number of novel results along these
lines, a number of which have been reviewed by Valdez-Perez (1996) and Langley
(2000). These successes have involved a variety of scientific disciplines, including
astronomy, biology, chemistry, metallurgy, ecology, linguistics, and even mathe-
matics, and they run the gamut of discovery tasks, including the formation of
taxonomies, qualitative laws, numeric equations, structural models, and process
explanations. What they hold in common is that each led to the discovery of
new knowledge that was deemed significant enough to appear in the literature
of the relevant field, which is the usual measure of scientific success. The same
techniques have also proved successful in engineering disciplines, in which anal-
ogous modeling tasks also arise. These results provide clear evidence that our
computational methods are capable of making new discoveries, and thus respond
directly to early criticisms.

Another development during this period was the emergence of the data min-
ing movement, which held its first major conference in 1995. This paradigm has
emphasized the efficient induction of accurate predictive models from very large
data sets. Typical applications involved records of commercial transactions, but
some data-mining work has instead dealt with scientific domains. Although re-
search in this area is sometimes referred to as “knowledge discovery” (Fayyad
et al., 1996), the resulting models are generally encoded as decision trees, logical
rules, Bayesian networks, or other formalisms invented by computer scientists.
Thus, it contrasts with the smaller but older movement of computational scien-
tific discovery, which focuses on knowledge cast in formalisms used by practicing
scientists and which is less concerned with large data sets than with making the
best use of available observations.

4.2 Lessons Learned for the Computational Discovery of Scientific
Knowledge

Developments in both data mining and computational scientific discovery
make it clear that technologies for knowledge discovery are mature enough for



10 S. Dzeroski, P. Langley, and L. Todorovski

application, but this does not mean there remains no need for additional research.
In another paper, Langley (2002) recounts some lessons that have emerged from
work in scientific domains, which we review here.

1. The output of a discovery system should be communicated easily to domain
scientists. This issue deserves mention because traditional notations devel-
oped by machine learning researchers, such as decision trees or Bayesian net-
works, differ substantially from formalisms typical to the natural sciences,
such as numeric equations and reaction pathways. Most work on computa-
tional scientific discovery attempts to generate knowledge in an established
notation, but communicability is a significant enough issue that it merits
special attention.

2. Discovery systems should take advantage of background knowledge to con-
strain their search. Most research in computational scientific discovery and
data mining emphasizes the construction of knowledge from scratch, whereas
human scientists often utilize their prior knowledge to make tasks tractable.
For instance, science is an incremental process that involves the gradual im-
provement and extension of previous knowledge, which suggests the need for
more work on methods for revising scientific laws, models, and theories. In
addition, scientists often use theoretical constraints to guide their construc-
tion of models, so more work on this topic is needed as well.

3. Computational methods for scientific discovery should be able to infer knowl-
edge from small data sets. Despite the rhetoric common in papers on data
mining, scientific data are often rare and difficult to obtain. This suggests
an increased focus on ways to reduce the variance of discovered models and
mitigate the tendency to overfit the data, as opposed to developing methods
for processing large data sets efficiently.

4. Discovery systems should produce models that move beyond description
to provide explanations of data. Early work focused on discovery of de-
scriptive regularities that summarized data, and most work on data mining
retains this focus. However, mature sciences are generally concerned with
explanatory accounts that incorporate theoretical variables, entities, or pro-
cesses, and we increased work on methods that support such deeper scientific
reasoning.

5. Computational discovery systems should support interaction with domain
scientists. Most discovery research has focused on automated systems, yet
few scientists want computers to replace them. Rather, they want computa-
tional tools that can assist them in constructing and revising their models.
To this end, we need more work on interactive systems that let users play
at least an equal role in the discovery process.

The chapters in this book respond directly to the first four of these issues,
which suggests that they are now receiving the attention they deserve from
researchers in the area. However, the fifth topic is not represented, and we hope
it will become a more active topic in the future.
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5 Overview of the Book

The chapters of the book present state-of-the-art approaches to computational
scientific discovery, representing recent progress in the area. These approaches
correspond to various scientific activities and deal with different scientific knowl-
edge structures. Note, however, that the main focus of this edited volume is on
inductive model formation from observed data. This is in contrast with a previ-
ous related book (Shrager & Langley, 1990) where most of the research presented
concerned the formation and revision of scientific theories and laws.

In the first part of the book, titled “Equation Discovery & Dynamic Systems
Identification”, the focus is on establishing models of dynamic systems, i.e., sys-
tems that change their state over time. The models are mostly based on equations,
in particular ordinary differential equations that represent a standard formalism
for modeling dynamic systems in many engineering and scientific areas. This is in
contrast to the bulk of previous research on equation discovery, which focuses on
algebraic equations. The first two chapters by Stole, Easley, and Bradley present
the PRET reasoning tool for nonlinear system identification, i.e., for solving the
task of establishing equation-based models of dynamic systems. PRET integrates
qualitative reasoning, numerical simulation, geometric reasoning, constraint rea-
soning, backward chaining, reasoning with abstraction levels, declarative meta-
control, and truth maintenance to identify a proper model structure and its
parameters for the modeling task at hand. Background knowledge for building
models guides the reasoning engine. While the first chapter focuses mainly on
general modeling knowledge that is valid in different scientific and engineering
domains, the focus of the second chapter is on representing and use of knowledge
specific to the domain of interest. The second chapter also presents PRET’s heuris-
tics for performing active observation of the modeled dynamic system.

The following chapter by Todorovski and Dzeroski provides an overview of
equation discovery approaches to inducing models of dynamic systems. Equation
discovery deals with the task of automated discovery of quantitative laws, ex-
pressed in the form of equations, in collections of measured data. It has advanced
greatly from the early stage, when the focus was on reconstructing well-known
laws from scientific textbooks, and state-of-the-art approaches deal with estab-
lishing new laws and models from observed data. Among the most important
recent research directions in this area has been the use of domain knowledge in
addition to measured data in the equation discovery process. The chapter shows
how modeling knowledge specific to the domain at hand can be integrated in
the process of equation discovery for establishing and revising comprehensible
models of real-world dynamic systems.

The chapter by Washio and Motoda also presents an approach to formulating
equation-based models and laws from observed data. They use results from mea-
surement theory (in particular the Buckingam theorem) about how to properly
combine variables measured using different measurement units and scales. These
rules are used to constrain the space of candidate models and laws for the ob-
served phenomena. The second part of the chapter discusses the conditions that
equations have to satisfy in order to be considered communicable knowledge.
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The next two chapters deal with establishing models from Earth science data.
The first chapter by Saito and Langley presents an approach to revising existing
scientific models cast as sets of equations. The revision is guided by the goal of
reducing the model error on newly acquired data and allows for revising parame-
ter values, intrinsic properties, and functional forms used in the model equations.
The second chapter by Schwabacher et al. shows how standard machine learn-
ing methods can be used to induce models that are represented in formalisms
specific to the scientific fields of artificial intelligence and machine learning and
yet understandable and communicable to Earth scientists.

In the next chapter, Colton reviews research on computational discovery in
pure mathematics, where the focus is on theory and law formation. The author
puts special emphasis on his own work in the area of taxonomy formation in
mathematics, especially with respect to identifying important classes of numbers.

The last chapter in the first part of the book by Zhao et al. presents a spatial
aggregation method for identifying spatio-temporal objects in observations. The
method recursively aggregates data into objects and artifacts at higher levels of
abstraction. Although the presented method does not correspond directly to any
of the scientific activities presented in this introduction, it can be a very useful
tool for aiding the processes of taxonomy, law, and model formation.

While the first part of the book focuses on a class of methods and covers a vari-
ety of scientific fields and areas, the focus of the second part is on computational
scientific discovery in biomedicine and bioinformatics. The first three chapters
are in line with the first part of the book and continue with the theme of model
formation. However, the model representation formalisms change from equations
to formalisms specific to biomedicine, such as chemical reaction networks and
genetic pathways.

The chapter by Koza et al. deals with the problem of inducing chemical reac-
tion networks from observations of compounds concentration through time. The
authors show that chemical reaction networks can be transformed to (systems
of) ordinary differential equations. They present and evaluate a genetic pro-
gramming approach to inducing a restricted class of equations that correspond
to chemical reaction networks.

The chapter by Zupan et al. presents a reasoning system for inferring ge-
netic networks, i.e., networks of gene influences on one another and on biological
outcomes of interest. The system uses abduction and qualitative simulation to
transform observations into constraints that have to satisfied by a network that
would describe observed experimental data best. The following chapter by Gar-
rett et al. also represents genetic networks as qualitative models and uses quali-
tative simulation to match them against observed data. The authors present and
evaluate a method for inducing qualitative models from observational data that
is based on inductive logic programming.

The chapter by King et al. deals with the application of inductive logic pro-
gramming methods to the task of analyzing a complex bioinformatic database in
the domain of functional genomics. The authors discuss the importance of inte-
grating background knowledge in the process of scientific data analysis and show
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that inductive logic programming tools provide an appropriate environment for
the integration of knowledge and data in the process of scientific discovery. The
work presented in the chapter is the initial step that later lead to the development
of a robot scientist, capable of automatically performing a variety of scientific ac-
tivities. The robot scientist project is one of the most exciting recent developments
in the field of computational scientific discovery (King et al., 2004).

Finally, the last two chapters present approaches to forming hypotheses by
connecting disconnected scientific literatures on the same topic. Weber presents
a general model that, based on connections already published in the scientific lit-
erature between a symptom and a disease on one hand and connections between
an active substance (chemical compound) and a symptom on the other hand,
establishes a hypothesis that the chemical compound can be used for treatment
of the disease. The hypothesis is of interest, if the relation between the disease
and the compound has not been established before while evidences for the other
two relations are well presented in scientific literature. In the final chapter, Hris-
tovski et al. present an interactive system for literature discovery and apply it
to the task of identifying gene markers for a particular disease. The system uses
association rule mining to find relations between medical concepts from a bibli-
ographic database and uses them to discover new relations that have not been
reported in the medical literature yet.
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Abstract. We describe the program PRET, an engineering tool for non-
linear system identification, which is the task of inferring a (possibly
nonlinear) ordinary differential equation model from external observa-
tions of a target system’s behavior. PRET has several characteristics in
common with programs from the fields of machine learning and com-
putational scientific discovery. However, since PRET is intended to be
an engineer’s tool, it makes different choices with regard to the tradeoff
between model accuracy and parsimony. The choice of a good model de-
pends on the engineering task at hand, and PRET is designed to let the
user communicate the task-specific modeling constraints to the program.
PRET’s inputs, its outputs, and its internal knowledge base are instances
of communicable knowledge—knowledge that is represented in a form
that is meaningful to the domain experts that are the intended users of
the program.

1 Introduction

Models of dynamic systems are essential tools in a variety of disciplines ranging
from science and engineering to economics and the social sciences (Morrison,
1991). A good model facilitates various types of reasoning about the modeled
system, such as prediction of future behavior, explanation of observed behavior,
understanding of correlations and influences between variables, and hypothetical
reasoning about alternative scenarios.

Building good models is a routine, but difficult, task. The modeler must de-
rive an intensional (and finite) description of the system from extensional (and
possibly infinite) observations of its behavior. Traditional examples of such finite
descriptions are structural models, reaction pathways, and numeric equations.

Strictly speaking, every formalization of the properties of a dynamic sys-
tem constitutes a model thereof. The spectrum ranges from models that use a
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language that is very close to the domain of the system to models that use a
language that is well-suited to describe the system mathematically. An example
of the domain-centered end of this spectrum might be formal instructions on how
to build an electrical circuit (e.g., a wiring diagram). These instructions would
use terms like resistor, capacitor, inductor, connection, and switch. The other
extreme might be differential equations; for example, the ordinary differential
equation (ODE)

1.233 + 3 + 46z = 0 (1)

models an electrical circuit consisting of a resistor (R), an inductor (L), and a
capacitor (C), but the form of the equation gives no hint of that correspondence.

A practitioner uses his or her domain knowledge to establish the correspon-
dence between the mathematical formulation of the model and its domain-
centered interpretation: the interpretation of the variable x—as current or
voltage, respectively—in the above equation governs whether the ODE mod-
els a series or parallel circuit. A model for a parallel RLC circuit, for example,
is the equation

L
LCiH—RiH—U:O (2)

where v is the voltage variable. Domain-centered models are useful for building
physical systems or recognizing the function of existing physical systems, among
other things. Mathematical models are useful for the precise simulation, predic-
tion and understanding of dynamic systems. Trained experts routinely use their
domain knowledge and expertise to move back and forth between these different
model types during different phases of the reasoning process.

In this chapter, we describe the modeling program PRET, which automatically
constructs ODE models for given dynamic systems. The next section relates
the task of modeling in an engineering setting to other modeling and discovery
approaches that make use of related techniques. Sections [3], E] and [l describe
the program and how it automates the modeling process. PRET uses a generate-
and-test paradigm, which is described in Section[3l The “generate” phase of the
generate-and-test cycle is described in detail in (Easley & Bradley, this volume).
The emphasis of the remainder of this current chapter is then on the “test”
phase. In Section @] we show that PRET’s inputs and internal knowledge base
are instances of communicable knowledge. Finally, Section [l explains how PRET
orchestrates its reasoning process, fluidly shifting back and forth between various
reasoning modes.

An introductory example of a PRET run is offered in Section [Bl The sole
purpose of this simple example is to illustrate the basic functionality of PRET
and the main ideas behind its design. PRET has been successfully applied on a
variety of systems, ranging from textbook problems to difficult real-world ap-
plications like vehicle suspensions, water resource systems, and various robotics
applications (forced pendulum, radio-controlled car, etc.). Such examples, which
show the power of the program and indicate its intended application space
are more complicated; they are better discussed after both phases of the
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generate-and-test cycle have been described. We refer the reader to (Easley &
Bradley, this volume) and to (Bradley et al., 2001).

2 Communicable Models for Engineering Tasks

2.1 Explicit and Implicit Models

Typically, a modeler builds models out of simple components, assuming that the
overall behavior follows from the behavior of the components and their interac-
tion (Falkenhainer & Forbus, 1991). The basic building blocks of models—called
model fragments—usually correspond to well-understood concepts in the model-
ing domain. For example, in the context of the example illustrated by Eqn. (@),
the term 7, corresponds to the concept “current through a resistor.” Similarly,
the composition of models from model fragments corresponds to well-understood
principles in the modeling domain. For example, the model of a series circuit that
consists of a single loop of components may be composed out of the model frag-
ments for those components according to Kirchhoff’s voltage law: the sum of all
voltages in a loop is zero.

We call the type of models that is explained in the previous paragraph ezplicit
models. We use this term in order to emphasize that a model and its fragments
explicitly represent entities and concepts that are well-understood in the target
domain and that can be reasoned about explicitly using an established body of
domain knowledge.

Research on connectionist computing, Bayesian networks, data mining, and
knowledge discovery has produced different kinds of intensional description of
dynamic systems. These new kinds of model use data structures that prevail in
the field of Artificial Intelligence (AI), such as decision trees, Bayesian networks,
rule sets, or neural networks. We call these descriptions implicit models to em-
phasize that they are not necessarily compositional and their ingredients do not
immediately correspond to concepts and entities with which practitioners of the
modeling domain are familiar[] The dynamic systems community has also devel-
oped a variety of ways to model and predict the dynamics of a low-dimensional
system using implicit models (Farmer & Sidorowich, 1987; Casdagli & Eubank,
1992); these methods match up well in practice against traditional statistical
and neural-net based techniques (Weigend & Gershenfeld, 1993).

Both implicit and explicit models are very useful, but for different reasons
and for different purposes. Implicit models can be extremely powerful tools be-
cause they can simulate and predict the behavior of dynamic systems with high
accuracy. Furthermore, in many modeling tasks the desired model does not need
to resemble the target system structurally. Instead, the modeler merely wants to

! The distinction between explicit and implicit models concerns only the result of
the modeling process, namely the intensional description of the target system. It is
independent of the search method used to find the model. It is possible to construct
explicit models using AI search methods like genetic programming (Koza et al., this
volume) or backpropagation (Saito & Langley, this volume).
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capture—or replicate—the input/output behavior of the target system. In such
cases, implicit models are a very practical choice because they can be learned (or
“trained”) from numerical sample data, avoiding a combinatorial search through
the space of explicit compositional models. However, since implicit models do
not make use of the formalisms of the target domain, they are often less useful
for tasks that involve explanations and understanding with respect to the body
of knowledge that is familiar to the domain practitioner.

Explicit models, on the other hand, are communicable to domain practitioners;
they communicate knowledge about the target system in a form that makes sense
in the context of a general body of knowledge about the domain. An explicit
model facilitates various types of reasoning about the target system, such as, for
example, hypotheses about alternative scenarios. An engineer may recognize a
particular term in an ODE model of a mechanical system as a “friction term.”
This direct correspondence between a model fragment and real-world knowledge
about the phenomenon “friction” allows the engineer to anticipate the effects of
changing the friction term by, say, adding a drop of oil to the target system. As
another example, consider an ODE model of a robot arm that makes explicit
reference to the gravitational constant g. Again, the direct correspondence to the
real-world phenomenon “gravity” facilitates reasoning about the deployment of
the robot in a different gravitational environment—on Mars, for example.

2.2 Scientific Theories and Engineering Models

In the AT literature, work on automatically finding a model for a given dynamic
system falls under the rubrics of “reasoning about physical systems,” “automated
modeling,” “machine learning,” and “scientific discovery.”é,

The purpose of this chapter is to describe the automated modeling program
PRET and to place it in the landscape of related modeling and discovery systems
that produce communicable output. PRET—Iike several other systems that dis-
cover communicable models—not only produces a communicable model as its
output, but also uses communicable knowledge during the process of computing
that output. The advantages and implications of this approach are explained in
more detail in the next sections. What makes PRET different and unique is its
focus on automated system identification, which is the process of modeling in
the context of a particular engineering task. In this section, we examine how
this engineering focus distinguishes PRET from programs that discover scientific
theories. In particular, we argue that this focus imposes a task-specific tradeoff
between parsimony and accuracy on the modeling process. Furthermore, we de-
scribe how PRET’s combination of traditional system identification techniqueaﬁ

2 For a survey of approaches to computational scientific discovery, see (Langley, 2000).

3 Perhaps the most important of these techniques—and one that is unique in the
AlI/modeling literature—is input-output modeling, in which PRET interacts directly
and autonomously with its target systems, using sensors and actuators to perform
experiments whose results are useful to the model-building process. See (Easley &
Bradley, 1999b).
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and Al techniques—especially its qualitative, “abstract-level first” techniques—
allows it to find the right balance point with respect to this tradeoff.

In the research areas of Qualitative Reasoning (QR) and Qualitative Physics
(QP) (Weld & de Kleer, 1990), a model of a physical system is mainly used as
a representation that allows an automated system to reason about the physical
system (Forbus, 1984; Kuipers, 1993). QR/QP reasoners are usually concerned
with the physical system’s structure, function, or behavior. For example, qual-
itative simulation (Kuipers, 1986) builds a tree of qualitative descriptions of
possible future evolutions of the system. Typically, the system’s structural and
functional properties are known, and the task of modeling (Nayak, 1995) con-
sists of finding a formal representation of these properties that is most suitable
to the intended reasoning process. Such models frequently highlight qualitative
and abstract properties of the system so as to facilitate efficient qualitative in-
ferences. Modeling of systems with known functional and structural properties
is generally called clear-box modeling.

The goal of Scientific Discovery (e.g., (Langley et al., 1987)) and System
Identification (Ljung, 1987) is to investigate physical systems whose structural,
functional properties are not—or are only partially—known. Modeling a target
system, then, is the process of inferring an intensional (and finite) description—a
model—of the system from extensional (and possibly infinite) observations of its
behavior. For example, a typical system identification task is to observe a driven
pendulum’s behavior over time and infer from these time series measurements
an ordinary differential equation system that accounts for the observed behavior.
This process is usually referred to as black-box modeling. It amounts to inverting
simulation, which is the process of predicting a system’s behavior over time,
given the equations that govern the system’s dynamics.

Whereas the desired model in a system identification task usually takes the
form of a set of differential equations, the field of scientific discovery comprises
a wider range of tasks with a broader variety of possible models. According to
Langley (Langley, 2000), a scientific discovery program typically tries to discover
regularities in a space of entities and concepts that has been designed by a
human. Such regularities may take the form of qualitative laws, quantitative
laws, process models, or structural models (which may even postulate unobserved
entities). The discovery of process models amounts to explaining phenomena that
involve change over time; it is the kind of scientific discovery that comes closest
to system identification. Most of the scientific discovery literature, e.g., (Huang
& Zytkow, 1997; Langley et al., 1987; Todorovski & Dzeroski, 1997; Washio et al.,
1999; Zytkovv7 1999), revolves around the discovery of natural laws. Predator-
prey systems or planetary motion are prominent examples. System identification,
on the other hand, is typically performed in an engineering context—building a
controller for a robot arm, for example.

For the purposes of this paper, we distinguish between theories and models.
Zytkow’s terminology (Zytkow, 1999) views theories as analytical and models as
synthetic products. We prefer to draw the distinction along the generality /spec-
ificity axis. A theory and a model are similar in the sense that both are derived
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from observations of target systems. However, theories aim at a more-general and
more-comprehensive description of a wider range of observations. Constructing a
theory includes the definition (or postulation) of relevant entities and quantities;
the laws of the theory, then, express relationships that hold between these entities
and quantities. The developer of a theory tries to achieve a tight correspondence
between the postulated structural setup of the entities and the laws that describe
the behavior of the entities.

One of the major goals of theory development is an increased understanding
of the observed phenomena: the quality of a theory depends not only on how
accurately the theory accounts for the observations, but also on how well the the-
ory connects to other theories, on whether it generalizes or concretizes previous
theories, and on how widely it is applicable. Therefore, research in scientific dis-
covery must address the question about whether the discovered theory accurately
models the target system (e.g., nature), or whether it just happens to match the
observations that were presented to the discovery program. Likewise, machine
learning systems routinely use validation techniques (such as cross-validation)
in order to ensure the “accuracy” of the learned model.

Engineering modeling is much less general and much more task-specific. A
given domain theory sets up the space of possible quantities of interest [ A
model, then, is a mathematical account of the behavioral relationships between
these quantities. Some or all model fragments may or may not correspond to a
structural fragment of the modeled system. For example, one may recognize a
particular term as a “friction term” or a “gravity term.” Whether such corre-
spondences exist, however, is of secondary concern. The primary concern is to
accurately describe the behavior of the system within a fairly limited context
and with a specific task (e.g., controller design) in mind.

2.3 Parsimony in Engineering Modeling

In the previous paragraphs, we described the distinction between theory devel-
opment and engineering modeling. As one may expect, the dividing line between
these two kinds of observation interpretation is somewhat fuzzy. Even though
many engineering models are very specific compared to the scope of a scientific
theory, engineers also broaden their exploration beyond a single system, in order,
for example, to build a cruise control that works for most cars, not just a par-
ticular Audi on a warm day. Furthermore, one might argue that the distinction
between “accounting for” and “explaining” an observation is arbitrary. There
may not be a big difference between saying “the resistor explains the dissipation
of energy” and saying “this term (which corresponds to the resistor) accounts
for that behavior (which corresponds to the dissipation of energy).”
Nevertheless, it is important to note that explanation and understanding are
stated goals of scientific discovery; in system identification, they are often merely

4 By choosing a very specific domain theory and by setting up a specific space of pos-
sible model fragments, a human may actually convey substantial information about
the target system to the automatic modeling program. As mentioned in Section [3.4]
we call this compromise between clear- and black-box modeling grey-box modeling.
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byproducts of the modeling process. Furthermore, scientific discovery approaches
often introduce higher-level concepts (e.g., the label “linear friction force” for
the mathematical term c) to achieve structural coherence and consistency with
background knowledge and/or other theories. Such higher-level concepts are use-
ful in automated system identification as well, but PRET’s approach is to restrict
the search space in an effective, efficient grey-box modeling approach. Finally,
in system identification, the task at hand provides an objective measure as to
when a model is “good enough”—as opposed to a scientific theory, which is al-
ways only a step toward a further theory: something that is more general, more
widely applicable, more accurate, and/or expressed in more fundamental terms.

The long-term vision in scientific discovery is even more ambitious than the
previous paragraph suggests. Rather than “just” manipulating existing concepts,
quantities, and entities in order to construct theories, scientific discovery pro-
grams may even invent or construct new concepts or entities on the fly. Fur-
thermore, Chapter 10 of (Langley et al., 1987) speculates about the automated
“discovery of research problems, the invention of scientific instruments, and the
discovery and application of good problem representations.” Such tasks are
clearly outside the scope of modeling from an engineering perspective.

This difference in long-term vision between theory developers and model con-
structors has important consequences concerning the parsimony of the developed
theory or constructed model. Both system identification and scientific discovery
strive for a simple representation of the target system. However, from a scien-
tific discovery viewpoint, parsimony must be achieved within the constraint that
the theory be behaviorally accurate and structurally coherent with background
knowledge and other theories, as described in the previous paragraphs. In system
identification, however, parsimony is critically important. Modelers work hard
to build abstract, minimal models that account for the observations. Typically,
the desired model is the one that is just concrete enough to capture the behavior
that is relevant for the task at hand.

The remainder of this chapter describes how PRET performs system identi-
fication in order to find an ODE model of a given target system. It does so in
an engineering context—with all the implications for parsimony and structural
accuracy that have been described in this section.

3 Automated Modeling with PRET

3.1 ODEs: The Formalism of Choice for Engineering Modeling

PRET is an engineering tool for nonlinear system identification, which is the task
of inferring a (possibly nonlinear) ODE model from external observations of a
target system’s behavior. For several reasons, ODEs are the modeling formalism
of choice for many engineering tasks. First, ODEs are explicit and communi-
cable, i.e., they can be interpreted within the context of domain knowledge,
which establishes a structural correspondence between the model fragments and
domain-specific phenomena and/or entities. Model builders and users have devel-
oped a body of knowledge that uses explicit ODE models as the core language to



24 R. Stolle and E. Bradley

represent and reason about systems. This body of knowledge contains theorems,
techniques and procedures about systems and their corresponding models.

Second, ODEs often mark just the right trade-off between complexity and pre-
cision. Partial differential equations, for example, can describe dynamic systems
more accurately, but they are also vastly more difficult to deal with. Qualitative
differential equations (Kuipers, 1986) are an example of the other side of this
trade-off point; they can be constructed more easily than ODEs can, but their
usefulness for engineering tasks (such as controller design, for example) is also
more limited.

Third, there is a large body of ODE theory and associated knowledge that
is independent of any particular scientific application domain. Therefore, ODEs
and the associated techniques are widely applicable across multiple domains. For
example, Eqn. ([Il) can model both a series and a parallel RLC circuit. Further-
more, the same equation can also model a series or parallel mechanical system
consisting of a mass, a spring and a damper. See (Easley & Bradley, this volume)
for a more-detailed explanation.

PRET’s inputs are a set of observations of the outputs of the target system,
some optional hypotheses about the physics involved, and a set of tolerances
within which a successful model must match the observations; its output is an
ordinary differential equation model of the internal dynamics of that system. See
Fig. [ for a block diagram.

modeling data
specification = target
ODE model system

Fig.1. PRET combines Al and formal engineering techniques to build ODE models
of nonlinear dynamic systems. It builds models using domain-specific knowledge, tests
them using an encoded ODE theory, and interacts directly and autonomously with
target systems using sensors and actuators.

PRET uses a small, powerful domain theory to build models and a larger, more-
general mathematical theory to test them. It is designed to work in any domain
that admits ODE models; adding a new domain is simply a matter of coding
one or two simple domain rules. Its architecture wraps a layer of Al techniques
around a set of traditional formal engineering methods. Models are represented
using a component-based modeling framework (Easley & Bradley, 1999a) that
accommodates different domains, adapts smoothly to varying amounts of domain
knowledge, and allows expert users to create model-building frameworks for new
application domains easily (Easley & Bradley, 2000). An input-output model-
ing subsystem (Easley & Bradley, 1999b) allows PRET to observe target systems
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actively, manipulating actuators and reading sensors to perform experiments
whose results augment its knowledge in a manner that is useful to the modeling
problem that it is trying to solve.

The program’s entire reasoning process is orchestrated by a special first-order
logic inference system, which automatically chooses, invokes, and interprets the
results of the techniques that are appropriate for each point in the model-building
procedure. This combination of techniques lets PRET shift fluidly back and forth
between domain-specific reasoning, general mathematics, and actual physical
experiments in order to navigate efficiently through an exponential search space
of possible models.

3.2 System Identification Phases

PRET’s combination of symbolic and numeric techniques reflects the two phases
that are interleaved in the general system identification process: first, structural
identification, in which the form of the differential equation is determined, and
then parameter estimation, in which values for the coefficients are obtained. If
structural identification produces an incorrect ODE model, no coefficient val-
ues can make its solutions match the sensor data. In this event, the structural
identification process must be repeated—often using information about why the
previous attempt failed—until the process converges to a solution, as shown
diagrammatically in Fig. 2l

initialization structural -
identification
sensor parameter
—_————— . .
data estimation
yes no

1.24% - 4.38x= 0

Fig.2. The system identification (SID) process. Structural identification yields the
general form of the model; in parameter estimation, values for the unknown coefficients
in that model are determined. PRET automates both phases of this process.

In linear physical systems, structural identification and parameter estima-
tion are fairly well understood. The difficulties—and the subtleties employed
by practitioners—arise where noisy or incomplete data are involved, or where
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efficiency is an issue. See (Juang, 1994; Ljung, 1987) for some examples. In non-
linear systems, however, both procedures are vastly more difficult—the type of
material that is covered only in the last few pages of standard textbooks. Unlike
system identification software used in the control theory community, PRET is not
just an automated parameter estimator; rather, it uses sophisticated reasoning
techniques to automate the structural phase of model building as well.

3.3 The Generate-and-Test Paradigm

PRET’s basic paradigm is “generate and test”. It first uses its encoded domain
theory—the upper ellipse in Fig. [[I-to assemble combinations of user-specified
and automatically generated ODE fragments into a candidate model. In a me-
chanics problem, for instance, the generate phase uses Newton’s laws to combine
force terms; in electronics, it uses Kirchhoff’s laws to sum voltages in a loop or
currents in a cutset.

The challenge in the design of the algorithms for PRET’s generate phase was to
aviod a combinatorial explosion of the search space. We achieve this objective by
allowing the user to provide knowledge about the domain and the target system
that may help to limit the space of possible models. The manner in which the
generate phase makes use of this kind of communicable knowledge is the topic
of (Easley & Bradley, this volume).

In order to test a candidate model, PRET performs a series of inferences about
the model and the observations that the model is to match. This process is guided
by two important assumptions: that abstract reasoning should be chosen over
lower-level techniques, and that any model that cannot be proved wrong is right.
PRET’s inference engine uses an encoded mathematical theory (the lower ellipse
in Fig.[l) to search for contradictions in the sets of facts inferred from the model
and from the observations. An ODE that is linear, for instance, cannot account
for chaotic behavior; such a model should fail the test if the target system has
been observed to be chaotic. Furthermore, establishing whether an ODE is linear
is a matter of simple symbolic algebra, so PRET’s inference engine should not
resort to a numerical integration to establish this contradiction. Like the domain
theory, PRET’s ODE theory is designed to be easily extended by an expert user.

The test phase of the generate-and-test cycle is the topic of this chapter. It
uses the user’s observations about the target system and PRET’s internal ODE
theory in order to rule out bad candidate models quickly. Both the observations
and the ODE theory are expressed as communicable knowledge; they make direct
use of standard engineering concepts and vocabulary.

3.4 A Simple, Introductory Example

To make these ideas more concrete, this section works through a simple example
of a PRET run. This example illustrates how a user specifies the inputs to PRET,
how this information is used in the generate-and-test cycle, and what PRET’s
main strategies are to find good models quickly. The purpose of this section is to
give the reader an overview of how PRET works and what the main challenges
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were in the design of PRET’s architecture and set of techniques and tactics. A
more precise discussion of how candidate models are generated is presented in
(Easley & Bradley, this volume). A more precise discussion of the reasoning that
is used to test candidate models against the observations of the target system is
presented in Sections @] and [ of this current chapter.

k1 ko ks

W W

(find-model > >
(domain mechanics) a 42
(state-variables (<ql> <point-coordinate>) (<q2> <point-coordinate>))
(observations

(autonomous)

(oscillation <ql1>)

(oscillation <qg2>)

(numeric (<time> <qi1> <g2>) ((0 .1 .1) (.1 .109 .110) ...)))
(hypotheses

(<force> (* k1 <q1>))

(<force> (* k2 (- <ql> <g2>)))

(<force> (x k3 <g2>))

(<force> (* ml (deriv (deriv <qi1>))))

(<force> (* m2 (deriv (deriv <qg2>))))

(<force> (x rl (deriv <qi1>)))

(<force> (* r2 (square (deriv <ql1>))))

(<force> (* r3 (deriv <g2>)))

(<force> (* r4 (square (deriv <g2>)))))
(specifications

(<q1> relative-resolution le-2 (-infinity infinity))

(<time> absolute-resolution le-6 (0 120))))

Fig. 3. Modeling a simple spring/mass system using communicable formalisms. The
vocabulary and concepts in which the user specifies the modeling problem are drawn
from the engineering application domain. In this example call to PRET, the user first
sets up the problem, then makes five observations about the position coordinates ¢1 and
q2, hypothesizes nine different force terms, and finally specifies resolution and range
criteria that a successful model must satisfy. Angle brackets (e.g., <time>) identify
state variables and other special keywords that play roles in PRET’s use of its domain
theory. The teletype font identifies terms that play roles in a user’s interaction with
PRET.

Consider the spring/mass system shown at the top right of Fig.[Bl The coeffi-
cients my and mo represent the two mass elements in the system; the coefficients
k1, ko, and k3 represent the three spring elements. The state variables ¢; and ¢
measure the positions of the mass elements.
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To instruct PRET to build a model of this system, a user would enter the
find-model call at the left of the figure. This call contains four types of infor-
mation: the domain, state variables, observations, hypotheses, and specifications.

The domain statement instantiates the relevant domain theory; the next two
lines inform PRET that the system has two point-coordinate state variables [l
Observations are measured automatically by sensors and/or interpreted by the
user; they may be symbolic or numeric and can take on a variety of formats
and degrees of precision. For example, the first observation in Fig. [3] informs
PRET that the system to be modeled is autonomous§ The second observation
states that the state variable ¢ oscillates[] Numeric observations are physical
measurements made directly on the system.

An optional list of hypotheses about the physics involved—e.g., a set of
ODE termd (“model fragments”) that describe different kinds of friction—may
be supplied as part of the find-model call; these may conflict and need not be
mutually exclusive, whereas observations are always held to be true.

Finally, specifications indicate the quantities of interest and their resolu-
tions. The ones at the end of Fig. Bl for instance, require any successful model to
match g1 to within 1% 120 seconds of the system’s evolution. Note that PRET
uses tolerances (maximal error) as its accuracy criterion, which may seem un-
orthodox from a, say, machine learning perspective. Again, this choice is rooted
in PRET’s design rationale as an engineering tool, and it is further explained in
Section

It should be noted that this spring/mass example is representative neither
of PRET’s power nor of its intended applications. Linear systems of this type
are very easy to model (Ljung, 1987); no engineer would use a software tool to
do generate-and-test and guided search on such an easy problem. We chose this
simple system to make this presentation brief and clear.

To construct a model from the information in this find-model call, PRET
uses the mechanics domain rule (point-sum <force> 0) from its knowledge
base to combine hypotheses into an ODE. In the absence of any domain knowl-
edge—omitted here, again, to keep this example short and clear—PRET simply
selects the first hypothesis, producing the ODE k;q; = 0. The model tester,
implemented as a custom first-order logic inference engine (Stolle, 1998), uses
a set of general rules about ODE properties to draw inferences from the model
and from the observations. In this case, PRET uses its ODE theory to establish a

5 As described in (Bradley et al., 2001), PRET uses a variety of techniques to infer this
kind of information from the target system itself; to keep this example simple, we
bypass those facilities by giving it the information up front.

5 That is, it does not explicitly depend on time.

" Oscillation means that the corresponding phase-space trajectory contains a limit
cycle (or spiral, in the case of damped oscillation). Again, PRET can infer this sort
of qualitative observation from numeric observations of the target system itself; see
(Easley & Bradley, this volume).

8 The functor deriv stands for “derivative.” Furthermore, expressions are in prefix
notation. For example, the expression (¥ r2 (square (deriv <ql1>))) represents
the term 7‘2q'12.
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contradiction between the model’s order (the model’s highest derivative) and its
oscillatory behavior. The way PRET handles this first candidate model demon-
strates the power of its abstract-reasoning-first approach: only a few steps of
inexpensive qualitative reasoning suffice to let it quickly discard the model.

PRET tries all combinations of <force> hypotheses at single point coordinates,
but all these models are ruled out for qualitative reasons. It then proceeds with
ODE systems that consist of two force balances—one for each point coordinate.
One example is

kiqn +migy =0

magz =0

PRET cannot discard this model by purely qualitative means, so it invokes its
nonlinear parameter estimation reasoner (NPER), which uses knowledge derived
in the structural identification phase to guide the parameter estimation pro-
cess (e.g., choosing good approximate initial values and thereby avoiding local
minima in regression landscapes) (Bradley et al., 1998). The NPER finds no ap-
propriate values for the coefficients k1, my, and ms, so this candidate model
is also ruled out. This, however, is a far more expensive proposition than the
simple symbolic contradiction proof for the one-term model above—roughly five
minutes of CPU time, as compared to a fraction of a second—which is exactly
why PRET’s inference guidance system is set up to use the NPER only as a last
resort, after all of the more-abstract reasoning tools in its arsenal have failed to
establish a contradiction.

After having discarded a variety of unsuccessful candidate models via similar
procedures, PRET eventually tries the model

kiqi + ka(q1 — q2) + migy =0
k3qa + ka(q1 — q2) + maga =0

Again, it calls the NPER, this time successfully. It then substitutes the returned
parameter values for the coefficients and integrates the resulting ODE system
with fourth-order Runge-Kutta, comparing the result to the numeric time-series
observation. The difference between the numerical solution and the observation
stays within the specified resolution, so this candidate model is returned as the
answer. If the list of user-supplied hypotheses is exhausted before a successful
model is found, PRET generates hypotheses automatically using Taylor-series
expansions on the state variables—the standard engineering fallback in this kind
of situation. This simple solution actually has a far deeper and more important
advantage as well: it confers black-box modeling capabilities on PRET.

The technical challenge of this model-building process is efficiency; the search
space is huge—particularly if one resorts to Taylor expansions—and so PRET
must choose promising model components, combine them intelligently into can-
didate models, and identify contradictions as quickly and simply as possible.
In particular, PRET’s generate phase must exploit all available domain-specific
knowledge insofar as possible. A modeling domain that is too small may omit a
key model; an overly general domain has a prohibitively large search space.
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By specifying the modeling domain, the user helps PRET identify what the
possible or typical “ingredients” of the target system’s ODE are likely to be,
thereby narrowing down the search space of candidate models. This “grey-box”
modeling approach differs from traditional black-box modeling, where the model
must be inferred only from external observations of the target system’s behavior.
It is also more realistic, as described in more depth in (Easley & Bradley, this
volume): the engineers who are PRET’s target audience do not operate in a
complete vacuum, and its ability to leverage the kinds of domain knowledge
that such users typically bring to a modeling problem lets PRET tailor the search
space to the problem at hand.

Within the space of models that are generated by the grey-box modeling ap-
proach described in the previous paragraph, PRET must identify a model that is
as parsimonious as possible. At the same time, the chosen model must also meet
the accuracy requirements specified by the user. This tradeoff between parsimony
and accuracy is driven by the user’s engineering task at hand; it distinguishes
engineering modeling from automated scientific discovery, as explained in the
previous section.

In our approach, the key to quickly identifying the right model is to classify
model and system behavior at the highest possible abstraction level. PRET incor-
porates several different reasoning techniques that are appropriate in different
situations and that operate at different abstraction levels and in different do-
mains. Examples of such techniques are symbolic algebra, qualitative reasoning
about symbolic model properties, and phase-portrait analysis. These methods
are drawn from the standard repertory of system identification techniques. In
fact, PRET’s internal representation—just like its inputs and outputs—uses stan-
dard engineering vocabulary, abstracted into first-order predicate logic: the pred-
icates have names like 1inear-system, damped-oscillation, and divergence,
and their meanings are therefore familiar and easily communicable to domain
experts. This framework and its associated reasoning modes are discussed in Sec-
tion @l Coordinating the invocation and interaction of PRET’s various reasoning
modes is a difficult problem. To effectively build and test models of nonlinear
systems, PRET must determine which methods are appropriate to a given sit-
uation, invoke and coordinate them, and interpret their results. The reasoning
control mechanism that lets PRET orchestrate this subtle and complex reasoning
process is described in Section Bl

4 Communicable Reasoning About Dynamic Systems

PRET’s inputs and outputs are designed to be in the form of communicable
knowledge: the inputs are hypotheses (that is, potential model fragments), ob-
servations at various abstraction levels, and specifications concerning the ranges
and resolutions of interest. All of these inputs are presented to PRET in a form
that directly mirrors the form in which domain experts typically express this kind
of information. PRET’s grey-box modeling approach and its component-based
representations allow users to tailor the search space of models by providing
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knowledge about system components and structures that are typical of the mod-
eling domain. PRET’s outputs are ODEs, which is the model of choice for a wide
variety of scientific and engineering tasks. In addition to interacting with the
user in a communicable domain-centered language, PRET’s internal reasoning
machinery also employs communicable knowledge that makes use of the vocab-
ulary and the concepts of its domain, namely system identification. The com-
municability of PRET’s internal reasoning is the topic of this section.

As is described in (Easley & Bradley, this volume), PRET uses component-
based representations, user hypotheses, and domain knowledge to generate candi-
date models of the given target system. Using the reasoning framework
described in this section, PRET tests such a model against observations of the
target system.

Like a human expert, PRET makes use of a variety of reasoning techniques
at various abstraction levels during the course of this process, ranging from
detailed numerical simulation to high-level symbolic reasoning. These modes and
their interactions are described in the following subsections. The advantages of
representing PRET’s ODE theory and the associated techniques in the form of
communicable knowledge are summarized in Section

The challenge in designing PRET’s model tester was to work out a formalism
that met two requirements: first, it had to facilitate easy formulation of the
various reasoning techniques; second, it had to allow PRET to reason about which
techniques are appropriate in which situations. In particular, reasoning about
both physical systems and candidate models should take place at an abstract
level first and resort to more-detailed reasoning later and only if necessary. To
accomplish this, PRET judges models according to the opportunistic paradigm
“valid, if not proven invalid”: if a model is bad, there must be a reason for it.
Or, conversely, if there is no reason to discard a model, it is a valid model.
PRET’s central task, then, is to quickly find inconsistencies between a candidate
model and the target system. Section [0l briefly describes the reasoning control
techniques that allow it to do so.

PRET’s test phase uses six different classes of techniques in order to test a
candidate model against a set of observations of a target system:

— qualitative reasoning,
qualitative simulation,

— constraint reasoning,

— geometric reasoning,

— parameter estimation, and
— numerical simulation.

In our experience, this set of techniques provides PRET with the right tools
to quickly test models against the given observations[d Parameter estimation
and numerical simulation are low-level, computationally expensive methods that
ensure that no incorrect model passes the test. Intelligent use of the other, more-
abstract techniques in the list above allows PRET to avoid these costly low-
level techniques insofar as possible; most candidate models can be discarded

9 See, e.g., the example section of (Bradley et al., 2001).
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by purely qualitative techniques or by semi-numerical techniques in conjunction
with constraint reasoning.

4.1 Qualitative Reasoning

Reasoning about abstract features of a physical system or a candidate model is
typically faster than reasoning about their detailed properties. Because of this,
PRET uses a “high-level first” strategy: it tries to rule out models by purely qual-
itative techniques (de Kleer & Williams, 1991; Faltings & Struss, 1992; Forbus,
1996; Weld & de Kleer, 1990) before advancing to more-expensive semi-numerical
or numerical techniques. Often, only a few steps of inexpensive qualitative rea-
soning suffice to quickly discard a model.

Some of PRET’s qualitative rules, in turn, make use of other tools, e.g., sym-
bolic algebra facilities from the commercial package MAPLE (Char et al., 1991).
For example, PRET’s encoded ODE theory includes the qualitative rule that
nonlinearity is a necessary condition for chaotic behavior:

(<= (falsum)
((linear-system) ;; ode is linear
(chaotic))) ;; target system is chaotic

This lets any linear model be discarded without performing more-complex
operation@ such as, for example, a numerical integration of the ODE. Table[I]
gives some examples of observations and the facts that the logic system infers
from them.

Table 1. Some observations and the corresponding inferences drawn by the logic
system

Observ. about state var. z; Implications for model f(x,t) =0

autonomous cannot explicitly contain ¢ (i.e., f(x) = 0)
chaotic cannot be linear

chaotic and autonomous order > 2

oscillation and autonomous imaginary part of one pair of roots > 0
linear should satisfy @; = 0

constant should satisfy 4; = 0

conservative V-f=0

damped oscill. and autonomous V - f < 0

These examples highlight an important feature of PRET’s knowledge base:
not only PRET’s inputs and outputs but also its internal reasoning rules are
communicable to domain experts.

10 Determining whether or not an ODE is linear involves calculation of the Jacobian,
which is a simple symbolic operation that PRET accomplishes via a single call to
MAPLE.
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PRrRET’s QR facilities are not only important for accelerating the search for
inconsistencies between the physical system and the model; they also allow the
user to express incomplete information (Kuipers, 1992). For example, the user
might not know the exact value of a friction coefficient, but he or she might
know that it is constant and positive. This is useful not only in isolation, but
in conjunction with the constraint reasoning mode, as described later in this
section.

4.2 Qualitative Simulation

After using its qualitative reasoning facilities to the fullest possible extent and
before resorting to the numerical level, PRET attempts to establish contradictions
by reasoning about the states of the physical system (Kuipers, 1992). It does
not do full qualitative simulation (Kuipers, 1986); rather, it envisions the state
space of all possible combinations of qualitative values of state variables and
parameters. Specifically, PRET’s qualitative envisioning module constrains the
possible ranges of parameters in the candidate model. If the constraints become
inconsistent—i.e., the range of a parameter becomes the empty set—the model
is ruled out.

Currently, the qualitative states contain only sign information (—,0,+). For
example, for the model ax + by = 0, the state (z,y) = (4, +) constrains (a,b)
to the possibilities (+,—) or (0,0) or (—,+). This strategy is faster than full
qualitative simulation, but it is also less accurate; it may let invalid models
pass the test, but these models will later be ruled out by the numeric simula-
tor. However, for the models that do fail the qualitative envisioning test, this
test is much cheaper than a numeric simulation and point-by-point comparison
would be.

4.3 Constraint Reasoning

Often, information between the purely qualitative and the purely numeric levels
is also available. If a linear system oscillates, for example, the imaginary parts
of at least one pair of the roots of its model’s characteristic polynomial must be
nonzero. If the oscillation is damped, the real parts of those roots must also be
negative. Thus, if the model ai+bi+cx = 0 is to match an damped-oscillation
observation, the coefficients must satisfy the inequalities 4ac > b and b/a > 0.

PRET uses expression inference (Sussman & Steele, 1980) to merge and sim-
plify such constraints (Jaffar & Maher, 1994). However, this approach works
only for linear and quadratic expressions and some special cases of higher order,
but the expressions that arise in model testing can be far more complex. For
example, if the candidate model & + az* + b&? = 0 is to match an observation
that the system is conservative, the coefficients a and b must take on values
such that the divergence —4ai> — 2bi is zero, below a certain resolution thresh-
old, for the specified range of interest of z. We are investigating techniques
(e.g., (Faltings & Gelle, 1997)) for reasoning about more-general expressions
like this.
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4.4 Geometric Reasoning

Other qualitative forms of information that are useful in reasoning about models
are the geometry and topology of a system’s behavior, as plotted in the time or
frequency domain, state space, etc. A bend of a certain angle in the frequency
response, for instance, indicates that the ODE has a root at that frequency,
which implies algebraic inequalities on coefficients, much like the facts inferred
from the damped-oscillation above; asymptotes in the time domain have well-
known implications for system stability, and state-space trajectories that cross
imply that an axis is missing from that space.

In order to incorporate this type of reasoning, PRET processes the
numeric observations—curve fitting, recognition of linear regions and asymp-
totes, and so on—using MAPLE functions (Char et al., 1991) and simple phase-
portrait analysis techniques (Bradley, 1995), producing the type of abstract
information that its inference engine can leverage to avoid expensive numeri-
cal checks. These methods, which are used primarily in the analysis of sensor
data, are described in more detail in (Bradley & Easley, 1998). PRET does not
currently reason about topology, but we are investigating how best to do so
(Robins et al., 1998; Robins et al., 2000).

4.5 Parameter Estimation and Numerical Simulation

PRET’s final check of any model requires a point-by-point comparison of a nu-
merical integration of that ODE against all numerical observations of the target
system. In order to integrate the ODE, however, PRET must first estimate values
for any unknown coeflicients.

Parameter estimation, the lower box in Figure[] is a complex nonlinear global
optimization problem. PRET’s nonlinear parameter estimation reasoner (NPER)
solves this problem using a new, highly effective global optimization method
that combines qualitative reasoning and local optimization techniques. Space
limitations preclude a thorough discussion of this approach here; see (Bradley
et al., 1998) for more details.

4.6 Benefits of the Communicable Reasoning Framework

Representing PRET’s ODE theory and the associated reasoning techniques in a
communicable format that resembles a domain expert’s vocabulary and concep-
tual framework, as described in this section, has several advantages:

1. Formulating the ODE theory is a reasonably straightforward undertaking:
the rules in the knowledge base—e.g., the ones shown in Table [[I-resemble
the knowledge presented in typical dynamic systems textbooks.

2. Given a trace of PRET’s reasoning, it is easy to understand why a particular
candidate model was ruled out

1 We are currently working on ways in which such knowledge—essentially a contradic-
tion proof—can be fed back to the generation phase automatically in order to help
guide the choice of the next candidate model. Such approaches are often referred to
as discrepancy-driven refinement (Addanki et al., 1991).
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3. Similarly, it is easy to examine why a particular candidate model (the result
of a PRET run) did not get ruled out. This point is important if PRET
finds an ODE model that cannot be ruled out based on the union of the
observations and PRET’s ODE theory, but the model does not match the
user’s intuitions about the target system. This means that the model that
passes PRET’s validity test does not pass the user’s mental validity test. This
situation may arise for two reasons:

(a) Incomplete observations: The user is aware of some aspects of the target
system’s behavior that do not match PRET’s model, but the user did
not provide the corresponding observations to PRET. See (Bradley et al.,
1998) for an example.

(b) Incomplete ODE theory: The user’s knowledge about ODE theory lets
him or her rule out PRET’s model, but PRET’s ODE theory does not
include that knowledge.

In the first case, the user simply starts another modeling run, this time sup-

plying the additional observations that help refute the model that PRET has

found in the previous run. In the second case, one has to “teach” PRET some
more ODE theory, extending it so as to enable it to prove the contradiction

(between the observations and the model) that the user sees and that PRET

does not see.

One of the most important advantages of PRET’s communicable reasoning
framework is its modularity and extensibility. It was intentionally designed
so that working with it does not require knowledge of any of the inner work-
ings of the program, which allows mathematics experts to easily modify and
extend PRET’s ODE theory. Implementing additional rules—similar to the
ones shown in Table [[l—is only a matter of a few lines of SCHEME code
and/or a call to MAPLE.

4. Similarly to extending the ODE theory, the user may also want to extend
PRET’s arsenal of reasoning modes. Such extensions may result in a more-
accurate assessment of candidate models and/or increased performance—
because they may facilite high-level, abstract shortcuts for contradiction
proofs. Adding a reasoning mode to PRET’s repertoire amounts to writ-
ing two or three Horn claused] that interpret the results of the reason-
ing mode by specifying the conditions under which those results contradict
observations about the target system.

Please see (Stolle, 1998; Stolle & Bradley, 1998) for a complete discussion of
PRET’s reasoning modes.

5 Reasoning Control in PRET

PRET’s challenge in properly orchestrating the reasoning modes described in
the previous section was to test models against observations using the cheapest
possible reasoning mode and, at the same time, to avoid duplication of effort. In
order to accomplish this, the inference engine uses the following techniques.

12 This is explained in the next section.
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5.1 Resolution Theorem Proving

The observations and the ODE theory are expressed in the language of gener-
alized Horn clause intuitionistic logic (McCarty, 1988). PRET’s inference engine
is a resolution-based theorem prover. For every candidate model, this prover
combines basic facts about the target system, basic facts about the candidate
model, and basic facts and rules from the ODE theory into one set of clauses,
and then tries to derive falsum—which represents inconsistency—from that set.

The special formula falsum may only appear as the head of a clause. Such
clauses are often called integrity constraints: they express fundamental reasons
for inconsistencies, e.g., that a system cannot be oscillating and non-oscillating
at the same time. For a detailed discussion of PRET’s logic system see (Stolle,
1998; Stolle & Bradley, 1998; Hogan et al., 1998).

5.2 Declarative Meta Level Control

PRET uses declarative techniques not only for the representation of knowledge
about dynamic systems and their models, but also for the representation of
strategies that specify under which conditions the inference engine should focus
its attention on particular pieces or types of knowledge. PRET provides meta-
level language constructs that allow the implementer of the ODE theory to
specify the control strategy that is to be used.

The intuition behind PRET’s declarative control constructs is, again, that the
search should be guided toward a cheap and quick proof of a contradiction. For
example, PRET’s meta control theory prioritizes stability reasoning about the
target system depending on whether the system is known to be linear[X For a
discussion of PRET’s meta control constructs, see (Beckstein et al., 1996; Hogan
et al., 1998).

5.3 Reasoning at Different Abstraction Levels

To every rule, the ODE theory implementer assigns a natural number, indicating
its level of abstraction. The inference engine uses less-abstract ODE rules only
if the more-abstract rules are insufficient to prove a contradiction.

This static abstraction level hierarchy facilitates strategies that cannot be
expressed by the dynamic meta-level predicates alone: whereas the dynamic
control rules impose an order on the subgoals and clauses of one particular (but
complete) proof, the abstraction levels allow PRET to omit less-abstract parts of
the ODE theory altogether. Since abstract reasoning usually involves less detail,
this approach leads to short and quick proofs of the falsum whenever possible.

5.4 Storing and Reusing Intermediate Results

In order to avoid duplication of effort, PRET stores formulae that have been
expensive to derive and that are likely to be useful again later in the reasoning

13 If a system is known to be linear, its overall stability is easy to establish, whereas
evaluating the stability of a nonlinear system is far more complicated and expensive.
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process. Engineering a framework that lets PRET store just the right type and
amount of knowledge is a surprisingly tricky endeavor. On the one hand, remem-
bering every formula that has ever been derived is too expensive. On the other
hand, many intermediate results are very expensive to derive and would have to
be rederived multiple times if they were not stored for reuse.

PRET reuses previously derived knowledge in three ways. First, it remembers
what it has found out about the physical system across all test phases of indi-
vidual candidate models. The fact that a time series measured from the physical
system contains a limit cycle, for example, can be reused across all candidate
models. Second, every time PRET’s reasoning proceeds to a less-abstract level, it
needs all information that has already been derived at the more-abstract level,
so it stores this information rather than rederiving it Finally, many of the
reasoning modes described in Section ] use knowledge that has been generated
by previous inferences, which may in turn have triggered other reasoning modes.
For instance, the NPER relies heavily on qualitative knowledge derived during
the structural identification phase in order to avoid local extrema in regression
landscapes. To facilitate this, PRET gives these modules access to the set of
formulae that have been derived so far.

In summary, PRET’s control knowledge is expressed as a declarative meta the-
ory, which makes the formulation of control knowledge convenient, understand-
able, and extensible. None of the reasoning techniques described in Section [
is new; expert engineers routinely use them when modeling dynamic systems,
and versions of most have been used in at least one automated modeling tool.
The set of techniques used by PRET’s inference engine, the multimodal reason-
ing framework that integrates them, and the system architecture that lets PRET
decide which one is appropriate in which situation, make the approach taken
here novel and powerful.

6 Related Modeling Approaches

Section [2] described how engineering modeling fits into the more-general land-
scape of scientific discovery, modeling of physical systems, and machine learning.
Sections Bl @ and [l have provided an overview of how PRET was designed as a
unique tool to meet the particular challenges of modeling in an engineering
setting. Given this background, we are now prepared to briefly review some
more-closely related work in more detail.

Some of PRET’s roots as an engineer’s tool can be found in “the dynamicist’s
workbench” (Abelson et al., 1989; Abelson & Sussman, 1989). Its representa-
tional scheme and its reasoning about candidate models build on a large body of
work in automated model building and reasoning about physical systems (see,
for example, (Falkenhainer & Forbus, 1991; Forbus, 1984; Nayak, 1995; Addanki
et al., 1991)). In particular, our emphasis on qualitative reasoning and qualitative

14 This requires the developer to declare a number of predicates as relevant (Beckstein
& Tobermann, 1992), which causes all succeeding subgoals with this predicate to be
stored for later reuse. See (Hogan et al., 1998) for more discussion of this.



38 R. Stolle and E. Bradley

representations and their integration with numerical information and techniques
falls largely into the category of qualitative physics. The project in this branch
of the literature that is most closely related to PRET is the QR-based viscoelas-
tic system modeling tool developed by Capelo et al. (1998), which also builds
ODE models from time-series data. PRET is more general; it handles linear and
nonlinear systems in a variety of domains using a richer set of model fragments
that is designed to be adaptable

PRET takes a strict engineering approach to the questions of accuracy and
parsimony. Its goal is to find an ODE system that serves as a useful model of
the target system in the context of engineering tasks, such as controller design.
PRET’s notion of “accuracy” is relative only to the given observations: it finds an
ODE system that matches the observations to within the user-specified precision,
and does not try to second-guess these specifications or the user’s choice of
observations. It is the user’s power and responsibility to ensure that the set of
observations and specifications presented to PRET reflect the task at hand.

PRET’s goal, then, is to construct the simplest model that matches the ob-
served behavior to within the predefined specifications. Because evaluation
criteria are always domain-specific, we believe that modeling tools should let
their domain-expert users dictate them, and not simply build in an arbitrary set
of thresholds and percentages. The notion of a minimal model that is tightly
(some might say myopically) guided by its user’s specifications represents a very
different philosophy from traditional AI work in this area. Unlike some scientific
discovery systems, PRET makes no attempt to exceed the range and resolution
specifications that are prescribed by its user: a loose specification for a particular
state variable, for instance, is taken as an explicit statement that an exact fit
of that state variable is not important to the user, so PRET will not add terms
to the ODE in order to model small fluctuations in that variable. Conversely, a
single out-of-range data point will cause a candidate model to fail PRET’s test.

These are not unwelcome side effects of the finite resolution; they are inten-
tional and useful by-products of the abstraction level of the modeling process. A
single outlying data point may appear benign if one reasons only about variances
and means, but engineers care deeply about such single-point failures (such as
the temperature dependence of O-ring behavior in space shuttle boosters), and
a tool designed to support such reasoning must reflect those constraints.

It is, of course, possible to use PRET as a scientific discovery tool by supplying
several sets of observations to it in separate runs and then unifying the results
by hand. PRET can also be used to solve the kinds of cross-validation problems
that arise in the machine learning literature: one would simply use it to perform
several individual validation runs and then interpret the results.

Like the computational discovery work of (Schabacher et al., this volume)
and (Saito & Langley, this volume), PRET makes direct contact with the ap-
plicable domain theory, and leverages that information in the model-building
process. The theory and methods are of course different; PRET’s domain is the

15 Indeed, one of PRET’s implemented modeling domains, viscoelastics, allows it to
model the same problems as in (Capelo et al., 1998).
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general mathematics of ODEs rather than the specifics of biological processes.
Many of the research issues are similar, though: how best to combine concrete
data and abstract models, how to communicate the results effectively to domain
experts, etc.

Koza et al. (this volume) use genetic programming to automatically build di-
rected graphs to model a variety of systems. While the goal is similar to PRET’s—
automatic construction of a mathematical model from observations—the models
and techniques for deriving them are very different. PRET’s target systems are
nonlinear and dynamic, and ODEs are the best way to capture that behavior.
Experts have used these kinds of models for many decades, so the associated
domain-specific reasoning is fairly well-developed and can be exploited in an
automated modeler. PRET takes this approach, rather than relying on general
techniques like genetic programming, neural nets, regression rules, etc.

Like (Garret et al., this volume), PRET relies on mathematical logic to capture
domain knowledge in a declarative form. Like (Washio & Motoda, this volume),
PRET clearly separates domain-specific facts and general knowledge, making
the priorities and connections explicit, and expressing each in a manner that is
appropriate for their use.

Other automated analysis tools target nonlinear dynamic systems. The spa-
tial aggregation framework of (Zhao et al., this volume) and Yip’s KAM tool
(Yip, 1991), among others, reason about the state-space geometry of their solu-
tions. PRET’s sensor data analysis facilities—see (Easley & Bradley, this volume)
and (Bradley & Easley, 1998)—do essentially the same thing, but PRET then
goes on to leverage that information to deduce what internal system dynam-
ics produced that state-space geometry. Its ability to solve this kind of inverse
problem—deducing a general, nonlinear ODE from partial information about its
solutions—is one of PRET’s unique strengths.

The branch of scientific discovery/machine learning research that is most
closely related to PRET is the work of Todorovski (this volume) and Dzeroski
(this volume). This line of work began with LAGRANGE (Dzeroski & Todorovski,
1995), which builds ODE and/or algebraic models of dynamic systems by apply-
ing regression techniques to time-series data. PRET and LAGRANGE can model
problems of similar complexity; they differ in that PRET can handle incom-
plete data and systems that depend in a nonlinear manner on their parameters,
whereas LAGRANGE cannot.

LAGRAMGE (Todorovski & Dzeroski, 1997), the successor to LAGRANGE, im-
proved upon its predecessor by incorporating the same kinds of optimization
algorithms (e.g., Levenberg-Marquart) on which PRET’s nonlinear parameter es-
timator is based. This broadened LAGRAMGE’s generality (and its search space)
to include models that are nonlinear in the state variables and the parameters.

The main difference between PRET and LAGRAMGE lies in how the initial
conditions for the optimization are chosen. Simplex-based nonlinear optimiza-
tion methods are essentially a sophisticated form of hill-climbing, and so initial-
condition choice is a key element in their success or failure. PRET core design
principle is to leverage all available information about the system and the model
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insofar as possible, and this plays a particularly important role in parameter
estimation. In particular, PRET uses the arsenal of qualitative and quantitative
reasoning techniques that have been described in previous sections in order to
intelligently choose initial conditions for its nonlinear optimization runs. This
not only broadens the class of ODEs for which it attains a successful fit, but also
speeds up the fitting process for individual runs.

Because the reasoning involved in PRET’s choice of initial conditions is both
qualitative and quantitative, and because both the landscapes and methods of
the optimization process are nonlinear, it is only possible to prove that the
set of models that is accessible to LAGRAMGE is a proper subset of those that
are accessible to PRET. (Indeed, any stronger statement would amount to a
general solution of the global nonlinear optimization problem.) Very few op-
timization landscape geometries are forgiving of bad initial-condition choices,
however, and so we believe that the difference between the two sets of models—
PRET-accessible and LAGRAMGE-accessible—is large. Apart from this difference,
PRET and LAGRAMGE are quite similar, though the design choices and imple-
mentation details (e.g., knowledge representations, reasoning modes, etc.) are of
course different.

7 Conclusion

PRET is designed to produce the type of formal engineering models that a human
expert would create—quickly and automatically. Unlike existing system identi-
fication tools, PRET is not just a fancy parameter estimator; rather, it uses
sophisticated knowledge representation and reasoning techniques to automate
the structural identification phase of model building as well.

PRET’s inputs, its outputs, and the knowledge used by its internal reasoning
machinery are all expressed in a form that makes this knowledge easily commu-
nicable to domain experts. The declarative knowledge representation framework
described in this chapter allows knowledge about dynamic systems and their
models to be represented in a highly effective manner. Since PRET keeps its op-
erational semantics equivalent to its declarative semantics and uses a simple and
clear modeling paradigm, it is extremely easy for domain experts to understand
and use it. This allows scientists and engineers to use PRET as an engineering
tool in the context of engineering tasks, communicating with the program using
the application domain’s vocabulary and conceptual framework.

PRET has been able to successfully construct models of a dozen or so textbook
problems (Rossler, Lorenz, simple pendulum, pendulum on a spring, etc.; see
(Bradley et al., 1998; Bradley & Stolle, 1996)), as well as several interesting
and difficult real-world examples, such as a well, a shock absorber, and a driven
pendulum, which are described in (Bradley et al., 2001), and a commercial radio-
controlled car, which is covered in (Bradley et al., 1998). These examples are
representative of wide classes of dynamic systems, both linear and nonlinear. The
research effort on this project has now turned to the application of this useful
problem-solving tool, rather than improvement of its algorithms. Our current
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task, for instance, is to use PRET to deduce information about paleoclimate
dynamics from radioisotope dating data.

Acknowledgements: Apollo Hogan, Brian LaMacchia, Abbie O’Gallagher,
Janet Rogers, Ray Spiteri, Tom Wrensch, and particularly Matt Easley con-
tributed code and/or ideas to PRET. The authors would like to thank Pat Lan-
gley for enlightening discussions.

Parts of this paper are short versions of material previously published in the
journal Artificial Intelligence (Bradley et al., 2001) and are republished here
with kind permission of the publisher, Reed-Elsevier.

References

Abelson, H., Eisenberg, M., Halfant, M., Katzenelson, J., Sussman, G.J., Yip, K.:
Intelligence in scientific computing. Communications of the ACM 32, 546-562 (1989)

Abelson, H., Sussman, G.J.: The Dynamicist’s Workbench I: Automatic preparation
of numerical experiments. In: Symbolic computation: Applications to scientific com-
puting. Frontiers in Applied Mathematics. vol. 5, Society for Industrial and Applied
Mathematics, Philadelphia, PA (1989)

Addanki, S., Cremonini, R., Penberthy, J.S.: Graphs of models. Artificial Intelli-
gence 51, 145-177 (1991)

Beckstein, C., Stolle, R., Tobermann, G.: Meta-programming for generalized Horn
clause logic. In: Proceedings of the Fifth International Workshop on Metaprogram-
ming and Metareasoning in Logic, pp. 27—42. Bonn, Germany (1996)

Beckstein, C., Tobermann, G.: Evolutionary logic programming with RISC. In: Pro-
ceedings of the Fourth International Workshop on Logic Programming Environ-
ments, pp. 16-21. Washington, D.C. (1992)

Bradley, E.: Autonomous exploration and control of chaotic systems. Cybernetics and
Systems 26, 299-319 (1995)

Bradley, E., Easley, M.: Reasoning about sensor data for automated system identifica-
tion. Intelligent Data Analysis 2, 123-138 (1998)

Bradley, E., Easley, M., Stolle, R.: Reasoning about nonlinear system identification.
Artificial Intelligence 133, 139-188 (2001)

Bradley, E., O’Gallagher, A., Rogers, J.: Global solutions for nonlinear systems using
qualitative reasoning. Annals of Mathematics and Artificial Intelligence 23, 211-228
(1998)

Bradley, E., Stolle, R.: Automatic construction of accurate models of physical systems.
Annals of Mathematics and Artificial Intelligence 17, 1-28 (1996)

Capelo, A., Ironi, L., Tentoni, S.: Automated mathematical modeling from experimen-
tal data: An application to material science. IEEE Transactions on Systems, Man
and Cybernetics — C 28, 356-370 (1998)

Casdagli, M., Eubank, S. (eds.): Nonlinear modeling and forecasting. Addison Wesley,
Reading, MA (1992)

Char, B.W., Geddes, K.O., Gonnet, G.H., Leong, B.L., Monagan, M.B., Watt, S.M.:
Maple V language reference manual. Springer, Heidelberg (1991)

de Kleer, J., Williams, B.C. (eds.): Artificial intelligence. Special Volume on Qualitative
Reasoning About Physical Systems II, vol. 51. Elsevier Science, Amsterdam (1991)



42 R. Stolle and E. Bradley

Dzeroski, S., Todorovski, L.: Discovering dynamics: From inductive logic programming
to machine discovery. Journal of Intelligent Information Systems 4, 89-108 (1995)
Easley, M., Bradley, E.: Generalized physical networks for automated model building.
In: Proceedings of the Sixteenth International Joint Conference on Artificial Intelli-

gence, pp. 1047-1053. Stockholm, Sweden (1999a)

Easley, M., Bradley, E.: Reasoning about input-output modeling of dynamical systems.
In: Proceedings of the Third International Symposium on Intelligent Data Analysis,
pp. 343-355. Amsterdam, The Netherlands (1999b)

Easley, M., Bradley, E.: Meta-domains for automated system identification. In: Pro-
ceedings of the Eleventh International Conference on Smart Engineering System
Design, pp. 165-170. St. Louis, MI (2000)

Falkenhainer, B., Forbus, K.D.: Compositional modeling: Finding the right model for
the job. Artificial Intelligence 51, 95-143 (1991)

Faltings, B., Gelle, E.: Local consistency for ternary numeric constraints. In: Proceed-
ings of the Fifteenth International Joint Conference on Artificial Intelligence, pp.
392-397. Nagoya, Japan (1997)

Faltings, B., Struss, P. (eds.): Recent advances in qualitative physics. MIT Press, Cam-
bridge, MA (1992)

Farmer, J., Sidorowich, J.: Predicting chaotic time series. Physical Review Letters 59,
845-848 (1987)

Forbus, K.D.: Qualitative process theory. Artificial Intelligence 24, 85-168 (1984)

Forbus, K.D.: Qualitative reasoning. In: Tucker Jr., A.B. (ed.) CRC computer science
and engineering handbook, ch. 32, pp. 715-733. CRC Press, Boca Raton, FL (1996)

Hogan, A., Stolle, R., Bradley, E.: Putting declarative meta control to work (Technical
Report CU-CS-856-98). University of Colorado, Boulder (1998)

Huang, K.-M., Zytkow, J.M.: Discovering empirical equations from robot-collected
data. In: Foundations of Intelligent Systems (Proceedings of the Tenth International
Symposium on Methodologies for Intelligent systems), pp. 287-297, Charlotte, NC
(1997)

Jaffar, J., Maher, M.J.: Constraint logic programming: A survey. Journal of Logic
Programming 20, 503-581 (1994)

Juang, J.-N.: Applied system identification. Prentice Hall, Englewood Cliffs, N.J. (1994)

Kuipers, B.J.: Qualitative simulation. Artificial Intelligence 29, 289-338 (1986)

Kuipers, B.J.: Qualitative reasoning: Modeling and simulation with incomplete knowl-
edge. Addison-Wesley, Reading, MA (1992)

Kuipers, B.J.: Reasoning with qualitative models. Artificial Intelligence 59, 125-132
(1993)

Langley, P.: The computational support of scientific discovery. International Journal of
Human-Computer Studies 53, 393-410 (2000)

Langley, P., Simon, H.A., Bradshaw, G.L., Zytkow, J.M. (eds.): Scientific discovery:
Computational explorations of the creative processes. MIT Press, Cambridge, MA
(1987)

Ljung, L. (ed.): System identification; theory for the user. Prentice-Hall, Englewood
Cliffs, N.J. (1987)

McCarty, L.T.: Clausal intuitionistic logic I. Fixed-point semantics. The Journal of
Logic Programming 5, 1-31 (1988)

Morrison, F.: The art of modeling dynamic systems. John Wiley & Sons, New York
(1991)

Nayak, P.P.: Automated modeling of physical systems (Revised version of Ph.D. thesis,
Stanford University). LNCS, vol. 1003, Springer, Heidelberg (1995)



Communicable Knowledge in Automated System Identification 43

Robins, V., Meiss, J., Bradley, E.: Computing connectedness: An exercise in computa-
tional topology. Nonlinearity 11, 913-922 (1998)

Robins, V., Meiss, J., Bradley, E.: Computing connectedness: Disconnectedness and
discreteness. Physica D 139, 276-300 (2000)

Stolle, R.: Integrated multimodal reasoning for modeling of physical systems. In: Doc-
toral dissertation, University of Colorado at Boulder. LNCS, Springer, Heidelberg
(to appear, 1998)

Stolle, R., Bradley, E.: Multimodal reasoning for automatic model construction. In:
Proceedings of the Fifteenth National Conference on Artificial Intelligence, pp. 181—
188. Madison, WI (1998)

Sussman, G.J., Steele, G.L.: CONSTRAINTS—a language for expressing almost hier-
archical descriptions. Artificial Intelligence 14, 1-39 (1980)

Todorovski, L., Dzeroski, S.: Declarative bias in equation discovery. In: Proceedings
of the Fourteenth International Conference on Machine Learning, pp. 376-384.
Nashville, TN (1997)

Washio, T., Motoda, H., Yuji, N.: Discovering admissible model equations from ob-
served data based on scale-types and identity constraints. In: Proceedings of the Six-
teenth International Joint Conference on Artificial Intelligence, pp. 772-779. Stock-
holm, Sweden (1999)

Weigend, A.S., Gershenfeld, N.S. (eds.): Time series prediction: Forecasting the future
and understanding the past. Santa Fe Institute Studies in the Sciences of Complexity,
Santa Fe, NM (1993)

Weld, D.S., de Kleer, J. (eds.): Readings in qualitative reasoning about physical sys-
tems. Morgan Kaufmann, San Mateo, CA (1990)

Yip, K.: KAM: A system for intelligently guiding numerical experimentation by com-
puter. Artificial Intelligence Series. MIT Press, Cambridge (1991)

Zytkow, J.M.: Model construction: Elements of a computational mechanism. In: Pro-
ceedings of the Symposium on Artificial Intelligence and Scientific Creativity, pp.
65-71. Edinburgh, UK (1999)



Incorporating Engineering Formalisms into
Automated Model Builders

Matthew Easley! and Elizabeth Bradley?*

! Teledyne Scientific
Thousand Oaks, California, USA
measley@teledyne.com
2 Department of Computer Science
University of Colorado, Boulder, Colorado, USA
1izb@cs.colorado.edu

Abstract. We present a new knowledge representation and reasoning
framework for modeling nonlinear dynamic systems. The goals of this
framework are to smoothly incorporate varying levels of domain knowl-
edge and to tailor the search space and the reasoning methods accord-
ingly. In particular, we introduce a new structure for automated model
building known as a meta-domain which, when instantiated with domain-
specific components, tailors the space of candidate models to the system
at hand. We combine this abstract modeling paradigm with ideas from
generalized physical networks, a meta-level representation of idealized
two-terminal elements, and a hierarchy of qualitative and quantitative
analysis tools, to produce dynamic modeling domains whose complexity
naturally adapts to the amount of available information about the target
system. Since the domain and meta-domain representation use the same
type of techniques and formalisms as practicing engineers, the models
produced from these frameworks are naturally communicable to their
target audience.

1 Representations for Automated Model Building

System identification (SID) is the process of identifying a dynamic model of
an unknown system. The challenges involved in automating this process are
significant, as applications in different fields of science and engineering demand
different kinds of models and modeling techniques. System identification entails
two steps: structural identification, wherein one ascertains the general form of
the model as described by an ordinary differential equation or ODE (e.g., aZ +
bsin(z) = 0 for a simple pendulum), and then parameter estimation, in which
one finds specific parameter values for the unknown coefficients that fit that
model to observed data (e.g., a = 1.0, b = —98.0). For nonlinear systems,
parameter estimation is difficult and structural identification is even harder;
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artificial intelligence (AI) techniques can be used to automate the former, but
the latter has, until recently, remained the competency of human experts.

A central problem in any automated modeling task is that the size of the
search space is exponential in the number of model fragments unless severe
restrictions are placed on the model-building process. One would ideally like to
build black-box models without resorting to any domain knowledge, but the
combinatorics of this method makes it impractical. “Gray-box” modeling, which
uses domain knowledge to prune the search space, is much more realistic and
yet still quite general, as its techniques apply in a variety of circumstances.
The key to making gray-box modeling of nonlinear dynamic systems practical in
an automated modeling tool is a flexible knowledge representation scheme that
adapts to the problem at hand. Domain-dependent knowledge can drastically
reduce the search-space size, but its applicability is fundamentally limited. The
challenge in balancing these influences is to be able to determine, at every point
in the reasoning procedure, what knowledge is applicable and useful.

The goal of the work described in this chapter was to develop a knowledge rep-
resentation and reasoning (KRR) framework that supports automated modeling
in a range of gray shades that is useful to practicing engineers. The solution de-
scribed here comprises a representation that allows for different levels of subject
area knowledge, a set of reasoning techniques appropriate to each level, and a con-
trol strategy that invokes the right technique at the right time (Easley & Bradley,
1999). In particular, our work is based on a new structure for automated model
construction called a meta-domain, which combines hypotheses into ordinary dif-
ferential equation models without generating overly large search spaces. Meta-
domains may be used directly, or refined with subject matter knowledge to create
a more specific modeling domain. We combined the meta-domain representation
with ideas from generalized physical networks (GPN) (Sanford, 1965), a meta-
level representation of idealized two-terminal elements, and traditional composi-
tional model building (Falkenhainer & Forbus, 1991) and qualitative reasoning
(Weld & de Kleer, 1990) with the intent to bridge the gap between highly specific
KRR frameworks that work well in a single, limited domain (e.g., a spring/dashpot
vocabulary for modeling simple mechanical systems) and abstract frameworks
that rely heavily upon general mathematical formalisms at the expense of having
huge search spaces, such as (Bradley & Stolle, 1996). Finally, the meta-domain
representation supports dynamic modeling domains whose complexity and anal-
ysis tools naturally adapts to the available information.

To test these ideas, we have implemented two meta-domains:

— xmission-line, which generalizes the notion of an electrical transmission
line, using an iterative template to compose models, and

— linear-plus, which builds models that obey fundamental linear systems
properties, while also allowing for limited numbers of nonlinear terms.

We have demonstrated the effectiveness of these meta-domains by incorporating
them into PRET (Bradley et al., 2001), an automatic system identification tool
that constructs ordinary differential equation models of nonlinear dynamic sys-
tems. Unlike other AT modeling tools—most of which use libraries to construct
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models of small, well-posed problems in limited applications—PRET builds mod-
els of nonlinear systems in multiple areas and uses sensors and actuators to inter-
act directly and automatically with the target system (Bradley & Easley, 1998).
PRET takes a generate-and-test approach, using a small, powerful domain theory
to build models, and then applies a body of mathematical and physical knowl-
edge encoded in first-order logic to test those candidate ODEs against behavioral
observations of the target system. The “test” phase of the generate-and-test cy-
cle is described in detail in (Stolle & Bradley, this volume). The emphasis in the
remainder of this current chapter is upon the “generate” phase.

Meta-domains effectively shrink PRET’s search spaces, and hence increase its
power. A PRET operator may employ a meta-domain directly, or use a more-
specific domain that has been customized to fit a particular engineering applica-
tion. These frameworks allow PRET to search an otherwise intractable space of
possible model combinations. Furthermore, this hierarchy of domains and meta-
domains also contains analysis tools which PRET may use to reduce the size of
the model search. Our results demonstrate that the meta-domain representation
is an effective way to construct a description that is appropriate to a wide range
of points on this gray-box modeling spectrum, and thus it provides a useful
bridge between general and specific modeling approaches.

One of our primary goals of this work has been to make “an engineer’s tool:”
one that could begin to augment—or even duplicate—the work of a human en-
gineer. Doing this in a manner that would be acceptable and understandable to
the target audience required us to incorporate the techniques and formalisms of
a variety of engineering fields into the knowledge representation and reasoning
(KRR) frameworks described here. We did this in a multitude of ways, from
the abstract description of observations of a time series, to the underlying rep-
resentation of model building primitives and the ways in which these primitive
components are connected into models. As we have consistently used the tools,
vocabulary, and modeling representations of the engineering disciplines, it is a
straightforward process for human engineers to reason with our results.

The following section covers background material on our approach: generalized
physical networks for specific model-building domains. Section Bl describes the
implementation of the two meta-domains mentioned above. Section [0l describes
the reasoning techniques involved in dynamic modeling domains. An example of
how a meta-domain integrates smoothly with the GPN representation to form
a modeling domain appears in Section [} see Easley (2000) for other examples.
Section covers related component-based and compositional modeling
approaches, and Section [0 summarizes the major points of this chapter.

2 Generalized Physical Networks

In the late 1950s and early 1960s, inspired by the realization that the principles
underlying Newton’s third law and Kirchhoff’s current law were identically a

! Summation of {forces, currents} at a point is zero, respectively; both are manifes-
tations of the conservation of energy.
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researcher at the Massachusetts Institute of Technology, Henry Paynter, began
combining multi-port methods from a number of engineering fields into a gen-
eralized engineering domain with prototypical components (Paynter, 1961). The
basis of Paynter’s work is that the behavior of an ideal two-terminal element—the
“component”—may be described by a mathematical relationship between two
dependent variables: generalized flow and generalized effort, where flow(t) * ef-
fort(t) = power(t). This generalized physical networks paradigm is one
example of a generalized modeling representation, where the pair of variables
manifests differently in each domain: (flow, effort) is (current, voltage) in an
electrical domain and (force, velocity) in a mechanical domain. Effort and flow
are known as power variables since their product is always power. This reliance
upon power relationships is both the primary advantage and the primary disad-
vantage of generalized physical networks: if the physical system obeys this con-
servation principle, then GPNs are a useful modeling tool. If not, their efficacy is
questionable.

2.1 Bond Graphs and Functional Modeling

In bond graphs (Karnopp et al., 1990), another generalized representation para-
digm that has seen some use in the AT modeling literature (Mosterman & Biswas,
1996), flow and effort variables are reversed: velocity is now a flow variable and
force is an effort variable. The difference between GPNs and bond graphs, thus,
is essentially a frame-of-reference shift. While bond graphs are a good alternative
to generalized physical networks—especially if causality issues are a concern—
converting them into ODE models is difficult. Functional modeling (Chittaro
et al., 1994) is another alternative to GPNs; indeed, it is based upon the same
“Tetrahedron of State” that underlies both GPNs and bond graphs. (See Payn-
ter (1961) for a detailed description of relationship between the four generalized
variables of the tetrahedron: effort, flow, impulse, and displacement.) Functional
modeling adds another layer to the GPN/bond graph idea by describing the
potential functional role that a component plays in a system, as well as the
functional relationship between components. Functional roles, which describe
the way generalized variables influence each other, are useful in diagnostic rea-
soning applications where the relationship between structure and behavior is
critical.

2.2 Advantages of GPNs

The GPN representation holds many advantages for automated model building.
First, its two-port nature makes it easy to incorporate sensors and actuators as
integral parts of a model. For example, a sinusoidal current source often has an
associated impedance that creates a loading effect on the rest of the circuit. Not
only does this make the model more representative of the physical world, but
it also provides a handle for an automated modeler to actually manipulate an
actuator’s control parameter to explore various aspects of a physical system’s
behavior. The use of GPNs also brings out the similarities between components
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and properties in different domains. Electrical resistors (v = iR) and mechan-
ical dampers (v = fB), for instance, are physically analogous: both dissipate
energy in a manner that is proportional to the operative state variable. Both of
these physical components can be represented by a single GPN modeling com-
ponent that incorporates a proportional relationship between the flow and effort
variables. Two other useful GPN components instantiate integrating and differ-
entiating relationships, as shown in Table [I} other GPN instances model flow
and effort sources. See Karnopp et al. (1990) or Sanford (1965) for additional
domains and components.

Table 1. Example GPN component representations

Component Electrical Mechanical Mechanical Fluid-Flow
Translation Rotation
Proportional v = Ri v=DBf w= DT p= Rq
Differentiating 1 = C‘é’; f= Mfl;t’ T= J‘iﬁ q= Cflif
Integrating v = Lgi v = KZJ: w = chll: p= I‘;‘tl
Nonlinear v=—Rai’v= —RAf3 w=—Rat? p= —RAq3

A final advantage of the GPN representation is its ability to capture behavioral
analogs. Both of the networks in Figure [Tl for example, can be modeled by a
series proportional /integrating/differentiating GPN; knowledge that the system
is electronic or mechanical would let one refine the model accordingly (to a series
RLC circuit or damper-spring-mass system, respectively). The available domain
knowledge, then, can be viewed as a lens that expands upon the internals of
some GPN components, selectively sharpening the model in appropriate and

useful ways.
L B K
C g""
(b)

(a)

Fig. 1. Two systems that are described by the same GPN model: (a) a series RLC
circuit (b) a damper-spring-mass system. V is a voltage source in (a) and a velocity
source in (b).

2.3 Converting GPNs to ODEs

The conversion of a domain-independent GPN model into ODE form is fairly
easy to automate. The powerful network-theoretic principles involved have been
in the engineering vernacular for many decades , but are used here in a very
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different manner. Traditionally, engineers apply a tool like modified nodal anal-
ysis, which is based on node equations, to a known network with known parame-
ter values in order to analyze its behavior. Our domain/meta-domain framework
uses loop and node equations (formed using generalized version’s of Kirchhoff’s
current and voltage laws) to convert a GPN network with unspecified parameter
values into an ODE, also with unspecified parameter values. The advantage of
doing this conversion at the end of the model-building process is that it keeps
the model—and the reasoning—as abstract as possible for as long as possible.

For the example shown in Figure [ the GPN — ODE conversion process
works as follows. A generalized version of Kirchhoff’s voltage law is used to form
a loop equation around the network using the appropriate GPN components, in
this case one proportional, one differentiating and integrating. Forming the loop
equation yields the equation: a ‘fif +bx+c [ xdt = df (t) , which becomes ai+bx+
cx = df'(t) after symbolic differentiation. The process becomes more complex
when additional loop equations are required, generating another equation for
every loop.

There are a variety of ways to use generalized physical networks to help au-
tomate the structural identification phase of the SID process. One could, for
example, create a library of GPN components, enumerate all their possible com-
binations/configurations, and test each member of this succession until a valid
model is found. This method is obviously impractical, as simple enumeration cre-
ates an exponential search space—a severe problem if the component library is
large, as must be the case if one is attempting to model nonlinear systemsE The
next section describes a way to alleviate this problem by incorporating powerful
engineering formalisms into the reasoning framework.

3 Knowledge About Building Models

3.1 Hierarchy of Modeling Knowledge

Our method for reducing the size of the model-generation search space is to
incorporate model-building heuristics and analysis tools into a carefully crafted
knowledge representation and reasoning (KRR) framework. Depending upon the
application area, experts use highly specific types of heuristic knowledge. Dif-
ferent types of problems demand different data analysis tools, for instance, and
the constraints on allowable component types and connection frameworks are
equally area-specific. Like these heuristics, application areas themselves vary
greatly depending upon their scope. A general application area—e.g., the set
of all dynamic systems—has a complex search space; a specific application like
the set of conservative mechanical systems has a much smaller one. One way to
reduce not only the size of the search space but also the amount of knowledge
that must be encoded into the KRR framework is to organize the knowledge into

2 Nonlinear terms are somewhat idiosyncratic, and each must be supplied as a separate
library entry. This issue has not arisen in previous work on GPNs because their use
has been generally confined to linear systems.
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a hierarchy of generality. The inheritance tree structure of Figure 2] captures this
critical system knowledge so that modeling building heuristics and analysis tools
about one type of system can be reused by all of its subtypes. Detailed knowl-
edge that is applicable to only one modeling field can then be confined to a
leaf of the tree (e.g., linear viscoelastic systems). This section describes how the

dynamic systems
linear systems nonlinear systems

linear | linear nonlinear |
electromechanical hydraulic electromechanical

linear linear. . nonlinear
electronic mechanical mechanical
AN RS

linear linear
transmission  viscoelastics
lines
Fig. 2. A hierarchy of dynamic systems

model-building knowledge is structured inside each “node” of the tree. Section
describes how the structure of the tree itself is used to guide the model search
process.

Knowledge within a node is encoded at two different levels: either in a meta-
domain or a domain. A meta-domain is the construct that solves the search-space
problem of the naive component-based approach, where all possible combina-
tions of possible components are generate and then tested. As implemented in
our framework, meta-domains are algorithms that combine model hypotheses—
either GPN components or ordinary different equation fragments—into viable
ordinary differential equations. Hypotheses may either be defined by the user or
may be pre-defined by a knowledge engineer for use by a more novice user. Some
example hypotheses are shown in Table Pl Meta-domains also abstract knowl-
edge about how to build models from a variety of subject areas. A thorough
discussion of meta-domains follows in Sections @l and

A domain is a refinement of a meta-domain with knowledge that is specific to
a particular subject area. The use of a domain requires less information from a
user than a meta-domain, but at the expense of less flexibility. The relationship
between domains and meta-domains is described at more length in the following
section, together with some high-level issues concerning their selection and use.
A specific example of how meta-domains help the PRET automated modeling
tool quickly build an ODE model appears in Section [} more examples may be
found in Easley (2000).

The hierarchical representation of knowledge shown in Figure2lis a small part
of the research area of model ontology. One of the seminal works in the engineer-
ing sub-field of model ontology is PHYSSYS (Top & Akkermans, 1994), which is
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Table 2. Example hypotheses for use in PRET. Note depending upon the meta-domain,
hypotheses may either be GPN components or ordinary different equation fragments.

Hypothesis Description
(<effort> (* a (integral <flow>))) e=a [ fdt
(Keffort> (* b (deriv <flow>))) e="bf
(<effort> (* c <flow>)) e=cf
(<effort> (* da (sin (* df <time>)))) e = dq sin(dyt)

a formal ontology based upon physical system dynamics theory. PHYSSYS makes
a conceptual distinction between a system’s layout (network structure), physical
processes underlying a behavior, and descriptive mathematical relationship. Our
framework makes similar distinctions. For example, a meta-domain is used to
help speed the process of determining a network structure, whereas a modeling
component (provided by a user or built into a domain) captures the relation-
ship between a physical entity and its mathematical representation. Other model
ontology work is specific to hierarchies of models and/or modeling components.
The Graphs of Models (Addanki et al., 1991) approach focuses on the problem of
switching between different models using known assumptions in order to deter-
mine which model is appropriate. Another example is the hierarchical component
library (de Vries et al., 1993), which decomposes bond-graph systems into nested
subsystems and components via standard object-oriented mechanisms such as
inheritence and polymorphism.

3.2 Domains and Meta-domains

Domains are constructed by application-area experts and stored in a domain-
theory knowledge base. Each consists of a set of GPN component primitives and
a framework for connecting those components into a model. The basic elec-
trical-xmission-line domain, for example, comprises the components {1ine-
ar-resistor, linear-capacitor},the standard parallel and series connectors,
and some codified notions of model equivalence (e.g., Thévenin (1883)).

Modeling domains are dynamic: if a domain does not contain a successful
model, it automatically expands to include additional components and connec-
tions from domains higher in the hierarchy. For example, if all of the models
in the initial electrical-xmission-line domain are rejected, the modeling do-
main automatically adds {linear-inductor} to the component set. We
have constructed five specific GPN-based modeling domains: mechanics,
viscoelastics, electrical-xmission-line, linear-rotational, and lin
ear-mechanics.

Specification of state variables for these different domains—type, frames of
reference, etc.—is a nontrivial design issue. In the mechanics domain, a body-
centered inertial reference frame is assumed, together with coordinates that fol-
low the formulation of classical mechanics (Goldstein, 1980), which assigns one
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coordinate to each degree of freedom, thereby allowing all equations to be writ-
ten without vectors. The representations described in this chapter are designed
to handle the coordinate issues associated with the remaining domains.

3.3 Choosing Domains

If a user wants to build a model of a system that does not fall in one of the
existing domains, he or she can either build a new domain from scratch—a
matter of making a list of components and connectors—or use one of the meta-
domains: general frameworks that arrange hypotheses into candidate models
by relying on modeling techniques that transcend individual application do-
mains. The xmission-line meta-domain, for instance, generalizes the notion
of building models using an iterative pattern, similar to a standard model of
a transmission line, which is useful in modeling distributed parameter systems.
The 1linear-plus meta-domain takes advantage of fundamental linear-systems
properties that allow the linear and nonlinear components to be treated sepa-
rately under certain circumstances, which dramatically reduces the model search
space. Both can be used directly or customized for a specific application area.

Choosing a modeling domain for a given problem is not trivial, but it is
not a difficult task for the practicing engineers who are the target audience
for this work. Such a user would first look through the existing domains to
see if one matched his or her problem. If none were appropriate, s/he would
choose a meta-domain that matched the general properties of the modeling task.
If there is a close match between the physical system’s components and the
model’s components (i.e., it is a lumped parameter system), then linear-plus is
appropriate; xmission-line is better suited to modeling distributed parameter
systems. A meta-domain should be customized into a domain if:

— there exists specialized subject knowledge to assist in refining the search,
— it is to be used often, or
— to assist a novice user.

For example, the electrical-xmission-line domain is based on the xmission-
line meta-domain. It inherits all of the meta-domain’s structure, but add some
specialized, built-in knowledge about transmission lines and electronics. The ef-
fect of this knowledge is to focus the search. A capacitor in parallel with two
resistors, for instance, is equivalent to a single resistor in parallel with that ca-
pacitor. The electrical-xmission-line domain “knows” this, allowing it to
avoid duplication of effort. There is significant overlap between the various do-
mains and meta-domains; an electronic circuit can be modeled using the specific
electrical-xmission-line domain, the xmission-line meta-domain, or even
the linear-plus meta-domain. In all three cases, the model generator will even-
tually produce an equivalent model, but the amount of effort involved will be
very different.

We chose this particular pair of meta-domains as a good initial set because
they cover such a wide variety of engineering domains. We are exploring other
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possible meta-domains, especially for the purposes of modeling nonlinear net-
works. Implementation details are covered in (Easley, 2000); a modeling ex-
ample that uses the xmission-line modeling domain appears in Section [7
Although the use, implementation, and search spaces of these meta-domains
are somewhat different, their purpose is the same: to combine hypotheses into
models.

4  Transmission Lines

The GPN component-based modeling representation presented in Section [ is
an excellent tool for modeling individual discrete physical components: single
lumped elements with two terminals whose properties can be specified by a sin-
gle state variable. In an electrical circuit, typical passive lumped elements are
resistors, capacitors, inductors, etc. In mechanical systems, single GPN compo-
nents describe forces like friction coefficients, stiffnesses, and masses.

However, not all physical components can be treated as lumped. In many
physical systems (for example, electrical transmission lines or the cochlea of the
inner ear) and physical processes (for example, thermal conduction in a rod
and carrier motion in transistors), the physics cannot be described by a single
variable. The process of thermal conduction in a rod, for example, is governed
by heat flows that interact at a microscale throughout the volume of the rod.
An accurate description of the “state” of the system, then, comprises an infinite
number of variables: the temperature and thermal conduction at every point in
the rod.

Such distributed parameter systems normally call for partial differential equa-
tion models, and the understanding and solution of partial differential equations
is inherently far more difficult than that of ordinary differential equations with
constant coefficients. A simplistic one-dimensional PDE has the form:

bu ou

5z +a6t = bF (u)
where u is the unknown variable to be solved for (e.g., temperature or voltage),
x is the dimension of interest (e.g., length down a rod or transmission line), ¢ is
time and a and b are constants. More realistic PDE for transmission lines will
be of higher spatial dimension and non-linear. See Davis and Meindl (2000) for
an example of modeling a distributed RLC circuit using PDEs.

However, one broadly applicable case where an ODE model does provide an
accurate solution is the set of systems where a one-dimensional spatial variation
assumption is valid. Under this assumption, the interesting physics of a system
are confined to a finite number of physical dimensions of the system, allowing
a set of ODEs to approximate a PDE. This is actually quite common in prac-
tice, as engineers expand PDEs in Fourier series and then truncate them into
ODEs. For example, Edward Lorenz used analogous techniques to truncate the
Navier-Stokes equations (a set of PDEs), to form the Lorenz equations (Lorenz,
1963) (a set of ODEs). The goal of the xmission-1line meta-domain is to form
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a similar type of truncation by approximating a spatiotemporally distributed
system using an iterative structure with a large number of identically structured
lumped sections.

4.1 The Transmission-Line Meta-domain

The motivation for the xmission-line meta-domain was the basic engineering
treatment of an electrical transmission line, wherein typical electrical parameters,
such as resistance or inductance, are given in per-unit-length form. Consider, for
example, the traditional network representation of a section of a power line, as
shown in Figure[3l A normal model would be n such sections connected together
in series. This incremental network approximation becomes more accurate as the
number of sections in the model is increased. As the physical power line becomes
longer, or as increased model accuracy is required, the model builder adds more
elements.

._I\N\N\I_/‘W\ °
v R,—C

Fig. 3. The traditional incremental network model for an electrical transmission line

The transmission line example of Figure Bl may be abstracted into unspecified
series and parallel impedances, as shown in Figure @l This structure—a gener-
alized iterative two-port network with n uniform sections, each of which has a
series (A;) and a parallel (B;) element—is useful because different GPN compo-
nents may be placed into this abstracted framework to create a large variety of
transmission line-based modeling domains. In our implementation, each of these
elements can contain one or more GPN components; they may also be “null”
(essentially a short for the A; and an open for the B;).

Note that the topology of the sections is fixed in this metaphor: all the A;
contain the same network of GPN components, as do all the B;; coefficient
values within the individual elements can, of course, vary. If the user knows
the internal structure of the elements a priori, s/he can specify a single op-
tion for each of the A; and B; in the hypotheses argument to the find-model
call. For example, if an engineer were trying to model the traditional electrical
transmission line using the incremental model of Figure H s/he would spec-
ify the A; as an integrating and a proportional GPN in series, and the B;
as a differentiating and a proportional GPN in parallel. See Section [0 for an
example.



Incorporating Engineering Formalisms into Automated Model Builders 55

A (Ajr-amo —An

-1 _
o B .

L

Fig. 4. The xmission-line meta-domain allows lumped-element GPN components to
model spatially distributed systems like transmission lines, vibrating strings, and so
on. The basic paradigm is an iterative structure with a variable number of sections,
each of which has the same topology—a series element A; and a parallel element B;.
The number of sections, each of which models a small piece of the continuum physics,
rises with the precision of the model.

4.2 Refining a Meta-domain

Instead of using the meta-domain directly, in the manner described above, one
can also refine it with subject matter knowledge to create a specific model-
building domain. Building such a domain can be as simple as fixing the set
of hypotheses and then renaming the meta-domain, which can be useful if one
wants a modeling tool for naive users. However, a domain can contain much
more knowledge, such as which hypotheses are more likely to occur and in which
combinations, or a specification of a set of data-analysis tools to help guide the
model search process.

A model-building domain for use on viscoelastic problems, for instance, can
easily be constructed via the xmission-line meta-domain by fixing the A; as
null and the B; as an integrating and a proportional GPN—which correspond
to a linear spring and a linear dashpot, respectively—connected in series. Vis-
coelastic data analysis tools can then be incorporated by a human expert into
the model-building domain to reduce the model search by a factor of four (du-
plicating the functionality described in Capelo et al. (1998)). Specifying the A;
and B;, as in these two examples, sets almost all of the structure of the model,
and so the search space is small: O(n), where n is the number of sections that
are ultimately required to build an adequate model.

If the structure within a section is not known, the user would suggest sev-
eral hypotheses; the xmission-line meta-domain would then try out various
combinations of those components in the A; and B;, iterating each combination
out to a predetermined depthE Although this does give an exponential search
space—O(2%n), if there are d possible hypotheses and n required sections—d is
almost always very small in engineering practice: typically four or less. If the
application really demands more than three or four components, it would be
best to build a new application-specific domain, based on those components and

3 This is currently set at five; we are investigating other values, as well as intelligent
adaptation of that limit.
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incorporating knowledge about how to efficiently combine them, as described in
the beginning of Section [3

The power that this knowledge representation framework brings to automated
model generation is that it uses domain knowledge to tailor the search space
to the problem at hand. Because resources for model testing are limited, this
effectively expands the range of problems that an automated modeling tool can
handle.

5 The Linear Plus Meta-domain

In many engineering fields, the word “system” implies linearity, and other types
of systems must be prefaced by words such as nonlinear, dynamic, or chaotic to
warn the reader that all their traditional education on “systems” is not going
be valid. To the average practicing engineer, this is not a great concern; for
decades, most engineering systems and techniques were thought to fall into (or
at least be well approximated by) the linear realm. Even in many textbooks with
chapters on nonlinear systems, the first and primary technique used to solve most
nonlinear problems is to linearize them—either to restrict an operating regime
so that the system appears to be linear, or to make multiple piecewise-linear
models for various regimes.

There are a number of reasons engineers favor linear systems: operating be-
havior is predictable and “reasonable”; the number of devices/components in-
volved is small; and the mathematical techniques and associated analysis tools
are powerful. Unfortunately, the types of problems that can be treated with lin-
ear systems techniques are severely limited, as the real world is largely nonlinear.
For this reason, the goal of this framework is to model all systems governed by
ordinary differential equations, both linear and nonlinear. However, since the
knowledge of linear systems is so pervasive in engineering practice, and because
many of its tools are powerful enough to model many interesting systems, linear-
system techniques can usefully serve as a basis for a meta-domain.

The linear-plus meta-domain, which instantiates standard linear systems
theory, separates components into a linear and a nonlinear set, as shown in
Figure[] in order to exploit two fundamental properties of linear systems: (1) there
are a polynomial number of unique nth-order linear ODEs (Brogan, 1991), and (2)
linear system inputs (drive terms) appear verbatim in the resulting ODE model.
The first of these properties effectively converts an exponential search space to
polynomial; functionally equivalent linear networks reduce to the same Laplace
transform transfer function, which allows a model generator to identify and rule
out any ODEs that are equivalent to models that have already failed the test.
The second property allows this meta-domain (and thus any specific domain con-
structed upon it) to handle a limited number of nonlinear terms (thus the name
linear-plus) by treating them as system inputs. As long as the number of nonlinear
hypotheses remains small, the search space of possible models remains tractable.

The linear part of 1inear-plus works via an analysis of canonical forms of
linear systems. The fundamental idea behind this meta-domain is that many
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drive / linear
nonlinear
components network

Fig.5. PRET’s linear-plus meta-domain is designed for systems that are basically
linear, but that incorporate a few nonlinear terms and a few drive terms. Separating
the linear and nonlinear/drive parts of the model reduces an exponential search space
to polynomial and streamlines handling of drive terms.

different networks of linear components may be modeled by identical systems of
ODEs. This allows the search space to be pruned effectively and correctly: if five
network configurations all correspond to the same set of ODEs, then only one
of those five should be passed from the model generator to the testing phase.
Testing the other four would be a duplication of effort. In some circumstances,
it is fairly simple to determine that two different networks have identical behav-
ior and thus identical ODE models. For example, consider adding a resistor in
parallel to any other resistor in the circuit. Engineers often do this in practice
as they build a circuit in order to “tweak” it into some desired behavior, but it
does not change the structure of the ODE model. The behavior of the circuit
may change, but the circuit topology is effectively the same, which is what is
important for system identification.

Delving deeper into linear systems provides a more systematic method to solve
reduce the number of equivalent systems: the Laplace transform. This method
converts linear ODEs to algebraic equations via a set of transform theorems; see
any undergraduate linear systems textbook (e.g., Kuo (1995)) for a description
of the method. Constant-coefficient linear systems may be described by a Laplace
transform of the input-output transfer function, which is of the form:

Y(s)

where Y is the system output, u the input, T" the transfer function, s the Laplace
transform variable, and the a;s and ;s are constant coefficients. For any physical
system, causality (that is, physical realizability) requires that m < n. Otherwise,
the output y(tx) at time t; would depend upon future inputs u(t;) at time ¢,
with j > k.

The primary disadvantage of the transfer-function approach is that it is lim-
ited to linear time-invariant systems only. While this analysis tool is power-
ful, it is not directly usable within our framework, as we have concentrated
our work on time-based—not frequency-based—approaches. A more modern ap-
proach called the state-variable format is more compatible with the system iden-
tification approach used here. The state-variable format represents models via
a state-transition matrix, and is much more general than the transfer function

Bms™ + Bm—18™" 1+ ...+ Bis+ Bo

= T(S) = n n—1
s"+an_18 +...+a1s+ag

(1)
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approach; it allows both linear and nonlinear systems—both time-invariant and
time-varying systems—to be modeled in a unified manner.

There are four major categories of state-variable models, called realizations,
each with its own particular set of advantages, disadvantages, and implications,
as described in (Rowland, 1986). The realization chosen for this work is the
cascade form, which is obtained by artificially splitting the transfer-function
denominator polynomial into simpler functions of either first- or second-order
factors, as shown in Figure[Gl This is allowable because transfer functions of order
three or higher may always be factored into single or quadratic terms (Brogan
1991). The advantage of splitting the denominator polynomial into smaller terms

m
1 s+ B 1 s+ B2 5%+ B35 + P
u > > = > >
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Fig. 6. The cascade realization of a Laplace transfer function. Each individual transfer
function is either a simple first- or second-order factor, and the product ranges from
1= 1 to 5 in equation [Il

is that doing so greatly reduces the number of possible models. Consider the
denominator of Equation [, which has n + 1 total terms. There are 2" possible
combinations of s terms, but the s™ is required, which leaves n terms to choose
from. Taking all possible combinations of these s* terms (where i varies from 0
to n — 1) yields an exponential number of possibilities.

The cascade realization reduces this number to polynomial. For example, a
third-order polynomial only has two factorizations: one with three first-order T3,
and one with one first-order 7; and one second-order T;. In general, the total
number of factorizations for an nth order polynomial is |n/2].

for a — 0 to |n/2]

model «— (n — 2a first-order factors) + (a second-order factors)
Factoring the numerator is more complex: instead of two options (first-order
and second-order factors, as with the denominator), there are three: zeroth-
order, first-order, and second-order. Luckily, there is a linear-systems constraint
that degree of the numerator polynomial must be less than or equal to that
of the denominator. By choosing a set of five possible numerator-denominator
combinations, the 1inear-plus meta-domain can generate all equivalent transfer
functions of a given order with an O(n) algorithm. See Easley (2000) for details.

Our GPN-based implementation of this meta-domain consists of a library of
five two-port networks whose entries have the prototypical factorizations shown
in Figure [fl The meta-domain algorithm cascades these two-port networks to
give a transfer function with the desired numerator and denominator factor-
izations (as determined from the analysis listed above). After the linear-plus
meta-domain generates the linear model using these transfer-function based tech-
niques, it may add nonlinear terms by treating them as system inputs. Chua
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(1969) shows in his monumental treatise on nonlinear network theory how non-
linear components may be treated as drive terms exciting a linear network.
When the linear network is treated as a black box, nonlinear hypotheses such as
asinf(t) or drive terms such as (sinat appear verbatim in the resulting ODE.
This approach is limited in that it does not attempt to model full networks of
nonlinear components; as shown in Figure[d] nonlinear terms are external to the
linear model.

This approach also loses some of the domain-specificity that a strictly com-
ponent-based approach would maintain. With a state-variable approach, the
direct relationship between a physical variable in a network (e.g. a voltage in
a electrical circuit) and its representation in a model (e.g. v) may be lost in
a set of state-variable equations. The only component piece that is maintained
in the linear-plus meta-domain is the nonlinear components added to the
state variable equations. Maintaining a closer linkage between physical entities
and modeling representations is normally an advantage, as it allows for more
domain-centered knowledge to be used in the model-building process. However,
modelers in an engineering settings often switch between these state-variable
and component based representations depending upon the type and complexity
of the modeling task.

Canonical forms of linear systems are exactly the types of tools that an en-
gineer would use to decompose a larger system into smaller, more-manageable
sub-systems. This is important for automated model generation, as it makes the
search space much more manageable as well. These canonical forms also increase
the communicability of the models to practicing engineers as these are the types
of models that they are trained to used.

6 Reasoning About Building Models

The technical challenge in the process of automated modeling is efficiency: the
search space is huge, and so an automated modeling program must use analysis
tools are possible to quickly and cheaply rule out candidate models. The PRET
automated modeling tool makes a concerted effort to use domain-dependent and
independent knowledge, whenever possible, in order to help guide the search. To
better understand the utility of automated reasoning tools in the process, we
first examine how PRET builds models.

Table B demonstrates how human users work with PRET to build models.
Automated reasoning tools are used in all of PRET’s steps. The analysis tools
used for data collection and analysis are described briefly below and in more
depth in Bradley and Easley (1998). Reasoning techniques used in the testing
phases (qualitative and quantitative) are described elsewhere (Stolle & Bradley,
this volume). Reasoning techniques used in model generation is covered in this
section.

The meta-domain representation is an effective basis for dynamic modeling
domains whose complexity naturally rises and falls according to the available
information about the target system. The challenge in reasoning about models
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Table 3. Automated modeling building steps in PRET. Automated reasoning tools are
used by PRET in all of its steps.

Major Step Subtasks Actor

Collect Inputs choose modeling domain user
select hypotheses user (optional)
describe observations user (optional)
set modeling specifications user
collects time-series data user or PRET
analyze time-series data PRET

Generate build model from given hypotheses = PRET

Test qualiative testing PRET
quantitative testing PRET

in the context of meta-domains is to tailor the reasoning to the knowledge level
in such a way as to prune the search space to the minimum. Organizing domains
into a hierarchy of generality—as was shown in Figure Bl—is not enough; what
is needed is a hierarchical set of analysis tools for reasoning about models and
systems, as well as a means for assessing the situation and choosing which tool
is appropriate.

Focused, appropriate analysis is critical to the efficiency of any automated
model building process. As demonstrated in (Stolle & Bradley, this volume), in-
valid models can often be ruled out using purely qualitative information, rather
than expensive point-by-point numerical comparisons. One challenge in design-
ing the meta-domain modeling paradigm was to come up with a framework
that supported this kind of reasoning. The key idea is that different analysis
techniques are appropriate in different domains, and our solution combines a
structured hierarchy of analysis tools, part of which is shown in Tabled] with a
scheme that lets the component type and domain knowledge dictate which tools
to use. See Easley (2000) for details of these tools.

The use and organization of these analysis tools may be customized to specific
applications, just as they are in engineering disciplines. Delay-coordinate embed-
ding is applicable in any discipline and lets one infer the dimension and topology
of the internal system dynamics from a time series measured by a single output
sensor. On the other hand, analysis tools for a viscoelastic system—e.g., creep
testing—are highly domain-specific. Moreover, since the inputs, outputs, and
reasoning processes used by these analysis tools are similar to those employed
by expert engineers, PRET’s results are naturally communicable. For example,
engineers characterize system behaviors in the same type of language that cell
dynamics techniques generate. A simple undamped pendulum oscillates in a
limit cycle—a property that either a human engineer or an automated model-
building tool may use to reason about a model, or to communicate with one
another.
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Table 4. Component type and domain knowledge dictate what analysis tools should
be used to build and test models. Tools higher in this table are more general but their
results can be less powerful.

System Type Analysis Tools

Cell dynamics (Hsu, 1987)
Nonlinear Delay-coordinate embedding (Sauer et al., 1991)

Nonlinear time series analysis (Bradley, 2000; Strogatz, 1994)
Linear Linear system analysis (Reid, 1983)
Restricted linear Domain dependent (e.g., (Capelo et al., 1998))

Reasoning about model-building proceeds in the obvious manner, given this
hierarchy: if no domain knowledge about the target system is available (i.e., the
true “black box” situation), then models are constructed using general reasoning
techniques and analysis tools that apply to all ODEs—those in the top line of
Table @ This highly general approach is computationally expensive but univer-
sally applicable. If the system is known to be linear, the extensive and powerful
repertoire of linear analysis tools developed over the last several decades makes
the model building and testing tasks far less imposing. Moreover, system inputs
(drive terms) in linear systems appear verbatim in the resulting system ODE,
which makes input/output analysis much easier. In more-restricted domains,
analysis tools are even more specific and powerful. In viscoelastics, for example,
three qualitative properties of a “strain test” reduce the search space of possible
models to linear (Capelo et al., 1998).

Given all of this representation and reasoning machinery, PRET’s model-
generation phase builds models as follows. First, a candidate model is constructed
using basic GPN components and connectors, which are either supplied by the
user or built into a particular domain or meta-domain, as described in Sec-
tion This process is guided by the analysis tools in Table @l If the system is
nonlinear, for example, the cohort of nonlinear tools is applied to the sensor data
to determine the dimension d of the dynamics; this fact allows the generation
phase of an automated system identification tool to automatically disregard all
models of order < d. Other nonlinear analysis techniques yield similar search-
space reductions. If the system is linear, many more tools apply; these tools
are cheaper and more powerful than the nonlinear tools, and so the hierarchy
guides the testing phase to use the former before the latter. Knowledge that the
target system is oscillating, for example, not only constrains any autonomous
linear model to be of least second order, but also implies some constraints on
its coefficients; this reasoning is purely symbolic and hence very inexpensive as
well as broadly powerful.

The generate and test phases are interleaved: if the generate phase’s first-cut
search space does not contain a model that matches the observed system behav-
ior, the modeling domain dynamically expands to include more-esoteric compo-
nents. For example, as described in Section [ the electrical-xmission-line
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domain begins with the components {linear-resistor, linear-capacitor}.
If all models in this search space are rejected, the model generator automat-
ically expands the domain to include the component type linear-inductor.
The intuition captured by this notion of “layered” domains is that inductors are
much less common in practical engineering systems than capacitors. Expanding
domains beyond linear components is more difficult, since the number of possi-
ble component types increases dramatically and any ordering scheme necessarily
becomes somewhat ad hoc.

In many engineering domains, however, there exist well-defined categorization
schemes that help codify this procedure. Tribology texts, for exampleﬂ specify
different kinds of friction for different kinds of ball bearings, as well as some
notions about which of those are common and should be tried first, and which are
rare (Halling, 1978). The meta-domain paradigm combined with GPN-modeling
lets an expert user—a “domain builder”—encode this kind of information quickly
and easily, and allows any reasoning tool that uses that meta-domain to exploit
that knowledge.

After the model generator creates a GPN network using the relevant domain
knowledge and the model tester successfully verifies it against the observations
of the target system, the final step in the model-building process is to convert
that GPN into ODE format, as described in Section

7 Modeling Water Resource Systems

Water resource systems are made up of streams, dams, reservoirs, wells, aquifers,
etc. In order to design, build, and/or manage these systems, engineers must
model the relationships between the inputs (e.g., rainfall), the state variables
(e.g., reservoir levels), and the outputs (e.g., the flow to some farmer’s irriga-
tion ditch). To do this in a truly accurate fashion requires partial differential
equations (PDEs) because the physics of fluids involves multiple independent
variables—mnot just time—and an infinite number of state variables. PDEs are
extremely hard to work with, however, so the state of the art in the water re-
source engineering field falls far short of that. Most existing water resource ap-
plications, such as river-dam or well-water management systems, use rule-based
or statistical models.

ODE models, which capture the dynamics more accurately than these sim-
ple models but are not as difficult to handle as PDEs, are a good compromise
between these two extremes, and the water resource community has begun to
take this approach (Bredehoeft et al., 1966; Chin, 2000). In this section, we show
how meta-domains allow the PRET automatic modeling tool to duplicate some
of these research results and model the effects of sinusoidal pressure fluctua-
tion in an aquifer on the level of water in a well that penetrates that aquifer, as
shown in Figure[7l This example is a particularly good demonstration of how do-
main knowledge and the structure inherited from the meta-domain let the model
generator build systems without creating an overwhelming number of models.

4 Tribology is the science of surface contact.
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land surface
~—————

water level

Aquifer

Fig.7. An idealized representation of an open well penetrating an artesian aquifer.
The motion of the water level in the well is controlled by sinusoidal fluctuations of the
pressure in the aquifer.

This example also demonstrates how meta-domains allow automated modeling
tools to generate a models in the language of engineering practitioners. PRET’s
use of the meta-domain and GPN constructs makes the resulting models—and
the associated reasoning concepts and implications—immediately recognizable
to most engineers.

(find-model
(domain xmission-line)
(state-variables (<well-flow> <flow>))
(hypotheses
(<effort> (* c (integral <flow>)))
(<effort> (* 1 (deriv <flow>)))
(<effort> (x r <flow>)))
(drive (Keffort> (* da (sin (* df <time>)))))
(observations
(numeric (<time> <well-flow> (deriv <well-flow>))
((0 4.0 0.5) (0.1 4.25 0.6) ...)))
(specification
(<well-flow> absolute-resolution 0.1 (-infinity infinity))) )

Fig. 8. A find-model call fragment for the well/aquifer example of Figure [ See text
of this section for an explanation of the predictes.

The user describes the modeling problem to PRET via a find-model call,
a fragment of which is shown in Figure [8l The first line specifies the meta-
domain (xmission-line) and instantiates the relevant domain theory: in this
case the template of an iterative network structure. The next line informs PRET
of the relationship between the domain specific (<well-flow>) and generalized
(<flow>) state variables. The following lines of the call specify some suggested
model fragments—hypotheses and drives. These describe different possible
aspects of the physics involved in the system (in this case, linear capacitance,
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inertia, and resistive relationships, and a sinusoidal drive term that represents
a periodic fluctuations within the aquifer). observations are facts about the
system and may be measured automatically via sensors and/or interpreted by
the user. In this call, the observations contain a time-series measurement of
well-flow. specifications are describe the precision at which the model must
match the given observations.

PRET automatically searches the space of possible models, using the xmis-
sion-line template to build models and qualitative and quantitative techniques
(Bradley et al., 2001) to test them, until a successful model is found. The testing
procedure and associated issues are covered in (Stolle & Bradley, this volume).
The result is shown in Figure @l A perfect model of an infinite-dimensional

Source Aquifer Well
cy L Cw Lw

: M C L 3 w

Fig.9. PRET’s model of the well/aquifer system. The drive, V = d,sindyt, simu-
lates a sinusoidal pressure fluctuation in the aquifer; the arrow labeled <well-flow>
in the network corresponds to the water flow into and out of the well. Note how the
xmission-line meta-domain naturally incorporates the load (the well) into the model.

system, of course, requires an infinite number of discrete sections, but one can
construct approximations using only a few sections; the fidelity of the match
rises with the number of sections. In this case, the meta-domain based model-
building framework used two sections to model the aquifer and one to model the
well.

Using a meta-domain in an automated model-builder is advantageous as it
avoids duplication of effort. Connecting arbitrary components in parallel and
series creates an exponential number of models, many of which are mathemati-
cally equivalent (cf., Thévenin and Norton equivalents, in network theory). Here,
the meta-domain contains the knowledge about how to compose the components
into a series of viable networks. Note also how the meta-domain uses domain-
independent terms such as <effort> and <flow>, rather than domain-specific
ones like <force>, or <water-flow>; this allows the meta-domain to be applied
to a variety of model-building fields with little or no customization. Using GPN
components also facilitates a simple and natural expression of the drive term,
which is attached directly to the iterative part of the network: its effects auto-
matically become part of the model, just as they do in real systems. Finally, the
xmission-line is actually more general than the example shown here; it has
met with success in modeling problems from a variety of application areas, from
electrical to viscoelastic systems (Easley, 2000).
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Assessing the success of a model is a difficult question in any field. PRET takes
a strict engineering approach to this question. Its goal is to find an ODE system
that matches the given observations to within the user-specified precision. It is,
of course, possible to supply several sets of observations to PRET at the same
time, in which case it will try to match them all.

8 Related Work

In the qualitative reasoning/physics research that is most closely related to
PRET’s domains and meta-domains, ODE models are built by evaluating time-
series data using qualitative-reasoning techniques, and then using parameter
estimation to match the resulting model with a given observed system (Capelo
et al., 1998). That approach differs from the techniques presented in this paper
in that it selects models from a set of pre-enumerated solutions in a very spe-
cific domain (linear viscoelastics). The machine-discovery community has also
considered representations for automated modeling. LAGRAMGE (Todorovski &
Dzeroski, 1997), for instance, is similar to PRET in that it builds ODE mod-
els of dynamic systems, but it uses a grammar-based representation to com-
pose models, rather than a GPN-based representation. The LAGRAMGE authors
have extended their system to model population dynamics (Todorovski, this
volume); the associated formalism encodes high-level domain knowledge (e.g.,
about population growth and decay rates) into context-free grammars, which
the LAGRAMGE program then uses to automate equation discovery.

Other formalisms and techniques have been applied to these problems as well.
Koza (1992) has been successful in automating the construction of network-based
models of time-series data in a variety of domains, ranging from electrical cir-
cuits and to chemical reactions. Their approach involves establishing a set of
components and connection for the application problem, simulating the behav-
ior of an initial network of those components, defining a fitness measure between
the simulated network and the observed behavior, and applying genetic pro-
grammming to “breed” a population of networks with higher fitness measures.
ODEs are the best way to capture the behavior of systems that are nonlinear
and dynamic, however, so PRET relies on them and does not use more-general
techniques like genetic programming, neural nets, regression rules, etc. Like the
computational discovery work of Schabacher et al. (this volume) and Saito &
Langley (this volume), PRET makes direct contact with the applicable domain
theory, and leverages that information in the model-building process. Again, the
theory and methods of the two approaches are different; PRET’s domain is the
general mathematics of ODEs rather than the specifics of biological processes.
Many of the research issues are similar, though: how best to combine concrete
data and abstract models, how to communicate the results effectively to domain
experts, etc. Like Garret et al. (this volume), PRET relies on mathematical logic
to capture domain knowledge in a declarative form. Like Washio & Motoda (this
volume), PRET clearly separates domain-specific facts and general knowledge,
making the priorities and connections explicit, and expressing each in a manner
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that is appropriate for their use. Amsterdam’s automated model construction
tool Amsterdam (1992) uses a similar underlying component representation
(bond graphs) and is applicable to multiple physical domains. However, it is
also somewhat limited; it can only model linear systems of order two or less.
The meta-domain framework described in this paper is much more general; it
works on linear and nonlinear continuous-time ODEs in a variety of domains,
and it uses dynamic model generation. A great deal of other automated model-
ing work exists, but space precludes a lengthy discussion; see Forbus (1997) for
a review.

9 Conclusion

Model-building domains and meta-domains, coupled with generalized physical
networks and a hierarchy of qualitative and quantitative reasoning tools that
relate observed physical behavior and model form, provide the flexibility re-
quired for gray-box modeling of nonlinear dynamic systems. The meta-domains
introduced in this chapter, linear-plus and xmission-1line, use modeling tech-
niques that transcend individual application fields to create rich and yet tractable
model search spaces. This framework is flexible as well as powerful; one can use
meta-domains directly or customize them to fit a specific engineering applica-
tion, and they are designed to adapt smoothly to varying amounts and levels of
domain knowledge. This approach allows the majority of the reasoning involved
in the modeling-building process to proceed at a highly abstract level; only at
the end of the process must the component-based representation be converted
into ODE form. This type of reasoning, wherein the modeling tool applies the
correct knowledge at the proper time and in the proper manner, accurately re-
flects the abstraction levels and reasoning processes used effectively by human
engineers during the modeling procedure.

Any tool that effectively automates a coherent and useful part of the modeling
art is of obvious practical importance in science and engineering: as a corrob-
orator of existing models and designs, as a medium within which to instruct
newcomers, and as an intelligent assistant. Furthermore, automated modeling
tools are becoming more and more important in the context of building flex-
ible autonomous devices which often must have accurate models of their own
dynamics. Using existing engineering formalisms in automated modeling tools
is exceedingly important, as human engineers will have to work smoothly with
automated tools in order to design, build, and test the new kinds of artifacts
demanded by modern engineering applications. Since the domain and meta-
domain paradigms described in this chapter use the same type of techniques
and formalisms as practicing engineers, the models that they produce are easily
communicated to their target audience.

Our current research efforts are focused more on using PRET as a tool rather
than improving its capabilities and algorithms. One focus of this work is to use
PRET to deduce information about paleoclimate dynamics from radioisotope
dating data. A number of other interesting future work projects, from automated
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modeling of hybrid systems to closer integration of the parameter estimation
process with model generation process, are described in (Easley, 2000).
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Abstract. In this chapter, we focus on the equation discovery task, i.e.,
the task of inducing models based on algebraic and ordinary differential
equations from measured and observed data. We propose a methodology
for integrating domain knowledge in the process of equation discovery.
The proposed methodology transforms the available domain knowledge
to a grammar specifying the space of candidate equation-based models.
We show here how various aspects of knowledge about modeling dy-
namic systems in a particular domain of interest can be transformed to
grammars. Thereafter, the equation discovery method LAGRAMGE can
search through the space of models specified by the grammar and find
ones that fit measured data well. We illustrate the utility of the proposed
methodology on three modeling tasks from the domain of Environmental
sciences. All three tasks involve establishing models of real-world systems
from noisy measurement data.

1 Introduction

Scientists and engineers build mathematical models to analyze and better under-
stand the behavior of real-world systems. Establishing an acceptable model for
an observed system is a very difficult task that occupies a major portion of the
work of the mathematical modeler. It involves observations and measurements
of the system behavior under various conditions, selecting a set of variables that
are important for modeling, and formulating the model itself. This chapter ad-
dresses the task of automated modeling, i.e., the task of formulating a model
from the observed behavior of the selected system variables.

There are at least three properties of mathematical models that make them an
omnipresent analytic tool. The first is the data integration aspect — mathemat-
ical models are able to integrate large collections of observations and measure-
ments into a single entity. Second, models allow for simulation and prediction
of the future behavior of the observed system under varying conditions. Finally,
mathematical models can provide explanations, i.e., reveal the structure of pro-
cesses and phenomena that govern the behavior of the observed system.

Although the aforementioned properties of models are equally important to
scientists and engineers, most of the current automated modeling approaches
based on machine learning and data mining methods are mainly concerned with
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the first two: data integration and accurate prediction of future behavior. In
this chapter, we focus on the third, explanatory aspect of induced models. We
address two issues that are related to the explanatory aspect. The first is the issue
of modeling notations and formalisms used by scientists and engineers. While
machine learning and data mining methods focus on inducing models based
on notations introduced by researchers in these areas (such as decision trees
and Bayesian networks), we induce models based on algebraic and differential
equations, i.e., standard notations, already established in many scientific and
engineering domains. The second is the issue of integrating knowledge from the
specific domain of interest in the induction process. This is in analogy with the
manual modeling process — to obtain an explanatory white-box model of an
observed system, scientists and engineers rely on and make use of this knowledge.

We present a methodology for integrating domain-specific knowledge in the
process of model induction. The methodology allows integration of several differ-
ent types of knowledge. The first type includes knowledge about basic processes
that govern the behavior of systems in the particular domain and the equation
templates that are typically used by domain experts for modeling these pro-
cesses. The second type includes knowledge about models already established
and used in the domain. The method can take into account a fully specified ini-
tial model, or a partially specified model of the observed system. We relate the
integration of knowledge in the induction process to the notion of inductive lan-
guage bias, which defines the space of candidate model structures considered by
the induction method. We show that the three different types of domain-specific
knowledge mentioned above can be transformed to inductive language bias, i.e.,
a specification of the space of models. We illustrate the utility of the presented
methodology on three practical tasks of establishing models of real-world systems
from measurement data in the domain of Environmental sciences.

The chapter is organized as follows. In Section 2l we start with a discussion of
the relation between domain-specific knowledge and language bias in induction
methods. In the following Section Bl we introduce the equation discovery task,
i.e., the task of inducing equation-based models and propose methods for spec-
ifying language bias for equation discovery. Section [] illustrates how to use the
knowledge about basic processes that govern the behavior of population dynam-
ics systems for establishing explanatory models thereof. In Section Bl we focus
on the integration of (full or partial) initial model specifications in the model
induction process. Section [f] discusses related research. Finally, in Section [1 we
summarize and propose directions for further research.

2 Domain-Specific Knowledge and Language Bias

Many studies of machine learning methods and especially their applications
to real-world problems show the importance of background knowledge for the
quality of the induced models. Pazzani and Kibler (1992) show that the use
of domain-specific knowledge improves the predictive performance of induced
models on test examples unseen in the induction phase. Domain knowledge is
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also important for the acceptance of the induced concepts by human experts. As
Pazzani et al. (2001) show, the consistency of the induced concepts with exist-
ing knowledge in the domain of interest is an important factor that influences
the opinion of human experts about the credibility of the concepts and their
acceptability for further use. This is especially true in complex scientific and
engineering domains, where a vast amount of knowledge is being systematically
collected and well documented.

Although these results are well known, most state-of-the-art machine learning
methods do not allow for explicit integration of domain knowledge in the induc-
tion process. Knowledge is usually implicitly involved in the phases that precede
or follow the induction process, that is the data preparation or preprocessing
phase, when the set of variables important for modeling of the observed phe-
nomena are identified, or in the model interpretation phase. A notable exception
are learning methods developed within the area of inductive logic programming
(ILP) (Lavra¢ & Dzeroski, 1994). The notion of (background) knowledge and
its integration in the induction process is made explicit there and background
knowledge is a part of the learning task specification. ILP methods deal with the
induction of first-order logic programs (or theories) from examples and domain
knowledge. Background knowledge predicates allow user to integrate knowledge
from the domain under study in ILP. They define concepts (or building blocks)
that may be used in the induced theories. Note, however, that background knowl-
edge predicates specify building blocks only and do not specify how to combine
them into proper programs or theories.

Another way to integrate domain knowledge in the induction process is
through the use of inductive bias, which refers to any kind of mechanism or
preference used by the induction algorithm to choose among candidate hypothe-
ses (Utgoff, 1986; Mitchell, 1991). The preference usually goes beyond the mere
consistency (or degree-of-fit) of the hypothesis with the training examples and
determines in which region of the candidate hypotheses space we are more likely
to find a solution. Thus, the term bias is related to domain knowledge, since
knowledge can help constrain the space of candidate hypotheses. Nédellec et al.
(1996) define three types of inductive bias. The first type, language bias, is used
to specify the space of hypotheses considered in the induction process. In our
case, language bias would specify the space of candidate equation-based models.
Note that language bias does not only specify a set of building blocks for es-
tablishing models (as background knowledge predicates do), but it also specifies
recipes for combining them into proper candidate models (or hypotheses). The
second type is search bias, which specifies the order in which the hypotheses are
considered during the induction process. The third type is validation bias that
specifies the acceptance or stopping criteria for the induction process.

Depending on the kind of formalism available for specifying the bias for an
induction method, it may be non-declarative (built-in), parametrized, or declar-
ative (Nédellec et al., 1996). Methods for inducing decision trees (Quinlan,
1993) are typical examples of methods with non-declarative or parametrized lan-
guage bias, since they explore the fixed hypothesis space of decision trees using
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variables from the given data set. Parametrized bias lets the user influence the
set of candidate hypotheses by setting some of its parameters, such as the depth
(or complexity) of the induced decision trees. On the other hand, declarative lan-
guage bias provides the user with complete control over the space of candidate
hypotheses. Thus, declarative language bias provides a powerful mechanism for
integrating domain knowledge in the process of induction.

Different formalisms can be used for specifying the space of candidate
hypotheses. Nédellec et al. (1996) provide an overview of declarative bias for-
malisms used in ILP. Note, however, that these formalisms are developed for
concepts and hypotheses expressed in first-order logic and are not directly ap-
plicable to the task of building equation-based models. In the next section, we
propose a declarative bias formalism for equation discovery that will allow for in-
tegrating different aspects of domain-specific modeling knowledge in the process
of inducing models from data.

3 Equation Discovery and Language Bias

Before we propose an appropriate declarative bias formalism for equation-based
models, we define the task of inducing equations from data. The task is usually
referred to as the task of equation discovery. Equation discovery is the area of
machine learning that develops methods for automated discovery of quantitative
laws, expressed in the form of equations, in collections of measured data (Langley
et al., 1987; Langley & Zytkow, 1989; Dzeroski & Todorovski, 1995; Washio
& Motoda, 1997). In the rest of this section, we then provide an overview of
typical language biases used in existing equation discovery methods, propose a
declarative bias formalism for equation discovery, and provide an example bias
based on domain knowledge for modeling population dynamics.

3.1 Task Definition
The equation discovery task can be formalized as follow. Given:

— a set of (numeric) variables V' that are important for modeling the observed
system, where V.= SUE, S = {s1,$2,...8,} is a set of system (or de-
pendent) variables that we want to explain (or be able to predict) with
the induced model, while E = {ej,ea,...e,} is a set of exogenous (or in-
put/output) variables that are not explained by the induced model, but may
be used in the model equations;

— a designated time variable ¢, in cases when we deal with a task of modeling
a dynamic system;

— one or more tables with measured/observed values of the variables from V'
(in consecutive time points or independent experiments),

find a set of n equations, one for each variable in S, that can explain and accu-
rately predict the values of the system variables and take one of the two forms:

— differential ;tsi = fi(s1,82,...8n,€1,€2,...€m) OF
— algebraic s; = fi(81,82, - Si—1,Sit1- - Sns €1,€2, .. Cm)-
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Table 1. Two example context free grammars that specify distinct classes of arith-
metical expressions. The one on the left-hand side is the “universal” grammar that
specifies the space of all arithmetical expressions that can be built using the four basic
arithmetical operators (and parentheses). The grammar on the right-hand side specifies
the space of polynomials.

E—E+F|E-F
F— F+T|F/T
T — (E)| V| const

P — P+ const «T | const T
T-TxV|V

3.2 A Language Bias Formalism for Equation Discovery

Once provided with the task definition, we can identify the language bias of
an equation discovery method as the space or class of candidate arithmetical
expressions f; that can appear on the right-hand sides of the induced model
equations. Thus, the declarative language bias formalism for equation discovery
should allow us to specify classes of arithmetical expressions. We argue here that
context free grammars (Hopcroft & Ullman, 1979) provide an ideal framework
for this purpose. Chomsky (1956) introduced context free grammars as formal
models of natural or synthetic languages and since then they have became a
standard formalism for specifying the syntax of programming languages.

Table [Il provides two example grammars that specify two distinct classes of
arithmetical expressions. The grammar on the left-hand side of the table spec-
ifies the space of all arithmetical expressions that can be built using the four
basic arithmetical operators and parentheses. Formally, a context free grammar
consists of a finite set of variables, usually referred to as nonterminals or syntac-
tic categories, each of them representing a subclass of subexpressions or phrases
in the language represented by the grammar.

In the particular example, the nonterminals E, F, T', and V refer to arithmeti-
cal expressions, factors, terms, and variables, respectively. The class of factors
F represents arithmetical expressions that are built using multiplication and di-
vision onl. Terms represent atomic arithmetical expressions that are further
combined into factors. A term T can be either (1) an arbitrary expression F
in parentheses, (2) a variable V, or (3) a constant parameter. We specify these
three classes of terms using three grammar productions (also named rewrite
rules). The first rule is formalized as T — (E), the second as T — V, and the
third as T' — const. In short, this is written as T'— (E) | V' | const, where the
symbol “|” separates alternative productions for the same nonterminal.

The symbol const is a terminal grammar symbol that represents a constant
parameter in the arithmetical expression with an arbitrary value, which is usu-
ally fitted against training data in the process of equation discovery. The termi-
nals are primitive grammar symbols that can not be further rewritten, i.e., no

! Note that the organization of the grammar follows the relative priority of the ba-
sic arithmetic operators—multiplication and division are always performed before
addition and subtraction.
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Fig.1. Two parse trees that derive the same polynomial expression const x © * y +
const * z. The one on the left-hand side corresponds to the universal grammar, while
the parse tree on the right-hand side corresponds to the polynomial grammar from
Table [Tl

productions are affiliated with them. Other terminals in the example grammar
are cc+77’ u_aa’ u*777 u/”’ ” (aa’ and n)vv .

Similarly, the grammar on the right-hand side of Table[Il specifies the space of
polynomials over the variables in V. Productions for the nonterminal P specify
that each polynomial is a linear combination of one or more terms 7" multiplied
by constants. Each term, in turn, is a multiplication of one or more variables from
V. Note that the productions for the nonterminal V' depend on the particular
equation discovery task at hand. Typically, a single production V' — v will be
added to the grammar for each observed/measured variable v. For example, if
we deal with an equation discovery task where we measure three variables z, y,
and z, the corresponding productions will be V. — x | y | 2.

Given a context free grammar, we can check whether a certain expression
(string) belongs to the language defined by the grammar (parse task) or generate
expressions that belong to the language (generate task). For both purposes, we
use the notion of a parse tree, which describes the way a certain expression can
be derived using the grammar productions. Figure [Tl presents two example parse
trees that derive the same (polynomial) expression const * x * y + const x z.
The left-hand tree presents the derivation of this expression using the universal
grammar, while the one on the right-hand side of the figure presents its derivation
using the polynomial grammar. Each internal node in a parse tree corresponds
to a nonterminal symbol N from the grammar. Its children nodes n1, no, ... ng,
ordered from left to right, always correspond to a grammar production N —
ni1 ng...ng. The leaf nodes of a parse tree are terminal symbols: reading them
from left to right, we get the expression derived with the parse tree.

Most equation discovery methods would adopt one of the language biases
based on the grammars from Table [[l While the BacoN (Langley et al., 1987)
and SDS (Washio & Motoda, 1997) methods for equation discovery can induce
equations based on arbitrary arithmetical expressions (i.e., use the universal
grammar as a built-in bias), FAHRENHEIT (Zembowicz & Zytkow, 1992) and
LAGRANGE (Dzeroski & Todorovski, 1995) limit their scope to inducing poly-
nomial equations. Note that the language biases of the aforementioned equa-
tion discovery methods are usually non-declarative and often take the form of a
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relatively small (pre-defined or built-in) class of possible equations. The user is
allowed to influence the built-in bias using a number of parameters. LAGRANGE
would let user specify the maximal degree of polynomials or maximal number
of multiplicative terms in the polynomial (Dzeroski & Todorovski, 1995). Addi-
tionally, Zembowicz and Zytkow (1992) let the user specify functions that can be
used to transform the variables before they are incorporated in the polynomials.

Another type of language constraints used for equation discovery is based
on information about the measurement units of the observed system variables.
CoPER (Kokar, 1986) uses dimensional analysis theory (Giordano et al., 1997)
in order to constrain the space of equations to those that properly combine
variables and terms taking care about the compatibility of their measurement
units. The SDS method (Washio & Motoda, 1997) extends this approach to cases
in which the exact measurement units of the system variables are not known. In
such cases, SDS employs knowledge about the type of the measurement scale
for each system variable, which is combined with knowledge from measurement
theory to constrain the space of possible equations.

Note, however, that knowledge about measurement units or the scale types
thereof is domain independent. Experts from a specific domain of interest can
usually provide much more modeling knowledge about the system at hand than
merely enumerating the measurement units of the system variables. Many text-
books on mathematical modeling give comprehensive overviews of the modeling
knowledge for specific domains, such as biology (Murray, 1993) or biochemistry
(Voit, 2000). In the next section, we will show how this kind of knowledge can be
transformed to a grammar that provides an appropriate knowledge-based bias
for equation discovery in the domain of population dynamics.

3.3 An Example from Modeling Population Dynamics

The domain of population dynamics falls within the field of population ecol-
ogy, which studies the structure and dynamics of populations. A population is
a group of individuals of the same species that inhabit a common environment.
More specifically, we consider modeling the dynamics of populations, especially
how their concentrations change through time (Murray, 1993). Here, we focus on
population dynamics in aquatic systems, where we are mainly concerned with in-
teractions between dissolved inorganic nutrients (e.g., nitrogen and phosphorus),
primary producers (or plants, such as phytoplankton and algae), and secondary
producers (or animals, such as zooplankton and fish).

Models of population dynamics are based on the mass conservation principle,
where influences of different interactions and processes on a single variable are
summed up. Following that principle, the change of a primary producer popu-
lation can be modeled as:

dPP

i = growth(PP) — grazing(SP, PP) — mortality( PP), (1)

where the growth and mortality are expressions modeling the influence of growth
and mortality processes on the concentration of the primary producer PP, while
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Table 2. An example language bias (context free grammar) for equation discovery
based on knowledge about modeling population dynamics in aquatic ecosystems

double monod(double v, double c) return v / (v + ¢);

PPChange — PPGrowth — Grazing — PPMortality

PPGrowth — const * Vpp | const x Limitation * Vpp
Limitation — Viutrient | monod(Vautrient, const)

Grazing — const x Vpp * Vsp
PPMortality — const x Vpp

Vpp — phytoplankton
Vsp — zooplankton
ViNutrient — phosphorus | nitrogen

the grazing expression models the influence of secondary producer (zooplankton)
grazing on PP. Note that the growth process positively influences the change of
primary producer concentration, while mortality and grazing influence it nega-
tively. Murray (1993) enumerates different expressions typically used by ecolo-
gists to model these processes. The grammar presented in Table [2] captures this
kind of knowledge about modeling population dynamics.

The first production in the grammar follows the mass conservation equation
template (1) and introduces three nonterminals PPGrowth, Grazing, and PP-
Mortality, one for each of the processes of growth, grazing, and mortality. Pro-
ductions for these three nonterminals, further in the grammar, define alternative
models for these processes. The productions for the growth process define unlim-
ited and limited growth. The first model assumes unlimited exponential growth
of the primary producer population in the absence of interactions with secondary
producers. The second model corresponds to the more realistic situation where
the growth of the primary producer population is limited by the supply of nutri-
ents. The nonterminal Limitation defines two alternative limitation terms. The
first assumes unlimited capacity of the primary producer for nutrient absorption.
The second (Monod) term is used when the absorption capacity of the primary
producer saturates to a certain value, no matter how plentiful the nutrient supply
is. Ecologists use different expressions for modeling saturation of the absorption

capacity — one possibility is Monod (also known as Michaelis-Menten’s) term

defined as:
VNutrient

monod(Viytrient, const) = v + const’
Nutrient

where the constant parameter is inversely proportional to the saturation rate.
The graphs in Figure 2] depict the difference between the unsaturated and satu-
rated model of the nutrient absorption capacity.
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absorption capacity
of the primary producer

absorption capacity
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nutrient concentration nutrient concentration

Fig. 2. A comparison of two alternative terms used to model the limitation of primary
producer growth due to limited supply of nutrients. The one on the left-hand side
assumes unlimited nutrient absorption capacity, while the model on the right-hand
side corresponds to situations where the absorption capacity saturates to a certain
value.

The remaining productions in the grammar provide models for the other two
processes of grazing and mortality. Note that the grammar includes a single
model for each process. One can add modeling alternatives for these two pro-
cesses by adding alternative productions to the appropriate nonterminal symbol.

3.4 LAGRAMCGE

Once provided with domain knowledge encoded in the form of a grammar and
measurement data about the variables of the observed system, we can employ
the LAGRAMGE induction method to perform search through the space of candi-
date equations defined by the grammar. LAGRAMGE follows a beam strategy to
search through the space of parse trees generated by the grammar in the order
from simplest (shallowest) trees to more complex (deeper) ones (Todorovski &
Dzeroski, 1997). In addition to the grammar that constrains the space of candi-
date models, the user can specify a maximal depth of the parse tree and further
limit the complexity of the induced equations.

Each parse tree generated by the grammar is evaluated with respect to its fit
to the provided measurement data. To this end, LAGRAMGE first fits the values of
the constant parameters against data using a nonlinear least-squares algorithm
(Bunch et al., 1993) that carries out second-order gradient descent through the
parameter space. To avoid entrapment in local minima, the procedure involves
multiple restarts with different initial parameter values. Once LAGRAMGE finds
the optimal parameter values, it measures the discrepancy between the observed
values of the system variables and the values predicted by the equation based
on the parse tree and the optimal parameter values. Note that prediction in
the case of dynamic systems requires simulating the model over the full time
span. To improve the convergence rate of the gradient search, we employ teacher
forcing simulation (Williams & Zipser, 1989), which finds parameters that best
predict observations at the next time point based solely on those at the present
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time point. The discrepancy is measured as mean squared error (MSE) and this
measure is used as a heuristic function that guides the search. An alternative
heuristic function MDL (which stands for minimal description length) takes into
account the complexity of the parse tree and introduces a preference towards
simpler models (Todorovski & Dzeroski, 1997). At the end of the beam search
procedure, LAGRAMGE returns a user specified number of models with the lowest
values of the heuristic function selected by the user (among the two choices —
MSE and MDL).

Todorovski and Dzeroski (1997) show that LAGRAMGE is capable of integrat-
ing many different types of domain knowledge through grammars. For example,
knowledge about the measurement units of system variables has been used to
build a grammar for modeling a mechanical pole on cart system. In another
example, knowledge about the basic processes that govern population dynamics
has been used for automated modeling of phytoplankton growth in Lake Glumsg
in Denmark from a sparse and noisy set of real-world measurements (Todorovski
et al., 1998). A drawback of LAGRAMGE is that it is difficult for domain experts
to express or encode their knowledge in the form of a grammar. Furthermore
knowledge-based grammars such as the one from Table [2] are usually task spe-
cific, i.e., a grammar built for modeling one system (e.g., phytoplankton growth
in Lake Glumsg) cannot be reused for modeling other systems from the same
domain (e.g., population dynamics in another lake with a slightly different set of
observed variables). These limitations can be addressed by the transformational
approach, which is the topic we focus on in the rest of this chapter. In the next
two sections, we show that different types of higher level domain knowledge en-
coded in various formalisms can be easily transformed to grammars and thus
integrated in the process of equation discovery.

4 A Language Bias Formulation of Process-Based
Modeling Knowledge

This section presents a flexible and high-level formalism for encoding domain
knowledge that is more accessible to domain experts than the grammar-based
formalism discussed above. The formalism organizes knowledge in a taxonomy
of process classes, each of which represents an important class of basic processes
that influence the behavior of entities in the domain of study. For each process
class, a number of alternative equation models, usually used by modeling experts
in the domain, can be specified. The formalism also encodes knowledge on how to
combine the models of individual basic processes into a single model of the whole
observed system. We illustrate the use of the formalism by encoding knowledge
on modeling population dynamics.

We designed the formalism for knowledge representation so that the resulting
library of knowledge for a particular domain is independent of the modeling
task at hand. Provided with such a library, the user only needs to specify the
modeling task by stating the types of the observed variables along with a list
of processes that are most likely to influence the system behavior. While the
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library of domain-specific knowledge should be provided by a modeling expert
with extensive modeling experience, the task specification can written by a naive
user who is familiar with the domain but does not have much modeling expertise.

4.1 Process-Based Knowledge for Modeling Population Dynamics

In this section, we reconsider the population dynamics domain introduced in
Section [3.3] As we already stated there, population dynamics studies the struc-
ture and dynamics of species sharing a common environment and is mainly con-
cerned with the study of interactions between different species. While Section [3.3]
focuses on the absorption of inorganic nutrients by the primary producer species
(plants) and its effect on the change of primary producer concentration only,
we extend our focus here to other types of interactions and their effect on the
concentrations of all the species involved.

Research in the area of population dynamics modeling was pioneered by Lotka
and Volterra and their well-known Volterra-Lotka model of predator-prey inter-
action (Murray, 1993), which can be schematized as:

N = growth rate(N) — feeds on(P, N)
P = feeds on(P,N) — decay rate(P),

where P and N denote the concentrations of predator and prey, respectively.
The model combines the influences of three fundamental processes: prey growth,
predation, and predator decay. Each of the processes is modeled following one of
the following three assumptions. The first assumption is that the growth rate of
the prey population in the absence of predation is proportional to its density, i.e.,
growth rate(N) = aN. This means that the growth of the population is expo-
nential and unlimited, which is unrealistic in many cases. Natural environments
often have a limited carrying capacity for the species. In such cases, one can use
the alternative logistic growth model growth rate(N) = aN(1 — N/K), where
the constant parameter K determines the carrying capacity of the environment
for species N.

The second assumption made in the simple Volterra-Lotka model is that the
predation rate is proportional to the densities of both the predator and the
prey populations, i.e., feeds on(P,N) = bPN. In analogy with growth, this
means that the predation capacity grows exponentially and is unlimited. Again,
in some cases the predators have limited predation capacity. When the prey
population density is small the predation rate is proportional to it, but when
the prey population becomes abundant, the predation capacity saturates to a
certain limit value. Several different terms can be used to model the predator
saturation response to the increase of prey density (Murray, 1993):

N N?
e—BN)

@P " g OP ., g (©PO-

9

where B is the constant that determines the saturation rate.
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Table 3. A taxonomy of process classes encoding knowledge about alternative models
of the predation process

process class Feeds on(Population p, Populations ns)
condition p ¢ ns

expression p * [] Saturation(p, n)

nens

process class Saturation(Population p, Population n)
process class Type O is Saturation

expression n
process class Type A is Saturation

expression n / (n + const(saturation rate,0,Inf))
process class Type B is Saturation

expression n * n / (n * n + const(saturation rate,0,Inf))
process class Type C is Saturation

expression 1 - exp(const(saturation rate,0,Inf) * n)

Table 4. A combining scheme specifies how to combine the models of individual pop-
ulation dynamics processes into a model of the entire system

combining scheme Population dynamics(Population p)
p = + Growth(p) - Decay(p)
+ Zfood const( ,0,Inf) * Feeds on(p, food)
- const( ,0,Inf) * Feeds on(predator, p)

predator

The third assumption is that the predator decay rate is proportional to its
concentration, which leads to exponential decay in the absence of interactions
with other species. Relaxing the three assumptions made in the simple Volterra-
Lotka model, we can build different, more complex and more realistic models of
predator-prey population dynamics.

The modeling knowledge about the different modeling alternatives for the
predation process described above can be encoded as shown in Table Bl The
Feeds on process class refers to predation processes, while Saturation refers to
different saturation models. The first line specifies that each predation process
relates a single predator population p with one or more prey populations ns. The
next line specifies the constraint that p can not predate on itself (i.e., specifying
non-cannibalistic behavior). The last line of the Feeds on process declaration
specifies the expression template that is used to model the influence of the pre-
dation process. The expression defines this influence as a product of predator
concentration p and the influences of saturation processes for each prey popu-
lation n € ns. Similarly, the saturation process specifies alternative expressions
for modeling the limited (or unlimited) predation capacity of p on n. Each mod-
eling alternative is encoded as a subclass of the Saturation process class.

The second part of the process-based knowledge encodes a recipe for com-
bining the models of individual processes into a model of the entire observed
system. The combining scheme presented in Table [ provides such a recipe for
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Table 5. A formal specification of predator-prey interaction between two species. Given
this specification and the library of knowledge presented in Tables Bl and H] one can
reconstruct all candidate models of predator-prey interactions between two species.

system variable Population predator, prey

process Growth(prey)
process Feeds on(predator, prey)
process Decay(predator)

building models of population dynamics. The recipe is based on the “conser-
vation of mass” principle, explained earlier in Section It specifies that the
change of a population concentration is positively influenced by the process of
population growth Growth (p) processes and negatively influenced by population
decay Decay(p). Similarly, Feeds on processes can positively or negatively in-
fluence the change of p, depending on the role of the species in the predator-prey
interaction. The predation processes that involve p as a predator positively influ-
ence the change of p, while the processes where p is involved as a prey negatively
influence the change of p.

Given this kind of knowledge encoded in a library, one can specify the simple
Volterra-Lotka model as illustrated in Table Bl The task specification contains
declarations of the two variables involved along with the set of three processes
of growth, decay, and predation. An automated modeling system, as the one
presented in (Todorovski, 2003), can transform this specification to the candi-
date model equations. Note that this abstract specification accounts for more
than one model, since there are many alternative models of predator satu-
ration that can be used for the Feeds on process. In such cases, the system
would transform the specification to a grammar enumerating all possible models
of predator-prey interaction between two species. We will not provide further
details about the transformation method, that can be found in (Todorovski,
2003), but rather illustrate its use on a practical task of modeling population
dynamics.

4.2 Modeling Algal Growth in the Lagoon of Venice

The Lagoon of Venice measures 550 km?, but is very shallow, with an average
depth of less than 1 meter. It is heavily influenced by anthropogenic inflow of
nutrients — 7 mio kg/year of nitrogen and 1.4 mio kg/year of phosphorus (Ben-
doricchio et al., 1994). These (mainly nitrogen) loads are above the Lagoon’s
admissible trophic limit and generate its dystrophic behavior, which is charac-
terized by excessive growth of algae, mainly Ulva rigida. Coffaro et al. (1993)
present four sets of measured data available for modeling the growth of algae in
the Lagoon. The data was sampled weekly for slightly more than one year at
four different locations in the Lagoon. Location 0 was sampled in 1985/86, lo-
cations 1, 2, and 3 in 1990/91. The sampled quantities are nitrogen in ammonia
N Hj, nitrogen in nitrate N O3, phosphorus in orthophosphate PO, (all in [ug/1]),
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Table 6. A task specification used for modeling algae growth in the Lagoon of Venice

exogenous variable Inorganic temp, DO, NH3, NO3, P04
system variable Population biomass

process Growth(biomass) biomass growth
process Decay(biomass) biomass decay
process Feeds on(biomass, *) biomass grazing

dissolved oxygen DO (in percentage of saturation), temperature T ([degrees C]),
and algal biomass B (dry weight in [g/m?]).

In a previous study, Kompare and Dzeroski (1995) apply the equation discov-
ery method GOLDHORN (Krizman, 1998) to the task of modeling algal growth
in the Lagoon of Venice. Since GOLDHORN could not find an accurate model
based on the set of measured variables, two additional variables were calculated
and added to this set — growth and mortality rates, which are known quantities
in ecological modeling and were calculated according to the simplified version
of an existing model of algal growth in the lagoon proposed by Coffaro et al.
(1993). From the extended set of system variables and data measured at Loca-
tion 0, GOLDHORN discovered a difference equation for predicting biomass that,
due to the large measurement errors (estimated at the level of 20-50%), does
not fit the data perfectly, but still predicts most of the peaks and crashes of
the biomass concentration correctly (Kompare & Dzeroski, 1995). Although the
equation model involves the mortality rate, as calculated by domain experts, the
model itself is still a black-box model that does not reveal the limiting factors
for the biomass growth in the lagoon.

The task of modeling algal growth in the Lagoon of Venice from Table
specifies the types of the observed system variables and the processes that are
important for the growth of the biomass (algae) in the lagoon. Note that the spec-
ification of the biomass grazing process leaves the nutrient parameter of the
Feeds on process class unspecified (denoted using the symbol *). Since ecologists
did not know the limiting factors for the biomass growth, they let LAGRAMGE
search for the model that would reveal them. The search space consists of 6248
candidate models with generic constant parameters.

The model induced from Location 0 data reveals that the limiting factors for
biomass growth in the lagoon are dissolved oxygen (DO) and nitrogen in nitrate
(NO3). The model induced from Location 2 data reveals that the limiting factors for
the biomass growth are temperature (temp), dissolved oxygen (D0), and nitrogen
in ammonia (NH3). Although the two models are not completely consistent, they
both identify dissolved oxygen and nitrogen based nutrients to be limiting factors
for biomass growth. The differences between the two models may be due to the
fact that the measurements were taken during two different time periods.

In the experiments with the data measured at the other two locations
(1 and 3), LAGRAMGE did not find an accurate model of biomass growth. Note
that these results still compare favorably with the results obtained by GOLD-
HoRN, which discovered an acceptable model for Location 0 only.



Integrating Domain Knowledge in Equation Discovery 83

800

measured data 800 measured data
_ model for location 0 _ model for location 2
o
£ £
S 600 A S 600 A
c f=
8 8
s s
& 400 & 400
o o
f= f=
Q Q
o o
2 2
g 200 A g 200 A
E<] E<]
Qo Qo
100 200 300 400 500 100 200 300 400 500
t (time in days) t (time in days)

Fig. 3. Simulations of the two models of biomass growth in the Lagoon of Venice,
discovered by LAGRAMGE, compared to the measured biomass concentration (left-hand
side: Location 0, right-hand side: Location 2)

Figure[3 compares the measured and simulated values of the biomass for both
models. We ran long-term simulations of the models from the initial value of the
biomass without restarting the simulation process at each measurement point.
For values of all other system variables needed during the simulation, we used
the measurement at the nearest time point in the past. As in the GOLDHORN
experiments, due to the high measurement errors of the order 20-50%, the mod-
els discovered by LAGRAMGE did not fit the measured data perfectly. However,
they correctly predict most of the peaks and crashes of the biomass concentra-
tion. These events are more important to ecologists than the degree of fit. Note
however another important advantage of these models over the one discovered by
GOLDHORN. While the GOLDHORN model is black-box, the models discovered
by LAGRAMGE identify the most influential limiting factors for biomass growth
in the Lagoon of Venice.

5 Language Bias Based on Existing Models

Another type of domain-specific knowledge that is typically neglected by equa-
tion discovery methods is contained in the existing models already established in
the domain of interest. Rather than starting the search with an existing model,
current equation discovery methods start their search from scratch. In contrast,
theory revision methods (Ourston & Mooney, 1994; Wrobel, 1996) start with an
existing theory and use heuristic search to revise it in order to improve its fit
to data. However, research on theory revision has been mainly concerned with
the revision of models expressed in propositional or first-order logic. Therefore,
existing methods for theory revision are not directly applicable to the task of
revising models based on equations.

In this section, we present a flexible, grammar-based methodology for revis-
ing equation-based models. To support the revision of existing models, we first
transform the given model into an initial grammar that can be used to derive
the given model only. The nonterminals in the grammar and their productions
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reflect the structure of the initial model. Next, we extend the initial grammar
with alternative productions that specify the possible modeling alternatives. The
modeling alternatives can be specified by a domain expert or can be determined
from modeling knowledge about the domain at hand. The extended grammar
built in this manner specifies the space of possible revisions of the initial model.
In the last step, we employ LAGRAMGE to search through the space of possible
revisions and find those that fit the data better than the initial model.

5.1 Revising the CASA Model

The CASA model, developed by Potter and Klooster (1997) at NASA Ames,
accounts for the global production and absorption of biogenic trace gases in
the Earth atmosphere. It also allows us to predict changes in the geographic
patterns of major vegetation types (e.g., grasslands, forest, tundra, and desert)
on the land. CASA predicts annual global fluxes in trace gas production as
a function of surface temperature, moisture levels, soil properties, and global
satellite observations of the land surface. It operates on gridded input at different
levels of resolution, but typical usage involves grid cells that are eight kilometers
square, which matches the resolution for satellite observations of the land surface.

The overall CASA model is quite complex, involving many variables and equa-
tions. We decided to focus on one portion that is concerned with modeling net
production of carbon by terrestial plants (NPPc). Table [ presents the NPPc
portion of the CASA model. The model predicts the NPPc quantity as the prod-
uct of two unobservable variables, the photosynthetic efficiency, E, at a site (grid
cell) and the solar energy intercepted, IPAR, at that site.

Photosynthetic efficiency is in turn calculated as the product of the maximum
efficiency (0.56) and three stress factors that reduce this efficiency. The stress
term T2 takes into account the difference between the optimum temperature,
topt, and actual temperature, tempc, for a site. The stress factor T'1 involves the
nearness of topt to a global optimum for all sites. The third term, W, represents
stress that results from lack of moisture as reflected by eet, the estimated water
loss due to evaporation and transpiration, and PET, the water loss due to these
processes given an unlimited water supply. In turn, PET is defined in terms
of the annual heat index, ahi, for a site, and pet tw m, a modifier on PET to
account for day length at differing locations and times of year.

The energy intercepted from the sun, IPAR, is computed as the product of
FPAR FAS, the fraction of energy absorbed through photo-synthesis for a given
vegetation type, monthly solar, the average radiation for a given month, and
SOL CONV, the number of days in that month. FPAR FAS is a function of
fas ndvi, which indicates overall greenness at a site as observed from space, and
srdiff, an intrinsic property that takes on different numeric values for different
vegetation types.

Of the variables we have mentioned, NPPc, tempc, ahi, monthly solar, SOL -
CONYV, and fas ndvi, are observable. Two additional terms, eet and pet tw m, are
defined elsewhere in the model, but we assume their definitions are correct and
thus we can treat them as observables. The remaining variables are unobservable
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Table 7. The NPPc portion of the CASA model that accounts for the net production
of carbon by terrestial plants

NPPc = max(0,E - IPAR)
E=056-T1-T2-W
T1=0.8+0.02 - topt — 0.0005 - topt*
T2 =1.1814/((1 + exp(0.2 - (TDIFF — 10))) - (1 + exp(0.3 - (— TDIFF — 10))))
TDIFF = topt — tempc
W =0.5+40.5-eet/PET
PET = 1.6 - (10 - max(tempc, 0) /ahi)® - pet tw m
A = 0.000000675 - ahi® — 0.0000771 - ahi® + 0.01792 - ahi 4+ 0.49239
IPAR = FPAR FAS - monthly solar - SOL CONV -0.5
FPAR FAS = min((SR FAS — 1.08)/srdiff ,0.95)
SR FAS = (1+ fas ndvi/1000)/(1 — fas ndvi/1000)
SOL CONV = 0.0864 - days per month

and must be computed from the others using their definitions. This portion of
the model also contains a number of numeric parameters, as shown in Table [

The ecologists that developed the CASA model pointed out which parts of the
initial CASA-NPPc model are likely candidates for revision. Their confidence in
the equations used to calculate the values of the four intermediate variables F,
T1, T2, and SR FAS is low, so they considered them to be “weak” parts of
the model. Thus, we focused our revision efforts to the equations corresponding
to these four intermediate variables. The data set for revising the CASA-NPPc
model contains measurements of the observed variables at 303 sites. We assess
the quality of the revised models using root mean squared error evaluated on
training data and cross-validated. The RMSE of the initial model on the training
data set is 465.213.

Grammars Used for Revision. A set of equations defining a target variable
through a number of intermediate variables can easily be turned into a grammar.
The staring nonterminal symbol represents the dependent variable NPPc, while
other nonterminals correspond to the intermediate variables that appear on the
left-hand sides of the equations in the initial model. Each nonterminal has a
single production that is obtained by replacing the equality (“=") sign in the
equation with “—”. In such a grammar, the terminals denote observed variables,
the model’s constant parameters, and the arithmetical operators involved in the
equations. Such a grammar generates a single model which is exactly the initial
CASA-NPPc model from Table [7l

The grammar obtained from the initial model lets us specify an arbitrary num-
ber of alternative models for any intermediate variable by adding productions to
the corresponding nonterminal. These additional productions specify alternative
modeling choices, only one of which will eventually be chosen to revise the initial
model. In general, there are two classes of alternative productions. The produc-
tions from the first class replace one or more constant parameter values with
a generic constant parameter const. In our experiments with the CASA-NPPc
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Table 8. Grammar productions specifying modeling alternatives that can be used to
revise the initial CASA-NPPc model

Ec-100 E — const[0:1.12) - T1-T2-W
Es-exp E — const[0 : 1.12] L ppeonstl0] L poeonst[0:] |y const[0:]
T1c-100 T1 — const[0 : 1.6] + const[0 : 0.04] - topt
—const[0 : 0.001] - topt?
T1s-poly T1 — const | const + (T'1)  topt
T2c-100 T2 — const[0 : 2.3628]/((1 + exp(const[0 : 0.4]

-(TDIFF — const[0 : 20]))) - (1 + exp(const[0 : 0.6]
«(=TDIFF — const|0 : 20]))))

T2s-poly T2 — const | const + (T2) - TDIFF

SR FASc-25 SR FAS — (1 + fas ndvi/const[750 : 1250])
/(1 — fas ndvi/const[750 : 1250])

model, we use alternative productions that allow for a 100% relative change of
the initial value of a constant parameter. This can be specified by replacing
the fixed value constant parameter v with a terminal symbol const[0 : 2 - v].
Thus, the lower bound for the newly introduced constant parameter is set to
v—100%-v = 0, while the upper bound is set to v+ 100% v = 2-v. Productions
in the second class are slightly more complex and allow for structural revision
of the model.

As we pointed out above, the focus of the model revision is on the equa-
tions corresponding to the four intermediate variables F, T'1, T2, and SR F AS.
Table [§] presents the modeling alternatives we used to revise the equations for
these four variables.

Alternative productions for E

Ec-100 allows refitting the value of the constant parameter in the equation
for F.

Es-exp enables structural revision of the F equation. It replaces the initial
T1.T2-W product with an expression that allows for arbitrary exponents
of the three multiplied variables (i.e., T'1¢* - T'2¢2 - W¢2). The obtained
values of the exponents in the revised model would then correspond to
the relative magnitude of the influences of T'1, T2, and W on E.

Alternative productions for T1

T1c-100 allows refitting the values of the constant parameters in the 71
equation.

T1s-poly replaces the initial second degree polynomial for calculating 71
with an arbitrary degree polynomial of the same variable topt.

Alternative productions for T2

T2c-100 enables 100% relative change of the constant parameter values in
the T2 equation.

T2s-poly replaces the initial equation for T2 with an arbitrary degree
polynomial of the variable TDIFF.
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Table 9. The root squared mean error (RMSE) of the revised models and the percent-
age of relative error reduction (RER) over the initial CASA-NPPc model. We evaluated
RMSE of the revisions on training data (training - the left-hand side of the table) and
using 30-fold cross-validation (the right-hand side of the table).

training cross-validation
alternative production(s) RMSE RER(%) RMSE RER(%)
Ec-100 458.626 1.42 460.500 1.01
Es-exp 443.029 4.77 443.032 4.77
T1c-100 458.301 1.49 460.799 0.95
Tis-poly 450.265 3.21 457.370 1.69
T2c-100 457.018 1.76 459.633 1.20
T2s-poly 450.972 3.06 461.642 0.77
SR FASc-25 453.157 2.59 455.281 2.13
ALL 414.739 10.85 423.684 8.93

Alternative productions for SR FAS
SR FASc-25 allows for a 25% relative change of the constant parameter val-
ues in the SR FAS equation. We used 25% instead of usual 100% to
avoid values of the constant parameters below 750, which would cause
singularity (division by zero) problems when applying the equation.

Note that we can add an arbitrary combination of these alternative produc-
tions to the initial grammar. If all of them are added at the same time, then
LAGRAMGE will search for the most beneficial combination of revisions. In the
latter case, LAGRAMGE searches the space of 384 possible revisions of the orig-
inal CASA-NPPc model (note that we limit the parse tree depth so that the
maximal degree of the polynomials corresponding to T'1 and T2 is five).

Results. Table [0 summarizes the results of the revision. When we allow only
a single of the seven alternatives, revising the structure of the F equation leads
to the largest (almost 5%) reduction of the initial model error. However, we
obtain the largest error reduction of almost 11% on the training data and 9%
when cross-validated with a combination of revision alternatives. The optimal
combination of revisions is Es-exp, T1c-100, T2s-poly, and SR FASc-25 , which
leads to the model presented in Table[I(l It is worth noticing that the reductions
obtained with single alternative productions nearly add up to the error reduction
obtained with the optimal combination of revisions.

The most surprising revision result proposes that the water stress factor W
does not influence the photosynthetic efficiency E, i.e., E = 0.402 - T1°:624 .
729215 . W0, Ecologists that developed the CASA model suggested that this
surprising result might be due to the fact that the influence of the water stress
factor on FE is already being captured by the satellite measurements of the rela-
tive greenness, fas ndvi, and thus, W becomes obsolete in the E equation.

Furthermore, the revised model replaces the initial second-degree polynomial
for calculating T'1 with a linear equation. The structural revision T2s-poly re-
placed the complex initial equation structure for calculating T2 with a relatively
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Table 10. The best revision of the initial CASA-NPPc model. The parts that were
left intact in the revision process are printed in

E =0.402 - T10-624 . 720-215 . py0
T1 = 0.680 + 0.270 - topt — 0 - topt>
T2 = 0.162 + 0.0122 - TDIFF + 0.0206 - TDIFF? — 0.000416 - TDIFF?3
—0.0000808 - TDIFF* + 0.000000184 - TDIFF®

SR FAS = (1 + fas ndvi/750)/(1 — fas ndvi/750)

simple fifth degree polynomial. While the initial form of the T2 equation is fairly
well grounded in first principles of plant physiology, it has not been extensively
verified from field measurements. Therefore, both empirical improvements are
considered plausible by the ecologists.

5.2 Completing a Partial Model of Water Level Change in the
Ringkgbing Fjord

In the last series of experiments, we illustrate that the proposed methodology
can be also used for completing a partial model specification. In such a case,
human experts specify only some parts of the model structure and leaves others
unspecified or partly specified. The goal is then to determine both the structure
and constant parameter values of the unspecified parts.

An example of such a task is modeling water level variation in Ringkgbing
fjord, a shallow estuary located at the Danish west coast, where it experiences
mainly easterly and westerly winds Wind forcing causes large short term vari-
ation of the water level (h) measured at the gate between the estuary and the
North Sea. Domain experts specified the following partial model for the temporal
variation of the water level in the estuary:

)
A

Qr

(hsea —h + hO) + A

+ Q(erh Wdir)~ (2)
The water level response to the wind forcing depends on both wind speed (vari-
able W, measured in [m/s]) and direction (W, measured in degrees) and is

2 The task was used as an exercise within a post-graduate course on modeling dynamic
systems organized in 2000. Since the Web page of the course is no longer available,
we cannot provide a proper reference to the original task specification. Note also
that we could not consult domain experts and therefore could not obtain expert
comments on the induced models.
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Table 11. The grammar for modeling water level variation in the Rinkgbing fjord that
follows the partial model specification from Equation

WaterLevelChange — (F/A) x SaltWaterDrive + FreshWaterFlow + G

SaltWaterDrive — (hsea — h + const)
FreshWaterFlow — Qyf/A

modeled by an unknown function g. Apart from wind forcing, fresh water supply
(Qf, measured in [m3/s]) influences the water level change. When the gate is
closed, fresh water is accumulated in the estuary causing a water level rise of
Qf/A, where A is the surface area of the estuary measured in squared meters.
During periods when the gate is open, the stored fresh water is emptied in the
North Sea. The gate is also opened in order to maintain sufficient water level in
the estuary, in which case the water rise is driven by the difference between the
water level in the open sea (variable hge,, measured in meters), the water level
in the estuary (h, measured in meters), and the constant parameter (hg). The
flow is restricted by the friction of the flow, modeled by an unknown function
f of the number of gate parts being open (a). Namely, the gate consists of 14
parts and allows for opening some parts and closing others. The value of A is not
directly observed, but a function that calculates A on the basis of h is provided,
so A can be also treated as an observed variable.

Given the partial model specification and measurements of the observed vari-
ables, the task of model completion is to find the structure and parameters of
the unknown functions f and g. The data set contains hourly measurements
of all the observed variables within the period from 1st of January to 10th of
December 1999.

Grammars for Completion. In order to apply our methodology to the task of
model completion, we first recode the partial model specification into a grammar.
The grammar presented in Table [Tl follows the partial model formula along with
the explanations of its constituent terms. The grammar contains two nonterminal
symbols F' and G that correspond to the unknown functions f and g, respectively.

In the second step, we add productions for F' and G to the grammar. They
specify modeling alternatives for the completion task. In absence of domain-
specific knowledge, we make use of simple polynomial models as presented in
Table[I2l The first two modeling alternatives, FO and GO, are the simplest possible
models, i.e., constants. The next two, F1 and G1, are using polynomials of the
appropriate system variables. Finally, we used an additional modeling alternative
for the g function, G2, that replaces the wind direction value (that represents
angle) with its sine and cosine transformation, respectively.

Results. Table[[3 summarizes the results of the model completion and provides
a comparison with the black-box modeling case where no knowledge about model
structure was used (Polynomial). The best cross-validated performance is gained
using the partial model specification provided by the experts in combination with
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Table 12. Grammar productions specifying modeling alternatives that can be used to
complete the model of water level variation in the Ringkgbing fjord

FO F — const

F1 F — F+ const xTF | const x Tr
Te — Tr % Vg | %2
VF — a

GO G — const

Gl G — G+ const xTr | const * Tr
Te — Ta *x Vg | Vo
VG - erl | Wdir

G2 Vg — W | sin(Wair) | cos(Wair)

Table 13. The root mean squared errors (RMSE, estimated on both training data
and using 10-fold cross-validation) of the four water level variation models induced by
LAGRAMGE with (three first rows) and without (last row) using the partial model spec-
ification provided by the domain experts. The last column gives number of candidate
models (#CMS) considered during the search.

task training RMSE cross-validated RMSE  #CMS
FO + GO 0.0848 0.106 1
F1+G1 0.0655 0.0931 378
F1 + G2 0.0585 0.0903 2184
Polynomial 0.0556 2.389 2801

the F 1 and G 2 modeling alternatives for the unspecified parts of the structure.
The graph on the left-hand side of Figure @ shows the simulation of this model
compared to the measured water level in the Ringkgbing fjord. We ran a long-
term simulation of the model from the initial value of the water level without
restarting the simulation process at any measurement point. For the values of all
other system variables needed during the simulation, we used the measurements
at the nearest time point in the past.

Note that the model follows the general pattern of water level variation. The
long-term simulation of the model, however, fails to precisely capture the short-
term (hour) changes of the water level. To test the short-term prediction power
of the model, we performed two additional simulations, which we restarted with
the true measured water level values at every hour and at every day (24 hours).
Table [[4] presents the results of this analysis. They show that the model is
suitable for short-term prediction of the water level in the Ringkgbing fjord.

Since the model induced by LAGRAMGE follows the partial structure spec-
ification provided by the human experts, further analysis can be performed.
For example, we can compare the influence of the gate opening (modeled by
f(a)(hsea — h + ho)/A) with the effect of the wind (modeled by g(Wyel, Wair))-
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Fig. 4. Simulation of the best water level variation model induced by LAGRAMGE com-
pared to the measured water level (left-hand side) and analysis of the influence of gate
opening relative to wind forcing as modeled by LAGRAMGE (right-hand side)

Table 14. The RMSE and correlation coefficient (r) for the short-term (one hour and
one day) prediction of the water level in the Ringkgbing fjord compared to the RMSE
and r? of the simulation over the whole observation period

prediction/simulation period RMSE r
one hour 0.0168 0.976
one day 0.0425 0.845
whole observation period 0.0585  0.659

The graph on the right-hand side of Figure @ shows the ratio of the gate opening
and the wind influences on the water level change in the Ringkgbing fjord. The
low magnitude of the ratio shows that the influence of the wind prevails over
the influence of the gate opening most of the time. The only exceptions occur in
the period from 80 to 100 days from the beginning of the measurement, that
is, the end of March and beginning of April 1999.

Finally, note that the polynomial model of the water level variation ignores
the partial specification, but performs best on the training data. However, the
model’s small RMSE is due to the obvious overfitting of the training data, since
the cross-validated RMSE of the same model (2.389) is much larger than the
cross-validated RMSE of the models that follow the partial model specification.
This result confirms the importance of integrating available knowledge in the
process of model induction.

6 Related Work

The work presented in this chapter is mainly related to other modeling ap-
proaches presented in literature. Our methodology is closest in spirit to the
compositional modeling (CM) paradigm (Falkenheiner & Forbus, 1991). In our
methodology, models of individual processes correspond to model fragments
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in CM and combining schemes to combining rules in CM. Both CM and our
methodology views model building as a search for an appropriate combination
of model fragments. The PRET reasoning system for automated modeling also
follows the CM paradigm to modeling, but it employs a slightly different kind
of modeling knowledge (Stolle & Bradley, this volume; Easley & Bradley, this
volume). The first kind of knowledge used in PRET is domain-specific knowledge
in the form of “conservation rules”. An example of such a rule in the spring
mechanics domain specifies that “the sum of forces at any observed coordinate
of the mechanical system is zero”. These rules are more general than the domain
knowledge about model fragments and their composition used in compositional
modeling approaches. Therefore, PRET rules constrain the space of possible mod-
els much less. PRET compensates for this lack of constraints by using a second
kind of domain-independent knowledge about models of dynamic systems based
on ordinary differential equations. An example of such a rule specifies that “a
model with oscillatory behavior has to be second-order”. This kind of ODE rules
allows PRET to efficiently rule out inappropriate models by high-level abstract
(qualitative) reasoning. As we have illustrated in (Todorovski, 2003), both kinds
of modeling knowledge, used in PRET, can be easily encoded within our formal-
ism. Note, however, that LAGRAMGE is not capable of ruling out inappropriate
candidate models based on qualitative reasoning, but rather tries to perform
quantitative simulation of the candidate models and find out that they can not
fit the measured data well.

Another related study is presented by Garrett et al. (this volume). They
apply the compositional modeling approach to the task of inducing models of
chemical reaction pathways from noisy measurement data. However, the models
they induce are qualitative. Although the concepts introduced within the area of
compositional modeling are also relevant for automated building of quantitative
models of real-world systems, this idea has not been widely explored.

Our approach is similar to the ECOLOGIC approach (Robertson et al., 1991) in
the sense that it allows for representing modeling knowledge and domain-specific
knowledge. However, in ECOLOGIC, the user has to select among the alternative
models, whereas in our approach observational data is used to select among
the alternatives. It is also related to process-based approaches to qualitative
physics (Forbus, 1984). We can think of the food-chain or domain-specific part
of the knowledge as describing processes qualitatively, whereas the modeling
part together with the data introduces the quantitative component. However,
the EcoLOGIC approach is limited to modeling systems in the environmental
domain, whereas our approach is applicable in a variety of domains. Salles and
Bredeweg (2003) presents a framework similar to ECOLOGIC that can be used
for building models of population and community dynamics. In contrast to the
work presented here, they focus on building qualitative conceptual models that
do not require numeric data nor provide precise simulation of system behavior.

The work on revising models presented here is related to two other lines of
work. In the first, Saito et al. (this volume) address the same task of revising
models based on equations. Their approach transforms a part of the model into
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a neural network, retrains the neural network on available data, and transforms
the trained network back into an equation-based model. They obtained revised
models with a considerably smaller error rate than the original one, but gained
a slightly lower accuracy improvement than our method did. A limitation of
their approach is that it requires some hand-crafting to encode the equations
as a neural network. The authors state that “the need to translate the existing
CASA model into a declarative form that our discovery system can manipulate”
is a challenge to their approach.

The approach of transforming equation-based models to neural networks and
using these for refinement is similar in spirit to the KBANN approach proposed
in (Towell & Shavlik, 1994). There, an initial theory based on classification
rules is first encoded as neural network. Then, the topology of the network is
refined and the network is re-trained with the newly observed data. Finally, the
network is transformed back into rules. However, the application of KBANN is
limited to theories and models expressed as classification rules. In other related
work, Whigham and Recknagel (2001) consider the task of revising an existing
model for predicting chlorophyll-a by using measured data. They use a genetic
algorithm to calibrate the equation parameters. They also use a grammar-based
genetic programming approach to revise the structure of two subparts of the
initial model, one at a time. A most general grammar that can derive an arbitrary
expression using the specified arithmetic operators and functions was used for
each subpart. Unlike the work presented here, Whigham and Recknagel (2001)
do not present a general framework for the revision of equation-based models,
although their approach is similar to ours in that they use grammars to specify
possible revisions.

Different aspects of the work presented in this chapter has been already
published in other articles and papers. First, Todorovski and Dzeroski (1997) in-
troduce the grammar-based equation discovery method LAGRAMGE. The paper
illustrates the use of grammars for integrating different aspects of domain knowl-
edge in the process of equation discovery — measurement units and process-
based knowledge being among others. The successful application of LAGRAMGE
to modeling phytoplankton growth in Lake Glumsg is the topic of the paper by
Todorovski et al. (1998), which also identifies the difficulty of encoding knowl-
edge into grammars as a main drawback of LAGRAMGE. The work presented by
Todorovski and Dzeroski (2001b) introduces a new higher-level formalism for
encoding process-based knowledge about population dynamics. These ideas lead
also to a separate line of work starting with (Langley et al., 2002). Finally, Todor-
ovski and Dzeroski (2001a) present a grammar-based methodology for revising
equation-based models.

7 Conclusion

In the chapter, we presented a methodology for integrating various aspects of
knowledge specific to the domain of interest in the process of inducing equation-
based models from data. The methodology is based on idea of transforming the
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domain-specific knowledge to a language bias for induction that specifies the
set of candidate hypotheses. Context free grammars are used as a formalism
for specifying the language bias. We show how three different types of domain-
specific knowledge can be easily transformed to grammars. We demonstrated
the utility of our approach by performing experiments using LAGRAMGE, an in-
duction method that can take into account declarative language bias encoded
in a form of a grammar. The results of the experiments show that models in-
duced using knowledge make sense to domain scientists and more importantly,
scientists can easily understand and interpret the induced models. Furthermore,
the models reveal important non-trivial relations between observed entities that
are difficult to infer using black-box models. A comparison of models induced
with and without using domain-specific knowledge in the last experiment shows
that using knowledge can considerably reduce overfitting and increase model
prediction performance on test cases unseen in the induction phase.

The immediate direction of further work is establishing libraries of encoded
knowledge in different domains. These libraries will be built in cooperation with
domain experts that have expertise in modeling real-world systems from mea-
sured data. Establishing such libraries will make the developed methods usable
by domain experts that collect data about real-world systems, but are not ex-
perienced mathematical modelers. First steps toward establishing a library for
modeling of aquatic ecosystems, based on recent developments in the domain,
have been already made (Atanasova and Kompare 2003; personal communica-
tion). Furthermore, the same team of experts work on a library for establishing
models of equipment used for waste water treatment. In both cases, the libraries
will be used for automated modeling based on collections of measurements.

The automated modeling approach based on transformation to grammars is
limited to modeling tasks where the domain expert is capable to provide pro-
cesses that are expected to be important for modeling the observed system.
However, there are many real-world tasks, where experts are not able to specify
the list of processes. In these cases, a two level search procedure should be de-
veloped that is capable of discovering the processes that influence the behavior
of the observed system. At the higher level, the search will look for the optimal
set of processes. For each set of processes, the proposed modeling framework
will be used at the lower level to find the model, based on the particular set of
processes, that fits the measured data best.

The methodology presented in this chapter is still under development and
different methods presented are developed and evaluated independently of the
others. For example, the methods do not allow the revision of models based on
partial differential equations, although in principle this should not be a problem.
Furthermore, the formalism can easily encode domain knowledge about changes
of the systems along a spatial dimension, but a method for discovering partial
differential equations is not integrated within LAGRAMGE. There is a clear need
for proper integration of the methods into a single modeling assistant that would
allow establishing new and revising existing models based on algebraic, ordinary,
and partial differential equations.
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The integrated modeling assistant should be further integrated within stan-
dard data analysis and simulation environmentd] that are routinely used by
mathematical modelers. Beside improved ease of use, the integration will en-
able standard techniques for parameter estimation and sensitivity analysis to be
used in conjunction with the automated modeling framework to yield a proper
scientific assistant.
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Abstract. The “laws” in science are not the relations established by
only the objective features of the nature. They have to be consistent
with the assumptions and the operations commonly used in the study
of scientists identifying these relations. Upon this consistency, they be-
come communicable among the scientists. The objectives of this litera-
ture are to discuss a mathematical foundation of the communicability
of the “scientific law equation” and to demonstrate “Smart Discovery
System (SDS)” to discover the law equations based on the foundation.
First, the studies of the scientific law equation discovery are briefly re-
viewed, and the need to introduce an important communicability cri-
terion called “Mathematical Admissibility” is pointed out. Second, the
axiomatic foundation of the mathematical admissibility in terms of mea-
surement processes and quantity scale-types are discussed. Third, the
strong constraints on the admissible formulae of the law equations are
shown based on the criterion. Forth, the SDS is demonstrated to discover
law equations by successively composing the relations that are derived
from the criterion and the experimental data. Fifth, the generic criteria to
discover communicable law equations for scientists are discussed in wider
view, and the consideration of these criteria in the SDS is reviewed.

1 Introduction

Various relations among objects, events and/or quantity values are observed in
natural and social behaviors. Especially, scientists call the relation as a “law”,
if it is commonly observed over the wide range of the behaviors in a domain.
When the relation of the law can be represented in form of mathematical for-
mulae constraining the values of some quantities characterizing the behaviors,
the relation is called “law equations”. In popular understanding, the relations
of the laws and the law equations are considered to be objective in the sense
that they are embedded in the behaviors independent of our processes of ob-
servation, experiment and interpretation. However, the definition of the laws
and the law equations as communicable knowledge shared by scientists must
be more carefully investigated. Indeed, they are not the relations established
by only the objective features of the nature as discussed in this chapter. They
have to be consistent with the assumptions and the operations commonly used
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in the study of scientists identifying these relations. Upon this consistency, they
become communicable among the scientists.

On the other hand, the studies to develop automated or semi-automated sys-
tems to discover scientific law equations have been performed in the last two
decades. As the main goal of the studies is to discover law equations represent-
ing meaningful relations among quantities for scientists, i.e., communicable with
scientists, the systems must take into account the communicability criteria to
some extent. The objectives of this chapter are to discuss a mathematical founda-
tion of the communicability of the “scientific law equation” and to demonstrate
“Smart Discovery System (SDS)” to discover the law equations based on the
foundation. Through the demonstration of the scientific law equation discov-
ery and the subsequent discussion, the communicability criteria of law equation
discovery are clarified.

2 Study of Law Equation Discovery

First, we briefly review the past studies of the scientific law equation discovery
from the view point of the equation formulae having the communicability in sci-
ence. The most well known pioneering system to discover scientific law equations
under the condition where some quantities are actively controlled in a laboratory
experiment is BACON (Langley et al., 1985). FAHRENHEIT (Koehn & Zytkow,
1986) and ABACUS (Falkenhainer & Michalski, 1986) are successors that basi-
cally use similar algorithms to BACON to discover law equations. LAGRANGE
(Dzeroski & Todorovski, 1995) and LAGRAMGE (Todorovski & Dzeroski, 1997)
are another type of scientific law equation discovery systems based on the ILP-
like generate and test reasoning to discover equations representing the dynamics
of the observed phenomenon.

Many of these succeeding systems introduced the constraint of the unit di-
mension of physical quantities to prune the search space of the equation formu-
lae. The constraint is called “Unit Dimensional Homogeneity” (Bridgman, 1922;
Buckingham, 1914) that all additive terms in a law equation formula must have
an identical unit dimension. For example, a term having a length unit [m] is not
additive to another term having a different unit [kg] in a law equation, even if
the formula including their addition well fits to given data. Though the main
purpose of the use of this constraint in these systems was to reduce the am-
biguity in their results under noisy measurements and the high computational
cost of their algorithms, the introduction also had an effect to increase the com-
municability of the discovered equations with scientists because the discovered
equations are limited to more meaningful formulae. A law equation discovery
system COPER (Kokar, 1986) more intensively applied the constraints deduced
from the unit dimensional analysis. The limitation of the constraints is so strong
that some parts of the equation formulae are almost predetermined without using
the measurement data set, and the derived equations has high communicability
with scientists. LAGRANGE and LAGRAMGE are also capable of introducing
these constraints in principle. However, the main purpose of these works is to
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provide an elegant measure to implement the constraints in the scientific law
equation discovery but not to propose the contents of the constraints to enhance
the communicability.

A strong limitation of the use of the unit dimensional constraints is its narrow
applicability only to the quantities whose units are clearly known. To overcome
this drawback, a law equation discovery system named “Smart Discovery Sys-
tem (SDS)” has been proposed (Washio & Motoda, 1997; Washio et al., 2000). It
discovers scientific law equations by limiting its search space to “Mathematically
Admissible” equations in terms of the constraints of “scale-type” and “identity”.
They represent the important assumptions and operations commonly used in
measurement and modeling processes identifying the relations among quanti-
ties by scientists. Since the use of scale-types and identity is not limited by the
availability of the unit dimensions, SDS is applicable to non-physical domains in-
cluding biology, sociology, and economics. In the following section, the axiomatic
foundation of the mathematical admissibility in terms of measurement processes
and quantity scale-types are discussed.

3 Scale-Types of Quantities

“Mathematical Admissibility” includes the constraints of some fundamental no-
tions in mathematics such as arithmetic operations, but they are very weak to
constrain the shape of the law equation formulae. Stronger constraints are de-
duced from the assumptions and operations used in measurement process. The
value of a quantity is obtained through a measurement in most of the scientific
domains, and some features of the quantity are characterized by the measure-
ment process. Though the unit dimension is an example of such features, a more
generic feature is called “scale-types”. S.S. Stevens defined that a measurement
is to assign a value to each element in a set of the objects and/or events un-
der given rules, and claimed that the rule set defines the “scale type” of the
measured quantity. He categorized the scale-types into “nominal”, “ordinal”,
“interval” and “ratio” scales (Stevens, 1946). In the later study, another scale-
type called absolute scale is added. Subsequently, D.H. Krantz et al. axiomatized
the measurement processes and the associated scale-types (Krantz et al., 1971).
In this section, their theory on the scale-types is reviewed.

Definition 1 (A Relation System). The following series of finite length « is
called “a relation system”.
a=<A,Ry,Re,....,R, >

where A is a non-empty set of elements and R;: R;(a1,as,...,am,) is a relation
among the elements a1, as,...,am, € A.

Definition 2 (Type and Similarity). Given a relation system «, where each
R; is the relation among m; elements in A, the series of positive integers
< myi,mo,...,m, > is called “type” of a. Two relation systems a and
B8 =<B,51,59,...,5, > are “similar”, if they have identical types.
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Definition 3 (Isomorphism (Homomorphism)). Given two relation sys-
tems a and 3, if the following conditions are met, they are called “isomorphic
(homomorphic)”.

(1) a and B are similar.

(2) A bijection (surjection) f from A to B exists where

Ri(a17a27 .. '70‘7‘%) <~ Si(f(al)vf(G’Q)u ceey f(amb))

Definition 4 (Numerical and Empirical Relation Systems). When a rela-
tion system « satisfies the following conditions, o is called a “numerical relation
system”.

(1) The domain A C R.

(2) Ri(i=1,2,...,n) is a relation among values in RN.
A relation system which is not a numerical relation system is called an “empirical
system”.

3.1 Extensional Measurement

Extensional measurement is the measurement done by using a facility to directly
map each element in an empirical relation system to a numeral in a numerical
relation system while preserving the relations in each system. For example, the
measurement of length and the measurement of weight are the extensional mea-
surements respectively since a ruler and a balance map the lengths and the
weights of objects to numerals directly.

Definition 5 (Scale-type in Extensional Measurement). < «, 8¢, f > is
called a “scale-type” where

a: an empirical relation system,

By: a full numerical relation system,

[ isomorphic or homomorphic mapping from o to the subsystem of B;.

Here, the “full numerical relation system” is the system which domain is the
entire R, and the “subsystem” is the system where its domain is the sub-domain
of the original system, and all relations of the subsystem have one-to-one corre-
spondence to the relations of the original system.

When an empirical relation system o =< A, I > is the following classification
system, the measurement by “nominal scale” is applicable.

Definition 6 (Classification System). Given « =< A, I >, if I is a binary
relation on A, « is called a “binary system”. Furthermore, if the following three
axioms hold for I, I is called an “equivalence relation”, o a “classification sys-
tem” and the set of elements where I holds “I-equivalence class”.

Reflexive law: Ya € A, I(a,a)

Symmetric law: Ya,¥b € A,I(a,b) = I(b,a)

Transitive law: Ya,Vb,¥e € A, I(a,b) N1(b,¢) = I(a,c)

An example of the classification system and the measurement in the nominal
scale is explained through the empirical relation system « depicted in Fig. [l
The domain A is the power set of the set of 6 weights {a, b1, ba, c1, ¢, c3}. The
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Empirical relation system:o

fay/| i {bysb}
/ -l

Denc

I Isomorphic or h phic mapping: f ll

Numerical relation system:p
weight of {a},{b;,b,},{c;,¢,¢3):W,
weight of {¢,,¢,},{¢,€3},{C3,¢,}:dW,
weight of {b,},{b,}:w,
weight of {¢,},{¢,},{¢5}:W,

Fig. 1. Example of extensional measurement

equivalence relation I is that two sets of the weights are balanced. The reflexive
law holds since two identical weight sets balance. The symmetric law also holds
because the balance of the following pair wise sets is invariant for the exchange
of their positions between the left dish and the right dish.

({01}, {02}), {en}, {e2}), ({2}t {es}), ({es} {ea}),
({017 02}7 {027 CS})v ({627 63}7 {037 Cl})7 ({037 Cl}7 {Clv 02})7
({a}v {blv bQ})v ({bh b2}7 {Clv C2, CS})v ({Clv C2, 63}7 {a})

In addition, if a pair of sets in the following combinations balance, then the rest
pairs also balance. Thus, the transitive law holds.

({Cl}’ {62}7 {03})’ ({61’ 62}’ {627 03}7 {C3v cl})’ ({a}7 {blv b2}7 {Clv €2, 03})

Accordingly, this empirical relation system « is a classification system. For this
«, given a numerical relation system 3 and its domain B C R, a surjection f
which maps any weight sets in I-equivalence class to an identical number on B
is introduced as follows.

wa = f({a}) = f({b1,b2}) = f({c1, c2, c3}),
wy = f({b1}) = f({b2}),

we = f({c1}) = f({e2}) = fF({e3}),

dwe = f({c1,e2}) = f({e1,e3}) = f({e2, e3})

where w, , wy, we, dw, € B.

If a relation of 3, which is the equality of two numbers, is considered, the reflexive
law holds as the equality of identical numbers is trivial. Also, the symmetric
law and the transitive law hold for the equality of w,, wp,w., dw.. Hence, G is
a classification system. Therefore, the homomorphic mapping f to assign an
identical number to balanced weights is a measurement in nominal scale.

Editorial note. Following a nominal measurement scale, we assign quali-
tative labels to groups or categories of observed objects, where there is no
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greater-than or less-than relations between labels. Examples of nominal scale
quantities include color of an object and gender of a person. Variables measured
using nominal scale are referred to as categorical variables.

When an empirical relation system a =< A, P > is the following series, the
measurement in “ordinal scale” is possible.

Definition 7 (Series). Given a binary system o =< A, P >, if the following
three axioms hold for P, P is called “inequivalence relation” and o “series”.
Asymmetric law: Ya,¥b € A, P(a,b) = —P(b,a)
Transitive law: Ya,Vb,Ve € A, P(a,b) A P(b,¢) = P(a,c)
Law of the excluded middle: Ya,¥b € A, one of P(a,b) and P(b,a) holds.

In case that the relation I holds on some of the elements in A, i.e., a =<
A,I,P >, the elements in each [-equivalence class are grouped, and A is re-
placed by the “quotient set” A/I. Then, a/I =< A/I,P > is a series, and
it can be measured in ordinal scale. In the example of Fig. Il the domain of
af/l =< A/I,P > is A/I where the sets of the weights which mutually bal-
ance are grouped. Then, given two elements r and s in A/, the binary relation
P(r,s) is defined that the dish on which s is put comes down. This P(r, s) sat-
isfies the conditions of the aforementioned series. On the other hand, given the
binary relation P(w,,w,) which is inequality w, < ws between two numbers in
the domain B of a numerical relation system (. This also satisfies the condi-
tions of the series. Then we define a surjection f which assigns real numbers
Wq, Wh, We, dw, to the elements in A/I respectively where w, < ws holds for r
and s under P(r,s). This definition of f which holds w. < wp < dw. < w, is the
measurement in ordinal scale.

Editorial note. While the labels in the nominal scale are unordered, ordinal
scale introduces ordering between the labels. The labels of the ordered scale,
thus let us rank the observed objects. An example of a variable measured using
ordered scale is educational experience of a person. Variables measured using
ordinal scale are called ordinal or rank variables.

Furthermore, when an empirical relation system a =< A, D > is the following
“difference system”, the measurement in “interval scale” is possible.

Definition 8 (Difference System). Given o =< A, D >, if the relation D
18 a quadruple relation on A, « is called a “quadruple system”. Moreover, o is
called a “difference system” if the following axioms holds for {a,b,c,d,e, f} C A.

P(a,b) ¥D(a,b,a,a),

I(a,b) & D(a,b,b,a) A D(b,a,a,b),

D(a,b,c,d) AN D(c,d,e, f) = D(a,b,e, f),

One of D(a,b,c,d) and D(c,d,a,b) holds,

D(a,b,c,d) = D(a,c,b,d),

D(a,b,c,d) = D(d, ¢, b, a),

dec € A, D(a,c,c,b) A D(c,b,a,c),

P(a,b) A—=D(a,b,c,d) = Jde € A, P(a,e) A P(e,b) A D(c,d, a,e),

Jde,3f € A, 3 an integer n, P(a,b) A D(a,b,c,d) = M,(c,e, f,d).
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Here, M,, is the relation to locate e and f between ¢ and d in A where the
distance between ¢ and e and that between f and d are identical and one n-th of
the distance between ¢ and f. Even if some elements in A satisfy the equivalence
relation I, a/I =< A/I, D > is a difference system, and «/I can be measured by
an interval scale quantity. In the example of Fig. [Il let the relation D(r,s,t, u)
on A/I be that the left dish comes down when two sets of weights r and u are
put on the left dish and s and ¢ on the right dish. Then «/I is a difference
system. Let D(w,., ws, wy, w,,) on the domain B of a numerical relation system (3
be (ws —w,) < (w, —wy), and let a surjection f be the assignment of numerals
Wq, Wh, W, dw, to the sets of weights in such a way that D(w,, ws, we, w, ) holds
in 8 when D(r,s,t,u) holds in «/I. In this example, w, = w. + 4(wp — w,)
and dw. = w. + 2(wp — w.) are obtained, and the numerals mapped by the
surjection f are interval scale. The f which satisfies this relation is not unique.
The different mappings f1 and fy for two numerical relation systems (1 and (s
which are homomorphic with a//I respectively have a linear relation fo = k- f1+c
where k and c are constants, and this is the admissible unit conversion. The
interval scale quantities follow the axioms of the classification system, the series
and the difference system, but do not have any absolute origins. The examples
are position, time and musical sound pitch since the origins of their coordinate
systems are arbitrarily introduced.

Editorial note. Although the labels of the ordinal scale are ordered, the differ-
ence between two label values does not have a uniform meaning over the whole
scale. On the other hand, the distance between labels of an interval scale does
have a meaning and the meaning remains the same over all the measurement
scale. For example, the distance between 10° and 20° Centigrade is the same as
the distance between 40° and 50° and its value is 10 measurement units. The
interval scale is the first scale in the hierarchy which introduces the concept of
a measurement unit.

The quantities of ratio scale are derived by the extension of the difference
system. Given two difference systems «/I and [, define a surjection f from
AJI x A/I to B x B satisfying f(r,s) = ws — w, and f(¢,r) = w,. Under this
mapping, «/I is measured by a ratio scale quantity. In the example of Fig. [l
the two weights ¢; on the left dish and the weights c2 and c¢3 on the right dish
balance in «/I, and this is homomorphic with the following relation in .

f(@.{ar}) = f({er}, {2, e3}),

where f(¢,{c1}) = we and f({e1}, {2, c3}) = dw.—w.. This deduces the relation
dw. = 2w,.. By substituting this relation to the aforementioned w, = w.+4(wp—
we) and dw, = w,. + 2(wp — we), 2wp = 3w, and w, = 3w, are deduced, and
the ratio scale of weight is derived. f satisfying these relations are not unique.
Given two numerical relation systems (; and B3 which are homomorphic with
a/I, the corresponding f; and fs have a similarity relation fo = k- f1, i.e., the
admissible unit conversion. The ratio scale quantities have absolute origins. The
examples are distance, elapsed time and physical mass.
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Editorial note. Finally, ratio measurement scale always has an absolute zero
label that is meaningful. Examples of ratio scale variables include distance, time,
mass, or count. The ratio scale let us construct a meaningful fraction (i.e., ratio)
between two measured values and say, we need twice as much time, or this object
weights twice as much as this one.

3.2 Intentional Measurement

Besides the quantities defined in the extensional measurement, another sort of
quantities which can not be directly measured by any facilities but indirectly
measured by functions of the other quantities exit. The process of this indirect
measurement is called “intentional measurement”, and the quantities measured
through this measurement are “derivative quantities” obtained from the other
quantities. The nature of each scale-type in the intentional measurement is very
similar to that of the extensional measurement, and the admissible unit conver-
sion is identical for each scale-type. The descriptions on the rigorous definitions
of this measurement and its scale-types are omitted due to the space limitation.
An example of the derivative quantity obtained through the intentional measure-
ment is the temperature. It can be measured only through some other measured
quantities such as the expansion length of mercury. The other representative
derivative quantities are density, energy and entropy.

An important scale-type which is defined by the intentional measurement is
absolute scale-type. Given a quantity g defined by the other ratio scale quantities
f1, f2, ..., fn through g = [T\, f7*, when the relation []}"_, ¥7* = 1 holds under
any unit conversions of f1, fa,..., fn, the scale-type of g is called “absolute
scale”. Because the value of ¢ is invariant for any unit conversions, it is uniquely
defined and called “dimensionless number”. Its admissible unit conversion follows
the identity group g4 = g1. The examples are the ratio of two masses and angle
in radian.

4 Admissible Formulae of Law Equations

In this section, we review some important theorems on the relations among
observed quantities, and show their extension for the discovery of law equations
as communicable knowledge.

R.D. Luce claimed that the group structure of each scale-type is conserved
through the unit transformation, and this fact strongly limits the mathematically
admissible relations among quantities having interval and ratio scale-types (Luce,
1959). For example, when z and y are ratio scale, the admissible unit conversions
are ¢’ = kx and y' = Ky respectively. When we assume the relation between
xz and y to be y = logx, and apply a unit conversion on x, then the unit of y
should be also converted as ¢y’ = log 2’ = log kx = log x+1log k. This consequence
that the origin of y is changed is contradictory to the above admissible unit
conversions of . Thus, the logarithmic relation between two ratio scale quantities
is not admissible. R.D. Luce further proceeded this discussion, and derived the
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Table 1. Admissible relations between two quantities

scale-types

No. independent dependent admissible
quantity x  quantity y(z) relation

1 ratio ratio y(z) = az’

2.1 ratio interval y(z) = azP + 6

2.2 y(z) = alogz+p

3 interval ratio impossible

4 interval interval y(z) =azx+p

admissible binary relations between ratio and interval scale quantities depicted
in Table [l

On the other hand, an important theorem called “Product Theorem” on the
relation formula among multiple measured quantities had been presented in
the unit dimensional analysis which was independently studied by old scien-
tists (Bridgman, 1922). However, this theorem addresses on the relation among
ratio scale quantities only. We derived the following “Extended Product Theo-
rem” (Washio & Motoda, 1997) to the case where the quantities of ratio, interval
and absolute scales are included in the formula by introducing the consequences
of R.D. Luce.

Theorem 1 (Extended Product Theorem). Given a set of ratio scale quan-
tities R and a set of interval scale quantities I, a derivative quantity II is related
with each x; € RUI through one of the following formulae.

1= (] laal™)(CIT (3 buslasl +e)™),

z,;€ER I,eC x;ely,
I = Z a;log|z;| + Z ay, log( Z bijlz;| + ci) + Z bgelae] + cg,
T;ER IkEC§ IjEIk. :EgEIg

where R or I can be empty, and C is a covering of I, Cy a covering of I — I,
(I, CI). II can be any of interval, ratio and absolute scale, and each coefficient
18 constant.

Here, a “covering” C of a set I is a set of finite subsets I's;s of I where I = U;Is;.
The same definition applies to Cy for I — I;. When the argument quantities
appearing in a law equation are ratio scale and/or interval scale, the relation
among the quantities sharing arbitrary unit dimensions has one of the above
formulae.

Another major theorem called “Buckingham I7-theorem” on the structure of
a law equation consisting of ratio scale quantities only had also been presented
in the old work in the unit dimensional analysis (Buckingham, 1914). We further
extended this theorem to include the interval, ratio and absolute scale quantities
in the argument (Washio & Motoda, 1997).
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Theorem 2 (Extended Buckingham I7-theorem). Given a complete equa-
tion ¢(x,y,z,...) = 0, if every argument of this equation is either of interval,
ratio and absolute scales, then the equation can be rewritten in the following
form.

F(HhHQa ERE) Hn—r—s) =0

where n is the number of the arguments of ¢, r and s are the numbers of the
basic unit and the basic origin contained in x,y, ..., and II; is absolute scale for
all i and represented by the formulae of the regime defined by Extended Product
Theorem.

Here, the basic unit is the unit dimension which defines the scaling independent
of the other unit in ¢ as length [L], mass [M] and time [T], and the basic origin
is the origin which is artificially chosen in the measurement of an interval scale
quantity, for example, the origin of temperature in Celsius defined as the melting
point of water under the standard atmosphere pressure. Each II; = p;(x,y,...)
defining II; is called a “regime’ and F(II1,Is,...,II,,_.) = 0 an “ensemble’.
Because all arguments of F' = 0 are absolute scale, i.e., dimensionless, the shape
of the formula does not constrained by the theorem[I] and the arbitrary formula
is admissible for F' = 0 in terms of the scale-type.

The following example of the nuclear decay of a radioactive element is an
example of the theorem [Il and the theorem

N = Ny exp[—A(t — to)] (1)
where t[s] : time, tg[s] : time origin, A[s™'] : decay speed constant,

Nkg] : current element mass, Ny[kg] : tooriginal element mass

t and to are interval scale, and A\, N and Ny are ratio scale. By introducing
dimensionless II; and I, the equation can be rewritten as

H1 = exp(—ﬂ2)7 (2)
Hl = N/N07 (3)
HQ = A(t - tO)a (4)

which are an ensemble and two regimes. The regimes @) and (@) follow the
first formula in the theorem [Il The number of the original arguments n is 5.
r is equal to 2 because t,ty and A share a basic unit of time [s] and N and
Ny share the basic unit of mass [kg]. s is equal to 1 since ¢ and ¢, share a
basic origin of time. Thus n — r — s = 2 holds, and this satisfies the theorem 2l
As indicated in the above example, the scale-type of measurement quantities
strongly constrains the formulae of the law equations which are communicable
among scientists. Empirical equations which relate the measurement quantities
in arbitrary formulae do not provide excellent knowledge representation for the
understanding and the communication among domain experts.



108 T. Washio and H. Motoda

5 Algorithm of Smart Discovery System (SDS)

In this section, an algorithm of our “Smart Discovery System (SDS)” to discover
a law equation based on the mathematical admissibility and the experiments on
the objective behaviors is explained. An important point to perform these pro-
cedures is to establish a method to check if an equation holds for all behaviors
which can be occurred in the experiments on the objective behaviors. A natural
approach is to collect all possible combinations of the values of the controllable
quantities in experiments and to fit the various candidate equations to the col-
lected data. However, this generate and test approach faces the combinatorial
explosion in the data collection and the candidate equation generation. To avoid
this difficulty, we introduce the following assumptions.

(a) The objective behaviors are represented by a complete equation, and all
quantities except one dependent quantity are controllable at least.

(b) The objective behaviors are static, or the time derivatives of some quantities
are directly observable if the behaviors are dynamic.

(c) Given a pair of any quantities observed in the objective behaviors, the bi-
variate relation on the pair can be identified while fixing the values of the
other quantities in experiments.

5.1 Discovery of Regime Equations

Bi-Variate Fitting: If the objective behaviors and the experimental conditions
satisfy these assumptions, “bi-variate fitting” which searches a pair wise relation
of two observed quantities can be applied to reduce the data for the search. In
addition, the mathematical admissibility criterion on the scale-type is used to
limit the equation formula to be fitted to the observed data. Initially, for a pair
of interval scale quantities {x;,x;}, a linear relation

bijaci +z;= dij

is searched in the fitting based on the constraints in the table [l where b;; should
be a constant coefficient. For a pair of ratio scale quantities, a power relation

a;i‘”j Tj = dij

is searched. In case of a pair of an interval scale =; and ratio scale x;, the following
two candidate relations are searched.

bijl‘i + .I‘?ij = di]‘, bwl‘l + IOg T; = dZJ

The goodness of fitting is checked in every fitting by the statistical F-test (Beau-
mont et al., 1996). The same experiments are repeated m = 10 times. Then the
bi-variate fittings to the data obtained in each experiment are conducted to
check the reproducibility of the coefficient b;;, i.e., its constancy, through x*-
test, and the effect of noise and error on their values are reduced by averaging
the coefficients over m = 10 results. By applying these fitting to every pair of
quantities in the data, all bi-variate relations satisfying the constraints in the
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table [ are identified. The mathematical complexity of the bi-variate fitting is
O(mn?) where n is the total number of the quantities in the given data.

Triplet Test: In the next step, the mutually consistent bi-variate relations are
composed to multiple regime equations shown in the theorem [Il Each regime
equation is composed in bottom up manner which searches the equation relat-
ing less number of quantities in the data. The consistent composition is made
through the following “triplet test”. The consistency among the values of the
constant coefficients in a triplet of the bi-variate relations for three observed
quantities is checked under the assumption of a linear relation among the inter-
val scale quantities as indicated in the theorem [l

For example, given a set of three interval scale quantities {x;,x;, xx}, if the
following three bi-variate relations among them are mutually consistent,

bijxi + x5 = dij, bjrxj + e = djg, gz + 2 = di
the following relation holds among the coefficients.
1= bijbjkbki.

This condition can be tested by the normal distribution test considering the error
bounds of the coefficients. The error bounds of b;;, b, and by, i.e., Ab;;, Abjy,
and Aby;, can be statistically evaluated based on the errors of the m least square
fittings of each relation. Then the total error bound Ab,.p, of the right hand side
of the above relation is derived by the following formula of error propagation.

Dby = 3 (bjibis Abis)? + (bisbi Abje)? + (b Abgi)?

This standard deviation error bound is used to judge if the value of the product of
the three coefficients are sufficiently close to 1 under the normal distribution test.

The principle of this test can be applied to the other triplets containing of
ratio and/or interval scale quantities. If the consistency is confirmed, they can
be merged into a relation. In the above example, they are merged into

T + bjkbri®; + britr = mijk,

where m;;, is an intermediate derivative quantities composed by b, and by;
which are known to be dependent of the other quantities, i.e., constants.

This procedure is continued for another quantity x, and any two quantities
in {z;,xj,x}. If every triplet among the bi-variate relations of {zp, z;, z;, ¢} is
consistent, they can be merged to a relation among the four quantities since all
constant coefficients in a linear formulae are mutually consistent. In this case,
the following linear relation is obtained.

Z; + bjebejxy 4 brebopxy + bexe = Tijke,

This procedure further repeated until no larger sets of quantities having
consistency are found. This is similar to the generalization of bi-variate rela-
tions to multi-variate relations in BACON (Langley et al., 1985). However, the
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computational complexity of the triplet test O(n?) is lower than the conven-
tional approach. This is because of the use of the mathematical admissibility
constraints and the systematic triplet consistency test. Through this procedure,
the set of regime equations relating the many original quantities with less num-
ber of dimensionless quantities {II;|i = 1,...,n —r — s} can be discovered, and
this efficiently reduces the computational cost for the discovery of a complete
law equation.

5.2 Discovery of Ensemble Equation

Term Merge: Once all regimes to define II;s are discovered, an ensemble equa-
tion among II;s is searched. Because the ensemble equation does not follow the
scale-type constraints, it can take any arbitrary formula. Accordingly, we intro-
duce an assumption that the ensemble equation consists of only the arithmetic
operators and elementary functions among II;s to limit the search space of the
formula. The most of the law equations follows this assumption, and it is widely
used in the other equation discovery approaches (Falkenhainer & Michalski, 1986).

In our approach, a set CE of candidate binary relations such as addition,
multiplication, linear, exponential and logarithmic relations is given. Then by
the technique of the bi-variate fitting, each relation in C'E is applied to the data
of II;s calculated by the regime equations. For example, the following bi-variate
product form and linear form are applied.

II}7II; = b;; (product form) and, a;;II; + IT; = b;j, (linear form).

First, the former product form is adopted to the least square fitting to every pair
of II; and II;(i,j = 1,...,n —r — s). Then, the statistical F-tests mentioned
earlier are applied.

This process is repeated over the k£ = 10 different data sets obtained in the
random experiments. The bi-variate equations passed all these tests are stored,
and the invariance of the exponent a;; of each bi-variate relation against the
value changes of any other quantities are checked by examining the & = 10
values of a;; obtained in the experiments through x2-test. If a;; is invariant,
we observe a high possibility that a;; is a constant characterizing the nature of
the objective system within the scope of the experiment. The relations having
the invariant a;js are marked, and every maximal convex set M C'S of quantities
is searched where all pairs of quantities in MCS are related by the bi-variate
relations marked as having the invariant a;;. Then the quantities in every M CS
are merged into the following term.

@i - H l'jaj.
JZjEMCSi

Similar procedure is applied to the linear bi-variate form, in which case the
merged term of an MCS is as follows.

@i = Z a;T;.

JZjEMCSi
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This procedure is recursively repeated for all bi-variate relations in C'E among
II;s and ©;s until no new term becomes available. A ©; is a unique derivative
term in each relation which is dependent of the values of the other II;s outside
the relation.

Identity Constraint: If all terms are merged into one in the above term merge
process, the relation is the ensemble equation. Otherwise the following procedure
to merge the ©;s further continues by applying an extra mathematical constraint
based on the “identity” of the relations. The basic principle of the identity con-
straints comes by answering the question that “what is the relation among Oy,
O; and Oy, if O; = fo,(0) and O; = fo,(On) are known?” For example,
if a(©;)0 + ©; = b(O;) and a(0;)O + O; = b(O;) are given, the following
identity equation is obtained by solving each for ©,.

o, = — O; n b(O;) _ O; . b(6©;)

a(©) " al@) = " a®) " a(6y)

Because the third expression is linear with @; for any ©;, the second must be
so. Accordingly, the following must hold.

1/a(@;) = 10; + b1, b(0;)/a(B;) = —20; — Pa.
By substituting these to the second expression,
On + 10,0 + 510 + 20 + 32 =0

is obtained.

This principle is generalized to various relations among multiple terms. Table[2]
shows such relations for multiple linear relations and multiple product relations.
The relation is used to fit to the data and to merge ©;s further into another new
term © which is a coefficient of the relation dependent of the values of the other
O;s outside the relation. Similarly to the bi-variate fitting, the goodness of fitting
is checked by the statistical F-test. These merging operations are repeated until
a complete ensemble equation among the terms is obtained where all coefficients
are constant in a relation.

Table 2. Identity constraints

bi-variate re- general relation

lation

ar+y=b T 4 crr@)upeavper @ laca, 7 =0

Ty =10 -
vy= Il (a;e2P@)u(pza;vper) P@illa ca, los2)) =0

L is a set of pair wise terms having a bi-variate linear
relation and LQ = Uperp. P is a set of pair wise terms
having a bi-variate product relation and PQ = Upepp.
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6 Application to Law Equation Discovery

6.1 Discovery of Law-Based Models

The aforementioned principles have been implemented to “Smart Discovery Sys-
tem (SDS)” (Washio & Motoda, 1997). SDS receives the data and the scale-type
information of the quantities observed in model simulations, and tries to discover
a complete law equation governing the simulation without knowing the model.

First, the application of SDS to a circuit depicted in Fig. [2 is demonstrated.
This is a circuit of photometer to measure the rate of increase of photo inten-
sity within a certain time period. This is represented by the following complete
equation containing 18 quantities.

2

Rgher Rghfel rL )(Vl . Vo) . Q _ KthX —0 (5)
Rghfez, =+ hie2 Rthel + hiel rL? + Rq C Bhfe3
Here, L. and r are photo intensity and sensitivity of the Csd device which is
one of popular optical sensors. X, K and B are the position of indicator, spring
constant and the intensity of magnetic field of the current meter respectively.
hie, is the input impedance of the base of the i-th transistor. hy., is the gain
ratio of the currents at the base and the collector of the i-th transistor. The
definitions of the other quantities follow the standard symbolic representations
in the electric circuit domain.

The electric voltage levels V; and V, are interval scale and hy.;s absolute
scale. Thus, the set of interval scale quantities is I1Q = {Vi, V2}, that of ratio
scale quantities RQ = {L,r, Ry, Ra, R3, hic,, Niey, Nies, @, C, X, K, B} and that
of absolute scale quantities AQ = {hfe,, hfe,, hfe,}. In the following equation
fitting, the value of each coefficient is rounded into the nearest integer or the
nearest inverse of integer, if the value is close enough to it within the error
bound. This is due to the empirical observation that the coefficients are often
the integers or their inverses in a law equation.

Initially, the bi-variate fitting was applied to 1Q), and a binary relation IT; =
V1 — Vi was obtained. Since I@ includes only the two quantities, the search for
IIs in 1@ was stopped. In the next step, the bi-variate fitting was applied to the
quantities in RQ) and II;. Because the basic origin of the voltage level has been
cancel out between Vi and Vj, II; became a ratio scale quantity. The resultant
binary relations were as follows.

L?r =b1, L*Ry = by, 7™ 'Ry = b3, Ry 'hie, = by, Ry hie, = b5,Q7'C = b,

hies X = b, hiey K = b, hi)) B=bo, XK = big, X "B = b11, K~ 'B = by

Subsequently, the triplet tests were applied to these relations, and the follow-
ing regime equations were obtained.

I, = Vi — Vo, Iy = Ry *OL™20 T3 = hye, Ry ',
Iy = hie, R3"0, I15 = hie, XKB™'0, IIg = QC™°
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Fig. 2. A circuit of photometer

Then, the merge of these ITs and the quantities in AQ was performed by applying
the binary relations in C'E, and the following new terms were derived.

O, = Hthel = Rl’l“_l'OL_Q'Ohfel,

O = II3h e, = hie, Ry hye,,

O3 = Iihyse, = hie, Ry Ohye,,

O4 =I5 + Il = hie, XKB™'0 + QC™'°,

@5 — H1@4_1'0 — (Vl _ Vo)(hi%XKB_l'o + QC—l.O)—l.O

Thus, the quantities were merged into five terms {©1, O3, O3, O5}.

Furthermore, the identity constraint was applied to these terms since the
binary linear relations were found in the combinations of {©1,05},{O2, 605}
and {O3,Os5}. This derived the following multi-linear formula.

0160903 + 0109 + O203 +O103+61 +603+6O03+65+1=0

Because every coefficient is independent of any terms, this is considered to be
the ensemble equation. The equivalence of this result to Eq.(#) is easily checked
by substituting the intermediate terms to this ensemble equation.

SDS has been also applied to non-physics domain. For example, given a sound
frequency f and a musical sound pitch I where the former is ratio scale and the
latter interval scale, the following two candidate relations have been derived by
SDS.

I=aff+~, or I=alogf+8

Because both equations show similar accuracy, and the latter contains less pa-
rameters, SDS prefers the latter by following the criterion of parsimony which
will be discussed later. This equation has been called “Fechner’s Law’ in psy-
chophysics. Another example is the law of spaciousness of a room in psycho-
physics (Kan et al., 1972).

Sp=c Y RLYI*W?,

i=1
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where Sy, R, L; and W; are average spaciousness of a room, room capacity, light
intensity and solid angle of window at the location ¢ in the room. Though the
unit dimension of S}, is unclear, its scale-type is known to be ratio scale since it
was evaluated through the method of magnitude estimation which is a popular
method to derive a ratio scale quantity in psychophysics. L and R are ratio scale,
and W is absolute scale. SDS easily obtained the above expression.

6.2 Basic Performance of SDS

Table[3shows the performance of SDS to discover various physical law equations.
The relative CPU time of SDS normalized by the first case shows that its compu-
tational time is nearly proportional to n2. For reference, the relative CPU time
of ABACUS is indicated for the same cases except for the circuit examples of
this paper (Falkenhainer & Michalski, 1986). Though ABACUS applies various
heuristics including the information of unit dimension, its computational time is
non-polynomial, and it could not derive the law equations for the complicated
circuits within a tractable time.

The robustness of SDS against the noisy experimental environment has been
also evaluated. The upper limitation of the noise level to obtain the correct result
in the cases of more than 80% of 10 trials was investigated for each physical law,
and they are indicated in the last column of Table Bl The noise levels shown
here are the standard deviation of Gaussian noise relative to the real values of
quantities, and were added to both controlled (input) quantities and measured
(output) quantities at the same time. Thus actual noise level is higher than
these levels. The results show the significant robustness of SDS. This is due to
the bottom up approach of the bi-variate fitting where the fitting is generally
robust because of its simplicity. SDS can provide appropriate results under any
practical noise condition.

As shown in the above results, SDS can discover quite complex law-based
models containing more than 10 quantities under practical conditions. As the
modeling of the objective behaviors represented by many quantities is a difficult

Table 3. Performance of SDS and ABACUS in reconstructing physical laws

Example n TC(S) TC(A) NL(S)
Ideal Gas 4 1.00 1.00 +40%
Momentum 8 6.14 22.7 +35%
Coulomb 5 1.63 24.7 +35%
Stoke’s 5 1.59 16.3 +35%
Kinetic Energy 8 6.19 285. +30%
Circuit*1 17 21.6 - +20%
Circuit*2 18 21.9 - +20%

n: Number of Quantities, TC(S): Total CPU time of SDS, TC(A): Total CPU
Time of ABACUS, NL(S): Limitation of Noise Level of SDS, *1: Case that
electronic voltage is represented by a ratio scale V, *2: Case that electronic
voltage is represented by two interval scale Vj and V;.
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and time consuming task for scientists and engineers, the approach presented in
this chapter provide a significant advantage.

7 Generic Criteria to Discover Communicable Law
Equations

As we have seen in the previous sections, the “Mathematical Admissibility”
plays an important role to discover the law equations as communicable knowl-
edge shared by scientists, since it is based on the assumptions and the operations
commonly used in the study of scientists. However, this is merely one of the crite-
ria for the communicability. Many other important criteria must be considered
in the process of the law equation discovery, and in fact the SDS takes these
criteria into account under the environment where the data are experimentally
obtained. In this section, the extra and important criteria are discussed. Prob-
ably, the complete axiomatization of the definitions and the conditions of law
equations without any exception may be difficult since some relations might be
named as “laws” in purely empirical manner. However, the clarification of its
criteria is considered to be highly important to give a firm basis of the science.

Some of the important conditions on the scientific proposition are given by R.
Descartes. They are clarity, distinctness, soundness and consistency in the de-
duction of the proposition (Descartes, 1637), and these conditions should be also
take into account to clarify the scientific law criteria. I. Newton also proposed
some conditions of the law equations (Newton, 1686). The first condition is the
objectiveness where the relation reflects only the causal assumptions of the na-
ture while excluding any human’s mental effects, the second the parsimony of the
causal assumptions supporting the relation, the third the generality where the
relation holds over the various behaviors in a domain and the forth the soundness
where the relation is not violated by any experimental result performed under
the environment following the causal assumptions. H.A. Simon also claimed the
importance of the parsimony of the law description (Simon, 1977). In the mod-
ern physics, the importance of the mathematical admissibility of the relation
formulae under the nature of the time and the space also became to be stressed
by some major physicists including R.P. Feynman (Feynman, 1965).

We introduce the following definitions and propositions associated with the
criteria for the law equations discovery based on the above claims.

Definition 9 (A Scientific Region). A scientific region T is represented by
the following quadruplet.

T=<SA,L,P>

where

S = {sp|sn is a rule in syntaz,h =1,...,p},

A ={a;l|a; is an axiom in semantics,i=1,...,q},
L = {¢4;|¢; is a postulate in semantics,j =1,...,1},

P = {og|ox, is an objective behavior,k =1,...,s}.
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S is the syntax of T', and for example its elements are the coordinate system,
the definitions of quantities such as velocity and energy and the definitions of
the algebraic operators in physics. The axioms in A are the set of the math-
ematical relations independent of objective behaviors, for example, the rela-
tions of distances among points in an Euclidean space. A postulate ¢;(€ L) is
a law equation where its validity is empirically believed under some conditions
which will be described later. An example is the following law of gravity in
physics.
My M,

F=G p,", (6)
where Flkg-m/s?] is the gravity force interacting between two mass points
M, [kg] and Ms[kg] when their interval distance is R[m]. G[m3/(kg-s?)] is the
gravity constant. A and L give the semantics of 7.

In addition, the definition of T" involves a set of objective behaviors P which
is analyzed in the scientific domain, since the scientific domain is established for
the purpose to study some limited part of the universe. In other words, S, A
and L must be valid within the analysis of P, and hence each ¢; is requested
to satisfy the conditions of the law equations for P but not requested outside
of PD

Moreover, an ¢; is used in the analysis of a part of P but not necessarily used
for all of P. For example, the law of gravity is not necessarily used in the analysis
of a spring behavior.

Definition 10 (Objective Behaviors of a Relation). Given a mathematical
relation e, if all quantities in e appear in the description of a behavior as mutually
relevant quantities, the behavior is called an “objective behavior of e”. A subset of
P, in which the behaviors are the objective of e, is called “the set of the objective
behaviors of e” P.(C P).

For example, the gravity interaction between mass points characterized by the
quantities of F, M7, My and R is an objective behavior of the aforementioned
law of gravity.

Definition 11 (Satisfaction and Consistency of a Relation). Given a
mathematical relation e and its objective behavior, if the behavior is explicitly
constrained by e, e is said to be “satisfactory” in the behavior. On the other
hand, if the behavior does not explicitly violate e, e is said to be “consistent”
with the behavior.

When we consider the kinematic momentum conservation in the collision of two
mass points, if the mass points are very heavy, this behavior is analyzed under
the requirement that the law of gravity should be satisfactory. Otherwise, the
law of gravity is ignored. But, it should be consistent in both cases.

Based on these definitions and the aforementioned claims of some major
scientists, the criteria of a relation e to be a law equation are described as
follows
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(1) Objectiveness: All quantities appearing in e are observable directly
and/or indirectly in the behaviors in P,.

(2) Generality: The satisfaction of e is widely identified in the test on
the behaviors included in P..

(3) Reproducibility: For every behavior in P, the identical result on the
satisfaction and the consistency is identified in repeated
tests.

(4) Soundness: The consistency of e is identified in the test on every
behavior in P,.

(5) Parsimony: e includes the least number of quantities to characterize
the behaviors in P,.

(6) Mathematical: e follows the syntax S and the axioms of the semantics
Admissibility A.

Here, the “test” is an experiment or an observation, and the “identification” is to
confirm a fact in the test while considering the uncertainty and/or the accuracy
of the test. Though the objectiveness and the generality include the criteria of
(3), (4) and (5) in wider sense, each criterion is more specifically defined in this
literature to reduce their ambiguity.

Some widely known scientific relations are not identified as law equations
among scientists. For example, given the enforced turbulence flow in a circu-
lar pipe, the heat transfer behavior from the flow liquid to the pipe wall is
represented by the following Dittus-Boelter equation which is called as an “ex-
perimental equation” but not a “law equation” in thermo-hydraulics domain.

Nu = 0.023Re’ 8 Pr04, (7)

where Nu = hd/\, Re = pud/n, and Pr = nc,/\. h[W/(m?-°K)] is the coeffi-
cient of the heat transfer rate between the liquid and the wall, d[m] the diameter
of the circular pipe, A\[W/(m-°K)], plkg/m?], ulm/s], n[Pa-s], c,[J/(kg-°K)] the
heat conductance, density, velocity, viscosity and specific heat of the liquid under
a constant pressure respectively (Kouzou, 1986).

This relation stands objectively independent of our interpretation. The set of
the objective behaviors of the thermo-hydraulics P includes all behaviors over
all value ranges of Nu, Re and Pr. Thus, according to the definition [0, P. of
the Dittus-Boelter equation is the set of all behaviors represented in some value
ranges of Nu, Re and Pr in P. This equation meets the criterion of the objec-
tiveness because Nu, Re and Pr are observable through some experiments. It is
general over various enforced turbulence flows in circular pipes and reproducible
for the repetition of the tests. It also has a parsimonious shape, and satisfies the
unit dimensional constraint in terms of the mathematical admissibility. However,
this equation is not sound in P., because it stands for only the value ranges of
10* < Re < 10° and 1 < Pr < 10, and is explicitly violated outside of these
ranges. In this regard, this equation is not a law equation.
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On the other hand, P of the classical mechanics includes the behaviors over
all value ranges of mass, distance and force, and thus P, of the law of gravity
is the set of all behaviors represented in some value ranges of these quantities.
This equation also meets the criteria of objectiveness, generality, reproducibility,
parsimony and mathematical admissibility in P.. Furthermore, as any behaviors
in P, do not violate this relation, it is sound.

Strictly speaking, the verifications of the generality and the soundness are
very hard since they require the experimental knowledge on various behaviors.
However, these can be checked if we relax the requirements to limit the verifi-
cation within a given set of the objective behaviors. Under this premise, SDS
seeks an equation having the generality to explain all behaviors shown by the
combinations of the values of some quantities in the experiments on the objec-
tive behaviors. It also seeks the equation having the soundness not to contradict
with all behaviors observed in the experiments. Eventually, the generality is
subsumed by the soundness by limiting the behaviors for the verification. The
objectiveness is ensured by seeking the relation among directly and indirectly
observed quantities. The reproducibility is also ensured by checking if identical
bi-variate relations are obtained multiple times in the repeated statistical tests.
The parsimony is automatically induced in the algorithm to compose the equa-
tion in bottom up manner. The mathematical admissibility is well addressed as
mentioned earlier.

8 Summary

In this chapter, the criteria on the relation among quantities observed in objec-
tive behaviors to be a the law equation as the communicable knowledge among
domain experts were discussed through the demonstration of a law discovery
system SDS. Especially, the criterion of the mathematical admissibility has been
analyzed in detail on the axiomatic basis. The definitions of scale-types of quan-
tities and the admissibility conditions on their relations based on the character-
istics of the scale-types have been introduced, and the extension of the major
theorems in the unit dimensional analysis was shown. Through these analyses,
the communicability criteria of the law equation have been clarified.

Moreover, the superior performance of SDS was demonstrated through some
simulation experiments. In the evaluation, the validity of the presented prin-
ciples has been confirmed, and its power to systematically discover candidate
law equations over various domains along the communicability criteria has been
shown.

In the recent study, the function and ability of SDS have been further ex-
tended. It became to discover law-based models consisting of simultaneous equa-
tions (Washio & Motoda, 1998). Moreover, the most recent version of SDS
can discover the law-based models from the data which are passively observed
not in the artificial experiments but the natural environment (Washio et al.,
1999). These developments extend the practical domains where communicable
law equations are discovered for scientists.
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Abstract. Research on the computational discovery of numeric equa-
tions has focused on constructing laws from scratch, whereas work on
theory revision has emphasized qualitative knowledge. In this chapter,
we describe an approach to improving scientific models that are cast as
sets of equations. We review one such model for aspects of the Earth
ecosystem, then recount its application to revising parameter values, in-
trinsic properties, and functional forms, in each case achieving reduction
in error on Earth science data while retaining the communicability of
the original model. After this, we consider earlier work on computational
scientific discovery and theory revision, then close with suggestions for
future research on this topic.

1 Research Goals and Motivation

Research on computational approaches to scientific knowledge discovery has a
long history in artificial intelligence, dating back over two decades (e.g., Langley,
1979; Lenat, 1977; Lindsay et al., 1980). This body of work has led steadily to
more powerful methods and, in recent years, to new discoveries deemed worth
publication in the scientific literature, as reviewed by Langley (1998). However,
despite this progress, mainstream work on the topic retains some important
limitations.

One drawback is that few approaches to the intelligent analysis of scientific
data can use available knowledge about the domain to constrain search for laws
or explanations. Moreover, although early work on computational discovery cast
discovered knowledge in notations familiar to scientists, more recent efforts have
not. Rather, influenced by the success of machine learning and data mining, many
researchers have adopted formalisms developed by these fields, such as decision
trees and Bayesian networks. A return to methods that operate on established
scientific notations seems necessary for scientists to understand their results.

Like earlier research on computational scientific discovery, our general ap-
proach involves defining a space of possible models stated in an established
scientific formalism, specifically sets of numeric equations, and developing tech-
niques to search that space. However, it differs from previous work in this area by
starting from an existing scientific model and using heuristic search to revise the
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model in ways that improve its fit to observations. Although there exists some
research on theory refinement (e.g., Ourston & Mooney 1990; Towell, 1991),
it has emphasized qualitative knowledge rather than quantitative models that
relate continuous variables, which play a central role in many sciences.

In the pages that follow, we describe an approach to revising quantitative
models of complex systems. We believe that our approach is general and is
appropriate for many scientific domains, but we have focused our efforts on one
area — certain aspects of the Earth ecosystem — for which we have a viable model,
existing data, and domain expertise. We briefly review the domain and model
before moving on to describe our approach to knowledge discovery and model
revision. After this, we present some initial results that suggest our approach can
improve substantially the model’s fit to available data. We close with a discussion
of related discovery work and directions for future research.

2 A Quantitative Model of the Earth Ecosystem

Data from the latest generation of satellites, combined with readings from ground
sources, hold great promise for testing and improving existing scientific models of
the Earth’s biosphere. One such model, CASA, developed by Potter and Klooster
(1997, 1998) at NASA Ames Research Center, accounts for the global produc-
tion and absorption of biogenic trace gases in the Earth atmosphere, as well as
predicting changes in the geographic patterns of major vegetation types (e.g.,
grasslands, forest, tundra, and desert) on the land.

CASA predicts, with reasonable accuracy, annual global fluxes in trace gas
production as a function of surface temperature, moisture levels, and soil prop-
erties, together with global satellite observations of the land surface. The model
incorporates difference equations that represent the terrestrial carbon cycle, as
well as processes that mineralize nitrogen and control vegetation type. These
equations describe relations among quantitative variables and lead to changes in
the modeled outputs over time. Some processes are contingent on the values of
discrete variables, such as soil type and vegetation, which take on different val-
ues at different locations. CASA operates on gridded input at different levels of
resolution, but typical usage involves grid cells that are eight kilometers square,
which matches the resolution for satellite observations of the land surface.

To run the CASA model, the difference equations are repeatedly applied to
each grid cell independently to produce new variable values on a daily or monthly
basis, leading to predictions about how each variable changes, at each location,
over time. Although CASA has been quite successful at modeling Earth’s ecosys-
tem, there remain ways in which its predictions differ from observations, suggest-
ing that we invoke computational discovery methods to improve its ability to fit
the data. The result would be a revised model, cast in the same notation as the
original one, that incorporates changes which are interesting to Earth scientists
and which improve our understanding of the environment.

Because the overall CASA model is quite complex, involving many variables
and equations, we decided to focus on one portion that lies on the model’s
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Table 1. Variables used in the NPPc portion of the CASA ecosystem model

NPPec is the net plant production of carbon at a site during the year.

E is the photosynthetic efficiency at a site after factoring various sources of stress.

T1 is a temperature stress factor (0 < T'1 < 1) for cold weather.

T2 is a temperature stress factor (0 < 72 < 1), nearly Gaussian in form but falling
off more quickly at higher temperatures.

W is a water stress factor (0.5 < W < 1) for dry regions.

Topt is the average temperature for the month at which MON-FAS-NDVI takes on
its maximum value at a site.

Tempc is the average temperature at a site for a given month.

EET is the estimated evapotranspiration (water loss due to evaporation and transpi-
ration) at a site.

PET is the potential evapotranspiration (water loss due to evaporation and transpi-
ration given an unlimited water supply) at a site.

PET-TW-M is a component of potential evapotranspiration that takes into account
the latitude, time of year, and days in the month.

A is a polynomial function of the annual heat index at a site.
AHI is the annual heat index for a given site.

MON-FAS-NDVT is the relative vegetation greenness for a given month as measured
from space.

IPAR is the energy from the sun that is intercepted by vegetation after factoring in
time of year and days in the month.

FPAR-FAS is the fraction of energy intercepted from the sun that is absorbed pho-
tosynthetically after factoring in vegetation type.

MONTHLY-SOLAR is the average solar irradiance for a given month at a site.
SOL-CONVER is 0.0864 times the number of days in each month.
UMD-VEG is the type of ground cover (vegetation) at a site.

‘fringes’ and that does not involve any difference equations. Table 1 describes the
variables that occur in this submodel, in which the dependent variable, NPPc,
represents the net production of carbon. As Table 2 indicates, the model predicts
this quantity as the product of two unobservable variables, the photosynthetic
efficiency, E, at a site and the solar energy intercepted, IPAR, at that site.
Photosynthetic efficiency is in turn calculated as the product of the maximum
efficiency (0.56) and three stress factors that reduce this efficiency. One stress
term, T2, takes into account the difference between the optimum temperature,
Topt, and actual temperature, Tempc, for a site. A second factor, T1, involves
the nearness of Topt to a global optimum for all sites, reflecting the intuition
that plants which are better adapted to harsh temperatures are less efficient
overall. The third term, W, represents stress that results from lack of moisture as
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Table 2. Equations used in the NPPc portion of the CASA ecosystem model

NPPc = > .. max (E - IPAR, 0)
E=056-T1 -T2 -W
T1 = 0.8 + 0.02 - Topt — 0.0005 - Topt?>
T2 — 1.18/[(1 + eO.Z»(Topt—Tempc—lO)) (14 60.3~(Tempc—T0pt—10))]
W =0.5 + 0.5 - EET/PET
PET = 1.6 - (10 - Tempc / AHI)* - PET-TW-M if Tempc > 0
PET = 0 if Tempc < 0
A = 0.000000675 - AHI® — 0.0000771- AHI? + 0.01792 - AHI + 0.49239
IPAR = 0.5 - FPAR-FAS - MONTHLY-SOLAR - SOL-CONVER
FPAR-FAS = min((SR-FAS — 1.08)/SRDIFF(UMD-VEG), 0.95)
SR-FAS = — (MON-FAS-NDVI + 1000) / (MON-FAS-NDVI — 1000)

reflected by EET, the estimated water loss due to evaporation and transpiration,
and PET, the water loss due to these processes given an unlimited water supply.
In turn, PET is defined in terms of the annual heat index, AHI, for a site, and
PET-TW-M, another component of potential evapotranspiration.

The energy intercepted from the sun, IPAR, is computed as the product of
FPAR-FAS, the fraction of energy absorbed photosynthetically for a given vege-
tation type, MONTHLY-SOLAR, the average radiation for a given month, and
SOL-CONVER, the number of days in that month. FPAR-FAS is a function of
MON-FAS-NDVI, which indicates relative greenness at a site as observed from
space, and SRDIFF, an intrinsic property that takes on different numeric values
for different vegetation types as specified by the discrete variable UMD-VEG.

Of the variables we have mentioned, NPPc, Tempc, MONTHLY-SOLAR,
SOL-CONVER, MON-FAS-NDVI, and UMD-VEG are observable. Three ad-
ditional terms — EET, PET-TW-M, and AHI — are defined elsewhere in the
model, but we assume their definitions are correct and thus we can treat them
as observables. The remaining variables are unobservable and must be computed
from the others using their definitions. This portion of the model also contains
some numeric parameters, as shown in the equations in Table 2.

3 An Approach to Quantitative Model Revision

As noted earlier, our approach to scientific discovery involves refining models
like CASA that involve relations among quantitative variables. We adopt the
traditional view of discovery as heuristic search through a space of models, with
the search process directed by candidates’ ability to fit the data. However, we
assume this process starts not from scratch, but rather with an existing model,
and the search operators involve making changes to this model, rather than
constructing entirely new structures.
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Our long-term goal is not to automate the revision process, but instead to
provide an interactive tool that scientists can direct and use to aid their model
development. As a result, the approach we describe in this section addresses
the task of making local changes to a model rather than carrying out global
optimization, as assumed by Chown and Dietterich (2000). Thus, our software
takes as input not only observations about measurable variables and an existing
model stated as equations, but also information about which portion of the
model should be revised. The output is a revised model that fits the observed
data better than the initial one.

Below we review two discovery algorithms that we utilize to improve the
specified part of a model, then describe three distinct types of revision they
support. We consider these in order of increasing complexity, starting with simple
changes to parameter values, moving on to revisions in the values of intrinsic
properties, and ending with changes in an equation’s functional form.

3.1 The RF5 and RF6 Discovery Algorithms

Our approach relies on RF5 and RF6, two algorithms for discovering numeric
equations described by Saito and Nakano (1997, 2000). Given data for some con-
tinuous variable y that is dependent on continuous predictive variables x4, ..., zk,
the RF5 system searches for multivariate polynomial equations of the form

J
j=1
J
= wp +ij exp (wjl 111(331) + -+ wik ID(QSK)) (1)
j=1

For example, the equation W = 0.5 + 0.5 - EET/PET in this scheme becomes
W= 05 + 05 -EET*? . PET !, When we want to obtain an annual
quantity such as Wapnuer by summing up monthly ones like Wy, ... Wys, the
equation becomes Wapnnual = Z;il W; =6+ Z;il 0.5 - EET;FI'0 . PET;I'O.
Such functional relations subsume many of the numeric laws found by previous
computational discovery systems like BACON (Langley, 1979) and FAHRENHEIT
(Zytkow, Zhu, & Hussam, 1990).

Given a functional form of this sort and observations for predictive variables
x and dependent variable y, RF5 produces a polynomial equation with new
parameter values by:

1. Transforming the functional form into a three-layer neural network;
2. Carrying out search through the weight space using the BPQ algorithm;
3. Transforming the revised network into a polynomial equation.

RF5’s first step involves transforming a candidate functional form with J summed
terms into a three-layer neural network based on the rightmost form of expres-
sion (1), in which the J hidden nodes in this network correspond to product units
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(Durbin & Rumelhart, 1989). The system then carries out search through the
weight space using the BPQ algorithm, a second-order learning technique that
calculates both the descent direction and the step size automatically.

This process halts when it finds a set of weights that minimize the squared
error on the dependent variable y. RF5 runs the BPQ method on networks with
different numbers of hidden units, then selects the one that gives the best score
on an MDL metric. Finally, the program transforms the resulting network into
a polynomial equation, with weights on hidden units becoming exponents and
other weights becoming coefficients.

The RF6 algorithm extends RF5 by adding the ability to find conditions
on a numeric equation that involve nominal variables, which it encodes using
one input variable for each nominal value. When Boolean predictive variables

q1,---,qr are included, the RF6 system first searches for equations of the form
J

y=wo+ Y wif (vpay+- o+ vjran) i’ T, (2)
j=1

where f(-) denotes a transfer function. For example, consider a nominal variable
with two possible values, say “Water” and “Air”, and its associated intrinsic
property P with positive values, say P1 and P2. By expressing “Water” as
q1 =1 and ¢ = 0, and “Air” as ¢1 = 0 and g2 = 1, we can compute P1 and
P2 by an expression exp(v1q1 + v2g2) as a function of the Boolean values ¢; and
q2, if the parameter values are set to v; = log P1 and vs = log P2. Note that in
this example, the transfer function f(-) was exponential in order to guarantee
that intrinsic values are always positive. More generally, since the set of the
possible output values for f(-) is discrete due to its Boolean inputs, the system
can discover conditional laws of the form

J
if cond’(qy,...,qr) = true, y:wo—ka;xlf”---x}?K, i=1,...,1, (3)
j=1

where the polynomial coefficients are defined as w} = w; f(-) and where I denotes
the number of rules.

In order to transform expression (2) to (3), the system first generates one such
condition for each training case as a vector (f(vi11g1+---+v1Lqr), .-, f(vyig1+
-+ wvyrqr)) and then utilizes k-means clustering to generate a smaller set of
more general conditions, with the number of clusters determined through cross
validation. Finally, RF6 invokes decision-tree induction to construct a classifier
that discriminates among these clusters, which it transforms into rules that form
the nominal conditions on the polynomial equation that RF5 has generated.

As Table 2 reveals, the NPPc portion of the CASA ecosystem model includes
some functions like max and min, whose derivatives are undefined at some points
in their value range, and therefore we cannot apply the BPQ algorithm directly.
One approach to overcoming this problem is to approximate such functions by
using a smooth nonlinear transformation like soft-max. However, when both the
max and min functions were eliminated, the root mean squared error (RMSE)
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for the original model on the available data degraded only slightly, from 465.213
to 467.910. Thus, we utilized this simplified NPP model in our experiments on
model revision. Here we should emphasize that, given an existing model like in
Table 2, the current system requires some handcrafting to encode the equations
as a neural network.

3.2 Three Types of Model Refinement

There exist three natural types of refinement within the class of models, like
CASA, that are stated as sets of equations that refer to unobservable variables.
These include revising the parameter values in equations, altering the values for
an intrinsic property, and changing the functional form of an existing equation.

Improving the parameters for an equation is the most straightforward pro-
cess. The NPPc portion of CASA contains some parameterized equations that
our Earth science team members believe are reliable, like that for computing the
variable A from AHI, the annual heat index. However, it also includes equations
with parameters about which there is less certainty, like the expression that
predicts the temperature stress factor T2 from Tempc and Topt. Our approach
to revising such parameters relies on creating a specialized neural network that
encodes the equation’s functional form using ideas from RF5, but also including
a term for the unchanged portion of the model. We then run the BPQ algo-
rithm to find revised parameter values, initializing weights based on those in the
model.

We can utilize a similar scheme to improve the values for an intrinsic property
like SRDIFF that the model associates with the discrete values for some nominal
variable like UMD-VEG (vegetation type). We encode each nominal term as a
set of dummy variables, one for each discrete value, making the dummy variable
equal to one if the discrete value occurs and zero otherwise. We introduce one
hidden unit for the intrinsic property, with links from each of the dummy vari-
ables and with weights that correspond to the intrinsic values associated with
each discrete value. To revise these weights, we create a neural network that in-
corporates the intrinsic values but also includes a term for the unchanging parts
of the model. We can then run BPQ to revise the weights that correspond to
intrinsic values, again initializing them to those in the initial model.

Altering the form of an existing equation requires somewhat more effort, but
maps more directly onto previous work in equation discovery. In this case, the
details depend on the specific functional form that we provide, but because we
have available the RF5 and RF6 algorithms, the approach supports any of the
forms that they can discover or specializations of them. Again, having identified
a particular equation that we want to improve, we create a neural network
that encodes the desired form, then invoke the BPQ algorithm to determine
its parametric values, in this case initializing the weights randomly.

In the next section, we provide examples of neural networks that result from
different types of revisions. This approach to model refinement can modify more
than one equation or intrinsic property at a time. However, we can reasonably
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assume that scientists may want to change a small portion, and this is con-
sistent with the interactive process described earlier. We envision the scientist
identifying a portion of the model that he thinks could be better, running one
of the three revision methods to improve its fit to the data, and repeating this
process until he is satisfied.

4 Initial Results on Ecosystem Data

In order to evaluate our approach to scientific model revision, we obtained data
relevant to the NPPc model from the Earth science members of our team. These
data consisted of observations from 303 distinct sites with known vegetation type
and for which measurements of Tempc, MON-FAS-NDVI, MONTHLY-SOLAR,
SOL-CONVER, and UMD-VEG were available for each month during the year.
In addition, other portions of CASA were able to compute values for the variables
AHI, EET, and PET-TW-M. The resulting 303 training cases seemed sufficient
for initial tests of our revision methods, so we used them to drive three different
changes to the handcrafted model of carbon production.

4.1 Results on Parameter Revision

Our Earth science team members identified the equation for T2, one of the
temperature stress variables, as a likely candidate for revision. As noted earlier,
the handcrafted expression for this term was

T9 — 18/[(1 + eO.Q(Topthempcflo))(l + eO.S(Tempchoptflo))]’

which produces a Gaussian-like curve that is slightly asymmetrical. This re-
flects the intuition that photosynthetic efficiency will decrease when temperature
(Tempc) is either below or above the optimal (Topt).

To improve upon this equation, we defined x = Topt — Tempc as an interme-
diate variable and recast the expression for T2 as the product of two sigmoidal
functions of the form o(a) = 1/(1+exp(—a)) and a parameter. We transformed
these into a neural network and used BPQ to minimize the error function

Fi =2 gise NPPc—>" . wo-0(vig +v11 - ) - 0(v2g — V21 - ) Rest)2 ,

over the parameters {wo, v10, V11, V20, V21 }, Where Rest = 0.56 - T1- W - IPAR.
The resulting equation generated in this manner was
T9 — 180/[(1 + e0.0S(Topthempcflo.S)(l + 670.03(Tempchopt790.33)]
which has reasonably similar values to the original ones for some parameters but
quite different values for others.
The root mean squared error (RMSE) for the original model on the available
data was 467.910. In contrast, the error for the revised model was 457.757 on
the training data and 461.466 using leave-one-out cross validation. Thus, RF6’s
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Fig. 1. Behavior of handcrafted and revised equations for the stress variable T2

modification of parameters in the T2 equation produced slightly more than one
percent reduction in overall model error, which is somewhat disappointing.

However, inspection of the resulting curves reveals a more interesting picture.
Figure 1 plots the values of the temperature stress factor T2, using the revised
equations, as a function of the difference Topt — Tempc, where the histogram
denotes the frequency of samples for various values of this difference. Although
the new curve remains Gaussian-like, its values within the effective range (from
—30 to 30 Celsius) decrease monotonically. This seems counterintuitive but in-
teresting from an Earth science perspective, as it suggests this stress factor has
little influence on NPPc. Moreover, the original equation for T2 was not well
grounded in principles of plant physiology, making empirical improvements of
this sort beneficial to the modeling enterprise.

4.2 Results on Intrinsic Value Revision

Another portion of the NPPc model that held potential for revision concerns
the intrinsic property SRDIFF associated with the vegetation type UMD-VEG.
For each site, the latter variable takes on one of 11 nominal values, such as
grasslands, forest, tundra, and desert, each with an associated numeric value
for SRDIFF that plays a role in the FPAR-FAS equation. This gives 11 pa-
rameters to revise, which seems manageable given the number of observations
available.
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Table 3. Original and revised values for the SRDIFF intrinsic property, along with
the frequency for each vegetation type

vegetation type A B C D E F G H 1 J K

original 3.06 435 4.35 4.05 5.09 3.06 4.05 4.05 4.05 5.09 4.05
revised 257 477 220 399 3.70 346 234 0.34 2.72 3.46 1.60
clustered 242 375 242 375 3.75 3.75 242 0.34 242 3.75 242
frequency 33 89 03 36 211 19.1 152 33 19.1 230 3.60

As outlined earlier, to revise these intrinsic values, we introduced one dummy
variable, UMD-VEGy, for each vegetation type such that UMD-VEG; = 1 if
UMD-VEG = k and 0 otherwise. We then defined SRDIFF(UMD-VEG) as
exp(—Y_.vr - UMD-VEGy,) and, since SRDIFF’s value is independent of the
month, we used BPQ to minimize, over the weights {vy}, the error function

Fo =3 uire (NPPc — exp(3, vk - UMD-VEGy) - Rest)?,

where Rest =Y, . E-0.5-(SR-FAS—1.08)- MONTHLY-SOLAR-SOL-CONVER.

Table 3 shows the initial values for this intrinsic property, as set by the
CASA developers, along with the revised values produced by the above ap-
proach when we fixed other parts of the NPPc model. The most striking result
is that the revised intrinsic values are nearly always lower than the initial val-
ues. The RMSE for the original model was 467.910, whereas the error using the
revised values was 432.410 on the training set and 448.376 using cross valida-
tion. The latter constitutes an error reduction of over four percent, which seems
substantial.

However, since the original 11 intrinsic values were grouped into only four
distinct values, we applied RF6’s clustering procedure over the trained neural
network to group the revised values in the same manner. Table 4 shows the effect
on error rate as one varies the number of clusters from one to five and that of the
basic neural network, which effectively has 11 clusters. As expected, the training
RMSE decreased monotonically, but the cross-validation RMSE was minimized
for a small number of clusters, specifically three. The estimated error for this
revised model is about one percent better than for the one with 11 distinct
values.

Again, the clustered values, which constrained the intrinsic values for certain
groups of vegetation types to be equal, are nearly always lower than the initial
ones, a result that is certainly interesting from an Earth science viewpoint. We
suspect that measurements of NPPc and related variables from a wider range
of sites would produce intrinsic values closer to those in the original model.
However, such a test must await additional observations and, for now, empirical
fit to the available data should outweigh the theoretical basis for the initial
settings.
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Table 4. Error rates for different numbers of distinct SRDIFF values

No. clusters Training RMSE  Cross-validation RMSE

1 501.56 503.34
2 448.31 453.50
3 436.16 442.95
4 434.72 445.60
5 433.79 446.49
11 432.41 448.38

4.3 Results on Revising Equation Structure

We also wanted to demonstrate our approach’s ability to improve the functional
form of the NPPc model. For this purpose, we selected the equation for photo-
synthetic efficiency,

E=056-T1-T2-W,

which states that this term is a product of the water stress term, W, and the two
temperature stress terms, T1 and T2. Because each stress factor takes on values
less than one, multiplication has the effect of reducing photosynthetic efficiency
E below the maximum 0.56 possible (Potter & Klooster, 1998).

Since E is calculated as a simple product of the three variables, one nat-
ural extension was to consider an equation that included exponents on these
terms. To this end, we borrowed techniques from the RF5 system to create a
neural network for such an expression, then used BPQ to minimize the error
function

F3 =2 site (NPPc—>" . ug-T1% -T2 . W"s . IPAR)2 ,

over the parameters {ug, u1, u2,u3}, which assumes the equations that predict
IPAR remain unchanged. We initialized ug to 0.56 and the other parameters
to 1.0, as in the original model, and constrained the latter to be positive. The
revised equation found in this manner,

E =0.521- 7199 72%% . 000,

has a small exponent for T2 and zero exponents for T1 and W, suggesting the
former influences photosynthetic efficiency in minor ways and the latter not at
all. On the available data, the root mean squared error for the original model
was 467.910. In contrast, the revised model has an RMSE of 443.307 on the
training set and an RMSE of 446.270 using cross validation. Thus, the revised
equation produces a substantially better fit to the observations than does the
original model, in this case reducing error by almost five percent.
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Fig. 2. Sites with large prediction errors as a function of latitude and longitude

With regards to Earth science, these results are plausible and the most inter-
esting of all, as they suggest that the T1 and W stress terms are unnecessary
for predicting NPPc. One explanation is that the influence of these factors is al-
ready being captured by the NDVI measure available from space, for which the
signal-to-noise ratio has been steadily improving since CASA was first developed.

To further understand these results, we identified sites with large errors in
predictive accuracy and plotted them by longitude and latitude, as shown in
Figure 2. In this graph, upward-pointing triangles indicate situations in which
the difference between predicted and observed NPP value was more than 400,
whereas downward-pointing triangles depict sites in which this difference was
less than —400. This error plot is consistent with the CASA team’s previous
analyses, which suggests the model overestimates the observed NPP at higher
(temperate) latitudes and underestimates at the lower (tropical) latitudes.

4.4 Combining Multiple Revisions

In the previous sections, we were careful to let RF6 revise the NPP submodel one
component at a time. However, a natural extension is to combine all three types
of model refinement in a single revision step. For instance, we could let RF6
revise, in a single run, the parameter values in the T2 expression, the intrinsic
values associated with vegetation type, and the functional form of photosynthetic
efficiency E. We tried this approach using the same experimental setting as in our
former studies, except for fixing the exponent of T2 at 1 because its parameters
were being revised.
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Fig. 3. Behavior of revised equation for the stress variable T2 by changing the other
portions

This strategy produced some interesting results. For example, the system
transformed the equation for the temperature stress factor T2 into

T2 — 12044/[(1 + 678.06(Topt7Tempc+14.7))(1 + 6712.’Y(Tem;uchopt«k14.4))}7
which has quite different parameter values from those obtained when RF6 revised
it in isolation. In this case, the two sigmoidal functions have nearly the same
intercepts but opposite signs for their slopes. Figure 3 plots the predicted values
of T2 as a function of the difference Topt — Tempc. Recall that the histogram
plot denotes the frequency of samples for distinct values of the difference Topt —
Tempc. This curve is relatively similar to the original, hand-crafted one, having
higher values in some regions but a sharper drop off on each side.

Table 5 shows the revised values for the intrinsic property SRDIFF. The
new values are uniformly larger than those shown in Table 3 from the isolated
revision process. However, the correlation between the two sets of revised values
was 0.867, which suggests that their apparent difference results from a shift in
measurement scale. The relation of the new parameters to the originals is more
complex, with half taking on higher values and the rest lower ones.

The one model change that was almost unaffected by the combined revision
process involved the photosynthetic efficiency; this became

E =0.56 - 717900 9. 1/ +0-00,
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Table 5. Original and revised values for the SRDIFF intrinsic property, along with
the frequency for each vegetation type

vegetation type A B C D E F G H 1 J K

original 3.06 435 4.35 4.05 5.09 3.06 4.05 4.05 4.05 5.09 4.05
revised 346 7.67 520 7.58 543 4.81 397 0.79 3.98 4.64 3.10
clustered 3.84 764 510 7.64 510 510 3.84 0.79 3.84 510 3.84
frequency 33 89 03 36 211 191 152 33 191 23 3.6

which, except for the fixed exponent on T2, is nearly identical to the expression
produced when this was altered in isolation. This provides even stronger evidence
that the T1 and W terms provide little in the way of explanatory power to the
overall model.

The RMSE for the original model was 467.910, whereas the error using the
revised model was 412.350 on the training set and 429.369 using cross validation.
Thus, the revised model reduced the error about eight percent over the initial
version, which is nearly equal to the summed reduction from the three previous
runs. We also examined the effect of applying RF6’s clustering procedure to the
SRDIFF values, which used cross-validated error to produce the four clusters
shown in Table 6. As before, the estimated error for this revised model is about
one percent better than for the model with 11 distinct values. In terms of error
reduction, invoking the three types of model refinement appears to give similar
results to running them individually.

5 Related Research on Computational Discovery

Our research on computational scientific discovery draws on two previous lines of
work. One approach, which has an extended history within artificial intelligence,
addresses the discovery of explicit quantitative laws. Early systems for numeric
law discovery like BAcON (Langley, 1979; Langley et al., 1987) carried out a
heuristic search through a space of new terms and simple equations. Numerous
successors like FAHRENHEIT (Zytkow et al., 1990) and RF5 (Saito & Nakano,
1997) incorporate more sophisticated and more extensive search through a larger
space of numeric equations.

The most relevant equation discovery systems take into account domain
knowledge to constrain the search for numeric laws. For example, Kokar’s (1986)
COPER utilized knowledge about the dimensions of variables to focus attention
and, more recently, Washio and Motoda’s (1998) SDS extends this idea to sup-
port different types of variables and sets of simultaneous equations. Todorovski
and Dzeroski’s (1997) LAGRAMGE takes a quite different approach, using do-
main knowledge in the form of context-free grammars to constrain its search for
differential equation models that describe temporal behavior.
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Table 6. Error rates for different numbers of distinct SRDIFF values

No. clusters Training RMSE  Cross-validation RMSE

1 448.70 451.02
2 428.35 434.84
3 417.75 430.61
4 414.34 425.62
5 413.57 427.19
11 412.35 429.37

Although research on computational discovery of numeric laws has empha-
sized communicable scientific notations, it has focused on constructing such laws
rather than revising existing ones. In contrast, another line of research has ad-
dressed the refinement of existing models to improve their fit to observations. For
example, Ourston and Mooney (1990) developed a method that used training
data to revise models stated as sets of propositional Horn clauses. Towell (1991)
reports another approach that transforms such models into multilayer neural
networks, then uses backpropagation to improve their fit to observations, much
as we have done for numeric equations. Work in this paradigm has emphasized
classification rather than regression tasks, but one can view our work as adapting
the basic approach to equation discovery, as Todorovski and Dzeroski’s (2001)
have done in more recent work on LAGRAMGE.

We should also mention related work on the automated improvement of
ecosystem models. Most Al work on Earth science domains focuses on learn-
ing classifiers that predict vegetation from satellite measures like NDVI, as con-
trasted with our concern for numeric prediction. Chown and Dietterich (2000)
describe an approach that improves an existing ecosystem model’s fit to contin-
uous data, but their method only alters parameter values and does not revise
equation structure. On another front, Schwabacher et al. (this volume) use a
rule-induction algorithm to discover piecewise linear models that predict NDVI
from climate variables, but their method takes no advantage of existing models.

6 Directions for Future Research

Although we have been encouraged by our results to date, there remain a number
of directions in which we must extend our approach before it can become a useful
tool for scientists. As noted earlier, we envision an interactive discovery aide
that lets the user focus the system’s attention on those portions of the model
it should attempt to improve. To this end, we need a graphical interface that
supports marking of parameters, intrinsic properties, and equations that can be
revised, as well as tools for displaying errors as a function of space, time, and
predictive variables.
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In addition, the current system requires some handcrafting to encode the
equations as a neural network, as well as manual creation of the error function
to be minimized for a particular set of revisions. Future versions should provide
a library that maps functional forms to neural network encodings, so the system
can transform the former into the latter automatically. They should also generate
an appropriate error function from the set of revisions that the user indicates he
desires.

Naturally, we also hope to evaluate our approach on its ability to improve
other portions of the CASA model, as additional data becomes available. An-
other test of generality would be application of the same methods to other sci-
entific domains in which there already exist formal models that can be revised.
In the longer term, we should evaluate our interactive system not only in its
ability to increase the predictive accuracy of an existing model, but in terms of
the satisfaction to scientists who use the system to that end.

Another challenge that we have encountered in our research has been the need
to translate the existing CASA model into a declarative form that our discovery
system can manipulate. In response, another long-term goal involves developing
a modeling language in which scientists can cast their initial models and carry
out simulations, but that can also serve as the declarative representation for
our discovery methods. The ability to automatically revise models places novel
constraints on such a language, but we are confident that the result will prove a
useful aid to the discovery process.

7 Concluding Remarks

In this paper, we addressed the computational task of improving an existing sci-
entific model that is composed of numeric equations. We illustrated this problem
with an example model from the Earth sciences that predicts carbon production
as a function of temperature, sunlight, and other variables. We identified three
activities that can improve a model — revising an equation’s parameters, alter-
ing the values of an intrinsic property, and changing the functional form of an
equation, then presented results for each type on an ecosystem modeling task
that reduced the model’s prediction error, sometimes substantially.

Our research on model revision builds on previous work in numeric law dis-
covery and qualitative theory refinement, but it combines these two themes in
novel ways to enable new capabilities. Clearly, we remain some distance from
our goal of an interactive discovery tool that scientists can use to improve their
models, but we have also taken some important steps along the path, and we
are encouraged by our initial results on an important scientific problem.
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Abstract. This chapter describes how we used regression rules to im-
prove upon results previously published in the Earth science literature.
In such a scientific application of machine learning, it is crucially impor-
tant for the learned models to be understandable and communicable. We
recount how we selected a learning algorithm to maximize communica-
bility, and then describe two visualization techniques that we developed
to aid in understanding the model by exploiting the spatial nature of the
data. We also report how evaluating the learned models across time let
us discover an error in the data.

1 Introduction and Motivation

Many recent applications of machine learning have focused on commercial data,
often driven by corporate desires to better predict consumer behavior. Yet sci-
entific applications of machine learning remain equally important, and they can
provide technological challenges not present in commercial domains. In particu-
lar, scientists must be able to communicate their results to others in the same
field, which leads them to agree on some common formalism for representing
knowledge in that field. This need places constraints on the representations and
learning algorithms that we can utilize in aiding scientists’ understanding of
data.

Moreover, some scientific domains have characteristics that introduce both
challenges and opportunities for researchers in machine learning. For example,
data from the Earth sciences typically involve variation over both space and
time, in addition to more standard predictive variables. The spatial character of
these data suggests the use of visualization in both understanding the discovered

S. Dzeroski and L. Todorovski (Eds.): Computational Discovery, LNAI 4660, pp. 138 2007.
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knowledge and identifying where it falls short. The observations’ temporal nature
holds opportunities for detecting developmental trends, but it also raises the
specter of calibration errors, which can occur gradually or when new instruments
are introduced.

In this chapter, we explore these general issues by presenting the lessons we
learned while applying machine learning to a specific Earth science problem: the
prediction of Normalized Difference Vegetation Index (NDVI) from predictive
variables like precipitation and temperature. This chapter describes the results
of a collaboration among two computer scientists (Schwabacher and Langley)
and three Earth scientists (Potter, Klooster, and Torregrosa). It describes how
we combined the computer scientists’ knowledge of machine learning with the
Earth scientists’” domain knowledge to improve upon a result that Potter had
previously published in the Earth science literature (Potter & Brooks, 1998).

We begin by reviewing the scientific problem, including the variables and
data, and proposing regression learning as a natural formulation. After this, we
discuss our selection of piecewise linear models to represent learned knowledge
as consistent with existing NDVI models, along with our selection of Quinlan’s
Cubist (RuleQuest, 2002) to generate them. Next we compare the results we
obtained in this manner with models from the Earth science literature, showing
that Cubist produces significantly more accurate models with little increase in
complexity.

Although this improved predictive accuracy is good news from an Earth sci-
ence perspective, we found that the first Cubist models we created were not
sufficiently understandable or communicable. In our efforts to make the discov-
ered knowledge understandable to the Earth scientists on our team, we developed
two novel approaches to visualizing this knowledge spatially, which we report in
some detail. Moreover, evaluation across different years revealed an error in the
data, which we have since corrected.

Having demonstrated the value of Cubist in Earth science by improving upon
a previously published result, we set out to use Cubist to fit models to data to
which models had not previously been fit. Doing so produced models that we
believe to be very significant.

We discuss some broader issues that these experiences raise and propose some
general approaches for dealing with them in other spatial and temporal domains.
In closing, we also review related work on scientific data analysis in this setting
and propose directions for future research.

2 DMonitoring and Analysis of Earth Ecosystem Data

The latest generation of Earth-observing satellites is producing unprecedented
amounts and types of data about the Earth’s biosphere. Combined with readings
from ground sources, these data hold promise for testing existing scientific models
of the Earth’s biosphere and for improving them. Such enhanced models would
let us make more accurate predictions about the effect of human activities on
our planet’s surface and atmosphere.
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One such satellite is the NOAA (National Oceanic and Atmospheric Admin-
istration) Advanced Very High Resolution Radiometer (AVHRR). This satellite
has two channels which measure different parts of the electromagnetic spectrum.
The first channel is in a part of the spectrum where chlorophyll absorbs most of
the incoming radiation. The second channel is in a part of the spectrum where
spongy mesophyll leaf structure reflects most of the light. The difference be-
tween the two channels is used to form the Normalized Difference Vegetation
Index (NDVI), which is correlated with various global vegetation parameters.
Earth scientists have found that NDVI is useful for various kinds of modeling,
including estimating net ecosystem carbon flux. A limitation of using NDVT in
such models is that they can only be used for the limited set of years during
which NDVI values are available from the AVHRR satellite. Climate-based pre-
diction of NDVT is therefore important for studies of past and future biosphere
states.

Potter and Brooks (1998) used multiple linear regression analysis to model
maximum annual NDVI] as a function of four climate variables and their
logarithmsﬁ

— Annual Moisture Index (AMI): a unitless measure, ranging from -1 to +1,
with negative values for relatively dry, and positive values for relatively wet.
Defined by Willmott & Feddema (1992);

— Chilling Degree Days (CDD): the sum of the number of days times mean
monthly temperature, for months when the mean temperature is less than
0° C;

— Growing Degree Days (GDD): the sum of the number of days times mean
monthly temperature, for months when the mean temperature is greater
than 0° C; and

— Total Annual Precipitation (PPT).

These climate indexes were calculated from various ground-based sources,
including the World Surface Station Climatology at the National Center for
Atmospheric Research. Potter and Brooks interpolated the data, as necessary,
to put all of the NDVI and climate data into one-degree grids. That is, they
formed a 360 x 180 grid for each variable, where each grid cell represents one
degree of latitude and one degree of longitude, so that each grid covers the entire
Earth. They used data from 1984 to calibrate their model. Potter and Brooks
decided, based on their knowledge of Earth science, to fit NDVI to these climate
variables by using a piecewise linear model with two pieces. They split the data
into two sets of points: the warmer locations (those with GDD > 3000), and
the cooler locations (those with GDD < 3000). They then used multiple linear
regression to fit a different linear model to each set, resulting in the piecewise
linear model shown in Table[Il They obtained correlation coefficients (r values)

! They obtained similar results when modeling minimum annual NDVI. We chose to
use maximum annual NDVT as a starting point for our research, and all of the results
in this chapter refer to this variable.

2 They did not use the logarithm of AMI, since AMI can be negative.
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Table 1. The piecewise linear model from Potter and Brooks (1998)

Rule 1:
if
GDD<3000
then
In(NDVI) = 0.715 1n(GDD) + 0.377 1n(PPT) - 0.448

Rule 2:
if
GDD>= 3000
then
NDVI = 189.89 AMI + 44.02 1n(PPT) + 227.99

of 0.87 on the first set and 0.85 on the second set, which formed the basis of a
publication in the Earth science literature (Potter & Brooks, 1998).

3 Problem Formulation and Learning Algorithm
Selection

When we began our collaboration, we decided that one of the first things we
would do would be to try to use machine learning to improve upon their NDVI
results. The research team had already formulated this problem as a regression
task, and in order to preserve communicability, we chose to keep this formula-
tion, rather than discretizing the data so that we could use a more conventional
machine learning algorithm. We therefore needed to select a regression learning
algorithm — that is, one in which the outputs are continuous values, rather than
discrete classes.

In selecting a learning algorithm, we were interested not only in improving
the correlation coefficient, but also in ensuring that the learned models would be
both understandable by the scientists and communicable to other scientists in the
field. Since Potter and Brooks’ previously published results involved a piecewise
linear model that used an inequality constraint on a variable to separate the
pieces, we felt it would be beneficial to select a learning algorithm that produces
models of the same form. Fortunately, Potter and Brooks’ model falls within
the class of models used by Ross Quinlan’s M5 and Cubist machine learning
systems. M5 (Quinlan, 1992) learns a decision tree, similar to a C4.5 decision
tree (Quinlan, 1993), but with a linear model at each leaf; the tree thus represents
a piecewise linear model. Cubist (RuleQuest, 2002) learns a set of rules, similar
to the rules learned by C4.5rules (Quinlan, 1993), but with a linear model on
the right-hand side of each rule; the set of rules thus also represents a piecewise
linear model. Cubist is a commercial product; we selected it over M5 because it is
a newer system than M5, which, according to Quinlan (personal communication,
2001), has much better performance than M5.
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Table 2. The effect of Cubist’s minimum rule cover parameter on the number of rules
in the model and the model’s correlation coefficient

MINIMUM RULE COVER NUMBER OF RULES r
1% 41 0.91

5% 12 0.90

10% 7 0.89

15% 4 0.88

20% 3 0.86

25% 2 0.85

100% 1 0.84

4 First Results

We ran Cubist (version 1.09) using the same data sets that Potter and Brooks
had used to build their model, but instead of making the cuts in the piecewise
linear model based on knowledge of Earth science, we let Cubist decide where to
make the cuts based on the data. The results exceeded our expectations. Cubist
produced a correlation coefficient of 0.91 (using ten-fold cross-validation), which
was a substantial improvement over the 0.86 correlation coefficient obtained in
Potter and Brooks’ earlier work. The Earth scientists on our team were pleased
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Fig.1. The number of rules in the Cubist model and the correlation coefficient for
several different values of the minimum rule cover parameter
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Table 3. The two rules produced by Cubist when the minimum rule cover parameter
is set to 25%

Rule 1:
if
PPT <= 25.457
then
NDVI = -3.22 + 7.07 PPT + 0.0521 CDD - 84 AMI + 0.4 1n(PPT) + 0.0001 GDD

Rule 2:
if
PPT > 25.457

then
NDVI = 386.327 + 316 AMI + 0.0294 GDD - 0.99 PPT + 0.2 1n(PPT)

with the 0.91 correlation coefficient, but when presented with the 41 rules pro-
duced by Cubist, they had difficulty interpreting them. Some of the rules clearly
did not make sense, and were probably a result of Cubist overfitting the data.
More importantly, the large number of rules — some 41 as compared with two
in the earlier work — was simply overwhelming.

The first step we took in response to this understandability problem was to
change the parameters to Cubist so that it would produce fewer rules. One of
these parameters specifies the minimum percentage of the training data that
must be covered by each rule. The default value of 1% produced 41 rules. We
experimented with different values of this parameter between 1% and 100%;
the results appear in Table @l and Figure [Il Using a model with only one rule
— that is, using conventional multiple linear regression analysis — results in a
correlation coefficient of 0.84, whereas adding rules gradually improves accuracy.
Interestingly, when using two rules, Cubist split the data on a different variable
than the one the Earth scientists selected. Potter and Brooks split the data on
GDD (essentially temperature), while Cubist instead chose precipitation, which
produced a very similar correlation coefficient (0.85 versus 0.86). The two-rule
model produced by Cubist is shown in Table Bl A comparison between Table [Tl
and Table Bl reveals that Potter and Brooks modeled In(NDVI) in one rule, and
NDVI in the other rule, while Cubist modeled NDVT in both rules. Cubist does
not have the ability to model the logarithm of the class variable in some rules
while modeling the original class variable in other rules (there can only be one
class variable), so the space of rules searched by Cubist did not include Potter
and Brooks’ model. Interestingly, Cubist produced similar accuracy even though
it searched a more limited rule space.

In machine learning there is frequently a tradeoff between accuracy and un-
derstandability. In this case, we are able to move along the tradeoff curve by
adjusting Cubists’ minimum rule cover parameter. Figure[Ilillustrates this trade-
off by plotting the number of rules and the correlation coefficient produced by
Cubist for each value of the minimum rule cover parameter in Table 2l We be-
lieve that generally a model with fewer rules is easier to understand, so the
figure essentially plots accuracy against understandability. We used trial and
error to select values for the minimum rule cover parameter that produced the
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Fig. 2. Map showing which of the two Cubist rules from Table Bl are active across the
globe

Fig. 3. Map showing which of the seven Cubist rules from Table ] are active across
the globe

number of rules we wanted for understandability reasons. Based on this experi-
ence, We concluded that a useful feature for future machine learning algorithms
would be the ability to directly specify the maximum number of rules in the
model as a parameter to the learning algorithm. After reviewing a draft of a
conference paper on our NDVI work (Schwabacher and Langley, 2001), Ross
Quinlan decided to implement this feature in the next version of Cubist - see
Section
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5 Visualization of Spatial Models

Reducing the number of rules in the model by modifying Cubists’ parameters
made the model more understandable, but to further understand the rules, we
decided to plot which ones were active where. We developed special-purpose
C code, which produced the map in Figure Bl In this figure, the white areas
represent portions of the globe that were excluded from the model because they
are covered with water or ice, or because there was insufficient ground-based
data available. After excluding these areas, we were left with 13,498 points that
were covered by the model. The light gray areas are the areas in which Rule 1
from Table B applies (the drier areas), and the dark gray areas are the areas in
which Rule 2 from Table B applies (the wetter areas).

Figure [B] shows where the various rules in a seven-rule model are active. In
this figure, the white regions were excluded from the model, as before. The gray
areas represent regions in which only one rule applies; the seven shades of gray
correspond to the seven rules. (We normally use different colors for the different
rules, but resorted to different shades of gray for this book.) The black areas
are regions in which more than one rule in the model applied. (In these cases,
Cubist uses the average of all applicable rules.) The seven rules used to produce
this map are shown in Table [l

The Earth scientists on our team found these maps very interesting, because
one can see many of the Earth’s major topographical and climatic features. The
maps provide valuable clues as to the scientific significance of each rule. With the
aid of this visualization, the scientists were better able to understand the seven-
rule model. Before seeing the map, the scientists had difficulty interpreting Rule 7,
since its conditions specified that CDD and GDD were both high, which appears to
specify that the region is both warm and cold. After seeing the map showing where
Rule 7 is active, they determined that Rule 7 applies in the northern boreal forests,
which are cold in the winter and fairly warm in the summer. The seven-rule model,
which is made understandable by this visualization, is almost as accurate as the
incomprehensible 41-rule model (see Table[2). This type of visualization could be
used whenever the learning task involves spatial data and the learned model is
easily broken up into discrete pieces that are applicable in different places, such
as rules in Cubist or leaves in a decision tree.

A second visualization tool that we developed (also as special-purpose C code)
shows the error of the Cubist predictions across the globe. In Figure @ white
represents either zero error or insufficient data, black represents the largest error,
and shades of gray represent intermediate error levels. From this map, it is
possible to see that the Cubist model has large errors in Alaska and Siberia,
which is consistent with the belief of the Earth scientists on our team that the
quality of the data in the polar regions is poor. Such a map can be used to better
understand the types of places in which the model works well and those in which
it works poorly. This understanding in turn may suggest ways to improve the
model, such as including additional attributes in the training data or using a
different learning algorithm. Such a visualization can be used for any learning
task that uses spatial data and regression learning.
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Table 4. The seven rules for NDVI produced by Cubist when the minimum rule cover
parameter is set to 10%

Rule 1:
if
CDD <= 16.52
PPT <= 25.457
then
NDVI = 3.48 + 7.17 PPT - 161 AMI - 0.0082 GDD - 9.9 1n(PPT) + 0.0003 CDD

Rule 2:
if
CDD > 16.52
PPT <= 25.457
then
NDVI = -69.99 + 16.08 PPT - 0.0449 GDD - 263 AMI + 0.0352 CDD + 0.4 1n(PPT)

Rule 3:
if
AMI <= -0.09032081
PPT > 25.457
then

NDVI = 375.9 + 367 AMI + 0.0257 GDD - 0.01 PPT + 0.2 1n(PPT)

Rule 4:
if
GDD <= 1395.62
PPT > 25.457
then
NDVI = 267.3 + 0.12 GDD + 0.0036 CDD + 3 AMI - 0.01 PPT + 0.2 1n(PPT)

Rule 5:
if
AMI > -0.09032081
GDD > 5919.36
then
NDVI = 601.1 - 0.0063 GDD - 0.11 PPT + 3 AMI + 0.2 1n(PPT) + 0.0001 CDD

Rule 6:

if
AMI > -0.09032081
CDD <= 908.73
GDD > 1395.62
GDD <= 5919.36

then
NDVI = 359.8 + 317 AMI + 0.037 GDD + 0.0425 CDD - 1 PPT + 0.2 1n(PPT)

Rule 7:
if
AMI > -0.09032081
CDD > 908.73
GDD > 1395.62

then
NDVI = 373.13 + 0.0645 GDD + 249 AMI - 1.32 PPT + 0.0134 CDD + 0.2 1n(PPT)

6 Discovery of Quantitative Errors in the Data

Having successfully trained Cubist using data for one year, we set out to see how
well an NDVI model trained on one year’s data would predict NDVI for another
year. We thought this exercise would serve two purposes. If we generally found
transfer across years, that would be good news for Earth scientists, because it
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Fig. 4. Map showing the errors of the prediction of the Cubist model from Table (] for
NDVI across the globe

would let them use the model to obtain reasonably accurate NDVI values for
years in which satellite-based measurements of NDVI are not available. On the
other hand, if the model learned from one year’s data transferred well to some
years but not others, that would indicate some change in the world’s ecosystem
across those years. Such a finding could lead to clues about temporal phenomena
in Earth science such as El Ninos or global warming.

What we found, to our surprise, is that the model trained on 1983 data worked
very well when tested on the 1984 data, and that the model trained on 1985 data
worked very well on data from 1986, 1987, and 1988, but that the model trained
on 1984 data performed poorly when tested on 1985 data. The second column of

Table 5. Correlation coefficients obtained when cross-validating using one year’s data
and when training on one year’s data and testing on the next year’s data, using the
original data set and using the corrected data set

DATA SET 7, ORIGINAL 7, CORRECTED
CROSS-VALIDATE 1983 0.97 0.91
CROSS-VALIDATE 1984 0.97 0.91
CROSS-VALIDATE 1985 0.92 0.92
CROSS-VALIDATE 1986 0.92 0.92
CROSS-VALIDATE 1987 0.91 0.91
CROSS-VALIDATE 1988 0.91 0.91
TRAIN 1983, TEST 1984 0.97 0.91
TRAIN 1984, TEST 1985 0.80 0.91
TRAIN 1985, TEST 1986 0.91 0.91
TRAIN 1986, TEST 1987 0.91 0.91
TRAIN 1987, TEST 1988 0.90 0.90
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Fig. 5. Predicted NDVT against actual NDVI for (left) cross-validated 1985 data and
(right) training on 1984 data and testing on 1985 data

Table [l shows the tenfold cross-validated correlation coefficients for each year,
as well as the correlation coefficients obtained when testing each year’s model on
the next year’s data. Clearly, something changed between 1984 and 1985. At first
we thought this change might have been caused by the El Nino that occurred
during that period.

Further light was cast on the nature of the change by examining the scatter
plots that Cubist produces. In Figure [Bl the graph on the left plots predicted
NDVI against actual NDVI for the 1985 cross-validation run. The points are
clustered around the x = y line, indicating a good fit. The graph on the right
plots predicted against actual NDVI when using 1985 data to test the model
learned from 1984 data. In this graph, the points are again clearly clustered
around a line, but one that has been shifted away from the x = y equation. This
shift is so sudden and dramatic that the Earth scientists on our team believed
that it could not have been caused by a natural phenomenon, but rather that it
must be due to problems with the data.

Further investigation revealed that there was in fact an error in the data.
In the data set given to to us, a recalibration that should have been applied
to the 1983 and 1984 data had not been done. We obtained a corrected data
set and repeated each of the Cubist runs from Table [}l obtaining the results in
the third column] With the corrected data set, the model from any one year
transfers very well to the other years, so these models should be useful to Earth
scientists in order to provide NDVI values for years in which no satellite-based
measurements of NDVI are available.

Our experience in finding this error in the data suggests a general method
of searching for calibration errors in time-series data, even when no model of
the data is available. This method involves learning a model from the data for

3 All of the results presented in the previous sections are based on the corrected data
set.
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each time step and then testing this model on data from successive time steps.
If there exist situations in which the model fits the data unusually poorly, then
those are good places to look for calibration errors in the data. Of course, when
such situations are found, the human experts must examine the relevant data
to determine, based on their domain knowledge, whether the sudden change in
the model results from an error in the data, from a known discontinuity in the
natural system being modeled, or from a genuinely new scientific discovery. This
idea can be extended beyond time-series problems to any data set that can be
naturally divided into distinct sets, including spatial data.

7 New Data Sets

7.1 Using Other Variables to Predict NDVI

Having demonstrated the value of Cubist to Earth science by improving upon
a previously published result, we set out to use Cubist to fit models to data
to which models had not previously been fit. First, we tried using additional
variables to predict NDVI, beyond the four variables that were used in Potter
and Brooks (1998). The additional variables we tried were:

— Potential Evapotranspiration (PET): potential loss of water from the soil
both by evaporation and by transpiration from the plants growing thereon,
as defined by Thornthwaite (1948).

— Elevation (DEM)

— Percentage wetland (WETLND)

— HET2SOLU: a two-dimensional measure of heterogeneity that counts the
number of different combinations of soil and landuse polygons within each
grid cell.

— HET3SOLU: a three-dimensional measure of heterogeneity that takes eleva-
tion into account.

— Vegetation type according to the University of Maryland (UMDVEG)

— Vegetation type according to the CASA model (CASAVEG)

We found that the variable that produced the largest improvement in accuracy
when used together with the original four variables was UMDVEG. Including
UMDVEG together with the original four variables increased the cross-validated
correlation coefficient (with a minimum rule cover of 1%) from 0.91 to 0.94.
Further investigation of this variable, however, revealed that it was derived from
NDVI, so that using it to predict NDVI would not be useful.

We found that including PET, DEM; WETLND, and HET2SOLU (along with
the original four variables) increased the cross-validated correlation coefficient
(using a minimum rule cover of 1%) from 0.91 to 0.93. This model has 40 rules,
and is very difficult to understand. Increasing the minimum rule cover parameter
to 10% produced a model with seven rules and a cross-validated correlation coef-
ficient 0.90. This model is slightly more accurate than the model produced from
the original four variables (which had a cross-validated correlation coefficient of
0.89) and is somewhat harder to understand.
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We concluded that the four variables chosen by Potter and Brooks (1998)
appear to be a good choice of variables for building a model that is both accurate
and understandable. In applications for which accuracy is more important than
understandability, it may be better to use the model with eight variables and 40
rules.

7.2 Predicting NPP

We decided to try using Cubist to predict another measure of vegetation: Net
photosynthetic accumulation of carbon by plants, also known as net primary
production (NPP). While NDVT is used as an indicator of the type of vegetation
at different places, NPP is a measure of the rate of vegetation growth. It is
usually reported in grams of carbon per square meter per year.

NPP provides the energy that drives most biotic processes on Earth. The
controls over NPP are an issue of central relevance to human society, mainly
because of concerns about the extent to which NPP in managed ecosystems can
provide adequate food and fiber for an exponentially growing population. In
addition, accounting of the long-term storage potential in ecosystems of atmo-
spheric carbon dioxide (CO3) from industrial pollution sources begins with an
understanding of major climate controls on NPP.

NPP is measured in two ways. The first method, known as “destructive sam-
pling,” involves harvesting and weighing all of the vegetation in a defined area,
and estimating the age of the vegetation using techniques such as counting the
number of rings in the cross-sections of trees. The second method uses towers
that sample the atmosphere above the vegetation, and estimating NPP from the
net C'O, uptake. Both methods are expensive and provide values for only one
point at at time, so until recently NPP values were only available for a small
number of points on the globe.

Previous ecological research has shown that surface temperature and precip-
itation are the strongest controllers of yearly terrestrial NPP at the global scale
(eg., Potter et al., 1999). Lieth (1975) used single linear regression to predict
NPP from either temperature or precipitation, using a data set containing NPP
values from only a handful of sites.

We recently obtained a new, much larger NPP data set from the Ecosystem
Model-Data Intercomparison (EMDI) project, sponsored by the National Center
for Ecological Analysis and Synthesis (NCEAS) in the U.S. and the International
Geosphere Biosphere Program (IGBP). This data set contains NPP values from
3,855 points across the globe. We decided to try using Cubist to predict NPP
from the following three variables:

— annual total precipitation in millimeters, 1961-1990 (PPT)
— average mean air temperature in degrees centigrade, 1961-1990 (AVGT)
— biome type, a discreet variable with 12 possible values (BIOME)

After Ross Quinlan reviewed a draft of a conference paper on our NDVI work
(Schwabacher & Langley, 2001), he implemented a new feature in Cubist that



Discovering Communicable Models from Earth Science Data 151

Table 6. The four rules produced by Cubist for predicting NPP

Rule 1:
if
PPT <= 653
then
NPP = 63.8 + 0.49 PPT - 6.5 AVGT

Rule 2:
if
BIOME in {Grassland, Wooded-grassland, Shrubland, ENL-forest-boreal}
then
NPP = 94.3 + 0.418 PPT - 7.3 AVGT

Rule 3:
if
BIOME in {Forest-temperate, Forest-boreal, Forest-xeric}
then
NPP = 215.1 + 0.377 PPT - 2.4 AVGT

Rule 4:
if
BIOME in {Savanna, EBL-forest-tropical, Forest-tropical,
DBL-forest-tropical}
then
NPP = 115.4 + 29.1 AVGT + 0.056 PPT

allows the user to directly specify the maximum number of rules, rather than
having to use trial and error to pick a value of the minimum rule cover parameter
that will produce the desired number of rules. For the NPP prediction, we used a
new version of Cubist (version 1.10) that includes this new feature. We specified
a maximum of five rules. Cubist produced the four rules shown in Table [6, and
a cross-validated correlation coefficient of 0.98.

The Earth scientists on our team were very happy with the 0.98 correlation
coefficient, and felt that the rules generally made sense. They liked the idea
of having different linear models for different groups of biome types. Initially,
however, they were surprised that the coefficient on AVGT was negative in three
of the four rules. After giving it more thought, they came up with a plausible
explanation of why this coefficient is negative. AVGT is acting mainly as a
predictor of relatively higher (or lower) heat fluxes that tend to severely dry out
(or leave moist) the soils and plants, given a similar PPT. This explanation still
requires further investigation.

To help understand these four rules, we produced a map showing where the
rules are active. Initially we produced a map with four colors representing the four
rules, and black representing multiple rules being active or no rules being active
(as in Figure B]). The result was a map in which almost all of the land area was
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Fig. 6. Map showing which combinations of the four Cubist rules for NPP are active
across the globe

black, which of course was not useful. It turns out that with this set of rules, for
much of the land area, two rules are active. Since there are only four rules, and the
last three are mutually exclusive, we were able to assign a different color to each of
the eight possible combinations of rules. Also, the 3,855 points in our NPP data are
from 12 biome types, while approximately 48% of the world’s land area has biome
types other than these 12, resulting in no rule being active. Most of these points
are tundra, desert, or cultivated land, which are biome types for which NPP has
not been measured. We assigned a ninth color to represent these areas. In addition,
the global data set and the NPP data set use two different sets of discrete values
for biome type. Some of the biome types in the global data set map into more
than one biome type in the NPP data set, and in some cases these multiple biome
types appear in multiple Cubist rules, making it unclear which Cubist rules are
active. These ambiguous points account for approximately 17% of the world’s land
area; we assigned a tenth color to these points. The resulting map (translated into
shades of gray for this book) is shown in Figure[fl The black areas in this map are
the ambiguous points.

The Earth scientists on our team felt that this map was useful in understand-
ing the rules, and in understanding the coverage of the model. It showed them
that the current EMDI data set of measured NPP values allows for a somewhat
limited extrapolation of the Cubist model (with no deserts, tundra, or cultivated
areas), but that the extrapolation still covers a substantial portion of the global
land surface, and that it covers most of the naturally “green” areas.

8 Related Work

Robust algorithms for flexible regression have been available for some time.
Breiman, Friedman, Olshen, and Stone’s (1984) CART first introduced the
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notion of inducing regression trees to predict numeric attributes. CART trees
have a numeric constant at each leaf, yielding a piecewise constant model. Weiss
and Indurkhya (1993) extended the idea to rule induction, inducing a set of rules
where the right-hand side of each rule has a numeric constant. Quinlan extended
the idea to piecewise linear models, by putting a linear model at each leaf of a
decision tree in M5 (Quinlan, 1992) or on the right-hand side of each of a set
of rules in Cubist (RuleQuest, 2002). Each approach has proved successful in
many domains, and both CART and Cubist have achieved commercial success.
However, neither approach has yet seen much application to Earth science data,
despite the considerable work on classification learning for tasks like assigning
ground cover types to pixels (e.g., Brodley & Friedl, 1999) and clustering adja-
cent pixels into groups (e.g., Ester, Kriegel, Sander, & Xu, 1996).

The work on communicability and understandability described in this chapter
builds on previous work in comprehensibility. Our requirement for communica-
bility is similar to Michalski’s (1983) “comprehensibility postulate” which states
that the results of computer induction should be in a form that is syntactically
and semantically similar to that used by humans experts. A collection of papers
on comprehensibility can be found in Kodratoff and Nédellec (1995).

Researchers have also carried out extensive work on techniques for visual-
izing data and learned knowledge. Tufte (1983) did early influential work on
the former topic, whereas Keim and Kriegel (1996) review many of the exist-
ing approaches. Rheingans and desJardins (2000) describe a technique for using
self-organizing maps to display high-dimensional data, predictions, and errors in
two dimensions. Within the data-mining community, researchers have developed
a variety of methods for the graphical display of learned knowledge (e.g., Brunk,
Kelly, & Kohavi, 1996). However, although much of this work employs a spatial
metaphor, little has focused on learned spatial knowledge itself.

Applications of machine learning to Earth science data, as in methods for
ground cover prediction (e.g., Brodley & Friedl, 1999), regularly display classes
on maps. Smyth, Ghil, and Ide (1999) plot predictions of a learned mixture
model on the globe, but our approach to visualizing areas in which regression
rules match, as well as anomalous regions, appears novel.

The European project SPIN! (2002) is seeking to develop a spatial data min-
ing system by combining data mining tools like C4.5 (Quinlan, 1993) with tools
for visualizing spatial data like Descartes (Andrienko & Andrienko, 1999). The
planned system will let its users visualize geographically-referenced data on
maps, and mine the data using the data-mining tools, from a unified user in-
terface. The researchers plan to test the SPIN! system on applications involving
seismic and volcano data. The visualization component of the project seems fo-
cused on letting users visualize the data, rather than visualizing the knowledge
learned through data mining.

There has also been considerable research on using machine-learned knowl-
edge to detect and either ignore or correct errors in training data. Much of this
work has focused on removing cases with faulty class labels (e.g., John, 1995;
Brodley & Friedl, 1999), but some has addressed detecting errors in the values of
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predictive variables. GritBot, a product of Quinlan’s RuleQuest Research (2002),
detects both errors in the class labels and errors in the predictive values by find-
ing what it calls anomalies: items in the training data that are outliers. We ran
GritBot on both the NDVI and the NPP data sets, and it found a number of
anomalies. For example, it found a point that had the unusual combination of
a high maximum NDVI and a low minimum NDVI. All of the anomalies that
GritBot finds are single-point anomalies — each anomaly is one item in the
training data, which in the applications described in this chapter means that
it is a single point on the globe at a single point in time — so GritBot is not
capable of finding the type of systematic error that we describe in Section [6l
Naturally, there are established methods for detecting and correcting calibra-
tion problems in remote-sensing systems (e.g., Chen, 1997), but these rely on
predefined models. Thus, our use of regression rules to detect systematic errors
appears novel to both the machine learning and calibration communities.

9 Future Work

Our collaboration is in its early stages, and we still have many research avenues
to explore. Our next step in modeling NDVI will incorporate time explicitly by
adding the year to the continuous variables used in regression equations, rather
than building a separate model for each year. We hope that by examining the
resulting multi-year models, we can learn something about climate change over
time.

In this chapter, we have assumed that models with fewer rules are more un-
derstandable. In future work, we plan to test this assumption by having the
Earth scientists on our team examine various sets of rules that Cubist produces
for different parameter values and telling us which sets they think are easier to
understand. Naturally, we will also ask them to judge the rules’ plausibility and
interestingness from the perspective of Earth science.

Another direction for future work is to develop an extension to the Cubist
algorithm that would allow it to take advantage of background knowledge. One
possible form of background knowledge would be knowledge of the sign of the
coeflicients on some of the variables within the linear models. For example, we
believe that the coefficient on PPT in the NPP model should always be positive.
Pazzani and Bay (1999) describe an algorithm that uses knowledge of the signs
of the coefficients to constrain the construction of regression equations. Their
algorithm accepts input about the sign of each term, then use an optimization
method to find the best weights given the constraints. The resulting equations
were just as accurate as the unconstrained linear models on separate test sets,
and domain experts found them more comprehensible. It would be interesting
to combine Pazzani and Bay’s algorithm with the Cubist algorithm to produce
decision rules with linear models that obey sign constraints.

The NDVI predictive model is only one piece of a larger framework, known as
CASA (Potter & Klooster, 1998), that Potter’s team has developed to model the
Earth’s ecosystem. CASA takes the form of a process model, stated in terms of
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differential equations, for the production and absorption of biogenic trace gases
in the Earth’s atmosphere. CASA’s output is NPP. We have achieved very good
accuracy by using Cubist to predict NPP, but for the reasons of understandability
and communicability described earlier, we would like our learned models to take
the same form as the CASA model, which means we cannot rely on Cubist alone
in our future efforts.

There has been some research on discovering laws that take the form of differ-
ential equations (Todorovski & Dzeroski, 1997), but this work has not used an
existing set of equations as the starting point. We plan to develop an algorithm
that will begin with the current CASA model and search through the space of
possible equations to find an improved model. We will consider developing a
Cubist-like algorithm that learns a model with a set of rules to select among
different sets of differential equations (instead of different linear models). We
hope that this effort will improve the accuracy of the CASA model to the point
where it is as accurate as the Cubist model of NPP, while retaining CASA’s
communicability and its scientific plausibility. We also hope that the changes
our system makes to the model will suggest new insights about Earth science.

10 Lessons Learned

In their editorial on applied research in machine learning, Provost and Kohavi
(1998) claimed that a good application paper will “focus research on important
unsolved problems that currently restrict the practical applicability of machine
learning methods.” In this chapter, we have identified, and provided initial so-
lutions for, three such problems that arise in scientific applications:

Communicability. In scientific domains, it is important for the form of the
learned models to match the form that is customarily used in the relevant
literature, so that the learned models can be communicated to other scien-
tists.

Understandability. In domains that involve spatial data, understanding of the
models can be increased by visualizing the spatial distribution of the model’s
errors and visualizing the locations in which the model’s components (e.g.,
rules) are active. Adjusting the parameters to the learning algorithm in order
to produce a smaller model can also aid understandability.

Quantitative errors. In applications that involve time-series numerical data,
machine learning methods can be used to identify quantitative errors by
testing a learned model for one time period against data from other time
periods.

Although we have developed these ideas in the context of a specific scien-
tific application — the prediction of NDVI and NPP from climate variables — we
believe they have general applicability to any domain that involves scientific un-
derstanding of spatio-temporal data. As we continue utilizing machine learning
to improve the CASA model, we expect that the challenging nature of the task
will reveal other methods and principles that contribute to both Earth science
and the science of machine learning.
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Abstract. Extracting structures as communicable knowledge is a cen-
tral problem in spatio-temporal data analysis. Spatial Aggregation is an
effective way for discovering structures. To address the computational
challenges posed by applications such as weather data analysis or en-
gineering optimization, Spatial Aggregation recursively aggregates local
data into higher-level descriptions, exploiting the fact that these physical
phenomena can be described as spatio-temporally coherent “objects” due
to continuity and locality in the underlying physics. This paper uses sev-
eral problem domains — weather data interpretation, distributed control
optimization, and spatio-temporal diffusion-reaction pattern analysis —
to demonstrate that intelligent simulation tools built upon the princi-
ples of Spatial Aggregation are indispensable for scientific discovery and
engineering analysis.

1 Introduction

Information technology has fundamentally changed the way we conduct scien-
tific experiments and synthesize engineering artifacts. For instance, powerful
computers have routinely been used to extract interesting features in satel-
lite images, diagnose abnormalities in nuclear reactors, allocate resources in air
traffic control, and discern subtle trends in stock markets, to name just a few
applications.

This paper describes a coherent body of theories and techniques, collectively
known as intelligent simulation, that have recently been developed by researchers
in Artificial Intelligence and Computational Science and Engineering to process
massive spatio-temporal data sets arising from many scientific and engineering
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applications. Simply put, intelligent simulation is about automatic computer in-
terpretation of numerical simulation or measurement data to produce high-level
structures understandable by human experts working in the domain. Intelligent
simulation combines the reasoning and representational power of computational
intelligence with an arsenal of numeric, symbolic, and geometric tools to solve
problems not amenable to traditional numeric or symbolic methods alone (Abel-
son et al., 1989). Suitable task domains for intelligent simulation include mining
scientific data and designing and controlling engineering systems. Instead of at-
tempting to survey the huge body of existing work in the field, we will introduce
and focus on concrete instances from our own work to demonstrate that intel-
ligent simulation tools are essential for the rapid prototyping and execution of
application programs in many challenging scientific and engineering domains. We
will describe future research directions to develop and realize the full potential
of intelligent simulation.

2 Challenges in Analyzing Physical Fields

A major class of physical problems for which intelligent simulation techniques are
particularly well-suited are the so-called field problems. Continuous, distributed
parameter fields are common physical phenomena: consider the temperature
field in a building, the air flow around an airplane wing, or the noise from a
copy machine. Figure [Tl gives examples of fields — a fluid field and a weather
field (map). Other examples of fields are phase spaces for describing behav-
iors of dynamical systems (Arnold, 1987) and configuration spaces for motion
of mechanical systems (Lozano-Perez, 1983). Yet another example is the force
field synthesized from a distributed micro-electro-mechanical system (MEMS)
actuator array; Bohringer and Donald developed force vector fields suitable for
transporting and orienting small parts such as semiconductor wafers (Bohringer
& Donald, 1998).

Many practical applications rely on the ability to reason about and control
these processes and systems. For instance, the drag on an airplane can be re-
duced by analyzing and controlling the air flow around the wings. Temperature
in a “smart” building can be regulated to maximize occupant comfort while min-
imizing energy consumption. Because of the rapid advances in micro-fabrication
technology that can integrate and produce MEMS devices on a massive scale,
we are becoming increasingly reliant on large networks of sensors, actuators, and
computational elements to augment our ability to interact with and control the
physical environment (Williams & Nayak, 1996).

However, the challenges one faces in interpreting data from physical fields
and controlling the behaviors of the fields are enormous. The difficulties arise
from three sources. First, a distributed parameter field is conceptually harder to
reason about and model than a lumped parameter system such as a circuit. In
addition to the combinatorial structures, spatial topology, metric, material prop-
erties and physical laws all come into play. The underlying physical processes
might be nonlinear and defy analytic, closed-form solution. Second, numerical
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Fig. 1. Examples of fields: (a) A fluid flow. The fluid field describes how objects such as
high density regions and large vortex structures are spatially distributed (shown here)
and temporally evolving (not shown). (b) A 300mb weather map over North America.
The data in a typical meteorological map includes pressure, temperature, and wind
velocities on a spatial grid. An experienced meteorologist could identify qualitatively
important weather features such as the location of a cold front and the direction of its
movement, by extracting and correlating geometric features such as pressure troughs
and thermal packing.

methods developed for designing and controlling physical fields require solving
large systems of equations and hence are prohibitively expensive for large, irreg-
ular geometric domains and highly non-uniform, nonlinear phenomena. Third,
many control applications rely on networks of sensors and controllers to interact
with a physical field. The physical laws constrain the ability of spatially dis-
tributed, local agents to sense and affect the environment. Local sensors and
control elements measure and interact with small neighborhoods around them.
Macroscopic consequences are aggregated from local actions. Consequently, the
design, programming, and coordination of distributed computational agents im-
mersed in physical media require abstraction mechanisms, inference methods,
and programming languages different from those for reasoning about and con-
trolling centralized, lumped parameter models.



Structure Discovery from Massive Spatial Data Sets 161

3 Interpreting Fields: An Example of Intelligent
Simulation

Much of the field information amassed by sensors is in an analogue, data-
rich form such as images, videos, or spatially distributed and continuous mea-
surements of physical processes. For many reasoning and control tasks, we
need to extract large-scale structures and behaviors from small-scale data
descriptions.

As an example of how intelligent simulation provides organizational princi-
ples and building blocks to facilitate the development of programs for engineering
problems, consider an interpretation task in dynamical system analysis, simpli-
fied from Yip’s KAM program for analysis of dynamical systems (Yip, 1991).
The input is a field of sampled states as points in phase space — a vector field —
shown in Figure 2la). The objective is to group states into trajectories and then
trajectories into trajectory bundles that share the same qualitative behaviors,
as shown in Figure l(d) and Figure 2lf) respectively. We use the vocabulary
of Spatial Aggregation (SA) (Yip & Zhao, 1996) to describe the computational
patterns in this example. SA provides a unified description for a number of prob-
lem solvers for interpreting dynamical systems (Yip, 1991; Sacks, 1991; Nishida
et al., 1991; Zhao, 1994), synthesizing controllers (Bradley & Zhao, 1993), and
analyzing mechanical mechanisms (Joskowicz & Sacks, 1991). SA introduces the
concepts of field ontology, multi-layer spatial aggregates mediated by neighbor-
hood structures, and a uniform vocabulary for constructing and transforming the
spatial aggregates. Fven though this problem involves a 2D space, the framework
applies to higher-dimensional spaces as well.

1. Points to trajectory curves

(a) Given an input point field (Figure 2(a)).

(b) Aggregate the points into a minimal spanning tree neighborhood graph
(Figure 2Ib)). Aggregation explicates a task-specific neighborhood rela-
tion (e.g. MST, Voronoi diagram, or nearness criteria) on a set of spatial
objects.

(¢) Classify connected points into the same equivalence class if the edge
connecting them isn’t too long relative to nearby edges (Figure 2(c)).
Classification identifies equivalence classes of objects in a neighborhood
graph, according to a task-specific clustering mechanism and equivalence
relation.

(d) Redescribe equivalence classes of points as trajectory curves (Figure2(d)).
Redescription shifts the level of abstraction so that the aggregation pro-
cess can repeat at a higher level.

2. Trajectory curves to trajectory bundles

(a) Aggregate trajectory curves such that curves are adjacent if any of their

constituent points are neighbors in the underlying minimal spanning tree

(Figure 2l(e)).
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Fig. 2. Example steps in trajectory bundling application. (a) Input points. (b) Points
aggregated into a minimal spanning tree. (¢) Equivalence classes of points joined by
short-enough edges. (d) Equivalence classes redescribed as trajectories. (e) Trajecto-
ries aggregated based on adjacencies of constituent points. (f) Equivalence classes of
trajectories with similar-enough limit behavior.

(b) Classify connected curves into the same equivalence class if their shape
is relatively similar (Figure 2[f)).
(¢) Redescribe equivalence classes of trajectory curves as trajectory bundles.

More generally, SA takes as input measured data from a physical field or
numerical data from simulating an ODE or PDE that models a field. The struc-
ture discovery process generates high-level descriptions of the physical field in
terms of more abstract spatial objects and their configurations, e.g., the one-
dimensional trajectory curves and the two dimensional trajectory bundles as in
the above example. Other examples of spatial objects include temperature con-
tour objects or “cold/warm” regions on a weather map. Section [{] will overview
Spatial Aggregation operators that build such abstractions hierarchically.

As the example illustrates, SA programs are modular, using a common data
structure (neighborhood graph) and an identical set of generic operators reusable
for multiple levels of problem abstraction. They are concise and make explicit
the important characteristics of the problem: neighborhood and equivalence
relations.



Structure Discovery from Massive Spatial Data Sets 163

4 Why Intelligent Simulation?

A simulation is a computational experiment performed on a model of a system
in order to answer a set of questions about the system. As the above appli-
cations demonstrate, several characteristics distinguish techniques of intelligent
simulation from those of conventional simulation.

— Rich models
Numerical simulation typically generates overwhelming amounts of data that
require human interpretation, while conventional symbolic methods are of-
ten data poor and do not scale up well with the size of problems. In con-
trast, models in intelligent simulation are structured and explicitly encode
geometries, spatio-temporal scales, causes and effects, and even simplify-
ing assumptions that are introduced during model construction in order to
make the analysis tractable (Falkenhainer & Forbus, 1991; Bobrow et al.,
1996). At the bottom level, the models are grounded on the rich, continuous
physical sensory data. At the higher levels, the models describe class generic
properties of physical entities such as the C-space free region diagram for me-
chanical mechanisms, or the iso-thermal structure of a temperature field. It
is useful to note that intelligent simulation moves beyond qualitative simula-
tion (Kuipers, 1986) of lumped parameter dynamical systems to analyze the
more challenging spatially distributed parameter systems, or systems mod-
eled by PDEs. Because of the richness in the representation, the models can
be used for a variety of data-rich applications while simultaneously support-
ing high-level reasoning tasks such as explanation generation, fault diagnosis,
or computer-aided tutoring. For example, the output of equivalence classes
of trajectories in the dynamical system analysis example can potentially be
used by system identification tools, for example (Bradley et al., 2001), to
constrain the space of possible models.
— Software modularity and reusability

In the past, numeric simulation software was monolithic and often difficult
to maintain. MATLAB and other recent numerical computation environ-
ments have changed the image of simulation. Tools of intelligent simulation
share many of the same goals as MATLAB: to provide a set of data types
and operators to express commonly occurring computational patterns and
to facilitate rapid prototyping of programs. Just as MATLAB uses matri-
ces to organize computation for linear systems, intelligent simulation tools
supply data types such as the neighborhood graph for problems involving
distributed physical fields. These tools isolate and localize domain-specific
knowledge and cross-cut concerns such as metric space, equivalence relation,
and consistency maintenance. Programs are built by choosing and instantiat-
ing commonly used component implementations in libraries. Additionally, in-
telligent simulation provides tools for filtering data, maintaining consistency,
and managing models. We view intelligent simulation as complementary to
conventional simulation. Intelligent simulation provides building blocks for
rationalizing existing programs and for constructing new problem solvers.
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In the rest of the paper, we describe an implemented language, SAL, sup-
porting a subset of the desired capabilities for intelligent simulation. We then
overview three challenging applications developed using SAL: weather data inter-
pretation, distributed control optimization, and diffusion-reaction spatio-tempo-
ral pattern analysis.

5 The Spatial Aggregation Language (SAL): A Rapid
Prototyping Environment

We have developed the SAL programming environment (Bailey-Kellogg et al.,
1996) to provide commonly used data types and generic Spatial Aggregation op-
erators for application development. Application programs are written by mixing
and matching components from prefabricated libraries. The SAL components ex-
plicate and localize important domain specific knowledge so that the resulting
programs are more modular and easier to maintain than traditional numeri-
cal simulation software. They allow a programmer to focus on the knowledge
relevant to an application, rather than on implementation details.

Spatial Aggregation uncovers structures at multiple levels of abstraction, with
the structures uncovered at one level becoming the input to the structure-
discovery process at the next level. For example, in a weather data analysis appli-
cation (Huang & Zhao, 2000), Spatial Aggregation could extract from pressure
data the isobars, pressure cells, and pressure troughs. Such multi-layer structures
arise from continuities in fields at multiple scales. Due to the continuity, fields ex-
hibit regions of uniformity, and these regions of uniformity can be abstracted as
higher-level structures which in turn exhibit their own continuities. Task-specific
domain knowledge specifies metrics and defines similarity and closeness of both
field objects and their features. For example, isothermal contours are connected
curves of equal (or similar enough) temperature.

SAL provides a small set of uniform data types and generic operators for
constructing the spatial aggregate hierarchy. The central data type of SAL, the
neighborhood graph, is an explicit representation of an object adjacency rela-
tion. The definition of adjacency is domain-specific and depends on the met-
ric properties of the input field. Common adjacency relations include Delaunay
triangulations, minimal spanning trees, and uniform grids. The neighborhood
graph serves as computational glue, localizing interactions between neighbor-
ing objects. The main SA operators aggregate objects into neighborhood graphs
satisfying an adjacency predicate, classify neighboring nodes into equivalences
classes with respect to an equivalence predicate, redescribe equivalence classes
into higher-level objects, and localize higher-level objects back into their con-
stituent equivalence classes. Additional operators search through neighborhood
graphs, check consistency of objects, extract geometric properties, and so forth.
The earlier dynamical system analysis example illustrates how these opera-
tors can be applied iteratively. By instantiating these operators with proper
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Fig.3. The SAL interpreter in action: interactive code evaluation and graphical
inspection of results

knowledge at different levels of abstraction, Spatial Aggregation allows specifi-
cation of a variety of application programs.

The SAL implementation comprises a C++ library and an interpreted, inter-
active environment layered over the library. The library supports construction
of efficient C++ programs with access to a large set of data type implemen-
tations and operations supporting the Spatial Aggregation programming style.
The interpreter (Figure B]) supports rapid prototyping of application programs
by providing a high-level interface to the main data type implementations and
operators of the SAL library. Programmers can conveniently explore trade-offs
in the specification of domain knowledge such as neighborhood relations and
equivalence predicates, interactively examining and modifying the results with-
out having to recompile a program. Graphical inspection tools support manipu-
lation and exploration of the structures in physical data.
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6 Weather Feature Analysis: Extracting Salient
Structures from Large Spatial Data Sets

In analyzing spatial data sets such as weather data or fluid motion, experts often
perceive and reason about these physical fields in terms of abstract spatial ob-
jects, also called features or patterns, that evolve and interact with each other.
For example, meteorologists identify and explicitly label aggregate weather fea-
tures such as high/low pressure centers, pressure troughs, thermal packings,
fronts, and jet streams. The experts then use weather rules to correlate these
features and establish prediction patterns. Most of these rules are qualitative
and have a rich geometric interpretation: “At 850mb, the polar front is located
parallel to and on the warm side of the thermal packing.” “Major and minor
500mb troughs are good indicators of existing or potential adverse weather.”
(Air Water Service, 1975)

We have developed a structure finding algorithm, using the SAL operators, for
extracting abstract objects from spatial datasets. It is unique in that: (1) It clas-
sifies neighborhood relations into strong and weak adjacencies. (2) It builds in-
ternal structures of aggregate objects from strong adjacencies among constituent
objects, and relations between aggregate objects from weak adjacencies. The in-
ternal structures of objects form a richer description than a feature-value based
representation and are essential for many identification and correspondence tasks
in interpreting large scientific data sets. It is beyond the scope of this paper to
present algorithmic details of the approach; we refer interested readers to (Huang
& Zhao, 2000) for additional details. Here, we focus on the basic structure of the
interpretation task: the input/output, the major steps of the spatial aggregation,
and the quality of the interpretation.

We illustrate the algorithm with an application to finding troughs and ridges
in weather data. Troughs and ridges are important features in weather analysis:
high-altitude troughs correlate with bendings of jet streams and are useful for
extended weather forecast; surface troughs are usually closely related to fronts
and are important for locating the fronts. What are troughs and ridges? Visually,
troughs and ridges are sequences of iso-bar segments bending consistently to one
direction, with troughs bending from low iso-bars to high iso-bars and ridges from
high iso-bars to low iso-bars. Though the extraction of troughs seems effortless
and immediate to human eyes, it is only qualitatively defined.

Our algorithm extracts trough features from weather data using a multi-level
approach. We use the raw data (pressure, temperature, wind streamlines, air den-
sity, etc.) from the National Weather Services website as input. The algorithm
identifies salient structures from the data and outputs a geometric description
of the troughs and ridges (as a curve graph). The algorithm goes through the
following major steps: (1) It extracts salient iso-bar segments using an iterative
thresholding technique. (2) It builds a neighborhood structure for the segments
from a Delaunay triangulation of iso-points. (3) It then classifies the neighbor-
hood relations and uses the strong adjacencies to extract the linear structures
among the segments to obtain troughs. Figure @] compares the high altitude
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Fig. 4. Labeling weather chart: (a) The high-altitude trough (dashed line) detected by
the spatial aggregation algorithm. (b) The corresponding trough (dashed line) drawn
by meteorologists for the national weather forecast map for roughly the same area as
the box in (a).

trough detected by our algorithm with that drawn by the meteorologists for the
national weather forecast map, using the data for Friday, Jan. 15, 1999.

The rich structures extracted by the algorithm can be used to identify causal
relations among weather events and to generate high-level explanations for
predictions.

7 Distributed Control Optimization: Divide-and-Conquer
by Exploiting Structural Information in Fields

Many sensor-rich control applications require decentralized control to attain
adaptivity, robustness, and scalability. For example, a controller for a smart
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building regulates building temperature with networks of sensors and actua-
tors; decentralized control allows the network to tolerate failures in individual
elements and to scale up more gracefully with the number of nodes. As another
example, rapid thermal processing in semiconductor curing employs separately
controlled lamp zones to maintain a uniform temperature profile over semicon-
ductor wafers in order to avoid defects (Kailath et al., 1996). Designing and opti-
mizing decentralized controls for a distributed system requires achieving global
control objectives through appropriate combinations of local control actions.
To determine the placement of control nodes and their parameters, one must
search a large design space subject to structural, behavioral, and performance
constraints.

We have employed SAL to model a distributed thermal regulation problem
and to design controls (Bailey-Kellogg & Zhao, 2001). The first task is to model
the heat flow in a problem domain. Figure B(a) overviews major computational
patterns in this process. A geometric description of a problem domain (e.g. a
piece of material for which the temperature is to be regulated) is discretized into
a space of spatial objects and an associated neighborhood graph. Local inter-
action rules in the neighborhood graph support the computation of heat flow.
This process can occur at multiple levels of abstraction, with approximations
at coarse resolutions driving refinements at finer resolutions. It can also occur
separately in subregions of the initial space, with results iteratively combined. In
this manner, SAL supports many traditional paradigms of engineering computa-
tion (e.g. domain decomposition (Chan & Mathew, 1994) and multigrid (Briggs,
1987)), but with a set of concise, generic operators in a vocabulary natural for
the domain.

The second task, overviewed in Figure [B(b), is to design both control place-
ments and control parameters to achieve a desired control objective. SAL
operators perform control design based on high-level characteristics of heat flow
in a field. These characteristics are extracted by classifying the field’s response
to a set of control probes. In the example, the geometric constraint imposed by
the narrow channel in the dumbbell-shaped piece of material results in similar
field responses to the two probes in the left half of the dumbbell and similar
responses to the two probes in the right half of the dumbbell. Based on the re-
sulting classes, the field is decomposed into regions to be separately controlled.
In this case, the left half of the dumbbell is decomposed from the right half.
Controls are placed in the regions and optimized by adjusting their outputs in
response to their effects on the field. The structural information also supports
parametric optimization by indicating the influence of control nodes on field
nodes. This allows efficient computation of changes in the field due to actions of
a control, and the ability to focus computation and communication on the part
of the field most strongly affected by a control’s actions.

The resulting control placement designs are comparable to those achieved by
traditional engineering optimization methods (e.g. simulated annealing (Met-
ropolis et al., 1953)), but use a small, fixed number of function evaluations to
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Fig. 5. Overview of SAL-based computational patterns for decentralized thermal reg-
ulation. (a) Modeling heat flow. (b) Designing controllers.

extract and exploit structural descriptions of the field. Basing the algorithms on
structural descriptions allows explanation of and higher-level reasoning about
the resulting designs. Use of structural information in parametric optimization
results in drastic (several orders of magnitude) speed-ups in field evaluation,
and methods for explicitly trading off between computation, communication,
and control quality (Bailey-Kellogg & Zhao, 2001).

8 Diffusion-Reaction Patterns Analysis: Modeling
Spatio-temporal Processes

We have also developed an algorithm for identifying and tracking coherent struc-
tures in spatio-temporal fields produced by a class of diffusion-reaction systems.
Such systems describe a number of physical, chemical, and biological phenomena,
and their study may shed light on how nature constructs and evolves structures
that exhibit a high degree of regularity. For instance, it is important to describe
the qualitative features of behaviors for the Gray-Scott diffusion-reaction model
of glycolysis, shown in Figure

The algorithm adaptively samples a spatial field using a particle system, aggre-
gates the sampling particles into a neighborhood graph, classifies the structure
into coherent regions, and tracks the regions over time to produce a qualitative
description of the temporal evolution of the field. Because the adaptive sampling
grid varies smoothly with the temporal evolution of the underlying field, the al-
gorithm is able to efficiently track the corresponding objects over successive time
frames by minimally updating the grid.
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Fig.6. A snapshot of a pattern in the Gray-Scott model, generated for a particular
set of parameters. The pattern, denoting the concentration of a substance that diffuses
and reacts with others, evolves over time.

The details of the algorithm can be found in (Ordonez & Zhao, 2000). Here, we
sketch the major steps of the algorithm, and illustrate what a qualitative output
of the interpretation looks like. The simulator for the algorithm takes as input a
field model, its parameters, and a set of initial conditions, and numerically inte-
grates the model to generate a time varying field. After initialization, the particle
system uses the field gradient information to form a sampling mesh. The triangle
elements in the particle mesh are aggregated to form polygons describing regions
of uniformity. The mesh is updated locally as the sampled field changes, and the
updates are propagated to the polygonal aggregates. Tracking these polygonal
objects over time, the simulator generates a high-level description of the his-
tory of the objects — births and deaths, fissions, separations, assimilations, and
fusions. At each time instant, the description consists of identified coherent re-
gions in the field. Higher-level spatio-temporal aggregations spatially collect the
regions into related shape clusters and temporally collect event sequences among
the shape clusters. Figure [l shows an example of a typical run.

The histories produced by the algorithm are important for further analy-
sis of causal structures in the spatio-temporal processes. Because the histo-
ries are based on multi-level aggregates of an adaptive particle system,
maintaining object identity over time is much more straightforward than for
traditional techniques that analyze frames independently and then establish
correspondence.
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Events

At step 108 body 3 (born 45) fused into body 2
At step 108 body 1 (born 45) fused into body
At step 112 body 2 (born 45) fused into body

o o

At step 176 body 4 arose from the fission of body O (born 45)
At step 178 body 5 arose from the fission of body O (born 45)
At step 180 body 6 arose from the fission of body O (born 45)

Detected Shape Clusters

Shape cluster 2:
body 0 @ [45,108], body 1 @ [45,-], body 2 @ [45,-],
body 3 @ [45,-]

Shape cluster 3:
body 0 @ [176,-], body 4 @ [176,-], body 5 @ [178,-],
body 6 @ [180,-]

Shape cluster b5:
body 0 @ [112,176]

Detected Event Sequences
Sequence (shape cluster 2 -> shape cluster 5) observed @ 112
Sequence (shape cluster 5 -> shape cluster 3) observed @ 176

Fig. 7. An example of a history of spatio-temporal objects identified by the Spatial
Aggregation analysis: time-stamped object events, aggregated shape clusters, and tem-
poral sequences of events. Cluster 2 contains four small L-shaped objects, cluster 3
contains four medium-sized L-shaped objects, and cluster 5 is a single large, squared-
shaped object with a hole inside. The event sequences describe fusion of the small Ls
into the square, and fission of the square into the medium-sized Ls.

9 Related Work

Intelligent simulation builds on techniques from many research areas that investi-
gate the problem of extracting and exploiting structures in distributed physical
data. Computer vision researchers have long tried to find structures in image
data. In the spirit of Ullman’s visual routines (Ullman, 1984), Spatial Aggre-
gation attempts to identify a set of primitive, generic operators out of which
more complex applications can be composed. Spatial data mining algorithms
identify correlations in spatial data; for example, finding general climate pat-
terns across regions by mining correspondences in geographic and weather data
(Lu et al., 1993). Scientific data analysis applications find patterns in large data
sets; for example, automatically cataloging sky images, and identifying volcanos
in images of the surface of Venus (Fayyad et al., 1996). Scientific visualization
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displays physical data in a manner that helps scientists use perceptual processes
to understand it (Rosenblum et al., 1994). An important component of scientific
visualization is the detection of features in data, such as vortices in fluid data.
Advanced data interpretation techniques, such as the visiometrics algorithms
(Samtaney et al., 1994) and the Fluid Dynamicist’s Workbench (Yip, 1995) use
these feature detectors in order to track structures over time. Finally, qualitative
spatial reasoning systems (e.g. (Forbus et al., 1991)) and diagrammatic reason-
ing applications (e.g. (Glasgow et al., 1995)) manipulate abstract descriptions
of spatial phenomena.

10 Conclusion

The rapid advances in sensor and information processing technology have un-
leashed an unprecedented amount of data about the dynamic physical world. To
interpret and utilize the information from the massive data, we will have to rely
on and collaborate with computational discovery tools. It is important that these
tools uncover spatial-temporal structures in the data and communicate them in
high-level terms, in the same way as scientists would describe these structures
as coherent “objects”.

Intelligent simulation is an exciting area in which to do research because
of the wealth of problem domains and the practical impact of the tools on
real-world problems. Many research issues are wide open: Intelligent simulation
leverages techniques of computer vision and computational geometry to model
and process complex data. Are there techniques from other areas (e.g. statis-
tical/learning techniques — see below) that are suitable and can be incorpo-
rated into intelligent simulation tools? What additional operators are required?
For example, what operators are useful for merging bottom-up and top-down
processing or correlating features from different data sets? Can we build up
large domain libraries and automatically search them to build programs? What
are the classes of problems for which intelligent simulation techniques are most
natural?

In summary, spatial data interpretation is a rich source of problems in com-
putational discovery of communicable knowledge. Techniques of Spatial Aggre-
gation and intelligent simulation tools will become indispensable for scientists
and engineers in these discovery processes.
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Abstract. We discuss what constitutes knowledge in pure mathemat-
ics and how new advances are made and communicated. We describe
the impact of computer algebra systems, automated theorem provers,
programs designed to generate examples, mathematical databases, and
theory formation programs on the body of knowledge in pure mathemat-
ics. We discuss to what extent the output from certain programs can be
considered a discovery in pure mathematics. This enables us to assess
the state of the art with respect to Newell and Simon’s prediction that a
computer would discover and prove an important mathematical theorem.

1 Introduction

In a seminal paper predicting future successes of artificial intelligence and oper-
ational research, Alan Newell and Herbert Simon suggested that:

‘Within ten years a digital computer will discover and prove an important
mathematical theorem.” (Simon & Newell, 1958)

As theorem proving involves the discovery of a proof, their predictions are about
automated discovery in mathematics. In this chapter, we explore what consti-
tutes knowledge in pure mathematics and therefore what constitutes a discovery.
We look at how automated techniques fit into this picture: which computational
processes have led to new knowledge and to what extent the computer can be
said to have discovered that knowledge.

To address the state of the art in automated mathematical discovery, we first
look at what constitutes mathematical knowledge, so that we can determine the
ways in which a discovery can add to this knowledge. We discuss these issues in
Section 2l In Sections 3 to 7, we look at five broad areas where computational
techniques have been used to facilitate mathematical discovery. In particular,
we assess the contributions to mathematical knowledge from computer algebra
systems, automated theorem provers, programs written to generate examples,
mathematical databases, and programs designed to form mathematical theories.

We then return to Newell and Simon’s prediction and consider whether impor-
tant discoveries in mathematics have been made by computer yet. We conclude
that no theorem accepted as important by the mathematical community has
been both discovered and proved by a computer, but that there have been dis-
coveries of important conjectures and proofs of well known results by computer.

S. Dzeroski and L. Todorovski (Eds.): Computational Discovery, LNAI 4660, pp. 175 , 2007.
© Springer-Verlag Berlin Heidelberg 2007
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Furthermore, some systems have both discovered and proved results which could
potentially be important. We further conclude that, with the ubiquitous use of
computers by mathematicians and an increasing dependence on computer alge-
bra systems, many important results in pure mathematics are facilitated — if not
autonomously discovered — by computer. We then discuss possibilities for the
use of other software packages in the mathematical discovery process.

1.1 Scope of the Survey

We restrict our investigation to pure mathematics, to avoid discussion of any
application of the mathematics discovered. For instance, a program might invent
an algorithm, which when implemented, leads to a better design for an aircraft
wing. From our point of view, the algorithm is the discovery of importance, not
the wing design. By restricting our investigation to pure mathematics, we hope
to make this explicit.

(Valdés-Pérez, 1995) makes a distinction between (a) programs which have
been designed to model discovery tasks in a human-like manner and (b) pro-
grams which act as scientific collaborators. While these two classes are certainly
not mutually exclusive, there have been many mathematics programs which have
not been used for discovery tasks. These include the AM and Eurisko programs
(Lenat, 1982) (Lenat, 1983), the DC program (Morales, 1985), the GT program
(Epstein, 1987), the ARE program (Shen, 1987), the Cyrano program (Haase,
1986), the IL program (Sims, 1990), and more recently the SCOT program (Pis-
tori & Wainer, 1999) and the MCS program (Zhang, 1999). These systems are
surveyed in (Colton, 2002b), but we restrict ourselves here to a survey of pro-
grams which have actually added to mathematics.

The Graffiti program, as discussed in Section [(.I], has been applied to chem-
istry (Fajtlowicz, 2001), and the HR, program, discussed in Section [T3 is cur-
rently being used in biology (Colton, 2002a). However, our final restriction in
this survey is to look only at the mathematical applications of the discovery
programs. For comprehensive surveys of automated discovery in science, see
(Langley, 1998) and (Valdés-Pérez, 1999).

2 Mathematical Knowledge and Discoveries

We can classify knowledge in pure mathematics into ground knowledge about
mathematical objects such as groups, graphs and integers, as well as meta-level
knowledge about how mathematical explorations are undertaken. To a large ex-
tent, only the ground knowledge is communicated via the conferences, journals,
and textbooks, with the meta-level knowledge discussed mainly between indi-
viduals and in a few books as listed in Section

2.1 Ground Mathematical Knowledge

Many journal papers and textbooks in pure mathematics proceed with quar-
tets of background information, concept definitions, theorem and proof. The
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background information usually states some results in the literature that pro-
vide a context for the new results presented in the paper.

Under the ‘definition’ heading, new concepts are defined and sometimes obvi-
ous properties of the concept and/or some examples satisfying the definition are
provided. Concept definitions include, but are not limited to: classes of object,
(e.g., prime numbers), functions acting on a set of objects to produce an out-
put, (e.g., the calculation of the chromatic number of a connected graph (Gould,
1988)), and maps taking one set of objects to another (e.g., isomorphisms in
group theory (Humphreys, 1996)).

Following the concept definitions, a theorem is proposed as a statement relat-
ing known concepts and possibly some new concepts. Theorems include state-
ments that one class of objects has a logically equivalent definition as another
class, i.e., if-and-only-if theorems. For example: an even number is perfect — de-
fined as being equal to twice the sum of its divisors — if and only if it is of the
form 27(2" ! — 1) where 2"+ — 1 is prime (Hardy & Wright, 1938). Theorems
also include statements that one class of objects subsumes another, i.e., implica-
tion theorems. For example: all cyclic groups are Abelian (Humphreys, 1996). In
addition, theorems include non-existence statements, i.e., that there can be no
examples of objects with a given definition. For example: there are no solutions
to the equation a™ 4 0™ = ¢™ for positive integers a, b and ¢ with n > 2 (Fermat’s
Last Theorem (Singh, 1997)).

Finally, a proof demonstrating the truth of the theorem statement completes
the quartet. The proof is usually a sequence of logical inferences proceeding
from the premises of the theorem statement to the conclusion (although other
strategies exist, as discussed in Section [22)). Any newly defined concepts which
were not explicitly mentioned in the theorem statement will probably appear in
the proof, as the concepts may have been extracted from the proof in order to
make it easier to understand.

In addition to concepts, theorems and proofs, authors sometimes present open
conjectures which, like theorems, are statements about concepts, but which lack
a proof, such as the open conjecture that there are no odd perfect numbers. These
are provided in the hope that someone will one day provide a proof and turn the
conjecture into a theorem. Algorithms are another type of ground mathematics.
These provide a faster way to calculate examples of a concept than a naive
method using the definition alone, e.g., the sieve of Eratosthenes for finding
prime numbers. Finally, examples of concepts often appear in journal papers,
particularly when examples are rare, or when finding the next in a sequence has
historical interest, as with the largest prime number.

2.2 Meta-mathematical Knowledge

Information about how mathematical explorations have been undertaken, and
how to undertake them in general, is rarely found in published form. There are,
of course, exceptions to this, and mathematicians such as Poincaré have written
about how to do mathematics (as discussed in (Ghiselin, 1996)), with similar
expositions from (Lakatos, 1976) and (Pélya, 1988).
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There has also been research that makes explicit some ways to solve math-
ematical problems. Such problems are often posed as exercises in mathematics
texts and usually involve either the solution of a fairly simple, but illustrative,
theorem, or the construction of a particular example with some desired proper-
ties. For instance, Paul Zeitz suggests the ‘plug and chug’ method: if possible,
make calculations which are relevant to the problem (e.g., put numbers into a
formula), and examine the output in the hope of finding a pattern which leads to
a Eureka step and the eventual solution (Zeitz, 1999). This approach is discussed
in more detail in (Colton, 2000).

Some work has also been undertaken to make explicit certain strategies for
proving theorems, and there are some known approaches such as proof by induc-
tion, proof by contradiction, and proof by reductio ad absurdum. In particular,
the area of proof planning has made more formal the notion of a proof strategy
and inductive theorem provers utilise these ideas (Bundy, 1988).

2.3 Discovery in Pure Mathematics

Before discussing computational approaches to discovery in pure mathematics,
we must first discuss what constitutes a discovery. Naively, any algorithm, con-
cept, conjecture, theorem or proof new to mathematics is a discovery. However,
we need to qualify this: a new result in mathematics must be important in some
way. For instance, it is fairly easy to define a new concept in number theory.
However, if there are no interesting provable properties of the concept and no
obvious applications to previous results, the concept may be an invention, but
it is unlikely to be accepted as a genuine discovery.

Similarly, any conjecture, theorem, proof or algorithm must be interesting in
the context within which it is discovered. An important result may have ap-
plication to the domain in which it was discovered; for example the definition
of a concept may simplify a proof. Similarly, a conjecture, which if true, may
demonstrate the truth of many other results. An important result may also
be something without obvious application, but which expresses some unusuaf]
connection between seemingly unrelated areas. The question of interestingness
in mathematics is discussed more extensively in (Colton et al., 2000b) and
(Colton, 2002b).

In addition to finding a new result, discoveries can be made about previous
results. For instance, while the nature of pure mathematics makes it less likely to
find errors than in other sciences, another type of discovery is the identification
of an error of reasoning in a proof. For example, Heawood discovered a flaw in
Kempe’s 1879 proof of the four colour theoremE which had been accepted for
11 years. A more recent example was the discovery that Andrew Wiles’ original
proof of Fermat’s Last Theorem was flawed (but not, as it turned out, fatally
flawed, as Wiles managed to fix the problem (Singh, 1997)).

! The mathematician John Conway is much quoted as saying that a good conjecture
must be ‘outrageous’ (Fajtlowicz, 1999).

2 This theorem states that every map needs only four colours to ensure that no two
touching regions are coloured the same.
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Similarly, papers are often published with a shorter proof of a known result
than any previously found. For instance, Appel and Haken’s original proof of the
four colour theorem (Appel & Haken, 1977) was criticised because it required a
computer to verify around 1500 configurations, and as such was not repeatable
by a human. Fortunately, Robertson et al. have discovered a much simplified
proof (Robertson et al., 1996).

In predicting that a computer would discover a new theorem (which
may involve new concepts, algorithms, etc.), Newell and Simon restricted their
discussion to discoveries at the object level. It is true that most mathemati-
cal discoveries occur at the object level, but discoveries at the meta-level are
certainly possible. In particular, a theorem may be important not because of
the relationship it expresses among the concepts in the theorem statement, but
rather because of an ingenious step in the proof that is applicable to many other
problems. Similarly, a new generic way to form concepts — such as a geometric or
algebraic construction — can also be viewed as a discovery. For instance, in the
long term, Galois’ thesis on the insolubility of polynomials was more important
because he introduced the notion of groups — an algebraic construct which arises
in a multitude of other domains — than the actual result, although that in itself
was a major breakthrough, as (Stewart, 1989) explains.

To summarise, mathematical discoveries include three main activities:

— discovering an important (interesting/applicable) concept, open conjecture,
theorem, proof or algorithm;

— revising a previous result, by for instance, the identification of a flaw or the
simplification of a proof;

— deriving a new method, in particular a proof strategy or a construction
technique for concepts.

2.4 Approaches to Computational Discovery

In the next five sections, we discuss some computational approaches that
have led to discoveries in pure mathematics. Firstly, we deal with computer
algebra packages, the most common programs employed in pure mathemat-
ics. Following this, we look at the various uses of automated theorem provers
which have led to discoveries. The next category covers a broad range of gen-
eral and ad-hoc techniques designed to find examples of concepts. In the fourth
category, we examine how the use of mathematical databases can facilitate
discovery. The final category covers a multitude of systems designed to in-
vent concepts, make conjectures, and in general form a theory about a domain,
rather than to pursue specific results. We look at the first two categories in
terms of the types of problems solved. However, for the final three categories,
because the techniques are more ad-hoc, we sub-categorise them in terms of
the techniques themselves, rather than the problems the techniques are used to
solve.
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3 Computer Algebra Systems

Computer algebra systems are designed to perform complex mathematical calcu-
lations, including algebraic manipulations, polynomial solution, differentiation,
and so on. Such systems include Maple (Abell & Braselton, 1994), Mathematica
(Wolfram, 1999) and GAP (Gap, 2000). The systems are usually accompanied by
large libraries of functions — many of which are written by the mathematicians
who make use of them — which cover a wide range of domains.

Four common ways in which computer algebra systems are used to facilitate
discovery in pure mathematics are:

Verifying a result with examples before a proof is attempted;

Providing examples from which a pattern can hopefully be induced in order
to state a conjecture;

— Filling in the specifics of a theorem statement;

Proving theorems.

The first three applications are so common that we can illustrate them with
examples from our own experience. We illustrate the fourth application of com-
puter algebra to discovery with an example from the work of Doron Zeilberger.

3.1 Giving Empirical Weight

Computer algebra packages can be very useful for adding empirical weight to
a conjecture before attempting to prove the conjecture. That is, whenever a
plausible conjecture arises and it is possible to generate counterexamples, some
effort is usually expended trying to find such a counterexample before an attempt
to prove the conjecture is made. For example, using techniques described in
Section [0, we made the conjecture that perfect numbers are never refactorable
(with a refactorable number being such that the number of divisors is itself
a divisor). Using the fast routines for integers in the GAP computer algebra
package, we verified this result for all perfect numbers from 1 to 10°4. This gave
us the confidence to attempt a proof, and we eventually proved this theorem
(Colton, 1999). Of course, the alternate outcome is possible: a counterexample
can be found, but we leave discussion of this until Section

3.2 Presenting Data for Eureka Steps

Another way in which computer algebra systems can facilitate discovery is to
produce examples from complex calculations and present the data in a way that
lets the user notice patterns and possibly make a conjecture. To the best of
our knowledge, there are no data-mining tools within computer algebra pack-
ages that could automate the pattern spotting part of the process. However,
they are often equipped with visualisation packages, which can certainly help
to highlight patterns in output. Furthermore, computer algebra systems include
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programmable languages, so the output can be tailored to enhance the chances
of identifying a pattern.

A fairly trivial, but illustrative, example occurred when we used the Maple
computer algebra system to help solve a problem posed by Paul Zeitz
(Zeitz, 1999):

Show that integers of the form n(n + 1)(n + 2)(n + 3) are never square
numbers.

Following Zeitz’s ‘plug and chug’ advice, we simply used Maple to calculate the
value of the function f(n) = n(n + 1)(n + 2)(n + 3), for the numbers 1 to 4,
giving:
f(1)y =24, f(2) =120, f(3) = 360, f(4) = 840

As predicted by Zeitz, we noticed that the output was always one less than a
square number, so proving this would solve the problem. We also used Maple in
the proof, by guessing that n(n+1)(n+2)(n+3) could be written as a quadratic
squared minus one. Then we tried different quadratics until Maple agreed upon
an equality between (n? +3n+1)? — 1 and n(n + 1)(n + 2)(n + 3). We could, of
course, have done all this entirely without Maple, but it illustrates how computer
algebra systems can be used to find, and, in some cases, verify patterns in data.
We discuss a different approach to Zeitz’s problem in (Colton, 2000).

3.3 Specifying Details in Theorems

A third way in which computer algebra systems can aid discovery is by filling
in details in theorem statements. For example, we became interested in divisor
graphs of integers, which are constructed by taking an integer n and making the
divisors of n the nodes of a graph. Then, we joined any two distinct nodes with
an edge if one divided the other. Figure [I] show three examples of divisor graphs.

Fig. 1. Divisor graphs for the numbers 10, 12 and 14

As both 1 and n divide all the other divisors, it follows that, for every integer,
the result is a connected graph. We became interested in the question: which
integers produce planar divisor graphs? A planar graph can be drawn on a
piece of paper in such a way that no edge crosses another, such as the first and
third graphs in Figure [[l Kuratowski’s theorem (Kuratowski, 1930) is used to
determine whether or not a graph is planar.
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To answer our question, we first realised that the divisor graph of an integer
is dependent only on its prime signature: if an integer n can be written as
n= p}flpé92 ...pkm  for primes p; < p2 < ... < pm, then the prime signature of n
is the list [kq, k2, . . ., k. Hence, as depicted in Figure[l] the numbers 10 =2 x5
and 14 = 2 x 7 have the same divisor graph because they have the same prime
signature: [1,1]. Furthermore, we determined that if an integer n is divisible by
a non-planar integer, then n itself will be non-planar, because its divisor graph
will have a non-planar subgraph.

These two facts enabled us to approach our problem by looking at the divi-
sor graphs of numbers with different prime signatures and seeing whether the
divisor graphs are planar. As most prime signatures will produce non-planar di-
visor graphs, we reasoned that we could determine a boundary on those prime
signatures producing planar divisor graphs. We wrote a small Maple program
to construct the divisor graph for an integer, then used the built-in isplanar
function to determine whether the graph was planar. Rather than thinking too
hard about the exact strategy, we simply printed out ‘planar’ or ‘non-planar’
for the numbers 1 to 100, and looked at the occurrences of non-planar divisor
graphs.

We found that the number 30 produced a non-planar divisor graph. The
number 30 can be written as pqr for three distinct primes p,q and r. Hence,
using the above reasoning about prime signatures and graphs with non-planar
subgraphs being non-planar themselves, we concluded that all integers divisible
by three or more primes must be non-planar. Hence we focussed on integers
with 1 or 2 prime divisors and we easily identified a boundary for the planar
divisor graphs: integers of the form p* produced non-planar divisor graphs, as
did integers of the form p?q¢?.

Hence, we answered our question, and could state the theorem as follows:

Only the number 1 and integers of the form: p,p?,p3, pg and p?q for
distinct primes p and g produce planar divisor graphs.

We see that, whereas the overall idea for the theorem was ours, using Maple let
us easily fill in the specifics of the theorem statement. Note also that the proof of
the theorem evolved alongside the actual statement. That is, there was no time
when we stated a conjecture and tried to prove it. This method of discovery is
common in mathematics, but publications are usually stated with the theorem
and proof very much separate. Further details of this and related theorems are
found in (Colton, 2002b), appendix C.

3.4 Proving Theorems

As highlighted by Doron Zeilberger’s invited talk at the IJCAR-2001 conference,
Levi Ben Gerson’s treatise of 1321 had around 50 theorems with rigorous proofs
proving what are now routine algebraic identities, such as: (a + b)? = a? +
2ab+ b? (which took a page and a half to prove). Computer algebra systems can
now “prove” much more elaborate identities than these with simple rewriting
techniques. Zeilberger argues that, if mathematicians are happy to embrace such
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theorems as routine enough for a computer to carry out the proof, then we
should embrace all such computer generated proofs. That is, rather than being
skeptical of theorems that require a computer to prove them (such as the four
colour theorem, which we discuss in Section [5.0]), he encourages such proofs,
arguing that they are an order of magnitude more difficult than theorems that
a mere human can prove (but still trivial, as they can be proved).

As an example, we can take Zeilberger’s proof of Conway’s Lost Cosmological
Theorem (Ekhad & Zeilberger, 1997). This starts with the sequence of integers
1,11,21,1211,111221, ..., which is obtained by describing in words the previous
term, e.g., one, one one, two ones, one two (and) one one, etc. Remarkably,
Conway proved that the length of the (n + 1)th term divided by the length
of the nth term tends to a constant A = 1.303577269... known as Conway’s
constant. The generalised cosmological theorem states that starting with any
non-trivial integer other than 22, and constructing the sequence in the same
manner, will give the same ratio between lengths. Conway lamented that his
proof of this theorem, and another by Guy, were lost (Conway, 1987).

Zeilberger chose not to prove this theorem with pen and paper, but rather
to write a Maple package called HORTON (after John Horton Conway). The
proof relies on the fact that most numbers can be split into halves that develop
independently of each other as the sequence proceeds. There are a finite number
of integers (atoms) that cannot be split in this way. By ranging over all possi-
bilities for atoms, the HORTON program showed that all numbers eventually
decompose into atoms after a certain number of steps, which proved the con-
jecture (Ekhad & Zeilberger, 1997). This proof is similar in nature to the proof
of the four colour theorem described in Section [£.5 but was undertaken using
a computer algebra systems, rather than by writing software specifically for the
problem.

4 Automated Theorem Proving

One of the original goals of computer science and artificial intelligence was to
write a program that could prove mathematics theorems automatically, and
many systems have been implemented which can prove fairly complicated theo-
rems. The ability to prove theorems is a powerful skill and automated theorem
provers have performed a variety of discovery tasks in pure mathematics. These
include proving established conjectures, improving proofs, finding new axiomati-
sations, and discovering new theorems. We concentrate here on discoveries made
using deductive methods. We leave discussion of (counter)example construction
methods — which have also solved theorems — until Section

4.1 Proving Established Conjectures

The most extensive application of automated theorem proving to pure math-
ematics has been undertaken by the research team at Argonne laboratories,
using various theorem provers, including EQP and, more recently, Otter
(McCune, 1990).
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Certainly the most famous theorem to be proved by an automated theorem
prover is the Robbins Algebra conjecture, which McCune et al. solved using the
EQP theorem prover (McCune, 1997). Herbert Robbins proposed that commu-
tative, associative algebras are Boolean if they satisfy the extra condition that
n(n(z) + y) + n(n(z) + n(y)) = x. These algebras became known as Robbins
algebras and the question of whether they are Boolean defeated the attempts of
mathematicians and logicians for more than 60 years.

In addition to providing the solution in 1996, automated reasoning techniques
were also used during the development of this problem. In particular, on the ad-
vice of Wos, Winker used a combination of automated techniques and a standard
mathematical approach to find two simpler conditions on the algebras, which, if
true, would show that they are Boolean. The EQP program eventually proved
that the second condition does in fact hold for Robbins algebras. The search for
the proof took around eight days on an RS/6000 processor and used around 30
megabytes of memory.

EQP’s successor, the Otter program (McCune, 1990), has also had much suc-
cess discovering proofs to theorems in pure mathematics. In addition to find-
ing new axiomatisations of algebras, as discussed in Section [£3] Otter has
been used to prove research theorems in algebraic geometry and cubic curves,
lattice theory, Boolean algebras and quasigroup theory. A particularly fruit-
ful partnership between McCune (Otter’s author and principal user) and the
mathematician Padmanabhan has developed. Padmanabhan has supplied many
theorems relevant to his research that Otter has proved for the first time.
Much of this work was written up in (McCune & Padmanabhan, 1996). A web
page describing the discoveries due to the Argonne provers can be found at:
http://www-unix.mcs.anl.gov/AR/new results/.

4.2 Improving Proofs

One of the first applications of automated theorem proving was the use of Newell,
Shaw and Simon’s Logic Theory Machine (Newell et al., 1957) to prove theorems
from Whitehead and Russell’s Principia Mathematica. The program proved 38
of the 52 theorems they presented to it, and actually found a more elegant proof
to theorem 2.85 than provided by Whitehead and Russell. (MacKenzie, 1995)
points out that, on hearing of this, Russell wrote to Simon in November 1956:

‘T am delighted to know that Principia Mathematica can now be done by
machinery ... I am quite willing to believe that everything in deductive
logic can be done by machinery.’

Newell, Shaw and Simon submitted an article about theorem 2.85, co-authored
by the Logic Theory Machine, to the Journal of Symbolic Logic. However, it was
refused publication as it was co-authored by a program.

More recently, Larry Wos has been using Otter to find smaller proofs of the-
orems than the current ones. To this end, he uses Otter to find more succinct
methods than those originally proposed. This often results in detecting double
negations and removing unnecessary lemmas, some of which were thought to be
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indispensable. (Wos, 1996) presents a methodology using a strategy known as
resonance to search for elegant proofs with Otter. He gives examples from math-
ematics and logic, and also argues that this work also implications for other
fields such as circuit design.

(Fleuriot & Paulson, 1998) have studied the geometric proofs in Newton’s
Principia and investigated ways to prove them automatically with the Isabelle
interactive theorem prover (Paulson, 1994). To do this, they formalised the Prin-
cipia in both Euclidean geometry and non-standard analysis. While working
through one of the key results (proposition 11 of book 1, the Kepler problem)
they discovered an anomaly in the reasoning. Newton was appealing to a cross-
multiplication result which wasn’t true for infinitesimals or infinite numbers.
Isabelle could therefore not prove the result, but Fleuriot managed to derive an
alternative proof of the theorem that the system found acceptable.

4.3 Finding Axiom Schemes

Another interesting project undertaken by the Argonne team aims to find differ-
ent axioms systems for well known algebras, such as groups and loops (McCune,
1992) (McCune, 1993). In many cases, it has been possible to reduce the axioms
to a single axiom. For instance, group theory can be expressed in terms of the
multiplication and inverse operators in a single axiom:

v,y zue G (x(y(((22)(uy))x)) = u,

where o’ indicates the inverse of a. These results were achieved by using Otter to
prove the equivalence of the standard group axioms with exhaustively generated
formulae. Similar results have been found for different operators in group theory
and for Abelian groups, odd exponent groups and inverse loops. (Kunen, 1992)
has subsequently proved that there are no smaller single axioms schemes than
those produced by Otter.

4.4 Discovering Theorems

With a powerful theorem prover, it is possible to speculate that certain state-
ments are theorems, and discard those which the prover does not prove. As the
prover is so efficient, an exhaustive search of theorems can be undertaken, with-
out having to invent concepts or worry about notions of interestingness as is the
case with the programs described in Section [

(Chou, 1985) presents improvements on Wu’s method for proving theorems in
plane geometry (Wu, 1984). In Chapter 4, he describes three approaches to using
his prover to find new theorems: (i) ingenious guessing using geometric intuition
(ii) numerical searching and (iii) a systematic approach based on the Ritt-Wu de-
composition algorithm. Using the first approach, he found a construction based
on Pappus’ Theorem which led to a colinearity result believed to be new. Using
the second method — suggesting additional points and lines within given geo-
metric configurations — he started with a theorem of Gauss (that the midpoints
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of the three diagonals of a complete quadrilateral are collinear) and constructed
a theorem about taking subsets of five lines from six, which he believed to be of
importance. With the third method, he discovered a generalisation of Simson’s
theorem. (Bagai et al., 1993) provide a more general approach to automated ex-
ploration in plane geometry, although it appears that no new theorems resulted
from this work.

5 Example Construction

The construction of examples of concepts has advanced pure mathematics in at
least these three ways:

— by discovering counterexamples to open conjectures;

— by solving non-existence conjectures, either by finding a counterexample or
by exhausting the search space to prove the conjecture;

— by finding larger (more complex) examples of certain objects, such as the
largest primes.

We break down our overview of example construction according to the general
techniques used to solve problems, rather than the type of problem solved.

5.1 Constraint Satisfaction Solving

Specifying a problem in terms of constraint satisfaction has emerged as a pow-
erful, general purpose, technique (Tsang, 1993). To do this, the problem must
be stated as a triple of: variables, domains for the variables, and constraints on
the assignment of values from the domain to each variable. The solution of the
problem comes with the assignment of a value (or a range of values) to each
of the variables in such a way that none of the constraints are broken. There
are various strategies for the assignment of variables, propagation of constraints,
and backtracking in the search.

This approach has been applied to problems from pure mathematics, in partic-
ular quasigroup existence problems. For instance, the FINDER program (Slaney,
1992) has solved many quasigroup existence problems. (Slaney et al., 1995) used
FINDER along with two different automated reasoning programs called DDPP
(a Davis Putnam implementation, as discussed in Section (2]) and MGTP to
solve numerous quasigroup existence problems. For example, they found an idem-
potent type 3 quasigroup (such that V a,b(a*b) * (b*a) = a) of size 12, settling
that existence problem. They had similar results for quasigroups of type 4 and
solved many other existence questions, both by finding counterexamples and
by exhausting the search to show that no quasigroups of given types and sizes
exist.

Open quasigroup problems have also been solved with computational methods
by a number of other researchersf] Constraint satisfaction techniques have been

3 With details at this web page:
http://www.cs.york.ac.uk/"tw/csplib/combinatorial.html
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applied to other problems from combinatorial mathematics, such as Golomb
rulers (Dewdney, 1985), and Ramsey numbers (Graham & Spencer, 1990). How-
ever, optimised, specialised algorithms usually out-perform the constraint sat-
isfaction approach. For instance, while the constraint approach works well for
Golomb rulers, all the actual discoveries have been made by specialised
algorithms.

5.2 The Davis Putnam Method

This method is used for generating solutions to satisfiability problems (Davis
& Putnam, 1960), (Yugami, 1995). It works by searching for an assignment of
variables that satisfies all clauses in a formula expressed in conjunctive normal
form. The procedure uses unit propagation to improve performance and works
by choosing a variable in a clause containing a single literal, and assigning a
value that satisfies the clause.

The MACE program (McCune, 2001) uses the Davis-Putnam method to gen-
erate models as counterexamples to false conjectures and has also been employed
to solve some existence problems. As discussed in (McCune, 1994), MACE found
a pair of orthogonal Mendelsohn triple systems of order 9. Also, MACE found
a quasigroup of type 3 of order 16 with 8 holes of size 2. Furthermore, MACE
has solved the existence problem of size 17 quasigroups of type 6 (such that
f(f(z,y),y) = f(z, f(z,y))) by finding an example. Another Davis Putnam
program which has been used to solve more than 100 open questions about
quasigroups in design theory is SATO (Zhang et al., 1996), (Zhang & Hsiang,
1994). Also, as mentioned above, the DDPP program is an implementation of
the Davis-Putnam method.

5.3 The PSLQ Algorithm

The PSLQ algorithm, as described in (Bailey, 1998), is able to efficiently suggest
new mathematical identities of the form a1x1 + asxo +. ..+ anx, = 0 by finding
non-trivial coefficients a; if supplied with real numbers 7 to x,.

One application of the algorithm is to find whether a given real number, «,
is algebraic. To do this, the values a, a?,...,a™ are calculated to high precision
and the PSLQ algorithm then searches for non trivial values a; such that

aia+asa® ... +a,a® =0

This functionality finds application in discovering Euler sums, which has led
to a remarkable new formula for 7:

”_il 4 2 11
S 4160 \8i+ 1 8i+4 8i+5 8i+6)’

Note that the formula was actually discovered by hand and the numbers found
by computation. This formula is interesting as it can be used to calculate the
nth hexadecimal digit of m without calculating the first n — 1 digits, as discussed
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in (Bailey et al., 1997). Until this discovery, it was assumed that finding the nth
digit of m was not significantly less expensive than finding the first n — 1 digits.
The new algorithm can calculate the millionth hexadecimal digit of 7 in less
than two minutes on a personal computer.

5.4 Distributed Discovery Projects

With the increase in internet usage in the last decade, many distributed at-
tempts to find ever larger examples of certain concepts have been undertaken.
In particular, the latest effort to find the largest prime number is the Great
Internet Mersenne Prime Search (GIMPS), which is powered by parallel tech-
nology running free software available at www.mersenne.org. Since 1996, the
GIMPS project has successfully found the four most recent record primes. The
record stands with a prime number with over two million digits and there are
predictions that GIMPS will find a billion-digit prime number by 2010.

The search for prime numbers has an interesting history from a computational
point of view. In particular, in 1961 in a single session on an IBM7090, Hurwitz
found two Mersenne primes which beat the previous record. However, due to the
way in which the output was presented, Hurwitz read the largest first. There is
now a debate as to whether the smaller of the two was ever the largest known
prime: it had been discovered by the computer before the larger one, but the
human was only aware of it after he had found a larger one. Opinionsﬁ are split
as to whether a discovery only witnessed by a computer should have the honour
of being listed historically as the largest prime number known at a given time.

While finding the next largest prime is not seen as the most important activity
in pure mathematics, it is worth remembering that one of the first programs
worked on by Alan Turing (actually written by Newman and improved by Turing
(Ribenboim, 1995)) was to find large prime numbers. Moreover, finding primes
may one day lead to the solution of an important number theory conjecture by
Catalan: that 8 and 9 are the only consecutive powers of integers.

There are many similar distributed attempts, some of which have come to a
successful conclusion. Examples include a search to find ten consecutive primes
in arithmetic progression (www.ltkz.demon.co.uk/ar2/10primes.htm) and a
distributed computation to find the quadrillionth bit of = (which is a 0), as
described at http://www.cecm.sfu.ca/projects/pihex/pihex.html.

5.5 Ad-Hoc Construction Methods

Individual programs tailored by mathematicians to solve particular problems are
ubiquitous. One famous instance, which can be considered under the umbrella
of example generation, is the four colour theorem. As mentioned in Section 2.1]
above, this theorem has a colourful history (Saaty & Kainen, 1986) and was
eventually solved in 1976 with the use of a computer to check around 1500

1 See  www.utm.edu/cgi-bin/caldwell/bubba/research/primes/cgi/discoverer/
for some opinions on the notion of discovery with respect to prime numbers.
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configurations in an avoidable set (see (Saaty & Kainen, 1986) for details). To
solve the conjecture, Appel and Haken used around 1200 hours of computing
time to check the configurations, looking for (and not finding) a configuration
which would break the four colour theorem. This was the first major theorem
to be proved by a computer that could not be verified directly by a human.
As discussed above, simplifications have since been made to the proof that has
made it less controversial and the truth of the theorem is now generally accepted
(Robertson et al., 1996).

Another set of ad-hoc computational methods were used to solve the existence
problem of finite projective planes of order 10. Clement Lam eventually proved
that there are none, but only with the help of many mathematicians who wrote
numerous programs during the 1980s. The complexities of this problem and its
eventual solution are beyond the scope of this survey, but full details are given
in (Lam et al., 1989).

Finally, we mentioned in Section Bl that mathematicians use computer algebra
programs to find counterexamples to conjectures they originally think to be true.
As an example of this, in appendix C of (Colton, 2002b), we discuss the following
conjecture:

A refactorable number is such that the number of divisors is itself a
divisor (Colton, 1999). Given a refactorable number, n, then define the
following function: f(n) = |{(a,b) € N x N: ab =n and a # b}|. Then
f(n) divides n if and only if n is a non-square.

We attempted to find a counterexample to this claim using the GAP computer
algebra system, but found none between 1 and 1,000,000. After abortive attempts
to actually prove the conjecture, we began to look for counterexamples again.
We eventually found three counterexamples: 36360900, 79388100 and 155600676.
Hence, in this case, we disproved a conjecture by finding a counterexample.
Unless the theorem is of importance, these kinds of results are rarely published,
but they still represent computer discoveries in mathematics.

6 Mathematical Databases

The representation of mathematical knowledge and its storage in large databases
is a priority for many researchers. For example, the MBASE project (Kohlhase
& Franke, 2000) aims to create a database of concepts, conjectures, theorems
and proofs, to be of use to the automated reasoning community, among others.
Simply accessing databases of mathematical information can lead to discoveries.
Such events occur when the item(s) returned by a database search differ radically
from those expected. Because the data is mathematical, there is a chance that
the object returned from the search is related in some mathematical way to the
object you were actually looking for.

One particularly important database is the Online Encyclopedia of Integer Se-
quencesf] which contains over 75,000 integer sequences, such as prime numbers

® http://www.research.att.com/ njas/sequences
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and square numbers. They have been collected over 35 years by Neil Sloane,
with contributions from hundreds of mathematicians. The Encyclopedia is very
popular, receiving over 16,000 queries every day. The first terms of each sequence
are stored, and the user queries the database by providing the first terms of a se-
quence they wish to know more about. In addition to the terms of the sequence,
a definition is given and keywords are assigned, such as ‘nice’ (intrinsically inter-
esting) and ‘core’ (fundamental to number theory or some other domain). Sloane
has recorded some times when using the Encyclopedia has led to a conjecture
being made. For instance, in (Sloane, 1998), he relates how a sequence that arose
in connection with a quantization problem was linked via the Encyclopedia with
a sequence that arose in the study of three-dimensional quasicrystals.

Another important database is the Inverse Symbolic Calculatorﬁ which, given
a decimal number, attempts to find a match to one in its database of over 50 mil-
lion taken largely from mathematics and the physical sciences. Other databases
include the GAP library of around 60 million groups, the Mizar library of for-
malised mathematics (Trybulec, 1989), the Mathworld online EncyclopediaE
and the MathSciNet citation and review serverE which contains reviews for
more than 10,000 mathematics articles and references for over 100,000. (Colton,
2001b) provides a more detailed survey of mathematical databases

7 Automated Theory Formation

We collect here some ad-hoc techniques generally designed to suggest conjec-
tures and theorems rather than prove them. This usually involves an amount
of invention (concept formation), induction (conjecture making), and deduction
(theorem proving), which taken together amount to forming a theory.

7.1 The Graffiti Program

The Graffiti program (Fajtlowicz, 1988) makes conjectures of a numerical nature
in graph theory. Given a set of well known, interesting graph theory invariants,
such as the diameter, independence number, rank, and chromatic number, Graf-
fiti uses a database of graphs to empirically check whether one sum of invariants
is less than another sum of invariants. The empirical check is time consuming, so
Graffiti employs two techniques, called the beagle and dalmation heuristics, to
discard certain trivial or weak conjectures before the empirical test (as described
in (Larson, 1999)). If a conjecture passes the empirical test and Fajtlowicz can-
not prove it easily, it is recorded in (Fajtlowicz, 1999), and he forwards it to
interested graph theorists.

As an example, conjecture 18 in (Fajtlowicz, 1999) states that, for any
graph G:

en(G) +r(G) < md(GQ) + fmd(G),

S http://www.cecn.sfu.ca/projects/ISC/
" http://mathworld.wolfram.com
8 http://www.ams.org/mathscinet
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where ¢n(G) is the chromatic number of G, r(G) is the radius of G, md(G) is
the maximum degree of G and fmd(G) is the frequency of the maximum degree
of G. This conjecture was passed to some graph theorists, one of whom found
a counterexample. The conjectures are useful because calculating invariants is
often computationally expensive and bounds on invariants may bring computa-
tion time down. Moreover, these types of conjecture are of substantial interest to
graph theorists, because they are simply stated, yet often provide a significant
challenge to resolve — the mark of an important theorem such as Fermat’s Last.

In terms of adding to mathematics, Graffiti has been extremely successful.
The conjectures it has produced have attracted the attention of scores of mathe-
maticians, including many luminaries from the world of graph theory. There are
over 60 graph theory papers published which investigate Graffiti’s conjecturesﬁ

7.2 The AutoGraphiX Program

(Caporossi & Hansen, 1999) have recently implemented an algorithm to find lin-
ear relations between variables in polynomial time. This has been embedded in
AutoGraphiX (AGX), an interactive program used to find extremal graphs for
graph invariants (Caporossi & Hansen, 1997). AGX has been employed to refute
three conjectures of Graffiti and has also been applied to automatic conjecture
making in graph theory. Given a set of graph theory invariants calculated for
a database of graphs in AGX, the algorithm is used to find a basis of affine
relations on those invariants. For example, AGX was provided with 15 invari-
ants calculated for a special class of graphs called colour-constrained trees. The
invariants included:

«a = the stability number
D = the diameter
m = the number of edges
n1 = the number of pending vertices

r = the radius
The algorithm discovered a new linear relation between the invariants:
20 —m —ny1 +2r— D =0,
which Caporossi and Hansen have proved for all colour-constrained trees (Ca-
porossi & Hansen, 1999).
7.3 The HR Program

HR is a theory formation program designed to undertake discovery tasks in
domains of pure mathematics such as group, graph and number theory (Colton,

9 See http://cms.dt.uh.edu/faculty/delavinae/research/wowref .htm for a list of
the papers involving Graffiti’s conjectures.
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2002b), (Colton et al., 1999). The system is given some objects of interest from a
domain, such as graphs or integers or groups, and a small set of initial concepts,
each supplied with a definition and examples. From this, HR constructs a theory
by inventing new concepts using general production rules to build them from one
(or two) old concepts. The new concepts are produced with correct examples
and a predicate definition that describes some relation between the objects in
the examples.

HR uses the examples of the invented concepts to make empirical conjectures
about them. For instance, if it finds that the examples of a new concept are ex-
actly the same those of an old one, it conjectures that the definitions of the two
concepts are logically equivalent. In finite algebraic systems such as group theory,
HR uses the Otter theorem prover (McCune, 1990) to prove the conjectures it
makes. If Otter fails to prove a conjecture, HR invokes the MACE model genera-
tor (McCune, 1994) to attempt to find a counterexample. Any counterexamples
found are incorporated into the theory, thus reducing the number of further false
conjectures generated.

We have used HR in domains such as anti-associative algebras (with only one
axiom — no triple of elements is associative). This made us aware of theorems
which were new to us; for example, there must be two different elements on the
diagonal of the multiplication tables and that anti-associative algebras cannot
be quasigroups or have an identity (in fact, no element can have a local identity).
More results from HR’s application to discovery tasks are presented in Chapter
12 of (Colton, 2002b). More recently, as discussed in (Colton & Miguel, 2001), we
have applied HR to the invention of additional constraints to improve efficiency
when solving constraint satisfaction problems. For instance, HR. conjectured and
proved that Qg3-quasigroups are anti-Abelian; i.e., for each a, b such that a # b,
axb # bxa. HR also discovered a symmetry on the diagonal of Qg3-quasigroups,
namely that V a,b(axa=b— bxb=a).

7.4 The NumbersWithNames Program

As discussed in (Colton, 1999) and (Colton et al., 2000a), one of the original
applications of HR to mathematical discovery was the invention of integer se-
quences worthy of inclusion in the Encyclopedia of Integer Sequences. To be
included, they must be shown to be interesting, so we also used HR to supply
conjectures about the sequences it invented, some of which we proved. To aug-
ment the supply of conjectures, we enabled HR to search the Encyclopedia to
find sequences which were empirically related to the ones it had invented. Such
relationships include one conjecture being a subsequence (or supersequence) of
another, and one sequence having no terms in common with another.

We have extracted this functionality into a program called NumbersWith-
Names, which HR accesses. NumbersWithNames contains a subset of 1000 se-
quences from the Encyclopedia, such as prime numbers, and square numbers,
which are of sufficient importance to have been given names. The internet inter-
facdld lets the user choose one of the sequences or input a new one. The program

19 This is available at: http://www.machine-creativity.com/programs/nwn
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then makes conjectures about the sequence by relating it to those in its database.
It also attempts to make conjectures by forming related sequences and search-
ing the Encyclopedia with respect to them. The new sequences are formed by
combining the given sequence with ‘core’ sequences in the database. Number-
sWithNames orders the conjectures it makes in terms of a plausibility measure
which calculates the probability of the conjecture occurring if the sequence had
been chosen at random along the number line.

Some examples of conjectures made using this approach are given in (Colton,
1999), (Colton et al., 2000a) and appendix C of (Colton, 2002b). An example is
the theorem that if the sum of the divisors of an integer n is a prime number,
then the number of divisors of n will also be a prime number. Another recent
appealing example is that perfect numbers are pernicious. That is, if we write
a perfect number in binary, there will be a prime number of 1s (the definition
of pernicious numbers). More than this, the 1s will be first, followed by zeros
(another relation found by the program). For example, the first three perfect
numbers are 6, 28 and 496, and when written in binary, these are 110, 11100
and 111110000. This unobvious conjecture — which we proved — is typical of
those found by NumbersWithNames.

8 Summary

We have described what constitutes knowledge in pure mathematics and sur-
veyed some computationa